
NUREG/IA-0539

New Functionality of TRACE: The 3D
Post-Processing for the VESSEL
Component in SALOME Platform

Prepared by:
Kanglong Zhang; Victor Hugo Sanchez-Espinoza
Institute for Neutron Physics and Reactor Technology (INR), Karlsruhe Institute of
Technology (KIT) Hermann-von-Helmholtz-Platz 1
Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, Germany

K.Tien, NRC Project Manager

Division of Systems Analysis
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Manuscript Completed: July 2022
Date Published: May 2024

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC’s Library at www.nrc.gov/reading-rm.html. Publicly
released records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda; bulletins
and information notices; inspection and investigative
reports; licensee event reports; and Commission papers
and their attachments.

NRC publications in the NUREG series, NRC regulations,
and Title 10, “Energy,” in the Code of Federal Regulations
may also be purchased from one of these two sources.

1. The Superintendent of Documents
U.S. Government Publishing Office
Washington, DC 20402-0001
Internet: https://bookstore.gpo.gov/
Telephone: (202) 512-1800
Fax: (202) 512-2104

2. The National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312-0002
Internet: https://www.ntis.gov/
1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:

Address: �U.S. Nuclear Regulatory Commission
Office of Administration
Digital Communications and Administrative
 Services Branch
Washington, DC 20555-0001
E-mail: Reproduction.Resource@nrc.gov
Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted
at NRC’s Web site address www.nrc.gov/reading-rm/doc-
collections/nuregs are updated periodically and may
differ from the last printed version. Although references to
material found on a Web site bear the date the material
was accessed, the material available on the date cited
may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as books,
journal articles, transactions, Federal Register notices,
Federal and State legislation, and congressional reports.
Such documents as theses, dissertations, foreign reports
and translations, and non-NRC conference proceedings
may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for reference
use by the public. Codes and standards are usually
copyrighted and may be purchased from the originating
organization or, if they are American National Standards,
from—

American National Standards Institute
11 West 42nd Street
New York, NY 10036-8002
Internet: www.ansi.org
(212) 642-4900

Legally binding regulatory requirements are stated only
in laws; NRC regulations; licenses, including technical
specifications; or orders, not in NUREG-series
publications. The views expressed in contractor
prepared publications in this series are not necessarily
those of the NRC.
The NUREG series comprises (1) technical and
adminis-trative reports and books prepared by the staff
(NUREG–XXXX) or agency contractors (NUREG/CR–
XXXX), (2) proceedings of conferences (NUREG/CP–
XXXX), (3) reports resulting from international
agreements (NUREG/IA–XXXX),(4) brochures
(NUREG/BR–XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors’ decisions
under Section 2.206 of NRC’s regulations (NUREG–
0750),and (6) Knowledge Management prepared by
NRC staff or agency contractors.
DISCLAIMER: This report was prepared under an
international cooperative agreement for the exchange
of technical information. Neither the U.S. Government
nor any agency thereof, nor any employee, makes any
warranty, expressed or implied, or assumes any legal
liability or responsibility for any third party’s use, or the
results of such use, of any information, apparatus,
product or process disclosed in this publication, or
represents that its use by such third party would not
infringe privately owned rights.

https://bookstore.gpo.gov/
https://www.ntis.gov/
mailto:Reproduction.Resource@nrc.gov
http://www.nrc.gov/reading-rm.html

NUREG/IA-0539

New Functionality of TRACE: The 3D
Post-Processing for the VESSEL
Component in SALOME Platform

Prepared by:
Kanglong Zhang; Victor Hugo Sanchez-Espinoza
Institute for Neutron Physics and Reactor Technology (INR), Karlsruhe Institute of
Technology (KIT) Hermann-von-Helmholtz-Platz 1
Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, Germany

K.Tien, NRC Project Manager

Division of Systems Analysis
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Manuscript Completed: July 2022
Date Published: May 2024

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

iii

ABSTRACT

The researchers from the group of Reactor Physics and Dynamics (RPD) which is under the
Institute of Institute for Neutron Physics and Reactor Technology (INR) - Karlsruhe Institute of
Technology (KIT) - Germany, have developed a new post-processing functionality for the U.S.
NRC system thermal-hydraulic code - TRACE. Now, the 3D VESSEL component of TRACE and
the calculated physical fields stored in the component can be visualized in a pre- and post-
processing open-source platform - SALOME with the help of a powerful data-processing library -
MEDCoupling.

The researchers develop new Fortran and C++ routines to automatically identify and select the
geometrical data set from TRACE input files. This data set is processed by the MEDCoupling
library to generate a polyhedron mesh and a surface mesh. They are both 3D objects. The former
store cell-centered fields e.g., the coolant temperature and the pressure while the latter store face-
located variables e.g., the coolant velocity and the pressure drop.

Twenty-one kinds of fields can be post-processed associated with the two VESSEL meshes at
present including the coolant density, the void fraction, etc. Users can conveniently access the
VESSEL meshes and the fields in SALOME with plenty of operations e.g., cutting, data filtering.
Scaling up the processed fields is now in planning.

This functionality was tested by processing the results gained from a VVER-1000 coolant mixing
simulation.

v

FOREWORD

This report describes the development and demonstration of the post-processing of the TRACE
3D VESSEL component. This new functionality is a tremendous supplementary to the classical
post-processing methods known as the 1D curves plotting by AptPlot and 2D/3D chromatic
graphs displaying by SNAP. A polyhedron mesh and a surface mesh are developed for the
VESSEL component and twenty-one kinds of fields can be write in, with the MEDCoupling library.
They can be post-processed in the SALOME platform.

vii

TABLE OF CONTENTS

ABSTRACT...iii

FOREWORD..v

TABLE OF CONTENTS ...vii

LIST OF FIGURES..ix

LIST OF TABLES..xi

EXECUTIVE SUMMARY...xiii

ABBREVIATIONS AND ACRONYMS...xv

1 INTRODUCTION..1

1.1 Overview of TRACE...1

1.2 Current Post-Processing of TRACE... 1

1.3 Objectives of the Report .. 4

1.4 Scope of the Report... 4

2 THE SALOME PLATFORM AND MEDCOUPLING LIBRARY....................................5

2.1 Overview of SALOME.. 5

2.2 The MEDCoupling Library.. 7

3 DEVELOPMENT OF THE TRACE POST-PROCESSING FUNCTIONALITY13

3.1 Construct Mesh and Field in MED Format for the 3D VESSEL Component 13

3.2 The Low-Level Logic of the Enhanced TRACE Package ... 16

4 DEMONSTRATION OF THE POST-PROCESSING FUNCTIONALITY OF
TRACE...19

4.1 The AP-1000 Transient Case...19

4.2 Demonstration of the Meshes and Fields in SALOME..21

5 CONCLUSION ...27

6 OUTLOOK ...29

7 REFERENCES...31

viii

APPENDIX A PRACTICE OF SINGLE MESH CONSTRUCTION........................... A-1

APPENDIX B PRACTICE OF PWR TYPE MESH CONSTRUCTION.......................B-1

APPENDIX C PRACTICE OF VVER TYPE MESH CONSTRUCTION.....................C-1

APPENDIX D PRACTICE OF MED FIELD CONSTRUCTIOND-1

ix

LIST OF FIGURES

Figure 1-1 The General Appearance of AptPlot ...1

Figure 1-2 The Main Panel of the Model Editor of SNAP ... 2

Figure 1-3 The Window Displaying the Animation of TRACE Results 3

Figure 1-4 The Vessel Ring Display Bean for 3D VESSEL Component of TRACE 4

Figure 2-1 The Dependent 3rd Party Packages of SALOME .. 5

Figure 2-2 The Dependency of SALOME Modules to SALOME Prerequisites 6
Figure 2-3 The General Structure of the SALOME Platform .. 7

