

Randy Crawford Manager Regulatory Assurance 225-381-4177

RBG-48221

April 25, 2023

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Subject: 2022 Annual Radiological Environmental Operating Report River Bend Station – Unit 1 Renewed Operating License No. NPF-47 Docket No. 50-458

Enclosed is the River Bend Station (RBS) Annual Radiological Environmental Operating Report for the period of January 1, 2022, through December 31, 2022. This report is submitted in accordance with the RBS Technical Specifications, Section 5.6.2.

Should you have any questions regarding the enclosed, please contact Randy Crawford, at (225) 381-4177.

Sincerely,

Rata

**Randy Crawford** 

RTC/twf

Enclosure: 2022 Annual Radiological Environmental Operating Report

cc: NRC Senior Resident Inspector – River Bend Station, Unit 1

Enclosure 2022 Annual Radiological Environmental Operating Report



**Plant: River Bend Station** 

Page 1 of 44

YEAR: 2022

**Document Number: RBG-48221** 

Annual Radiological Environmental Operating Report

|     | Plant: River Bend Station                         | Year: 2022             | Page 2 of 44 |
|-----|---------------------------------------------------|------------------------|--------------|
|     | Annual Radiological Environme                     | ental Operating Report |              |
|     | TABLE OF CON                                      | TENTS                  |              |
| 1.0 | EXECUTIVE SUMMARY                                 |                        | 5            |
|     | 1.1 Radiological Environmental Monitoring Progra  | m                      | 5            |
|     | 1.2 Reporting Levels                              |                        | 5            |
|     | 1.3 Comparison to State and Federal Program       |                        | 6            |
|     | 1.4 Sample Deviations                             |                        | 6            |
|     | 1.5 Program Modifications                         |                        | 6            |
| 2.0 | INTRODUCTION                                      |                        | 7            |
|     | 2.1 Radiological Environmental Monitoring Progra  | m                      | 7            |
|     | 2.2 Pathways Monitored                            |                        | 7            |
|     | 2.3 Land Use Census                               |                        | 7            |
| 3.0 | RADIOLOGICAL ENVIRONMENTAL SAMPLING               | PROGRAM REQUIREMEN     | ITS8         |
| 4.0 | INTERPRETATION AND TRENDS OF RESULTS              |                        | 17           |
|     | 4.1 Air Particulate and Radioiodine Sample Result | 's                     | 17           |
|     | 4.2 Thermoluminescent Dosimetry (TLD) Sample      | Results                | 18           |
|     | 4.3 Waterborne Sample Results                     |                        | 18           |
|     | 4.3.1 Surface Water Results                       |                        | 19           |
|     | 4.3.2 Groundwater Results                         |                        | 19           |
|     | 4.3.3 Sediment Sample Results                     |                        |              |
|     | 4.4 Ingestion Sample Results                      |                        | 19           |
|     | 4.4.1 Fish Sample Results                         |                        | 19           |
|     | 4.4.2 Food Products Sample Results                |                        | 19           |
|     | 4.4.3 Milk Sample Results                         |                        | 20           |
|     | 4.5 Land Use Census Results                       |                        | 20           |
|     | 4.6 Interlaboratory Comparison Results            |                        | 22           |
| 5.0 | RADIOLOGICAL ENVIRONMENTAL MONITORIN              | IG PROGRAM SUMMARY     | 22           |

| Plant: River Bend Station     | Year: 2022             | Page 3 of 44 |
|-------------------------------|------------------------|--------------|
| Annual Radiological Environme | ental Operating Report |              |

# **ATTACHMENTS**

| Attachment 1 - Sample Deviations                          | 26 |
|-----------------------------------------------------------|----|
| Attachment 2 - Monitoring Results Tables                  | 28 |
| Attachment 3 - Interlaboratory Comparison Program Results | 39 |

