

RIL 2023-07 NIST TN 2263

REPORT ON HIGH ENERGY ARCING FAULT EXPERIMENTS

Experimental Results from Medium-Voltage Bus Duct and Switchgear Enclosures

Date Published: September 2023

Prepared by: G. Taylor Office of Nuclear Regulatory Research

A.D. Putorti Jr. National Institute of Standards and Technology

Mark Henry Salley, NRC Project Manager

This report was published as National Institute of Standards and Technology (NIST) Technical Note 2263 as part of a series of experiments funded by the U.S. Nuclear Regulatory Commission's Office of Research. The report has been re-published as an NRC Research Information Letter (RIL).

Disclaimer

Legally binding regulatory requirements are stated only in laws, NRC regulations, licenses, including technical specifications, or orders; not in Research Information Letters (RILs). A RIL is not regulatory guidance, although NRC's regulatory offices may consider the information in a RIL to determine whether any regulatory actions are warranted.

Certain commercial equipment, instruments, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the U.S. Nuclear Regulatory Commission or the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for any application.

NIST Technical Note NIST TN 2263

Report on High Energy Arcing Fault Experiments

Experimental Results from Medium-Voltage Bus Duct and Switchgear Enclosures

Final Report

G. Taylor A. Putorti Jr S. Bareham C. Brown W.C. Tam R. Falkenstein-Smith S. Fink M. Heck E. Hnetkovsky N. Melly K. Hamburger K. Miller

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2263

NIST Technical Note NIST TN 2263

Report on High Energy Arcing Fault Experiments

Experimental Results from Medium-Voltage Bus Duct and Switchgear Enclosures

Final Report

A. Putorti Jr., S. Bareham, C. Brown, W.C. Tam, R. Falkenstein-Smith, S. Fink, M. Heck, E. Hnetkovsky *Fire Research Division Engineering Laboratory*

G. Taylor, N. Melly, K. Hamburger, K. Miller Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2263

September 2023

U.S. Department of Commerce *Gina M. Raimondo, Secretary*

National Institute of Standards and Technology Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology NIST TN 2263 September 2023

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

NIST Technical Series Policies

Copyright, Fair Use, and Licensing Statements NIST Technical Series Publication Identifier Syntax

Publication History

Approved by the NIST Editorial Review Board on 2023-09-06

How to Cite this NIST Technical Series Publication

Taylor, G., Putorti Jr., A., Bareham, S., Brown, C.U., Tam, W.C., Falkenstein-Smith, R., Fink, S., Heck, M., Hnetkovsky, E., Melly, N., Hamburger, K., and Miller, K. (2023) Report on High Energy Arcing Fault Experiments, Experimental Results from Medium-Voltage Bus Duct and Switchgear Enclosures. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Technical Note, TN 2263. <u>https://doi.org/10.6028/NIST.TN.2263</u>

NIST Author ORCID iDs

G. Taylor: 0009-0001-0098-0075
A. Putorti Jr.: 0000-0001-9015-4959
S. Bareham: 0000-0001-6667-7055
C. Brown: 0000-0002-0426-2249
W.C. Tam: 0000-0003-3913-0243
R. Falkenstein-Smith: 0000-0001-7039-5835
S. Fink: 0009-0005-1698-1696
M. Heck: 0000-0002-6279-5908
E. Hnetkovsky: 0009-0001-0360-311X
N. Melly: 0009-0001-9645-284X
K. Hamburger: 0009-0008-6042-4063

Contact Information

gabriel.taylor@nrc.gov
anthony.putorti@nist.gov

Abstract

This report documents an experimental program designed to investigate high energy arcing fault (HEAF) phenomena for medium-voltage, metal-enclosed bus ducts and switchgear. This report covers full-scale laboratory experiments using representative nuclear power plant (NPP) three-phase electrical equipment. Electrical, thermal, and pressure data were recorded for each experiment and documented in this report. This report covers experiments performed on two medium-voltage switchgear units and eight non-segregated phase bus ducts. The data collected supports characterization of the medium-voltage HEAF hazard, and these results will be used to complement the data used for HEAF hazard modeling tools and support potential improvements in fire probabilistic risk assessment (PRA) methods.

The experiments were performed at KEMA Labs in Chalfont, Pennsylvania. The experimental design, setup, and execution were performed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA Labs. These experiments were sponsored by member countries of the HEAF 2 international agreement under the auspices of the Organisation for Economic Co-operation and Development (OECD).

The HEAF experiments were performed between August 22 and September 2, 2022. The HEAF experiments were performed on two near-identical units of General Electric metal-clad medium-voltage switchgear and eight units of non-segregated phase bus duct. A three-phase arcing fault was initiated on the equipment's bus bars. These experiments used nominal system voltages of either 4.16 kV (AC) or 6.9 kV (AC). Arc durations in the experiments ranged from approximately 2 s to 4 s with fault currents ranging from approximately 28 kA to 32 kA. Real-time electrical operating conditions, including voltage, current, and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers and slug calorimeters at various locations around the electrical enclosures. Particulate samples were taken for subsequent analysis. The experiments were documented with normal and high-speed videography, infrared imaging, and photography.

Insights from the experimental series include timing information related to enclosure breach, event progression, mass loss measurements for electrodes and enclosures, peak pressure rise, along with visual and thermal imaging data to better understand and characterize the hazard. These results will be used to evaluate the adequacy of existing HEAF hazard modeling tools and for potential improvements to fire probabilistic risk assessment methods related to HEAF.

Keywords

High Energy Arcing Fault, Arc Flash, Electrical Enclosure, Switchgear, Bus Duct, Electric Arc, Fire Probabilistic Risk Analysis, Fire Probabilistic Safety Analysis

Table of Contents

Executive Summary	XX
Citationsx	xiii
ABBREVIATIONS AND ACRONYMSx	XV
1. Introduction	1
1.1. Background	1
1.2. Objectives	2
1.3. Scope	2
1.4. Approach	3
2. Experimental Method	5
2.1. Experiment Planning	5
2.2. Experimental Facility	6
2.3. Experimental Devices	8
2.3.1. Medium-Voltage Switchgear	8
2.3.2. Medium-Voltage Bus Duct	12
2.4. Instrumentation	14
2.4.1. Instrument Placement – Switchgear Experiments	15
2.4.2. Instrument Placement - Bus Duct Experiments	17
3. Experimental Results	21
3.1. Experiment 2-10 – 6.9kV, 32kA, 2 s Duration, Load Configuration	23
3.1.1. Observations	23
3.1.2. Measurements	28
3.2. Experiment 2-12 – 6.9kV, 32kA, 4 s Duration, Load Configuration	33
3.2.1. Observations	33
3.2.2. Measurements	38
3.3. Experiment 2-25 – 4.16 kV, 30 kA, 2 s Duration, Copper Bus, Steel Enclosure	43
3.3.1. Observations	43
3.3.2. Measurements	48
3.4. Experiment 2-26 – 4.16 kV, 30 kA, 4 s Duration, Copper Bus, Steel Enclosure	53
3.4.1. Observations	53
3.4.2. Measurements	58
3.5. Experiment 2-27 – 4.16 kV, 30 kA, 2 s Duration, Copper Bus, Aluminum Enclosure	.64
3.5.1. Observations	.64
3.5.2. Measurements	67

3.6.	Experiment 2-28 – 4.16 kV, 30 kA, 4 s Duration, Copper Bus, Aluminum Enclosure	72
3	6.1 Observations	72
3.	6.2. Measurements	
3.7.	Experiment 2-30 – 4.16 kV, 30 kA, 4 s Duration, Aluminum Bus, Steel Enclosure	83
3.	7.1. Observations	83
3.	7.2. Measurements	88
3.8.	Experiment 2-30B – 4.16 kV, 30 kA, 4 s Duration, Aluminum Bus, Steel Enclosure	93
3.	8.1. Observations	93
3.	8.2. Measurements	98
3.9.	Experiment 2-31 – 4.16 kV, 30 kA, 2 s Duration, Aluminum Bus, Aluminum Enclosure	102
3.	9.1. Observations	102
3.	9.2. Measurements	106
3.10). Experiment 2-32 – 4.16 kV, 30 kA, 4 s Duration, Aluminum Bus, Aluminum Enclosure	111
3.	10.1. Observations	111
3.	10.2. Measurements	116
Refere	ences	122
Apper	ndix A. Engineering Drawings	125
A.1.	Experimental Facility	125
A.2.	Support Drawings	128
A.	2.1. Medium-Voltage Switchgear Instrument Rack Drawings	128
A.	2.2. Medium-voltage bus duct drawings	135
Apper	ndix B. Electrical Measurements	147
B.1.	Experiment 2-10 (MV Switchgear, Copper Bus, Steel Enclosure, 6.9 kV, 32kA, 2 s)	147
B.2.	Experiment 2-12 (MV Switchgear, Copper Bus, Steel Enclosure, 6.9 kV, 32kA, 4 s)	149
B.3.	Experiment 2-25 (MV Bus Duct, Copper Bus, Steel Enclosure, 4.16kV, 30kA, 2 s)	151
B.4.	Experiment 2-26 (MV Bus Duct, Copper Bus, Steel Enclosure, 4.16kV, 30kA, 4 s)	153
B.5.	Experiment 2-27 (MV Bus Duct, Copper Bus, Aluminum Enclosure, 4.16kV, 30kA, 2 s)	155
B.6.	Experiment 2-28 (MV Bus Duct, Copper Bus, Aluminum Enclosure, 4.16kV, 30kA, 4 s)	157

B.7. Experiment 2-30 (MV Bus Duct, Aluminum Bus, Steel Enclosure, 4.16kV, 30kA, 4 s)	
B.8. Experiment 2-30B (MV Bus Duct, Aluminum Bus, Steel Enclosure, 4.16kV, 30kA, 4 s)	
B.9. Experiment 2-31 (MV Bus Duct, Aluminum Bus, Aluminum Enclosure, 4.16kV, 30kA, 2 s)	
B.10. Experiment 2-32 (MV Bus Duct, Aluminum Bus, Aluminum Enclosure, 4.16kV, 30kA, 4 s)	
Appendix C. Weights and Measurements	167
C.1. Switchgear Electrical Enclosure and Conductors	167
C.1.1. Switchgear Enclosure Weights	170
C.1.1.1. Experiment 2-10 Switchgear Medium-Voltage Copper Bus (2 s)	170
C.1.1.2. Experiment 2-12 Switchgear Medium-Voltage Copper Bus, 4 s	172
C.2. Non-segregated bus duct Enclosure and Conductors	175
C.2.2. Experiment 2-25 NSBD Copper Bus, Steel Enclosure 2s	178
C.2.3. Experiment 2-26 NSBD Copper Bus, Steel Enclosure 4s	179
C.2.4. Experiment 2-27 NSBD Copper Bus, Aluminum Enclosure 2s	181
C.2.5. Experiment 2-28 NSBD Copper Bus, Aluminum Enclosure 4s	182
C.2.6. Experiment 2-30 NSBD Aluminum Bus, Steel Enclosure 4s	183
C.2.7. Experiment 2-30B NSBD Aluminum Bus, Steel Enclosure 4s	184
C.2.8. Experiment 2-31 NSBD Aluminum Bus, Aluminum Enclosure 4s	185
C.2.9. Experiment 2-32 NSBD Aluminum Bus, Aluminum Enclosure 4s	186
Appendix D. Photographs from Experiments	
D.1. Experiment 2-10	
D.2. Experiment 2-12	
D.3. Experiment 2-25	
D.4. Experiment 2-26	
D.5. Experiment 2-27	201
D.6. Experiment 2-28	204
D.7. Experiment 2-30	208
D.8. Experiment 2-30B	212
D.9. Experiment 2-31	216
D.10. Experiment 2-32	221
Appendix E. KEMA Experiment Report	227

List of Tables

Table 1. GE AM-7.2 Breaker Rating	10
Table 2. NSBD Configurations	13
Table 3. NSBD Ratings for bus conductors	.13
Table 4. Experimental Measurement Instrumentation and Techniques	.15
Table 5. Circuit calibration parameters (measurements are ± 3 percent)	.21
Table 6. Summary of Experiments	22
Table 7. Observations from Experiment 2-10	24
Table 8. Summary of plate thermometer measurements Experiment 2-10	.29
Table 9. Summary of ASTM slug calorimeter measurements, Experiment 2-10	.30
Table 10. Summary of T _{cap} slug measurements, Experiment 2-10	31
Table 11. Key measurement from Experiment 2-10. Measurement uncertainty ± 3 percent	.32
Table 12. Observations from Experiment 2-12	34
Table 13. Summary of plate thermometer measurements Experiment 2-12	39
Table 14. Summary of ASTM slug calorimeter measurements, Experiment 2-12	40
Table 15. Summary of T _{cap} slug measurements, Experiment 2-12	41
Table 16. Key measurement from Experiment 2-12. Measurement uncertainty ± 3 percent	.42
Table 17. Observations from Experiment 2-25	44
Table 18. Summary of plate thermometer measurements Experiment 2-25	.48
Table 19. Summary of ASTM slug calorimeter measurements, Experiment 2-25	.49
Table 20. Summary of T _{cap} slug measurements, Experiment 2-25	.50
Table 21. Key measurement from Experiment 2-25. Measurement uncertainty ± 3 percent	.52
Table 22. Observations from Experiment 2-26	54
Table 23. Summary of plate thermometer measurements Experiment 2-26	.58
Table 24. Summary of ASTM slug calorimeter measurements, Experiment 2-26	.60
Table 25. Summary of T _{cap} slug measurements, Experiment 2-26	.61
Table 26. Key measurement from Experiment 2-26. Measurement uncertainty ± 3 percent	.63
Table 27. Observations from Experiment 2-27	.65
Table 28. Summary of plate thermometer measurements Experiment 2-27	.68
Table 29. Summary of ASTM slug calorimeter measurements, Experiment 2-27	.69
Table 30. Summary of T _{cap} slug measurements, Experiment 2-27	.70
Table 31. Key measurement from Experiment 2-27. Measurement uncertainty ± 3 percent	.71
Table 32. Observations from Experiment 2-28	.75
Table 33. Summary of plate thermometer measurements Experiment 2-28	.79
Table 34. Summary of ASTM slug calorimeter measurements, Experiment 2-28	.80
Table 35. Summary of T _{cap} slug measurements, Experiment 2-28	.81
Table 36. Key measurement from Experiment 2-28. Measurement uncertainty ± 3 percent	.82
Table 37. Observations from Experiment 2-30	84
Table 38. Summary of plate thermometer measurements Experiment 2-30	.88
Table 39. Summary of ASTM slug calorimeter measurements, Experiment 2-30	.89
Table 40. Summary of T _{cap} slug measurements, Experiment 2-30	.90
Table 41. Key measurement from Experiment 2-30. Measurement uncertainty ± 3 percent	.92
Table 42. Observations from Experiment 2-30B	94
Table 43. Summary of plate thermometer measurements Experiment 2-30B	.98
Table 44. Summary of ASTM slug calorimeter measurements, Experiment 2-30B	.99
Table 45. Summary of T _{cap} slug measurements, Experiment 2-30B	100
Table 46. Key measurement from Experiment 2-30B. Measurement uncertainty	
± 3 percent1	101
Table 47. Observations from Experiment 2-311	103

Table 48.	Summary of plate thermometer measurements Experiment 2-31	.106
Table 49.	Summary of ASTM slug calorimeter measurements, Experiment 2-31	.107
Table 50.	Summary of T _{cap} slug measurements, Experiment 2-31	.108
Table 51.	Key measurement from Experiment 2-31. Measurement uncertainty ± 3 percent	.110
Table 52.	Observations from Experiment 2-32.	.112
Table 53.	Summary of plate thermometer measurements Experiment 2-32	.117
Table 54.	Summary of ASTM slug calorimeter measurements, Experiment 2-32	.118
Table 55.	Summary of T _{cap} slug measurements, Experiment 2-32	.119
Table 56.	Key measurement from Experiment 2-32. Measurement uncertainty ± 3 percent	.121
Table 57.	Experiment Device Mass Measurements from Experiment 2-10 -	
	Enclosure Metal-Cladding	.171
Table 58.	Experiment Device Mass Measurements from Experiment 2-10 – Electrical	
	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.172
Table 59.	Experiment Device Mass Measurements from Experiment 2-12 - Enclosure	
	Metal-Cladding	.173
l able 60.	Experiment Device Mass Measurements from Experiment 2-12 – Electrical	
T 11 04	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.1/4
Table 61.	Experiment Device Mass Measurements from Experiment 2-25 - Enclosure	470
	Metal-Cladding	.178
Table 62.	Experiment Device Mass Measurements from Experiment 2-25 – Electrical	170
Table 62	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.179
Table 03.	Experiment Device mass measurements from Experiment 2-20 - Enclosure	170
Tabla 61	Experiment Davies Mass Massurements from Experiment 2.26 Electrical	.179
	Conductors [made using Scale 2 with uncertainty of + 1 g]	170
Table 65	Experiment Device Mass Measurements from Experiment 2-27 - Enclosure	.179
	Metal-Cladding	181
Table 66	Experiment Device Mass Measurements from Experiment 2-27 – Electrical	. 101
	Conductors [made using Scale 2 with uncertainty of + 1 g]	181
Table 67.	Experiment Device Mass Measurements from Experiment 2-28 - Enclosure	
	Metal-Cladding	.182
Table 68.	Experiment Device Mass Measurements from Experiment 2-28 – Electrical	-
	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.182
Table 69.	Experiment Device Mass Measurements from Experiment 2-30 - Enclosure	
	Metal-Cladding	.183
Table 70.	Experiment Device Mass Measurements from Experiment 2-30 – Electrical	
	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.183
Table 71.	Experiment Device Mass Measurements from Experiment 2-30B - Enclosure	
	Metal-Cladding	.184
Table 72.	Experiment Device Mass Measurements from Experiment 2-30B – Electrical	
	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.184
Table 73.	Experiment Device Mass Measurements from Experiment 2-31 CR - Enclosure	
	Metal-Cladding	.185
Table 74.	Experiment Device Mass Measurements from Experiment 2-31 CR– Electrical	
- ==	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.185
Table 75.	Experiment Device Mass Measurements from Experiment 2-32 CR - Enclosure	466
	Metal-Cladding	.186
Table 76.	Experiment Device Mass Measurements from Experiment 2-32 CR – Electrical	400
	Conductors [made using Scale 2 with uncertainty of ± 1 g]	.186

List of Figures

Fig.	1. Graphical Phase 2 Experimental Matrix for Electrical Enclosure	6
Fig.	2. Graphical Phase 2 Experimental Matrix for Non-segregated Bus Duct	6
Fig.	3 Isometric drawing of test cell # 9 (left) and location of test cell #9 (right with	
	respect to KEMA facility)	7
Fig.	4. Type M-36 Metal Clad Enclosure (note: bus bar and breaker not shown)	8
Fig.	5. Drawing of Medium-Voltage Electrical Enclosure - Experimental Device (all	
	measurements are approximate)	9
Fig.	6. Photo of AM-7.2-500 GE Magne-blast breaker	.11
Fig.	7.Photograph of tinned copper wire used to create the short	.11
Fig.	8. Photo of combustible component loading in the secondary enclosure	.12
Fig.	9. Elevation view of instrument rack configuration around electrical enclosure	.16
⊢ıg.	10. Plan view of instrument rack configuration around electrical enclosure. The	
	enclosure is approximately 0.927 m (36.5 in) wide, 2.019 m (79.5 in) deep,	4.0
<u> </u>	and 2.286 m (90.0 in) tall	.16
Fig.	11. Photo of instrumentation racks during experimental setup	.17
Fig.	12. Plan view of bus duct configuration in test cell #9	.18
Fig.	13. Elevation view of instrument configuration.	.19
Fig.	14. Photo of bus duct instrumentation configuration prior to experiment	.20
Fig.	15. Shorting wire location Experiment 2-10.	.23
Fig.	16. Sequence of Images from Experiment 2-10 (Image time stamps are in seconds)	.25
гıg.	soconde)	26
Fig	18 Enclosure Dost Experiment 2 10	.20
Fig.	10. Enclosule Post-Experiment 2 10 bus bars post experiment (are location shown right)	.21
Fig.	20 Pressure measurements from Experiment 2-10 (breaker compartment (left):	.21
ı ıy.	Main hus [arcing compartment] – (right)) Measurement uncertainty + 3	
	nercent	32
Fia	21 Shorting wire location Experiment 2-12	33
Fig.	22 Photo of severed bus bars at insulating bushing (breaker stab bottles)	.00
Fig.	23. Sequence of Images from Experiment 2-12 (image time stamps are in seconds)	.35
Fig.	24. Sequence of Thermal Images from Experiment 2-12 (image time stamp in seconds).	.36
Fig.	25. Enclosure Post-Experiment 2-12.	.37
Fig.	26. Enclosure Breach (top panel)	.37
Fig.	27. Photo of Experiment 2-12 bus bars post-experiment (arc location shown right)	.38
Fig.	28. Pressure measurements from Experiment 2-12 (breaker compartment (left);	
Ũ	Main bus [arcing compartment] – (right)). Measurement uncertainty ± 3	
	percent	.42
Fig.	29. Shorting wire location Experiment 2-25	.43
Fig.	30. Sequence of Images from Experiment 2-25 (image time stamps are in seconds)	.45
Fig.	31. Sequence of Thermal Images from Experiment 2-25 (image time stamp in seconds)	.46
Fig.	32. Enclosure Post-Experiment 2-25.	.47
Fig.	33. Photo of Experiment 2-25 bus bars post-experiment (arc location shown center)	.47
Fig.	34. Pressure measurements from Experiment 2-25 located in connected switchgear.	
	Measurement uncertainty ± 3 percent	.51
Fig.	35. Shorting wire location Experiment 2-26	.53
Fig.	36. Sequence of Images from Experiment 2-26 (image time stamps are in seconds)	.55
Fig.	37. Sequence of Thermal Images from Experiment 2-26 (image time stamp in seconds)	.56
Fig.	38. Enclosure Post-Experiment 2-26.	.57

Fig. 3 Fig. 4	39. 40.	Photo of Experiment 2-26 bus bars post-experiment (arc location shown center) Pressure measurements from Experiment 2-26 (breaker compartment (left); Main bus [arcing compartment] – (right)) Measurement uncertainty + 3	57
		percent	62
Fig /	11	Shorting wire location Experiment 2.27	02 64
Fig. 2	+ 1. 12	Sequence of Images from Experiment 2-27 (image time stamps are in seconds)	04
Fig. 4	43.	Sequence of Thermal Images from Experiment 2-27 (image time stamps die in seconds)	
- :		seconds)	66
Fig. 4	44.	Enclosure Post-Experiment 2-27	67
Fig. 4	45. 46.	Proto of Experiment 2-27 bus bars post-experiment (arc location shown center) Pressure measurements from Experiment 2-27. Measurement uncertainty ± 3	67
		percent	71
Fig. 4	47.	Shorting wire location Experiment 2-28 [photo from KEMA report]	72
Fig. 4	48.	Location of cable jacket damage relative to equipment. (Red arrows identify	
		locations missing cable jacket and in some cases conductor jacket)	74
Fig. 4	49.	Close-up of cable on Rack 2 from Experiment 2-28	75
Fig. 5	50. 51.	Sequence of Images from Experiment 2-28 (image time stamps are in seconds) Sequence of Thermal Images from Experiment 2-28 (image time stamp in	76
		seconds)	77
Fig. 5	52.	Enclosure Post-Experiment 2-28.	78
Fig. 5	53.	Photo of Experiment 2-28 bus bars post-experiment (arc location shown right)	78
Fig. 5	54.	Pressure measurements from Experiment 2-28. Measurement uncertainty ± 3 percent.	82
Fig. 8	55.	Shorting wire location Experiment 2-30. Note that the bus duct is inverted in this	
		photo. Unsheathed ground bar is located on the bottom of the enclosure	83
Fig. t	56.	Photo showing changes to duct enclosure to increase ability of panel to remain intact. Approximately, (13 mm (0.5 in) air gap offset from bus duct flange and end panel – far left: Extra bolts to secure panel – left: Panel bolts added to	
		splice plate end of straight bus duct section - right)	84
Fig. 5	57.	Sequence of Images from Experiment 2-30 (image time stamps are in seconds)	85
Fig. 8	58.	Sequence of Thermal Images from Experiment 2-30 (image time stamp in seconds)	86
Fig 4	59	Enclosure Post-Experiment 2-30	00
Fig. 6	50. 60	Photo of Experiment 2-30 bus bars post-experiment (arc location shown right)	
Fig. 6	60. 61.	Pressure measurements from Experiment 2-30 (breaker compartment (red	
		dashes with "x" markers): Main bus [arcing compartment] – (blue line with "o"	
		markers)). Measurement uncertainty ± 3 percent.	91
Fig. 6	62.	Shorting wire location Experiment 2-30B. Note, image is from bottom of bus duct	
Ū		with uninsulated ground bus showing in center of image	93
Fig. 6	63.	Sequence of Images from Experiment 2-30B (image time stamps are in seconds)	95
Fig. 6	64.	Sequence of Thermal Images from Experiment 2-30B (image time stamp in	06
Fig (25	Enclosure Dost Experiment 2 30B	90
Fig. 6	30. 86	Photo of Experiment 2-30B hus bars post-experiment (arc location shown	
i iy. (50.	center)	97
Fia 6	37	Pressure measurements from Experiment 2-30B (breaker compartment (red	
, ig. (dashed line with "x" marker). Main hus [arcing compartment] – (Blue solid line	
		with "o" marker)) Measurement uncertainty + 3 percent	101
Fia. 6	68.	Shorting wire location Experiment 2-31	102
Fig. 6	<u> </u>	Sequence of Images from Experiment 2-31 (image time stamps are in seconds)	103

Fig.	70.	Sequence of Thermal Images from Experiment 2-31 (image time stamp in seconds)	104
Fia	71	Enclosure Post-Experiment 2-31	105
Fig.	72	Photo of Experiment 2-31 bus bars post-experiment (arc location shown right)	105
Fig.	73	Pressure measurements from Experiment $2-31$ Measurement uncertainty + 3	. 100
i ig.	75.	nercent	100
Eia	71	Shorting wire location Experiment 2.22	111
FIG.	74.	Shorting wire location Experiment 2-32.	440
Fig.	15.	Sequence of Images from Experiment 2-32 (image time stamps are in seconds)	.113
Fig.	76.	Sequence of Thermal Images from Experiment 2-32 (Image time stamp in	
		seconds)	
⊢ıg.	11.	Enclosure Post-Experiment 2-32	.115
⊢ıg.	78.	Photo of Experiment 2-32 bus bars post-experiment	.115
Fig.	79.	Photo of Experiment 2-32 bus bars post experiment (arc location shown right)	.116
Fig.	80.	Pressure measurements from Experiment 2-32. Measurement uncertainty ± 3	
		percent	.120
Fig.	81.	Isometric drawing of test cell #9	.125
Fig.	82.	Plan view of test cell #9	.126
Fig.	83.	Elevation view of test cell #9. Breaker shown in drawing is part of KEMA	
•		protection system and was not used during this experimental series.	
		(unlabeled arrow indicates movable partition wall used to protect laboratory	
		equipment within the cell)	.127
Fia.	84.	Elevation view of instrument racks surrounding switchgear unit. (Note that	
5	-	Instrumentation Rack 4 is on the opposite side of the switchgear unit from	
		Rack 1 and therefore not shown in this image Dimensions in mm + 5mm)	128
Fia	85	Illustration of Vertical Instrumentation Rack 1 with data acquisition channels	
ı ıg.	00.	Dimensions in mm + 5 mm	120
Fia	86	Illustration of Vertical Instrumentation Rack 2 with data acquisition channels	.123
ı ıy.	00.	Dimensions in mm + 5 mm	120
Eia	07	Differisions in function linetrumontation Dack 2 with data acquisition channels	.150
гıg.	07.	Dimensions in mm. I Emm.	101
L:"	00	Dimensions in mm ± omm.	.131
Fig.	88.	Divergencience in neuron 1 5 million Rack 4 with data acquisition channels.	400
_ .	~~	Dimensions in mm \pm 5 mm.	.132
⊢ıg.	89.	Illustration of horizontal Instrumentation Rack 5 with data acquisition channels.	400
	~ ~	Dimensions in mm ± 5mm.	.133
Fig.	90.	Detailed Horizontal Locations of Instruments on Instrument Racks 1 - 5	
		Dimensions in mm ± 5 mm	.134
Fig.	91.	Elevation view of instrument racks surrounding bus duct used in experiments 2-	
		25 & 2-26. (Note that Instrumentation Rack 2 is on the opposite side of the	
		bus duct from Rack 1 and therefore not shown in this image.) Dimensions in	
		mm ± 5mm	135
Fig.	92.	Illustration of vertical Instrumentation Rack 1 used in experiments 2-25 & 2-26,	
-		with data acquisition channels. Dimensions in mm ± 5mm	.136
Fig.	93.	Illustration of vertical Instrumentation Rack 2 used in experiments 2-25 & 2-26,	
Ŭ		with data acquisition channels. Dimensions in mm ± 5mm	.137
Fia.	94.	Illustration of horizontal Instrumentation Rack 3 used in experiments 2-25 & 2-	-
	• • •	26 with data acquisition channels. Dimensions in mm + 5mm	138
Fia	95	Illustration of horizontal Instrumentation Rack 4 used in experiments 2-25 & 2-	
· .9.	55.	26 with data acquisition channels. Dimensions in mm + 5mm	139
Fia	96	Illustration of horizontal Instrumentation Rack 5 used in experiments 2-25 & 2-	
ı ıy.	50.	26 with data acquisition channels. Dimensions in mm + 5mm	140
		$\sim \sim 0$, when that a contraction of a model. Dimonstrates in the matrix ~ 0.000 m m m m m m m m m m m m m m m m m m	

Fig.	97. E	Elevation view of instrument racks surrounding bus duct used in experiments 2- 27, 2-28, 2-30, 2-30B, 2-31, and 2-32. (Note that Instrumentation Rack 2 is on the opposite side of the bus duct from Rack 1 and therefore not shown in this	
		image) Dimensions in mm + 5mm	141
Fig.	98. I	Ilustration of vertical Instrumentation Rack 1 used in experiments 2-27, 2-28, 2- 30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ±	140
Fig.	99. I	Ilustration of vertical Instrumentation Rack 2 used in experiments 2-27, 2-28, 2- 30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ±	142
Fig.	100.	Illustration of horizontal Instrumentation Rack 3 used in experiments 2-27, 2- 28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in	143
Fig.	101.	Illustration of horizontal Instrumentation Rack 4 used in experiments 2-27, 2- 28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in	144
Fig.	102.	Illustration of horizontal Instrumentation Rack 5 used in experiments 2-27, 2- 28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm + 5mm	145
Fig.	103.	Voltage and Current Profile during Experiment 2-10. Measurement uncertainty +3 percent.	147
Fig.	104.	Transient current profiles for Experiment 2-10. Measurement uncertainty ±3 percent.	148
Fig. Fig.	105. 106.	Power and Energy for Experiment 2-10. Measurement uncertainty ±3 percent Voltage and Current Profile during Experiment 2-12. Measurement uncertainty	148
Fig.	107.	±3 percent. Transient current profiles for Experiment 2-12. Measurement uncertainty ±3	149
Fia	108	Power and Energy for Experiment 2-12 Measurement uncertainty +3 percent	150
Fig.	109.	Voltage and Current Profile during Experiment 2-25. Measurement uncertainty ±3 percent	151
Fig.	110.	Transient current profiles for Experiment 2-25. Measurement uncertainty ±3 percent.	151
Fig.	111.	Power and Energy for Experiment 2-25. Measurement uncertainty ±3 percent	152
Fig.	112.	Voltage and Current Profile during Experiment 2-26. Measurement uncertainty ±3 percent.	153
Fig.	113.	Transient current profiles for Experiment 2-26. Measurement uncertainty ±3	154
Fia.	114.	Power and Energy for Experiment 2-26. Measurement uncertainty ±3 percent	154
Fig.	115.	Voltage and Current Profile during Experiment 2-27. Measurement uncertainty ±3 percent.	155
Fig.	116.	Transient current profiles for Experiment 2-27. Measurement uncertainty ±3 percent.	
Fig.	117.	Power and Energy for Experiment 2-27. Measurement uncertainty ±3 percent	156
Fig.	118.	Voltage and Current Profile during Experiment 2-28. Measurement uncertainty ±3 percent.	157
Fig.	119.	Transient current profiles for Experiment 2-28. Measurement uncertainty ±3	-
Fia	120	percent Power and Energy for Experiment 2-28 Measurement uncertainty +3 percent	158 158
· '9.	120.	To show and Enorgy for Exponential 2 20. Weddaronion anoonality 10 percent.	