Figure 2-4 The PARAVIS Main Interface in SALOME ...7

Figure 2-5 The 3D Volumetric Cell Types Supported by MEDCoupling 9

Figure 2-6 An Example of Fields with Attributions ...10

Figure 3-1 A Cell is Built from Point to Surface to Volume. ..13

Figure 3-2 Cells Supported by MEDCoupling Library and the Typical TRACE Cells.............. 13

Figure 3-3 Construction of a Typical TRACE Cell ..14

Figure 3-4 The Typical Spatial Surfaces to be Defined for the VESSEL Component of
 TRACE..14

Figure 3-5

Figure 3-6 The File Structure of the Updated TRACE Package ... 17

Figure 3-7 The File Structure of CXX... 18

Figure 4-1 Configuration of the Main Components of the AP1000 Reactor............................ 19

Figure 4-2 The AP1000 Model in SNAP... 20

Figure 4-3 The Configuration of the Hot Legs and Cold Legs of the Vessel........................... 20

Figure 4-4 Transient Evolution .. 21

Figure 4-5 The Input and Output Files of the New TRACE .. 21

Figure 4-6 The Appearance of SALOME after Importing the Two MED Files......................... 22

Figure 4-7 The Zoomed-in Task Window Displaying the Two MED Files................................ 22

Figure 4-8 The Zoomed-in Property Window Displaying the Fields Storing in the
 Polyhedron Mesh ... 23

Figure 4-9 The Zoomed-in Property Window Displaying the Fields Storing in the Surface

 Mesh ..23

Figure 4-10 The Coolant Temperature Field in the Polyhedron Mesh Processed in
 SALOME .. 23

Simulation of a Typical TRACE Cell Using Different Approximation Methods a)

Quadrangles Approximation for Spatial and Multi-Points (Upper and Bottom)
Faces, d) Use of Non-Coplanar Points...15

 Direct Point Use, b) Quadrangles Approximation for Spatial Faces, c)

x

Figure 4-11 The Mass Flow Rate on Z Direction and the Coolant Velocity on YT Direction
 in the Surface Mesh Processed in SALOME .. 24

Figure 4-12 The Data Analysis of Specific Part or Cells ... 25

xi

LIST OF TABLES

Table 3-1 The Physical Data Which Can be Derived as MED Fields .. 15

Table 4-1 Main Plant Thermal-Hydraulic Data of AP1000 .. 19

xiii

EXECUTIVE SUMMARY

The scope of this report is to present the development of the 3D visualized post-processing ability
for the Cylinder and Cartesian VESSEL components of TRACE. This is based on the
MEDCoupling open-source library and the SALOME platform. Currently, twenty-one fields in
TRACE can be visualized in SALOME platform. Those fields can be processed with various
operations e.g., cut, sliced, and filtered.

xv

ABBREVIATIONS AND ACRONYMS

CAFEAN Common Application Framework for Engineering Analysis

LWR Light Water Reactor

NPP Nuclear Power Plant

NRC U.S. Nuclear Regulatory Commission

PWR Pressurized light-Water Reactor

RPV Nuclear Pressure Vessel

SNAP Symbolic Nuclear Analysis Package

1

1 INTRODUCTION

1.1 Overview of TRACE

TRACE is the reference best-estimate thermal-hydraulic system code of the U.S. Nuclear
Regulatory Commission (NRC) for Light Water Reactors (LWR). A system of six balance
equations in the two-fluid formulation plus additional equations to describe the transport of
boron dissolved in the liquid phase and of non-condensable in the gas phase is solved for one-
dimensional and three-dimensional components used to represent a nuclear power plant [1].
Besides, correlations for heat transfer in all relevant heat transfer modes of vertical and
horizontal flow regimes are implemented together with a heat conduction solver for structures
with and without a heat source. TRACE contains different components such as PIPE, VALVE,
VESSEL, HTSTR, CHAN, POWER, CONTAN to represent various parts or systems of a
Nuclear Power Plant (NPP). Among the various components, VESSEL is the special 3D item
that can model the Reactor Pressure Vessel (RPV), RWST, and other components in which 3D
phenomena take place. By taking advantage of VESSEL, TRACE can simulate a 3D (x, y, z)
Cartesian- and/or (r, θ, z) cylindrical-geometry flow calculation. Dedicated models are also
available for the description of critical flow, thermal stratification, counter-current flow, etc.

1.2 Current Post-Processing of TRACE

Figure 1-1 The General Appearance of AptPlot

When TRACE is launched under a command window, it will read in the input file and generates
several output files including the XTV, TPR, OUT, and other files. The XTV file contains the
plotting data for all components simulated in the model and it can be imported by the AptPlot tool
which is a simple scientific drawing program. AptPlot is a free WYSIWYG 2D plotting tool designed

2

for creating production quality plots of numerical data and performing data analysis. AptPlot
contains extensive scripting and GUI support for the manipulation and analysis of data sets.
AptPlot is intended to be a pure-Java drop-in replacement for the Motif X-Window based Grace
plotting package maintained by the Grace Team and coordinated by Evgeny Stambulchik. It can
be accessed from https://www.appliedprog.com/aptplot/index.jsp .

The appearance of AptPlot is illustrated in Figure 1-1. The figure displays the main interface and
the sub-interface for data selection. More sub-interfaces e.g., the curve editing interface, the
legend editing interface, the coordination editing interface could be launched as required. AptPlot
is a good tool for careful quantitative analysis and the time evolution of fields. However, it can
only plot 1D curves and one plot should not contain too many curves to avoid displaying lots of
information in a mess. This limitation is the inherent drawback for qualitative analysis e.g., the
fields’ distribution on the full vessel scale. Figuring out the critical information from a bunch of
curves is difficult and sometimes impossible.

Figure 1-2 The Main Panel of the Model Editor of SNAP

The other classical tool to post-process the TRACE result is the Symbolic Nuclear Analysis
Package (SNAP) with the animation plug-in. SNAP consists of a suite of integrated applications
designed to simplify the process of performing engineering analysis. SNAP is built on the
Common Application Framework for Engineering Analysis (CAFEAN) which provides a highly
flexible framework for creating and editing input for engineering analysis codes as well as
extensive functionality for submitting, monitoring, and interacting with the codes. For the nuclear
community, SNAP provides researchers a powerful GUI simplifying the input files composing for

https://www.appliedprog.com/aptplot/index.jsp

3

TRACE, RELAP, PARCS, etc. Moreover, SNAP can cover the complete simulation procedures
from model composing, computation launching, and results post-processing. SNAP provides
researchers an advanced option to manipulate and control simulations at a high level. SNAP has
several main components known as the model editor, configuration tool, etc. The model editor is
the dominant component whose main panel is exhibited in Figure 1-2.

