Docket No:

50-010

50-249

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 and 3

Annual Radiological Environmental Operating Report

1 January through 31 December 2022

Prepared By

Teledyne Brown Engineering Environmental Services

Dresden Nuclear Power Station Morris, IL.60450

May 2023

Intentionally left blank

Table Of Contents

I.	Summar	ry and Conclusions	1
II.		ction	
	A. (Objectives of the REMP	2
		Implementation of the Objectives	
III.		m Description	
	A. S	Sample Collection	3
	В. 8	Sample Analysis	4
	C. [Data Interpretation	4
	D. I	Program Exceptions	5
	E. F	Program Changes	6
IV	. Results	s and Discussion	7
		Aquatic Environment	
		1. Surface Water	7
		2. Ground Water	7
		3. Fish	8
		4. Sediment	8
	B. <i>A</i>	Atmospheric Environment	8
		1. Airborne	
		a. Air Particulates	8
		b. Airborne lodine	
		2. Terrestrial	
		a. Milk	9
		b. Food Products	9
	C. A	Ambient Gamma Radiation1	0
	D. I	Land Use Survey1	0
	E. F	Errata Data1	1
		Summany of Results – Inter-laboratory Comparison Program	

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary (Meets requirements of NUREG 1302)
<u>Tables</u> Table A-1	Radiological Environmental Monitoring Program Annual Summary for the Dresden Nuclear Power Station, 2022
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
<u>Tables</u>	
Table B-1	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Dresden Nuclear Power Station, 2022
Table B-2	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Dresden Nuclear Power Station, 2022
<u>Figures</u>	
Figure B-1	Dresden Station Inner Ring OSLD Locations, Fish, Water, and Sediment Locations, 2022
Figure B-2	Dresden Station Fixed Air Sampling and OSLD Sites, Outer Ring OSLD Locations, 2022
Appendix C	Data Tables and Figures
<u>Tables</u>	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-II.1	Concentrations of Tritium in Ground Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022

Table C-II.2	Concentrations of Gamma Emitters in Ground Water Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-III.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-VII.1	Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of Dresden Nuclear Power Station, 2022
Table C-VIII.1	Quarterly DLR Results for Dresden Nuclear Power Station, 2022
<u>Figures</u>	
Figure C-1	Surface Water - Gross Beta – Station D-52 (C) Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-2	Surface Water - Gross Beta – Station D-57 (C) Collected in the Vicinity of DNPS, 2006 - 2022
Figure C-3	Surface Water - Gross Beta - Station D-21 Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-4	Surface Water - Tritium - Station D-52 (C) Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-5	Surface Water - Tritium - Station D-57 (C) Collected in the Vicinity of DNPS, 2006 - 2022
Figure C-6	Surface Water - Tritium – Station D-21 Collected in the Vicinity of DNPS, 2007 - 2022
Figure C-7	Ground Water - Tritium – Station D-35 Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-8	Ground Water - Tritium – Station D-39 Collected in the Vicinity of DNPS, 2022

Figure C-9	Air Particulate - Gross Beta – Stations D-01 and D-02 Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-10	Air Particulate - Gross Beta – Stations D-03 and D-04 Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-11	Air Particulate - Gross Beta – Stations D-07 and D-12 (C) Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-12	Air Particulate - Gross Beta – Stations D-45 and D-53 Collected in the Vicinity of DNPS, 2000 - 2022
Figure C-13	Air Particulate - Gross Beta – Stations D-08 and D-10 Collected in the Vicinity of DNPS, 2005 - 2022
Figure C-14	Air Particulate - Gross Beta - Station D-14 Collected in the Vicinity of DNPS, 2005 - 2022
Figure C-15	Air Particulate - Gross Beta – Stations D-55 and D-56 Collected in the Vicinity of DNPS, 2006 - 2022
Figure C-16	Air Particulate - Gross Beta – Station D-58 Collected in the Vicinity of DNPS, 2011 - 2022
Appendix D	Inter-Laboratory Comparison Program
<u>Tables</u>	
Table D-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2022
Table D-2	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2022
Table D-3	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2022
Appendix E	Errata Data
Appendix F	Annual Radiological Groundwater Protection Program Report (ARGPPR)

I. Summary and Conclusions

There were no regulatory effluent limit exceedances in 2022 and the resultant calculated dose to a member of the public for 2022 due to the uranium fuel cycle was 7.47E+00 mRem, which is 29.88% of the regulatory limit of 25 mRem/year. The annual organ dose from all effluent sources is 3.18E-02 mRem/yr which is 4.23E-02% of the 75 mRem/yr (Thyroid) limit. Additionally, the Annual Radiological Environmental Operating Report (AREOR) supported the effluent dose calculation and indicates that Units 1, 2, and 3 of the Dresden Nuclear Power Station did not result in any adverse environmental impact.

Surface water samples were analyzed for concentrations of gross beta, tritium and gamma emitting nuclides. Ground water samples were analyzed for concentrations of tritium (H-3) and gamma emitting nuclides. No anthropogenic gamma-emitting nuclides were detected. Gross beta and tritium activities detected were consistent with those detected in previous years.

Fish (commercially and recreationally important species), and sediment samples were analyzed for concentrations of gamma-emitting nuclides. No fission or activation products were detected.

Air particulate samples were analyzed for concentrations of gross beta and gamma-emitting nuclides. Gross beta results at the indicator locations were consistent with those at the control location. No fission or activation products were detected.

High sensitivity iodine-131 (I-131) analyses were performed on weekly air samples. All results were less than the minimum detectable activity for I-131.

Food product samples were analyzed for concentrations of gamma-emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using Optically Stimulated Luminescent Dosimetry (OSLD). The relative comparison to control locations remains valid.

This report on the Radiological Environmental Monitoring Program conducted for the Dresden Nuclear Power Station (DNPS) of Constellation Energy covers the period 1 January 2022 through 31 December 2022. During that time period, 1,830 analyses were performed on 1,721 samples. In assessing all the data gathered for this report it was concluded that the operation of DNPS had no adverse radiological impact on the environment.

II. Introduction

The Dresden Nuclear Power Station (DNPS), consisting of one retired reactor and two operating boiling water reactors owned and operated by Constellation Energy Corporation, is located in Grundy County, Illinois. Unit No. 1 went critical in 1960 and was retired in 1978. Unit No. 2 went critical on 16 June 1970. Unit No. 3 went critical on 02 November 1971. The site is located in northern Illinois, approximately 12 miles southwest of Joliet, Illinois at the confluence of the Des Plaines and Kankakee Rivers where they form the Illinois River.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) and Landauer on samples collected during the period 1 January 2022 through 31 December 2022.

An assessment for the station's radioactive effluent monitoring results for the calendar year are published in the station's Annual Radioactive Effluent Release Report. This report evaluates the station's radioactive effluent monitoring results and radiation dose via the principle pathways of exposure resulting from plant emissions of radioactivity. It includes the maximum noble gas gamma and beta air doses in the unrestricted area, an annual summary of meteorological conditions including wind speed, wind direction and atmospheric stability and the result of the 40CFR190 uranium fuel cycle dose analysis.

- A. Objective of the Radiological Environmental Monitoring Program (REMP)

 The objectives of the REMP are to:
 - Provide data on measurable levels of radiation and radioactive materials in the site environs.
 - 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways;
- 2. Establishing baseline radiological data of media within those pathways;
- Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.

III. Program Description

A. Sample Collection

Samples for the DNPS REMP were collected for Constellation by Environmental Incorporated Midwest Laboratory (EIML). This section describes the general collection methods used by EIML to obtain environmental samples for the DNPS REMP in 2022. Sample locations and descriptions can be found in Appendix B, Table B–1 and Figures B–1 and B-2. The collection methods used by EIML are listed in Table B-2.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water (SW), ground water (GW), fish (FI) and sediment (SS). Samples were collected from three surface water locations (D-21, D-52 and D-57) and composited for analysis. Control locations were D-52 and D-57. Samples were collected quarterly from three well water locations (D-35 and D-39). All samples were collected in new unused plastic bottles, which were rinsed with source water prior to collection. Fish samples comprising the flesh of largemouth bass, channel catfish, golden redhorse, common carp and smallmouth buffalo were collected semiannually at two locations, D-28 and D-46 (Control). Sediment samples composed of recently deposited substrate were collected at one location semiannually, D-27.

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate and airborne iodine (AP/AI). Airborne iodine and particulate samples were collected at fourteen locations (D-01, D-02, D-03, D-04, D-07, D-08, D-10, D-12, D-14, D-45, D-53, D-55, D-56 and D-58). The control location was D-12. Airborne iodine and particulate samples were obtained at each location using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The air filters and air iodine samples were replaced weekly and sent to the laboratory for analysis.

Terrestrial Environment

When a milk sample is available within 5 km (3.1 miles) from the Site, samples are collected biweekly from the indicator location and a control location (10 to 30 km from the Site) from May to October typically and monthly November through April. No milk samples were collected in 2022. Broadleaf vegetation samples were collected in lieu of milk.

Food products (FL) were collected June through October at five locations (D-25, D-39, D-42, D-43 and D-44). The control location was D-25. Various types of samples were collected and placed in new unused plastic bags and sent to the laboratory for analysis.

Ambient Gamma Radiation

Each location consisted of two OSLD sets. The OSLD locations were placed on and around the DNPS site as follows:

An <u>inner ring</u> consisting of 16 locations (D-101, D-102, D-103, D-104, D-105, D-106, D-107, D-108, D-109, D-110, D-111, D-112a, D-113, D-114, D-115 and D-116) at or near the site boundary.

An <u>outer ring</u> consisting of 16 locations (D-201, D-202, D-203, D-204, D-205, D-206, D-207, D-208, D-209, D-210, D-211, D-212, D-213, D-214, D-215 and D-216) approximately 5 to 10 km (3.1 to 6.2 miles) from the site.

Other locations consisting of OSLD sets at the 13 air sampler locations (D-01, D-02, D-03, D-04, D-07, D-08, D-10, D-14, D-45, D-53, D-55, D-56 and D-58).

The balance of one location (D-12) represents the control area OSLD set. The OSLDs were exchanged quarterly and sent to Landauer for analysis.

B. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the DNPS REMP in 2022. The analytical procedures used by the laboratory are listed in Appendix B Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in surface water and air particulates.
- 2. Concentrations of gamma emitters in ground and surface water, air particulates, fish, sediment and vegetation.
- 3. Concentrations of tritium in ground and surface water.
- 4. Concentrations of I-131 in air.
- 5. Ambient gamma radiation levels at various site environs.

C. Data Interpretation

For the purpose of this report, Dresden Nuclear Power Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a

system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required DNPS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is calculated the same as the LLD with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected. Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater, surface water, and vegetation twelve nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For fish, sediment, air particulate and milk eleven nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2022 the DNPS REMP had a sample recovery rate greater than 98% (1,721 of 1,746 samples collected). Sample anomalies and missed samples are listed in the following tables:

Table D-1 LISTING OF SAMPLE ANOMALIES

Sample Type	Location Code	Collection Date	Reason
SW	D-52	01/08/22 - 02/04/22	River frozen
GW	D-22 D-24	01/15/22	House sold and water turned off
SW	D-57	01/28/22	River frozen
AP/AI	D-04	12/09/22	No power at the station
SW	D-52	12/23/22	River frozen
SW	D-57	12/30/22	River frozen

Table D-2	LISTING OF ODCM-REQUIRED MISSED SAMPLES

Sample Location Type Code		Collection Date	Reason
AP/AI	D-12	01/01/22 - 03/04/22	No sample obtained due to power failure at the station
AP/AI	D-12	06/03/22 - 06/17/22	No sample obtained due to power failure at the station

Each program exception was reviewed to understand the causes of the program exception. No sampling or maintenance errors were identified during the reporting period. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

There were no program changes in 2022.

IV. Results and Discussion

A. Aquatic Environment

1. Surface Water

Samples were composited or taken weekly and composited for analysis at three locations (D-21, D-52 and D-57). Of these locations only D-21, located downstream, could be affected by Dresden's effluent releases. The following analyses were performed:

Gross Beta

Monthly composites from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). Gross Beta was detected in 29 of 33 samples. The values ranged from 3.0 to 14.4 pCi/L. Concentrations detected were consistent with those detected in previous years. (Figures C-1, C–2 and C–3, Appendix C)

Tritium

Quarterly composites from all locations were analyzed for tritium activity (Table C–I.2, Appendix C). Four samples at indicator station D-21 were positive for tritium with a concentration range of 216 - 1,420 pCi/L. Four samples at control station D-57 were positive for tritium with concentrations ranging from 254 to 2,540 pCi/L. No samples from station D-52 were positive for tritium. Concentrations detected were consistent with those detected in previous years. (Figures C–4, C–5 and C-6, Appendix C)

Gamma Spectrometry

Monthly composites from all locations were analyzed for gamma-emitting nuclides. No nuclides were detected and all required LLDs were met. (Table C–I.3, Appendix C)

Ground Water

Quarterly grab samples were collected at locations D-35 and D-39. These locations could be affected by Dresden's effluent releases and by sources upstream on the Kankakee River. The following analyses were performed:

Tritium

All were analyzed for tritium activity (Table C–II.1, Appendix C). Tritium was not detected in any sample. Results were consistent with those in previous years. (Figures C–7 & C-8, Appendix C)

Gamma Spectrometry

All samples were analyzed for gamma-emitting nuclides. No nuclides were detected and all required LLDs were met. (Table C-II.2, Appendix C)

3. Fish

Fish samples comprised of largemouth bass, channel catfish, golden redhorse, common carp and smallmouth buffalo were collected at two locations (D-28 and D-46) semiannually. Location D-28 could be affected by Dresden's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma-emitting nuclides (Table C–III.1, Appendix C). Only naturally-occurring nuclides (not shown on tables) were found at both locations. No fission or activation products were detected.

4. Sediment

Aquatic sediment samples were collected at one location (D-27) semiannually. This downstream location could be affected by Dresden's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from the location were analyzed for gamma-emitting nuclides (Table C–IV.1, Appendix C). No fission or activation products were detected.

B. Atmospheric Environment

1. Airborne

a. Air Particulates

Continuous air particulate samples were collected from fourteen locations on a weekly basis. The fourteen locations were separated into four groups: On-site samplers (D-01, D-02 and D-03), Nearfield samplers within 3.1 miles of the site (D-04, D-07, D-45, D-53, D-56 and D-58), Far-field samplers between 5 and 10 km (3.1 and 6.2 miles) from the site (D-08, D-10, D-14 and D-55) and the Control sampler between 10 and 30 km (6.2 and 18.6 miles) from the site (D-12). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters. (Table C–V.1 and C–V.2, Appendix C)

Detectable gross beta activity was observed at all locations. Comparison of results among the four groups aid in determining the effects, if any, resulting from the operation of DNPS. The results from the On-Site locations ranged from 6.39E-3 to 4.68E-2 pCi/m³ with a mean of 2.01E-2 pCi/m³. The results from the Near-Field locations ranged from 6.16E-3 to 4.95E-2 pCi/m³ with a mean of 2.90E-2 pCi/m³. The results from the Far-Field locations ranged from 6.19E-3 to 4.72E-2 pCi/m³ with a mean of 2.06E-2 pCi/m³. The results from the Control location ranged from 6.62E-3 to 4.43E-2 pCi/m³ with a mean of 1.99E-2 pCi/m³. Comparison of the 2022 air particulate data with previous year's data indicate no effects from the operation of DNPS. In addition, a comparison of the weekly mean values for 2022 indicate no notable differences among the four groups. (Figures C–8 through C-14, Appendix C)

Gamma Spectrometry

Samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). Only naturally-occurring nuclides (not shown on the tables) were found in these composite samples. No anthropogenic nuclides were detected and all required LLDs were met. These samples were consistent with historical quarterly results. All other nuclides were less than the MDC.

b. Airborne lodine

Continuous air samples were collected from fourteen locations (D-01, D-02, D-03, D-04, D-07, D-08, D-10, D-12, D-14, D-45, D-53, D-55, D-56 and D-58) and analyzed weekly for I-131. All results were less than the MDC for I-131. (Table C-VI.1, Appendix C)

2. Terrestrial

a. Milk

No Milk (M) samples were analyzed in 2022.

b. Food Products

Food product samples were collected at five locations (D-25, D-39, D-42 D-43 and D-44) when available. The Control location is D-25 and the other 4 locations could be affected by Dresden's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from six locations were analyzed for gamma-emitting nuclides. No nuclides were detected and all required LLDs were met. (Table C–VIII.1, Appendix C)

C. Ambient Gamma Radiation

Forty-six OSLD locations were established around the site. Results of OSLD measurements are listed in Table C–IX.1, Appendix C.

Most OSLD measurements were below 22 mrem/quarter, with a range of 8.3 to 21.1 mrem/quarter. A comparison of the Inner Ring, Outer Ring and Other locations' data to the Control Location data, indicate that the ambient gamma radiation levels from the Control location (D-12) were comparable.

D. Land Use Survey

A Land Use Survey conducted on September 10, 2022, around the Dresden Nuclear Power Station (DNPS) was performed by EIML for Constellation Energy comply with Section 12.6.2 of the Dresden Offsite Dose Calculation Manual (ODCM). The purpose of the survey was to document the nearest resident or industrial facility, milk producing animal, and livestock in each of the sixteen 22 ½ degree sectors within 10 km (6.2 miles) around the site. There were no changes required to the DNPS REMP as a result of this survey. The results are summarized as follows:

	Distance in Miles from the DNPS Reactor Buildings							
S	Sector	Residence Miles	Livestock Miles	Milk Farm Miles				
A	N	1.5	1.4	-				
В	NNE	0.8	-	-				
С	NE	0.8	-	-				
D	ENE	0.7	1.7	-				
Е	Е	1.1	-	-				
F	ESE	1.0	-	-				
G	SE	0.6	-	-				
Н	SSE	0:5	-	-				
J	S	0.5	-	-				
K	SSW	3.3	-	-				
L	SW	3.6	-	11.4				
M	WSW	5.5	-	-				
Ν	W	3.5	0.5	-				
Р	WNW	3.2	0.5	-				
Q	NW	2.2	0.5	_				
R	NNW	1.9	1.0	-				

E. Errata Data

There was no errata data in 2022.

F. Summary of Results - Inter-Laboratory Comparison Program

The TBE Laboratory analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation, and water matrices for various analytes. The PE samples supplied by Analytics Inc., Environmental Resource Associates (ERA) and Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

A. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of TBE's result and Analytics' known value. Since flag values are not assigned by Analytics, TBE evaluates the reported ratios based on internal QC requirements based on the DOE MAPEP criteria.

B. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, National Environmental Laboratory Accreditation Conference (NELAC), state-specific Performance Testing (PT) program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

C. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values. MAPEP defines three levels of performance:

- Acceptable (flag = "A") result within ± 20% of the reference value
- Acceptable with Warning (flag = "W") result falls in the ± 20% to ± 30% of the reference value
- Not Acceptable (flag = "N") bias is greater than 30% of the reference value

Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

For the TBE laboratory, 142 out of 150 analyses performed met the specified acceptance criteria. Eight analyses did not meet the specified acceptance criteria and were addressed through the TBE Corrective Action Program. A summary is found below:

NOTE: Two analyses (soil for Tc-99 and U-238) that did not meet acceptance criteria was performed for TBE information and is not on the list of required ICP analyses.

