
Uncertainty Quantification of Machine Learning to Establish AI

Trustworthiness in Nuclear Engineering Applications

Xu Wu
xwu27@ncsu.edu

Assistant Professor
Department of Nuclear Engineering
North Carolina State University

Data Science and Artificial Intelligence Regulatory Applications Workshops
Workshop #4: AI Characteristics for Regulatory Consideration

Panel Session on “AI Safety, Security and Explainability”
The U.S. Nuclear Regulatory Commission (NRC)

September 19, 2023

Xu Wu (NCSU) UQ of ML to establish AI Trustworthiness in NE Applications 1 / 11

xwu27@ncsu.edu


Sources of uncertainties in physical modeling & simulation
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Sources of uncertainties in data-driven Machine Learning models
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Application-agnostic algorithms, or those designed for more traditional ML applications such as
computer vision and natural language processing, cannot typically be directly applied to
scientific data in nuclear applications and require non-trivial, task-specific modifications.

Low-consequence error-tolerant settings → high-consequence nuclear systems, need to
establish ML trustworthiness, including accuracy, robustness (reproducibility, applicability),
algorithmic fairness, algorithmic transparency (explainability, interpretability), and privacy.
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Explainability1,2: the ability to ensure that algorithmic decisions as well as any data driving
those decisions can be explained to end-users and stakeholders in non-technical terms. It helps
stakeholders and decision makers to understand ML solutions by “opening the black-box”.

Interpretability3: the degree that an ML model obeys structural knowledge of the domain, such
as monotonicity, causality, structural constraints, additivity, or physical constraints that come
from domain knowledge.

Reproducibility4,5: the ability of being able to replicate the ML model from data processing to
model design, reporting, model analysis, or evaluation to successful deployment.

Applicability6: the usability of ML for new scenarios such as unseen domains.

Other definitions: NIST framework on AI trustworthiness7,8 consists of nine factors: accuracy,
reliability, resiliency, objectivity, security, explainability, safety, accountability and privacy.

1Barocas, S., Friedler, S., Hardt, M., Kroll, J., et al. (2018). The FAT-ML Workshop Series on Fairness, Accountability, and Transparency in Machine Learning.

2Gunning, D., Vorm, E., Wang, J. Y., & Turek, M. (2021). DARPA’s explainable AI (XAI) program: A retrospective. Applied AI Letters, 2(4), e61.

3Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215.

4Heil, B. J., Hoffman, M. M., Markowetz, F., Lee, S. I., et al. (2021). Reproducibility standards for machine learning in the life sciences. Nature Methods, 18(10), 1132-1135.

5Beam, Andrew L., Arjun K. Manrai, and Marzyeh Ghassemi. ”Challenges to the reproducibility of machine learning models in health care.” Jama 323.4 (2020): 305-306.

6Wang, J., Lan, C., Liu, C., Ouyang, Y., Zeng, W., & Qin, T. (2021). Generalizing to unseen domains: A survey on domain generalization. arXiv preprint arXiv:2103.03097.

7Stanton, B., & Jensen, T. (2021). Trust and artificial intelligence. Draft NIST Interagency/Internal Report (NISTIR) 8332, National Institute of Standards and Technology, Gaithersburg, MD, URL:
https://doi.org/10.6028/NIST.IR.8332-draft.

8Phillips, P. J., Hahn, C. A., Fontana, P. C., Broniatowski, D. A., & Przybocki, M. A. (2020), Four Principles of Explainable Artificial Intelligence, NIST Interagency/Internal Report (NISTIR) 8312, National Institute of Standards and
Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.IR.8312
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How to quantify the approximation/prediction uncertainties in deep neural networks9?
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9Yaseen, M., & Wu, X. (2023). Quantification of Deep Neural Network Prediction Uncertainties for VVUQ of Machine Learning Models. Nuclear Science and Engineering, 197(5), 947-966.
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Monte Carlo Dropout (MCD)10 introduces randomness to prediction in addition to training

The training step is performed in the regular way, using stochastic gradient descent methods and
re-evaluating the dropout matrices before each learning step.

At the prediction step, we again evaluate the dropout matrices before every forward pass
resulting in random network outputs.

Regular DNN DNN after dropout

10Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059).
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Deep ensembles (DE)11 changes network predictions as distributional parameters

DE assumes the data to have a given parameterized distribution (e.g., Gaussian) where the
distribution parameters depend on the input.

Use the negative log-likelihood function of the Gaussian distribution as the cost function:
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11Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances in neural information processing systems (pp. 6402-6413).
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Bayesian Neural Networks (BNNs)12 - neural networks with distributions over parameters

In BNNs, prior distributions are specified upon the parameters (weights, bias) of neural networks.

Given the training data, the posterior distributions over the parameters are computed, which are
used to quantify the predictive uncertainty.
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12Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural network. In International conference on machine learning (pp. 1613-1622). PMLR.
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Example: using DNNs to predict the axial neutron flux profiles given the control rod bank position

Training data13: copper-wire activation measurements and measured control bank positions
obtained from the SAFARI-1 research reactor (South Africa) historical cycles.
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13Moloko, L. E., Bokov, P. M., Wu, X., & Ivanov, K. N. (2023). Prediction and uncertainty quantification of SAFARI-1 axial neutron flux profiles with neural networks. Annals of Nuclear Energy, 188, 109813.
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Example: the DNN predictions are made on assemblies and cycles that are unseen during training
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Thank you for your attention!

Questions and comments?
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