

April 24, 2023

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

Peach Bottom Atomic Power Station Units 1, 2 and 3 Independent Spent Fuel Storage Installation (ISFSI) Facility Operation License DPR-12, DPR-44 and DPR-56 NRC Docket 50-171, 50-277 and 50-278 and ISFSI Docket 72-29

Subject: Annual Radiological Effluent Release Report 65 January 1, 2022 through December 31, 2022

Enclosed is the Annual Radioactive Effluent Release Report 65, January 1, 2022 through December 31, 2022 for Peach Bottom Atomic Power Station, Units 1, 2 and 3.

This report is being submitted in compliance with 10 CFR 50.36a(2) and the Technical Specifications of Operating Licenses DPR-44 and DPR-56 and to fulfill the requirements of Offsite Dose Calculation Manual Specifications (ODCMS) 3.10.2. Additionally, this report is submitted to satisfy the annual effluent reporting requirements for the ISFSI required by the ODCM.

The ODCM was revised once during the 2022 reporting period. The revision is attached in Appendix A.

If you have any questions or require additional information, please do not hesitate to contact Erika Wagner at 717-456-3716.

Sincerely,

ald/4

David A. Henry, Site Vice President Peach Bottom Atomic Power Station

DH/RD/WS/MR/TJH/DEW/EDW

Enclosure (1) – 2022 Annual Radiological Effluent Release Report Cc: Regional Administrator – NRC Region 1 NRC Senior Resident Inspector – Peach Bottom Atomic Power Station PEACH BOTTOM ATOMIC POWER STATION Unit Numbers 2 and 3 Docket Numbers 50-277 and 50-278 Unit Number 1 Docket Number 50-171 PBAPS Independent Spent Fuel Storage Installation Docket Number 72-29

RADIOACTIVE EFFLUENT RELEASE REPORT

NO. 65

JANUARY 1, 2022 THROUGH DECEMBER 31, 2022

Submitted to The United States Nuclear Regulatory Commission Pursuant to Facility Operating Licenses DPR-44 and DPR-56

(This page intentionally left blank)

TABLE OF CONTENTS

INTRODUCTION	5
ATTACHMENT 1: SUPPLEMENTAL INFORMATION	7
Regulatory Limits	8
Maximum Permissible Concentrations	8
Average Energy	9
Minimum Detectable Concentrations	9
Measures and Approximations of Total Radioactivity	9
Decommissioned Unit 1 Liquid Radioactive Waste Processing	. 10
Batch Releases	. 11
Average Stream Flow	. 11
Abnormal or Unplanned Releases	. 12
Liquid Releases	. 12
Gaseous Releases	. 13
Missed Sampling	. 13
Radiation Monitors Out of Service for Greater than 30 days	. 13
Changes to the ODCM	. 13
Violations	. 13
Dose Assessment	. 14
Introduction	. 14
Liquid Dose Assessment	. 14
Gaseous Dose Assessment	. 15
ATTACHMENT 2: EFFLUENT SUMMARY	. 18
Gaseous Effluents - Summation of All Releases	. 19
Gaseous Effluents Release Point: Elevated (Main Offgas Stack)	. 20
Gaseous Effluents Release Point: Ground-Level (Units 2 and 3 Reactor Building Exhaust Vents and Abnormal Releases)	.21
Liquid Effluents - Summation of All Releases	. 22
Liquid Effluents Release Points – Liquid Radwaste, RHR Leaks and Groundwater	. 23
ATTACHMENT 3: SOLID WASTE AND IRRADIATED FUEL SHIPMENTS	. 24
Solid Waste Shipped	. 25
Irradiated Fuel Shipments	. 27
Changes to Process Control Program (PCP)	. 27

Peach Bottom Atomic Power Station Unit 2 and 3	Licensee: Constellation Energy Corporation PSEG Nuclear, LLC
ATTACHMENT 4: RADIOLOGICAL IMPACT ON MAN	
Radiological Impact on Man	
40 CFR 190 Doses	
ATTACHMENT 5: METEOROLOGICAL DATA	
APPPENDIX A: ODCM REVISION	

Technical Concurrence (for accuracy of information):

Rector, Matthew K.

Digitally signed by Rector, Matthew K. Date: 2023.04.24 13:27:27 -04'00'

Date

Manager, Site Chemistry and Radwaste

Hanlon, Tamara J.

Digitally signed by Hanlon, Tamara J. Date: 2023.04.24 14:20:13 -04'00'

INTRODUCTION

In accordance with the Reporting Requirements of Technical Specification 5.6.3 applicable during the reporting period, January 1, 2022 through December 31, 2022, this report summarizes the Effluent Release Data for Peach Bottom Atomic Power Station (PBAPS) Units 2 and 3. The notations E+ and E- are used to denote positive and negative exponents to the base 10, respectively.

The release of radioactive materials during the reporting period was within the Offsite Dose Calculation Manual Specification (ODCMS) limits.

In addition to the normal effluent releases from Units 2 and 3, there were two types of abnormal releases of liquid low-level radioactive material, one from releasing contaminated water and gas from the auxiliary boilers and one from groundwater tritium contamination ('tritium plume'). These releases were far below regulatory limits.

For all gaseous releases from Units 2 and 3, the maximum calculated organ dose (bone) from iodines (I-131, I-133 and I-135), tritium (H-3), carbon-14 (C-14) and particulates to any individual was 1.43E-01 mrem, which was approximately 4.77E-01% of the annual limit. The maximum calculated air dose in the unrestricted area due to noble gas effluents was 9.02E-03 mrad (gamma) and 6.27E-03 mrad (beta), which was 4.51E-02% and 1.57E-02%, respectively, of the annual limits.

In 2022, there were no direct gaseous or liquid releases or discharges from Unit 1 to the environment. Additionally, there were no gaseous or liquid radioactive releases from the Independent Spent Fuel Storage Installation, NRC Docket No. 72-29 (ISFSI).

No changes were made to RW-AA-100 "Process Control Program for Radioactive Waste" in the 2022 reporting period. There was one revision to the ODCM in Appendix A during the 2022 reporting period to update the distance for a dosimeter that had to be moved due to part of the property being demolished.

Peach Bottom Atomic Power Station Unit 2 and 3

Constellation common procedures, which provide consistent expectations and standards for Radioactive Effluents Controls Program (RECP), were used to generate this report. PBAPS site specific procedures used to assist with abnormal/unplanned releases were also used to generate this report. They are:

- CY-AA-170-000, Radioactive Effluent and Environmental Monitoring Program
- CY-AA-170-100, Radiological Environmental Monitoring Program
- CY-AA-170-200, Radioactive Effluent Controls Program
- CY-AA-170-300, Offsite Dose Calculation Manual Administration
- CY-AA-170-2000, Annual Radioactive Effluent Release Report
- CY-AA-170-2100, Estimated Errors of Effluent Measurement
- CY-AA-170-3100, Offsite Dose Calculation Manual Revisions
- CY-AA-170-2300, Determination of Carbon-14 in Gaseous Effluents
- CY-PB-170-202, RHR-HPSW Leak Rate Calculation
- CY-PB-170-2020, Radiological Abnormal Gaseous Release Assessment
- CY-PB-170-210, Gaseous Dose and Dose Rate Calculation
- CY-PB-170-2000, Annual Radioactive Effluent Release Report
- CY-PB-170-2300, OpenEMS Effluent Management System Implementation
- Peach Bottom Atomic Power Station, Offsite Dose Calculation Manual and Specifications (Appendix A)

ATTACHMENT 1: SUPPLEMENTAL INFORMATION

Regulatory Limits

Table 1. Noble Gas D	ose Rate and Dose Limits

Maximum Value	Units	Limit Classification	Specification
500	mrem/ yr	annual total body dose rate	ODCM Specification 3.8.C.1.a
3000	mrem/ yr	annual skin dose rate	ODCM Specification 3.8.C.1.a
10	mrad	gamma radiation in air dose per quarter	ODCM Specification 3.8.C.2.a
20	mrad	beta radiation in air dose per quarter	ODCM Specification 3.8.C.2.b
20	mrad	gamma radiation in air dose per year	ODCM Specification 3.8.C.2.c
40	mrad	beta radiation in air dose per year	ODCM Specification 3.8.C.2.d

Table 2. Iodines.	. Tritium and Particulates	s (with half-lives >8 days	s) Dose Rate and Dose Limits
	,		

Maximum Value	Units	Limit Classification	Specification
1500	mrem/ yr	annual dose rate limit to any organ	ODCM Specification 3.8.C.1.b
15	mrem	dose limit to any organ per quarter	ODCM Specification 3.8.C.3.a
30	mrem	dose limit to any organ per year	ODCM Specification 3.8.C.3.b

Table 3. Liquid Effluent Activity Concentration and Dose Rate Limits

Maximum Value	Units	Limit Classification	Specification
10 times 10 CFR 20, Appendix B, Table 2, Column 2	μCi/ mL	Activity Concentration in all liquid releases	ODCM Specification 3.8.B.1.a
2E-04	μCi/ mL	total activity concentration for all dissolved and entrained noble gases	ODCM Specification 3.8.B.1.b
3	mrem	total body dose limit per quarter	ODCM Specification 3.8.B.2.a
10	mrem	dose limit to any organ per quarter	ODCM Specification 3.8.B.2.a
6	mrem	total body dose limit per year	ODCM Specification 3.8.B.2.b
20	mrem	dose limit to any organ per year	ODCM Specification 3.8.B.2.b

Maximum Permissible Concentrations

Gaseous dose rates, rather than effluent concentrations, are used to calculate permissible release rates for gaseous releases. The maximum permissible dose rates for gaseous releases are defined in ODCMS 3.8.C.1.a. and 3.8.C.1.b.

The Effluent Concentrations Limits (ECL) specified in 10 CFR 20, Appendix B, Table 2, Column 2 multiplied by 10, for identified nuclides, are used to calculate permissible release rates and concentrations for liquid release per ODCMS 3.8.B.1.

The total activity concentration for all dissolved or entrained noble gases is limited to < 2E-04 μ Ci/mL (ODCMS 3.8.B.1.b).

Peach Bottom Atomic Power Station Unit 2 and 3

Average Energy

The PBAPS ODCM limits the dose-equivalent rates due to the release of noble gases to less than or equal to 500 mrem/year to the total body and less than or equal to 3000 mrem/year to the skin. Therefore, the average beta and gamma energies of the radionuclide mixture in releases of fission and activation gases as described in Regulatory Guide 1.21, Revision 1, "Measuring, Evaluation, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," are not applicable to PBAPS.

Minimum Detectable Concentrations

If a radionuclide was not detected, "<LLD" was reported as the activity. Samples were analyzed with techniques that achieved the required Lower Limits of Detection (LLD) specified in ODCMS Table 4.8.B.1, "Radioactive Liquid Waste Sampling and Analysis" (for liquids) or ODCMS Table 4.8.C.1, "Radioactive Gaseous Waste Sampling and Analysis from Main Stack and Vent Stack" (for gases). In all cases, the LLD requirements were satisfied.

Measures and Approximations of Total Radioactivity

Fission and Activation Gases

The method used for gamma isotopic analysis is the Canberra Genie[™] System with a gas marinelli beaker. Grab samples are taken and analyzed weekly to determine the isotopic mixture of noble gas activity released for the week. Airborne effluent gaseous activity was continuously monitored and recorded in accordance with ODCMS Table 4.8.C.1. The data from the noble gas radiation monitor were analyzed to report noble gas effluent activities. When no activity was identified in the grab isotopic analysis (un-id(s) or un-id(v)), the entire release must be assumed to be the radionuclide with the most-limiting dose factors for the release pathway (i.e. krypton-88 (Kr-88) for all ground-level releases, Kr-88 for elevated gamma dose and Kr-87 for elevated beta dose; see ODCM IV.B and NUREG-0133¹). The activity released is listed as "unidentified" in the Attachment 2 Tables. If activity was found in the grab isotopic analysis, the isotopic mixture for the Noble Gas Monitor was determined from that isotopic mixture.

Iodines

The method used is the Canberra Genie[™] System with a charcoal cartridge. Iodine activity was continuously sampled and analyzed in accordance with ODCMS Table 4.8.C.1.

Particulates

The method used is the Canberra Genie[™] System with a particulate filter (47 mm diameter). Particulate activity was continuously sampled and analyzed in accordance with ODCM Table 4.8.C.1.

Composite particulate air samples were submitted to an offsite vendor laboratory for analyses of strontium-89 (Sr-89), Sr-90, nickel-63 (Ni-63) and gross alpha.

¹ NUREG 0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications," October 1978.

Carbon-14

The amount of C-14 released was estimated using the guidance from the Electric Power Research Institute (EPRI) Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents". The C-14 was released primarily through the Main Offgas Stack (9.70E+01%) with a small amount (3.00E+00%) through the Reactor Building Exhaust Vents. The C-14 in liquid effluents is not a significant dose pathway, as determined from studies.

Liquid Effluents

Gamma isotopic activity concentrations are determined on each batch of liquid effluent prior to release using the Canberra Genie[™] System in accordance with ODCMS Table 4.8.B.1. The total activity of a released batch is determined by multiplying each nuclide's concentration by the total volume discharged.

Composite liquid radwaste samples are analyzed for tritium on-site and submitted to an offsite vendor laboratory for analyses of iron-55 (Fe-55), phosphorus-32 (P-32), Sr-89, Sr-90, Ni-63, and gross alpha.

Estimate of Total Error Present

CY-AA-170-2100, "Estimated Errors of Effluent Measurements", provides the methodology to obtain an overall estimate of the error associated with radioactive effluents, which are listed in Attachment 2 of this report.

Decommissioned Unit 1 Liquid Radioactive Waste Processing

In 2022, there were no direct gaseous or liquid releases or discharges from Unit 1 to the environment. During the reporting period, there were two releases of Unit 1 water through the Unit 2 and Unit 3 liquid rad waste system. The releases included Unit 1 water drummed in July 2022 (1100 gal). The permitted liquid effluent doses for all the Unit 1 water released through the Unit 2 and Unit 3 liquid radwaste system was 9.84E-07 mrem to the adult total body and 1.564E-06 mrem to the teenager liver, 3.28E-05% and 1.56E-05% of quarterly ODCM limit, respectively.

Batch Releases

Table 4. Quarterly Liquid Batch Release Statistics

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Number of Batch Releases	15	0	6	26
Total Time for Batch Releases (minutes)	1.90E+03	0	5.70E+02	4.58E+03
Maximum time period for batch release (minutes)	2.50E+02	0	2.10E+02	1.44E+03
Average time period for batch release (minutes)	1.27E+02	0	9.50E+01	1.76E+02
Minimum time period for batch release (minutes)	4.00E+01	0	3.60E+01	2.80E+01
Average Stream Flow (ft ³ /s) ^{2,3}	1.75E+05	1.49E+05	2.86E+04	9.00E+04
Dilution volume (liters)	8.03E+09	0	2.59E+09	1.93E+10

Table 5. Quarterly Gaseous Batch Release Statistics

	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Number of batch releases:	0	0	0	1
Total Time for batch releases (minutes)	0	0	0	2.39E+04
Maximum time period for batch release (minutes)	0	0	0	2.39E+04
Average time period for batch release (minutes)	0	0	0	2.39E+04
Minimum time period for batch release (minutes)	0	0	0	2.39E+04

Average Stream Flow

The river flow is not used for dose calculations. The actual flow rate of Circulation Water (the water that is circulated within the plant for cooling) is determined for each liquid effluent release because this Circulation Water provides dilution and therefore reduces the projected dose.

² Average Stream Flow is not used for dose calculation.

³ USGS National Water Information System, Site Name: "Susquehanna River at Marietta, PA", Site Number: 01576000. Data accessed 5 April 2023.

Abnormal or Unplanned Releases

'Abnormal' releases are those releases that are not defined as 'normal' releases in the Licensee's ODCM. Systems with a potential for an unplanned release are monitored to ensure if a release were to occur it would be identified and quantified appropriately. Source terms used for dose calculations utilize direct sampling and the maximum concentrations of nuclides to ensure that the most conservative and bounding estimates are used. Methodologies calculate conservative doses utilizing conservative mathematical models to describe intake and exposure pathways. Therefore, reported doses for these abnormal releases are calculated conservatively.

Liquid Releases

Groundwater Tritium Plume

During 2022, during the sampling and analysis of the Radiological Ground Water Protection Program (RGPP), tritium was measured at several locations around the site. The ground water that has detectable tritium has been determined to flow into the plant intake and eventually flow into the normal discharge canal. Details of this program can be found in the Peach Bottom Annual Radiological Environmental Operating Report (AREOR) as an appendix. No other nuclides were detected in monitoring wells.

Analysis of Release

It was assumed from the maximum flow rates measured that ground water flowed to the discharge canal at a steady rate of 3.44E+02 gpm, carrying with it some of the tritium underneath the plant. The ground water flow rate was updated in April 2017, when the new report was provided⁴. The conservative maximum dose for the entire year from this continuous release is calculated to be 3.49E-05 mrem (to the whole-body) and 3.49E-05 mrem (to any organ, except bone⁵ which is 0.00E+00 mrem)⁶. This dose contribution projection is well below the limit specified in the ODCM.

Contaminated Auxiliary Boiler

During 2022, trace amounts of H-3 activity were identified in the auxiliary boiler (IR# 04545657). The operation of the boiler dilutes the activity and then it builds back up after shutdown and initial return to service. Therefore, sampling and monitoring of the boiler and deaerator water was performed prior to start up, during operations, and after lay-up to identify any potential for release. A liquid release occurred during a chemistry requested blow down to aid in improving conductivity and turbidity in the operating boiler. The source of the trace amounts of H-3 was identified and fixed in January of 2023.

⁴ "Estimated Mass Flux Of Tritiated Groundwater To The Conowingo Reservoir And Rock Run Creek, Peach Bottom Atomic Power Station, Delta, Pennsylvania", August 2017, GHD formerly Conestoga-Rovers & Associates.

⁵ Tritium dose factor for bone is 0.00E+00; therefore, no hypothetical dose is calculated.

⁶ These doses are identical because the dose factors are identical for the same nuclide and pathway.

Analysis of Release

There was one abnormal liquid release due to contamination found in the auxiliary boilers. Samples were counted to effluent LLDs for gamma and H-3 and any positive activity was used to quantify the release. The releases were documented in the effluent management software (OpenEMS) and the total organ dose was determined to be 1.86E-08 mrem to the child GI-Lli (1.86E-07% of quarterly limit) and 1.86E-08 mrem to the child total body (6.20E-07% of quarterly limit).

Gaseous Releases

Contaminated Auxiliary Boiler

While the boiler was in operation, the roof vent was opened to maintain system pressure or on startup. The conservative assumption is that the steam released through the auxiliary boiler contained whatever activity was identified during liquid sampling and therefore, needed to be documented as a release. The highest identified H-3 activity concentration from either the steam/mud drums or the deaerator was used to quantify the release. There was one documented release of the steam from the auxiliary boiler containing activity in 2022. The steam flow rate was assumed to be the load rate % on the boiler, which is overly conservative, but there is no measurement of boiler exhaust flow rate. The total dose to infant thyroid was 6.84E-06 mrem, 4.56E-05% of quarterly limit. The conservative nature of the release assumptions show that the dose impact is minimal to the public.

Missed Sampling

There were no missed ODCM samples in 2022.

Radiation Monitors Out of Service for Greater than 30 days

The Unit 2 service water radiation monitor was out of service for greater than 30 days in 2022 starting on August 26 due to no flow conditions. Due to the radiation monitor not being restored to service within 30 days, ODCM 3.8.B.3 Condition E was entered, and the details needed to be provided in this annual report (IR # 04530029). All required compensatory sampling was performed during this time period and all sample LLDs were met.

Changes to the ODCM

There was one revision made to the ODCM and to the ODCM Specifications (Appendix A) during 2022. The distance for environmental dosimeter station code 42 was updated from 21,600 ft to 21,500 ft. The dosimeter had to be moved due to part of the property being demolished.

Violations

There were no effluent release violations for the 2022 reporting period.

Dose Assessment

Introduction

A dose assessment for PBAPS was conducted with the measured cumulative 2022 radioactive effluent source terms, provided in Attachment 2, "Effluent Summary," and the 2022 meteorological (MET) data. This dose assessment verifies that PBAPS continues to demonstrate compliance with the limits as well as the requirement of maintaining the doses "as low as is reasonably achievable" as stated in 10 CFR 50, Appendix I.⁷

Liquid Dose Assessment

Hydrologic Conditions and Receptor Locations of Interest

PBAPS is located on the Conowingo Pond formed in the Susquehanna River by the Conowingo Dam. For 2022, the annual average river flow⁸ was measured as 3.69E+04 ft³/s.

Of the three separate flow regimes that were used in the original Appendix I submittal, the most limiting of them (<1.50E+04 ft³/s) was used to calculate a dose assessment for this report because this would provide a bounding extreme for all PBAPS liquid effluents. Therefore, although the actual average stream flow for the year was more than double the limiting case, this report will provide an upper limit for the most-limiting dose.

The annual average dilution factor⁹ at the Conowingo Intake is 5.40E+00 and the assumption for the reconcentration factor⁹ is 1.16E+00. The PBAPS shore width factor¹⁰ of 2.00E-01 was also used.

No invertebrate intake was examined because invertebrate ingestion pathways are not considered to be significant in the area close to PBAPS. The pathway factors for the various age groups, used to determine dose to the public from liquid effluents are shown in Table 6.

Pathway	Adult	Teenager	Child	Infant	Units
Eating Fish ¹⁰	2.10E+01	1.60E+01	6.90E+00	0.00E+00	kg/ yr
Drinking Water ¹¹	7.30E+02	5.10E+02	5.10E+02	5.10E+02	L/ yr
Swimming ¹²	2.80E+02	2.80E+02	0.00E+00	0.00E+00	h/ yr
Boating ¹²	1.20E+02	1.20E+02	6.70E+01	0.00E+00	h/ yr
Shoreline Recreation ¹²	3.25E+02	3.25E+02	1.40E+01	0.00E+00	h/ yr
Fishing from Conowingo Dam ¹²	3.25E+02	3.25E+02	0.00E+00	0.00E+00	h/ yr

Table 6. Consumption and Usage Rate Assumptions

⁷10 CFR 50 Appendix I, "Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion "As Low as is Reasonable Achievable" for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents".

⁸ USGS National Water Information Service; Monitoring Site 01576000, Susquehanna River at Marietta, PA; <u>http://waterdata.usgs.gov/nwis.</u> Accessed 5 April 2023.

⁹ From original ODCM.

¹⁰ RG 1.109, Table A-2.

¹¹ All locations from RG 1.109, Section A-2. Chester Water Authority uses 10% of the RG 1.109 value because it is assumed to have 10% sourced from Conowingo Pond.

¹² PBAPS Environmental Report, Supplement No. 3, Page 19. Boating data is a ratio of Adult: Child rates from RG 1.109, Table A-2.

Peach Bottom Atomic Power Station Unit 2 and 3

Liquid Effluent Dose Assessment Conclusion

For all permitted releases in 2022, the calculated total body dose was 2.94E-04 mrem and 2.96E-04 mrem to the limiting organ of child Liver.

Therefore, PBAPS liquid radioactive effluent controls continue to demonstrate compliance with 10 CFR 50, Appendix I objectives for the purposes of keeping doses to members of the public "as low as is reasonably achievable". These limiting or maximum calculated doses are a small fraction of the limits in Appendix I.

Gaseous Dose Assessment

The gaseous dose assessment calculates the conservative dose at the limiting receptor location, as defined in the ODCM and at locations from the land-use census, using the 2022 meteorology to demonstrate compliance with 10 CFR 50, Appendix I. The assessment compares the current ODCM locations to the maximum locations from the land use census to ensure the current ODCM locations are still the most impactful dose locations.

Tables 7 and 8 report the dose calculated with the CY-PB-170-210 spreadsheet using the 2022 MET data and total gaseous activity released (summarized in Attachment 2), including C-14. Table 7 focuses on the two locations with the highest elevated dispersion factor (X/Q) from the Main Offgas Stack, while Table 8 highlights the two locations with the highest ground deposition factor (D/Q) from the Reactor Building Exhaust Vents. The X/Q values are very similar to those used in the ODCM, and therefore the differences in noble gas dose is minimal. The larger discrepancies between iodine, particulates, tritium (I/P/T) organ doses can be explained by the differences in pathways. Tables 7 and 8 assume that there is a milk pathway at each of the listed locations. The ODCM defines the milk pathway at 1500m SW and the D/Qs are more comparable (2022 vent: 2.01E-09 1/m² vs. ODCM vent: 1.58E-09 1/m²) and therefore, the dose calculated by ODCM methodology is more accurately representative of the dose to members of the public than the doses reported in Tables 7 and 8.

Distance (m)	Direction	2022 Highest MS X/Q (D/Q)	2022 Vent X/Q (D/Q)	TotalBody Dose (mrem)	Skin Dose (mrem)	Gamma Air Dose (mrad)	Beta Air Dose (mrad)	I/P/T/C- 14 Dose (mrem)	Limiting Receptor
4600	N	4.77E-08 (3.79E-10)	1.43E-07 (8.94E-10)	1.47E-02	1.91E-02	1.52E-02	1.03E-02	2.05E-01	Bone
3800	SW	2.89E-08 (1.85E-10)	1.22E-07 (4.78E-10)	1.26E-02	1.63E-02	1.30E-02	8.79E-03	1.28E-01	Bone

Table 7. Conservative Maximum Elevated Release Dose from 2022 Source Term and 2022 Meteorology

Table 8. Ground-Level Dose from 2022 Source Term and 2022 Meteorology

Distance (m)	Direction	2022 Highest Vent D/Q (X/Q)	2022 MS X/Q (D/Q)	Total Body Dose (mrem)	Skin Dose (mrem)	Gamma Air Dose (mrad)	Beta Air Dose (mrad)	I/P/T/C- 14 Dose (mrem)	Limiting Receptor
1200	SSE	9.49E-09 (9.44E-07)	2.92E-09 (5.83E-10)	9.64E-02	1.25E-01	9.97E-02	6.75E-02	1.26E-01	Bone
900	NW	7.46E-09 (1.17E-06)	4.15E-09 (5.23E-10)	9.11E-03	1.17E-02	9.42E-03	6.32E-03	1.59E-01	Bone

Gaseous Radioactive Effluent Dose Assessment Conclusion

The conservative maximum dose was 1.43E-01 mrem with the maximum receptor as the child bone which is due to the incorporation of carbon-14 in the calculation. Without C-14, the maximum dose is 2.01E-03 mrem to the infant thyroid. The noble gas limiting air doses were 9.02E-03 mrad (gamma) and 6.27E-03 mrad (beta). Noble gas plume conservative dose was 8.72E-03 mrem to the total body and 1.15E-02 to the skin mrem for the year.

A dose assessment was performed for members of the public due to their activities inside the site boundary, per ODCMS 3.10.2.f. The locations where a member of the public would spend a significant amount of time inside the site boundary are two new vehicle checkpoints, approximately 780 feet ENE (Emergency checkpoint) and 910 feet NNE (Warehouse checkpoint) of the PBAPS Unit 2 and Unit 3 reactor building exhaust vents. Assuming continuous occupancy, the calculated total body and skin doses were 7.94E-01 mrem and 1.03E+00 mrem for the Emergency checkpoint and 1.42E-01 mrem and 1.84E-01 mrem for the Warehouse checkpoint, respectively. The noble gas limiting air doses were 8.21E-01 mrad (gamma) and 5.56E-01 mrad (beta) for the Emergency checkpoint. These doses are overly conservative, as typically vehicles and their drivers are not at the checkpoints 24/7. The maximum organ dose from the inhalation pathway, not including C-14, is 2.30E-01 mrem for the Emergency checkpoint and 4.24E-02 mrem for the Warehouse checkpoint, both to the infant thyroid.

All doses are projected to be much less than the limits, as expected. Again, these dose models incorporate several factors of conservatism including a source term that, by procedure, will use the most dose-limiting noble gas nuclide when no fission gas can be identified by grab sample, but activity is detected from the effluent radiation monitor. Constellation uses a detailed C-14 dose projection from the Electric Power Research Institute, Technical Report 1021106. Details for the assumptions used in this calculation may be found there.¹⁵

Therefore, PBAPS gaseous radioactive effluent controls continue to demonstrate compliance with 10 CFR 50, Appendix I objectives for the purposes of keeping doses to members of the public "as low as is reasonably achievable". These limiting or maximum calculated doses are a small fraction of the limits in Appendix I.

¹⁵ PBAPS uses specific Boiling Water Reactor assumptions because the fraction of C-14 that is in the CO₂ form will vary based on general plant design. This is important because the major dose pathway is through photosynthesis and, therefore, only the oxide form is relevant.

Peach Bottom Atomic Power Station Unit 2 and 3

ERRATA

There is no errata to report for 2022.

ATTACHMENT 2: EFFLUENT SUMMARY

Gaseous Effluents - Summation of All Releases

Period: January 1, 2022 through Dece	ember 31, 2		Unit: Peach Bottom			
A. Fission & Activation Gases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Total Error %
1. Total Release	Ci	<lld< td=""><td>1.75E+00</td><td>5.41E-01</td><td>2.16E+01</td><td>4.00E+01</td></lld<>	1.75E+00	5.41E-01	2.16E+01	4.00E+01
2. Average release For the Period	uCi/ s	0.00E+00	2.22E-01	6.81E-02	2.72E+00	
3. Gamma Air Dose	mrad	<lld< td=""><td>2.72E-05</td><td>6.90E-07</td><td>8.99E-03</td><td></td></lld<>	2.72E-05	6.90E-07	8.99E-03	
4. Beta Air Dose	mrad	<lld< td=""><td>5.69E-05</td><td>3.37E-06</td><td>6.21E-03</td><td></td></lld<>	5.69E-05	3.37E-06	6.21E-03	
5. Percent of ODCM limit						
Gamma Air Dose	%	0.00E+00	1.81E-04	4.60E-06	6.00E-02	
Beta Air Dose	%	0.00E+00	1.90E-04	1.12E-05	2.07E-02	

B. Iodines

1. Total I-131	Ci	4.17E-05	5.29E-05	4.68E-05	5.56E-05	1.90E+01
2. Average release For the Period	uCi/ s	5.36E-06	6.73E-06	5.89E-06	6.99E-06	
3. Percent of ODCM limit	%	*	*	*	*	

* No ODCM defined Curie Limit, therefore a percentage of the limit cannot be calculated.

C. Particulate

1. Particulates with T1/2 > 8 days	Ci	3.31E-05	4.67E-05	3.52E-05	2.18E-04	2.80E+01
2. Average release For the Period	uCi/ s	4.25E-06	5.94E-06	4.43E-06	2.74E-05	
3. Percent of ODCM limit	%	*	*	*	*	

* No ODCM defined Curie Limit, therefore a percentage of the limit cannot be calculated.

D. Tritium

1. Total Release	Ci	1.43E+01	1.93E+01	1.74E+01	6.83E+00	1.30E+01
2. Average release For the Period	uCi/ s	1.84E+00	2.46E+00	2.19E+00	8.59E-01	
3. Percent of ODCM limit	%	*	*	*	*	

* No ODCM defined Curie Limit, therefore a percentage of the limit cannot be calculated.

E. Gross Alpha

1. Total Release	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>4.00E+02</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>4.00E+02</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>4.00E+02</th></lld<></th></lld<>	<lld< th=""><th>4.00E+02</th></lld<>	4.00E+02
2. Average release For the Period	uCi/ s	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit	%	*	*	*	*	

* No ODCM defined Curie Limit, therefore a percentage of the limit cannot be calculated.