- 1. The Analytics March 2022 AP Ce-141 result was evaluated as Not Acceptable. The reported value for Ce-141 was 60.9 pCi and the known result was 42.0 pCi/L (1.45 ratio of reported result vs. known; TBE's internal acceptance range is 0.70 1.30). This sample was used as the workgroup duplicate with a result of 45.7 (109% of known) and was also counted on a different detector with a result of 50.9 (121% of known). This was TBE's first failure for AP Ce-141. (NCR 22-04)
- 2. The MAPEP February 2022 Urine U-234 & U-238 results were evaluated as *Not Acceptable*. TBE's reported values of 0.142 and 0.0254 were above the known upper ranges of 0.0096 and 0.0134 respectively for U-234 and U-238. These spiked values were below TBE's typical MDC for urine client samples. The samples were repreped using a larger sample aliquot and counted for 60 hours as opposed to 48 hours. The recount results were 0.00732 for U-234 and 0.0119 for U-238 (both within acceptable range). MAPEP urine samples will be flagged to use a larger sample aliquot and counting time than typical client samples. MAPEP did not include any urine cross-check samples in August. (NCR 22-05)
- 3. The ERA MRAD September 2022 AP Pu-238 was evaluated as *Not Acceptable*. The reported value was 38.8 pCi and the known result was 29.9 (acceptance range 22.6 36.7). The AP filter was cut in half prior to digestion (shared with Fe-55) but should have been complete digested together and aliquotted afterwards like typical client samples. This is the first failure for AP Pu-238. (NCR 22-19)
- 4. The ERA October 2022 water Uranium result was evaluated as *Not Acceptable*. The reported value was 10.54 pCi/L and the known was 8.53 (acceptance range 6.60 9.88) or 124% of the known (acceptable for TBE QC). The 2-sigma error was 3.2, placing the reported result well within the acceptable range. This sample was used as the workgroup duplicate with a result of 8.2 +/- 2.9 pCi/L (also within the acceptable range). All other QA was reviewed with no anomalies. (NCR 22-20)
- 5. The Analytics AP Co-60 result was evaluated as *Not Acceptable*. The reported value was 207 pCi and the known was 147 (141% of the known). TBE's internal QC acceptance is 70 130%. All QA was reviewed with no anomalies. This sample was used as the workgroup duplicate and counted on a different detector with a result of 167 pCi

- (114% of the known). This is the first failure for AP Co-60 average result ratio compared to the known is 109%. (NCR 22-21)
- 6. The MAPEP August 2022 water Tc-99 result was evaluated as *Not Acceptable*. The reported value was 1.86 +/- 0.414 Bq/L for this "false positive" test. The evaluation of the submitted result to the 3 times the uncertainty indicated a slight positive. This sample was used as the workgroup duplicate with a result of 0.88 +/- 0.374 Bq/L. All QC was reviewed, and no anomalies found. This is the first unacceptable since the resumption of reporting water Tc-99 for the 3rd quarter of 2020. TBE to known ratios have ranged from 94-109% during this time. (NCR 22-22)

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

Intentionally left blank

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

Intentionally left blank

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR DRESDEN NUCLEAR POWER STATION, 2022

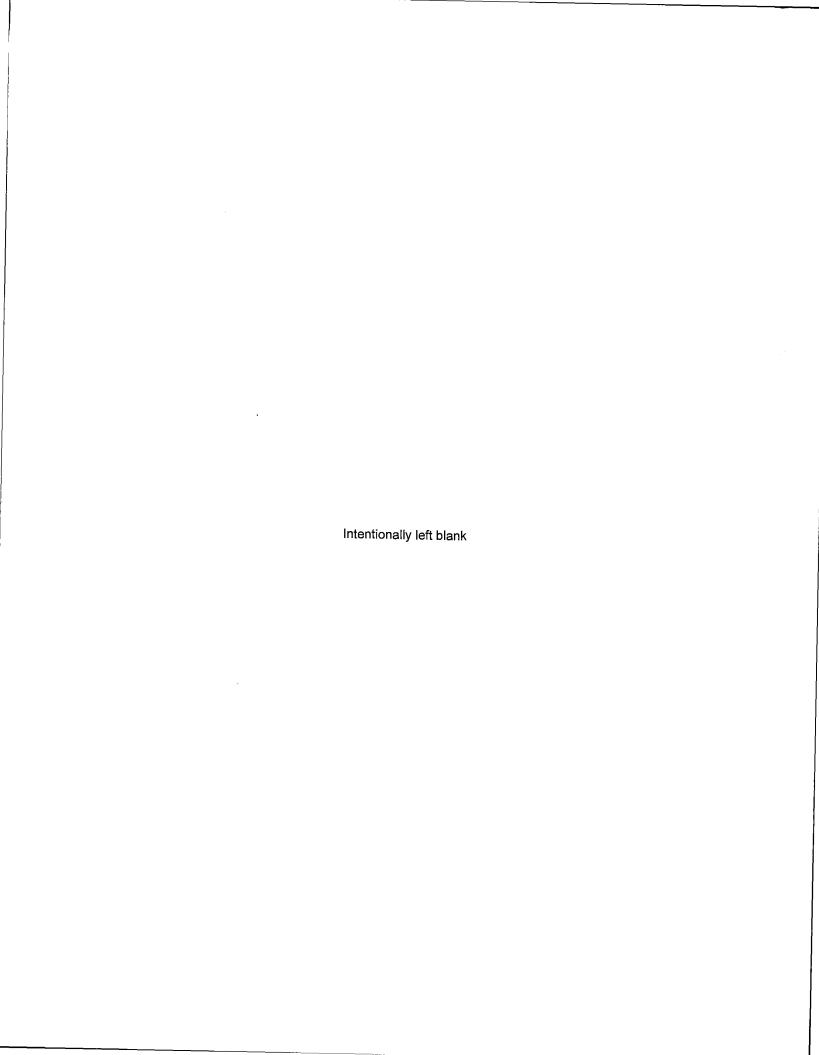

NAME OF FACILITY:	DRESDEN			DOCKET NUMBER: 50-010, 50-237 & 50-249				
LOCATION OF FACILITY:	MORRIS IL			REPORTING PI	ERIOD: CONTROL	2022		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	LOC MEAN (M) (F) RANGE	ATION WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER	GR-B	33	4	8.6	8.7	11	D-52 CONTROL	0
(PCI/LITER)	GN ⁴ B	33	4	6.0 (11/12) 5.2 - 13.1	(18/21) 3.0 - 14.4	(10/11) 5.4 - 14.4	DESPLAINES RIVER AT WILL ROAD (CONTROL) 1.1 MILES ESE OF SITE	U
	H-3	12	2000	585 (4/4) 216 - 1420	1138 (4/8) 254 - 2540	1138 (4/4) 254 - 2540	D-57 CONTROL KANKAKEE RIVER AT WILL ROAD (CONTROL) 2.0 MILES SE OF SITE	
	GAMMA	33						
	MN-54 CO-58 FE-59	·	15 15 30	<lld <lld <lld< td=""><td><lld <lld <lld< td=""><td>-</td><td></td><td>0 0 0</td></lld<></lld </lld </td></lld<></lld </lld 	<lld <lld <lld< td=""><td>-</td><td></td><td>0 0 0</td></lld<></lld </lld 	-		0 0 0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65 NB-95		30 15	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>0</td></lld<></lld 	-		0
	ZR-95 I-131	•	30 15	<lld <lld< td=""><td><lld <lld< td=""><td>- -</td><td></td><td>0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>- -</td><td></td><td>0</td></lld<></lld 	- -		0
	CS-134 CS-137		15 18	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td>•</td><td>0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td>•</td><td>0</td></lld<></lld 	-	•	0
	BA-140 LA-140		60 15	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>0 0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>0 0</td></lld<></lld 	-		0 0
GROUND WATER (PCI/LITER)	Н-3	8	2000	NA	NA	NA		0
	GAMMA	8						
	MN-54		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-58 FE-59		15 30	<lld <lld< td=""><td>NA NA</td><td>-</td><td></td><td>0</td></lld<></lld 	NA NA	-		0
	CO-60		15	<lld< td=""><td>NA NA</td><td>-</td><td></td><td>0</td></lld<>	NA NA	-		0
	ZN-65		30	<lld< td=""><td>NA</td><td>_</td><td></td><td>Ö</td></lld<>	NA	_		Ö
	NB-95		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>Ō</td></lld<>	NA	-		Ō
	ZR-95		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	I-131		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-134		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0 .</td></lld<>	NA	-		0 .
	CS-137		18	<lld< td=""><td>NA</td><td>-</td><td></td><td></td></lld<>	NA	-		
	BA-140		60	<lld< td=""><td>NA</td><td>-</td><td></td><td>. 0</td></lld<>	NA	-		. 0
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR DRESDEN NUCLEAR POWER STATION, 2022

NAME OF FACILITY:	DRESDEN			DOCKET NUME	BER:	50-010, 50-23	7 & 50-249	
LOCATION OF FACILITY:	MORRIS IL			REPORTING PI	ERIOD: CONTROL	2022		
MEDIUM OR			REQUIRED	LOCATIONS	LOCATION	LOC	CATION WITH HIGHEST ANNUAL MEAN (M)	NUMBER OF
PATHWAY SAMPLED	TYPES OF	NUMBER OF	LOWER LIMIT	MEAN (M)	MEAN (M)	MEAN (M)	STATION#	NONROUTINE
(UNIT OF	ANALYSIS	ANALYSIS	OF DETECTION	(F)	(F)	(F)	NAME	REPORTED
MEASUREMENT)	PERFORMED	PERFORMED	(LLD)	RANGE	RANGE	RANGE	DISTANCE AND DIRECTION	MEASUREMENTS
FISH	GAMMA	8						
(PCI/KG WET)	MN-54		130	<lld< td=""><td>NA</td><td>• -</td><td></td><td>0</td></lld<>	NA	• -		0
	CO-58		130	<lld< td=""><td>NA</td><td>~</td><td></td><td>0</td></lld<>	NA	~		0
	FE-59		260	<lld< td=""><td>NA</td><td>=</td><td></td><td>0</td></lld<>	NA	=		0
	CO-60		130	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZN-65		260	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	NB-95		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZR-95		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-134		130	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-137		150	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	BA-140		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	LA-140		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
SEDIMENT	GAMMA	. 2						_
(PCI/KG DRY)	MN-54		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-58		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	FE-59		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-60		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZN-65		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
•	NB-95		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZR-95		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-134		150	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-137		180	129 (1/2)	NA	129 (1/2)	D-27 INDICATOR ILLINOIS RIVER AT DRESDEN LOCK AND DAM 0.8 MILES NW OF SITE	0 - DOWNSTREAM
	BA-140	l .	NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	LA-140		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
AIR PARTICULATE (E-3 PCI/CU.M)	GR-B	717	10	21 (674/676)	20 (41/41)	22 (52/52)	D-10 INDICATOR GOOSE LAKE VILLAGE	0
	CANNA	FC		6 - 50	7 - 44	8 - 47	3.5 MILES SSW OF SITE	
	GAMMA	56	ALA	4LLD	all D			•
	MN-54		NA NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58 FE-59		NA NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		NA NA	<lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>U N</td></lld<></lld </td></lld<>	<lld <lld< td=""><td>-</td><td></td><td>U N</td></lld<></lld 	-		U N
	ZN-65		NA NA	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>U</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>U</td></lld<></lld 	-		U
	2N-03 NB-95		NA NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB-93 ZR-95		NA NA	<lld <lld< td=""><td><lld< td=""><td>-</td><td></td><td>U</td></lld<></td></lld<></lld 	<lld< td=""><td>-</td><td></td><td>U</td></lld<>	-		U
	ZR-93 CS-134		NA 50	<lld <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<></lld 	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-140		NA NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR DRESDEN NUCLEAR POWER STATION, 2022

NAME OF FACILITY: LOCATION OF FACILITY:	DRESDEN MORRIS IL			DOCKET NUMI REPORTING P INDICATOR		50-010, 50-23 2022	7 & 50-249	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	LOO MEAN (M) (F) <i>RANGE</i>	ATION WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR IODINE	GAMMA	721						
(E-3 PCI/CU.M)	I-131		70	<lld< td=""><td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
VEGETATION	GAMMA	52						
(PCI/KG WET)	MN-54	!	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td>•</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>•</td><td>0</td></lld<>	-	•	0
	FE-59		NA	<lld< td=""><td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
	CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		NA	<lld< td=""><td><ftd< td=""><td>-</td><td></td><td>0</td></ftd<></td></lld<>	<ftd< td=""><td>-</td><td></td><td>0</td></ftd<>	-		0
	NB-95		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZR-95		NA	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	I-131		60	<lld< td=""><td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137 BA-140		80 NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>U</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>U</td></lld<>	-		U
	BA-140 LA-140		NA NA	<lld< td=""><td><lld< td=""><td>-</td><td>,</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>,</td><td>0</td></lld<>	-	,	0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	OSLD-QUARTERLY	184	NA	14.2 (180/180)	13.0 (4/4)	17.9 (4/4)	D-110 INDICATOR	0
·				8.3 - 21.2	11.3 - 13.2	17.1 - 21.2	0.9 MILES SSW	

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION AND

SAMPLE COLLECTION & ANALYTICAL METHODS

Intentionally left blank

TABLE B-1:

Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Dresden Nuclear Power Station, 2022

Location	Location Description	Distance & Direction From Site
A. Surface	e Water	
D-21 D-52 D-57	Illinois River at EJ&E Bridge (indicator) DesPlaines River at Will Road, Upstream (control) Kankakee River at Will Road (control)	1.4 miles WNW 1.1 miles ESE 2.0 miles SE
B. Ground	d/Well Water	
D-35 D-39	Dresden Lock & Dam Morris, IL (indicator) 3985 Will Rd., Coal City, IL (indicator)	0.8 miles NW 3.2 miles SSE
C. <u>Air Par</u>	ticulates / Air lodine	
D-01 D-02 D-03 D-04 D-07 D-08 D-10 D-12 D-14 D-45 D-53 D-55 D-56 D-58	Onsite Station 1 (indicator) Onsite Station 2 (indicator) Onsite Station 3 (indicator) Collins Road, on Station property(indicator) Clay Products, Dresden Road (indicator) Jugtown Road, Prairie Parks (indicator) Goose Lake Road, Goose Lake Village (indicator) Quarry Road, Lisbon (control) Center Street, Channahon (indicator) McKinley Woods Road, Channahon (indicator) Will Road, Hollyhock (indicator) Ridge Road, Minooka (indicator) Will Road, Wildfeather (indicator) Will Road, Marina (indicator)	0.8 miles NW 0.3 miles NNE 0.4 miles S 0.8 miles W 2.6 miles S 3.8 miles SW 3.5 miles SSW 10.5 miles NW 1.7 miles NE 1.7 miles ENE 2.1 miles SSE 4.3 miles N 1.7 miles SE 1.1 miles ESE
D. <u>Fish</u>	Dresden Pool of Illinois River, Downstream (indicator)	0.9 miles NNW
D-46	DesPlaines River, Upstream (control)	1.2 miles ESE
E. <u>Sedim</u>	<u>ent</u>	
D-27	Illinois River at Dresden Lock and Dam, Downstream (indicator)	0.8 miles NW
F. <u>Broadl</u>	eaf Vegetation	
D-25 D-39 D-42 D-43 D-44	Vince Biros Farm, Reed Road (control) 3985 Will Rd., Coal City, IL (indicator) Dresden Site Garden 25158 W Elm St 9980 Ridge Road	11.3 miles SW 3.2 miles SSE 0.4 miles N 3.3 miles NE 3.0 miles N

Location	Location Description	Distance & Direction From Site
G. <u>Enviror</u>	nmental Dosimetry - OSLD	
Inner Ring		
D-101 D-102 D-103 D-104 D-105 D-106 D-107 D-108 D-109 D-111 D-111 D-112 D-113 D-114		1.0 miles N 1.3 miles NNE 1.2 miles NE 1.7 miles ENE 1.5 miles E 1.1 miles ESE 1.4 miles SE 1.9 miles SSE 0.8 miles S 0.9 miles SSW 0.6 miles SW 0.7 miles WSW 0.9 miles W
D-115 D-116		0.8 miles NWV 1.0 miles NNW
Outer Ring		
D-201 D-202 D-203 D-204 D-205 D-206 D-207 D-208 D-209 D-210 D-211 D-212 D-213 D-214 D-215 D-216		4.8 miles N 5.1 miles NNE 4.7 miles NE 5.0 miles ENE 4.0 miles E 3.5 miles ESE 4.2 miles SE 4.9 miles SSE 4.1 miles S 4.9 miles SSW 4.8 miles SW 6.0 miles WSW 4.5 miles W 5.0 miles WNW 4.8 miles NW 4.9 miles NNW
Other Location	<u>ons</u>	
D-01 D-02 D-03 D-04 D-07 D-08 D-10 D-14 D-45 D-53 D-55 D-56 D-58	Onsite 1 Onsite 2 Onsite 3 Collins Road, on Station property Clay Products, Dresden Road Jugtown Road, Prairie Parks Goose Lake Road, Goose Lake Village Center Street, Channahon McKinley Woods Road, Channahon Will Road, Hollyhock Ridge Road, Minooka Will Road, Wildfeather	0.8 miles NW 0.3 miles NNE 0.4 miles S 0.8 miles W 2.6 miles S 3.8 miles SW 3.5 miles SSW 3.7 miles NE 1.7 miles ENE 2.1 miles SSE 4.3 miles N 1.7 miles SE 1.1 miles ESE
<u>Control</u>		
D-12	Lisbon	10.5 miles NW

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Dresden Nuclear Power Station, 2022

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite sample or monthly composite from weekly grab samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual TBE, TBE-2023 Compositing of samples EIML-COMP-01 procedure for compositing water and milk samples	2 gallon	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
Surface Water	Gross Beta	Monthly composite sample or monthly composite from weekly grab samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual TBE, TBE-2023 Compositing of samples EIML-COMP-01 procedure for compositing water and milk samples	2 gallon	TBE, TBE-2008 Gross Alpha and/or Gross Beta Activity in Various Matrices
Surface Water	Tritium	Quarterly composite of monthly composite samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual TBE, TBE-2023 Compositing of samples EIML-COMP-01 procedure for compositing water and milk samples	500 ml	TBE, TBE-2011 Tritium Analysis in Drinking Water by Liquid Scintillation
Ground Water	Gamma Spectroscopy	Quarterly grab samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	2 gallon	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
Ground Water	Tritium	Quarterly grab samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	500 ml	TBE, TBE-2011 Tritium Analysis in Drinking Water by Liquid Scintillation
Fish	Gamma Spectroscopy	Samples collected twice annually via electroshocking or other techniques	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1000 grams (wet)	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
Sediment	Gamma Spectroscopy	Semi-annual grab samples	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	500 grams (dry)	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis

ф

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Dresden Nuclear Power Station, 2022

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Dredging Spoils	Gamma Spectroscopy	Annual grab samples if dredging occurred within 1 mile of Dresden Station during the year.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	500 grams (dry)	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
Air Particulates	Gross Beta	One-week of continuous air sampling through glass fiber filter paper	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2008 Gross Alpha and/or Gross Beta Activity in Various Matrices
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2023 Compositing of samples Env. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
Air Iodine	Gamma Spectroscopy	One- or two-week composite of continuous air sampling through charcoal filter	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
Broadleaf Vegetation (in lieu of milk)	Gamma Spectroscopy	Grab samples July through October;	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	1000 grams	TBE, TBE-2007 Gamma-Emitting Radioisotope Analysis
OSLD	Optically Stimulated Luminescence Dosimetry	Quarterly OSLDs comprised of two Al ₂ O ₃ :C Landauer Incorporated elements.	EIML-SPM-1, Environmental Incorporated Midwest Laboratory Sampling Procedures Manual	2 dosimeters at each location	Landauer Incorporated

Figure B-1 Dresden Station Inner Ring OSLD Locations, Fish, Water, and Sediment Location, 2022

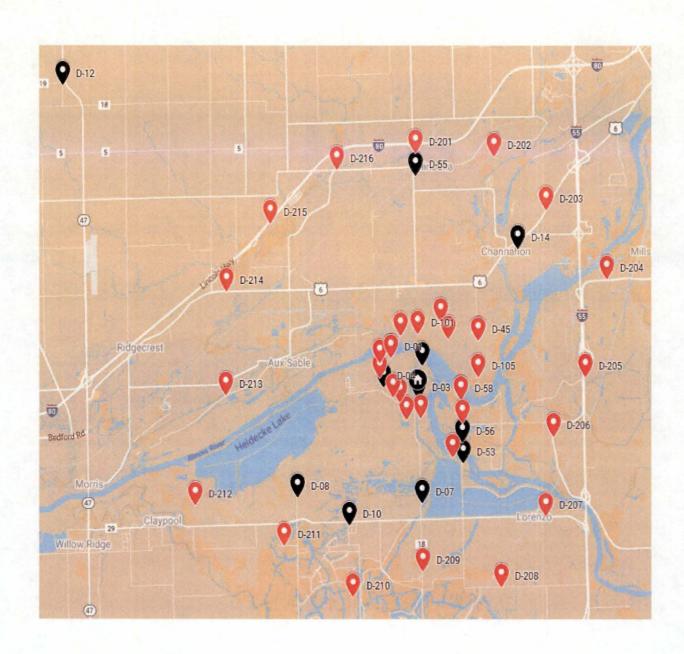


Figure B-2 Dresden Station Fixed Air Sampling and OSLD Sites, Outer Ring OSLD Locations, 2022

APPENDIX C DATA TABLES AND FIGURES

Intentionally left blank

Table C-I.1 CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION			
PERIOD	D-21	D-52	D-57
12/31/21 - 01/28/22	5.2 ± 2.2	(1)	(1)
01/28/22 - 02/25/22	9.9 ± 2.8	13.9 ± 3.6	6.6 ± 2.1
02/25/22 - 03/31/22	5.4 ± 2.3	11.3 ± 3.5	11.6 ± 2.9
03/31/22 - 04/29/22	8.3 ± 3.1	8.3 ± 3.2	< 3.4
04/29/22 - 05/27/22	8.9 ± 2.6	8.5 ± 2.7	3.0 ± 2.0
05/27/22 - 06/24/22	8.4 ± 2.9	10.5 ± 3.1	5.1 ± 2.5
06/24/22 - 07/29/22	5.4 ± 2.0	5.4 ± 2.1	3.6 ± 1.9
07/29/22 - 08/26/22	< 3.0	< 3.1	< 3.0
08/26/22 - 10/01/22	11.6 ± 2.8	14.4 ± 3.0	6.1 ± 2.3
10/01/22 - 10/28/22	8.8 ± 3.0	13.1 ± 3.4	4.5 ± 2.7
10/28/22 - 11/25/22	13.1 ± 2.9	13.4 ± 2.9	5.5 ± 2.3
11/25/22 - 12/30/22	10.0 ± 3.1	11.6 ± 3.3	(1)
MEAN ± 2 STD DEV	8.6 ± 5.1	11.0 ± 5.8	5.7 ± 5.0