Figure 1-3 The Window Displaying the Animation of TRACE Results

Particularly for the post-processing, when the simulation terminates, SNAP can directly call
AptPlot internally and process the XTV file. Besides, SNAP has interactive post-processing
capabilities displaying 2D or 3D colorful animations assisted by the animation plug-in. Within such
a display, the results of a calculation may be animated in a variety of ways. Figure 1-3 exhibits
one standard animation window displaying the TRACE results. An animation display retrieves
data from a Calculation Server and represents it visually in some fashion. This data can be from
actively running calculations, completed calculations, imported EXTData files, etc.

SNAP usually uses some objects called display beans to represent the various components in
the color animations. Most of the beans are 2D viewed object e.g., the PIPE, VALVE, etc. Besides,
a special 3D display bean corresponds to the 3D VESSEL component, which can display the
whole vessel geometry as well as the fields inside and also the vessel rings, see Figure 1-4.

4

Figure 1-4 The Vessel Ring Display Bean for 3D VESSEL Component of TRACE

Compared with AptPlot, the animation plug-in in SNAP makes the qualitative analysis possible,
especially in the complex VESSEL component where lots of cells stack up. However, the careful
inspection of the fields in this bean is not that feasible, especially when the inner cells are
interested. Also, the methods to manipulate the fields or geometrical cells of the VESSEL are not
satisfactory. There are not plentiful filters helping to process the 3D display bean of VESSEL,
which weakens the quantitative analyzing capability. Another potential limitation of the SNAP 3D
animation is that the fields and the “mesh” are mixed. This feature does not follow the tendency
of modern programs whose mesh and fields normally separate.

1.3 Objectives of the Report

To take advantage of modern powerful post-processing toolkits, an open-source data-processing
library – MEDCoupling was adopted to generate two 3D meshes for the VESSEL component of
TRACE. A polyhedron mesh and a surface mesh are explicitly defined and written as mesh files.
The physical fields naturally separate from the meshes. All the meshes and fields are in MED
format according to the MEDCoupling library. They can be processed by the open-source
SALOME platform with various, plentiful, and powerful filters. Moreover, the newly generated
meshes and fields can be applied to codes’ coupling issues in a quite straightforward manner
thanks to the coupling-oriented features of the MEDCoupling library.

1.4 Scope of the Report

This report is subdivided into six chapters. The first chapter mainly talks about the current post-
processing of TRACE. The second chapter describes some basic knowledge of the SALOME
platform and the MEDCoupling library. The third chapter details the mesh generation for the 3D
VESSEL component of TRACE and the logics of the enhanced TRACE package. A demonstration
with a VVER-1000 coolant mixing case is exhibited in Chapter 4. Finally, the main conclusions
and outlook are summarized in Chapters 5 and 6.

5

2 THE SALOME PLATFORM AND MEDCOUPLING LIBRARY

The new 3D meshes for the TRACE 3D VESSEL component as well as the fields are constructed
based on the MEDCoupling library and they are processed in the SALOME platform. Thus some
general knowledge of the platform and library are key items to be delivered in this chapter.

2.1 Overview of SALOME

Figure 2-1 The Dependent 3rd Party Packages of SALOME

The SALOME platform is an open-source software framework for numerical pre- and post-
processing and integration of numerical solvers in various scientific domains. It is supported by
CEA, EDF, and OPEN CASCADE. SALOME has already been employed to perform a wide range
of simulations, which are typically related to industrial equipment in power plants (nuclear power
plants, wind turbines, dams).

SALOME is developed and built based on dozens of 3rd party packages or toolkits e.g., Python,
QT, gmsh. The most right column in Figure 2-1 lists the complete set of those packages whose
version information is print in the second column. The other columns in the figure tell the

6

interdependence of those packages. Please note that the specific versioned packages are for
SALOME 7.8.0 only. Different versions of SALOME normally depend on different versions of
those packages. They are called prerequisites in the SALOME platform and concreate the very
low-level cornerstones for all other super-structures of SALOME.

Figure 2-2 The Dependency of SALOME Modules to SALOME Prerequisites

Figure 2-2 prints the dependency of SALOME modules to SALOME prerequisites. The rightmost
two columns are the names and versions of the SALOME prerequisites. The leftmost column is a
direct copy of the prerequisite names. The dark blue texts on the top of the figure are the high-
level modules in SALOME. The “X” in the central table tells that the module in the corresponding
column depends on the prerequisite on the corresponding row.

Among the various components, eight modules constitute the main trunk and branches of
SALOME. The program outline is exhibited in Figure 2-3. There, KERNEL and GUI provide the
core functionalities of SALOME, GEOM is for CAD usage while MESH is in charge of generating
computational grids, PARAVIS is nothing but ParaView which is post-processing professional,
MED contains lots of mesh interpolation tools and also supplies a universal data format standard
for all other modules, YACS is used to organize and monitor calculation chains, the last stands
for the user-developed modules. In total, KERNEL and GUI are the base, GEOM, MESH, and

7

PARAVIS are for pre- and post-processing, MED, YACS, and user-module are closely related to
coupling issues. Coupling is another significant functionality of SALOME, which potentially
benefits the coupling development involving TRACE.

Figure 2-3 The General Structure of the SALOME Platform

PARAVIS is the module for post-processing. Its main interface is displayed in Figure 2-4.

Figure 2-4 The PARAVIS Main Interface in SALOME

The windows layout is quite similar to ParaView. Precisely, PARAVIS is a special Paraview with
some additional functions in SALOME. The demonstration in Chapter 4 plays in this window.

2.2 The MEDCoupling Library

MEDCoupling is a data-processing library in general including format definition and plenty of
methods. It gathers several powerful functionalities around the input and output data of field-
physics-oriented simulation codes. Data manipulated by MEDCoupling are objects relative to

8

fields for simulation codes. The functionalities are accessible through python modules and are
split into 4 categories:

1) Data movement: read/write from/to file, reduce, extract, duplicate, aggregate, compare,

exchange data memory to memory across process (image of multifile to file);

2) Data analysis: extract/gather information in data to transform it into a condensate workable

data (not necessarily field linked) for further use;

3) Data conversion: interpolate, project, repair, decimate, format conversion to make discuss

simulation codes with each other;

4) Data optimization for simulation code: renumbering, partition for multiprocessor codes.

The emphasis of MEDCoupling is mesh and field which are both in MED format. They are the
elemental unit to be processed in SALOME. MEDCoupling supports twenty-one kinds of meshes.
Here below we only list the available key words of the mesh types. Readers can refer to the on-
line documentation for details, please go https://docs.salome-
platform.org/latest/dev/MEDCoupling/ developer/index.html.

1) 1D lines: NORM_POINT1, NORM_SEG2, NORM_SEG3, NORM_SEG4,

NORM_POLYL;

2) 2D surfaces: NORM_TRI3, NORM_QUAD4, NORM_POLYGON, NORM_TRI6,

NORM_TRI7, NORM_QUAD8, NORM_QUAD9, NORM_QPOLYG;

3) 3D volumes: NORM_TETRA4, NORM_PYRA5, NORM_PENTA6, NORM_HEXA8,

NORM_TETRA10, NORM_HEXGP12, NORM_PYRA13, NORM_PENTA15,

NORM_HEXA20, NORM_HEXA27, NORM_POLYHED.

