<u>Appendix D</u>

Applicant's Environmental Report – Operating License Renewal Stage Joseph M. Farley Nuclear Plant Units 1 and 2

PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

Section

<u>Pag</u>e

		and Abbreviations	
1.0		ODUCTION	
	1.1	Purpose of and Need for Action	
	1.2	Environmental Report Scope and Methodology	1-2
	1.3	Farley Nuclear Plant Licensee and Ownership	
2.0	SITE	AND ENVIRONMENTAL INTERFACES	2-1
	2.1	Location and Features	
	2.2	Aquatic and Riparian Ecological Communities	2-2
	2.3	Groundwater Resources	2-5
	2.4	Critical and Important Terrestrial Habitats	2-7
	2.5	Threatened or Endangered Species	
	2.6	Demography	2-11
		2.6.1 Regional Demography	
		2.6.2 Minority and Low-Income Populations	
		2.6.2.1 Minority Populations	
		2.6.2.2 Low-Income Populations	
	2.7	Taxes	
	2.8	Land Use Planning	
	2.9	Social Services and Public Facilities.	
	2.0	2.9.1 Public Water Supply	
		2.9.2 Transportation	
	2 10	Meteorology and Air Quality	
		Historic and Archaeological Resources	
		Other Projects and Activities	
3.0		POSED ACTION	
5.0	3.1	General Plant Information	
	5.1	3.1.1 Reactor and Containment Systems	
		5 , ,	
		3.1.2.2 Groundwater	
	~ ~	3.1.3 Transmission Facilities	
	3.2	Refurbishment Activities	3-5
	3.3	Programs and Activities for Managing the Effects of Aging	3-6
	3.4		3-7
4.0		ROMMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND MITIGATING	
		ONS	4-1
	4.1	Water Use Conflicts (Plants with Cooling Ponds or Cooling Towers Using Make-up	
		Water from a Small River with Low Flow)	4-4
	4.2	Entrainment of Fish and Shellfish in Early Life Stages	
	4.3	Impingement of Fish and Shellfish	
	4.4	Heat Shock	
	4.5	Groundwater Use Conflicts (Plants Using > 100 GPM of Groundwater)	4-8
	4.6	Groundwater Use Conflicts (Plants Using Cooling Towers or Cooling Ponds that	
		Withdraw Make-up Water from a Small River)	
	4.7	Groundwater Use Conflicts (Plants Using Ranney Wells)	
	4.8	Degradation of Groundwater Quality	
	4.9	Impacts of Refurbishment on Terrestrial Resources	
	4.10	Threatened or Endangered Species	
	4.11	Air Quality During Refurbishment	
	4.12	Microbiological Organisms	4-15

TABLE OF CONTENTS (Continued)

<u>Section</u>

	4.13 Electric Shock from Transmission-Line-Induced Currents	
	4.14 Housing Impacts	
	4.15 Public Utilities: Public Water Supply Availability	
	4.16 Education Impacts from Refurbishment	
	4.17 Offsite Land Use	
	4.17.1 Offsite Land Use – Refurbishment	
	4.17.2 Offsite Land Use – License Renewal Term	
	4.18 Transportation	
	4.19 Historic and Archaeological Resources4.20 SAMA Analysis	
	4.20 SAMA Analysis	
5.0	ASSESSMENT OF NEW AND SIGNIFICANT INFORMATION	
6.0	SUMMARY OF LICENSE RENEWAL IMPACTS AND MITIGATING ACTIONS	
0.0	6.1 License Renewal Impacts	
	6.2 Mitigation	
	6.3 Unavoidable Adverse Impacts	
	6.4 Irreversible and Irretrievable Resource Commitments	6-4
	6.5 Short-term Use versus Long-term Productivity of the Environment	
7.0	ALTERNATIVES TO THE PROPOSED ACTION	
	7.1 No-Action Alternative	7-2
	7.1.1 Decommissioning	
	7.1.2 Replacement Capacity	
	7.2 Alternatives that Meet System Generating Needs	
	7.2.1 Alternatives Considered	
	7.2.1.1 Technology Choices	
	7.2.1.2 Effects of Deregulation	
	7.2.1.3 Mixture	
	7.2.1.4 Fossil-Fuel-Fired Generation	
	7.2.1.5 Purchased Power7.2.1.6 Demand-Side Management	
	7.2.1.6 Demand-Side Management 7.2.1.7 Other Alternatives	
	7.2.1.7 Other Alternatives	
	7.2.2.1 Coal-Fired Generation	
	7.2.2.2 Gas-Fired Generation	
	7.2.2.3 Purchased Power	
8.0	COMPARISON OF ENVIRONMENTAL IMPACTS OF LICENSE RENEWAL WITH THE	
0.0	ALTERNATIVES	8-1
9.0	STATUS OF COMPLIANCE	
	9.1 Proposed Action	
	9.1.1 General	
	9.1.2 Threatened or Endangered Species	
	9.1.3 Coastal Zone Management Program	
	9.1.4 Historic Preservation	
	9.1.5 Water Quality (401) Certification	
	9.2 Alternatives	
10.0	REFERENCES	10-1

TABLE OF CONTENTS (Continued)

List of Attachments

Attachments

Attachment A- NRC NEPA Issues for License Renewal of Nuclear Power Plants	A-1
Attachment B- NPDES Permit	B-1
Attachment C- Special-Status Species Correspondence	C-1
Attachment D- Microbiological Organisms Correspondence	
Attachment E- State Historic Preservation Officer Correspondence	E-1
Attachment F- SAMA Analysis	F-1

List of Tables

Table

Page

Table 1-1.	Environmental Report Responses to Nuclear Regulatory Commission License	
	Renewal Environmental Regulatory Requirements	1-6
Table 2-1.	Special-Status Species Known or Likely to Occur at FNP or in Counties Traversed by FNP Transmission Line Corridors ^a	2-22
Table 0.0		2-22
Table 2-2.	Estimated Populations and Annual Growth Rates in Houston County, Alabama, from 1980 to 2040.	2-28
Table 2.3	Minority and Low-Income Population Census Block Groups and Tracts	2-20
	Property Tax Revenues Generated in Houston County, Alabama; Property Taxes Paid	2-29
	to Houston County by Farley Nuclear Plant 1995 - 1999	2-30
Table 2.5	Houston County Public Water Suppliers and Capacities. (Use is per day and capacity	2-30
	is per minute.)	. 2-30
Table 2.6	Traffic Counts for Roads in the Vicinity of FNP	
	Category 1 Issues That Are NOT APPLICABLE to Joseph M. Farley Nuclear Plant ^a	
	Category 1 and "NA" Issues That ARE APPLICABLE to Joseph M. Farley Nuclear	
	Plant ^a	4-32
Table 4-3	Results of Induced Current Analysis.	4-43
	Summary of Detailed SAMA Analyses	
	Environmental Impacts Related to License Renewal at FNP.	
	Coal-Fired Alternative.	
	Gas-Fired Alternative	
	Air Emissions from Coal-Fired Alternative.	
	Solid Waste from Coal-Fired Alternative.	
	Air Emissions from Gas-Fired Alternative.	
	Impacts Comparison Summary	
	Impacts Comparison Detail.	
	Environmental Authorizations for Current FNP Operations.	
	Environmental Authorizations for FNP License Renewal.	
	Joseph M. Farley Nuclear Plant Environmental Report Discussion of License Renewal	
	NEPA Issues ^a	A-2

TABLE OF CONTENTS (Continued)

List of Figures

Figure

Farley Nuclear Plant:	50-mile Vicinity Map	
-		
-		
Farley Nuclear Plant:	Hispanic Ethnicity Populations Map	
Farley Nuclear Plant:	Low-Income Populations Map	
Farley Nuclear Plant:	Site Boundary Map	
Farley Nuclear Plant:	Transmission Line Map	
Georgia Utility Genera	ating Capacity, 1998	
Alabama Utility Gener	ation Utilization, 1998	7-4
Georgia Utility Genera	ation Utilization, 1998	7-4
	Farley Nuclear Plant: Farley Nuclear Plant: Alabama Utility Genera Alabama Utility Genera	Farley Nuclear Plant:50-mile Vicinity Map.Farley Nuclear Plant:6-Mile Vicinity Map.Farley Nuclear Plant:Layout Map.Farley Nuclear Plant:Black Minority Populations Map.Farley Nuclear Plant:Aggregate of Minority Races Populations Map.Farley Nuclear Plant:Hispanic Ethnicity Populations Map.Farley Nuclear Plant:Low-Income Populations Map.Farley Nuclear Plant:Site Boundary Map.Farley Nuclear Plant:Site Boundary Map.Farley Nuclear Plant:Transmission Line Map.Georgia Utility Generating Capacity, 1998.Alabama Utility Generation Utilization, 1998.Georgia Utility Generation Utilization, 1998.

	ACKON THIS AND ABBREVIATIONS
ACF	Apalachicola-Chattahoochee-Flint
ADCNR	Alabama Department of Conservation and Natural Resources
ADEM	Alabama Department of Environmental Management
APC	Alabama Power Company
APSC	Alabama Public Service Commission
AQCR	Air Quality Control Region
CEQ	Council on Environmental Quality
CFR	Code of Federal Regulations
cfs	cubic feet per second
CWA	Clean Water Act
DOE	U.S. Department of Energy
DSM	demand-side management
EPA	U.S. Environmental Protection Agency
EPP	Environmental Protection Plan
FDACS	Florida Department of Agriculture and Consumer Services
FES	Final Environmental Statement
FFWCC	Florida Fish and Wildlife Conservation Commission
FNAI	Florida Natural Areas Inventory
FNP	Joseph M. Farley Nuclear Plant, Units 1 and 2
fps	feet per second
FWS	U.S. Fish and Wildlife Service
GADNR	Georgia Department of Natural Resources
GEIS	Generic Environmental Impact Statement
GPC	Georgia Power Company
gpd	gallons per day
gpm	gallons per minute
GPSC	Georgia Public Service Commission
IPA	integrated plant assessment
kV	kilovolt
ml	milliliter
MW	megawatt
MWe	megawatts-electrical
MWt	megawatts-thermal
NEPA	National Environmental Policy Act
NESC	National Electrical Safety Code
NMFS	National Marine Fisheries Service
NO _x	Nitrogen oxides
NPDES	National Pollutant Discharge Elimination System
NRC	U.S. Nuclear Regulatory Commission
NRR	(Office of) Nuclear Reactor Regulations
NSSS	nuclear steam supply system

ACRONYMS AND ABBREVIATIONS

ROW	right-of-way
SHPO	State Historic Preservation Officer
SIP	State Implementation Plan (for nitrogen oxides)
SMITTR	surveillance, monitoring, inspections, testing, trending, and recordkeeping
SNC	Southern Nuclear Operating Company
SO	Southern Company
SO ₂	Sulfur dioxide
SSCs	structures, systems, and components
SW	Service Water
USCB	U.S. Census Bureau
USGS	U.S. Geological Survey

1.0 INTRODUCTION

1.1 PURPOSE OF AND NEED FOR ACTION

The U.S. Nuclear Regulatory Commission (NRC) licenses the operation of domestic nuclear power plants in accordance with the Atomic Energy Act of 1954, as amended, and NRC implementing regulations. Southern Nuclear Operating Company (SNC) operates the Joseph M. Farley Nuclear Plant (FNP) Units 1 and 2 pursuant to NRC Operating Licenses NPF-2 and NPF-8, respectively. FNP Unit 1 began commercial operation December 1, 1977, and is licensed to operate through June 25, 2017. FNP Unit 2 began commercial operation July 30, 1981, and is licensed to operate through March 31, 2021. SNC has prepared this environmental report in connection with its application to NRC to renew the FNP Units 1 and 2 operating licenses, as provided by the following NRC regulations.

- Title 10, Energy, Code of Federal Regulations (CFR), Part 54, Requirements for Renewal of Operating Licenses for Nuclear Power Plants, Section 54.23, Contents of Application-Environmental Information (10 CFR 54.23) and
- Title 10, Energy, CFR, Part 51, Environmental Protection Requirements for Domestic Licensing and Related Regulatory Functions, Section 51.53, Postconstruction Environmental Reports, Subsection 51.53(c), Operating License Renewal Stage [10 CFR 51.53(c)].

NRC has defined the purpose and need for the proposed action, the renewal of the operating licenses for nuclear power plants such as FNP, as follows:

"...The purpose and need for the proposed action (renewal of an operating license) is to provide an option that allows for power generation capacity beyond the term of a current nuclear power plant operating license to meet future system generating needs, as such needs may be determined by State, utility, and, where authorized, Federal (other than NRC) decision makers." (NRC 1996a, pg. 28472)

The renewed operating licenses would allow for 20 additional years of Plant operation beyond the current FNP licensed operation period of 40 years for each of the units.

1.2 ENVIRONMENTAL REPORT SCOPE AND METHODOLOGY

NRC regulations at 10 CFR 51.53(c) require that an applicant for renewal of a license to operate a nuclear power plant submit with its application a separate document entitled "Applicant's Environmental Report - Operating License Renewal Stage." In determining the information to include in the FNP environmental report, SNC has principally relied on NRC regulations and the following supporting documents that provide additional insight into the regulatory requirements:

- Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) (NRC 1996b; NRC 1999a)
- NRC supplemental information in the *Federal Register* (NRC 1996a, pp. 28467-28497; NRC 1996c, pp. 39555-39556; NRC 1996d, pp. 66537-66554; and NRC 1999b)
- Regulatory Analysis for Amendments to Regulations for the Environmental Review for Renewal of Nuclear Power Plant Operating Licenses (NRC 1996e)
- Public Comments on the Proposed 10 CFR Part 51 Rule for Renewal of Nuclear Power Plant Operating Licenses and Supporting Documents: Review of Concerns and NRC Staff Response (NRC 1996f)

SNC has prepared **Table 1-1** to verify conformance with NRC environmental regulatory requirements applicable to license renewal. Table 1-1 indicates where the environmental report responds to each requirement of 10 CFR 51.53(c). In addition, the portions of the Environmental Report identified in Table 1-1 are prefaced by a boxed quote of the relevant regulations and regulatory guidance.

1.3 FARLEY NUCLEAR PLANT LICENSEE AND OWNERSHIP

FNP is owned by Alabama Power Company (APC) and operated by SNC. APC and SNC are the facility's licensees. SNC was formed from the support organizations of Southern Company Services, Inc., Georgia Power Company (GPC), and APC. SNC has exclusive responsibility for and control over the physical construction, operations, and maintenance of the facility. The transmission lines and associated rights-of-way that originate at FNP and connect FNP to the distribution grid are owned and maintained by APC, GPC, and Gulf Power Company. SNC is a wholly-owned subsidiary of The Southern Company. The Southern Company is involved in the generation, transmission, and delivery of electric power to customers across the southeastern United States.

Regulatory Requirement	-	Responsive Environmental Report Section(s)
10 CFR 51.53(c)(1)		Entire Document
10 CFR 51.53(c)(2), Sentences 1 and 2	3.0	Proposed Action
10 CFR 51.53(c)(2), Sentence 3	7.2.2	Environmental Impacts of Alternatives
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(1)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(2)	6.3	Unavoidable Adverse Impacts
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(3)	7.0	Alternatives to the Proposed Action
	8.0	Comparison of Environmental Impacts of License Renewal with the Alternatives
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(4)	6.5	Short-Term Use Versus Long-Term Productivity of the Environment
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(5)	6.4	Irreversible or Irretrievable Resource Commitments
10 CFR 51.53(c)(2) and 10 CFR 51.45(c)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
	6.2	Mitigation
	7.2.2	Environmental Impacts of Alternatives
	8.0	Comparison of Environmental Impacts of License Renewal with the Alternatives
10 CFR 51.53(c)(2) and 10 CFR 51.45(d)	9.0	Status of Compliance
10 CFR 51.53(c)(2) and 10 CFR 51.45(e)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
	6.3	Unavoidable Adverse Impacts
10 CFR 51.53(c)(3)(ii)(A)	4.1	Water Use Conflicts
	4.6	Groundwater Use Conflicts (Plants Using Cooling Towers Withdrawing Make-Up Water from a Small River)
10 CFR 51.53(c)(3)(ii)(B)	4.2	Entrainment of Fish and Shellfish in Early Life Stages
	4.3	Impingement of Fish and Shellfish
	4.4	Heat Shock
10 CFR 51.53(c)(3)(ii)(C)	4.5	Groundwater Use Conflicts (Plants Using >100 gpm of Groundwater)
	4.7	Groundwater Use Conflicts (Plants Using Ranney Wells)
10 CFR 51.53(c)(3)(ii)(D)	4.8	Degradation of Groundwater Quality
10 CFR 51.53(c)(3)(ii)(E)	4.9	Impacts of Refurbishment on Terrestrial Resources
	4.10	Threatened or Endangered Species
10 CFR 51.53(c)(3)(ii)(F)	4.11	Air Quality During Refurbishment (Non-Attainment or Maintenance Areas)
10 CFR 51.53(c)(3)(ii)(G)	4.12	Impact on Public Health of Microbiological Organisms

Table 1-1. Environmental Report Responses to Nuclear Regulatory Commission License Renewal Environmental Regulatory Requirements

Regulatory Requirement		Responsive Environmental Report Section(s)
10 CFR 51.53(c)(3)(ii)(H)	4.13	Electric Shock from Transmission-Line-Induced Currents
10 CFR 51.53(c)(3)(ii)(I)	4.14	Housing Impacts
	4.15	Public Utilities: Public Water Supply Availability
	4.16	Education Impacts from Refurbishment
	4.17	Offsite Land Use
10 CFR 51.53(c)(3)(ii)(J)	4.18	Transportation
10 CFR 51.53(c)(3)(ii)(K)	4.19	Historic and Archaeological Resources
10 CFR 51.53(c)(3)(ii)(L)	4.20	Severe Accident Mitigation Alternatives
10 CFR 51.53(c)(3)(iii)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
10 CFR 51.53(c)(3)(iv)	6.2	Mitigation
	5.0	Assessment of New and Significant Information
10 CFR 51, Appendix B, Table B-1, Footnote 6	2.6.2 4.21	Minority and Low-Income Populations Environmental Justice

Table 1-1. Environmental Report Responses To License Renewal Environmental Regulatory Requirements (Cont'd)

PAGE INTENTIONALLY LEFT BLANK

2.0 SITE AND ENVIRONMENTAL INTERFACES

2.1 LOCATION AND FEATURES

FNP is located in Houston County in southeastern Alabama, on the west bank of the Chattahoochee River. It is approximately 5.5 miles north of Gordon, Alabama, 16.5 miles east of Dothan, Alabama, 100 miles southeast of Montgomery, Alabama, and 180 miles south-southwest of Atlanta, Georgia. **Figures 2-1** and **2-2** are FNP 50-mile and 6-mile vicinity maps, respectively. The site is in a sparsely populated, largely rural area, with forests and small farms as the dominant land use. The Chattahoochee River flows in a northwest-to-southeast direction, forming the eastern border of the site, and serving as the boundary between Houston County, Alabama (to the west) and Early County, Georgia (to the east). Water is diverted to FNP from the Chattahoochee River and is stored in a 108-acre pond for use as service and makeup water for the facility. Three cooling towers per unit are used to dissipate heat from each closed-loop circulating water system (**Figure 2-3**). A small portion of the circulating water flow is returned to the Chattahoochee River.

The FNP property is approximately 1,850 acres and its boundaries are depicted in Figure 2-2. The FNP property or "Owner Controlled Area" is the owned by APC and operated by SNC. The Owner Controlled Area is posted and access to the area is controlled. (SNC 2000a, pg. 2.1-1).

Section 3.1 describes key features of the plant, including reactor and containment systems, cooling and auxiliary water systems, and transmission facilities.

2.2 AQUATIC AND RIPARIAN ECOLOGICAL COMMUNITIES

FNP is located on the west (Alabama) bank of the lower Chattahoochee River at approximately River Mile 43.5 (Figure 2-2). The Chattahoochee River rises in the Blue Ridge Mountains of northeast Georgia and flows south along the entire length of the state for approximately 430 miles before it merges with the Flint River (the two rivers meet at Lake Seminole) to form the Apalachicola River. From Lake Seminole, the Apalachicola River flows south for 106 miles across the Florida Panhandle and ultimately empties into Apalachicola Bay, which is part of the Gulf of Mexico.

Over its length, the Chattahoochee moves through three major physiographic provinces (Blue Ridge, Piedmont, and Coastal Plain) and falls about 3,000 feet in elevation (**USGS 2000a**). It drains an area of 8,770 square miles and, according to the U.S. Geological Survey (USGS), is "the most heavily used water resource in Georgia" (USGS 2000a). For much of its length, the flow of the Chattahoochee River is controlled by hydroelectric plants releasing water for hydropower production. These hydroelectric plants are used to augment regional power supplies during periods of peak electrical demand. At Cornelia, Georgia, upriver of Lake Lanier, the Chattahoochee River is free-flowing; however, for the rest of its length, the river's hydrograph shows the influence of peaking hydroelectric operations (USGS 2000a).

Flows in the lower Chattahoochee River (the portion of the river between Walter F. George Reservoir and the Chattahoochee-Flint confluence) are influenced by a series of locks and dams built in the 1950s for flow regulation, hydroelectric power generation, and improved navigation. Historically, the lower Chattahoochee River was subject to extreme seasonal fluctuations in flow and was navigable only at certain times of the year. After the three locks and dams were completed, it was possible for large vessels (including tugboats and barges) to move from the Gulf of Mexico to Columbus, Georgia, via a 9-foot-deep and 100-foot-wide channel maintained by the U.S. Army Corps of Engineers. Columbus, Georgia, is approximately 75 miles north of FNP.

The Walter F. George Lock and Dam, 31 miles upstream of FNP (Figure 2-2), forms the 45,200-acre Walter F. George Reservoir (known locally as Lake Eufala). This multi-purpose reservoir was built for flood control and hydroelectric power generation.

The George W. Andrews Lock and Dam, three miles upstream of FNP, forms Lake Andrews. Lake Andrews is a long (28.5 miles), narrow impoundment with a surface area of only 1,540 acres. The lock and dam was built to regulate downstream flow and improve navigation, and is not used for hydroelectric power generation. The flows, circulation patterns, and retention times in George Andrews reservoir are more characteristic of a river than a reservoir. The USGS maintains a gauging station at George W. Andrews Lock and Dam (River Mile 46.5). The USGS annual report notes that flows in this reach of the river are regulated by releases from five upstream reservoirs (**USGS 2000b**, pg. 495). For water years 1976-1999, annual mean flow ranged from 5,718 cubic feet per second (cfs) to 16,000 cfs, and averaged 11,000 cfs (USGS 2000b, pg. 497). Flows in this portion of the Chattahoochee River are highest in winter and early spring (January-April) and lowest in late summer and fall (August-October), a pattern observed throughout the river system.

The Jim Woodruff Lock and Dam is 44 miles downstream of FNP and south of the Florida-Georgia border (Figure 2-1). It was completed in 1957 and is located downstream of the confluence of the Chattahoochee and Flint Rivers to form Lake Seminole. It is part of a multi-purpose project built for navigation, hydroelectric power production, and related uses. Lake Seminole is a relatively shallow, 37,500-acre impoundment and a popular destination for boaters, fishermen, and waterfowl hunters in the region.

Demand for Chattahoochee River water from upstream users has increased dramatically in recent years. The increased demand in the Apalachicola-Chattahoochee-Flint (ACF) river basin, has created water use conflicts between Alabama, Georgia, and Florida. The largest user of the Chattahoochee River is metro Atlanta, Georgia. This area plans to increase its consumptive use which would reduce the amount available for downstream users. Increased upstream water withdrawal also decreases the navigability of

the river below Columbus, Georgia. The ACF Compact was created in 1997 and includes the States of Florida, Georgia, and Alabama as well as 12 federal agencies, including the U.S. Army Corps of Engineers. Its purpose is develop an allocation formula for the resource, and monitor use of the resource (University of Florida 2000; State of Georgia 1997; JSU 2001; Tallahassee News Herald 1997).

The aquatic communities of the lower Chattahoochee River in the vicinity of FNP have not been the subject of a great deal of scientific study in recent years, presumably because this reach of the river is so heavily influenced by up- and downstream dams, hydroelectric power plant operations, and activities (such as dredging) intended to keep the river navigable. The most comprehensive source of information on local aquatic communities is the *Cooling Water Intake Study 316(b) Demonstration* for FNP, which contains detailed information on phytoplankton, zooplankton, and fish populations (APC 1983). Updated information on the distribution, abundance, and conservation status of Unionid mollusks of the Apalachicola Basin (including the lower Chattahoochee River) may be found in Brim Box and Williams (2000). Information on the habitat preferences and life histories of Chattahoochee River fishes, as well as species distribution maps and collections by county, may be found in *Fishes of Alabama* (Mettee, O'Neil, and Pierson 1996).

Benthic macroinvertebrate populations in the portion of the Chattahoochee River adjacent to FNP have not been systematically surveyed. The *Final Environmental Statement related to construction of Joseph M. Farley Nuclear Plant, Units 1 and 2* (FES) (AEC 1972, pg. II-35) noted that "rapidly shifting bottom sands" prevent the establishment of a diverse benthic community in the vicinity of the site. Although the *Cooling Water Intake Study 316(b) Demonstration* (APC 1983) was focused on plankton and fish, it reported that the introduced Asiatic clam, *Corbicula fluminea*, was routinely observed in impingement samples, indicating that this nuisance species had become established in the vicinity of FNP by the early 1980s.

Brim Box and Williams (2000) present detailed information on the historic and current distribution of 33 unionids (freshwater mollusks) in the Apalachicola, Chattahoochee, and Flint Rivers, which together comprise the Apalachicola Basin. Noting that species diversity and abundance of freshwater mussels have been declining in the Chattahoochee River since the early part of the 20th century, Brim Box and Williams state (pg. 87) that "freshwater mussels appear to be extirpated from most of the entire length of the Chattahoochee River." This decline has been attributed to: erosion and sedimentation (from land clearing and intensive farming in the river basin); dredging, snag removal, and channel modifications (for navigation); the development of impoundments for flood control and hydropower; runoff of agricultural chemicals and animal wastes (chiefly poultry); mining activities in tributary streams; and discharges from wastewater treatment facilities. In addition, the prolific Asiatic clam (*Corbicula fluminea*) has invaded the Chattahoochee River system, competing with native mussels for space and nutrients. At present, it appears that the once rich and abundant Chattahoochee River mussel fauna has been reduced to remnant and isolated populations in small headwater streams and monospecific populations of common species (e.g. *Utterbackia imbecilis*) in impoundments on the river (Brim Box and Williams 2000).

The fish community of the Chattahoochee River in the vicinity of FNP is diverse, comprised of a mix of common southeastern stream species (many of which adapt well to reservoir conditions), species typically found in swamps and backwaters of rivers, and a small number of migratory and semi-migratory species (AEC 1972; AEC 1974; APC undated; Mettee, O'Neil, and Pierson 1996). More than 80 fish species occur in the Chattahoochee River system and perhaps two-thirds of these species are found in the lower Chattahoochee (AEC 1974; Mettee, O'Neil, and Pierson 1996).

Stream fishes commonly observed and occasionally collected in the lower Chattahoochee River near FNP include longnose gar (*Lepisosteus osseus*), redfin pickerel (*Esox americanus*), river redhorse (*Moxostoma carinatum*), greater jumprock (*Moxostoma lachneri*), green sunfish (*Lepomis cyanellus*), redbreast sunfish (*Lepomis auritus*), channel catfish (*Ictalurus punctatus*), and several common minnow species (e.g., longnose shiner [*Notropis longirostris*] and weed shiner [*Notropis texanus*]). Bowfin (*Amia calva*), spotted sucker (*Minytrema melanops*), chain pickerel (*Esox niger*), and flier (*Centrarchus macropterus*). A number of other fish species found in the Chattahoochee River in the vicinity of FNP are adapted to a range of environmental conditions and are abundant in rivers, lakes, reservoirs, and swamps

across the Southeast. These include the gizzard shad (*Dorosoma cepedianum*), common carp (*Cyprinus carpio*), blacktail shiner (*Cyprinella venusta*), bluegill (*Lepomis machrochirus*), and largemouth bass (*Micropterus salmoides*).

Three *Morone* species (striped bass, white bass, and hybrid bass) are found in the lower Chattahoochee and are sought by anglers in the spring of the year near George W. Andrews Lock and Dam, three miles upstream of FNP. In addition to these anadromous (striped bass) and semi-anadromous (white bass and hybrid bass) populations, small numbers of catadromous American eels are also found in the lower Chattahoochee. The size and timing of this seasonal movement of eels are not well understood. Small numbers of eels are found year-round in the Chattahoochee in the vicinity of FNP.

The construction of locks and dams along the lower Chattahoochee in the 1950s severely reduced or eliminated surviving runs of most anadromous fishes native to the river system, including the Gulf sturgeon (Acipenser oxyrinchus desotoi), Alabama shad (Alosa alabamae), and Gulf Coast striped bass (Morone saxatilis). Gulf sturgeon were abundant in the Chattahoochee before European settlement in the 19^{m} century, ascending the river as far as the Fall Line. Habitat destruction and overfishing in the late 19th and early 20th centuries decimated the Chattahoochee River population, and completion of the Jim Woodruff Lock and Dam in 1957 effectively eliminated it. Reproducing populations of Gulf sturgeon survive in a few Gulf Coast river systems: the Apalachicola River downstream of Lake Seminole, the Choctawhatchee River in Alabama and Florida, and the Suwannee River in Florida. This species has been listed as threatened by the U.S. Fish and Wildlife Service (FWS) since 1991. Alabama shad still migrate from the Gulf of Mexico into the Apalachicola River below Jim Woodruff Dam (Mettee, O'Neil, and Pierson 1996, pg. 115), but are blocked from moving upstream into the Chattahoochee River. A landlocked population of striped bass occurs in the Chattahoochee River above Jim Woodruff Dam (Mettee, O'Neil, and Pierson 1996, pg. 503), but there is little or no movement to and from the Gulf of Mexico. Some Chattahoochee River striped bass do move downstream and pass the Jim Woodruff Lock and Dam when river flows are unusually high, but the Dam prevents upstream movement, so these fish are unable to return to the Chattahoochee River to spawn. Striped bass are not plentiful in the Chattahoochee River adjacent to FNP, but they are occasionally caught by anglers pursuing the more common white and hybrid bass up- and downstream of George W. Andrews Lock and Dam.

2.3 GROUNDWATER RESOURCES

FNP site upland topography ranges from 150 to 210 feet above mean sea level, with 180 feet being generally representative. The FNP Final Safety Analysis Report describes site geology and groundwater resources in detail (SNC 2000a, Sections 2.5.1.2 and 2.4.13, respectively). The U. S. Geological Survey has published descriptions of these resources for the site vicinity (USGS 1996, pp. 8 – 20; and 1997, pp. 13 - 17). There are three groundwater resources of interest at FNP and in the site vicinity, the shallow aquifer, the major shallow aquifer, and the major deep aquifer. The aquifers are separated by materials that form a barrier to water migration between the aquifers (i.e., an aquiclude) and each aquifer spans multiple geologic formations.

FNP Groundwater Resources				
Aquifer	Geologic Formation	Approximate Elevation ¹		
	Surface			
	Alluvium	+180		
	Residuum	+135		
Shallow	Moodys Branch	+100 to +110		
	Upper Lisbon	+90 to +100		
None (20- to 40-foot aquiclude)				
	Lower Lisbon	+ 25 to +45		
Major shallow	Tallahatta	-10 to -40		
(Lisbon)	Hatabatighaa	160		
	Hatchetigbee	-160		
None (220-foot aquiclude)	Tuscahoma	-200		
		-419		
Major deep	Nanafalia	-440		
(Nanafalia-Clayton)				
	Clayton	-550		
	Providence	-850		
	Ripley	-940		
Source: Drawn from text (SNC 2001, pp. 2.4-25 to 2.4-27)				
1. Elevation in feet above (+) or below (-) mean sea level.				

The uppermost site groundwater resource is the shallow aquifer. This aquifer extends from within 5 to 10 feet of the surface to a depth of approximately 90 feet. The aquifer occupies the alluvium and residuum soils and the Moodys Branch and upper portion of the Lisbon geologic formations and is hydraulically connected to area streams, with water table elevation responding to stream water level changes. The water table slopes towards the Chattahootchee River on the eastern boundary of the site. Within the floodplain, the river controls groundwater levels to a large extent and provides recharge during high river stages. Because of the lenticular nature of water bearing strata in the surficial deposits, they are not important as regional aquifers. Ground water levels in the residuum reflect changes in precipitation, rather than changes in river level, and a number of shallow, dug wells collect water from these deposits in the area. Within three miles of the site, wells finished in the shallow aguifer are between 70 and 150 feet deep. The shallow aguifer is an important source of water for area farms and residences, all located upgradient from FNP, but yield is low (AEC 1972, Section II.D.2.b). Site shallow aguifer information is consistent with recent regional documentation, which identifies this uppermost area groundwater resource and characterizes it as thin and not a major aquifer, generally yielding less than 100 gallons per minute (USGS 1997, page 14). Alabama state data for large wells (reported to yield 50 gallons per minute or more) identifies only one off site well located within 3 miles of FNP and finished

in this aquifer. The well owner is the U.S. Army Corps of Engineers (**GSA 1991**, page 72) and is located at the lock and dam three miles upstream from FNP.

The second site groundwater resource of interest is the major shallow aquifer. The top of the major shallow aquifer at FNP is approximately 145 feet below the surface and the aquifer is approximately 200 feet thick. An overlaying 20- to 40-foot thick layer of silty claystone and siltstone forms a confining layer, an aquiclude, that restricts water movement between the shallow and major shallow aquifers and results in artesian conditions in the latter. Wells tapping this aquifer within 3 miles of the site are between 210 and 360 feet deep. Regional documentation indicates that this is known as the Lisbon aquifer in Alabama and the Claiborne aquifer in Georgia and yields generally less than 100 gallons per minute (USGS 1997, page 16). Alabama state records show no large wells located within three miles of FNP that tap the major shallow aquifer.

Below the major shallow aquifer are about 220 feet of laminated clays and silty sandstone that form an aquiclude that prevents migration of groundwater between the major shallow aquifer and the third site groundwater resource of interest, the deep major aquifer. Regionally, the deep major aquifer is known as the Nanafalia-Clayton aquifer in Alabama and the Clayton aquifer in Georgia. The top of this aquifer is located approximately 600 feet below the site and the aquifer is more than 400 feet thick. The aquifer yields about 100 to 700 gallons per minute (**USGS 1997**, page 17). Aquifer physical characteristics include a storage coefficient of $3 \times 10-4$, transmissivity of 7,800 ft² per day, an assumed aquifer thickness at the site of 435 feet, and a calculated conductivity of 17.9 ft per day. Alabama state records show only one large well located within 3 miles of FNP and tapping the major deep aquifer. The owner is listed as the McNair Estate (GSA 1991, page 70). This appears to be the well identified in the FNP Final Safety Analysis Report as located immediately south of the plant site (**SNC 2000a**, Figure 2.4-22).

2.4 CRITICAL AND IMPORTANT TERRESTRIAL HABITATS

The FNP site consists of 1,850 acres on the west bank of the Chattahoochee River in Houston County, Alabama (Figure 2-2). Approximately 500 acres are used for generation and maintenance facilities, laydown areas, parking lots, and roads. The developed areas are primarily located on a plateau approximately one-half mile west of the river, with the area adjacent to the river mostly undeveloped. The remainder of the site consists of forested areas, ponds, wetlands, and open fields. There are two major topographical subdivisions at the site: (1) gently rolling upland west of the Chattahoochee River Valley and (2) the river terraces and floodplain of the Chattahoochee River. This contributes to a diverse distribution of plant species, habitats, and communities. Habitats at FNP consist of river bluff forest, ravine forest, floodplain forest, pine-mixed hardwood forest, pine forest, non-floodplain wetlands, and mechanically-maintained grassy areas.

Forests along the steep river bluffs occur adjacent to the Chattahoochee River at the FNP site and are dominated by white ash (*Fraxinus americana*), southern magnolia (*Magnolia grandiflora*), black walnut (*Juglans nigra*), water oak (*Quercus nigra*), cherrybark oak (*Quercus pagoda*), box elder (*Acer negundo*), and willow oak (*Quercus phellos*). Ravine forests occur at FNP where Wilson Creek has eroded deeply into the local limestone (marl). The canopies of these ravine forests are dominated by beech (*Fagus grandifolia*), sweet gum (*Liquidambar styraciflua*), water oak, southern magnolia, tulip poplar (*Liriodendron tulipifera*), Florida maple (*Acer barbatum*), white oak (*Quercus alba*), and white ash. Some of the beeches and maples are over two feet in diameter.

Most of the floodplain forests at FNP are dominated by high floodplain or ridge floodplain species. On the highest ridges and in high floodplains, willow oak, Shumard oak (*Quercus shumardii*), bitternut hickory (*Carya cordiformis*), sweet gum, swamp chestnut oak (*Quercus michauxii*), and cherrybark oak are present. Along the river in early successional areas, sycamore (*Platanus occidentalis*), silver maple (*Acer saccharinum*), and black willow (*Salix nigra*) are dominant. In sloughs, backwaters, and poorly-drained areas, bald cypress (*Taxodium distichum*), water tupelo (*Nyssa aquatica*), red maple (*Acer rubrum*), and laurel oak (*Quercus laurifolia*) are commonly found.

The pine-mixed hardwood forests at FNP are primarily successional, recovering from past logging. Loblolly pine (*Pinus taeda*) is the dominant species in most areas. Common hardwood species include red maple, sweet gum, water oak (*Quercus nigra*), hickories (*Carya* spp.), and other upland oaks (*Quercus* spp.). Pine forests at FNP are dominated by loblolly pine and are second growth or planted pine forests.

Several non-floodplain wetlands occur at FNP. Most of these are weedy marshes areas with scattered red maple, sweet gum, black willow, and buttonbush (*Cephalanthus occidentalis*) as woody species. Plume grass (*Erianthus* sp.), woolgrass bulrush (*Scirpus cyperinus*), needlerushes (*Juncus* spp.), and other emergent, nonwoody wetland species are also found in these wetlands. The largest wetland of this type has a broad expanse of open water dominated by water lilies (*Nuphar lutea* and *Nymphaea odorata*), water shield (*Brasenia screberi*), and nonwoody marsh grasses such as woolgrass bulrush and common needlerush (*Juncus effusus*).

Terrestrial wildlife species that occur in the forested portions of the FNP property are those typically found in similar habitats in South Alabama. Common mammals at the site include the opossum (*Didelphis virginiana*), armadillo (*Dasypus novemcinctus*), Eastern cottontail (*Sylvilagus floridanus*), gray squirrel (*Sciurus carolinensis*), raccoon (*Procyon lotor*), and white-tailed deer (*Odocoileus virginianus*). Wading birds (egrets and herons) occur in wetlands and along the edges of ponds and the Chattahoochee River. Numerous bird species (e.g., common bobwhite [*Colinus virginianus*], blue jay [*Cyanocitta cristata*], and various warblers), as well as several reptile and amphibian species, including the gopher tortoise (*Gopherus polyphemus*), occur at the site. The gopher tortoise is listed as protected by the Alabama Department of Conservation and Natural Resources (ADCNR).