Table C-I.2 CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION			
PERIOD	D-21	D-52	D-57
12/31/21 - 03/31/22	442 ± 123	< 180	948 ± 171
04/01/22 - 06/24/22	263 ± 124	< 183	808 ± 156
07/01/22 - 09/30/22	216 ± 111	< 187	254 ± 123
10/07/22 - 12/16/22	1420 ± 212	< 182	2540 ± 317
MEAN ± 2 STD DEV	585 ± 1130		1138 + 1964

Table C-I.3

MEAN

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER + 2 SIGMA

	COLLECTION							•					
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
D-21	12/31/21 - 01/28/22	< 4	< 4	< 10	< 6	< 7	< 5	< 9	< 8	< 4	< 5	< 22	< 7
	01/28/22 - 02/25/22	< 8	< 7	< 13	< 8	< 17	< 7	< 11	< 11	< 8	< 9	< 28	< 11
	02/25/22 - 03/31/22	< 5	< 4	< 12	< 7	< 11	< 7	< 12	< 8	< 6	< 8	< 25	< 14
	03/31/22 - 04/29/22	< 6	< 5	< 13	< 6	< 13	< 7	< 11	< 9	< 6	< 6	< 25	< 9
	04/29/22 - 05/27/22	< 4	< 5	< 12	< 6	< 11	< 5	< 9	< 9	< 4	< 7	< 23	< 10
	05/27/22 - 06/24/22	< 6	< 5	< 11	< 7	< 10	< 5	< 10	< 9	< 7	< 7	< 26	< 6
	06/24/22 - 07/29/22	< 8	< 8	< 17	< 7	< 18	< 8	< 14	< 11	< 10	< 9	< 38	< 10
	07/29/22 - 08/26/22	< 4.	< 4	< 9	< 5	< 10	< 5	< 10	< 8	< 5	< 6	< 22	< 7
	08/26/22 - 10/01/22	< 7	< 6	< 13	< 6	< 14	< 7	< 12	< 8	< 5	< 6	< 29	< 10
	10/01/22 - 10/28/22	< 6	< 7	< 16	< 8	< 16	< 7	< 13	< 10	< 9	< 7	< 39	< 12
	10/28/22 - 11/25/22	< 7	< 6	< 13	< 8	< 15	< 7	< 11	< 11	< 6	< 6	< 31	< 9
	11/25/22 - 12/30/22	< 6	< 7	. < 13	< 6	< 14	< 6	, < 11	< 12	< 7	< 6	< 30	< 8
	MEAN	-	-	-	-	-	-	· -	-	-	-	-	-
D-52	12/31/21 - 01/28/22	(1)											
	02/11/22 - 02/25/22	< 8	< 11	< 21	< 8	< 16	< 8	< 12	< 12	< 9	< 9	< 33	· < 8
	03/04/22 - 03/25/22	< 5	< 8	< 11	< 6	< 12	< 7	< 12	< 8	< 6	< 7	< 22	< 8
	04/01/22 - 04/29/22	< 6	< 9	< 11	< 7	< 10	< 7	< 11	< 12	< 8	< 7	< 36	< 9
	05/06/22 - 05/27/22	< 5	< 6	< 15	< 7	< 13	< 6	< 12	< 9	< 7	· < 5	< 27	< 10
-	06/03/22 - 06/24/22	< 7	< 6	< 14	< 8	< 15	< 6	< 12	< 9	< 6	< 8	< 30	< 9
	07/01/22 - 07/29/22	< 7	< 6	< 11	< 9	< 16	< 6	< 11	< 11	< 6	< 6	< 30	< 10
	08/05/22 - 08/26/22	< 4	< 4	< 8	< 6	< 8	< 5	< 8	< 6	< 5	< 5	< 18	< 6
	09/02/22 - 10/01/22	< 7	< 5	< 13	< 7	< 15	< 7	< 12	< 9	< 8	< 8	< 28	< 8
	10/07/22 - 10/28/22	< 8	< 7	< 14	< 9	< 12	< 8	< 10	< 10	< 7	< 8	< 30	< 12
	11/04/22 - 11/25/22	< 6	< 5	< 15	< 5	< 11	< 6	< 11	< 10	< 5	< 8	< 27	< 9
	12/02/22 - 12/30/22	< 6	< 7	< 11	< 7	< 12	< 7	< 8	< 10	< 7	< 7	< 26	< 7
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
D-57	01/01/22 - 01/31/22	(1)											
	02/25/22 - 02/25/22	< 5	< 7	< 14	< 6	< 13	< 8	< 13	< 10	< 9	< 8	< 34	< 11
	03/31/22 - 03/31/22	< 6	< 8	< 16	< 9	< 17	< 8	< 13	< 8	< 8	< 7	< 34	< 14
	04/29/22 - 04/29/22	· < 6	· < 7	· < 13	- < 8	< 14	< 6	< 9	< 11	< 7	< 6	< 29	< 7
	05/27/22 - 05/27/22	< 6	< 5	< 10	< 6	< 9	< 5	< 8	< 8	< 5	< 5	< 24	< 9
	06/24/22 - 06/24/22	< 6	< 6	< 9	< 6	< 11	< 7	< 10	< 8	< 6	< 5	< 24	< 7
	07/29/22 - 07/29/22	< 6	< 7	< 13	< 9	< 13	· < 7	< 12	< 8	< 7	< 6	< 23	< 9
	08/26/22 - 08/26/22	< 3	< 4	< 9	< 5	< 11	< 4	< 9	< 6	· < 5	< 4	< 18	< 5
	10/01/22 - 10/01/22	< 7	< 7	< 12	< 5	< 16	< 8	< 12	< 9	< 9	< 8	< 27	< 9
	10/28/22 - 10/28/22	< 6	< 8	< 15	< 7	< 14	< 9	< 11	< 10	< 5	< 9	< 30	< 12
	11/25/22 - 11/25/22	< 6	< 7	< 13	< 7	< 12	< 7	< 9	< 11	< 8	< 6	< 29	< 10
	12/23/22 - 12/23/22		•		-		•	-		-	-		. 3

C-2

Table C-II.1 CONCENTRATIONS OF TRITIUM IN GROUND WATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION		
PERIOD	D-35	D-39
01/15/22 - 01/15/22	< 192	-
03/25/22 - 03/25/22	-	< 172
04/08/22 - 04/08/22	< 191	< 189
07/08/22 - 07/08/22	< 181	< 180
10/14/22 - 10/14/22	< 196	< 198
ΜΕΔΝ	_	

⁻ Sample was unable to be obtained due to the water at the residence being shut off at the time of collection.

Tables C-II.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUND WATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION

SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
D-35	01/15/22 - 01/15/22	< 6	< 6	< 11	< 8	< 10	< 8	< 11	< 8	< 7	< 6	< 26	< 7
	04/08/22 - 04/08/22	< 6	< 6	< 15	< 8	< 16	< 5	< 10	< 8	< 7	< 7	< 26	< 11
	07/08/22 - 07/08/22	< 5	< 5	< 10	< 6	< 9	< 6	< 11	< 8	< 7	< 5	< 24	< 7
	10/14/22 - 10/14/22	< 8	< 5	< 12	< 9	< 17	< 7	< 15	< 9	< 9	< 7	< 33	< 12
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
D-39	03/25/22 - 03/25/22	< 6	< 6	< 14	< 5	< 13	< 7	< 12	< 9	< 8	< 7	< 23	< 9
	04/08/22 - 04/08/22	< 5	< 7	< 13	< 8	< 14	< 7	< 10	< 8	< 8	< 7	< 32	< 8
	07/08/22 - 07/08/22	< 6	< 5	< 10	< 4	< 14	< 5	< 11	< 8	< 7	< 6	< 23	< 9
	10/14/22 - 10/14/22	< 7	< 8	< 17	< 7	< 16	< 6	< 14	< 11	< 9	< 7	< 31	< 5
	MEAN	_	_	_	_	_	_	_	_	_	_	_	_

Table C-III.1

CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/KG WET + 2 SIGMA

CO	LLE	CI	ION	

SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
D-28	PREDATOR											
Largemouth Bass	05/03/22	< 78	< 75	< 182	< 85	< 175	< 79	< 148	< 93	< 81	< 398	< 180
Largemouth Bass	10/13/22	< 62	< 56	< 104	< 51	< 91	< 51	< 116	< 66	< 60	< 327	< 103
	MEAN	-		~	-	**	-	-	**	~	-	-
D-28	BOTTOM FEEDER											
Channel Catfish	05/03/22	< 46	< 32	< 91	< 40	< 105	< 38	< 72	< 49	< 39	< 195	< 78
Golden Redhorse	10/13/22	< 34	< 36	< 69	< 37	< 83	< 35	< 69	< 37	< 35	< 193	< 71
	MEAN	-		-	-	~	-	-	-	-	-	-
D-46	PREDATOR											
Largemouth Bass	10/13/22	< 67	< 50	< 91	< 71	< 107	< 65	< 112	< 49	< 53	< 341	< 67
	MEAN	-	-	-	-	~	-	-	-	-	-	-
D-46	BOTTOM FEEDER											
Smallmouth Buffalo	05/03/22	< 38	< 45	< 57	< 39	< 108	< 67	< 105	< 65	< 48	< 252	< 114
Common Carp	05/03/22	< 63	< 78	< 142	< 76	< 154	< 76	< 101	< 78	< 62	< 408	< 109
Golden Redhorse	10/13/22	< 35	< 35	< 66	< 42	< 81	< 40	< 60	< 33	< 33	< 195	< 69
	MEAN	-	-	-	-	_	-	-	-	-	-	~

Table C-IV.1

CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

	COLLECTION											
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
D-27	05/17/22	< 78	< 62	< 185	< 100	< 173	< 75	< 141	< 95	129 ± 71	< 352	< 117
	10/29/22	< 76	< 58	< 184	< 111	< 203	< 81	< 124	< 106	< 132	< 309	< 83
	MEAN	-	-	•	-	-	-	-	-	129 ± 0	-	-

Table C-V.1

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION		GROUP I	1			GROU	DII		
PERIOD	D-01	D-02	D-03	D-04	D-07	D-45	D-53	D-56	D-58
12/31/21 - 01/08/22	32 ± 5	22 ± 4	28 ± 4	39 ± 5	33 ± 5	30 ± 4	42 ± 5	26 ± 4	33 ± 5
01/08/22 - 01/15/22	29 ± 5	23 ± 5	30 ± 5	39 ± 6	35 ± 5	24 ± 5	33 ± 5	25 ± 5	35 ± 5
01/15/22 - 01/21/22	25 ± 5	23 ± 5	23 ± 5	29 ± 5	29 ± 5	22 ± 5	31 ± 6	22 ± 5	30 ± 6
01/21/22 - 01/28/22	22 ± 5	16 ± 4	25 ± 5	28 ± 5	28 ± 5	18 ± 4	22 ± 5	19 ± 4	23 ± 5
01/28/22 - 02/04/22	33 ± 5	20 ± 4	23 ± 5	33 ± 5	27 ± 5	22 ± 5	28 ± 5	24 ± 5	28 ± 5
02/04/22 - 02/11/22	26 ± 5	21 ± 4	22 ± 5	29 ± 5	30 ± 5	21 ± 5	31 ± 5	19 ± 4	28 ± 5
02/11/22 - 02/18/22	23 ± 5	20 ± 4	22 ± 5	31 ± 5	26 ± 5	23 ± 5	29 ± 5	20 ± 4	26 ± 5
02/18/22 - 02/25/22	16 ± 5	14 ± 4	17 ± 5	22 ± 5	18 ± 5	16 ± 5	16 ± 5	16 ± 5	18 ± 5
02/25/22 - 03/04/22	24 ± 5	20 ± 4	27 ± 5	37 ± 5	31 ± 5	23 ± 5	29 ± 5	18 ± 4	28 ± 5
03/04/22 - 03/11/22	18 ± 4	18 ± 4	22 ± 5	31 ± 5	18 ± 4	15 ± 4	24 ± 5	13 ± 4	22 ± 5
03/11/22 - 03/18/22	28 ± 5	13 ± 4	20 ± 5	29 ± 5	30 ± 5	19 ± 5	24 ± 5	20 ± 5	24 ± 5
03/18/22 - 03/25/22	13 ± 4	12 ± 4	14 ± 4	14 ± 4	15 ± 4	8 ± 4	17 ± 4	11 ± 4	15 ± 4
03/25/22 - 04/02/22	13 ± 4	8 ± 3	12 ± 3	15 ± 4	17 ± 4	17 ± 4	14 ± 4	9 ± 4	13 ± 4
04/01/22 - 04/08/22	8 ± 4	< 6	6 ± 4	8 ± 4	9 ± 4	7 ± 4	8 ± 4	6 ± 4	9 ± 4
04/08/22 - 04/15/22	11 ± 4	7 ± 4	10 ± 4	12 ± 4	14 ± 4	13 ± 4	17 ± 4	16 ± 4	13 ± 4
04/15/22 - 04/22/22	13 ± 4	15 ± 4	12 ± 4	10 ± 4	14 ± 4	14 ± 4	14 ± 4	14 ± 4	13 ± 4
04/22/22 - 04/29/22	13 ± 4	12 ± 4	16 ± 4	16 ± 4	15 ± 4	15 ± 4	14 ± 4	14 ± 4	15 ± 4
04/29/22 - 05/06/22	11 ± 4	10 ± 4	13 ± 4	12 ± 4	12 ± 4	9 ± 3	13 ± 4	8 ± 3	12 ± 4
05/06/22 - 05/13/22	17 ± 4	21 ± 4	21 ± 4	23 ± 5	25 ± 5	21 ± 5	24 ± 5	21 ± 4	23 ± 5
05/13/22 - 05/20/22	20 ± 5	18 ± 4	16 ± 4	18 ± 4	22 ± 5	19 ± 4	20 ± 5	17 ± 4	21 ± 5
05/20/22 - 05/27/22	10 ± 4	10 ± 4	13 ± 4	13 ± 4	13 ± 4	13 ± 4	10 ± 4	13 ± 4	12 ± 4
05/27/22 - 06/03/22	12 ± 4	16 ± 5	15 ± 5	14 ± 4	13 ± 4	15 ± 4	15 ± 4	12 ± 4	15 ± 4
06/03/22 - 06/10/22	16 ± 4	21 ± 5	20 ± 5	15 ± 4	20 ± 5	17 ± 4	22 ± 5	18 ± 5	20 ± 5
06/10/22 - 06/17/22	19 ± 5	25 ± 5	16 ± 4	24 ± 5	21 ± 5	24 ± 5	20 ± 5	22 ± 5	19 ± 5
06/17/22 - 06/24/22	10 ± 4	10 ± 4	12 ± 4	10 ± 4	13 ± 4	10 ± 4	11 ± 4	10 ± 4	10 ± 4
06/24/22 - 07/01/22	15 ± 4	14 ± 4	15 ± 4	14 ± 4	15 ± 4	19 ± 4	14 ± 4	14 ± 4	18 ± 4
07/01/22 - 07/08/22	16 ± 4	22 ± 5	15 ± 4	17 ± 4	16 ± 4	20 ± 4	19 ± 4	17 ± 4	18 ± 4
07/08/22 - 07/15/22	15 ± 4	19 ± 5	13 ± 4	16 ± 4	13 ± 4	15 ± 4	14 ± 4	16 ± 4	14 ± 4
07/15/22 - 07/22/22	20 ± 5	25 ± 5	23 ± 5	19 ± 5	23 ± 5	28 ± 5	22 ± 5	20 ± 5	23 ± 5
07/22/22 - 07/29/22	14 ± 4	17 ± 4	15 ± 4	19 ± 4	19 ± 4	18 ± 4	16 ± 4	16 ± 4	17 ± 4
07/29/22 - 08/05/22	15 ± 4	16 ± 4	18 ± 5	15 ± 4	12 ± 4	16 ± 4	14 ± 4	14 ± 4	19 ± 5
08/05/22 - 08/12/22	12 ± 4	17 ± 4	17 ± 4	13 ± 4	14 ± 4	16 ± 4	16 ± 4	15 ± 4	16 ± 4
08/12/22 - 08/19/22	21 ± 4	21 ± 4	20 ± 4	18 ± 4	19 ± 4	23 ± 4	24 ± 5	23 ± 4	25 ± 5
08/19/22 - 08/26/22	20 ± 4	26 ± 5	27 ± 5	20 ± 4	24 ± 5	28 ± 5	28 ± 5	22 ± 4	23 ± 5
08/26/22 - 09/02/22	19 ± 4	20 ± 4	20 ± 4	17 ± 4	20 ± 4	23 ± 4	20 ± 4	23 ± 4	26 ± 4
09/02/22 - 09/09/22	20 ± 4	22 ± 5	22 ± 5	17 ± 4	23 ± 5	20 ± 4	18 ± 4	17 ± 4	19 ± 4
09/09/22 - 09/16/22	19 ± 4	21 ± 4	22 ± 5	18 ± 4	19 ± 4	23 ± 5	21 ± 4	19 ± 4	21 ± 4
09/16/22 - 09/23/22	22 ± 5	21 ± 5	23 ± 5	18 ± 4	20 ± 4	24 ± 5	21 ± 5	20 ± 4	22 ± 5
09/23/22 - 09/30/22	12 ± 3	15 ± 3	13 ± 3	14 ± 3	15 ± 3	14 ± 4	15 ± 4	13 ± 3	15 ± 4
09/30/22 - 10/07/22	23 ± 5	19 ± 5	17 ± 5	21 ± 5	20 ± 5	18 ± 4	16 ± 4	17 ± 4	21 ± 5
10/07/22 - 10/14/22	23 ± 5	28 ± 5	26 ± 5	23 ± 5	24 ± 5	31 ± 5	23 ± 5	23 ± 5	25 ± 5
10/14/22 - 10/21/22	12 ± 4	14 ± 4	15 ± 4	14 ± 4	15 ± 4	12 ± 4	16 ± 4	11 ± 4	16 ± 4
10/21/22 - 10/28/22	27 ± 5	29 ± 5	26 ± 5	23 ± 4	26 ± 5	30 ± 5	24 ± 5	20 ± 4	31 ± 5
10/28/22 - 11/04/22	39 ± 5	45 ± 6	41 ± 6	39 ± 5	36 ± 5	44 ± 6	42 ± 6	41 ± 6	49 ± 6
11/04/22 - 11/11/22	19 ± 5	23 ± 5	17 ± 4	21 ± 5	18 ± 4	24 ± 5	19 ± 5	20 ± 5	23 ± 5
11/11/22 - 11/18/22	11 ± 4	14 ± 4	12 ± 4	14 ± 4	10 ± 4	11 ± 4	9 ± 3	11 ± 4	13 ± 4
11/18/22 - 11/25/22	33 ± 5	36 ± 5	36 ± 5	34 ± 5	31 ± 5	37 ± 5	29 ± 5	37 ± 5	35 ± 5
11/25/22 - 12/02/22	26 ± 5	28 ± 5	31 ± 5	28 ± 5	27 ± 5	32 ± 5	26 ± 5	23 ± 5	29 ± 5
12/02/22 - 12/09/22	43 ± 6	38 ± 5	47 ± 6	50 ± 6	39 ± 5	43 ± 6	43 ± 6	36 ± 5	45 ± 6
12/09/22 - 12/16/22	21 ± 4	23 ± 5	29 ± 5	26 ± 5	24 ± 5	19 ± 4	21 ± 4	20 ± 4	23 ± 4
12/16/22 - 12/23/22	29 ± 5	30 ± 5	34 ± 5	34 ± 5	19 ± 4	36 ± 5	30 ± 5		22 ± 4
12/23/22 - 12/30/22	26 ± 5	22 ± 4	25 ± 6	29 ± 5	27 ± 5	22 ± 5	29 ± 5	22 ± 4	29 ± 5
MEAN ± 2 STD DEV	20 ± 16	20 ± 15	21 ± 16	22 ± 18	21 ± 14	21 ± 16	21 ± 16	19 ± 14	22 ± 16