Because of the particularity of the VESSEL component, all the cells are 3D volumes. Hereby they
should be explained in detail. There are 11 kinds of 3D mesh supported by MEDCoupling, in six
general types. The meshes and the corresponding keywords are exhibited in Figure 2-5. The
MED format meshes are not only geometrical objects but have inherent built-in attributes. The
following list posts some of those attributions. For the complete attribution list and the
explanations, please go to the online documents.

1) Splitting policy

• Type describing the different ways in which the hexahedron can be split into

tetrahedrons.

• Options: PLANAR_FACE_5, PLANAR_FACE_6, GENERAL_24, GENERAL_48.

2) Intersection type

• How the mesh is intersected.

• Options: Triangulation, Convex, Geometric2D, PointLocator, Barycentric,

BarycentricGeo2D.

3) Numbering Policy

• Define the data arrangement in the memory.

• Options: ALL_C_MODE, ALL_FORTRAN_MODE.

https://docs.salome-platform.org/latest/dev/MEDCoupling/%20developer/index.html
https://docs.salome-platform.org/latest/dev/MEDCoupling/%20developer/index.html

9

Figure 2-5 The 3D Volumetric Cell Types Supported by MEDCoupling

MEDCoupling proceeds the following steps to build a mesh.

1) Define the numbering roles of the points composing the mesh. This is the base of

everything. You must define the order of those pints.

2) Set or calculate the coordination of those points. The coordination is stored in an array

according to the points order defined in step one.

3) Define the connectivity of those points. The connectivity is an array containing a set of

those points numbers. It declares which point should be connected to another.

4) Declare a special MED array to receive the points coordination. Allocate appropriate space

for the array to receive the points coordination.

5) Set the components for the MED array storing points coordination. No actual operation

here, just a declaration of an object.

6) Declare the MED mesh. Define the mesh dimension. Tell how many cells are included in

the mesh. Set the coordination MED array to the mesh. Use the connectivity array to insert

the cell to the mesh.

Several cases for the practice of building simple meshes can be found in Appendix A. All the six
mesh types except the polyhedron mesh shown in Figure 2-5 are involved together with the
source code. Furthermore, two more practices demonstrating the construction of a PWR type
core and a VVER type are given in Appendix B and Appendix C.

Now we turn to the other key element – field. A field in the MEDCoupling point of view is a structure
that allows storing a discretization of physical value on a defined discretized spatial and possibly
temporal support. It is an array with couples of attributions e.g., name, time, mesh. Figure 2-6
gives an example of the fields. It can be inferred that the base of a field is an array. The field must

10

have a name and must be assigned to a mesh. Some other attributes e.g., time are also possible
for a field. Please note that different fields may share the same mesh.

Figure 2-6 An Example of Fields with Attributions

Some further features of a MED field are listed below and the details are well explained in the
online documentation.

1) Type of fields: ON_CELLS, ON_NODES, ON_GAUSS_PT, ON_GAUSS_NE,

ON_NODES_KR;

2) Time discretization: NO_TIME, ONE_TIME, LINEAR_TIME,

CONST_ON_TIME_INTERVAL;

3) Field nature: ConservativeVolumic, Integral, IntegralGlobConstraint, RevIntegral.

Similar to the MED mesh, couples of functions are available to manipulate the MED field. Several
common functions are described in the following list and the complete set could be found in the
online documentation.

1) setNature: Four field natures available: ConservativeVolumic, Integral,

IntegralGlobConstraint, RevIntegral;

2) setArray: Fill a MED array to the field. Solve the problem of what;

3) setName: State the name of the field e.g., temperature, pressure. Solve the problem of

who;

4) setMesh: Assign a mesh to the field. Solve the problem of where;

5) setTime: Assign a problem time to the field. Solve the problem of when;

6) getIJ: Get a value from a field on a specified location;

7) getNumberOfComponents, getNumberOfTuples, getNumberOfValues: Get a static

information form a field;

8) getMesh: Get the mesh of the field;

9) getArray: Get the array of the field;

10) checkCoherency: Checks if this field is correctly defined, else an exception is thrown.

11

The typical procedures to build a MED field are:

1) Declare the MED field.

• ParaMEDMEM::MEDCouplingFieldDouble *field_tetra = ParaMEDMEM::

MEDCouplingFieldDouble::New(ON_CELLS, ONE_TIME);

2) Set the field’s nature.

• field_tetra->setNature(ConservativeVolumic);

3) Define the field’s name.

• field_tetra->setName("V_nanhua1");

4) Assign a mesh to the field.

• field_tetra->setMesh(nanhua1_tetra);

5) Declare a MED array, allocate appropriate space to store the actual field data.

• DataArrayDouble *ar_tetra = DataArrayDouble::New();

• ar_tetra->alloc(1, 3);

6) Set the MED array component.

• ar_tetra->setInfoOnComponent(0, "X");

7) Project the MED array to simple C++ array for convenient data inserting.

• double *a_final_tetra = ar_tetra->getPointer();

8) Fill the C++ array with data.

9) Assign the MED array to the field.

• field_tetra->setArray(ar_tetra);

Appendix D Gives two examples for MED field construction depend on the PWR and VVER
mesh developed in Appendix B and C.

13

3 DEVELOPMENT OF THE TRACE POST-PROCESSING
FUNCTIONALITY

This chapter will extend the explanation of MED meshes and fields from general cell types to the
specific TRACE 3D VESSEL component. Besides, the code structure of the updated TRACE
program is discussed as well, by which the code developers might find useful information.

3.1 Construct Mesh and Field in MED Format for the 3D VESSEL Component

A mesh is built following a sequence from point to surface to volume. The procedures are shown
in Figure 3-1.

Figure 3-1 A Cell is Built from Point to Surface to Volume.

As it was told in section 2.2, the MEDCoupling library supports five cell types: tetrahedron,
triangular prism, hexahedron, hexagonal prism, and polyhedron. The first four cells are displayed
in Figure 3-2a. But they can’t be applied to represent a TRACE cell. This is because the cells in
TRACE are either fan-shaped or annular (Figure 3-2b). So, the only possible option is the
polyhedron.

a. SALOME-MED Supported Cell Types b. TRACE Cells

Figure 3-2 Cells Supported by MEDCoupling Library and the Typical TRACE Cells.

Normally, only eight points are used to define a TRACE annular cell because TRACE uses the
cylindrical-coordinate system to model the VESSEL component. However, since the
MEDCoupling library applies only Cartesian coordinates, the derived eight points from the TRACE
input file for one single cell are not sufficient to form cells that contain space curves under
Cartesian coordinates. The direct result is a cubic that could not represent the real TRACE annular
cell, see the left plot of Figure 3-3. To complete the cell, some assistant points must be inserted
(the red points in the right plot of Figure 3-3). Those points could be treated as an interpolation
between two original TRACE points. The interpolation is automatically done based on the user-
defined resolution (the curves amount to approximate a circle). However, there arises another
challenge known as the creation of the spatial faces with those points.