APC maintains approximately 1,300 acres of the FNP site as a wildlife preserve. The FNP Wildlife Management Plan strategies include managing vegetation to promote and protect diverse habitats, periodic thinning and burning of pine timber stands, mowing grassy areas, and installing nest boxes. Nest boxes have been installed for wood ducks (*Aix sponsa*), Eastern bluebirds (*Sialia sialis*), purple martins (*Progne subis*), kestrels (*Falco sparverius*), and barred owls (*Strix varia*) and a nest platform has been erected for ospreys (*Pandion haliaetus*). Additionally, SNC and APC perform construction and maintenance activities in accordance with APC's "*Guidelines for performing power line construction and maintenance in areas of gopher tortoise habitat.*" The Wildlife Habitat Council recognized FNP in 1999 for its wildlife and land management efforts. FNP was originally certified through the Wildlife Habitat Council in 1992 (SO 2001b).

Section 3.1.3 describes the transmission lines constructed to connect FNP to the transmission system. The principal land use categories traversed by the transmission corridors are row crops, pasture, and forest. Wooded habitats along transmission corridors consist of pine forest, pine-hardwood forest, and bottomland hardwood forest.

No areas designated by the U.S. Fish and Wildlife Service (FWS) as critical habitat for endangered species exist at FNP or adjacent to associated transmission lines. The Raccoon Creek transmission corridor crosses the 1.2-mile-wide Elmodel Wildlife Management Area in western Georgia, approximately 38 miles east-northeast of FNP. The South Bainbridge corridor crosses the Lake Seminole Wildlife Management Area in southwestern Georgia, approximately 36 miles southeast of FNP. Otherwise, the transmission corridors do not cross any state or federal parks, wildlife refuges, or wildlife management areas.

APC, GPC, and Gulf Power Company use several methods to control vegetation in FNP transmission corridors. As a general rule, dry upland areas (particularly those that are not subject to erosion) are periodically mowed, while steep slopes and margins of wetlands and streams are sprayed with approved (non-restricted) herbicides when necessary. Herbicides are applied by backpack sprayer to ensure that chemicals are used sparingly and applied directly to the brushy or woody vegetation. Some ecologicallysensitive areas are hand cleared. This integrated approach to vegetation management is intended to minimize soil loss and protect wetlands and streams from sedimentation. Some portions of the transmission corridors are cultivated by local farmers and, therefore, require no additional vegetation maintenance. Private interests that have agreed to handle vegetation maintenance are also maintaining other portions of the transmission corridors for wildlife enhancement. APC participates with the U.S. Department of Agriculture Natural Resources Conservation Service and local soil and water conservation districts in a pilot project to enhance wildlife habitats along transmission corridors (Heitschmidt 2000). During 2000, 24 applicants (representing 212 acres of FNP transmission line corridors) participated in this program to enhance wildlife habitats (Heitschmidt 2000). GPC participates in a wildlife management program with GADNR on FNP transmission line corridors. The Wildlife Incentives for Non-Game and Game Species (WINGS) program is designed to help land users convert Georgia Power transmission corridors into productive habitat for wildlife. WINGS offers grant money and land management expertise to landowners, hunting clubs, and conservation organizations who commit to participating in the program for 3 years. GPC is one of two utilities funding the WINGS program in Georgia.

2.5 THREATENED OR ENDANGERED SPECIES

SNC wrote the FWS, the National Marine Fisheries Service (NMFS), the Alabama Department of Conservation and Natural Resources (ADCNR), the Georgia Department of Natural Resources (GADNR), the Florida Fish and Wildlife Conservation Commission (FFWCC), and the Florida Natural Areas Inventory (FNAI) requesting information on any listed species or critical habitats that might occur on the FNP site or along associated transmission line ROWs, with particular emphasis on species that might be adversely affected by operations over the license renewal term. Responses from these agencies are provided in Attachment C. They were the primary sources of data used to generate Table 2-1, which lists plant and animal species that are federally- or state-listed and are known or likely to occur on the FNP site or in counties traversed by FNP transmission lines. Data provided by FWS, ADCNR, and FFWCC consisted of special status species known to occur in Jackson County, and included more precise data than county occurrences. Specifically, the FNAI database indicated no recorded occurrences of special status species within one mile of the Farley-Sinai Cemetery transmission line (the only FNP-transmission line in Florida). GADNR provided lists of special status species occurrences within three miles of the Farley-Raccoon Creek and Farley-South Bainbridge transmission lines.

In order to update various surveys and studies of plants and animals that are summarized in a number of unpublished documents and government reports, SNC commissioned field surveys in 2001 and 2002 of state- and federally-listed plant and animal species on the FNP site and its transmission corridors. These surveys, described in reports entitled *Threatened and Endangered Species Surveys: Joseph M. Farley Nuclear Plant and Associated Transmission Line Corridors, 2001-2002* (Tetra Tech NUS 2002a) and *Threatened and Endangered Species Survey: Sinai Cemetery Transmission Line Corridor* (Tetra Tech NUS 2002b) were intended to: (1) identify listed species on the FNP site and associated transmission corridors and (2) provide a sound basis for the assessment of potential impacts to these species from operations over the license renewal term. In Table 2-1 the species observed during SNC-commissioned field surveys conducted in 2001-2002 are indicated by bolded species and county names.

No federally listed or proposed-for-listing plants were found during the 2001-2002 surveys of the FNP site and associated transmission line corridors. Yellow pitcher plants (*Sarracenia flava*) and hooded pitcher plants (*Sarracenia minor*), both listed as Unusual by GADNR, were found on the Farley-Raccoon Creek transmission corridor. Thorne's (swamp) buckthorn (*Sideroxylon thornei*), listed as Endangered by GADNR, was also found on the Farley-Raccoon Creek transmission corridor. One population of Florida willow (*Salix floridana*), which had been previously identified by GPC biologists, was noted on the edge of the Farley-Raccoon Creek and Farley-South Bainbridge corridors (these two corridors overlap for the first seven miles east of FNP). The Florida willow is listed as Endangered by GADNR. No other state-listed plant species were observed on the transmission line corridors during the surveys. Details regarding the methods and results of the endangered and threatened plant surveys can be found in the two aforementioned reports (Tetra Tech NUS 2002a,b).

A single bald eagle (*Haliaeetus leucocephalus*), federally listed as Threatened and state-listed by GADNR as Endangered, was observed during the 2001 Summer survey perched in a tree on the eastern shoreline of the Chattahoochee River adjacent to FNP. No nests of this species are known in the vicinity. With the exception of this single bald eagle, no federally listed wildlife species were found on the FNP site during the 2001-2002 surveys.

Alligator (*Alligator mississippiensis*) tracks were observed at the entrance to an alligator den on the Farley-Sinai Cemetery transmission corridor. Alligators have been observed on the FNP site. The alligator is state-listed in Florida as a Species of Special Concern. The alligator is federally-listed as Threatened due to its similarity in appearance to the Endangered American crocodile (*Crocodylus acutus*). With the exception of the alligator, no federally listed wildlife species were found on the transmission line corridors during the 2001-2002 surveys.

State-listed animal species observed during the 2001-2002 field surveys consisted of the gopher tortoise (*Gopherus polyphemus*), osprey (*Pandion haliaetus*), Bachman's sparrow (*Aimophila aestivalis*), and little blue heron (*Egretta caerulea*). Active gopher tortoise burrows were observed at FNP and within all six FNP-associated transmission corridors. The gopher tortoise is listed as Protected by ADCNR, Threatened by GADNR, and as a Species of Special Concern by FFWCC. Adult and nestling ospreys were observed at the FNP site on a nesting platform erected for this species. Ospreys are listed as Protected by ADCNR. Bachman's sparrows, listed as Rare by GADNR, were heard singing at two locations on the Farley-South Bainbridge corridor. A little blue heron, listed by FFWCC as a Species of Special Concern, was observed foraging in a marsh on the Farley-Sinai Cemetery corridor. Details regarding the methods and results of the endangered and threatened animal surveys can be found in the two survey reports (Tetra Tech NUS 2002a,b).

SNC is unaware of any candidate species (species that may warrant listing in the future, but have no current statutory protection under the Endangered Species Act) or species proposed for listing by the FWS that occur on the FNP site or along associated transmission line corridors.

2.6 DEMOGRAPHY

2.6.1 **Regional Demography**

The GEIS presents a population characterization method that is based on two factors: "sparseness" and "proximity" (NRC 1996b, Section C.1.4). "Sparseness" measures population density and city size within 20 miles of a site and categorizes the demographic information as follows:

Demographic Categories Based on Sparseness		
		Category
Most sparse	1.	Less than 40 persons per square mile and no community with 25,000 or more persons within 20 miles
	2.	40 to 60 persons per square mile and no community with 25,000 or more persons within 20 miles
	3.	60 to 120 persons per square mile or less than 60 persons per square mile with at least one community with 25,000 or more persons within 20 miles
Least sparse	4.	Greater than or equal to 120 persons per square mile within 20 miles
Source: NRC 1996b.		

"Proximity" measures population density and city size within 50 miles and categorizes the demographic information as follows:

De	ographic Categories Based on Prox	imity
	Cate	egory
Not in close proximity	 No city with 100,000 or more persons per square mile with 	
	2. No city with 100,000 or more and 190 persons per square	
	3. One or more cities with 100, less than 190 persons per se	
In close proximity	4. Greater than or equal to 190 within 50 miles) persons per square mile
Source: NRC 1996b.		

		GEIS 3	Proximity			
		1	2	3	4	
ess	1	1.1	1.2	1.3	1.4	
Sparseness	2	2.1	2.2	2.3	2.4	
Spa	3	3.1	3.2	3.3	3.4	
	4	4.1	4.2	4.3	4.4	
		Low Population Area	Mediu Populat Area	ion	High Population Area	
ource: 1	NRC 19	996b, pg. C-159.	Alea		Aica	

The GEIS then uses the following matrix to rank the population category as low, medium, or high.

GEIS Sparsoness and Provimity Matrix

Southern Company used 2000 census data from the U.S. Census Bureau (USCB) website (**USCB 2000a**) and geographic information system software (ArcView) to determine demographic characteristics in the FNP vicinity.

As derived from 2000 USCB information, approximately 93,120 people live within 20 miles of FNP. Applying the GEIS sparseness measures, FNP has a population density of 74 persons per square mile within 20 miles and falls into a less sparse category, Category 3 (having 60 to 120 persons per square mile or less than 60 persons per square mile with at least one community with 25,000 or more persons within 20 miles). The City of Dothan has a population of 57,737 persons (USCB 2000b).

As estimated from 2000 USCB information, approximately 393,639 people live within 50 miles of FNP. This equates to a population density of 50 persons per square mile. Applying the GEIS proximity measures, FNP is classified as Category 2 (having no city with 100,000 or more persons and between 50 and 190 persons per square mile within 50 miles). According to the GEIS sparseness and proximity matrix, the FNP ranks of sparseness Category 3 and proximity Category 2, result in the conclusion that FNP is located in a medium population area.

All or parts of 28 counties and the City of Dothan are located within 50 miles of FNP (Figure 2-1).

The Dothan Metropolitan Statistical Area, composed of Dale and Houston Counties, Alabama, is a varied mixture of rural and a few metropolitan areas, with a current total population of approximately 137,916 (USCB 2000b). Houston County is growing at a faster rate than the State of Alabama as a whole. From 1970 to 2000, Alabama's average annual population growth rate was 1.0 percent, while Houston County increased by 1.9 percent (USCB 1995, and 2000b).

In 1995, Alabama reported a population count of 4.3 million people, or 1.6 percent of the U.S. population, ranking 22nd in population among the 50 states and the District of Columbia. By the year 2025, Alabama is projected to have 5.2 million residents and remain the 22nd most populous state (**USCB 1996**). Between the years 2000 and 2040, Houston County is projected to grow at an average annual rate of 1.1 percent (**Tetra Tech NUS 2001a**).

Table 2-2 shows estimated populations and annual growth rates (1980-2040) for Houston County, Alabama, the county with the greatest potential to be socioeconomically affected by license renewal activities at FNP. The table is based on USCB data for 1980, 1990, and 2000; data from the University of Alabama for 2010; and Tetra Tech NUS projections to 2040. The Tetra Tech NUS estimates are based on standard linear regression techniques.

2.6.2 Minority and Low-Income Populations

Background

NRC performed environmental justice analyses for previous license renewal applications and used a 50mile radius as the area that could contain environmental impact sites and the state as the geographic area for comparative analysis. SNC has adopted this approach for identifying the FNP minority and lowincome populations that could be affected by FNP license renewal.

SNC used ArcView geographic information system software to combine USCB TIGER line data with USCB 2000 census data to determine the minority characteristics by block group. USCB 2000 lowincome census data are not currently available; therefore, SNC used 1990 tract data for its low-income analysis. SNC included all block groups or tracts if any part of their area lay within 50 miles of FNP. The 50-mile radius includes 371 block groups and 138 tracts.

2.6.2.1 Minority Populations

The NRC Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues defines a "minority" population as: American Indian or Alaskan Native; Asian; Native Hawaiian or other Pacific Islander; Black races; other; multi-racial; aggregate of all minorities; and Hispanic ethnicity (NRC 2001, Appendix D). The Hispanic population is considered an "ethnic" and not a "racial" population. An ethnic population is generally identified by its cultural similarities, as opposed to racial (or biological) similarities. The U. S. Census Bureau makes this distinction for the Hispanic population because there have been difficulties in determining the differences and similarities of the numerous racial subgroups claiming to be Hispanic.

The guidance indicates that a minority population exists if either of the following two conditions exists:

- 1. Minorities comprise more than 50 percent of the population of the census block or environmental impact site.
- 2. The minority population percentage of the environmental impact area is significantly greater (typically at least 20 points) than the minority population percentage in the geographic area chosen for comparative analysis.

NRC guidance calls for use of the most recent USCB decennial census data. SNC used 2000 census data from the USCB website (**USCB 2000a**) in determining the percentage of the total population within Alabama, Florida, and Georgia for each minority category, and in identifying minority populations within 50 miles of FNP.

SNC divided USCB population numbers for each minority population within each block group by the total population for that block group to obtain the percent of the block group's population represented by each minority. For each of the 371 block groups within 50 miles of FNP, SNC calculated the percent of the population in each minority category and compared the result to the corresponding geographic area's minority threshold percentages to determine whether minority populations exist. SNC defines the geographic area for FNP as all of Alabama when the block group is within Alabama, all of Florida when the block group is within Florida, and all of Georgia when the block group is within Georgia. USCB data (USCB 2000a) for Alabama characterizes 0.5 percent of the State as American Indian or Alaskan Native, 0.7 percent Asian, 0.0 percent Native Hawaiian or other Pacific Islander, 26.0 percent Black races,

0.7 percent all other single minorities, 1.0 percent multi-racial, 28.9 percent aggregate of minority races, and 1.7 percent Hispanic ethnicity. USCB data (**USCB 2000a**) for Florida characterizes 0.3 percent of the State as American Indian or Alaskan Native, 1.7 percent Asian, 0.1 percent Native Hawaiian or other Pacific Islander, 14.6 percent Black races, 3.0 percent all other single minorities, 2.4 percent multi-racial, 22.0 percent aggregate of minority races, and 16.8 percent Hispanic ethnicity. USCB data (USCB 2000a) for Georgia characterizes 0.3 percent of the State as American Indian or Alaskan Native, 2.1 percent Asian, 0.1 percent Native Hawaiian or other Pacific Islander, 14.6 percent of the State as American Indian or Alaskan Native, 2.1 percent Asian, 0.1 percent Native Hawaiian or other Pacific Islander, 28.7 percent Black races, 2.4 percent all other single minorities, 1.4 percent multi-racial, 34.9 percent aggregate of minority races, and 5.3 percent Hispanic ethnicity.

Based on the "more than 20 percent" or the "exceeds 50 percent" criteria, no American Indian or Alaskan Native, Asian, Native Hawaiian or other Pacific Islander, all other single minorities, or multi-racial minorities exist in the geographic area. Table 2-3 presents the numbers of block groups within each county, in the three relevant states, that exceed the threshold for establishing the presence of minority populations.

Based on the "more than 20 percent" criterion, Black race minority populations exist in 95 block groups (Table 2-3). **Figure 2-4** displays the locations of these minority block groups distributed among the counties in the geographic area.

Based on the "more than 20 percent" criterion, an aggregate of minority race populations exist in 93 block groups (Table 2-3). Figure 2-5 displays the locations of these block groups distributed among the counties in the geographic area.

Based on the "more than 20 percent" criterion, Hispanic ethnicity minority populations exist in one block group (Table 2-3). **Figure 2-6** displays the minority block group in Gadsden County, Florida.

2.6.2.2 Low-Income Populations

NRC guidance defines "low-income" by using U.S. Census Bureau statistical poverty thresholds (NRC 2001, Appendix D). U.S. Census Bureau (**USCB 2000c**) characterizes 16.8 percent of Alabama, 11.8 percent of Florida and 12.7 percent of Georgia households as low-income.

For each Census Tract within the 50-mile radius (see **Section 2.6.2.1** for a discussion of how census tracts were selected), the number of low-income households was divided by the number of total households in that tract to obtain the percent of low-income households for that tract. A low-income population is considered to be present if:

- 1. The low-income population of the census tract or environmental impact site exceeds 50 percent, or
- 2. The percentage of households below the poverty level in an environmental impact area is significantly greater (typically at least 20 points) than the low-income population percentage in the geographic area chosen for comparative analysis.

Based on the "more than 20 percent" criterion, four census tracts contain low-income populations (USCB 2002). Three of these tracts are in Georgia and one in Alabama. Figure 2-7 locates low-income household tracts.

2.7 TAXES

FNP, through APC, pays annual property taxes to Houston County, Alabama. Property tax revenues fund Houston County operations, school systems, the County General Fund, hospitals, forestry activities, and individual town funds (Moss 2001). For the years 1995 to 1999, FNP's property taxes provided 32 to 38 percent of Houston County's total property tax revenues. Table 2-4 compares FNP's tax payments to Houston County tax revenues.

SNC projects that FNP's annual property taxes will remain constant at about \$5 - 6 million through the license renewal period. The Alabama legislature is studying the issue of electric power industry deregulation. The effects of deregulation are not yet fully known, but could affect FNP's tax payments to Houston County. Any changes to FNP tax rates due to deregulation would, however, be independent of license renewal.

2.8 LAND USE PLANNING

This section focuses on Houston County because the majority of the permanent FNP workforce lives in this County (see Section 3.4) and FNP pays property taxes to Houston County. Houston County has experienced growth over the last several decades and land use planning tools, such as zoning, have guided growth and development. Regional and local planning officials share the goals of encouraging growth and development in areas where public infrastructure, such as water and sewer systems, are planned, and discouraging incompatible land use mixes in contiguous areas and strip development. As demonstrated below, there is no specific land use plan for Houston County. However, a regional economic planning agency, the Southeast Alabama Regional Planning and Development Commission (SEARP & DC), provides regional comprehensive land use planning services that guide development for the seven-county region known as the Southeast Alabama Regional Economic Development District. The region includes Barbour, Coffee, Covington, Dale, Geneva, Henry, and Houston Counties. Additionally, the City of Dothan has developed a land use plan that is used for planning efforts within City limits. No plans within this region contain growth control measures that limit housing development (SEARP & DC 1998).

Current Land Use

Houston County occupies roughly 371,456 acres of land area (SEARP & DC 1998, Table 38). Major county-wide land use categories are classified as follows: residential (2.9 percent), commercial (0.3 percent), industrial (0.3 percent), transportation (4.3 percent), public and semi-public (1.8 percent), agricultural (43.4 percent), and forest (33.7 percent)¹. Most land in the County is rural in nature, either vacant, forested, or in agricultural production. Approximately 286,428 acres or 77 percent of the county, is forested or used as farmland (SEARP & DC 1998, Table 38). This rural/agricultural character is found throughout the county, with the exception of the City of Dothan. Roadways and residential development are the largest non-agricultural uses of land in Houston County.

The City of Dothan is the largest urban area in Houston County. Land in the City has been devoted to various uses that are categorized as follows: agricultural and non-urban (58 percent), residential (23 percent), commercial (8 percent), industrial (5 percent), recreational (3 percent), public and semipublic (2 percent), and other (1 percent) (City of Dothan 1999). Most land (58 percent) identified as forest, agricultural, and other (non-urban) is located outside of the City proper. Residential and commercial use are the two largest urban categories.

Most development in Dothan has centered around the existing infrastructure, notably the transportation and sanitary sewer networks. The overall effect has been to create an unbalanced pattern of development (City of Dothan 1999). The portion of the City located within Ross Clark Circle, where sanitary sewer service is generally available and where most of the property has access to major transportation arteries, is almost fully developed. In addition, much of the City's development over the last 25 years has occurred in the northwestern and western portions of the City, which are generally wellserved by arterial and collector streets, as well as the Beaver Creek and Little Choctawhatchee Wastewater Treatment Plants. Development has historically been less intense in the southern, eastern, and northern areas of the City, outside of the Ross Clark Circle (City of Dothan 1999).

As of 1999, Dothan had completed a program to build three new fire stations, construct new wells, and install approximately 40,000 linear feet of sanitary sewer collection and interceptor lines (City of Dothan 1999).

Most residential property in Dothan, approximately 61 percent, is owner-occupied (City of Dothan 1999). This includes conventional detached dwellings, townhouses, garden homes, and manufactured homes. Over the past 20 years, approximately 2,400 apartments and other multi-family housing units have been constructed (City of Dothan 1999). The vast majority of these units were constructed between 1977 and

¹ These percentages, as reported by the Southeast Alabama Regional Planning and Development Commission, total 86.7 percent, not 100 percent.

1984. Potential developers have indicated that relatively low lease rates in the City and reductions in federal assistance and loan guarantees largely account for the relatively few apartments constructed in recent years (**City of Dothan 1999**). In response to rising construction costs, manufactured housing has become an increasingly popular alternative (City of Dothan 1999). A considerable portion of the residential growth in the county consists of manufactured housing, in both individually-sited locations and manufactured home parks (City of Dothan 1999).

Commercial land uses account for approximately eight percent of the land in Dothan (City of Dothan 1999). To a great extent, commercial development has "shadowed" residential development over the past two decades. A significant portion of the commercial development has taken place along major thoroughfares in the northwestern and western areas of the City (City of Dothan 1999). In recent years, substantial commercial development has also occurred near the intersection of South Oates Street and Ross Clark Circle and the intersection of East Main Street and Ross Clark Circle. The character of commercial development throughout the City varies, depending on its relative proximity to other land uses and the characteristics of the roads on which the development is located. The past decade has seen a reversal of the decline of the City's core "Central Business District." In addition to a minor revival in traditional retail activity, a number of restaurants, clubs, and specialty shops have opened in downtown Dothan (City of Dothan 1999).

Industrial uses occupy approximately five percent of the land and most of the county's major employers are located in or near the City of Dothan (City of Dothan 1999). Industrial activity is widely scattered throughout Dothan because industrial facilities often need to be located near major transportation arteries. There is a considerable amount of undeveloped land, which has been zoned for industrial use, outside of the Ross Clark Circle (City of Dothan 1999).

Future Land Use

Zoning and other land use mechanisms are in place in the more urbanized areas of the County. Development in rural areas of Houston County has been impeded by the lack of infrastructure improvements (SEARP & DC 1998). County-wide water systems are being built as funding becomes available. The City of Dothan continues to experience measurable residential growth (SEARP & DC 1998).

The City is pursuing a policy of "balanced growth", based upon the following policies (City Of Dothan 1999):

- 1. All land uses will be considered to be necessary to Dothan's orderly growth and development.
- 2. In the development of property, adjacent and neighboring land uses should complement each other to the greatest practical extent.
- 3. The balanced growth of the City will be encouraged.
- 4. Only that land which can be cost effectively served by existing or planned infrastructure and municipal services will be considered for annexation into the City.
- 5. The City will attempt to maximize the cost effectiveness of existing and planned infrastructure in order to assure the greatest return on taxpayer investments.
- 6. The City should consider the implementation of impact fees for new developments.

2.9 SOCIAL SERVICES AND PUBLIC FACILITIES

2.9.1 Public Water Supply

Houston County

In analyzing water supply facilities in the southeast Alabama region, water-related resource problems were identified as potential barriers to future development. Over the past 20 years, groundwater overdraft areas have developed within the region. The potentiometric surface in the vicinity of Dothan, Ft. Rucker (Dale County), and Enterprise (approximately 25 miles west of Dothan and 31 miles from FNP) has experienced significant declines in the Nanafalia-Clayton aquifer, which is the major water supply in the area. The City of Dothan has reported a decline of 100 feet and a recommendation has been made by the U.S. Department of Agriculture, the U.S. Natural Resources Conservation Service, and the U.S. Forest Service that all water systems in the area develop a 10- to 20-year plan for additional water supplies (SEARP & DC 1998).

The City of Dothan, the nearest urban area to FNP, is serviced by Dothan Utilities. Dothan Utilities is the largest potable water supplier in Houston County. Water is pumped from various shallow and deep groundwater wells located throughout the Dothan area. As the City grows and new development occurs, water mains are constructed and extended to meet the increased demand (City of Dothan 2001).

Dothan likely will need additional water sources by as early as 2020. One of the options the city is considering is constructing, by 2011, a 10 million gallon per day (MGD) (expandable to 20 MGD) surface water treatment plant on the Chattahoochee River up stream of FNP between Columbia and FNP. The plant would connect to the City via a 36-inch pipe. The City should make a decision on constructing this plant by 2006 (POLY 2001).

 Table 2-5
 provides the details of Houston County's respective water suppliers and capacities.

2.9.2 Transportation

Road access to FNP is via State Road 95, a two-lane paved road with a north-south orientation. State Road 95 passes through the Towns of Columbia to the north and Gordon to the south (See Figure 2-2). Employees traveling from Dothan use either U.S. 84 or State Road 52. U.S. 84 is a four-lane highway that intersects with State Road 95 near Gordon, and State Road 52 crosses State Road 95 southwest of Columbia. The Alabama Department of Transportation does not maintain level-of-service designations for roadways in the State. Counts determining the average number of vehicles per day are available for selected state-maintained routes. Table 2-6 lists roadways in the vicinity of FNP and the average number of vehicles per day, as determined by the Alabama Department of Transportation.

2.10 METEOROLOGY AND AIR QUALITY

FNP is located in Houston County, Alabama, which is part of the Southeast Alabama Intrastate Air Quality Control Region (AQCR) (40 CFR 81.267). The AQCR is designated as being unclassified or in attainment for all criteria pollutants (40 CFR 81.301). The nearest nonattainment areas, designated as marginal for ozone, are Jefferson and Shelby Counties (Birmingham), Alabama, approximately 200 miles northwest of FNP and Fulton County (Atlanta), Georgia (designated as severe for ozone), approximately 185 northeast of FNP (EPA 2001a).

2.11 HISTORIC AND ARCHAEOLOGICAL RESOURCES

Area History in Brief

Native Americans from the Early Archaic period inhabited the Chattahoochee region 6,000 to 8,000 years ago (Fretwell 1980, pg. 5). Archaeological evidence also indicates that two groups occupied this area about 800 AD; one group represented a local culture, while the other represented a culture from Florida (Fretwell 1980, pg. 5). By 1000 AD, these Native Americans had developed into mound builders and founded towns built around large, flat-topped earthen pyramids (McGregory 1997, pg. 11). For no apparent reason, the mound builders abandoned the area about 1300 AD (Fretwell 1980, pg. 5).

Many Native American town sites and relics of Seminole and Creek origin have been identified along the Chattahoochee and Choctawhatchee Rivers. The Omussee Tribe of the Yamasee Indians was driven out of the Carolinas by the British and settled in Southeast Alabama in 1715 (APC 1971, pg. 2-8). For the next 100 years, groups of this Tribe hunted locally and cultivated the area until they were forced to relocate again (AEC 1972, pg. II-15). Until 1814, the Lower Creek Indian town of Yufala was located about six miles south of FNP near Gordon, Alabama (APC 1971, pg. 2-8).

Pre-Operation

The FES for construction of FNP listed one historic (National Register of Historic Places) site in the vicinity of the Plant, the Kolomoki Mounds. These Indian mounds are 22 miles northeast of FNP in Early County, Georgia, and are preserved in a state park named for the mounds (AEC 1972, pg. II-15). The FES reports that pre-construction site visits by amateur archaeologists and Indian historians did not identify any cultural resources or places of historical interest on the FNP site (AEC 1972, pg. II-15). The Alabama Historical Commission conducted a thorough review of its inventories, files, maps, and documents in reference to the FNP site and determined that "the operation of this generating facility will not impair, encroach upon or destroy any significant, historical and archaeological landmark in Houston County, Alabama" (Floyd 1974).

Current Status

As of 2001, the National Register of Historic Places listed seven locations in Houston County, Alabama, four sites in Early County, Georgia, and two sites in Henry County, Alabama (National Park Service 2001). Of these 13 locations, only 2 fall within a 6-mile radius of FNP (Figure 2-2). One site is located in Early County, Georgia, and one in Houston County, Alabama; both are described below.

Purcell-Killingsworth House (Houston County, Alabama)

This Victorian mansion was completed in 1890 and was the boyhood home of Bishop Clare Purcell. Bishop Purcell was elected President of the Council of Bishops, the highest recognition ever achieved by a native-born Alabama Methodist minister. The house is currently a private residence with a historical marker (Historic Chattahoochee Commission 1998).

Coheelee Creek Bridge (Early County, Georgia)

This bridge is the southernmost covered bridge remaining in Georgia. It was built in 1891 and is 121 feet long. J. W. Baughman and 36 workers built the bridge, using a modification of the queen post truss design, under the authorization of the Early County Commissioners. Construction of the bridge on Old River Road lasted four months and cost \$490.41 (GDOT 2000).

2.12 OTHER PROJECTS AND ACTIVITIES

As stated in Section 2.2, 44 miles downstream of FNP lies Lake Seminole, a 37,500-acre impoundment created by the Jim Woodruff Lock and Dam. The Lake Seminole project, originally authorized as the Jim Woodruff Lock & Dam Project by the River and Harbor Act of 1946, was the first of three locks and dams constructed for navigation, hydro-power, recreation and related use purposes on the Apalachicola, Chattahoochee, and Flint River systems (**USACE 2002**). The dams were constructed to provide a 9-foot deep channel from the Gulf Intercoastal Waterway to Columbus, Georgia. The channel traverses the Apalachicola and the Chattahoochee Rivers, and the Flint River to Bainbridge, Georgia. Construction of this muti-purpose project began in 1947 and was completed in 1957 at a cost of 46.5 million (USACE 2002). Lake Seminole is operated at a relatively constant level at elevation 77.5 feet above mean sea level. Although there is some fluctuation for power production, no storage for flood control is provided. The powerhouse has the capacity to generate 45 MW of electricity (**Pool 2001**).

The other two lock and dam projects, the Walter F. George Lock and Dam and the George W. Andrews Lock and Dam, both lie upstream of FNP. They form the Walter F. George Reservoir and Lake Andrews, respectively. The powerhouse at Walter F. George Lock and Dam has the capacity to generate 150 MW of electricity (Pool 2001). Staffed 24 hours a day, the powerhouse control room regulates water flows and power generation for the lower end of the Chattahoochee River (USACE 2000). The George W. Andrews Lock and Dam is not a hydropower facility (Pool 2001).

As discussed in Section 2.9.1, Dothan, AL likely will need additional water sources by as early as 2020. One of the options Dothan is considering is constructing, by 2011, a 10 million gallon per day (MGD) (expandable to 20 MGD) surface water treatment plant on the Chattahoochee River upstream of FNP between Columbia and FNP. The plant would connect to the City via a 36-inch pipe. The City should make a decision on constructing this plant by 2006 (POLY 2001).

Georgia Power is relicensing three hydroelectric facilities near Columbus, GA as the Middle Chattahoochee River Hydroelectric Project. The three dams involved are the Goat Rock Dam, Oliver Dam, and North Highlands Dam. Together they have 129.3 MW of installed electric capacity and produce approximately 524,000 MWh annually (Georgia Power 2002).

	Scientific Name	Federal Status	State Status			
Common Name			Georgia	Alabama	Florida	Occurrence (State: County) ^c
Mammals						
Gray bat	Myotis grisescens	Е	Е	SP	Е	Florida: Jackson
Southeastern bat	Myotis austroriparius	-	-	SP	-	Alabama: Barbour
Indiana bat	Myotis sodalis	Е	Е	SP	Е	Florida: Jackson
Rafinesque's big-eared bat	Corynorhinus rafinesquii	-	R	SP	-	Florida: Jackson
Southeastern pocket gopher	Geomys pinetis	-	-	SP	-	Alabama: Dale, Houston
Sherman's fox squirrel	Scirus niger shermani	-	-	-	SSC	Florida: Jackson
<u>Birds</u>						
Bald eagle	Haliaeetus leucocephalus	Т	E	SP	Т	Alabama: Barbour, Henry; Houston Georgia: Baker, Early, Decatur
Osprey	Pandion haliaetus	-	-	SP	-	Alabama: Houston, Montgomery,
Wood stork	Mycteria americana	E	Е	SP	E	Florida: Jackson Alabama: Barbour, Montgomery
Bachman's sparrow	Aimophila aestivalis	-	R	-	-	Florida: Jackson; Georgia: Decatur
Red-cockaded woodpecker	Picoides borealis	E	E	SP	Т	Alabama: Geneva; Georgia: Worth; Florida: Jackson
Limpkin	Aramus guarauna	-	-	-	SSC	Florida: Jackson
Little blue heron	Egretta caerulea	-	-	-	SSC	Florida: Jackson
Snowy egret	Egretta thula	-	-	-	SSC	Florida: Jackson
Tricolored heron	Egretta tricolor	-	-	-	SSC	Florida: Jackson
White ibis	Eudocimus albus	-	-	-	SSC	Florida: Jackson
Southeastern American kestrel	Falco sparverius paulus	-	-	-	Т	Florida: Jackson
Arctic peregrine falcon	Falco peregrinus tundrius	-	Е	SP	Е	Florida: Jackson
Black skimmer	Rynchops niger	-	-	-	SSC	Florida: Jackson

Table 2-1. Special-Status Species Known or Likely to Occur at FNP or in Counties Traversed by FNP Transmission Line Corridors^a.

		Federal		State Status		
Common Name	Scientific Name	Status	Georgia Alabama		Florida	Occurrence (State: County) ^c
<u>Reptiles</u>						
Barbour's map turtle	Graptemys barbouri	-	Т	SP	SSC	Alabama: Houston; Florida: Jackson; Georgia: Baker, Decatur
Alabama map turtle	Graptemys pulchra	-	R	SP	-	Alabama; Montgomery
American alligator	Alligator mississippiensis	T(S/A)	-	-	SSC	Alabama: Houston Florida: Jackson
Eastern indigo snake	Drymarchon corais couperi	Т	Т	SP	Т	Alabama: Barbour, Dale, Geneva, Henry, Houston, Montgomery, Pike Florida: Jackson
Florida pine snake	Pituophis melanoleucus mugitus	-	-	SP	SSC	Florida: Jackson
Southern hognose snake	Heterodon simus	-	-	SP	-	Georgia: Early
Eastern coachwhip	Masticophis flagellum flagellum	-	-	SP	-	Alabama: Barbour
Gopher tortoise	Gopherus polyphemus	-	Т	SP	SSC	Alabama: Dale, Henry, Houston; Florida: Jackson; Georgia: Baker Decatur, Early, Mitchell, Seminol Worth
Alligator snapping turtle	Macroclemys temminckii	-	Т	SP	SSC	Florida: Jackson; Georgia: Decatu
Suwanee cooter	Pseudemys concinna suwanniensis	-	-	-	SSC	Florida: Jackson
<u>Amphibians</u>						
Pine barrens treefrog	Hyla andersonii	-	-	SP	SSC	Alabama: Geneva
Dusky gopher frog	Rana capito sevosa	-	-	SP	SSC	Alabama: Barbour; Florida: Jackso
Seal salamander	Desmognathus monticola	-	-	SP	-	Alabama: Henry
Georgia blind salamander	Haideotriton wallacei	-	Т	-	SSC	Florida: Jackson
Flatwoods salamander	Ambystoma cingulatum	Т	Т	SP	SSC	Alabama: Houston; Florida: Jackso

		Federal		State Status		
Common Name	Scientific Name	Status	Georgia Alabama F		Florida	Occurrence (State: County) ^c
<u>Fish</u>						
Gulf sturgeon	Acipenser oxyrinchus desotoi	Т	-	-	SSC	Florida: Jackson; Alabama: Geneva
Shoal bass	Micropterus sp 1	-	-	-	SSC	Florida: Jackson
Redeye chub	Notropis harperi	-	R	-	-	Georgia: Baker, Decatur
Bluenose shiner	Pteronotropis welaka	-	R	-	SSC	Florida: Jackson; Georgia: Early
Crystal darter	Crystallaria asprella	-	-	SP	-	Georgia: Miller
Invertebrates						
Fat three-ridge	Amblema neislerii	Е	Е	-	-	Florida: Jackson
Chipola slabshell	Elliptio chipolaensis	Т	-	SP	-	Florida: Jackson
Purple bankclimber	Elliptoideus sloatianus	Т	Т	-	-	Florida: Jackson;
						Georgia: Baker, Decatur, Miller
Southern kidneyshell	Ptychobranchus jonesi	-	-	SP	-	Alabama: Barbour,
Southern sandshell	Lampsilis australis	-	-	SP	-	Alabama: Barbour, Dale, Geneva, Henry, Pike
Shinyrayed pocketbook	Lampsilis (Villosa) subangulata	Е	Е	SP	-	Florida: Jackson, Georgia: Baker, Decatur
Gulf moccasinshell	Medionidus penicillatus	Е	E	-	-	Florida: Jackson; Georgia: Baker, Decatur
Oval pigtoe	Pleurobema pyriforme	E	E	SP	-	Florida: Jackson; Georgia: Baker, Decatur
Vascular Plants						
Marianna columbine	Aquilegia canadensis australis	-	-	-	Е	Florida: Jackson
Sicklepod	Arabis canadensis	-	-	-	Е	Florida: Jackson
Variable-leaved Indian plantain	Arnoglossum diversifolium	-	Т	-	Е	Florida: Jackson, Georgia: Early
Purple honeycomb head	Balduina atropurpurea	-	R	-		Georgia: Tift, Worth
Apalachicola wild indigo	Baptisia megacarpa	-	-	-	Е	Florida: Jackson

		Federal		State Status		_
Common Name	Scientific Name	Status	Georgia	Alabama	Florida	Occurrence (State: County) ^c
Flyr's brickell-bush	Brickellia cordifolia	-	-	-	Е	Florida: Jackson
Poppy mallow	Callirhoe papaver	-	-	-	Е	Florida: Jackson
Sweet shrub	Calycanthus floridus	-	-	-	Е	Florida: Jackson
Catesby's bindweed	Calystegia catesbiana	-	-	-	Е	Florida: Jackson
Velvet sedge	Carex dasycarpa	-	R	-	-	Georgia: Early
Canada honewort	Crytotaenia canadensis	-	-	-	Е	Florida: Jackson
Green fly orchid	Epidendrum conopseum	-	R	-	-	Georgia: Baker, Early, Seminole
Creeping morning-glory	Evolvulus sericeus sericeus	-	Е	-	-	Georgia: Miller
Harper fmbry	Fimbristylis perpusilla	-	Е	-	-	Georgia: Baker
Godfrey's privet	Forestiera godfreyi	-	-	-	Е	Florida: Jackson
Liverleaf	Hepatica nobilis	-	-	-	Е	Florida: Jackson
Florida anise tree	Illicium floridanum	-	Е	-	Т	Florida: Jackson
Mountain laurel	Kalmia latifolia	-	-	-	Т	Florida: Jackson
Southern red lilly	Lillium catesbaei	-	-	-	Т	Florida: Jackson
West's flax	Linum westii	-	-	-	Е	Florida: Jackson
Curtiss loosestrife	Lythrum curtissii	-	Т	-	Е	Georgia: Decatur
Pondspice	Litsea aestivalis	-	Т	-	Е	Georgia: Seminole
Hummingbird flower	Macranthera flammea	-	-	-	Е	Florida: Jackson
Ashe's magnolia	Magnolia ashei	-	-	-	Е	Florida: Jackson
Pyramid magnolia	Magnolia pyramidata	-	-	-	Е	Florida: Jackson
Green adders'-mouth	Malaxis unifolia	-	-	-	Е	Florida: Jackson
Barbara's buttons	Marshallia obovata	-	-	-	Е	Florida: Jackson
Baldwyn's spiny-pod	Matalea baldwyneana	-	-	-	Е	Florida: Jackson
Florida spiny-pod	Matalea floridana	-	-	-	Е	Florida: Jackson
Allegheny spurge	Pachysandra procumbens	-	-	-	Е	Florida: Jackson
Crystal Lake nailwort	Paronychia chartacea minima	Т			Е	Florida: Jackson

		Federal		State Status		
Common Name	Scientific Name	Status	Georgia	Alabama	Florida	Occurrence (State: County) ^c
Purple cliff brake	Pellaea atropurpurea	-	-	-	Е	Florida: Jackson
Eastern ninebark	Physocarpus opulifolius	-	-	-	Е	Florida: Jackson
Hairy fever tree	Pinckneya bracteata	-	-	-	Т	Florida: Jackson
Chapman's butterwort	Pinguicula planifolia	-	-	-	Т	Florida: Jackson
Clearwater butterwort	Pinguicula primuliflora	-	Т	-	Е	Georgia: Early
Yellow fringed orchid	Platanthera ciliaris	-	-	-	Т	Florida: Jackson
Yellow fringeless orchid	Platanthera integra	-	-	-	Е	Florida: Jackson
Snowy orchid	Platanthera nivea	-	-	-	Т	Florida: Jackson
Orange azalea	Rhododendron austrinum	-	-	-	Е	Florida: Jackson
White-flowered wild petunia	Ruellia noctiflora	-	-	-	Е	Florida: Jackson
Heart-leaved willow	Salix eriocephala	-	-	-	Е	Florida: Jackson
Florida willow	Salix floridana	-	Е	-	Е	Florida: Jackson: Georgia: Early
Nettle-leaved sedge	Salivia urtcifolia	-	-	-	Е	Florida: Jackson
Yellow flytrap	Sarracenia flava	-	U	-	-	Georgia: Tift, Worth
Hooded pitcherplant	Sarracenia minor	-	U	-	Т	Georgia: Early, Tift, Worth
Parrot pitcherplant	Sarracenia psittacina	-	Т	-	Т	Florida: Jackson, Georgia, Early, Worth
Decumbent pitcherplant	Sarracenia purpurea	-	Е	-	Т	Florida: Jackson
Sweet pitcherplant	Sarracenia rubra	-	Е	-	Т	Georgia: Early
Scarlet magnoliavine	Schisandra coccinea	-	-	-	Е	Florida: Jackson
Chaffseed	Schwalbea americana	Е	Е	-	Е	Georgia: Baker, Early, Miller
Thorne's buckthorn	Sideroxylon (Bumelia) thornei	-	Е	-	E	Florida: Jackson Georgia: Early , Decatur, Semino
Silky buckthorn	Sideroxylon (Bumelia) lycioides	-	-	-	Е	Florida: Jackson
Fringed campion	Silene polypetala	Е	Е	-	Е	Florida: Jackson

		Federal		State Status		
Common Name	Scientific Name	Status	Georgia	Alabama	Florida	Occurrence (State: County) ^c
Gentian pinkroot	Spigelia gentianoides	Е	-	-	E	Florida: Jackson
Florida torreya	Torreya taxifolia	Е	Е	-	Е	Florida: Jackson
Narrow-leaved trillium	Trillium lancifolium	-	-	-	Е	Florida: Jackson
Relict trillium	Trillium reliquum	Е	Е	-	-	Alabama: Henry
Harper's yellow-eyed grass	Xyris scabrifolia	-	-	-	Т	Florida: Jackson; Georgia: Worth
Northern prickley ash	Zanthoxylum americanum	-	-	-	Е	Florida: Jackson

a. Species that the USFWS or NMFS has listed or proposed for listing as endangered or threatened; species that GADNR has listed or proposed for listing as endangered, threatened, rare, or unusual; species that ACDNR has listed as "state protected"; species that FDACS or FFWCC has listed or proposed for listing as endangered, threatened, or special concern.

b. E = Endangered – A species which is in danger of extinction throughout all or part of its range.

