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Cybersecurity Challenges Posed by Digital
Transition and Al Technologies

Cyberattacks — growing Digital instrumentation and  Advanced reactors
In number and control (1&C) systems

sophistication
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Multi-layer Cyber-attack Detection System
Using Machine Learning
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Machine Learning Provides Additional Detection Layer
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Machine Learning Model Detection Results

Residuals of process data using AASVR
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« Auto-Associative Support Vector
Regression (AASVR)

e Observation 301, the malicious
code is executed

 Short time to detection
* High true positive

Predictions of RTDO in false data injection using AASVR

325

— Predicted
—— Actual
32+
;(3‘ 31.5
g
2
o 31
@
o
£
@
305
30
295 L 1 1 L 1
0 100 200 300 400 500 600

Observation Index

Sensitivity measures how well a model is
able to make correct predictions of the
variables when the faulty variables are
iIncluded in the input of the model.
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Explainability and Trustworthiness

Explainability

* Machine learning (ML) models
can be explainable

 ML-based detection and
decisions presented with
evidence to support decision

e Evidence for detection of new
zero-day exploits

Trustworthiness

» Confidence in ML-based
detection and decisions

e Real-time decision reliability
assessment

* Verification and validation (V&V)
in realistic scenarios

e Continual V&V for new and zero-
day exploits
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Cybersecurity of Autonomous Systems

[ Cyber Threat Assessment Methodology Methodology Goal: How can the Autonomous System Decision Loop be subverted?
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Full-scope Advanced
Nuclear CYbersecurity
(FANCY) Hardware-in-
the-loop testbed
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Al/ML - A Double-edged Sword

« AI/ML gives us the ability to « Automating away processes can
carry out complex actions and leave us open to new kinds of
activities very quickly — faster attacks and vulnerabilities
than was previously possible e AlI/ML can introduce new

 We can achieve this automation security concerns

faster than ever before —andin  , we need strong failsafe(s) in

a more data-driven way case Al/ML automation fails -
* Tedious human effort can be and the workforce needs to be

kept to a minimum — improving prepared to use these

overall performance from a

human factor perspective
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Bad Actors Are Using Al/ML, Shouldn’'t We?

e Al/ML technologies are being
developed so rapidly that it's
impossible to put a “fence”
around them

e Bad actors using Al/ML are not
just learning how to use these
technologles — they're learning
now to exploit them.

* If we don't keep pace, bad actors
will be 10 steps ahead of us by
the time we decide we want to

o If defenders try to stay away
from Al/ML, we risk not being on
the same pIaylng field as ba
actors using these technologies

« Even amateurs are using Al/ML
to conduct attacks — and
advanced attackers have even
more powerful capabilities

 We need to embrace Al/ML to
develop best practices and
evolve new ways to deal with
new attacker capabilities
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Potential Solutions with Advanced ML/AI

Data and intelligence sharing

Security concerns

Misidentification

Decoy Management

Resource Protection

e

Al-based Honeypot

e |solate the honeypot Al
from the real control
systems

 Monitor for malicious
behaviors and attacks

e Continuous training

* Provide data for security
Improvement

Gr Georgia
Tech



Summary

e Constant monitoring: provide fast attack-detection, allowing for a risk-informed
regulatory

» High efficiency and effectiveness

« Explainability: many transparent algorithms, allowing for inspection prior to
implementation

* Use in an assistant role: no decision or control privileges
» Defense-in-depth: adding another layer of safety and/or security

» Potential detection: ML based security approaches can detect cyber-attacks that
have never been seen before

 Easily digestible: once a high-level of confidence is achieved, a broader audience
can easily digest risk status information

 Different requirements for different applications
 Embracing Al/ML is needed
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Thank you!
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