Fig.	121.	Voltage and Current Profile during Experiment 2-30. Measurement uncertainty ±3 percent	159
Fig.	122.	Transient current profiles for Experiment 2-30. Measurement uncertainty ±3	160
Fia	123	Power and Energy for Experiment 2-30 Measurement uncertainty +3 percent	160
Fia.	124.	Voltage and Current Profile during Experiment 2-30B. Measurement	100
9.		uncertainty ±3 percent	161
Fia.	125.	Transient current profiles for Experiment 2-30B. Measurement uncertainty ±3	
		percent	162
Fia.	126.	Power and Energy for Experiment 2-30B. Measurement uncertainty ±3 percent	162
Fia.	127.	Voltage and Current Profile during Experiment 2-31. Measurement uncertainty	-
		±3 percent.	163
Fia.	128.	Transient current profiles for Experiment 2-31. Measurement uncertainty ±3	
5		percent	164
Fig.	129.	Power and Energy for Experiment 2-31. Measurement uncertainty ±3 percent	164
Fig.	130.	Voltage and Current Profile during Experiment 2-32. Measurement uncertainty	
0		±3 percent.	165
Fig.	131.	Transient current profiles for Experiment 2-32. Measurement uncertainty ±3	
0		percent	166
Fig.	132.	Power and Energy for Experiment 2-32. Measurement uncertainty ±3 percent	166
Fig.	133.	Exterior Isometric. Dimensions ± 0.6 cm (± 0.25 in).	167
Fig.	134.	Interior Front. Dimensions ± 0.6 cm (± 0.25 in).	168
Fig.	135.	Interior Rear. Dimensions ± 0.6 cm (± 0.25 in)	168
Fig.	136.	Exterior Rear. Dimensions ± 0.6 cm (± 0.25 in)	169
Fig.	137.	Photos show breach opening with size estimate	174
Fig.	138.	Isometric drawing of general bus duct experiment configuration	175
Fig.	139.	Cross-section of bus duct (Note measurements in inches. Approximate from	
		manufacturer.)	175
Fig.	140.	Bus Duct Plan View (Aluminum bus bars) Dimensions ± 0.6 cm (± 0.25 in)	176
Fig.	141.	Bus Duct Plan View (Copper bus bars) Dimensions ± 0.6 cm (± 0.25 in)	176
Fig.	142.	Bus Duct Elevation View. Dimensions ± 0.6 cm (± 0.25 in)	176
Fig.	143.	Interior View (Copper Bus). Dimensions ± 0.6 cm (± 0.25 in)	177
Fig.	144.	Interior View (Aluminum Bus). Dimensions ± 0.6 cm (± 0.25 in).	177
Fig.	145.	Photos showing breach opening with size estimate	178
Fig.	146.	Pre-Experiment 2-10 (as procured by the NRC). Top left (Front door showing	
		relays and controls), Top center (Front instrumentation and breaker	
		compartment with door open), Top right (top of enclsoure showing vent, vent	
		located over main bus and near front door), Bottom left (power supply side	
		with main bus extensions covered with foam for personal protection), Bottom	
		center (opposite side from power supply side), Bottom right (rear panel	
		showing louver vents).	187
Fig.	147.	Pre-Experiment in test cell. Top (front from Cell opening), bottom (rear from cell	
		opening)	188
Fig.	148.	Post-Experiment 2-10. Top (side view from cell opening), Bottom (off angle	
		rear view)	189
Fig.	149.	Post-Experiment Conductors. Top (Plan view of primary cable connection bus	
		bars; top – Phase C, middle – Phase B, bottom – Phase C), Bottom (elevation	
		view of primary cable connection bus bars; left – Phase A, center – Phase B,	
		right – Phase C)	190

NIST TN 2263 September 2023

Fig.	150.	Pre-Experiment 2-12 (as procured by the NRC). Top left (Front door showing relays and controls), Top right (Front instrumentation and breaker	
		compartment with door open) Bottom (Rear off-angle view showing louver	
		ventialtion on the rear bottom panel).	.191
Fig.	151.	Pre-Experiment 2-12 in test cell. Top (Side from cell opening), Bottom (rear	
		from cell opening)	.192
Fig.	152.	Post-Experiment 2-12 Top (side view from cell opening), Bottom (off angle rear	
		view)	.193
Fig.	153.	Post-Experiment Conductors	.194
Fig.	154.	Post-Experiment Enclosure Breach	.195
Fig.	155.	Pre-Experiment Experiment 2-25 (left – front angle; right – rear angle)	.195
Fig.	156.	Post-Experiment Experiment 2-25 (clockwise from top-left, Front angle; rear	
		angle; front showing panel damage; front showing splice joint with breather)	.196
Fig.	157.	Post-Experiment 2-25 Conductors	.197
Fig.	158.	Additional conductor photos – Post-Experiment Experiment 2-25 (Top – Phase A: Middle – Phase B: Bottom – Phase C)	.198
Fia.	159.	Post-Experiment Experiment 2-25 Enclosure Breach (note panel is not lying flat	
5		on ground near right side, there is a bend downward near the right breach).	.198
Fig.	160.	Pre-Experiment 2-26 (left – front; right – rear angle)	.199
Fig.	161.	Post-Experiment 2-26 (top-left – front: top-right – rear: bottom-left – rear	
5		looking up at bus duct: bottom-right – lower splice panel found lying on	
		ground, breather screen missing)	.200
Fia.	162.	Post-Experiment 2-26 Conductors (top – with conductors in duct: Bottom	
5	-	conductor ends A-B-C left to right)	.200
Fia.	163.	Pre-Experiment 2-27 (left – front: right – rear)	.201
Fig.	164.	Post-Experiment 2-27 (Top left – below bus duct front; Top-right – front;	202
Eia	165	Dest Experiment 2.27 Conductors (top and ustors in duct at ord of	.202
Fig.	105.	experiment: bettern _ conductors (top = conductors in duct at end of	າດາ
Eia	166	Post Experiment 2 27 Enclosure Breach (Ten left ten cover: Ten right front	.203
гıg.	100.	side: Bottom loft bottom cover: Bottom right roor side)	204
Eia	167	Pro Experiment 2.28 (left front view: right 00 degree band view)	204
Fig.	107.	Pre-Experiment 2-20 (left – front angle view; Rettern rear angle view)	204
Fig.	160	Post-Experiment 2-28 (Top – Ifoni angle view, Boltoni – Tear angle view)	.205
ı ıy.	109.	romoved from enclosure [Phase A B C ten to bettem])	206
Eia	170	Post Experiment 2, 28 insulated conductor Posk 2 at 00 degree band and	200
Fig.	170.	Post-Experiment 2-20 Insulated conductor Rack 2 at 90 degree bend end	200
Fig.	170	Prost-Experiment 2-20 Enclosure Dreach	201
Fig.	172.	Pie-Experiment 2 20 /Ten Front view: Pottem left view looking up at	.200
гıg.	175.	hottom cover: Bottom right roor view)	200
Eia	171	Dottorin cover, Bottorin-right – rear view)	209
Fig.	174.	Post-Experiment 2-30 Conductors	.210
Fig.	175.	broach: Upper Mid right rear broach: Lower Mid top broach: Bottom loft	
		lower cover front: Bottom right lower cover rear)	211
Eia	176	Pro Experiment 2 30B	.211
Fig.	170.	Pie-Experiment 2-30B (Top front view: Bottom front view zoomod to broach)	.212
Fig.	179	Γ Osc-Experiment 2-30B (rop - from view, bottom - from view 200ffed to bleach).	213
Fig.	170.	Post Experiment 2 30B Epologuro Broach /Ton View from below dust front:	.∠14
гıy.	179.	Post-Experiment 2-50D Enclosure Dieach (Top – view from below duct from;	215
Ei~	100	Dollom – view nom below duct real j	012.
гıy.	100.	Г IG-LAPGIIIIGIII 2-3 I	.210

217
218
219
220
220
221
222
223
224
225

Executive Summary

PRIMARY AUDIENCE: Fire protection, electrical, and probabilistic risk assessment engineers conducting or reviewing fire risk assessments related to high energy arcing faults (HEAFs).

SECONDARY AUDIENCE: Engineers, reviewers, utility managers, and other stakeholders who conduct, review, or manage fire protection programs and need to understand the underlying technical basis for the hazards associated with high energy arcing faults.

KEY RESEARCH QUESTION: How does conductor and/or enclosure material influence the HEAF hazard for medium-voltage equipment?

RESEARCH OVERVIEW

Operating experience has shown that high energy arcing faults pose a hazard to the safe operation of nuclear facilities. Current regulations and probabilistic risk assessment methods were developed using limited information, and the inherent uncertainties required the use of safety margins to bound the hazard. The NRC and its collaborative research partners have significantly advanced the understanding of HEAF phenomena, such as an improved understanding of plant configurations, operational history, target fragility, source characterization, hazard modeling and associated improvements to fire PRA. The experiments documented in this report aim to provide additional data to improve realism and complement previous experimental results. This report documents a set of experiments performed in 2022.

A series of medium-voltage, metal-enclosed indoor switchgear and medium-voltage, nonsegregated bus duct arcing experiments were performed. Each experiment consisted of an arcing fault initiated within the unit on either aluminum or copper bus bars. Nominal system voltages of either 4.16 kV (AC) or 6.9 kV (AC) were used, depending on equipment ratings. Fault durations of 2 s to 4 s and current levels between 30 kA and 32 kA (AC rms) were used. Numerous measurements were taken to characterize the environment within and surrounding the enclosure, including pressure, external heat flux, and external incident energy. Time-resolved electrical measurements of the fault conditions were also recorded.

This report documents the experiments performed, including the experimental methods, experimental facility, experimental devices, instrumentation, observations, and results. Videos and photometric data files are provided by laboratories contracted to the NRC, and information on accessing that information is identified. This report does not provide detailed evaluation of the results or comparisons of the results to other methods or data. Those efforts will be documented in subsequent report(s).

KEY FINDINGS

This research yields data that characterizes the effects of electrical arcing faults. The results from this research include:

- Switchgear experiments 2-10 and 2-12 using copper bus bars did not experience a breach, while previous experiments using identical switchgear using aluminum bus bars did under similar fault conditions.
- Bus duct experiments demonstrated thermal exposures that were similar to those predicted by numerical simulations performed prior to the experiments. The arc migration

and duct enclosure failures were not well predicted based on past testing and impacted the ability of the measurement devices to record the most severe exposures.

WHY THIS MATTERS

This report provides empirical evidence to assist U.S. NRC staff, OECD HEAF 2 member countries, and stakeholders who are evaluating the adequacy of current methods. The information provided will support advances in state-of-the-art methods and tools to assess the high energy arcing fault hazard in nuclear facilities. This information may also be applicable to fossil fuel and alternative energy facilities and other buildings with low- and medium-voltage electrical distribution equipment such as switchgear and bus ducts.

HOW TO APPLY RESULTS

Engineers and scientist advancing hazard and fire probabilistic risk assessment methods should focus on Section 3 of this report.

LEARNING AND ENGAGEMENT OPPORTUNITIES

Users of this report may be interested in the following opportunities:

Nuclear Energy Agency (NEA) HEAF Project to conduct experiments to explore the basic configurations, failure modes and effects of HEAF events. Primary objectives include (1) development of a peer-reviewed guidance document that could be readily used to assist regulators and (2) joint nuclear safety project report covering all experimentation and data captured. More information on the project and opportunities to participate in the program can be found online at https://www.oecd-nea.org/.

NIST TN 2263 September 2023

Citations

This report was prepared by the following:

National Institute of Standards and Technology (NIST) Engineering Laboratory; Fire Research Division Gaithersburg, Maryland 20899 Anthony D. Putorti Jr. Scott Bareham Christopher Brown Wai Cheong Tam Ryan Falkenstein-Smith Stephen Fink Michael Heck Edward Hnetkovsky

U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Kenneth Hamburger Nicholas Melly Kenneth Miller Gabriel Taylor

ABBREVIATIONS AND ACRONYMS

AC	alternating current
ASTM	ASTM International
AWG	American Wire Gauge
CT	current transformer
DC	direct current
EDT	eastern daylight time
EMI	electro-magnetic interference
EPRI	Electric Power Research Institute
GE	General Electric
GI	generic issue
GIRP	Generic Issue Review Panel
HEAF	high energy arcing fault
IEEE	Institute of Electrical and Electronic Engineers
IN	information notice
IR	infra-red
KEMA	Keuring van Elektrotechnische Materialen te Arnhem
MD	management directive
NEA	Nuclear Energy Agency
NEC	National Electric Code
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
NRR	Office of Nuclear Reactor Regulation
NSBD	non-segregated bus duct
OECD	Organisation for Economic Co-operation and Development
PIRT	Phenomena Identification and Ranking Table
PRA	probabilistic risk assessment
PT	plate thermometer
RES	Office of Nuclear Regulatory Research
RIL	research information letter
SNL	Sandia National Laboratories
T _{cap}	tungsten thermal capacitance
U.S.	United States of America

1. Introduction

Infrequent events such as fires at a nuclear power plant can pose a significant risk to safe plant operations. Licensees combat this risk by having robust fire protection programs designed to minimize the likelihood and consequences of fire. These programs provide reasonable assurance of adequate protection from known fire hazards. However, several hazards remain subject to a large degree of uncertainty, requiring significant safety margins in plant analyses.

One such hazard comprises an electrical arcing fault involving electrical distribution equipment and components. While the electrical faults and subsequent fires are considered in existing fire protection programs, recent research [1] has indicated that elements of the electrical fault can exacerbate the damage potential of the event. The increased damage potential could exceed the protection provided by existing fire protection features for specific fire scenarios and increase plant risk estimated in fire probabilistic risk assessments (PRAs).

The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) studies fire and explosion hazards to ensure the safe operation of nuclear facilities. This includes developing data, tools, and methodologies to support risk and safety assessments. Through recent research efforts and collaboration with international partners, a non-negligible number of reportable high energy arcing fault (HEAF) events have been identified as occurring in nuclear facilities [2]. HEAF events pose a unique hazard in nuclear facilities and additional research in this area is needed to ensure that the hazard is accurately characterized and assessed for its impact on nuclear safety.

1.1. Background

In June 2013, an Organisation for Economic Co-operation and Development (OECD) / Nuclear Energy Agency (NEA) report [2] on international operating experience documented 48 HEAF events, accounting for approximately 10 percent of the total fire events reported. These HEAF events are often accompanied by loss of essential power and complicated shutdowns. Existing PRA methodology for HEAF analysis is prescribed in NUREG/CR-6850 "EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities Vol. 2 [3]," and its Supplement 1 [4]. To confirm these methods, the NRC led an international experimental campaign from 2014 to 2016. This experimental campaign is referred to as "Phase 1 Experimenting." The results of these experiments [5] uncovered a potential increase in the hazard severity.

In response to this new information, the NRC issued Information Notice 2017-004, "High Energy Arcing Faults in Electrical Equipment Containing Aluminum Components (IN 2017-04)," detailing the relevant aspects of the licensee event reports and Phase 1 experimental results in August of 2017 [1]. Additionally, RES staff proposed a potential safety concern as a generic issue (GI) in a letter dated May 6, 2016 [6]. The Generic Issue Review Panel (GIRP) completed its screening evaluation [7] for the proposed Generic Issue (GI) PRE-GI-018, "High-Energy Arc Faults (HEAFs) Involving Aluminum," and concluded that the proposed issue met all seven screening criteria outlined in Management Directive (MD) 6.4, "Generic Issues Program." Therefore, the GIRP recommended that this issue continue into the Assessment Stage of the GI program. The GIRP has completed an assessment plan, issued August 23, 2018 [8]. In September

of 2021, the NRC determined that the pre-GI-018 no longer met the Criterion 5 of the NRC MD 6.4, concluding that the risk and safety significance of HEAFs involving aluminum cannot be adequately determined in a timely manner without performing additional, long-term research to develop the methodology for such a determination [9].

In a revised approach to resolving the knowledge gap, the NRC staff applied the BeRiskSMART framework. This approach consists of two coordinated tracks for (1) research activity in coordination with the Electric Power Research Institute (EPRI) and (2) use of the NRC process LIC-504, "Integrated Risk-Informed Decisionmaking Process for Emergent Issues [10]," to apply best available information and NRC risk assessment tools to determine whether any regulatory action was needed. The NRC LIC-504 process was completed in July 2022, finding both increase and decreases in plant risk with a determination of no significant risk increase in total HEAF risk for the two plants evaluated.

Under the research approach with EPRI, the NRC developed tools to estimate the HEAF hazard [11, 12], a hazard-specific target fragility characterization [13] and an updated HEAF fire PRA method [14] to provide guidance for evaluating the risk from a HEAF. As part of the modeling effort, the team identified several scenarios where experimental data was either not available to validate the model's predictive capabilities or lacking for comparison purposes. These scenarios included medium-voltage non-segregated bus ducts and medium-voltage switchgear.

Due to the lack of data, possible modeling uncertainty, and potential risk significance of these configurations, the NRC Office of Nuclear Reactor Regulation issued a Research Assistance Request (NRR-2022-014-RAR) to NRC/RES to perform high energy arcing fault experimenting in cooperation with the OECD. This report documents this effort to perform a limited series of experiments to acquire the needed data. The NRC developed an experimental plan in collaboration with its international collaborative partners under the OECD/NEA program, NRC/NRR RAR request, and based on information from a Phenomena Identification and Ranking Table (PIRT) exercise performed in 2017 [15].

1.2. Objectives

The research objectives for this experimental series include: quantitatively characterize the thermal and pressure conditions created by HEAFs occurring in electrical enclosures (switchgear and bus ducts) and document the experiments and results.

1.3. Scope

The scope of this research includes evaluating the HEAF hazard on medium-voltage electrical switchgear containing copper bus and medium-voltage non-segregated bus ducts with specific combinations of enclosure material (steel or aluminum) and bus bar material (copper or aluminum). This characterization involves measurement and documentation of electrical and thermal parameters, along with physical evidence. The results from this effort will be used to provide empirical evidence for use by the OECD HEAF 2 member countries and by NRC staff to evaluate the prediction capabilities of the recently developed hazard models. Detailed data analysis for specific applications is beyond the scope of this report.

1.4. Approach

The approach taken for this work follows practices from past efforts [5, 16-18]. Specifically, the experimental device (medium-voltage switchgear and bus ducts) is faulted between the three phases. The laboratory provided electrical energy to the experimental device at specified parameters (system voltage, current, duration). Measurements internal and external to the gear were made using robust measurement devices fielded by the National Institute of Standards and Technology (NIST). Sandia National Laboratories (SNL) provided high-speed visual and thermal imaging and those results are presented in a separate report. Measurements were recorded, scaled, and reported. Feedback received during the developmental stage of this project was incorporated into the experimental approach. This included the arc locations, fault current magnitudes, and the durations of the experiments.

2. Experimental Method

This section provides information on methods used to perform the experiments¹, including experimental planning, overview of the experimental facility, the tested devices, and the various instruments that were used.

2.1. Experiment Planning

The experimental plan was developed and shared with the OECD member countries and NRC/NRR. Lessons learned from the Phase 1 and generic issue experiments, results from the Phenomena Identification and Ranking Table (PIRT) exercise, and existing literature were used to develop the initial experimental plan. The experimental plan is a living document and has undergone several revisions over time as new information emerges. Review and feedback by the OECD/NEA and other stakeholders were incorporated into the experimental plan. The central component of the experimental plan is the experimental matrix which specifies the key parameters for each experiment. A graphical matrix for electrical enclosures is presented in Fig. 1 and Fig. 2. The experimental series documented in this report, and white experiments have not been completed. This report covers Experiment 2-10, Experiment 2-12 and Experiments 2-25 through 2-32. The key parameters that are evaluated in this experimental campaign are arc duration and arcing current.

¹ The term 'test' implies the use of a standardized test method promulgated by a standards development organization such as the International Organization for Standardization (ISO), ASTM International, Institute of Electrical and Electronics Engineers (IEEE), etc. The experiments described in this report are not standard tests and were specifically developed to examine HEAF phenomena. The term 'test' is used in some contexts to preserve continuity with previous programs or to describe facilities where standard tests are frequently performed. Standard test methods, where they exist, are used for some measurements.

Fig. 1. Graphical Phase 2 Experimental Matrix for Electrical Enclosure

Fig. 2. Graphical Phase 2 Experimental Matrix for Non-segregated Bus Duct

One change that deviated from the plan was that experiment 2-29 was not performed. During the testing of experiment 2-30, a laboratory equipment failure occurred and resulted in the experiment 2-30 parameters not being met. The importance of the results from experiment 2-30 and the lack of spare equipment resulted in the team making the decision to not perform experiment 2-29. The equipment planned to be tested for experiment 2-29 was used to re-run an experiment. The re-run experiment is identified in this report as experiment 2-30B. Details on the failure are described in Section 3.7.

2.2. Experimental Facility

The full-scale experiments were performed at KEMA Labs (referred to in the remainder of this report as "KEMA"), located in Chalfont, Pennsylvania, in August and September 2022. The experimental facility was chosen for its ability to meet the requirements of the program; specifically, the electrical voltages, currents, and energies needed for sustained arcing within the test enclosures and to permit fire conditions for a period after termination of the arc. KEMA provided the electrical measurements required to characterize the power supplied to the enclosures during the arcing experiments. KEMA also provided incident energy measurements using ASTM F1959 calorimeters.

The test cell is a cubical space with one open side. The open side was equipped with a roll-up door for security and weather protection when not in use. The open side of the cell faces the operator control room, with a courtyard area in between. The control room is equipped with impact-resistant glazing so that the operators, clients, and guests can observe the experiments. A door in the rear of the cell leads to the exterior and a climate-controlled van where NIST data acquisition equipment was located and operated.

Test cell #9 was used during this experiment series to perform the medium-voltage experiments. The cell is shown in Fig. 3. Detailed drawings of the facility are provided in Appendix A.1. Drawings of the cell are courtesy of KEMA.

Fig. 3 Isometric drawing of test cell # 9 (left) and location of test cell #9 (right with respect to KEMA facility).

2.3. Experimental Devices

Two types of equipment were used during this experimental series. One type was a medium-voltage switchgear similar to the devices tested in 2018 [16]. The other type of equipment was medium-voltage non-segregated bus duct. Descriptions of both follow.

2.3.1. Medium-Voltage Switchgear

The two metal-clad switchgear units were General Electric.² Type M-36, used and refurbished from an ISO 9001-certified medium-voltage circuit breaker and electrical power distribution supplier. The units were approximately 92 cm (36 in) wide by 202 cm (79.5 in) long and 229 cm (90 in) high. Main buses were extended outside of the enclosure approximately 46 cm (18 in) to allow for connection to the laboratory's power supply. A shorter grounding stab also extended outside the enclosure. Fig. 4 presents photographs of one of the units without the metal cladding. The photo on the left is taken from the rear of the enclosure closest to the "primary cable compartment." Note that the bus bars have been removed in this photo to be weighed and measured. The photo on the right is a side view with the breaker compartment on the left. The only differences between the two enclosures were the protective relaying and internal control wiring configuration located on the front door and secondary enclosure. Fig. 5 provides a drawing and isometric view of the enclosure used in experiments 2-10 and 2-12.

Fig. 4. Type M-36 Metal Clad Enclosure (note: bus bar and breaker not shown)

² Certain commercial equipment, instruments, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the U.S. Nuclear Regulatory Commission or the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for any application.

Fig. 5. Drawing of Medium-Voltage Electrical Enclosure - Experimental Device (all measurements are approximate)

Copper bus bars were used for the main bus conductors and primary cable compartment buses. The breaker socket/tube conductors were copper. The original equipment contained insulation on the primary cable compartment buses, but the insulation was removed to be consistent with the 2018 experimental series for comparative purposes [16]. In the U.S., equipment can be found with and without insulation on the bus bars. Unlike the 2018 experimental series, the current transformers (CTs) were included in the experiments. This inclusion added realism in the experimental configuration as switchgear found in the field typically have CTs as part of the protection circuit. The CT's secondary sides were shorted to minimize the concern of high voltage conditions due to open circuit CTs. Field-installed cable potheads or cable clamp terminations were not included. The absence of bus cabling reduced the amount of combustible load but is consistent with previous experiments.

Each unit contained one medium-voltage circuit breaker. All breakers were GE Magne-blast Type AM-7.2-500 circuit breakers. The breaker ratings are shown in Table 1 and a photo of a breaker removed from the enclosure is shown in Fig. 6. After receipt of the equipment, the breakers were tested by the electrical contractor to ensure functionality. The breaker in the experiment enclosure was closed prior to, and remained closed during, the arc experiment. Prior to the experiments, Megger testing was performed with and without the breaker closed. A Megger test consists of applying a DC voltage across an insulator and measuring the resulting current. Ohms law allows for the measurement of the insulation resistance, typically in the megaohm range for a good insulator. This ensured the equipment and breaker were functional prior to each experiment.

Parameter	Value	Parameter	Value
Rated Max Voltage	8.25 kV	Breaker Type	AM-7.2-500
Rated Amps	1.2 kA	Rated voltage range factor	1.25
Frequency	60 Hz	Impulse Withstand	95 kV
Rated Short Circuit Amps	33 kA	Close / Latch Capability	66 kA
Weight	680 kg (1 500 lb)	Date Manufactured	February 1976

Fig. 6. Photo of AM-7.2-500 GE Magne-blast breaker

Initiation of the arc followed the process outlined in Annex E.4 of IEEE C.37.20.7, "IEEE Guide for Experimenting Switchgear Rated Up to 52kV for Internal Arcing Faults" [19]. A nominally 0.511 mm diameter (24 American Wire Gauge [AWG]) tinned copper wire was placed at the cable termination points on the primary cable compartment copper bus bars at the ends of the horizontal bar. This configuration is shown in Fig. 7. The shorting wire was placed on the bus conductors prior to securing the back panel of the electrical enclosure. The air gap spacing between each phase bus bar in the primary cable compartment was approximately 17.4 cm [6.88 in] and the bus bar centerline spacing was approximately 25.1 cm [9.88 in]. These copper bus bars were approximately 0.96 cm [0.38 in] thick and 7.6 cm [3.0 in] wide. This configuration resulted in the switchgear configured in a bus-tie or load circuit breaker configuration.

Fig. 7.Photograph of tinned copper wire used to create the short

The combustible loading within the enclosure was minimal. The primary enclosure contained polyolefin heat shrink tubing on the bus bars; however, the location where this material was located was separated from the primary cable compartment buses by metal cladding. The
NIST TN 2263 September 2023

material was not on the primary cable compartment buses as discussed previously. The secondary enclosure contained protective relays, fuse holders, control switches, meters, resistors, and associated insulated conductors. The insulation on the SIS-insulated conductors represented most of the combustible loading in the secondary enclosure. Some of the wiring had been cut and removed prior to receipt of the equipment. It was unclear if the equipment supplier removed it, or if it was removed by the previous owner. The amount of combustible material varied between enclosures, but was minimal and separated from the arc location by metal cladding. Fig. 8 shows this loading.

Fig. 8. Photo of combustible component loading in the secondary enclosure

2.3.2. Medium-Voltage Bus Duct

Eight medium-voltage non-segregated bus ducts (NSBD) were acquired. Six of the NSBD were procured new from a domestic vendor. The two remaining bus ducts were harvested from a U.S. nuclear power plant undergoing decommissioning. The two harvested ducts provide representative samples to ensure realism in the experimental program. The configurations of the ducts differed to address the program objective of evaluating the influence of material on the HEAF evolution. Table 2 presents the configurations. Duplicate samples only differed by the duration of the arc.

Experiment #	Bus Material	Duct Material	Nominal Arc Duration	Acquired
2-25	Copper	Steel	2 s	New
2-26	Copper	Steel	4 s	New
2-27	Copper	Aluminum	2 s	New
2-28	Copper	Aluminum	4 s	New
2-30	Aluminum	Steel	4 s	New
2-30B*	Aluminum	Steel	4 s	New
2-31	Aluminum	Aluminum	2 s	Harvested
2-32	Aluminum	Aluminum	4 s	Harvested

Table 2. NSBD Configurations

* Experiment #2-29 was not performed as discussed above, Experiment #2-30B replaces Experiment #2-29

Table 3. NSBD nominal Ratings and characteristics of bus conductors

RATING	COPPER	ALUMINIUM	ALUMINUM (Decom.)
Nominal operating voltage	4160 V	4160 V	4160 V
Rated voltage	5000 V	5000 V	5 000 V
Continuous rating	2000 A	2000 A	2000 A
Momentary	80000 A	80000 A	No
	(asym.)	(asym.)	Documentation
	51613 (sym.)	51613 (sym.)	
BIL rating	10 kV	10 KV	No
	13 KV	19 KV	Documentation
System Frequency	60 Hz	60 Hz	No
	00112	00112	Documentation
Enclosure Thickness	3.18 mm	3.18 mm	Top and Bottom
	(0.125 in)	(0.125 in)	2.54 mm
			(0.100 in)
			Sides
			3.56 mm
			(0.140 in)
Insulation	3M Heat	3M Heat	3M Heat Shrink
	Shrinkable	Shrinkable	Tubing
	Tubing for Bus	Tubing for Bus	
	Bar	Bar	
Supports	Polyester	Polyester	Fiberglass

2.4. Instrumentation

Thermal, pressure, and HEAF byproduct measurements were made using a variety of instruments and techniques, identified in Table 4. A full description of these instruments and their application is provided in RIL 2021-10 Experimental Results from Medium Voltage Electrical Enclosures [16], except for the sheathed thermocouples and the calculation of the total incident energy from the plate thermometers.

A sheathed thermocouple (Type-K, 3.2 mm (0.125 in) nominal diameter, sheathed, ungrounded) was installed in the switchgear used in the bus experiment. The uncertainty in the temperature of the sheathed thermocouple is given by the manufacturer as the greater of \pm 2.2 °C (\pm 4.0 °F) or \pm 0.75 percent with a 99 percent confidence interval.

The total incident energy measured by the plate thermometers is calculated in a similar way to the ASTM F1959 Slug Calorimeters described in [16, 20], but with an additional correction for the emissivity of heat-treated Inconel 600, which is approximately 0.85.

The total incident energy, Q''_{PT} (kJ/m²), from the PT is calculated by:

$$Q_{PT}^{\prime\prime} = \frac{\rho_{ST} \cdot \bar{C}_{ST} \cdot \delta \cdot \left(T_{PT, max} - T_{PT, initial}\right)}{\varepsilon_{PT}}$$
(1)

where $T_{PT, initial}$ is the temperature of the plate prior to the experiment (K), $T_{PT, max}$ is the maximum temperature of the plate during the experiment (K), ϵ_{PT} is the plate emissivity, 0.85 at 480 °C as rolled and oxidized and specified by the alloy manufacturer, ρ_{ST} is the alloy plate density, 8470 kg/m³ from the alloy manufacturer, \overline{C}_{ST} is the average temperature dependent alloy plate heat capacity [21] over the initial to maximum plate temperatures, and δ is the alloy plate thickness, 0.79 mm \pm 0.03 mm. The ASTM F1959 standard also refers to the incident energy as the total energy per unit area (cal/cm² or kJ/m²). The total incident energy during the experiment is reported in the plate thermometer summary table for each sensor location in each experiment. The uncertainty in the reported values of the total incident energy is \pm 15%, with a coverage factor of k=2, which corresponds to a confidence interval of approximately 95%, as determined using the NIST Uncertainty Machine [22].

Measurements	Instrument / Technique
Temperature	Infrared (IR) Imaging, Plate Thermometer (PT), sheathed thermocouple
Heat flux (time-varying)	Plate Thermometer (PT)
Heat flux (average)	Plate Thermometer (PT), Thermal Capacitance Slug (T _{cap} slug)
Incident Energy	ASTM F1959 Slug calorimeter (ASTM slug), Thermal Capacitance Slug (T _{cap} slug)
Pressure	Piezoelectric pressure transducer
Arc plasma / fire dimensions	Videography, IR Imaging
Surface deposit analysis	Sample collection (carbon tape / aerogels)
Qualitative damage	Cable samples (cable coupons)

Table 4. Experimental Measurement Instrumentation and Techniques

2.4.1. Instrument Placement – Switchgear Experiments

The majority of the thermal instrumentation devices were located on instrument racks with the face of the instrument located approximately 91 cm (36 in) from the exterior of the metal-clad enclosure. One additional instrument rack (Rack 3) was located approximately 183 cm (72 in) from the expected arc breach side of the electrical enclosure. Rack 3 had its sensors shifted up approximately 102 mm (4 in) to reduce shadowing effects from the Rack 2 located between Rack 3 and the enclosure. An instrumentation rack was also located above the enclosure. This instrumentation rack (Rack 5) was secured to the electrical enclosure with 90-degree angle red GPO-3 board (glass reinforced thermoset polyester) and nominal $\frac{1}{4}$ in-20 fasteners. The sensors on Rack 5 are located approximately 91 cm (36 in) from the top of the enclosure's metal cladding. This instrumentation rack configuration is shown in Fig. 9 and Fig. 10. Details of the instrument locations are presented in Appendix A, with a photograph showing the instrumentation racks around the experimental device during setup in Fig. 11. The expanded uncertainty in the measurement of the distances from the instrumentation racks to the electrical enclosure is ± 13 mm (0.5 in) with a coverage factor of 2 and an estimated confidence interval of 95 percent.

Fig. 9. Elevation view of instrument rack configuration around electrical enclosure

Fig. 10. Plan view of instrument rack configuration around electrical enclosure. The enclosure is approximately 0.927 m (36.5 in) wide, 2.019 m (79.5 in) deep, and 2.286 m (90.0 in) tall

Fig. 11. Photo of instrumentation racks during experimental setup

2.4.2. Instrument Placement - Bus Duct Experiments

Following the same scheme as the switchgear experiments, the majority of the thermal instrumentation devices were located on instrument racks with the face of the instrument located approximately 91 cm (36 in) from the exterior of the bus duct enclosure. One additional instrument rack (Rack 5) was located approximately 183 cm (72 in) from the expected arc breach side of the bus duct enclosure (below the duct). An instrumentation rack (Rack 3) was also located above the bus duct enclosure. The sensors on Rack 3 are located approximately 91 cm (36 in) from the top of the enclosure metal cladding. This instrumentation rack configuration is shown in Fig. 12 and Fig. 13. Fig. 14 is a photograph showing the instrumentation racks around the experiment device and the sheathed thermocouple in the side of the switchgear. The sheathed thermocouple penetrates the side panel of the switchgear 20 cm (8.0 in) form the top, and 46 cm (18.0 in) from the rear. The tip of the sheathed thermocouple is located 21.6 cm (8.5 in) inside the switchgear so that it intersects the centerline of the bus duct above. The expanded uncertainty in the measurement of the distances from the instrumentation racks to the bus duct enclosure is \pm 13 mm (0.5 in) with a coverage factor of 2 and an estimated confidence interval of 95 percent. The expanded uncertainty in the measurement of the location of the sheathed thermocouples is \pm 6 mm (0.25 in) with a coverage factor of 2 and an estimated confidence interval of 95 percent.

Fig. 12. Plan view of bus duct configuration in test cell #9

Fig. 13. Elevation view of instrument configuration

Fig. 14. Photo of bus duct instrumentation configuration prior to experiment

3. Experimental Results

The KEMA Labs performed calibration runs to ensure that the power circuits selected met the desired experimental parameters. The calibrations are measured at a shorting bus within the laboratory's facility, and the actual experimental conditions will be slightly different because of the additional circuit length of the experimental device and its connections. The calibration experiments are presented in Table 5 with detail provided in the KEMA report (Appendix E).

Voltage (kV)	Current Symmetrical (kA)	Current Peak (kA)	Circuit
32.6	32.6	66.7 to 86.3	S01
4.16	29.9	60.7 to 81.1	S02

Table 5. Circuit calibration parameters (measurements are ± 3 percent)

The calibration experiments were performed for about 10 cycles to ensure stabilization of the waveform. The duration of the arc during an actual experiment was controlled by the ability to maintain the arc within the enclosure and the breaking of the circuit by KEMA's protective device(s). Provided that the arc did not prematurely extinguish, KEMA ensured that the arc duration parameter was met by automatically triggering their protectives devices to open at the specified duration. Because of KEMA's desire to ensure the desired duration is met, there is a delay in the opening of the circuit (breaker opening time), and as such, the actual durations were longer than the desired durations. Table 6 presents the experimental parameter variations performed for these series of experiments.

	Vo	oltage (kV)		Cu (I	Current [(kA)		ration (s)	Material		Notes
Experiment No. #	System	Actual	Arc	Planned	Actual	Planned	Actual	Conductor	Enclosure	
2-10	6.90	6.91	0.728	32	31.6	2	2.04	Copper	Steel	Switchgear
2-12	6.90	6.90	1.109	32	31.2	4	2.87	Copper	Steel	Switchgear
2-25	4.16	4.17	0.654	30	29.1	2	2.02	Copper	Steel	Bus duct
2-26	4.16	4.17	0.620	30	28.7	4	4.02	Copper	Steel	Bus duct
2-27	4.16	4.17	0.794	30	29.1	2	2.04	Copper	Aluminum	Bus duct
2-28	4.16	4.17	0.839	30	28.4	4	4.03	Copper	Aluminum	Bus duct
2-30	4.16	4.17	0.942	30	28.4	4	4.05	Aluminum	Steel	Bus duct, laboratory power supply failure resulted in arcing outside and away from experiment device.
2-30B	4.16	4.17	0.711	30	28.8	4	4.03	Aluminum	Steel	Bus duct, re-run of Experiment 2-30. Replaces Experiment 2-29.
2-31	4.16	4.17	0.684	30	29.7	2	2.03	Aluminum	Aluminum	Bus duct
2-32	4.16	4.17	0.794	30	28.7	4	4.04	Aluminum	Aluminum	Bus duct

Table 6. Summary of Experiments (measurements are ± 3 percent)

3.1. Experiment 2-10 – 6.9kV, 32kA, 2 s Duration, Load Configuration

Experiment 2-10 was performed on August 22, 2022, at 2:52 PM eastern daylight time (EDT). The temperature was approximately 27 °C (81 °F), approximately 91 percent relative humidity and approximately 101.1 kPa of pressure. The weather was mostly cloudy with a wind of approximately 4.8 km/h (3 mi/h) out of the southeast.

The arc was located near the ends of bus bar in the cable connection compartment of the switchgear. Power flow resulted in a load experiment configuration. The arcing wire installed on the bus and marked up illustrations of the arc wire location is presented in Fig. 15.

Fig. 15. Shorting wire location Experiment 2-10.

3.1.1. Observations

Observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 7 and include an approximate time reference. Corresponding images are provided in Fig. 16, with thermography images presented in Fig. 17.