14

Figure 3-3 Construction of a Typical TRACE Cell

MEDCoupling has special logic to determine the coplanarity of a set of points. If those points are
to form a spatial 3D surface, the non-coplanar points would lead to closing difficulties failing the
surface definition. While this kind of spatial surfaces is common in the VESSEL component of
TRACE see Figure 3-4.

Figure 3-4 The Typical Spatial Surfaces to be Defined for the VESSEL Component of
TRACE

To precisely define the spatial surfaces, we use a couple of 2D quadrangles to approximate them.
The possible approaches are presented in Figure 3-5, following which are the explanations.

15

Figure 3-5 Simulation of a Typical TRACE Cell Using Different Approximation
Methods a) Direct Point Use, b) Quadrangles Approximation for Spatial
Faces, c) Quadrangles Approximation for Spatial and Multi-Points (Upper
and Bottom) Faces, d) Use of Non-Coplanar Points.

a) Directly use the points to form the spatial faces. Only six faces are involved in the annular
volume. But this approach causes misshapen cells highlighted by the red circles.

b) Use several sets of quadrangles to approximate the two spatial faces. Now the volume is
properly defined. However, there are some display problems for the two planes containing
more than four points highlighted by the red circles.

c) Use several sets of quadrangles to approximate both the spatial faces and the multi-points
planes. Now the annular volume is perfectly defined and displayed and considered to be
adequate for further use.

d) This is exactly not an option for the cell definition but disclaims that the co-planarity of the
points is the crucial reason affecting the cells building.

Up to this point, a TRACE mesh could be explicitly built by the third approach. No additional
definitions except the TRACE input file are required. Now, it is ready to construct the MED fields
from TRACE memory and write them into the meshes. In total, twenty-one kinds of data can be
derived to form MED fields. They are summarized in Table 3-1.

16

VLNYT liquid velocity on y or t direction

VLNZ liquid velocity on z-direction

VVNXR gas velocity on x or r direction

VVNYT gas velocity on y or t direction

VVNZ gas velocity on z-direction

MMFLXR mass flow rate velocity on x or r direction

MMFLYT mass flow rate velocity on y or t direction

MMFLZ mass flow rate velocity on z-direction

AM non-consen gas mass

PAN non-consen gas pressure

ROLN liquid density

ROVN gas density

ROAN non-consen gas density

ROM mixture density

CONCWN solute mass ratio

CONCSN solute mass fraction

The volumetric polyhedron mesh discussed in the earlier part of this section can properly store
the cell-centered fields e.g., the liquid temperature and liquid density. However, the velocities or
mass flow rates of the coolant are defined at the interfaces between the volumetric cells. The
polyhedron mesh could not handle those data. A new 3D surface mesh was developed based on
the polyhedron mesh but only contains the interfaces between the cells. The velocities and mass
flow rates are processed with this mesh in SALOME. An AP-1000 testing case will demonstrate
the meshes and fields vividly in the next Chapter.

3.2 The Low-Level Logic of the Enhanced TRACE Package

This section gives some clues to follow the updates of the new TRACE package for code
developers.

Table 3-1 The Physical Data Which Can be Derived as MED Fields

ALPN void fraction

PN pressure

TLN liquid temperature

TVN gas temperature

VLNXR liquid velocity on x or r direction

17

Figure 3-6 The File Structure of the Updated TRACE Package

Figure 3-6 presents the file structure of the updated TRACE package with enhanced post-
processing functionality. It is inferred that the trunk and main branches of TRACE are not
significantly changed. Only some stuff in the “Source” folder is modified or added. The
“README_FIRST” is nothing but a quick instruction on how to build and run the executable. The
root compiling-control file for Scons – “SConstruct” is modified to properly handle the new files
and directories. The new directory “cxx” is inspected in Figure 3-7.

18

Figure 3-7 The File Structure of CXX

MEDCoupling is developed mainly in cxx. Hybrid programming mixed with Fortran and cxx is
necessary. To fully take advantage of the functionalities of MEDCoupling, new cxx files must be
developed as the wrapper. Besides, the cxx file must contain the logic to construct the meshes
and to write the fields. To modulize the source, all of the cxx-related kinds of stuff are put in one
folder.

As to the “src” folder, there are five new files added to the Fortran source. They are:

1) med_dataM.f90;

2) med_funcM.f90;

3) med_TprVesselM.f90;

4) med_trans.f90;

5) med_VessInputM.f90.

The first two files are new scripts as the interface on the Fortran side connecting the cxx routines.
The other three files are derived from the original TRACE files. Note that the file names are the
same with TRACE files except the uniform prefix. Only limited changes are made to those files.
The “Sconscript” in this folder is also modified to reflect the changes.

Now, the updated TRACE package can be compiled in two ways.

1) python python scons/scons.py compiler=intel;

2) python python scons/scons.py compiler=intel icoco_med=med.

The first method will build the TRACE executable that is 100 percent the same as the originally
published TRACE. The second method will build the executable with the enhanced post-
processing functionalities. Switching the two modes is controlled only by adding a new compiling
keyword. This is from the idea of keeping both TRACE source structure and building manners as
much the same as the originally published TRACE package.

Still, one more operation has to be performed before launching the new TRACE executable. That
is, the liking root of the MEDCoupling library has to be explicitly declared because TRACE will
follow this definition to find the libraries to construct the meshes and fields. Users can either add
the path to “LD_LIBRARY_PATH” in the current launching shell or permanently add the definition
to “bashrc” under the home.

19

4 DEMONSTRATION OF THE POST-PROCESSING FUNCTIONALITY
OF TRACE

The testing of the new post-processing capability is done by an AP-1000 transient case. Selected
fields and data processing methods are exhibited.

4.1 The AP-1000 Transient Case

The AP1000 plant is a two loop pressurized water reactor (PWR), as shown in Figure 4-1 of
Generation III+ that uses a simplified innovative, and effective approach to safety.

Figure 4-1 Configuration of the Main Components of the AP1000 Reactor

The main characteristics of this reactor are summarized in Table 4-1.

Table 4-1 Main Plant Thermal-Hydraulic Data of AP1000

Parameter Value

Core power [𝑀𝑊𝑡ℎ] 3400

Reactor coolant system mass flow rate [𝑘𝑔/𝑠] 15187.4

System pressure [𝐵𝑎𝑟] 155

Core inlet temperature [𝐾] 553.817

Core outlet temperature [𝐾] 596.483

Core mass flow rate [𝑘𝑔/𝑠] 14275.56

The model of AP1000 in SNAP is shown in Figure 4-2. The vessel inlets and outlets are modeled
by the FILL and BREAK components. Note there are two loops including four cold legs and two
hot legs. Each hot leg corresponds to two cold legs. A schematic diagram is given in Figure 4-3
to clearly illustrate the vessel configuration.

20

Figure 4-2 The AP1000 Model in SNAP

Figure 4-3 The Configuration of the Hot Legs and Cold Legs of the Vessel

The transient for the AP1000 reactor, which may occur as a consequence of the rupture of one
steam line in a heat exchanger that leads to an asymmetric coolant temperature drop in the inlet
of the core. Here, in this case, the power field is not involved for the sake of modeling simplicity.