T = Threatened – A species which is likely to become an endangered species in the foreseeable future throughout all or part of its range.

T(S/A) = Threatened due to similarity of appearance – A species which is protected because it is very similar in appearance to a listed species.

R = Rare – A species which may not be endangered or threatened but which should be protected because of its scarcity (Georgia only).

U = Unusual – An unusual species that deserves special consideration (Georgia only).

SP = State Protected – Animal species that is protected by Alabama nongame species regulations. Note: Alabama has no special status for plant species.

SSC = Species of Special Concern – A species, subspecies, or isolated population which is facing a moderate risk of extinction in the future (Florida only).

– = Not Listed.

c. Species included in this table meet at least one of the following conditions:

- Species has been recorded to occur (or is likely to occur) on FNP or in at least one county traversed by FNP transmission lines (see Attachment C)
- Species has been recorded within three miles of the South Bainbridge or Raccoon Creek transmission lines (see Attachment C)
- Species was observed during SNC-commissioned field surveys conducted in 2001-2002 (Tetra Tech NUS 2002a, b)
- Note: Bolded species and county names indicate species was observed during SNC-commissioned field surveys conducted in 2001-2002 (Tetra Tech NUS 2002a,b)

1980 to 2040.			
	Year	Number	Percent
	1970 ^a	56,574	
	1980 ^a	74,632	3.2
	1990 ^a	81,331	0.9
	2000 ^b	88,787	0.9
	2010 ^c	98,766	1.1
	2020 ^d	109,580	1.1
	2030 ^d	119,434	0.9

129,288

0.8

2040^d

Table 2-2. Estimated Populations and Annual Growth Rates in Houston County, Alabama, from 1980 to 2040.

a. USCB 1995.

b. USCB 2000b.

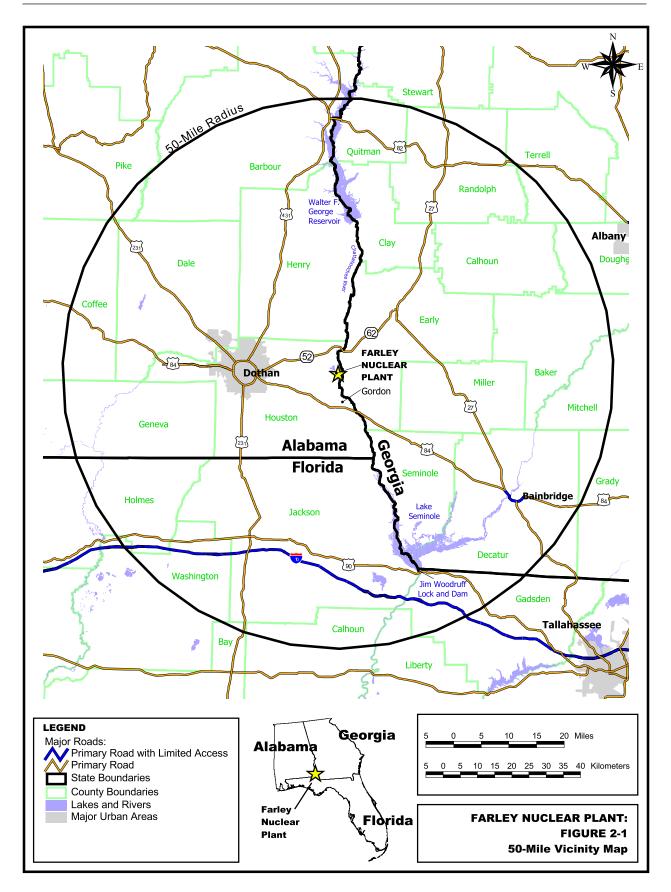
c. University of Alabama 1999.

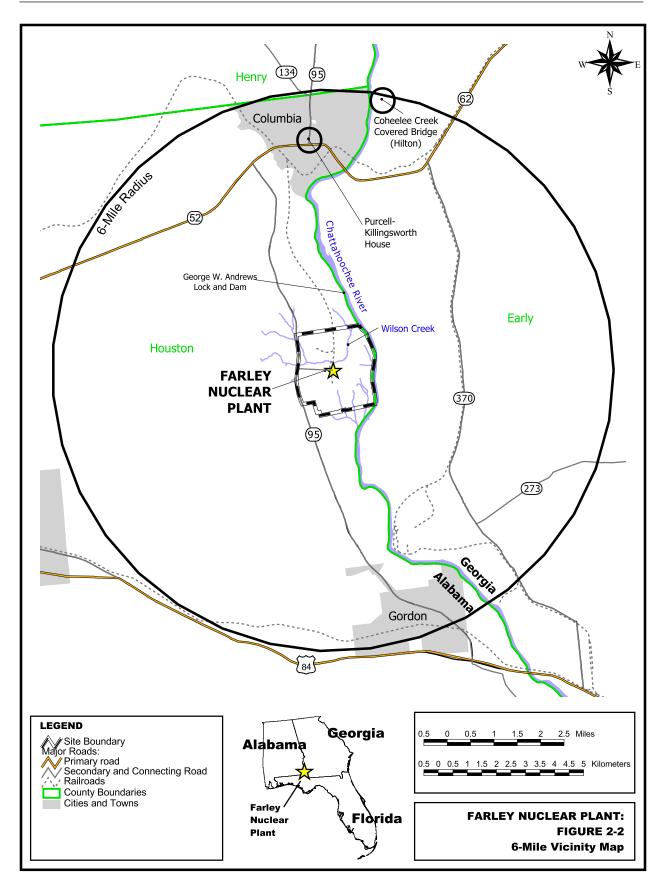
d. Tetra Tech NUS 2001a.

		0000	American		Native				A	.r		
		2000 Block	Indian or Alaskan		Hawaiian or other Pacific		All other		Aggregate o		2000	0000 Tre etc
County	State	Groups	Native	Asian	Islander	Black Races	Single Minorities	Multi-racial Minorities	Minority Races	Hispanic Ethnicity	2000 Tracts	2000 Tracts Low-Income
arbour	AL	21	0	0	0	11	0	0	11	0	9	0
Coffee	AL	21	0	0	0	2	0	0	2	0	9 10	0
Dale	AL	42	0	0	0	<u>ک</u>	0	0	2	0	10	0
Geneva	AL	21	0	0	0	0	0	0	0	0	5	0
Henry	AL	17	0	0	0	5	0	0	5	0	6	0
Houston	AL	67	0	0	0	13	0	0	13	0	21	1
Pike			0	0	0		0					0
	AL FL	<u>4</u> 1	0	0	0	2	0	0	2	0	2	0
Bay		-	-	•		-	-	-	-	-	•	
Calhoun	FL	10	0	0	0	0	0	0	0	0	3	0
Badsden	FL	14	0	0	0	10	0	0	10	1	4	0
lolmes	FL	13	0	0	0	0	0	0	0	0	4	•
lackson	FL	41	0	0	0	15	0	0	12	0	11	0
iberty	FL	1	0	0	0	1	0	0	1	0	1	0
Vashington	FL	12	0	0	0	1	0	0	1	0	3	0
Baker	GA	4	0	0	0	2	0	0	3	0	2	0
Calhoun	GA	6	0	0	0	5	0	0	5	0	2	0
Clay	GA	4	0	0	0	3	0	0	3	0	2	1
Decatur	GA	21	0	0	0	6	0	0	7	0	7	0
Dougherty	GA	1	0	0	0	0	0	0	0	0	1	0
Early	GA	13	0	0	0	5	0	0	5	0	5	0
Grady	GA	3	0	0	0	0	0	0	0	0	2	0
Miller	GA	5	0	0	0	1	0	0	1	0	3	0
Vitchell	GA	5	0	0	0	1	0	0	1	0	3	1
Quitman	GA	3	0	0	0	1	0	0	1	0	2	0
Randolph	GA	7	0	0	0	5	0	0	5	0	2	0
Seminole	GA	9	0	0	0	3	0	0	3	0	3	0
Stewart	GA	1	0	0	0	1	0	0	0	0	0	0
Ferrell	GA	4	0	0	0	1	0	0	1	0	3	1
OTALS		371	0	0	0	95	0	0	93	1	131	4
						State A	verages					
	Ame	erican India	an	Nativ	/e Hawaiian		-					
		r Alaskan			ther Pacific		All other Singl	e Multi-raci	al Agar	egate of	Hispanic	
States		Native	Asian			Black Races	Minorities	Minoritie		ty Races	Ethnicity	Low-Incom
labama		0.5%	0.7%		0.0%	26.0%	0.7%	1.0%	28	3.9%	1.7%	16.8%
Iorida		0.3%	1.7%		0.1%	14.6%	3.0%	2.4%	22	2.0%	16.8%	11.8%
Georgia		0.3%	2.1%		0.1%	28.7%	2.4%	1.4%		4.9%	5.3%	12.7%

Joseph M. Farley Application for License Renewal

Year	Total Houston County Property Tax Revenues ^a	Property Tax Paid by Farley Nuclear Plant	Percent of Total Property Taxes
1995	\$14,183,071	\$5,359,687	38
1996	\$14,526,166	\$5,269,035	36
1997	\$14,755,813	\$5,022,201	34
1998	\$15,273,543	\$5,002,654	33
1999	\$17,147,072	\$5,413,050	32


Table 2-4. Property Tax Revenues Generated in Houston County, Alabama; Property Taxes Paid to Houston County by Farley Nuclear Plant 1995 - 1999.


Table 2-5. Houston County Public Water Suppliers and Capacities. (Use is per day and capacity is per minute.)

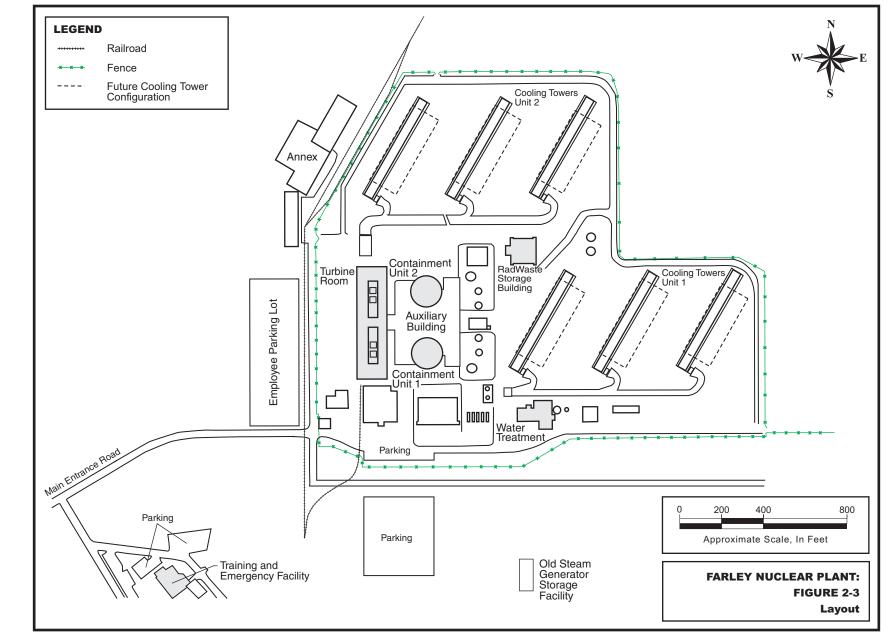
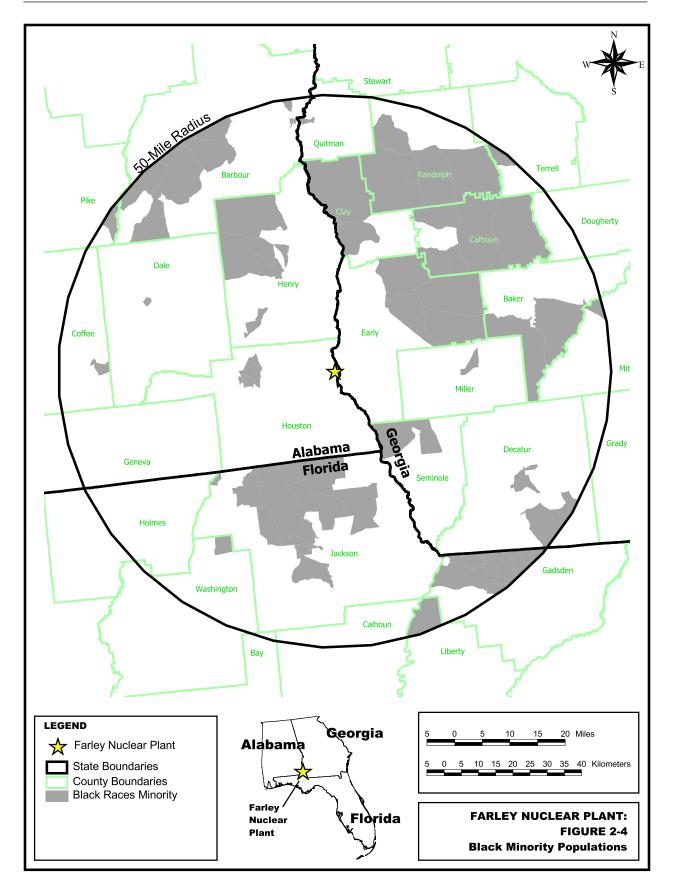
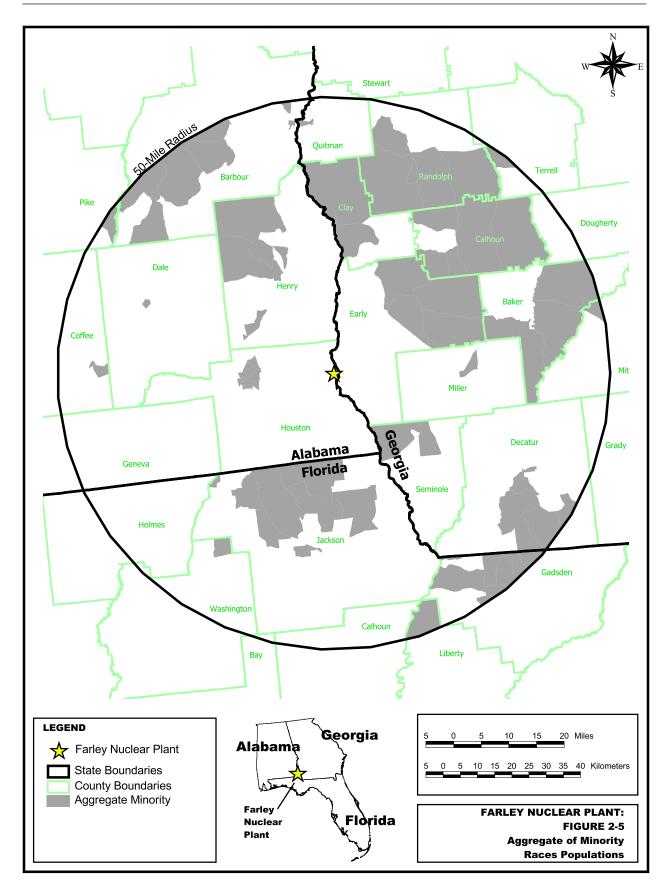
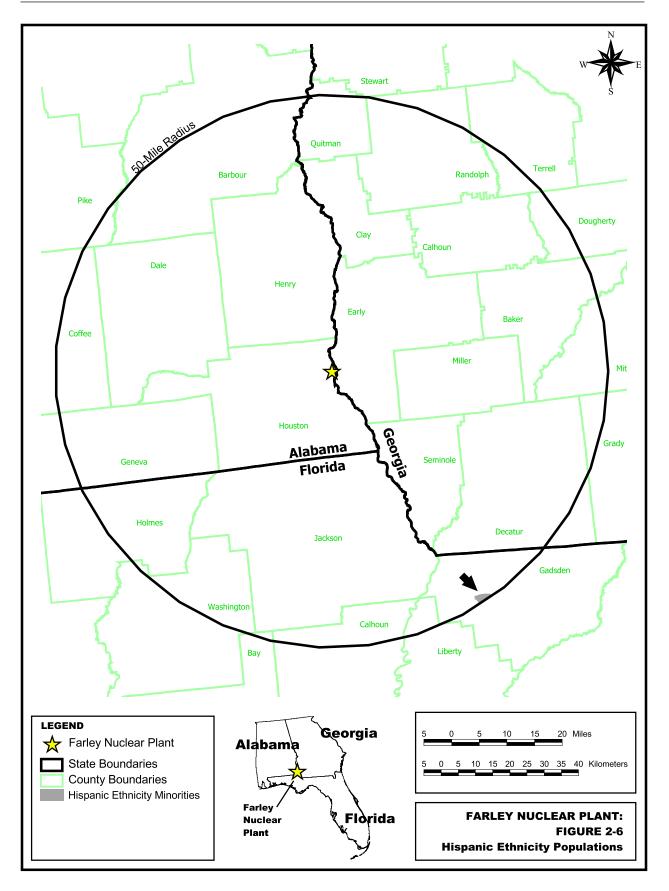

Water Supplier	Average Daily Use (gallons per day)	Maximum Capacity (gallons per minute)
Avon Water Supply	54,600	N/A
Columbia Water Works	115,000	350
Cottonwood Water Works	239,000	600
Cowarts Water System	257,000	600
Gordon Water Works	45,000	250
Houston County Water Authority	193,000	400
Kinsey Water System	181,000	585
Taylor Water System	461,000	1075
Webb Water System	139,000	200
Dothan Utilities	13,820,000	22,220
ource: Chapman 2001. /A = not available.		

Table 2-6. Traffic Counts for Roads in the Vicinity of FNP.

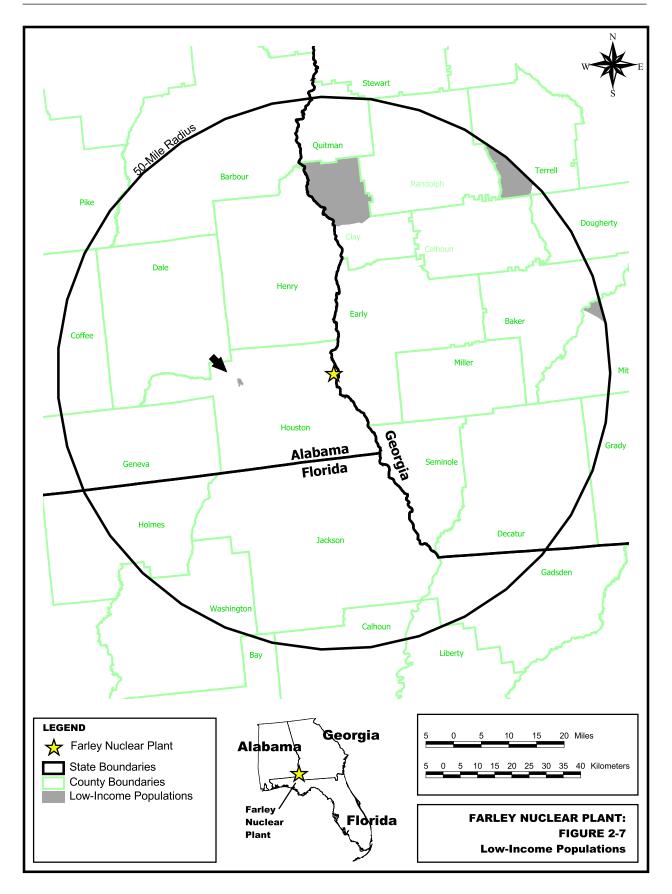
Roadway and Location	Annual Average Daily Traffic
State Road 95, near FNP	710
State Road 95, near Columbia	1,010
State Road 95, near Gordon	640
State Road 52, Dothan	8,280
State Road 52, approximate midpoint between Dothan and Columbia	4,990
State Road 52, near Columbia	4,720
U.S. 84, Dothan	14,610
U.S. 84, approximate midpoint between Dothan and Gordon	8,820
U.S. 84, near Gordon	6,060




Joseph M. Farley Nuclear Plant Application for License Renewal


2-33

September 2003


Appendix D - Applicant's Environmental Report 2.0 Site and Environmental Interfaces

Appendix D - Applicant's Environmental Report 2.0 Site and Environmental Interfaces

PAGE INTENTIONALLY LEFT BLANK

3.0 PROPOSED ACTION

NRC

"...The report must contain a description of the proposed action..." 10 CFR 51.53(c)(2)

SNC proposes that NRC renew the operating licenses for FNP for an additional 20 years. Renewal would give SNC and the States of Alabama, Georgia, and Florida the option of continuing to rely on FNP to meet future electricity needs. Section 3.1 discusses the Plant, in general (See **Figure 3-1**). Sections 3.2 through 3.4 address potential issues that license renewal could effect.

3.1 GENERAL PLANT INFORMATION

General information about FNP is available in several documents. In 1972, the U.S. Atomic Energy Commission, the predecessor agency of NRC, prepared an FES related to the construction of FNP (AEC 1972). In 1974, AEC prepared an FES related to the operation of FNP (AEC 1974). The GEIS (NRC 1996b) describes important FNP features and, in accordance with NRC requirements, SNC maintains an Updated Final Safety Analysis Report for the Plant. SNC has referred to all of these documents while preparing this environmental report for license renewal.

3.1.1 Reactor and Containment Systems

FNP is a two-unit electric generating plant. Each unit is equipped with a nuclear steam supply system (NSSS) that utilizes a pressurized water reactor (**SNC 2000a**, pg. 1.1-1). Westinghouse Electric Corporation designed and supplied the NSSS and the turbine generators. FNP Units 1 and 2 achieved initial criticality in July 1977 and March 1981, respectively, and began commercial operations in December 1977 and July 1981, respectively.

The reactor containment structures are steel-lined, reinforced concrete, 138-foot-diameter cylinders with hemispheric domes and flat reinforced concrete foundation mats. The containment for each unit is designed to withstand an internal pressure of 54 pounds per square inch above atmospheric pressure (SNC 2000a, pg. 1.2-9; AEC 1972, pg. III-1). With these engineered safety features, the containment structures (reactor buildings) are designed to withstand severe weather (e.g., tornadoes and hurricanes) and provide radiation protection during operations and postulated accidents. FNP fuel is slightly enriched uranium dioxide, with the highest enrichment to date of 4.6 percent. The Updated Final Safety Analysis Report indicates a 5 percent enrichment limit. SNC operates the reactors below the Updated Final Safety Analysis Report-mandated burnup rate limit of 60,000 megawatt-days per metric ton uranium.

As originally designed and operated, FNP Units 1 and 2 each had core thermal ratings of 2,660 megawatts-thermal (MWt), and a gross electrical output of approximately 861 megawatts-electrical (MWe) (SNC 2000a, pg. 1.1-2). In 1997, an uprate license amendment was submitted to NRC. Prior to the amendment submittal and as part of the power uprate review, SNC performed an environmental impact evaluation (SNC 1997), as required by the FNP Environmental Protection Plan. The amendment was approved on April 29, 1998 (NRC 1998). The current rated thermal power level for each unit is 2,775 MWt. The uprated gross electrical output for each unit is approximately 910 MWe. Unit 1 has a net electrical output of 847 MWe, and Unit 2's net output is 852 MWe (EIA 2001c).

3.1.2 Cooling and Auxiliary Water Systems

The FNP cooling system is a closed-cycle system utilizing six mechanical draft cooling towers (NRC 1996b). Each unit has three 14-cell cooling towers. As part of the plant's normal operating and maintenance activities, FNP is in the planning stages of constructing new mechanical draft cooling towers to replace the current towers for both units. Construction is to commence in January 2003 and be

completed by May 2005. Through a phased implementation process, six 14-cell towers will be replaced by four 18-cell and two 16-cell towers. The new towers will be constructed on and adjacent to current tower locations (see **Figure 2-3**).

FNP uses both surface water and groundwater to meet its water supply needs. Groundwater is used for potable water, and as make-up fire-protection systems. Groundwater is also available as an alternate source of make-up for the demineralizer. The cooling water systems include a river water system that supplies the service water and circulating water systems for each unit. Chattahoochee River water provides service water, make-up to the circulating water system, and dilution water during periods of low flow, when releases to the river would exceed permit limits. The following sections discuss how surface water and groundwater are used at FNP.

3.1.2.1 Surface Water

A 200-foot canal moves water from the Chattahoochee River to the intake structure. The intake structure consists of three bays, each with 3/8-inch mesh vertical traveling screens to prevent small fish and debris from being entrained. The design velocity is less than 0.5 feet per second (fps) in the approach canal, and less than 1.0 fps across the traveling screens when the mean water elevation in the canal is 77 feet above mean sea level (AEC 1974, pg. 3-6). Accumulated debris is washed from the screens into a trough and collected for disposal. Ten pumps behind the intake bays move the water to a 108-acre storage pond (Service Water [SW] storage pond) at a rate of about 70,000 gpm (NRC 1998). These pumps have a total capacity of 97,500 gpm (AEC 1974, pg. 3-6).

Water is moved from the storage pond into the service water systems by 10 pumps (five for each unit). The service water intake structure has three pump bays, each with two entrances. Each entrance is 13 feet wide and 25.5 feet high. These entrance bays also are equipped with trash racks and vertical traveling screens. The velocity of water through these screens is 0.5 fps. These pumps withdraw water from the 108-acre storage pond at a rate of approximately 61,000 gpm (for both units; AEC 1974, pg. 3-8), but can pump as much as 90,000 gpm (AEC 1974, pg. 3-8).

During normal operations both service water systems' combined intake rate is approximately 61,000 gpm (AEC 1974, pg. 3-8). Make-up water for each circulating water system is withdrawn from each service water system at about 18,000 gpm (per unit; NRC 1998).

The water discharged from both units' service water and circulating water systems is combined and carried through a single pipe to the discharge structure, approximately 1,740 feet downstream of the intake. During normal operations water from both units discharges to the river at a rate of approximately 32,000 gpm (AEC 1974, pg. 3-11).

An oxidizing biocide is added to the service water system at the service water intake structure using best management practices to maintain concentrations adequate to control Asiatic clams (*Corbicula fluminea*) and microfouling organisms while maintaining total residual chlorine concentrations within permit limits. Biocides and other treatment chemicals are also added to the circulating water system. SNC monitors the discharge to ensure NPDES permit limits are complied with.

3.1.2.2 Groundwater

FNP uses groundwater for domestic purposes and for make-up to the fire protection system. Figure 3-1 shows the location of the three onsite wells that currently supply the plant. Production Well No. 2, located north of the plant facilities, supplies the majority of FNP groundwater, with a 5-year average daily use of 117 gallons per minute (SO 1997; SO 1998; SO 1999; SO 2000a; SO 2001a). This well is located approximately 1,000 feet north of the plant and is 775 feet deep, drawing from the deep major aquifer

(see Section 2.3 for description of site groundwater resources). Construction² Wells No. 1 and 2 are located at the northern edge of the plant facilities, have a combined average daily use of 12 gallons per minute and draw from the major shallow aquifer, at depths of 240 feet and 385 feet, respectively. The site elevation at all three wells is approximately 183 above mean sea level.

In the past, the site has used additional wells. Production Well No. 3, located south of the plant facilities, is finished in the major shallow aquifer. FNP generally does not use Production Well No. 3 but had to in 1997 and 1998 due to operational issues that resulted in an unusually high water demand. During that time, Production Well No. 3 produced an average of 120 gpm and made up the balance of the 5-year total well usage of 169 gpm. Production Well No. 1 was been capped and retired in 1996.

3.1.3 Transmission Facilities

APC built five transmission lines specifically to connect FNP to the transmission system. Construction on a sixth transmission line (Farley-Sinai Cemetery) has recently been completed (Figure 3-2). The transmission system that connects FNP to the transmission grid has changed from original FES. New substations and lines have been constructed. The environmental report describes and evaluates all lines from FNP to the first substation that connects FNP to the transmission grid.

The list below identifies the transmission lines by the name of the substation at which each line connects to the transmission system.

- <u>Farley-Webb</u> This 230-kilovolt (kV) line provides power to and from the Webb Substation located approximately two miles east of Dothan, Alabama. The line is 10.5-miles long with a right-of-way (ROW) width of 125-feet and occupies 159 acres.
- <u>Farley-Pinckard</u> This 230-kV line provides power to and from the Pinckard Substation approximately five miles west of Dothan. The line is 31 miles long with a ROW width of 125 feet and occupies 468.5 acres.
- <u>Farley-S. Bainbridge</u> This 230-kV line provides power to and from the S. Bainbridge Substation 0.5 mile southwest of Bainbridge, Georgia. The line shares the ROW with the Farley-Raccoon Creek line for approximately the first seven miles of the ROW from the Farley site. The line is 46-miles long with a ROW width of 125 feet and occupies 697 acres.
- <u>Farley-Raccoon Creek</u> This 500-kV line to the Raccoon Creek Substation. The line shares the ROW with the Farley-S. Bainbridge line for approximately the first seven miles of the ROW from the Farley site. The line is 62 miles long with a ROW width of 150 feet and occupies 1127 acres
- <u>Farley-Snowdoun</u> This 500-kV line provides power to and from Snowdoun Substation, approximately four miles south of Montgomery, Alabama. The line is 96-miles long with a ROW 200-feet- and occupies 2321.4 acres.
- <u>Farley-Sinai Cemetery</u> This 230-kV line has been newly constructed in an existing corridor that was originally dedicated to a 115 kV line that was dismantled. The line terminates at a new substation near the Gulf Power Company Sholtz Electric Generating Plant. The line is approximately 48 miles long with a ROW width of 125 feet, and occupies 582 acres.

For the specific purpose of connecting FNP to the transmission system, approximately 293.5 miles of transmission lines have been constructed and occupy approximately 5,355 acres of corridor (AEC 1972, pg. VIII-1). The corridors pass through land that is primarily rolling hills covered in forests or farmland. The areas are mostly remote, with low population densities. The longer lines cross numerous state and

² The name for these wells may be attributed to Daniel Construction Company; some records refer to them as Daniel Wells No. 1 and 2.

U.S. highways, including U.S. 231 and U.S. 431. Corridors that pass through farmlands generally continue to be used in this fashion. SNC plans to maintain these transmission lines indefinitely, as they are integral to the larger transmission system.

All FNP transmission lines have been designed and constructed in accordance with the National Electrical Safety Code (NESC) and industry guidance that was current when the lines were built. Ongoing ROW surveillance and maintenance of transmission facilities ensure continued conformance to design standards. Maintenance practices are described in Sections 2.4 and 4.13.

3.2 **REFURBISHMENT ACTIVITIES**

NRC

"The report must contain a description of ... the applicant's plans to modify the facility or its administrative control procedures...This report must describe in detail the modifications directly affecting the environment or affecting plant effluents that affect the environment...." 10 CFR 51.53(c)(2)

"...The incremental aging management activities carried out to allow operation of a nuclear power plant beyond the original 40-year license term will be from one of two broad categories...(2) major refurbishment or replacement actions, which usually occur fairly infrequently and possibly only once in the life of the plant for any given item...." (NRC 1996b, Section 2.6.3.1)

SNC has addressed refurbishment activities in this environmental report in accordance with NRC regulations and the NRC GEIS for license renewal (NRC 1996b, Section 2.6.2). NRC requirements for the renewal of operating licenses for nuclear power plants include the preparation of an integrated plant assessment (IPA) (10 CFR 54.21). The IPA must identify and list structures, systems, and components (SSCs) subject to an aging management review. Such SSCs that might require refurbishment include, for example, the reactor vessel, piping, supports, and pump casings (see 10 CFR 54.21 for details), as well as those that are not subject to periodic replacement.

In turn, NRC regulations for implementing the National Environmental Policy Act (NEPA) require environmental reports to describe in detail and assess the environmental impacts of refurbishment activities such as planned modifications to SSCs or plant effluents [10 CFR 51.53(c)(2)]. Resource categories to be evaluated for impacts of refurbishment include terrestrial resources, threatened and endangered species, air quality, housing, public utilities and water supply, education, land use, transportation, and historic and archaeological resources.

The GEIS (NRC 1996b) provides information on the scope and preparation of refurbishment activities to be evaluated in this environmental report. It describes major refurbishment activities that utilities might perform for license renewal that would necessitate changing administrative control procedures and modifying the facility. The GEIS analysis assumes that an applicant would begin any major refurbishment work shortly after NRC grants a renewed license and would complete the activities during five outages, including one major outage at the end of the 40th year of operation. The GEIS refers to this as the refurbishment period.

GEIS Table B.2 lists license renewal refurbishment activities that NRC anticipated utilities might undertake. In identifying these activities, the GEIS intended to encompass actions that typically take place only once, if at all, in the life of a nuclear plant. The GEIS analysis assumed that a utility would undertake these activities solely for the purpose of extending plant operations beyond 40 years, and would undertake them during the refurbishment period. The GEIS indicates that many plants will have undertaken various refurbishment activities to support the current license period, but that some plants might undertake such tasks only to support extended plant operation.

SNC has performed some major modifications at FNP in the past (e.g., replacement of steam generators in 2000 and 2001) and will perform others in the near future (e.g., cooling tower replacement). However, the FNP IPA that SNC conducted under 10 CFR 54, which SNC has included as part of its license renewal application, has not identified the need to undertake any refurbishment or replacement actions to maintain the functionality of important SSCs during the extended period of operation granted by the renewed licenses. Therefore, no refurbishment would be conducted as the result of license renewal that would directly affect the environment or plant effluents.

3.3 PROGRAMS AND ACTIVITIES FOR MANAGING THE EFFECTS OF AGING

NRC

"The report must contain a description of ... the applicant's plans to modify the facility or its administrative control procedures...This report must describe in detail the modifications directly affecting the environment or affecting plant effluents that affect the environment...." 10 CFR 51.53(c)(2)

"...The incremental aging management activities carried out to allow operation of a nuclear power plant beyond the original 40-year license term will be from one of two broad categories: (1) SMITTR actions, most of which are repeated at regular intervals, and (2) major refurbishment or replacement actions, which usually occur fairly infrequently and possibly only once in the life of the plant for any given item." NRC 1996b, Section 2.6.3.1, pg. 2-41. ("SMITTR" is defined in NRC 1996b, Section 2.4, pg. 2-30, as surveillance, monitoring, inspections, testing, trending, and recordkeeping.)

The IPA required by 10 CFR 54.21, identified 21 programs and inspections as managing aging effects at FNP. SNC does not anticipate that any additional personnel or resources above the current plant staffing will be required for the performance of the identified aging management programs. These programs are described in the *Application for Renewed Operation Licenses, Joseph M. Farley Nuclear Plant Units 1 and 2, Appendix B*.