The arc lasted for the expected duration of 2.05 s. Pressure was higher than observed in aluminum experiments (Experiment 2-21 [16]). Excessive panel buckling was observed on the rear panel. No enclosure breach was observed on any sides. No cable damage was observed. The switchgear door was opened due HEAF generated pressure. Lack of physical protection on KEMA's incoming power supply, combined with the switchgear door swinging open past 90-degrees due to arc-induced overpressure, resulted in the door contacting the Phase A connection for approximately 143 ms, resulting in a shorting path outside of the intended locations. Arc energy was 75.0 MJ.

Time (ms)	Observation
0	Initial light observed in bottom rear louver
83	Door opens
445	Door hits Phase A power supply and arcs for 143 ms
600	End of door arcing
2 017	End of arc
4 504	First visual of cabinet after smoke rises above cabinet
20 000	Image at 20 s following arc initiation

Table 7. Observations from Experiment 2-10

Fig. 16. Sequence of Images from Experiment 2-10 (image time stamps are in seconds).

Fig. 17. Sequence of Thermal Images from Experiment 2-10 (image time stamp in seconds)

Photographs of the enclosure following the experiment are presented in Fig. 18. The enclosure did not experience a breach due to thermal burn through.

Fig. 18. Enclosure Post-Experiment 2-10.

An image of the bus bars removed from the enclosure after the experiment are shown in Fig. 19. The total mass loss of the bus bars was $2035g \pm 1g$. Additional details are presented in Appendix C.

Fig. 19. Photo of Experiment 2-10 bus bars post-experiment (arc location shown right).

3.1.2. Measurements

Measurements made during Experiment 2-10 are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
- Pressure
 - Internal pressure
- Mass Loss
 - o Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.1.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-10. These include PT measurements in Table 8, ASTM Slug Calorimeter measurements in Table 9, and T_{cap} slug measurements in Table 10. The maximum reading is identified with bold text. Some of the instruments were inoperable prior to the experiment as noted. This is likely due to the failure of the thermocouple junction that occurred during transportation. These sensors were initially installed for a series of HEAF experiments in 2019, but a change in project direction resulted in the sensors not being used. This resulted in the sensors being un-installed, transported for storage, then transported back to KEMA in 2022 and re-installed. The extra handling and transportation likely caused the failure of some instruments.

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ±5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
1	1	Тор	270	162	360	
1	3	Mid-Right	499	173	400	
1	5	Mid- Center				Inoperable prior to experiment (IPE)
1	7	Mid-Left	77	63	270	
1	9	Bottom	307	161	330	
2	10	Тор	109	92	350	
2	12	Mid-Right				IPE
2	14	Mid- Center	93	77	540	
2	16	Mid-Left	97	84	490	
2	18	Bottom	139	108	440	
3	19	Тор	45	37	120	
3	21	Mid-Right				IPE
3	23	Mid- Center	52	37	130	
3	25	Mid-Left	48	39	130	
3	27	Bottom	53	40	140	
4	28	Тор				IPE
4	30	Mid-Right	84	51	250	
4	32	Mid- Center	118	75	300	
4	34	Mid-Left				IPE
4	36	Bottom	221	111	270	
5	37	Front	230.	164	390	
5	39	Center- Right	154	125	370	
5	41	Center- Mid	179	123	410	
5	43	Center- Left	258	99	340	
5	45	Back				IPE

Table 8. Summary of plate thermometer measurements Experiment 2-10

Rack No.	ASTM No.	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or ± 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	A	Тор	374	61.3	
1	В	Bottom	339	91.7	
2	С	Тор	553	65.0	
2	D	Bottom	610	66.9	
3	Е	Тор			IPE
3	F	Bottom	166	61.7	
4	G	Тор	306	93.5	
4	Н	Bottom	350	78.8	
5	I	Front	435	4.9	
5	J	Back	360	94.4	

 Table 9. Summary of ASTM slug calorimeter measurements, Experiment 2-10

Rack No.	T _{cap} No.	Location	Heat Flux During Arc (kW/m ²) Greater of ± 1.5 kW/m ² or ± 2.9 %	Incident Energy During Arc Phase (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %	Total Incident Energy (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %
1	2	Тор	114.0	189.7	929.7
1	4	Mid-Right	121.9	208.0	926.6
1	6	Mid-Left	71.5	112.0	883.1
1	8	Bottom	97.0	152.2	927.2
2	11	Тор	71.3	123.0	1 285.7
2	13	Mid-Right	68.9	111.5	1 355.9
2	15	Mid-Left			
2	17	Bottom	83.6	142.4	1 429.6
3	20	Тор			
3	22	Mid-Right	32.5	55.5	329.5
3	24	Mid-Left	33.1	59.6	342.1
3	26	Bottom	28.8	45.6	367.6
4	29	Front	62.2	103.2	822.5
4	31	Center- Right	59.2	100.2	836.3
4	33	Center-Left	90.4	144.4	870.3
4	35	Back			
5	38	Front	108.0	185.6	1071.1
5	40	Center- Right	116.3	191.6	1 088.6
5	42	Center-Left	99.6	152.4	1017.3
5	44	Back	102.4	161.9	1 202.4

Table 10. Summary of T_{cap} slug measurements, Experiment 2-10

3.1.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 20. P Pressure is measured at two locations (primary cable connection compartment and the breaker compartment). At each measurement location there are two pressure transducers. The 0 kPa to 207 kPa (0 psia to 30 psia) and 0 kPa to 345 kPa (0 psia to 50 psia) transducer recordings at a specific location were consistent. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The peak pressure is higher in the primary cable connection compartment as would be expected since this is the compartment where the arc is initiated. The maximum change in pressure in the primary cable connection compartment is approximately 49.1 kPa (7.1 psi)

above ambient at its peak. The maximum change in pressure in the breaker compartment is approximately 17.0 kPa (2.5 psi) above ambient.

Fig. 20. Pressure measurements from Experiment 2-10 (breaker compartment (left); Main bus [arcing compartment] – (right)). Measurement uncertainty ± 3 percent.

3.1.2.3. Electrical Measurements

Experiment 2-10 used KEMA circuit S01 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. For this experiment the calibration experiments configured the power system to 6.88 kV, 32.58 kA symmetrical, and 86.3 kA peak. The KEMA report (Appendix E) identifies this experiment as 220822-9003. Key experimental measurements are presented in Table 11. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	kV _{RMS}	3.99	3.99	3.99
Applied voltage, phase-to-phase	kV _{RMS}		6.91	
Making current	kA _{peak}	55.1	62.2	-70.6
Current, AC component, beginning	kA RMS	33.1	33.9	33.9
Current, AC component, middle	kA RMS	31.4	32.1	30.5
Current, AC component, end	kA RMS	29.7	31.0	30.4
Current, AC component, average	kA RMS	31.6	32.1	31.1
Current, AC component, three-phase average	kA RMS		31.6	
Duration	S	2.05	2.05	2.04
Arc Energy	MJ		75.01	

Table 11. Key measurement from Experiment 2-10. Measurement uncertainty ± 3 percent.

3.2. Experiment 2-12 – 6.9kV, 32kA, 4 s Duration, Load Configuration

Experiment 2-12 was performed on August 23, 2022, at 10:32 AM eastern daylight time (EDT). The temperature was approximately 25 °C (71 °F), approximately 82 percent relative humidity and approximately 100.3 kPa of pressure. The weather was partly cloudy with a wind of approximately 11.3 km/h (7 mi/h) out of the west northwest.

The arc was located near the top of the main bus bar in the load section of the switchgear. The arcing wire installed on the bus and marked up illustrations of the arc wire location is presented in Fig. 21.

Fig. 21. Shorting wire location Experiment 2-12

3.2.1. Observations

Observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 12, and include an approximate time reference. Corresponding images are provided in Fig. 23, with thermography images presented in Fig. 24.

The arc did not last for expected duration and self-extinguished at 2.88 s. It appeared that the arc migrated towards the front of the cabinet and severed the bus bar at the connections to the breaker bottles as shown in Fig. 22. Excessive panel buckling was observed on the rear panel. The enclosure breached on the top near the vent above the main bus. No enclosure breach was observed on any sides or the back panel. No visible cable damage was observed. The switchgear door was opened due to HEAF generated enclosure pressure. The arc energy was 129 MJ.

Fig. 22. Photo of severed bus bars at insulating bushing (breaker stab bottles).

Tahle	12	Observations	from Ex	neriment	2-12
Iable	12.	Observations		periment	2-12

Time (ms)	Observation
0	Initial light observed in top rear louver
66	Door opens
250	Luminescent flash zone reaches top rack 5 and half-way between rack 2
230	and 3
433	Particle ejecta observed near rack 1 and 5
1 267	Smoke beginning to obscure visual
2886	End of arc
4 003	Smoke begins to clear
5 005	Flames emit from vent on top of enclosure

Fig. 23. Sequence of Images from Experiment 2-12 (image time stamps are in seconds).

Fig. 24. Sequence of Thermal Images from Experiment 2-12 (image time stamp in seconds)

A photograph of the enclosure following the experiment is presented in Fig. 25. The enclosure experienced a breach on the top panel with two openings near the vent. A majority of the vent grating area was missing from the exposure as shown in Fig. 26.

Fig. 25. Enclosure Post-Experiment 2-12.

Fig. 26. Enclosure Breach (top panel)

NIST TN 2263 September 2023

An image of the bus bars removed from the enclosure after the experiment are shown in Fig. 27. The total mass loss of the bus bars was $3349 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 27. Photo of Experiment 2-12 bus bars post-experiment (arc location shown right).

3.2.2. Measurements

Measurements made during Experiment 2-12 are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy –ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
- Pressure
 - Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.2.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-12. These include PT measurements in Table 13, ASTM Slug Calorimeter measurements in Table 14, and T_{cap} slug measurements in Table 15. The maximum reading is identified with bold text.

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
1	1	Тор	843	229	670	
1	3	Mid-Right	395	147	510	
1	5	Mid- Center	453	133	520	
1	7	Mid-Left	295	98	490	
1	9	Bottom	173	102	350	
2	10	Тор	234	133	550	
2	12	Mid-Right				Inoperable prior to experiment (IPE)
2	14	Mid- Center	222	129	790	
2	16	Mid-Left	214	142	720	
2	18	Bottom	372	223	820	
3	19	Тор	100	51	200	
3	21	Mid-Right				IPE
3	23	Mid- Center	121	64	230	
3	25	Mid-Left	122	59	220	
3	27	Bottom	144	80	270	
4	28	Тор	270.	129	450	
4	30	Mid-Right	149	77	460	
4	32	Mid- Center	274	110	510	
4	34	Mid-Left	221	132	500	
4	36	Bottom	197	98	350	
5	37	Front	491	232	680	
5	39	Center- Right	1 481	234	800	

Table 13. Summary of plate thermometer measurements Experiment 2-12

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
5	41	Center- Mid	1 100	206	850	
5	43	Center- Left	565	156	640	
5	45	Back	1137	226	960	

Table 14. Summary of ASTM slug calorimeter measurements, Experiment 2-12

Rack No.	ASTM No.	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or ± 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	Α	Тор	603	45.70	
1	В	Bottom	500	75.91	
2	С	Тор	824	54.18	
2	D	Bottom	930	52.32	
3	E	Тор	294	42.79	
3	F	Bottom	234	39.35	
4	G	Тор	568	81.86	
4	Н	Bottom	564	57.87	
5		Front	699	53.38	
5	J	Back	811	62.08	

Rack No.	Tcap No.	Location	Heat Flux During Arc (kW/m ²) Greater of ± 1.5 kW/m ² or ± 2.9 %	Incident Energy During Arc Phase (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %	Total Incident Energy (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %
1	2	Тор	199.2	357.4	1472.9
1	4	Mid-Right	202.8	386.9	1 380.7
1	6	Mid-Left	157.7	294.4	1 429.0
1	8	Bottom	141.7	259.2	1317.1
2	11	Тор	146.2	310.4	1 825.2
2	13	Mid-Right	146.5	291.2	1921.3
2	15	Mid-Left	150.0	354.5	1978.6
2	17	Bottom	190.2	423.3	2057.5
3	20	Тор	53.0	104.7	489.8
3	22	Mid-Right	67.7	141.8	513.0
3	24	Mid-Left	67.3	140.4	520.9
3	26	Bottom	63.5	132.7	580.7
4	29	Front	98.5	163.9	1 405.2
4	31	Center-Right	88.8	168.8	1 457.9
4	33	Center-Left	138.1	303.8	1 424.6
4	35	Back	135.8	339.2	1473.5
5	38	Front	240.8	391.6	1722.4
5	40	Center-Right	255.8	403.0	1 989.1
5	42	Center-Left	259.4	458.6	1 883.9
5	44	Back	333.1	498.2	2 2 5 6.7

Table 15. Summary of T_{cap} slug measurements, Experiment 2-12

3.2.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 28. Pressure is measured at two locations (primary cable connection compartment and the breaker compartment). At each measurement location there are two pressure transducers. The 0 kPa to 207 kPa (0 psia to 30 psia) and 0 kPa to 345 kPa (0 psia to 50 psia) transducer recordings at a specific location were consistent. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The peak pressure is higher in the primary cable connection compartment as would be expected since this is the compartment where the arc is initiated. The maximum change in pressure in the primary cable connection compartment is approximately 51.9 kPa (7.5 psi) above ambient at its peak. The maximum change in pressure in the breaker compartment is approximately 18.5 kPa (2.7 psi) above ambient.

Fig. 28. Pressure measurements from Experiment 2-12 (breaker compartment (left); Main bus [arcing compartment] – (right)). Measurement uncertainty ± 3 percent.

3.2.2.3. Electrical Measurements

Experiment 2-12 used KEMA circuit S01 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. For this experiment the calibration experiments configured the power system to 6.900 kV and 32.6 kA symmetrical. The KEMA report (Appendix E) identifies this experiment as 220823-9001. Key experimental measurements are presented in Table 16. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	3.98	3.99	3.98
Applied voltage, phase-to-phase	k V _{RMS}		6.90	
Making current	kA peak	55.2	65.0	-71.2
Current, AC component, beginning	kA RMS	33.1	34.6	33.7

Table 16. Key measurement from Experiment 2-12. Measurement uncertainty ± 3 percent.

current, AC component, beginning	RMS	55.T	34.0	55.7
Current, AC component, middle	kA RMS	29.4	31.4	29.8
Current, AC component, end	kA RMS	0	0	0
Current, AC component, average	kA RMS	30.8	32.2	30.7
Current, AC component, three-phase average	kA RMS		31.23	
Duration	S	2.87	2.87	2.87
Arc Energy	MJ		129.1	

3.3. Experiment 2-25 – 4.16 kV, 30 kA, 2 s Duration, Copper Bus, Steel Enclosure

Experiment 2-25 was performed on August 24, 2022, at 11:50 AM eastern daylight time (EDT). The temperature was approximately 28 °C (83 °F), approximately 61 percent relative humidity and approximately 100.8 kPa of pressure. The weather was fair with a wind of approximately 3.2 km/h (2 mi/h) out of the west-northwest.

The arc wire was located at center of the duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the three bus conductors, and the arcing wire was wrapped around each conductor. The arcing wire installed on the bus is presented in Fig. 29.

Fig. 29. Shorting wire location Experiment 2-25

3.3.1. Observations

Observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 17 and include an approximate time reference. Corresponding images are provided in Fig. 30, with thermography images presented in Fig. 31.

The bus duct enclosure experienced failure of the fasteners holding the bus duct top and bottom covers resulting in an open configuration within 0.07s from the initiation of the arc. The manner in which these covers deflected resulted in directing much of the thermal exposure away from the instrumentation and back towards the laboratory's power supply. During the experiment there were two arc induced breaches of the lower cover while the cover was still attached to the duct structure. One of the breaches occurred where the lower cover was restrained by a steel beam of the bus duct support structure. No visible damage to the cable samples on the instrument rack was observed, however, the insulation material on the bus bars separated from conductors melted and ignited, causing a dripping liquid fire. Post-experiment inspection identified that the arc migrated to the end of the bus bars and sustained the majority of the arc time near the ends of the bus bar. It appears that the arc migrated away from the arc initiation location and stabilized near the internal bus bar support (away from power supply). Minor degradation of the bus bar was observed at arc initiation point, with more extensive damage observed near the far internal

NIST TN 2263 September 2023

bus bar supports. No phases were completely severed. It appears that the bus orientation may have influenced the manner and speed in which the bus insulation was removed from the arc exposure during the experiment.

Time (ms)	Observation
0	Initial light observed
216	Luminescent flash zone beyond first instrument rack immediately above
210	bus duct
517	Particle ejecta reaches first instrument rack immediately above
517	enclosure
950	Particle ejecta near power supply end of duct
1 184	Flame exiting switchgear
1 484	Particle ejecta impacts cell wall (right)
2 001	End of arc
3 0 0 3	One second after end of arc with smoke clearing

Fig. 30. Sequence of Images from Experiment 2-25 (image time stamps are in seconds).

Fig. 31. Sequence of Thermal Images from Experiment 2-25 (image time stamp in seconds)

NIST TN 2263 September 2023

Photograph of the enclosure following the experiment is presented in Fig. 32. The enclosure did breach from both fastener failure and thermal effects.

Fig. 32. Enclosure Post-Experiment 2-25.

An image of the bus bars in the enclosure after the experiment are shown in Fig. 33. The total mass loss of the bus bars was $3848.5 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 33. Photo of Experiment 2-25 bus bars post-experiment (arc location shown center).
3.3.2. Measurements

Measurements made during Experiment 2-25 are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeter
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear
- Pressure
 - Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.3.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-25. These include PT measurements in Table 18, ASTM Slug Calorimeter measurements in Table 19 and T_{cap} slug measurements in Table 20. The maximum reading is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear was 387 °C ± 3 °C.

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
1	1	Тор	466	311	600	
1	3	Mid-Right	2 1 0 2	994	1920	
1	5	Mid- Center	704	447	850	
1	7	Mid-Left	349	277	527	
1	9	Bottom				Inoperable prior to experiment (IPE)
2	10	Тор				IPE
2	12	Mid-Right	378	247	480	

Table 18. Summary of plate thermometer measurements Experiment 2-25

			Max Heat Flux (kW/m²) Greater of	Average Heat Flux During Arc (kW/m ²) Greater of	Total Incident Energy	
Rack	Plate	Location	$\pm 1 \text{ kW/m}^2$	±1 kW/m ² or	(kJ/m²)	Notoo
NO.	NO.	Location	0r ± 5 %	± 5 %	± 15 %	Notes
2	14	Center	630	362	700	
2	16	Mid-Left	693	424	800	
2	18	Bottom	461	314	600	
3	19	Тор	333	195	390	
3	21	Mid-Right	241	150	310	
3	23	Mid- Center	148	129	290	
3	25	Mid-Left	139	99	240	
3	27	Bottom	266	170	340	
4	28	Тор	530	351	680	
4	30	Mid-Right	1 1 1 9	303	710	
4	32	Mid- Center	1 570	496	990	
4	34	Mid-Left				IPE
4	36	Bottom	711	308	570	
5	37	Front				IPE
5	39	Center- Right	282	121	300	
5	41	Center- Mid	1 060	281	830	
5	43	Center- Left	384	176	390	
5	45	Back	150	112	250	

Table 19. Summary of ASTM slug calorimeter measurements, Experiment 2-25

Rack	ASTM	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or	Time to Max Temperature (s) ± 3 %	Commont
<u>NO.</u>	<u>INO.</u>	Location	± 4 %	-	Comment
1	A	Тор	1 195	2.43	
1	В	Bottom	717	2.68	
2	С	Тор	620	2.38	
2	D	Bottom	785	3.30	
3	E	Тор	348	6.47	
3	F	Bottom	324	8.40	

Rack	ASTM	l 4:	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or	Time to Max Temperature (s) ± 3 %	0
<u>NO.</u>	NO.	Location	±4%		Comment
4	G	-	457	00.05	
-	0	Тор	457	20.25	
4	H	Bottom	457 478	3.71	
4	H	Bottom Top	457 478 246	20.25 3.71 6.37	

Table 20. Summary of $T_{\mbox{\scriptsize cap}}$ slug measurements, Experiment 2-25

Rack No.	T _{cap} No.	Location	Heat Flux During Arc (kW/m ²) Greater of ± 1.5 kW/m ² or ± 2.9 %	Incident Energy During Arc Phase (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %	Total Incident Energy (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %
1	2	Тор	271.8	560.2	1043.3
1	4	Mid-Right	560.0	1 070.7	1 479.8
1	6	Mid-Left	294.3	639.8	885.1
1	8	Bottom	276.2	566.2	1060.3
2	11	Тор	276.6	532.0	851.1
2	13	Mid-Right	291.0	572.3	813.1
2	15	Mid-Left	296.6	594.1	922.6
2	17	Bottom	173.4	310.4	922.5
3	20	Тор	108.0	220.2	692.0
3	22	Mid-Right	85.0	180.9	684.5
3	24	Mid-Left	78.7	154.9	707.7
3	26	Bottom	106.8	185.7	716.2
4	29	Front	150.8	268.9	813.1
4	31	Center-Right	313.6	539.9	1 591.0
4	33	Center-Left	224.8	370.2	863.9
4	35	Back	223.2	373.2	1 173.7
5	38	Front	70.4	127.7	374.8
5	40	Center-Right	110.0	212.5	452.2
5	42	Center-Left	119.2	217.7	414.5
5	44	Back	75.6	142.4	389.9

3.3.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 34. Only one pressure probe, 0 kPa to 207 kPa (0 psia to 30 psia), was used due to a problem installing the second probe. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The maximum change in pressure is approximately 33.7 kPa (4.9 psi) above ambient at its peak.

Fig. 34. Pressure measurements from Experiment 2-25 located in connected switchgear. Measurement uncertainty ± 3 percent.

3.3.2.3. Electrical Measurements

Experiment 2-25 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. For this experiment the calibration experiments configured the power system to 4.157 kV, 29.941 kA symmetrical, and 81.0 kA peak. The KEMA report (Appendix E) identifies this experiment as 220824-9003. Key experimental measurements are presented in Table 21. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}		4.17	
Making current	kA peak	50.3	62.8	-63.7
Current, AC component, beginning	kA RMS	32.5	32.5	29.9
Current, AC component, middle	kA RMS	30.2	29.3	27.2
Current, AC component, end	kA RMS	28.1	29.7	26.4
Current, AC component, average	kA RMS	30.2	29.7	27.3
Current, AC component, three-phase average	kA RMS		29.1	
Duration	S	2.02	2.02	2.02
Arc Energy	MJ		54.0	

Table 21. Key measurement from Experiment 2-25. Measurement uncertainty ± 3 percent.

3.4. Experiment 2-26 – 4.16 kV, 30 kA, 4 s Duration, Copper Bus, Steel Enclosure

Experiment 2-26 was performed on August 25, 2022, at 9:12 AM eastern daylight time (EDT). The temperature was approximately 22 °C (72 °F), approximately 78 percent relative humidity and approximately 101.9 kPa of pressure. The weather was mostly sunny with a wind of approximately 1.6 km/h (1 mi/h) out of the northwest.

The arc wire was located at center of the started duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the three bus conductors and the arcing wire was wrapped around each conductor. The arcing wire installed on the bus is presented in Fig. 35.

Fig. 35. Shorting wire location Experiment 2-26

3.4.1. Observations

Observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 22 and include an approximate time reference. Corresponding images are provided in Fig. 36, with thermography images presented in Fig. 37.

Similar to experiment 2-25, the bus duct enclosure experienced failure of the fasteners holding the duct top and bottom covers resulting in an open configuration within 0.04s from the initiation of the arc. The manner in which these covers deflected resulted in directing much of the thermal exposure away from the instrumentation and back towards the laboratory's power supply. None of the panels experienced breach due to thermal exposure. The lower splice plate cover was dislocated from the duct and found on the ground after the experiment. The breather screen was missing. It is unknown if thermal or pressure effects caused the loss of the breather screen. Post-experiment inspection identified that the arc migrated to the end of the bus bars and sustained the majority of the arc time near the ends of the bus bar. No cable damage was observed.

Time (ms)	Observation
0	Initial light observed
116	Luminescent flash zone reaches first instrument rack immediately above
110	and below duct enclosure
433	Flames emerge from switchgear right
1768	Lower panel dislodged from structure and resting on support structure
2 2 1 8	Particle ejecta observable below duct on power supply side
2 585	Particle ejecta observed and 90-degree duct bend
4 0 0 3	End of arc
15015	Post-experiment after smoke has cleared to observe visual of duct

Table 22. Observations from Experiment 2-26

Fig. 36. Sequence of Images from Experiment 2-26 (image time stamps are in seconds).

Fig. 37. Sequence of Thermal Images from Experiment 2-26 (image time stamp in seconds)

NIST TN 2263 September 2023

Photograph of the enclosure following the experiment is presented in Fig. 38. The enclosure did not experience a breach due to thermal effects.

Fig. 38. Enclosure Post-Experiment 2-26.

The bus bars in the duct enclosure after the experiment are shown in Fig. 39. The total mass lost from the bus bars was $5991.0 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 39. Photo of Experiment 2-26 bus bars post-experiment (arc location shown center).

3.4.2. Measurements

Measurements made during Experiment 2-26 are presented below. These measurements include:

- Thermal
 - o Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear
- Pressure
 - Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.4.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-26. These include PT measurements in Table 23, ASTM Slug Calorimeter measurements in Table 24, and T_{cap} slug measurements in Table 25. The maximum value is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear was approximately 1413 °C, which exceeds the maximum manufacture calibrated Type K thermocouple temperature of 1372 °C ± 10 °C.

Table 23. Summary of plate thermometer measurements Experiment 2-26

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m²) ± 15 %	Notes
1	1	Тор	474	187	680	
1	3	Mid-Right	388	177	710	
1	5	Mid-Center	511	224	830	
1	7	Mid-Left	615	260	960	
1	9	Bottom	507	182	660	
2	10	Тор				Inoperable prior to

Rack No.	Plate No.	Location	Max Heat Flux (kW/m²) Greater of ± 1 kW/m² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m²) ± 15 %	Notes
						experiment (IPF)
2	12	Mid-Right	641	232	860	()
2	14	Mid-Center	599	235	870	
2	16	Mid-Left	443	186	680	
2	18	Bottom	338	166	600	
3	19	Тор	290	134	500	
3	21	Mid-Right				IPE
3	23	Mid-Center	185	103	420	
3	25	Mid-Left	161	85	490	
3	27	Bottom	219	122	450	
4	28	Тор	342	142	520	
4	30	Mid-Right	186	106	420	
4	32	Mid-Center	147	66	260	
4	34	Mid-Left	91	38	150	
4	36	Bottom	222	128	530	
5	37	Front	104	41	160	
5	39	Center- Right	601	115	420	
5	41	Center-Mid	62	49	180	
5	43	Center-Left	187	61	220	
5	45	Back	73	56	230	

Rack No.	ASTM No.	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or ± 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	Α	Тор	1 007	4.04	
1	В	Bottom	860	4.13	
2	С	Тор	975	4.43	
2	D	Bottom	866	4.48	
3	E	Тор	449	7.10	
3	F	Bottom	491	50.43	
4	G	Тор	409	9.64	
4	Н	Bottom	241	9.49	
5		Тор	220	5.61	
5	J	Bottom	204	5.66	

Table 24. Summary of ASTM slug calorimeter measurements, Experiment 2-26

					Total Incident
			Heat Flux During	Incident Energy	Energy
			Arc (KW/M ²) Greater of	(k l/m ²) Greater of	(KJ/III ⁻) Greater of
Rack	Tcan		$\pm 1.5 \text{ kW/m}^2$	$\pm 2.4 \text{ kJ/m}^2$	$\pm 2.4 \text{ kJ/m}^2$
No.	No.	Location	or ± 2.9 %	or ± 5 %	or ± 5 %
1	2	Тор	184.4	625.8	1 142.3
1	4	Mid-Right	298.2	832.5	1069.0
1	6	Mid-Left	376.6	1 046.0	1255.6
1	8	Bottom	277.6	776.6	969.4
2	11	Тор	268.0	794.0	1 167.8
2	13	Mid-Right	329.3	930.4	1 121.3
2	15	Mid-Left	242.5	778.8	1 101.5
2	17	Bottom	175.9	562.3	1085.0
3	20	Тор	129.5	411.0	1 1 1 3.2
3	22	Mid-Right	112.4	348.2	983.4
3	24	Mid-Left	94.1	321.1	1 262.3
3	26	Bottom	117.1	372.0	1 125.0
4	29	Front	73.8	295.1	702.3
4	31	Center-Right	86.2	288.8	1066.7
4	33	Center-Left	46.9	185.0	621.0
4	35	Back	70.5	227.3	851.7
5	38	Front	46.4	180.4	345.9
5	40	Center-Right	58.1	223.6	537.3
5	42	Center-Left	45.3	176.0	349.8
5	44	Back	48.4	192.6	505.3

Table 25. Summary of $T_{\mbox{\scriptsize cap}}$ slug measurements, Experiment 2-26

3.4.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 40. After the initial pressure spike, the pressure rapidly decays to a relative steady state. Only one pressure probe, 0 kPa to 207 kPa (0 psia to 30 psia) was used due to a problem installing the second probe. The maximum change in pressure in the connected switchgear unit is approximately 37.8 kPa (5.5 psi) above ambient at its peak.

Fig. 40. Pressure measurements from Experiment 2-26 (breaker compartment (left); Main bus [arcing compartment] – (right)). Measurement uncertainty ± 3 percent.

3.4.2.3. Electrical Measurements

Experiment 2-26 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220825-9001. Key experimental measurements are presented in Table 26. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}		4.17	
Making current	kA peak	49.8	63.9	-64.2
Current, AC component, beginning	kA RMS	31.5	33.3	29.5
Current, AC component, middle	kA RMS	28.6	29.7	26.6
Current, AC component, end	kA RMS	26.1	27.7	25.3
Current, AC component, average	kA RMS	28.8	30.1	27.1
Current, AC component, three-phase average	kA RMS		28.7	
Duration	S	4.02	4.02	4.02
Arc Energy	MJ		101	

Table 26. Key measurement from Experiment 2-26. Measurement uncertainty ± 3 percent.

3.5. Experiment 2-27 – 4.16 kV, 30 kA, 2 s Duration, Copper Bus, Aluminum Enclosure

Experiment 2-27 was performed on August 29, 2022, at 11:02 AM eastern daylight time (EDT). The temperature was approximately 27 °C (81 °F), approximately 69 percent relative humidity and approximately 101.3 kPa of pressure. The weather was partly cloudy with a wind of approximately 15 km/h (9 mi/h) out of the southwest.

The arc wire was located at center of the straight duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the three bus conductors and the arcing wire was wrapped around each conductor. The arcing wire installed on the bus and marked up illustrations of the arc wire location is presented in Fig. 41.

Fig. 41. Shorting wire location Experiment 2-27

3.5.1. Observations

The observations documented below are based on review of the video and thermal imaging that was recorded during the experiment. The observations are provided in Table 27 and include an approximate time reference. Corresponding images are provided in Fig. 42, with thermography images presented in Fig. 43.

This was the first aluminum bus duct enclosure experiment of the series and was also the first experiment with the bus bars shortened to prevent arc migration beyond sensor locations. The arc successfully stabilized above the instrumentation rack and lasted for the expected duration (2.04 s). After the HEAF event CO_2 fire suppression agent was applied to the duct and local hot spots on the racks and floor.

A large portion of the bus duct enclosure was destroyed during experiment. Aluminum slag was found throughout the test cell with the majority of slag deposited below the duct. No identifiable enclosure pieces or parts were located in the debris. The walls and ceiling of the test cell were coated with white powder (assumed to be aluminum and aluminum oxide). Slag was found in the courtyard up to approximately 20 m (65 ft) from the enclosure. No visible damage to the cable

NIST TN 2263 September 2023

samples was observed. Approximately 51 mm (2 in) of copper material was consumed in the experiment.

Time (ms)	Observation
0	Initial light observed
250	Particle ejecta observed at 90 degree elbow
633	Particle ejecta observed outside test cell
1 000	Smoke reaches overhead crane and expansive particulate ejecta
2 001	End of arc
12 012	Smoke clearing cell 10 s after arc termination

Table 27. Observations from Experiment 2-27

Fig. 42. Sequence of Images from Experiment 2-27 (image time stamps are in seconds).

Fig. 43. Sequence of Thermal Images from Experiment 2-27 (image time stamp in seconds)

A photograph of the enclosure following the experiment is presented in Fig. 44. The enclosure did experience a breach. Most of the bus duct beyond the end of the bus bars was missing on the horizontal straight section. In addition, the end of the 90-degree duct elbow experienced a breach with most of the material missing post-experiment.

Fig. 44. Enclosure Post-Experiment 2-27.

An image of the bus bars and enclosure after the experiment is shown in Fig. 45. The total mass loss of the bus bars was $2459.0 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix E.

Fig. 45. Photo of Experiment 2-27 bus bars post-experiment (arc location shown center).

3.5.2. Measurements

Measurements made during Experiment 2-27 are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear

NIST TN 2263 September 2023

- Pressure
 - o Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.5.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-27. These include PT measurements in Table 28, ASTM Slug Calorimeter measurements in Table 29, and T_{cap} slug measurements in Table 30. The maximum value is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear exceeded the maximum manufacture calibrated Type K thermocouple temperature of 1 372 °C \pm 10 °C and failed shortly thereafter.

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m²) ± 15 %	Notes
1	1	Тор				Inoperable prior to experiment (IPE)
1	3	Mid-Right	381	186	370	
1	5	Mid-Center	805	418	800	
1	7	Mid-Left	562	352	680	
1	9	Bottom	327	167	330	
2	10	Тор	554	411	810	
2	12	Mid-Right	341	201	400	
2	14	Mid-Center	424	256	510	
2	16	Mid-Left	366	190	360	
2	18	Bottom	397	202	380	
3	19	Тор	469	269	510	
3	21	Mid-Right	364	172	350	
3	23	Mid-Center	520	237	450	

Table 28. Summarv	of plate thermometer	measurements	Experiment 2-27
			=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Rack	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) + 15 %	Notes
3	25	Mid-Left	526	312	600	
3	27	Bottom	481	207	400	
4	28	Тор	500	247	510	
4	30	Mid-Right	1 333	628	1460	
4	32	Mid-Center	1576	606	1910	
4	34	Mid-Left	313	169	1520	
4	36	Bottom	564	260	520	
5	37	Front	610	114	240	
5	39	Center- Right	1612	489	1360	
5	41	Center-Mid	1009	238	1310	
5	43	Center-Left				IPE
5	45	Back	2 2 9 3	420	1500	

Table 29. Summary of ASTM slug calorimeter measurements, Experiment 2-27

Rack No.	ASTM No.	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or ± 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	A	Тор	65	300	
1	В	Bottom	651	3.17	
2	С	Тор	627	3.45	
2	D	Bottom	534	3.75	
3	E	Тор	537	3.50	
3	F	Bottom	424	7.05	
4	G	Тор	961	8.72	
4	Н	Bottom	1673	20.42	
5	I	Тор	588	24.25	
5	J	Bottom			No data

					Total Incident
			Heat Flux During	Incident Energy	Energy
			Arc (kW/m²)	During Arc Phase	(kJ/m²)
			Greater of	(kJ/m ²) Greater of	Greater of
Rack	Tcap		± 1.5 kW/m ²	± 2.4 kJ/m ²	± 2.4 kJ/m ²
No.	No.	Location	or ± 2.9 %	or ± 5 %	or ± 5 %
1	2	Тор	323.7	503.4	1 060.0
1	4	Mid-Right	298.3	445.8	865.0
1	6	Mid-Left	427.8	710.9	954.1
1	8	Bottom	276.8	423.6	784.7
2	11	Тор	209.2	358.2	774.5
2	13	Mid-Right	280.9	469.6	621.6
2	15	Mid-Left	294.6	499.6	697.0
2	17	Bottom	207.3	317.4	572.1
3	20	Тор	190.7	275.5	628.5
3	22	Mid-Right	217.7	330.8	599.8
3	24	Mid-Left	238.0	338.8	711.5
3	26	Bottom	182.0	265.3	618.4
4	29	Front	337.1	477.3	957.8
4	31	Center- Right	271.7	356.3	1750.3
4	33	Center-Left	209.4	302.2	1 853.2
4	35	Back	342.4	383.6	2 422.0
5	38	Front	335.0	317.0	4 275.9
5	40	Center- Right	169.1	186.7	2 670.0
5	42	Center-Left	86.3	136.4	394.8
5	44	Back	118.8	171.4	1 251.6
	1	1	I		

Table 30. Summary of T_{cap} slug measurements, Experiment 2-27

3.5.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 46. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The maximum change in pressure in the switchgear enclosure is approximately 24 kPa (3.5 psi) above ambient at its peak.