Table C-V.1

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION		GR	OUP III		GROUP IV
PERIOD	D-08	D-10	D-14	D-55	D-12
12/31/21 - 01/08/22	29 ± 4	47 ± 5	27 ± 4	37 ± 5	(1)
01/08/22 - 01/15/22	25 ± 5	34 ± 5	28 ± 5	37 ± 6	(1)
01/15/22 - 01/21/22	20 ± 5	35 ± 6	22 ± 5	26 ± 5	(1)
01/21/22 - 01/28/22	21 ± 5	25 ± 5	21 ± 5	25 ± 5	(1)
01/28/22 - 02/04/22	23 ± 5	30 ± 5	22 ± 5	26 ± 5	(1)
02/04/22 - 02/11/22	21 ± 4	31 ± 5	18 ± 4	24 ± 5	(1)
02/11/22 - 02/18/22	22 ± 5	34 ± 5	18 ± 4	24 ± 5	(1)
02/18/22 - 02/25/22	16 ± 5	21 ± 5	11 ± 4	19 ± 5	(1)
02/25/22 - 03/04/22	23 ± 4	32 ± 5	23 ± 5	25 ± 5	(1)
03/04/22 - 03/11/22	21 ± 5	26 ± 5	15 ± 4	22 ± 5	20 ± 7
03/11/22 - 03/18/22	15 ± 4	30 ± 5	15 ± 4	23 ± 5	20 ± 5
03/18/22 - 03/25/22	10 ± 4	15 ± 4	8 ± 4	13 ± 4	13 ± 4
03/25/22 - 04/02/22	14 ± 4	18 ± 4	11 ± 3	12 ± 3	. 13 ± 4
04/01/22 - 04/08/22	< 6	9 ± 5	6 ± 4	8 ± 4	7 ± 4
04/08/22 - 04/15/22	13 ± 4	16 ± 4	12 ± 4	12 ± 4	13 ± 4
04/15/22 - 04/22/22	14 ± 4	12 ± 4	10 ± 4	18 ± 4	14 ± 4
04/22/22 - 04/29/22	17 ± 4	13 ± 4	14 ± 4	16 ± 4	15 ± 4
04/29/22 - 05/06/22	13 ± 4	11 ± 4	9 ± 3	12 ± 4	13 ± 4
05/06/22 - 05/13/22	19 ± 4	18 ± 4	24 ± 5	19 ± 4	22 ± 5
05/13/22 - 05/20/22	15 ± 4	18 ± 4	18 ± 4	19 ± 4	19 ± 4
05/20/22 - 05/27/22	11 ± 4	12 ± 4	10 ± 4	11 ± 4	11 ± 4
05/27/22 - 06/03/22	9 ± 4	15 ± 5	9 ± 4	14 ± 4	14 ± 7
06/03/22 - 06/10/22	17 ± 4	21 ± 5	19 ± 5	16 ± 4	(1)
06/10/22 - 06/17/22	16 ± 4	20 ± 5	20 ± 5	20 ± 5	(1)
06/17/22 - 06/24/22	11 ± 4	13 ± 4	12 ± 4	12 ± 4	11 ± 4
06/24/22 - 07/01/22	13 ± 4	18 ± 4	13 ± 4	16 ± 4	15 ± 4
07/01/22 - 07/08/22	18 ± 4	18 ± 4	21 ± 4	19 ± 4	18 ± 4
07/08/22 - 07/15/22	24 ± 5	11 ± 4	14 ± 4	12 ± 4	18 ± 5
07/15/22 - 07/22/22	22 ± 5	28 ± 5	21 ± 5	19 ± 5	23 ± 5
07/22/22 - 07/29/22 07/29/22 - 08/05/22	19 ± 4 15 ± 4	17 ± 4 15 ± 4	17 ± 4 13 ± 4	15 ± 4 21 ± 5	18 ± 4 19 ± 5
08/05/22 - 08/12/22	15 ± 4	15 ± 4	16 ± 4	15 ± 4	19 ± 5
08/12/22 - 08/19/22	24 ± 4	26 ± 5	21 ± 4	21 ± 4	24 ± 5
08/19/22 - 08/26/22	27 ± 5	24 ± 5	21 ± 4	25 ± 5	25 ± 5
08/26/22 - 09/02/22	23 ± 4	23 ± 4	19 ± 4	23 ± 4	19 ± 4
09/02/22 - 09/09/22	22 ± 5	20 ± 4	18 ± 4	20 ± 4	16 ± 4
09/09/22 - 09/16/22	28 ± 5	20 ± 4	22 ± 4	19 ± 4	19 ± 4
09/16/22 - 09/23/22	22 ± 5	22 ± 5	22 ± 5	23 ± 5	23 ± 5
09/23/22 - 09/30/22	15 ± 4	15 ± 3	14 ± 4	19 ± 4	16 ± 4
09/30/22 - 10/07/22	24 ± 5	20 ± 5	17 ± 4	19 ± 4	21 ± 4
10/07/22 - 10/14/22	25 ± 5	27 ± 5	20 ± 5	23 ± 5	25 ± 5
10/14/22 - 10/21/22	11 ± 4	8 ± 4	13 ± 4	11 ± 4	14 ± 4
10/21/22 - 10/28/22	28 ± 5	27 ± 5	21 ± 4	27 ± 5	26 ± 5
10/28/22 - 11/04/22	47 ± 6	39 ± 5	43 ± 6	44 ± 6	40 ± 6
11/04/22 - 11/11/22	21 ± 5	19 ± 4	23 ± 5	16 ± 4	20 ± 5
11/11/22 - 11/18/22	12 ± 4	13 ± 4	10 ± 4	10 ± 4	12 ± 4
11/18/22 - 11/25/22	37 ± 5	35 ± 5	35 ± 5	35 ± 5	35 ± 5
11/25/22 - 12/02/22		31 ± 5	28 ± 5	33 ± 5	27 ± 5
12/02/22 - 12/09/22		42 ± 6	41 ± 6	40 ± 5	44 ± 6
12/09/22 - 12/16/22		23 ± 5	20 ± 4	20 ± 4	25 ± 5
12/16/22 - 12/23/22		29 ± 5	28 ± 5	28 ± 5	32 ± 5
12/23/22 - 12/30/22	24 ± 5	26 ± 5	17 ± 4	18 ± 4	24 ± 5
MEAN ± 2 STD DEV	21 ± 16	22 ± 18	19 ± 15	21 ± 16	20 ± 16

THE MEAN AND 2 STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-V.2 MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

GROUP I - ON-SITE LOCATIONS GROUP II - NEAR-FIELD LOCATIONS		TIONS	GROUP III - FAR-	TIONS	GROUP IV - CONTROL LOCATION											
COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD		COLLECTION	MIN	MAX	MEAN ± 2SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD
12/31/21 - 02/04/22	16	33	25 ± 9	-	12/31/21 - 02/04/22	18	42	28 ± 12	12/31/21 - 02/04/22	20	47	28 ± 14	(1)			
02/04/22 - 03/04/22	14	27	21 ± 8		02/04/22 - 03/04/22	16	37	24 ± 12	02/04/22 - 03/04/22	11	34	23 ± 12	(1)			
03/04/22 - 04/02/22	8	28	16 ± 11		03/04/22 - 04/02/22	8	31	18 ± 13	03/04/22 - 04/02/22	8	30	17 ± 12	03/04/22 - 04/02/22	13	20	17 ± 8
04/01/22 - 04/29/22	6	16	11 ± 6		04/01/22 - 04/29/22	6	17	13 ± 6	04/02/22 - 04/29/22	6	18	13 ± 6	04/02/22 - 04/29/22	7	15	12 ± 7
04/29/22 - 06/03/22	10	21	15 ± 8		04/29/22 - 06/03/22	8	25	16 ± 10	04/29/22 - 06/03/22	9	24	14 ± 8	04/29/22 - 06/03/22	11	22	16 ± 9
06/03/22 - 07/02/22	10	25	16 ± 9		06/03/22 - 07/02/22	10	24	17 ± 9	06/03/22 - 07/02/22	11	21	16 ± 7	06/17/22 - 07/01/22	11	15	13 ± 5
07/02/22 - 07/29/22	13	25	18 ± 8		07/01/22 - 07/29/22	13	28	18 ± 7	07/01/22 - 07/29/22	11	28	18 ± 9	07/01/22 - 07/29/22	18	23	19 ± 4
07/29/22 - 09/02/22	12	27	19 ± 7		07/29/22 - 09/02/22	12	28	19 ± 9	07/29/22 - 09/02/22	13	27	20 ± 9	07/29/22 - 09/02/22	16	25	20 ± 7
09/02/22 - 10/01/22	12	23	19 ± 8		09/02/22 - 10/01/22	13	24	19 ± 6	09/02/22 - 10/01/22	14	28	20 ± 7	09/02/22 - 09/30/22	16	23	19 ± 6
10/01/22 - 10/28/22	12	29	22 ± 12		09/30/22 - 10/28/22	11	31	21 ± 11	09/30/22 - 10/28/22	8	28	20 ± 13	09/30/22 - 10/28/22	14	26	21 ± 11
10/28/22 - 12/02/22	11	45	27 ± 22		10/28/22 - 12/02/22	9	49	27 ± 22	10/28/22 - 12/02/22	10	47	28 ± 24	10/28/22 - 12/02/22	12	40	27 ± 22
12/02/22 - 12/30/22	21	47	31 ± 17		12/02/22 - 12/30/22	19	50	30 ± 18	12/02/22 - 12/30/22	17	43	28 ± 18	12/02/22 - 12/30/22	24	44	31 ± 19
12/31/21 - 12/30/22	6	47	20 ± 15		12/31/21 - 12/30/22	6	50	21 ± 16	12/31/21 - 12/30/22	6	47	21 ± 16	03/04/22 - 12/30/22	7	44	20 ± 16

Table C-V.3

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022
RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

		RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA										
SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
						_				-		
D-01	12/31/21 - 04/01/22	< 1	< 2	< 4	< 1	< 3	< 1	< 3	< 2	< 1	< 14	< 6
	04/01/22 - 07/02/22	< 3	< 3	< 9	< 2	< 6	< 3	< 5	< 3	< 3	< 20	< 11
	07/02/22 - 10/01/22	< 3	< 3	< 8	< 3	< 8	< 3	< 6	< 3	< 3	< 29	< 7
	10/01/22 - 12/30/22	< 3	< 2	< 6	< 2	< 7	< 3	< 6	< 3	< 3	< 20	< 8
	MEAN	-	-	-	-	-	-	-	-	-	-	-
D-02	12/31/21 - 04/02/22	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 18	< 9
	04/02/22 - 07/02/22	< 2	< 3	< 5	< 2	< 4	< 3	< 4	< 2	< 2	< 15	< 6
	07/02/22 - 10/01/22	< 2	< 2	< 5	< 3	< 5	< 3	< 5	< 2	< 2	< 15	< 10
	10/01/22 - 12/30/22	< 2	< 2	< 5	< 2	< 6	< 2	< 3	< 3	< 2	< 15	< 6
	MEAN	-	-	-	-	-	-	-	-	-	-	-
D-03	12/31/21 - 04/02/22	< 2	< 2	< 6	< 2	< 5	< 2	< 5	< 2	< 2	< 23	< 7
	04/02/22 - 07/02/22	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 15	< 6
	07/02/22 - 10/01/22	< 1	< 2	< 4	< 2	< 3	< 3	< 4	< 2	< 2	< 18	< 4
	10/01/22 - 12/30/22	< 2	< 3	< 4	< 2	< 6	< 2	< 4	< 2	< 2	< 12	< 6
	MEAN	-	-	-	-	-	-	-	-	-	-	-
D 04	40/04/04 04/04/00			. 0		. 0		. 0			- 40	-
D-04	12/31/21 - 04/01/22	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 1	< 1	< 13	< 5
	04/01/22 - 07/02/22	< 3	< 3	< 7	< 3	< 8	< 3	< 6	< 3	< 3	< 21	< 5
	07/02/22 - 10/01/22	< 2	< 2	< 4	< 2	< 5	< 2	< 5	< 2	< 2	< 19	< 11
	10/01/22 - 12/30/22	< 2	< 2	< 3	< 3	< 4	< 2	< 3	< 2	< 1	< 13	< 6
	MEAN	-	-	-	-	-	-		-	-	-	-
D-07	12/31/21 - 04/01/22	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 1	< 17	< 8
	04/01/22 - 07/02/22	< 2	< 3	< 6	< 3	< 5	< 2	< 4	< 2	< 2	< 17	< 10
	07/02/22 - 10/01/22	< 3	< 3	< 8	< 3	< 6	< 2	< 4	< 3	< 3	< 27	< 7
	10/01/22 - 12/30/22	< 2	< 2	< 4	< 2	< 7	< 2	< 3	< 2	< 2	< 13	< 7
	MEAN	-	-	-	-	-	-	-	-	<u>.</u> .	-	-
D-08	12/31/21 - 04/02/22	< 2	< 3	< 6	< 3	< 5	< 2	< 5	< 2	< 2	< 23	< 11
	04/02/22 - 07/01/22	< 3	< 4	< 8	< 3	< 6	< 4	< 4	< 3	< 3	< 22	< 10
	07/01/22 - 10/01/22	< 3	< 3	< 5	< 3	< 9	< 4	< 5	< 2	< 2	< 23	- < 6
	10/01/22 - 12/30/22	< 3	< 3	< 6	< 3	< 7	< 3	< 5	< 4	< 3	< 25	< 8
	MEAN	-		-	-	-	-	-		-		-
D-10	12/31/21 - 04/02/22	< 2	< 2	< 6	< 2	< 5	< 2	< 3	< 2	< 2	< 22	< 6
2 .5	04/02/22 - 07/02/22	< 1	< 2	< 3	< 2	< 6	< 2	< 3	< 2	< 2	< 14	< 5
	07/02/22 - 10/01/22	< 2	< 3	< 6	< 1	< 6	< 2	< 4	< 2	< 2	< 22	< 11
	10/01/22 - 12/30/22	< 2	< 2	< 5	< 2	< 6	< 2	< 4	< 2	< 2	< 17	< 6
	MEAN	, <u>-</u>	-	-	-	-	-	-	-	-	-	-

Table C-V.3

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES

COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

	COLLECTION	NEODETO IN CIVITO OF E-51 CITOO METER 12 CICIMIN											
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140	
D-12	03/04/22 - 04/02/22	< 5	. < 8	< 21	< 6	< 16	< 7	< 14	< 6	< 5	< 68	< 34	
٠. ٦	04/02/22 - 07/01/22	< 2	< 3	< 7	< 3	< 6	< 2	< 5	< 2	< 3	< 20	< 5	
	07/01/22 - 09/30/22	< 3	< 3	< 7	< 3	< 7	< 3	< 6	< 3	< 3	< 29	< 5	
	09/30/22 - 12/30/22	< 3	< 3	< 7	< 3	< 7	< 3	< 5	< 3	< 3	< 20	< 8	
	MEAN		- -	_				_	_	J	_		
	IVICAIN	-	-	-	-	-	-	-	-	-	-	-	
D-14	12/31/21 - 04/02/22	< 2	< 2	< 6	< 3	< 5	< 3	< 4	< 3	< 2	< 22	< 13	
	04/02/22 - 07/01/22	< 2	< 3	< 6	< 2	< 6	< 3	< 5	< 3	< 3	< 19	< 10	
	07/01/22 - 09/30/22	< 2	< 2	< 4	< 2	< 5	< 2	< 3	< 2	< 2⋅	< 21	< 6	
	09/30/22 - 12/30/22	< 1	< 2	< 6	< 2	< 5	< 2	< 4	< 2	< 2	< 13	< 9	
	MEAN	-	-	-	<u>.</u> ·	-	-	-	-		-	-	
D-45	12/31/21 - 04/02/22	< 1	< 2	< 5	< 2	< 5	< 2	< 3	< 2	< 1	< 18	< 4	
	04/02/22 - 07/01/22	< 2	< 2	< 7	< 2	< 5	< 3	< 4	< 2	< 1	< 24	< 10	
	07/01/22 - 09/30/22	< 2	< 2	< 4	< 2	< 5	< 2	< 3	< 2	< 2	< 15	< 11	
	09/30/22 - 12/30/22	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 16	< 5	
	MEAN	-	_	-	-	-	-	-	-	-	<u>.</u>	-	
D-53	12/31/21 - 04/01/22	< 3	< 4	< 7	< 3	< 3	< 3	< 5	< 3	< 3	< 32	< 10	
D-55	04/01/22 - 07/02/22	< 2	< 2	< 6	< 2	< 5	< 2	< 5	< 2	< 2	< 23	< 10	
	07/02/22 - 10/01/22	< 3	< 3	< 5	< 2	< 7	< 3	< 6	< 2	< 2	< 27	< 12	
	10/01/22 - 10/01/22	< 3	< 4	< 6	< 3	< 8	< 4	< 5	< 2	< 3	< 24	< 10	
		\ 3	` 4	~ 0	\ \		` 4	\ 0	` 2	` ` `	< 2 4	\ 10	
	MEAN	-	-	-	-	-	-	-	-	-	-	-	
D-55	12/31/21 - 04/02/22	< 2	< 2	< 5	< 2	< 3	< 2	< 4	< 2	< 2	< 23	< 6	
	04/02/22 - 07/01/22	< 2	< 4	< 9	< 3	< 7	< 4	< 5	< 3	< 3	< 35	< 14	
	07/01/22 - 09/30/22	< 2	< 2	< 5	< 2	< 6	< 2	< 2	< 2	< 2	< 19	< 7	
	09/30/22 - 12/30/22	< 2	< 2	< 5	< 2	< 5	< 2	< 3	< 2	< 2	< 13	< 5	
	MEAN	-	-	-	-	-	-	-	-	-	-	-	
D-56	12/31/21 - 04/01/22	< 2	< 3	< 6	< 3 .	< 6	< 3	< 6	< 2	< 3	< 27	< 9	
	04/01/22 - 07/02/22	< 2	< 1	< 5	< 3	< 5	< 2	< 4	< 2	< 2	< 22	< 7	
	07/02/22 - 10/01/22	< 2	. < 2	< 5	< 3	< 4	< 2	< 4	< 2	< 2	< 20	< 7	
	10/01/22 - 12/30/22	< 3	< 3	< 7	< 2	< 5	< 3	< 4	< 3	< 3	< 20	< 8	
	MEAN	-	-	-	-	-	-	-	-	-	-	-	
D-58	12/31/21 - 04/01/22	< 3	< 4	< 8	< 4	< 7	< 4	< 6	< 4	< 3	< 37	< 12	
	04/01/22 - 07/02/22	< 3	< 2	< 6	< 2	< 7	< 3	< 5	< 3	< 3	< 26	< 10	
	07/02/22 - 10/01/22	< 3	< 3	< 7	< 3	< 6	< 4	< 6	< 4	< 3	< 30	< 10	
	10/01/22 - 12/30/22	< 3	< 3	< 5	< 2	< 4	< 2	< 4	< 3	< 2	< 20	< 5	
	MEAN	_	-	-	-	-	-	-	-	-	-	-	

Table C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF E-3 PCI/CU METER + 2 SIGMA