F. Carbon-14

1. Total Release	Ci	9.79E+00	9.79E+00	9.79E+00	9.79E+00
2. Average release For the Period	uCi/ s	1.26E+00	1.25E+00	1.23E+00	1.23E+00

G. Iodine-131, 133 and 135, Tritium, Carbon-14 & Particulate

1. Organ Dose*	mrem	3.57E-02	3.57E-02	3.57E-02	3.57E-02
2. Percent ODCM limit	%	2.38E-01	2.38E-01	2.38E-01	2.38E-01

*C-14 contributes most significantly; therefore, the quarterly dose to the child bone is reported

Gaseous Effluents Release Point: Elevated (Main Offgas Stack)

Period: January	1, 2022	2 through Dec	ember 31, 202	2		Unit: Peach Bottom			
Nuclides Released			Continue	ous Mode	1		Batch	Mode	
1. Fission Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Unidentified	Ci	<lld< td=""><td>1.75E+00</td><td><lld< td=""><td>5.13E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.75E+00	<lld< td=""><td>5.13E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	5.13E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ar-41	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Kr-85m	Ci	<lld< td=""><td><lld< td=""><td>5.41E-01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>5.41E-01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	5.41E-01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Kr-87	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Kr-88	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-133m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-133	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-135m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-138	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total For Period	Ci	<lld< td=""><td>1.75E+00</td><td>5.41E-01</td><td>5.13E+00</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.75E+00	5.41E-01	5.13E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
2. lodines			1	•			1	1	1
I-131	Ci	3.90E-05	5.29E-05	3.62E-05	3.55E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-132	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-133	Ci	1.16E-04	1.78E-04	1.28E-04	7.05E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-135	Ci	<lld< td=""><td>3.32E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	3.32E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total For Period	Ci	1.55E-04	2.65E-04	1.64E-04	1.06E-04	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
3. Particulates							1		1
Sr-89	Ci	3.04E-05	2.39E-05	3.44E-05	2.51E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>2.24E-07</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>2.24E-07</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>2.24E-07</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	2.24E-07	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ba-140	Ci	2.62E-06	1.60E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cr-51	Ci	<lld< td=""><td>1.82E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.82E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ci	<lld< td=""><td>1.08E-06</td><td><lld< td=""><td>5.34E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.08E-06	<lld< td=""><td>5.34E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	5.34E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Ci	<lld< td=""><td>1.23E-06</td><td><lld< td=""><td>1.28E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.23E-06	<lld< td=""><td>1.28E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.28E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ci	<lld< td=""><td>1.57E-05</td><td>8.03E-07</td><td>2.04E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.57E-05	8.03E-07	2.04E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-141	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-144	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Ci	<lld< td=""><td>1.37E-06</td><td><lld< td=""><td>4.59E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.37E-06	<lld< td=""><td>4.59E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	4.59E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total For Period	Ci	3.31E-05	4.67E-05	3.52E-05	6.84E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
4. Tritium									
H-3	Ci	1.78E+00	2.36E+00	4.91E+00	1.01E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
5. Gross Alpha			·						
Gross Alpha	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
6. Carbon-14									
C-14	Ci	9.50E+00	9.50E+00	9.50E+00	9.50E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
	1		1	1	1	1	1	1	l

Gaseous Effluents Release Point: Ground-Level (Units 2 and 3 Reactor Building Exhaust Vents and Abnormal Releases)

Exhaust Vents	and	Abnormal	Releases)	•				U	
Period: January 1,	2022 ti	nrough Decen	nber 31, 2022				Unit	: Peach B	ottom
Nuclides Released			Continuo	ous Mode	1		Batch	Mode	1
1. Fission Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Kr-85	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Kr-85m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Kr-87	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Kr-88	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-133	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-135m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-138	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ar-41	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Unidentified	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.65E+01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.65E+01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.65E+01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.65E+01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total For Period	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.65E+01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.65E+01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.65E+01</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.65E+01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
2. lodines				•			•	•	•
I-131	Ci	2.69E-06	<lld< td=""><td>1.06E-05</td><td>2.01E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.06E-05	2.01E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-132	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-133	Ci	3.81E-05	1.19E-04	9.05E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total For Period	Ci	4.08E-05	1.19E-04	1.01E-04	2.01E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
3. Particulates									
Sr-89	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ba-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cr-51	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>7.53E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>7.53E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>7.53E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	7.53E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>8.55E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>8.55E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>8.55E-06</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	8.55E-06	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.71E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.71E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.71E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.71E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>4.87E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>4.87E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>4.87E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	4.87E-05	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sb-124	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-141	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-144	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total For Period	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.50E-04</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.50E-04</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.50E-04</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	1.50E-04	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
4. Tritium									
H-3	Ci	1.25E+01	1.70E+01	1.25E+01	5.57E+00	<lld< td=""><td><lld< td=""><td><lld< td=""><td>2.50E-1</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>2.50E-1</td></lld<></td></lld<>	<lld< td=""><td>2.50E-1</td></lld<>	2.50E-1
5. Gross Alpha									
Gross Alpha	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
6. Carbon-14									
C-14	Ci	2.94E-01	2.94E-01	2.94E-01	2.94E-01	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

Liquid Effluents - Summation of All Releases

Period: January	v 1. 2022 to	December 31	. 2022

Period: January 1, 2022 to December 31, 2022	eriod: January 1, 2022 to December 31, 2022							
A. Fission & Activation Gases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Est. Total Error %		
1. Total Release (not including tritium, gases & alpha)	Ci	8.62E-05	<lld< td=""><td>6.74E-07</td><td>4.43E-04</td><td>1.60E+01</td></lld<>	6.74E-07	4.43E-04	1.60E+01		
2. Average diluted concentration for the Period	µCi/ mL	1.07E-11	<lld< td=""><td>2.60E-13</td><td>1.77E-11</td><td></td></lld<>	2.60E-13	1.77E-11			
3. Percent of applicable limit								
Total Body Dose*	%	1.55E-03	N/A	3.95E-04	7.86E-03]		
Organ Dose*	%	4.75E-04	N/A	1.31E-04	2.49E-03]		

*ODCMS 3.8.B.2.a and ODCMS 3.8.B.2.b (page 7) define the dose limit

B. Tritium						Est. Total Error %
1. Total Release	Ci	4.10E+00	4.35E-01	1.74E+00	8.14E+00	6.40E+00
2. Average diluted concentration for the Period	μCi/ mL	7.12E-09	6.49E-10	2.56E-09	1.25E-08	
3. Percent of applicable limit*	%	7.12E-04	6.49E-05	2.56E-04	1.25E-03	

*10x 10CFR20 Limit of 1.00E-03 $\mu\text{Ci}/$ mL; ODCMS 3.8.B.1.a

C. Dissolved & Entrained Gases						Est. Total Error %
1. Total Release	Ci	5.29E-06	<lld< td=""><td>1.49E-05</td><td><lld< td=""><td>2.80E+01</td></lld<></td></lld<>	1.49E-05	<lld< td=""><td>2.80E+01</td></lld<>	2.80E+01
2. Average diluted concentration for the Period	µCi/ mL	6.58E-13	<lld< td=""><td>5.77E-12</td><td><lld< td=""><td></td></lld<></td></lld<>	5.77E-12	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit [*]	%	3.29E-07	N/A	2.89E-06	N/A	

*ODCMS 3.8.B.1.b Limit for all noble gases is 2.00E-04 $\mu\text{Ci}/\,\text{mL}$

D. Gross Alpha Activity						Est. Total Error %
1. Total Release	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>2.30E+01</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>2.30E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>2.30E+01</th></lld<></th></lld<>	<lld< th=""><th>2.30E+01</th></lld<>	2.30E+01
E. Volume of Waste Released (prior to dilution)	Liters	1.70+08	1.71E+08	1.72E+08	1.73E+08	
						_
F. Volume of Dilution Water Used During Period	Liters	5.76E+11	6.70E+11	6.80E+11	6.52E+11	

Liquid Effluents Release Points – Liquid Radwaste, RHR Leaks and Groundwater

Period: Jan	uary 1, 2	2022 through	December 3	1, 2022		L		Unit: Pea	ach Bottom
Nuclides Released		Continuous Mode				Batch I	Vlode		
	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Sr-89	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.74E-07</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.74E-07</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.74E-07</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>6.74E-07</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>6.74E-07</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>6.74E-07</td><td><lld< td=""></lld<></td></lld<>	6.74E-07	<lld< td=""></lld<>
I-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.89E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.89E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.89E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.89E-06</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>6.89E-06</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>6.89E-06</td></lld<></td></lld<>	<lld< td=""><td>6.89E-06</td></lld<>	6.89E-06
Co-58	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.54E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.54E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.54E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.54E-06</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>7.54E-06</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>7.54E-06</td></lld<></td></lld<>	<lld< td=""><td>7.54E-06</td></lld<>	7.54E-06
Co-60	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.25E-05</td><td><lld< td=""><td><lld< td=""><td>7.87E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>2.25E-05</td><td><lld< td=""><td><lld< td=""><td>7.87E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>2.25E-05</td><td><lld< td=""><td><lld< td=""><td>7.87E-05</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>2.25E-05</td><td><lld< td=""><td><lld< td=""><td>7.87E-05</td></lld<></td></lld<></td></lld<>	2.25E-05	<lld< td=""><td><lld< td=""><td>7.87E-05</td></lld<></td></lld<>	<lld< td=""><td>7.87E-05</td></lld<>	7.87E-05
Fe-59	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.15E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.15E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.15E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.15E-05</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>2.15E-05</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>2.15E-05</td></lld<></td></lld<>	<lld< td=""><td>2.15E-05</td></lld<>	2.15E-05
Cr-51	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zr-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nb-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mo-99	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tc-99m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ba-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>6.37E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>6.37E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>6.37E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>6.37E-05</td><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	6.37E-05	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ce-141	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>1.66E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>1.66E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>1.66E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>1.66E-05</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.66E-05</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.66E-05</td></lld<></td></lld<>	<lld< td=""><td>1.66E-05</td></lld<>	1.66E-05
Fe-55	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sb-124	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.49E-04</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.49E-04</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.49E-04</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>2.49E-04</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>2.49E-04</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>2.49E-04</td></lld<></td></lld<>	<lld< td=""><td>2.49E-04</td></lld<>	2.49E-04
Sb-125	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.77E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.77E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.77E-05</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.77E-05</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>7.77E-05</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>7.77E-05</td></lld<></td></lld<>	<lld< td=""><td>7.77E-05</td></lld<>	7.77E-05
Nd-147	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.80E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.80E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.80E-06</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>7.80E-06</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>7.80E-06</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>7.80E-06</td></lld<></td></lld<>	<lld< td=""><td>7.80E-06</td></lld<>	7.80E-06
H-3	Ci	1.46E-01	4.35E-01	7.23E-01	2.44E+00	3.95E+00	<lld< td=""><td>1.02E+00</td><td>5.70E+00</td></lld<>	1.02E+00	5.70E+00
P-32	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total for Period	Ci	1.46E-01	4.35E+01	7.23E-01	2.44E+00	3.95E+00	<lld< td=""><td>1.02E+00</td><td>5.70E+00</td></lld<>	1.02E+00	5.70E+00
Xe-133	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Xe-135	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>5.29E-06</td><td><lld< td=""><td>1.49E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>5.29E-06</td><td><lld< td=""><td>1.49E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>5.29E-06</td><td><lld< td=""><td>1.49E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>5.29E-06</td><td><lld< td=""><td>1.49E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<>	5.29E-06	<lld< td=""><td>1.49E-05</td><td><lld< td=""></lld<></td></lld<>	1.49E-05	<lld< td=""></lld<>
Xe-135 Xe-138	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>>.29E-00</pre></td><td><lld <lld< td=""><td>1.49E-03</td><td><lld< td=""></lld<></td></lld<></lld </td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>>.29E-00</pre></td><td><lld <lld< td=""><td>1.49E-03</td><td><lld< td=""></lld<></td></lld<></lld </td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><pre>>.29E-00</pre></td><td><lld <lld< td=""><td>1.49E-03</td><td><lld< td=""></lld<></td></lld<></lld </td></lld<></td></lld<>	<lld< td=""><td><pre>>.29E-00</pre></td><td><lld <lld< td=""><td>1.49E-03</td><td><lld< td=""></lld<></td></lld<></lld </td></lld<>	<pre>>.29E-00</pre>	<lld <lld< td=""><td>1.49E-03</td><td><lld< td=""></lld<></td></lld<></lld 	1.49E-03	<lld< td=""></lld<>
Total for Period (ex- tritium, gases and alpha)	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>8.62E-05</td><td><lld< td=""><td>6.74E-07</td><td>4.43E-04</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>8.62E-05</td><td><lld< td=""><td>6.74E-07</td><td>4.43E-04</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>8.62E-05</td><td><lld< td=""><td>6.74E-07</td><td>4.43E-04</td></lld<></td></lld<></td></lld<>	<lld< td=""><td>8.62E-05</td><td><lld< td=""><td>6.74E-07</td><td>4.43E-04</td></lld<></td></lld<>	8.62E-05	<lld< td=""><td>6.74E-07</td><td>4.43E-04</td></lld<>	6.74E-07	4.43E-04

ATTACHMENT 3: SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

Solid Waste Shipped

1.Type of Waste

	Units	2022	Est. error %
A: Spent Resin, Filters, Sludges, Evaporator Bottoms, etc.	m ³	7.37E+01	
	Ci	1.67E+02	2.50E+01
B: Dry Compressible Waste, Contaminated Equipment, etc.	m ³	4.85E+02	
	Ci	7.61E-01	2.50E+01
C: Irradiated Components, Control Rods, etc.	m ³	0.00E+00	
	Ci	0.00E+00	2.50E+01
D: Other (Oil, SBLC)	m³	9.77E+00	
	Ci	1.34E-01	2.50E+01

2.Estimate of Major Nuclide Composition (by type of waste)

Nuclide	Abundance % (no cutoff)	Activity (Ci)
H-3	0.22%	3.65E-01
C-14	0.93%	1.55E+00
Cr-51	0.00%	1.08E-09
Mn-54	0.44%	7.31E-01
Fe-55	13.82%	2.31E+01
Fe-59	0.00%	4.01E-07
Co-57	0.00%	6.80E-06
Co-58	0.00%	1.18E-03
Co-60	72.19%	1.21E+02
Ni-63	2.4%	4.00E+00
Zn-65	0.3%	4.99E-01
Se-75	0.00%	2.03E-05
Sr-89	0.00%	9.36E-06
Sr-90	0.03%	5.63E-02
Nb-95	0.00%	2.23E-09
Tc-99	0.00%	5.00E-03
Ag-110m	0.08%	1.29E-01
Sb-124	0.00%	2.04E-06
Sb-125	0.03%	4.98E-02
I-131	0.00%	8.98E-29
Cs-134	0.16%	2.67E-01

Nuclide	Abundance % (no cutoff)	Activity (Ci)
Cs-136	0.00%	5.88E-21
Cs-137	9.39%	1.57E+01
Ba-140	0.00%	8.39E-19
La-140	0.00%	1.56E-131
Ce-141	0.00%	6.15E-09
Ce-144	0.00%	4.37E-03
Eu-152	0.01%	1.28E-02
Eu-154	0.00%	1.54E-03
Pu-238	0.00%	1.26E-03
Pu-239	0.00%	2.43E-05
Pu-241	0.01%	1.35E-02
Am-241	0.00%	3.74E-04
Cm-242	0.00%	1.02E-11
Cm-243	0.00%	8.40E-04
Cm-244	0.00%	1.69E-04

b. Dry, Compressible Waste, Contaminated Equipment, etc.

Nuclide	Abundance % (no cutoff)	Activity (Ci)
Cr-51	1.69%	1.28E-02
Mn-54	1.79%	1.36E-02
Fe-55	19.88%	1.51E-01
Fe-59	0.54%	4.14E-03
Co-57	0.01%	9.53E-05
Co-58	0.75%	5.70E-03
Co-60	66.81%	5.08E-01
Ni-63	4.36%	3.32E-02
Zn-65	1.84%	1.40E-02
Nb-95	0.02%	1.89E-04

Waste Class A

Nuclide	Abundance % (no cutoff)	Activity (Ci)
Tc-99	0.09%	6.96E-04
Ag-110m	0.45%	3.41E-03
Sb-124	0.06%	4.61E-04
Sb-125	0.04%	2.84E-04
Cs-137	1.16%	8.86E-03
Ce-141	0.03%	2.29E-04
Ce-144	0.46%	3.49E-03
Pu-238	0.00%	5.10E-06
Cm-244	0.00%	2.20E-05

Waste Class C

Nuclide	Abundance % (no cutoff)	Activity (Ci)
N/A	N/A	N/A

Nuclide	Abundance % (no cutoff)	Activity (Ci)
N/A	N/A	N/A

c. Irradiated Components, Control Rods, etc.

Nuclide	Abundance % (no cutoff)	Activity (Ci)
N/A	N/A	N/A

Nuclide	Abundance % (no cutoff)	Activity (Ci)
N/A	N/A	N/A

d. Other: Oil

Nuclide	Abundance % (no cutoff)	Activity (Ci)
Co-57	0.00%	5.00E-06
Co-60	2.13%	2.87E-03
Ni-63	96.79%	1.30E-01
Y-88	0.00%	5.00E-06
Tc-99	0.00%	1.14E-07
Cd-109	0.00%	5.21E-06
Sn-113	0.00%	5.00E-06
I-131	0.00%	4.00E-10

Nuclide	Abundance % (no cutoff)	Activity (Ci)
Cs-137	0.21%	2.80E-04
Cs-139	0.00%	5.00E-06
Ce-144	0.84%	1.12E-03
Eu-152	0.00%	2.20E-08
Hg-203	0.00%	5.00E-06
Am-241	0.00%	5.96E-06

3. Solid Waste Disposition

Number of shipments	Mode of Transportation	Destination
	Hittman Transport	
13	Services	Energy Solutions Services (CVRF) Bear Creek Operations
	Hittman Transport	
2	Services	Energy Solutions Services (GRF) Gallaher Road Operations
	Hittman Transport	Energy Solutions LLC - Clive Disposal Site - Containerized Waste
15	Services	Facility
1	Philotechnics	Philotechnics – 201 Renovare Blvd

Irradiated Fuel Shipments

No shipment of irradiated fuel was made during the reporting period of 2022.

Changes to Process Control Program (PCP)

There were no changes made to RW-AA-100 "Process Control Program for Radioactive Waste" during the 2022 reporting period.

ATTACHMENT 4: RADIOLOGICAL IMPACT ON MAN

Peach Bottom Atomic Power Station Unit 2 and 3

Radiological Impact on Man

			% of		
		Estimated	Applicable		
Effluent	Applicable Organ	Dose	Limit	Limit	Unit
Noble Gas	Gamma - Air Dose	9.02E-03	4.51E-02	2.00E+01	mrad
Noble Gas	Beta - Air Dose	6.27E-03	1.57E-02	4.00E+01	mrad
Noble Gas	Total Body (gamma)	8.72E-03	8.72E-02	1.00E+01	mrem
Noble Gas	Skin (Beta)	1.15E-02	3.84E-02	3.00E+01	mrem
Gaseous Iodine, Particulate, Carbon-14 & Tritium	Bone	1.43E-01	4.77E-01	3.00E+01	mrem
Gaseous Iodine, Particulate & Tritium	Thyroid	2.01E-03	6.70E-03	3.00E+01	mrem
Liquid	Total Body (gamma)	2.94E-04	4.90E-03	6.00E+00	mrem
Liquid	GI-LLI	3.08E-04	1.54E-03	2.00E+01	mrem
Direct Radiation	Total Body	0	0.00E+00	2.50E+01	mrem

40 CFR 190 Doses

		40 CFR 190					
Applicable Organ	Estimated Dose	% of Applicable Limit	Limit	Unit			
Total Body	3.89E-02	1.56E-01	2.50E+01	mrem			
Thyroid	3.08E-02	4.11E-02	7.50E+01	mrem			
Other Organ	1.56E-01	6.23E-01	2.50E+01	mrem			
			ODCM 3.8.D.1.d and e.				
Total Body	3.89E-02	1.30E+00	3.00E+00	mrem			
Other Organ	1.56E-01	5.20E+00	3.00E+00	mrem			
Thyroid	3.08E-02	5.60E-02	5.50E+01	mrem			

ATTACHMENT 5: METEOROLOGICAL DATA

Peach Bottom Atomic Power Station Licensee: Constellation Energy Corporation PSEG Nuclear, LLC

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	0	6	0	0	0	0	6	
NNE	6	9	0	0	0	0	15	
NE	7	2	0	0	0	0	9	
ENE	6	3	0	0	0	0	9	
E	2	9	0	0	0	0	11	
ESE	2	10	5	0	0	0	17	
SE	2	2	4	0	0	0	8	
SSE	4	3	7	0	0	0	14	
S	0	1	18	3	0	0	22	
SSW	1	0	1	1	0	0	3	
SW	1	0	2	0	0	0	3	
WSW	0	3	0	1	0	0	4	
W	4	1	5	0	0	0	10	
WNW	0	0	1	1	0	0	2	
NW	0	2	4	0	0	0	6	
NNW	0	11	8	0	2	0	21	
Variable	0	0	0	0	0	0	0	
Total	35	62	55	6	2	0	160	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 1 Hours of missing stability measurements in all stability classes: 2 Peach Bottom Atomic Power Station Licensee: Constellation Energy Corporation PSEG Nuclear, LLC

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	WING Speed (IN mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	0	3	4	0	0	0	7	
NNE	4	11	2	0	0	0	17	
NE	7	0	0	0	0	0	7	
ENE	10	0	0	0	0	0	10	
E	6	6	0	0	0	0	12	
ESE	2	3	1	0	0	0	6	
SE	1	1	1	0	0	0	3	
SSE	1	3	9	2	0	0	15	
S	1	3	12	2	0	0	18	
SSW	0	0	4	4	0	0	8	
SW	0	3	4	0	0	0	7	
WSW	0	2	2	4	0	0	8	
W	0	1	7	7	0	0	15	
WNW	0	1	15	4	1	0	21	
NW	0	5	9	7	0	0	21	
NNW	1	5	17	3	0	0	26	
Variable	0	0	0	0	0	0	0	
Total	33	47	87	33	1	0	201	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 5 Hours of missing stability measurements in all stability classes: 2

Peach Bottom Atomic Power Station Licensee: Constellation Energy Corporation PSEG Nuclear, LLC

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

I	WING Speed (IN mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	1	5	0	0	0	0	6	
NNE	2	4	1	0	0	0	7	
NE	3	1	0	0	0	0	4	
ENE	9	1	0	0	0	0	10	
E	4	1	0	0	0	0	5	
ESE	1	0	0	0	0	0	1	
SE	2	1	1	0	0	0	4	
SSE	0	1	2	0	0	0	3	
S	0	4	7	3	0	0	14	
SSW	0	1	2	2	0	0	5	
SW	0	1	3	0	0	0	4	
WSW	0	2	5	1	0	0	8	
W	0	4	6	0	0	0	10	
WNW	1	5	13	10	1	0	30	
NW	0	6	8	8	1	0	23	
NNW	0	7	14	5	0	0	26	
Variable	0	0	0	0	0	0	0	
Total	23	44	62	29	2	0	160	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 5 Hours of missing stability measurements in all stability classes: 2

33

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

T-T ']		wind speed (in mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	9	34	17	1	0	0	61		
NNE	10	10	7	0	0	0	27		
NE	17	7	0	0	0	0	24		
ENE	33	4	0	0	0	0	37		
E	18	17	2	0	0	0	37		
ESE	14	6	0	0	0	0	20		
SE	10	48	5	0	0	0	63		
SSE	12	43	22	4	0	0	81		
S	5	24	19	20	0	0	68		
SSW	2	5	9	2	0	0	18		
SW	2	2	6	3	0	0	13		
WSW	1	11	6	6	0	0	24		
W	3	23	32	15	0	0	73		
WNW	2	23	53	15	2	0	95		
NW	2	20	79	38	2	0	141		
NNW	6	50	69	37	1	0	163		
Variable	0	0	0	0	0	0	0		
Total	146	327	326	141	5	0	945		

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 34 Hours of missing stability measurements in all stability classes: 2 Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

1	wind speed (in mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	14	0	0	0	0	0	14	
NNE	7	0	0	0	0	0	7	
NE	14	1	0	0	0	0	15	
ENE	17	1	0	0	0	0	18	
E	21	3	0	0	0	0	24	
ESE	28	8	0	0	0	0	36	
SE	20	16	1	0	0	0	37	
SSE	15	26	1	0	0	0	42	
S	15	20	18	3	0	0	56	
SSW	8	6	3	0	0	0	17	
SW	6	10	6	0	0	0	22	
WSW	8	24	4	0	0	0	36	
W	12	39	4	0	0	0	55	
WNW	19	18	2	0	0	0	39	
NW	23	9	4	0	0	0	36	
NNW	11	6	3	0	0	0	20	
Variable	0	0	0	0	0	0	0	
Total	238	187	46	3	0	0	474	

Hours of calm in this stability class: 2 Hours of missing wind measurements in this stability class: 7 Hours of missing stability measurements in all stability classes: 2 Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind	wind Speed (in mpn)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	5	0	0	0	0	0	5		
NNE	2	0	0	0	0	0	2		
NE	4	0	0	0	0	0	4		
ENE	10	0	0	0	0	0	10		
E	12	0	0	0	0	0	12		
ESE	12	1	0	0	0	0	13		
SE	4	1	0	0	0	0	5		
SSE	3	1	0	0	0	0	4		
S	2	0	0	0	0	0	2		
SSW	1	0	0	0	0	0	1		
SW	12	0	0	0	0	0	12		
WSW	10	10	0	0	0	0	20		
M	4	3	0	0	0	0	7		
WNW	9	0	0	0	0	0	9		
NW	8	0	0	0	0	0	8		
NNW	2	1	0	0	0	0	3		
Variable	0	0	0	0	0	0	0		
Total	100	17	0	0	0	0	117		

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind			ind speed			
Direction	1-3	4-7 	8-12	13-18	19-24	> 24
Ν	1	0	0	0	0	0
NNE	2	0	0	0	0	0
NE	2	0	0	0	0	0
ENE	5	0	0	0	0	0
E	6	0	0	0	0	0
ESE	2	2	0	0	0	0
SE	0	0	0	0	0	0
SSE	1	0	0	0	0	0
S	1	0	0	0	0	0
SSW	1	0	0	0	0	0
SW	3	0	0	0	0	0
WSW	4	1	1	0	0	0
W	5	0	0	0	0	0
WNW	3	0	0	0	0	0
NW	2	0	0	0	0	0
NNW	4	0	0	0	0	0
Variable	0	0	0	0	0	0
Total	42	3	1	0	0	0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Extremely Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind S	Speed	(in	mph)
--------	-------	-----	------

Wind	Wind Speed (in Mph)										
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
E	0	1	0	0	0	0	1				
ESE	0	1	2	0	0	0	3				
SE	0	0	0	1	0	0	1				
SSE	0	0	0	0	0	0	0				
S	0	0	0	0	0	0	0				
SSW	0	0	0	0	0	0	0				
SW	0	0	0	0	0	0	0				
WSW	0	0	0	0	0	0	0				
W	0	0	0	0	0	0	0				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	0	0				
NNW	0	0	0	0	0	0	0				
Variable	0	0	0	0	0	0	0				
Total	0	2	2	1	0	0	5				
Hours of calm in th Hours of missing wi				0 s stabili	ity class	s: 0					

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

Licensee: Constellation Energy Corporation PSEG Nuclear, LLC

Peach Bottom Atomic Power Station Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Moderately Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7					
			8-12	13-18	19-24	> 24	Tota
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	2	0	1	0	0	3
ESE	0	0	3	1	0	0	4
SE	0	0	0	4	0	0	4
SSE	0	0	0	0	0	0	0
S	0	0	0	1	0	0	1
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	2	3	7	0	0	12

Hours of missing stability measurements in all stability classes: 2

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Slightly Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

	will speed (in mpn)										
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
Ν	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	1	1	0	0	0	2				
ENE	0	1	0	0	0	0	1				
E	0	1	0	0	0	0	1				
ESE	0	2	1	0	0	0	3				
SE	0	0	0	3	0	0	3				
SSE	0	1	1	1	0	0	3				
S	0	0	4	10	2	0	16				
SSW	0	0	1	0	0	0	1				
SW	0	0	1	0	0	0	1				
WSW	0	0	0	0	1	0	1				
W	0	0	0	1	4	0	5				
WNW	0	0	0	2	0	1	3				
NW	0	0	0	0	0	0	0				
NNW	0	0	0	3	0	0	3				
Variable	0	0	0	0	0	0	0				
Total	0	6	9	20	7	1	43				
s of calm in th s of missing wi				0 s stabil:	ity class	s: 0					

Hours of missing stability measurements in all stability classes: 2

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Neutral - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		V V _	ind speed	r (TH mbi	.1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	1	12	57	27	7	0	104
NNE	2	11	32	6	3	0	54
NE	4	14	7	1	0	0	26
ENE	8	18	7	4	0	0	37
E	15	16	9	5	1	0	46
ESE	3	22	9	10	6	0	50
SE	0	9	19	12	0	0	40
SSE	0	5	33	19	0	1	58
S	1	4	44	34	16	17	116
SSW	0	5	14	26	6	5	56
SW	1	6	7	6	3	2	25
WSW	1	2	9	10	5	5	32
W	1	4	10	25	21	10	71
WNW	0	2	24	61	56	21	164
NW	0	7	24	71	67	36	205
NNW	2	11	57	74	47	9	200
Variable	0	0	0	0	0	0	0
Total	39	148	362	391	238	106	1284

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

41

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Slightly Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

· · ·								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	1	11	5	4	0	0	21	
NNE	3	6	4	1	0	0	14	
NE	1	8	1	0	0	0	10	
ENE	3	13	5	1	2	1	25	
E	1	12	6	0	0	0	19	
ESE	2	5	14	1	0	0	22	
SE	5	14	22	6	0	0	47	
SSE	1	25	29	25	0	0	80	
S	3	21	32	30	20	8	114	
SSW	2	13	29	17	5	0	66	
SW	1	8	14	5	6	0	34	
WSW	0	7	12	13	0	1	33	
W	2	5	7	20	5	0	39	
WNW	0	3	15	30	2	0	50	
NW	0	6	17	19	5	0	47	
NNW	3	9	20	3	1	0	36	
Variable	0	0	0	0	0	0	0	
Total	28	166	232	175	46	10	657	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

42

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Moderately Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
 N	1	2		0	0	0				
NNE	1	1	1	0	0	0	3			
NE	1	1	0	0	0	0	2			
ENE	1	0	0	0	0	0	1			
E	2	0	1	0	0	0	3			
ESE	0	1	0	0	0	0	1			
SE	1	1	6	0	0	0	8			
SSE	1	0	7	2	0	0	10			
S	0	8	7	1	0	0	16			
SSW	2	3	7	4	0	0	16			
SW	1	4	4	1	0	0	10			
WSW	0	2	5	4	1	0	12			
W	0	2	3	4	2	0	11			
WNW	0	2	6	3	0	0	11			
NW	1	2	2	0	0	0	5			
NNW	4	1	1	0	0	0	6			
Variable	0	0	0	0	0	0	0			
Total	16	30	55	19	3	0	123			
of calm in th	nis stab	ility cl	ass:	0						

Unit 2 and 3

Wind

Peach Bottom Nuclear Station

Period of Record: January - March 2022 Stability Class - Extremely Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	1	0	0	0	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	1	1	0	0	0	2
SE	0	0	1	0	0	0	1
SSE	0	0	1	0	0	0	1
S	0	1	2	2	0	0	5
SSW	0	2	2	1	0	0	5
SW	1	1	1	0	0	0	3
WSW	1	5	2	1	0	0	9
W	1	1	1	0	0	0	3
WNW	1	0	0	0	0	0	1
NW	0	1	0	0	0	0	1
NNW	2	0	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	7	12	11	4	0	0	34
of calm in th	is stab	ility cl	lass:			0	

Hours of Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 2

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind	Wind Speed (In mpn) Wind						
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	3	26	2	0	0	0	31
NNE	8	27	2	0	0	0	37
NE	20	5	0	0	0	0	25
ENE	24	1	0	0	0	0	25
E	22	12	0	0	0	0	34
ESE	3	13	1	0	0	0	17
SE	3	17	1	0	0	0	21
SSE	2	11	7	0	0	0	20
S	1	4	8	0	0	0	13
SSW	0	1	0	0	0	0	1
SW	0	0	6	2	0	0	8
WSW	0	2	3	0	0	0	5
W	0	1	1	0	0	0	2
WNW	0	0	0	0	0	0	0
NW	0	1	1	2	0	0	4
NNW	0	4	8	10	0	0	22
Variable	0	0	0	0	0	0	0
Total	86	125	40	14	0	0	265

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

' '	WING Speed (IN mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	1	7	0	0	0	0	8		
NNE	2	4	1	0	0	0	7		
NE	8	2	0	0	0	0	10		
ENE	17	2	0	0	0	0	19		
E	5	6	1	0	0	0	12		
ESE	7	8	0	0	0	0	15		
SE	5	7	2	0	0	0	14		
SSE	0	14	10	0	0	0	24		
S	0	4	12	2	0	0	18		
SSW	0	4	2	0	0	0	6		
SW	1	4	3	1	0	0	9		
WSW	0	2	1	0	0	0	3		
W	0	8	7	8	0	0	23		
WNW	2	5	7	3	0	0	17		
NW	1	14	5	14	0	0	34		
NNW	1	11	22	12	0	0	46		
Variable	0	0	0	0	0	0	0		
Total	50	102	73	40	0	0	265		

Unit 2 and 3 Peach Bottom Nuclear Station

> Period of Record: April - June 2022 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