Fig. 46. Pressure measurements from Experiment 2-27. Measurement uncertainty ± 3 percent.

3.5.2.3. Electrical Measurements

Experiment 2-27 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220829-9001. Key experimental measurements are presented in Table 31. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С	
Applied voltage, phase-to-ground	k V _{RMS}	2.41 2.41 2.41			
Applied voltage, phase-to-phase	k V _{RMS}	4.17			
Making current	kA peak	50.7	63.3	-65.0	
Current, AC component, beginning	kA RMS	31.4	32.8	30.0	
Current, AC component, middle	kA RMS	28.9	29.9	28.1	
Current, AC component, end	kA RMS	27.6	29.1	27.0	
Current, AC component, average	kA RMS	29.0	30.4	28.1	
Current, AC component, three-phase average	kA RMS	29.1			
Duration	S	2.04	2.04	2.03	
Arc Energy	MJ		76.75		

Table 31. Key measurement from Experiment 2-27. Measurement uncertainty ± 3 percent.

3.6. Experiment 2-28 – 4.16 kV, 30 kA, 4 s Duration, Copper Bus, Aluminum Enclosure

Experiment 2-28 was performed on August 30, 2022, at 9:19 AM eastern daylight time (EDT). The temperature was approximately 26 °C (78 °F), approximately 84 percent relative humidity and approximately 100.6 kPa of pressure. The weather was mostly cloudy with a wind of approximately 11 km/h (7 mi/h) out of the south.

The arc wire was located at center of the duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the three bus conductors and the arcing wire was wrapped around each conductor. The arcing wire installed on the bus and marked up illustrations of the arc wire location is presented in Fig. 47.

Fig. 47. Shorting wire location Experiment 2-28 [photo from KEMA report]

3.6.1. Observations

Observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 32 and include an approximate time reference. Corresponding images are provided in Fig. 50, with thermography images presented in Fig. 51.

The arc successfully stabilized at the end of the bus bars and lasted for the expected duration (4.03 s). After the HEAF event, CO_2 fire suppression agent was applied to the duct and local hot spots on the racks and floor.

More of the duct enclosure was consumed during this experiment than the previous Cu/Al experiment with a 2 s arc duration (Experiment 2-27). Aluminum slag was found throughout the test cell and courtyard with the majority of the slag found below the duct. Some enclosure parts such as fasteners and metal straps were located outside the test cell. Aluminum yielding was evident on the far side of the 90 degree duct. The test cell wall was coated with white powder (assumed to be aluminum and aluminum oxide), but it was difficult to determine the extent due to residual deposits from the previous experiment.

Exposed cable insulation was observed along a long run of cable placed down the central axis of the instrumentation rack. Cable jacket was missing, with a portion hanging from the cable. After

the racks were removed, no cable damage was observed that would be expected to affect functionality. However, these cables were made from a thermoplastic material and may have undergone a rehealing process that has been observed in other fire experiments. The state of functionality during the experiment could not be confirmed by observation. No visible cable damage was observed an any cable coupon sample on the instrument racks. While the arc stabilized at the end of the bus bars, observations of the cable jacket damage and thermal imaging appear to indicate that most of the energy was released beyond the instrumentation rack locations. Fig. 48 and Fig. 49 show the locations on the cable where jacket material was removed during the HEAF experiment.

Fig. 48. Location of cable jacket damage relative to equipment. (Red arrows identify locations missing cable jacket and in some cases conductor jacket)

Fig. 49. Close-up of cable on Rack 2 from Experiment 2-28.

Table 32.	Observations	from	Experiment 2-28
-----------	--------------	------	-----------------

Time (ms)	Observation
0	Initial light observed
250	Particle ejecta observed
684	Particle ejecta reaches right cell wall
1 501	Particle ejecta observed outside of cell
2 285	Extensive particle ejecta outside of cell
2 485	Shrapnel observed in air above small yard camera tripod and between
2 403	tripod and ladder.
4 003	End of arc
14 014	Smoke clearing cell 10 s after arc termination

Fig. 50. Sequence of Images from Experiment 2-28 (image time stamps are in seconds).

Fig. 51. Sequence of Thermal Images from Experiment 2-28 (image time stamp in seconds)

NIST TN 2263 September 2023

The enclosure following the experiment is presented in Fig. 52. The enclosure did experience a breach. Most of the bus duct beyond the end of the bus bars is missing on the horizontal straight section. In addition, the end of the 90-degree duct elbow experienced a breach with most of the material missing post-experiment.

Fig. 52. Enclosure Post-Experiment 2-28.

An image of the bus bars removed from the enclosure after the experiment is shown in Fig. 53. The total mass loss of the bus bars was $5\,096.5 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 53. Photo of Experiment 2-28 bus bars post-experiment (arc location shown right).

3.6.2. Measurements

Measurements made during Experiment 2-28 are presented below. These measurements include:

- Thermal
 - o Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear

NIST TN 2263 September 2023

- Pressure
 - o Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.6.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-28. These include PT measurements in Table 33, ASTM Slug Calorimeter measurements in Table 34, and T_{cap} slug measurements in Table 35. The maximum reading is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear was 1 367 °C ± 10 °C.

Table 33.	Summary	of plate	thermometer	measurements	Experiment 2	2-28
-----------	---------	----------	-------------	--------------	--------------	------

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
1	1	Тор	856	551	2090	
1	3	Mid-Right	408	286	1070	
1	5	Mid-Center	702	520	1940	
1	7	Mid-Left	605	422	1570	
1	9	Bottom	370	273	1 0 3 0	
2	10	Тор	1 0 5 6	628	2440	
2	12	Mid-Right	366	269	1010	
2	14	Mid-Center	500	356	1 340	
2	16	Mid-Left	1 4 8 0	268	1 0 0 0	
2	18	Bottom	338	238	880	
3	19	Тор	566	380	1 4 2 0	
3	21	Mid-Right	542	283	1 0 9 0	
3	23	Mid-Center	732	437	1630	
3	25	Mid-Left	909	563	2130	
3	27	Bottom				EMI
4	28	Тор	1277	426	1620	
4	30	Mid-Right	1310	640	2 5 2 0	
4	32	Mid-Center	1540	507	2390	

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
4	34	Mid-Left	827	509	2 300	
4	36	Bottom	1 4 3 3	531	1 980	
5	37	Front	507	148	560	
5	39	Center- Right	2121	307	1 230	
5	41	Center-Mid	1832	382	1670	
5	43	Center-Left	3 3 5 8	125	2350	
5	45	Back	563	158	600	

Table 34. Summary of ASTM slug calorimeter measurements, Experiment 2-28

Rack	ASTM	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or + 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	A	Top	1 869	4 74	
1	B	Bottom	1912	4.79	
2	С	Тор	1 3 3 2	4.84	
2	D	Bottom	1 5 1 8	5.81	
3	E	Тор	1 387	5.90	
3	F	Bottom	1610	6.14	
4	G	Тор			No Signal
4	Н	Bottom	1915	5.38	
5		Тор	656	8.82	
5	J	Bottom	934	14.77	

					Total Incident
			Heat Flux During	Incident Energy	Energy
			Arc (KW/m²) Greater of	During Arc Phase (k l/m ²) Greater of	(KJ/M ²) Greater of
Rack	Tcap		$\pm 1.5 \text{ kW/m}^2$	$\pm 2.4 \text{ kJ/m}^2$	$\pm 2.4 \text{ kJ/m}^2$
No.	No.	Location	or ± 2.9 %	or ± 5 %	or ± 5 %
1	2	Тор	555.1	1729.5	2754.2
1	4	Mid-Right	513.4	1638.3	2383.6
1	6	Mid-Left	641.3	2062.2	2458.0
1	8	Bottom	494.7	1 557.8	2242.8
2	11	Тор	509.2	1 421.8	2319.1
2	13	Mid-Right	471.4	1476.7	1745.9
2	15	Mid-Left	523.8	1629.4	2016.5
2	17	Bottom	361.8	1051.8	1 507.0
3	20	Тор	483.2	1246.0	1951.1
3	22	Mid-Right	511.1	1 340.0	1799.2
3	24	Mid-Left	605.2	1 592.6	2 289.4
3	26	Bottom	534.5	1 286.2	2088.2
4	29	Front	279.0	685.4	2484.9
4	31	Center- Right	757.3	2033.1	3430.6
4	33	Center-Left	581.9	1636.5	3 7 2 9 . 5
4	35	Back	565.0	1 408.8	2686.1
5	38	Front	191.9	531.5	2785.6
5	40	Center- Right	317.0	825.3	2064.3
5	42	Center-Left	173.7	534.6	704.9
5	44	Back	177.3	505.8	807.8
-					

Table 35. Summary of $T_{\mbox{\scriptsize cap}}$ slug measurements, Experiment 2-28

3.6.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 54. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The maximum change in pressure in the switchgear is approximately 20 kPa (2.9 psi) above ambient at its peak.

Fig. 54. Pressure measurements from Experiment 2-28. Measurement uncertainty ± 3 percent.

3.6.2.3. Electrical Measurements

Experiment 2-28 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220830-9001. Key experimental measurements are presented in Table 36. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}	4.17		
Making current	kA _{peak}	51.7	65.2	-66.8
Current, AC component, beginning	kA RMS	31.9	33.3	29.8
Current, AC component, middle	kA RMS	27.6	29.3	27.4
Current, AC component, end	kA RMS	26.0	27.9	25.4
Current, AC component, average	kA RMS	28.1	29.7	27.5
Current, AC component, three-phase average	kA RMS	28.4		
Duration	S	4.03	4.03	4.03
Arc Energy	MJ		152.6	

Table 36. Key measurement from Experiment 2-28. Measurement uncertainty ± 3 percent.

3.7. Experiment 2-30 – 4.16 kV, 30 kA, 4 s Duration, Aluminum Bus, Steel Enclosure

Experiment 2-30 was performed on August 26, 2022, at 8:49 AM eastern daylight time (EDT). The temperature was approximately 24 $^{\circ}$ C (76 $^{\circ}$ F), approximately 85 percent relative humidity and approximately 100.7 kPa of pressure. The weather was partly cloudy with a wind of approximately 8 km/h (5 mi/h) out of the southwest.

The arc wire was located at the center of the duct section. A strip of insulation, approximately 2.5 cm (1 in) long, was removed from each of the three bus conductors and the arcing wire was wrapped around each conductor. The arcing wire and installation location are presented in Fig. 55.

Fig. 55. Shorting wire location Experiment 2-30. Note that the bus duct is inverted in this photo. Unsheathed ground bar is located on the bottom of the enclosure.

3.7.1. Observations

The observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 37 and include an approximate time reference. Corresponding images are provided in Fig. 57, with thermography images presented in Fig. 58.

Fig. 56 shows changes made to reinforce the panel bolting and provide additional pressure relief. These changes were discussed with the NRC/EPRI working group members, who agreed that the changes would help make the experiments consistent with operating experience.
NIST TN 2263 September 2023

During the HEAF experiment, the arc migrated away from the arc initiation location and stabilized near the end of the bus bars (away from power supply). Arc migration toward the switchgear resulted in arc ejecta and energy release being directed away from the center of the instrumentation racks which limited the thermal energy reaching the instruments. The arc lasted the expected 4.05 s.

Minor degradation of the bus bars was observed at the arc initiation point, while more extensive damage occurred near the ends of the bus bars. Enclosure breaching from arc damage was observed on all four sides of the bus duct. No visible cable damage was observed, however, the red insulation material on the bus bars separated from the conductors and ignited causing a dripping liquid fire. After the HEAF event, CO₂ fire suppression agent was applied to the duct and local hot spots on the racks and floor.

This experiment caused damage to the KEMA power supply bus. The A phase incoming power supply was severely damaged and impacted the resulting A phase arc voltage measurements. The cause of the incident was most likely a loose bolted connection on the A phase connection between the A phase incoming power supply and the A phase bus duct conductor. The loose connection caused a high resistance connection which began arcing at the start of power flow. After the KEMA supply buses in the test cell were cleaned and hi-pot tested, the system was found to be acceptable and the experimental series continued.

Fig. 56. Photo showing changes to duct enclosure to increase ability of panel to remain intact. Approximately, (13 mm (0.5 in) air gap offset from bus duct flange and end panel – far left; Extra bolts to secure panel – left; Panel bolts added to splice plate end of straight bus duct section - right)

Time (ms)	Observation
0	Initial light observed
100	Luminescent flash zone reaches rack 3 and 4
266	Particle ejecta observed
1 000	Particle ejecta observed outside of cell
2 886	Cell fully engulfed with smoke
4 003	End of arc
7 007	Smoke clear near hot duct section

Table 37. Observations from Experiment 2-30

Fig. 57. Sequence of Images from Experiment 2-30 (image time stamps are in seconds).

Fig. 58. Sequence of Thermal Images from Experiment 2-30 (image time stamp in seconds)

A photograph of the enclosure following the experiment is presented in Fig. 59. The enclosure did experience a breach. Openings were observed on all sides of the bus duct near the ends of the bus bar.

Fig. 59. Enclosure Post-Experiment 2-30.

An image of the bus bars in the enclosure after the experiment are shown in Fig. 60. The total mass loss of the bus bars was $4445.5 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 60. Photo of Experiment 2-30 bus bars post-experiment (arc location shown right).

3.7.2. Measurements

Measurements made during Experiment 2-30 are presented below. These measurements include:

- Thermal
 - o Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear
- Pressure
 - Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.7.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-30. These include PT measurements in Table 38, ASTM Slug Calorimeter measurements in Table 39, and T_{cap} slug measurements in Table 40. The maximum reading is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear was approximately 1 402 °C, which exceeds the maximum manufacturer calibrated Type K thermocouple temperature of 1 372 °C ± 10 °C. The thermocouple failed shortly after reporting this temperature.

Table 38. Summary of plate thermometer measurements Experiment 2-30

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
1	1	Тор	453	166	690	
1	3	Mid-Right	396	101	410	
1	5	Mid-Center	516	128	530	
1	7	Mid-Left	370	104	470	
1	9	Bottom	194	79	320	
2	10	Тор	463	218	870	
2	12	Mid-Right	602	196	750	
2	14	Mid-Center	955	277	1 040	

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ±5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
2	16	Mid-Left				Inoperable prior to experiment (IPE)
2	18	Bottom	503	156	580	
3	19	Тор	211	94	480	
3	21	Mid-Right				IPE
3	23	Mid-Center	211	102	650	
3	25	Mid-Left	272	127	760	
3	27	Bottom	219	114	500	
4	28	Тор	507	143	630	
4	30	Mid-Right	4 0 9 4	433	1 950	
4	32	Mid-Center	1 2 4 8	235	900	
4	34	Mid-Left	225	109	550	
4	36	Bottom	554	172	680	
5	37	Front	116	55	330	
5	39	Center-Right	250	102	840	
5	41	Center-Mid	599	110	570	
5	43	Center-Left	542	109	400	
5	45	Back	151	76	400	

Table 39. Summary of ASTM slug calorimeter measurements, Experiment 2-30.

Rack No.	ASTM No.	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or ± 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	Α	Тор	619	24.85	The second se
1	В	Bottom	273	15.23	
2	С	Тор	893	6.46	
2	D	Bottom	922	5.00	
3	E	Тор	604	46.39	
3	F	Bottom	664	53.84	
4	G	Тор	1 000	48.98	
4	Н	Bottom	730	61.57	
5	I	Тор	419	9.50	
5	J	Bottom	351	13.5	

Rack	Тсар		Heat Flux During Arc (kW/m ²) Greater of ± 1.5 kW/m ²	Incident Energy During Arc Phase (kJ/m ²) Greater of ± 2.4 kJ/m ²	Total Incident Energy (kJ/m ²) Greater of ± 2.4 kJ/m ²
No.	No.	Location	or ± 2.9 %	or ± 5 %	or ± 5 %
1	2	Тор	83.2	305.4	1444.9
1	4	Mid-Right	78.7	308.2	1 352.3
1	6	Mid-Left	91.2	376.1	1 229.3
1	8	Bottom	69.9	259.2	1058.3
2	11	Тор	454.9	1 092.3	1654.6
2	13	Mid-Right	305.7	807.3	1471.3
2	15	Mid-Left	466.9	1086.0	1 585.9
2	17	Bottom	393.7	885.5	1 205.7
3	20	Тор	102.5	351.8	1 803.9
3	22	Mid-Right	77.1	263.2	1 531.0
3	24	Mid-Left	96.8	347.5	2097.4
3	26	Bottom	79.1	311.4	1751.2
4	29	Front	258.4	643.1	2 127.5
4	31	Center- Right	259.3	646.3	2 464.7
4	33	Center-Left	160.1	552.1	1826.9
4	35	Back	100.1	184.1	294.1
5	38	Front	83.0	245.1	779.0
5	40	Center- Right	108.0	328.6	903.8
5	42	Center-Left	71.6	240.0	696.4
5	44	Back	86.5	281.7	778.2

Table 40. Summary of T_{cap} slug measurements, Experiment 2-30.

3.7.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 61. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The maximum change in pressure in the primary cable connection compartment is approximately 28.3 kPa (4.1 psi) above ambient at its peak.

Fig. 61. Pressure measurements from Experiment 2-30 (breaker compartment (red dashes with "x" markers); Main bus [arcing compartment] – (blue line with "o" markers)). Measurement uncertainty ± 3 percent.

3.7.2.3. Electrical Measurements

Experiment 2-30 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220826-9001. Key experimental measurements are presented in Table 41. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}		4.17	
Making current	kA peak	48.7	64.2	-63.9
Current, AC component, beginning	kA RMS	30.4	33.3	27.7
Current, AC component, middle	kA RMS	27.6	33.2	25.7
Current, AC component, end	kA RMS	24.2	31.6	25.2
Current, AC component, average	kA RMS	28.0	31.0	26.4
Current, AC component, three-phase average	kA RMS		28.4	
Duration	S	4.05	4.05	4.04
Arc Energy	MJ		170.8	

Table 41. Key measurements from Experiment 2-30. Measurement uncertainty ± 3 percent.

3.8. Experiment 2-30B – 4.16 kV, 30 kA, 4 s Duration, Aluminum Bus, Steel Enclosure

Experiment 2-30B was performed on August 31, 2022, at 10:13 AM eastern daylight time (EDT). The temperature was approximately 27.2 °C (75 °F), approximately 71 percent relative humidity and approximately 100.3 kPa of pressure. The weather was fair with wind of approximately 13 km/h (8 mi/h) out of the west.

The arc wire was located at center of the duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the three bus conductors and the arcing wire was wrapped around each conductor. The arc wire installed on the bus is shown in Fig. 62.

Fig. 62. Shorting wire location Experiment 2-30B. Note, image is from bottom of bus duct with uninsulated ground bus showing in center of image.

3.8.1. Observations

Observations documented below are based on a review of the video and thermal imaging that was recorded during the experiment. The observations are provided in Table 42 and include an approximate time reference. Corresponding images are provided in Fig. 63, with thermography images presented in Fig. 64.

This experiment was a repeat of Experiment 2-30, due to the laboratory power supply issue affecting that experiment. During the HEAF, the duct enclosure remained intact without mechanical fastener failure and panel blow off. The arc stabilized at the end of the bus bars, and the enclosure breached on all sides near and slightly beyond the arc location. The enclosure breach was localized to the sensor location. No visible cable damage was observed on any cable coupon sample on the instrument racks. The arc lasted for the expected duration (4.03 s). After the HEAF experiment, CO_2 fire suppression agent was applied to the duct and local hot spots on the racks and floor.

Time (ms)	Observation
0	Initial light observed
83	Luminescent flash zone reaches rack 3 and 4 directly above and below
05	duct
300	Particle ejecta observed
1 401	Particle ejecta impinges on right cell wall and smoke reaches overhead
1401	crane
3 470	Particle ejecta observed outside cell and smoke fills most of cell
4 003	End of arc
5 005	Hot liquid material falling from duct 1 s after end of arc
8 007	Smoke clears from view of duct

Table 42. Observations from Experiment 2-30B

Fig. 63. Sequence of Images from Experiment 2-30B (image time stamps are in seconds).

Fig. 64. Sequence of Thermal Images from Experiment 2-30B (image time stamp in seconds)

Photograph of the enclosure following the experiment is presented in Fig. 65. The enclosure did experience a breach. Openings were observed on all sides of the bus duct near the ends of the bus bar.

Fig. 65. Enclosure Post-Experiment 2-30B.

An image of the bus bars removed from the enclosure after the experiment is shown in Fig. 66. The total mass loss of the bus bars was $3605.0 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 66. Photo of Experiment 2-30B bus bars post-experiment (arc location shown center).

3.8.2. Measurements

Measurements made during Experiment 2-30B are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear
- Pressure
 - Internal pressure
- Mass Loss
 - Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.8.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-30B. These include PT measurements in Table 43, ASTM Slug Calorimeter measurements in Table 44, and T_{cap} slug measurements in Table 45. The maximum reading is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear was approximately 1 576 °C, which exceeds the maximum manufacturer calibrated Type K thermocouple temperature of 1 372 °C \pm 10 °C. The thermocouple failed shortly thereafter.

Table 43	. Summary	of plate	thermometer	measurements	Experiment	2-30B
----------	-----------	----------	-------------	--------------	------------	-------

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
1	1	Тор	344	229	920	
1	3	Mid-Right	243	132	630	
1	5	Mid-Center	459	177	890	
1	7	Mid-Left	804	255	1 0 4 0	
1	9	Bottom	335	151	620	
2	10	Тор	465	245	960	
2	12	Mid-Right	470	198	820	
2	14	Mid-Center	1 0 8 5	298	1 1 7 0	
2	16	Mid-Left	313	131	570	

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ±5 %	Total Incident Energy (kJ/m ²) ± 15 %	Notes
2	18	Bottom	267	116	510	
3	19	Тор	455	208	980	
3	21	Mid-Right	342	156	920	
3	23	Mid-Center	422	236	1270	
3	25	Mid-Left	692	371	1510	
3	27	Bottom	358	206	980	
4	28	Тор	338	142	980	
4	30	Mid-Right	390	173	1 300	
4	32	Mid-Center	5161	610	4800	
4	34	Mid-Left	289	104	920	
4	36	Bottom	1673	269	1720	
5	37	Front	1246	103	1410	
5	39	Center- Right				Inoperable prior to experiment (IPE)
5	41	Center-Mid	5809	167	3830	
5	43	Center-Left	1 558	56	1 680	
5	45	Back	589	53	630	

Table 44. Summary of ASTM slug calorimeter measurements, Experiment 2-30B

Rack	ASTM No.	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or ± 4 %	Time to Max Temperature (s) ± 3 %	Comment
1	A	Тор	1 132	18.74	
1	В	Bottom	1 088	13.49	
2	С	Тор	1 068	14.66	
2	D	Bottom	824	15.09	
3	E	Тор	1 4 1 3	38.74	
3	F	Bottom	1 4 3 9	31.74	
4	G	Тор	2 572	20.86	
4	Н	Bottom	1 532	41.19	
5		Тор	624	21.84	
5	J	Bottom	500	22.99	

Rack No.	T _{cap} No.	Location	Heat Flux During Arc (kW/m ²) Greater of ± 1.5 kW/m ² or ± 2.9 %	Incident Energy During Arc Phase (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %	Total Incident Energy (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %
1	2	Тор	337.7	988.8	2238.2
1	4	Mid-Right	255.1	718.6	1 898.8
1	6	Mid-Left	321.7	672.2	1654.8
1	8	Bottom	223.3	554.6	1688.2
2	11	Тор	362.0	913.2	2 190.5
2	13	Mid-Right	332.1	780.2	2081.5
2	15	Mid-Left	345.3	812.3	2111.8
2	17	Bottom	388.1	827.0	1881.4
3	20	Тор	335.4	962.3	3114.5
3	22	Mid-Right	260.8	692.9	2793.7
3	24	Mid-Left	298.3	692.2	3 567.0
3	26	Bottom	288.6	755.4	2967.2
4	29	Front	231.3	511.8	3117.6
4	31	Center-Right	461.7	688.4	10 266.2
4	33	Center-Left	181.1	333.8	2857.6
4	35	Back	226.1	358.7	3484.0
5	38	Front	59.5	142.3	1 088.7
5	40	Center-Right	160.8	308.9	1 492.1
5	42	Center-Left	76.9	175.9	1064.1
5	44	Back	85.9	165.5	1047.1

Table 45. Summary of T_{cap} slug measurements, Experiment 2-30B

3.8.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 67. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The maximum change in pressure in the switchgear enclosure is approximately 24.0 kPa (3.5 psi) above ambient at its peak.

Fig. 67. Pressure measurements from Experiment 2-30B (breaker compartment (red dashed line with "x" marker); Main bus [arcing compartment] – (Blue solid line with "o" marker)). Measurement uncertainty ± 3 percent.

3.8.2.3. Electrical Measurements

Experiment 2-30B used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220831-9001. Key experimental measurements are presented in Table 46. Plots of the electrical measurements are presented in Appendix B.

Table 46. Kev measurement	from Experiment 2-30B.	Measurement uncertainty ± 3 percent.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}		4.17	
Making current	kA peak	49.2	63.7	-65.0
Current, AC component, beginning	kA RMS	30.3	32.4	28.9
Current, AC component, middle	kA RMS	27.3	30.9	27.6
Current, AC component, end	kA RMS	25.7	28.6	26.5
Current, AC component, average	kA RMS	28.4	30.0	27.9
Current, AC component, three-phase average	kA RMS		28.8	
Duration	S	4.03	4.03	4.03
Arc Energy	MJ		134.3	

3.9. Experiment 2-31 – 4.16 kV, 30 kA, 2 s Duration, Aluminum Bus, Aluminum Enclosure

Experiment 2-31 was performed on September 1, 2022, at 9:19 AM eastern daylight time (EDT). The temperature was approximately 22 °C (72 °F), approximately 61 percent relative humidity and approximately 100.7 kPa of pressure. The weather was fair with wind of approximately 11 km/h (7 mi/h) out of the west-southwest.

The arc wire was located at the center of the duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the bus conductors (nine in total) and the arcing wire was wrapped around all conductors. The arcing wire and installation location are shown in Fig. 68.

Fig. 68. Shorting wire location Experiment 2-31

3.9.1. Observations

Observations documented below are based on review of video and thermal imaging that was taken during the experiment. The observations are provided in Table 47 and include an approximate time reference. Corresponding images are provided in Fig. 69, with thermography images presented in Fig. 70.

This was the first aluminum enclosure with aluminum bus bars examined in the series of experiments. The bus duct assembly was acquired from a nuclear facility undergoing decommissioning and had the same voltage and continuous current carrying rating as other ducts examined in this series. The duct had three conductors per phase, with all conductors constructed of aluminum.

After the experiment, aluminum slag was found throughout the test cell and courtyard with the majority of slag found below the duct. No visible damage was observed an any of the cable coupon samples mounted on the instrument racks. Carbon dioxide (CO_2) fire suppression agent was applied to the duct and local hot spots on the racks and floor. The arc lasted for the expected duration of 2.02 s.

	Table 47. Observations from Experiment 2-31
Time (ms)	Observation
0	Initial light observed
333	Particle ejecta observed
617	Particle ejecta reaches right wall of test cell
1 234	Smoke reaches overhead crane
2 035	End of arc
12 012	Smoke beginning to clear test cell 10 s after end of arc

Fig. 69. Sequence of Images from Experiment 2-31 (image time stamps are in seconds).

Fig. 70. Sequence of Thermal Images from Experiment 2-31 (image time stamp in seconds)

NIST TN 2263 September 2023

A photograph of the enclosure following the experiment is shown in Fig. 71. The enclosure did experience a breach, with most of the straight section duct beyond the bus bar ends missing post-experiment. In addition, there were openings in the aluminum 90-degree duct elbow.

Fig. 71. Enclosure Post-Experiment 2-31.

An image of the bus bars in the partially disassembled enclosure after the experiment is shown in Fig. 72. The total mass loss of the bus bars was $2985.0 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix C.

Fig. 72. Photo of Experiment 2-31 bus bars post-experiment (arc location shown right).

3.9.2. Measurements

Measurements made during Experiment 2-31 are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeter
 - Incident Energy ASTM Slug Calorimeters. Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear
- Pressure
 - Internal pressure
- Mass Loss
 - o Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.9.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-31. These include PT measurements in Table 48, ASTM Slug Calorimeter measurements in Table 49, and T_{cap} slug measurements in Table 50. The maximum reading is identified with bold text. The maximum temperature of the sheathed thermocouple located in the switchgear was 960 °C ± 7 °C.

Table 48. Summary of plate thermometer measurements Experiment 2-31

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ±5 %	Total Incident Energy (kJ/m²) ± 15 %	Notes
1	1	Тор	1210	770	1 4 9 0	
1	3	Mid-Right	485	384	770	
1	5	Mid-Center	535	384	880	
1	7	Mid-Left	836	540	1 0 5 0	
1	9	Bottom	546	356	670	
2	10	Тор	1 5 0 6	875	1 690	
2	12	Mid-Right	751	501	970	
2	14	Mid-Center	752	529	1070	

Rack	Plate	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or + 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ±5 %	Total Incident Energy (kJ/m ²) + 15 %	Notes
2	16	Mid-Left	632	436	830	
2	18	Bottom	446	329	630	
3	19	Тор	870	533	1 0 3 0	
3	21	Mid-Right	860	530	1 0 3 0	
3	23	Mid-Center	1 0 9 8	659	1 330	
3	25	Mid-Left	1 1 98	736	1 4 3 0	
3	27	Bottom	846	528	1 0 2 0	
4	28	Тор	698	527	1030	
4	30	Mid-Right	1 551	841	1650	
4	32	Mid-Center	1278	693	1470	
4	34	Mid-Left	492	453	870	
4	36	Bottom	829	550	1 050	
5	37	Front	237	175	400	
5	39	Center-Right	198	142	270	
5	41	Center-Mid	212	165	320	
5	43	Center-Left	827	194	430	
5	45	Back	207	143	310	

Table 49. Summary of ASTM slug calorimeter measurements, Experiment 2-31

Rack	ASTM	Location	Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or	Time to Max Temperature (s) ± 3 %	Commont
1	Λ	Top	1 574	3 3 8	Comment
			10/4	3.30	
1	В	Bottom	1 244	3.00	
2	С	Тор	1 107	3.30	
2	D	Bottom	901	2.93	
3	E	Тор	1 550	2.89	
3	F	Bottom			No Data
4	G	Тор	1 404	4.07	
4	Н	Bottom	1 2 3 9	3.13	
5	I	Тор	342	4.23	
5	J	Bottom	963	17.91	

Rack No.	Т _{сар} No.	Location	Heat Flux During Arc (kW/m ²) Greater of ± 1.5 kW/m ² or ± 2.9 %	Incident Energy During Arc Phase (kJ/m ²) Greater of ± 2.4 kJ/m ² or ± 5 %	Total Incident Energy (kJ/m²) Greater of ± 2.4 kJ/m² or ± 5 %
1	2	Тор	757.9	1 290.8	1864.0
1	4	Mid-Right	519.9	852.0	1450.8
1	6	Mid-Left	285.5	483.1	1 127.2
1	8	Bottom	402.4	619.6	1281.4
2	11	Тор	574.1	1017.4	1458.4
2	13	Mid-Right	450.0	749.2	1 350.1
2	15	Mid-Left	465.4	787.3	1 380.3
2	17	Bottom	410.5	718.5	1 130.3
3	20	Тор	754.7	1224.8	1701.7
3	22	Mid-Right	663.3	997.6	1649.2
3	24	Mid-Left	460.3	550.6	1 895.3
3	26	Bottom	621.8	949.8	1674.9
4	29	Front	656.4	1311.0	2038.2
4	31	Center-Right	761.2	1461.2	2 229.3
4	33	Center-Left	637.4	1249.2	1799.0
4	35	Back	765.8	1 482.8	2178.1
5	38	Front	151.9	274.9	477.3
5	40	Center-Right	134.8	234.6	469.5
5	42	Center-Left	168.3	300.3	535.7
5	44	Back	155.9	278.3	511.8

Table 50. Summary of T_{cap} slug measurements, Experiment 2-31

3.9.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 73. After the initial pressure spike, the pressure rapidly decays to a relatively steady state. The maximum change in pressure in the switchgear enclosure is approximately 23.4 kPa (3.4 psi) above ambient at its peak.

Fig. 73. Pressure measurements from Experiment 2-31. Measurement uncertainty ± 3 percent.

3.9.2.3. Electrical Measurements

Experiment 2-31 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220901-9001. Key experimental measurements are presented in Table 51. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}		4.17	
Making current	kA peak	52.6	64.1	-68.9
Current, AC component, beginning	kA RMS	31.7	33.5	31.1
Current, AC component, middle	kA RMS	28.8	31.2	28.8
Current, AC component, end	kA RMS	28.0	30.0	27.8
Current, AC component, average	kA RMS	29.2	31.1	29.0
Current, AC component, three-phase average	kA RMS		29.7	
Duration	S	2.03	2.03	2.02
Arc Energy	MJ		65.5	

Table 51. Key measurement from Experiment 2-31. Measurement uncertainty ± 3 percent.

3.10. Experiment 2-32 – 4.16 kV, 30 kA, 4 s Duration, Aluminum Bus, Aluminum Enclosure

Experiment 2-32 was performed on September 1, 2022, at 2:59 PM eastern daylight time (EDT). The temperature was approximately 29 °C (84 °F), approximately 34 percent relative humidity and approximately 100.6 kPa of pressure. The weather was fair with a wind of approximately 13 km/h (8 mi/h) out of the west.

The arc wire was located at the center of the duct section. A strip of insulation, approximately 2.5cm (1 in) long, was removed from each of the bus conductors (nine in total) and the arcing wire was wrapped around all conductors. The arcing wire and installation location are shown in Fig. 74.

Fig. 74. Shorting wire location Experiment 2-32.

3.10.1. Observations

Observations documented below are based on the review of video and thermal imaging that were recorded during the experiment. The observations are provided in Table 52 and include an approximate time reference. Corresponding images are provided in Fig. 75, with thermography images presented in Fig. 76.

This was the second aluminum enclosure with aluminum bus bars examined in the series of experiments. The bus duct assembly was acquired from a nuclear facility undergoing decommissioning, and had the same voltage and continuous current carrying rating as the other ducts tested in this series. This duct had three conductors per phase with all aluminum conductors. Due to the damage of all three aluminum 90 degree duct elbows on hand during the previous experiments, this experiment used a steel 90 degree duct elbow.

During the experiment, the arc stabilized at the end of the bus bars. After the HEAF experiment, CO^2 fire suppression agent was applied to the duct and local hot spots on the racks and floor. The arc lasted for the expected duration (4.04 s).