COLLECTION		GROUP I	ı	GROUP II					
PERIOD	D-01	D-02	D-03	D-04	D-07	D-45	D-53	D-56	D-58
12/31/21 - 01/08/22	< 37	< 36	< 35	< 16	< 37	< 35	< 34	< 29	< 29
01/08/22 - 01/15/22	< 33	< 14	< 33	< 33	< 33	< 14	< 14	< 8	< 8
01/15/22 - 01/21/22	< 22	< 53	< 53	< 53	< 53	< 36	< 36	< 38	< 38
01/21/22 - 01/28/22	< 25	< 25	< 25	< 25	< 25	< 30	< 14	< 30	< 30
01/28/22 - 02/04/22	< 17	< 17	< 17	< 17	< 17	< 22	< 22	< 16	< 16
02/04/22 - 02/11/22	< 29	< 29	< 29	< 28	< 28	< 33	< 32	< 32	< 27
02/11/22 - 02/18/22	< 17	< 39	< 39	< 39	< 40	< 27	< 33	< 31	< 31
02/18/22 - 02/25/22	< 26	< 12	< 26	< 26	< 26	< 22	< 51	< 51	< 51
02/25/22 - 03/04/22	< 43	< 44	< 44	< 33	< 33	< 19	< 18	< 18	< 18
03/04/22 - 03/11/22	< 36	< 36	< 17	< 36	< 36	< 27	< 28	< 28	< 28
03/11/22 - 03/18/22	< 26	< 26	< 26	< 26	< 30	< 25	< 30	< 30	< 30
03/18/22 - 03/25/22	< 13	< 32	< 32	< 32	< 32	< 14	< 30	< 30	< 29
03/25/22 - 04/02/22	< 19	< 15	< 15	< 16	< 18	< 5	< 31	< 31	< 31
04/01/22 - 04/08/22	< 34	< 39	< 38	< 34	< 37	< 38	< 33	< 33	< 33
04/08/22 - 04/15/22	< 11	< 25	< 25	< 25	< 25	< 13	< 40	< 40	< 40
04/15/22 - 04/22/22	< 34	< 34	< 27	< 34	< 34	< 34	< 30	< 30	< 30
04/22/22 - 04/29/22	< 31	< 31	< 31	< 31	< 37	< 32	< 32	< 16	< 32
04/29/22 - 05/06/22	< 28	< 29	< 19	< 28	< 28	< 45	< 32	< 32	< 32
05/06/22 - 05/13/22	< 59	< 59	< 58	< 59	< 25	< 28	< 22	< 26	< 26
05/13/22 - 05/20/22	< 18	< 42	< 42	< 42	< 42	< 37	< 31	< 31	< 31
05/20/22 - 05/27/22	< 44	< 44	< 43	< 44	< 19	< 28	< 27	< 27	< 27
05/27/22 - 06/03/22	< 30	< 30	< 30	< 12	< 30	< 45	< 38	< 38	< 38
06/03/22 - 06/10/22	< 14	< 33	< 33	< 33	< 33	< 54	< 45	< 13	< 13
06/10/22 - 06/17/22	< 23	< 55	< 53	< 55	< 55	< 39	< 38	< 38	< 26
06/17/22 - 06/24/22	< 30	< 25	< 29	< 30	< 30	< 36	< 47	< 47	< 47
06/24/22 - 07/01/22	< 34	< 33	< 35	< 34	< 35	< 33	< 27	< 18	< 27
07/01/22 - 07/08/22	< 34	< 35	< 18	< 34	< 34	< 44	< 31	< 31	< 31
07/08/22 - 07/15/22	< 41	< 41	< 40	< 17	< 41	< 18	< 47	< 47	< 47
07/15/22 - 07/22/22	< 20	< 48	< 48	< 48	< 48	< 34	< 44	< 44	< 44
07/22/22 - 07/29/22	< 33	< 33	< 33	< 33	< 28	< 40	< 42	< 42	< 42
07/29/22 - 08/05/22	< 26	< 26	< 18	< 26	< 26	< 13	< 29	< 29	< 29
08/05/22 - 08/12/22	< 36	< 36	< 36	< 36	< 19	< 35	< 30	< 30	< 30
08/12/22 - 08/19/22	< 31	< 31	< 26	< 31	< 31	< 52	< 37	< 37	< 37
08/19/22 - 08/26/22	< 50	< 50	< 50	< 21	< 50	< 34	< 21	< 21	< 21
08/26/22 - 09/02/22	< 59	< 59	< 59	< 28	< 59	< 52	< 53	< 52	< 52
09/02/22 - 09/09/22	< 42	< 43	< 18	< 42	< 43	< 43	< 40	< 40	< 39
09/09/22 - 09/16/22	< 34	< 34	< 24	< 34	< 34	< 48	< 36	< 36	< 36
09/16/22 - 09/23/22	< 32	< 32	< 32	< 14	< 33	< 55	< 51	< 51	< 51
09/23/22 - 09/30/22	< 43	< 42	< 42	< 18	< 43	< 45	< 41	< 41	< 40
09/30/22 - 10/07/22	< 40	< 20	< 41	< 40	< 41	< 35	< 41	< 41	< 27
10/07/22 - 10/14/22 10/14/22 - 10/21/22	< 48 < 20	< 48	< 47	< 48	< 37	< 29	< 28 < 33	< 23 < 33	< 28 < 15
		< 30	< 30	< 30 < 39	< 30 < 16	< 45 < 37	< 28	< 28	
10/21/22 - 10/28/22 10/28/22 - 11/04/22	< 38 < 18	< 39 < 35	< 39 < 35	< 35	< 35	< 49	< 36	< 36	< 28
				< 35 < 20				< 48	< 36
11/04/22 - 11/11/22 11/11/22 - 11/18/22	< 48	< 48	< 48		< 48 < 37	< 39	< 49 < 26	< 28	< 48 < 28
11/11/22 - 11/16/22	< 24 < 15	< 36 < 30	< 36 < 30	< 36 < 30	< 30	< 34 < 34	< 26 < 26	< 28 < 22	< 26
11/25/22 - 11/25/22	< 20	< 20	< 20	< 20	< 10	< 21	< 14	< 17	< 17
12/02/22 - 12/09/22	< 32	< 32	< 32	< 32	< 22	< 34	< 33	< 34	< 29
12/09/22 - 12/16/22	< 29	< 29	< 29	< 29	< 13	< 48	< 33	< 33	< 33
12/16/22 - 12/23/22	< 42	< 42	< 42	< 42	< 21	< 38	< 38	< 40	< 40
12/23/22 - 12/30/22	< 41	< 40	< 24	< 41	< 41	< 26	< 28	< 28	< 27
MEAN	-		-	_	-	-	-	-	-

Table C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES
COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022
RESULTS IN UNITS OF E-3 PCI/CU METER + 2 SIGMA

COLLECTION		GRO		GROUP IV		
PERIOD	D-08	D-10	D-14	D-55	D-12	
12/31/21 - 01/08/22	< 34	< 14	< 35	< 30	(1)	
01/08/22 - 01/15/22	< 14	< 12	< 14	< 8	(1)	
01/15/22 - 01/21/22	< 36	< 36	< 24	< 38	(1)	
01/21/22 - 01/28/22	< 25	< 25	< 13	< 30	(1)	
01/28/22 - 02/04/22	< 9	< 22	< 22	< 16	<u>(1)</u>	
02/04/22 - 02/11/22	< 28	< 28	< 12	< 33	<u>(1)</u>	
02/11/22 - 02/18/22	< 33	< 33	< 33	< 31	<u>(1)</u>	
02/18/22 - 02/25/22	< 30	< 30	< 30	< 52	(1)	
02/25/22 - 03/04/22	< 33	< 33	< 28	< 18	(1)	
03/04/22 - 03/11/22	< 27	< 27	< 27	< 29	< 41	
03/11/22 - 03/18/22	< 26	< 30	< 30	< 30	< 30	
03/18/22 - 03/25/22	< 30	< 30	< 30	< 30	< 30	
03/25/22 - 04/02/22	< 5	< 5	< 5	< 26	< 5	
04/01/22 - 04/08/22	< 43	< 20	< 42	< 32	< 43	
04/08/22 - 04/15/22	< 27	< 27	< 28	< 41	< 27	
04/15/22 - 04/22/22	< 34	< 34	< 14	< 31	< 34	
04/22/22 - 04/29/22	< 37	< 37	< 16	< 32	< 37	
04/29/22 - 05/06/22	< 20	< 48	< 45	< 29	< 48	
05/06/22 - 05/13/22	< 30	< 30	< 32	< 28	< 30	
05/13/22 - 05/20/22	< 37	< 37	< 17	< 31	< 37	
05/20/22 - 05/27/22	< 19	< 28	< 28	< 28	< 28	
05/27/22 - 06/03/22	< 44	< 44	< 45	< 39	< 32	
06/03/22 - 06/10/22	< 54	< 54	< 54	< 13	(1)	
06/10/22 - 06/17/22	< 39	< 39	< 39	< 39	(1)	
06/17/22 - 06/24/22	< 36	< 35	< 36	< 48	< 24	
06/24/22 - 07/01/22	< 22	< 36	< 44	< 33	< 43	
07/01/22 - 07/08/22	< 44	< 21	< 44	< 29	< 44	
07/08/22 - 07/15/22	< 43	< 43	< 43	< 48	< 43	
07/15/22 - 07/22/22	< 29	< 34	< 35	< 44	< 34	
07/22/22 - 07/29/22	< 40	< 40	< 40	< 43	< 19	
07/29/22 - 08/05/22	< 27	< 27	< 28	< 30	< 27	
08/05/22 - 08/12/22	< 35	< 35	< 23	< 30	< 35	
08/12/22 - 08/19/22	< 51	< 51	< 22	< 38	< 52	
08/19/22 - 08/26/22	< 14	< 34	< 34	< 21	< 34	
08/26/22 - 09/02/22	< 61	< 61	< 63	< 53	< 61	
09/02/22 - 09/09/22	< 43	< 43	< 44	< 40	< 19	
09/09/22 - 09/16/22	< 20	< 48	< 48	< 36	< 48	
09/16/22 - 09/23/22	< 54	< 54	< 23	< 51	< 54	
09/23/22 - 09/30/22	< 39	< 38	< 19	< 47	< 45	
09/30/22 - 10/07/22	< 38	< 18	< 35	< 38	< 35	
10/07/22 - 10/14/22	< 16	< 37	< 38	< 29	< 38	
10/14/22 - 10/21/22	< 19	< 45	< 45	< 33	< 45	
10/21/22 - 10/28/22	< 37	< 37	< 37	< 29	< 17	
10/28/22 - 11/04/22	< 48	< 48	< 23	< 37	< 48	
11/04/22 - 11/11/22	< 39	< 38	< 16	< 49	< 39	
11/11/22 - 11/18/22	< 34	< 34	< 16	< 28	< 34	
11/18/22 - 11/25/22	< 34	< 34	< 34	< 27	< 15	
11/25/22 - 12/02/22	< 20	< 20	< 11	< 17	< 20	
12/02/22 - 12/09/22	< 52	< 52	< 52	< 34	< 52	
12/09/22 - 12/16/22	< 20	< 47	< 48	< 34	< 47	
12/16/22 - 12/23/22	< 19	< 37	< 38	< 41	< 37	
12/23/22 - 12/30/22	< 58	< 58	< 60	< 28	< 59	
MEAN	-	-	-	-	-	

⁽¹⁾ SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

	COLLECTION									•			
SITE	PERIOD.	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
D-25													
Lettuce	06/17/22	< 29	< 26	< 75	< 41	< 76	< 28	< 36	< 34	< 29	< 37	< 112	< 40
Radish	06/17/22	< 32	< 30	< 49	< 38	< 68	< 33	< 55	< 35	< 32	< 32	< 112	< 45
Turnips	07/08/22	< 15	< 14	< 28	< 19	< 29	< 15	< 22	< 17	< 16	< 15	< 58	< 13
Swiss chard	07/08/22	< 15	< 14	< 32	< 18	< 36	< 14	< 26	< 20	< 15	< 14	< 59	< 17
Kale	07/08/22	< 13	< 13	< 28	< 15	< 31	< 13	< 24	< 17	< 16	< 15	< 52	< 16
Turnips	08/19/22	< 29	< 26	< 63	< 28	< 50	< 31	< 49	< 42	< 34	< 29	< 130	< 28
Collard greens	08/19/22	< 35	< 28	< 79	< 33	< 73	< 35	< 55	< 29	< 38	< 34	< 148	< 48
Kale	08/19/22	< 25	·< 22	< 51	< 26	< 54	< 27	< 43	< 36	< 27	< 26	< 108	< 35
Radish	09/09/22	< 16	< 25	< 43	< 28	< 51	< 21	< 44	< 34	< 24	< 19	< 92	< 17
Swiss chard	09/09/22	< 39	< 36	< 78	< 56	< 90	< 36	< 58	< 46	< 43	< 38	< 195	< 41
Kale	09/09/22	< 48	< 37	< 89	< 36	< 105	< 40	< 62	< 59	< 35	< 42	< 148	< 62
Collard greens	10/07/22	< 20	< 22	< 41	< 23	< 48	< 27	< 34	< 31	< 22	< 22	< 94	< 29
Swiss chard	10/07/22	< 16	< 17	< 34	< 16	< 36	< 15	< 28	< 21	< 17	< 16	< 64	< 18
Turnips	10/07/22	< 16	< 15	< 28	< 17	< 40	< 16	< 24	< 20	< 17	< 17	< 61	< 18
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
D-39													
Kohlrabi	07/15/22	< 17	< 19	< 49	< 35	< 61	< 25	< 44	< 28	< 29	< 20	< 98	< 36
Turnip	07/15/22	< 17	< 16	< 43	< 14	< 35	< 18	< 26	< 24	< 21	< 17	< 81	< 26
Cabbage	07/15/22	< 15	< 14	< 31	< 17	< 32	< 15	< 26	< 20	< 16	< 15	< 50	< 15
Cabbage	08/19/22	< 21	< 20	< 41	< 23	< 45	< 19	< 35	< 27	< 21	< 20	< 83	< 26
Red Beets	08/19/22	< 39	< 33	< 80	< 48	< 84	< 35	< 56	< 44	< 43	< 37	< 144	< 50
Rhubarb	08/19/22	< 35	< 34	< 73	< 37	< 75	. < 30	< 55	< 39	< 28	< 31	< 116	< 50
Turnips	09/09/22	< 30	< 37	< 62	< 22	< 57	< 37	< 49	< 54	< 35	< 33	< 134	< 51
Rhubarb	09/09/22	< 46	< 41	< 90	< 40	< 87	< 39	< 71	< 58	< 47	< 44	< 155	< 54
	MEAN	-	-	-	-	-	-	-		-	-	-	-
D-42	•	•											
Kale	07/15/22	< 31	< 26	< 60	< 32	< 71	< 31	< 49	< 52	< 34	< 30	< 141	< 42
Swiss chard	07/15/22	< 33	< 33	< 67	< 35	< 83	< 36	< 65	< 56	< 39	< 58	< 185	< 55
Kale	08/19/22	< 33	< 37	< 66	< 52	< 88	< 35	< 68	< 48	< 46	< 35	< 164	< 55
Swiss chard	08/19/22	< 31	< 28	< 66	< 27	< 68	< 33	< 58	< 46	< 37	< 49	< 134	< 35
Collard greens	08/19/22	< 28	< 24	< 71	< 47	< 58	< 39	< 54	< 47	< 38	< 29	< 130	< 32
Kale	09/09/22	< 34	< 27	< 55	< 34	< 55	< 34	< 44	< 38	< 35	< 28	< 147	< 21
Swiss chard	09/09/22	< 29	< 35	< 77	< 39	< 69	< 40	< 64	< 44	< 37	< 48	< 151	< 53
Collard greens	09/09/22	< 29	< 31	< 68	< 40	< 85	< 27	< 56	< 34	< 40	< 33	< 116	< 50
Kale	10/07/22	< 18	< 16	< 31	< 20	< 34	< 16	< 27	< 20	< 18	< 18	< 64	< 17
Swiss chard	10/07/22	< 29	< 36	< 66	< 45	< 83	< 29	< 52	< 46	< 34	< 50	< 132	< 42
Collard greens	10/07/22	< 15	< 16	< 28	< 18	< 33	< 15	< 26	< 19	< 17	< 17	< 65	< 18
	MEAN	-	_	_	-	-	-	-	_	_	-	-	-

, 5

Table C-VII.1

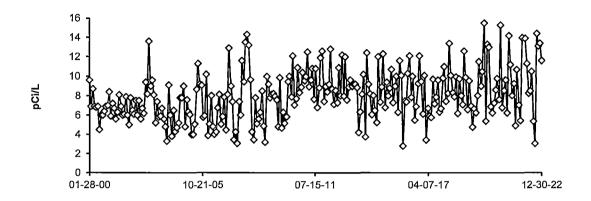
CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

(COLLECTION												
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	_Ba-140	La-140
D-43	•												
Collard greens	07/08/22	< 20	< 17	< 34	< 20	< 39	< 19	< 30	< 24	< 21	< 19	< 71	< 24
Swiss chard	07/08/22	< 31	< 32	< 70	< 39	< 63	< 32	< 47	< 39	< 33	< 27	< 135	< 33
Turnips	07/08/22	< 25	< 24	< 55	< 24	< 49	< 26	< 39	< 36	< 30	< 30	< 104	< 34
Collard greens	08/19/22	< 22	< 22	< 40	< 24	< 41	< 20	< 37	< 30	< 23	< 21	< 92	< 19
Swiss chard	08/19/22	< 29	< 27	< 62	< 33	< 59	< 31	< 48	< 47	< 32	< 33	< 127	< 30
Kale	08/19/22	< 19	< 18	< 39	< 20	< 38	< 19	< 33	< 24	< 20	< 20	< 78	< 25
Collard greens	09/09/22	< 33	< 30	< 72	< 31	< 77	< 42	< 67	< 53	< 43	< 30	< 147	< 60
Swiss chard	09/09/22	< 30	< 24	< 70	< 32	< 54	< 32	< 49	< 34	< 30	< 29	< 81	< 26
Turnips	09/09/22	< 21	. < 22	< 45	< 22	< 53	< 18	< 34	< 28	< 21	< 20	< 74	< 27
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
D-44													
Broccoli	07/08/22	< 29	< 26	< 62	< 28	< 57	< 35	< 48	< 38	< 33	< 33	< 130	< 41
Broccoli	08/19/22	< 41	< 40	< 68	< 46	< 91	< 36	< 61	< 55	< 44	< 42	< 172	< 40
Collard greens	08/19/22	< 15	< 14	< 32	< 16	< 34	< 17	< 27	< 20	< 17	< 17	< 58	< 15
Mustard Greens	08/19/22	< 14	< 15	< 33	< 15	< 33	< 16	< 25	< 18	< 17	< 16	< 63	< 21
Kale	09/09/22	< 23	< 26	< 49	< 29	< 58	< 20	< 49	< 38	< 30	< 28	< 114	< 35
Swiss chard	09/09/22	< 43	< 41	< 89	< 38	< 101	< 36	< 70	< 52	< 42	< 47	< 167	< 56
Mustard Greens	09/09/22	< 20	< 19	< 54	< 24	< 44	< 20	< 31	< 27	< 25	< 20	< 80	< 26
Kale	10/07/22	< 33	< 37	< 69	< 37	< 56	< 37	< 65	< 53	< 40	< 38	< 171	< 37
Swiss chard	10/07/22	< 37	< 43	< 67	< 48	< 83	< 45	< 73	< 44	< 51	< 36	< 172	< 67
Collard greens	10/07/22	< 15	< 19	< 37	< 21	< 39	< 19	< 32	< 23	< 20	< 17	< 72	< 21
	MEAN	_	_	-	•	-	-	_	-	-	_	-	_

Table C-V111.1 QUARTERLY DLR RESULTS FOR DRESDEN NUCLEAR POWER STATION, 2022

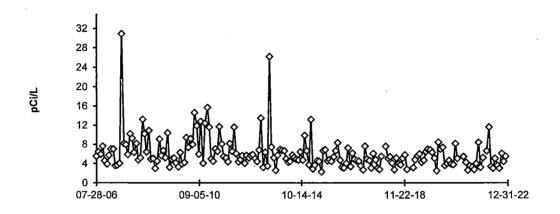
Location	Location Qtrly Baseline, B _Q (mrem)	B _Q + MDD _Q (mrem)					Annual Baseline, B _A ⁽¹⁾	B _A + MDD _A ⁽²⁾ (mrem)	Normalized Dose, M _A (mrem/yr)	Annual Facility Dose, F _A
	DQ (IIII eiii)		1	2	3	4	(mrem)	` ,		(mrem)
D-01	27.7	40.5	14	16	18	16	111	155	63	ND
D-02	28.8	41.6	13	14	17	15	115	160	58	ND
D-03	23.9	36.7	13	14	12	14	96	140	54	ND
D-04	27.4	40.2	14	16	17	15	110	154	62	ND
D-07	26.7	39.5	14	15	17	16	107	151	62	ND
D-08	24.4	37.2	13	15	16	15	98	142	59	ND
D-10	28.6	41.4	14	15	17	18	115	159	64	ND
D-12	23.7	36.5	11	13	13	12	90	135	50	ND
D-14	23.5	36.3	13	12	13	15	94	138	54	ND
D-45	23.2	36.0	15	. 15	18	19	93	137	· 66	ND
D-53	27.5	40.3	12	12	14	14	110	154	53	ND
D-55	27.2	40.0	14	14	16	16	109	153	59	ND
D-56	25.3	38.1	11	10	12	16	101	146	49	ND
D-58	26.5	39.3	10	10	8	12	106	150	39	ND
D-101	26.6	39.4	14	14	16	17	107	151	62	ND
D-102	28.6	41.4	13	17	15	19	114	159	64	ND
D-103	26.4	39.2	13	15	15	15	106	150	58	ND
D-104	28.3	41.1	15	17	17	17	107	152	66	ND
D-105	27.1	39.9	15	16	16	17	109	153	65	ND
D-106	24.1	36.9	9	10	9	9	92	136	37 ·	ND
D-107	23.8	36.6	11	11	13	13	95	140	48	ND
D-108	26.8	39.6	13	13	14	14	107	152	54	ND
D-109	27.0	39.8	13	14	17	18	108	153	63	ND
D-110	31.1	43.9	17	19	21	19	125	169	77	ND
D-111	28.6	41.4	16	16	17	17	103	148	66	ND
D-112A	25.3	38.1	9	9	16	15	101	146	49	ND
D-113	25.1	37.9	12	14	15	15	96	140	56	ND
D-114	24.6	37.4	11	11	12	14	98	143	49	ND
D-115	27.5	40.3	14	15	18	15	110	155	63	ND
D-116	29.4	42.2	15	16	18	19	118	162	69	ND
D-201	30.8	43.6	13	17	17	19	111	155	66	ND
D-202	27.6	40.4	15	16	17	18	105	149	65	ND
D-203	26.2	39.0	10	13	14	15	94	139	52	ND
D-204	24.4	37.2	10	11	10	13	98	142	45	ND
D-205	23.3	36.1	13	15	17	17	93	138	62	ND
D-206	26.6	39.4	13	14	15	18	101	146	60	ND
D-207	24.8	37.6	11	11	12	13	99	144	47	ND
D-208	23.0	35.8	10	9	12	10	92	136	41	ND
D-209	23.1	35.9	10	9	10	11	92	137	40	ND
D-210	26.1	38.9	13	13	16	18	105	149	60	ND
D-211	27.7	40.5	14	15	17	13	111	155	58	ND .
D-212	24.5	37.3	10	11	14	13	98	142	48	ND
D-213	23.1	35.9	9	11	14	13	93	137	48	ND
D-214	31.0	43.8	14	16	16	16	124	168	61	ND
D-215	29.9	42.7	15	18	17	16	120	164	67	ND
D-216	28.0	40.8	13	14	14	15	106	151	56	ND