	Wind Speed (in mph)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	5	2	0	0	0	8			
NNE	2	0	1	0	0	0	3			
NE	6	1	0	0	0	0	7			
ENE	8	5	0	0	0	0	13			
E	2	1	0	0	0	0	3			
ESE	1	1	2	0	0	0	4			
SE	0	5	2	0	0	0	7			
SSE	1	3	8	0	0	0	12			
S	2	6	6	0	0	0	14			
SSW	0	3	3	0	0	0	6			
SW	0	0	0	0	0	0	0			
WSW	0	1	0	0	0	0	1			
W	1	2	2	6	0	0	11			
WNW	0	3	5	7	0	0	15			
NW	1	5	5	5	0	0	16			
NNW	0	9	10	0	0	0	19			
Variable	0	0	0	0	0	0	0			
Total	25	50	46	18	0	0	139			

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

1		Willd Speed (in mpil)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	12	12	7	0	0	0	31			
NNE	14	12	12	0	0	0	38			
NE	38	17	0	0	0	0	55			
ENE	28	3	0	0	0	0	31			
E	21	20	0	0	0	0	41			
ESE	16	11	2	0	0	0	29			
SE	12	36	11	0	0	0	59			
SSE	15	62	20	0	0	0	97			
S	13	34	17	4	0	0	68			
SSW	7	7	3	0	0	0	17			
SW	2	7	4	0	0	0	13			
WSW	7	15	4	0	0	0	26			
W	4	20	19	3	0	0	46			
WNW	5	13	33	4	0	0	55			
NW	9	23	35	8	0	0	75			
NNW	5	22	18	7	0	0	52			
Variable	0	0	0	0	0	0	0			
Total	208	314	185	26	0	0	733			

Peach Bottom Nuclear

Station

Period of Record: April - June 2022 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	14	9	0	0	0	0	23		
NNE	12	3	0	0	0	0	15		
NE	21	4	0	0	0	0	25		
ENE	24	2	0	0	0	0	26		
E	31	1	0	0	0	0	32		
ESE	20	2	0	0	0	0	22		
SE	18	9	1	0	0	0	28		
SSE	22	18	1	0	0	0	41		
S	24	16	3	2	0	0	45		
SSW	19	16	1	0	0	0	36		
SW	10	3	1	0	0	0	14		
WSW	20	16	3	0	0	0	39		
W	12	32	3	0	0	0	47		
WNW	13	26	2	0	0	0	41		
NW	14	28	10	0	0	0	52		
NNW	7	27	4	0	0	0	38		
Variable	0	0	0	0	0	0	0		
Total	281	212	29	2	0	0	524		

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

T.7 '1	WING Speed (IN Mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
 N	9	2	0	0	0	0			
		1	0	0	0	0	5		
NNE	4								
NE	8	0	0	0	0	0	8		
ENE	5	0	0	0	0	0	5		
E	7	0	0	0	0	0	7		
ESE	6	0	0	0	0	0	6		
SE	3	0	0	0	0	0	3		
SSE	5	1	0	0	0	0	6		
S	7	0	0	0	0	0	7		
SSW	10	0	0	0	0	0	10		
SW	24	7	0	0	0	0	31		
WSW	16	12	0	0	0	0	28		
W	20	13	0	0	0	0	33		
WNW	19	4	0	0	0	0	23		
NW	4	0	0	0	0	0	4		
NNW	5	1	1	0	0	0	7		
Variable	0	0	0	0	0	0	0		
Total	152	41	1	0	0	0	194		

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wing speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
 N	1		0	0	0	0	2		
NNE	1	0	0	0	0	0	1		
NE	2	0	0	0	0	0	2		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	1	0	0	0	0	0	1		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	0	0	0	0		
SW	7	7	0	0	0	0	14		
WSW	11	12	0	0	0	0	23		
W	7	5	0	0	0	0	12		
WNW	0	0	0	0	0	0	0		
NW	2	0	0	0	0	0	2		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	32	25	0	0	0	0	57		
of calm in th	nis stab	ility cl	255.	Ο					

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Extremely Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	2	0	3	0	0	5
NE	0	0	5	5	0	0	10
ENE	0	1	4	1	0	0	6
E	0	3	5	0	0	0	8
ESE	0	1	4	0	0	0	5
SE	0	0	0	1	0	0	1
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	7	18	10	0	0	35
of calm in th				0 stabili	ty class	• 0	

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 5

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Moderately Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		wind speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
	0		2	0	0	0	3			
NNE	0	0	2	3	0	0	5			
NE	0	4	0	3	0	0	7			
ENE	0	4	0	0	0	0	4			
E	0	4	3	0	0	0	7			
ESE	0	1	4	1	0	0	6			
SE	0	0	3	1	0	0	4			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	0	0	0			
SW	0	0	0	1	0	0	1			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	1	0	0	0	0	1			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	0	15	14	9	0	0	38			
of calm in th	his stab	ility cl	ass:	0						

Hours of Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 5

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Slightly Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
 N	0	0	5	0	0	0	5			
NNE	0	1	2	3	0	0	6			
NE	1	2	1	0	1	0	5			
ENE	5	9	1	0	0	0	15			
E	0	5	3	0	0	0	8			
ESE	0	2	3	1	0	0	6			
SE	0	2	2	2	0	0	6			
SSE	0	0	2	0	0	0	2			
S	0	0	2	6	0	0	8			
SSW	0	0	1	0	0	0	1			
SW	0	0	1	5	1	0	7			
WSW	0	0	2	0	0	0	2			
W	0	0	0	0	1	0	1			
WNW	0	0	0	0	4	0	4			
NW	0	0	0	3	9	0	12			
NNW	0	2	1	3	0	0	6			
Variable	0	0	0	0	0	0	0			
Total	6	23	26	23	16	0	94			
f calm in th	is stab	ility cl	Lass:	0						

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Neutral - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

1 - 1									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	3	8	18	7	0	0	36		
NNE	2	6	4	15	10	0	37		
NE	2	10	4	6	9	3	34		
ENE	5	23	19	11	1	0	59		
E	12	15	35	23	1	0	86		
ESE	2	24	36	30	8	0	100		
SE	3	29	56	23	1	0	112		
SSE	0	13	43	19	1	0	76		
S	5	15	49	45	7	4	125		
SSW	2	9	16	8	0	0	35		
SW	4	6	6	4	1	0	21		
WSW	0	9	14	5	0	0	28		
W	1	9	19	17	22	10	78		
WNW	1	11	15	25	39	4	95		
NW	4	14	39	42	46	5	150		
NNW	1	10	49	25	4	0	89		
Variable	0	0	0	0	0	0	0		
Total	47	211	422	305	150	26	1161		

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Slightly Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	1	6	11	9	0	0	27			
NNE	4	5	11	9	0	0	29			
NE	3	6	3	7	0	0	19			
ENE	2	16	13	3	0	0	34			
E	0	15	11	1	0	0	27			
ESE	3	11	13	5	0	0	32			
SE	4	11	10	4	0	0	29			
SSE	4	17	26	16	1	0	64			
S	2	22	24	19	0	1	68			
SSW	6	11	26	10	1	0	54			
SW	4	18	9	2	0	0	33			
WSW	2	9	10	5	1	0	27			
W	2	12	14	5	1	0	34			
WNW	0	4	16	24	9	0	53			
NW	2	12	20	34	10	0	78			
NNW	2	5	17	19	1	0	44			
Variable	0	0	0	0	0	0	0			
Total	41	180	234	172	24	1	652			

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Moderately Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
 N	1		2	1	0	0	8		
NNE	0	2	2	0	0	0	4		
NE	1	1	0	0	0	0	2		
ENE	0	5	1	0	0	0	6		
E	0	0	0	0	0	0	0		
ESE	0	1	3	0	0	0	4		
SE	0	0	5	0	0	0	5		
SSE	0	3	2	1	0	0	6		
S	1	17	3	0	0	0	21		
SSW	1	12	3	0	0	0	16		
SW	2	7	5	0	0	0	14		
WSW	2	6	3	4	1	0	16		
W	2	4	1	7	0	0	14		
WNW	0	1	6	9	0	0	16		
NW	4	6	11	1	0	0	22		
NNW	1	4	8	3	0	0	16		
Variable	0	0	0	0	0	0	0		
Total	15	73	55	26	1	0	170		

Peach Bottom Nuclear Station

Period of Record: April - June 2022 Stability Class - Extremely Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

I		wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	1	0	0	0	0	1				
ENE	0	0	0	0	0	0	0				
E	0	1	0	0	0	0	1				
ESE	0	0	0	0	0	0	0				
SE	0	0	0	0	0	0	0				
SSE	0	4	0	0	0	0	4				
S	0	0	0	0	0	0	0				
SSW	0	2	1	0	0	0	3				
SW	0	2	0	0	0	0	2				
WSW	0	0	0	0	0	0	0				
W	0	0	1	0	0	0	1				
WNW	0	3	0	3	0	0	6				
NW	1	3	3	1	0	0	8				
NNW	0	1	2	0	0	0	3				
Variable	0	0	0	0	0	0	0				
Total	1	17	7	4	0	0	29				
of calm in th	nis stab	ility cl	ass:	0							

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
 N		15	3	0	0	0	31				
	13										
NNE	13	7	1	0	0	0	21				
NE	10	0	0	0	0	0	10				
ENE	8	1	0	0	0	0	9				
E	14	1	0	0	0	0	15				
ESE	3	2	0	0	0	0	5				
SE	0	13	0	0	0	0	13				
SSE	4	23	4	0	0	0	31				
S	1	21	21	0	0	0	43				
SSW	0	3	6	0	0	0	9				
SW	1	1	0	0	0	0	2				
WSW	0	0	0	0	0	0	0				
W	1	0	0	0	0	0	1				
WNW	1	3	0	0	0	0	4				
NW	2	1	2	0	0	0	5				
NNW	3	4	5	1	0	0	13				
Variable	0	0	0	0	0	0	0				
Total	74	95	42	1	0	0	212				
of calm in th	nis stab	oility c	lass:	0							

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	WING Speed (IN mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	6	14	2	0	0	0	22			
NNE	8	2	1	0	0	0	11			
NE	5	0	0	0	0	0	5			
ENE	5	0	0	0	0	0	5			
E	3	0	0	0	0	0	3			
ESE	1	0	0	0	0	0	1			
SE	1	5	0	0	0	0	6			
SSE	2	25	8	0	0	0	35			
S	6	28	8	0	0	0	42			
SSW	0	12	0	0	0	0	12			
SW	3	7	5	0	0	0	15			
WSW	0	5	2	0	0	0	7			
W	1	12	5	0	0	0	18			
WNW	3	17	1	0	0	0	21			
NW	2	7	0	0	0	0	9			
NNW	7	22	15	2	0	0	46			
Variable	0	0	0	0	0	0	0			
Total	53	156	47	2	0	0	258			

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	wind speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	7	5	1	0	0	0	13			
NNE	3	0	0	0	0	0	3			
NE	3	0	0	0	0	0	3			
ENE	0	0	0	0	0	0	0			
E	2	1	0	0	0	0	3			
ESE	0	1	0	0	0	0	1			
SE	0	0	0	0	0	0	0			
SSE	4	10	3	0	0	0	17			
S	1	7	2	0	0	0	10			
SSW	2	7	0	0	0	0	9			
SW	0	9	2	0	0	0	11			
WSW	0	4	1	0	0	0	5			
W	0	8	2	0	0	0	10			
WNW	1	10	1	0	0	0	12			
NW	0	4	3	0	0	0	7			
NNW	3	14	5	1	0	0	23			
Variable	0	0	0	0	0	0	0			
Total	26	80	20	1	0	0	127			

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

		WING Speed (IN mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
Ν	33	16	1	0	0	0	50				
NNE	9	4	0	0	0	0	13				
NE	0	0	0	0	0	0	0				
ENE	6	0	0	0	0	0	6				
E	11	0	0	0	0	0	11				
ESE	8	2	0	0	0	0	10				
SE	5	10	2	0	0	0	17				
SSE	23	43	8	0	0	0	74				
S	21	44	4	0	0	0	69				
SSW	15	18	0	0	0	0	33				
SW	6	18	9	0	0	0	33				
WSW	12	22	10	0	0	0	44				
W	21	22	4	0	0	0	47				
WNW	6	21	4	0	0	0	31				
NW	11	19	14	1	0	0	45				
NNW	21	17	13	8	0	0	59				
Variable	0	0	0	0	0	0	0				
Total	208	256	69	9	0	0	542				

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

1	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
 N	17	15	1	0	0	0	33			
NNE	12	13	0	0	0	0	25			
NE	13	0	0	0	0	0	13			
ENE	2	0	0	0	0	0	2			
E	10	0	0	0	0	0	10			
ESE	6	0	0	0	0	0	6			
SE	20	4	0	0	0	0	24			
SSE	44	34	0	0	0	0	78			
S	50	58	3	0	0	0	111			
SSW	34	23	1	0	0	0	58			
SW	27	20	0	0	0	0	47			
WSW	25	36	2	0	0	0	63			
W	42	52	0	0	0	0	94			
WNW	27	42	0	0	0	0	69			
NW	25	24	1	0	0	0	50			
NNW	21	11	2	0	0	0	34			
Variable	0	0	0	0	0	0	0			
Total	375	332	10	0	0	0	717			

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
 N	2	1	0	0	0	0	3			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	3	0	0	0	0	0	3			
E	2	0	0	0	0	0	2			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	1	0	0	0	0	0	1			
S	7	2	0	0	0	0	9			
SSW	12	3	0	0	0	0	15			
SW	23	7	0	0	0	0	30			
WSW	42	62	0	0	0	0	104			
W	25	28	0	0	0	0	53			
WNW	12	13	0	0	0	0	25			
NW	5	6	1	0	0	0	12			
NNW	2	0	0	0	0	0	2			
Variable	0	0	0	0	0	0	0			
Total	136	122	1	0	0	0	259			

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

4-7 0 0 0 0 0	8-12 0 0 0 0	13-18 0 0 0	19-24 0 0	> 24 0 0	Total 0
0 0 0	0 0 0	0 0	0 0	0	
0 0	0			0	0
0		0	0		0
	0		0	0	0
0		0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	0	0	0	4
21	0	0	0	0	36
19	0	0	0	0	37
2	0	0	0	0	13
0	0	0	0	0	2
0	0	0	0	0	1
0	0	0	0	0	0
0	0	0	0	0	0
43	0	0	0	0	93
	0 0 43	0 0 0 0 0 0 43 0	0 0 0 0 0 0 0 0 0 43 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0	000000000000000

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Extremely Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

T.7 '1			ind opee	a (III liipi	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	1	0	0	0	1
ENE	0	2	2	0	0	0	4
E	0	2	4	0	0	0	6
ESE	0	2	2	0	0	0	4
SE	0	0	1	0	0	0	1
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
	_	c	1.0	0	0	Ο	16

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Moderately Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

Wind		L VV	ind speed	, (TU mbi	1)		
Direction	n 1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	1	2	0	0	0	3
ENE	1	3	1	0	0	0	5
E	0	3	1	0	0	0	4
ESE	0	1	2	0	0	0	3
SE	0	2	0	0	0	0	2
SSE	0	0	0	0	0	0	0
S	0	0	1	1	0	0	2
SSW	0	0	1	0	0	0	1
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	1	10	8	1	0	0	20
Hours of calm in Hours of missing Hours of missing	wind meas	urements	s in this	0 s stabili n all sta	ity class ability c	: 0 lasses:	0

Peach Bottom Nuclear

Station

Period of Record: July - September 2022 Stability Class - Slightly Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

T-7	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
 N	0	2	2	2	0	0				
NNE	0	2	1	1	0	0	4			
NE	1	2	0	1	0	0	4			
ENE	1	7	1	0	0	0	9			
E	0	6	1	0	0	0	7			
ESE	0	1	2	0	0	0	3			
SE	0	4	5	0	0	0	9			
SSE	0	4	0	1	0	0	5			
S	0	1	11	3	0	0	15			
SSW	0	0	10	2	0	0	12			
SW	0	0	1	0	0	0	1			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	1	0	0	1			
Variable	0	0	0	0	0	0	0			
Total	2	29	34	11	0	0	76			

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Neutral - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		Willd Speed (ill liph)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
Ν	4	17	14	9	0	0	44				
NNE	8	15	15	1	1	0	40				
NE	5	9	15	5	0	0	34				
ENE	7	13	12	1	0	0	33				
E	10	22	9	0	0	0	41				
ESE	4	25	8	1	0	0	38				
SE	6	16	18	8	0	0	48				
SSE	4	27	35	1	0	0	67				
S	5	21	66	29	0	0	121				
SSW	2	21	35	3	0	0	61				
SW	1	15	27	11	0	0	54				
WSW	4	13	26	10	2	0	55				
W	3	11	31	22	0	0	67				
WNW	1	17	26	11	1	0	56				
NW	5	15	38	23	12	1	94				
NNW	3	20	24	12	9	1	69				
Variable	0	0	0	0	0	0	0				
Total	72	277	399	147	25	2	922				

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Slightly Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
 N	7		9	7	0	0	30		
NNE	6	4	13	7	1	0	31		
NE	8	11	16	8	1	0	44		
ENE	6	13	5	0	0	0	24		
E	7	11	3	1	0	0	22		
ESE	3	10	5	0	0	0	18		
SE	6	10	17	5	0	0	38		
SSE	5	14	28	9	0	0	56		
S	2	16	49	52	3	0	122		
SSW	5	19	71	35	0	0	130		
SW	1	23	26	14	0	0	64		
WSW	4	10	29	20	0	0	63		
W	0	6	18	33	3	0	60		
WNW	3	9	15	27	2	0	56		
NW	6	6	22	32	6	0	72		
NNW	2	10	19	21	4	0	56		
Variable	0	0	0	0	0	0	0		
Total	71	179	345	271	20	0	886		

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Moderately Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

·	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	5	2	1	0	0	8		
NNE	0	5	3	0	0	0	8		
NE	1	2	0	0	0	0	3		
ENE	3	0	0	0	0	0	3		
E	0	2	0	0	0	0	2		
ESE	1	1	0	0	0	0	2		
SE	0	2	0	1	0	0	3		
SSE	0	1	1	0	0	0	2		
S	6	2	0	4	0	0	12		
SSW	3	5	4	2	1	0	15		
SW	2	0	6	6	0	0	14		
WSW	1	3	14	21	1	0	40		
W	0	3	20	29	5	0	57		
WNW	1	1	6	12	4	0	24		
NW	3	2	15	15	0	0	35		
NNW	0	5	5	2	0	0	12		
Variable	0	0	0	0	0	0	0		
Total	21	39	76	93	11	0	240		

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: July - September 2022 Stability Class - Extremely Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		VV _	tha speed	, (TU mbi	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	2	3	0	0	0	0	
NNE	2	1	0	0	0	0	3
NE	2	0	0	0	0	0	2
ENE	0	2	0	0	0	0	2
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	1	0	0	0	0	0	1
SSW	0	0	0	0	0	0	0
SW	1	0	0	1	0	0	2
WSW	1	1	1	2	0	0	5
W	2	1	4	0	0	0	7
WNW	1	1	5	0	0	0	7
NW	0	1	3	0	0	0	4
NNW	1	3	5	0	0	0	9
Variable	0	0	0	0	0	0	0
Total	13	13	18	3	0	0	47
of calm in th			Lass:			0	

Hours of Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 0

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Extremely Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Trīl	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	2	2	0	0	0	0	4			
NNE	4	8	0	0	0	0	12			
NE	3	0	0	0	0	0	3			
ENE	6	0	0	0	0	0	6			
E	9	5	0	0	0	0	14			
ESE	2	8	0	0	0	0	10			
SE	1	5	2	0	0	0	8			
SSE	2	6	3	0	0	0	11			
S	4	6	7	1	0	0	18			
SSW	3	1	1	0	0	0	5			
SW	1	0	1	2	0	0	4			
WSW	2	0	2	0	0	0	4			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	2	0	0	0	0	2			
NNW	0	0	3	0	0	0	3			
Variable	0	0	0	0	0	0	0			
Total	39	43	19	3	0	0	104			

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Moderately Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

T-7 ']		wind speed (in mpn)										
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total					
Ν	3	5	3	0	0	0	11					
NNE	1	4	2	0	0	0	7					
NE	7	0	0	0	0	0	7					
ENE	10	0	0	0	0	0	10					
E	2	0	0	0	0	0	2					
ESE	4	1	0	0	0	0	5					
SE	1	3	0	0	0	0	4					
SSE	1	4	5	0	0	0	10					
S	1	4	8	2	0	0	15					
SSW	1	3	7	1	0	0	12					
SW	0	0	4	1	0	0	5					
WSW	0	1	7	3	0	0	11					
W	1	5	10	3	0	0	19					
WNW	0	2	5	4	0	0	11					
NW	1	4	4	3	0	0	12					
NNW	0	0	10	1	0	0	11					
Variable	0	0	0	0	0	0	0					
Total	33	36	65	18	0	0	152					

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Slightly Unstable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

·	wind Speed (in mpn)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	3	5	2	0	0	0	10	
NNE	1	0	0	0	0	0	1	
NE	8	0	0	0	0	0	8	
ENE	2	0	0	0	0	0	2	
E	2	0	0	0	0	0	2	
ESE	1	1	0	0	0	0	2	
SE	0	0	2	0	0	0	2	
SSE	1	4	3	0	0	0	8	
S	0	3	5	3	0	0	11	
SSW	0	4	0	1	0	0	5	
SW	0	0	0	1	0	0	1	
WSW	0	0	2	0	0	0	2	
W	0	4	1	4	2	0	11	
WNW	0	9	6	5	0	0	20	
NW	1	6	14	2	0	0	23	
NNW	1	7	22	0	0	0	30	
Variable	0	0	0	0	0	0	0	
Total	20	43	57	16	2	0	138	

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Neutral - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

1		Willa Speed (ill liph)										
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total					
N	8	32	16	0	0	0	56					
NNE	6	29	3	0	0	0	38					
NE	10	7	0	0	0	0	17					
ENE	32	9	0	0	0	0	41					
E	20	2	2	0	0	0	24					
ESE	3	4	0	0	0	0	7					
SE	7	31	5	0	0	0	43					
SSE	10	32	19	2	0	0	63					
S	6	22	18	8	0	0	54					
SSW	2	7	4	0	0	0	13					
SW	2	7	5	0	0	0	14					
WSW	2	18	11	2	0	0	33					
W	8	22	29	10	3	0	72					
WNW	5	46	47	5	0	0	103					
NW	6	36	38	8	0	0	88					
NNW	2	36	80	1	0	0	119					
Variable	0	0	0	0	0	0	0					
Total	129	340	277	36	3	0	785					

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Wind

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Slightly Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
 N	14	19	13	0	0	0	46
NNE	15	17	1	0	0	0	33
NE	13	0	0	0	0	0	13
ENE	20	2	0	0	0	0	22
E	20	4	0	0	0	0	24
ESE	16	8	0	0	0	0	24
SE	22	15	0	0	0	0	37
SSE	14	17	0	0	0	0	31
S	19	11	0	0	0	0	30
SSW	12	8	0	0	0	0	20
SW	21	19	1	0	0	0	41
WSW	21	59	9	0	0	0	89
W	9	58	4	0	0	0	71
WNW	19	43	3	0	0	0	65
NW	14	46	5	0	0	0	65
NNW	8	16	2	0	0	0	26
Variable	0	0	0	0	0	0	0
Total	257	342	38	0	0	0	637

Hours of calm in this stability class: 9 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Moderately Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet

Wind Speed (in mph)

	WING Speed (IN mpn)										
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
Ν	5	0	0	0	0	0	5				
NNE	4	0	0	0	0	0	4				
NE	7	0	0	0	0	0	7				
ENE	9	0	0	0	0	0	9				
E	25	0	0	0	0	0	25				
ESE	21	0	0	0	0	0	21				
SE	9	2	0	0	0	0	11				
SSE	4	0	0	0	0	0	4				
S	3	3	0	0	0	0	6				
SSW	12	0	0	0	0	0	12				
SW	17	3	0	0	0	0	20				
WSW	25	10	1	0	0	0	36				
W	30	10	0	0	0	0	40				
WNW	15	4	0	0	0	0	19				
NW	7	2	0	0	0	0	9				
NNW	2	0	0	0	0	0	2				
Variable	0	0	0	0	0	0	0				
Total	195	34	1	0	0	0	230				

Hours of calm in this stability class: 10 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station Period of Record: October - December2022 Stability Class - Extremely Stable - 150Ft-33Ft Delta-T (F) Winds Measured at 33 Feet Wind Speed (in mph) Wind Direction 1-3 4-7 8-12 13-18 19-24 > 24 Total _____ ____ ____ ----- ----- -----4 0 0 0 0 0 4 Ν NNE 5 0 0 0 0 5 NE 3 0 0 0 0 3 ENE 11 0 0 0 0 0 11

E	8	0	0	0	0	0	8
ESE	7	0	0	0	0	0	7
SE	3	0	0	0	0	0	3
SSE	4	0	0	0	0	0	4
S	1	0	0	0	0	0	1
SSW	7	0	0	0	0	0	7
SW	16	4	0	0	0	0	20
WSW	25	7	0	0	0	0	32
W	16	0	0	0	0	0	16
WNW	6	1	0	0	0	0	7
NW	2	0	0	0	0	0	2
NNW	2	0	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	120	12	0	0	0	0	132

Hours of calm in this stability class: 6 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Extremely Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

77 1		VV 1	ind speed	, (TU IUbi	,		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	2	0	0	0	0	2
ENE	0	1	0	0	0	0	1
E	0	1	0	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	4	0	0	0	0	4
s of calm in th s of missing wi				0 s stabil:	ity class	s: 0	

Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Moderately Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		VV I	na speed	а (ти шрі	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	1	0	0	0	0	1
ENE	0	0	1	0	0	0	1
E	0	0	0	0	0	0	0
ESE	0	0	3	0	0	0	3
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	1	4	0	0	0	5
urs of calm in th urs of missing wi	nd meas	urements	in this				4

Hours o Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Slightly Unstable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

T.T.']		VV T	na speed	i (in mbi	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	2	2	0	0	0	4
NE	0	2	0	0	0	0	2
ENE	0	2	0	0	0	0	2
E	0	0	0	0	0	0	0
ESE	0	1	2	0	0	0	3
SE	0	2	1	0	0	0	3
SSE	0	0	1	0	0	0	1
S	0	0	1	3	0	0	4
SSW	0	0	0	0	0	0	0
SW	0	0	0	1	1	0	2
WSW	0	0	1	0	0	0	1
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	2	0	0	2
Variable	0	0	0	0	0	0	0
Total	0	9	8	6	1	0	24
Hours of calm in the Hours of missing wa				0 stabili	ity class	s: 0	

Hours o Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Neutral - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	10	21	26	10	0	68
NNE	3	7	13	7	4	0	34
NE	1	8	11	8	0	0	28
ENE	3	13	9	1	0	0	26
E	5	12	7	0	1	0	25
ESE	4	15	7	0	0	0	26
SE	3	9	24	6	1	0	43
SSE	0	4	22	17	2	1	46
S	1	8	31	43	13	4	100
SSW	2	8	14	5	5	0	34
SW	0	0	5	9	2	0	16
WSW	0	1	7	14	2	0	24
W	0	4	14	15	8	0	41
WNW	1	3	21	31	37	5	98
NW	0	3	38	38	23	1	103
NNW	1	9	21	45	21	0	97
Variable	0	0	0	0	0	0	0
Total	25	114	265	265	129	11	809

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 164 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Wind

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Slightly Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
 N	4	7	26	18	1	0	56
NNE	1	6	10	22	4	0	43
NE	3	4	10	8	2	1	28
ENE	0	7	2	0	1	0	10
E	2	8	2	0	1	0	13
ESE	6	5	9	1	0	0	21
SE	2	11	23	2	1	0	39
SSE	0	26	29	17	1	0	73
S	2	12	54	13	1	0	82
SSW	2	6	18	4	0	0	30
SW	2	5	12	9	3	1	32
WSW	3	4	19	33	5	0	64
W	2	5	10	20	4	2	43
WNW	0	5	10	35	0	0	50
NW	2	3	31	48	5	0	89
NNW	2	3	22	18	2	0	47
Variable	0	0	0	0	0	0	0
Total	33	117	287	248	31	4	720

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 124 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Moderately Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

		WING Speed (IN mpn)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	1	3	1	0	0	0	5	
NNE	1	1	2	0	0	0	4	
NE	4	2	2	0	0	0	8	
ENE	1	1	0	0	0	0	2	
E	3	3	1	0	0	0	7	
ESE	2	4	2	0	0	0	8	
SE	2	9	4	1	0	0	16	
SSE	1	10	18	1	0	0	30	
S	1	10	15	5	0	0	31	
SSW	2	10	6	0	0	0	18	
SW	4	6	8	2	0	0	20	
WSW	0	2	5	1	0	0	8	
W	0	2	12	7	2	0	23	
WNW	2	4	4	4	1	0	15	
NW	1	1	4	4	0	0	10	
NNW	0	2	4	2	0	0	8	
Variable	0	0	0	0	0	0	0	
Total	25	70	88	27	3	0	213	

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 33 Hours of missing stability measurements in all stability classes: 4

Unit 2 and 3

Peach Bottom Nuclear Station

Period of Record: October - December2022 Stability Class - Extremely Stable - 316Ft-33Ft Delta-T (F) Winds Measured at 320 Feet

Wind Speed (in mph)

TT 1	wind Speed (in mpn)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
 N	1	1	0	0	0	0	2
NNE	0	1	2	0	0	0	3
NE	2	3	0	0	0	0	5
ENE	7	2	1	0	0	0	10
E	2	3	3	0	0	0	8
ESE	0	0	0	0	0	0	0
SE	2	2	0	0	0	0	4
SSE	1	3	3	2	0	0	9
S	2	6	7	0	0	0	15
SSW	3	6	4	0	0	0	13
SW	0	3	2	0	0	0	5
WSW	0	0	3	1	0	0	4
W	0	0	5	5	1	0	11
WNW	0	4	6	0	0	0	10
NW	1	2	0	0	0	0	3
NNW	1	2	1	1	0	0	5
Variable	0	0	0	0	0	0	0
Total	22	38	37	9	1	0	107

Hours of calm in this stability class: 1 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

Appendix A: ODCM Revision

Offsite Dose Calculation Manual Revision 19

Peach Bottom Atomic Power Station Units 2 and 3

Exelon Generation Company, LLC Docket Nos. 50-277 & 50-278

<u> 3/3/22 #22-02</u> PORC Meeting# PORC Chairman/ PORC Approval: Date/

Implemented: Donald A Dicalah 3/5/22 Plant Manager

February 2022

Table of Contents

- I. Purpose
- II. Instrument Setpoints
- III. Liquid Pathway Dose Calculations
 - A. Liquid Radwaste Release Flow Rate DeterminationB. ODCMS 4.8.B.2.1C. ODCMS 4.8.B.4.1
- IV. Gaseous Pathway Dose Calculations

Α. ODCMS 4.8.C.1.1 and 4.8.C.1.2 В. ODCMS 4.8.C.2.1 С. ODCMS 4.8.C.3.1 ODCMS 4.8.C.5.1 D. Technical Requirements Manual Test Requirement (TR) Ε. 3.5.3 F. ODCMS 4.8.C.7.1 and 4.8.C.7.2-Section Removed. Nuclear Fuel Cycle Dose Assessment - 40 CFR 190 and V. 10 CFR 72.104 ODCMS 4.8.D.1.1 and 4.8.D.1.2 Α. Doses Due To Activities Inside the Site Boundary VI. ODCMS 3.10.2.f Α. Radiological Environmental Monitoring Program VII. ODCMS 4.8.E.1.1 and 4.8.E.1.2 Α. VIII. Bases Appendix A Radioactive Effluents Control Program

L

I. Purpose

The purpose of the Offsite Dose Calculation Manual is to establish methodologies and procedures for calculating doses to individuals in areas at and beyond the SITE BOUNDARY due to radioactive effluents from Peach Bottom Atomic Power Station. The results of these calculations are required to determine compliance with the requirements of Specification 5.5.4, "Radioactive Effluent Controls Program" of Appendix A to Operating Licenses DPR-44 and DPR-56, "Technical Specifications for Peach Bottom Atomic Power Station Units No. 2 and 3". The Radioactive Effluents Control Program is located in Appendix A of this Offsite Dose Calculation Manual and contains Offsite Dose Calculation Manual Specifications (ODCMS) and their associated Bases which implement the requirements of Technical Specification 5.5.4.

II. Setpoint Determination for Liquid & Gaseous Monitors

II.A Liquid Radwaste Activity Monitor Setpoint

A sketch of the Liquid Radwaste System is presented in Figure 4. Each tank of radioactive waste is sampled prior to release. A small liquid volume of this sample is analyzed for gross gamma activity in a NaI well counter. This NaI well counter activity is then converted to an equivalent liquid radwaste monitor reading.