Post-test viewing of the cable samples running the length of the instrument racks indicated that they were likely functional, and that the highest thermal exposure was located outside the area covered by the instrument rack sensor matrix. These cables were made from a thermoplastic

NIST TN 2263 September 2023

material, however, and may have undergone a rehealing process that has been observed in other fire experiments.

Time (ms)	Observation
0	Initial light observed
300	Particle ejecta observed
784	Particle ejecta reaches right cell wall
1 201	Smoke reaches overhead crane and particle ejecta observed outside of
1 301	the cell
2 068	Particle ejecta observed impinging on concrete pad outside of test cell,
2 000	test cell mostly engulfed in smoke
4 037	End of arc
6 740	Smoke clearing cell with visual of duct

Table 52. Observations from Experiment 2-32.

Fig. 75. Sequence of Images from Experiment 2-32 (image time stamps are in seconds).

Fig. 76. Sequence of Thermal Images from Experiment 2-32 (image time stamp in seconds)

NIST TN 2263 September 2023

A photograph of the enclosure following the experiment is shown in Fig. 77. The enclosure did experience a breach. The aluminum bus duct straight section beyond the bus bars was destroyed. The 90-degree elbow was made of steel and remained intact. The Unistrut supports used to connect the 90-degree elbow to the straight section were deformed with some material loss.

Fig. 77. Enclosure Post-Experiment 2-32.

An image of the bus bars removed from the enclosure after the experiment are shown in Fig. 79. The total mass loss of the bus bars was $4793 \text{ g} \pm 1 \text{ g}$. Additional details are presented in Appendix E.

Fig. 78. Photo of Experiment 2-32 bus bars post-experiment

Fig. 79. Photo of Experiment 2-32 bus bars post experiment (arc location shown right)

3.10.2. Measurements

Measurements made during Experiment 2-32 are presented below. These measurements include:

- Thermal
 - Heat flux Plate Thermometers, Tcap Slug Calorimeters
 - Incident Energy ASTM Slug Calorimeters, Tcap Slug Calorimeters, Plate Thermometers
 - Temperature Thermocouple inside of switchgear
- Pressure
 - Internal pressure
- Mass Loss
 - o Pre- / Post-experimental measurements
- Electrical
 - Voltage profiles
 - Current profiles
 - Power and energy profiles

3.10.2.1. Thermal Measurements

Thermal measurements from the active instruments are reported below for Experiment 2-32. These include PT measurements in Table 53, ASTM Slug Calorimeter measurements in Table 54, and T_{cap} slug measurements in Table 55. The maximum reading is identified with bold text. The maximum temperature of the thermocouple located in the switchgear was

approximately 1 421 °C, which exceeds the maximum manufacturer calibrated Type K thermocouple temperature of 1 372 °C \pm 10 °C.

Rack No.	Plate No.	Location	Max Heat Flux (kW/m ²) Greater of ± 1 kW/m ² or ± 5 %	Average Heat Flux During Arc (kW/m ²) Greater of ±1 kW/m ² or ± 5 %	Total Incident Energy (kJ/m²) ± 15 %	Notes
1	1	Тор	4 0 3 1	1 635	5 370	
1	3	Mid-Right	674	526	1970	
1	5	Mid-Center	1 0 3 4	825	3 140	
1	7	Mid-Left				EMI
1	9	Bottom	1 199	512	1910	
2	10	Тор	2699	1 228	4 380	
2	12	Mid-Right	782	596	2 3 2 0	
2	14	Mid-Center	1 3 1 2	732	2820	
2	16	Mid-Left				Inoperable prior to experiment (IPE)
2	18	Bottom	587	434	1 640	
3	19	Тор	952	736	2830	
3	21	Mid-Right	980	615	2 390	
3	23	Mid-Center	1 308	984	3670	
3	25	Mid-Left	1 259	970	3630	
3	27	Bottom	968	695	2680	
4	28	Тор	1 0 3 6	788	3 100	
4	30	Mid-Right	2965	1 4 9 0	5030	
4	32	Mid-Center	1 161	910	3430	
4	34	Mid-Left	915	672	2600	
4	36	Bottom	1 421	859	3 2 5 0	
5	37	Front	960	260	970	
5	39	Center- Right	509	292	1 220	
5	41	Center-Mid	569	174	830	
5	43	Center-Left	1725	291	1 840	
5	45	Back	402	260	1 4 4 0	

Table 53. Summary of plate thermometer measurements Experiment 2-32

Rack	ASTM		Incident Energy (kJ/m ²) Greater of ± 18 kJ/m ² or	Time to Max Temperature (s) ± 3 %	
NO.	NO.	Location	±4%	ľ	Comment
1	A	Тор	3 599	5.52	
1	В	Bottom	2532	4.28	
2	С	Тор	2747	5.33	
2	D	Bottom	1624	5.93	
3	Е	Тор	2739	5.29	
3	F	Bottom	2769	5.34	
4	G	Тор	3610.	5.50	
4	Н	Bottom	3500.	7.39	
5		Тор	1049	6.47	
5	J	Bottom	985	7.85	

Table 54. Summary of ASTM slug calorimeter measurements, Experiment 2-32

			Heat Flux During	Incident Energy	Total Incident
			Arc (kW/m ²)	During Arc Phase	(kJ/m ²)
	_		Greater of	(kJ/m ²) Greater of	Greater of
Rack	T _{cap}	Location	± 1.5 kW/m ²	± 2.4 kJ/m ²	± 2.4 kJ/m ²
1	2	Top	1 2 2 3 78	3000 0	/ 033 0
1	_ 	Mid-Right	1016.8	3400.6	3040.8
1	6	Mid-Left	860.3	2836.0	3 773 0
1	8	Bottom	640.2	1 096 /	2 107 2
2	11	Top	1019.3	1 900.4	3 197.2
2	10	Nid Diaht	700.0	2992.9	4 303.3
2	15		/98.8	2510.5	3 389.1
2	15	Mid-Lett	798.8	2414.2	3 5 1 5 . 3
2	17	Bottom	550.4	1 596.8	2623.5
3	20	Тор	1 1 4 5.8	3 532.4	4601.5
3	22	Mid-Right	1030.6	3 2 2 0.7	3918.7
3	24	Mid-Left	1155.4	3602.3	4 554.3
3	26	Bottom	1052.5	3054.8	4 194.4
4	29	Front	927.9	3034.9	4799.1
4	31	Center- Right	1 135.2	4058.0	5994.6
4	33	Center-Left	1147.6	3902.6	4660.1
4	35	Back	955.1	3302.1	4720.8
5	38	Front	275.6	986.8	1 497.7
5	40	Center- Right	267.4	1032.2	1541.4
5	42	Center-Left	233.6	795.1	1 1 1 4.8
5	44	Back	263.6	918.2	1 503.0

Table 55. Summary of $T_{\mbox{\scriptsize cap}}$ slug measurements, Experiment 2-32
3.10.2.2. Pressure Measurements

The pressure profiles for the first two tenths of a second are shown in Fig. 80. After the initial pressure spike, the pressure rapidly decays to a relative steady state. The maximum change in pressure in the switchgear enclosure is approximately 25.9 kPa (3.8 psi) above ambient at its peak.

Fig. 80. Pressure measurements from Experiment 2-32. Measurement uncertainty ± 3 percent.

3.10.2.3. Electrical Measurements

Experiment 2-32 used KEMA circuit S02 and is reported in Appendix E. Full-level circuit checks (calibration experiments) were performed prior to the experiment to verify the experimental parameters were acceptable. The KEMA report (Appendix E) identifies this experiment as 220901-9002. Key experimental measurements are presented in Table 56. Plots of the electrical measurements are presented in Appendix B.

Phase	Units	Α	В	С
Applied voltage, phase-to-ground	k V _{RMS}	2.41	2.41	2.41
Applied voltage, phase-to-phase	k V _{RMS}	4.17		
Making current	kA peak	52.0	64.9	-68.5
Current, AC component, beginning	kA RMS	31.2	33.4	30.9
Current, AC component, middle	kA RMS	27.4	30.1	27.2
Current, AC component, end	kA RMS	26.7	28.4	28.1
Current, AC component, average	kA RMS	28.1	30.0	28.1
Current, AC component, three-phase average	kA RMS	28.7		
Duration	S	4.04	4.04	4.04
Arc Energy	MJ		141.1	

Table 56. Key measurement from Experiment 2-32. Measurement uncertainty ± 3 percent.

References

- [1] NRC Information Notice 2017-04: High Energy Arcing Faults in Electrical Equipment Containing Aluminum Components, U.S. NRC, Washington, DC, August 2017.
- [2] OECD Fire Project Topical Report No. 1, Analysis of High Energy Arcing Faults (HEAF) Fire Events, Nuclear Energy Agency Committee on the Safety of Nuclear Installations, Organization for Economic Cooperation and Development, June 2013. http://www.oecdnea.org/nsd/docs/2013/csni-r2013-6.pdf
- [3] EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities, Volume 2: Detailed Methodology. Electric Power Research Institute (EPRI), Palo Alto, CA, and U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Rockville, MD: 2005, EPRI TR-1011989 and NUREG/CR-6850.
- [4] Fire Probabilistic Risk Assessment Methods Enhancements: Supplement 1 to NUREG/CR-6850 and EPRI 1011989, EPRI, Palo Alto, CA, and NRC, Washington, DC.: December 2009.
- [5] NEA HEAF Project TOPICAL REPORT No. 1, Experimental Results from the International High Energy Arcing Fault (HEAF) Research Program – Phase 1 Experimenting 2014 to 2016, Nuclear Energy Agency Committee on The Safety of Nuclear Installations, 2017
- [6] Memorandum from Mark Henry Salley, to Thomas H. Boyce, Regarding submittal of possible generic issue concerning the damage caused by high energy arc faults in electrical equipment containing aluminum components, ADAMS Accession No. ML16126A096, May 2016.
- [7] Memorandum from Joseph Giitter to Michael F. Weber, regarding Results of Generic Issue Review Panel Screening Evaluation for Proposed Generic Issue PRE-GI-018, 'High Energy Arcing Faults involving Aluminum,' ADAMS Accession No. ML16349A027, July 15, 2017.
- [8] Memorandum from Michael Franovich and Michael Cheok to Raymond V. Furstenau, regarding Assessment Plan for Pre-GI-018, Proposed Generic Issue on High Energy Arc Faults Involving Aluminum, ADAMS Accession No. ML18172A189, August 22, 2018.
- [9] Management Directive 6.4, Generic Issue Program, ADAMS Accession No. ML16349A027, January 2, 2015.
- [10] LIC-504, Integrated Risk-Informed Decisionmaking Process for Emergent Issues, ADAMS Accession No. ML19253D401, March 4, 2020.
- [11] Determining the Zone of Influence for High Energy Arcing Faults Using Fire Dynamics Simulator, RIL2022-09, EPRI 3002025123, Electric Power Research Institute (EPRI), Palo Alto, CA, and U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, DC, November 2022.
- [12] Predicting High Energy Arcing Fault Zones of Influence for Aluminum Using a Modified Arc Flash Model, Evaluation of a modified model bias, uncertainty, parameter sensitivity and zone of influence estimation, Draft for public comment, ADAMS Accession No. ML22095A236.
- [13] Target Fragilities for Equipment Vulnerable to High Energy Arcing Faults, RIL 2022-01, EPRI 3002023400, Electric Power Research Institute (EPRI), Palo Alto, CA, and U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, DC, May 2022.

- [14] High Energy Arcing Fault Frequency and Consequence Modeling, Draft Report for Comment, NUREG-2262, EPRI 30020XXXX, Electric Power Research Institute (EPRI), Palo Alto, CA, and U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, DC, July 2022.
- [15] An International Phenomena Identification and Ranking Table (PIRT) Expert Elicitation Exercise for High Energy Arcing Faults (HEAFs), U.S. NRC, Washington, DC, NUREG-2218, January 2018.
- [16] Report on High Energy Arcing Fault Experiments, Experimental Results from Medium Voltage Electrical Enclosures, RIL 2021-10, NIST TN 2188, SAND2021-12049 R, U.S. Nuclear Regulatory Commission, Washington, DC, National Institute of Standards and Technology, Gaithersburg, MD, Sandia National Laboratories, Albuquerque, NM, November 2021. <u>https://doi.org/10.6028/NIST.TN.2188</u>
- [17] Report on High Energy Arcing Fault Experiments, Experimental Results from Open Box Enclosures, RIL 2021-18, NIST TN 2198, SAND2021-16075 R, U.S. Nuclear Regulatory Commission, Washington, DC, National Institute of Standards and Technology, Gaithersburg, MD, Sandia National Laboratories, Albuquerque, NM, December 2021. <u>https://doi.org/10.6028/NIST.TN.2198</u>
- [18] Report on High Energy Arcing Fault Experiments, Experimental Results from Low Voltage Switchgear Enclosures, RIL 2021-17, NIST TN 2197, U.S. Nuclear Regulatory Commission, Washington, DC, National Institute of Standards and Technology, Gaithersburg, MD, December 2021. <u>https://doi.org/10.6028/NIST.TN.2197</u>
- [19] IEEE C37.010-1999, "IEEE Application Guide for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis," The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 2000.
- [20] ASTM Standard F1959 / F1959M-14, 2014, "Standard Test Method for Determining the Arc Rating of Materials for Clothing," ASTM International, West Conshohocken, PA, 2014.
- [21] J. Clark and R. Tye (2003). Thermophysical Properties Reference Data for some Key Engineering Alloys. High Temperatures-High Pressures - HIGH TEMP-HIGH PRESS. 35-6. 1-14. 10.1068/htjr087.
- [22] T. Lafarge and A. Possolo (2015) "The NIST Uncertainty Machine", NCSLI Measure Journal of Measurement Science, volume 10, number 3 (September), pages 20-27.

Appendix A. Engineering Drawings

This appendix provides detailed drawings and information on the experiment facility, experiment objects, and instrumentation.

A.1. Experimental Facility

Drawings of the experimental facility are presented in Fig. 81 through Fig. 83.

Fig. 81. Isometric drawing of test cell #9

Fig. 82. Plan view of test cell #9.

Fig. 83. Elevation view of test cell #9. Breaker shown in drawing is part of KEMA protection system and was not used during this experimental series. (unlabeled arrow indicates movable partition wall used to protect laboratory equipment within the cell)

A.2. Support Drawings

A.2.1. Medium-Voltage Switchgear Instrument Rack Drawings

Instrumentation rack drawings for switchgear experiments 2-10 and 2-12 are shown below in Fig. 84 to Fig. 90. As shown in Fig. 87 and Fig. 87, the instrumentation array for Rack 3 is shifted lower to reduce shielding from Rack 2 instruments.

Fig. 84. Elevation view of instrument racks surrounding switchgear unit. (Note that Instrumentation Rack 4 is on the opposite side of the switchgear unit from Rack 1 and therefore not shown in this image. Dimensions in mm \pm 5mm.)

Fig. 85. Illustration of Vertical Instrumentation Rack 1 with data acquisition channels. Dimensions in mm \pm 5 mm.

Fig. 86. Illustration of Vertical Instrumentation Rack 2 with data acquisition channels. Dimensions in mm \pm 5 mm.

Fig. 87. Illustration of Vertical Instrumentation Rack 3 with data acquisition channels. Dimensions in mm \pm 5mm.

Fig. 88. Illustration of Vertical Instrumentation Rack 4 with data acquisition channels. Dimensions in mm \pm 5 mm.

Fig. 89. Illustration of horizontal Instrumentation Rack 5 with data acquisition channels. Dimensions in mm \pm 5mm.

Fig. 90. Detailed Horizontal Locations of Instruments on Instrument Racks 1 - 5 Dimensions in mm \pm 5 mm.

A.2.2. Medium-voltage bus duct drawings

Instrumentation rack drawings for bus duct experiments are shown below in Fig. 91 to Fig. 102.

Fig. 91. Elevation view of instrument racks surrounding bus duct used in experiments 2-25 & 2-26. (Note that Instrumentation Rack 2 is on the opposite side of the bus duct from Rack 1 and therefore not shown in this image.) Dimensions in mm ± 5mm.

Fig. 92. Illustration of vertical Instrumentation Rack 1 used in experiments 2-25 & 2-26, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 93. Illustration of vertical Instrumentation Rack 2 used in experiments 2-25 & 2-26, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 94. Illustration of horizontal Instrumentation Rack 3 used in experiments 2-25 & 2-26, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 95. Illustration of horizontal Instrumentation Rack 4 used in experiments 2-25 & 2-26, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 96. Illustration of horizontal Instrumentation Rack 5 used in experiments 2-25 & 2-26, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 97. Elevation view of instrument racks surrounding bus duct used in experiments 2-27, 2-28, 2-30, 2-30B, 2-31, and 2-32. (Note that Instrumentation Rack 2 is on the opposite side of the bus duct from Rack 1 and therefore not shown in this image.) Dimensions in mm ± 5mm.

Fig. 98. Illustration of vertical Instrumentation Rack 1 used in experiments 2-27, 2-28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 99. Illustration of vertical Instrumentation Rack 2 used in experiments 2-27, 2-28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 100. Illustration of horizontal Instrumentation Rack 3 used in experiments 2-27, 2-28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 101. Illustration of horizontal Instrumentation Rack 4 used in experiments 2-27, 2-28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ± 5mm.

Fig. 102. Illustration of horizontal Instrumentation Rack 5 used in experiments 2-27, 2-28, 2-30, 2-30B, 2-31 & 2-32, with data acquisition channels. Dimensions in mm ± 5mm.

Appendix B. Electrical Measurements

This appendix presents plots of the electrical measurements made during each experiment. The raw data files were converted to MatlabTM files using the KEMA labs' proprietary software. Once in Matlab,TM the data was processed and plotted.

B.1. Experiment 2-10 (MV Switchgear, Copper Bus, Steel Enclosure, 6.9 kV, 32kA, 2 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 103. The transient region for current phases is presented in Fig. 104. Energy and power profiles are presented in Fig. 105.

Fig. 103. Voltage and Current Profile during Experiment 2-10. Measurement uncertainty ±3 percent.

Fig. 104. Transient current profiles for Experiment 2-10. Measurement uncertainty ±3 percent.

Fig. 105. Power and Energy for Experiment 2-10. Measurement uncertainty ±3 percent.

B.2. Experiment 2-12 (MV Switchgear, Copper Bus, Steel Enclosure, 6.9 kV, 32kA, 4 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 106. The transient region for current phases is presented in Fig. 107. Energy and power profiles are presented in Fig. 108.

Fig. 106. Voltage and Current Profile during Experiment 2-12. Measurement uncertainty ±3 percent.

Fig. 107. Transient current profiles for Experiment 2-12. Measurement uncertainty ±3 percent.

Fig. 108. Power and Energy for Experiment 2-12. Measurement uncertainty ±3 percent.

B.3. Experiment 2-25 (MV Bus Duct, Copper Bus, Steel Enclosure, 4.16kV, 30kA, 2 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 109. The transient region for current phases is presented in Fig. 110. Energy and power profiles are presented in Fig. 111.

Fig. 109. Voltage and Current Profile during Experiment 2-25. Measurement uncertainty ±3 percent.

Fig. 110. Transient current profiles for Experiment 2-25. Measurement uncertainty ±3 percent.

Fig. 111. Power and Energy for Experiment 2-25. Measurement uncertainty ±3 percent.

B.4. Experiment 2-26 (MV Bus Duct, Copper Bus, Steel Enclosure, 4.16kV, 30kA, 4 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 112. The transient region for current phases is presented in Fig. 113. Energy and power profiles are presented in Fig. 114.

Fig. 112. Voltage and Current Profile during Experiment 2-26. Measurement uncertainty ±3 percent.

Fig. 113. Transient current profiles for Experiment 2-26. Measurement uncertainty ±3 percent.

Fig. 114. Power and Energy for Experiment 2-26. Measurement uncertainty ±3 percent.

B.5. Experiment 2-27 (MV Bus Duct, Copper Bus, Aluminum Enclosure, 4.16kV, 30kA, 2 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 115. The transient region for current phases is presented in Fig. 116. Energy and power profiles are presented in Fig. 117.

Fig. 115. Voltage and Current Profile during Experiment 2-27. Measurement uncertainty ±3 percent.

Fig. 116. Transient current profiles for Experiment 2-27. Measurement uncertainty ±3 percent.

Fig. 117. Power and Energy for Experiment 2-27. Measurement uncertainty ±3 percent.

B.6. Experiment 2-28 (MV Bus Duct, Copper Bus, Aluminum Enclosure, 4.16kV, 30kA, 4 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 118. The transient region for current phases is presented in Fig. 119. Energy and power profiles are presented in Fig. 120.

Fig. 118. Voltage and Current Profile during Experiment 2-28. Measurement uncertainty ±3 percent.

Fig. 119. Transient current profiles for Experiment 2-28. Measurement uncertainty ±3 percent.

Fig. 120. Power and Energy for Experiment 2-28. Measurement uncertainty ±3 percent.

B.7. Experiment 2-30 (MV Bus Duct, Aluminum Bus, Steel Enclosure, 4.16kV, 30kA, 4 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 121. The transient region for current phases is presented in Fig. 122. Energy and power profiles are presented in Fig. 123.

Fig. 121. Voltage and Current Profile during Experiment 2-30. Measurement uncertainty ±3 percent.

Fig. 122. Transient current profiles for Experiment 2-30. Measurement uncertainty ±3 percent.

Fig. 123. Power and Energy for Experiment 2-30. Measurement uncertainty ±3 percent.

B.8. Experiment 2-30B (MV Bus Duct, Aluminum Bus, Steel Enclosure, 4.16kV, 30kA, 4 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 124. The transient region for current phases is presented in Fig. 125. Energy and power profiles are presented in Fig. 126.

Fig. 124. Voltage and Current Profile during Experiment 2-30B. Measurement uncertainty ±3 percent.

Fig. 126. Power and Energy for Experiment 2-30B. Measurement uncertainty ±3 percent.

B.9. Experiment 2-31 (MV Bus Duct, Aluminum Bus, Aluminum Enclosure, 4.16kV, 30kA, 2 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 127. The transient region for current phases is presented in Fig. 128. Energy and power profiles are presented in Fig. 129.

Fig. 127. Voltage and Current Profile during Experiment 2-31. Measurement uncertainty ±3 percent.

Fig. 129. Power and Energy for Experiment 2-31. Measurement uncertainty ±3 percent.

B.10. Experiment 2-32 (MV Bus Duct, Aluminum Bus, Aluminum Enclosure, 4.16kV, 30kA, 4 s)

The voltage and current profile for the entire duration of the experiment is shown in Fig. 130. The transient region for current phases is presented in Fig. 131. Energy and power profiles are presented in Fig. 132.

Fig. 130. Voltage and Current Profile during Experiment 2-32. Measurement uncertainty ±3 percent.

Fig. 131. Transient current profiles for Experiment 2-32. Measurement uncertainty ±3 percent.

Fig. 132. Power and Energy for Experiment 2-32. Measurement uncertainty ±3 percent.

Appendix C. Weights and Measurements

This appendix provides mass and dimension measurements of experiment object components.

C.1. Switchgear Electrical Enclosure and Conductors

Prior to performing high energy arcing fault experiments on the experiment devices, the electrical contractor removed the metal cladding, and with the support from NRC and NIST staff, each removed panel was weighed using calibrated mass balances. The initial and final measurements for the metal cladding are presented below for each experiment device. The figures that follow (Fig. 130 through Fig. 135) have been annotated to identify the panels that were weighted. The figures include panel dimensions which are reported in centimeters (inches). The bus conductors in the primary cable connection compartment were removed and weighed before and after each experiment. Those measurements are also reported in this appendix.

Fig. 133. Exterior Isometric. Dimensions ± 0.6 cm (± 0.25 in).

Fig. 134. Interior Front. Dimensions ± 0.6 cm (± 0.25 in).

Fig. 135. Interior Rear. Dimensions \pm 0.6 cm (\pm 0.25 in).

Fig. 136. Exterior Rear. Dimensions ± 0.6 cm (± 0.25 in).

C.1.1. Switchgear Enclosure Weights

C.1.1.1. Experiment 2-10 Switchgear Medium-Voltage Copper Bus, 2s

The mass measurements from the electrical enclosure metal cladding are presented in Table 55. The masses recorded from the electrical conductors are presented in Table 56. Soot and other loose byproducts were removed from the electrical conductors prior to measurement. The expanded uncertainty in the scale 1 measurements, based on manufacturer specifications of similar scales, is ± 1 kg with a 95 percent confidence interval. The expanded uncertainty in the scale from manufacturer specifications, is ± 1 g with a 95 percent confidence interval.

		Pre-Ex	periment	Post- Experiment ∆ mass		∧ mass	Approximate Dimensions
Figure	Description	Scale 1 (kg)	Scale 2 (g)	Scale 1 (kg)	Scale Scale (g) 1 (kg) 2 (g)		(in)
Fig. 133	Right Side Rear Panel	93.0					37 L x 89.25 H
Fig. 133	Left (Bus) Side Rear Panel	43.1					37 L x 89.25 H
Fig. 134	Front Left Interior Panel		6115.0	_			25 H x 19 W
Fig. 134	Front Right Interior Panel		4731.5	Na aha	No observable enclosure		25 H x 15 W
Fig. 133	Top Panel 1	35.6		NO ODS			78 L x 36 W
Fig. 135	Interior Panel 1		9634.0	Dieach	imont incl	ning post-	34.5 L x 18.5 H
Fig. 135	Interior Panel 2		85914.5	– exper	nnent ins	vporimont	34.5 L x1 7.25 H
N/A	Interior Panel 2 steel connector		270.0	en	iclosure n	ass Noro pot	
Fig. 135	Interior Panel 3		10,201.5	measu	takan	were not	34.5 L x 18.25 H
N/A	Grounding Strap		1824.0		tanch.		34.5 L x 2 H x 0.25 W
N/A	Ground Connection			_			6 L x 2 H x 0.25 W
Fig. 136	Rear Upper Panel	16.1	15996.0				36 W x 41.25 H
Fig. 136	Rear Lower Panel	24.5	24,392.0				35.75 W x 49.5 H

Table 57. Experiment Device Mass Measurements from Experiment 2-10 - Enclosure Metal-Cladding

Description	Pre- Experiment (g)	Post- Experiment (g)	Mass Loss (g)
Bus Phase A	5093.5	5093.5	-524.5
Bus Phase B	5087.5	5087.5	-985.0
Bus Phase C	5108.5	5 108.5	-525.5
		Total Mass Loss	2035.0

Table 58. Experiment Device Mass Measurements from Experiment 2-10 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Bus bar dimensions: nominally 6.4 mm (0.25 in) by 76.2 mm (3 in), 635 mm (24 in) long, 152 mm (6 in) riser, 102 mm (4 in) connection to can (primary).

C.1.1.2. Experiment 2-12 Switchgear Medium-Voltage Copper Bus, 4 s

The mass measurements from the electrical enclosure metal cladding are presented in Table 57. Lessons learned from the 2018 experimental series demonstrated that mass measurements using a calibrated scale were unreliable due to the HEAF experiment plating metal to the component being measured resulting in an inaccurate method to estimate mass loss. In RIL 2021-10, a graphical analysis method was used to estimate the breach area from a photograph with a measurement reference and then given the known approximate enclosure thickness (0.2381mm [0.0937 in]) and steel density (7.90g/cm³) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure is presented in Fig. 137 and indicates a total of approximately 1287g of mass loss from the top of the enclosure. Note that the screen area was estimated to be 50 percent open and 50 percent steel. The masses recorded from the electrical conductors are presented in Table 58. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

	Pre-Experiment		1 maga	Approx	
Figure	Description	Scale 1 (kg)	Scale 2 (g)	A mass (g)	Dimensions (in)
Fig. 133	Right Side Rear Panel	43.4			37W x 89.25 H
Fig. 133	Left (Bus) Side Rear Panel	43.4			37W x 89.25 H
Fig. 134	Front Left Interior Panel		6 188.0		25H x 19 W
Fig. 134	Front Right Interior Panel		4 791.0		25 H x 15 W
Fig. 133	Top Panel	35.4	35 097.0	1432.8 ^e	78 L x 36 W
Fig. 135	Interior Panel 1		9 391.0		34.5 W x 18.5 H
Fig. 135	Interior Panel 2 (middle)		14 005.0		34.5 W x 27.7 H
N/A	Interior Panel 2 steel connector				
Fig. 135	Interior Panel 3 (bottom)		4 265.0		34.5 W x 8.75H
N/A	Grounding Strap				34.5 W x 2 L x 0.25 H
N/A	Ground Connection				6 L x 2 W x 0.25 H
Fig. 136	Rear Upper Panel		15 675.5		36 W x 41.5 H
Fig. 136	Rear Lower Panel		21 379.0		35.75 W x 49.5 H

Table 59. Experiment Device Mass Measurements from Experiment 2-12 - Enclosure Metal-Cladding

^e estimated vis graphical analysis

Fig. 137. Photos show breach opening with size estimate

Table 60. Experiment Device Mass Measurements from Experiment 2-12 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Description	Pre- Experiment (g)	Post- Experiment (g)	Mass Loss (g)
Bus Phase A	5070.5	3881.5	-1 189.0
Bus Phase B	5095.0	4022.5	-1072.5
Bus Phase C	5071.0	3983.5	-1087.5
		Total Mass Loss	-3349.0

Bus bar dimensions: nominally 6.4 mm (0.25 in) by 76.2 mm (3 in), 635 mm (24 in) long, 152 mm (6 in) riser, 102 mm (4 in) connection to can (primary).

C.2. Non-Segregated Bus Duct Enclosure and Conductors

Similar to Section E.1, the enclosure panels, support members, and electrical conductors were measured and weighted. The initial and final measurements for the metal cladding are presented below for each experiment device. The figures that follow (Fig. 138 through Fig. 144) have been annotated to identify the panels that were weighted. The figures include panel dimensions which are reported in inches. The bus conductors were removed and weighed before and after each experiment. Those measurements are also reported in this appendix.

Fig. 138. Isometric drawing of general bus duct experiment configuration

Fig. 139. Cross-section of bus duct (Note measurements in inches. Approximate from manufacturer.)

Fig. 140. Bus Duct Plan View (Aluminum bus bars) Dimensions ± 0.6 cm (± 0.25 in).

Fig. 141. Bus Duct Plan View (Copper bus bars) Dimensions ± 0.6 cm (± 0.25 in).

Fig. 142. Bus Duct Elevation View. Dimensions \pm 0.6 cm (\pm 0.25 in).

Fig. 143. Interior View (Copper Bus). Dimensions \pm 0.6 cm (\pm 0.25 in).

Fig. 144. Interior View (Aluminum Bus). Dimensions ± 0.6 cm (± 0.25 in).

C.2.2. Experiment 2-25 NSBD Copper Bus, Steel Enclosure, 2s

The mass measurements from the electrical enclosure metal cladding are presented in Table 61. Mass loss was estimated using graphical analysis as discussed previously. Using the bus duct enclosure approximate thickness (0.29 mm [0.115 in]) and steel density (7.902081 g/cm3) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure is presented in Fig. 145 and indicates a total of approximately 726 g of mass loss from the top of the enclosure. The masses recorded from the electrical conductors are presented in Table 58. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Figure	Description	Pre- Experiment Scale 2 (g)	∆ mass (g)	Notes
Fig. 141	Тор	29962.0		
Fig. 142	Left Side (front)	23767.0		
Fig. 142	Right Side (rear)	22 521.0		71 in x 14 in
Fig. 141	Bottom	29940.0	726 ^e	
N/A	Ground bar cross member	3 302.0		
N/A	Ground bar axial	4 122.0		
Fig. 141	Flange Top	5743.5		
Fig. 141	Flange Bottom	5611.0		

Table 61. Experiment Device Mass Measurements from Experiment 2-25 - Enclosure Metal-Cladding

^e estimated via graphical analysis

Fig. 145. Photos showing breach opening with size estimate.