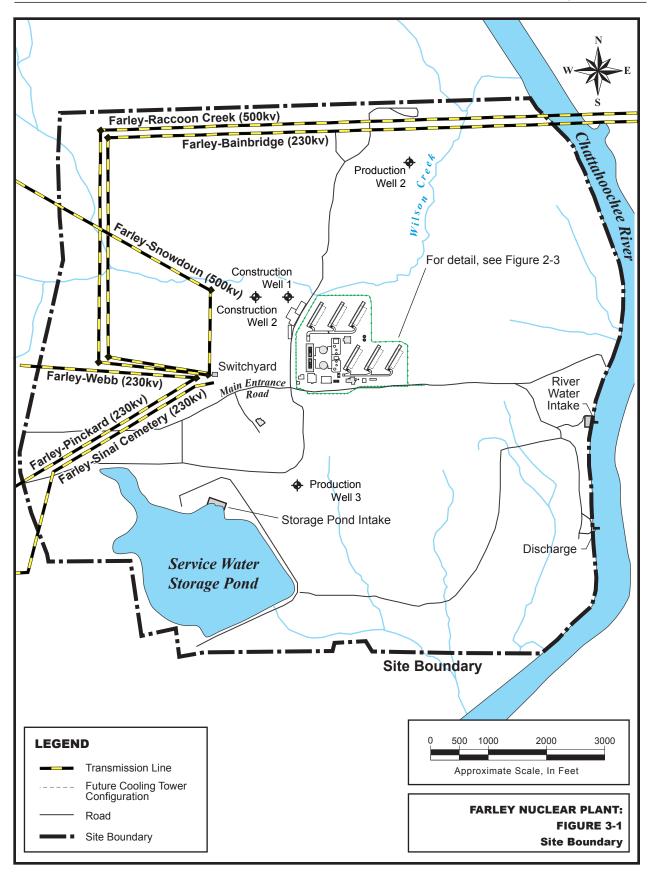
3.4 EMPLOYMENT

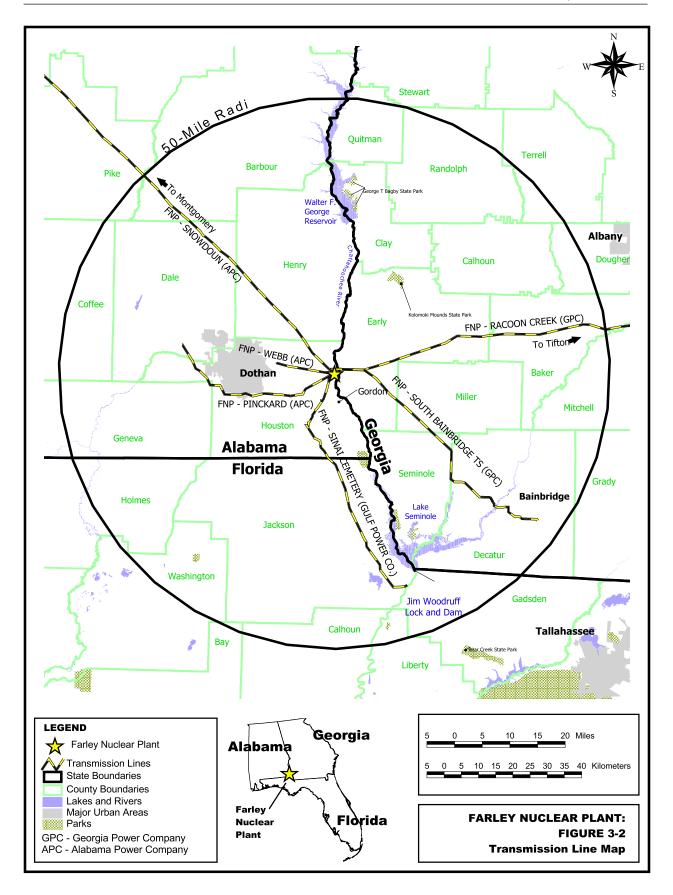
Current Workforce

SNC employs a nuclear-related permanent workforce of approximately 954 employees and up to an additional 375 (during the 2001 steam generator replacement) contract and matrixed employees at FNP; this is less than the range of 600 to 800 personnel per reactor unit estimated in the GEIS (NRC 1996b, Section 2.3.8.1). Approximately 77 percent of FNP's employees live in Houston County, Alabama. The remaining 23 percent are distributed across 22 counties in Alabama, Georgia, and Florida with numbers ranging from 1 to 76 employees per county.

The FNP reactors are on an 18-month refueling cycle. During refueling outages, site employment can increase above the 830 permanent workforce by as many as 800 workers for temporary (30 to 60 days) duty. These numbers are within the GEIS range of 200 to 900 additional workers per reactor outage.

License Renewal Increment


Performing the license renewal activities could necessitate increasing FNP staff workloads by some increment. The size of this increment would be a function of the schedule within which SNC must accomplish the work and the amount of work involved. Having determined that it would not undertake refurbishment (Section 3.2), SNC focused its analysis of the license renewal employment increment on programs and activities for managing the effects of aging (Section 3.3).


The GEIS (NRC 1996b, Section 2.6.2.7) assumes that NRC would renew a nuclear power plant license for a 20-year period, plus the duration remaining on the current license, and that NRC would issue the renewal approximately 10 years prior to license expiration. In other words, the renewed license would be in effect for approximately 30 years. The GEIS further assumes that the utility would initiate SMITTR activities at the time of issuance of the new license and would conduct license renewal SMITTR activities throughout the remaining 30-year life of the plant, sometimes during full-power operation (NRC 1996b, Section B.3.1.3), but mostly during normal refueling and the 5- and 10-year in-service refueling outages (NRC 1996b, Table B.4).

SNC has determined that the GEIS scheduling assumptions are reasonably representative of FNP incremental license renewal workload scheduling. Many FNP license renewal SMITTR activities would have to be performed during outages. Although some FNP license renewal SMITTR activities would be one-time efforts, others would be recurring periodic activities that would continue for the life of the Plant.

The GEIS estimates that the most additional personnel needed to perform license renewal SMITTR activities would typically be 60 persons during the 3-month duration of a 10-year in-service refueling. Having established this upper value for what would be a single event in 20 years, the GEIS uses this number as the expected number of additional permanent workers needed per unit attributable to license renewal. GEIS Section C.3.1.2 uses this approach in order to "...provide a realistic upper bound to potential population-driven impacts...."

SNC has identified no need for significant new aging management programs or significant modifications to existing programs. SNC expects that existing "surge" capabilities for routine activities will enable SNC to perform the increased SMITTR workload with existing staff. Therefore, SNC has no plans to add nonoutage employees to support FNP operations during the license renewal term. Refueling and maintenance outages typically have durations of approximately 30 to 40 days and, as described above, result in a large, temporary increase in employment at FNP. SNC believes that increased SMITTR tasks can be performed within this schedule and employment level. Therefore, SNC has no plans to add outage employees for license renewal term outages.

PAGE INTENTIONALLY LEFT BLANK

4.0 <u>ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND</u> <u>MITIGATING ACTIONS</u>

NRC

"The report must contain a consideration of alternatives for reducing adverse impacts...for all Category 2 license renewal issues...." 10 CFR 51.53(c)(3)(iii)

"...The environmental report shall include an analysis that considers...the environmental effects of the proposed action...and alternatives available for reducing or avoiding adverse environmental effects...." 10 CFR 51.45(c) as adopted by 10 CFR 51.53(c)(2) and 10 CFR 51.53(c)(3)(iii)

The environmental report shall discuss "The impact of the proposed action on the environment. Impacts shall be discussed in proportion to their significance;" 10 CFR 51.45(b)(1) as adopted by 10 CFR 51.53(c)(2)

"...The information submitted...should not be confined to information supporting the proposed action but should also include adverse information." 10 CFR 51.45(e) as adopted by 10 CFR 51.53(c)(2)

Chapter 4 presents an assessment of the environmental consequences associated with the renewal of FNP operating licenses and, where appropriate, potential mitigating actions. NRC has identified and analyzed 92 environmental issues that are associated with nuclear power plant license renewal and has designated the issues as Category 1, Category 2, or NA (categorization not applicable). NRC designated an issue as Category 1 if, based on the result of its analysis, the following criteria were met:

- the environmental impacts associated with the issue have been determined to apply either to all plants or, for some issues, to plants having a specific type of cooling system or other specified plant or site characteristic;
- a single significance level (i.e., small, moderate, or large) has been assigned to the impacts that would occur at any plant, regardless of which plant is being evaluated (except for collective offsite radiological impacts from the fuel cycle and from high-level waste and spent fuel disposal); and
- mitigation of adverse impacts associated with the issue has been considered in the analysis, and it has been determined that additional plant-specific mitigation measures are not likely to be sufficiently beneficial to warrant implementation.

If NRC analyses concluded that one or more of the Category 1 criteria could not be met, NRC designated the issue as Category 2. NRC requires plant-specific analyses for Category 2 issues. NRC designated two issues as NA, signifying that the categorization and impact definitions do not apply to these issues. NRC rules do not require analyses of Category 1 issues that NRC resolved using generic findings (10 CFR 51, Appendix B, Table B-1) as described in the GEIS (NRC 1996b). An applicant may reference the generic findings or GEIS analyses for Category 1 issues. Attachment A of this report lists the 92 issues and identifies the environmental report section that addresses each issue.

CATEGORY 1 LICENSE RENEWAL ISSUES

NRC

"The environmental report for the operating license renewal stage is not required to contain analyses of the environmental impacts of the license renewal issues identified as Category 1 issues in Appendix B to subpart A of this part." 10 CFR 51.53(c)(3)(i)

"...[A]bsent new and significant information, the analysis for certain impacts codified by this rulemaking need only be incorporated by reference in an applicant's environmental report for license renewal...." (NRC 1996a, pg. 28483)

SNC has determined that, of the 69 Category 1 issues, 8 do not apply to FNP because they apply to design or operational features that do not exist at the facility. In addition, because SNC does not plan to conduct any refurbishment activities, NRC findings for the 7 Category 1 issues that apply only to refurbishment do not apply. **Table 4-1** lists these 15 issues and explains the SNC basis for determining that these issues are not applicable to FNP.

Table 4-2 lists the 54 Category 1 issues that SNC has determined to be applicable to FNP. The table includes the findings that NRC codified and references to supporting GEIS analyses. SNC has reviewed the NRC findings and has identified no new and significant information or become aware of any such information that would make the NRC findings inapplicable to FNP. Therefore, SNC adopts by reference the NRC findings for these Category 1 issues.

CATEGORY 2 LICENSE RENEWAL ISSUES

NRC

"The environmental report must contain analyses of the environmental impacts of the proposed action, including the impacts of refurbishment activities, if any, associated with license renewal and the impacts of operation during the renewal term, for those issues identified as Category 2 issues in Appendix B to subpart A of this part" 10 CFR 51.53(c)(3)(ii)

"The report must contain a consideration of alternatives for reducing adverse impacts, as required by § 51.45(c), for all Category 2 license renewal issues...." 10 CFR 51.53(c)(3)(iii)

NRC designated 21 issues as Category 2. Sections 4.1 through 4.21 address each of the Category 2 issues, beginning with a statement of the issue. Some Category 2 issues (five) apply to operational features that do not exist at FNP. In addition, some Category 2 issues (four) apply only to refurbishment activities, none of which are necessary to renew the FNP operating licenses. If an issue does not apply to FNP, then the appropriate section below explains the basis for inapplicability.

For the remaining 12 Category 2 issues that SNC has determined to be applicable to FNP, analyses are provided. These analyses include conclusions regarding the significance of the impacts relative to the renewal of the operating licenses for FNP and, when applicable, discuss potential mitigative alternatives. SNC has identified the significance of the impacts associated with each issue as either small, moderate, or large, consistent with the criteria that NRC established in 10 CFR 51, Appendix B, Table B-1, Footnote 3 as follows:

- SMALL Environmental effects are not detectable or are so minor that they will neither destabilize nor noticeably alter any important attribute of the resource. For the purposes of assessing radiological impacts, the Commission has concluded that those impacts that do not exceed permissible levels in the Commission's regulations are considered small.
- MODERATE Environmental effects are sufficient to alter noticeably, but not to destabilize, any important attribute of the resource.
- LARGE Environmental effects are clearly noticeable and are sufficient to destabilize any important attributes of the resource.

In accordance with NEPA practice, SNC considered potential mitigation in proportion to the significance of the impact to be addressed (i.e., impacts that are small receive less mitigative consideration than impacts that are large).

"NA" License Renewal Issues

NRC determined that its categorization and impact-finding definitions did not apply to chronic effects from electromagnetic fields, Issue 60, and environmental justice, Issue 92; however, SNC included these issues in Table 4-2. NRC noted that applicants currently do not need to submit information on chronic effects from electromagnetic fields (10 CFR 51, Appendix B, Table B-1, Footnote 5). For environmental justice, NRC does not require information from applicants, but noted that it will be addressed in individual license renewal reviews (10 CFR 51, Appendix B, Table B-1, Footnote 6). SNC has included environmental justice demographic information in Section 2.6.2 and an environmental justice analysis in Section 4.21.

4.1 WATER USE CONFLICTS (PLANTS WITH COOLING PONDS OR COOLING TOWERS USING MAKE-UP WATER FROM A SMALL RIVER WITH LOW FLOW)

NRC

"If the applicant's plant utilizes cooling towers or cooling ponds and withdraws make-up water from a river whose annual flow rate is less than 3.15×10^{12} ft³ / year (9×10¹⁰ m³/year), an assessment of the impact of the proposed action on the flow of the river and related impacts on instream and riparian ecological communities must be provided. The applicant shall also provide an assessment of the impacts of the withdrawal of water from the river on alluvial aquifers during low flow." 10 CFR 51.53(c)(3)(ii)(A)

"...The issue has been a concern at nuclear power plants with cooling ponds and at plants with cooling towers. Impacts on instream and riparian communities near these plants could be of moderate significance in some situations...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 13

NRC made surface water use conflicts a Category 2 issue because of possible water use conflicts. Some plants equipped with cooling towers are located on small rivers that are susceptible to droughts or competing water uses. Consumptive water loss associated with closed-cycle cooling systems may represent a substantial proportion of the flows in small rivers (NRC 1996b, Section 4.3.2.1).

As discussed in **Section 3.1.2**, FNP has a cooling-water-tower-based heat dissipation system. Circulated cooling water lost to cooling tower evaporation and blowdown is replaced by make-up water pumped from the Chattahoochee River. Make-up water is pumped from the river to an onsite storage pond and added to the Plant's cooling water system, as needed.

The annual mean flow of the Chattahoochee River is 3.469×10^{11} cubic feet per year (1.1×10^4 cfs) (**USGS 2000a**), which means that the Chattahoochee River meets the NRC definition of a small river. Therefore, this issue does apply.

FNP pumps river water to the Site (SW) Storage Pond to be used as make-up cooling water at an average rate of 69,854 gpm (155 cfs) (**SO 2001a, 2000a, 1999, 1998, 1997**), which is less than the approximately 90,000 gpm (201 cfs) projected in the 1974 FES. Cooling tower blowdown is returned to the river via National Pollutant Discharge Elimination System (NPDES) discharge at a rate of 8,476 gpm (19 cfs) (SNC 1997). Evaporative loss from the cooling towers is 27,140 gpm (60 cfs) (SNC 1997).

FNP discharged, via NPDES-permitted outfalls, service water composed of surface water and groundwater to the Chattahoochee River, an unnamed tributary to the Chattahoochee River, and to Wilson Creek, a tributary to the Chattahoochee River, at a rate of 57,844 gpm (129 cfs) over the 5-year period from 1996 to 2000 (SO 2001a, 2000a, 1999, 1998, 1997). Between 1976 and 1999, the Chattahoochee River's lowest annual mean flow was 2.6 million gpm (5,718 cfs) at the gauging station at Andrews Lock and Dam near Columbia, Alabama. The Alabama Department of Environmental Management uses a 7Q10 flow of 920,000 gpm (2,050 cfs) and a Most Probable flow of 3.6 million gpm (8,000 cfs) for NPDES permitting purposes.

If one assumes a discharge flow of 57,844 gpm from water use data, the net loss to the Chattahoochee River is 11,692 gpm (26 cfs) or 0.4 percent of the river's lowest annual mean flow between 1996 and 2000, 1 percent of the 7Q10 flow and 0.3 percent of the Most Probable flow.

The net loss to the river is small and creates little to no additional impact on riparian communities in the vicinity of the Plant. SNC has determined that this impact is SMALL and does not warrant mitigation.

4.2 ENTRAINMENT OF FISH AND SHELLFISH IN EARLY LIFE STAGES

NRC

"If the applicant's plant utilizes once-through cooling or cooling pond heat dissipation systems, the applicant shall provide a copy of current Clean Water Act 316(b) determinations...or equivalent State permits and supporting documentation. If the applicant cannot provide these documents, it shall assess the impact of the proposed action on fish and shellfish resources resulting from...entrainment." 10 CFR 51.53(c)(3)(ii)(B)

"...The impacts of entrainment are small at many plants but may be moderate or even large at a few plants with once-through and cooling-pond cooling systems. Further, ongoing efforts in the vicinity of these plants to restore fish populations may increase the numbers of fish susceptible to intake effects during the license renewal period, such that entrainment studies conducted in support of the original license may no longer be valid...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 25

The issue of entrainment of fish and shellfish in early life stages does not apply to FNP because the Plant does not utilize once-through cooling or cooling pond heat dissipation systems.

4.3 IMPINGEMENT OF FISH AND SHELLFISH

NRC

"If the applicant's plant utilizes once-through cooling or cooling pond heat dissipation systems, the applicant shall provide a copy of current Clean Water Act 316(b) determinations...or equivalent State permits and supporting documentation. If the applicant cannot provide these documents, it shall assess the impact of the proposed action on fish and shellfish resources resulting from...impingement...." 10 CFR 51.53(c)(3)(ii)(B)

"...The impacts of impingement are small at many plants but may be moderate or even large at a few plants with once-through and cooling-pond cooling systems...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 26

The issue of impingement of fish and shellfish does not apply to FNP because the Plant does not utilize once-through cooling or cooling pond heat dissipation systems.

4.4 HEAT SHOCK

NRC

"If the applicant's plant utilizes once-through cooling or cooling pond heat dissipation systems, the applicant shall provide a copy of current Clean Water Act...316(a) variance in accordance with 40 CFR 125, or equivalent State permits and supporting documentation. If the applicant cannot provide these documents, it shall assess the impact of the proposed action on fish and shellfish resources resulting from heat shock..." 10 CFR 51.53(c)(3)(ii)(B)

"...Because of continuing concerns about heat shock and the possible need to modify thermal discharges in response to changing environmental conditions, the impacts may be of moderate or large significance at some plants...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 27

The issue of heat shock does not apply to FNP because the Plant does not utilize once-through cooling or cooling pond heat dissipation systems.

4.5 GROUNDWATER USE CONFLICTS (PLANTS USING > 100 GPM OF GROUNDWATER)

NRC

"If the applicant's plant...pumps more than 100 gallons (total onsite) of ground water per minute, an assessment of the impact of the proposed action on groundwater use must be provided." 10 CFR 51.53(c)(3)(ii)(C)

"...Plants that use more than 100 gpm may cause ground-water use conflicts with nearby ground-water users...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 33

NRC made groundwater use conflicts a Category 2 issue because, at a withdrawal rate of more than 100 gpm, a cone of depression could extend offsite. This could deplete the groundwater supply available to offsite users, an impact that could warrant mitigation. Information to be ascertained includes: (1) FNP groundwater withdrawal rate (whether greater than 100 gpm), (2) drawdown at offsite locations, and (3) impact on neighboring wells.

Section 2.3 describes FNP groundwater resources, Section 3.1.2.2 describes FNP wells, and Figure 3-1 shows the location of the three operating wells. The combined average well usage is 169 gpm of groundwater. The usage being greater than 100 gpm, the issue of groundwater use conflicts applies to FNP license renewal.

SNC used data from Production Well 2 to evaluate the potential for groundwater use conflicts. Construction Wells No. 1 and 2 are smaller, having a combined usage of 4 gpm, are located further from the plant boundary, approximately 3,500 feet, and draw from a different aquifer than Production Well 2.

SNC used data taken from a specific-capacity test performed on Production Well 2 in 1972, from testing done in the same aquifer at an offsite location (Robinson 2001), and from a non-leaky aquifer scenario used to simulate site conditions. The equations used in the calculations conservatively assume that the aquifer is homogeneous, isotropic, with negligible recharge and gradient, and that boundary impacts do not occur. Based on the results of the modeling, drawdown at the closest site boundary attributable to Production Well 2 would have stabilized at approximately 2.6 feet after 10 years of operation (i.e., occurred approximately 1987). Drawdown through the current license period (40 years) in 2017 is predicted to increase to approximately 3.0 feet. At the end of the license renewal period (2037), drawdown is projected to be approximately 3.1 feet. Therefore, additional offsite drawdown attributable to pumpage during the license renewal period would be slightly more than 1 inch, effectively indiscernible (Tetra Tech NUS 2001b).

Because the effect of FNP groundwater use would effectively be indiscernible offsite, SNC concludes that the impact from groundwater use conflicts would be SMALL and that mitigation measures such as compensating for lost groundwater access or deepening offsite wells would be unwarranted.

4.6 GROUNDWATER USE CONFLICTS (PLANTS USING COOLING TOWERS OR COOLING PONDS THAT WITHDRAW MAKE-UP WATER FROM A SMALL RIVER)

NRC

"If the applicant's plant utilizes cooling towers or cooling ponds and withdraws make-up water from a river whose annual flow rate is less than 3.15×10^{12} ft³ / year...[t]he applicant shall also provide an assessment of the impacts of the withdrawal of water from the river on alluvial aquifers during low flow." 10 CFR 51.53(3)(ii)(A)

"...Water use conflicts may result from surface water withdrawals from small water bodies during low flow conditions which may affect aquifer recharge, especially if other groundwater or upstream surface water users come on line before the time of license renewal...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 34

The issue of groundwater use conflicts applies because FNP is located on and withdraws make-up water from a small river, the Chattahoochee River, that has an annual flow of 3.469×10^{11} cubic feet per year (**USGS 2000b**). FNP uses a circulating cooling water system that takes water from a Site Service Water Storage Pond and discharges it to the Chattahoochee River. Make-up water for the Site Service Water Storage Pond is supplied from the Chattahoochee River.

Section 4.1 evaluates the effect that FNP consumptive use of Chattahoochee River water has, through cooling tower evaporation, on river water levels. The section concludes that plant consumption represents 1 percent of the 7Q10 river flow. Section 2.3 describes area groundwater resources, noting that during high water flows the river provides recharge to the most shallow of the alluvial deposits in the floodplain but that these deposits are not an important aquifer due to their lenticular nature. Precipitation controls groundwater levels in the shallowest aquifer that is significant in the area.

Given the small percentage of the Chattahoochee River low flow that FNP consumptive use represents, 1 percent, and information indicating that floodplain alluvium groundwater that might be affected by river water level is not a significant aquifer, SNC concludes that impacts of withdrawing water from the river on the alluvial aquifer would be SMALL and that mitigation measures such as compensating for lost groundwater access or deepening offsite wells would be unwarranted.

4.7 GROUNDWATER USE CONFLICTS (PLANTS USING RANNEY WELLS)

NRC

"If the applicant's plant uses Ranney wells...an assessment of the impact of the proposed action on groundwater use must be provided." 10 CFR 51.53(c)(3)(ii)(C)

"...Ranney wells can result in potential ground-water depression beyond the site boundary. Impacts of large ground-water withdrawal for cooling tower makeup at nuclear power plants using Ranney wells must be evaluated at the time of application for license renewal...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 35

The issue of groundwater use conflicts does not apply to FNP because the Plant does not use Ranney wells. As **Section 3.1.2** describes, FNP uses cooling towers with make-up water from the Chattahoochee River.

4.8 DEGRADATION OF GROUNDWATER QUALITY

NRC

"If the applicant's plant is located at an inland site and utilizes cooling ponds, an assessment of the impact of the proposed action on groundwater quality must be provided." 10 CFR 51.53(c)(3)(ii)(D)

"...Sites with closed-cycle cooling ponds may degrade ground-water quality. For plants located inland, the quality of the ground water in the vicinity of the ponds must be shown to be adequate to allow continuation of current uses...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 39

The issue of groundwater degradation does not apply to FNP because the Plant does not use cooling water ponds. As **Section 3.1.2** describes, FNP employs a closed circulating cooling system that uses cooling towers with make-up water from the Chattahoochee River.

4.9 IMPACTS OF REFURBISHMENT ON TERRESTRIAL RESOURCES

NRC

The environmental report must contain an assessment of "...the impact of refurbishment and other license-renewal-related construction activities on important plant and animal habitats...." 10 CFR 51.53(c)(3)(ii)(E)

"...Refurbishment impacts are insignificant if no loss of important plant and animal habitat occurs. However, it cannot be known whether important plant and animal communities may be affected until the specific proposal is presented with the license renewal application...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 40

"...If no important resource would be affected, the impacts would be considered minor and of small significance. If important resources could be affected by refurbishment activities, the impacts would be potentially significant...." (NRC 1996b, Section 3.6, pg. 3-6)

The issue of impacts of refurbishment on terrestrial resources is not applicable to FNP because, as discussed in **Section 3.2**, SNC has no plans for refurbishment or other license-renewal-related construction activities at FNP.

4.10 THREATENED OR ENDANGERED SPECIES

NRC

"...Additionally, the applicant shall assess the impact of the proposed action on threatened or endangered species in accordance with the Endangered Species Act." 10 CFR 51.53(c)(3)(ii)(E)

"...Generally, plant refurbishment and continued operation are not expected to adversely affect threatened or endangered species. However, consultation with appropriate agencies would be needed at the time of license renewal to determine whether threatened or endangered species are present and whether they would be adversely affected...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 49

NRC made impacts to threatened or endangered species a Category 2 issue because the status of many species is being reviewed, and a site-specific assessment is required to determine whether any identified species could be affected by refurbishment activities or continued Plant operations through the license renewal period. In addition, compliance with the Endangered Species Act requires consultation with the appropriate federal agencies (NRC 1996b, Sections 3.9 and 4.1).

Section 2.5 discusses threatened or endangered species that may occur at FNP or along associated transmission line corridors. As discussed in Section 3.2, SNC has no plans to conduct refurbishment or construction at FNP during the license renewal period. Therefore, there would be no refurbishment-related impacts to threatened or endangered species, and no further analysis of refurbishment-related impacts is applicable.

License renewal will not result in operational changes at FNP that would alter current natural resource management practices. FNP and its transmission lines have been in existence for more than 20 years, long enough for operational impacts to have stabilized. Current vegetation management practices in transmission corridors could actually be working to the benefit of species that depend on open conditions (e.g., gopher tortoise).

SNC wrote to the ADCNR, the GADNR, the FFWCC, the FNAI, the NMFS, and the FWS requesting information on any special status species or critical habitats that might occur on the FNP site or along associated transmission line ROWs, with particular emphasis on species that might be adversely affected by operations over the license renewal term. Copies of the SNC letters and agency responses are included in **Attachment C** of this environmental report.

Additionally, as discussed in Section 2.5, SNC commissioned its own field surveys in 2001 and 2002 of state- and federally-listed plant and animal species on the FNP site and along its transmission corridors. The results of these surveys may be found in the two SNC survey documents referenced in Section 2.5.

Based on the results of SNC's threatened and endangered species surveys and the responses from the federal and state agencies, SNC concludes that adverse impacts to threatened or endangered species from license renewal, would be SMALL and would not warrant mitigation.

4.11 AIR QUALITY DURING REFURBISHMENT

NRC

"If the applicant's plant is located in or near a nonattainment or maintenance area, an assessment of vehicle exhaust emissions anticipated at the time of peak refurbishment workforce must be provided in accordance with the Clean Air Act as amended." 10 CFR 51.53(c)(3)(ii)(F)

"...Air quality impacts from plant refurbishment associated with license renewal are expected to be small. However, vehicle exhaust emissions could be cause for concern at locations in or near nonattainment or maintenance areas. The significance of the potential impact cannot be determined without considering the compliance status of each site and the numbers of workers expected to be employed during the outage...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 50

Air quality during refurbishment is not applicable to FNP because, as discussed in **Section 3.2**, SNC has no plans for refurbishment at FNP.

4.12 MICROBIOLOGICAL ORGANISMS

NRC

"If the applicant's plant uses a cooling pond, lake, or canal or discharges into a river having an annual average flow rate of less than 3.15×10^{12} ft³/year (9 × 10^{10} m³/year), an assessment of the impact of the proposed action on public health from thermophilic organisms in the affected water must be provided." 10 CFR 51.53(c)(3)(ii)(G)

"...These organisms are not expected to be a problem at most operating plants except possibly at plants using cooling ponds, lakes, or canals that discharge to small rivers. Without site-specific data, it is not possible to predict the effects generically...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 57

Due to the lack of sufficient data for facilities using cooling ponds, lakes, or canals or discharging to small rivers, NRC designated impacts on public health from thermophilic organisms a Category 2 issue. Information to be determined is: (1) whether the plant discharges to a small river, and (2) whether discharge characteristics (particularly temperature) are favorable to the survival of thermophilic organisms.

This issue is applicable to FNP because the Plant discharges to the Chattahoochee River, which has an average flow rate of 3.469×10¹¹ cubic feet per year and is classified as a small river. Also, there is public access to the Chattahoochee River, including recreational fishing and swimming.

Organisms of concern include the enteric pathogens *Salmonella* and *Shigella*, the *Pseudomonas aeruginosa* bacterium, thermophilic Actinomycetes ("fungi"), the many species of *Legionella* bacteria, and pathogenic strains of the free-living *Naegleria* amoeba.

Bacteria pathogenic to humans have evolved to survive in the digestive tracts of mammals and accordingly have optimum temperatures of around 99 degrees Fahrenheit (°F) (Joklik and Smith 1972, pg. 65). Many of these pathogenic microorganisms (e.g., *Pseudomonas, Salmonella,* and *Shigella*) are ubiquitous in nature, occurring in the digestive tracts of wild mammals and birds (and thus in natural waters), but are usually only a problem when the host is immunologically compromised. Thermophilic bacteria generally occur at temperatures from 77°F to 176°F, with maximum growth at 122°F to 140°F (Joklik and Smith 1972, pg. 65).

SNC monitors water temperatures monthly as part of the Plant's water quality monitoring program. Maximum temperatures for monitoring years 1998 through 2000 at the Main Combined Facility Discharge were highest from June through September, ranging from 88.0°F to 96.8°F. The highest temperature recorded was 96.8°F in July 2000 (SNC 2000b).

Maximum temperatures recorded in the Chattahoochee River thermal discharge are below the optimal temperature range for growth and reproduction of thermophilic microorganisms. These temperatures could support limited survival of thermophilic microorganisms in the summer months, although temperatures are below the range most conducive to the growth of thermophilic microorganisms.

Another factor controlling the survival and growth of thermophilic microorganisms in the Chattahoochee River is the disinfection of FNP sewage treatment plant effluent. This reduces the likelihood that a seed source or inoculant will be introduced into the Chattahoochee River via FNP discharge. Wastewater, whether from domestic sewage or industrial sources, is frequently a source of pathogens in natural waters.

Fecal coliform bacteria are regarded as indicators of other pathogenic microorganisms, and are the organisms normally monitored by state health agencies. The NPDES permit for FNP requires monitoring

of fecal coliforms in sewage treatment plant effluent (after discharge from the chlorine contact chamber and prior to mixing with other waste streams). Samples are collected once per month for fecal coliform analysis and other parameters. The NPDES permit specifies a maximum 30-day average of 300 organisms per 100 milliliter (ml) sample (300/100ml), and a daily maximum of 300/100 ml. From 1998 to 2000, neither limit was exceeded during any sampling event.

It should also be noted that waterborne-disease outbreaks are generally rare and depend upon specific exposure conditions. The Centers for Disease Control and Prevention reports on waterborne-disease outbreaks throughout the United States. From 1997 to 1998, a total of 18 states reported 32 outbreaks associated with recreational water, which included both thermophilic and non-thermophilic microorganisms as confirmed etiological agents (CDC 2000). Most of the outbreaks associated with thermophilic microorganisms involved swimming and wading pools, hot tubs, and springs, with fecal contamination frequently a contributing factor. In 1998, only four cases of disease attributable to *Naegleria* were confirmed in the entire United States (CDC 2000). *Naegleria* infection usually occurs only in warm weather environments, when water near the bottom of a lake is forced up the nasal passage of a swimmer, and where pollution appears to be a factor (EPA 1979). However, studies have shown the absence of *Naegleria* infection and related disease among swimmers in lakes with high numbers of the pathogenic organism present (EPA 1979).

Given the thermal characteristics of the Chattahoochee River at the FNP thermal discharge and disinfection of sewage treatment plant effluent, SNC does not expect Plant operations to stimulate growth or reproduction of thermophilic microorganisms. Under certain circumstances, these organisms might be present in limited numbers in the discharge, where water temperatures can be as high as 96.8°F (SNC 2000b), but would not be expected in sufficient concentrations to pose a threat to recreational users of the Chattahoochee River.

SNC has written to the Watershed Planning and Monitoring Program in the Environmental Protection Division of the Alabama Department of Environmental Management, the Alabama Department of Public Health, and the Water Protection Branch of the Environmental Protection Division of the GADNR, requesting information on any studies that may have been conducted on thermophilic microorganisms in the Chattahoochee River and any concerns the agencies may have relative to these organisms. The agencies contacted did not identify any studies or concerns dealing with thermophilic microorganisms in the Chattahoochee River. Copies of the SNC letters and agency responses are included in Attachment D of this environmental report. SNC concludes that the impact of thermophilic organisms is SMALL and does not warrant mitigation.

4.13 ELECTRIC SHOCK FROM TRANSMISSION-LINE-INDUCED CURRENTS

NRC

The environmental report must contain an assessment of the impact of the proposed action on the potential shock hazard from transmission lines "...[i]f the applicant's transmission lines that were constructed for the specific purpose of connecting the plant to the transmission system do not meet the recommendations of the National Electric Safety Code for preventing electric shock from induced currents..." 10 CFR 51.53(c)(3)(ii)(H)

"...Electrical shock resulting from direct access to energized conductors or from induced charges in metallic structures have not been found to be a problem at most operating plants and generally are not expected to be a problem during the license renewal term. However, site-specific review is required to determine the significance of the electric shock potential at the site...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 59

NRC made impacts of electric shock from transmission lines a Category 2 issue because, without a review of each plant's transmission line conformance with the NESC (IEEE 1997) criteria, NRC could not determine the significance of the electric shock potential.

In the case of FNP, there have been no previous NRC or NEPA analyses of transmission-line-inducedcurrent hazards. Therefore, this section provides an analysis of the Plant's transmission lines' conformance with the NESC standard. The analysis is based on computer modeling of electric field strength under the lines.

Objects near transmission lines can become electrically charged due to their immersion in the lines' electric field. This charge results in a current that flows through the object to the ground. The current is called "induced" because there is no direct connection between the line and the object. The induced current can also flow to the ground through the body of a person who touches the object. An object that is insulated from the ground can actually store an electrical charge, becoming what is called "capacitively charged." A person standing on the ground and touching a vehicle or a fence receives an electrical shock due to the discharge of the capacitive charge through the person's body to the ground. After the initial discharge, a steady-state current can develop of which the magnitude depends on several factors, including the following:

- the strength of the electric field which, in turn, depends on the voltage of the transmission line as well as its height and geometry
- the size of the charged object on the ground
- the extent to which the object is grounded.

In 1977, the NESC adopted a provision that describes an additional criterion to establish minimum vertical clearances to the ground for electric lines having voltages exceeding 98-kilovolt (kV) alternating current to ground.³ The clearance must limit the steady-state induced current⁴ to 5 milliamperes if the largest anticipated truck, vehicle, or equipment were short-circuited to ground. By way of comparison, the setting of ground fault circuit interrupters used in residential wiring (special breakers for outside circuits or those with outlets around water pipes) is 4 to 6 milliamperes.

^{3.} Part 2, Rules 232C1c and 232D3c.

^{4.} The NESC and the GEIS use the phrase "steady-state current," whereas 10 CFR 51.53(c)(3)(ii)(H) uses the phrase "induced current." The phrases mean the same here.

As described in Section 3.1.3, there are five existing lines that were specifically constructed to distribute power from FNP to the electric grid. Three of these lines are 230 kV and two are 500 kV. In addition, there is the 230-kV Farley-Sinai Cemetery line, which has recently been constructed in accordance with the NESC five-millampere requirement. Thus, SNC has not provided an analysis of this line in this report.

SNC's analysis of the five existing transmission lines began by identifying the limiting case for each line. The limiting case is the location along each line where the potential for current-induced shock would be greatest. Once the limiting case was identified, SNC calculated the electric field strength for each transmission line, then calculated the induced current of the sixth line.

SNC calculated electric field strength and induced current using a computer code called ACDCLINE, produced by the Electric Power Research Institute (**EPRI 1991**). The results of this computer program have been field-verified through actual electric field measurements by several utilities. The input parameters included design features of the limiting-case scenario, the NESC requirement that line sag be determined at 120°F conductor temperature, and the maximum vehicle size expected under the lines. For cases where paved roads exist, the vehicle size modeled was the largest permitted under Alabama or Georgia regulations (a tractor-trailer 55 feet long, 8 feet wide, and a maximum of 13.5 feet high). For cases without paved roads, a combine 30 feet long, 7.5 feet wide, and 11.5 feet high was modeled.

The analysis determined that the transmission lines are nominally in conformance with the fivemilliampere NESC provision. Although the Farley-Snowdoun line analysis indicates a 5.1-milliampere induced current, the NESC limit specifies only one significant digit (5 milliamperes). The 5.1-milliampere induced current on the Farley-Snowdoun line is not considered significant as compared to the limit. Therefore, it is SNC's position that the FNP transmission line designs conform to the NESC provisions for preventing electric shock from induced current. The results for each transmission line are provided in **Table 4-3**. Details of the analysis, including the input parameters for each line's limiting case, can be found in Tetra Tech NUS (2001c).

APC, GPC, and Gulf Power Company conduct surveillance and maintenance activities to ensure that design ground clearances will not change. These procedures include routine aerial inspections of all corridors on a regular basis, which include checks for encroachments, broken conductors, broken or leaning structures, and signs of trees burning, any of which would be evidence of clearance problems. Ground inspections include examination for clearance at questionable locations, integrity of structures, and surveillance for dead or diseased trees that might fall on the transmission lines. Problems noted during any inspection are brought to the attention of the appropriate organization(s) for corrective action.

SNC's assessment under 10 CFR 51 concludes that electric shock is of SMALL significance for the FNP transmission lines. This is because (1) the induced current is limited to 5 milliamperes, (2) the transmission lines would continue to be used regardless of license renewal, and (3) the proposed action has no effect on the current status of the lines. Due to the small significance of the issue, mitigation measures such as installing warning signs at road crossings or increasing clearances are not warranted. This conclusion would remain valid into the future, provided there are no material changes in line use, voltage, current, and maintenance practices and no changes in land use under the lines.