CPS (R/W Monitor)	=	[Net CPM/ml (well) x Eff W/RW] + Background CPS
Where:		
CPS (R/W Monitor)	=	liquid radwaste gross activity monitor reading in CPS
Net CPM/ml (well)	=	gross gamma activity for the radwaste sample tank [determined by the well counter]
Eff W/RW	=	conversion factor between well counter and liquid radwaste gross activity monitor [determined by calibrating both detectors with the same liquid radioactive source]
Background CPS	=	background reading of the liquid radwaste gross activity monitor in CPS

Exceeding the expected response would indicate that an incorrect sample had been obtained for that release and the release is automatically stopped.

The alarm and trip pot setpoints for the liquid radwaste activity monitor are determined from a calibration curve for the alarm pot and trip pot. The alarm pot setting includes a factor of 1.25 to allow for analysis error, pot setting error, instrument error and calibration error. The trip pot setting includes a factor of 1.35 to allow for analysis error, pot setting error, instrument error and calibration error.

II.B Liquid Radwaste Release Flowrate Setpoint Determination

The trip pot setpoint for the liquid radwaste release flowrate is determined by multiplying the liquid radwaste flowrate (from Section III.A) by 1.2 and using this value on the appropriate calibration curve for the discharge flow meter to be used. The Peach Bottom radwaste system has two flow monitors - high flow (5 to 300 gpm) and low flow (0.8 to 15 gpm). The factor of 1.2 allows for pot setting error and instrument error. The flow rate determination includes a margin of assurance which includes consideration of this error such that the instantaneous release limit of 10 CFR 20 is not exceeded.

II.C Setpoint Determination for Gaseous Radwaste

A sketch of the Offgas Radwaste Treatment System is presented in Figure 1. Sketches of the Ventilation Treatment Systems for Units 2 and 3 are presented in Figures 2 and 3 respectively. The high and high-high alarm setpoints for the main stack radiation monitor, Unit 2 roof vent radiation monitor and Unit 3 roof vent radiation monitor are determined as follows:

<u>High Alarm</u> - the high alarm setpoint is set at approximately 3 x background.

High-High Alarm - the high-high alarm setpoint is set at a release rate from this vent of approximately 30% of the instantaneous release limit as specified in ODCMS 3.8.C.1.a for the most restrictive case (skin or total body) on an unidentified basis. To determine these setpoints, solve the gaseous effluent dose rate equations in section IV.A of the ODCM to determine what main stack release rate and roof vent release rate will produce a dose rate of 150 mrem/yr to the total body (30% of the limit of 500 mrem/yr) and a dose rate of 900 mrem/yr to the skin (30% of the limit of 3000 mrem/yr) from each release point. Using the highest (most restrictive) release rate for each release point determine monitor response required to produce this release rate assuming a normal vent flow rate and pressure correction factor. Set the high-high alarm for approximately this monitor response.

II.D. Setpoint Determination for Gaseous Radwaste

Flow Monitors

The alarm setpoint for the main stack flow monitor is as follows:

<u>Low Flow Alarm</u> - 10,000 CFM. - This setting ensures that the main stack minimum dilution flow as specified in ODCMS 3.8.C.4.a is maintained.

The alarm setpoints for the roof vent flow monitors are as follows:

Low Flow Alarm -1.5×10^5 cfm

High Flow Alarm - 5.4 x 10^5 cfm

III. Liquid Pathway Dose Calculations

III.A Liquid Radwaste Release Flow Rate Determination

Peach Bottom Atomic Power Station Units 2 and 3 have one common discharge point for liquid releases. The following calculation assures that the radwaste release limits are met.

The flow rate of liquid radwaste released from the site to areas at and beyond the SITE BOUNDARY shall be such that the concentration of radioactive material after dilution shall be limited to 10 times the concentration specified in 10 CFR 20, Appendix B, Table 2, Column 2 for radionuclides other than noble gases and 2E-4 μ Ci/ml total activity concentration for all noble gases as specified in ODCMS 3.8.B.1. This

Page 6 of 64 Rev. 19

methodology is consistent with the additional guidance the NRC provided to the industry during the implementation of the updated 10 CFR 20 which changed the criterion for controlling release rate based on Effective Concentration (EC) values in the updated 10 CFR 20 as opposed to the Maximum Permissible Concentration (MPC) values in the former 10 CFR 20.

Each tank of radioactive waste is sampled prior to release and is quantitatively analyzed for identifiable gamma emitters as specified in Table 4.8.B.1 of the ODCMS. While non-gamma emitters are not specifically addressed, the conservatisms inherent in the calculation of the maximum permissible release rate are more than adequate to account for them. From this gamma isotopic analysis the maximum permissible release flow rate is determined as follows:

Determine a Dilution Factor by:

Dilution Factor =
$$\sum_{i} \frac{\mu Ci / ml_{i}}{10 \times ECL_{i}}$$
 1

- μ Ci / ml_i = the activity of each identified gamma emitter in μ Ci/ml
- ECL_i = The effluent concentration specified in 10 CFR 20, Appendix B, Table 2, Column 2 for radionuclides other than noble gases or $2 \times 10^{-4} \mu$ Ci/ml for noble gases.

Determine the Maximum Permissible Release Rate with this Dilution Factor by:

Release Rate (gpm) =
$$\frac{A \times 2.0 \times 10^5}{B \times C \times Dilution Factor}$$

- A = The number of circulating water pumps running which will provide dilution
- 2.0 x 10⁵ = the flow rate in gpm for each circulating water pump running
- B = margin of assurance which includes consideration of the maximum error in the activity setpoint, the maximum error in the flow setpoint, and possible loss of 5 out of the 6 possible circulating water pumps during a release. The value used for B is 10.0.
- C = concentration gradient factor. The value used for C is 5.0 for discharge canal water levels less than 104' and 3.0 for canal water levels greater than 104'. This just adds another factor of conservatism.

III.B ODCMS 4.8.B.2.1

Dose contributions from liquid effluents released to areas at and beyond the SITE BOUNDARY shall be calculated using the equation below. This dose calculation uses those appropriate radionuclides listed in Table III.A.1. These radionuclides account for virtually 100 percent of the total body dose and organ dose from liquid effluents.

The dose for each age group and each organ should be calculated to determine the maximum total body dose and organ dose for each quarter and the year, as appropriate. Cumulative dose files for quarterly and yearly doses should be maintained separately and the maximum total body and organ dose reported in each case. **CM-1** NRC URI 88-33-01, T00353.

$$D_{\tau} = \sum_{i} \left[A_{i\tau} \sum_{\ell=1}^{m} \Delta t_{\ell} C_{i\ell} F_{\ell} \right]$$

where:

 D_{τ} = The cumulative dose commitment to the total body or any organ, τ , from liquid effluents for the total

time period
$$\sum_{\ell=1}^{m} \Delta t_{\ell} 2$$
, in mrem.

- Δt_{ℓ} = The length of the ℓ th time period over which $C_{i\ell}$ and F_{ℓ} are averaged for the liquid release, in hours.
- $C_{i\ell}$ = The average concentration of radionuclide, i, in undiluted liquid effluent during time period Δt_{ℓ} from any liquid release, (determined by the effluent sampling analysis program, ODCMS Table 4.8.B.1), in μ Ci/ml.
- $\label{eq:Ait} \textbf{A}_{i\tau} = \text{The site related ingestion dose commitment factor} \\ \text{to the total body or organ, } \tau, \text{ for each radionuclide} \\ \text{listed in Table III.A.1, in mrem-ml per hr-} \mu\text{Ci. See} \\ \text{Site Specific Data.}^{**}$
- $\mathbf{F}_{\ell} = \mbox{The near field average dilution factor for $C_{i\ell}$} \\ \mbox{during any liquid effluent release. Defined as the ratio of the maximum undiluted liquid waste flow during release to the average flow through the discharge pathway. } \label{eq:F_limit}$

III.C ODCMS 4.8.B.4.1

Projected dose contributions from liquid effluents shall be calculated using the methodology described in section III.B.

** See Note 1 in Bases

TABLE III.A.1

LIQUID EFFLUENT INGESTION DOSE FACTORS (DECAY CORRECTED) $A_{i\tau} \text{ DOSE FACTOR (MREM-ML PER HR-}\mu\text{Ci)}$

TOTAL BODY

		IOIAL BODI		
RADIONUCLIDE	ADULT	TEEN		CHILD
H-3	2.13E+00	1.53E+00		2.70E+00
NA-24	1.65E+02	1.70E+02		1.98E+02
P-32	5.93E+04	6.49E+04		8.33E+04
CR-51	1.49E+00	1.53E+00		1.69E+00
MN-54	9.82E+02	1.00E+03		1.08E+03
FE-55	1.31E+02	1.40E+02		1.96E+02
FE-59	1.14E+03	1.17E+03		1.36E+03
CO-57	4.55E+01	4.71E+01		5.78E+01
CO-58	2.59E+02	2.62E+02		3.17E+02
CO-60	7.40E+02	7.48E+02		9.07E+02
NI-63	1.29E+03	1.34E+03		1.90E+03
ZN-65	3.87E+04	3.95E+04		4.16E+04
SR-89	8.83E+02	9.45E+02		1.48E+03
SR-90	1.88E+05	1.56E+05		1.72E+05
Y-91M	5.85E-13	6.14E-13		9.31E-13
Y-93	1.27E-03	1.34E-03		2.16E-03
NB-95	1.52E+02	1.56E+02		1.68E+02
NB-95M	no data	no data		no data
ZR-95	1.77E-01	1.72E-01		3.48E-01
ZR-97	1.56E-03	1.56E-03		3.43E-03
MO-99	2.91E+01	3.01E+01		5.53E+01
TC-99M	3.33E-02	3.33E-02		4.93E-02
RU-103	3.57E+00	3.60E+00		5.97E+00
RU-105	6.55E-03	6.72E-03		1.19E-02
AG-110M	2.13E+00	2.04E+00		4.23E+00
SN-113	no data	no data		no data
TE-129M	2.01E+03	2.17E+03	÷	2.79E+03
TE-131M	4.57E+02	4.81E+02		5.74E+02
TE-132	1.40E+03	1.44E+03		1.65E+03
SB-124	2.27E+01	2.18E+01		5.15E+01
SB-125	8.79E+00	8.47E+00		2.01E+01
I-131	1.86E+02	1.79E+02		2.36E+02
I-133	1.97E+01	2.03E+01		3.20E+01
I-135	2.04E+00	2.06E+00		3.12E+00
CS-134	6.74E+05	3.88E+05		1.49E+05
CS-136	9.79E+04	9.15E+04		7.30E+04
CS-137	3.98E+05	2.20E+05		8.49E+04
CS-138	1.04E-11	1.09E-11		1.27E-11
BA-139	5.01E-07	5.17E-07		1.18E-06
BA-140	3.66E+01	3.62E+01		7.42E+01

LA-140		1.92E-02	1.97E-02	2.78E-02
LA-142	×.	3.62E-08	3.70E-08	5.28E-08
CE-141		1.45E-02	1.46E-02	3.86E-02
CE-143		1.68E-03	1.69E-03	4.44E-03

NOTE: The listed dose factors are for radionuclides that may be detected in liquid effluents and have significant dose consequences. The factors are decayed for one day to account for the time between effluent release and ingestion of fish by the maximum exposed individual.

TABLE III.A.1 LIQUID EFFLUENT INGESTION DOSE FACTORS (DECAY CORRECTED)

$A_{i\tau}$ DOSE FACTOR (MREM-ML PER HR- μ Ci)

LIVER

	LIVER		
RADIONUCLIDE	ADULT	TEEN	CHILD
H-3	2.13E+00	1.53E+00	2.70E+00
NA-24	1.65E+02	1.70E+02	1.98E+02
P-32	9.55E+04	1.04E+05	1.01E+05
CR-51	no data	no data	no data
MN-54	5.15E+03	5.06E+03	4.03E+03
FE-55	5.62E+02	6.01E+02	6.33E+02
FE-59	2.96E+03	3.02E+03	2.73E+03
CO-57	2.74E+01	2.81E+01	2.86E+01
CO-58	1.16E+02	1.14E+02	1.04E+02
CO-60	3.35E+02	3.32E+02	3.07E+02
NI-63	2.66E+03	2.80E+03	2.99E+03
ZN-65	8.55E+04	8.46E+04	6.69E+04
SR-89	no data	no data	no data
SR-90	no data	no data	no data
Y-91M	no data	no data	no data
Y-93	no data	no data	no data
NB-95	2.83E+02	2.84E+02	2.35E+02
NB-95M	no data	no data	no data
ZR-95	2.61E-01	2.50E-01	3.91E-01
ZR-97	3.40E-03	3.39E-03	5.82E-03
MO-99	1.53E+02	1.58E+02	2.23E+02
TC-99M	2.61E-03	2.57E-03	2.98E-03
RU-103	no data	no data	no data
RU-105	no data	no data	no data
AG-110M	3.58E+00	3.36E+00	5.30E+00
SN-113	no data	no data	no data
TE-129M	4.74E+03	5.09E+03	5.02E+03
TE-131M	5.48E+02	5.77E+02	5.40E+02
TE-132	1.48E+03	1.53E+03	1.36E+03
SB-124	1.08E+00	1.03E+00	1.91E+00
SB-125	4.13E+01	3.96E-01	7.39E-01
I-131	3.25E+02	3.32E+02	4.16E+02
I-133	6.48E+01	6.66E+01	8.45E+01
I-135	5.52E+00	5.55E+00	1.63E+00
CS-134	8.25E+05	8.36E+05	7.06E+05
CS-136	1.36E+05	1.36E+05	1.13E+05
CS-137	6.07E+05	6.32E+05	5.75E+05
CS-138	2.10E-11	2.18E-11	2.01E-11
BA-139	1.22E-08	1.25E-08	2.17E-08
BA-140	7.00E-01	6.90E-01	1.11E+00

t

LA-140	7.28E-02	7.40E-02	8.25E-02
LA-142	1.45E-07	1.49E-07	1.69E-07
CE-141	1.28E-01	1.27E-01	2.60E-01
CE-143	1.52E+01	1.51E+01	3.07E+01
NOTE:	The listed dose factors are	for radionuclides that	at may be
	detected in liquid effluents	s and have significant	dose
	consequences. The factors a	are decayed for one da	ay to account
	for the time between effluer	nt release and ingest:	lon of fish
	by the maximum exposed indi-	vidual.	

I

I

TABLE III.A.1

LIQUID EFFLUENT INGESTION DOSE FACTORS (DECAY CORRECTED) A_{it} DOSE FACTOR (MREM-ML PER HR-µCi)

BONE

	BONE		
RADIONUCLIDE	ADULT	TEEN	CHILD
H-3	no data	no data	no data
NA-24	1.65E+02	1.70E+02	1.98E+02
P-32	2.38E+05	2.58E+05	3.35E+05
CR-51	no data	no data	no data
MN-54	no data	no data	no data
FE-55	8.12E+02	8.47E+02	1.19E+03
FE-59	1.26E+03	1.30E+03	1.68E+03
CO-57	no data	no data	no data
CO-58	no data	no data	no data
CO-60	no data	no data	no data
NI-63	3.84E+04	3.97E+04	5.58E+04
ZN-65	2.69E+04	2.43E+04	2.51E+04
SR-89	3.08E+04	3.30E+04	5.19E+04
SR-90	7.67E+05	6.31E+05	6.78E+05
Y-91M	1.51E-11	1.61E-11	2.57E-11
Y-93	4.58E-02	4.90E-02	7.77E-02
NB-95	5.08E+02	5.12E+02	6.04E+02
NB-95M	no data	no data	no data
ZR-95	8.13E-01	7.94E-01	1.78E+00
ZR-97	1.69E-02	1.71E-02	4.03E-02
MO-99	no data	no data	no data
TC-99M	9.24E-04	9.22E-04	1.52E-03
RU-103	8.30E+00	8.43E+00	1.55E+01
RU-105	1.66E-02	1.73E-02	3.29E-02
AG-110M	3.87E+00	3.55E+00	7.84E+00
SN-113	no data	no data	no data
TE-129M	1.27E+04	1.37E+04	1.80E+04
TE-131M	1.12E+03	1.21E+03	1.56E+03
TE-132	2.29E+03	2.42E+03	3.07E+03
SB-124	5.72E+01	5.59E+01	1.47E+02
SB-125	3.69E+01	3.62E+01	9.59E+01
I-131	2.28E+02	2.38E+02	4.13E+02
I-133	3.72E+01	3.92E+01	6.84E+01
I-135	2.11E+00	2.16E+00	3.66E+00
CS-134	3.47E+05	3.55E+05	4.30E+05
CS-136	3.45E+04	3.46E+04	4.10E+04
CS-137	4.44E+05	4.75E+05	6.01E+05
CS-138	1.06E-11	1.14E-11	1.45E-11
BA-139	1.71E-05	1.77E-05	4.07E-05
BA-140	5.57E+02	5.63E+02	1.27E+03

.

LA-140	1.44E-01	1.51E-01	2.36E-01
LA-142	3.19E-07	3.35E-07	5.29E-07
CE-141	1.89E-01	1.90E-01	5.21E-01
CE-143	2.06E-02	2.07E-02	5.66E-02
NOTE:	The listed dose factors are	for radionuclides tha	t may be
	detected in liquid effluent	s and have significant	dose
	consequences. The factors	are decayed for one da	y to account
	for the time between efflue	nt release and ingesti	on of fish
	by the maximum exposed indi	vidual.	

1

TABLE III.A.1

LIQUID EFFLUENT INGESTION DOSE FACTORS (DECAY CORRECTED) A_{it} DOSE FACTOR (MREM-ML PER HR-µCi)

KIDNEY

	KIDNEI		
RADIONUCLIDE	ADULT	TEEN	CHILD
Н-З	2.13E+00	1.53E+00	2.70E+00
NA-24	1.65E+02	1.70E+02	1.98E+02
P-32	no data	no data	no data
CR-51	3.28E-01	3.35E-01	2.57E-01
MN-54	1.53E+03	1.51E+03	1.13E+03
FE-55	no data	no data	no data
FE-59	no data	no data	no data
CO-57	no data	no data	no data
CO-58	no data	no data	no data
CO-60	no data	no data	no data
NI-63	no data	no data	no data
ZN-65	5.72E+04	5.41E+04	4.22E+04
SR-89	no data	no data	no data
SR-90	no data	no data	no data
Y-91M	no data	no data	no data
Y-93	no data	no data	no data
NB-95	2.79E+02	2.75E+02	2.21E+02
NB-95M	no data	no data	no data
ZR-95	4.09E-01	3.68E-01	5.60E-01
ZR-97	5.14E-03	5.14E-03	8.35E-03
MO-99	3.46E+02	3.61E+02	4.77E+02
TC-99M	3.96E-02	3.83E-02	4.33E-02
RU-103	3.17E+01	2.97E+01	3.91E+01
RU-105	2.14E-01	2.18E-01	2.89E-01
AG-110M	7.04E+00	6.40E+00	9.86E+00
SN-113	no data	no data	no data
TE-129M	5.31E+04	5.74E+04	5.29E+04
TE-131M	5.55E+03	6.01E+03	5.22E+03
TE-132	1.43E+04	1.47E+04	1.27E+04
SB-124	no data	no data	no data
SB-125	no data	no data	no data
I-131	5.57E+02	5.73E+02	6.82E+02
I-133	1.12E+02	1.16E+02	1.41E+02
I-135	8.86E+00	8.77E+00	1.01E+01
CS-134	2.67E+05	2.66E+05	2.19E+05
CS-136	7.57E+04	7.42E+04	6.00E+04
CS-137	2.06E+05	2.15E+05	1.87E+05
CS-138	1.54E-11	1.61E-11	1.41E-11
BA-139	1.14E-08	1.18E-08	1.90E-08
BA-140	2.38E-01	2.34E-01	3.62E-01

LA-140	no data	no data	no data
LA-142	no data	no data	no data
CE-141	5.94E-02	5.98E-02	1.14E-01
CE-143	6.70E-03	6.77E-03	1.29E-02
NOTE:	The listed dose factors ar	e for radionuclides	that may be
	detected in liquid effluen	ts and have signific	ant dose
	consequences. The factors	are decayed for one	day to account
	for the time between efflu	ent release and inge	stion of fish
	by the maximum exposed ind	ividual.	

I

1

TABLE III.A.1

LIQUID EFFLUENT INGESTION DOSE FACTORS (DECAY CORRECTED) $A_{i\tau} \text{ DOSE FACTOR (MREM-ML PER HR-}\mu\text{Ci)}$

GI-LLI

RADIONUCLIDE	ADULT	TEEN	CHILD
Н-З	2.13E+00	1.53E+00	2.70E+00
NA-24	1.65E+02	1.70E+02	1.98E+02
P-32	1.73E+05	1.41E+05	5.98E+04
CR-51	3.74E+02	2.57E+02	8.98E+01
MN-54	1.58E+04	1.04E+04	3.38E+03
FE-55	3.22E+02	2.60E+02	1.17E+02
FE-59	9.90E+03	7.15E+03	2.84E+03
CO-57	6.94E+02	5.24E+02	2.34E+02
CO-58	2.35E+03	1.56E+03	6.04E+02
CO-60	6.30E+03	4.33E+03	1.70E+03
NI-63	5.56E+02	4.46E+02	2.01E+02
ZN-65	5.38E+04	3.58E+04	1.18E+04
SR-89	4.94E+03	3.93E+03	2.01E+03
SR-90	2.22E+04	1.77E+04	9.13E+03
Y-91M	4.44E-11	7.58E-10	5.03E-08
Y-93	1.45E+03	1.50E+03	1.18E+03
NB-95	1.72E+06	1.21E+06	4.35E+05
NB-95M	no data	no data	no data
ZR-95	8.27E+02	5.78E+02	4.08E+02
ZR-97	1.06E+03	9.19E+02	8.81E+02
MO-99	3.54E+02	2.82E+02	1.85E+02
TC-99M	1.54E+00	1.69E+00	1.69E+00
RU-103	9.69E+02	7.04E+02	4.01E+02
RU-105	1.01E+01	1.40E+01	2.15E+01
AG-110M	1.46E+03	9.43E+02	6.30E+02
SN-113	no data	no data	no data
TE-129M	6.40E+04	5.15E+04	2.19E+04
TE-131M	5.44E+04	4.63E+04	2.19E+04
TE-132	7.02E+04	4.85E+04	1.37E+04
SB-124	1.62E+03	1.13E+03	9.19E+02
SB-125	4.07E+02	2.82E+02	2.29E+02
I-131	8.58E+01	6.57E+01	3.70E+01
I-133	5.82E+01	5.03E+01	3.40E+01
I-135	6.24E+00	6.16E+00	5.03E+00
CS-134	1.44E+04	1.04E+04	3.80E+03
CS-136	1.55E+04	1.09E+04	3.96E+03
CS-137	1.18E+04	9.00E+03	3.60E+03
CS-138	8.94E-17	9.90E-15	9.25E-12
BA-139	3.04E-05	1.58E-04	2.35E-03
BA-140	1.15E+03	8.69E+02	6.43E+02

February 2022

L

LA-140	5.34E+03	4.25E+03	2.30E+03		
LA-142	1.06E-03	4.52E-03	3.34E-02		
CE-141	4.89E+02	3.63E+02	3.24E+02		
CE-143	5.69E+02	4.54E+02	4.49E+02		
NOTE:	The listed dose factors are for radionuclides that may be				
	detected in liquid effluents and have significant dose				
	consequences. The factors are decayed for one day to account for the time between effluent release and ingestion of fish				
	by the maximum exposed indi-	vidual.			

1

IV. Gaseous Pathway Dose Calculations

IV.A. ODCMS 4.8.C.1.1 and 4.8.C.1.2

The dose rate in areas at and beyond the SITE BOUNDARY due to radioactive materials released in gaseous effluents shall be determined by the expressions below:

IV.A.1 Noble Gases:

The dose rate from radioactive noble gas releases shall be determined by either of two methods. Method (a), the Gross Release Method, assumes that all noble gases released are the most limiting nuclide - Kr-88 for total body dose (vent and stack releases) and skin dose (vent releases) and Kr-87 for skin dose (stack releases). Method (b), the Isotopic Analysis Method, utilizes the results of noble gas analyses required by ODCMS 4.8.C.1.1.

```
a. Gross Release Method
```

$$D_{TB} = V \dot{Q}_{NS} + K \left(\overline{\chi/Q} \right)_{V} \dot{Q}_{NV}$$
$$D_{S} = \left[L_{S} \left(\overline{\chi/Q} \right)_{S} + 1.1B \right] \dot{Q}_{NS} + \left[L_{V} + 1.1M \right] \left(\overline{\chi/Q} \right)_{V} \dot{Q}_{NV}$$

where:

The location is the site boundary, 1100m SSE from the vents. This location results in the highest calculated dose to an individual from noble gas releases.

 D_{TB} = total body dose rate, in mrem/yr.

- $D_s = skin dose rate, in mrem/yr.$
- $V = 4.72 \times 10^{-4}$ mrem/yr per µCi/sec; the constant for Kr-88 accounting for the gamma radiation from the elevated finite plume. This constant was developed using MARE program with plant specific inputs for PBAPS.

IV.A.1.a (Cont'd)

- \dot{Q}_{NS} = The gross release rate of noble gases from the stack determined by gross activity stack monitors averaged over one hour, in μ Ci/sec.
- K = 1.47×10^4 mrem/yr per μ Ci/m³; the total body dose factor due to gamma emissions for Kr-88 (Reg. Guide 1.109, Table B-1).
- $(\overline{\chi}/Q)_v$ = 1.12 X 10⁻⁶ sec/m³; the highest calculated annual average relative concentration for any area at or beyond the SITE BOUNDARY for all vent releases.
- \hat{Q}_{NV} = The gross release rate of noble gases in gaseous effluents from vent releases determined by gross activity vent monitors averaged over one hour, in μ Ci/sec.
- L_v = 2.37 x 10³ mrem/yr per μ Ci/m³; the skin dose factor due to beta emissions for Kr-88. (Reg. Guide 1.109, Table B-1).
- L_s = 9.73 X 10³ mrem/yr per μ Ci/m³; the skin dose factor due to beta emissions for Kr-87. (Reg. Guide 1.109, Table B-1).
- $(\chi/Q)_s$ = 9.97 X 10⁻⁸ sec/m³; the highest calculated annual average relative concentration from the stack releases for any area at or beyond the SITE BOUNDARY.
- - = 1.52 X 10⁴ mrad/yr per μ Ci/m³; the air dose factor due to gamma emissions for Kr-88. (Reg. Guide 1.109, Table B-1).
 - = Unit conversion, converts air dose to skin dose, mrem/mrad.

Μ

1.1

IV.A.1. b. Isotopic Analysis Method

$$D_{TB} = \sum_{i} \left(V_{i} \dot{Q}_{is} + K_{i} \left(\overline{\chi/Q} \right)_{v} \dot{Q}_{iv} \right)$$
$$D_{s} = \sum_{i} \left[\left(L_{i} \left(\overline{\chi/Q} \right)_{s} + 1.1B_{i} \right) \dot{Q}_{is} + \left(L_{i} + 1.1M_{i} \right) \left(\overline{\chi/Q} \right)_{v} \dot{Q}_{iv} \right]$$

where:

The location is the site boundary, 1100m SSE from the vents. This location results in the highest calculated dose to an individual from noble gas releases.

 D_{TB} = total body dose rate, in mrem/yr.

D_s = skin dose rate, in mrem/yr.

- V_i = The constant for each identified noble gas radionuclide for the gamma radiation from the elevated finite plume. The constants were developed using the MARE program with plant specific inputs for PBAPS. Values are listed on Table IV.A.1, in mrem/yr per μCi/sec.
- K_i = The total body dose factor due to gamma emissions for each identified noble gas radionuclide. Values are listed on Table IV.A.1, in mrem/yr per μCi/m³.
- $(\overline{\chi/Q})_v$ = 1.12 X 10⁻⁶ sec/m³; the highest calculated annual average relative concentration for any area at or beyond the SITE BOUNDARY for all vent releases.
- Q_{iv} = The release rate of noble gas radionuclide, i, in gaseous effluents from all vent releases determined by isotopic analysis averaged over one hour, in µCi/sec.

IV.A.1.b (Cont'd)

 L_i

= The skin dose factor due to beta emissions for each identified noble gas radionuclide. Values are listed on Table IV.A.1, in mrem/yr per μCi/m³.

- $(\chi/Q)_s$ = 9.97 X 10⁻⁸ sec/m³; the highest calculated annual average relative concentration from the stack releases for any area at or beyond the SITE BOUNDARY.
- B_i = The constant for each identified noble gas radionuclide accounting for the gamma radiation from the elevated finite plume. The constants were developed using MARE program with plant specific inputs for PBAPS. Values are listed on Table IV.A.1, in mrad/yr per μCi/sec.
- M_i = The air dose factor due to gamma emissions for each identified noble gas radionuclide. Values are listed on Table IV.A.1, in mrad/yr per μCi/m³.

Page 23 of 64 Rev. 19

TABLE IV.A.1 - Constants for Isotopic Analysis Method (corrected for decay during transit)

Radionuclide	Plume-Air Dose Factor B _i (mrad/yr per μCi/sec)	Total Body Dose Factor K _i (mrem/yr per µCi/m ³)	Skin Dose Factor L ⁱ (mrem/yr per μCi/m ³)	Gamma Air Dose Factor M _i (mrad/yr per μCi/m ³)	Beta Air Dose Factor N _i (mrad/yr per μCi/m ³)	Plume-Body Dose Factor V _i (mrem/yr per µCi/sec)
Kr-85m	4.02E-05	1.17E+03	1.46E+03	1.23E+03	1.97E+03	3.76E-05
Kr-87	1.74E-04	5.92E+03	9.73E+03	6.17E+03	1.03E+04	1.66E-04
Kr-88	4.90E-04	1.47E+04	2.37E+03	1.52E+04	2.93E+03	4.72E-04
Xe-133	1.19E-05	2.94E+02	3.06E+02	3.53E+02	1.05E+03	1.11E-05
Xe-133m	1.09E-05	2.51E+02	9.94E+02	3.27E+02	1.48E+03	1.01E-05
Xe-135	6.37E-05	1.81E+03	1.86E+03	1.92E+03	2.46E+03	5.95E-05
Xe-135m	6.61E-05	2.53E+03	5.76E+02	2.72E+03	5.99Е+02	6.17E-05
Xe-138	1.52E-04	6.98E+03	3.26E+03	7.28E+03	3.75E+03	1.46E-04

The values $B_{\rm i}$ and $V_{\rm i}$ The values K_i , L_i , M_i , and N_i are taken from Reg. Guide 1.109, Table B-1. Th were developed using the MARE program with plant specific inputs for PBAPS.

February 2022

IV.A.2 Iodine-131, iodine-133, tritium and radioactive materials in particulate form, other than noble gases, with half-lives greater than eight days:

The dose rate shall be determined for either of two critical organs and most restrictive age group. Child thyroid dose is limiting when iodine releases exceed 10 percent of the total release rates. The teenager lung dose is limiting when iodine is either not present or a small fraction of the total release.

When it is not clear which organ dose will be limiting, doses for both restrictive age group organs will be calculated and the limiting organ dose identified.

$$D = \sum_{i} P_{i} \left[W_{s} \dot{Q}_{is} + W_{v} \dot{Q}_{iv} + W_{v} \dot{q}_{iv} \right]$$

where:

The location is the site boundary, 1100m SSE from the vents.

- D = dose rate to the critical organ most restrictive age group, in mrem/yr.
- P_i

 W_{s}

W.,

- The dose parameter for radionuclides other than noble gases for the inhalation pathway. The dose factors are based on the critical organ, and most restrictive age group. All values are from Reg. Guide 1.109 (Tables E-5, E-8, E-9 and E-10). Values are listed on Table IV.A.2, in mrem/yr per μCi/m³
- = 1.09 X 10⁻⁸ sec/m³; the highest calculated annual average relative concentration for any area at or beyond the SITE BOUNDARY from stack releases. (SSE boundary)
- Q_{is} = The release rate of radionuclides; i, in gaseous effluents from the stack determined by the effluent sampling and analysis program (ODCMS Table 4.8.C.1) in μCi/sec.
 - = 1.32 X 10⁻⁶ sec/m³; the highest calculated annual average relative concentration for any area at or beyond the SITE BOUNDARY for all vent releases. (SSE boundary)

IV.A.2. (Cont'd)

- $\dot{Q}_{i\nu}$ = The release rate of radionuclide, i, in gaseous effluents from all vent releases, determined by the effluent sampling and analysis program (ODCMS Table 4.8.C.1) in μ Ci/sec.
- q_n = The release rate of radionuclide, i, in
 gaseous effluents from abnormal release
 sources.