Description	Pre- Experiment (g)	Pre- Experiment w/insulation (g)	Post- Experiment (g)	Mass Loss (g)
Bus Phase A	26374.0	26 393.0	25025.0	-1349.0
Bus Phase B	26037.5	26057.0	24 478.5	-1 559.0
Bus Phase C	26499.0	26518.0	25 558.5	-940.5
			Total Mass Loss	-3848.5

Table 62. Experiment Device Mass Measurements from Experiment 2-25 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

C.2.3. Experiment 2-26 NSBD Copper Bus, Steel Enclosure, 4s

The mass measurements from the electrical enclosure metal cladding are presented in Table 57. Mass loss was estimated using graphical analysis as discussed previously. Using the bus duct enclosure approximate thickness (0.29 mm [0.115 in]) and steel density (7.902081 g/cm3) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure is presented in Fig. 115 and indicates a total of approximately 1287g of mass loss from the top of the enclosure. Note that the screen area was estimated to be 50 percent open and 50 percent steel. The masses recorded from the electrical conductors are presented in Table 58. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

		Pre-	Δ	
Figure D	escription	Experiment	mass	Notes
		Scale 2 (g)	(g)	
Fig. 141	Тор	29962.0		
Fig. 142	Left Side (front)	23767.0		
Fig. 142	Right Side (rear)	22521.0		
Fig. 141	Bottom	29940.0		Enclosure breach was
N/A	Ground bar cross	3 302 0		not observed from
	member	5502.0		thermal damage.
N/A	Ground bar axial	4 122.0		
Fig. 141	Flange Top	5743.5		
Fig. 141	Flange Bottom	5611.0		

Table 63. Experiment Device Mass Measurements from Experiment 2-26 - Enclosure Metal-Cladding

Table 64. Experiment Device Mass Measurements from Experiment 2-26 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Description	Pre- Experiment w/o insulation (g)	Pre-Experiment w/insulation (g)	Post- Experiment (g)	Mass Loss (g)
Bus Phase A	26 184.0	26 202.0	24 368.0	-1 816.0
Bus Phase B	26 128.5	26 146.0	23 759.5	-2 369.0
Bus Phase C	26 072.0	26 090.5	24 266.0	-1 806.0
			Total Mass Loss	-5 991.0

C.2.4. Experiment 2-27 NSBD Copper Bus, Aluminum Enclosure, 2s

The mass measurements from the electrical enclosure metal cladding are presented in Table 60. Mass loss was estimated using graphical analysis as discussed previously. Using the bus duct enclosure approximate thickness (0.29 mm [0.115 in]) and steel density (7.902081 g/cm3) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure is presented in Fig. 115 and indicates a total of approximately 726 g of mass loss from the top of the enclosure. The masses recorded from the electrical conductors are presented in Table 58. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Figure	Description	Pre-Experiment Scale 2 (g)	Δ mass (g)
Fig. 141	Тор	9978.0	3059.0
Fig. 142	Top Flange 90 degree	7 4 2 6.0	2381.0
Fig. 142	Left Side (front)	9767.5	1 4 8 0.0
Fig. 141	Left side (front) 90 degree	4 250.5	1453.0
N/A	Right Side (rear)	9782.0	1564.0
N/A	Right side (rear) 90 degree	4 332.0	813.5
Fig. 141	Bottom	9990.0	3620.0
Fig. 141	Bottom Flange 90 degree	5304.0	2565.5
		Total Mass Loss	16936.0

Table 65. Experiment Device Mass Measurements from Experiment 2-27 - Enclosure Metal-Cladding

Table 66. Experiment Device Mass Measurements from Experiment 2-27 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Description	Pre-Experiment w/insulation (g)	Post-Experiment (g)	Mass Loss (g)
Bus Phase A	18428.5	17671.0	-757.5
Bus Phase B	18420.5	17 510.5	-910.0
Bus Phase C	18307.0	17 515.5	-791.5
		Total Mass Loss	-2459.0

C.2.5. Experiment 2-28 NSBD Copper Bus, Aluminum Enclosure, 4s

The mass measurements from the electrical enclosure metal cladding are presented in Table 67. Mass loss was estimated using graphical analysis as discussed previously. Using the bus duct enclosure approximate thickness (0.29 mm [0.115 in]) and steel density (2.9 g/cm³) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure is presented in Fig. 115 and indicates a total of 25 023 g mass loss from the top of the enclosure. The masses recorded from the electrical conductors are presented in Table 68. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Figure	Description	Pre- Experiment Scale 2 (g)	Δ mass (g)
Fig. 141	Top straight	9978.0	3275.5
Fig. 142	Top Flange 90 degree	7 426.0	6683.5
Fig. 142	Left Side (front) straight	9767.5	1437.5
Fig. 141	Left side (front) 90 degree	4 250.5	2061.0
N/A	Right Side (rear)	9782.0	1750.0
N/A	Right Side (rear) 90 degree	4 332.0	2 1 2 2 . 0
Fig. 141	Bottom	9 990.0	2921.0
Fig. 141	Bottom Flange 90 degree	5304.0	4773.0
		Total Mass Loss	25023.0

Table 67. Experiment Device Mass Measurements from Experiment 2-28 - Enclosure Metal-Cladding

Table 68. Experiment Device Mass Measurements from Experiment 2-28 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Description	Pre-experiment w/insulation (g)	Post-Experiment (g)	Mass Loss (g)
Bus Phase A	18408.0	16802.5	-1605.5
Bus Phase B	18462.5	16652.5	-1810.0
Bus Phase C	18694.5	17013.5	-1681.0
		Total Mass Loss	-5096.5

C.2.6. Experiment 2-30 NSBD Aluminum Bus, Steel Enclosure, 4s

The mass measurements from the electrical enclosure metal cladding are presented in Table 69. Mass loss was estimated using graphical analysis as discussed previously. Using the bus duct enclosure approximate thickness (0.29 mm [0.115 in]) and steel density (7.902081 g/cm3) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure indicates a total of approximately 8664 g of mass loss from the top of the enclosure. The masses recorded from the electrical conductors are presented in Table 70. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Figure Description		Pre-Experiment	Δ mass
Figure	Description	Scale 2 (g)	(g)
Fig. 140	Тор	33 106.0	3488.0
Fig. 142	Left Side (front)	22405.0	1047.0
Fig. 142	Right Side (rear)	22 181.0	818.0
Fig. 140	Bottom	33057.0	3311.0
		Total Mass Loss	8664.0

Table 69. Experiment Device Mass Measurements from Experiment 2-30 - Enclosure Metal-Cladding

Table 70. Experiment Device Mass Measurements from Experiment 2-30 – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Description	Pre-Experiment w/insulation (g)	Post-Experiment (g)	Mass Loss (g)
Bus Phase A	12849.5	11377.5	-1472.0
Bus Phase B	12913.5	11294.5	-1619.0
Bus Phase C	12872.0	11517.5	-1354.5
		Total Mass Loss	-4445.5

C.2.7. Experiment 2-30B NSBD Aluminum Bus, Steel Enclosure, 4s

The mass measurements from the electrical enclosure metal cladding are presented in Table 71. Mass loss was estimated using graphical analysis as discussed previously. Using the bus duct enclosure approximate thickness (0.29 mm [0.115 in]) and steel density (7.9 g/cm³) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure indicates a total of approximately 8954.0 g of mass loss from the top of the enclosure. The masses recorded from the electrical conductors are presented in Table 72. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Figure	Description	Pre-Experiment Scale 2 (g)	Δ mass (g)
Fig. 140	Тор	33 106.0	760.5
Fig. 142	Left Side (front)	22405.0	2921.5
Fig. 142	Right Side (rear)	22 181.0	2291.5
Fig. 140	Bottom	33057.0	3980.5
		Total Mass Loss	8954.0

Table 71. Experiment Device Mass Measurements from Experiment 2-30B - Enclosure Metal-Cladding

 Table 72. Experiment Device Mass Measurements from Experiment 2-30B – Electrical Conductors [made using Scale 2 with uncertainty of ± 1 g]

Description	Pre-Experiment (g)	Post-Experiment (g)	Mass Loss (g)
Bus Phase A	9047.0	7 922.5	-1124.5
Bus Phase B	9012.5	7 800.5	-1212.0
Bus Phase C	9127.0	7 858.5	-1268.5
		Total Mass Loss	-3605.0

C.2.8. Experiment 2-31 NSBD Aluminum Bus, Aluminum Enclosure, 2 s

The mass measurements from the electrical enclosure metal cladding are presented in Table 73. Mass loss was estimated using graphical analysis as discussed previously. The bus duct enclosure thickness varied. Using the approximate thickness of the bottoms and tops (0.29 cm [0.115 in]), the sides (0.36 cm [0.14 in]), and the aluminum density (2.9 g/cm³), the breach mass loss can be estimated with reasonable accuracy. The analysis indicates a total of approximately 9770.5 g of mass loss from the enclosure. The masses recorded from the electrical conductors are presented in Table 74. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Table 73. Experiment Device Mass Measurements from Experiment 2-31 CR - Enclosure Metal-Cladding

Figure	Description	Pre-Experiment Scale 2 (g)	∆ mass (g)
Fig. 140	Bottom and sides – Straight Section	22164.0	3376.0
Fig. 142	Top Panel – Straight Section	8696.0	3 3 3 0.0
Fig. 142	90 degree Flange duct	Not Measured	3064.5
		Total mass loss	9770.5

Table 74. Experiment Device Mass Measurements from Experiment 2-31 CR- Electrical Conductors[made using Scale 2 with uncertainty of ± 1 g]

Description	Pre-experiment w/insulation (g)	Post-Experiment (g)	Mass Loss (g)
Bus Phase A Top	5305.5	5034.0	-271.5
Bus Phase A Middle	5461.0	5174.5	-286.5
Bus Phase A Bottom	5227.0	4976.0	-251.0
Bus Phase B Top	5425.5	4705.0	-720.5
Bus Phase B Middle	5291.0	4992.5	-298.5
Bus Phase B Bottom	5264.5	4967.5	-297.0
Bus Phase C Top	5262.5	4979.0	-283.5
Bus Phase C Middle	5232.5	4951.5	-281.0
Bus Phase C Bottom	5296.0	5000.5	-295.5
		Total Mass Loss	-2985.0

C.2.9. Experiment 2-32 NSBD Aluminum Bus, Aluminum Enclosure, 4s

The mass measurements from the electrical enclosure metal cladding are presented in Table 75. Mass loss was estimated using graphical analysis as discussed previously. The bus duct enclosure thickness varied. Using the approximate thicknesses of the bottoms and tops (0.29 cm [0.115 in]), the sides (0.36 cm [0.14 in]) and the aluminum density (2.9 g/cm³) the breach mass loss can be estimated with reasonable accuracy. The analysis for this enclosure estimated a total of 10 865 g mass loss from the enclosure. The masses recorded from the electrical conductors are presented in Table 76. Soot and other loose byproducts were removed from the electrical conductors prior to measurement.

Table 75. Experiment Device Mass Measurements from Experiment 2-32 CR - Enclosure Metal-Cladding

Figure	Description	Pre-Experiment Scale 2 (g)	∆ mass (g)
Fig. 140	Bottom and both sides	22537.5	-7204.5
Fig. 142	Тор	8750.5	-3660.5
		Total mass Loss	-10865.0

Table 76. Experiment Device Mass Measurements from Experiment 2-32 CR – Electrical Conductors[made using Scale 2 with uncertainty of ± 1 g]

Description	Pre-experiment w/insulation (g)	Post- Experiment (g)	Mass Loss (g)
Bus Phase A Top	5 256.5	4 799.0	-457.5
Bus Phase A Middle	5 257.0	4 774.0	-483.0
Bus Phase A Bottom	5 325.0	4 763.5	-561.5
Bus Phase B Top	5 255.5	4 770.0	-485.5
Bus Phase B Middle	5 272.5	4 676.0	-596.5
Bus Phase B Bottom	5 193.5	4 636.0	-557.5
Bus Phase C Top	5 271.0	4 819.0	-452.0
Bus Phase C Middle	5 228.0	4 656.5	-571.5
Bus Phase C Bottom	5 207.0	4 579.0	-628.0
		Total Mass Loss	-4 793.0

Note : The mass of the nominally 25.4 mm (1 in) insulation removed from single bus bar was 21.0 g $\,$

NIST TN 2263 September 2023

Appendix D. Photographs from Experiments

This appendix presents select photographs for each experiment. Additional photographs are presented in the KEMA Report of Test (Appendix E).

D.1. Experiment 2-10

Fig. 146. Pre-Experiment 2-10 (as procured by the NRC). Top left (Front door showing relays and controls), Top center (Front instrumentation and breaker compartment with door open), Top right (top of enclsoure showing vent, vent located over main bus and near front door), Bottom left (power supply side with main bus extensions covered with foam for personal protection), Bottom center (opposite side from power supply side), Bottom right (rear panel showing louver vents).

Fig. 147. Pre-Experiment in test cell. Top (front from Cell opening), bottom (rear from cell opening)

Fig. 148. Post-Experiment 2-10. Top (side view from cell opening), Bottom (off angle rear view)

Fig. 149. Post-Experiment Conductors. Top (Plan view of primary cable connection bus bars; top – Phase C, middle – Phase B, bottom – Phase C), Bottom (elevation view of primary cable connection bus bars; left – Phase A, center – Phase B, right – Phase C)

D.2. Experiment 2-12

The experiment device used in Experiment 2-12 is identical to that used in Experiment 2-10.

Fig. 150. Pre-Experiment 2-12 (as procured by the NRC). Top left (Front door showing relays and controls), Top right (Front instrumentation and breaker compartment with door open) Bottom (Rear off-angle view showing louver ventialtion on the rear bottom panel).

Fig. 151. Pre-Experiment 2-12 in test cell. Top (Side from cell opening), Bottom (rear from cell opening)

Fig. 152. Post-Experiment 2-12 Top (side view from cell opening), Bottom (off angle rear view)

Fig. 153. Post-Experiment Conductors

Fig. 154. Post-Experiment Enclosure Breach

D.3. Experiment 2-25

Fig. 155. Pre-Experiment Experiment 2-25 (left – front angle; right – rear angle)

Fig. 156. Post-Experiment Experiment 2-25 (clockwise from top-left, Front angle; rear angle; front showing panel damage; front showing splice joint with breather)

Fig. 157. Post-Experiment 2-25 Conductors

Fig. 158. Additional conductor photos – Post-Experiment Experiment 2-25 (Top – Phase A; Middle – Phase B; Bottom – Phase C)

Fig. 159. Post-Experiment Experiment 2-25 Enclosure Breach (note panel is not lying flat on ground near right side, there is a bend downward near the right breach).

D.4. Experiment 2-26

Fig. 160. Pre-Experiment 2-26 (left – front; right – rear angle)

Fig. 161. Post-Experiment 2-26 (top-left – front; top-right – rear; bottom-left – rear looking up at bus duct; bottom-right – lower splice panel found lying on ground, breather screen missing)

Fig. 162. Post-Experiment 2-26 Conductors (top – with conductors in duct; Bottom conductor ends A-B-C left to right)

D.5. Experiment 2-27

Fig. 163. Pre-Experiment 2-27 (left – front; right – rear)

Fig. 164. Post-Experiment 2-27 (Top left – below bus duct front; Top-right – front; bottom-left (directly below duct; bottom-right (end of duct at 90 degree bend))

Fig. 165. Post-Experiment 2-27 Conductors (top – conductors in duct at end of experiment; bottom – conductors removed A-B-C: top to bottom)

Fig. 166. Post-Experiment 2-27 Enclosure Breach (Top-left – top cover; Top-right – front side; Bottom-left – bottom cover; Bottom-right – rear side)

D.6. Experiment 2-28

Fig. 167. Pre-Experiment 2-28 (left – front view; right – 90 degree bend view)

Fig. 168. Post-Experiment 2-28 (Top – front angle view; Bottom – rear angle view)

Fig. 169. Post-Experiment 2-28 Conductors (Top – within duct after experiment; Bottom – removed from enclosure [Phase A-B-C top to bottom])

Fig. 170. Post-Experiment 2-28 insulated conductor Rack 2 at 90 degree bend end

Fig. 171. Post-Experiment 2-28 Enclosure Breach

D.7. Experiment 2-30

Fig. 172. Pre-Experiment

Fig. 173. Post-Experiment 2-30 (Top – Front view; Bottom-left – view looking up at bottom cover; Bottomright – rear view)

Fig. 174. Post-Experiment 2-30 Conductors

Fig. 175. Post-Experiment 2-30 Enclosure Breach (Top – front; Upper-Mid-left – front breach; Upper-Midright – rear breach; Lower-Mid – top breach; Bottom-left – lower cover front; Bottom-right – lower cover rear)

D.8. Experiment 2-30B

Fig. 176. Pre-Experiment 2-30B

Fig. 177. Post-Experiment 2-30B (Top – front view; Bottom – front view zoomed to breach)

Fig. 178. Post-Experiment 2-30B Conductors (C-B-A, top to bottom)

Fig. 179. Post-Experiment 2-30B Enclosure Breach (Top – view from below duct front; Bottom – view from below duct rear)

D.9. Experiment 2-31

Fig. 180. Pre-Experiment 2-31

Fig. 181. Post-Experiment 2-31 (Top - front; Bottom - front zoomed)

Fig. 182. Post-Experiment 2-31 (Top-left – bottom horizontal duct cover on 90 degree; top-right – end view of 90 degree; bottom – view from below duct in front)

Fig. 183. Post-Experiment 2-31 Conductors

Fig. 184. Post-Experiment 2-31 Enclosure Breach (Top-left – 90 degree front; Top-right – 90 degree end; Bottom-left – 90 degree rear; Bottom-right – 90 degree lower cover)

Fig. 185. Post-Experiment 2-31 (Straight section top cover), note bottom cover did not experience damage.

NIST TN 2263 September 2023

D.10. Experiment 2-32

Fig. 186. Pre-Experiment 2-32 (Left – front view; Right – rear angle)

Fig. 187. Post-Experiment 2-32 (Top – rear view of enclosure breach and conductors; Bottom – Front view)

Fig. 188. Post-Experiment 2-32 Conductors (Top – Conductor ends; Bottom – overhead view of top conductors with enclosure top removed)

Fig. 189. Post-Experiment 2-32 Enclosure Breach Straight Aluminum duct (Top – Overhead view; Bottom-left – Rear; Bottom-right – front)

Fig. 190. Post-Experiment 2-32 Enclosure Breach 90 degree steel duct (Top – overhead view; Bottom-left – rear; Bottom-right – front)

Appendix E. KEMA Experiment Report

Appendix E is attached and contains a copy of the KEMA Lab experimental report.

KEMA TEST REPORT

24512713 Object Switchgears and bus ducts 2-10, 2-12, 2-25, 2-26, MV bus ducts and switchgears Serial No. Type 2-30, 2-27, 2-28, 2-30B, 2-31, 2-32 6.9 kV – 32 kA – 60 Hz 4.16 kV - 30kA - 60Hz U.S. Nuclear Regulatory Commission Client CSB-4A07m Washington DC, 2055-0001 Manufacturer **U.S. Nuclear Regulatory Commission** CSB-4A07m Washington DC, 2055-0001 Tested by **KEMA-Powertest LLC** 4379 County Line Road Chalfont, PA 18914, USA 22, 23, 24, 25, 26, 29, 30 and 31 August 2022 and 1 September 2022 Date of tests **Test specification** All arc tests have been carried out in accordance with the client's instructions. This report applies only to the individual object tested. KEMA-Powertest LLC Disclaimers ("KEMA") makes no representations or warranties with respect to any device other than the object tested. It is the responsibility of the applicable device manufacturer to ensure that any other devices or units having the same name and descriptions as the test object are identical. No certificate of performance or other report issued by KEMA for the purpose of confirming the performance of a test object in relation to the testing requirements of a national or international standard, or in relation to any other testing specification, shall constitute a warranty as to the adequacy or quality of the design or construction of the test object. No other document issued by KEMA for the purpose of reporting, explaining or describing any engineering or consulting services performed by KEMA shall constitute a warranty as to the adequacy or quality of the design or construction of any apparatus or system that is the subject of the document.

This report consists of 267 pages in total.

November 29, 2022

Frank Cielo Director KEMA-Powertest, LLC

INFORMATION SHEET

1

KEMA Type Test Certificate

A KEMA Type Test Certificate contains a record of a series of (type) tests carried out in accordance with a recognized standard. The object tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KEMA Labs. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The Certificate contains the essential drawings and a description of the object tested. A KEMA Type Test Certificate signifies that the object meets all the requirements of the named subclauses of the standard. It can be identified by gold-embossed lettering on the cover and a gold seal on its front sheet. The Certificate is applicable to the object tested only. KEMA Labs is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any object having the same type references as the one tested rests with the manufacturer.

Detailed rules on types of certification are given in KEMA Labs' Certification procedure applicable to KEMA Labs.

2 KEMA Report of Performance

A KEMA Report of Performance is issued when an object has successfully completed and passed a subset (but not all) of test programmes in accordance with a recognized standard. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The report is applicable to the object tested only. A KEMA Report of Performance signifies that the object meets the requirements of the named subclauses of the standard. It can be identified by silver-embossed lettering on the cover and a silver seal on its front sheet.

The sentence on the front sheet of a KEMA Report of Performance will state that the tests have been carried out in accordance with The object has complied with the relevant requirements.

3 KEMA Test Report

A KEMA Test Report is issued in all other cases.

4 Official and uncontrolled test documents

The official test documents of KEMA Labs are issued in bound form. Uncontrolled copies may be provided as a digital file for convenience of reproduction by the client. The copyright has to be respected at all times.

5 Accreditation of KEMA Labs

KEMA Labs is accredited in accordance with ISO/IEC 17025 by the respective national accreditation bodies. KEMA Labs Arnhem, the Netherlands, is accredited by RvA under nos. L020, L218, K006 and K009. KEMA Labs Chalfont, United States, is accredited by A2LA under no. 0553.01. KEMA Labs Prague, the Czech Republic, is accredited by CAI as testing laboratory no. 1035.

REVISION OVERVIEW

Rev. No	Date of issue	Reason for issue
0	11/29/2022	Final issue

TABLE OF CONTENTS

1	Identification of the object tested	7
1.1	Ratings/characteristics of the object tested	7
1.2	Description of the object tested	7
1.3	List of drawings	7
2	General Information	8
2.1	The tests were witnessed by	8
2.2	The tests were carried out by	9
2.3	Accuracy of measurement	9
2.4	Notes	9
3	Legend	10
4	Checking circuit parameters	11
4.1	Condition before test	11
4.2	Test results and oscillograms	12
4.3	Condition / inspection after test	14
5	Arc Test: 32kA, 2s, CU	15
5.1	Condition before test	15
5.2	Test circuit S01	16
5.3	Photograph before test	17
5.4	Test results and oscillograms	22
5.5	Condition / inspection after test	24
5.6	Photograph after test	25
6	Arc Test: 32kA, 4s, CU	31
6.1	Condition before test	31
6.2	Test circuit S01	32
6.3	Photograph before test	33
6.4	Test results and oscillograms	39
6.5	Condition / inspection after test	41
6.6	Photograph after test	42
7	Checking circuit parameters	50
7.1	Condition before test	50
7.2	Test results and oscillograms	51
7.3	Condition / inspection after test	53
8	Arc Test: 30kA, 2s, CU Bus bars	54
8.1	Condition before test	54
8.2	Test circuit S02	55
8.3	Photograph before test	56
8.4	Test results and oscillograms	62

-4-

-5-

8.5	Condition / inspection after test	64
8.6	Photograph after test	65
9	Arc Test: 30kA, 4s, CU Bus bars	74
9.1	Condition before test	74
9.2	Test circuit S02	75
9.3	Photograph before test	76
9.4	Test results and oscillograms	86
9.5	Condition / inspection after test	88
9.6	Photograph after test	89
10	Arc Test: 30kA, 4s, Al Bus bars	
10.1	Condition before test	103
10.2	Test circuit S02	104
10.3	Photograph before test	105
10.4	Test results and oscillograms	112
10.5	Condition / inspection after test	114
10.6	Photograph after test	115
11	Arc Test: 30kA, 2s, CU Bus bars	
11.1	Condition before test	122
11.2	Test circuit S02	123
11.3	Photograph before test	124
11.4	Test results and oscillograms	131
11.5	Condition / inspection after test	133
11.6	Photograph after test	134
12	Arc Test: 30kA, 4s, CU Bus bars	
12.1	Condition before test	146
12.2	Test circuit S02	147
12.3	Photograph before test	148
12.4	Test results and oscillograms	154
12.5	Condition / inspection after test	156
12.6	Photograph after test	157
13	Arc Test: 30kA, 4s, Al Bus bars	
13.1	Condition before test	166
13.2	Test circuit S02	167
13.3	Photograph before test	168
13.4	Test results and oscillograms	178
13.5	Condition / inspection after test	180
13.6	Photograph after test	181
14	Arc Test: 30kA, 2s, Al Bus bars	
14.1	Condition before test	186

-6-

24512713

14.2	Test circuit S02	187
14.3	Photograph before test	188
14.4	Test results and oscillograms	193
14.5	Condition / inspection after test	195
14.6	Photograph after test	196
15	Arc Test: 30kA, 4s, Al Bus bars	206
15.1	Condition before test	206
15.2	Test circuit S02	207
15.3	Photograph before test	208
15.4	Test results and oscillograms	217
15.5	Condition / inspection after test	219
15.6	Photograph after test	220
16	Instrumentation information sheet	232
17	Attachments	233
	1. HEAF_Test_Plan OECDNEA 2022 r1 [33 pages]	

End of Document [1 PAGE]

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested

Switchgear Arc Test Ratings	
Voltage	6.9 kV
Number of phases	3
Frequency	60 Hz
Main circuit	
 peak withstand current 	83.2 kApeak
short-time withstand current	32 kA
Bus Ducts Arc Test Ratings	
Voltage	4.16 kV
Number of phases	3
Frequency	60 Hz
Main circuit	
 peak withstand current 	78 kApeak
 short-time withstand current 	30 kA

1.2 Description of the object tested

Client tested various type of bus materials and enclosure materials throughout the program to acquire energy and thermal data.

1.3 List of drawings

No drawings were provided by the client.

2 GENERAL INFORMATION

2.1 The tests were witnessed by

The following persons witnessed the tests at	the KEMA premises:				
Name	Company				
John Tappert (August 29 th)					
Mike Franovich (August 29 th)					
Christian Araguas (August 29 th)	U.S. Nuclear Regulatory Commission				
Mark Henry Salley (August 29 th , August 30 th)	CSB-4A07m				
Kenneth A. Hamburger	Washington DC. 2055-0001				
Nicholas B. Melly					
Gabriel J. Taylor					
Kenn Miller					
Austin Glover	Sandia National Laboratories, New Mexico				
Jamal Mohmand	1515 Eubank SE				
Alvaro Cruz-Cabrera	Albuquerque, NM 8785				
Ryan Flanagan					
Joannie Chin (August 30 th)					
A. Kirk Dohne (August 30 th)					
Albert J. Wavering (August 30 th)					
Laslo Varadi (August 30 th)	National Institute of Standards Technology				
Scott Bareham	100 Bureau Dr.				
Christopher U. Brown	Gaithersburg, MD 20899				
Ryan Falkenstein-Smith					
Stephen Fink					
Michael Heck					
Anthony D. Putorti Jr.					
Charles Fourneau	BelV, Belgium				
Abderrazzaq Bounagui	CNSC, Canada				
Frantisek Stvan	UJV, Czec Republic				
Joëlle Fleurot	IRSN, France				
Sylvain Suard					
Marina Röwekamp	GRS, Germany				
Christian Northe	BASE, Germany				
Tsukasa Miyagi					
Koji Shirai					
Tomoaki Sakurai	CRIEPI, Japan				
Kosuke Matsuda					
Yong Hun Jung	KAERI, Korea				

Sung Hyun Kim	KEPCO, Korea
Sangkyu Lee Young Seob Moon	KINS, Korea
Laima Kuriene	ANVS, Netherlands
Eunate Armañanzas Albaizar	CSN, Spain
Henrik Hellberg	SSM, Sweden
Dominik Hermann	ENSI, Switzerland
Markus Beilmann	NEA, France

2.2 The tests were carried out by

Name	Company
Samuel Andris	KEMA-Powertest LLC,
	Chalfont, PA, USA

2.3 Accuracy of measurement

The guaranteed uncertainty in the figures mentioned, taking into account the total measuring system, is less than 3%, unless mentioned otherwise. Measurement uncertainty can be verified by reviewing the instrument calibration records. The instruments used are calibrated on a regular basis and are traceable to the National Institute of Standards and Technology.

2.4 Notes

KEMA Labs recorded data from calorimeters, for each arc test. Calorimeters were calibrated before they were sent to the customer. Only the functionality of the calorimeters was checked before each arc test. Therefore, the calorimeters are not included in the instrument list.

For each arc test, the client provided additional calorimeters. Data from the additional calorimeters was recorded by the client. The client also recorded each test on hi-speed cameras, and on thermal imaging cameras.

The attached procedure was written by and has been included in the report at the behest of the client. KEMA Labs has not verified the attached procedure's compliance with any recognized testing standard. Interpretation of the data presented within this test report against the requirements of the attached procedure, or a recognized testing standard is the responsibility of the reader. KEMA MAKES NO REPRESENTATIONS OR WARRANTIES REGARDING THE ACCURACY OF THE PROCEDURE OR THAT THE PROCEDURE MEETS ANY APPLICABLE INDUSTRY STANDARDS OR LEGAL OR REGULATORY REQUIREMENTS.

1. HEAF_Test_Plan OECDNEA 2022 r1 [33 pages]

3 LEGEND

Phase indications

If more than one phase is recorded on oscillogram, the phases are indicated by the digits 1, 2 and 3. These phases 1, 2 and 3 correspond to the phase values in the columns of the accompanying table, respectively from left to right.

Explanation of the letter symbols and abbreviations on the oscillograms

- pu Per unit (the reference length of one unit is represented by the black bar on the oscillogram)
- I1TO Current through test object
- I2TO Current through test object
- I3TO Current through test object
- PT#1 Pressure transducer
- PT#2 Pressure transducer
- PT#3 Pressure transducer
- PT#4 Pressure transducer
- U1TO Voltage across test object
- U2TO Voltage across test object
- U3TO Voltage across test object

4 CHECKING CIRCUIT PARAMETERS

Standard and date

Standard	Client's instructions
Test date	22 August 2022

Serial No.

N/A

4.1 Condition before test

Shorting bar connected to input terminals of test device.

4.2 Test results and oscillograms

Overview of test numbers

220822-9002

Remarks

-

Checking circuit parameters

					-11TO 100kA p	
est number: 220822-9002 Phase		AØ	ВØ	CØ	-12TO 100kA pl	
Current	kA _{peak}	66.7	70.0	-86.3		
Current, a.c. component, beginning	kA _{RMS}	32.9	34.0	32.9		
Current, a.c. component, middle	kA _{RMS}	31.7	32.7	31.7		
Current, a.c. component, end	kA _{RMS}	31.4	32.4	31.4		
Current, a.c. component, average	kA _{RMS}	32.2	33.3	32.2	•13TO 100kA pl	
Current, a.c. component, three-phase average	kA _{RMS}		32.6			
	s	1.02	1.02	1.02		
Duration, current					•	

Observations:

No visible disturbance. Circuit parameters are 6900 V open circuit voltage, with an average current of 32.6kA. Current duration will be adjusted for each arc test.

4.3 Condition / inspection after test

See observations for test details.

5 ARC TEST: 32KA, 2S, CU

Standard and date

Standard	Client's instructions
Test date	22 August 2022

Serial No.

2-10

5.1 Condition before test

Enclosure grounded.

Test sample new.

Arc to be initiated by #24 AWG wire on the load side of the breaker, on the backside of the cabinet.

PT#1: 30PSI transducer in the secondary cabinet on the left side.

PT#2: 50PSI transducer in the secondary cabinet on the left side.

PT#3: 30PSI transducer in the arc cabinet.

PT#4 50PSI transducer in the arc cabinet.

5.2 Test circuit S01

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply					
Power	MVA	390			
Frequency	Hz	60			
Phase(s)		3			
Voltage	V	6900			
Current	kA	32.6			
Impedance	Ω	0.1222			
Power factor		< 0.1			
Neutral		not earthed			

Remarks:

-

5.3 Photograph before test

5.4 Test results and oscillograms

Overview of test numbers

220822-9003

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	29.23	0.092165	95.75	0.094205	37.161
2	29.07	0.092160	86.16	0.093915	31.851
3	28.66	0.092148	125.33	0.095079	54.260
4	28.56	0.092145	134.32	0.095337	59.439
5	28.90	0.092155	28.96	0.092157	0.029
6	29.19	0.092164	58.14	0.093054	16.071
7	28.93	0.092156	83.99	0.093849	30.703
8	28.44	0.092141	88.89	0.093998	33.734
9	28.86	0.092154	104.20	0.094459	42.146
10	27.40	0.092109	91.40	0.094074	35.722

PT#1: 1.84 psi above atmospheric PT#2: 2.47 psi above atmospheric PT#3: 5.87 psi above atmospheric PT#4: 7.08 psi above atmospheric

Arc Test: 32kA, 2s, CU

					11TO 100k4 p.
Fest number: 220822-9003					
Phase		AØ	ВØ	СØ	
Applied voltage, phase-to-ground	kV _{RMS}	3.99	3.99	3.99] +12TO 100kA pl.
Applied voltage, phase-to-phase	kV _{RMS}		6.91		
Making current	kA _{peak}	55.1	62.2	-70.6	
Current, a.c. component, beginning	kA _{RMS}	33.1	33.9	33.9	
Current, a.c. component, middle	kA _{RMS}	31.4	32.1	30.5	
Current, a.c. component, end	kA _{RMS}	29.7	31.0	30.4]
Current, a.c. component, average	kA _{RMS}	31.6	32.1	31.1	
Current, a.c. component, three-phase average	kA _{RMS}		31.6		
Duration	s	2.05	2.05	2.04	
Arc energy	MJ		71.5		
Equivalent RMS value and duration		32.5 k	A during	2.00 s	

Observations: Emission of flames and gas observed.

60 ms

-24-

Test number: 220822-9003

5.5 Condition / inspection after test

Cabinet door blew open during test and touched A phase bus. Signs of arcing between lab station bus extensions and the door of the switchgear.

Interior and sides of the sample exterior were heavily burned.

-25-

5.6 Photograph after test

6 ARC TEST: 32KA, 4S, CU

Standard and date

Standard	Client's instructions
Test date	23 August 2022

Serial No.

2-12

6.1 Condition before test

Enclosure grounded.

Test sample new.

Arc to be initiated by #24 AWG wire on the load side of the breaker, on the backside of the cabinet.

PT#1: 30PSI transducer in the secondary cabinet on the left side.

PT#2: 50PSI transducer in the secondary cabinet on the left side.

PT#3: 30PSI transducer in the arc cabinet.

PT#4: 50PSI transducer in the arc cabinet.

6.2 Test circuit S01

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	L	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	390
Frequency	Hz	60
Phase(s)		3
Voltage	V	6900
Current	kA	32.6
Impedance	Ω	0.1222
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

6.3 Photograph before test

6.4 Test results and oscillograms

Overview of test numbers

220823-9001

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	30.53	0.092205	134.06	0.095330	58.203
2	31.71	0.092241	118.55	0.094882	48.709
3	28.43	0.092141	170.66	0.096335	80.359
4	28.24	0.092135	189.51	0.096825	91.353
5	27.18	0.092103	69.50	0.093405	23.535
6	26.49	0.092082	75.68	0.093594	27.377
7	31.02	0.092219	127.33	0.095137	54.094
8	32.86	0.092275	127.22	0.095134	53.014
9	29.94	0.092187	149.88	0.095773	67.581
10	29.55	0.092175	167.71	0.096257	78.044

PT#1: 1.91 psi above atmospheric PT#2: 1.81 psi above atmospheric PT#3: 5.89 psi above atmospheric PT#4: 7.45 psi above atmospheric

extinguisher.

24512713

Arc Test: 32kA, 4s, CU

					1170 101kA p.
est number: 220823-9001 Phase		AØ	ВØ	СØ	
Applied voltage, phase-to-ground	kV _{RMS}	3.98	3.99	3.98	1 12TO 100KA pl
Applied voltage, phase-to-phase	kV _{RMS}		6.90		
Making current	kA _{peak}	55.2	65.0	-71.2	
Current, a.c. component, beginning	kA _{RMS}	33.1	34.6	33.7	
Current, a.c. component, middle	kArms	29.4	31.4	29.8	
Current, a.c. component, end	kA _{RMS}	0.000	0.000	0.000	
Current, a.c. component, average	kA _{RMS}	30.8	32.2	30.7	
Current, a.c. component, three-phase average	kA _{RMS}		31.23		
Duration	s	2.87	2.87	2.87	
Arc energy	MJ		125		
Equivalent RMS value and duration			kA during	z 2.87 s	

6.5 Condition / inspection after test

Heavy damage to the test device. Signs of arcing and burn through on each side of the switchgear. Fire inside of the switchgear was put out.

6.6 Photograph after test

7 CHECKING CIRCUIT PARAMETERS

Standard and date

Standard	Client's instructions
Test date	24 August 2022

Serial No.

N/A

7.1 Condition before test

Shorting bar connected to input terminals of test device.

7.2 Test results and oscillograms

Overview of test numbers

220824-9002

Remarks

-

Checking circuit parameters

					-11TO 100kA pu	
Fest number: 220824-9002 Phase		AØ	ВØ	CØ	-12TO 100kA pu	
Current	kApeak	60.7	68.4	-81.1		
Current	1			-		
Current, a.c. component, beginning	kA _{RMS}	31.8	34.1	31.9		
Current, a.c. component, beginning Current, a.c. component, middle	kA _{RMS} kA _{RMS}	31.8 28.7	34.1 30.5	31.9 28.9	+13TO 100kA pl	
Current, a.c. component, beginning Current, a.c. component, middle Current, a.c. component, end	kA _{RMS} kA _{RMS} kA _{RMS}	31.8 28.7 28.7	34.1 30.5 30.5	31.9 28.9 28.9	-13TO 100kA pl	
Current, a.c. component, beginning Current, a.c. component, middle Current, a.c. component, end Current, a.c. component, average	kA _{RMS} kA _{RMS} kA _{RMS} kA _{RMS}	31.8 28.7 28.7 29.2	34.1 30.5 30.5 31.1	31.9 28.9 28.9 29.4	-13TO 100kA pL	
Current, a.c. component, beginning Current, a.c. component, middle Current, a.c. component, end Current, a.c. component, average Current, a.c. component, three-phase average	kA _{RMS} kA _{RMS} kA _{RMS} kA _{RMS}	31.8 28.7 28.7 29.2	34.1 30.5 30.5 31.1 29.9	31.9 28.9 28.9 29.4	+13TO 100kA pL	
Current, a.c. component, beginning Current, a.c. component, middle Current, a.c. component, end Current, a.c. component, average Current, a.c. component, three-phase average Duration, current	KARMS KARMS KARMS KARMS KARMS S	31.8 28.7 28.7 29.2 0.845	34.1 30.5 30.5 31.1 29.9 0.845	31.9 28.9 28.9 29.4 0.844	-13TO 100KA pl	

Observations:

Circuit parameters are 4160 V open circuit voltage with an average current of 29.9kA. Circuit will be pro-rated to be 4174 V open circuit voltage with average current of 30kA.