The transient evolution is:

1) t = 0 s, temp (Fill 20, 21, 22, 23) = 553.7 K
2) t = 5 s, temp (Fill 20, 21, 22, 23) = 553.7 K
3) t = 15 s, temp (Fill 20, 23) = 503.7 K

21

4) t = 20 s, temp (Fill 20, 23) = 503.7 K

Figure 4-4 represents the temperature in the four lines during the transient time.

Figure 4-4 Transient Evolution

4.2 Demonstration of the Meshes and Fields in SALOME

Once we got the new TRACE executable, it can be launched as normal TRACE. For fresh running,
it demands an input file – tracin. For restart running, it needs the modified input file – tracin and
the restart file – trcrst. When the calculation finishes normally, several files are generated, see
Figure 4-5.

Figure 4-5 The Input and Output Files of the New TRACE

Note that this is a restart case. So the input files are tracin and trcrst. The other regular output
files are the same as normal TRACE. The highlighted files are the two MED files.
“TRACEICOCOMESH_3D.med” is the polyhedron mesh storing the cell-centered field e.g., the
coolant temperature. “TRACEICOCOMESH_3D_FACE.med” is the surface mesh storing the
edge field e.g., the coolant velocity. Now we can launch SALOME and import the two .med files.
The window would have such an appearance as displayed in Figure 4-6.

22

Figure 4-6 The Appearance of SALOME after Importing the Two MED Files

The display window presents the two meshes. The left one is the polyhedron mesh and the right
one is the surface mesh. The zoomed-in task window listing the two med field windows are
exhibited in Figure 4-7.

Figure 4-7 The Zoomed-in Task Window Displaying the Two MED Files

When one med file was selected in the task window, the property window will list the available
fields storing in that file and mesh. Figure 4-8 and Figure 4-9 exhibit the zoomed-in property
windows when the deferent med file is selected. The total field number is twenty-one as told in
section 3.1.

23

Figure 4-8 The Zoomed-in Property Window
Displaying the Fields Storing in
the Polyhedron Mesh

Figure 4-9 The Zoomed-in Property
Window Displaying the
Fields Storing in the Surface
Mesh

Because the testing case is a temperature distributing transient, the coolant temperature field is
selected to demonstrate the post-processing of the fields locating in the polyhedron mesh, see
Figure 4-10. From left to right, the first plot displays the overall coolant temperature distribution in
the vessel, the second plot gives the temperature profile inside the vessel by clipping the vessel
one half out, the third plot selects the cells having a temperature higher than 540K and present
them, the fourth plot selects the cells whose temperature is lower than 540K and present them.

Figure 4-10 The Coolant Temperature Field in the Polyhedron Mesh Processed in
SALOME

We can see an obvious cold part and hot part of the vessel. The coolant temperature evolution
along the flow path is also clear. From the vessel inlet to the downcomer to the core inlet to the

24

core outlet to the vessel outlet, the coolant in the colder part is getting hotter and hotter. While the
coolant in the hotter part is getting colder and colder. The coolant mixing plays a key role in this
phenomenon.

As to the fields in the surface mesh, since the mesh has only one radial surface on XR direction
which is the wall isolating the downcomer and core area, the XR surfaces all have zero velocities.
Thus only the velocities or mass flow rate on Z (axial) and YT (azimuthal) directions are
demonstrated, see Figure 4-11.

Figure 4-11 The Mass Flow Rate on Z Direction and the Coolant Velocity on YT
Direction in the Surface Mesh Processed in SALOME

From left to right, the first plot is the Z-directional coolant mass flow rate on the full surface mesh.
Note that only the axial surfaces have positive values while the values on all the radial and
azimuthal surfaces are zero. The second plot shows only the non-zero axial surfaces so that both
the inner faces and outer faces are visible. The third plot is the azimuthal or YT-directional coolant
velocity on the full surface mesh. Also, note that only the azimuthal surfaces have positive values
while the values on all the axial and radial surfaces are zero. The fourth plot shows only the non-
zero azimuthal surfaces so that both the inner faces and outer faces are visible.

The axial mass flow rates differ significantly in magnitude when on the surface near the vessel
inlet. Along the flow path in the downcomer, the difference is getting flattered because the coolant
flows from the cells of the high mass flow rate to the cells of the low mass flow rate. Oppositely,
along the flow path from the core inlet to the vessel outlet, the flat mass flow difference is getting
significant again because only two cells are corresponding to the two vessel outlet. All of the
coolants flow from all other cells to the two cells and finally flow out of the vessel.

The axial mass flow difference evolution along the significant vessel inlet to the flat lower plenum
to the significant vessel outlet could be inferred from the azimuthal coolant velocity distributions
plotted in the rightmost figure. Along the flow path in the downcomer, the azimuthal velocity is
getting larger and larger indicating the inter-flow between azimuthal cells is getting stronger. Thus
the axial flow rate difference is getting smaller. Similarly, from the lower plenum to the vessel

25

outlet, the azimuthal velocity is getting larger indicating the inter-flow between azimuthal cells is
becoming larger. Thus the axial flow rate difference is getting larger again.

The above figures demonstrate the outstanding capability of the MED files for qualitative analysis
of the fields in the VESSEL component of TRACE. Besides, the plentiful of quantitative analysis
can also be performed in SALOME. Take the coolant temperature and velocity for instance, in
Figure 4-12, from left to right, the first figure plots the cell in the highest and lowest temperature
together with their locations in the full vessel mesh. The second figure plots the single cell in the
highest cell and plots the evolution over the transient time. The third figure plots the surface having
the largest azimuthal coolant velocity together with its location in the full mesh. The four mesh
plots this single cell and plots the evolution over the transient time.

Figure 4-12 The Data Analysis of Specific Part or Cells

It is to note that the data processing methods presented in this report are very basic and only for
demonstration purposes. More powerful methods can be found in the online documentation.

27

5 CONCLUSION

Based on the open-source data-processing MEDCoupling library, a polyhedron mesh and a
surface mesh for the 3D VESSEL component of TRACE are constructed. Twenty-one kinds of
calculated fields including the cell-centered field e.g., the coolant temperature and the edge field
e.g., the coolant velocity could be written from TRACE memory to the two meshes respectively.
The meshes and fields now could be imported into the open-source SALOME platform for post-
processing. SALOME could perform both qualitative analysis and quantitative analysis. With the
new enhanced post-processing functionality to TRACE, the physical field in the VESSEL
component could be inspected in a more flexible and apparent manner.

29

6 OUTLOOK

MEDCoupling is more than a post-processing library. It can also handle the field translation
problems between different computational domains. This is an outstanding capability for code
coupling problems, which is one of the main development objectives of the library. To fully take
advantage of this capability, TRACE might extend its MED fields to adapt coupling issues. That
is, we can develop a multi-scale or multi-physics coupling system involving TRACE with the
enhanced post-processing functionalities from MEDCoupling.

31

7 REFERENCES

[1] TRACE "TRACE V5.1051 theory manual," U.S. Nuclear Regulatory Commission,
Washington, DC, U.S..

A-1

APPENDIX A PRACTICE OF SINGLE MESH CONSTRUCTION

Six simple cases are demonstrating the mesh generation process and the source code is also
available.