L

TABLE IV.A.2Pi CONSTANTS FOR CRITICAL ORGAN FOR THEMOST RESTRICTIVE AGE GROUP

(mrem/yr per μ Ci/m³)

RADIONUCLIDE	INFANT THYROID DOSE FACTOR	INFANT LUNG DOSE FACTOR	CHILD THYROID DOSE FACTOR	TEENAGER LUNG DOSE FACTOR
H-3	6.47E+02	6.47E+02	1.13E+03	1.27E+03
C-14	5.31E+03	5.31E+03	6.73E+03	4.87E+03
NA-24	1.06E+04	1.06E+04	1.61E+04	1.38E+04
P-32	no data	no data	no data	no data
Cr-51	5.75E+01	1.28E+04	8.55+01	2.10E+04
MN-54	no data	1.00E+06	no data	1.98E+06
FE-55	no data	8.69E+04	no data	1.24E+05
MN-56	no data	1.25E+04	no data	1.52E+04
CO-58	no data	7.77E+05	no data	1.34E+06
FE-59	no data	1.02E+06	no data	1.53E+06
CO-60	no data	4.51E+06	no data	8.72E+06
NI-63	no data	2.09E+05	no data	3.07E+05
CU-64	no data	9.30E+03	no data	1.11E+04
NI-65	no data	8.12E+03	no data	9.36E+03
ZN-65	no data	6.47E+05	no data	1.24E+06
ZN-69	no data	1.47E+03	no data	1.58E+03
BR-83	no data	no data	no data	no data
BR-84	no data	no data	no data	no data
BR-85	no data	no data	no data	no data
RB-86	no data	no data	no data	no data
RB-88	no data	no data	no data	no data
RB-89	no data	no data	no data	no data
SR-89	no data	2.03E+06	no data	2.42E+06
SR-90	no data	1.12E+07	no data	1.65E+07
Y-90	no data	2.69E+05	no data	2.93E+05
SR-91	no data	5.26E+04	no data	6.07E+04
Y-91M	no data	2.79E+03	no data	3.20E+03
Y-91	no data	2.45E+06	no data	2.94E+06
SR-92	no data	2.38E+04	no data	2.74E+04
Y-92	no data	2.45E+04	no data	2.68E+04
Y-93	no data	7.64E+04	no data	8.32E+04
NB-95	no data	4.79E+05	no data	7.51E+05
ZR-95	no data	1.75E+06	no data	2.69E+06
ZR-97	no data	1.10E+05	no data	1.30E+05
MO-99	no data	1.35E+05	no data	1.54E+05
TC-99M	no data	8.11E+02	no data	1.15E+03
TC-101	no data	5.84E+02	no data	6.67E+02

February 2022

I

			rage z	
RU-103	no data	5.52E+05	no data	7.83E+05
RU-105	no data	1.57E+04	no data	1.82E+04
RU-106	no data	1.16E+07	no data	1.61E+07
AG-110M	no data	3.67E+06	no data	6.75E+06
TE-125M	1.62E+03	4.47E+05	1.92E+03	5.36E+05
TE-127M	4.87E+03	1.31E+06	6.07E+03	1.66E+06
TE-127	1.85E+00	1.04E+04	1.96E+00	1.12E+04
TE-129M	5.47E+03	1.68E+06	6.33E+03	1.98E+06
TE-129	6.75E-02	3.00E+03	7.14E-02	3.30E+03
I-130	1.60E+06	no data	1.85E+06	no data
I-131	1.48E+07	no data	1.62E+07	no data
TE-131M	8.93E+01	1.99E+05	9.77E+01	2.38E+05
TE-131	1.58E-02	2.06E+03	1.70E-02	2.34E+03
I-132	1.69E+05	no data	1.94E+05	no data
TE-132	2.79E+02	3.40E+05	3.18E+02	4.49E+05
I-133	3.56E+06	no data	3.85E+06	0.00E+00
CS-134	no data	7.97E+04	0.00E+00	1.46E+05
I-134	4.45E+04	no data	5.07E+04	no data
I-135	6.96E+05	no data	7.92E+05	no data
CS-136	no data	1.18E+04	no data	1.78E+04
CS-137	no data	7.13E+04	no data	1.21E+05
CS-138	no data	6.54E+01	no data	7.87E+01
BA-139	no data	5.95E+03	no data	6.46E+03
BA-140	no data	1.60E+06	no data	2.03E+06
LA-140	no data	1.68E+05	no data	2.14E+05
BA-141	no data	2.97E+03	no data	3.29E+03
CE-141	no data	5.17E+05	no data	6.14E+05
BA-142	no data	1.55E+03	no data	1.91E+03
LA-142	no data	8.22E+03	no data	1.02E+04
CE-143	no data	1.16E+05	no data	1.30E+05
PR-143	no data	4.33E+05	no data	4.83E+05
CE-144	no data	9.84E+06	no data	1.34E+07
PR-144	no data	1.61E+03	no data	1.75E+03
ND-147	no data	3.22E+05	no data	3.72E+05
W-187	no data	3.96E+04	no data	4.74E+04
NP-239	no data	5.95E+04	no data	6.49E+04

T

IV.B. ODCMS 4.8.C.2.1

The air dose in areas at and beyond the SITE BOUNDARY due to noble gases released in gaseous effluents shall be determined by the expressions below.

The air dose shall be determined by either of two methods. Method (a), the Gross Release Method, assumes that all noble gases released are the most limiting nuclide - Kr-88 for gamma radiation and Kr-87 for beta radiation. Method (b), the Isotopic Analysis Method, utilizes the results of noble gas analyses required by ODCMS 4.8.C.1.1.

IV.B.1 for gamma radiation:

a. Gross Release Method

$$D_{\gamma} = 3.17 \times 10^{-8} \left[M \left(\overline{\chi/Q} \right)_{v} \tilde{Q}_{v} + B \tilde{Q}_{s} \right]$$

where:

The location is the SITE BOUNDARY 1100m SSE from the vents. This location results in the highest calculated gamma air dose from noble gas releases.

D_y = gamma air dose, in mrad.

 3.17×10^{-8} = years per second.

- M = 1.52 x 10⁴ mrad/yr per µCi/m³; the air dose factor due to gamma emissions for Kr-88. (Reg. Guide 1.109, Table B-1)
- $(\chi/Q)_v$ = 1.12 x 10⁻⁶ sec/m³; the highest calculated annual average relative concentration from vent releases for any area at or beyond the SITE BOUNDARY.
- \tilde{Q}_v = The gross release of noble gas radionuclides in gaseous effluents from all vents, determined by gross activity vent monitors, in μ Ci. Releases shall be cumulative over the calendar quarter or year as appropriate.

L

IV.B.1. a (Cont'd)

В

- = 4.90 x 10⁻⁴ mrad/year per μCi/sec; the constant for Kr-88 accounting for the gamma radiation from the elevated finite plume. The constant was developed using the MARE program with plant specific inputs for PBAPS.
- \tilde{Q}_s = The gross release of noble gas radionuclides in gaseous releases from the stack determined by gross activity stack monitor in µCi. Releases shall be cumulative over the calendar quarter or year as appropriate.
- b. Isotopic Analysis Method

$$D_{\gamma} = 3.17 \times 10^{-8} \sum_{i} \left[M_{i} \left(\overline{\chi/Q} \right)_{v} \tilde{Q}_{iv} + B_{i} \tilde{Q}_{is} \right]$$

where:

The location is the SITE BOUNDARY, 1100m SSE from the vents. This location results in the highest calculated gamma air dose from noble gas releases.

D_y = gamma air dose, in mrad.

 3.17×10^{-8} = years per second.

- M_i = The air dose factor due to gamma emissions for each identified noble gas radionuclide. Values are listed on Table IV.A.1, in mrad/yr per μCi/m³.
- $(\overline{\chi/Q})_v$ = 1.12 x 10⁻⁶ sec/m³; the highest calculated average relative concentration from vent releases for any area at or beyond the SITE BOUNDARY.
- \tilde{Q}_{iv} = The release of noble gas radionuclides, i, in gaseous effluents from all vents as determined by isotopic analysis, in μ Ci. Releases shall be cumulative over the calendar quarter or year, as appropriate.

= The constant for each identified noble gas radionuclide accounting for the gamma radiation for the elevated finite plume. The constants were developed using the MARE program with plant specific inputs for PBAPS. Values are listed on Table IV.A.1, in mrad/yr per μCi/sec.

IV.B.1. b. (Cont'd)

 \tilde{Q}_{is} = The release of noble gas radionuclides, i, in gaseous effluents from the stack determined by isotopic analysis, in μ Ci. Releases shall be cumulative over the calendar quarter or year, as appropriate.

IV.B.2. for beta radiation:

B_i

$$D_{\beta} = 3.17 \times 10^{-8} N \left[\left(\overline{\chi/Q} \right)_{v} \tilde{Q}_{v} + \left(\overline{\chi/Q} \right)_{s} \tilde{Q}_{s} \right]$$

where:

The location is the SITE BOUNDARY 1100m SSE from the vents. This location results in the highest calculated gamma air dose from noble gas releases.

 D_{β} = beta air dose, in mrad.

 3.17×10^{-8} = years per second.

- N = $1.03 \times 10^4 \text{ mrad/yr per } \mu \text{Ci/m}^3$; the air dose factor due to beta emissions for Kr-87. (Reg. Guide 1.109, Table B-1)
- $(\chi/Q)_v$ = 1.12 x 10⁻⁶ sec/m³; the highest calculated annual average relative concentration from vent releases for any area at or beyond the SITE BOUNDARY.
- \tilde{Q}_v = The gross release of noble gas radionuclides in gaseous effluents from all vents determined by gross activity vent monitors, in µCi. Releases shall be cumulative over the calendar quarter or year, as appropriate.

- $(\overline{\chi/Q})_s$ = 9.97 x 10⁻⁸ sec/m³; the highest calculated annual average relative concentration from the stack releases for any area at or beyond the SITE BOUNDARY.
- \widetilde{Q}_{s} = The gross release of noble gas radionuclides in gaseous releases from the stack determined by gross activity stack monitors, in μ Ci. Releases shall be cumulative over the calendar quarter or year, as appropriate.
- IV.B.2. b. Isotopic Analysis Method $D_{\beta} = 3.17 \times 10^{-8} \sum_{i} N_{i} \left[\left(\overline{\chi/Q} \right)_{v} \tilde{Q}_{iv} + \left(\overline{\chi/Q} \right)_{s} \tilde{Q}_{is} \right]$ $3.17 \times 10^{-8} = \text{years per second.}$
 - N_i = The air dose factor due to beta emissions for each identified noble gas radionuclide. Values are listed on Table IV.A.1, in mrad/yr per μ Ci/m³.
 - $(\overline{\chi/Q})_v$ = 1.12 x 10⁻⁶ sec/m³; the highest calculated annual average relative concentration from vent releases for any area at or beyond the SITE BOUNDARY.
 - \tilde{Q}_{iv} = The release of noble gas radionuclide, i, in gaseous effluents from all vents as determined by isotopic analysis, in μ Ci. Releases shall be cumulative over the calendar quarter or year, as appropriate.
 - $(\chi/Q)_s$ = 9.97 x 10⁻⁸ sec/m³; the highest calculated annual average relative concentration from the stack releases for any area at or beyond the SITE BOUNDARY.
 - \tilde{Q}_{is} = The release of noble gas radionuclide, i, in gaseous effluents from the stack as determined by isotopic analysis, in μ Ci. Releases shall be cumulative over the calendar quarter or year, as appropriate.

IV.C ODCMS 4.8.C.3.1

The dose to an individual from iodine-131, iodine-133, tritium and radioactive materials in particulate form and radionuclides other than noble gases with half-lives greater than eight days in gaseous effluents released to areas at and beyond the SITE BOUNDARY.

The dose shall be determined for the limiting organ. Infant thyroid doses are dominating any time that either iodine-131 release rates are more than two (2) percent of total release rates or iodine-133 exceeds 25 percent of total release rates. In these cases only iodine-131 and iodine-133 are potentially significant.

For cases where there is no detectable iodine releases, doses shall be determined for infant bone and liver. Both bone and liver doses are calculated because the controlling dose is dependent upon the presence of strontium.

When it is not clear whether thyroid, bone, or liver doses are controlling, all three shall be calculated and the limiting dose identified.

$$D = 3.17 \times 10^{-8} \sum_{i} F_{e} R_{i} \left[W_{s} \tilde{Q}_{is} + W_{v} \tilde{Q}_{iv} + W_{v} \tilde{q}_{iv} \right]$$

where:

Location is the critical pathway dairy 1500m SW from vents.

D	= limiting dose to the critical infant organ, from the milk, or inhalation, or ground plane pathways, in mrem.
3.17×10^{-8}	= years per second.
F_{e}	= Fraction that is elemental (0.5 for iodines and 1.0 for all other elements).
R_i	= The dose factor for each identified
	radionuclide; i, in m ² (mrem/yr) per µCi/sec except tritium, carbon-14, and inhalation pathway, which is in mrem/yr per µCi/m ³ . The dose factors are for the critical individual organ for the most restrictive age group, infant. Table IV.C.1 list values for the ingestion pathway, Table IV.C.2 for the inhalation pathway, and Table IV.C.3 for the ground plane pathway. See Site Specific Data.**

IV.C (Continued)

- W_s = 4.19 x 10⁻¹⁰ meters⁻² $(\overline{D/Q})$ for the ingestion and ground plane pathway for stack releases. Tritium, carbon-14, and the inhalation pathway use a (χ/Q) of 8.11 x 10⁻⁹ sec/m³.
- \widetilde{Q}_{iS} = The release of radionuclide, i, in gaseous effluents from the stack determined by the effluent sampling and analysis program (ODCMS Table 4.8.C.1), in µCi. Releases shall be cumulative over the calendar quarter or year, as appropriate.
- W_v = 1.58 x 10⁻⁹ meters⁻² (D/Q) for the ingestion and ground plane pathway for vent releases. Tritium, carbon-14, and the inhalation pathway use a (χ /Q) of 4.43 x 10⁻⁷ sec/m³.

** See Note 2 and 3 in Bases

- \widetilde{Q}_{iV} = The release of radionuclide, i, in gaseous effluents from the vents determined by the effluent sampling and analysis program (ODCMS Table 4.8.C.1) in µCi. Release shall be cumulative over the calendar quarter or year, as appropriate.
- $q_{i\nu}$ = The release of radionuclide, i, in gaseous effluents from abnormal release sources in μ Ci. Release shall be cumulative over the calendar quarter or year, as appropriate.

TABLE IV.C.1

Ri CONSTANTS INGESTION PATHWAY

(m² (mrem/yr) per $\mu \text{Ci/sec}) \star$

Radionuc lide	Infant Bone	Infant Liver	Infant Thyroid	Infant Kidney	Infant Lung	Infant GI-LLI	Infant Skin	Infant T Bod
H-3	no data	1.30E+03	1.30E+03	1.30E+03	1.30E+03	1.30E+03	no data	1.30E+03
C-14	3.23E+06	6.89E+05	6.89E+05	6.89E+05	6.89E+05	6.89E+05	no data	6.89E+05
NA-24	4.48E+06	4.48E+06	4.48E+06	4.48E+06	4.48E+06	4.48E+06	no data	4.48E+06
P-32	4.74E+10	2.79E+09	no data	no data	no data	6.41E+08	no data	1.84E+09
CR-51	no data	no data	3.35E+04	7.32E+03	6.51E+04	1.50E+06	no data	5.13E+04
MN-54	no data	1.93E+07	no data	4.28E+06	no data	7.09E+06	no data	4.38E+06
FE-55	7.09E+07	4.58E+07	no data	no data	2.24E+07	5.81E+06	no data	1.22E+07
MN-56	no data	9.24E-03	no data	7.94E-03	no data	8.39E-01	no data	1.59E-03
CO-58	no data	9.57E+06	no data	no data	no data	2.39E+07	no data	2.39E+07
FE-59	7.92E+07	1.38E+08	no data	no data	4.09E+07	6.61E+07	no data	5.45E+07
CO-60	no data	4.69E+07	no data	no data	no data	1.12E+08	no data	1.11E+08
NI-63	1.88E+10	1.17E+09	no data	no data	no data	5.80E+07	no data	6.54E+08
CU-64	no data	5.42E+04	no data	9.17E+04	no data	1.11E+06	no data	2.51E+04
NI-65	1.03E+00	1.16E-01	no data	no data	no data	8.85E+00	no data	5.29E-02
ZN-65	2.69E+09	9.22E+09	no data	4.47E+09	no data	7.78E+09	no data	4.25E+09
ZN-69	3.09E+04	5.56E+04	no data	2.31E+04	no data	4.54E+06	no data	4.14E+03
BR-83	no data	no data	no data	no data	no data	no data	no data	1.20E-01
BR-84	no data	no data	no data	no data	no data	no data	no data	1.64E-23
BR-85	no data	no data	no data	no data	no data	no data	no data	no data
RB-86	no data	6.69E+09	no data	no data	no data	1.71E+08	no data	3.31E+09
RB-88	no data	5.60E-45	no data	no data	no data	5.45E-45	no data	3.07E-45
RB-89	no data	9.86E-53	no data	no data	no data	3.36E-53	no data	6.79E-53
SR-89	4.58E+09	no data	no data	no data	no data	9.42E+07	no data	1.31E+08
				no data	no data	8.18E+08	no data	1.67E+10
SR-90	6.55E+10	no data	no data		no data	2.74E+05	no data	5.33E+00
Y-90	1.99E+02	no data	no data	no data		9.40E+04		2.87E+03
SR-91	7.94E+04	no data	no data	no data	no data	5.53E-16	no data	5.65E-21
Y-91M	1.66E-19	no data	no data	no data	no data		no data	
Y-91	2.77E+04	no data	no data	no data	no data	1.98E+06	no data	7.37E+02
SR-92	1.36E+00	no data	no data	no data	no data	1.47E+01	no data	5.05E-02
Y-92	1.57E-04	no data	no data	no data	no data	3.01E+00	no data	4.43E-06
Y-93	6.31E-01	no data	no data	no data	no data	4.98E+03	no data	1.72E-02
NB-95	1.98E+05	8.16E+04	no data	5.85E+04	no data	6.89E+07	no data	4.72E+04
ZR-95	2.62E+03	6.40E+02	no data	6.89E+02	no data	3.19E+05	no data	4.54E+02
ZR-97	1.19E+00	2.04E-01	no data	2.05E-01	no data	1.30E+04	no data	9.31E-02
MO-99	no data	6.07E+07	no data	9.07E+07	no data	2.00E+07	no data	1.18E+07
TC-99M	8.04E+00	1.66E+01	no data	1.78E+02	8.67E+00	4.82E+03	no data	2.14E+02
TC-101	7.44E-60	9.38E-60	no data	1.11E-58	5.11E-60	1.59E-57	no data	9.28E-59
RU-103	2.97E+03	no data	no data	6.18E+03	no data	3.61E+04	no data	9.93E+02
RU-105	2.36E-03	no data	no data	1.73E-02	no data	9.38E-01	no data	7.94E-04
RU-106	9.54E+04	no data	no data	1.13E+05	no data	7.24E+05	no data	1.19E+04
AG-110M	1.87E+08	1.37E+08	no data	1.95E+08	no data	7.09E+09	no data	9.04E+07
SB-124	5.31E+07	7.81E+05	1.41E+05	no data	3.32E+07	1.64E+08	no data	1.64E+07
SB-125	5.23E+07	5.06E+05	6.55E+04	no data	3.03E+07	6.98E+07	no data	1.08E+07
TE-125M	5.68E+07	1.90E+07	1.91E+07	no data	no data	2.71E+07	no data	7.68E+06
TE-127M	1.82E+08	6.03E+07	5.26E+07	4.48E+08	no data	7.34E+07	no data	2.20E+07
TE-127	1.85E+03	6.19E+02	1.50E+03	4.51E+03	no data	3.88E+04	no data	3.97E+02

February 2022

Page 35 of 64 Rev. 19

•

TE-129M	1.84E+08	6.32E+07	7.08E+07	4.61E+08	no data	1.10E+08	no data	2.84E+07	
TE-129	7.99E-10	2.76E-10	6.70E-10	1.99E-09	no data	6.39E-08	no data	1.87E-10	
I-130	1.04E+06	2.28E+06	2.56E+08	2.51E+06	no data	4.89E+05	no data	9.17E+05	
I-131	7.97E+08	9.39E+08	3.08E+11	1.10E+09	no data	3.35E+07	no data	4.13E+08	
TE-131M	9.87E+05	3.97E+05	8.05E+05	2.73E+06	no data	6.69E+06	no data	3.28E+05	
TE-131	1.03E-32	3.79E-33	9.15E-33	2.62E-32	no data	4.14E-31	no data	2.88E-33	
I-132	3.66E-01	7.43E-01	3.48E+01	8.29E-01	no data	6.02E-01	no data	2.65E-01	
TE-132	6.17E+06	3.05E+06	4.51E+06	1.91E+07	no data	1.13E+07	no data	2.85E+06	
I-133	1.06E+07	1.54E+07	2.81E+09	1.81E+07	no data	2.61E+06	no data	4.52E+06	
CS-134	1.90E+10	3.54E+10	no data	9.11E+09	3.73E+09	9.61E+07	no data	3.57E+09	
I-134	4.81E-12	9.86E-12	2.30E-10	1.10E-11	no data	1.02E-11	no data	3.51E-12	
I-135	3.21E+04	6.39E+04	5.73E+06	7.12E+04	no data	2.31E+04	no data	2.33E+04	
CS-136	5.80E+08	1.71E+09	no data	6.80E+08	1.39E+08	2.59E+07	no data	6.37E+08	
CS-137	2.77E+10	3.24E+10	no data	8.71E+09	3.53E+09	1.01E+08	no data	2.30E+09	
CS-138	2.58E-23	4.20E-23	no data	2.09E-23	3.27E-24	6.71E-23	no data	2.04E-23	
BA-139	1.26E-07	8.32E-11	no data	5.00E-11	5.04E-11	7.95E-06	no data	3.63E-09	
BA-140	7.09E+07	7.09E+04	no data	1.68E+04	4.35E+04	1.74E+07	no data	3.65E+06	
LA-140	1.18E+01	4.67E+00	no data	no data	no data	5.49E+04	no data	1.20E+00	
BA-141	1.41E-45	9.65E-49	no data	5.80E-49	5.87E-49	1.72E-44	no data	4.44E-47	
CE-141	1.42E+04	8.69E+03	no data	2.68E+03	no data	4.49E+06	no data	1.02E+03	
BA-142	7.43E-80	6.18E-83	no data	3.56E-83	3.74E-83	3.07E-79	no data	3.66E-81	
LA-142	4.99E-11	1.83E-11	no data	no data	no data	3.11E-06	no data	4.39E-12	
CE-143	1.16E+02	7.70E+04	no data	2.24E+01	no data	4.49E+05	no data	8.78E+00	
PR-143	4.38E+02	1.64E+02	no data	6.09E+01	no data	2.31E+05	no data	2.17E+01	
CE-144	1.14E+06	4.68E+05	no data	1.89E+05	no data	6.55E+07	no data	6.40E+04	
PR-144	1.70E-53	6.59E-54	no data	2.39E-54	no data	3.07E-49	no data	8.58E-55	
ND-147	2.58E+02	2.65E+02	no data	1.02E+02	no data	1.68E+05	no data	1.63E+01	
W-187	1.79E+04	1.24E+04	no data	no data	no data	7.31E+05	no data	4.30E+03	
NP-239	1.06E+01	9.51E-01	no data	1.90E+00	no data	2.75E+04	no data	5.37E-01	
NP-237	5.33E+07	3.53E+06	no data	1.41E+07	no data	1.83E+06	no data	2.33E+06	
NP-238	1.02E+02	2.56E+00	no data	5.58E+00	no data	3.42E+04	no data	1.57E+00	

* Tritium and C-14 $R_{\rm i}$ values in units of mrem/yr per $\mu \text{Ci}/m^3$

TABLE IV.C.2 Ri CONSTANTS INHALATION PATHWAY

(mrem/yr	ner	uCi/m ³)
(mrem) Ar	ber	$\mu C I / m^{-}$

Radionuclide	Infant Bone	Infant Liver	Infant Thyroid	Infant Kidney	Infant Lung	Infant GI-LLI	Infant Skin	Infant T Body
H-3	no data	6.47E+02	6.47E+02	6.47E+02	6.47E+02	6.47E+02	no data	6.47E+02
C-14	2.65E+04	5.31E+03	5.31E+03	5.31E+03	5.31E+03	5.31E+03	no data	5.31E+03
NA-24	1.06E+04	1.06E+04	1.06E+04	1.06E+04	1.06E+04	1.06E+04	no data	1.06E+04
P-32	2.03E+06	1.12E+05	no data	no data	no data	1.61E+04	no data	7.74E+04
CR-51	no data	no data	5.75E+01	1.32E+01	1.28E+04	3.57E+02	no data	8.95E+01
MN-54	no data	2.53E+04	no data	4.98E+03	1.00E+06	7.06E+03	no data	4.98E+03
FE-55	1.97E+04	1.18E+04	no data	no data	8.69E+04	1.10E+03	no data	3.33E+03
MN-56	no data	1.54E+00	no data	1.10E+00	1.25E+04	7.17E+04	no data	2.21E-01
CO-58	no data	1.22E+03	no data	no data	7.77E+05	1.11E+04	no data	1.82E+03
FE-59	1.36E+04	2.35E+04	no data	no data	1.02E+06	2.48E+04	no data	9.48E+03
CO-60	no data	8.02E+03	no data	no data	4.51E+06	3.19E+04	no data	1.18E+04
NI-63	3.39E+05	2.04E+04	no data	no data	2.09E+05	2.42E+03	no data	1.16E+04
CU-64	no data	1.88E+00	no data	3.98E+00	9.30E+03	1.50E+04	no data	7.74E-01
NI-65	2.39E+00	2.84E-01	no data	no data	8.12E+03	5.01E+04	no data	1.23E-01
ZN-65	1.93E+04	6.26E+04	no data	3.25E+04	6.47E+05	5.14E+04	no data	3.11E+04
ZN-69	5.39E-02	9.67E-02	no data	4.02E+02	1.47E+03	1.32E+04	no data	7.18E-03
BR-83	no data	no data	no data	no data	no data	no data	no data	3.81E+02
BR-84	no data	no data	no data	no data	no data	no data	no data	4.00E+02
BR-85	no data	no data	no data	no data	no data	no data	no data	2.04E+01
RB-86	no data	1.90E+05	no data	no data	no data	3.04E+03	no data	8.82E+04
RB-88	no data	5.57E+02	no data	no data	no data	3.39E+02	no data	2.87E+02
RB-89	no data	3.21E+02	no data	no data	no data	6.82E+01	no data	2.06E+02
SR-89	3.98E+05	no data	no data	no data	2.03E+06	6.40E+04	no data	1.14E+04
SR-90	4.09E+07	no data	no data	no data	1.12E+07	1.31E+05	no data	2.59E+06
Y-90	3.29E+03	no data	no data	no data	2.69E+05	1.04E+05	no data	8.82E+01
SR-91	9.56E+01	no data	no data	no data	5.26E+04	7.34E+04	no data	3.46E+00
Y-91M	4.07E-01	no data	no data	no data	2.79E+03	2.35E+03	no data	1.39E-02
Y-91	5.88E+05	no data	no data	no data	2.45E+06	7.03E+04	no data	1.57E+04
SR-92	1.05E+01	no data	no data	no data	2.38E+04	1.40E+05	no data	3.91E-01
Y-92	1.64E+01	no data	no data	no data	2.45E+04	1.27E+05	no data	4.61E-01
Y-93	1.50E+02	no data	no data	no data	7.64E+04	1.67E+05	no data	4.07E+00
NB-95	1.57E+04	6.43E+03	no data	4.72E+03	4.79E+05	1.27E+04	no data	3.78E+03
ZR-95	1.15E+05	2.79E+04	no data	3.11E+04	1.75E+06	2.17E+04	no data	2.03E+04
			no data	2.59E+01	1.10E+05	1.40E+05	no data	1.17E+01
ZR-97	1.50E+02 по data	2.56E+01 1.65E+02	no data	2.65E+02	1.35E+05	4.87E+04	no data	3.23E+01
MO-99				3.11E-02	8.11E+02	2.03E+03	no data	3.72E-02
TC-99M	1.40E-03	2.88E-03	no data		5.84E+02	8.44E+02	no data	8.12E-02
TC-101	6.51E-05	8.23E-05	no data	9.79E-04	5.52E+02	8.44E+02 1.61E+04	no data	6.79E+02
RU-103	2.02E+03	no data	no data	4.24E+03				4.10E-01
RU-105	1.22E+00	no data	no data	8.99E-01	1.57E+04	4.84E+04	no data	
RU-106	8.68E+04	no data	no data	1.07E+05	1.16E+07	1.64E+05	no data	1.09E+04
AG-110M	9.98E+03	7.22E+03	no data	1.09E+04	3.67E+06	3.30E+04	no data	5.00E+03
TE-125M	4.76E+03	1.99E+03	1.62E+03	no data	4.47E+05	1.29E+04	no data	6.58E+02
TE-127M	1.67E+04	6.90E+03	4.87E+03	3.75E+04	1.31E+06	2.73E+04	no data	2.07E+03
TE-127	2.23E+00	9.53E-01	1.85E+00	4.86E+00	1.04E+04	2.44E+04	no data	4.89E-01
TE-129M	1.41E+04	6.09E+03	5.47E+03	3.18E+04	1.68E+06	6.90E+04	no data	2.23E+03
TE-129	7.88E-02	3.47E-02	6.75E-02	1.75E-01	3.00E+03	2.63E+04	no data	1.88E-02
I-130	6.36E+03	1.39E+04	1.60E+06	1.53E+04	no data	1.99E+03	no data	5.57E+03
I-131	3.79E+04	4.44E+04	1.48E+07	5.18E+04	no data	1.06E+03	no data	1.96E+04

1

Page 37 of 64 Rev. 19

						Page 37	01 04	Rev. 19
TE-131M	1.07E+02	5.50E+01	8.93E+01	2.65E+02	1.99E+05	1.19E+05	no data	3.63E+01
TE-131	1.74E-02	8.22E-03	1.58E-02	3.99E-02	2.06E+03	8.22E+03	no data	5.00E-03
I-132	1.69E+03	3.54E+03	1.69E+05	3.95E+03	no data	1.90E+03	no data	1.26E+03
TE-132	3.72E+02	2.37E+02	2.79E+02	1.04E+03	3.40E+05	4.41E+04	no data	1.76E+02
I-133	1.32E+04	1.92E+04	3.56E+06	2.24E+04	no data	2.16E+03	no data	5.60E+03
CS-134	3.96E+05	7.03E+05	no data	1.90E+05	7.97E+04	1.33E+03	no data	7.45E+04
I-134	9.21E+02	1.88E+03	4.45E+04	2.09E+03	no data	1.29E+03	no data	6.65E+02
I-135	3.86E+03	7.60E+03	6.96E+05	8.47E+03	no data	1.83E+03	no data	2.77E+03
CS-136	4.83E+04	1.35E+05	no data	5.64E+04	1.18E+04	1.43E+03	no data	5.29E+04
CS-137	5.49E+05	6.12E+05	no data	1.72E+05	7.13E+04	1.33E+03	no data	4.55E+04
CS-138	5.05E+02	7.81E+02	no data	4.10E+02	6.54E+01	8.76E+02	no data	3.98E+02
BA-139	1.48E+00	9.84E-04	no data	5.92E-04	5.95E+03	5.10E+04	no data	4.30E-02
BA-140	5.60E+04	5.60E+01	no data	1.34E+01	1.60E+06	3.84E+04	no data	2.90E+03
LA-140	5.05E+02	2.00E+02	no data	no data	1.68E+05	8.48E+04	no data	5.15E+01
BA-141	1.57E-01	1.08E-04	no data	6.50E-05	2.97E+03	4.75E+03	no data	4.97E-03
CE-141	2.77E+04	1.67E+04	no data	5.25E+03	5.17E+05	2.16E+04	no data	1.99E+03
BA-142	3.98E-02	3.30E-05	no data	1.90E-05	1.55E+03	6.93E+02	no data	1.96E-03
LA-142	1.03E+00	3.77E-01	no data	no data	8.22E+03	5.95E+04	no data	9.04E-02
CE-143	2.93E+02	1.93E+02	no data	5.64E+01	1.16E+05	4.97E+04	no data	2.21E+01
PR-143	1.40E+04	5.24E+03	no data	1.97E+03	4.33E+05	3.72E+04	no data	6.99E+02
CE-144	3.19E+06	1.21E+06	no data	5.38E+05	9.84E+06	1.48E+05	no data	1.76E+05
PR-144	4.79E-02	1.85E-02	no data	6.72E-03	1.61E+03	4.28E+03	no data	2.41E-03
ND-147	7.94E+03	8.13E+03	no data	3.15E+03	3.22E+05	3.12E+04	no data	5.00E+02
W-187	1.30E+01	9.02E+00	no data	no data	3.96E+04	3.56E+04	no data	3.11E+00
NP-239	3.71E+02	3.32E+00	no data	6.62E+01	5.95E+04	2.49E+04	no data	1.88E+01
U-232	3.60E+08	no data	no data	3.36E+07	2.09E+09	6.10E+04	no data	2.98E+007
U-232	7.62E+07	no data	no data	1.53E+07	4.98E+08	5.64E+04	no data	5.36E+06
U-234	7.31E+07	no data	no data	1.50E+07	4.89E+08	5.53E+04	no data	5.25E+06
U-235	7.01E+07	no data	no data	1.41E+07	4.59E+08	7.03E+04	no data	4.93E+06
U-236	7.01E+07	no data	no data	1.44E+07	4.69E+08	5.19E+04	no data	4.93E+08 5.04E+06
U-230 U-237	4.55E+02	no data	no data	1.13E+03	4.09E+08 1.28E+05	1.83E+04		
U-238	4.33E+02 6.71E+07	no data	no data	1.32E+03	4.28E+05	4.96E+04	no data	1.21E+02
NP-237	4.03E+09	2.39E+09	no data	1.08E+09	4.28E+08 4.89E+08	4.90E+04 7.14E+04	no data	4.61E+06
NP-238	3.74E+03	8.47E+02	no data	2.06E+03		3.61E+04	no data	1.76E+08
PU-238					1.29E+05		no data	5.82E+01
PU-238 PU-239	3.77E+09	2.35E+09	no data	6.50E+08	1.26E+09	6.57E+04	no data	1.78E+08
PU-239 PU-240	4.10E+09	2.46E+09	no data	6.93E+08	1.19E+09	5.99E+04	no data	1.88E+08
	4.10E+09	2.45E+09	no data	6.92E+08	1.19E+09	6.10E+04	no data	1.88E+08
PU-241	1.18E+08	2.59E+07	no data	1.61E+07	1.07E+06	1.26E+03	no data	4.35E+06
PU-242	3.81E+09	2.37E+09	no data	6.68E+08	1.14E+09	5.88E+04	no data	1.81E+08
PU-244	4.44E+09	2.72E+09	no data	7.64E+08	1.31E+09	8.76E+04	no data	2.07E+08
AM-241	4.41E+09	2.73E+09	no data	1.11E+09	5.68E+08	6.69E+04	no data	1.83E+08
AM-242M	4.55E+09	2.60E+09	no data	1.12E+09	2.30E+08	8.41E+04	no data	1.89E+08
AM-243	4.34E+09	2.63E+09	no data	1.08E+09	5.39E+08	7.84E+04	no data	1.78E+08
CM-242	1.79E+08	1.21E+08	no data	2.37E+07	4.16E+08	7.14E+04	no data	7.98E+06
CM-243	3.46E+09	2.13E+09	no data	5.47E+08	5.94E+08	7.03E+04	no data	1.48E+08
CM-244	2.90E+09	1.78E+09	no data	4.49E+08	5.71E+08	6.80E+04	no data	1.24E+08
CM-245	4.51E+09	2.74E+09	no data	7.32E+08	5.49E+08	6.34E+04	no data	1.90E+08
CM-246	4.48E+09	2.74E+09	no data	7.32E+08	5.59E+08	6.23E+04	no data	1.90E+08
CM-247	4.35E+09	2.70E+09	no data	7.21E+08	5.49E+08	8.19E+04	no data	1.86E+08
CM-248	3.61E+10	2.23E+10	no data	5.94E+09	4.52E+09	1.32E+06	no data	1.54E+09
CF-252	3.32E+09	no data	no data	no data	1.92E+09	2.59E+05	no data	1.41E+08

I.