4.14 HOUSING IMPACTS

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on housing availability..." 10 CFR 51.53(c)(3)(ii)(I)

"...Housing impacts are expected to be of small significance at plants located in a medium or high population area and not in an area where growth control measures that limit housing development are in effect. Moderate or large housing impacts of the workforce associated with refurbishment may be associated with plants located in sparsely populated areas or areas with growth control measures that limit housing development...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 63

"...[S]mall impacts result when no discernible change in housing availability occurs, changes in rental rates and housing values are similar to those occurring statewide, and no housing construction or conversion occurs...." (NRC 1996b, Section 4.7.1.1, pp. 4-101 to 4-102)

As described in **Section 3.2**, SNC has no plans to increase staff because no refurbishment-related activities required for extended operations due to license renewal have been identified. SNC concludes that there would be no refurbishment-related impacts to area housing and no analysis is therefore required.

As **Section 3.4** indicates, SNC anticipates no increase in FNP employment attributable to license renewal. Therefore, SNC concludes there would be no impacts to housing.

4.15 PUBLIC UTILITIES: PUBLIC WATER SUPPLY AVAILABILITY

NRC

The environmental report must contain "...an assessment of the impact of population increases attributable to the proposed project on the public water supply." 10 CFR 51.53(c)(3)(ii)(I)

"...An increased problem with water shortages at some sites may lead to impacts of moderate significance on public water supply availability...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 65

"Impacts on public utility services are considered small if little or no change occurs in the ability to respond to the level of demand and thus there is no need to add capital facilities. Impacts are considered moderate if overtaxing of facilities during peak demand periods occurs. Impacts are considered large if existing service levels (such as quality of water and sewage treatment) are substantially degraded and additional capacity is needed to meet ongoing demands for services." (NRC 1996b, Section 3.7.4.5, pg. 3-19)

NRC made public utility impacts a Category 2 issue because an increased problem with water availability, resulting from pre-existing water shortages, could occur in conjunction with plant demand and plant-related population growth (NRC 1996b, Section 4.7.3.5). Local information needed would include: (1) a description of water shortages experienced in the area, and (2) an assessment of the public water supply system's available capacity.

NRC's analysis of impacts to the public water supply system considered both plant demand and plantrelated population growth demands on local water resources. As Section 3.4 indicates, SNC anticipates no increase in FNP employment attributable to license renewal. Section 2.6 describes the FNP regional demography. Section 2.9.1 describes the public water supply systems in the area, their permitted capacities, and current demands. As discussed in Section 3.2, no refurbishment is planned for FNP and no refurbishment impacts are therefore expected.

FNP does not use water from a municipal system and plant groundwater usage during the renewed license period of operations would be considered "indiscernible" (Section 4.5); therefore, SNC does not expect FNP operations to have an effect on local water supplies. Additionally, because SNC has no plans to increase Plant employment for license renewal purposes, SNC concludes that impacts on the public water supply would be SMALL and would not require mitigation.

4.16 EDUCATION IMPACTS FROM REFURBISHMENT

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on...public schools (impacts from refurbishment activities only) within the vicinity of the plant...." 10 CFR 51.53(c)(3)(ii)(I)

"...Most sites would experience impacts of small significance but larger impacts are possible depending on site- and project-specific factors...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 66

"...[S]mall impacts are associated with project-related enrollment increases of 3 percent or less. Impacts are considered small if there is no change in the school systems' abilities to provide educational services and if no additional teaching staff or classroom space is needed. Moderate impacts are generally associated with 4 to 8 percent increases in enrollment. Impacts are considered moderate if a school system must increase its teaching staff or classroom space even slightly to preserve its pre-project level of service....Large impacts are associated with project-related enrollment increases above 8 percent...." (NRC 1996b, Section 3.7.4.1, pg. 3-15)

This issue is not applicable to FNP because, as discussed in **Section 3.2**, SNC has no plans for refurbishment at FNP.

4.17 OFFSITE LAND USE

4.17.1 Offsite Land Use – Refurbishment

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on...land-use" 10 CFR 51.53(c)(3)(ii)(I)

"...Impacts may be of moderate significance at plants in low population areas...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 68

"...[I]f plant-related population growth is less than 5 percent of the study area's total population, off-site land-use changes would be small, especially if the study area has established patterns of residential and commercial development, a population density of at least 60 persons per square mile (2.6 km²), and at least one urban area with a population of 100,000 or more within 80 km (50 miles)...." (NRC 1996b, Section 3.7.5, pg. 3-21)

This issue is not applicable to FNP because, as **Section 3.2** discusses, SNC has no plans for refurbishment at FNP.

4.17.2 Offsite Land Use – License Renewal Term

NRC

The environmental report must contain "An assessment of the impact of the proposed action on...land-use..." 10 CFR 51.53(c)(3)(ii)(I)

"...Significant changes in land use may be associated with population and tax revenue changes resulting from license renewal...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 69

"...[I]f plant-related population growth is less than 5 percent of the study area's total population, off-site land-use changes would be small...." (NRC 1996b, Section 3.7.5, pg. 3-21)

"...[I]f the plant's tax payments are projected to be small relative to the community's total revenue, new tax-driven land-use changes during the plant's license renewal term would be small, especially where the community has preestablished patterns of development and has provided adequate public services to support and guide development...." (NRC 1996b, Section 4.7.4.1, pg. 4-108)

NRC made impacts to offsite land use during the license renewal term a Category 2 issue because landuse changes may be perceived as beneficial by some community members and adverse by others. Therefore, NRC could not assess the potential significance of site-specific offsite land-use impacts (NRC 1996b, Section 4.7.4.2). Site-specific factors to be considered in an assessment of new tax-driven land-use impacts include: (1) the size of plant-related population growth compared to the area's total population, (2) the size of the plant's tax payments relative to the community's total revenue, (3) the nature of the community's existing land-use pattern, and (4) the extent to which the community already has public services in place to support and guide development.

Population-Related Impacts

The GEIS presents an analysis of offsite land use for the renewal term that is characterized by two components: population-driven and tax-driven impacts (NRC 1996b, Section 4.7.4.1). Based on the GEIS case-study analysis, NRC concludes that all new population-driven land-use changes during the license renewal term at all nuclear plants would be small. Population growth caused by license renewal would represent a much smaller "percentage of the local area's" total population than the percentage presented by operations-related growth (NRC 1996b, Section 4.7.4.2).

Tax-Revenue-Related Impacts

NRC has determined that the significance of tax payments as a source of local government revenue would be large, if the payments are greater than 20 percent of revenue (NRC 1996b, Section 3.7.3).

NRC defined the magnitude of land-use changes as follows (NRC 1996b, Section 4.7.4):

Small - very little new development and minimal changes to an area's land-use pattern

Moderate - considerable new development and some changes to land-use pattern

Large - large-scale new development and major changes in land-use pattern.

NRC further determined that, if a plant's tax payments are projected to be a dominant source of a community's total revenue (i.e., greater than 20 percent of revenue), new tax-driven land-use changes would be large.

Table 2-4 provides a comparison of total tax payments made by FNP to Houston County and the County's annual property tax revenues. For the five-year period from 1995 through 1999, FNP's tax payments to Houston County represented 32-38 percent of the County's total annual property tax revenues. Using NRC's criteria, FNP's tax payments are of large significance to Houston County. For the reasons presented below, however, Southern Company does not anticipate large land-use changes as a result of these tax revenues.

As described in **Section 3.2**, SNC does not anticipate refurbishment or construction during the license renewal period. Therefore, SNC does not anticipate any increase in the assessed value of FNP due to refurbishment-related improvements, nor any related tax-increase-driven changes to offsite land-use and development patterns.

FNP has been, and would probably continue to be, a dominant source of tax revenue for Houston County. However, despite having this income source since Plant construction in the early 1970s, Houston County has not experienced large land-use changes. The FNP environs have remained largely rural, county population growth rates after FNP construction have been minimal, and county planners are not projecting large land use changes (**Solomon 2001**). SNC believes continued operation of FNP would be important to maintaining the current level of development and public services, and does not anticipate Plant-induced changes to local land-use and development patterns as a result of license renewal.

Conclusion

Because SNC does not anticipate refurbishment activities, the population growth related to the license renewal of FNP is expected to be relatively small, and there would be no new tax impacts on local county land use, SNC concludes that the renewal of FNP's licenses would have a SMALL overall impact on the local counties and the surrounding region, and would not warrant mitigation.

4.18 TRANSPORTATION

NRC

The environmental report must "...assess the impact of highway traffic generated by the proposed project on the level of service of local highways during periods of license renewal refurbishment activities and during the term of the renewed license." 10 CFR 51.53(c)(3)(ii)(J)

"...Transportation impacts...are generally expected to be of small significance. However, the increase in traffic associated with additional workers and the local road and traffic control conditions may lead to impacts of moderate or large significance at some sites...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 70

Small impacts would be associated with U.S. Transportation Research Board Level of Service A, having the following condition: "...Free flow of the traffic stream; users are unaffected by the presence of others." and Level of Service B, having the following condition: "...Stable flow in which the freedom to select speed is unaffected but the freedom to maneuver is slightly diminished....." (NRC 1996b, Section 3.7.4.2, pp. 3-18 and 3-19)

As described in **Section 3.2**, no refurbishment is planned at FNP and no refurbishment impacts to local transportation are therefore anticipated. As discussed in **Section 3.4**, no additional license renewal employment increment is expected. Therefore, SNC expects no impacts from license renewal.

4.19 HISTORIC AND ARCHAEOLOGICAL RESOURCES

NRC

The environmental report must "...assess whether any historic or archeological properties will be affected by the proposed project." 10 CFR 51.53(c)(3)(ii)(K)

"...Generally, plant refurbishment and continued operation are expected to have no more than small adverse impacts on historic and archeological resources. However, the National Historic Preservation Act requires the Federal agency to consult with the State Historic Preservation Officer to determine whether there are properties present that require protection...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 71

"...Sites are considered to have small impacts to historic and archeological resources if (1) the State Historic Preservation Officer (SHPO) identifies no significant resources on or near the site; or (2) the SHPO identifies (or has previously identified) significant historic resources but determines they would not be affected by plant refurbishment, transmission lines, and license-renewal-term operations and there are no complaints from the affected public about altered historic character; and (3) if the conditions associated with moderate impacts do not occur." (NRC 1996b, Section 3.7.7, pg. 3-23)

NRC made impacts to historic and archaeological resources a Category 2 issue, because determinations of impacts to historic and archaeological resources are site-specific in nature and the National Historic Preservation Act mandates that impacts must be determined through consultation with the State Historic Preservation Officer (NRC 1996b, Section 4.7.7.3).

In its original evaluation of potential construction impacts, NRC staff concluded that no potentially valuable archaeological sites had been discovered in the project area by "amateur" archaeologists and local historians prior to construction and that no property listed in the National Register of Historic Places was jeopardized by construction of FNP (AEC 1974, pg. 11-16). After a review of potential operational impacts, NRC staff determined that no impacts to historically significant properties in the region were likely "...during the continuing operation of the transmission lines and while the plant is operational" (AEC 1974, pg. 11-16).

As discussed in **Section 3.2**, SNC has no refurbishment plans and no refurbishment-related impacts are anticipated. SNC is not aware of any historic or archaeological resources that have been affected to date by FNP operations, including operation and maintenance of transmission lines. SNC has no plans to change transmission line inspection and maintenance practices or ROW (vegetation) management practices over the license renewal term. Based on the fact that current practices are not expected to change significantly (there may well be minor changes in inspection and surveillance procedures, vegetation management procedures, etc.), SNC concludes that operation of these same generation and transmission facilities over the license renewal term would not impact cultural resources; hence, no mitigation would be warranted. Additionally, consultations with the State Historic Preservation Officers at the Florida Department of State – Division of Historic Resources, State of Alabama – Alabama Historical Resources – Historic Preservation Division, have confirmed that no historic properties or archeological resources that are listed in or are eligible for listing in the National Register of Historic Places would be affected by license renewal.

4.20 SAMA ANALYSIS

NRC

The environmental report must contain a consideration of alternatives to mitigate severe accidents "...If the staff has not previously considered severe accident mitigation alternatives for the applicant's plant in an environmental impact statement or related supplement or in an environmental assessment..." 10 CFR 51.53(c)(3)(ii)(L)

The probability weighted consequences of atmospheric releases, fallout onto open bodies of water, releases to ground water, and societal and economic impacts from severe accidents are small for all plants. However, alternatives to mitigate severe accidents must be considered for all plants that have not considered such alternatives. 10 CFR Part 51, Subpart A, Appendix B, Table B-1 (Issue 76)

Section 4.20 describes how SNC analyzed a large number of alternatives to mitigate severe accidents and briefly summarizes the results of the analysis. Attachment F provides a more detailed description of the analysis methodology and the results.

The term "accident" refers to any unintentional event (i.e., outside the normal or expected plant operational envelope) that results in the release or a potential for release of radioactive material to the environment. Generally, NRC categorizes accidents as "design-basis" or "severe." Design basis accidents are those for which the risk is great enough that an applicant is required to design and construct a plant to prevent unacceptable accident consequences. Severe accidents are those considered too unlikely to warrant design controls.

Historically, the NRC has not included in its Environmental Impact Statements (EISs) or environmental assessments any analysis of alternative ways to mitigate the environmental impact of severe accidents. A 1989 court decision ruled that, in the absence of an NRC finding that severe accidents are remote and speculative, severe accident mitigation alternatives (SAMAs) should be considered in the NEPA analysis [*Limerick Ecology Action v. NRC*, 869 F.2d 719 (3d Cir. 1989)]. For most plants, including FNP, license renewal is the first licensing action that would necessitate consideration of SAMAs.

The NRC concluded in its generic license renewal rulemaking that the unmitigated environmental impacts from severe accidents met its Category 1 criteria. However, NRC made consideration of mitigation alternatives a Category 2 issue because ongoing regulatory programs related to mitigation (i.e., Individual Plant Examination [IPE] and Accident Management) have not been completed for all plants. Since these programs have identified plant programmatic and procedural improvements (and in a few cases, minor modifications) as cost-effective in reducing severe accident and risk consequences, NRC thought it premature to draw a generic conclusion as to whether severe accident mitigation would be required for license renewal. Site-specific information to be presented in the environmental report includes: (1) potential SAMAs; (2) benefits, costs, and net value of implementing potential SAMAs; and (3) sensitivity of analysis to changes to key underlying assumptions.

Analysis

SNC maintains a probabilistic risk assessment (PRA) model to use in evaluating the most significant risks of radiological release from FNP fuel into the reactor and from the reactor into the containment structure. For the SAMA analysis, SNC used PRA model output as input to an NRC-approved model that calculated economic costs and dose to the public from hypothesized releases from the containment structure into the environment. The results of the FNP-specific analyses for severe accidents (Attachment F) show that the total core damage frequency is estimated at 3.35×10^{-5} per year (internal events), the off-site dose risk is estimated at 1.214 person-rem per year, and the off-site economic risk is estimated at \$1,824. The

contribution of external events to the total core damage frequency was not quantified, but was assumed to be bounded by the total frequency of internal event contributors.

Then, using NRC regulatory analysis techniques, SNC calculated the monetary value of the FNP severe accident risk based on the current plant operating characteristics. The result represents the monetary value of the base risk of dose to the public and workers, offsite and onsite economic costs, and replacement power. This value was used as a cost-benefit screening tool for potential SAMAs. The bounding analysis demonstrates that plant enhancements (severe accident mitigation and containment performance improvements) in excess of \$1,400,000 are not cost-justified based on averted public health and economic risk. This baseline value was obtained by doubling the monetary value of the base risk due to internal event accident contributors to account for contributions from external events.

SNC used industry, NRC, and FNP-specific information to create a list of 128 SAMAs for consideration. SNC analyzed this list and screened out SAMAs that would not apply to the FNP design that SNC had already implemented at FNP, or that would achieve results that SNC had already achieved at FNP by other means. SNC prepared preliminary cost estimates for the remaining SAMAs and used the maximum averted cost-risk value to screen out SAMAs that would not be cost beneficial. Fifteen candidate SAMAs remained for further consideration, eleven of which required full model quantification for disposition.

SNC evaluated the remaining SAMAs using Plant Specific Analysis model insights or full model quantifications, which simulated SAMA implementation. The model runs simulating SAMA implementation yielded reduced cost-risk levels due to the impact of the modifications. The difference between the base case cost-risk value and the SAMA-reduced cost-risk value is defined as the averted risk, or a measure of the value of implementing the SAMA. SNC prepared more detailed estimates of the cost of implementing each SAMA and repeated the cost/benefit comparison. The results of this analysis are presented in Table 4-4.

The benefits of revising the operational strategies in place at FNP and/or implementing hardware modifications can be evaluated without the insight from a risk-based analysis. The SAMA analysis has, however, provided an enhanced understanding of the effects of the proposed changes relative to the cost of implementation and projected impact on a future population. All candidate SAMAs had costs that exceeded by far any attainable benefit. Several sensitivity analyses were conducted, but these indicated that none of the SAMA candidates could possibly attain a positive net benefit.

4.21 ENVIRONMENTAL JUSTICE

NRC

"The need for and the content of an analysis of environmental justice will be addressed in the plant-specific reviews." 10 CFR Part 51, Subpart A, Appendix B, Table B-1

Background

Executive Order 12898, "Federal Actions to Address Environmental Justice in Minority Populations and Low Income Populations" (59 FR 7629, Feb. 11, 1994), requires federal agencies to identify and address, as appropriate, "disproportionately high and adverse human health or environmental effects" from their programs, policies, and activities on minority and low-income populations. The Presidential Memorandum that accompanied Executive Order 12898 emphasized the importance of using existing laws, including NEPA, to identify and address environmental justice concerns, "including human health, economic, and social effects, of federal actions." The Council on Environmental Quality (CEQ), which oversees the federal government's compliance with Executive Order 12898 and NEPA, issued "*Environmental Justice Guidance Under the National Environmental Policy Act*" (CEQ 1997) on December 10, 1997. This document provides general guidance and assists federal agencies with the development of NEPA procedures so that environmental justice concerns are effectively identified and addressed.

Although NRC is not subject to Executive Order 12898, it has voluntarily committed to conducting environmental justice reviews of actions under its jurisdiction. Specific guidance is provided in Attachment 4 to Office of Nuclear Reactor Regulation (NRR) Office Instruction No. Lic-203 *"Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues"* (NRC 2001).

These two documents (CEQ 1997; NRC 2001) do not provide a standard approach or formula for identifying and addressing environmental justice issues. Instead, they offer federal agencies general principles for conducting an environmental justice analysis under NEPA. They are the basis for the environmental justice review discussion that follows.

Environmental Impacts from the Proposed Action

SNC's analysis of the pertinent Category 2 issues [defined at 10 CFR 51.53(c)(3)(ii)] determined that impacts to human health and the environment from the operations of FNP over the license renewal term would be small. Based on the review of Category 2 issues, as discussed in Sections 4.1 through 4.20 of this document, an exhaustive demographic analysis and assessment of potential environmental justice impacts was not conducted. This phased approach to the assessment of potential environmental justice impacts is consistent with both CEQ and NRC guidance. NRC guidance makes clear that, if no significant impacts are anticipated from the proposed action, then "...no member of the public will be substantially affected" and, as a consequence, "...there can be no disproportionate high and adverse effects or impacts on any member of the public including minority or low-income populations."

Environmental Impact Site(s)

Per the Procedure for Environmental Justice Reviews (NRC 2001), environmental impact sites must be designated for all adverse human health or environmental impacts that are known to be significant or perceived as significant by groups or individuals. As noted above, based on the review of Category 2 issues, SNC has determined that no "environmental impact sites" exist at or around FNP. No significant adverse human or environmental impacts are expected as a result of operations over the license renewal term.

Selection of Geographic Area

The geographic area is defined as a larger area that encompasses all potential environmental impact sites (**NRC 2001**). SNC examined the geographic distribution of minority and low-income populations within a 50-mile radius of FNP. The 50-mile radius (geographic area) contains 371 census blocks and 131 census tracts (**USCB 2000a**). SNC included in the analysis all census blocks or tracts, if any part of a census block or tract fell within 50 miles of FNP. Because the tracts making up the significant area are located in Alabama, Florida, and Georgia, SNC defined the geographic area to be Alabama, Florida, and Georgia. Each census tract or block was evaluated against the appropriate state to determine the presence of minority or low-income populations, as detailed in Section 2.6.2 of this document.

Conclusions

As part of its assessment of the proposed action, SNC examined potential impacts to air, land, water, and cultural resources within 50 miles of FNP. SNC has determined that no significant offsite impacts would be created by renewal of the FNP operating licenses. This conclusion is supported by the review performed of the Category 2 issues as defined in 10 CFR 51.53(c)(3)(ii). As the NRR Procedure acknowledges, if no significant offsite impacts occur in connection with the proposed action, then no member of the public will be substantially affected. Therefore, there can be no disproportionately high and/or adverse impacts on any member of the public, including minority and low-income populations, resulting from renewal of the FNP licenses. In such instances, a qualitative review of potential environmental justice impacts is adequate and no mitigation measures need be described.

	Issues	Basis for Inapplicability to FNP
	Surface Water Quality	ty, Hydrology, and Use (for all plants)
1.	Impacts of refurbishment on surface water quality	Issue applies to activity, refurbishment, that FNP will not undertake.
2.	Impacts of refurbishment on surface water use	Issue applies to activity, refurbishment, that FNP will not undertake.
4.	Altered salinity gradients	Issue applies to discharge to a natural water body that has a salinity
		gradient to alter, not inland freshwaters.
5.	Altered thermal stratification of lakes	Issue applies to plants that discharge to lakes.
12.	Water use conflicts (plants with once-through cooling systems)	Issue applies to plants with once-through cooling systems.
	Aquatio	c Ecology (for all plants)
14.	Refurbishment	Issue applies to activity, refurbishment, that FNP will not undertake.
	Groun	dwater Use and Quality
31.	Impacts of refurbishment on groundwater use and quality	Issue applies to activity, refurbishment, that FNP will not undertake.
32.	Groundwater use conflicts (potable and service water; plants that use < 100 gpm)	Issue applies to plants, that use less than 100 gpm of groundwater, not plants that use more.
36.	Groundwater quality degradation (Ranney wells)	Issue applies to a plant feature, Ranney wells, that FNP does not have.
	Groundwater quality degradation (saltwater intrusion)	Issue applies to plants in coastal areas, not inland sites such as FNP.
38.	Groundwater quality degradation (cooling ponds in	Issue applies to cooling ponds ^b in salt marshes, not inland sites such as
	salt marshes)	FNP. FNP has no cooling ponds.
	Те	rrestrial Resources
44.	Cooling pond impacts on terrestrial resources	Issue applies to plants that use cooling ponds.
		Human Health
54.	Radiation exposures to the public during refurbishment	Issue applies to activity, refurbishment, that FNP will not undertake.
55.	Occupational radiation exposures during refurbishment	Issue applies to activity, refurbishment, that FNP will not undertake.
		Socioeconomics
70	Aesthetic impacts (refurbishment)	Issue applies to activity, refurbishment, FNP will not undertake.

less than < =

gpm = gallons per minute

NRC = U.S. Nuclear Regulatory Commission

a. NRC listed the issues in Table B-1 of 10 CFR 51 Appendix B. SNC added issue numbers for expediency.
b. NRC has defined "cooling pond" as "a manmade impoundment that does not impede the flow of a navigable system and that is used primarily to remove waste heat from condenser water prior to recirculating the water back to the main condenser...." (NRC 1996b, Section 4.4.1.1, pg. 4-51)

Appendix D - Applicant's Environmental Report 4.0 Environmental Consequences of the Proposed Action and Mitigating Actions

 intake and discharge structures Temperature effects on sediment transport capacity Scouring caused by problem at operating nuclear power plants and are not expected to be a problem during the license renewal term. SMALL. These effects have not been found to be a problem at 4.3.2.2/4- Scouring caused by 	
 Altered current patterns at intake and discharge structures MALL. Altered current patterns have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term. Temperature effects on sediment transport capacity Scouring caused by MALL. Altered current patterns have not been found to be a problem at operating nuclear power plants and are not expected to operating nuclear power plants and are not expected to be a problem during the license renewal term. Scouring caused by MALL. Scouring has not been found to be a problem at most 	32
structuresbe a problem during the license renewal term.6.Temperature effects on sediment transport capacitySMALL. These effects have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term.4.3.2.2/4-7.Scouring caused bySMALL. Scouring has not been found to be a problem at most4.3.2.2/4-	
 Temperature effects on sediment transport capacity Scouring caused by SMALL. These effects have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term. Scouring caused by SMALL. Scouring has not been found to be a problem at most 4.3.2.2/4- 	
sediment transport capacityoperating nuclear power plants and are not expected to be a problem during the license renewal term.7.Scouring caused bySMALL. Scouring has not been found to be a problem at most4.3.2.2/4-	
capacity problem during the license renewal term. 7. Scouring caused by SMALL. Scouring has not been found to be a problem at most 4.3.2.2/4-	32
7. Scouring caused by SMALL. Scouring has not been found to be a problem at most 4.3.2.2/4-	32
	32
discharged cooling water operating nuclear power plants and has caused only localized	
effects at a few plants. It is not expected to be a problem during the license renewal term.	
	20
8. Eutrophication SMALL. Eutrophication has not been found to be a problem at 4.3.2.2/4- operating nuclear power plants and is not expected to be a problem	32
during the license renewal term.	
9. Discharge of chlorine or SMALL. Effects are not a concern among regulatory and resource 4.3.2.2/4-	32
other biocides agencies, and are not expected to be a problem during the license	52
renewal term.	
10. Discharge of sanitary SMALL. Effects are readily controlled through NPDES permit and 4.3.2.2/4-	32
wastes and minor periodic modifications, if needed, and are not expected to be a	-
chemical spills problem during the license renewal term.	
11. Discharge of other metals SMALL. These discharges have not been found to be a problem at 4.3.2.2/4-	32
in waste water operating nuclear power plants with cooling-tower-based heat	
dissipation systems and have been satisfactorily mitigated at other	
plants. They are not expected to be a problem during the license	
renewal term.	
Aquatic Ecology (for all plants)	
15. Accumulation of SMALL. Accumulation of contaminants has been a concern at a 4.3.3/4-33	}
contaminants in sediments few nuclear power plants, but has been satisfactorily mitigated by	
or biota replacing copper alloy condenser tubes with those of another	
metal. It is not expected to be a problem during the license	
renewal term.	

	Issue	NRC Findings ^b	GEIS, Ref. NRC 1996b (Section/Page)
16.	Entrainment of phytoplankton and zooplankton	SMALL. Entrainment of phytoplankton and zooplankton has not been found to be a problem at operating nuclear power plants and is not expected to be a problem during the license renewal term.	4.3.3/4-33
17.	Cold shock	SMALL. Cold shock has been satisfactorily mitigated at operating nuclear plants with once-through cooling systems, has not endangered fish populations or been found to be a problem at operating nuclear power plants with cooling towers or cooling ponds, and is not expected to be a problem during the license renewal term.	4.3.3/4-33
18.	Thermal plume barrier to migrating fish	SMALL. Thermal plumes have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term.	4.3.3/4-33
19.	Distribution of aquatic organisms	SMALL. Thermal discharge may have localized effects, but is not expected to affect the larger geographical distribution of aquatic organisms.	4.3.3/4-33
20.	Premature emergence of aquatic insects	SMALL. Premature emergence has been found to be a localized effect at some operating nuclear power plants, but has not been a problem and is not expected to be a problem during the license renewal term.	4.3.3/4-33
21.	Gas supersaturation (gas bubble disease)	SMALL. Gas supersaturation was a concern at a small number of operating nuclear power plants with once-through cooling systems, but has been satisfactorily mitigated. It has not been found to be a problem at operating nuclear power plants with cooling towers or cooling ponds and is not expected to be a problem during the license renewal term.	4.3.3/4-33
22.	Low dissolved oxygen in the discharge	SMALL. Low dissolved oxygen has been a concern at one nuclear power plant with a once-through cooling system, but has been effectively mitigated. It has not been found to be a problem at operating nuclear power plants with cooling towers or cooling ponds and is not expected to be a problem during the license renewal term.	4.3.3/4-33
23.	Losses from predation, parasitism, and disease among organisms exposed to sublethal stresses	SMALL. These types of losses have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term.	4.3.3/4-33

Appendix D - Applicant's Environmental Report 4.0 Environmental Consequences of the Proposed Action and Mitigating Actions

	GEIS, Ref. NR		
	Issue	NRC Findings ^b	(Section/Page)
	Aquatic E	cology (for plants with cooling-tower-based heat dissipation syste	ems)
24.	Stimulation of nuisance organisms (e.g., shipworms)	SMALL. Stimulation of nuisance organisms has been satisfactorily mitigated at the single nuclear power plant with a once-through cooling system where previously it was a problem. It has not been found to be a problem at operating nuclear power plants with cooling towers or cooling ponds and is not expected to be a problem during the license renewal term.	4.3.3/4-33
28.	Entrainment of fish and shellfish in early life stages	SMALL. Entrainment of fish has not been found to be a problem at operating nuclear power plants with this type of cooling system and is not expected to be a problem during the license renewal term.	4.3.3/4-33
29.	Impingement of fish and shellfish	SMALL. Impingement has not been found to be a problem at operating nuclear power plants with this type of cooling system and is not expected to be a problem during the license renewal term.	4.3.3/4-33
30.	Heat shock	SMALL. Heat shock has not been found to be a problem at operating nuclear power plants with this type of cooling system and is not expected to be a problem during the license renewal term.	4.3.3/4-33
		Terrestrial Resources	
41.	Cooling tower impacts on crops and ornamental vegetation	SMALL. Impacts from salt drift, icing, fogging, or increased humidity associated with cooling tower operation have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term.	4.3.4/4-34
12.	Cooling pond impacts on terrestrial resources	SMALL. Impacts from salt drift, icing, fogging, or increased humidity associated with cooling tower operation have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term.	4.3.5.1/4-42
43.	Bird collisions with cooling towers	SMALL. These collisions have not been found to be a problem at operating nuclear power plants and are not expected to be a problem during the license renewal term.	4.3.5.2/4-45
1 5.	Power line right-of-way management (cutting and herbicide application)	SMALL. The impacts of right-of-way maintenance on wildlife are expected to be of small significance at all sites.	4.5.6.1/4-71
46.	Bird collision with power lines	SMALL. Impacts are expected to be of small significance at all sites.	4.5.6.2/4-74

- . . lessue M. Faulas, Nuclear Diant^a (Or 41 -I \

			GEIS, Ref. NRC 1996b
	Issue	NRC Findings ^b	(Section/Page)
47.	Impacts of electromagnetic fields on flora and fauna (plants, agricultural crops, honeybees, wildlife, livestock)	SMALL. No significant impacts of electromagnetic fields on terrestrial flora and fauna have been identified. Such effects are not expected to be a problem during the license renewal term.	4.5.6.3/4-77
48.	Floodplains and wetlands on power line right-of-way	SMALL. Periodic vegetation control is necessary in forested wetlands underneath power lines and can be achieved with minimal damage to the wetland. No significant impact is expected at any nuclear power plant during the license renewal term.	4.5.7/4-81
		Air Quality	
51.	Air quality effects of transmission lines	SMALL. Production of ozone and oxides of nitrogen is insignificant and does not contribute measurably to ambient levels of these gases.	4.5.2/4-62
		Land Use	
52.	Onsite land use	SMALL. Projected onsite land use changes required during refurbishment and the renewal period would be a small fraction of any nuclear power plant site and would involve land that is controlled by the applicant.	3.2/3-1
53.	Power line right-of-way	SMALL. Ongoing use of power line rights-of-way would continue with no change in restrictions. The effects of these restrictions are of small significance.	4.5.3/4-62
		Human Health	
56.	Microbiological organisms (occupational health)	SMALL. Occupational health impacts are expected to be controlled by continued application of accepted industrial hygiene practices to minimize worker exposures.	4.3.6/4-48
58.	Noise	SMALL. Noise has not been found to be a problem at operating plants and is not expected to be a problem at any plant during the license renewal term.	4.3.7/4-49
60.	Electromagnetic fields, chronic effects	UNCERTAIN. Biological and physical studies of 60-Hz electromagnetic fields have not found consistent evidence linking harmful effects with field exposures. However, research is continuing in this area and a consensus scientific view has not been reached.	4.5.4.2/4-67

	lssue	NRC Findings ^b	GEIS, Ref. NRC 1996t (Section/Page)
61.		5	4.6.2/4-87
).	Radiation exposures to public (license renewal term)	SMALL. Radiation doses to the public will continue at current levels associated with normal operations.	4.0.2/4-07
62.	Occupational radiation exposures (license renewal term)	SMALL. Projected maximum occupational doses during the license renewal term are within the range of doses experienced during normal operations and normal maintenance outages, and would be well below regulatory limits.	4.6.3/4-95
		Socioeconomics	
64.	Public services: public safety, social services, and tourism and recreation	SMALL. Impacts to public safety, social services, and tourism and recreation are expected to be of small significance at all sites.	3.7.4/3-104 (renewal – public services) 3.7.4.3/3-18 (renewal – safety) 3.7.4.4/3-19 (renewal – social) 3.7.4.6/3-20 (renewal – tourism, recreation) 4.7.3/4-104 (renewal – public services) 4.7.3.3/4-106 (renewal – safety) 4.7.3.4/4-107 (renewal – social) 4.7.3.6/4-107 (renewal – tourism, recreation)
67.	Public services, education (license renewal term)	SMALL. Only impacts of small significance are expected.	4.7.3.1/4-106
73.	Aesthetic impacts (license renewal term)	SMALL. No significant impacts are expected during the license renewal term.	4.7.6/4-111
74.	Aesthetic impacts of transmission lines (license renewal term)	SMALL. No significant impacts are expected during the license renewal term.	4.5.8/4-83

	Issue	NRC Findings ^b	GEIS, Ref. NRC 1996b (Section/Page)
		Postulated Accidents	
75.	Design basis accidents	SMALL. The NRC staff has concluded that the environmental impacts of design basis accidents are of small significance for all plants.	5.3.2/5-11 (design basis) 5.5.1/5-114 (summary)
		Uranium Fuel Cycle and Waste Management	
77.	Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high-level waste)	SMALL. Offsite impacts of the uranium fuel cycle have been considered by the Commission in Table S-3 of this part. Based on information in the GEIS, impacts on individuals from radioactive gaseous and liquid releases including radon-222 and technetium-99 are small.	6.2/6-8
78.	Offsite radiological impacts (collective effects)	The 100-year environmental dose commitment to the U.S. population from the fuel cycle, high-level waste, and spent fuel disposal is calculated to be about 14,800 person rem, or 12 cancer fatalities, for each additional 20-year power reactor operating term. Much of this, especially the contribution of radon releases from mines and tailing piles, consists of tiny doses summed over large populations. This same dose calculation can theoretically be extended to include many tiny doses over additional thousands of years as well as doses outside the U.S. The result of such a calculation would be thousands of cancer fatalities from the fuel cycle, but this result assumes that even tiny doses have some statistical adverse health effect, which will not ever be mitigated (for example, no cancer cure in the next thousand years), and that these dose projections over thousands of years are meaningful. However, these assumptions are questionable. In particular, science cannot rule out the possibility that there will be no cancer fatalities from these tiny doses. For perspective, the doses are very small fractions of regulatory limits, and even smaller fractions of natural background exposure to the same populations. Nevertheless, despite all the uncertainty, some judgment as to the regulatory NEPA implications of these matters should be made and it makes no sense to repeat the same judgment in every case. Even taking the uncertainties into account, the Commission concludes that these impacts are acceptable in that these impacts would not be sufficiently large to require the NEPA conclusion, for any plant, that the option of extended operation under 10 CFR	6.2.4/6-27

Appendix D - Applicant's Environmental Report 4.0 Environmental Consequences of the Proposed Action and Mitigating Actions

	Issue	NRC Findings ^b	GEIS, Ref. NRC 1996t (Section/Page)
	13500	Part 54 should be eliminated. Accordingly, while the Commission	
		has not assigned a single level of significance for the collective	
		effects of the fuel cycle, this issue is considered Category 1.	
70	Offeite rediclesical imposte		6 0 4/6 00
79.	0 1	For the high-level waste and spent fuel disposal component of the	6.2.4/6-28.
	(spent fuel and high-level	fuel cycle, there are no current regulatory limits for offsite releases	
	waste disposal)	of radionuclides for the current candidate repository site. However,	
		if we assume that limits are developed along the lines of the 1995	
		National Academy of Sciences (NAS) report, "Technical Bases for	
		Yucca Mountain Standards," and that in accordance with the Commission's Waste Confidence Decision, 10 CFR 51.23, a	
		repository can and likely will be developed at some site which will	
		comply with such limits, peak doses to virtually all individuals will be	
		100 millirem per year or less. However, while the Commission has	
		reasonable confidence that these assumptions will prove correct,	
		there is considerable uncertainty since the limits are yet to be	
		developed, no repository application has been completed or	
		reviewed, and uncertainty is inherent in the models used to	
		evaluate possible pathways to the human environment. The NAS	
		report indicated that 100 millirem per year should be considered as	
		a starting point for limits for individual doses, but notes that some	
		measure of consensus exists among national and international	
		bodies that the limits should be a fraction of the 100 millirem per	
		year. The lifetime individual risk from 100 millirem annual dose limit	
		is about 310 ⁻³ .	
		Estimating cumulative doses to populations over thousands of	
		years is more problematic. The likelihood and consequences of	
		events that could seriously compromise the integrity of a deep	
		geologic repository were evaluated by the U.S. Department of	
		Energy in the "Final Environmental Impact Statement:	
		Management of Commercially Generated Radioactive Waste,"	
		October 1980. The evaluation estimated the 70-year whole-body	
		dose commitment to the maximum individual and to the regional	
		population resulting from several modes of breaching a reference	
		repository in the year of closure, after 1,000 years, after 100,000	
		years, and after 100,000,000 years. Subsequently, NRC and other	
		federal agencies have expended considerable effort to develop	
		models for the design and for the licensing of a high-level waste	

Appendix D - Applicant's Environmental Report 4.0 Environmental Consequences of the Proposed Action and Mitigating Actions

	h	GEIS, Ref. NRC 199
Issue	NRC Findings ^b	(Section/Page)
	repository, especially for the candidate repository at Yucca	
	Mountain. More meaningful estimates of doses to population may	
	be possible in the future as more is understood about the	
	performance of the proposed Yucca Mountain repository. Such	
	estimates would involve very great uncertainty, especially with	
	respect to cumulative population doses over thousands of years.	
	The standard proposed by the NAS is a limit on maximum	
	individual dose. The relationship of potential new regulatory	
	requirements, based on the NAS report, and cumulative population	
	impacts has not been determined, although the report articulates	
	the view that protection of individuals will adequately protect the	
	population for a repository at Yucca Mountain. However, EPA's	
	generic repository standards in 40 CFR Part 191 generally provide	
	an indication of the order of magnitude of cumulative risk to	
	population that could result from the licensing of a Yucca Mountain	
	repository, assuming the ultimate standards will be within the range	
	of standards now under consideration. The standards in 40 CFR	
	Part 191 protect the population by imposing "containment	
	requirements" that limit the cumulative amount of radioactive	
	material released over 10,000 years. The cumulative release limits	
	are based on EPA's population impact goal of 1,000 premature	
	cancer deaths worldwide for a 100,000 metric ton (MTHM)	
	repository.	
	Nevertheless, despite all the uncertainty, some judgment as to the	
	regulatory NEPA implications of these matters should be made and	
	it makes no sense to repeat the same judgment in every case.	
	Even taking the uncertainties into account, the Commission	
	concludes that these impacts are acceptable in that these impacts	
	would not be sufficiently large to require the NEPA conclusion, for	
	any plant, that the option of extended operation under 10 CFR	
	Part 54 should be eliminated. Accordingly, while the Commission	
	has not assigned a single level of significance for the impacts of	
	spent fuel and high-level waste disposal, this issue is considered	
	Category 1.	
	Note: This information from the regulation was accurate at the time	
	it was promulgated.	