Baseline background dose (BB_A): The estimated mean background radiation dose at each field monitoring location annually based

on historical measurements, excluding any dose contribution from the monitored facility

[4] Minimum differential dose (MDD_A): The smallest amount of facility related dose at each monitored location annually above the baseline background dose that can be reliably detected by an environmental dosimetry system

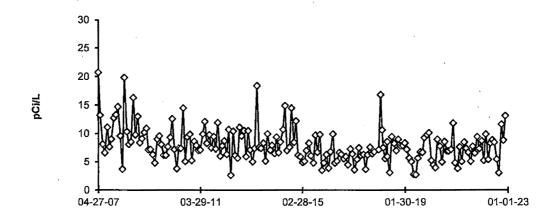
FIGURE C-1 SURFACE WATER - GROSS BETA - STATION D-52 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022


D-52 (C) DesPlaines River at Will Road

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

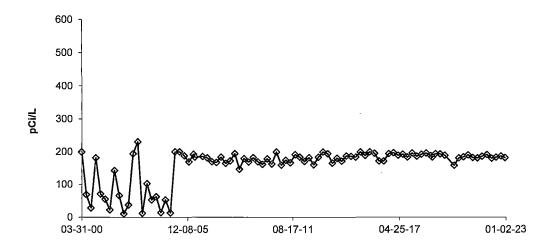
FIGURE C-2 SURFACE WATER - GROSS BETA - STATION D-57 (C) COLLECTED IN THE VICINITY OF DNPS, 2006 - 2022

D-57 (C) Kankakee River at Will Road



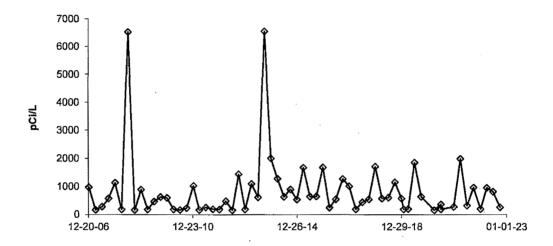
DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

D-54 LOCATION REMOVED FROM PROGRAM JUNE 28, 2007 AND REPLACED WITH D-57


FIGURE C-3 SURFACE WATER - GROSS BETA - STATION D-21 COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022

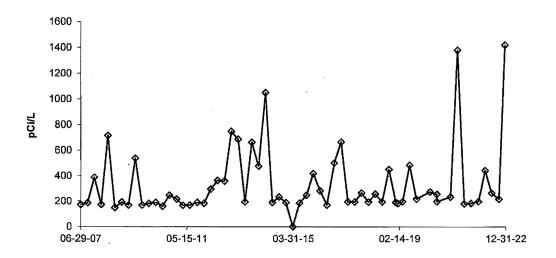
D-21 Illinois River at EJ&E Bridge

FIGURE C-4 SURFACE WATER - TRITIUM - STATION D-52 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022


D-52 (C) Des Plaines River at Will Road

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

FIGURE C-5 SURFACE WATER - TRITIUM - STATION D-57 (C) COLLECTED IN THE VICINITY OF DNPS, 2006 - 2022


D-57 (C) Kankakee River at Will Road

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

FIGURE C-6 SURFACE WATER - TRITIUM - STATION D-21 COLLECTED IN THE VICINITY OF DNPS, 2007 - 2022

D-21 Illinois River at EJ&E Bridge

D-21 REPLACED D-51 JUNE 29, 2007

FIGURE C-7 GROUND WATER - TRITIUM - STATION D-35 COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022

D-35 Dresden Lock and Dam

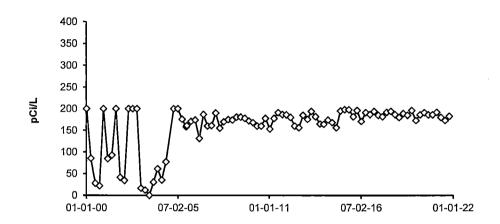
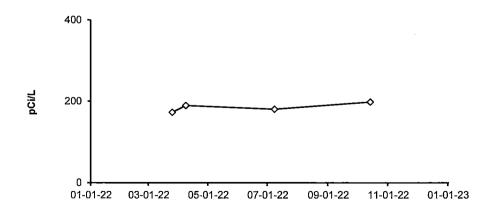
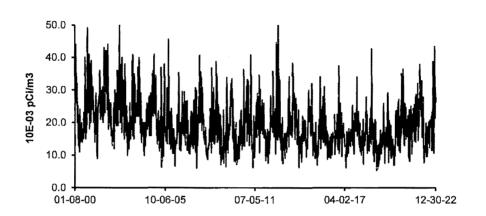



FIGURE C-8
GROUND WATER - TRITIUM - STATION D-39
COLLECTED IN THE VICINITY OF DNPS, 2022


D-39 Will Road Well

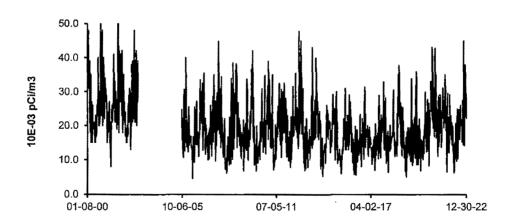
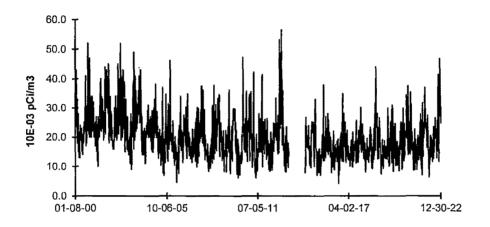

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MCD VALUES AFTER JULY 2005

FIGURE C-9
AIR PARTICULATES - GROSS BETA - STATIONS D-01 and D-02
COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022

D-01 Onsite Station 1


D-02 Onsite Station 2

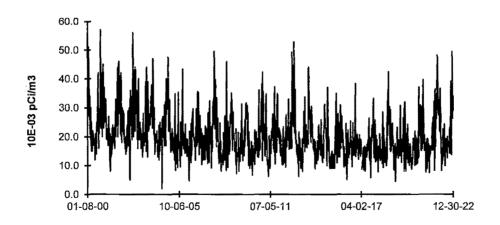
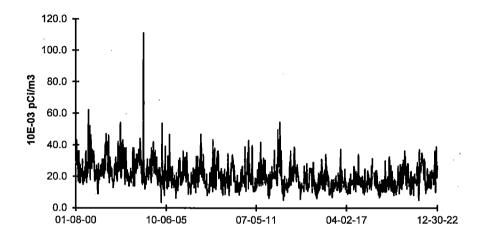

D-02 No samples; power was restored on 09-16-05.

FIGURE C-10
AIR PARTICULATES - GROSS BETA - STATIONS D-03 and D-04
COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022

D-03 Onsite Station 3


D-04 Collins Road on Station Property

D-03 No samples; power was restored on 07-04-14.

FIGURE C-11 AIR PARTICULATES - GROSS BETA - STATIONS D-07 and D-12 (C) COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022

D-07 Clay Products, Dresden Road

D-12 (C), Quarry Road, Lisbon

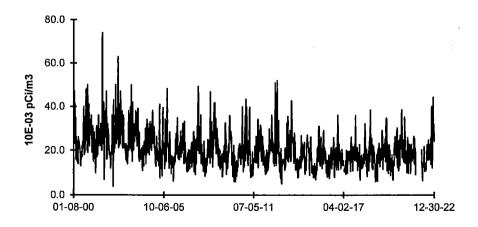
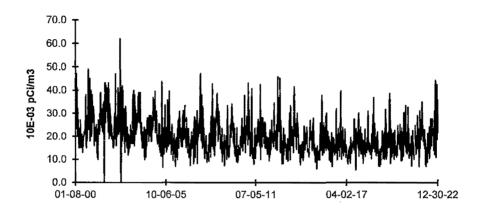



FIGURE C-12
AIR PARTICULATES - GROSS BETA - STATIONS D-45 and D-53
COLLECTED IN THE VICINITY OF DNPS, 2000 - 2022

D-45 McKinley Woods Road, Channahon

D-53 Will Road, Hollyhock

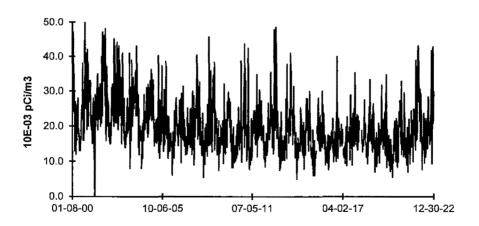
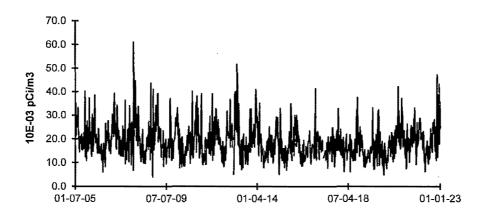
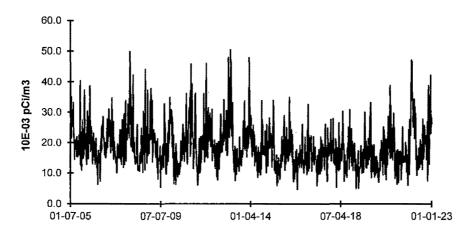




FIGURE C-13
AIR PARTICULATES - GROSS BETA - STATIONS D-08 and D-10
COLLECTED IN THE VICINITY OF DNPS, 2005 - 2022

D-08 Jugtown Road, Prairie Parks

D-10 Goose Lake Road, Goose Lake Village

FIGURE C-14 AIR PARTICULATES - GROSS BETA - STATION D-14 COLLECTED IN THE VICINITY OF DNPS, 2005 - 2022

D-14 Center Street, Channahon

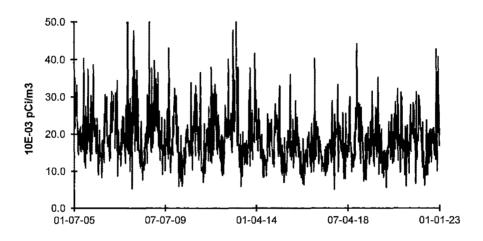
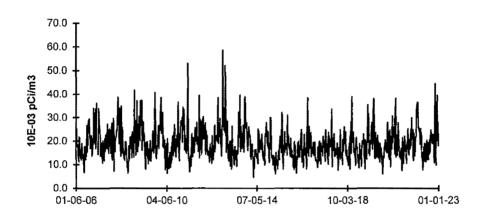
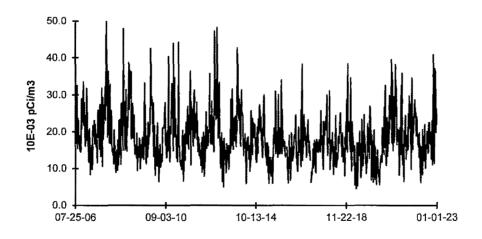
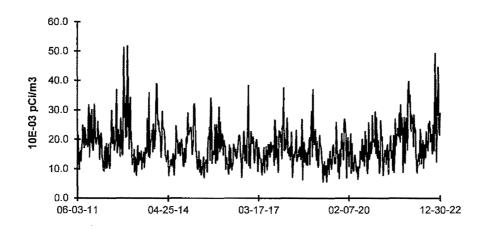




FIGURE C-15
AIR PARTICULATES - GROSS BETA - STATIONS D-55 and D-56
COLLECTED IN THE VICINITY OF DNPS, 2006 - 2022

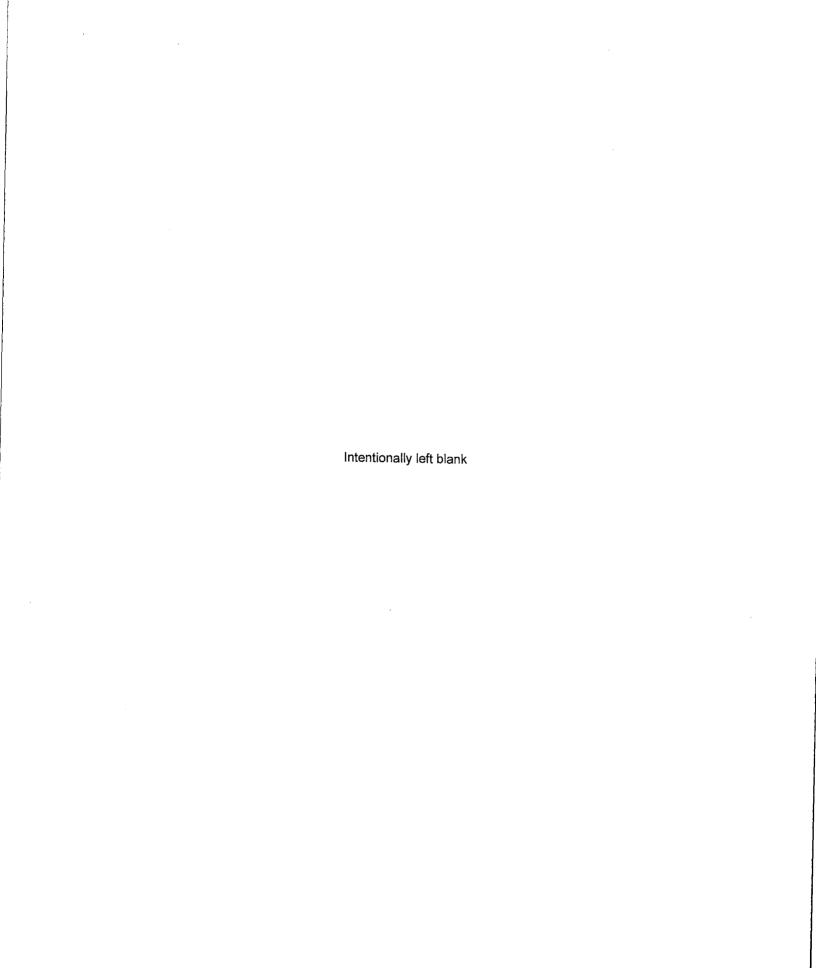
D-55 Ridge Road, Minooka


D-56 Will Road, Wildfeather

D-55 NEW STATION DECEMBER 30, 2005 REPLACED D-13 JUNE 29, 2007 D-56 NEW STATION JULY 25, 2006

FIGURE C-16 AIR PARTICULATES - GROSS BETA - STATION D-58 COLLECTED IN THE VICINITY OF DNPS, 2011 - 2022

D-58 Will Road Marina



D-58 NEW STATION IN MAY OF 2011

Intentionally left blank

APPENDIX D

INTER-LABORATORY COMPARISON PROGRAM

Analytics Environmental Radioactivity Cross Check Program
Teledyne Brown Engineering Environmental Services

Table D.1

Table D.1	16	eledyne Br	own Engi	TBE Known Ratio of TBE to				
Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Ratio of TBE to Analytics Result	Evaluation ^(b)
March 2022	E13706	Milk	Sr-89	pCi/L	80.3	96.8	0.83	Α
			Sr-90	pCi/L	12.7	12.6	1.01	Α
	E13707	Milk	Ce-141	pCi/L	62.3	65	0.96	Α
	210101	1711110	Co-58	pCi/L	158	164	0.96	A
			Co-60	pCi/L	286	302	0.95	A
	·		Cr-51	pCi/L	314	339	0.93	Α
	•		Cs-134	pCi/L	155	182	0.85	A
			Cs-137	pCi/L	210	223	0.94	Α
			Fe-59	pCi/L	211	185	1.14	Α
			I-131	pCi/L	88.0	96.7	0.91	Α
			Mn-54	pCi/L	169	164	1.03	Α
			Zn-65	pCi/L	238	246	0.97	Α
	E13708	Charcoal	I-131	pCi	79.9	87.1	0.92	Α
	E13709	AP	Ce-141	pCi	60.9	42.0	1.45	N ⁽¹⁾
			Co-58	pCi	118	107	1.11	Α
			Co-60	pCi	218	196	1.11 .	Α
			Cr-51	pCi	251	221	1.14	Α
			Cs-134	pCi	129	118	1.09	Α
	,		Cs-137	pCi	156	145.0	1.07	Α
			Fe-59	pCi	124	120.0	1.03	Α
			Mn-54	pCi	120	107	1.12	Α
			Zn-65	pCi	162	160	1.01	Α
	E13710	Soil	Ce-141	pCi/g	0.123	0.103	1.19	Α
			Co-58	pCi/g	0.254	0.263	0.97	Α
			Co-60	pCi/g	0.493	0.483	1.02	Α
			Cr-51	pCi/g	0.603	0.543	1.11	Α
			Cs-134	pCi/g	0.268	0.292	0.92	Α
			Cs-137	pCi/g	0.399	0.431	0.93	Α
			Fe-59	pCi/g	0.320	0.296	1.08	Α
			Mn-54	pCi/g	0.263	0.263	1.00	Α
			Zn-65	pCi/g	0.407	0.395	1.03	Α
	E13711	AP	Sr-89	pCi	83.2	97.4	0.85	Α
			Sr-90	pCi	12.7	12.7	1.00	Α

⁽a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

⁽b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

Analytics Environmental Radioactivity Cross Check Program
Teledyne Brown Engineering Environmental Services

Table D.1 Teledyne Brown Engineering Environmental Services								
Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Ratio of TBE to Analytics Result	Evaluation ^(b)
September 2022	E13712	Milk	Sr-89	pCi/L	71.1	89.1	0.80	Α
			Sr-90	pCi/L	12.0	13.6	0.88	Α
	E13713	Milk	Ce-141	pCi/L	148	161	0.92	Α
			Co-58	pCi/L	178	189	0,94	Α
			Co-60	pCi/L	229	260	0.88	Α
			Cr-51	pCi/L	486	456	1.07	Α
			Cs-134	pCi/L	220	252	0.87	Α
			Cs-137	pCi/L	203	222	0.92	Α
			Fe-59	pCi/L	174	173	1.01	Α
			I-131	pCi/L	75.9	94.2	0.81	Α
			Mn-54	pCi/L	269	282	0.95	Α
			Zn-65	pCi/L	364	373	0.97	Α
	E13714	Charcoal	I-131	pCi	81.4	83.6	0.97	A
	E13715	AP	Ce-141	pCi	102	91	1.12	Α
			Co-58	pCi	118	107	1.11	Α
		*	Co-60	pCi	207	147	1.41	N ⁽²⁾
			Cr-51	pCi	310	257	1.21	W
			Cs-134	pCi	148	142	1.04	Α
			Cs-137	рСі	137	125	1.10	Α
	*		Fe-59	pCi	115	98	1.18	Α
			Mn-54	pCi	168	159	1.05	Α
			Zn-65	pCi	240	211	1.14	Α
	E13716	Soil	Ce-141	pCi/g	0.288	0.284	1.01	Α
			Co-58	pCi/g	0.320	0.334	0.96	Α
			Co-60	pCi/g	0.445	0.459	0.97	Ą
			Cr-51	pCi/g	0.883	0.805	1.10	Α
			Cs-134	pCi/g	0.410	0.446	0.92	Α
			Cs-137	pCi/g	0.447	0.465	0.96	Α
			Fe-59	pCi/g	0.314	0.305	1.03	Α
			Mn-54	pCi/g	0.489	0.499	0.98	Α
			Zn-65	pCi/g	0.666	0.660	1.01	Α
	E13717	AP	Sr-89	pCi	87.5	98.3	0.89	Α
			Sr-90	pCi	12.6	15.0	0.84	Α

⁽a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

⁽b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

DOE's Mixed Analyte Performance Evaluation Program (MAPEP)
Teledyne Brown Engineering Environmental Services