	ТА	BLE IV.	C.3	
Ri	CONSTANTS	GROUND	PLANE	PATHWAY

T	CONS	IANIS GROU		LANE PAIRWE
	(m²	(mrem/yr)	per	μ Ci/sec)
	AG-1	10M		3.44E+09
	AM-2	41		6.85E+08
	AM-2			9.61E+07
	AM-2			5.03E+09
	BA-1			1.06E+05
	BA-1			2.05E+07
	BA-1			4.18E+04
	BA-1			4.49E+04
	BR-8			4.87E+03
	BR-8			2.03E+05
	BR-8			no data
	C-14			no data
	CE-1			1.37E+07
	CE-1			2.31E+06
	CE-1			6.96E+07
	CF-2			4.83E+10
	CM-2			6.85E+05
	CM-2			7.05E+09
	CM-2			7.84E+06
	CM-2			3.67E+09
	CM-2			3.86E+06
	CM-2			8.51E+09
	CM-2			2.63E+10
	CO-5			3.79E+08
	CO-6			2.32E+10
	CR-5			4.66E+06
	CS-1			6.91E+09
	CS-1	36		1.50E+08
	CS-1			1.30E+10
	CS-1			3.59E+05
	CU-6			6.07E+05
	FE-5	5		no data
	FE-5	9		2.72E+08
	Н-З			no data
	I-13	0		5.51E+06
	I-13	1		1.73E+07
	I-13	2		1.23E+06
	I-13	3		2.45E+06
	I - 13	4		4.46E+05
	I-13	5		2.52E+06
	LA-1			1.92E+07
	LA-1	42		7.60E+05
	MN-5	4		1.38E+09
	MN-5	6		9.04E+05
	MO-9	9		3.99E+06

.

NA-24	1.19E+07
NB-95	1.37E+08
ND-147	8.40E+06
NI-63	no data
NI-65	2.97E+05
NP-237	5.42E+09
NP-238	4.53E+06
NP-239	1.71E+06
P-32	no data
PR-143	no data
PR-144	1.83E+03
PU-238	4.65E+06
PU-239	
	3.06E+06
PU-240	5.02E+06
PU-241	1.14E+07
PU-242	4.26E+06
PU-244	3.46E+09
RB-86	8.97E+06
RB-88	3.31E+04
RB-89	1.23E+05
RU-103	1.08E+08
RU-105	6.36E+05
RU-106	4.22E+08
SB-124	5.98E+08
SB-125	2.38E+09
SR-89	2.16E+04
SR-90	no data
SR-91	2.15E+06
SR-92	7.77E+05
TC-101	2.04E+04
TC-99M	1.84E+05
TE-125M	1.55E+06
TE-127	2.98E+03
TE-127M	9.17E+04
TE-129	2.62E+04
TE-129M	1.98E+07
TE-131	2.92E+04
TE-131M	8.03E+06
TE-132	4.23E+06
U-232	9.12E+06
U-233	8.90E+09
U-234	2.45E+06
U-235	1.24E+10
U-236	8.13E+04
U-237	5.16E+07
U-238	4.26E+08
W-187	2.36E+06
Y-90	4.49E+03
Y-91	1.07E+06
Y-91M	1.00E+05

T

Y-92	1.80E+05
Y-93	1.83E+05
ZN-65	7.46E+08
ZN-69	no data
ZR-95	2.45E+08
ZR-97	2.96E+06

IV.D ODCMS 4.8.C.5.1

The projected doses from releases of gaseous effluents to areas at and beyond the SITE BOUNDARY shall be calculated in accordance with the following sections of this manual:

a. gamma air dose - IV.B.1b. beta air dose - IV.B.2c. organ dose - IV.C

The projected dose calculation shall be based on expected release from plant operation. The normal release pathways result in the maximum releases from the plant. Any alternative release pathways result in lower releases and, therefore, lower doses.

- IV.E Technical Requirements Manual Test Requirement (TR) 3.5.3
- IV.E.1 The recombiner hydrogen analyzers currently used at Peach Bottom are Whittaker Electrochemical type. (Analyzers 4083A and 4083B on Unit 2. Analyzers 5083A and 5083B on Unit 3.)
- IV.E.2 The calibration gas is in accordance with approved procedures.
- IV.F ODCMS 4.8.C.7.1 and 4.8.C.7.2
- IV.F.1 Section Removed.
- IV.F.2 Section Removed.
- V.A. ODCMS 4.8.D.1.1 and 4.8.D.1.2
- V.A.1 ODCMS 4.8.D.1.1

The total gaseous and liquid cumulative dose contributions are limited by ODCMS 3.8.D.1 to 3.0 mrem for whole body and critical organ, and 55 mrem for the thyroid to preserve assumptions set forth in the 10CFR72.212 report for the spent fuel casks that are stored on the Independent Spent Fuel Storage (ISFSI) pad. Exceeding these action levels does not necessarily result in the overall 40CFR190 or 10CFR72.104 requirements not being met. Further calculations are required to determine compliance.

Whole Body

The whole body dose contribution from liquid and gaseous effluents shall be determined by the following method:

$$D_{WB} = D_{\tau} + D_{\gamma}$$

where:

- $D_{\rm WB}$ = whole body dose from liquid and gaseous effluents, in mrem.
- D_r = cumulative dose commitment to the total body from liquid effluents, in mrem (Determined by ODCM Section III.B).
- D_{γ} = gamma air dose, in mrad (Determined by ODCM Section IV.B, with mrad equivalent to mrem).

Critical organ(except thyroid)

The critical organ(except thyroid) dose contribution from liquid and gaseous effluents shall be determined by the following method:

$$D_{CO} = D_{\tau} + D_{\gamma} + D$$

where:

- D_{co} = critical organ(except thyroid) dose from liquid and gaseous effluents, in mrem.
- D_r = cumulative dose commitment to any organ from liquid effluents, in mrem (Determined by ODCM Section III.B).
- D_{γ} = gamma air dose, in mrad (Determined by ODCM Section IV.B, with mrad equivalent to mrem).

Thyroid

The thyroid dose contribution from gaseous effluents shall be determined by the following method:

$$D_{Thv} = D_{\tau} + D_{\gamma} + D$$

where:

 D_{Thy} = thyroid dose from gaseous effluents, in mrem.

- D_r = cumulative dose commitment to any organ from liquid effluents, in mrem (Determined by ODCM Section III.B).
- D_{γ} = gamma air dose, in mrad (Determined by ODCM Section IV.B, with mrad equivalent to mrem).
- D = limiting dose to the thyroid, in mrem (Determined by ODCM Section IV.C).

V.A.2 ODCMS 4.8.D.1.2

The cumulative dose from all sources(i.e. gas and liquid effluents and direct radiation) is calculated by summing the individual doses obtained in ODCMS 4.8.D.1.1 for whole body(D_{w_B}), critical organ(D_{co}) and thyroid(D_{m_r}) with the dosimeter net dose(mrem).

Whole Body

The cumulative whole body dose from liquid, gas and direct radiation shall be determined by the following method:

$$D_{WB}^{Total} = D_{WB} + D_{D}$$

where:

- D_{WB}^{Total} = whole body dose equivalent from all sources, in mrem.
- D_{WB} = whole body dose from liquid and gaseous effluents, in mrem.
- D_p = Net dose from direct radiation, in mrem.

L

Critical Organ(except thyroid)

The cumulative critical organ(except thyroid) dose from liquid, gas and direct radiation shall be determined by the following method:

$$D_{CO}^{Total} = D_{CO} + D_D$$

where:

- D_{CO}^{Total} = critical organ(except thyroid) dose equivalent from all sources, in mrem.
- D_{CO} = critical organ(except thyroid) dose from liquid and gaseous effluents, in mrem.
- D_{D} = Net dose from direct radiation, in mrem.

Thyroid

The cumulative thyroid dose from gas and direct radiation shall be determined by the following method:

$$D_{Thy}^{Total} = D_{Thy} + D_D$$

where:

 D_{Thy}^{Total} = thyroid dose equivalent from all sources, in mrem.

 D_{Thv} = thyroid dose from gaseous effluents, in mrem.

 D_D = Net dose from direct radiation, in mrem.

The dose contribution is calculated at the discharge point for liquids and in the worst sector for gases. If necessary, the dose contribution from liquid and gas may be calculated for a real individual.

L

VI.A ODCMS 3.10.2.f

In accordance with ODCMS 3.10.2.f the Annual Radioactive Effluent Release Report shall include an assessment of radiation dose from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their acitivies inside the SITE BOUNDARY.

There are two locations within the SITE BOUNDARY that are accessible to MEMBERS OF THE PUBLIC for activities unrelated to the operation of Peach Bottom Atomic Power Station. These locations are the Emergency Response Location 800 ft ENE from the vents and the Warehouse Checkpoint 900 ft NNE from the vents.

Annual doses will be calculated in accordance with methodology described in ODCM IV.B and IV.C, assuming inhalation pathway, plume and ground shine doses are the dominate pathway. Continuous occupancy with current year MET data shall also be used. The maximum dose calculated will be reported in the Annual Radioactive Effluent Release Report.

VII.A ODCMS 4.8.E.1.1 and 4.8.E.1.2

The radiological environment monitoring samples shall be collected pursuant to Table VII.A.1 from the locations shown on Figures VII.A.1, VII.A.2, and VII.A.3, and shall be analyzed pursuant to the requirements of Table VII.A.1.

		TABLE VII.A-1	A-1	Page 46 of 64 Rev. 19
		ODCM - Peach Bottom Aton Radiological Environmental	Atomic Power Station ntal Monitoring Program	
Pathway	Station Code	Distance and Direction from PBAPS Vents	Collection Method and Discussion	Analyses
I. Direc	t Radiation			
Site Bo	Boundary 1L	,100	l set of two (2)	Gamma Dose quarterly
	7 7	feet SE of	L leas	
	11	,900 feet SSE of	Y	
	1C	,700 feet SSE o	Gamma dose quarterly	
	1J	,000 feet S of si		
	<u>Т</u> Е	,900 feet SSW of		
	40	,000 feet SW of :	Dosimeter sites were	
	JNN	,700	chosen in accordance	
	1H	,200	with Peach Bottom	
	1G	,100 fee	(1)	
	1B	,500 f	Item 1. Site Boundary	
	1E	,000 feet	- no	
	lK	,700 fe	except several along	
Interme		,200 feet	<u> </u>	
Distance	Ð		sectors are monitored	
	15	9,300 fee		
	22	2,500 feet NNE c	st side	
	44	6,700	Pond. The 5 mile	
	32	4,400 feet ENE	vicinity stations	
	45	8,500 fee	cover all sectors.	
	14	0,300 feet E of si		
	17	,500 feet ESE c	The distant and	
	31A	4,100 feet SE of s	special interest	
		5,900 feet	stations provide	
	23	5,500 feet SSE of site	information in	
		,400 feet S of	-1	T
		6,500 fe	control locations.	

February 2022

Page 47 of 64 Rev. 19		Analyses	2			Gross beta analysis on each weekly sample. Gamma spectrometry shall be done when gross beta exceeds ten times the yearly mean of control station value.
A-1	Peach Bottom Atomic Power Station cal Environmental Monitoring Program	Collection Method and Discussion				Approximately 1 cfm continuous flow through glass fiber filter which is collected weekly. These stations provide for coverage
TABLE VII.A-1	ODCM - Peach Bottom Atomic Power St Radiological Environmental Monitoring	Distance and Direction from PBAPS Vents	19,300 feet SW of site 21,500 feet WSW of site 26,400 feet W of site 21,000 feet WNW of site 21,800 feet NW of site 30,400 feet NW of site 21,500 feet NW of site	26,200 feet NNE of site 24,400 feet E of site 67,100 feet E of site 58,200 feet ESE of site 3,900 feet SSE of site 23,800 feet SSE of site 22,700 feet SSE of site 52,200 feet WNW of site 124,000 feet WNW of site 3,100 feet WNW of site		1,500 feet SE of site 2,500 feet NW of site 4,700 feet SSE of site 19,300 feet SW of site 162,400 feet NE of site
		Station Code	3A 50 50 40 80 80 80 80 80 80 80 80 80 80 80 80 80	111440194 19246 С С		12 1B 1C 3A 5H2 C
		Pathway St Co		Distant and Special Interest	II. <u>Airborne</u>	Particulates

Page 47 of 64 Rev. 19

February 2022

_			TABLE VII.A-1	.A-1	Page 48 of 64 Rev. 19
			ODCM - Peach Bottom Atomic Power St Radiological Environmental Monitoring	each Bottom Atomic Power Station al Environmental Monitoring Program	
Pathway	ау	Station Code	Distance and Direction from PBAPS Vents	Collection Method and Discussion	Analyses
				of the highest annual average ground level D/Q near the site boundary, the community with the highest annual average D/Q and a control location.	Gross beta analysis done ≥24 hr after sampling to allow for Radon and Thoron daughter decay.
					Gamma Spec on quarterly composite by location.
	Iodine	12 16 3A 5H2 C	1,500 feet SE of site 2,500 feet NW of site 4,700 feet SSE of site 19,300 feet SW of site 162,400 feet NE of site	A TEDA impregnated flow-through cartridge is connected to air sampler and is collected weekly at site filter change.	Iodine 131 weekly
III.	Waterborne				
	Surface	1LL C 1MM	1,200 feet ENE of site 5,500 feet SE of site	Sample collected from a continuous water sampler, monthly. In event	Gamma isotopic analysis monthly; H-3 on quarterly
February	ary 2022				

			TABLE VII.A-1	A-1	Page 49 of 64 Rev. 19
			ODCM - Peach Bottom Atomic Power St Radiological Environmental Monitoring	mic Power Station L Monitoring Program	
Pathway	Ā	Station Code	Distance and Direction from PBAPS Vents	Collection Method and Discussion	Analyses
				<pre>sampler is inoperable, grab samples will be collected each calendar day until sampler returned to service.</pre>	composite
	Drinking	4L 61 C 13B	45,900 feet SE of site 30,500 feet NW of site 13,300 feet ESE of site	Sample collected from a continuous water sampler monthly. In event sampler is inoperable, weekly grab samples will be collected until sampler returned to service.	Gross beta and gamma isotopic monthly, H-3 on quarterly composite
. VI	Sediment Ingestion	4 J	7,400 feet SE of site	A sediment sample is taken down stream of discharge semi-annually.	Gamma isotopic analysis each sample
	Milk	ひ ひ と ら よ ら よ ろ え	32,600 feet W of site 5,100 feet W of site 4,900 feet SW of site 19,100 feet SE of site 9,200 feet NW of site	Sample of fresh milk is collected from each farm biweekly when cows are on pasture	I-131 analyses on each sample Gamma isotopic analysis or Cs-134, Cs-137 by

February 2022

_

			ion	analyses ons.	and
rade Jo Or Of Ive.		Analyses	chemical separation quarterly	Gamma isotopic ana on edible portions	Gamma isotopic ar I-131 analysis
.A-1	each Bottom Atomic Power Station al Environmental Monitoring Program	Collection Method and Discussion	(April through October), monthly at other times.	Two species of recreationally important fish (predator and bottom feeder) sampled in season or semiannually if not seasonal.	Samples of three (3) different kinds of broad leaf vegetation monthly when available if milk sampling is not performed
TABLE VII.A-1	ODCM - Peach Bottom Atomic Power Station Radiological Environmental Monitoring Program	Distance and Direction from PBAPS Vents		6,000-10,000 feet SE of site 50,000-70,000 feet NNW of site	4,700 feet SSE of site 51,900 feet NE of site
		Station Code		4 6 4 C	1 C 2 2 C
		Pathway		Гish	Food Products

C = Control Location

.

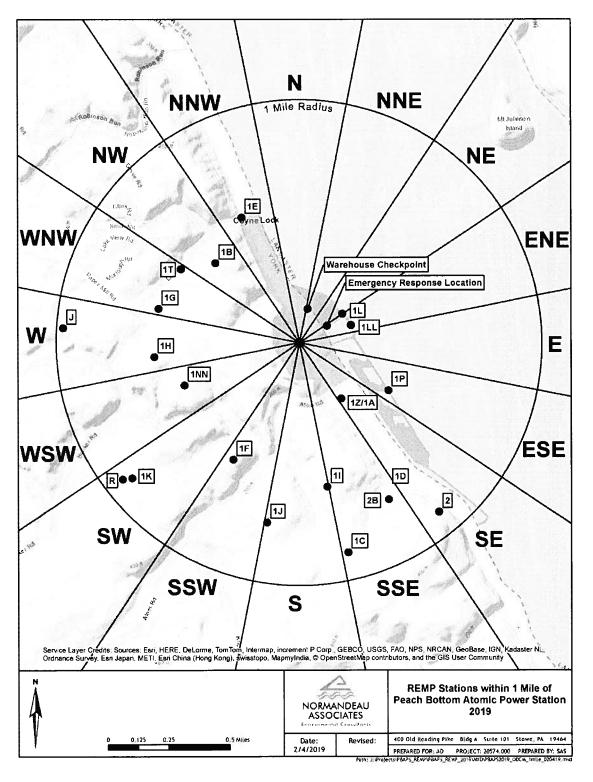


FIGURE VII.A.1 ENVIRONMENTAL SAMPLING STATIONS AT SITE BOUNDARY AREA TO PEACH BOTTOM

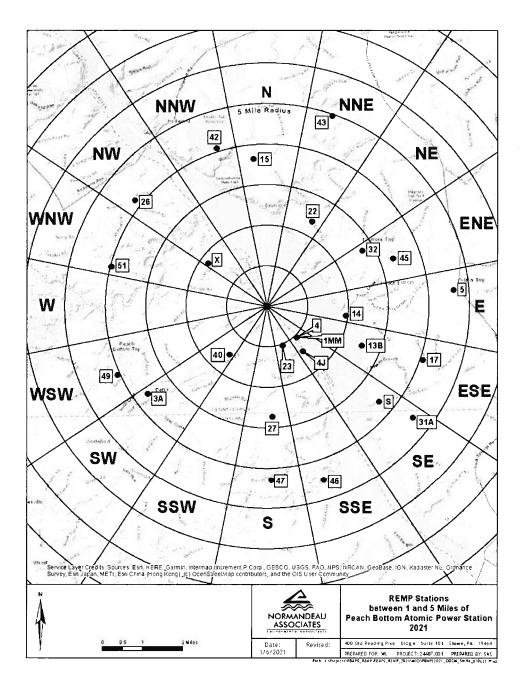


FIGURE VII.A.2 ENVIRONMENTAL SAMPLING STATIONS AT INTERMEDIATE DISTANCES FROM PEACH BOTTOM SITE

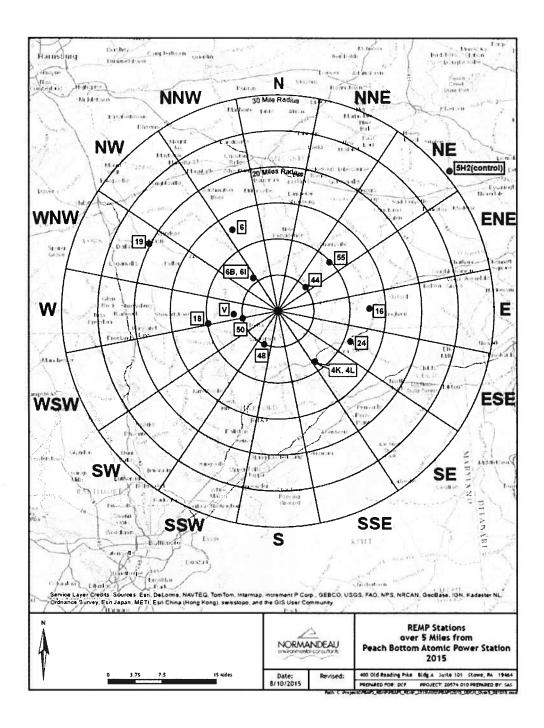


FIGURE VII.A.3 ENVIRONMENTAL SAMPLING STATIONS AT REMOTE DISTANCES FROM PEACH BOTTOM SITE

Page 54 of 64 Rev. 19

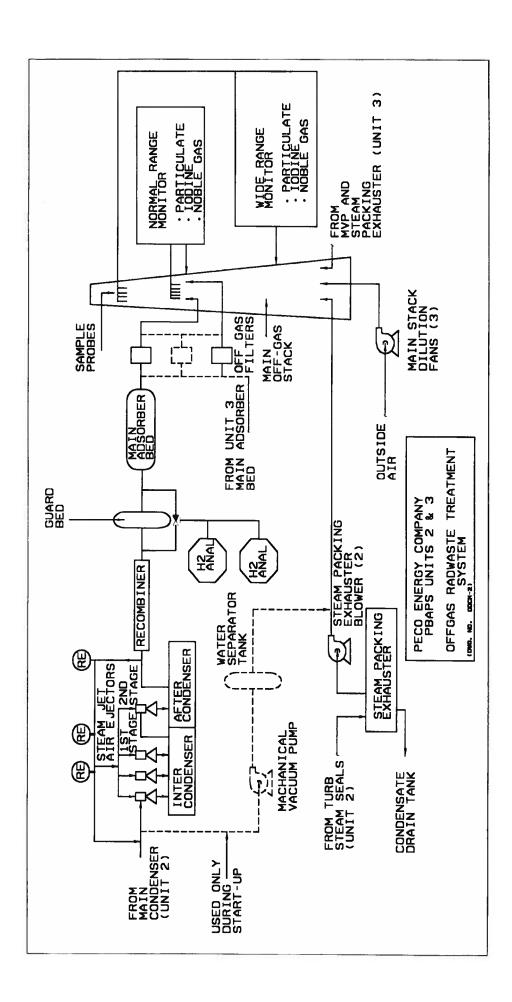
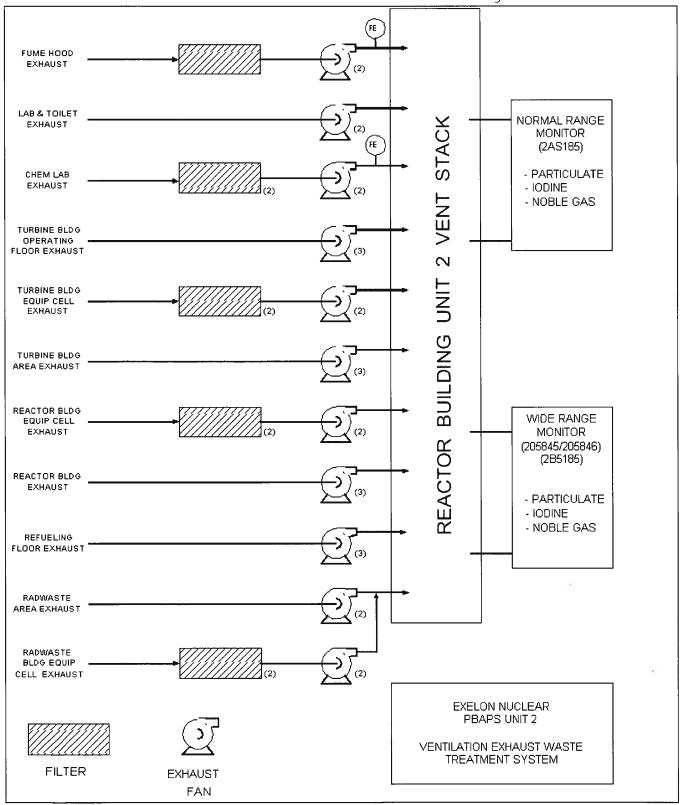



Figure 1

February 2022

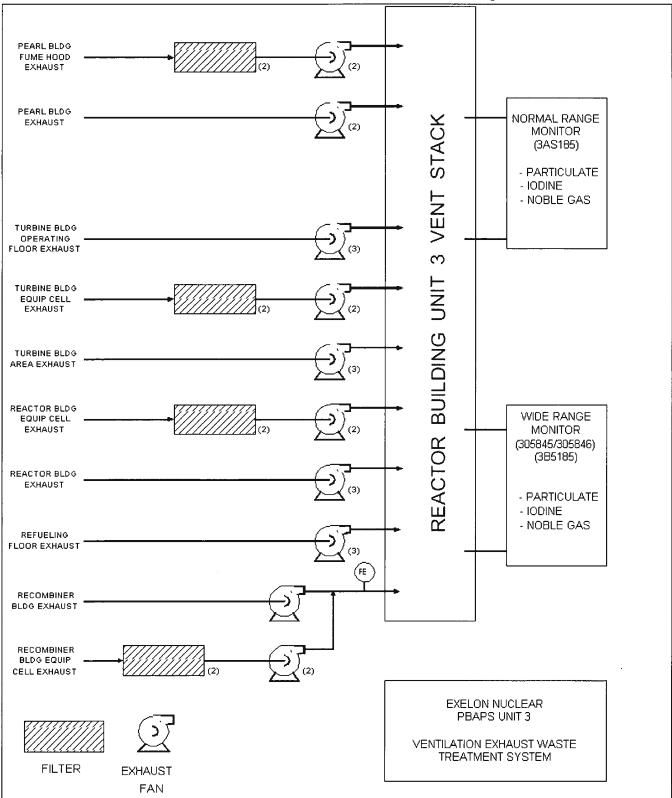


Figure 3

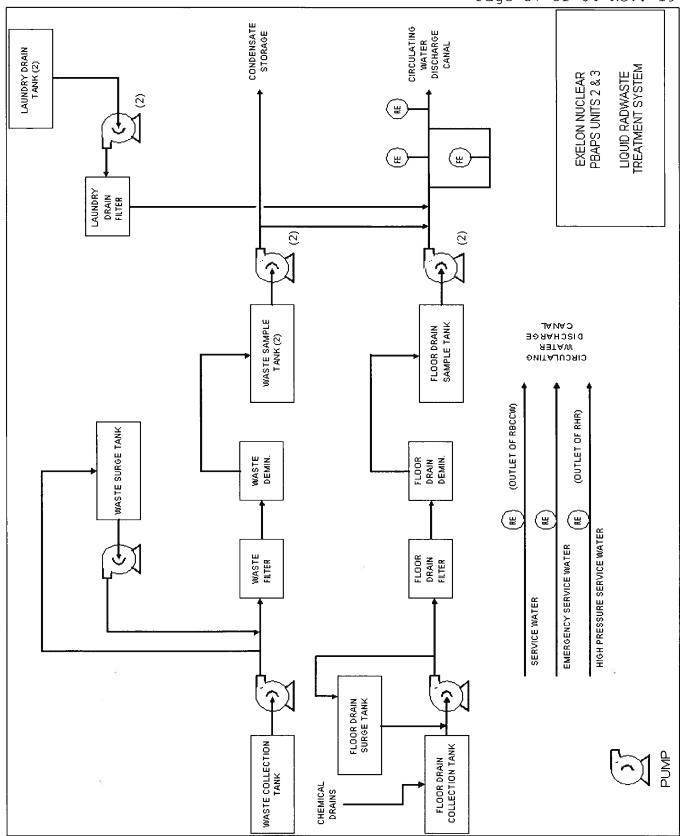


Figure 4

1

.

VIII. Bases

Liquid Effluent Release Flow Rate Determination

Non-gamma emitting radionuclides (H-3, Fe-55, Sr-89/90) are not detected by the effluent monitor and, therefore, are not directly included in the release flow rate determination. While tritium accounts for nearly all the activity released, it is not a significant contributor when determining the permissible flow rate. Examining releases over the years 2004 - 2006, the average diluted H-3 contribution to its limiting concentration in liquid effluents was 0.03%. This contribution is not expected to change significantly over time, since the concentration of H-3 in effluents can be expected to remain fairly consistent in effluent releases regardless of fuel conditions, activation product releases, and waste processing.

Based on relative abundances, other non-gamma emitting radionuclides only contributed up to nearly 3 % of the concentration limit. It is reasonable to assume that the abundances of these non-gamma will remain the same relative to other fission and/or activation products under varying conditions. Therefore, under conditions of elevated effluent radionuclide levels, the gamma-emitting radionuclides can be expected to be the main contributors to limiting conditions on liquid effluent concentrations. The maximum permissible release flow rate determination methodology presented in III.A offers an additional factor of conservatism of 30 to 50 which is more than adequate to account for the non-gamma emitting radionuclides.

Site Specific Data

NOTE 1

Liquid dose factors, $A_{i\tau}$, for section III.B were developed using the following site specific data. The liquid pathways involved are drinking water and fish.

 $A_{it} = (U_w / D_w + U_F x B F_i) k_0 x D F_i x R C x e^{-24\lambda i}$

- U_w = liters per year; maximum age group usage of drinking water (Reg. Guide 1.109, Table E-5)
- D_w = 5.4; average annual dilution at Conowingo
 intake
- U_F = kg per year; maximum age group usage of fish (Reg. Guide 1.109, Table E-5)

- BF_i = bioaccumulation factor for nuclide, i, in freshwater fish. Reg. Guide 1.109, Table A-1, except P-32 which uses a value of 3.0 x 10³ pCi/kg per pCi/liter.
- $k_0 = 1.14 \times 10^5 = (10^6 \text{ pCi/}\mu\text{Ci} \times 10^3 \text{ ml/}1) / 8760$ hr/yr) units conversion factor.
- DF_i = dose conversion factor for nuclide, i, for the age group in total body or organ, as applicable. Reg. Guide 1.109, Table E-11, except P-32 bone which uses a value as indicated below.