(1)

tetrahedron

1) Define the order of the points;

2) double coor[12]= {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};

3) double conn[4]= {0, 1, 2, 3};

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(4, 3); std::copy(coor, coor +

4*3, c_3d->getPointer());

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

>setInfoOnComponent(2, "Z");

6) ParaMEDMEM::MEDCouplingUMesh *m_3d

=ParaMEDMEM::MEDCouplingUMesh::New("mesh_tetra", 3); m_3d-

>setCoords(c_3d);m_3d->allocateCells(1); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_TETRA4, 4, conn).

(2)

pyramid

A-2

1) Define the order of the points;

2) double coor[15]= {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};

3) double conn[5]= {0, 1, 2, 3, 4};

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(5, 3); std::copy(coor, coor +

5*3, c_3d->getPointer());

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

>setInfoOnComponent(2, "Z");

6) ParaMEDMEM::MEDCouplingUMesh *m_3d

=ParaMEDMEM::MEDCouplingUMesh::New("mesh_pyra", 3); m_3d-

>setCoords(c_3d);m_3d->allocateCells(1); m_3d->insertNextCell(INTERP_KERNEL::

NORM_PYRA5, 5, conn).

(3)

pentahedron

1) Define the order of the points;

2) double coor[18]= {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0};

3) double conn[6]= {0, 1, 2, 3, 4, 5};

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(6, 3); std::copy(coor, coor +

6*3, c_3d->getPointer());

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

>setInfoOnComponent(2, "Z");

6) ParaMEDMEM::MEDCouplingUMesh *m_3d

=ParaMEDMEM::MEDCouplingUMesh::New("mesh_pent", 3); m_3d-

>setCoords(c_3d);m_3d->allocateCells(1); m_3d->insertNextCell(INTERP_KERNEL::

NORM_PENTA6, 6, conn).

A-3

(4)

hexahedron

1) Define the order of the points;

2) double coor[24]= {0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0,

1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0};

3) double conn[8]= {0, 1, 2, 3, 4, 5, 6, 7};

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(8, 3); std::copy(coor, coor +

8*3, c_3d->getPointer());

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

>setInfoOnComponent(2, "Z");

6) ParaMEDMEM::MEDCouplingUMesh *m_3d

=ParaMEDMEM::MEDCouplingUMesh::New("mesh_hexa", 3); m_3d-

>setCoords(c_3d);m_3d->allocateCells(1); m_3d->insertNextCell(INTERP_KERNEL::

NORM_HEXA8, 8, conn).

(5)

hexagonal prism

1) Define the order of the points;

2) double coor[36]= {1.0, 0.0, 0.0, 0.5, 0.866, 0.0, -0.5, 0.866, 0.0, -1.0, 0.0, 0.0, -0.5, -0.866, 0.0,

0.5, -0.866, 0.0, 1.0, 0.0, 1.0, 0.5, 0.866, 1.0, -0.5, 0.866, 1.0, -1.0, 0.0, 1.0, -0.5, -0.866, 1.0,

0.5, -0.866, 1.0};

3) double conn[12]= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(12, 3); std::copy(coor, coor

+ 12*3, c_3d->getPointer());

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

A-4

>setInfoOnComponent(2, "Z");

6) ParaMEDMEM::MEDCouplingUMesh *m_3d

=ParaMEDMEM::MEDCouplingUMesh::New("mesh_hexp", 3); m_3d-

>setCoords(c_3d);m_3d->allocateCells(1); m_3d->insertNextCell(INTERP_KERNEL::

NORM_HEXGP12, 12, conn).

B-1

APPENDIX B PRACTICE OF PWR TYPE MESH CONSTRUCTION

This case extends the mesh set from a single cell to multi-cell. It is only for demonstration thus
contains only nine cells instead of representing the full PWR core. The final desired mesh
is shown in Figure B-1. The meshes are hexagonal.

Figure B-1 The Desired Core Mesh Type for PWR

1) The first step is setting the order of the points, Figure B-2.

Figure B-2 The Order of the Points of PWR Core Mesh

2) Then, define the coordination of the points. double coor[96]= {0.0, 0.0, 0.0, 1.0, 0.0, 0.0,

2.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 2.0, 1.0, 0.0, 3.0, 1.0, 0.0, 0.0, 2.0,

0.0, 1.0, 2.0, 0.0, 2.0, 2.0, 0.0, 3.0, 2.0, 0.0, 0.0, 3.0, 0.0, 1.0, 3.0, 0.0, 2.0, 3.0, 0.0, 3.0,

B-2

3.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 2.0, 0.0, 1.0, 3.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0,

2.0, 1.0, 1.0, 3.0, 1.0, 1.0, 0.0, 2.0, 1.0, 1.0, 2.0, 1.0, 2.0, 2.0, 1.0, 3.0, 2.0, 1.0, 0.0, 3.0,

1.0, 1.0, 3.0, 1.0, 2.0, 3.0, 1.0, 3.0, 3.0, 1.0}.

3) Build the connectivity array. int conn[72]= {0,1,5,4,16,17,21,20, 1,2,6,5,17,18,22,21,

2,3,7,6,18,19,23,22, 4,5,9,8,20,21,25,24, 5,6,10,9,21,22,26,25, 6,7,11,10,22,23,27,26,

8,9,13,12,24,25,29,28, 9,10,14,13,25,26,30,29, 10,11,15,14,26,27,31,30}.

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(32, 3); std::copy(coor,

coor + 32*3, c_3d->getPointer()).

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

>setInfoOnComponent(2, "Z").

6) ParaMEDMEM::MEDCouplingUMesh *m_3d =

ParaMEDMEM::MEDCouplingUMesh::New("mesh_PWR", 3);

7) m_3d->setCoords(c_3d); m_3d->allocateCells(9); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+8); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+16); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+24); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+32); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+40); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+48); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+56); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXA8, 8, conn+64).

C-1

APPENDIX C PRACTICE OF VVER TYPE MESH CONSTRUCTION

This case extends the mesh set from a single cell to multi-cell. It is only for demonstration thus
contains only nine cells instead of representing the full PWR core. The final desired mesh
is shown in Figure C-3. The meshes are hexagonal.

Figure C-3 The Desired Core Mesh Type for VVER

1) The first step is setting the order of the points, Figure C-4.