	Issue	NRC Findings ^b	GEIS, Ref. NRC 1996b (Section/Page)
80.	Nonradiological impacts of the uranium fuel cycle	SMALL. The nonradiological impacts of the uranium fuel cycle resulting from the renewal of an operating license for any plant are found to be small.	6.2.2.6/6-20 (land use) 6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical) 6.6/6-90 (conclusion)
81.	Low-level waste storage and disposal	SMALL. The comprehensive regulatory controls that are in place, and the low public doses being achieved at reactors, ensure that the radiological impacts to the environment will remain small during the term of a renewed license. The maximum additional onsite land that may be required for low-level waste storage during the term of a renewed license and associated impacts will be small. Nonradiological impacts on air and water will be negligible. The radiological and nonradiological environmental impacts of long-term disposal of low-level waste from any individual plant at licensed sites are small. In addition, the Commission concludes that there is reasonable assurance that sufficient low-level waste disposal capacity will be made available when needed for facilities to be decommissioned consistent with NRC decommissioning requirements.	6.4.2/6-36 ("low-level" definition) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects) 6.6/6-90 (conclusion)
82.	Mixed waste storage and disposal	SMALL. The comprehensive regulatory controls and the facilities and procedures that are in place ensure proper handling and storage, as well as negligible doses and exposure to toxic materials for the public and the environment at all plants. License renewal will not increase the small, continuing risk to human health and the environment posed by mixed waste at all plants. The radiological nonradiological environmental impacts of long-term disposal of mixed waste from any individual plant at licensed sites are small. In addition, the Commission concludes that there is reasonable assurance that sufficient mixed waste disposal capacity will be made available when needed for facilities to be decommissioned consistent with NRC decommissioning requirements.	6.4.5/6-63 6.6/6-91 (conclusion)
83.	Onsite spent fuel	SMALL. The expected increase in the volume of spent fuel from an additional 20 years of operation can be safely accommodated on- site with small environmental effects through dry or pool storage at all plants, if a permanent repository or monitored retrievable storage is not available.	6.4.6/6-70 6.6/6-91 (conclusion)

	Issue	NRC Findings ^b	GEIS, Ref. NRC 1996 (Section/Page)
84.	Nonradiological waste	SMALL. No changes to generating systems are anticipated for license renewal. Facilities and procedures are in place to ensure continued proper handling and disposal at all plants.	6.5/6-86 6.6/6-92 (conclusion)
85.	Transportation	SMALL. The impacts of transporting spent fuel enriched up to 5 percent uranium-235 with average burnup for the peak rod to current levels approved by NRC of up to 62,000 MWd/MTU and the cumulative impacts of transporting high-level waste to a single repository, such as Yucca Mountain, Nevada, are found to be consistent with the impact values contained in 10 CFR 51.52(c), Summary Table S-4-Environmental Impact of Transportation of Fuel and Waste to and from One Light-Water-Cooled Nuclear Power Reactor. If fuel enrichment or burnup conditions are not met, the applicant must submit an assessment of the implications for the environmental impact values reported in §51.52.	Addendum 1
		Decommissioning	
86.	Radiation doses	SMALL. Doses to the public will be well below applicable regulatory standards, regardless of which decommissioning method is used. Occupational doses would increase no more than 1 man- rem caused by buildup of long-lived radionuclides during the license renewal term.	7.3.1/7-15
87.	Waste management	SMALL. Decommissioning at the end of a 20-year license renewal period would generate no more solid wastes than at the end of the current license term. No increase in the quantities of Class C or greater than Class C wastes would be expected.	7.3.2/7-19 (impacts) 7.4/7-25 (conclusions)
88.	Air quality	SMALL. Air quality impacts of decommissioning are expected to be negligible either at the end of the current operating term or at the end of the license renewal term.	7.3.3/7-21 (air) 7.4/7-25 (conclusion)
89.	Water quality	SMALL. The potential for significant water quality impacts from erosion or spills is no greater whether decommissioning occurs after a 20-year license renewal period or after the original 40-year operation period, and measures are readily available to avoid such impacts.	7.3.4/7-21 (water) 7.4/7-25 (conclusion)
90.	Ecological resources	SMALL. Decommissioning after either the initial operating period or after a 20-year license renewal period is not expected to have any direct ecological impacts.	7.3.5/7-21 (ecological) 7.4/7-25 (conclusion)

		lasus		GEIS, Ref. NRC 1996b				
		Issue	NRC Findings ^b	(Section/Page)				
	91.	Socioeconomic impacts	SMALL. Decommissioning would have some short-term	7.3.7/7-24				
			socioeconomic impacts. The impacts would not be increased by	(socioeconomic)				
			delaying decommissioning until the end of a 20-year relicense	7.4/7-25 (conclusion)				
			period, but they might be decreased by population and economic growth.					
	92.	Environmental justice	NONE. The need for and the content of an analysis of	Not in GEIS				
	02.		environmental justice will be addressed in plant-specific reviews.					
CFR	=	Code of Federal Regulations						
EPA	= U.S. Environmental Protection Agency							
GEIS	=	= Generic Environmental Impact Statement (NRC 1996b)						
Hz	=	Hertz						
NA	=	Not applicable						
NEPA		National Environmental Policy Ad						
NPDES	C = U.S. Nuclear Regulatory Commission NRC listed the issues in Table B-1 of 10 CFR 51 Appendix B. SNC added issue numbers for expediency.							
NRC								
			r the issue, environmental effects are not detectable or are so minor that they					
			the resource. For the purposes of assessing radiological impacts, NRC has c					
		•	s regulations are considered small. (10 CFR 51 Appendix B, Table B-1, Footr					
C. NH	NRC published, on September 3, 1999, a GEIS addendum in support of its rulemaking that re-categorized Issue 85 from 2 to 1.							

Transmission Line	Voltage (kV)	Limiting Case Peak Electric Field Strength (kV/meter)	Limiting Case Induced Current (milliamperes)
Pinckard	230	3.3	3.6
S. Bainbridge	230	3.5	3.5
Webb	230	3.9	4.6
Raccon Creek	500	5.2	4.8
Snowdoun	500	5.0	5.1

Table 4-3. Results of Induced Current Analysis.

Table 4-4. Summary of Detailed SAMA Analyses.

SAMA ID number	Averted offsite exposure cost	Averted offsite economic cost	Averted onsite exposure cost	Averted onsite cleanup cost	Averted replacement power cost	Total benefits	Cost of implementation	Net value of modifications
SAMA 7	\$396	\$6	\$1,150	\$35,757	\$22,312	\$59,621	\$270,000/unit	(\$210,379/unit)
SAMA 11	\$2,179	\$39	\$4,403	\$136,952	\$85,455	\$229,028	\$520,000/unit	(\$290,972/unit)
SAMA 24	\$1,849	\$456	\$1,198	\$37,264	\$23,252	\$64,019	\$830,000/unit	(\$765,981/unit)
SAMA 89	\$14,954	\$15,997	\$127	\$3,954	\$2,467	\$37,500	\$425,000/unit	(\$387,500/unit)
SAMA 96	\$14,954	\$15,997	\$127	\$3,954	\$2,467	\$37,500	\$960,000/unit	(\$922,500/unit)
SAMA 101	\$1,624	\$24	\$1,759	\$54,697	\$34,130	\$92,233	\$900,000/unit	(\$807,767/unit)
SAMA 117	\$234	\$5	\$160	\$4,972	\$3,103	\$8,474	\$122,000/unit	(\$113,526/unit)
SAMA 118	\$215	\$4	\$147	\$4,558	\$2,844	\$7,768	\$122,000/unit	(\$114,232/unit)
SAMA 119	\$1,849	\$456	\$1,198	\$37,264	\$23,252	\$64,019	\$930,000/unit	(\$865,981/unit)
SAMA 120	\$471	\$10	\$322	\$10,004	\$6,242	\$17,049	\$475,000/unit	(\$457,951/unit)
SAMA 123	\$14,954	\$15,997	\$127	\$3,954	\$2,467	\$37,500	\$330,000/unit	(\$292,500/unit)

5.0 ASSESSMENT OF NEW AND SIGNIFICANT INFORMATION

NRC

"The environmental report must contain any new and significant information regarding the environmental impacts of license renewal of which the applicant is aware." 10 CFR 51.53(c)(3)(iv)

Description of Process

The FNP Environmental Protection Plan (EPP) and SNC Environmental Services procedures govern review of environmental issues and serve as the bases for the process by which SNC identifies new and significant environmental information at FNP. Changes in plant design, operation, or tests and experiments with potential for environmental impact are reviewed in accordance with established procedures and responsibilities to ensure that such activities do not involve an unreviewed environmental question or changes to the EPP. The environmental impacts of license renewal, including new and significant information for FNP, were evaluated prior to submittal of the license application. Established procedures and responsibilities will ensure that any new and significant information related to renewal of the FNP licenses will be identified, reviewed, and addressed during the period of NRC review.

Review of Environmental Issues Prior to License Application Submittal

SNC Environmental Services performed an evaluation of environmental issues applicable to license renewal for FNP. This evaluation was performed on the Category 1 issues appearing in 10 CFR 51, subpart A, Appendix B, Table B-1 to verify that the conclusions of the GEIS remain valid with respect to FNP.

As a result of this review, SNC is not aware of any new and significant information regarding the Plant's environment or Plant operations that would make a generic conclusion codified by NRC for Category 1 issues not applicable to FNP, that would alter regulatory or GEIS statements regarding Category 2 issues, or that would suggest any other measure of license renewal environmental impact.

PAGE INTENTIONALLY LEFT BLANK

6.0 SUMMARY OF LICENSE RENEWAL IMPACTS AND MITIGATING ACTIONS

6.1 LICENSE RENEWAL IMPACTS

SNC has reviewed the environmental impacts of renewing the FNP operating licenses and has concluded that all impacts would be small and would not require mitigation. This environmental report documents the basis for SNC's conclusion. Chapter 4 incorporates by reference NRC findings for the 54 Category 1 issues that apply to FNP, all of which have impacts that are small (Table 4-2). The rest of Chapter 4 analyzes Category 2 issues, all of which are either not applicable or have impacts that would be small. Table 6-1 identifies the impacts that FNP license renewal would have on resources associated with Category 2 issues.

6.2 MITIGATION

NRC

"The report must contain a consideration of alternatives for reducing adverse impacts...for all Category 2 license renewal issues..." 10 CFR 51.53(c)(3)(iii)

"...The environmental report shall include an analysis that considers and balances...alternatives available for reducing or avoiding adverse environmental effects...." 10 CFR 51.45(c) as incorporated by 10 CFR 51.53(c)(2) and 10 CFR 51.53(c)(3)(iii)

All impacts of FNP license renewal are small and would not require mitigation. Current operations include mitigation and monitoring activities that would continue during the license renewal term. SNC performs routine mitigation and monitoring activities to ensure the safety of workers, the public, and the environment. These activities include the radiological environmental monitoring program, continuous emissions monitoring, effluent chemistry monitoring, and effluent toxicity testing.

6.3 UNAVOIDABLE ADVERSE IMPACTS

NRC

The environmental report shall discuss "Any adverse environmental effects which cannot be avoided should the proposal be implemented;" 10 CFR 51.45(b)(2) as adopted by 10 CFR 51.53(c)(2)

This environmental report adopts by reference NRC findings for applicable Category 1 issues, including discussions of any unavoidable adverse impacts. For Category 2 issues, SNC has followed NRC regulatory requirements, analyzed the issues and, where required, has addressed potential adverse effects (Chapter 4). For the applicable issues presented in Chapter 4, SNC has categorized all impacts as "small", based on NRC's impact significance definitions. NRC defines "small" as an effect that is either not detectable or so minor that it will neither destabilize nor noticeably alter any important attribute of the resource. Based on this definition, "small" impacts are not considered adverse and, therefore, no unavoidable adverse impacts have been identified.

6.4 IRREVERSIBLE AND IRRETRIEVABLE RESOURCE COMMITMENTS

NRC

The environmental report shall discuss "Any irreversible and irretrievable commitments of resources which would be involved in the proposed action should it be implemented." 10 CFR 51.45(b)(5) as adopted by 10 CFR 51.53(c)(2)

Continued operation of FNP for the license renewal term will result in irreversible and irretrievable resource commitments, including the following:

- nuclear fuel, which is burned in the reactor and converted to radioactive waste
- the land required to dispose of spent nuclear fuel, low-level radioactive wastes generated as a result of Plant operations, and sanitary wastes generated from normal industrial operations
- elemental materials that will become radioactive
- materials used for the normal industrial operations of the Plant that cannot be recovered or recycled or that are consumed or reduced to unrecoverable forms.

6.5 SHORT-TERM USE VERSUS LONG-TERM PRODUCTIVITY OF THE ENVIRONMENT

NRC

The environmental report shall discuss "The relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity..." 10 CFR 51.45(b)(4) as adopted by 10 CFR 51.53(c)(2)

The current balance between short-term use and long-term productivity at the FNP site was established when the Plant began operating in 1977. The FESs (AEC 1972, 1974) evaluated the impacts of constructing and operating FNP in rural Houston County, Alabama. Short-term use of natural resources would include use of land and water. The area surrounding the Plant site is chiefly rural and at least half is agricultural. Approximately 500 acres of the site are devoted to generating and support facilities. This includes the area occupied by buildings, structures, and landscaping around the FNP site proper and the 108-acre Service Water Storage Pond (AEC 1974). Transmission line construction required approximately 5,300 acres of forest, pasture, or cultivated land (including managed timber lands), and resulted in the alteration of natural wildlife habitats. Land areas disturbed during construction of the Plant, but not used, have been replanted with native grasses, trees, and shrubs (AEC 1974). The consumptive loss of water from Chattahoochee River due to the operation of the Plant is 0.3 percent of the most probable daily flow of the Chattahoochee River.

Experience with other experimental, developmental, and commercial nuclear plants has demonstrated the feasibility of decommissioning and dismantling such plants sufficiently to restore a site to its former use (NRC 1996b), in this case, agricultural use and forestland. The extent of decommissioning will consider the intended new use of the site and balance health and safety considerations, salvage values and environmental impact. Decisions on the ultimate disposition of the site have not yet been made. Continued operation for an additional 20 years would not alter this conclusion.

No.	Issue	Environmental Impact
	Surface Water Q	uality, Hydrology, and Use (for all plants)
13	Water use conflicts (plants with cooling ponds or cooling towers using make-up water from a small river with low flow)	Small. Evaporative losses from the Chattahoochee River would be approximately 0.3 percent of the upstream most probable daily flow and 1.0 percent of the 7Q10 flow which would have little or no effect on the Chattahoochee River and its riparian ecological communities.
Α	quatic Ecology (for plants with o	once-through and cooling pond heat dissipation systems)
25	Entrainment of fish and shellfish in early life stages	None. This issue does not apply because FNP utilizes a cooling tower-based heat dissipation system.
26	Impingement of fish and shellfish	None. This issue does not apply because FNP utilizes a cooling tower-based heat dissipation system.
27	Heat shock	None. This issue does not apply because FNP utilizes a cooling tower-based heat dissipation system.
	Gr	oundwater Use and Quality
33	Groundwater use conflicts (potable and service water, and dewatering; plants that use > 100 gpm)	Small. From the end of the current license period to the end of the relicensing period, the incremental increase in drawdown is projected to be approximately 0.1 feet.
34	Groundwater use conflicts (plants using cooling towers or cooling ponds withdrawing make-up water from a small river)	Small. Evaporative losses from the Chattahoochee River would be approximately 1 percent of the 7Q10 and would not affect a significant aquifer.
35	Groundwater use conflicts (Ranney wells)	None. This issue does not apply because FNP does not use Ranney wells.
39	Groundwater quality degradation (cooling ponds at inland sites)	None. This issue does not apply because FNP does not use a cooling pond.
		Terrestrial Resources
40	Refurbishment impacts	None. No impacts are expected because FNP will not undertake refurbishment.
	Threa	tened or Endangered Species
49	Threatened or endangered species	Small. License renewal will not result in operational changes at FNP or on transmission corridors that would alter current natural resource management practices. Current vegetation management practices in transmission corridors could actually be beneficial for species that depend on open conditions (e.g., gopher tortoise).
		Air Quality
50	Air quality during refurbishment (nonattainment and maintenance areas)	None. No impacts are expected because FNP will not undertake refurbishment.
		Human Health
57	Microbiological organisms (public health) (plants using lakes or canals, or cooling towers or cooling ponds that discharge to a small river)	Small. Given the circulating water system's discharge temperature and disinfection of the sewage treatment plant effluent, SNC does not expect plant operations to stimulate growth or reproduction of thermophilic microorganisms.

Table 6-1. Environmental Impacts Related to License Renewal at FNP.

No.	Issue	Environmental Impact Small. The largest modeled induced current under the FNP transmission lines would be 5.1 milliamperes (Farley- Snowdown Line). Because the NESC limit specifies only one significant digit (5 milliamperes), FNP transmission lines conform to NESC provisions for preventing electric shock from induced current.		
59	Electric shock from transmission-line-induced current			
		Socioeconomics		
63	Housing impacts	None. SNC anticipates no additional employment.		
65	Public services: public utilities	None. SNC anticipates no additional employment.		
66	Public services: education (refurbishment)	None. No impacts are expected because FNP will not undertake refurbishment.		
68	Offsite land use (refurbishment)	None. No impacts are expected because FNP will not undertake refurbishment.		
69	Offsite land use (license renewal term)	Small. No Plant-induced changes to offsite land use are expected from license renewal. Impacts from continued operation would be positive.		
70	Public services: transportation	None. SNC anticipates no additional employment		
71	Historic and archaeological resources	Small. Continued operation of FNP would not require construction at the site or new transmission lines. SNC is not currently aware of plant-related activities affecting archaeological or historic sites of significance within the area. Therefore, SNC concludes that license renewal would not adversely affect historic or archaeological resources.		
		Postulated Accidents		
76	Severe accidents	None. All candidate SAMAs had costs that exceeded any attainable benefit.		

Table 6-1.	Environmental Im	npacts Relate	d to License	Renewal at FNP.	(Cont'd)
		ipaolo iloialo			(0000000)

PAGE INTENTIONALLY LEFT BLANK

7.0 ALTERNATIVES TO THE PROPOSED ACTION

NRC

The environmental report shall discuss "Alternatives to the proposed action...." 10 CFR 51.45(b)(3), as adopted by reference at 10 CFR 51.53(c)(2).

"...The report is not required to include discussion of need for power or economic costs and benefits of ... alternatives to the proposed action except insofar as such costs and benefits are either essential for a determination regarding the inclusion of an alternative in the range of alternatives considered or relevant to mitigation" 10 CFR 51.53(c)(2).

"...While many methods are available for generating electricity, and a huge number of combinations or mixes can be assimilated to meet a defined generating requirement, such expansive consideration would be too unwieldy to perform given the purposes of this analysis. Therefore, NRC has determined that a reasonable set of alternatives should be limited to analysis of single, discrete electric generation sources and only electric generation sources that are technically feasible and commercially viable...." (NRC 1996b, Section 8.1, pg. 8-1).

"...The consideration of alternative energy sources in individual license renewal reviews will consider those alternatives that are reasonable for the region, including power purchases from outside the applicant's service area...." (NRC 1996g, Section II.H, page 66541, Column 3).

Chapter 7 addresses alternatives to FNP license renewal. The chapter evaluates what might happen if NRC did not renew the Plant operating licenses: what alternative actions might be undertaken; which alternatives are not reasonable and why; and, for reasonable alternatives, what the associated environmental impacts might be. Chapter 8 compares these impacts to those associated with license renewal.

In determining the level of detail and analysis that it should provide in Chapter 7, SNC relied on the NRC decision-making standard for license renewal:

"...the NRC staff, adjudicatory officers, and Commission shall determine whether or not the adverse environmental impacts of license renewal are so great that preserving the option of license renewal for energy planning decision makers would be unreasonable." [10 CFR 51.95(c)(4)].

SNC has determined that the environmental report would support NRC decision making so long as the document provides sufficient information to clearly indicate whether an alternative would have a smaller, comparable, or greater environmental impact than the proposed action. Providing additional detail or analysis serves no function if it only brings to light, for example, additional adverse impacts of alternatives to license renewal. This approach is consistent with regulations of the CEQ, which provide that the consideration of alternatives (including the proposed action) should enable reviewers to evaluate their comparative merits (40 CFR 1500-1508). SNC believes that Chapter 7 provides sufficient detail about alternatives to establish the basis for necessary comparisons to the **Chapter 4** discussion of impacts from the proposed action.

7.1 NO-ACTION ALTERNATIVE

7.1.1 Decommissioning

Regardless of whether NRC renews the FNP operating licenses, and regardless of which alternatives are undertaken should NRC not renew the licenses, SNC must comply with NRC requirements for decommissioning a nuclear power plant.

The GEIS (NRC 1996b, pg. 7-1) defines decommissioning as the safe removal of a nuclear facility from service and the reduction of residual radioactivity to a level that permits release of the property for unrestricted use and termination of the license. NRC-evaluated decommissioning options include immediate decontamination and dismantlement (DECON) and safe storage of the stabilized and defueled facility (SAFSTOR) for a period of time, followed by decontamination and dismantlement. Regardless of the option chosen, decommissioning must be completed within a 60-year period. Under the no-action alternative, SNC would continue operating FNP until the current license expires, and then initiate decommissioning activities in accordance with NRC requirements.

The GEIS describes decommissioning activities based on an evaluation of an example reactor (the "reference" pressurized-water reactor is the 1,175 MWe Trojan Nuclear Plant). This description is comparable to decommissioning activities that SNC would conduct at FNP, although SNC notes that the FNP units are smaller than the referenced reactor.

As the GEIS notes, NRC has evaluated environmental impacts from decommissioning. NRC-evaluated impacts include occupational and public radiation dose, impacts of waste management, impacts to air and water quality, and ecological, economic, and socioeconomic impacts. In its GEIS on decommissioning, NRC indicated that the environmental effects of greatest concern (i.e., radiation dose and releases to the environment) are substantially less than the same effects resulting from reactor operations (NRC 1988, Section 4). SNC adopts by reference the NRC conclusions regarding environmental impacts of decommissioning.

SNC notes that decommissioning activities and their impacts are not discriminators between the proposed action and the no-action alternative. SNC will have to decommission FNP; license renewal would only postpone decommissioning for 20 years. NRC has established in the GEIS that the timing of decommissioning operations does not substantially influence the environmental impacts of decommissioning). SNC adopts by reference NRC findings (10 CFR 51 Appendix B, Table B-1, Decommissioning) to the effect that delaying decommissioning until after the license renewal term would have small environmental impacts. The discriminators between the proposed action and the no-action alternative lie within the choice of options for replacing FNP capacity. Section 7.2.2 analyzes the impacts from these options.

SNC concludes that the decommissioning impacts under the no-action alternative would not be substantially different from those occurring following license renewal, as identified in the GEIS (NRC 1996b) and in the decommissioning GEIS (NRC 1988, Section 4.4). These impacts would be temporary and would occur at the same time as the impacts from meeting system generating needs.

7.1.2 Replacement Capacity

In 2000, FNP provided approximately 12.6 terawatt hours of electricity (**EIA 2001a**). (A terawatt hour is one billion kilowatt hours.) This is approximately 28 percent of the energy generated by nuclear power that Southern Company provides to its four million customers in Alabama, Georgia, Florida, and Mississippi (**SO 2001c**). SNC believes that any alternative would be unreasonable if it did not include replacing this capacity. Replacement could be accomplished by (1) building new generating capacity, (2) purchasing power from outside the SNC system, or (3) reducing power requirements through demand reduction. Section 7.2.1 describes each of these possibilities in detail, and Section 7.2.2 describes environmental impacts from feasible alternatives.

7.2 ALTERNATIVES THAT MEET SYSTEM GENERATING NEEDS

7.2.1 Alternatives Considered

7.2.1.1 Technology Choices

Although FNP is located in Alabama, much of the power generated by FNP is sold to SNC customers in Georgia, with a small portion going to Florida. Therefore, power generation in Alabama and Georgia is of interest for this evaluation. The current mix of power generation options in these states is one indicator of what have been considered to be feasible choices for electric generation technology within the SNC service area. SNC evaluated electric generation capacity and utilization characteristics for Alabama and Georgia. "Capacity" is how much of the various technology choices have been installed. "Utilization" is how much each choice is actually used.

In 1998, Alabama's electric utility industry had a total generating capacity of 21,292 MWe. As Figure 7-1 indicates, this capacity includes units fueled by coal (53.3 percent), nuclear (23.2 percent), oil (0.1 percent), gas (1.6 percent), dual (e.g., oil/gas)-fired (7.7 percent), and hydroelectric (14.1 percent). Approximately 1,080 MWe (4.8 percent of the state's generating capacity) were from non-utility sources (EIA 2000a, Table 4). Non-utility generators also use a variety of energy sources.

Georgia's electric utility industry had a total generating capacity of 23,391 MWe in 1998. As Figure 7-2 indicates, this capacity includes units fueled by coal (57.9 percent), nuclear (16.9 percent), oil (4.4 percent), gas (0.1 percent), dual (e.g., oil/gas)-fired (6.0 percent), and hydroelectric (14.8 percent). Approximately 1,692 MWe (6.7 percent of the State's generating capacity) were from non-utility sources (EIA 2000b, Table 4). Like Alabama, Georgia's non-utility generators use a variety of energy sources.

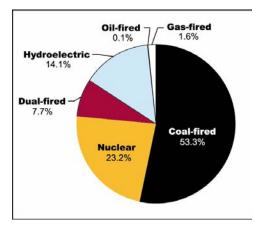


Figure 7-1. Alabama Utility Generating Capacity, 1998

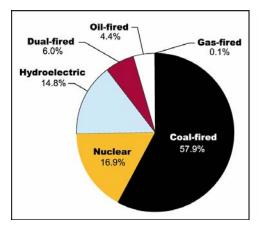


Figure 7-2. Georgia Utility Generating Capacity, 1998

Based on 1998 generation data, Alabama utility companies provided 113 terawatt hours of electricity. As Figure 7-3 depicts, utilities' generation utilization in Alabama was primarily from coal (63 percent), followed by nuclear (25.3 percent), hydroelectric (9.3 percent), gas (2.2 percent), and oil (0.2 percent). Approximately 6.6 terawatt hours of electricity (5.5 percent of the State's generation) were provided by non-utility sources (EIA 2000a, Table 5).

In 1998, utility companies in Georgia provided 109 terawatt hours of electricity. As Figure 7-4 depicts, utilities' generation utilization in Georgia was primarily from coal (64.3 percent), followed by nuclear (28.9 percent), hydroelectric (4.6 percent), gas (1.6 percent), and oil (0.6 percent). Non-utility sources provided approximately 6.6 terawatt hours of electricity (5.7 percent of the State's generation) (EIA 2000b, Table 5).

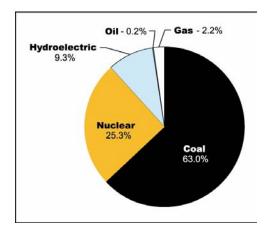


Figure 7-3. Alabama Utility Generation Utilization, 1998

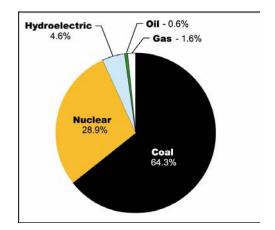


Figure 7-4. Georgia Utility Generation Utilization, 1998

The difference between capacity and utilization is the result of preferential usage. For example, in Georgia in 1998, nuclear energy represented 16.9 percent of utilities' installed capacity, but produced 28.9 percent of the electricity generated by utilities (EIA 2000b, Tables 4 and 5, respectively). This reflects Georgia's preference for reliance on nuclear energy as a base-load generating source. Alabama also has a preference for reliance on nuclear energy for base-load generation, but to a lesser extent.

7.2.1.2 Effects of Deregulation

Nationally, the electric power industry has been undergoing a transition from a regulated monopoly structure to a competitive market environment. Efforts to deregulate the electric utility industry began with passage of the National Energy Policy Act of 1992. Provisions of this Act required electric utilities to allow open access to their transmission lines and encouraged development of a competitive wholesale market for electricity. The Act did not mandate competition in the retail market, leaving that decision to the states (**NEI 2000**).

Over the past few years, deregulation of the electric utility industry has received considerable attention at the state level. Twenty-four states and the District of Columbia have passed legislation or issued regulatory orders that will allow their consumers access to competitive electricity retail markets. The relatively high prices for electricity in these states was a primary driver for development of competitive retail markets for electricity, and do not feel an immediate need to restructure (EIA 2000c). Nevertheless, both Alabama and Georgia have been studying the issue of electric power industry restructuring, or deregulation.

Limited retail competition has been present in Georgia since the 1973 passage of the Georgia Territorial Electric Service Act. This Act provides to customers with loads of at least 900 kilowatts a choice in electric service suppliers. In January 1997, the Georgia Public Service Commission (GPSC) initiated a study to evaluate the advantages and disadvantages of expanding retail competition in Georgia's electric industry. On January 23, 1998, the GPSC published a report that identified issues that must be resolved if full retail competition is to come to the electric industry, and provided a set of guiding principles for

continuing examination of electric industry restructuring. The GPSC report also concluded that Georgia's electric power industry would be restructured at some point in the future (GPSC 1998).

In October 2000, the Alabama Public Service Commission (APSC) completed a two-year study of electricity industry restructuring. The APSC study did not rule out the possibility that the electric power industry could be restructured in the future. However, it did conclude that restructuring of the electric utility industry in Alabama is not in the public interest at this time because safe, reliable, and efficient energy services at a reasonable price could not be guaranteed. Moreover, the APSC would not mandate retail competition or electric industry restructuring without enabling state legislation (APSC 2000).

If the electric power industry is deregulated, full retail competition would replace the electric utilities' mandate to serve the public, and all electricity customers in an area would be able to choose among competing power suppliers, including those located outside their respective states. As such, electric generation would be based on customers' needs and preferences, the lowest price, or the best combination of prices, services, and incentives.

It is not clear whether SNC or another supplier would construct new generating units to replace those at FNP, if its licenses were not renewed. However, regardless of which entities construct and operate the replacement power supply, certain environmental parameters would be constant among these alternative power sources. Therefore, Chapter 7 discusses the impacts of reasonable alternatives to FNP license renewal without regard to whether they would be implemented by SNC.

7.2.1.3 Mixture

NRC indicated in the GEIS that, while many methods are available for generating electricity and a huge number of combinations or mixes can be assimilated to meet system needs, such expansive consideration would be too unwieldy, given the purposes of the alternatives analysis. Therefore, NRC determined that a reasonable set of alternatives should be limited to analysis of single discrete electrical generation sources and only those electric generation technologies that are technically feasible and commercially viable (NRC 1996b, pg. 8-1). Consistent with the NRC determination, SNC has not evaluated mixes of generating sources. The impacts from coal- and gas-fired generation presented in this chapter would bound the impacts from any generation mixture of the two technologies.

7.2.1.4 Fossil-Fuel-Fired Generation

SNC analyzed locating hypothetical new coal- and gas-fired units at the existing FNP site. Using an existing site could minimize environmental impacts by building on previously disturbed land and by making the most use possible of existing facilities such as transmission lines, roads and parking areas, office buildings, and the cooling system. Locating hypothetical units at the existing site has, therefore, been applied to the coal-and gas-fired units.

It must be emphasized that these are hypothetical scenarios. SNC does not have plans for such construction at the FNP site.

Coal-Fired Generation

NRC has evaluated coal-fired generation alternatives for the Oconee Nuclear Station (NRC 1999c, Section 8.2.1). For Oconee, NRC analyzed 2,500 MWe of coal-fired generation capacity. SNC has reviewed the NRC analysis, believes it to be sound, and notes that it analyzed substantially more generating capacity than the 1,699 MWe (EIA 2001a) discussed in this analysis. In defining the FNP coal-fired alternative, SNC has used site- and Alabama-specific input and has scaled from the NRC (Oconee Nuclear Station) analysis, where appropriate.

SNC defined the FNP coal-fired alternative as consisting of two 800-MWe units. SNC chose this configuration to be equivalent to the gas-fired alternative described below. This equivalency makes impact characteristics most comparable, facilitating impact analysis.

Table 7-1 describes assumed basic operational characteristics of the coal-fired units. SNC based its emission control technology and percent-control assumptions on alternatives that the U.S. Environmental Protection Agency (EPA) has identified as being available for minimizing emissions (EPA 1998). For the purposes of analysis, SNC has assumed that coal and lime (calcium oxide) would be delivered by rail after upgrading the existing rail spur into FNP.

Gas-Fired Generation

SNC has chosen to evaluate gas-fired generation, using combined-cycle turbines, because it has determined that the technology is mature, economical, and feasible. A scenario, for example, of three units with a net capacity of 566 MWe each could be assumed to replace the 1,699-MWe FNP total net capacity. However, SNC's experience indicates that, although customized unit sizes can be built, using standardized sizes is more economical. Existing manufacturers' standard-sized units include a gas-fired combined-cycle plant of 800-MWe net capacity, consisting of three 184-MWe gas turbines and 248 MWe of heat recovery capacity (e.g., General Electric Frame 7FB).

SNC assumed two 800-MWe units, having a total capacity of 1,600 MWe, as the gas-fired alternative at the FNP site. Although this provides less capacity than the existing unit (1,600 MWe for this alternative versus 1,699 MWe for existing capacity), it ensures against overestimating environmental impacts from the alternatives. The shortfall in capacity could be replaced by other methods, such as importing power. However, for the reasons discussed in Section 7.2.1.3, SNC did not analyze a mixture of these alternatives and imported power.

Table 7-2 describes assumed basic operational characteristics of the gas-fired units. As for the coal-fired alternative, SNC based its emission control technology and percent-control assumptions on alternatives that EPA has identified as being available for minimizing emissions (EPA 1998). For the purposes of analysis, SNC has assumed that it would ensure gas availability through its parent organization, Southern Company.

7.2.1.5 Purchased Power

SNC has evaluated conventional and prospective power supply options that could be reasonably implemented before the current FNP license expires. Southern Company has entered into long-term purchase contracts with several entities to provide firm capacity and energy. Because these contracts are part of SNC's current and future capacity, SNC does not consider these power purchases to be a feasible option for the purchased power alternative.

Alabama is a net exporter of power; in 1999, the State exported 103 gigawatt-hours of electricity (**EIA 2001b**, Table 17). On the other hand, Georgia (historically a net exporter of power) imported 1.8 gigawatt-hours of electricity in 1999 (EIA 2001b, Table 77). Therefore, in 1999, approximately 101 gigawatt-hours of electricity were exported from the two-state region. Some of the exported power may be the result of purchase contracts, which would prevent SNC from using this power to replace FNP generation. However, SNC cannot rule out the possibility that power would be available for purchase as an alternative to FNP license renewal. Therefore, SNC has analyzed purchased power as a reasonable alternative.

SNC assumes that the generating technology used to produce purchased power would be one of those that NRC analyzed in the GEIS. For this reason, SNC is adopting by reference the GEIS description of the alternative generating technologies as representative of the purchased power alternative.

7.2.1.6 Demand-Side Management

SNC's parent company, Southern Company, has an extensive demand-side management (DSM) program that reduces generation needs through a combination of energy conservation, efficiency, and load management programs (**SO undated**). Southern Company's DSM programs fall into the following categories:

Conservation Programs

• Educational programs that encourage the wise use of energy.

Energy Efficiency Programs

- Discounted residential rates for Good Cents homes and homes that meet specific energy efficiency standards
- Incentive programs that encourage customers to replace old, inefficient appliances or equipment with new high-efficiency appliances or equipment
- Load-based pricing that encourages customers to use electricity more efficiently
- Government partnerships that assist federal facilities in meeting mandated energy efficiency goals through design and installation of high-efficiency lighting systems and computerized energy management.

Load Management Programs

- Standby Generator Program that encourages customers to let Southern Company switch loads to the customer's standby generators during periods of peak demand
- Interruptible Service Program that encourages customers to allow blocks of their loads to be interrupted during periods of peak demand
- Real-Time Pricing that encourages customers to reduce usage during specific times
- Time-of-Use Pricing that encourages customers to discontinue usage during periods of peak demand.

Southern Company annually projects both the summer and winter peak power (in megawatts [MW]), annual energy requirements (in gigawatt-hours), and impacts of DSM. Projections for future DSM show substantial decreases in DSM initiatives that were in effect during past years. Market conditions, which provided the initial support for utility-sponsored conservation and load management efforts during the late 1970s and early 1980s, can be broadly characterized by:

- Increasing long-term marginal prices for capacity and energy production resources
- Forecasts projecting increasing demand for electricity across the nation
- General agreement that conditions (1) and (2) would continue for the foreseeable future
- Limited competition in the generation of electricity
- Economies of scale in the generation of electricity, which supported the construction of large central power plants, and

• The use of average embedded cost as the basis for setting electricity prices within a regulated context.

These market and regulatory conditions would undergo dramatic changes in a deregulated market. Changes that have significantly impacted the cost effectiveness of utility-sponsored DSM can be described as follows:

- 1. A decline in generation costs, due primarily to technological advances that have reduced the cost of constructing new generating units (e.g., combustion turbines), and
- 2. National energy legislation, which has encouraged wholesale competition through open access to the transmission grid, as well as state legislation designed to facilitate retail competition.

Consistent with (1) and (2) above, the utility planning environment features lower capacity and lower energy prices than during earlier periods, shorter planning horizons, lower reserve margins, and increased reliance on market prices to direct utility resource planning. These have greatly reduced the number of cost-effective DSM alternatives.

Other significant changes include the following.

- The adoption of increasingly stringent national appliance standards for most major energy-using equipment and the adoption of energy efficiency requirements in state building codes. These mandates have further reduced the potential for cost-effective utility-sponsored measures.
- In states that are currently transitioning into deregulation, third parties are increasingly providing energy services and products in competitive markets at prices that reflect their value to the customer. Market conditions can be expected to continue this shift among providers of cost-effective load management.

For these reasons, SNC determined that the remaining DSM programs, which are primarily directed toward load management, are not an effective substitute for any of its large base-load units (such as FNP) that operate at high-capacity factors.

7.2.1.7 Other Alternatives

This section identifies alternatives that SNC has determined are not reasonable and the SNC basis for this determination. SNC accounted for the fact that FNP is a base-load generator and that any feasible alternative to FNP would also need to be able to generate base-load power. In performing this evaluation, SNC relied heavily upon NRC's GEIS (NRC 1996b, Section 8.3).

Wind

Wind power, by itself, is not suitable for large base-load capacity. As discussed in Section 8.3.1 of the GEIS, wind has a high degree of intermittence, and average annual capacity factors for wind plants are relatively low (less than 30 percent). Wind power, in conjunction with energy storage mechanisms, might serve as a means of providing base-load power. However, current energy storage technologies are too expensive for wind power to serve as a large base-load generator.