3.0 x 10⁻⁵ mrem/pCi

- RC = 1.16; reconcentration from PBAPS discharge
 back through PBAPS intake.
- λ_i = decay constant for nuclide i, hr⁻¹

The data for D_W and RC were derived from data published in Peach Bottom Atomic Power Station Units 2 and 3 (Docket Nos. 50-277 and 50-278) <u>Radioactive Effluent</u> <u>Dose Assessment, Enclosure A</u>, September 30, 1976. All other data except P-32 BF and DF were used as given in Reg. Guide 1.109, Revision 1, October 1977. The P-32 BF and DF were used in accordance with information supplied in Branagan, E.F., Nichols, C.R., and Willis, C.A., "The Importance of P-32 in Nuclear Reactor Liquid Effluents", NRC, 6/82. The teen and child dose factors were derived by the ratio of the adult bone dose factors in Reg. Guide 1.109 and Branagan, et al.

NOTE 2

To develop constant R for the ingestion pathway in section IV.C, the following site specific data were used:

$$R_{i}^{C}\left(D/Q\right) = K'\frac{Q_{F}\left(U_{ap}\right)}{\lambda_{i}+\lambda_{W}}F_{m}\left(r\right)\left(DFL_{i}\right)\left[\frac{f_{p}f_{s}}{Y_{p}} + \frac{\left(1-f_{p}f_{s}\right)e^{-\lambda_{i}t_{h}}}{Y_{s}}\right]e^{-\lambda_{i}t_{f}}$$

where:

- K = 10⁶ pCi/ μ Ci; unit conversion factor
- Q_F = 50 kg/day; cow's consumption rate
- U_{ap} = 330 1/yr; yearly milk consumption by an infant
- λ_i = radioactive decay constant for nuclide of interest, sec⁻¹ (e.g. 9.97 x 10⁻⁷ sec⁻¹ for I-131)
- $\lambda_{W} = 5.73 \times 10^{-7} \text{ sec}^{-1}$; decay constant for removal of activity in leaf and plant surfaces
- F_m = stable element transfer coefficient for nuclide of interest, day/liter (e.g. 6.0 x 10⁻³ day/liter for I-131)
- r = fraction of deposited nuclide retained in cow's feed grass, 1.0 for radioiodine; 0.2 for particulates
- DFL; = ingestion dose factor in infant for nuclide of interest, mrem/pCi (e.g. 1.39 x 10⁻² mrem/pCi for I-131)
- f_p = 0.6; the fraction of the year the cow is on pasture (average of all farms)
- f_s = 0.487; the fraction of cow feed that is pasture grass while the cow is on pasture (average of all farms)
- Y_p = 0.7 kg/m²; the agricultural productivity of pasture feed grass
- $Y_s = 2.0 \text{ kg/m}^2$; the agricultural productivity of stored feed

- t_f = 1.73 x 10⁵ sec (2 days); the transport time from pasture, to cow, to milk, to receptor
- $t_h = 7.78 \times 10^6 \text{ sec } (90 \text{ days});$ the transport time from pasture, to harvest, to cow, to milk, to receptor

NOTE 3

To develop constant R for tritium for the ingestion pathway in section IV.C, the following site specific data were used:

The concentration of tritium in milk is based on the airborne concentration rather than the deposition. The following additional constants and formula are used:

 $R_{H-3}^{C}(\chi/Q) = K'K'''F_{m}Q_{F}U_{ap}(DFL_{i})[0.75(0.5/H)]$

where:

- $K''' = 10^3 \text{ gm/kg}$; a constant of unit conversion
- $H = 14.61 \text{ gm/m}^3$; absolute humidity of the atmosphere
- 0.75 = the fraction of total feed that is water
- 0.5 = the ratio of the specific activity of the feed grass water to the atmospheric water

NOTE 4

To develop constant R for C-14 for the ingestion pathway in section IV.C, the following site specific data were used:

$R_{C-14}^{Milk} = K'K''' p F_m Q_F U_{ap} DFL_{C-14} [0.11/0.16]$

where: p = the ratio of the total annual release time (for C-14 atmospheric releases) to the total annual time during photosynthesis occurs. 0.11 = the fraction of total plant mass that is natural carbon. 0.16 = the concentration of natural carbon in the atmosphere, in g/m³.

February 2022

Page 62 of 64 Rev. 19 The pathway is the grass-cow-milk ingestion pathway. These data were derived from data published in Peach Bottom Atomic Power Station Units 2 and 3 (Docket Nos. 50-277 and 50-278) <u>Radioactive Effluent Dose Assessment,</u> <u>Enclosure A</u>, September 30, 1976. All other data were used as given in Reg. Guide 1.109, Revision 1, October 1977.

ODCMS 4.8.B.2.1, Liquid Pathway Dose Calculations

The equations for calculating the doses due to the actual release rates of radioactive materials in liquid effluents were developed from the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977 and NUREG-0133 "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants", October 1978.

ODCMS 4.8.C.1.1 and 4.8.C.1.2

Dose Rate Noble Gases

The equations for calculating the dose rate due to the actual release rates of radioactive noble gases in gaseous effluents were developed from the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977, NUREG-0133 "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants", August 1978, and the atmospheric dispersion model presented in Information Requested in Enclosure 2 to letter from George Lear to E. G. Bauer dated February 17, 1976, September 30, 1976. The specified equations provide for determining the dose rates in areas at and beyond the SITE BOUNDARY based upon the historical average atmospheric conditions.

The dose rate due to noble gas release as calculated by the Gross Release Method is much more conservative than the dose calculated by the Isotopic Analysis Method. Assuming the release rates given in <u>Radioactive Effluent</u> <u>Dose Assessment</u>, September 30, 1976, the values calculated by the Gross Release Method for total body dose rate and skin dose rate are 6.0 times and 5.7 times, respectively, the values calculated by the Isotopic Analysis Method.

Page 63 of 64 Rev. 19

Dose Rate I-131, I-133, Tritium and Radioactive Material in Particulate Form.

The model Technical Specification LCO of NUREG-0133 for all radionuclides and radioactive materials in particulate form and radionuclides other than noble gases requires that the instantaneous dose rate be less than the equivalent of 1500 mrem per year.

The release data from 1994 to 1996 were evaluated and the critical organs were determined to be the child thyroid or teenager lung. The child thyroid dose rate is limiting when iodine releases exceed 10 percent of the total release rates. The teenager lung dose rate is limiting when iodine is either not present or a small fraction of the total release.

Because of good fuel performance the amount of I-131 released has decreased. The thyroid may not be the critical organ. When it is not clear which organ dose is limiting, doses for the child thyroid and teenage lung are calculated.

ODCMS 4.8.C.2.1

Dose Noble Gases

The equations for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents were developed from the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977, NUREG-0133 "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants", August 1978, and the atmospheric dispersion model presented in Information Requested in Enclosure 2 to letter from George Lear to E. G. Bauer dated February 17, 1976, September 30, 1976. The specified equations provide for determining the air doses in areas at and beyond the SITE BOUNDARY based upon the historical average atmospheric conditions.

Page 64 of 64 Rev. 19 The dose due to noble gas releases as calculated by the Gross Release Method is much more conservative than the dose calculated by the Isotopic Analysis Method. Assuming the releases rates given in <u>Radioactive</u> <u>Effluent Dose Assessment</u>, September 30, 1976, the values calculated by the Gross Release Method for total body dose rate and skin dose rate are 4.3 times and 7.2 times, respectively, the values calculated by the Isotopic Analysis Method.

ODCMS 4.8.C.3.1

Dose, Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form

The equation for calculating the doses due to the actual release of radioiodines, radioactive material in particulate form, and radionuclides other than noble gases with half-lives greater than 8 days were developed using the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977, NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants", October 1978, and the atmospheric dispersion model presented in Information Requested in Enclosure 2 to Letter from George Lear to E. G. Bauer dated February 17, 1976, September 30, 1976. These equations provide for determining the actual doses based upon the historical average atmospheric conditions.

Compliance with the 10 CFR 50 limits for radioiodines, radioactive materials in particulate form and radionuclides other than noble gases with half lives greater than eight days is to be determined by calculating the infant thyroid, infant liver and infant bone dose. These organs were determined to be the critical organs based on the release data from 1994 to 1996.

Because of a decrease in the amount of I-131 released, the thyroid may not be the critical organ. The isotopic analysis method is used to calculate dose to the infant thyroid, infant liver and infant bone.

APPENDIX A

RADIOACTIVE EFFLUENTS CONTROLS PROGRAM

CONTAINING

OFFSITE DOSE CALCULATION MANUAL SPECIFICATIONS (ODCMS) AND BASES

FOR

PEACH BOTTOM ATOMIC POWER STATION

UNITS 2 AND 3

REVISION 17

RADIOACTIVE EFFLUENTS CONTROLS PROGRAM

TABLE OF CONTENTS

3.8.A	Definitions ODCM 3.8.A-1
3.8.B	Liquid Radwaste Effluents ODCM 3.8.B-1
3.8.C	Gaseous Effluents ODCM 3.8.C-1
3.8.D	40 CFR 190 and 10 CFR 72.104 ODCM 3.8.D-
1	
3.8.E	Radiological Environmental Monitoring ODCM 3.8.E-1
3.10	Reporting Requirements ODCM 3.10-1
в 3.8	ODCM Specifications Bases ODCM B 3.8-
1	

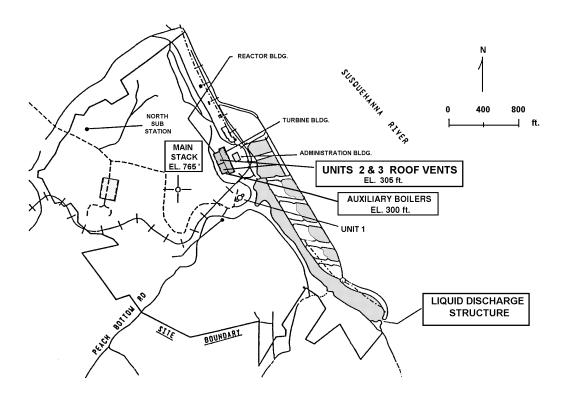
—

ODCMS 3.8.A Definitions -----NOTE------The defined terms of this section appear in capitalized type and are applicable throughout these Offsite Dose Calculation Manual Specifications and Bases. _____ Definition Term FUNCTIONAL TESTS A FUNCTIONAL TEST is the manual operation or initiation of a system, subsystem, or component to verify that it functions within design tolerances (e.g., the manual start of a core spray pump to verify that it runs and that it pumps the required volume of water). OPERABLE - OPERABILITY A system, subsystem, division, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified safety function(s) and all necessary attendant instrumentation, controls, normal and emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, division, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s). GASEOUS RADWASTE Any system designed and installed to reduce radioactive gaseous effluents by collecting TREATMENT SYSTEM primary coolant system off gases from the main condenser evacuation system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment. INSTRUMENT CALIBRATION AN INSTRUMENT CALIBRATION means the adjustment of an instrument signal output so that it corresponds, within acceptable range, and accuracy, to a known value(s) of the parameter, which the instrument monitors. The INSTRUMENT CALIBRATION shall encompass the entire instrument including the sensors and alarm, interlock and/or trip functions and shall include the INSTRUMENT FUNCTIONAL TEST. The known value of the parameter shall be injected into the instrument as close to the primary sensor as practicable.

February 2022

Revision 17

An INSTRUMENT CHECK is a qualitative INSTRUMENT CHECK determination of acceptable FUNCTIONALITY by observation of instrument behavior during operation. This determination shall include, where possible, comparison of the instrument with other independent instruments measuring the same variable.


An INSTRUMENT FUNCTIONAL TEST means the INSTRUMENT FUNCTIONAL injection of a simulated signal into the TEST instrument as close to the primary sensor as practicable to verify the FUNCTIONALITY including alarm and/or trip functions and channel failure trips.

- MEMBERS OF THE PUBLIC MEMBERS OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the utility, its contractors, or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.
- OFFSITE DOSE Contains the current methodology and parameters used in the calculation of offsite CALCULATION MANUAL doses resulting from radioactive gaseous and liquid effluents in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program.
- An attribute of SSCs that is not controlled by FUNCTIONAL-FUNCTIONALITY TS. An SSC is functional or has functionality when it is capable of performing its specified function, as set forth in the CLB. Functionality does not apply to specified safety functions, but does apply to the ability of non-TS SSCs to perform other specified functions that have a necessary support function.

PURGE - PURGING PURGE or PURGING is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

SITE BOUNDARY That line beyond which the land is not owned, leased, or otherwise controlled by licensee as defined in Figure 3.8.A.1.

- SOURCE CHECK A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a source of increased radioactivity.
- A GRAB SAMPLE is a sampling technique in which a GRAB SAMPLE single sample or measurement is taken at a specific time. It may include the use of installed available instrumentation that, although potentially inoperable due to failed transmitter, remote indication, recording or alarm function, the component still provides a valid process measurement at a specific point in time.

SITE BOUNDARY (including gaseous and liquid effluent release points)

PBAPS Units 2 and 3 ODCM 3.8.A-3

3.8.B Liquid Radwaste Effluents

- ODCMS 3.8.B.1 The concentration of radioactive material released to areas at or beyond the SITE BOUNDARY shall be limited to:
 - a. 10 times the concentration specified in 10 CFR 20 Appendix B, Table 2, Column 2 for radionuclides other than noble gases; and
 - b. 2 X $10^{-4}\mu\text{Ci}/\text{ml}$ total activity concentration for all dissolved or entrained noble gases.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

	CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
Α.	Concentration of radioactive material released to areas at or beyond the SITE BOUNDARY exceeding limits.	A.1 Initiate actions to decrease the release rate of radioactive materials to restore concentration to within limits.	Immediately
		<u>OR</u> A.2 Initiate actions to increase the dilution flow rate to restore concentration within limits. <u>OR</u>	Immediately Immediately
		A.3 Initiate actions to decrease the release rate of radioactive materials and increase the dilution flow rate to restore concentration within	

PBAPS Units 2 and 3 ODCM 3.8.B-1

Revision 17

ODCMS REQUIREMENTS

	ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.B.1.1 Take a sample of each batch of liquid effluent and analyze for the concentration of each significant gamma energy peak. Base the release rate on the circulating water flow rate at the time of discharge.	Prior to each release
ODCMS	4.8.B.1.2 Record radioactive concentrations and volume before dilution of each batch of liquid effluent released, the average dilution flow, and length of time over which each discharge occurred.	During each release
ODCMS	4.8.B.1.3 Perform radioactive liquid waste sampling and activity analysis.	In accordance with Table 4.8.B.1

Liquid Radwaste Effluents 3.8.B.1

February 2022

Table 4.8.B.1 (Page 1 of 2) Radioactive Liquid Waste Sampling and Analysis

SAMPLE TYPE	SAMPLE FREQUENCY	SAMPLE ANALYSIS	SAMPLE LOWER LIMIT OF DETECTION (LLD) (a),(d),(e)
Waste Tank to be released	Each batch (b)	Quantitative Analysis of Identifiable Gamma Emitters	5 X 10 ⁻⁷ µCi/ml
		I-131	1 X $10^{-6}\mu \text{Ci/ml}$
Proportional Composite of	31 days (c)	Fe-55	1 X $10^{-6}\mu \text{Ci/ml}$
Batches		Tritium	1 X 10 ⁻⁵ μ Ci/ml
		Gross Alpha	$1 \times 10^{-7} \mu \text{Ci/ml}$
Proportional Composite of	31 days (c)	Sr-89	5 X $10^{-8}\mu \text{Ci/ml}$
Batches		Sr-90	5 X $10^{-8}\mu \text{Ci/ml}$
One Batch	31 days	Dissolved noble gases	1 X $10^{-5}\mu \text{Ci/ml}$

- (a) The Sample Lower Limit of Detection is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement. The values for the lower limit of detection are based on a 95% confidence level.
- (b) A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analysis, each batch shall be isolated and thoroughly mixed to assure representative sampling.
- (c) A composite sample is one in which the quantity of the sample is proportional to the quantity of liquid waste discharged and in which the method of sampling results in a sample representative of the liquids released.

Table 4.8.B.1 (Page 2 of 2) Radioactive Liquid Waste Sampling and Analysis

- The principal gamma emitters for which the minimum detectable (d) level specification will apply are exclusively the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported. Nuclides which are below the sample detectable limit for the analyses should not be reported as being present at the sample detectable limit level. When unusual circumstances result in sample detectable limits higher than required, the reasons shall be documented in the Radioactive Effluent Release Report. The values listed are believed to be attainable.
- (e) Certain mixtures of radionuclides may cause interference in the measurement of individual radionuclides at their detectable limit especially if other radionuclides are at much higher concentrations. Under these circumstances use of known ratios of radionuclides will be appropriate to calculate the levels of such radionuclides.

3.8.B Liquid Radwaste Effluents

- The dose or dose commitment to a MEMBER OF THE PUBLIC ODCMS 3.8.B.2 from radioactive material in liquid effluent releases from the two reactors at the site to the areas at or beyond the SITE BOUNDARY shall be limited to:
 - a. \leq 3.0 mrem to the total body and \leq 10.0 mrem to any organ during any calendar quarter; and
 - b. \leq 6.0 mrem to the total body and \leq 20.0 mrem to any organ during any calendar year.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Calculated dose from the release of radioactive materials in liquid effluents exceeds required limits.	A.1 Submit a Special report to the NRC that will identify cause(s) for exceeding limits, action(s) taken to reduce releases of radioactive materials in liquid effluents, corrective action(s) taken to assure subsequent releases are within limits, results of radiological analyses of the drinking water source, and the radiological impact on the potentially affected drinking water supplies with regard to 40 CFR 141, Safe Drinking Water Act.	31 days

PBAPS Units 2 and 3 ODCM 3.8.B-5

ODCMS REQUIREMENTS

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.B.2.1 Determine cumulative dose contributions in accordance with the methodology and parameters in the ODCM.	31 days

3.8.B Liquid Radwaste Effluents

- ODCMS 3.8.B.3 The following conditions shall be met:
 - Dilution water flow rates necessary to satisfy a. requirements of ODCMS 3.8.B.1 shall be maintained;
 - b. The gross activity monitor and the flow monitor on the waste effluent line shall be FUNCTIONAL; and
 - с. The liquid effluent control monitor shall be set in accordance with methodology and parameters in the ODCM to alarm and automatically close the waste discharge valve prior to exceeding limits in ODCMS 3.8.B.1; and
 - The service water, emergency service water, and d. high pressure service water effluent line radiation monitors shall be FUNCTIONAL.

During release of radioactive wastes or with flow APPLICABILITY: present in the system.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Gross activity monitor on the waste activity line inoperable.	A.1 Initiate action to restore monitor to FUNCTIONAL status.	Immediately
	A.2 Analyze two independent samples of tank's contents.	Prior to release
	AND	
	A.3 Perform independent verification of the release rate calculations and discharge line valve line-up using at least two technically qualified members of the facility staff.	Prior to release

(Continued)

PBAPS Units 2 and 3 ODCM 3.8.B-7

COMPENSATORY MEASURES (Continued)

	CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
в.	Flow monitor on the waste effluent line inoperable.	 B.1 Initiate action to restore monitor to FUNCTIONAL status. <u>AND</u> B.2NOTE Pump performance curves may be used to estimate flow. Estimate waste effluent line flow rate. 	Immediately 4 hours <u>AND</u> Once per 4 hours thereafter
c.	Required Compensatory Measures and associated Completion Time of Condition A or B not met. <u>OR</u> Dilution water flow rates not satisfying requirements of ODCMS 3.8.B.1.	C.1 Suspend release of radioactive effluents via this pathway.	Immediately
D.	Radiation monitor on service water, emergency service water, or high pressure service water effluent line inoperable.	D.1 Collect grab samples and analyze for radioactivity at the lower limit of detection defined in Table 4.8.B.1.	At least once per 12 hours (Continued

COMPENSATORY MEASURES (Continued)

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
E. Liquid radwaste effluents radiation monitors inoperable for > 30 days.	E.1 Explain why the inoperability was not corrected in a timely manner in the next Annual Radioactive Effluent Release Report.	In accordance with Technical Specification 5.6.3

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.B.3.1	Perform INSTRUMENT CHECK of liquid radwaste effluents radiation monitor.	24 hours during release
ODCMS	4.8.B.3.2	Perform INSTRUMENT CHECK of liquid effluent flow monitor.	24 hours during release
ODCMS	4.8.B.3.3	Perform INSTRUMENT FUNCTIONAL TEST of liquid radwaste effluents radiation monitor, including FUNCTIONALITY demonstration of the radwaste discharge automatic isolation valve and control room annunciation in response to alarm/trip setpoint being exceeded and an instrument INOP failure.	31 days
ODCMS	4.8.B.3.4	Perform SOURCE CHECK of liquid radwaste effluents radiation monitor.	92 days
ODCMS	4.8.B.3.5	Perform INSTRUMENT CALIBRATION of the liquid radwaste effluents radiation monitor with a known radiation source positioned in a reproducible geometry with respect to the sensor.	12 months (Continued)

ODCMS REQUIREMENTS (Continued)

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.B.3.6	Perform INSTRUMENT CALIBRATION of the liquid effluents flow monitor.	12 months
ODCMS	4.8.B.3.7	Perform INSTRUMENT CHECK of service water effluent line radiation monitor.	24 hours during release
ODCMS	4.8.B.3.8	Perform INSTRUMENT FUNCTIONAL TEST of service water effluent line radiation monitor, including FUNCTIONALITY demonstration of the control room annunciation in response to alarm/trip setpoint being exceeded and an instrument INOP failure.	92 days
ODCMS	4.8.B.3.9	Perform SOURCE CHECK of service water effluent line radiation monitor.	31 days
ODCMS	4.8.B.3.10	Perform INSTRUMENT CALIBRATION of the service water effluent line radiation monitor with a known radiation source.	18 months
ODCMS	4.8.B.3.11	Perform INSTRUMENT CHECK of emergency service water effluent line radiation monitor.	24 hours during release
ODCMS	4.8.B.3.12	Perform INSTRUMENT FUNCTIONAL TEST of emergency service water effluent line radiation monitor, including FUNCTIONALITY demonstration of the control room annunciation in response to alarm/trip setpoint being exceeded and an instrument INOP failure.	92 days (Continued)

ODCMS REQUIREMENTS (Continued)

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.B.3.13 Perform SOURCE CHECK of emergency service water effluent line radiation monitor.	31 days
ODCMS 4.8.B.3.14 Perform INSTRUMENT CALIBRATION of the emergency service water effluent line radiation monitor with a known radiation source.	18 months
ODCMS 4.8.B.3.15 Perform INSTRUMENT CHECK of high pressure service water effluent line radiation monitor.	24 hours during release
ODCMS 4.8.B.3.16 Perform INSTRUMENT FUNCTIONAL TEST of high pressure service water effluent line radiation monitor, including FUNCTIONALITY demonstration of the control room annunciation in response to alarm/trip setpoint being exceeded and an instrument INOP failure.	92 days
ODCMS 4.8.B.3.17 Perform SOURCE CHECK of high pressure service water effluent line radiation monitor.	31 days
ODCMS 4.8.B.3.18 Perform INSTRUMENT CALIBRATION of the high pressure service water effluent line radiation monitor with a known radiation source.	18 months

- 3.8.B Liquid Radwaste Effluents
- ODCMS 3.8.B.4 Liquid effluent releases shall be processed through one of the radwaste subsystems or combination of subsystems listed below:

a.waste collector filter and demineralizer;

b.floor drain filter and demineralizer;

c.fuel pool filter demineralizer;

d.chemical/oily waste cleanup subsystem;

e.laundry drain filter

APPLICABILITY: Prior to all liquid effluent release(s) whenever the release(s) would cause the projected dose, when it is averaged over 31 days to exceed 0.12 mrem to the total body or 0.4 mrem to any organ (combined total from the two reactors at the site).

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Liquid waste discharged without required processing.	A.1 Submit a Special Report to the NRC that includes, an explanation of why liquid radwaste was discharged without required processing, identification of any inoperable equipment or subsystems and the reason for the inoperability, the action taken to restore the inoperable equipment to FUNCTIONAL status, and the action(s) taken.	31 days

PBAPS Units 2 and 3 ODCM 3.8.B-12

	(FREQUENCY	
ODCMS	4.8.B.4.1	Project doses due to liquid effluent releases to areas at and beyond the SITE BOUNDARY in accordance with the methodology and parameters in the ODCM.	31 days
ODCMS	4.8.B.4.2	Demonstrate FUNCTIONALITY of the waste collector filter and demineralizer and the floor drain filter by analyzing the liquid processed through the subsystem and determining it meets the requirements of ODCMS 3.8.B.1.	92 days
ODCMS	4.8.B.4.3	Demonstrate FUNCTIONALITY of the fuel pool filter demineralizer by analyzing the liquid processed through the subsystem and determining it meets the requirements of ODCMS 3.8.B.1.	Prior to release of liquid effluents processed by this subsystem
ODCMS	4.8.B.4.4	Demonstrate FUNCTIONALITY of the chemical/oily waste cleanup subsystem by analyzing the liquid processed through the subsystem and determining it meets the requirements of ODCMS 3.8.B.1.	Prior to release of liquid effluents processed by this subsystem
ODCMS	4.8.B.4.5	Demonstrate FUNCTIONALITY of the laundry drain filter by analyzing the liquid processed through the subsystem and determining it meets the requirements of ODCMS 3.8.B.1.	Prior to release of liquid effluents processed by this subsystem

PBAPS Units 2 and 3 ODCM 3.8.B-13

3.8.C Gaseous Effluents

- The dose rate at or beyond the SITE BOUNDARY due to ODCMS 3.8.C.1 radioactive materials in gaseous effluents released from the two reactors at the site shall be limited to the following:
 - a. For noble gases, \leq 500 mrem per year to the total body and \leq 3000 mrem per year to the skin; and
 - b. For iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days, \leq 1500 mrem per year to any organ.
- APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Dose rates at or beyond the SITE BOUNDARY exceed limits due to radioactive material in gaseous effluents.	A.1 Initiate actions to decrease release rates to comply with limits.	Immediately

ODCMS REQUIREMENTS

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.C.1.1 Verify the dose rate due to noble gases in gaseous effluents is within limits in accordance with methods and procedures of the ODCM.	In accordance with sampling and analysis program specified in Table 4.8.C.1

(continued)

PBAPS Units 2 and 3 ODCM 3.8.C-1

Revision 17

ODCMS REQUIREMENTS (Continued)

		FREQUENCY	
ODCMS	4.8.C.1.2	Obtain representative samples and verify the dose rate due to iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents are within limits in accordance with the methods and procedures of the ODCM.	In accordance with sampling and analysis program specified in Table 4.8.C.1

Gaseous Effluents 3.8.C.1 Table 4.8.C.1 (page 1 of 2) Radioactive Gaseous Waste Sampling and Analysis from Main Stack, Vent Stacks

SAMPLE TYPE	SAMPLE FREQUENCY	SAMPLE ANALYSIS	SAMPLE LOWER LIMIT OF DETECTION (LLD) (a)(d)
Grab Sample	31 days (b)	Quantitative analysis of identifiable gamma emitters	1 X 10 ⁻⁴ µCi/cc(c)
Grab Sample	92 days	Tritium	1 X 10 ⁻⁶ µCi/cc
Charcoal Filters	7 days (c)	I-131	1 X 10 ⁻¹² µCi/cc(c)
Particulate Filters	7 days (c)	Quantitative analysis of identifiable gamma emitters	1 X 10 ⁻¹¹ µCi/cc(c)
		I-131	1 X 10 ⁻¹² µCi/cc(c)
Particulate Filters (composite of weekly filters)	31 days	Gross Alpha	1 X 10 ⁻¹¹ µCi/cc
Particulate Filters	31 days	Sr-89	1 X 10 ⁻¹¹ µCi/cc
(composite of weekly filters)		Sr-90	1 X 10 ⁻¹¹ µCi/cc
Noble Gas Monitor (Main Stack)	Continuously	Noble Gas Gross β or γ	1 X 10 ⁻⁶ µCi/cc
Noble Gas Monitor (Roof Vents)	Continuously	Noble Gas Gross β or γ	1 X 10 ⁻⁶ µCi/cc

PBAPS Units 2 and 3 ODCM 3.8.C-3 Revision 17

Table 4.8.C.1 (page 2 of 2) Radioactive Gaseous Waste Sampling and Analysis from Main Stack, Vent Stacks

- (a) The sample lower limit of detection is defined as an a priori (before the fact) limit representing the capability of measurement system and not as an a posteriori (after the fact) limit for a particular measurement. The values for the lower limit of detection are based on a 95% confidence level.
- Sampling and analysis shall be performed following shutdown, (b) startup or a thermal power change exceeding 15% of rated thermal power within 1 hour from a steady state condition unless (1) analysis shows that the dose equivalent I-131 concentration in the primary coolant has not increased more than a factor of 3, and (2) the noble gas activity monitor (or grab sample) shows that effluent activity has not increased by more than a factor of 3.
- Samples shall be changed at least once per 7 days and analyses (C) shall be completed within 48 hours after changing. Sampling shall also be performed at least once per 24 hours for at least 3 days following each shutdown, startup or thermal power change exceeding 15% of rated thermal power in 1 hour and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLD may be increased by a factor of 10. This requirement does not apply if (1) analysis has shown that the dose equivalent I-131 concentration in the primary coolant has not increased more than a factor of 3, and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.
- (d) Certain mixtures of radionuclides may cause interference in the measurement of individual radionuclides at their detectable limit especially if other radionuclides are at much higher concentrations. Under these circumstances use of known ratios of radionuclides will be appropriate to calculate the levels of such radionuclides. Nuclides which are below the sample detectable limit for the analyses should not be reported as being present at the sample detectable limit level.

3.8.C Gaseous Effluents

- ODCMS 3.8.C.2 The air dose at or beyond the SITE BOUNDARY due to noble gases in gaseous effluents released from the two reactors at the site shall be limited to the following:
 - a. For gamma radiation, ≤ 10 mrad during any calendar quarter;
 - b. For beta radiation, \leq 20 mrad during any calendar quarter;
 - c. For gamma radiation, ≤ 20 mrad during any calendar year; and
 - d. For beta radiation, \leq 40 mrad during any calendar year.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Calculated air dose at or beyond the SITE BOUNDARY from radioactive noble gases in gaseous effluents exceeds limits.	A.1 Submit a Special Report to the NRC that identifies causes for exceeding limits, corrective actions taken to reduce the releases, and corrective actions to assure that subsequent releases are within limits.	31 days

PBAPS Units 2 and 3 ODCM 3.8.C-5

ODCMS REQUIREMENTS

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.C.2.1 Determine cumulative dose contributions for noble gases in accordance with the methodology and parameters in the ODCM.	31 days

3.8.C Gaseous Effluents

ODCMS 3.8.C.3 The dose to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY from iodine-131, iodine-133, tritium and all radionuclides in particulate form, with half lives > 8 days, in gaseous effluents released from the two reactors at the site shall be limited to:

 $a. \leq 15$ mrem during any calendar quarter; and

 $b. \leq 30$ mrem during any calendar year.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Calculated dose from the release of iodine-131, iodine-133, tritium and radionuclides in particulate form, with half-lives > 8 days in gaseous effluents exceeds limits.	A.1 Submit a Special Report to the NRC that identifies causes for exceeding limits, corrective actions taken, and proposed corrective actions to assure that subsequent releases are within limits.	31 days

ODCMS REQUIREMENTS

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.C.3.1 Determine cumulative dose contributions for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half lives > 8 days in accordance with the methodology and parameters in the ODCM.	31 days

3.8.C Gaseous Effluents

- ODCMS 3.8.C.4 The following conditions shall be met:
 - a. Main stack dilution flow shall be \geq 10,000 cfm;
 - b. One vent stack noble gas monitor and one main stack noble gas monitor shall be FUNCTIONAL and set to alarm in accordance with the methodology and parameters in the ODCM;
 - c. One vent stack iodine filter and one main stack iodine filter and one vent stack particulate filter and one main stack particulate filter with their respective flow rate monitors shall be FUNCTIONAL; and
 - d. One vent stack flow rate monitor and one main stack flow rate monitor shall be FUNCTIONAL and set to alarm in accordance with the methodology and parameters in the ODCM.

APPLICABILITY: During release of radioactive wastes.

COMPENSATORY MEASURES

-----NOTE-----NOTE-----

Separate condition entry is allowed for each instrument.