7.3 Condition / inspection after test

See observations for test details.

8 ARC TEST: 30KA, 2S, CU BUS BARS

Standard and date

Standard	Client's instructions
Test date	24 August 2022

Serial No.

2-25

8.1 Condition before test

Enclosure grounded. Bus duct enclosure is steel. Copper bus in the bus duct. New bus duct attached to the source. Switchgear new. Arc to be initiated by #24 AWG wire located in the bus duct. PT#1: 30PSI transducer on the right side of the switchgear.

8.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	۷	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

-56-

8.3 Photograph before test

8.4 Test results and oscillograms

Overview of test numbers

220824-9003

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	31.07	0.092221	232.59	0.097871	114.834
2	31.18	0.092224	154.18	0.095891	69.363
3	34.59	0.092328	140.92	0.095523	59.874
4	34.63	0.092330	170.00	0.096318	76.553
5	35.40	0.092353	96.35	0.094224	34.089
6	34.51	0.092326	91.18	0.094067	31.664
7	31.33	0.092229	111.03	0.094661	44.648
8	31.10	0.092222	114.38	0.094760	46.678
9	31.20	0.092225	74.41	0.093555	24.064
10	30.58	0.092206	74.82	0.093568	24.639

PT#1: 4.85 psi above atmospheric

Arc Test: 30kA, 2s, CU Bus bars

					-1170 100kA pl	
Test number: 220824-9003						
Phase		AØ	ВØ	CØ		
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	12TO 100kA pl	
Applied voltage, phase-to-phase	kV _{RMS}		4.17			
Making current	kA _{peak}	50.3	62.8	-63.7		
Current, a.c. component, beginning	kA _{RMS}	32.5	32.5	29.9		
Current, a.c. component, middle	kA _{RMS}	30.2	29.3	27.2	13TO 10064 m	$ \frown $
Current, a.c. component, end	kA _{RMS}	28.1	29.7	26.4	1010 100M pc	
Current, a.c. component, average	kArms	30.2	29.7	27.3		\bigcirc
Current, a.c. component, three-phase average	kA _{RMS}		29.1			
Duration	s	2.02	2.02	2.02		
Arc energy	MJ		51.4			
Equivalent RMS value and duration		30.0 k	A during	2.00 s	unit	60 r
Observations: Emission of flames and	d gas observe	d.				

8.5 Condition / inspection after test

Heavy damage to the test device. Signs of arcing and burn through on each side of the bus duct. After test, fire on the instrumentation racks were put out.

8.6 Photograph after test

9 ARC TEST: 30KA, 4S, CU BUS BARS

Standard and date

Standard	Client's instructions
Test date	25 August 2022

Serial No.

2-26

9.1 Condition before test

Enclosure grounded.

Bus duct enclosure is steel.

Copper bus in the bus duct.

New bus duct attached to the source.

Switchgear same as previous test.

Arc to be initiated by #24 AWG wire located in the bus duct.

PT#1: 30PSI transducer on the right side of the switchgear.

9.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

9.3 Photograph before test

9.4 Test results and oscillograms

Overview of test numbers

220825-9001

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	30.43	0.092202	188.92	0.096810	89.800
2	29.81	0.092182	176.93	0.096501	83.218
3	32.31	0.092259	198.05	0.097040	94.053
4	32.15	0.092254	179.78	0.096575	83.566
5	31.99	0.092249	110.42	0.094643	43.939
6	30.69	0.092209	116.29	0.094816	47.990
7	44.69	0.092638	115.93	0.094806	40.028
8	41.68	0.092546	83.90	0.093846	23.588
9	43.40	0.092599	81.75	0.093780	21.423
10	40.14	0.092498	75.78	0.093598	19.883

PT#1: 5.47 psi above atmospheric

Arc Test: 30kA, 4s, CU Bus bars

						\cap \cap \cap
					-11TO 100kA pu	
						\bigcirc \bigcirc
Fest number: 220825-9001						
Phase		AØ	ВØ	сø		\frown \frown
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	-12TO 100kA pu	
Applied voltage, phase-to-phase	kV _{RMS}		4.17			\bigcirc \bigcirc \bigcirc
Making current	kA _{peak}	49.8	63.9	-64.2		
Current, a.c. component, beginning	kA _{RMS}	31.5	33.3	29.5		
Current, a.c. component, middle	kArms	28.6	29.7	26.6	-13TO 10064 m	$ \longrightarrow $
Current, a.c. component, end	kA _{RMS}	26.1	27.7	25.3	1010 100M pc	
Current, a.c. component, average	kA _{RMS}	28.8	30.1	27.1		\smile
Current, a.c. component, three-phase average	kA _{RMS}		28.7			
Duration	s	4.02	4.02	4.02		
Arc energy	MJ		101			
Equivalent RMS value and duration		30.0 k	A during	4.00 s	unit	60

Observations: Emission of flames and gas observed.

9.5 Condition / inspection after test

Heavy damage to the test device. Signs of arcing and burn through on each side of the bus duct. After test, fire on the instrumentation racks were put out.

-89-

9.6 Photograph after test

-102-

10 ARC TEST: 30KA, 4S, AL BUS BARS

Standard and date

Standard	Client's instructions
Test date	26 August 2022

Serial No.

2-30

10.1 Condition before test

Enclosure grounded.

Bus duct enclosure is steel.

Aluminum bus in the bus duct.

New bus duct attached to the source.

Switchgear same as previous test.

Arc to be initiated by #24 AWG wire located in the bus duct.

PT#1: 30PSI transducer on the right side of the switchgear.

PT#2: 30PSI transducer on the back side of the switchgear.

10.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

-105-

10.3 Photograph before test

10.4 Test results and oscillograms

Overview of test numbers

220826-9001

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	29.28	0.092167	144.60	0.095627	64.922
2	29.50	0.092173	103.52	0.094439	41.407
3	30.29	0.092197	196.72	0.097007	94.399
4	34.17	0.092315	189.60	0.096827	88.131
5	30.47	0.092203	127.64	0.095146	54.572
6	30.06	0.092190	165.86	0.096208	76.695
7	34.12	0.092314	205.85	0.097234	97.583
8	34.10	0.092313	157.92	0.095994	69.896
9	29.05	0.092159	99.95	0.094332	39.641
10	28.49	0.092143	85.57	0.093897	31.831

PT#1: 4.09 psi above atmospheric PT#2: 2.29 psi above atmospheric

Arc Test: 30kA, 4s, Al Bus bars

						\frown
					-11TO 100kA pc	/
Fest number: 220826-9001 Phase		AØ	вø	cø	1	
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	12TO 100kA pl	/
Applied voltage, phase-to-phase	kV _{RMS}		4.17			\bigcirc
Making current	kA _{peak}	48.7	64.2	-63.9		
Current, a.c. component, beginning	kA _{RMS}	30.4	33.3	27.7	1	
Current, a.c. component, middle	kA _{RMS}	27.6	33.2	25.7	- 1970: 10044 m	
Current, a.c. component, end	kA _{RMS}	24.2	31.6	25.2	1010 100m pc	\backslash
Current, a.c. component, average	kA _{RMS}	28.0	31.0	26.4		
Current, a.c. component, three-phase average	kA _{RMS}		28.4			
Duration	s	4.05	4.05	4.04		
Arc energy	MJ		158			
Equivalent RMS value and duration		30.0 k	A during	4.00 s	unit	

60 ms

10.5 Condition / inspection after test

Heavy damage to the test device. Signs of arcing and burn through on each side of the bus duct. After test, fire on the instrumentation racks and bus duct were put out.

Heavy signs of arcing on the supply bus.

A phase voltage divider measurement is arc voltage across test device plus the arc voltage across the break in the source on A phase bus.

10.6 Photograph after test

11 ARC TEST: 30KA, 2S, CU BUS BARS

Standard and date

Standard	Client's instructions
Test date	29 August 2022

Serial No.

2-27

11.1 Condition before test

Enclosure grounded.

Bus duct enclosure is aluminum.

Copper bus in the bus duct.

New bus duct attached to the source.

Switchgear same as previous test.

Arc to be initiated by #24 AWG wire located in the bus duct.

PT#1: 30PSI transducer on the right side of the switchgear.

PT#2: 30PSI transducer on the back side of the switchgear.

11.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

-124-

11.3 Photograph before test

11.4 Test results and oscillograms

Overview of test numbers

220829-9001

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	32.27	0.092258	38.42	0.092446	3.404
2	29.78	0.092182	143.26	0.095589	63.881
3	32.37	0.092261	141.05	0.095527	61.182
4	31.56	0.092236	125.02	0.095070	52.479
5	31.40	0.092231	124.32	0.095050	52.165
6	31.09	0.092221	105.19	0.094488	41.474
7	30.12	0.092192	192.54	0.096902	92.070
8	30.06	0.092190	313.82	0.099592	163.135
9	30.53	0.092205	125.63	0.095088	53.391

PT#1: 3.52 psi above atmospheric PT#2: 2.23 psi above atmospheric

Arc Test: 30kA, 2s, CU Bus bars

						\wedge \wedge
					-11TO 100kA pl	
						<u> </u>
Test number: 220829-9001						
Phase		AØ	вø	сø		\frown \frown
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	12TO 100kA pl	
Applied voltage, phase-to-phase kV _{RMS}		4.17			<u> </u>	
Making current	kA _{peak}	50.7	63.3	-65.0		
Current, a.c. component, beginning	kA _{RMS}	31.4	32.8	30.0		
Current, a.c. component, middle	kA _{RMS}	28.9	29.9	28.1	- 13TO 100kA n	$ \longrightarrow $
Current, a.c. component, end	kA _{RMS}	27.6	29.1	27.0	1010 2000 000	
Current, a.c. component, average	kA _{RMS}	29.0	30.4	28.1		
Current, a.c. component, three-phase average	kA _{RMS}		29.1			
Duration	s	2.04	2.04	2.03		
Arc energy MJ			73.3			
Equivalent RMS value and duration			A during	2.00 s	unit	60 m
Observations: Emission of flames and	l gas observe	d.				

11.5 Condition / inspection after test

Heavy damage to the test device. Majority of bus duct enclosure has vaporized. Pressure transducer #1 found on the ground after the test.

11.6 Photograph after test

12 ARC TEST: 30KA, 4S, CU BUS BARS

Standard and date

Standard	Client's instructions
Test date	30 August 2022

Serial No.

2-28

12.1 Condition before test

Enclosure grounded.

Bus duct enclosure is aluminum. Copper bus in the bus duct. New bus duct attached to the source. Switchgear same as previous test. Arc to be initiated by #24 AWG wire located in the bus duct. PT#1: 30PSI transducer on the right side of the switchgear. PT#2: 30PSI transducer on the back side of the switchgear. Calorimeter "1" not used.

12.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	L	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

12.3 Photograph before test

12.4 Test results and oscillograms

Overview of test numbers

220830-9001

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	N/A	N/A	N/A	N/A	N/A
2	30.81	0.092213	353.34	0.100334	186.166
3	34.45	0.092324	359.14	0.100439	187.627
4	34.51	0.092326	263.91	0.098570	131.276
5	32.32	0.092259	292.10	0.099160	149.071
6	31.54	0.092235	269.41	0.098688	136.143
7	34.71	0.092332	300.36	0.099327	152.630
8	34.31	0.092320	360.39	0.100462	188.449
9	30.55	0.092205	144.73	0.095630	64.296
10	30.24	0.092196	194.55	0.096953	93.168

PT#1: 2.87 psi above atmospheric PT#2: 1.99 psi above atmospheric

Arc Test: 30kA, 4s, CU Bus bars

Те

					-11TO 100kA pu	
Test number: 220830-9001						
Phase		AØ	ВØ	СØ		\wedge
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	12TO 100kA pl	
Applied voltage, phase-to-phase	kV _{RMS}		4.17			\bigcirc \bigcirc
Making current	kA _{peak}	51.7	65.2	-66.8		
Current, a.c. component, beginning	kA _{RMS}	31.9	33.3	29.8		
Current, a.c. component, middle	kA _{RMS}	27.6	29.3	27.4	12TO 10044 or	\frown
Current, a.c. component, end	kA _{RMS}	26.0	27.9	25.4	1010-100M br	
Current, a.c. component, average	kA _{RMS}	28.1	29.7	27.5		\bigcirc \bigcirc
Current, a.c. component, three-phase average	kA _{RMS}		28.4			
Duration	s	4.03	4.03	4.03		
Arc energy	MJ		147			
Equivalent RMS value and duration		30.0 k	A during	4.00 s	unit	
Observations: Emission of flames and	d gas observe	d.				

12.5 Condition / inspection after test

Heavy damage to the test device. Majority of bus duct enclosure has vaporized.

12.6 Photograph after test

13 ARC TEST: 30KA, 4S, AL BUS BARS

Standard and date

Standard	Client's instructions
Test date	31 August 2022

Serial No.

2-30B

13.1 Condition before test

Enclosure grounded.

Bus duct enclosure is steel.

Aluminum bus in the bus duct.

New bus duct attached to the source.

Switchgear same as previous test.

Arc to be initiated by #24 AWG wire located in the bus duct.

PT#1: 30PSI transducer on the right side of the switchgear.

PT#2: 30PSI transducer on the back side of the switchgear.

13.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	L	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

13.3 Photograph before test

13.4 Test results and oscillograms

Overview of test numbers

220831-9002

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	32.82	0.092274	225.19	0.097698	109.555
2	32.97	0.092279	217.84	0.097524	105.191
3	31.95	0.092248	216.75	0.097498	105.115
4	32.02	0.092250	174.14	0.096427	80.383
5	33.99	0.092310	246.61	0.098190	121.424
6	34.00	0.092310	286.35	0.099043	144.759
7	49.23	0.092778	483.75	0.102569	254.459
8	39.87	0.092490	295.26	0.099224	146.778
9	49.84	0.092797	156.14	0.095945	60.143
10	36.25	0.092379	123.01	0.095012	48.739

PT#1: 3.47 psi above atmospheric PT#2: 1.5 psi above atmospheric

Arc Test: 30kA, 4s, Al Bus bars

					-11TO 100kA pl —
Lest number: 220831-9002		۸Ø	РØ	сø	1
Applied voltage phase to groupd	k)/	2.41	2 41	2.41	1010-10014
Applied voltage, phase-to-ground	K V RMS	2.41	4.17	2.41	
Making current	K V RMS	40.2	4.17	65.0	
Current a c component beginning	k Appeak	30.3	32 4	28.0	
Current, a.c. component, beginning	kAnns	27 2	30.9	20.9	
Current, a.c. component, indule	KARMS	25.7	28.6	26.5	-13TO 100kA pl —
Current, a.c. component, average	kA _{RMS}	28.4	30.0	27.9	
Current, a.c. component, three-phase average	kA _{RMS}		28.8	1	
Duration	s	4.03	4.03	4.03	
A == =====	МІ		128		1 🛛
Arcenergy	1415				

60 ms

13.5 Condition / inspection after test

Heavy damage to the test device. Signs of arcing and burn through on each side of the bus duct. After test, fire on the instrumentation racks and bus duct were put out.

-181-

13.6 Photograph after test

14 ARC TEST: 30KA, 2S, AL BUS BARS

Standard and date

Standard	Client's instructions
Test date	1 September 2022

Serial No.

2-31

14.1 Condition before test

Enclosure grounded.

Bus duct enclosure is aluminum.

Aluminum bus in the bus duct.

New bus duct attached to the source.

Switchgear same as previous test.

Arc to be initiated by #24 AWG wire located in the bus duct.

PT#1: 30PSI transducer on the right side of the switchgear.

PT#2: 30PSI transducer on the back side of the switchgear.

Calorimeter "6" not reading accurate values. Client requested to continue.

14.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

-188-

14.3 Photograph before test

14.4 Test results and oscillograms

Overview of test numbers

220901-9001

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	31.07	0.092221	290.20	0.099122	148.638
2	31.43	0.092232	225.86	0.097714	110.708
3	34.59	0.092328	228.66	0.097780	110.599
4	36.56	0.092389	195.06	0.096966	89.972
5	37.60	0.092420	223.04	0.097648	105.661
6	17.27	0.091806	-129.04	0.092053	-80.643
7	43.50	0.092602	278.12	0.098872	134.669
8	42.85	0.092582	249.77	0.098260	118.378
9	29.42	0.092171	91.55	0.094079	34.692
10	29.44	0.092171	197.82	0.097035	95.509

PT#1: 3.37 psi above atmospheric PT#2: 2.25 psi above atmospheric

Arc Test: 30kA, 2s, Al Bus bars

					\land
					11TO 100KA p.
Test number: 220901-9001		1	1		_
Phase		AØ	ВØ	СØ	
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	12TO 100kA p.
Applied voltage, phase-to-phase	kV _{RMS}		4.17		
Making current	kA _{peak}	52.6	64.1	-68.9	
Current, a.c. component, beginning	kA _{RMS}	31.7	33.5	31.1	
Current, a.c. component, middle	kArms	28.8	31.2	28.8	
Current, a.c. component, end	kArms	28.0	30.0	27.8	
Current, a.c. component, average	kA _{RMS}	29.2	31.1	29.0	
Current, a.c. component, three-phase average	kA _{RMS}		29.7		
Duration	s	2.03	2.03	2.02	
Arc energy	MJ		62.8		
Equivalent RMS value and duration		30.0 k	A during	2.00 s	unit
Observations: Emission of flames and	d gas observe	d.			

14.5 Condition / inspection after test

Heavy damage to the test device. Majority of bus duct enclosure has vaporized.

-196-

14.6 Photograph after test

15 ARC TEST: 30KA, 4S, AL BUS BARS

Standard and date

Standard	Client's instructions
Test date	1 September 2022

Serial No.

2-32

15.1 Condition before test

Enclosure grounded.

Bus duct enclosure is aluminum.

Aluminum bus in the bus duct.

New bus duct attached to the source.

Switchgear same as previous test.

Arc to be initiated by #24 AWG wire located in the bus duct.

PT#1: 30PSI transducer on the right side of the switchgear.

PT#2: 30PSI transducer on the back side of the switchgear.

15.2 Test circuit S02

G	= Generator	ABUB	= Aux. Breaker	R	= Resistance
Ν	= Neutral	XFMR	= Transformer	V	= Voltage Measurement
MB	= Main Breaker	TD	= Test Device	I.	= Current Measurement
MS	= Make Switch	х	= Inductance		

Supply		
Power	MVA	217
Frequency	Hz	60
Phase(s)		3
Voltage	kV	4.174
Current	kA	30
Impedance	Ω	0.0803
Power factor		< 0.1
Neutral		not earthed

Remarks:

-

-208-

24512713

15.3 Photograph before test

15.4 Test results and oscillograms

Overview of test numbers

220901-9002

Remarks

Calorimeter Slug #	Average Start Temp.	Initial Heat Capacity	Max. Temp.	Final Heat Capacity	Total Heat Energy
	°C	cal/(g°C)	°C	cal/(g°C)	J/(cm ²)
1	31.94	0.092247	628.92	0.105256	353.450
2	31.75	0.092241	484.44	0.102581	264.387
3	31.42	0.092232	488.95	0.102657	267.299
4	31.55	0.092235	306.92	0.099457	158.241
5	31.99	0.092249	515.80	0.103116	283.348
6	32.45	0.092263	495.13	0.102762	270.501
7	31.20	0.092225	627.47	0.105225	352.934
8	30.97	0.092218	609.99	0.104864	342.088
9	30.91	0.092216	211.66	0.097375	102.725
10	30.52	0.092204	202.01	0.097139	97.335

PT#1: 3.76 psi above atmospheric PT#2: 2.47 psi above atmospheric

Arc Test: 30kA, 4s, Al Bus bars

						\wedge \wedge \wedge
					-11TO 100kA pu	
Test number: 220901-9002						
Phase		AØ	ВØ	сø		\wedge \wedge
Applied voltage, phase-to-ground	kV _{RMS}	2.41	2.41	2.41	-12TO 100kA pl	
Applied voltage, phase-to-phase	kV _{RMS}		4.17			\lor \bigcirc \bigcirc
Making current	kA _{peak}	52.0	64.9	-68.5		
Current, a.c. component, beginning	kA _{RMS}	31.2	33.4	30.9		
Current, a.c. component, middle	kA _{RMS}	27.4	30.1	27.2	12TO 100k6 or	\frown
Current, a.c. component, end	kA _{RMS}	26.7	28.4	26.3	1010-100M pt	
Current, a.c. component, average	kA _{RMS}	28.1	30.0	28.1		\bigcirc
Current, a.c. component, three-phase average	kA _{RMS}		28.7			
Duration	s	4.04	4.04	4.04		
Arc energy	MJ		136			
Equivalent RMS value and duration		30.0 k	A during	4.00 s	unit	60 m
Observations: Emission of flames and	d gas observe	d.				

15.5 Condition / inspection after test

Heavy damage to the test device. Majority of bus duct enclosure has vaporized.

-220-

15.6 Photograph after test

16 INSTRUMENTATION INFORMATION SHEET

						CALIBRATION			
_	CODE#	TYPE	MANUFACTURER	MODEL#	SERIAL#	LAST	DUE		
	DAS17	DAS	NI/DEWETRON	DEWE-30-16	0195BB69	5/20/2022	12/6/2022		
	PAV37	PNL.VOLTMTR	SIMPSON	F45-1-34	N/A	2/23/2022	9/11/2022		
	ISO108	ISO AMP	DEWETRON	HIS-LV	437702	5/20/2022	12/6/2022		
	ISO109	ISO AMP	DEWETRON	HIS-LV	437703	5/20/2022	12/6/2022		
	ISO110	ISO AMP	DEWETRON	HIS-LV	437704	5/20/2022	12/6/2022		
	ISO111	ISO AMP	DEWETRON	HIS-LV	437705	5/20/2022	12/6/2022		
	KPT103	PRESS.TRANS	OMEGA	PX329	1213171013	8/5/2022	2/21/2023		
	KPT111	PRESS.TRANS	OMEGA	PX329	082216108	8/5/2022	2/21/2023		
	KPT104	PRESS.TRANS	OMEGA	PX329	0303181127	8/5/2022	2/21/2023		
	KPT117	PRESS.TRANS	OMEGA	PX329	0402181028	5/16/2022	12/2/2022		
	AMP41	FO ISO AMP	AAA LAB SYST	AFL-300	1	3/25/2022	10/11/2022		
	AMP42	FO ISO AMP	AAA LAB SYST	AFL-300	2	3/25/2022	10/11/2022		
	AMP43	FO ISO AMP	AAA LAB SYST	AFL-300	3	3/25/2022	10/11/2022		
	AMP44	FO ISO AMP	AAA LAB SYST	AFL-300	4	3/25/2022	10/11/2022		
	ISO132	ISO AMP	DEWETRON	HIS-LV	437726	5/20/2022	12/6/2022		
	ISO117	ISO AMP	DEWETRON	HIS-LV	437711	5/20/2022	12/6/2022		
	ISO118	ISO AMP	DEWETRON	HIS-LV	437712	5/20/2022	12/6/2022		
	ISO124	ISO AMP	DEWETRON	HIS-LV	437718	5/20/2022	12/6/2022		
	ISO125	ISO AMP	DEWETRON	HIS-LV	437719	5/20/2022	12/6/2022		
	ISO126	ISO AMP	DEWETRON	HIS-LV	437720	5/20/2022	12/6/2022		
	ISO136	ISO AMP	DEWETRON	HIS-LV	437730	5/20/2022	12/6/2022		
	ISO137	ISO AMP	DEWETRON	HIS-LV	437731	5/20/2022	12/6/2022		
	ISO138	ISO AMP	DEWETRON	HIS-LV	437732	5/20/2022	12/6/2022		
	CTX172	ROGOWSKI CT	PEM	SDS0680	0002-0100A	5/20/2022	12/6/2022		
	CTX173	ROGOWSKI CT	PEM	SDS0680	0002-0100B	5/20/2022	12/6/2022		
	CTX174	ROGOWSKI CT	PEM	SDS0680	0002-0100C	5/20/2022	12/6/2022		
	VDR84	V.DIVIDER	NORTH STAR	VD-150	1	8/17/2022	3/5/2023		
	VDR86	V.DIVIDER	NORTH STAR	VD-150	3	8/17/2022	3/5/2023		
	VDR88	V.DIVIDER	NORTH STAR	VD-150	5	8/17/2022	3/5/2023		
	PTX06	P.T.	GE	JVM5	3737435	9/30/2020	9/30/2022		
	PTX07	P.T.	GE	JVM5	3737433	9/30/2020	9/30/2022		
	PTX08	P.T.	GE	JVM5	3737432	9/30/2020	9/30/2022		
	VTD10	VOLT.TRANSD	LEM	CV3-200	11411940445	49/2/2022	3/21/2023		
	VTD11	VOLT.TRANSD	LEM	CV3-200	11411940445	69/2/2022	3/21/2023		
	VTD12	VOLT.TRANSD	LEM	CV3-200	11411940445	79/2/2022	3/21/2023		
	TEM89	TEMP.LOGGER	DEWESoft	KRYPTONi	D05980d869	8/18/2022	3/6/2023		
	TEM91	TEMP.LOGGER	DEWESoft	KRYPTONi	D05980F2EA	8/18/2022	3/6/2023		

17 ATTACHMENTS

The attached procedure was written by and has been included in the report at the behest of the client. KEMA Labs has not verified the attached procedure's compliance with any recognized testing standard. Interpretation of the data presented within this test report against the requirements of the attached procedure, or a recognized testing standard is the responsibility of the reader. KEMA MAKES NO REPRESENTATIONS OR WARRANTIES REGARDING THE ACCURACY OF THE PROCEDURE OR THAT THE PROCEDURE MEETS ANY APPLICABLE INDUSTRY STANDARDS OR LEGAL OR REGULATORY REQUIREMENTS.

1. HEAF_Test_Plan OECDNEA 2022 r1 [33 pages]

OECD HEAF PHASE II TESTING - Rev 1 Changes

- Test Matrix change- Test 2-26 (Copper Bus/Steel Enclosure) will be assigned priority over test 2-31 (Aluminum Bus/Aluminum Enclosure)
 - This will assign priority to the copper bus ducts which were discussed to be of a greater interest to the international members to align with component population

OECD HEAF Phase II Testing August 2022 Campaign

Prepared by Nicholas Melly, Gabriel Taylor, Kenneth Hamburger

US Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001

July 2022

Prepared for: U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR) OECD/NEA HEAF Phase II Management Board & Members

TABLE OF CONTENTS

L	IST OF	FIGURES	. vi
L	IST OF	TABLES	vii
0	VERVI	EW OF EXPERIMENTAL PLAN	viii
A	CRON	YMS AND ABBREVIATIONS	, ix
1	OBJE	CTIVES, TECHNICAL BACKGROUND AND APPROACH	10
	1.1	Objectives	.10
	1.2	General Approach	.11
	1.3	Experiment Facility	.11
	1.4	Test Objects	.15
	1.4.1	Medium-voltage Electrical Switchgear	15
	1.4.2	Medium-voltage non-segregated phase bus duct	17
	1.5	Determination of Experimental Parameters	.18
	1.5.1	Arc Initiation / Location	18
	1.5.2	Arc Current /Voltage	19
	1.5.3	Duration	20
	1.6	Instrumentation	.21
	1.6.1	Digital Imaging	22
	1.6.2	Calorimetry	22
2	TEST	APPARATUS AND EXPERIMENTAL SETUPS	28
	2.1	Bus Duct Experimental Setup and Configuration	.28
	2.2	Test Parameters	.32
	2.3	Timeline and Milestones	.33
	2.4	Reporting	.33
3	REFE	RENCES	33

LIST OF FIGURES

Figure 1. Electrical enclosure matrix	10
Figure 2. Bus duct matrix	11
Figure 3. Plan view of KEMA Labs Cell #9	12
Figure 4. Elevation view of KEMA Labs Cell #9 (note 'breaker' shown is make-break	
breaker and not the test device under evaluation.)	13
Figure 5. Isometric drawing of KEMA Labs Cell # 9 with respect to KEMA Facility	14
Figure 6. Drawing of Switchgear Enclosure (dimensions in inches)	16
Figure 7. Illustration of medium-voltage non-segregated bus duct (dimensions in inches)	
non-fully representative of procured equipment	17
Figure 8. Drawing of NSBD cross-section. Copper bus bars – Left; Aluminum bus bars –	
Right (Dimensions in inches)	17
Figure 9. Exploded view of modified plate thermometer (left); cross-sectional view of	
modified plate thermometer placed on cone calorimeter sample holder (right)	23
Figure 10 Cross-section of ASTM Slug (top) nominal dimensions in millimeters, photo of	
device being prepared in the field (bottom). Note that the two bolts on each side	
of the device are used for mounting to the DIN rail of the instrumentation rack	26
Figure 11. Thermal capacitance style slug, illustration (top left), photo of device being	
prepared in the field (top right), dimensional drawings showing internal	
construction (bottom left and right). All nominal dimensions in mm	27
Figure 12. Bus duct experiment. Elevation view of bus duct and instrument stands	29
Figure 13. Isometric View of Bus Duct Orientation	29
Figure 14. Plan View of Bus Duct Orientation	30
Figure 15. Instrumentation Rack general assembly	31

LIST OF TABLES

Table 1. Type M-36 Switchgear Ratings15	
Table 2. NSBD Ratings for bus conductors	18
Table 3. Operational experience with reported fault current from medium-voltage	
equipment	19
Table 4. Metrology	22
Table 5. HEAF Test Matrix and Experimental Parameters	

OVERVIEW OF EXPERIMENTAL PLAN

This experimental plan covers high energy arcing fault (HEAF) experiments to be conducted by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) as the operating agent for the Nuclear Energy Agency (NEA) High Energy Arcing Fault Events (HEAF) Phase 2 Project. These experiments will be performed at the CESI (KEMA Labs) facility in Chalfont, PA USA. The experiments are designed to collect data and information to evaluate the performance of models developed to estimate the electrical HEAF hazard. These confirmatory experiments will include six medium-voltage electrical non-segregated bus ducts and two medium-voltage electrical switchgear enclosures. The selection of this equipment is focused to address gaps in existing data used to develop HEAF hazard models. Namely, the lack of instrumented bus duct experiments, and switchgear experiments with copper bus bars that complement testing performed in 2018 [1]. These experiments will quantitatively characterize the thermal conditions, pressure conditions, and byproduct deposits on surfaces created by HEAFs. The results and measurements techniques from this investigation will be used as sources of model validation for a computational fluid dynamic model known as Fire Dynamics Simulator [2] and a modified arc flash model [3]. Presuming that the model validation is reasonable, the models will be used in conjunction with fire PRA target fragility criteria to predict HEAF zones of influence (ZOI) to assess the adequacy of existing HEAF ZOIs in NUREG/CR-6850 Chapter M and draft ZOI developed by a joint working group sponsored by the NRC-RES and the Electric Power Research Institute. The experimental setup is developed based on prior work by NRC and OECD partners. This experimental campaign will focus on two main areas of interest; medium-voltage non-segregated bus ducts and medium-voltage electrical switchgear enclosures.

The experimental campaign will take place in August of 2022 with two full testing weeks August 22^{nd} - 26^{th} and August 29^{th} – September 2^{nd} . The week of August 15^{th} – 19^{th} will be for instrumentation assembly and preparation. The final tear down of equipment used will take place the week of September 6^{th} – 9^{th} .

The scope of this Investigation is to:

- Provide measurement and information of HEAF experiment evolution to support subsequent research efforts (model validation and zone of influence development).
- Explore how the different parameters (e.g. current, material properties, duration, equipment configuration, etc.) impact HEAF phenomena and zone of influence.

1		
2		ACRONYMS AND ABBREVIATIONS
3	AC	alternating current
4	ACD	Advanced Components Development
5	AWG	American wire gage
6	CPT	control power transformer
7	CVT	current-voltage transformer
8	DC	direct current
9	DP	distribution panel
10	EMI	electromagnetic interference
11	FOV	field of view
12	HEAF	high energy arc fault
13	HRR	heat release rate
14	ICCD	intensified charged coupled device
15	IR	infrared
16	IEEE	Institute of Electrical and Electronics Engineers
17	MCCB	molded case circuit breaker
18	NPP	nuclear power plant
19	NRC	Nuclear Regulatory Commission
20	PMMA	Polymethyl methacrylate
21	RES	NRC Office of Nuclear Regulatory Research
22	SEM	scanning electron microscopy
23	SNL	Sandia National Laboratories
24	TC	thermocouple
25	TTL	transistor-transistor logic
26	XPS	X-ray photoelectron spectroscopy
27	ZOI	zone of influence
28		

1 1 OBJECTIVES, TECHNICAL BACKGROUND AND APPROACH

2 1.1 Objectives

3 This experimental plan reflects the upcoming HEAF experimental campaign to take place in 4 August 2022 at the KEMA Labs Chalfont, PA facility. Figure 1 presents a graphical 5 experimental matrix for electrical switchgear enclosures, while Figure 2 presents the graphical 6 matrix for medium-voltage non-segregated bus duct. The cells highlighted in "green" represent 7 the experiments that will be performed as part of this experimental campaign. Cells highlighted 8 in "red" are experiments that have been previously completed [1], while unhighlighted cells are 9 experiments that have not been completed. The objective of this study is to quantitatively 10 characterize the thermal conditions, pressure conditions, and deposits on nearby surfaces created by HEAFs occurring in medium-voltage electrical non-segregated phase bus ducts and medium-11 12 voltage electrical switchgear enclosures. The collection of data and information will be used to 13 evaluate the performance of models developed to estimate the electrical HEAF hazard. That evaluation will be documented in a separate report. 14 15 16 Legend 17 OECD/NEA HEAF Phase 2 Tests 18 August 2022 19 Completed US NRC Testing driven **Enclosure Testing Copper Bus Bars** Aluminum Bus Bars 480 Volt 6900 Volt 6900 Volt 480 Volt 15kA 25kA 25kA 32kA 15kA 25kA 25 kA 32 kA

20

21 Figure 1. Electrical enclosure matrix

2s 2-4 4s 2-5 8s

2-6

2s 4s 4s 2-7 2-8 2-9

2s 4s 8s 2-1 2-2 2-3

8s

2s 4s

4s

4s

2-14 2-14

1

2 Figure 2. Bus duct matrix

3 1.2 General Approach

Previous work in OECD/NEA HEAF Phase I experiments examined a variety of electrical
cabinets encompassing several manufacturers, manufacture dates, materials, and configurations
[4]. While the Phase I experiments provided an important understanding of the performance of
available equipment, there are many HEAF parameters that influence the severity, which are
important, but not well understood [5].

9

10 To better understand the importance of variables such as bus bar material, enclosure material, operating voltage, arc current, arc duration and equipment configuration on the conditions 11 12 produced by the HEAF, electrical switchgear enclosures similar to those used in 2018 [1] and 13 non-segregated bus ducts will be used so that repetitive and repeatable tests can be performed. 14 The switchgear/bus duct configuration will be chosen based on typical plant design and preliminary experiments will be performed to ensure the arc will not extinguish until the power 15 16 supply to the test object is turned off. The bus bar configuration will be chosen based on the 17 desire for a known and repeatable arc location and plasma ejection direction. Real-time 18 measurements of voltage and current during the arc will provide data for calculation of arc 19 energy and arc power for comparison to thermal and pressure measurements as well as an input 20 to modeling needs. The use of a common electrical cabinet and bus duct should increase 21 repeatability between experiments. Experiments will be performed that would subject any 22 equipment to conditions exceeding the equipment ratings (e.g., voltage higher than equipment 23 ratings).