Table D.2

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value (a)	Acceptance Range	Evaluation ⁽
February 2022	22-GrF46	AP	Gross Alpha	Bq/sample	0.402	1.20	0.36 - 2.04	Α
			Gross Beta	Bq/sample	0.669	0.68	0.341 - 1.022	Α
	22-MaS46	Soil	Ni-63	Bq/kg	645	780	546 - 1014	Α
			Tc-99	Bq/kg	526	778	545 - 1011	N ⁽³⁾
	22-MaSU46	Urine	Cs-134	Bq/L	1.67	1.77	1.24 - 2.30	Α
			Cs-137	Bq/L	1.50	1.56	1.09 - 2.03	Α
			Co-57	Bq/L	4.93	5.39	3.77 - 7.01	Α
			Co-60	Bq/L	2.13	2.06	1.44 - 2.68	Α
		•	Mn-54	Bq/L	4.83	5.08	3.56 - 6.60	Α
			U-234	Bq/L	0.142	0.0074	0.0052 - 0.0096	N ⁽⁴⁾
			U-238	Bq/L	0.0254	0.0103	0.0072 - 0.0134	N ⁽⁴⁾
			Zn-65	Bq/L	4.71	4.48	3.14 - 5.82	Α
	22-MaW46	Water	Ni-63	Bq/L	28.6	34.0	23.8 - 44.2	Α
			Tc-99	Bq/L	8.59	7.90	5.5 - 10.3	Α
	22-RdV46	Vegetation	Cs-134	Bq/sample	6.61	7.61	5.33 - 9.89	Α
		•	Cs-137	Bq/sample	1.50	1.52	1.06 - 1.98	Α
			Co-57	Bq/sample	5.11	5.09	3.56 - 6.62	Α
			Co-60	Bq/sample	0.0162		(1)	Α
			Mn-54	Bq/sample	2.42	2.59	1.81 - 3.37	Α
			Sr-90	Bq/sample	0.684	0.789	0.552 - 1.026	Α
			Zn-65	Bq/sample	1.44	1.47	1.03 - 1.91	Α
August 2022	22-MaS47	Soil	Ni-63	Bq/kg	14.6		(1)	Α
			Tc-99	Bq/kg	994	1000	700 - 1300	Α
	22-MaW47	Water	Ni-63	Bq/L	24.4	32.9	23.0 - 42.8	Α
			Tc-99	Bq/L	1.9		(1)	N ⁽⁵⁾
	25-RdV47	Vegetation	Cs-134	Bq/sample	0.032		(1)	Α
			Cs-137	Bq/sample	0.891	1.08	0.758 - 1.408	Α
			Co-57	Bq/sample	0.006		(1)	. А
			Co-60	Bq/sample	4.04	4.62	3. <u>2</u> 3 - 6.01	Α
			Mn-54	Bq/sample	2.01	2.43	1.70 - 3.16	Α
			Sr-90	Bq/sample	1.25	1.60	1.12 - 2.08	W
			Zn-65	Bq/sample	6.16	7.49	5.24 - 9.74	Α

⁽a) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

⁽b) DOE/MAPEP evaluation:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

⁽¹⁾ False positive test

⁽²⁾ Sensitivity evaluation

⁽³⁾ Tc-99 soil cross-checks done for TBE information only - not required

⁽⁴⁾ See NCR 22-05

ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering Environmental Services

Table D.3

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Acceptance Limits	Evaluation
March 2022		Mater	Am. 244	-C://				
March 2022	MRAD-36	Water	Am-241	pCi/L	68.3	74.6	51.2 - 95.4	A
			Fe-55	pCi/L	797	1140	670 - 1660	A
			Pu-238	pCi/L	146	147	88.4 - 190	A
			Pu-239	pCi/L	69.9	71.9	44.5 - 88.6	Α
		Soil	Sr-90	pCi/kg	8050	6720	2090 - 10500	Α
		AP	Fe-55	pCi/filter	148	127	46.4 - 203	Α
			Pu-238	pCi/filter	29.9	29.6	22.3 - 36.4	Α
			Pu-239	pCi/filter	51.6	49.7	37.2 - 60.0	Α
			U-234	pCi/filter	59.9	67.3	49.9 - 78.9	Α
			U-238	pCi/filter	59.0	66.7	50.4 - 79.6	Α
			GR-A	pCi/filter	95.6	94.2	49.2 - 155	A
			GR-B	pCi/filter	71.2	66.8	40.5 - 101	Α
April 2022	RAD-129	Water	Ba-133	pCi/L	61.7	62.9	52.3 - 69.2	Α
			Cs-134	pCi/L	80.9	81.6	68.8 - 89.8	Α
			Cs-137	pCi/L	37.4	36.6	32.1 - 43.3	Α
			Co-60	pCi/L	103	97.4	87.7 - 109	Α
			Zn-65	pCi/L	318	302	272 - 353	Α
			GR-A	pCi/L	26.9	20.8	10.4 - 28.3	Α
			GR-B	pCi/L	49.7	51.0	34.7 - 58.1	Α
			U-Nat	pCi/L	56.3	68.9	56.3 - 75.8	Α
			H-3	pCi/L	17,000	18,100	15,800 - 19,000	Α
			Sr-89	pCi/L	65.3	67.9	55.3 - 76.1	Α
			Sr-90	pCi/L	42.1	42.7	31.5 - 49.0	· A
			I-131	pCi/L	25.7	26.2	21.8 - 30.9	A
September 2022	MRAD-37	Water	Am-241	pCi/L	111	96.2	66.0 - 123	Α
•			Fe-55	pCi/L	850	926	544 - 1350	Α
			Pu-238	pCi/L	62.1	52.6	31.6 - 68.2	A
			Pu-239	pCi/L	139.5	117	72.5 - 144	Α
		Soil	Sr-90	pCi/kg	3350	6270	1950 - 9770	Α
			U-234	pCi/kg	1684	3350	1570 - 4390	Α
			U-238	pCi/kg	1658	3320	1820 - 4460	N ⁽²⁾
		AP	Fe-55	pCi/filter	71.9	122	44.5 - 195	Α
			Pu-238	pCi/filter	38.8	29.9	22.6 - 36.7	N ⁽¹⁾
			Pu-239	pCi/filter	14.5	13.0	9.73 - 15.7	Α
			U-234	pCi/filter	78.0	71.5	53.0 - 83.8	Α
			U-238	pCi/filter	79.7	70.9	53.5 - 84.6	Α
			GR-A	pCi/filter	62.8	55.5	29.0 - 91.4	Α
			GR-B	pCi/filter	70.9	64.8	39.3 - 97.9	Α
October 2022	RAD-131	Water	Ba-133	pCi/L	76.2	79.4	66.6 - 87.3	Α
			Cs-134	pCi/L	28.0	30.5	23.9 - 33.6	Α
			Cs-137	pCi/L	202	212	191 - 235	Α
			Co-60	pCi/L	52.4	51.4	46.3 - 59.1	· A
		*	Zn-65	pCi/L	216	216	194 - 253	Α
			GR-A	pCi/L	19.7	16.9	8.28 - 23.7	Α
			GR-B	pCi/L	49.8	53.0	36.1 - 60.0	Α
			U-Nat	pCi/L	10.54	8.53	6.60 - 9.88	N ⁽³⁾
			H-3	pCi/L	13,900	15,100	13,200 - 16,600	Α
			Sr-89	pCi/L	59.7	64.5	52.3 - 72.5	Α
			Sr-90	pCi/L	32.9	37.3	27.4 - 43.0	A
			I-131	pCi/L	26.9	24.4	20.2 - 28.9	A

⁽a) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽b) ERA evaluation:

A = Acceptable - Reported value falls within the Acceptance Limits
N = Not Acceptable - Reported value falls outside of the Acceptance Limits

⁽¹⁾ See NCR 22-19

⁽²⁾ U soil cross-checks done for TBE information only - not required

⁽³⁾ See NCR 22-20

APPENDIX E

ERRATA DATA

There was no errata data for 2022.

APPENDIX F

ANNUAL RADIOLOGICAL GROUNDWATER
PROTECTION PROGRAM REPORT (ARGPPR)

Intentionally left blank

Docket No: 50-010

50-237 50-249

DRESDEN NUCLEAR POWER STATION **UNITS 1, 2 and 3**

Annual Radiological Groundwater Protection Program Report

1 January through 31 December 2022

Prepared By

Teledyne Brown Engineering **Environmental Services**

Dresden Nuclear Power Station Morris, IL 60450

May 2023

Intentionally left blank

Table of Contents

l.	Summary and Conclusions	1
11.	Introduction	2
	A. Objectives of the RGPP	3
	B. Implementation of the Objectives	3
	C. Program Description	4
	D. Characteristics of Tritium (H-3)	4
III.	Program Description	6
	A. Sample Analysis	
	B. Data Interpretation	6
	C. Background Analysis	7
	Background Concentrations of Tritium	7
IV.	. Results and Discussion	9
	A. Groundwater Results	9
	B. Surface Water Results	10
	C. Precipitation Water Results	10
	D. Drinking Water Well Survey	10
	E. Summary of Results – Inter-laboratory Comparison Program	10
	F. Leaks, Spills, and Releases	
	G. Trends	
	H. Investigations	11
	I. Actions Taken	11

Appendices

ARGPPR Appendix A

Location Designation

Tables

Table A-1

Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Dresden Nuclear Power

Station, 2022

Figures

Security-Related Information: Maps of the Dresden Nuclear

Power Station have been withheld from public disclosure

under 10CFR2.390 and N.J.S.A. 47:1A-1.1

ARGPPR Appendix B

Data Tables

Tables

Table B-I.1

Concentrations of Tritium, Strontium, Gross Alpha and Gross

Beta in Groundwater Samples Collected in the Vicinity of

Dresden Nuclear Power Station, 2022

Table B-I.2

Concentrations of Gamma Emitters in Groundwater Samples Collected in the Vicinity of Dresden Nuclear Power Station,

2022

Table B-I.3

Concentrations of Hard-To-Detects in Groundwater Samples

Collected in the Vicinity of Dresden Nuclear Power Station,

2022

Table B-II.1

Concentrations of Tritium in Precipitation Water Samples

Collected in the Vicinity of Dresden Nuclear Power Station,

2022

I. Summary and Conclusions

Dresden Station is situated on approximately 600 acres of land that borders the Illinois River to the North and the Kankakee River to the East. This land is referred to as the owner-controlled area. The Dresden power plant itself takes up a small parcel of the owner-controlled area and is surrounded by a security fence. The security fence defines what is known as the Protected Area (PA).

The Dresden power plant has experienced leaks from underground lines and spills from systems containing radioactive water over its 50-year history. These incidents have created a number of areas of localized contamination within the PA. The liquid scintillation analyses of groundwater in many of these areas show measurable concentrations of tritium (H-3).

Dresden participated in a fleetwide hydrogeologic investigation in during the summer of 2006 in an effort to characterize groundwater movement at each site. This investigation also compiled a list of the historic spills and leaks as well as a detailed analysis on groundwater hydrology for Dresden Nuclear Generation Station. Combining the tritium concentration in a locally contaminated area with the speed and direction of groundwater in the vicinity can produce a contaminated groundwater plume projection. If the plume of contaminated groundwater passes through the path of a groundwater monitoring well, it can be anticipated that the tritium concentration in this well will increase to some maximum concentration, then decrease over time.

The fleetwide 5-Year Hydrogeologic Investigation Report (HIR) was generated in 2020 by AECOM. It shows that groundwater movement on the Dresden site is very slow. In addition, there is a confining rock layer, the Maquoketa Shale layer, about 55 feet below the surface that impedes groundwater movement below this depth.

Dresden has a domestic water system that is supplied by two deep wells (1500 feet deep) that were installed about 50 years ago south of the PA. Samples taken from domestic water supply have never shown any detectable tritium concentration.

Tritium has a half-life of 12.3 years. This means that 40 years from now 90% of the tritium on site today will have decayed away to more stable elements. Given the limited volume of contaminated groundwater on site, radioactive decay, slow groundwater movement, and dilution effects, the conclusion of the HIR is that the operation of Dresden Nuclear Power Station has no adverse radiological impact on the environment. As a result, there is little potential for contaminated groundwater on site to affect off-site drinking water.

II. Introduction

Radiological Groundwater Monitoring Program (RGPP):

Dresden has a Radiological Groundwater Monitoring Program (RGPP) that provides long-term monitoring intended to verify the fleet-wide hydrogeologic study conclusions. Dresden uses developed groundwater wells and surface water sample points in the RGPP.

The Dresden RGPP was established in 2006 and there have been no significant changes to this program. This program does not impact the operation of the plant and is independent of the REMP.

Developed groundwater wells are wells that were installed specifically for monitoring groundwater. These wells are equipped with screens and are properly sealed near the surface to avoid surface water intrusion. The wells were designed in accordance with appropriate codes and developed in accordance with appropriate standards and procedures. Dresden has groundwater monitoring wells identified as "shallow" (depths from 15 to 35 feet), "Intermediate" (depths from 35 to 55 feet) and "deep" (depths beyond 100 feet). All wells installed to a depth greater than 100 feet ("deep" wells) were found to be dry and removed from the RGPP. Surface water sample points are identified sample locations in the station's canals and cooling pond.

There are 96 sampling points in the RGPP:

Dresden has 47 developed groundwater monitoring wells within the Protected Area (PA). Some of these wells form a ring just inside the security fence and the remaining wells were installed near underground plant system piping that contains radioactive water.

Dresden has 30 developed groundwater monitoring wells outside the PA the majority of which form a ring just within the perimeter of the property.

Dresden has 12 surface water monitoring locations on the owner-controlled area sampled as part of the Dresden RGPP. Three of these locations are monitored for level only and have no analyses in the accompanying tables.

Dresden has 8 precipitation water monitoring locations sampled as part of the Dresden RGPP. An additional 4 locations were studied in 2011 through 2012, but 8 locations are permanently a part of the RGPP program.

Dresden has 1 sentinel well and 2 CST leak detection valves. These 3 sampling points are not constructed to code or developed to a standard. These sampling points are idle and only used for qualitative troubleshooting.

The Dresden site-specific RGPP procedure identifies the historic 'events' that would affect the individual RGPP sample results. This procedure identifies threshold values for each sample point, which if exceeded, could be an indication

of a new spill from an above ground system or a new leak in an underground pipe containing tritiated water.

The RGPP sample points are currently sampled on a frequency determined by the well detection category in accordance with site document EN-DR-408-4160, Dresden RGPP Reference Material. During 2022, there were 264 analyses that were performed on 182 samples from 63 sampling points.

Sentinel Wells, sometimes referred to as "baby wells" are wells that were installed to monitor local shallow groundwater; typically associated with an historic underground pipe leak. These wells are not constructed to code or developed to a standard. Most sentinel wells are from 6 to 12 feet deep and consist of 2" PVC pipe without screens. These wells are categorized as idle wells and are used only for troubleshooting purposes.

Dresden has two basic storm water runoff sewer systems within the P.A. One storm-system routes to the East, then North and discharges into the Unit 1 intake canal. The second storm-system routes to the West, then North, through a large Oil/Water Separator and discharges to the hot canal. Both the Unit 1 intake canal and the hot canal eventually route to the cooling pond. The Dresden Station RGPP has twelve RGPP surface water sampling points to monitor these systems.

A. Objectives of the RGPP

The Objective of the RGPP is to provide long-term monitoring intended to verify the fleet-wide hydrogeologic study conclusions. The objective of the site-specific RGPP is to provide indication of short-term changes to groundwater tritium concentrations within the PA.

If isotopic results of groundwater samples exceed the thresholds specified in this procedure, it could be an indication of a new spill from an above ground system or a new leak in an underground pipe containing tritiated water.

Specific Objectives include:

- 1. Perform routine water sampling and radiological analysis of water from selected locations.
- 2. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 3. Regularly assess analytical results to identify adverse trends.
- 4. Take necessary corrective actions to protect groundwater resources.

B. Implementation of the Objectives

- 1. Dresden Nuclear Power Station will continue to perform routine sampling and radiological analysis of water from selected locations.
- 2. Dresden Nuclear Power Station has implemented procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.

- Dresden Nuclear Power Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.
- If an adverse trend in groundwater monitoring analytical results is identified, further investigation will be undertaken. If the investigation identifies a leak or unidentified spill, corrective actions will be implemented.

C. Program Description

Dresden has a Radiological Groundwater Monitoring Program (RGPP) that provides long-term monitoring intended to verify the fleet-wide hydrogeologic study conclusions. Dresden uses 89 developed groundwater wells and surface water sample points in the RGPP.

Sample locations can be found in Table A–1, Appendix A. Water samples are collected in accordance with the schedule delineated in the Dresden site-specific RGPP procedures. Analytical laboratories are subject to internal quality assurance programs, industry crosscheck programs, as well as nuclear industry audits. Station personnel review and evaluate the analytical results.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Similar to normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by Teledyne Brown Engineering (TBE) to analyze the environmental samples for radioactivity for the Dresden Nuclear Power Station RGPP in 2022.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater.
- 2. Concentrations of strontium in groundwater.
- 3. Concentrations of tritium in groundwater and precipitation water.
- 4. Concentrations of gross alpha in groundwater.
- 5. Concentrations of Am-241 in groundwater.
- 6. Concentrations of Cm-242 and Cm-243/244 in groundwater.
- 7. Concentrations of Pu-238 and Pu-239/240 in groundwater.
- 8. Concentrations of U-233/234, U-235 and U-238 in groundwater.
- 9. Concentrations of Fe-55 in groundwater.
- 10. Concentrations of Ni-63 in groundwater.

B. Data Interpretation

The radiological data collected prior to Dresden Nuclear Power Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Dresden Nuclear Power Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

Lower Limit of Detection and Minimum Detectable Concentration
 The Lower Limit of Detection (LLD) is the minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. <u>Laboratory Measurements Uncertainty</u>

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon Generation, LLC reports the uncertainty of a measurement created by statistical

process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon Generation, LLC reports the TPU by following the result with plus or minus ± the estimated sample standard deviation as TPU that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

When required, gamma spectroscopy includes the following 14 nuclides: Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140.

C. Background Analysis

A pre-operational radiological environmental monitoring program (pre-operational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life, and food stuffs. The results of the monitoring were detailed in the report entitled, Environmental Radiological Monitoring for Dresden Nuclear Power Nuclear Power Station, Commonwealth Edison Company, Annual Report 1986, May 1987.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references (CRA 2006).

a. Tritium Production

Tritium is created in the environment from naturally-occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons.

Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research, and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected worldwide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at stations throughout the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons.

Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980.

Tritium concentrations in wells may still be above the 200-pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

c. Surface Water Data

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Illinois surface water data were typically less than 100 pCi/L.

The radio-analytical laboratory counts tritium results to an Exelon Generation, LLC specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40-240 pCi/L or 140 ± 100 pCi/L. These sample results cannot be distinguished as different from background at this concentration.

IV. Results and Discussion

Dresden Station initiated a Radiological Groundwater Protection Program (RGPP) in 2006.

A. Groundwater Results

Samples were collected from on-site wells throughout the year in accordance with Dresden's RGPP. Analytical results and anomalies are discussed below:

Tritium

Following historic ground tritium-contamination events at Dresden Station routine sampling and analyses continue, both inside and outside the protected area, in accordance with site procedure EN-DR-408-4160, Dresden Station RGPP Reference Material.

Low level tritium was detected from January through December 2022 in several sampling and testing locations (Table B-I.1, Appendix B); however, overall tritium concentrations have been trending down.

The vast majority of these locations showed a range of tritium contamination from LLD to values less than 20,000 pCi/L.

It is important to note that in prior years, wells that exceeded the United States Environmental Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L were due to the 2014 2/3B CST Leak. The exceedances are located within Station property, and do not serve as a drinking water source.

Strontium

Samples were collected and analyzed for Sr-89 and Sr-90 activity (Table B-I.1, Appendix B). Sr-89 was not detected in any of the samples. Sr-90 was detected in 1 sample at locations MW-DN-105S with a concentration of 1.6 \pm 0.7 pCi/L.

Gross Alpha (dissolved and suspended)

Gross Alpha in the dissolved and suspended fractions analyses were not performed on groundwater samples in 2022 (Table B-I.1, Appendix B).

Gamma Emitters

Analyses for gamma-emitting nuclides were not performed in 2022. (Table B-I.2, Appendix B).

Hard-To-Detects

Hard-To-Detect analyses were performed on 8 groundwater locations. The analyses included Fe-55, Ni-63, Am-241, Cm-242, Cm-243/244, Pu-238, Pu-239/240, U-233/234, U-235 and U-238. Ni-63 was detected in 2 samples taken at MW-DN-101-I and MW-DN-119-I with concentrations

of 9.4 pCi/L and 9.3 pCi/L respectively. All other hard-to-detect nuclides were not detected at concentrations greater than their respective MDCs. (Table B-I.3, Appendix B).

B. Surface Water Results

No surface water samples were collected in 2022.

C. Precipitation Water Results

Precipitation Water

Samples were collected from 8 precipitation water locations throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from 8 locations were analyzed for tritium activity. Tritium was detected in 19 of 32 samples taken from 3 locations. The concentrations ranged from 182 to 1860 pCi/L. (Table B-II.1, Appendix B)

D. Drinking Water Well Survey

No drinking water well surveys were conducted in 2022.

E. Summary of Results – Inter-Laboratory Comparison Program
Inter-Laboratory Comparison Program results for TBE are presented in the AREOR.

F. Leaks, Spills, and Releases

No leaks, spills, and releases occurred in 2022.

G. Trends

Overall, tritium concentrations are decreasing across the Station. The Station continued to implement the tritium monitoring plan with monthly/quarterly sampling of a subset of shallow and intermediate aquifer wells, sewage treatment plant water, and storm sewer water.