Wind power is not a technically feasible alternative in SNC's service area. According to the Wind Energy Resource Atlas of the United States (**NREL 1986**), areas suitable for wind energy applications must be wind power class 3 or higher. Alabama and Georgia do not have sufficient wind resources for wind energy applications (**NREL 1986**). More than 98 percent of the land area in Alabama has a wind power class of 1, with the remaining area rated as class 2. Nearly 94 percent of the land area in Georgia is less than wind power class 3. While some areas in Georgia are wind power class 3 or higher, these areas are

confined to exposed ridge crests and mountain summits in the northeastern part of the State, which makes them unsuitable for utility-scale wind energy applications (NREL 1986).

The GEIS estimates a land-use requirement of 150,000 acres per 1,000 MWe for wind power. Therefore, replacement of FNP generating capacity with wind power, even assuming ideal wind conditions, would require dedication of about 400 square miles. Based on the lack of sufficient wind speeds and the amount of land needed to replace FNP, the wind alternative would require a large greenfield site, which could result in a large environmental impact. Additionally, wind plants have aesthetic impacts, generate noise, and kill birds.

SNC has concluded that, due to the lack of area in Alabama and Georgia having suitable wind speeds and the amount of land needed (approximately 400 square miles), wind power is not a reasonable alternative to FNP license renewal.

Solar

By its nature, solar power is intermittent. In conjunction with energy storage mechanisms, solar power might serve as a means of providing base-load power. However, current energy storage technologies are too expensive to permit solar power to serve as a large base-load generator. Even without storage capacity, solar power technologies (photovoltaic and thermal) cannot currently compete with conventional fossil-fueled technologies in grid-connected applications, due to high costs per kilowatt of capacity. (NRC 1996b, Sections 8.3.2 and 8.3.3).

Solar power is not a technically feasible alternative for base-load capacity in SNC's service area. Alabama and Georgia receive about 4 kilowatt hours of solar radiation per square meter per day, compared with 5 to 7.2 kilowatt hours per square meter per day in areas of the West, such as California, which are most promising for solar technologies (NRC 1996b, Sections 8.3.2 and 8.3.3).

Finally, according to the GEIS, land requirements for solar plants are high, at 35,000 acres per 1,000 MWe for photovoltaic and 14,000 acres per 1,000 MWe for solar thermal systems. Therefore, replacement of FNP generating capacity with solar power would require dedication of about 97 square miles for photovoltaic and 40 square miles for solar thermal systems. Neither type of solar electric system would fit at the FNP site, and both would have large environmental impacts at a greenfield site.

SNC has concluded that, due to the high cost, limited availability of sufficient incident solar radiation, and amount of land needed (approximately 40 to 97 square miles), solar power is not a reasonable alternative to FNP license renewal.

Hydropower

A portion (about 6,500 MW) of utility generating capacity in the two-state region is hydroelectric. As the GEIS points out in Section 8.3.4, hydropower's percentage of United States generating capacity in the two-state region is expected to decline because hydroelectric facilities have become difficult to site as a result of public concern over flooding, destruction of natural habitat, and alteration of natural river courses. According to the *U.S. Hydropower Resource Assessment for Alabama* (INEL 1998a), there are no remaining sites in Alabama that would be environmentally suitable for a large hydroelectric facility. Similarly, the *U.S. Hydropower Resource Assessment for Georgia* (INEL 1998b), indicates that there are no environmentally suitable sites remaining in Georgia that could be used for a large hydroelectric facility.

The GEIS (Section 8.3.4) estimates land use of 1,600 square miles per 1,000 MWe for hydroelectric power. Based on this estimate, replacement of FNP generating capacity would require flooding more than 2,800 square miles, resulting in a large impact on land use. Further, operation of a hydroelectric facility would alter aquatic habitats above and below the dam, which would impact existing aquatic communities.

SNC has concluded that, due to the lack of suitable sites in the two-state region and the amount of land needed (approximately 2,800 square miles), hydropower is not a reasonable alternative to FNP license renewal.

Geothermal

As illustrated by Figure 8.4 in the GEIS, geothermal plants might be located in the western continental United States, Alaska, and Hawaii, where hydrothermal reservoirs are prevalent. However, because there are no high-temperature geothermal sites in Alabama or Georgia, SNC concludes that geothermal is not a reasonable alternative to FNP license renewal.

Wood Energy

As discussed in the GEIS (**NRC 1996b**), the use of wood waste to generate electricity is largely limited to those states with significant wood resources, such as California, Maine, Georgia, Minnesota, Oregon, Washington, and Michigan. According to the U.S. Department of Energy, Alabama is also considered to have an excellent wood resource potential (**DOE 2001**). The pulp, paper, and paperboard industries in states with adequate wood resources generate electric power by consuming wood and wood waste for energy, benefiting from the use of waste materials that could otherwise represent a disposal problem. However, the largest wood waste power plants are 40 to 50 MW in size.

Further, as discussed in Section 8.3.6 of the GEIS, construction of a wood-fired plant would have an environmental impact that would be similar to that for a coal-fired plant, although facilities using wood waste for fuel would be built on smaller scales. Like coal-fired plants, wood-waste plants require large areas for fuel storage, processing, and waste disposal (i.e., ash). Additionally, operation of wood-fired plants has environmental impacts, including impacts on the aquatic environment and air. Wood has a low heat content which makes it unattractive for base-load applications. It is also difficult to handle and has high transportation costs.

While wood resources are available in Alabama and Georgia, SNC has concluded that, due to the lack of an obvious environmental advantage, low heat content, handling difficulties, and high transportation costs, wood energy is not a reasonable alternative to FNP license renewal.

Municipal Solid Waste

As discussed in Section 8.3.7 of the GEIS, the initial capital costs for municipal solid waste plants are greater than for comparable steam turbine technology at wood-waste facilities. This is due to the need for specialized waste separation and handling equipment.

The decision to burn municipal solid waste to generate energy is usually driven by the need for an alternative to landfills, rather than by energy considerations. The use of landfills as a waste disposal option is likely to increase in the near term; however, it is unlikely that many landfills will begin converting waste to energy because of unfavorable economics, particularly with electricity prices declining.

Estimates in the GEIS suggest that the overall level of construction impacts from a waste-fired plant should be approximately the same as that for a coal-fired plant. Additionally, waste-fired plants have the same or greater operational impacts (including impacts on the aquatic environment, air, and waste disposal). Some of these impacts would be moderate, but still larger than the environmental effects of FNP license renewal.

SNC has concluded that, due to the high costs and burning municipal solid waste to generate electricity is not a reasonable alternative to FNP license renewal.

Other Biomass-Derived Fuels

In addition to wood and municipal solid waste fuels, there are several other concepts for fueling electric generators, including burning energy crops, converting crops to a liquid fuel such as ethanol (ethanol is primarily used as a gasoline additive), and gasifying energy crops (including wood waste). As discussed in Section 8.3.8 of the GEIS, none of these technologies has progressed to the point of being competitive on a large scale or of being reliable enough to replace a base-load plant such as FNP.

Further, estimates in the GEIS suggest that the overall level of construction impacts from a crop-fired plant should be approximately the same as that for a wood-fired plant. Additionally, crop-fired plants would have similar operational impacts (including impacts on the aquatic environment and air). In addition, these systems have large impacts on land use, due to the acreage needed to grow the energy crops.

SNC has concluded that, due to the high costs and burning other biomass-derived fuels is not a reasonable alternative to FNP license renewal.

Oil

Both Alabama and Georgia have several oil-fired power plants; however, they produce less than three percent of the two-state region's power generation. Oil-fired operation is more expensive than nuclear or coal-fired operation. In addition, future increases in oil prices are expected to make oil-fired generation increasingly more expensive than coal-fired generation. The high cost of oil has prompted a steady decline in its use for electricity generation. From 1998 to 1999, utilities reduced production of electricity by oil-fired plants by about 40 percent in Alabama and 2 percent in Georgia (EIA 2000c, Table A9).

Also, construction and operation of an oil-fired plant would have environmental impacts. For example, Section 8.3.11 of the GEIS estimates that construction of a 1,000-MWe oil-fired plant would require about 120 acres. Additionally, operation of oil-fired plants would have environmental impacts (including impacts on the aquatic environment and air) that would be similar to those from a coal-fired plant.

SNC has concluded that, due to the high costs oil-fired generation is not a reasonable alternative to FNP license renewal.

Fuel Cells

Phosphoric acid fuel cells are the most mature fuel cell technology, but they are only in the initial stages of commercialization. Two hundred turnkey plants have been installed in the United States, Europe, and Japan. Recent estimates suggest that a company would have to produce about 100 MW of fuel cell stacks annually to achieve a price of \$1,000 to \$1,500 per kilowatt. However, the current production capacity of all fuel cell manufacturers only totals about 75 MW per year. SNC believes that this technology has not matured sufficiently to support production for a facility the size of FNP. SNC has concluded that, due to cost and production limitations, fuel cell technology is not a reasonable alternative to FNP license renewal.

Delayed Retirement

In its planning SNC considered the delayed retirement of older, less-efficient baseload plants. However, the cost of refurbishing these plants to make them more efficient and meet future emission limits would exceed the cost of building new plants. For this reason, SNC has determined that delayed retirement of other Southern Company generating units would not be a feasible alternative to FNP license renewal. SNC concludes that the environmental impacts of such a scenario are bounded by its coal- and gas-fired alternatives.

7.2.2 Environmental Impacts of Alternatives

This section evaluates the environmental impacts from what SNC has determined to be reasonable alternatives to FNP license renewal: coal-fired generation, gas-fired generation, and purchased power.

In characterizing environmental impacts from alternatives, SNC has used the same definitions of "small," "moderate," and "large" that are presented in the Chapter 4 Introduction.

7.2.2.1 Coal-Fired Generation

NRC evaluated environmental impacts from coal-fired generation alternatives in the GEIS (NRC 1996b, Section 8.3.9) and concluded that construction impacts could be substantial, due in part to the large land area required (which can result in natural habitat loss) and the large workforce needed. NRC pointed out that siting a new coal-fired plant where an existing nuclear plant is located would reduce many construction impacts. NRC identified major adverse impacts from operations as human health concerns associated with air emissions, waste generation, and losses of aquatic biota due to cooling water withdrawals and discharges.

The coal-fired alternative defined by SNC in Section 7.2.1.4 would be located at FNP.

Air Quality

Air quality impacts of coal-fired generation are considerably different from those of nuclear power. A coal-fired plant would emit sulfur oxides (SO_x) , nitrogen oxides (NO_x) , particulate matter, and carbon monoxide, all of which are regulated pollutants. SNC has assumed a plant design that would minimize air emissions through a combination of boiler technology and post-combustion pollutant removal (see **Table 7-1**). SNC estimates the coal-fired alternative emissions to be as follows:

Sulfur oxides = 5,447 tons per year

Oxides of nitrogen = 1,419 tons per year

Carbon monoxide = 1,463 tons per year

Particulates:

Total suspended particulates = 275 tons per year

PM₁₀ (particulates having a diameter of less than 10 microns) = 63 tons per year

Table 7-3 shows how SNC calculated these emissions.

In 1998, emissions of oxides of sulfur and nitrogen from Alabama's generators ranked 10th and 12th nationally, respectively, while Georgia's generators emissions of oxides of sulfur and nitrogen ranked 9th and 11th nationally, respectively (EIA 2000a and EIA 2000b). The acid rain requirements of the Clean Air Act Amendments capped the nation's sulfur dioxide (SO₂) emissions from power plants. Each company having fossil-fuel-fired units was allocated SO₂ allowances. To be in compliance with the Act, the companies must hold enough allowances to cover their annual SO₂ emissions. To operate a fossil-fuel burning plant at FNP, SNC would have to purchase SO₂ allowances from the open market or shut down existing fossil-fired capacity and apply the credits from that plant to the new one.

In October 1998, EPA promulgated the NO_x State Implementation Plan (SIP) Call regulation that requires 22 states, including Alabama and Georgia, to reduce their NO_x emissions by more than 30 percent to address national ozone limits. Final SIPs were originally required by September 1999. However, in May 1999, the District of Columbia Circuit Court of Appeals issued an order staying the September 1999 SIP submittal deadline until "further action of the Court." In March 2000, the Court largely upheld the NO_x SIP

Call rule and cleared the way for EPA to implement the program. For Georgia, the rule was vacated and EPA was required to repropose the rule for the northern two-thirds of the State. EPA also agreed to exclude the southern third of Alabama and the southern third of Georgia because modeling results do not show an impact on any out-of-state nonattainment area from sources in these regions. The regulation imposes an NO_x "budget" to limit NO_x emissions from certain regions of each State. The District of Columbia Circuit Court of Appeals extended the actual implementation date from May 31, 2003, to May 31, 2004. Final state budgets, allocations, trading programs, and other details are still being developed (SO 2000b). Because their programs are under development, it is unclear how Alabama and Georgia will implement the new regulation. Although FNP is located in a federally exempted area, the State of Alabama may require SNC to obtain enough NO_x credits to cover annual emissions in order to operate a fossil-fuel-fired plant at the FNP site.

NRC did not quantify coal-fired emissions, but implied that air impacts would be substantial. NRC noted that adverse human health effects from coal combustion have led to important federal legislation in recent years and that public health risks, such as cancer and emphysema, have been associated with coal combustion. NRC also mentioned global warming and acid rain as potential impacts. SNC concludes that federal legislation and concerns, such as global warming and acid rain, are indications of concerns about destabilizing important attributes of air resources. However, SO₂ emission allowances, NO_x emission offsets, low NO_x burners, overfire air, fabric filters or electrostatic precipitators, and scrubbers are regulatorily imposed mitigation measures. As such, SNC concludes that the coal-fired alternative would have moderate impacts on air quality; the impacts would be clearly noticeable, but would not destabilize air quality in the area.

Waste Management

SNC concurs with the GEIS assessment that the coal-fired alternative would generate substantial solid waste. The coal-fired plant, using coal having an ash content of 9.4 percent, would annually consume approximately 5,850,000 tons of coal (Table 7-3). Particulate control equipment would collect most (99.9 percent) of this ash, approximately 549,000 tons per year. SO₂-control equipment, annually using about 179,000 tons of limestone (calcium carbonate), would generate another 213,000 tons per year of waste in the form of scrubber sludge. SNC estimates that ash and scrubber waste disposal over a 40-year plant life would require approximately 426 acres (approximately 4,300 × 4,300 feet). While only half this waste volume and land use would be attributable to the 20-year license renewal period alternative, the total numbers are pertinent as a cumulative impact. Table 7-4 shows how SNC calculated ash and scrubber waste volumes.

While adequate space within the site footprint would be available for ash and scrubber waste disposal, the waste pile would probably be located in a previously undisturbed area. This would result in a large impact on ecological resources due to the loss of natural habitat, but would not destabilize the ecology of the area. Cultural resource impacts could also be impacted, but impacts could be minimized through implementation of survey and recovery techniques. SNC believes that, with proper siting coupled with current waste management and monitoring practices, waste disposal would not destabilize any other resources. After closure of the waste site and revegetation, the land would be available for other uses. For these reasons, SNC believes that waste disposal for the coal-fired alternative would have moderate impacts; the impacts of increased waste disposal would be clearly noticeable, but would not destabilize any important resource and further mitigation would be unwarranted.

Other Impacts

Construction of the powerblock and coal storage area would impact approximately 300 acres of land and associated terrestrial habitat. Because most of this construction would be in previously disturbed areas, impacts would be minimal. Visual impacts would be consistent with the industrial nature of the site. As with any large construction project, some erosion and sedimentation and fugitive dust emissions could be anticipated, but would be minimized by using best management practices. Construction debris from clearing and grubbing could be disposed of onsite and municipal waste disposal capacity would be available. Socioeconomic impacts from the construction workforce would be moderate because worker

relocation would be expected, due to the site's remote location. Cultural resource impacts would be unlikely, due to the previously disturbed nature of the site, and could be minimized by survey and recovery techniques (if needed).

Impacts to aquatic resources and water quality would be minimized due to the Plant's use of the existing cooling water system. The new stacks, and boilers, and increased rail deliveries to the site would be a major aesthetic impact compared to the existing FNP structures and operations, visible from both State Road 95 and the Chattahoochee River. Coal delivery would add noise and transportation impacts associated with unit-train traffic. SNC estimates it would require 300 employees to operate the two-unit facility. Because a coal-fired plant would require fewer workers than the 830 permanent employees at FNP, socioeconomic impacts from workforce reduction would be moderate, due to the site's location in a rural area.

SNC believes that other construction and operation impacts would be small. In most cases, the impacts would be detectable, but they would not be clearly noticeable and would not destabilize any important attribute of the resource involved. Due to the minor nature of these impacts, mitigation would not be warranted beyond that mentioned.

7.2.2.2 Gas-Fired Generation

NRC evaluated environmental impacts from gas-fired generation alternatives in the GEIS, focusing on combined-cycle plants. **Section 7.2.1.4** presents SNC's reasons for defining the gas-fired generation alternative as a combined-cycle plant on the FNP site. Land-use impacts from gas-fired units on the site would be less than those of the coal-fired alternative. Reduced land requirements, due to construction on the existing site and a smaller facility footprint, would reduce impacts to ecological, aesthetic, and cultural resources as well. A smaller workforce could have adverse socioeconomic impacts. Human health effects associated with air emissions would be of concern. Aquatic biota losses due to cooling water withdrawals would be offset by the concurrent shutdown of the nuclear generators.

The gas-fired alternative defined by SNC in Section 7.2.1.4 would be located at FNP.

Air Quality

Natural gas is a relatively clean-burning fossil fuel. Also, because the heat recovery steam generator does not receive supplemental fuel, the combined-cycle operation is highly efficient (56 percent vs. 33 percent for the coal-fired alternative). Therefore, the gas-fired alternative would release similar types of emissions, but in lesser quantities than the coal-fired alternative. Control technology for gas-fired turbines focuses on NO_x emissions. SNC estimates the gas-fired alternative emissions to be as follows:

Sulfur oxides = 125 tons per year

Oxides of nitrogen = 401 tons per year

Carbon monoxide = 83 tons per year

Filterable Particulates = 70 tons per year (all particulates are PM₁₀)

 Table 7-5 shows how SNC calculated these emissions.

The Section 7.2.2.1 discussion of regional air quality, Clean Air Act requirements, and the NO_x SIP Call is also applicable to the gas-fired generation alternative. NO_x effects on ozone levels, SO₂ allowances, and NO_x emission offsets could all be issues of concern for gas-fired combustion. While gas-fired turbine emissions are less than coal-fired boiler emissions, and regulatory requirements are less stringent, the emissions are still substantial. SNC concludes that emissions from a gas-fired alternative located at FNP would noticeably alter local air quality, but would not destabilize regional resources. Air quality impacts would therefore be moderate, but substantially smaller than those of coal-fired generation.

Waste Management

Gas-fired generation would result in almost no waste generation, producing minor (if any) impacts. SNC concludes that gas-fired generation waste management impacts would be small.

Other Impacts

Similar to the coal-fired alternative, the ability to construct the gas-fired alternative on the existing FNP site would reduce construction-related impacts.

To the extent practicable, SNC would route the gas pipeline along previously disturbed ROWs to minimize impacts. However, this would still be a costly (i.e., approximately \$1 million/mile) and potentially controversial action, with ecological impacts from installation of approximately 100 miles of buried 24-inch-diameter gas pipeline to FNP. The pipeline could require an additional 500 acres for an easement. SNC would mitigate the political impacts through public hearings and apply best management practices during construction, such as minimizing soil loss and restoring vegetation immediately after an excavation is backfilled. Construction would result in the loss of some less mobile animals (e.g., frogs and turtles). Because these animals are common throughout the area, SNC expects negligible reduction in their populations as a result of construction. SNC does not expect that installation of a pipeline would create a long-term reduction in the local or regional diversity of plants and animals.

NRC estimated in the GEIS that 110 acres would be needed for a plant site; this much previously disturbed acreage is available at FNP, reducing loss of terrestrial habitat. Erosion and sedimentation, fugitive dust, and construction debris impacts would be similar to the coal-fired alternative, but smaller because of the reduced site size. Aesthetic impacts would be small because turbines and stacks would have visual impacts similar to the existing FNP facilities. Socioeconomic impacts of construction would be minimal. However, the GEIS estimates a work force of 150 for gas operations. SNC would expect this number to be closer to 25 - 40 workers for a plant of this size. This reduction in the current workforce would result in adverse socioeconomic impacts. SNC believes these impacts would be moderate, due to the rural location of the site.

7.2.2.3 Purchased Power

As discussed in **Section 7.2.1.5**, SNC assumes that the generating technology used under the purchased power alternative would be one of those that NRC analyzed in the GEIS. SNC is also adopting by reference the NRC analysis of environmental impacts from those technologies. Under the purchased power alternative, therefore, environmental impacts would still occur, but would be located elsewhere within the State. SNC believes that out-of-state imports would not be required.

The purchased power alternative would include constructing up to 200 miles of high-voltage (i.e., 500-kV) transmission lines to get power from remote locations in Alabama to the SNC network. SNC believes most of the transmission lines could be routed along existing ROWs and assumes that the environmental impacts of transmission line construction would be moderate. Environmental impacts of construction and operation of new coal- or gas-fired generating capacity for purchased power at a previously undisturbed greenfield site would exceed those of a coal- or gas-fired alternative located on the FNP site.

Table 7-1. Coal-Fired Alternative.

Characteristic	Basis
Unit size = 800 MW ISO rating net ^a	Set to match capacity of gas-fired alternative
Unit size = 848 MW ISO rating gross ^a	Calculated based on 6 percent onsite power
Number of units = 2	Calculated to be < FNP Units 1 & 2 total net capacity of 1,699 MW
Boiler type = tangentially fired, dry-bottom	Minimizes nitrogen oxides emissions (EPA 1998 Table 1.1-3, pg. 1.1-17)
Fuel type = bituminous, pulverized coal	Typical for coal used in Alabama
Fuel heating value = 11,009 Btu/lb	1999 value for coal used in Alabama (EIA 2000d Table 28)
Fuel ash content by weight = 9.4 percent	1999 value for coal used in Alabama (EIA 2000d Table 28)
Fuel sulfur content by weight = 0.98 percent	1999 value for coal used in Alabama (EIA 2000c Table 28)
Uncontrolled NO _x emission = 9.7 lb/ton Uncontrolled CO emission = 0.5 lb/ton	Typical for pulverized coal, tangentially fired, dry bottom, pre-NSPS with low - NO _x burner (EPA 1998, Table 1.1-3, pg. 1.1-17)
Heat rate = 10,200 Btu/kWh	Typical for coal-fired single-cycle steam turbines (EIA 2000d, pg. 108)
Capacity factor = 0.85	Typical for large coal-fired units (Southern Company experience)
NO_x control = low NO_x burners, overfire air and selective catalytic reduction (95 percent reduction)	Best available and widely demonstrated for minimizing NO _x emissions (EPA 1998, Table 1.1-2)
Particulate control = fabric filters (baghouse- 99.9 percent removal efficiency)	Best available for minimizing particulate emissions (EPA 1998, pp. 1.1-6 and -7)
SO _x control = Wet scrubber – limestone (95 percent removal efficiency)	Best available for minimizing SO _x emissions (EPA 1998, Table 1.1-1, pg. 1.1-13)

		relative humidity, and 14.696 pounds of atmospheric pressure per square inch
kWh	=	kilowatt hour
NSPS	=	New Source Performance Standard
lb	=	pound
MW	=	megawatt
NOx	=	nitrogen oxides
SOx	=	sulfur oxides
a. The c	liffere	nce between "net" and "gross" is electricity consumed onsite.

Table 7-2. Gas-Fired Alternative.

		Characteristic	Basis		
Thre	e 18	00 MW ISO rating net: ^a 4-MW combustion turbines and <i>N</i> heat recovery boiler	Manufacturer's standard size gas-fired combined cycle plant		
Unit size = 572-MW ISO rating gross: ^a Three 191.4-MW combustion turbines 257.8-MW heat recovery boiler			Calculated based on 4 percent onsite power		
Number	of ui	nits = 2	Provides 1600 MWe <u><</u> FNP Units 1 & 2 net capacity of 1,669 MWe		
Fuel type	e = n	atural gas	Assumed		
Fuel hea	ting	value = 1,019 Btu/ft ³	Manufacturer's standard size gas-fired combined cycle plant Calculated based on 4 percent onsite power Provides 1600 MWe ≤ FNP Units 1 & 2 net capacity of 1,669 MWe Assumed 1999 value for gas used in Alabama (EIA 2000d, Table 28) Used when sulfur content is not available (EPA 2000, Table 3.1-2a) Best available for minimizing NO _x emissions (EPA 2000, Table 3.1 Database Typical for large SCR-controlled gas-fired units with water injection (EPA 2000, Table 3.1 Database) Typical for large SCR-controlled gas-fired units (EPA 2000, Table 3.1) Manufacturer's listed heat rate for this unit. Typical for large gas-fired base load units		
Fuel sulfur content = 0.0034 lb/MMBtu			•		
NO _x control = selective catalytic reduction (SCR) with steam/water injection					
Fuel NO	_x cor	ntent = 0.0109 lb/MMBtu	with water injection (EPA 2000, Table 3.1		
Fuel CO	con	tent = 0.00226 lb/MMBtu			
Heat rate	e = 5	940 Btu/kWh	Manufacturer's listed heat rate for this unit.		
Capacity	fact	tor = 0.85	Typical for large gas-fired base load units		
Bţu	=	British thermal unit			
ft ³	=	cubic foot			
ISO rating = International Standards Organization rating a relative humidity, and 14.696 pounds of atmos					
kWh	=	kilowatt hour			
MM	=	million			
MW	=	megawatt			

	Emissions from Coal-Fired Alternative.	
Parameter	Calculation	Result
Annual coal consumption	$2 \text{ units} \times \frac{848 \text{ MW}}{\text{unit}} \times \frac{10,200 \text{ Btu}}{\text{kW} \times \text{hr}} \times \frac{1,000 \text{ kW}}{\text{MW}} \times \frac{\text{lb}}{11,009 \text{ Btu}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times 0.85 \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365 \text{ day}}{\text{yr}}$	5,850,206 tons of coal per year
SO _x ^{a,c}	$\frac{38 \times 0.98 \text{ lb}}{\text{ton}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times (100 - 95/100) \times \frac{5,850,206 \text{ tons}}{\text{yr}}$	5,447 tons SO _x per year
NO _x ^{b, c}	$\frac{9.7 \text{ lb}}{\text{ton}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times (100 - 95/100) \times \frac{5,850,206 \text{ tons}}{\text{yr}}$	1,419 tons NO _x per year
CO ^c	$\frac{0.5 \text{ lb}}{\text{ton}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times \frac{6,884,077 \text{ tons}}{\text{yr}}$	1,463 tons CO per year
TSP ^d	$\frac{10 \times 9.4 \text{ lb}}{\text{ton}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times (100 - 99.9/100) \times \frac{5,850,206 \text{ tons}}{\text{yr}}$	275 tons TSP per year
PM ₁₀ ^d	$\frac{2.3 \times 9.4 \text{ lb}}{\text{ton}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times (100 - 99.9/100) \times \frac{5,850,206 \text{ tons}}{\text{yr}}$	63 tons PM ₁₀ per year
$SO_2 = sulfur die$	oxides ites having diameter less than 10 microns oxide pended particulates ible 1.1-1. ible 1.1-2. ible 1.1-3.	

Table 7-3. Air Emissions from Coal-Fired Alternative.

Parameter	Calculation	Result						
Annual SO _x	$5,850,206$ tons coal \sim 0.98 tons \sim 64.1 tons SO ₂	114,607 tons of SO_x per						
generated ^a	$\frac{3,330,200 \text{ tors coal}}{\text{yr}} \times \frac{0.30 \text{ tors coal}}{100 \text{ tors coal}} \times \frac{04.1 \text{ tors } 30_2}{32.1 \text{ tors}}$	year						
Annual SO _x	114,607 tons SO ₂ × (95/100)	108,876 tons of SO _x per						
removed	yr ×(95/100)	year						
Annual ash	$\frac{5,850,206 \text{ tons coal}}{\times} \times \frac{9.4 \text{ tons ash}}{\times} \times (99.9/100)$	549,369 tons of ash per						
generated	yr 100 tons coal	year						
Annual	$\frac{114,607 \text{ tons SO}_2}{2} \times \frac{100 \text{ tons CaCO}_3}{2}$	178,794 tons of $CaCO_3$						
limestone consumption ^b	yr 64.1 tons SO ₂	per year						
Calcium sulfite ^c	$\frac{108,876 \text{ tons } \text{SO}_2}{\text{yr}} \times \frac{120 \text{ tons } \text{CaSO}_3}{64.1 \text{ tons } \text{SO}_2}$	203,825 tons of						
		CaSO ₃ ·per year						
Annual	$\frac{178,794 \text{ tons } \text{CaCO}_3}{\text{Vr}} \times \frac{(100-95)}{100} + 203,825 \text{ tons } \text{CaSO}_3$	212,765 tons of scrubbe						
scrubber waste ^d	yr 100	waste per year						
Total volume of	$\frac{212,765 \text{ tons}}{40 \text{ yr} \times \frac{2,000 \text{ lb}}{100 \text{ s}^2} \times \frac{\text{ft}^3}{1100 \text{ s}^3}$	117,575,503 ft ³ of						
scrubber waste ^e	$\frac{1}{\text{yr}} \times 40 \text{ yr} \times \frac{1}{\text{tons}} \times \frac{1}{144.8 \text{ lb}}$	scrubber waste						
Total volume of	$\frac{549,369 \text{ tons}}{40 \text{ yr}} \times 40 \text{ yr} \times \frac{2,000 \text{ lb}}{100 \text{ s}} \times \frac{\text{ft}^3}{100 \text{ s}^3}$	439,495,581 ft ³ of ash						
ash dispensed onsite ^{f,g}	yr ×40 yi × tons × 100 lb							
Total volume of	117,575,503 ft ³ + 439,495,581 ft ³	557,071,084 ft ³ of solid						
solid waste	· · · · · · · · · · · · · · · · · · ·	waste						
disposed onsite								
Waste pile	557,071,084 ft ³ acre	426 acres of solid waste						
area (acres)	$\frac{357,071,084}{30}$ ft $\times \frac{3612}{43,560}$ ft ²							
Waste pile	$\sqrt{(557,071,084 \text{ ft}^3/30\text{ft})}$	4,309 feet by 4,309 feet						
area (ft × ft square)		of solid waste						
S = sulf	fur							
	fur dioxide							
	cium oxide (lime) cium sulfate dihydrate							
a. Calculations a	assume 100 percent combustion of coal.							
 b. Lime consumption is based on total SO₂ generated. c. Calcium sulfate generation is based on total SO₂ removed. d. Total scrubber waste includes scrubbing media carryover. e. Density of CaSO₄·2H₂O is 144.8 lb/ft³. 								
							al bottom ash is 100 lb/ft ³ (FHA 1997).	
						g. Assumed 87 p	percent of ash is recycled.	

Table 7-4. Solid Waste from Coal-Fired Alternative.

Table 7-5. A	Air Emissions from Gas-Fired Alternative.	
Parameter	Calculation	Result
Annual gas consumptio n	$2 \text{ unit} \times \frac{832 \text{ MW}}{\text{ unit}} \times \frac{5,940 \text{ Btu}}{\text{kW} \times \text{hr}} \times \frac{1,000 \text{ kW}}{\text{MW}} \times 0.85 \times \frac{\text{ft}^3}{1,019 \text{ Btu}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365 \text{ day}}{\text{yr}}$	72,225,176,997 ft ³ per year
Annual Btu input	$\frac{72,225,176,997 \text{ ft}^3}{\text{yr}} \times \frac{1,019 \text{ Btu}}{\text{ft}^3} \times \frac{\text{MMBtu}}{10^6 \text{ Btu}}$	73,597,455 MMBtu per year
SO _x ^a	$\frac{0.0034 \text{ lb}}{\text{MMBtu}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times \frac{73,597,455 \text{ MMBtu}}{\text{yr}}$	125 tons SO _x per year
NOx ^b	$\frac{0.0109 \text{ lb}}{\text{MMBtu}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times \frac{73,597,455 \text{ MMBtu}}{\text{yr}}$	401 tons NO _x per year
CO⊳	$\frac{0.0023 \text{ lb}}{\text{MMBtu}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times \frac{73,597,455 \text{ MMBtu}}{\text{yr}}$	83 tons CO per year
TSP ^a	$\frac{0.0019 \text{ lb}}{\text{MMBtu}} \times \frac{\text{ton}}{2,000 \text{ lb}} \times \frac{73,597,455 \text{ MMBtu}}{\text{yr}}$	70 tons filterable TSP per year
PM ₁₀ ^a	70 tons TSP yr	70 tons filterable PM_{10} per year
$\begin{array}{rcl} CO &= & carbo \\ MM &= & millic \\ NO_x &= & oxide \\ PM_{10} &= & partic \\ SO_2 &= & sulfu \end{array}$	es of nitrogen culates having diameter less than 10 microns r dioxide suspended particulates , Table 3.1-1.	

Table 7-5. Air Emissions from Gas-Fired Alternative.

8.0 <u>COMPARISON OF ENVIRONMENTAL IMPACTS OF LICENSE RENEWAL</u> <u>WITH THE ALTERNATIVES</u>

NRC

"...To the extent practicable, the environmental impacts of the proposal and the alternatives should be presented in comparative form;" 10 CFR 51.45(b)(3) as adopted by 51.53(c)(2)

Chapter 4 analyzes environmental impacts of FNP license renewal and Chapter 7 analyzes impacts from renewal alternatives. **Table 8-1** summarizes environmental impacts of the proposed action (license renewal) and the alternatives, so the reader can compare them. The environmental impacts compared in Table 8-1 are those that are either Category 2 issues for the proposed action, license renewal, or are issues that the GEIS (**NRC 1996b**) identified as major considerations in an alternatives analysis. For example, although NRC concluded that air quality impacts from the proposed action would be small (Category 1), the GEIS identified major human health concerns associated with air emissions from alternatives (**Section 7.2.2**). Therefore, Table 8-1 compares air impacts among the proposed action and the alternatives. **Table 8-2** is a more detailed comparison of the alternatives.

		No-Action Alternative				
Impact	Proposed Action (License Renewal)	Base (Decommissioning)	With Coal- Fired Generation	With Gas- Fired Generation	With Purchased Power	
Land Use	SMALL	SMALL	SMALL	SMALL	MODERATE	
Water Quality	SMALL	SMALL	SMALL	SMALL	SMALL to MODERATE	
Air Quality	SMALL	SMALL	MODERATE	MODERATE	SMALL to MODERATE	
Ecological Resources	SMALL	SMALL	SMALL	SMALL	SMALL to MODERATE	
Threatened or Endangered Species	SMALL	SMALL	SMALL	SMALL	SMALL	
Human Health	SMALL	SMALL	MODERATE	SMALL	SMALL to MODERATE	
Socioeconomics	SMALL	SMALL	MODERATE	MODERATE	SMALL to MODERATE	
Waste Management	SMALL	SMALL	MODERATE	SMALL	SMALL to MODERATE	
Aesthetics	SMALL	SMALL	MODERATE	SMALL	SMALL to MODERATE	
Cultural Resources	SMALL	SMALL	SMALL	SMALL	SMALL	

Table 8-1. Impacts Comparison Summary

SMALL - Environmental effects are not detectable or are so minor that they will neither destabilize nor noticeably alter any important attribute of the resource nor are points of distinction among the alternatives. MODERATE -Environmental effects are sufficient to alter noticeably, but not to destabilize, any important attribute of the resource. 10 CFR 51, Subpart A, Appendix B, Table B-1, Footnote 3.

· · ·		No Action Alternative			
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
renewary	(Becchinicelening)	Alternative Descripti			
FNP license renewal for 20 years, followed by decommissioning	Decommissioning following expiration of current FNP license. Adopting by reference, as bounding FNP decommissioning, GEIS description (NRC 1996b, Section 7.1)	New construction at the FNP site.	New construction at the FNP site.	Would involve construction of new generation capacity in the region. Adopting by reference GEIS description of alternate technologies (Section 7.2.1.2)	
			Construct 100 miles of gas pipeline in a 100-foot-wide corridor		
		Use existing switchyard and transmission lines Two 800-MW (net) tangentially-fired, dry bottom units; capacity factor 0.85 Existing FNP intake/ discharge system Pulverized bituminous coal, 11,009 Btu/pound; 10,200 Btu/kWh; 9.4% ash; 0.98% sulfur; 9.7 lb/ton nitrogen oxides; 5,850,206 tons coal/yr	Use existing switchyard and transmission lines Two units, each with 800 MW of net power, consisting of three 184-MW combustion turbines and a 248-MW heat recovery boiler Existing FNP intake/ discharge system Natural gas, 1,019 Btu/ft ³ ; 5,940 Btu/kWh; 0.0034 lb sulfur/MMBtu; 0.0109 lb NO _x /MMBtu; 72,225,176,997 ft ³ gas/yr	Construct up to 200 miles of transmission lines	
		Low NO _x burners, overfire air and selective catalytic reduction (95% NO _x reduction efficiency). Wet scrubber – lime/limestone desulfurization system (95% SO _x removal efficiency)	Selective catalytic reduction with steam/water injection		

Table 8-2. Impacts Comparison Detail.