24

25 **1.3 Experiment Facility**

26 The full-scale experiments will be performed at KEMA Labs (referred to in the remainder of this

27 report as "KEMA"), located in Chalfont, Pennsylvania USA. The experiments will be performed

- in August 2022. KEMA was chosen for its ability to meet the requirements of the program,
- 29 specifically the required voltage and current to sustain an electrical arc within the test enclosure,
- 30 as well as the ability to allow for post-HEAF ensuing fire for a period of time after the HEAF

duration, unless the fire places the laboratory in an unsafe condition, at which time the laboratory will extinguish the fire.

The test cells were approximately 8.7 m by 8.5 m by 8 m high, open on one side. The open side

of the test cell faces the operator control room which is equipped with impact resistant glazing.

Test Cell #9 will be used for the medium-voltage experiments. The test cell is shown in Figure 3

- through Figure 5.

Figure 4. Elevation view of KEMA Labs Cell #9 (note 'breaker' shown is make-break breaker and not the test device under evaluation.)

Figure 5. Isometric drawing of KEMA Labs Cell # 9 with respect to KEMA Facility

1 1.4 Test Objects

- 2 Medium-voltage non-segregated bus ducts and medium-voltage electrical switchgear are
- included in this experimental campaign. Descriptions of the individual test objects are presentednext.

5 1.4.1 Medium-voltage Electrical Switchgear

- 6 Two metal-clad switchgear units were procured for these experiments. Both units are Type M-36
- 7 manufactured by General Electric, used and refurbished from an ISO 9001 certified medium-
- 8 voltage circuit breaker and electrical power distribution supplier. The units are approximately
- 9 92 cm (36 in) wide by 202 cm (79.5 in) long and 229 cm (90 in) high. Main buses will be
- 10 extended outside of the enclosure approximately 30 cm (12 in) to allow for connection to the test
- 11 laboratory's power supply. A shorter grounding stab also extended outside the enclosure. Figure
- 12 6 provides a drawing of the enclosure. The metal-clad switchgear ratings are presented in Table
- 13 1. Each unit contained one medium voltage circuit breaker. All breakers were GE Magne-blast
- 14 Type AM-7.2-500 circuit breakers.
- 15

16

Table 1. Type M-36 Switchgear Ratings

RATING	VALUE
Power	500 MVA
Nominal operating voltage	6.9 kVAC
Rated maximum voltage	8.25 kVAC
Main bus continuous rating	1,200 A
Short Circuit	> 33,000 A
Impulse Withstand	95,000 Volts
Close / Latch Capability	111,000 A Peak
System Frequency	60 Hz
Approx. Weight w/out breaker	2,000 Lbs
Approx. Breaker Weight	1,500 Lbs

1 **1.4.2** Medium-voltage non-segregated phase bus duct

2 Six medium-voltage non-segregated bus ducts (NSBD) were procured new. Figure 7 provides an

3 illustration of the bus duct assembly. The NSBD consist of straight sections measuring 1.9 m

4 (6 ft) in length and a connecting 90-degree elbow section. The arc will be located in the middle

- 5 of the straight section. The duct will be supported by a Unistrut structure described in Section
- 6 2.1. One end of the bus bars will be connected to the KEMA Labs power supply, while the other
- end, closes to elbow, will be left unterminated, but insulted. The end of the straight section
 opposite of the power supply connection will be connected to the 90-degree elbow. The elbow
- 9 will be supported by a structure to provide added rigidity and support during the experiment.
- 10

Figure 7. Illustration of medium-voltage non-segregated bus duct (dimensions in inches) non-fully representative of procured equipment.

14 The bus bars are either aluminum or copper depending on the specific experiment configuration.

15 The dimensions of the bus bars differ, as does the duct housing for the respective bus bars, as

16 shown in Figure 8. The copper bars are (4 in) wide by (0.5 in) thick. The aluminum bars are

17 (6 in) wide by (0.63 in) thick. The NSBD ratings are presented in Table 2.

18

Figure 8. Drawing of NSBD cross-section. Copper bus bars – Left; Aluminum bus bars – Right
 (Dimensions in inches)

*L*1

- 22
- 23

RATING	COPPER	ALLUMINIUM
Nominal operating voltage	4,160 V	4,160 V
Rated voltage	5,000 V	5,000 V
Continuous rating	2,000 A	2,000 A
Momentary	80,000 A (asym.)	80,000 A (asym.)
	51,613 (sym.)	51,613 (sym.)
BIL rating	19 kV	19 kV
System Frequency	60 Hz	60 Hz
Enclosure Thickness	N/A	1.5 MIL
Enclosure weight	N/A	41 lbs/foot
Insulation	Epoxy	Epoxy
Supports	Polyester	Polyester

Table 2. NSBD Ratings for bus conductors.

1

3 **1.5 Determination of Experimental Parameters**

4 A number of experimental parameters require determination to support a realistic evaluation of the

5 hazard. The following provides details for determining the experimental parameters.

6 1.5.1 Arc Initiation / Location

7 Arcs will be initiated using a stranded copper wire 0.51 mm diameter (#24 American Wire

8 Gauge [AWG]), strung across the three phase conductors within the electrical enclosure, at the

9 desired initial arc location. This is consistent with IEEE guide on testing switchgear for internal

arcing faults [6]. Each initial arc will be created when the three-phase electrical supply to the

switchgear enclosure or bus duct is energized, causing a direct short circuit at the desired

12 location for the arc to occur. Operating experience from HEAF events has identified

13 representative arc locations within equipment.

14

15 For the non-segregated bus ducts, the arc location will be in the mid-section of the straight duct

16 enclosure. Several operational events have occurred in straight sections and at locations where

17 the non-segregated phase bus duct changes direction (e.g., elbows and tee-intersections). While

18 both locations have operational experience (OE), performing experiments on a straight section

19 provide advantages from a measurement and repeatability standpoint. A straight section reduces

20 the orientation variable, allowing for the instrumentation to be placed where the arc is to be

- 21 established and maintained.
- 22
- For the electrical switchgear enclosures, the arc location will be in the primary cable connection
- compartment. This location is consistent with past testing [1] and provides a direct comparison to
- 25 aluminum bus configurations. While other locations have had OE, such as breaker stabs, testing
- 26 in those locations provide additional complexity to the experiments that are difficult, if not,
- 27 impossible to measure their impact to support the objective of these experiments (modeling
- 28 validation).
- 29

- 1 The use of a shorting wire across all three phases is necessary during testing to provide
- 2 predictable arc initiation process and to provide for sustained arc duration at the desired position
- 3 within the electrical enclosure or bus duct. Within milliseconds of energy delivery, the shorting
- 4 wire vaporizes, becoming a column of ionized gas and plasma, as would be found in a typical arc
- column. Electrical arcs that occur in the field commonly initiate phase-to-phase or phase-toground, then transition to a three-phase fault typically within a fraction of a cycle (i.e., less than
- one-sixtieth of a second) [7], even for equipment with insulated conductors based on operating
- 8 experience from 2021. The transition period between a phase-to-ground or a two-phase fault to a
- 9 three phase fault is small (less than 0.8% of the total energy for a 2 second event and less than
- 10 0.2% of the total energy for an 8 second event) relative to the duration of the three phase arc.
- 11 Given the breaker control system at the testing laboratory can breaker a circuit +0.05 s to +0.15 s
- 12 beyond the desired arc time, controlling the arc duration to account for the transition time is not
- 13 achievable and not necessary for the validation purposes.

14 1.5.2 Arc Current /Voltage

15 KEMA Labs, located in Chalfont, PA, is an electrical test facility providing the electrical energy

16 (voltage, current, duration) for sustained arcing within the subject enclosures independent of the

17 local electric grid. KEMA will also provide the electrical measurement results required to quantify

- 18 the characteristics of the power supplied to the enclosures during the arcing experiments.
- 19

20 During a public workshop held in 2018, the NRC communicated the results of an informal

- analysis to estimate the arcing fault current for a number of U.S. nuclear power plants [8]. These
- results indicated that arcing fault currents ranged from 13.5kA to 59.6kA. For equipment at a
- nominal operating voltage of 4.16kV a mean of 29.5kA and median of 29.3kA was reported,
- 24 while equipment operating at a nominal voltage of 6.9kV calculations demonstrated a mean of
- 25 31.2kA and a median of 31.9kA. Note that these estimates are based on the entire population, but
- a limited sample of units (23 for 4.16kV and 9 for 6.9kV) with electrical distribution system
- 27 information available to the NRC for performing the calculation.
- 28
- 29 The Electric Power Research Institute (EPRI) performed a comprehensive review of HEAF OE
- 30 [9]. From that review, the arcing fault current for most events could not be determined. However,
- 31 there are approximately 4 events that occurred in medium-voltage where the fault current is
- 32 known, as presented below. The range of fault currents collected through review of the HEAF
- 33 OE varied from 28 kA to 32 kA. Note that the 13 kA event was not used as it was significantly
- 34 lower than that typically associated with medium-voltage available fault current.
- 35

36 Table 3. Operational experience with reported fault current from medium-voltage equipment

Event ID	Date	HEAF Location	Generator-fed Fault	Reported Fault Current
51764	1/17/2017	NSBD	No	13 kA
50910	3/28/2010	SWGR	No	28 kA
732	7/6/1988	SWGR	No	32 kA

Event ID	Date	HEAF Location	Generator-fed Fault	Reported Fault Current
74	6/10/1995	SWGR	Yes	28 kA

2 To evaluate the influence arcing fault current has on the HEAF hazard, testing at more than one 3 current level was desired. As such, in the 2018 series of experiments involving switchgear with 4 aluminum bus bars [1], two arcing fault current levels were selected, 25kA and 32kA. Given the 5 information gained from that series of experiments along with insights gained from developing 6 models to predict the HEAF hazard, comparative tests at 32kA for medium voltage switchgear 7 are planned for this series of experiments. For the medium voltage non-segregated bus ducts, a 8 comparative test to the switchgear experiments (32kA) was not needed. As such, testing at 30kA 9 is between the 28kA and 32kA OE and a current level used in HEAF hazard modeling efforts. 10 Therefore, medium-voltage non-segregated bus ducts will be tested at 30kA while medium-

11 voltage switchgear will be tested at 32kA.

12

13 The arc voltage will be selected to replicate typical power distribution systems commonly found

14 within NPP's. For medium-voltage, 4.16kV and 6.9kV is common, with some units use 2.7kV

and 13.8kV. Given that the 2018 series of medium voltage switchgear were tested at 6.9kV [1],

16 that voltage will be used for the medium voltage switchgear tested in this series. For the 17 medium-voltage non-segregated phase bus ducts, 4.16kV will be used. This change from the

medium-voltage non-segregated phase bus ducts, 4.16kV will be used. This change from the
 switchgear tests allows for addition evaluation of the impact voltage has on the HEAF

19 phenomena. The current state of knowledge suggest that it will have minimal impact, as arc

20 impedance and equipment configuration play a large role in the arc voltage and subsequently the

21 arc power during the arc fault.

22

23 The nominal current and voltage directly contributed to the total arc energy released during the

event and were identified as key parameters for future model input in a recent international

- 25 HEAF PIRT expert elicitation exercise [Ref. 5].
- 26

39

40

27 1.5.3 Duration

28 Review of operating experience for NPP HEAF events has shown that protective devices have 29 not always worked as designed. Problems such as incorrect breaker settings and fuse sizing due 30 to design errors can increase the likelihood of a HEAF and allow for extended duration HEAF 31 events. Operating experience has also indicated that faults can be initiated in locations not 32 protected by fault clearance devices, allowing for extended fault exposure times. In 2021, EPRI issued a reported summarizing industry survey results relative to HEAF [10]. The EPRI report 33 34 identified that based on the fault clearing time of the station auxiliary transformer (SAT), 45% of 35 HEAFs last longer than 2 seconds, with the longest maximum fault clearing time (FCT) being 36 approximately 5 seconds (approximately 8% have FCT greater than 5 seconds). The report goes 37 on to state. 38

The FCT for a unit auxiliary transformer (UAT) powered from the main generator could not be directly correlated to HEAF duration since the HEAF may continue for an addition 4 to 10 seconds

due to the un-isolated main generator's ability to continue feeding the fault until the residual generator energy (field flux) decays.

- 4 From this information, arc duration has a very broad range and direct influence on arc energy.
- 5 For some arcing events the arc duration could be a fraction of a second while other scenarios
- 6 could persist for up to 15 seconds (assuming 5 second constant current (stiff) followed by a 10
 7 second generator fed decay).
- 8

1

2

3

9 Lessons learned from the testing performed to date, indicate there are a few key aspects of arc

10 duration that need to be addressed in selection of durations for experimentation. First the arc

11 needs to be long enough to ensure breach in the enclosure. This is a key phenomenon that needs

- 12 to be accurately predicted in HEAF hazard modeling. Secondly, a duration sufficiently different
- 13 from other identical experimental configurations is desirable to evaluate the duration parameter
- influence. Third, for experiments that are used for direct comparison, durations should beidentical to the experiment to be compared. Lastly, the testing facility must have the capability to
- 16 provide the arc power for the intended duration. Based on these three attributes, the selected
- 17 durations for the medium-voltage non-segregated bus ducts and medium-voltage switchgear
- 18 enclosure experiments will be either 2 or 4 seconds.

19 **1.6** Instrumentation

A list of measurements and the corresponding measurement devices is provided in Table 4. The thermal environment around the cabinet during the HEAF experiments will be characterized by measurements of time varying and average heat flux and incident energy. The time varying and maximum pressure inside of the electrical switchgear enclosure will also be measured during the experiments. HEAF generated deposits will be collected on vertical coupons of double sided carbon tape and analyzed to quantify evolved particle sizes and chemical composition after the

experiments. The analysis will use scanning electron microscopy (SEM) and energy dispersive
 spectroscopy (EDS). Standards of 99% aluminum oxide (Al₂O₃) and copper oxide (CuO) will be
 used as reference samples.

29

30 The geometrical extent of the arc plasma and fire will be characterized using optical (visible and

- 31 IR spectrum video) means. IR imaging will provide information as to the extent of the arc plasma
- 32 and fire, as well as cabinet surface temperature information.
- 33

Atmospheric conditions will be recorded on the test days including ambient temperature and humidity. The equipment components such as bus bars and enclosure panels will be weighed before and after experiments to obtain mass loss information associated with the loss of the bus

- 37 bars through arcing.
- 38
1

Measurement	Device				
Temperature	Infrared (IR) imaging, Plate Thermometer (PT)				
Heat flux (time-varying)	Plate Thermometer (PT)				
Heat flux (average)	Plate Thermometer (PT), Thermal Capacitance Slug (T _{cap} Slug)				
Incident energy	ASTM F1959 Slug calorimeter (slug), Thermal Capacitance Slug				
	(T _{cap} Slug)				
Enclosure internal	Piezoelectric pressure transducer				
pressure					
Arc plasma / fire	Videography (with and without neutral density filter), IR imaging				
geometry					
Surface deposit analysis	Sample collection (black carbon tape), post-test experiment				
	laboratory analysis (Scanning Electron Microscope, Energy				
	dispersive spectroscopy)				
Qualitative damage	Cable samples				

2 **1.6.1** Digital Imaging

3 NIST and SNL will field numerous imaging technologies to provide high-speed quantitative and 4 qualitative imaging during this HEAF experimental series evolution. The measurement methods 5 include visible high-speed and high-definition imaging, high-speed high dynamic range visible 6 imaging, and high-speed thermal imaging. The equipment fielded by NIST includes high-7 definition video cameras and a high-definition thermal imager like that used in the Phase 1 8 experiments and 2018 medium-voltage HEAF experiments to capture high-definition visible and 9 high-speed thermal images. NIST will also field a high speed, high dynamic range, thermal imager. 10 Equipment fielded by SNL will be a subset of equipment fielded in the 2018 experiment. The 11 equipment selection was scaled down based on results and lessons learned. SNL reports document 12 the approach, and uncertainties. 13 14 The processed images will be accessible through an NRC or OECD website as determined by the

- management board. The digital imaging will include High-Speed Videography, High-Definition 15
- Videography, and Thermography. 16
- 17

18 1.6.2 Calorimetry

19 Several different calorimeter devices will be used to span a range of thermal exposure conditions

20 that may occur during and subsequent to the HEAF experiment. These devices include modified 21 plate thermometers, ASTM slug calorimeters, and tungsten slug calorimeters. These devices have 22

been used in past experiments and are described next.

23 1.6.2.1 Plate Thermometer

24 Modified plate thermometers (PTs) are robust thermal sensors that can survive in hostile HEAF 25 environments [1][4][11]. They were chosen for heat flux measurements in the HEAF experiments 1 due to their rugged construction, low cost, lack of cooling water, and known emissivity and 2 convective heat flux coefficients.

3

4 The modified plate thermometer used in the HEAF experiments is shown in Figure 9. It consists

5 of two 0.51 mm (0.02 in) nominal diameter (24 AWG) Type K thermocouple wires welded directly

- 6 to the rear of a 0.787 mm \pm 0.051 mm (0.031 in \pm 0.002 in, 99 percent confidence interval per
- 7 manufacture specifications) thick Inconel 600 plate, approximately 100 mm (3.94 in) by 100 mm
- 8 (3.94 in) in size. The plate is backed by a mineral fiber blanket approximately 25.4 mm (1.0 in) 9 thick to minimize heat loss. Machine screws with ceramic washers allow for legs to be attached at
- 10 the rear of the plate thermometer to simplify installation onto instrumentation racks.
- 11

12

Figure 9. Exploded view of modified plate thermometer (left); cross-sectional view of modified plate thermometer placed on cone calorimeter sample holder (right).

15

16 The incident heat flux on a plate thermometer can be calculated from a heat balance using the 17 following equation, a rearrangement of Equation 18 from Ingason and Wickstrom [12]:

18

$$\dot{q}_{inc}^{\prime\prime} = \sigma \cdot T_{PT}^{4} + \frac{(h_{PT} + K_{cond})(T_{PT} - T_{\infty})}{\epsilon_{PT}} + \frac{\rho_{PT} \cdot C_{PT} \cdot \delta \cdot \left(\frac{\Delta T_{PT}}{\Delta t}\right)}{\epsilon_{PT}}$$

20

19

Here $\dot{q}_{inc}^{\prime\prime}$ is the incident heat flux, σ is the Stefan-Boltzmann Constant, 5.670×10⁻⁸ W/(m²·K⁴), 21 T_{PT} is the temperature of the plate (K), h_{PT} is the convection heat transfer coefficient, 10 22 $W/(m^2 \cdot K)$, K_{cond} is the conduction correction factor determined from NIST cone calorimeter 23 data, 4 W/(m²·K), T_{∞} is the ambient temperature (K), ϵ_{PT} is the plate emissivity, 0.85 at 480 °C 24 25 as rolled and oxidized and specified by the alloy manufacturer, ρ_{PT} is the alloy plate density, 8470 kg/m³ from the alloy manufacturer, CPT is the alloy plate heat capacity, 502 J/(kg·K) at 26 27 300 °C from the alloy manufacturer, δ is the alloy plate thickness, 0.79 mm (0.03 in), and Δt is the data acquisition time step of 0.1 s. 28 29

30 The gauge heat flux can also be calculated and is the heat flux listed in the tables of this report.

31 The gauge heat flux is the heat flux that would be reported by an ideal water-cooled transducer

1 such as a Schmidt-Boelter or Gardon gauge operating at a constant temperature of T_{gauge} . The 2 gauge heat flux, \dot{q}''_{gauge} , is calculated from [13]:

3

$$\dot{q}_{gauge}^{\prime\prime} = \sigma \cdot T_{PT}^{4} + \frac{(h_{PT} + K_{cond})(T_{PT} - T_{\infty})}{\epsilon_{PT}} + \frac{\rho_{PT} \cdot C_{PT} \cdot \delta \cdot \left(\frac{\Delta T_{PT}}{\Delta t}\right)}{\epsilon_{PT}} - \sigma \cdot T_{gauge}^{4}$$

<u>۲۸۳</u>)

5

Type A evaluation of uncertainty is performed by the statistical analysis of a series of
measurements. Type B evaluation of uncertainty is based on scientific judgement using
relevant available information such as manufacturer specifications, calibration data,
handbook data, previous experiments, and knowledge of the behaviors of materials and
measurement equipment [12][14][15].

11

12 The plate thermometer temperature increase, ΔT_{PT} , is reported along with the gauge heat flux.

13 The uncertainty in the temperature of the Type K thermocouple wire is given by the

14 manufacturer as \pm 1.1 °C or 0.4 percent with a 99 percent confidence interval [16]. The expanded

15 uncertainty in a PT temperature change of 0 °C to 1250 °C is 0.3 percent, with a coverage factor

16 of 2, which corresponds to a confidence interval of 95 percent [14]. The expanded uncertainty in

17 the heat flux measurement is ± 1 kW/m2 or ± 5 percent, with a coverage factor of 2, which

18 corresponds to a confidence interval of 95 percent. Additional detail on the uncertainty

- 19 determination can be found in the previous report [1].
- 20

21 1.6.2.2 ASTM Slug Calorimeters (Slug)

22

23 Incident energy will be measured using slug calorimeters described in ASTM F1959 [17] and 24 shown in Fig. 12. These instruments are customarily used to measure radiant energy and 25 determine the arc flash hazard to personnel in the area of electrical enclosures. Due to the characteristics of the HEAF phenomena, which can result in convective arc jets, the calorimeters 26 27 are reacting to convective heat transfer in addition to radiant heat transfer. ASTM slug 28 calorimeters consist of a copper disc with a nominal thickness of 1.6 mm (0.063 in) and nominal 29 diameter of 40 mm (1.6 in). An iron-constantan thermocouple (Type J), composed of two 0.255 30 mm (0.01 in) nominal diameter (30 AWG) wires, is soldered to the back of the copper disc using 31 silver solder. The ASTM standard specifies that the copper disc be installed in an insulation board. The KEMA slug calorimeters are installed in a G-11 fiberglass epoxy phenolic cup, which 32 33 is then placed in a calcium silicate board holder nominally 100 mm by 100 mm by 32 mm thick 34 (4 in by 4 in by 1.25 in nominal thickness) for mounting on the instrument rack. The instruments 35 are provided by KEMA. The slug temperatures are reported by the KEMA data acquisition 36 system at a rate of 20 Hz.

37

38 The incident energy absorbed by the slug calorimeter during the HEAF experiments is calculated

39 according to the methodology in ASTM F1959 [17]. The method reports the net heat absorbed

40 over the arc duration and assumes that there are no losses from the disc due to re-radiation,

- 41 convection, or conduction to the disc holder. The absorptivity of the disc is assumed to be one.
- 42
- 43

1 The total energy per unit area, Q["], is calculated by:

2 3

$$Q^{"} = \frac{m \cdot \overline{C_{p}} \cdot (T_{f} - T_{i})}{A}$$

4

5 where m is the mass of the copper disc, $\overline{C_P}$ is the average heat capacity of the copper disc, T_f is

6 the temperature of the disc at the end of the arc, T_i is the temperature of the disc before the arc,

7 and A is the front surface area of the disc. The total energy per unit area resulting from the arc is

8 reported in a summary table for each sensor location in each experiment. The ASTM F1959

9 standard also refers to the total energy per unit area as incident energy (cal/cm² or kJ/m^2).

 $\frac{1}{2}$

Figure 10 Cross-section of ASTM Slug (top) nominal dimensions in millimeters, photo of device being prepared in the
 field (bottom). Note that the two bolts on each side of the device are used for mounting to the DIN rail of the
 instrumentation rack.

The Type D standard aneertainty in the thermoesapic measurement, denved nom type	8	The Type B	standard uncertainty	in the thermocouple	measurement, derived	l from typica
--	---	------------	----------------------	---------------------	----------------------	---------------

- 9 thermocouple manufacturer data, with a coverage factor of 2, is 2.2 °C or 0.75 percent. The
- 10 ASTM calculation method assumes that the absorptivity of the disc is 1.0; however, inspection of
- 11 the discs over the course of the experiments suggests that the emissivity may vary from
- 12 approximately 0.9 to 1.0, in a rectangular probability distribution. The expanded uncertainty in
- 13 the incident energy measurement is $\pm 18 \text{ kJ/m}^2$ or ± 4 percent, with a coverage factor of 2, which

1 corresponds to a confidence interval of 95 percent. Additional detail on the uncertainty

2 determination can be found in the previous report [1].

3 **1.6.2.3** Thermal Capacitance Slugs (Tcap slug)

4

5 Tungsten thermal capacitance slugs (T_{cap} slug) were used to measure the heat flux and incident 6 energy during the HEAF experiment. These sensors were developed as a result of experience 7 gained in Phase 1, where the thermal conditions during some experiments exceeded the 8 measurement capabilities and caused destruction of the ASTM slug calorimeters and modified 9 plate thermometers. A cross section of a T_{cap} slug is shown in Figure 11, which is a modified 10 example of the thermal capacitance slug described in ASTM E457-08 [18]. The slug is 11 composed of a tungsten cylinder approximately 15 mm (0.59 in) long mounted in calcium 12 silicate board. A type K thermocouple is attached to the rear of the tungsten to measure the 13 temperature during heating. The development of the T_{cap} is described in the previous report [1]. 14

27

1 The maximum heat flux was determined from Equation (5), where (q'') is the heat flux into the 2 surface of the tungsten slug (kW/m²), ρ is the density of the tungsten slug (kg/m³), $\overline{C_P}$ is the 3 average heat capacity of the tungsten slug (kJ/[kg K]), 1 is the thickness (m), ΔT is the change in

4 temperature of the tungsten slug (°C), and Δt is the corresponding change in time (s).

5 6

$$\dot{\mathbf{q}}'' = \rho \cdot \overline{\mathbf{C}_{\mathrm{P}}} \cdot \mathbf{l} \cdot \left(\frac{\Delta T}{\Delta t}\right)$$

An uncertainty analysis using Type A and Type B components was performed on the T_{cap} slug at 50 kW/m² and 5 MW/m² using the NIST Uncertainty Machine [19] with cone calorimeter data and fire dynamics simulator (FDS) [20] simulations. The expanded uncertainty in the heat flux measurement is ± 1.5 kW/m² or ± 2.9 percent, with a coverage factor of 2, which corresponds to a confidence interval of 95 percent.

The expanded uncertainty of the incident energy over the measurement range is estimated at $\pm 2.4 \text{ KJ/m}^2 \text{ or } \pm 5 \text{ percent}$, with a 95 percent confidence interval, which includes the estimated error due to conduction effects. Additional details on the development of the T_{cap}, heat transfer analysis, and uncertainty determinations can be found in the previous report [1].

18

192**TEST APPARATUS AND EXPERIMENTAL SETUPS**

20 **2.1 Bus Duct Experimental Setup and Configuration**

21 The setup of a typical bus duct experiment is shown in Figure 12-14. The bus bars in the bus duct 22 are attached to the power supply bus mounted on the wall or connected to the Cell 9 breaker unit 23 and terminate at the electrical cabinet. The bus bar will be fully insulated with insulation. The 24 experimental setup calls for a notch to be made in the insulation on the lower portion of the bus 25 bar where the arcing wire will be connected. The notch should provide an anchor point for the 26 arc to limit the possibility for arc migration down the bus bars and into the electrical enclosure. 27 The experimental configuration will be evaluated as testing begins with the potential to 28 implement a full break in the bus bars if needed. Based on experience from previous bus duct 29 testing the physical break is not necessary when bus bar insulation material is employed. This 30 will be evaluated further on a limited number of tests. Thermal transducers and samples are 31 mounted on steel horizontal test stands located above and below the bus duct (see Figure 13). 32 33 The primary arc plasma and fire are expected to eject from either the top or bottom of the bus 34 duct near the location of the arc wire. The instrument stands are located at approximately 0.9 m 35 from the top, bottom and side surfaces of the bus duct. The number of instrument stands will be

evaluated on an as needed basis depending on expected damage states and laboratoryconfiguration. The preferential arrangement is shown in Figure 12 which depicts two

- instrumentation racks centered under the desired arc location. The lower instrumentation rack
- 39 will be slightly offset in the direction of the incoming power supply to limit potential shadowing
- 40 effects from the higher rack. Sensors, target samples, and imaging techniques will be used in the

- 1 same manner as in the electrical cabinet experiments. The general arrangement of each
- instrumentation stand is depicted in Figure 15.

Figure 12. Bus duct experiment. Elevation view of bus duct and instrument stands.

10 Figure 13. Isometric View of Bus Duct Orientation

2 Figure 14. Plan View of Bus Duct Orientation

2 Figure 15. Instrumentation Rack general assembly

2.2 Test Parameters

Test ID	Equipment		Current [kA]		Target Arc- Duration [s]		Bus Bar Material		Enclosure Material		Comment
	Duct/Enclosure	4160	30	32	2	4	AI	Cu	Steel	Aluminum	
2-25	Duct	Х	Х		Х			Х	Х		
2-26	Duct	Х	Х			Х		Х	Х		
2-28	Duct	Х	Х		Х			Х		Х	
2-29	Duct	Х	Х		Х		Х		Х		
2-30	Duct	Х	Х			Х	Х		Х		
2-32	Duct	Х	Х			Х	Х			Х	
2-10	Enclosure	Х		Х	Х			Х	Х		
2-12	Enclosure	Х		Х		Х		Х	х		

Table 5. HEAF Test Matrix and Experimental Parameters

2.3 Timeline and Milestones

Several deliverables shall be supplied to OECD HEAF 2 members for their review, comment and resolution, including:

- (1) Test plan
 - a. Draft: May 2, 2022
 - b. Comments on Draft: June 1, 2022 (30-day OECD review)
 - c. Revised draft: June 17, 2022 (15-day NRC-RES response)
 - d. Final test plan: July 1, 2022

Note: Final test plan must be submitted to testing laboratory 30-days prior to test

- (2) Test report
 - a. Draft 90-days after completion of test series
 - b. 30-day OECD review
 - c. 15-day NRC-RES response
 - d. 45-day publication as a RIL

2.4 Reporting

A report of test will document the results from this testing program. The report will describe the experimental setup including characteristics of the power supply, description of the tests performed, quantitative results, observations, and any general conclusions or findings. The report will not specify new methods for assessing risk to plants from HEAF events.

3 REFERENCES

- Taylor, G., Putorti, A.D., LaFleur, C., et.al., Report on High Energy Arcing Fault Experiments, Experimental Results from Medium Voltage Electrical Enclosures, <u>https://doi.org/10.6028/NIST.TN.2188</u>, RIL2021-10, (ADAMS Accession No. ML21334A196), U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, NIST TN 2188, National Standards of Science and Technology (NIST), Gaithersburg, MD, SAND2021-12049 R, Sandia National Laboratories (SNL), Albuquerque, NM, 2021.
- [2] McGrattan, K., Hostikka, S., et.al., Fire Dynamics Simulator User's Guide, NIST Special Publication 1019, <u>http://dx.doi.org/10.6028/NIST.SP.1019</u>, National Institute of Standards and Technology (NIST), Gaithersburg, MD, VTT Technical Research Centre of Finland, Espoo, Finland, 2021.
- [3] Taylor, G., LaFleur, C., Predicting High Energy Arcing Fault Zones of Influence for Aluminum using a Modified Arc Flash Model, Evaluation of a Modified model bias, uncertainty, parameters sensitivity and zone of influence estimation, Draft for Comment, (ADAMS Accession No. ML22095A236), U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, 2022.

- [4] NEA HEAF Project TOPICAL REPORT No. 1, Experimental Results from the International High Energy Arcing Fault (HEAF) Research Program – Phase 1 Testing 2014 to 2016, Nuclear Energy Agency, Committee on The Safety of Nuclear Installations, Organization for Economic Cooperation and Development, May 2017.
- [5] Hamburger, K., An International Phenomena Identification and Ranking Table (PIRT) Expert Elicitation Exercise for High Energy Arcing Faults (HEAF), NUREG-2218, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, 2018.
- [6] IEEE Guide for Testing Switchgear Rated up to 52kV for Internal Arcing Faults, IEEE C37.20.7-2017, Institute of Electrical and Electronic Engineers, New York, NY, 2017.
- [7] Taylor, G., Putorti, A.D., LaFleur, C., et.al., Report on High Energy Arcing Fault Experiments, Experimental from Open Results Box Enclosures, https://doi.org/10.6028/NIST.TN.2198, RIL2021-18, (ADAMS Accession No. ML21361A176), U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, NIST TN 2198, National Standards of Science and Technology (NIST), Gaithersburg, MD, SAND2021-16075 R, Sandia National Laboratories (SNL), Albuquerque, NM, 2021.
- [8] Taylor, G., Hamburger, K., et.al., Proceedings of the Information-Sharing Workshop on High Energy Arcing Faults (HEAF), NUREG/CP-0311, (ADAMS Accession Nos. ML19212A150 (page 10-22) and ML18108A210 (pages 260-261)) U.S. Nuclear Regulatory Commission, Washington, DC, 20555-0001, 2018.
- [9] Fire Events Database Update for the Period 2010–2014: Revision 1. Electric Power Research Institute (EPRI), Palo Alto, CA: 2016. 3002005302.
- [10] Survey and Analysis of U.S. Nuclear Industry Relative to High Energy Arcing Faults in the Presence of Aluminum, EPRI 3002020692, Electric Power Research Institute, Palo Alto, CA, 2021.
- [11] Putorti, A., Melly, M., Bareham, S., and Praydis Jr., J., "Characterizing the Thermal Effects of High Energy Arc Faults." 23rd International Conference on Structural Mechanics in Reactor Technology (SMiRT 23) – 14th International Post-Conference Seminar on "FIRE SAFETY IN NUCLEAR POWER PLANTS AND INSTALLATIONS," Salford, UK, August 17-18, 2015, <u>http://www.grs.de/en/publications/grs-a-3845</u>.
- [12] Joint Committee for Guides in Metrology. International vocabulary of metrology Basic and general concepts and associated terms (VIM), Sèvres, France: International Bureau of Weights and Measures (BIPM), 3rd ed., URL www.bipm.org/en/publications/guides/vim.html, BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, JCGM 200:2012 (2008 version with minor corrections) (2012).
- [13] Ingason, H. and Wickstrom, U., "Measuring incident radiant heat flux using the plate thermometer," Fire Safety Journal, Vol. 42, No. 2, 2007, pp. 161-166.
- [14] Taylor, B.N. and Kuyatt, C.E., "Guidelines for evaluating and expressing the uncertainty of NIST measurement results," NIST Technical Note 1297, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1994.
- [15] Joint Committee for Guides in Metrology. Evaluation of measurement data Guide to the expression of uncertainty in measurement, Sèvres, France: International Bureau of Weights and Measures (BIPM), URL www.bipm.org/en/publications/guides/gum.html, BIPM,

IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, JCGM 100:2008, GUM 1995 with minor corrections (2008).

- [16] ASTM (1993), Manual on the Use of Thermocouples in Temperature Measurement, ASTM Manual Series: MNL12, Revision of Special Publication (STP) 470B, 4th ed., ASTM International, West Conshohocken, PA, 1993, United States.
- [17] ASTM Standard F1959 / F1959M-14, 2014, "Standard Experiment Method for Determining the Arc Rating of Materials for Clothing," ASTM International, West Conshohocken, PA, 2014.
- [18] ASTM Standard E457-08, "Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter," ASTM International, West Conshohocken, PA, 2008.
- [19] Lafarge, T. and Possolo, A, "The NIST Uncertainty Machine," NCLSI Measure J. Meas. Sci., Vol. 10, No. 3, pp.20-27, September 2015.
- [20] McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K., Fire Dynamics Simulator, Technical Reference Guide. National Institute of Standards and Technology, Gaithersburg, MD, USA, and VTT Technical Research Centre of Finland, Espoo, Finland, sixth edition, September 2013. Vol. 1: Mathematical Model; Vol. 2: Verification Guide; Vol. 3: Validation Guide; Vol. 4: Configuration Management Plan.

END OF DOCUMENT