_____ _____

		1		
	CONDITION		REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
Α.	One required vent stack noble gas monitor inoperable. One required main stack noble gas monitor inoperable.	AND	Collect two independent grab samples from the affected effluent release pathway. Perform independent verification of the release rate calculations using at least two technically qualified members of the facility staff. 	<pre>8 hours <u>AND</u> Once per 8 hours thereafter <u>OR</u> 4 hours if transient >15% in one hour 24 hours from time of collection</pre>

(continued)

PBAPS Units 2 and 3 ODCM 3.8.C-10

COMPENSATORY MEASURES (Continued)

CONDITION		F	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
в.	One required vent stack iodine filter inoperable. <u>OR</u> One required vent stack particulate filter inoperable. <u>OR</u> One required main stack iodine filter inoperable. <u>OR</u> One required main stack particulate filter inoperable.	AND	<pre>Initiate action to collect samples from the affected effluent release pathway continuously with auxiliary sampling equipment such that each sample period duration is approximately 7 days.</pre>	Immediately 48 hours after end of each sampling period
C.	One required vent stack flow rate monitor inoperable. <u>OR</u> One required main stack flow rate monitor inoperable.	C.1	Estimate flow rate from the affected effluent release pathway.	4 hours <u>AND</u> Once per 4 hours thereafter
D.	Main off-gas stack dilution flow < 10,000 cfm.	D.1	Initiate action to re- establish main off-gas stack flow ≥ 10,000 cfm.	Immediately

(continued)

PBAPS Units 2 and 3 ODCM 3.8.C-11

Revision 17

COMPENSATORY MEASURES (Continued)

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
E. One or more required radioactive gaseous effluent monitoring instrumentation channels inoperable for > 30 days.	E.1 Explain why the inoperability was not corrected in a timely manner in the next Annual Radioactive Effluent Release Report.	In accordance with Technical Specification 5.6.3

ODCMS REQUIREMENTS

	ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.C.4.1 Perform INSTRUMENT CHECK of the stack and main stack noble gas radiation monitors.	vent 24 hours
ODCMS	4.8.C.4.2 Perform INSTRUMENT CHECK of the stack and the main stack flow ra monitors.	
ODCMS	4.8.C.4.3 Section Removed	
ODCMS	4.8.C.4.4 Perform INSTRUMENT FUNCTIONAL TE the vent stack and main stack no gas radiation monitors, includin control room alarm annunciation response to alarm setpoint being exceeded and an instrument downs failure.	ble g in
ODCMS	4.8.C.4.5 Section Removed	

(Continued)

PBAPS Units 2 and 3 ODCM 3.8.C-12 Revision 17

Gaseous Effluents 3.8.C.4

ODCMS REQUIREMENTS (Continued)

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.C.4.6	Perform INSTRUMENT CALIBRATION of the vent stack and main stack noble gas radiation monitors with a known radioactive source positioned in a reproducible geometry with respect to the sensor.	18 months
ODCMS	4.8.C.4.7	Perform INSTRUMENT CALIBRATION of the vent stack and main stack flow rate monitors.	18 months
ODCMS	4.8.C.4.8	Perform INSTRUMENT CALIBRATION of the vent stack and main stack iodine and particulate sample flow rate monitors.	18 months
ODCMS	4.8.C.4.9	Section Removed	
ODCMS	4.8.C.4.10	Perform SOURCE CHECK of vent stack and main stack noble gas radiation monitors.	92 days
ODCMS	4.8.C.4.11	Not Used	

3.8.C Gaseous Effluents

- ODCMS 3.8.C.5 Gaseous effluents shall be processed through the Gaseous Waste Treatment System described below prior to discharge:
 - a. Steam jet air ejector discharge shall be processed through the recombiner, holdup pipe, off-gas filter, and off-gas stack;
 - pump b. Mechanical vacuum and gland steam exhauster discharge shall be processed through the off-gas stack;
 - c. Deleted
 - d. Reactor, turbine, radwaste, and recombiner building atmospheres shall be processed through permanently or temporarily installed equipment in the appropriate building ventilation system and the vent stack, with the exception of the following unmonitored exhausts:
 - Recirculation M-G set and reactor building 1. cooling water equipment rooms;
 - 2. Control room utility and toilet rooms;
 - 3. Cable spread room;
 - 4. Emergency switchgear rooms;
 - 5. 125/250 VDC battery rooms and the 250 VDC battery rooms, and
 - 6. Administration building maintenance decontamination area.
- Prior to all gaseous release(s) whenever the APPLICABILITY: release(s) would cause the projected dose, when it is averaged over 31 days to exceed 0.6 mrem to any organ, 0.4 mrad for gamma radiation, and 0.8 mrad for beta radiation (combined total from the two reactors at the site).

PBAPS Units 2 and 3 ODCM 3.8.C-14

Revision 17

Gaseous Effluents 3.8.C.5

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Gaseous waste discharged without required processing.	A.1 Submit a Special Report to the NRC that explains the reasons gaseous radwaste was discharged without processing, identifies inoperable equipment or subsystems and the reasons for the inoperability, identifies actions taken to restore the inoperable equipment to FUNCTIONAL status, and action(s) taken.	30 days

ODCMS REQUIREMENTS

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.C.5.1	Project doses due to gaseous effluent releases at and beyond the SITE BOUNDARY in accordance with the methodology and parameters in the ODCM.	31 days
ODCMS	4.8.C.5.2	Collect and analyze air samples from each building area with an unmonitored exhaust.	31 days

(continued)

PBAPS Units 2 and 3 ODCM 3.8.C-15

Revision 17

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.C.5.3 Demonstrate FUNCTIONALITY of required gaseous radioactive waste system equipment by analyzing the gaseous waste processed through the required equipment to determine it meets the requirements of ODCMS 3.8.C.1	92 days

3.8.C Gaseous Effluents

- ODCMS 3.8.C.6 PURGING of the primary containment shall be:
 - a. Through the Standby Gas Treatment System whenever primary containment is required to be FUNCTIONAL; and
 - b. Through the Reactor Building Ventilation Exhaust System or the Standby Gas Treatment System whenever primary containment is not required to be FUNCTIONAL.

APPLICABILITY: During PURGING of the primary containment.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Requirement of ODCMS 3.8.C.6 not met.	A.1 Initiate action to suspend PURGING.	Immediately

ODCMS REQUIREMENTS

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.C.6.1	Verify primary containment PURGING is through required effluent release pathway of ODCMS 3.8.C.6.	Prior to PURGING primary containment

3.8.C Gaseous Effluents ODCMS 3.8.C.7 Section Removed

ODCMS	REQUIREMENTS
-------	--------------

	ODCMS	REQUIREMENT	FREQUENCY
ODCMS	4.8.C.7.1 Section	Removed.	
ODCMS	4.8.C.7.2 Section	Removed.	

3.8.D 40 CFR 190 and 10 CFR 72.104

- ODCMS 3.8.D.1 The annual dose equivalent to a real individual who is located beyond the SITE BOUNDARY from all uranium fuel cycle sources within 8 kilometers shall be:
 - a. \leq 25 mrem to the total body;
 - b. \leq 75 mrem to the thyroid.
 - c. \leq 25 mrem to any other critical organ; and
 - d. \leq 3.0 mrem contribution from liquid and gaseous effluents for whole body and critical organ doses.
 - e. \leq 55 mrem contribution from gaseous effluents for thyroid dose.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
 A. Annual cumulative liquid and gaseous effluents dose does not meet ODCMS 3.8.D.1 items d or e. 	<pre>NOTE Calculations shall include direct radiation contributions from reactor units and outside storage tanks A.1 Initiate actions to determine whether the limits in ODCMS 3.8.D.1 items a, b or c have been exceeded.</pre>	Immediately

(continued)

PBAPS Units 2 and 3 ODCM 3.8.D-1

COMPENSATORY MEASURES (Continued)

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
B. Dose limits of ODCMS 3.8.D.1 items a, b or c have been exceeded.	B.1 Submit a Special Report to the NRC that includes the corrective action(s) taken, the schedule for achieving conformance with required limits, estimates of radiation exposure to the real individual for the calendar year, descriptions of the levels of radiation and concentrations of radioactive material involved, and the cause of the exposure level or concentrations.	31 days
	 NOTE	31 days

ODCMS REQUIREMENTS

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.D.1.1	Determine total gas and liquid cumulative dose contributions in accordance with methodology and parameters in the ODCM.	31 days
ODCMS	4.8.D.1.2	Determine the cumulative dose contribution from gas and liquid effluents and the direct radiation from the reactor units and from high and low level radwaste storage in accordance with the methodology and parameters in the ODCM.	92 days

3.8.E Radiological Environmental Monitoring

ODCMS 3.8.E.1 Radiological environmental monitoring samples shall be collected at locations and analyzed as specified in Table 4.8.E.1 and the ODCM.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Milk samples permanently unavailable from one or more of the sample locations required by Table 4.8.E.1.	A.1 Identify locations for obtaining replacement samples and add them to radiological environmental monitoring program. Delete locations from which samples are unavailable.	31 days
	AND A.2 Identify in the AREOR the cause of the unavailability of samples and new locations for obtaining samples and include in the report revised figures and tables for the ODCM reflecting the new locations.	Prior to submittal in next AREOR

(continued)

PBAPS Units 2 and 3 ODCM 3.8.E-1

Revision 17

COMPENSATORY MEASURES (Continued)

CONDITION	CONDITION REQUIRED COMPENSATORY MEASURE	
B. Level of radioactivity as a result of plant effluents in an environmental sampling medium at one or more locations specified in the ODCM exceeds the action levels of Table 3.8.E.1 when averaged over the calendar quarter. OR Level of radioactivity as a result of plant effluents in an environmental sampling medium at one or more locations specified in the ODCM exceeds the action levels of Table 3.8.E.1 when averaged over the calendar quarter and more than one radionuclide from Table 3.8.E.1 is detected and the equation in ODCMS 4.8.E.1.2 is satisfied.	B.1 Submit a Special Report to the NRC which includes an evaluation of any release conditions, environmental factors, or other aspects which caused the action level of Table 3.8.E.1 to be exceeded and the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a MEMBER OF THE PUBLIC is less than the calendar year reporting level of Table 3.8.E.1.	30 days

(continued)

PBAPS Units 2 and 3 ODCM 3.8.E-2

COMPENSATORY MEASURES (Continued)

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
C. Radionuclides other than those in Table 3.8.E.1 detected and the potential annual dose to a MEMBER OF THE PUBLIC is greater than or equal to the calendar year limits of ODCMS 3.8.B.2, or ODCMS 3.8.C.2, or ODCMS 3.8.C.3, or ODCMS 3.8.D.1.	C.1NOTE Only required if the radionuclides detected are the result of plant effluents. 	31 days after end of affected calendar quarter
		(continued)

Revision 17

COMPENSATORY MEASURES	(Continued)
-----------------------	-------------

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
C. (continued)	C.2NOTE Only required if the radionuclides detected are not the result of plant effluents. Describe the condition in the Annual Radiological Environmental Operating Report.	Prior to submittal of next Annual Radiological Environmental Operating Report
D. Requirements of ODCMS 3.8.E.1 not met.	D.1 Prepare and submit, in the Annual Radiological Environmental Operating Report, a description of the reasons for not conducting the radiological environmental monitoring program as required and the actions taken to prevent recurrence.	In accordance with Technical Specification 5.6.3

ODCMS REQUIREMENTS

		ODCMS REQUIREMENT	FREQUENCY
ODCMS	4.8.E.1.1	 Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailabilities, malfunction of automatic sampling equipment or other legitimate reasons. 	
		 If equipment malfunction occurs, an effort shall be made to complete corrective actions prior to the end of the next sampling period. 	
		Collect radiological environmental monitoring samples at the locations and analyze as specified in Table 4.8.E.1 and the ODCM.	In accordance with Table 4.8.E.1
ODCMS	4.8.E.1.2	All radionuclides used in this evaluation shall be averaged on a calendar quarterly basis.	
		Evaluate the concentration of radioactivity as a result of plant effluents in an environmental sampling medium against the following equation:	92 days
		<pre>concentration(1) reporting level(1) +</pre>	
		$\frac{\text{concentration(2)}}{\text{reporting level(2)}} + \dots \ge 1.0$	

PBAPS Units 2 and 3 ODCM 3.8.E-5

Table 3.8.E.1 (page 1 of 1) Reporting Levels for Radioactivity Concentration in Environmental Samples

ANALYSIS	WATER (pCi/l)	AIRBORNE PARTICULATE OR GASES (pCi/m ³)	FISH (pCi/kg, wet)	MILK (pCi/l)	FOOD PRODUCTS (pCi/kg, wet)
н-3	20,000*				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
I-131		0.9		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	

Action Levels

*For drinking water samples. This is 40 CFR part 141 value.

Radiological Environmental Monitoring 3.8.E.1

Table 4.8.E.1 (page 1 of 3)

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF SAMPLES AND SAMPLE LOCATION(a)	SAMPLING AND COLLECTION FREQUENCY (b),(c)	TYPE AND FREQUENCY OF ANALYSIS
1. Direct Radiation	At least 40 routine monitoring stations either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously to be placed as follows: 1) an inner ring of stations in the general area of the SITE BOUNDARY and an outer ring in the 3 to 6 mile range from the site. A station is in each sector of each ring except as dictated by local geography. The balance of the stations are in special interest areas such as population centers, nearby residences, schools and in areas to serve as control stations.	Every 31 days or Every 92 days	Every 31 days (Gamma dose) or Every 92 days (Gamma dose)
 Airborne Radioiodine and Particulates 	 Samples from 5 locations: a. 3 samples from close to the SITE BOUNDARY locations (in different sectors) of the highest calculated annual average ground level D/Q. b. 1 sample from the vicinity of a community having the highest calculated annual average ground level D/Q. c. 1 sample from a control location unlikely to be affected by the plant. 	Continuous sampler operation with sample collection every 7 days or required by dust loading, whichever is more frequent.	Radioiodine canisters: I-131 analysis every 7 days Particulate sampler: (f) gross beta radioactivity analysis following filter change; gamma isotopic analysis of composite (location) 92 days
 Waterborne Surface 	a. 1 sample upstreamb. 1 sample downstream	Composite (b) sample over 31 day period.	Gamma isotopic (d) analysis ever 31 days. Composite for tritium analysis at least every 92 days (continued)

Radiological Environmental Monitoring 3.8.E.1

Table 4.8.E.1 (page 2 of 3) Radiological Environmental Monitoring Program EXPOSURE PATHWAY AND/OR SAMPLE NUMBER OF SAMPLES AND SAMPLE LOCATION SAMPLING AND COLLECTION TYPE AND FREQUENCY OF ANALYSIS FREQUENCY (b), (c) 3.Waterborne (cont'd) b. Drinking 1 sample of each of 1 to 3 of the nearest water supplies that could be affected by its Composite (b) sample over 31 Composite for gross beta and а gamma (d) isotopic analyses every 31 days. Composite for tritium analysis at least day composite period discharge 1 sample from a control location. b. every 92 days с. Sediment from 1 sample from downstream area with existing or potential recreational value. Every 6 months Gamma isotopic (d) analysis Shoreline every 6 months 4. Ingestion a. Samples from milking animals in 3 locations within 3 miles distance having the highest Every 14 days when animals are a. Milk Gamma isotopic (d) analysis or 134, 137 Cs by chemical dose potential. on pasture, every 31 days at separation every 92 days. I-1 sample from milking animals at a control location (unlikely to be affected by the other times. b. plant). 131 analysis of each sample. Sample in season, or every 6 months if they are not b. Fish 1 sample of each commercially and recreationally important species in vicinity of discharge point when available. Gamma isotopic (d) analysis on а edible portions. seasonal. 1 sample of same species in areas not influenced by plant discharge when available. b. Samples of 3 different kinds of broad leaf vegetation grown nearest offsite garden of c. Food Products Every 31 days when available if Gamma isotopic (d) and I-131 a. highest annual average ground level D/Q if milk sampling is not performed. milk sampling is not performed. analysis Every 31 days when available if b. 1 sample of each of the similar broad leaf vegetation grown 15 - 30 km distant in the milk sampling is not performed least prevalent wind direction if milk sampling is not performed. Gamma isotopic (d) and I-131 analysis

Table 4.8.E.1 (page 3 of 3) Radiological Environmental Monitoring Program

NOTES

- (a) Fixed sample locations are shown in the Offsite Dose Calculation Manual, Table VII.A.1 and Figures VII.A.1, VII.A.2, and VII.A.3. At times it may not be possible or practicable to obtain samples of the media of choice at the most desired location or time. In those instances suitable alternative media and locations may be chosen for the particular pathway in question. Such necessary deviations are reported in the Annual Radiological Environmental Operating Report.
- (b) Composite samples shall be collected by collecting an aliquot at intervals not exceeding 2 hours.
- (c) Sample collection frequencies are defined as follows:

7 days	7 calendar days + 2 days
14 days	14 calendar days + 3 days
31 days	31 calendar days + 8 days
92 days	92 calendar days $+$ 10 days
6 months	6 calendar months $+$ 20 days

- (d) Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- (e) N/A
- (f) If the gross beta activity in air attributable to plant operation is greater than ten times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.

Radiological Environmental Monitoring 3.8.E.1

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS ^(a) Lower Limit Of Detection (LLD) ^(b)						
ANALYSIS	WATER (pCi/l)	AIRBORNE PARTICULATE (pCi/m ³)	FISH (pCi/kg, wet)	MILK (pCi/l)	FOOD PRODUCTS (pCi/kg, wet)	SEDIMENT (pCi/kg, dry)
Gross Beta	4	0.01				
Н-3	2,000					
Mn-54	15		130			
Fe-59	30		260			
Co-58,60	15		130			
Zn-65	30		260			
Zr-95	30					
Nb-95	15					
I-131	-	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140	60			60		
La-140	15			15		

Table 4.8.E.2 (page 1 of 2)

Table 4.8.E.2 (page 2 of 2)

Notes:

- (a) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable at 95% confidence level, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report.
- (b) The LLD is defined, for purposes of these controls, as the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \underbrace{4.66S_{\beta}}_{E \cdot V \cdot 2.22 \cdot Y \cdot exp} (-\lambda \Delta t)$$

Where:

LLD is the <u>a priori</u> lower limit of detection as defined above (as picocuries per unit mass or volume),

 S_β is the standard deviation of the background counting rate or of the counting rate of blank sample as appropriate (as counts per minute),

- E is the counting efficiency (as counts per disintegration),
- V is the sample size (in units of mass or volume),
- 2.22 is the number of disintegrations per minute per picocurie,
- Y is the fractional radiochemical yield (when applicable)

 $\boldsymbol{\lambda}$ is the radioactive decay constant for the particular radionuclide, and

 Δt for the environmental samples is the elapsed time between sample collection (or end of the sample collection period) and time of counting.

Typical values of E, V, Y, and Δt should be used in calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an after the fact limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidably small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report.

PBAPS Units 2 and 3

3.8.E Radiological Environmental Monitoring

ODCMS 3.8.E.2 A land use census shall be conducted and shall identify the location of the nearest milk animal in each of the 16 meteorological sectors within a distance of five miles.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Land use census identifies a location which yields a calculated dose or dose commitment (via the same exposure pathway) that is at least 20% greater than a location from which samples are currently being obtained in accordance with ODCMS 3.8.E.1.	A.1 Add the new location to the radiological environmental monitoring program. <u>AND</u>	31 days (continued)

COMPENSATORY MEASURES (Continued)

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. (continued)	A.2NOTE The indicator sampling location having the lowest calculated dose or dose commitment (via the same exposure pathway) may be deleted from the radiological environmental monitoring program after October 31 of the year in which land use census was conducted. 	In Accordance with Technical Specification 5.6.2
B. Land use census identifies a location which yields a calculated dose or dose commitment that is greater than values currently being calculated in ODCMS 3.8.C.3.	B.1 Identify the new location in the Annual Radiological Environmental Operating Report.	In Accordance with Technical Specification 5.6.2

ODCMS REQUIREMENTS

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.E.2.1 Conduct a land use census by a door-to- door survey or by consulting local agriculture authorities or by some other appropriate means.	12 months

February 2022 Radiological Environmental Monitoring 3.8.E.3 3.8.E Radiological Environmental Monitoring ODCMS 3.8.E.3 Analyses shall be performed on radioactive materials

supplied as part of the EPA Environmental Radioactivity Intercomparison Studies Program, or another Interlaboratory Comparison Program traceable to NIST.

APPLICABILITY: At all times.

COMPENSATORY MEASURES

CONDITION	REQUIRED COMPENSATORY MEASURE	COMPLETION TIME
A. Requirements of ODCMS 3.8.E.3 not met.	A.1 Include corrective actions to prevent recurrence in the Annual Radiological Environmental Operating Report.	In accordance with Technical Specification 5.6.2

ODCMS REQUIREMENTS

ODCMS REQUIREMENT	FREQUENCY
ODCMS 4.8.E.3.1 Include a summary of the results of	In accordance
the Interlaboratory Comparison	with Technical
Program in the Annual Radiological	Specification
Environmental Operating Report.	5.6.2

3.10 Reporting Requirements

Annual Radiological Environmental Operating Report ODCMS 3.10.1

The Annual Radiological Environmental Operating Report shall be submitted in accordance with the requirements of Technical Specification 5.6.2. In addition to the requirements of Technical Specification 5.6.2, the Annual Radiological Environmental Operating Report shall include or reference from previous reports:

- a. A summary description of the radiological environmental monitoring program including sampling methods for each sample type, size, and physical characteristics of each sample type, sample preparation methods, and measuring equipment used;
- b. At least two maps of all sampling locations keyed to a table giving distances and directions from the midpoint between reactor vents;
- c. Results of the land use census required by ODCMS 3.8.E.2; and
- d. Results of the Interlaboratory Comparison Program required by ODCMS 3.8.E.3 and discussion of all analyses in which the LLD required by Table 4.8.E.2 was not achievable.

ODCMS 3.10.2 Radioactive Effluent Release Report

The Radioactive Effluent Release Report shall be submitted in accordance with the requirements of Technical Specification 5.6.3. In addition to the requirements of Technical Specification 5.6.3, the requirements of Technical Specification 5.6.3 the Radioactive Effluent Release Report shall include:

- a. Information for each class of solid waste (as defined by 10 CFR 61) shipped offsite during the report period:
 - 1. Container volume;
 - 2. Total curie quantity (specify whether determined by measurements or estimate);
 - 3. Principal radionuclides (specify whether determine by measurement of estimate);

3.10.2 Reporting Requirements (Continued)

- 4. Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottomed); and
- 5. Type of container (e.g., LSA, Type A, Type B, Large Quantity).
- b. A list and description of unplanned releases from the site to areas at or beyond the SITE BOUNDARY of radioactive materials in gaseous and liquid effluents made during the reporting period.
- c. Changes made during the reporting period to the Offsite Dose Calculation Manual (ODCM) and a list of new locations for dose calculations and/or environmental monitoring identified by the land use census required by ODCM 3.8.E.2.
- d. Annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-byhour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability. The licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.
- e. An assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year.
- f. Radiation doses from radioactive liquid and gaseous effluent to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY during the report period. All assumptions used in making these assessments (i.e., specific activity, exposure time and location) shall be included in these reports.
- q. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents (as determined by sampling frequency and measurement) shall be used for determining the gaseous pathway doses. Approximate methods are acceptable. The assessment of radiation doses shall be performed in accordance with the Offsite Dose Calculation Manual (ODCM).

3.10.2 Reporting Requirements (Continued)

h. An assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources (including doses from primary effluent pathways and direct radiation) for the previous calendar year to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. Guidance for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109, Revision 1, October 1977.

B 3.8 ODCM SPECIFICATIONS BASES

General

It is expected that releases of radioactive material in effluents will be kept at small fractions of the limits specified in Section 20.1302 of 10 CFR, Part 20. At the same time, the licensee is permitted the flexibility of operation, compatible with consideration of health and safety, to assure that the public is provided a dependable source of power even under unusual operating conditions which may temporarily result in releases higher than such small fractions, but still within the limits specified in Section 20.1302 of 10 CFR, Part 20. It is expected that in using this operational flexibility under unusual operating conditions the licensee will exert their best efforts to keep levels of radioactive material in effluents as low as practicable.

Liquid Radwaste Effluents

Concentration

This specification is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to areas at and beyond the SITE BOUNDARY will be within 10 times the concentration levels specified in 10 CFR, Part 20, Appendix B, Table 2, Column 2. This instantaneous limitation provides additional assurance that the levels of radioactive materials in bodies of water in areas at or beyond the SITE BOUNDARY will result in exposures within (1) the Section II.A design objectives of Appendix I, 10 CFR, Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR, Part 20.1302 to the population. The concentration limit for noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the International Commission on Radiological Protection (ICP) Publication 2.

Dose

This specification is provided to implement the requirements of Sections I.E., IXIA and I.E. of Appendix I, 10 CFR Part 50. ODCMS 3.8.B.2 implements the guidance set forth in Section I.E. of Appendix I and provides the required operating flexibility to implement the guides set forth in Section I.E. of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as reasonably achievable." The dose calculations in the ODCM implement the requirements in Section IXIA of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations described in the Offsite Dose Calculation Manual for calculating the doses due to the actual release rates

(continued)

PBAPS Units 2 and 3 ODCM B.3.8-4

of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977. This specification applies to the release of liquid effluents from the site.

Instrumentation

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential release of liquid effluents. The FUNCTIONALITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50.

System Operation

The FUNCTIONALITY of the Liquid Radwaste Treatment System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as reasonably achievable." This specification implements the requirements of 10 CFR, Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR, Part 50 and design objective Section II.D of Appendix I to 10 CFR, Part 50. The specified limits governing the use of appropriate portions of the Liquid Radwaste Treatment System were specified as a suitable fraction of the guide set forth in Section II.A of Appendix I, 10 CFR, Part 50, for liquid effluents.

The chemical/oily waste cleanup subsystem may include the portable Epicor oil/water emulsion system (as described in RW-625), an installed chemical/oily waste cleanup subsystem, or equivalent chemical/oil waste system.

The laundry drain filter may be used to process liquid wastes containing detergents or similar cleaning agents. Wastewater such as river water that is acceptable for release may be processed through the laundry drain filter.

(continued)

PBAPS Units 2 and 3 ODCM B.3.8-5

Revision 17

Gaseous Effluents

Dose

This specification is provided to ensure that the dose from radioactive materials in gaseous effluents at and beyond the SITE BOUNDARY will be within the annual dose limits of 10 CFR Part 20. The annual dose limits are the doses associated with 10 times the concentrations of 10 CFR Part 20, Appendix B, Table 2, and Column 1. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the limits specified in Appendix B, Table 2 of For MEMBERS OF THE PUBLIC who 10 CFR part 20.1302. may at times be within the SITE BOUNDARY, the occupancy will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC with the appropriate occupancy factors are given in the ODCM. The specified limits restrict, at all times, the gamma and beta dose rates above background to a MEMBER OF THE PUBLIC, at or beyond the SITE BOUNDARY to \leq 500 mrem/year to the total body or to \leq 3000 mrem/year to the skin. These dose rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to \leq 1500 mrem/year.

Dose, Noble Gases

This specification is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. ODCMS 3.8.C.2 implements the guidance set forth in Section II.B of Appendix I and provides the required operating flexibility to implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as reasonably achievable." ODCMS 4.8.C.2.1 implements the requirements in Section III.A of Appendix I that conformance with the guidance of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through the appropriate pathways is unlikely to be substantially underestimated. The dose calculations established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR 50, Appendix I," Revision 1, October 1977 and the atmospheric dispersion model submitted on September 30, 1976, in a report titled: "Information Requested in Enclosure 2 to letter from George Lear to E. G. Bauer dated February 17, 1976." The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based PBAPS Units 2 and 3 ODCM B.3.8-6 Revision 17

February	2022
----------	------

BASES (continued) upon the historical average atmospheric conditions.

(continued)

Dose, Iodine-131, Tritium and Radionuclides in Particulate Form

This specification is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. ODCMS 3.8.C.3 implements the guidance set forth in Section II.C of Appendix I and provides the required operating flexibility to implement the quides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as reasonably achievable." The ODCM calculational methods specified in the ODCMS 4.8.C.3.1 implements the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

The ODCM calculational methods for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and the Atmospheric Dispersion Model submitted on September 30, 1976 in a report titled: "Information Requested in Enclosure 2 to letter from George Lear to E. G. Bauer dated February 17, 1976." These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for iodine-131, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent on the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, 3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and 4) deposition on the ground with subsequent exposure of man.

Instrumentation

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The FUNCTIONALITY and use of instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR, Part 50.

(continued)

PBAPS Units 2 and 3 ODCM B.3.8-8

Revision 17

System Operation

The FUNCTIONALITY of the Gaseous Radwaste Treatment System ensures that this system will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that appropriate portions of this system be used when specified provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." This specification implements the requirements of 10 CFR, Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR, Part 50 and design objective Section II.D of Appendix I to 10 CFR, Part 50. The specified limits governing the use of appropriate portions of the Gaseous Radwaste Treatment System were specified as a suitable fraction of the quidance set forth in Section II.B and II.C of Appendix I, 10 CFR, Part 50, for gaseous effluents.

To determine if gaseous effluents shall be processed through installed treatment equipment, the average projected dose will be determined. For gaseous effluent pathways other than the specified unmonitored exhausts, treatment and monitoring will only be required for pathways that are significant. Regulatory Guide 1.109, "Calculations of Annual Doses to Man From Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", states that a pathway is considered significant if a conservative evaluation yields an additional dose increment equal to or more than 10 percent of the total from all pathways. Therefore, the total dose from all release pathways that do not require treatment or monitoring can not exceed 10 percent of the limit specified in Section II.C of Appendix I, 10 CFR Part 50.

Containment PURGE

ODCMS 3.8.C.6 requires that the primary containment atmosphere receive treatment for the removal of gaseous iodine and particulates prior to release to provide reasonable assurance that PURGING operations will not result in exceeding the annual dose limits of 10 CFR Part 20 for areas at or beyond the SITE BOUNDARY.

(continued)

PBAPS Units 2 and 3 ODCM B.3.8-9

Revision 17

40 CFR 190 and 10 CFR 72.104

This specification is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR 20.1301(d) as well as the dose limitations specific to Independent Spent Fuel Storage Installation (ISFSI) operations in accordance with 10 CFR 72.104.

Over the long term, as more ISFSI casks are placed on the ISFSI pad, it is expected that ISFSI operations will become the prominent contributor to the limits in this section. ISFSI dose contribution is in the form of direct radiation as no liquid or gas releases are expected to occur. The 10 CFR 72.212 report prepared in accordance with ISFSI requirements assumes a certain array of casks exists on the pad. The dose contribution from this array of casks in combination with historical uranium fuel cycle operations (e.g. PBAPS

2 & 3) prior to ISFSI operations was analyzed to be within the 40 CFR 190 and 10 CFR 72.104 limits. The difference between 40 CFR 190/10 CFR 72.104 limits and the analyzed ISFSI cask array contribution are identified in ODCMS 3.8.D.1 items d and e. Therefore, these values are used as assumptions in calculating combined ISFSI and PBAPS 2 & 3 doses. If these PBAPS 2 & 3 liquid and gas radiation values are exceeded, an evaluation is performed to determine if the overall 40 CFR 190 and 10 CFR 72.104 limits have been exceeded.

If the dose limits of 40 CFR 190 or 10 CFR 72.104 are exceeded, a special report to the NRC as well as an appropriate request for exemption /variance is required to be submitted to the NRC.

The requirement that the dose limits of 10CFR 72.104 apply to "any real individual" are controlled for ISFSI activities in the ISFSI 72.212 report. Therefore, for the purposes of analyzing dose in the south end of the site, the member of the public as defined in 40 CFR 190 at this area is the same as the "real individual" identified in the 72.212 report. The location for the real individual identified in the ISFSI 72.212 report is the limiting individual for calculating dose.

(continued)

PBAPS Units 2 and 3 ODCM B.3.8-10

Radiological Environmental Monitoring

Monitoring Program

The radiological environmental monitoring program required by this specification provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides, which lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the two reactors at the sites. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways.

The required detection capabilities for environmental sample analyses are tabulated in terms of the Lower Limit of Detection (LLD). The LLD's required by Table 4.8.E.2 of the specifications are considered optimum for routine environmental measurements in industrial laboratories. The monitoring program was developed utilizing the experience of the first seven years of commercial operation. Program changes may be initiated based on the additional operational experience.

Land Use Census

This specification is provided to ensure that significant changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the radiological environmental monitoring program are made if required by the results of this census. This census satisfies the requirements of Section IV.B.3 of Appendix I to

10 CFR Part 50.

Interlaboratory Comparison Program

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices, are performed as part of the quality assurance program for environmental monitoring, in order to demonstrate that the results are reasonably valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.