Figure C-4 The Order of the Points of VVER Core Mesh

2) Then, define the coordination of the points. double coor[144]= {2.0774, 1.5, 0.0, 1.7887,

2.0, 0.0, 1.2113, 2.0, 0.0, 0.9225, 1.5, 0.0, 1.2113, 1.0, 0.0, 1.7887, 1.0, 0.0, 2.6550, 1.5,

0.0, 2.9437, 2.0, 0.0, 2.6550, 2.5, 0.0, 2.0774, 2.5, 0.0, 1.7887, 3.0, 0.0, 1.2113, 3.0, 0.0,

C-2

0.9225, 2.5, 0.0, 0.3450, 2.5, 0.0, 0.0563, 2.0, 0.0, 0.3450, 1.5, 0.0, 0.0563, 1.0, 0.0,

0.3450, 0.5, 0.0,0.9225, 0.5, 0.0, 1.2113, 0.0, 0.0, 1.7887, 0.0, 0.0, 2.0774, 0.5, 0.0,

2.6550, 0.5, 0.0, 2.9437, 1.0, 0.0, 2.0774, 1.5, 1.0, 1.7887, 2.0, 1.0, 1.2113, 2.0, 1.0,

0.9225, 1.5, 1.0, 1.2113, 1.0, 1.0, 1.7887, 1.0, 1.0, 2.6550, 1.5, 1.0, 2.9437, 2.0, 1.0,

2.6550, 2.5, 1.0, 2.0774, 2.5, 1.0, 1.7887, 3.0, 1.0, 1.2113, 3.0, 1.0, 0.9225, 2.5, 1.0,

0.3450, 2.5, 1.0, 0.0563, 2.0, 1.0, 0.3450, 1.5, 1.0, 0.0563, 1.0, 1.0, 0.3450, 0.5, 1.0,

0.9225, 0.5, 1.0, 1.2113, 0.0, 1.0, 1.7887, 0.0, 1.0, 2.0774, 0.5, 1.0, 2.6550, 0.5, 1.0,

2.9437, 1.0, 1.0}.

3) Build the connectivity array. int conn[84]= {0,1,2,3,4,5,24,25,26,27,28,29,

0,6,7,8,9,1,24,30,31,32,33,25, 1,9,10,11,12,2,25,33,34,35,36,26,

2,12,13,14,15,3,26,36,37,38,39,27, 3,15,16,17,18,4,27,39,40,41,42,28,

4,18,19,20,21,5,28,42,43,44,45,29, 5,21,22,23,6,0,29,45,46,47,30,24}.

4) DataArrayDouble *c_3d = DataArrayDouble::New(); c_3d->alloc(48, 3); std::copy(coor,

coor + 48*3, c_3d->getPointer()).

5) c_3d->setInfoOnComponent(0, "X"); c_3d->setInfoOnComponent(1, "Y"); c_3d-

>setInfoOnComponent(2, "Z").

6) ParaMEDMEM::MEDCouplingUMesh *m_3d =

ParaMEDMEM::MEDCouplingUMesh::New("mesh_VVER", 3);

7) m_3d->setCoords(c_3d); m_3d->allocateCells(7); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn+12); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn+24); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn+36); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn+48); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn+60); m_3d-

>insertNextCell(INTERP_KERNEL::NORM_HEXGP12, 12, conn+72).

D-1

APPENDIX D PRACTICE OF MED FIELD CONSTRUCTION

a) A field for PWR type meshes in Appendix B

1) ParaMEDMEM::MEDCouplingFieldDouble *field_PWR = ParaMEDMEM::

MEDCouplingFieldDouble::New(ON_CELLS, ONE_TIME);

2) field_PWR->setNature(ConservativeVolumic);

3) field_PWR->setName(“PWR_source_T");

4) field_PWR->setMesh(mesh_PWR);

5) field_PWR->setTime(problem_time, problem_step, -1);

6) DataArrayDouble *ar_PWR = DataArrayDouble::New();

7) ar_PWR->alloc(1, 3);

8) ar_PWR->setInfoOnComponent(0, "X");

9) int nb_data_set = ar_PWR->getNumberOfTuples();

10) int nb_component = ar_PWR->getNumberOfComponents();

11) double *a_final_PWR = ar_PWR->getPointer();

12) field_PWR->setArray(ar_PWR);

13)MEDLoader::WriteFieldUsingAlreadyWrittenMesh("mesh_PWR.med", field_PWR).

b) A field for VVER type meshes in Appendix C

1) ParaMEDMEM::MEDCouplingFieldDouble *field_VVER = ParaMEDMEM::

MEDCouplingFieldDouble::New(ON_CELLS, ONE_TIME);

2) field_PWR->setNature(ConservativeVolumic);

3) field_PWR->setName(“VVER_source_T");

4) field_PWR->setMesh(mesh_VVER);

5) field_PWR->setTime(problem_time, problem_step, -1);

6) DataArrayDouble *ar_VVER = DataArrayDouble::New();

7) ar_VVER->alloc(1, 3);

8) ar_VVER->setInfoOnComponent(0, "X");

9) int nb_data_set = ar_VVER->getNumberOfTuples();

10) int nb_component = ar_VVER->getNumberOfComponents();

11) double *a_final_VVER = ar_VVER->getPointer();

12) field_VVER->setArray(ar_VVER);

13)MEDLoader::WriteFieldUsingAlreadyWrittenMesh("mesh_VVER.med",

field_VVER).

New Functionality of TRACE: The 3D Post-Processing for the VESSEL
Component in SALOME Platform

NUREG/IA-0539

Kanglong Zhang; Victor Hugo Sanchez-Espinoza

Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, Germany

Washington, D.C. 20555-0001

Institute for Neutron Physics and Reactor Technology (INR), Karlsruhe Institute of Technology (KIT)

Hermann-von-Helmholtz-Platz 1

Division of System Analysis
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001

The researchers from the group of Reactor Physics and Dynamics (RPD) which is under the Institute of Institute for
Neutron Physics and Reactor Technology (INR) - Karlsruhe Institute of Technology (KIT) - Germany, have developed a
new post-processing functionality for the U.S. NRC system thermal-hydraulic code -TRACE. Now, the 3D VESSEL
component of TRACE and the calculated physical fields stored in the component can be visualized in a pre- and post-
processing open-source platform - SALOME with the help of a powerful data-processing library - MEDCoupling.

The researchers develop new Fortran and C++ routines to automatically identify and select the geometrical data set from
TRACE input files. This data set is processed by the MEDCoupling library to generate a polyhedron mesh and a surface
mesh. They are both 3D objects. The former store cell-centered fields e.g., the coolant temperature and the pressure
while the latter store face-located variables e.g., the coolant velocity and the pressure drop.

21 kinds of fields can be post-processed associated with the two VESSEL meshes at present including the coolant
density, the void fraction, etc. Users can conveniently access the VESSEL meshes and the fields in SALOME with
plenty of operations e.g., cutting, data filtering. Scaling up the processed fields is now in planning.

This functionality was tested by processing the results gained from a VVER-1000 coolant mixing simulation.

TRACE, SALOME; MED; Post-processing

May 2024

Technical

K. Tien, NRC Project Manager

'-�J>.
fl

 REG
(/

-� ?

{ -1

/
�

" o ,s,

,_

-
�

.L.

..

0

...

0

"'

'
'

•
;:

0

-

•••
�

�
/.

'
f

1'

1;)

o'
*

*
*

1<
1'-

"'

U
N

IT
E

D
 S

TAT
E

S

N
U

C
L

E
A

R
 R

E
G

U
L

A
T

O
R

Y
 C

O
M

M
IS

S
IO

N

W
A

S
H

IN
G

T
O

N
, D

C

2
0

5
5

5
-0

0
0

1

O
F

F
IC

IA
L

 B
U

S
IN

E
S

S

�

@

f

Y
ou

•

Offlm
 •

•

1 n

N
U

R
EG

/IA
-0539

N
ew

 Functionality of TR
A

C
E: The 3D

 Post Processing for the VESSEL C
om

ponent in SA
LO

M
E Platform

M
ay 2024

	Blank Page
	Blank Page
	Blank Page