An elevated concentration persists in the area of the Condensate Storage Tanks (Event 20 in EN-DR-408-4160, Revision 6, Attachment 3). As of December 2015, active remediation was implemented. Two remediation wells were installed in August 2015; however, the West remediation well is capable of enough recharge for active remediation.

H. Investigations

No investigations performed in 2022.

I. Actions Taken

- 1. Compensatory Actions None.
- 2. Actions to Recover/Reverse Plumes None.

Intentionally left blank

APPENDIX A LOCATION DESIGNATIONS

Intentionally left blank

TABLE A-1: Radiological Groundwater Protection Program - Sampling Locations, Dresden Nuclear Power Station, 2022

Site	Site Type	Location
CBG		
Domestic Water		
DSP-106	Monitoring Well	65 feet east of east wall of EM Shop
DSP-107	Monitoring Well	9 feet east of the east Unit 1 Fuel Pool wall
DSP-108	Monitoring Well	40 ft east of the Unit 1 Sphere
DSP-122	Monitoring Well	50 feet north of the Radwaste Tank Farm
DSP-123	Monitoring Well	Northeast corner of the Unit 1 Off-gas Building
DSP-124	Monitoring Well	9 feet south of Floor Drain Collector Tank
DSP-125	Monitoring Well	Northeast corner of the Unit 2/3A CST
DSP-126	Monitoring Well	21 feet northwest of the northwest bend in road behind Training Building
DSP-147	Monitoring Well	325 feet west of Telemetry Bridge
DSP-148	Monitoring Well	130 feet southeast of the Flow Regulating Station building
DSP-149	Monitoring Well	35 feet south by southwest of the 138 KV yard fence
DSP-150	Monitoring Well	85 feet east of the northeast corner of the Unit 1 Spent Fuel Pool pad
DSP-154	Monitoring Well	33 feet west of the track; 165 feet east of the Security Checkpoint
DSP-159-M	Monitoring Well	250 feet west of the Thorsen house; 450 ft south of the plant access gate
DSP-159-S	Monitoring Well	251 feet west of the Thorsen house; 450 ft south of the plant access gate
ENC-5		
ENC-14		
FW-1	Precipitation	40 feet southwest of Unit 2/3 Off-gas Filter Building access door; north end of guardrail
FW-2	Precipitation	15 feet south of the U 2/3 Intake Canal
FW-3	Precipitation	100 feet north of the security fence, north part of switchyard
FW-4	Precipitation	10 feet east of the U 2/3 Trackway, adjacent to the TB south wall
FW-5	Precipitation	20 feet west of the concrete be on the north side of the gravel before it forks
FW-10	Precipitation	At the fence at the northwest corner of the SBO Building
FW-11	Precipitation	30 feet east of the east wall of the EM shop; at the stanchion for RGPP well DSP-105
FW-12	Precipitation	60 feet southeast of the southwest corner of the Admin Building; on the security fence
MD-11		Piping located between Condensate Storage Tanks.
MW-DN-101-I	Monitoring Well	60 feet north of the Unit 1 Diesel Fuel Storage
MW-DN-101-S	Monitoring Well	60 feet north of the Unit 1 Diesel Fuel Storage
MW-DN-102-S	Monitoring Well	13 feet south of the southeast corner of the MUDS Building
MW-DN-103-I	Monitoring Well	280 feet west of the northwest corner of N-GET Building
MW-DN-103-S	Monitoring Well	281 feet west of the northwest corner of N-GET Building
MW-DN-104-S	Monitoring Well	50 feet north of Radwaste Tank Farm
MW-DN-105-S	Monitoring Well	65 feet north of the northeast corner of the Storeroom
MW-DN-107-S	Monitoring Well	15 feet west by southwest of the Unit 1 CST
MW-DN-109-I	Monitoring Well	8 feet north of Chemistry Building
MW-DN-109-S	Monitoring Well	8 feet north of Chemistry Building
MW-DN-110-S	Monitoring Well	25 feet west of the Waste Water Treatment (WWT) Building
MW-DN-111-S	Monitoring Well	9 feet east of the Floor Drain Collector Tank
MW-DN-112-I	Monitoring Well	100 feet south of the Chemistry Building
MW-DN-112-S	Monitoring Well	100 feet south of the Chemistry Building
MW-DN-113-S	Monitoring Well	91 feet west of the southwest corner of the Administration Building

TABLE A-1: Radiological Groundwater Protection Program - Sampling Locations, Dresden Nuclear Power Station, 2022

Site	Site Type	Location
MW-DN-114-I	Monitoring Well	50 feet east of the Unit 1 Clean Demineralized Water Tank
MW-DN-114-S	Monitoring Well	8 feet southwest of the Radiation protection Dept west access doors
MW-DN-115-I	Monitoring Well	11 feet south of Instrument Maintenance Shop
MW-DN-115-S	Monitoring Well	12 feet south of Instrument Maintenance Shop
MW-DN-116-I	Monitoring Well	75 feet south of the Calgon Building roll-up door
MW-DN-116-S	Monitoring Well	75 feet south of the Calgon Building roll-up door
MW-DN-118-S	Monitoring Well	Southeast corner of the Unit 1 Fuel Pool
MW-DN-119-I	Monitoring Well	20 feet east by northeast of the Unit 1 Sewage Ejector Building
MW-DN-119-S	Monitoring Well	21 feet east by northeast of the Unit 1 Sewage Ejector Building
MW-DN-122-I	Monitoring Well	150 feet north of Collins Road; northeast of the G.E. Fuel Storage Facility
MW-DN-122-S	Monitoring Well	150 feet north of Collins Road; northeast of the G.E. Fuel Storage Facility
MW-DN-124-I	Monitoring Well	10 feet south of the liquid nitrogen inerting tanks
MW-DN-124-S	Monitoring Well	10 feet south of the liquid nitrogen inerting tanks
MW-DN-125-S	Monitoring Well	40 feet east of 2/3 B CST
MW-DN-126-S	Monitoring Well	15 feet south of fence around Unit 2/3 A CST and B CST (outside of fence)
MW-DN-127-S	Monitoring Well	20 feet south of Unit 3 HRSS
MW-DN-134-S	Monitoring Well	20-ft North of Mausoleum Building
MW-DN-135-S	Monitoring Well	20-ft East of Mausoleum Building
MW-DN-136-S	Monitoring Well	14.5-ft South of Mausoleum Building
MW-DN-137-S	Monitoring Well	20-ft West of Mausoleum Building
MW-DN-140-S	Monitoring Well	East of MW-DN-104S at SW corner outside of 2/3 crib house
MW-DN-141-S	Monitoring Well	North of 'A' Waste Tank next to 2/3 main chimney
MW-DN-142-S	Monitoring Well	
MW-DN-143-S	Monitoring Well	
MW-DN-144-S	Monitoring Well	
North Well		
RW-DN-100-S		
RW-DN-101-S		
TW-DN-128-S		
TW-DN-132-S		
TW-DN-133-S		
U1-1		
U1-12		

Well Water

APPENDIX B

DATA TABLES

Intentionally left blank

TABLE B-I.1 CONCENTRATIONS OF TRITIUM AND STRONTIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION

SITE	DATE	H-3	Sr-89	Sr-90
CBG	03/16/22	1160 ± 191	<u> </u>	-
CBG	06/07/22	400 ± 130		
CBG	07/26/22	517 ± 133		
CBG	11/15/22	756 ± 155		
DSP-106	03/15/22	1110 ± 183		
DSP-106	06/08/22	1090 ± 174	< 3.8	< 0.8
DSP-106			\ 3.0	~ 0.0
DSP-106	07/26/22 11/14/22	1180 ± 194 1080 ± 187		
DSP-100		1210 ± 189		
DSP-107	03/15/22		- 50	- 07
DSP-107	06/08/22	1580 ± 225 1580 ± 228	< 5.0	< 0.7
DSP-107	07/26/22 11/14/22			
		1360 ± 215		
DSP-108	03/15/22	278 ± 118	. 07	- 0.0
DSP-108	06/08/22	332 ± 125	< 3.7	< 0.8
DSP-108	07/27/22	200 ± 119		
DSP-108	11/16/22	< 195		
DSP-122	03/17/22	851 ± 153		
DSP-122	06/09/22	736 ± 150	< 3.7	< 0.7
DSP-122	07/27/22	568 ± 130		
DSP-122	11/15/22	1120 ± 189		
DSP-123	03/17/22	< 169		
DSP-123	06/08/22	< 178	< 3.5	< 0.9
DSP-123	07/27/22	< 169		
DSP-123	11/16/22	< 185		
DSP-124	03/17/22	250 ± 127		
DSP-124	06/08/22	244 ± 127	< 4.4	< 0.8
DSP-124	07/28/22	318 ± 116		
DSP-124	11/15/22	647 ± 152		
DSP-125	03/16/22	169 ± 108		
DSP-125	06/07/22	209 ± 130	< 3.2	< 0.8
DSP-125	07/26/22	< 186		
DSP-125	11/15/22	< 195		
DSP-147	06/06/22	< 173		
DSP-148	06/06/22	191 ± 121		
DSP-149	06/06/22	391 ± 126		
DSP-150	06/08/22	< 186		
DSP-154	06/06/22	< 180		
DSP-159-M	06/06/22	211 ± 125		
DSP-159-S	06/06/22	< 173		
MD-11	03/16/22	10000 ± 1050		
MD-11	06/07/22	8450 ± 900	< 7.5	< 0.8
MD-11	07/26/22	9390 ± 992		
MD-11	11/15/22	12000 ± 1270		
MW-DN-101-I	03/17/22	246 ± 119		
MW-DN-101-I	06/09/22	< 183	< 3.4	< 0.7
MW-DN-101-I	07/27/22	226 ± 130		
MW-DN-101-I	11/16/22	239 ± 135		
MW-DN-101-S	03/17/22	< 169		
MW-DN-101-S	06/09/22	< 178	< 4.9	< 0.8
MW-DN-101-S	07/27/22	< 181		
MW-DN-101-S	11/16/22	< 187		
MW-DN-102-S	06/09/22	< 176		
MW-DN-104-S	03/17/22	222 ± 118		
	R.	.1		

TABLE B-I.1 CONCENTRATIONS OF TRITIUM AND STRONTIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COL	1 =	OT		N I
COL	ᇿ	\mathbf{c}	\mathbf{U}	IV.

	COLLECTION			
SITE	DATE	H-3	Sr-89	Sr-90
MW-DN-104-S	06/09/22	< 175	< 6.3	< 0.9
MW-DN-104-S	07/27/22	< 193		
MW-DN-104-S	11/16/22	376 ± 139		
MW-DN-105-S	03/15/22	< 182	-	
MW-DN-105-S	06/08/22	< 185	< 6.1	1.6 ± 0.7
MW-DN-105-S	07/27/22	< 180		
MW-DN-105-S	11/14/22	< 193		
MW-DN-107-S	03/16/22	< 190		
MW-DN-107-S	06/07/22	< 186	< 6.6	< 0.8
MW-DN-107-S	07/26/22	349 ± 137		
MW-DN-107-S	11/15/22	285 ± 131		
MW-DN-109-I	03/17/22	290 ± 130		
MW-DN-109-I	06/09/22	238 ± 118	< 4.4	< 0.8
MW-DN-109-I	07/26/22	319 ± 142		
MW-DN-109-I	11/15/22	310 ± 126		
MW-DN-109-S	03/17/22	< 184		
MW-DN-109-S	06/09/22	< 186	< 5.1	< 0.9
MW-DN-109-S	07/26/22	< 199		
MW-DN-109-S	11/15/22	< 192		
MW-DN-110-S	06/09/22	< 175		
MW-DN-111-S	03/17/22	4250 ± 490		
MW-DN-111-S	06/08/22	3730 ± 436	< 7.3	< 0.8
MW-DN-111-S	07/28/22	4510 ± 519		
MW-DN-111-S	11/15/22	6320 ± 697		
MW-DN-112-I	06/08/22	< 184		
MW-DN-112-I	11/15/22	202 ± 123		
MW-DN-112-S	06/08/22	< 197		
MW-DN-113-S	06/09/22	< 162		
MW-DN-114-I	06/08/22	1460 ± 213		
MW-DN-114-I	11/15/22	1650 ± 235		
MW-DN-114-S	03/16/22	772 ± 155		
MW-DN-114-S	06/08/22	470 ± 136	< 9.1	< 0.9
MW-DN-114-S	07/26/22	190 ± 117		
MW-DN-114-S	11/15/22	< 195		
MW-DN-115-I	06/08/22	371 ± 129		
MW-DN-115-I	11/14/22	453 ± 140		
MW-DN-115-S	03/16/22	< 188		
MW-DN-115-S	06/08/22	< 174	< 6.3	< 0.8
MW-DN-115-S	07/26/22	239 ± 131		
MW-DN-115-S	11/14/22	< 187		
MW-DN-116-I	06/09/22	< 196		
MW-DN-116-S	03/17/22	< 161		
MW-DN-116-S	06/09/22	< 184	< 6.7	< 0.8
MW-DN-116-S	07/27/22	< 188		
MW-DN-116-S	11/16/22	< 189		
MW-DN-118-S	03/15/22	< 163		
MW-DN-118-S	06/08/22	< 175	< 4.7	< 0.9
MW-DN-118-S	07/26/22	< 179	i	
MW-DN-118-S	11/14/22	< 178		
MW-DN-119-I	03/15/22	< 171		
MW-DN-119-I	06/09/22	< 193	< 4.1	< 0.7
MW-DN-119-I	07/27/22	218 ± 127		
MW-DN-119-I	11/16/22	283 ± 135		
	_			

B-2

TABLE B-I.1 CONCENTRATIONS OF TRITIUM AND STRONTIUM IN
GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF
DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

CO			

SITE	DATE	H-3	Sr-89	Sr-90	
MW-DN-119-S	03/15/22	< 174			
MW-DN-119-S	06/09/22	< 186	< 6.0	< 0.8	
MW-DN-119-S	07/27/22	< 191			
MW-DN-119-S	11/16/22	238 ± 127			
MW-DN-122-I	06/06/22	< 181			
MW-DN-122-S	06/06/22	< 167			
MW-DN-124-I	03/16/22	9680 ± 1020			
MW-DN-124-I	06/07/22	10900 ± 1140	< 6.3	< 0.9	
MW-DN-124-I	07/28/22	13300 ± 1400			
MW-DN-124-I	11/15/22	5480 ± 609			
MW-DN-124-S	03/16/22	398 ± 131			
MW-DN-124-S	06/07/22	418 ± 130	< 3.6	< 0.9	
MW-DN-124-S	07/28/22	947 ± 174			
MW-DN-124-S	11/15/22	665 ± 146			
MW-DN-125-S	06/07/22	< 177			
MW-DN-125-S	11/15/22	< 192			
MW-DN-126-S	03/16/22	< 176			
MW-DN-126-S	06/07/22	249 ± 118	< 6.7	< 0.8	
MW-DN-126-S	07/28/22	< 194			
MW-DN-126-S	11/15/22	303 ± 126			
MW-DN-127-S	06/07/22	361 ± 124			
MW-DN-134-S	06/06/22	< 173			
MW-DN-135-S	06/06/22	< 171			
MW-DN-136-S	03/15/22	< 187			
MW-DN-136-S	06/06/22	< 172	< 6.1	< 0.9	
MW-DN-136-S	07/25/22	< 198			
MW-DN-136-S	11/16/22	< 181			
MW-DN-137-S	06/06/22	< 185			
MW-DN-140-S	03/17/22	< 184			
MW-DN-140-S	06/09/22	< 190	< 8.6	< 0.9	
MW-DN-140-S	07/27/22	< 186			
MW-DN-140-S	11/16/22	< 177			
MW-DN-141-S	03/17/22	1340 ± 203	- 0.0	- 0.0	
MW-DN-141-S MW-DN-141-S	06/09/22 07/27/22	2100 ± 281 2910 ± 350	< 8.0	< 0.9	
MW-DN-141-S	11/15/22	4430 ± 504			
MW-DN-142-S	06/06/22	< 182			
MW-DN-143-S	06/06/22	< 185			
MW-DN-144-S	06/06/22	< 196			
RW-DN-100-S	03/16/22	368 ± 126			
RW-DN-100-S	06/07/22	< 188	< 7.7	< 0.8	
RW-DN-100-S	07/28/22	1220 ± 193	7 1.1	7 0.0	
RW-DN-100-S	11/15/22	648 ± 152			
RW-DN-101-S	11/15/22	19400 ± 2000			
2., 1010	11110122	10-00 I 2000			

TABLE B-I.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

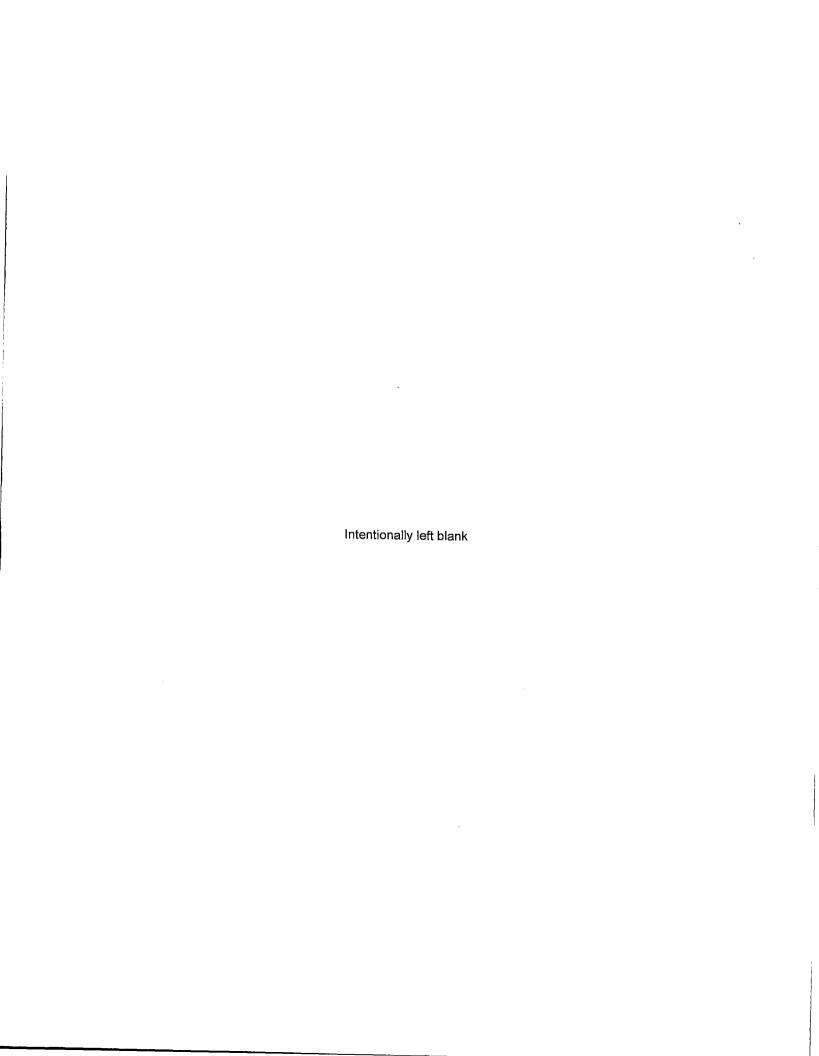

No samples collected or analyzed for gamma emitters in 2022

TABLE B-I.3

CONCENTRATIONS OF HARD TO DETECTS IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF DRESDEN NUCLEAR POWER STATION, 2022

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION										
SITE	DATE	Am-241	Cm-242	Cm-243/244	Pu-238	Pu-239/240	U-233/234	U-235	U-238	Fe-55	Ni-63
DSP-107	06/08/22									< 169	< 4.7
DSP-108	06/08/22									< 99	< 4.5
DSP-123	06/08/22									< 125	< 4.2
DSP-125	06/07/22	< 0.13	< 0.02	< 0.17	< 0.05	< 0.03	< 0.08	< 0.05	< 0.04		
MD-11	06/07/22	< 0.15	< 0.06	< 0.06	< 0.18	< 0.18	< 0.14	< 0.18	< 0.08	< 142	< 3.8
MW-DN-101-I	06/09/22									< 65	9.4 ± 2.8
MW-DN-101-S	06/09/22									< 141	< 4.5
MW-DN-105-S	06/08/22									< 45	< 3.4
MW-DN-116-S	06/09/22									< 169	< 3.4
MW-DN-119-I	06/09/22									< 107	9.3 ± 2.2
MW-DN-119-S	06/09/22		•							< 111	< 4.0
MW-DN-124-I	06/07/22	< 0.02	< 0.04	< 0.07	< 0.06	< 0.06	< 0.05	< 0.06	< 0.05	< 155	< 4.7
MW-DN-124-S	06/07/22	< 0.17	< 0.15	< 0.19	< 0.04	< 0.04	< 0.09	< 0.11	< 0.09	.< 94	< 4.3