		No Action Alternative			
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
		Fabric filters (baghouse - 99.9% particulate removal efficiency)			
830 workers		300 workers	25-40 workers		
		(Section 7.2.2.1)	(Section 7.2.2.2)		
		Land Use Impacts	014411 500	MODERATE	
SMALL – Adopting by reference Category 1 issue findings (Table 4-2, Issues 52, 53)	SMALL – Not an impact evaluated by GEIS (NRC 1996b, Section 7.3)	SMALL – The powerblock and associated facilities could be constructed on previously disturbed land at the FNP site. Approximately 213 acres would be needed for ash and scrubber waste disposal over the 20 year license renewal term.	SMALL – 500 acres would be required for a new gas pipeline. The powerblock and associated facilities could be constructed on previously disturbed land at the FNP site.	MODERATE – Transmission lines could be constructed along existing transmission corridors. Adopting by reference GEIS description of land use impacts from alternate technologies (NRC 1996b, Section 8.2)	
		Water Quality Impact	s		
SMALL – Adopting by reference Category 1 issue findings, (Table 4-2, Issues 3, 6-11). Category 2 groundwater issues not applicable, (Section 4.7, Issue 35; and Section 4.8, Issue 39). One Category 2 surface water issue applies (Section 4.1, Issue 13) and one Category 2 groundwater issue applies (Section 4.6, Issue 34)	SMALL – Adopting by reference Category 1 issue finding (Table 4-2, Issue 89.)	SMALL – Construction impacts minimized by use of best management practices. Operational impacts minimized by use of the existing cooling water system.	SMALL – Reduced cooling water demands, inherent in combined- cycle design	SMALL to MODERATE – Adopting by reference GEIS description of water quality impacts from alternate technologies (NRC 1996b, Section 8.2)	

			No Action Altern	ative	
Proposed Action (License Base Renewal) (Decommissioning)		With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
		Air Quality Impacts			
SMALL – Adopting by reference Category 1 issue finding, (Table 4-2, Issue 51). Category 2 issue not applicable, (Section 4.11, Issue 50).	ence Category 1 issue reference Category 1 5 ng, (Table 4-2, Issue 51). issue findings (Table 4-2, 1 gory 2 issue not Issue 88) 1 cable, (Section 4.11, 2		MODERATE – 125 tons SO ₂ /yr 401 tons NO _x /yr 83 tons CO/yr 70 tons PM ₁₀ /yr ^a	SMALL to MODERATE – Adopting by reference GEIS description of air quality impacts from alternate technologies (NRC 1996b, Section 8.2)	
		Ecological Resource Im	pacts		
SMALL – Adopting by reference Category 1 issue findings, (Table 4-2, Issues 15-24, 28-30, 41-43, 45-48). Four Category 2 issues not applicable, (Section 4.9, Issue 40; Section 4.2, Issue 25; Section 4.3, Issue 26; and Section 4.4, Issue 27).	SMALL – Adopting by reference Category 1 issue finding (Table 4-2, Issue 90)	SMALL – 213 acres of forested land could be required for ash/sludge disposal over 20-year license renewal term.	SMALL – Construction of the pipeline could alter habitat.	SMALL to MODERATE – Adopting by reference GEIS description of ecological resource impacts from alternate technologies (NRC 1996b Section 8.2)	
	Threat	tened or Endangered Spe	cies Impacts		
SMALL – No federally threatened or endangered species are known at the site or along the transmission corridors. (Section 2.6, Issue 49)	SMALL – Not an impact evaluated by GEIS (NRC 1996b, Section 7.3)	SMALL – Federal and state laws prohibit destroying or adversely affecting protected species and their habitats	SMALL – Federal and state laws prohibit destroying or adversely affecting protected species and their habitats	SMALL – Federal and state laws prohibit destroying or adversely affecting protected species and thei habitats	

•			No Action Alterna	ative	
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
Human Health Impacts					
SMALL – Adopting by reference, Category 1 issues, (Table 4-2, Issues 56, 58, 60, 61, 62). Risk due to transmission-line induced currents minimal due to conformance with consensus code, (Section 4.13, Issue 59) Small risk due to microbiological organisms (Section 4.12, Issue 57)	SMALL – Adopting by reference Category 1 issue finding, (Table 4-2, Issue 86)	MODERATE – Adopting by reference GEIS conclusion that risks such as cancer and emphysema from emissions are likely (NRC 1996b, Section 8.3.9)	SMALL – Adopting by reference GEIS conclusion that some risk of cancer and emphysema exists from emissions (NRC 1996b, Table 8.2)	SMALL to MODERATE – Adopting by reference GEIS description of human health impacts from alternate technologies (NRC 1996b, Section 8.2)	
Socioeconomic Impacts					
SMALL – Adopting by reference Category 1 issue findings, (Table 4-2, Issues 64, 67). Two Category 2 issues are not applicable, (Section 4.16, Issue 66 and Section 4.17.1, Issue 68). Three Category 2 issues would experience no impacts because there would be no increase in employment during the license renewal term (Section 4.14 Issue 63; Section 4.15, Issue 65; Section 4.19, Issue 70). Plant contribution to county tax base is large, and continued plant operation would benefit county (Section 4.17.2, Issue 69).	SMALL – Adopting by reference Category 1 issue finding, (Table 4-2, Issue 91)	MODERATE – Reduction in permanent work force at FNP could adversely affect Houston and surrounding counties (Section 7.2.2.1).	MODERATE – Reduction in permanent work force at FNP could adversely affect Houston and surrounding counties (Section 7.2.2.2).	SMALL to MODERATE – Adopting by reference GEIS description of socioeconomic impacts from alternate technologies (NRC 1996b, Section 8.2)	

			No Action Alterna	ative	
Proposed Action (License Base Renewal) (Decommissionin		With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
Capacity of public water supply and transportation infrastructure minimizes potential for related impacts (Section 4.15, Issue 65 and Section 4.18, Issue 70)					
		Waste Management Imp	acts		
SMALL – Adopting by reference Category 1 issue findings (Table 4-2, Issues 77-85)SMALL – Adopting by reference Category 1 issue finding (Table 4-2, Issue 87)		MODERATE – 549,369 tons of coal ash and 212,765 tons of scrubber sludge per year would require 213 acres over 20-year term. (Section 7.2.2.1)	SMALL – Almost no waste generation (Section 7.2.2.2)	SMALL to MODERATE – Adopting by reference GEIS description of waste management impacts from alternate technologies (NRC 1996b, Section 8.2)	
		Aesthetic Impacts			
SMALL – Adopting by reference Category 1 issue findings (Table 4-2, Issues 73, 74)	SMALL – Not an impact evaluated by GEIS (NRC 1996b, Section 7.3)	MODERATE – The coal-fired power block and the exhaust stack would be visible from Hwy 95 and from a moderate offsite distance (Section 7.2.2.1)	SMALL – Steam turbines and stacks would create visual impacts comparable to those from existing FNP facilities (Section 7.2.2.2)	SMALL to MODERATE – Adopting by reference GEIS description of aesthetic impacts from alternate technologies (NRC 1996b, Section 8.2)	
		Cultural Resource Impa	icts		
SMALL – SHPO consultation minimizes potential for impact (Section 4.19, Issue 71)	SMALL – Not an impact evaluated by GEIS (NRC 1996b, Section 7.3)	SMALL – Impacts to cultural resources would be unlikely due to developed nature of the site (Section 7.2.2.1)	SMALL – 100 miles of pipeline construction could affect some cultural resources (Section 7.2.2.2)	SMALL – Adopting by reference GEIS description of cultural resource impacts from alternate technologies (NRC 1996b, Section 8.2)	
ALL - Environmental effects are not o DERATE - Environmental effects are tnote 3.				ttribute of the resource. I CFR 51, Subpart A, Appendix B, Table B-	
 British thermal unit cubic foot gallon Generic Environmental Impact kilowatt hour pound 	Statement (NRC 1996)		aving diameter less than 10 m Preservation Officer	icrons	

	Btu = British thermal unit	MW	=	megawatt
	ft ³ = cubic foot	NOx	=	nitrogen oxide
1	gal = gallon	PM ₁₀	=	particulates having diameter less than 10 microns
	GEIS = Generic Environmental Impact Statement (NRC 1996)	SHPO	=	State Historic Preservation Officer
	kWh = kilowatt hour	SO ₂	=	sulfur dioxide
	lb = pound	TSP	=	total suspended particulates
_	MM = million	yr	=	year
			-	

PAGE INTENTIONALLY LEFT BLANK

9.0 STATUS OF COMPLIANCE

9.1 PROPOSED ACTION

NRC

"The environmental report shall list all federal permits, licenses, approvals and other entitlements which must be obtained in connection with the proposed action and shall describe the status of compliance with these requirements. The environmental report shall also include a discussion of the status of compliance with applicable environmental quality standards and requirements including, but not limited to, applicable zoning and land-use regulations, and thermal and other water pollution limitations or requirements which have been imposed by Federal, State, regional, and local agencies having responsibility for environmental protection...." 10 CFR 51.45(d), as adopted by 10 CFR 51.53(c)(2)

9.1.1 General

Table 9-1 lists environmental authorizations that SNC has obtained for current FNP operations. In this context, SNC uses "authorizations" to include any permits, licenses, approvals, or other entitlements, issued by state, county, or local governmental entities. SNC expects to continue renewing these authorizations during the current license period and through the NRC license renewal period. Based on the new and significant information identification process described in Chapter 5, SNC concludes that FNP is in compliance with applicable environmental standards and requirements.

Table 9-2 lists additional environmental authorizations and consultations that would be conditions precedent to NRC renewal of the FNP licenses to operate. As indicated, SNC anticipates needing relatively few such authorizations and consultations. Sections 9.1.2 through 9.1.5 discuss some of these items in more detail.

9.1.2 Threatened or Endangered Species

Section 7 of the Endangered Species Act (16 USC 1531 et seq.) requires federal agencies to ensure that agency action is not likely to jeopardize any species that is listed or proposed for listing as endangered or threatened. Depending on the action involved, the Act requires consultation with the U.S. Fish and Wildlife Service (FWS) regarding effects on non-marine species, the National Marine Fisheries Service (NMFS) for marine species, or both. FWS and NMFS have issued joint procedural regulations at 50 CFR 402, Subpart B, that address consultation, and FWS maintains the joint list of threatened and endangered species at 50 CFR 17.

Although not required by federal law or NRC regulation, SNC has chosen to invite comment from federal and state agencies regarding potential effects that FNP license renewal might have. Attachment C includes copies of FNP correspondence with FWS, NMFS, the FDACS, the FFWCC, the ADCNR, and the GADNR. Based on the SNC submittals and other information, as discussed in detail in Section 4.10, the agencies concur with the SNC conclusion that FNP license renewal would not adversely affect threatened or endangered species or critical habitat.

9.1.3 Coastal Zone Management Program

The federal Coastal Zone Management Act (16 USC 1451 et seq.) imposes requirements on applicants for a federal license to conduct an activity that could affect a state's coastal zone. Alabama's coastal area extends from the continuous 10-foot contour to the limits of the State's territorial waters (three miles offshore). FNP, located in Houston County, is not within the Alabama coastal zone (Code of Alabama

1975, Section 9-7-15). Coastal zone management requirements are not applicable to FNP license renewal.

Florida's Coastal Zone Management Program will not be consulted concerning the relicensing of FNP. Although the State of Florida's coastal zone encompasses the state's 67 counties, the state has limited its federal consistency review of federally licensed and permitted activities to the federal licenses of permits specified in Section 380.23(3)(c) requested for activities located in or seaward of one of the state's 35 coastal counties.

Section 380.23(3)(c) reads:

- (3) Consistency review shall be limited to review of the following activities, uses, and projects to ensure that such activities and uses are conducted in accordance with the state's coastal management program:
 - (c) Federally licensed or permitted activities affecting land and water uses when such activities are in or seaward of the jurisdiction of local governments required to develop a coastal zone protection element as provided in s.380.24 and when such activities involve...

Because FNP is not located "in or seaward" of Florida's coastal zone, consultation with Florida's coastal zone management program is not necessary.

9.1.4 Historic Preservation

Section 106 of the National Historic Preservation Act (16 USC 470 et seq.) requires federal agencies having the authority to license any undertaking to, prior to issuing the license, take into account the effect of the undertaking on historic properties and to afford the Advisory Council on Historic Preservation an opportunity to comment on the undertaking. Council regulations provide for the State Historic Preservation Officer (SHPO) having a consultative roll (36 CFR 800.2). Although not required of an applicant by federal law or NRC regulation, SNC has chosen to invite comment by the Alabama, Florida, and Georgia SHPOs. Attachment E includes a copy of SNC correspondence with the SHPOs regarding potential effects that FNP license renewal might have on historic or cultural resources. Based on the SNC submittal and other information, the SHPOs concurred with SNC's conclusion that continued operation of FNP would have no effect on historic properties.

9.1.5 Water Quality (401) Certification

Federal Clean Water Act (CWA) Section 401 requires that applicants for a federal license to conduct an activity that might result in a discharge into navigable waters provide the licensing agency a certification from the state that the discharge will comply with applicable CWA requirements (33 USC 1341). NRC has indicated in its GEIS that issuance of an NPDES permit implies certification by the state (NRC 1996b, pg. 4-4). SNC is applying to NRC for license renewal to continue FNP operations. Attachment B contains excerpts of the FNP NPDES permit. Consistent with the GEIS, SNC is providing evidence of the FNP NPDES permit as evidence of state water quality (401) certification.

9.2 ALTERNATIVES

NRC

"...The discussion of alternatives in the report shall include a discussion of whether the alternatives will comply with such applicable environmental quality standards and requirements." 10 CFR 51.45(d), as required by 10 CFR 51.53(c)(2)

The coal, gas, and purchased power alternatives discussed in Section 7.2.1 probably could be constructed and operated to comply with all applicable environmental quality standards and requirements. SNC notes that increasingly stringent air quality protection requirements could make the construction of a large fossil-fueled power plant infeasible in many locations. SNC also notes that the EPA has revised requirements that could affect the design of cooling water intake structures for new facilities (EPA 2001b) and proposed requirements that could affect modifications at existing facilities (EPA 2002). As drafted, the requirements would probably necessitate construction of additional cooling towers for the coal-fired alternative.

				Issue or Expiration	
Agency	Authority	Requirement	Number	Date	Activity Covered
	Fede	eral Requirements Applic	able to License Renewa	l	
U.S. Nuclear Regulatory Commission	Atomic Energy Act (42 USC 2011, et seq.), 10 CFR 50.10	License To Operate	NPF-5	Issued on 12/01/77 Expires on 06/05/17	Operation of Unit 1
			NPF-8	Issued on 07/30/81 Expires on 03/31/21	Operation of Unit 2
U.S. Department of Transportation (DOT) – Research and Special Programs Administration	49 USC 5108; 49 CFR Part 107, Subpart G	Hazardous Materials Certificate of Registration	061603001014L	Issued on 06/17/03 Expires on 06/30/04	Transportation of Hazardous Material
Department of the Army Corps of Engineers	Section 10 of the Rivers and Harbors Act of 1899 (33 USC 403) and Section 404 of the Clean Water Act (33 USC 1344)	Maintenance Dredging	AL01-02094-V	Issued on 02/01/02 Expires on 02/01/07	Maintenance Dredging of Intake Structure and Canal
	Sta	te Requirements Applica	ble to License Renewal		
U.S. Environmental Protection Agency (EPA), Alabama Department of Environmental Management (ADEM) – Water Division	Federal Water Pollution Control Act (33 USC Sections 1251-1378); Alabama Water Pollution Control Act (Code of Alabama Sections 22-22-1 to 22- 22-14); the Alabama Environmental Management Act (Code of Alabama Sections 22-22A-1 to 22-22A-15)	Individual Discharge Permit	AL0024619	Issued on 02/09/01 Expires on 02/28/06	Contains effluent limits for FNP discharges to the Chattahoochee River, an unnamed tributary to the Chattahoochee River, and Wilson Creek.
ADEM – Land Division	ADEM Administrative Code Rule 335-13-7	Medical Waste Management Plan	G-OTH00504	Notification received on 11/23/92 No expiration	Required for all medical waste generators
ADEM – Water Division	Code of Alabama 1975 Sections 22-36-3 and 22-36-4	Certificate of Registration	10146 069 010975	Issued on 01/30/98	Registration of 2 underground storage tanks

Table 9-1. Environmental Authorizations for Current FNP Operations.

Agency	Authority	Requirement	Number	Issue or Expiration Date	Activity Covered
ADEM – Water Division	Code of Alabama 1975 Sections 22-36-3 and 22-36-4	Certificate of Registration	10146 069 010982	Issued on 04/09/98	Registration of 9 aboveground storage tanks
ADEM – Water Division	Alabama Safe Drinking Water Act (Code of Alabama 1975, Sections 22-23-30 to 22-23-53); Alabama Environmental Management Act (Code of Alabama 1975 Sections 22-22A-1 to 22-22A-15)	Water Supply Permit	96-583	Issued on 08/15/96 Expires on 10/01/06	Permit to operate a public water system
State of Alabama – Alabama Department of Economic and Community Development	Alabama Water Resources Act (Code of Alabama 1975, Section 9-10B-19); Administrative Rules implementing the Alabama Water Use Reporting Program	Certificate of Use	OWR-0063	Issued on 08/23/94 Expires on 01/01/34	Permit to withdraw groundwater and surface water
ADEM – Land Division	Solid Waste Disposal Act (Code of Alabama Sections 22-27-1 to 22- 27-27); the Alabama Environmental Management Act (Code of Alabama Sections 22-22A-1 to 22-22A-15)	Solid Waste Disposal Facility Permit	35-05	Issued on 12/16/02 Expires on 12/15/07	Establishes types and amount of waste approved for disposal in the FNP landfill
ADEM – Air Division	ADEM Air Regulations (ADEM Code 335-3-15- 02-10)	Synthetic Minor Operating Permit		Issued on 12/10/96 Expires NA	Air Emissions
South Carolina Department of Health and Environmental Control - Division of Radioactive Waste Management	South Carolina Radioactive Waste Transportation and Disposal Act (Act No. 429)	South Carolina Radioactive Waste Transport Permit	0053-01-03-X	Issued on 11/12/02 Expires on 12/31/03	Transportation of radioactive waste into the state of South Carolina

Table 9-1. Environmental Authorizations for Current FNP Operations. (Cont'd)

Agency	Authority	Requirement	Number	Issue or Expiration Date	Activity Covered
State of Tennessee Department of Environment and Conservation Division of Radiological Health	Tennessee Code TN Regulation 1200-2- 103(8)(d)	Transport of Radioactive Materials	T-AL003-L03	Issued on 11/12/02 Expires on 12/31/03	Transportation of radioactive waste into the state of Tennessee
Georgia Public Service Commission - Compliance and Safety Transportation Division	Rules of the GA Public Service Commission Chapter 1-15-1	Transport of Radioactive Materials	NA	Issued on 10/31/02 Expires on 12/31/03	Transportation of radioactive waste into the state of Georgia
State of Utah Department of Environmental Control Division of Radiological Control	Utah Radiation Controls Rules R313-26	Generator Site Access Permit	0112001241	Issued on 12/28/01 Expires on 12/31/02	Direct transport of radioactive waste to the Utah Envirocare Burial Site
EM =Alabama Department of ER =Code of Federal RegulatiA =U.S. Environmental ProteP =Farley Nuclear Plant					

Table 9-1. Environmental Authorizations for Current FNP Operations. (Cont'd)

ADE CFR EPA FNP

USC = United States Code

Agency	Authority	Requirement	Remarks
U.S. Nuclear Regulatory Commission	Atomic Energy Act (42 USC 2011 et seq.)	License renewal	Environmental Report submitted in support of license renewal application
U.S. Fish and Wildlife Service (FWS)	Endangered Species Act Section 7 (16 USC 1536)	Consultation	Requires federal agency issuing a license to consult with FWS (Attachment C)
State of Alabama Alabama Historical Commission Georgia Department of Natural Resources Historical Preservation Division Florida Department of State Division of Historical Resources	National Historic Preservation Act Section 106 (16 USC 470f)	Consultation	Requires federal agency issuing a license to consider cultural impacts and consult with SHPOs. SHPOs have concurred that license renewal will not affect any sites listed or eligible for listing (Attachment E)
ADEM – Industrial Section, Water Division	Clean Water Act Section 401 (33 USC 1341)	Certification of compliance with state water quality standards	Discharges during license renewal term

Table 9-2 Environmental Authorizations for ENP License Renewal

ADEM = Alabama Department of Environmental Management.

PAGE INTENTIONALLY LEFT BLANK

10.0 <u>REFERENCES</u>

Note to reader: Some web pages cited in this document are no longer available, or are no longer available through the original URL addresses. Hard copies of all cited web pages are available in APC/SNC files. Some sites, for example the census data, cannot be accessed through their URLs. The only way to access these pages is to follow queries on previous web pages. The complete URLs used by APC/SNC have been given for these pages, even though they may not be directly accessible.

- ADOT (Alabama Department of Transportation). 1999. 1998 Alabama Traffic Flow Map. Bureau of Transportation Planning.
- AEC (U.S. Atomic Energy Commission). 1972. *Final Environmental Statement related to the construction of Joseph M. Farley Nuclear Plant, Units 1 and 2*. Alabama Power Company. Docket Nos. 50-348 and 50-364. June.
- AEC (U.S. Atomic Energy Commission). 1974. *Final Environmental Statement related to operation of Joseph M. Farley Nuclear Plant Units 1 and 2*. Alabama Power Company. Docket Nos. 50-348 and 50-364. December.
- APC (Alabama Power Company). Undated. Field Logs of Chattahoochee River. Fish Sampling. 1983 1990.
- APC (Alabama Power Company). 1971. Environmental Report Construction Permit Stage for the Joseph M. Farley Nuclear Plant. September 9.
- APC (Alabama Power Company). 1983. Cooling Water Intake study 316 (b) Demonstration, 2-Unit Operation.
- APSC (Alabama Public Service Commission). 2000. "Report on the Public Interest and Role of the Commission." October 2. Available online at http://www.psc.state.al.us/Electric%20Restruct/iifinal.doc. Accessed May 30, 2001.
- Brim Box, J. and J. D. Williams. 2000. "Unionid Mollusks of the Apalachicola Basin in Alabama, Florida, and Georgia." Bulletin of the Alabama Museum of Natural History. University of Alabama. Tuscaloosa, AL. Bulletin 21: April 2.
- CDC (Centers for Disease Control and Prevention). 2000. Surveillance for Waterborne-Disease Outbreaks-United States, 1997-1998. Volume 49, No. SS-4. Atlanta, GA. May 26.
- CEQ (Council on Environmental Quality). 1997. "Environmental Justice: Guidance Under the National Environmental Policy Act." December 10.
- Chapman, M. 2001. Facsimile transmission to E. N. Hill (Tetra Tech NUS). *Permitted Drinking Water Sources in Houston County*. Alabama Department of Environmental Management. June 22.
- City of Dothan. 1999. *Future Land Use Plan*. Adopted 1999. City of Dothan Planning Office. Dothan, AL.
- City of Dothan. 2001. *Dothan Utilities Water Production and Distribution*. Available online at http://www.dothan.org/depts/dothanutilities/utwaterdept2.htm. Accessed June 8, 2001.
- Code of Alabama. 1975. "Coastal area board Development of coastal area management program". Section 9-7-15. Available online at

http://alisdb.legislature.state.al.us/acas/CodeOfAlabama/1975/9-7-15.htm. Accessed May 23, 2001.

- DOE (U.S. Department of Energy). 2001. "Alabama Biomass Power Resources." Available online at http://www.eren.doe.gov/state_energy/tech_biomass.cfm?state=AL. Accessed July 26, 2001.
- EIA (Energy Information Administration). 2000a. "State Electricity Profiles 2000 Alabama." DOE/EIA-0629. June. Available online at http://www.eia.doe.gov/cneaf/electricity/st_profiles/alabama.pdf. Accessed May 29, 2001.
- EIA (Energy Information Administration). 2000b. "State Electricity Profiles 2000 Georgia." DOE/EIA-0629. June. Available online at http://www.eia.doe.gov/cneaf/electricity/st_profiles/georgia.pdf. Accessed May 29, 2001.
- EIA (Energy Information Administration). 2000c. "Electric Power Annual 1999, Volume I." DOE/EIA-0348(99)/1. August. Available online at http://www.eia.doe.gov/cneaf/electricity/epav1/epav1.pdf. Accessed May 29, 2001.
- EIA (Energy Information Administration). 2000d. "Electric Power Annual 1999, Volume II." DOE/EIA-0348(99)/2. October. Available online at http://www.eia.doe.gov/cneaf/electricity/epav2/epav2.pdf. Accessed May 29, 2001.
- EIA (Energy Information Administration). 2001a. "Nuclear Reactors Operating in the United States, 2000." Available online at http://www.eia.doe.gov/cneaf/nuclear/page/at_a_glance/reactors/states. html. Accessed May 30-31, 2001.
- EIA (Energy Information Administration). 2001b. "State Energy Data Report 1999, Consumption Estimates." DOE/EIA-0214(99). May. Available online at http://www.eia.doe.gov/emeu/sedr/ contents.html. Accessed May 23, 2001.
- EIA (Energy Information Administration). 2001c. "U.S. Nuclear Operators. Joseph M. Farley." Available online at http://www.eia.doe.gov/cneaf/nuclear/page/at_a_glance/reactors/farley. html. Accessed November 20.
- EPA (U.S. Environmental Protection Agency). 1979. Pathogenic Naegleria-Distribution in Nature. Health Effects Research Laboratory. Cincinnati, OH. EPA-600/1-79-018. May.
- EPA (U.S. Environmental Protection Agency). 1998. *Air Pollutant Emission Factors*, Vol. 1, *Stationary Point Sources and Area Sources*, Section 1.1, "Bituminous and Subbituminous Coal Combustion." AP-42. September 1998. Available online at http://www.epa.gov/ttn/chief/ap42/ch01/. Accessed June 6, 2001.
- EPA (U.S. Environmental Protection Agency). 2000. Air Pollutant Emission Factors, Vol. 1, Stationary Point Sources and Area Sources, Section 3.1, "Stationary Gas Turbines." AP-42. April. Available online at http://www.epa.gov/ttn/chief/ap42/ch03/. Accessed June 6, 2001.
- EPA (U.S. Environmental Protection Agency). 2001a. "Nonattainment Areas for All Criteria Pollutants". February. Available online at http://www.epa.gov/oar/oaqps/greenbk/ancl.html. Accessed May 23, 2001.

- EPA (U.S. Environmental Protection Agency). 2001b. "National Pollutant Discharge Elimination System: Regulations Addressing Cooling Water Intake Structures for New Facilities; Final Rule." *Federal Register*. Vol. 66, No. 243. December 18.
- EPA (U.S. Environmental Protection Agency). 2002. "National Pollutant Discharge Elimination System – Proposed Regulations to Establish Requirements for Cooling Water Intake Structures at Phase II Existing Facilities; Proposed Rule." *Federal Register*. Vol. 67, No. 68. April 9.
- EPRI (Electric Power Research Institute). 1991. TL Workstation Code, Volume 7: AC/DC Line User's Manual. Version 1.0. Palo Alto, CA.
- FHA (Federal Highway Administration). 1997. User Guidelines for Waste and Byproduct Materials in Pavement Construction, FHWA-RD-97-148. Available online at http://tfhrc.gov/hnr20/recycle/waste/cbabs1.htm. Accessed May 29, 2001.
- Floyd, W. Warner. 1974. Letter to Gordon Dicker (U.S. Atomic Energy Commission). Joseph M. Farley Nuclear Power Plant historical review. Alabama Historical Commission. Montgomery, AL. November 8.
- Fretwell, Mark E. 1980. *This So Remote Frontier, The Chattahoochee Country of Alabama and Georgia*. Rose Printing Company. Tallahassee, FL.
- Georgia Power. 2002. Draft License Application: Preliminary Draft Environmental Assessment Middle Chattahoochee Project (FERC No. 2177).
- GDOT (Georgia Department of Transportation). 2000. "Coheelee Creek Covered Bridge Historical Marker". Available online at http://www.dot.state.ga.us/homeoffs/bridge_dsgn.www/covered/ coheelee/marker.htm. Accessed February 28, 2001.
- GPSC (Georgia Public Service Commission). 1998. "Staff Report on Electric Industry Restructuring." Docket No. 7313-U. January. Available online at http://www.psc.state.ga.us/electricindust/. Accessed June 1, 2001.
- GSA (Georgia Survey of Alabama). 1991. Wells and Springs in Southeastern Alabama; To Accompany Map 201A.
- Heitshmidt, Dustin. 2000. Letter to District Conservationist, U.S. Department of Agriculture Natural Resources Conservation Service. December 15.
- Historic Chattahoochee Commission. 1998. "Scenic Forks Tour." Available online at http://www.hcc-al-ga.org/scenictour.htm. Accessed February 28, 2001.
- IEEE (Institute of Electrical and Electronics Engineers, Inc.). 1997. National Electrical Safety Code, 1997 Edition. New York, NY.
- INEL (Idaho National Engineering Laboratory). 1998a. "U.S. Hydropower Resource Assessment for Alabama." DOE/ID-10430(AL). Available online at http://hydropower.inel.gov/state/al/al.pdf. Accessed May 22, 2001.
- INEL (Idaho National Engineering Laboratory). 1998b. "U.S. Hydropower Resource Assessment for Georgia." DOE/ID-10430(GA). Available online at http://hydropower.inel.gov/state/ga/ga.pdf. Accessed May 22, 2001.

- Joklik, W. K. and D. T. Smith, (Eds.). 1972. *Microbiology, 15th Edition*. Appleton-Century-Crofts. New York, NY.
- JSU (Jacksonville State University). 2000. "ACT/ACF Tri-State Water Basin Compacts." Available online at http://www.jsu.edu/depart/epic/ACT.htm. Accessed July 27, 2001.
- McGregory, Jerrilyn. 1997. Wiregrass Country. University Press of Mississippi. Jackson, MS.
- Mettee, M. F., P. E. O'Neil, and J. M. Pierson. 1996. *Fishes of Alabama and the Mobile Basin*. Oxmoor House. Birmingham, AL.
- Moss, A. 2001. Facsimile transmission to E. N. Hill, (Tetra Tech NUS). Ad Valorem Taxes for Houston County. Houston County Revenue Commissioner's Office. June 27.
- National Park Service. 2001. National Register Information System. Available online at http://www.nr.nps.gov/ nrloc1.htm. Accessed June 8, 2001.
- NEI (Nuclear Energy Institute). 2000. "Restructuring the U.S. Electric Power Industry." Available online at http://www.nei.org/doc.asp?catnum=3&catid=277. Accessed May 29, 2001.
- NRC (U.S. Nuclear Regulatory Commission). 1988. *Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities*. NUREG-0586. Washington, DC. August.
- NRC (U.S. Nuclear Regulatory Commission). 1996a. "Environmental Review for Renewal of Nuclear Power Plant Operating Licenses". *Federal Register*. Vol. 61, No. 109. June 5.
- NRC (U.S. Nuclear Regulatory Commission). 1996b. Generic Environmental Impact Statement for License Renewal of Nuclear Plants. Volumes 1 and 2. NUREG-1437. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 1996c. "Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction." *Federal Register*. Vol. 61, No. 147. July 30.
- NRC (U.S. Nuclear Regulatory Commission). 1996d. "Environmental Review for Renewal of Nuclear Power Plant Operating Licenses, Supplementary Information to Final Rule." *Federal Register*. Vol. 61, No. 244. December 18.
- NRC (U.S. Nuclear Regulatory Commission). 1996e. Regulatory Analysis for Amendments to Regulations for the Environmental Review for Renewal of Nuclear Power Plant Operating Licenses. NUREG-1440. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 1996f. Public Comments on the Proposed 10 CFR Part 51 Rule for Renewal of Nuclear Power Plant Operating Licenses and Supporting Documents: Review of Concerns and NRC Staff Response. Volumes 1 and 2. NUREG-1529. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 1996g. "Supplementary Information to Final Rule." *Federal Register*. Vol. 61, No. 244. December 18.
- NRC (U.S. Nuclear Regulatory Commission). 1998. Environmental Assessment and Finding of No Significant Impact: Regarding Electrical Power Uprate; Joseph M. Farley Nuclear Plants Units 1 and 2. Docket Nos. 50-348 and 50-364. Federal Register. Vol. 63, No. 78. April 23.

- NRC (U.S. Nuclear Regulatory Commission). 1999a. Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS). Section 6.3, "Transportation" and Table 9-1, "Summary of findings on NEPA issues for license renewal of nuclear power plants." NUREG-1437. Volume 1, Addendum 1. Washington, DC. August.
- NRC (U.S. Nuclear Regulatory Commission). 1999b. "Changes to Requirements for Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Final Rules." *Federal Register*. Vol. 64, No. 171. September 3.
- NRC (U.S. Nuclear Regulatory Commission). 1999c. Generic Environmental Impact Statement for License Renewal of Nuclear Plants: Oconee Nuclear Station, NUREG-1437. Supplement 2, Final. Office of Nuclear Reactor Regulations. Washington, DC. December.
- NRC (U.S. Nuclear Regulatory Commission). 2001. "Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues." NRR Office Instruction No. LIC-203. June 21.
- NREL (National Renewable Energy Laboratory). 1986. "Wind Energy Resource Atlas of the United States." DOE/CH 10093-4. Available online at http://rredc.nrel.gov/wind/pubs/atlas/. Accessed May 22, 2001.
- POLY (Polyengineering, Inc.) 2001. Long Range Plan for the Dothan Water System, 2001 Update. Dothan City Commission Resolution No. 2000-273. Dothan, AL.
- Pool, R. 2001. Megawatt Production of the Jim Woodruff, Walter F. George, and George W. Andrews Lock and Dam Systems on the Chattahoochee River. Personal communication with E. N. Hill, TtNUS. November 20.
- Robinson, J. (U.S. Geological Survey, Alabama). 2001. Aquifer data from Fort Rucker, Alabama. Teleconference with G. Gunter (Tetra Tech NUS). July 25.
- SEARP & DC (Southeast Alabama Regional Planning and Development Commission). 1998. *Overall Economic Development Plan*. Available online at http://www.sanman.net/searpdc/iemain.htm. Accessed June 8, 2001.
- SNC (Southern Nuclear Operating Company). 1997. Power Uprate Environmental Evaluation. January 15.
- SNC (Southern Nuclear Operating Company). 2000a. Joseph M. Farley Nuclear Plant Units 1 and 2. Final Safety Analysis Report Update. Rev. 17. Birmingham, AL.
- SNC (Southern Nuclear Operating Company). 2000b. Discharge Monitoring Report. July 2000.
- SO (Southern Company). 1997. Farley Nuclear Plant Annual Water Use Report for 1996. ENV-97-059. Birmingham, Alabama. March 27.
- SO (Southern Company). 1998. Farley Nuclear Plant Annual Water Use Report for 1997. ENV-98-028. Birmingham, Alabama. February 12.
- SO (Southern Company). 1999. Farley Nuclear Plant Annual Water Use Report for 1998. ENV-99-070. Birmingham, Alabama. March 30.
- SO (Southern Company). 2000a. Farley Nuclear Plant Annual Water Use Report for 1999. ENV-00-076. Birmingham, Alabama. March 21.

- SO (Southern Company). 2000b. "Environmental Compliance Strategy 2000 Review." Available online at ftp://www.psc.state.ga.us/13305/44524e.doc. Accessed May 30, 2001.
- SO (Southern Company). 2001a. Farley Nuclear Plant Annual Water Use Report for 2000. ENV-01-062. Birmingham, Alabama. March 23.
- SO (Southern Company). 2001b. "Southern Nuclear: Plant Farley." Available online at http://www.southernco.com/southernnuclear/farley.asp. Accessed July 6, 2001.
- SO (Southern Company). 2001c. "Southern Company 2000 Annual Report." Available online at http://investor.southerncompany.com/annual.cfm. Accessed May 30, 2001.
- SO (Southern Company). Undated. "Energy Solutions Optimize Your Energy Use." Available online at http://www.southerncompany.com/energysolutions. Accessed July 12, 2001.
- Solomon, T. 2001. Southeast Alabama Regional Planning and Development Commission. *Future Land Use Trends in Southeastern Alabama*. Personal communication with E. N. Hill, TtNUS. July 30.
- State of Georgia. 1997. "Georgia and Alabama Governors Sign Water Compacts." Office of the Governor, Press Advisory. Available online at http://www.state.ga.us/archive/governor/govoff/ pressrel/1997/d6.htm. Accessed July 27, 2001.
- Tallahassee (FL) News Herald. 1997. "Tri-River agreement heads for Chiles' desk." Available online at http://www.newsherald.com/LOCAL/RIVER415.htm. Accessed July 27, 2001.

Tetra Tech NUS. 2001a. Population Projections for the FNP Region. Aiken, SC. June.

- Tetra Tech NUS. 2001b. Calculation Package for Groundwater Drawdown. Aiken, SC. July 30.
- Tetra Tech NUS. 2001c. "Calculation Package for Induced Current Analysis. Transmission Lines." Aiken, SC. July 3.
- Tetra Tech NUS. 2002a. Threatened and Endangered Species Surveys: Joseph M. Farley Nuclear Plant and Associated Transmission Line Corridors, 2001-2002. Aiken, South Carolina. June 21.
- Tetra Tech NUS. 2002b. Threatened and Endangered Species Survey: Sinai Cemetery Transmission Line Corridor, 2002. Aiken, South Carolina.
- USACE (United States Army Corps of Engineers). 2000. *Apalachicola-Chattahoochee-Flint River System General Information.* Available online at http://www.sam.usace.army.mil/op/rec/act/ history.htm. Accessed September 11, 2002.
- USACE (United States Army Corps of Engineers). 2002. *Lake Seminole Information.* Available online at http://www.sam.usace.army.mil/op/rec/. Accessed September 9, 2002.
- USCB (U.S. Census Bureau). 1990. "1990 Census Data." Available online at http://venus.census.gov/ cdrom/lookup. Accessed July 31, 2001.
- USCB (U.S. Census Bureau). 1995. Alabama Population of Counties by Decennial Census: 1900 to 1990. Available online at http://www.census.gov/population/cencounts/al190090.txt. Accessed June 8, 2001.

- USCB (U.S. Census Bureau). 1996. *State Population Rankings Summary Alabama's Population Projections: 1995-2025*. Available online at http://www.census.gov/population/projections/state/ 9525rank/alprsrel.txt. Accessed June 8, 2001.
- USCB (U.S. Census Bureau). 2000a. *Summary File 1: Census 2000.*" Available online at http://www.census.gov/PressRelease/www/2001/sumfile1.html. Accessed November 12, 2001.
- USCB (U.S. Census Bureau). 2000b. American Factfinder. Census 2000 Redistricting Data (Public Law 94-171) Summary File. Alabama – County. Available online at http://factfinder.census.gov/. Accessed June 8, 2001.
- USCB (U.S. Census Bureau). 2000c. American Factfinder. "HCT. Tenure by poverty status in 1999 by age of householder [43] Universe: Occupied housing units: 1999. Data Set: Census 2000 Summary File 3 (SF3) Sample Data." Available online at http://factfinder.census.gov/. Accessed October 24, 2002.
- USCB (U.S. Census Bureau). 2002. "Summary File 3: Census 2000." Available online at http://www.census.gov/Press-Release/www/2002/sumfile3.html. Accessed October 24, 2002.
- University of Alabama. 1999. Population Projections for Alabama Counties, 2000 to 2015. Available online at http://cber.cba.ua.edu/edata/est_prj/poppro99.prn. Accessed June 11, 2001.
- University of Florida. 2000. "Water Wars: Water Allocation Law and the Apalachicola-Chattahoochee-Flint River Basin. Available online at http://edis.ifas.ufl.edu/BODY_FE208. Accessed July 26, 2001.
- USGS (U.S. Geological Survey). 1996. *Geohydrology and Evaluation of Stream-Aquifer Relations in the Apalachicola-Chattahoochee-Flint River Basin, Southeaster Alabama, Northwestern Florida, and Southwestern Georgia*. Prepared in cooperation with the U.S. Army Corps of Engineers, the Alabama Department of Economic and Community Affairs, the Northwestern Florida Water Management District, and the Georgia Department of Natural Resources, Environmental Protection Division. United States Geological Survey Water-Supply Paper 2460.
- USGS (U.S. Geological Survey). 1997. Ground-Water Resources of the Lower-Middle Chattahoochee River Basin in Georgia and Alabama, and Middle Flint River Basin in Georgia – Subarea 3 of the Apalachicola-Chattahoochee-Flint and Alabam-Coos-Tallapoosa River Basins. Prepared in cooperation with Alabama Department of Economic and Community Affairs Office of Water Resources, Georgia Department of Natural Resources Environmental Protection Division, Northwestern Florida Water Management District, and U. S. Army Corps of Engineers Mobile District. Open-File Report 96-483.
- USGS (U.S. Geological Survey). 2000a. "Description of the ACF Basin Study Area." Apalachicola-Chattahoochee-Flint River Basin NAWQA Study. Available online at http://ga.water.usgs.gov/nawqa/ basin2.html. Accessed July 2, 2001.
- USGS (U.S. Geological Survey). 2000b. Surface-Water Data, Georgia, Water Year 1999. Water-Data Report GA-99-1.

PAGE INTENTIONALLY LEFT BLANK