# TABLES

|                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Table 2: Exposure Pathway - Direct Radiation                                                                                                                                                                                                                                                                                                                                                                         | 9                                            |
| Table 3: Exposure Pathway - Waterborne                                                                                                                                                                                                                                                                                                                                                                               | 12                                           |
| Table 4: Exposure Pathway - Ingestion                                                                                                                                                                                                                                                                                                                                                                                | 13                                           |
| Table 5: Land Use Census - 2022 Nearest Residence and Milk Animal Within 5 Miles                                                                                                                                                                                                                                                                                                                                     | 21                                           |
| Table 6: Radiological Environmental Monitoring Program Summary                                                                                                                                                                                                                                                                                                                                                       | 23                                           |
| Table 7: Sample Deviations Table                                                                                                                                                                                                                                                                                                                                                                                     | 26                                           |
| Table 8: Air Particulate Data Table                                                                                                                                                                                                                                                                                                                                                                                  | 28                                           |
| Table 9: Radioiodine Cartridge Data Table                                                                                                                                                                                                                                                                                                                                                                            | 29                                           |
| Table 10: Thermoluminescent Dosimeters - Indicators                                                                                                                                                                                                                                                                                                                                                                  | 30                                           |
| Table 11: Thermoluminescent Dosimeters - Special Interest Areas                                                                                                                                                                                                                                                                                                                                                      | 31                                           |
| Table 12: Thermoluminescent Dosimeters - Controls                                                                                                                                                                                                                                                                                                                                                                    | 31                                           |
| Table 13: Surface Water - Gamma                                                                                                                                                                                                                                                                                                                                                                                      | 32                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| Table 14: Surface Water - Tritium                                                                                                                                                                                                                                                                                                                                                                                    | 33                                           |
| Table 14: Surface Water - Tritium<br>Table 15: Groundwater - Gamma                                                                                                                                                                                                                                                                                                                                                   | 33<br>34                                     |
| Table 14: Surface Water - Tritium<br>Table 15: Groundwater - Gamma<br>Table 16: Groundwater - Tritum                                                                                                                                                                                                                                                                                                                 | 33<br>34<br>35                               |
| Table 14: Surface Water - Tritium         Table 15: Groundwater - Gamma         Table 16: Groundwater - Tritum         Table 17: Sediment - Gamma                                                                                                                                                                                                                                                                    | 33<br>34<br>35<br>36                         |
| Table 14: Surface Water - Tritium         Table 15: Groundwater - Gamma         Table 16: Groundwater - Tritum         Table 17: Sediment - Gamma         Table 18: Fish - Gamma                                                                                                                                                                                                                                     | 33<br>34<br>35<br>36<br>37                   |
| Table 14: Surface Water - Tritium         Table 15: Groundwater - Gamma         Table 16: Groundwater - Tritum         Table 17: Sediment - Gamma         Table 18: Fish - Gamma         Table 19: Food Products - Gamma                                                                                                                                                                                             | 33<br>34<br>35<br>36<br>37<br>38             |
| Table 14: Surface Water - Tritium         Table 15: Groundwater - Gamma         Table 16: Groundwater - Tritum         Table 17: Sediment - Gamma         Table 17: Sediment - Gamma         Table 18: Fish - Gamma         Table 19: Food Products - Gamma         Table 20: Analytics Environmental Radioactivity Cross Check Program                                                                              | 33<br>34<br>35<br>36<br>37<br>38<br>41       |
| Table 14: Surface Water - Tritium         Table 15: Groundwater - Gamma         Table 16: Groundwater - Tritum         Table 16: Sediment - Gamma         Table 17: Sediment - Gamma         Table 18: Fish - Gamma         Table 19: Food Products - Gamma         Table 20: Analytics Environmental Radioactivity Cross Check Program         Table 21: DOE's Mixed Analyte Performance Evaluation Program (MAPEP) | 33<br>34<br>35<br>36<br>37<br>38<br>41<br>43 |

| Plant: River Bend Station  | Year: 2022              | Page 4 of 44 |
|----------------------------|-------------------------|--------------|
| Annual Radiological Enviro | nmental Operating Repor | t            |

# **FIGURES**

| Figure 1: Exposure Pathway                                             | 14 |
|------------------------------------------------------------------------|----|
| Figure 2: Sample Collection Sites - Near Field                         | 15 |
| Figure 3: Sample Collection Sites - Far Field                          | 16 |
| Figure 4: Gross Beta Indicator Results (2022)                          | 17 |
| Figure 5: TLD Indicator Results (2022) Versus Control Data (1986-2022) | 18 |

| Plant: River Bend Station     | Year: 2022             | Page 5 of 44 |
|-------------------------------|------------------------|--------------|
| Annual Radiological Environme | ental Operating Report |              |

#### 1.0 EXECUTIVE SUMMARY

#### 1.1 Radiological Environmental Monitoring Program

The Annual Radiological Environmental Operating Report presents data obtained through analyses of environmental samples collected for River Bend Station (RBS) Radiological Environmental Monitoring Program (REMP) for the period January 1 through December 31, 2022. This report fulfills the requirements of RBS Technical Specification 5.6.2 of Appendix A to RBS License Number NPF-47.

All required lower limit of detection (LLD) capabilities were achieved in all sample analyses during 2022, as required by the RBS Technical Requirement Manual (TRM). No measurable levels of radiation above baseline levels attributable to River Bend Station operation were detected in the vicinity of RBS. The 2022 Radiological Environmental Monitoring Program thus substantiated the adequacy of source control and effluent monitoring at River Bend Station with no observed impact of plant operations on the environment.

River Bend Station established the REMP prior to the station's becoming operational 1985 to provide data on background radiation and radioactivity normally present in the area. RBS has continued to monitor the environment by sampling air, water, sediment, fish and food products, as well as measuring direct radiation. RBS also samples milk if milk-producing animals used for human consumption are present within five miles (8 km) of the plant.

The REMP includes sampling indicator and control locations within an approximate 20-mile radius of the plant. The REMP utilizes indicator locations near the site to show any increases or buildup of radioactivity that might occur due to station operation and control locations farther away from the site to indicate the presence of only naturally occurring radioactivity. RBS personnel compare indicator results with control and preoperational results to assess any impact RBS operation might have had on the surrounding environment.

In 2022, environmental samples were collected for radiological analysis. The results of indicator locations were compared with control locations and previous studies. It was concluded that no significant relationship exists between RBS operation and effect on the area around the plant. The review of 2022 data showed radioactivity levels in the environment were undetectable in many locations and near background levels in significant pathways.

#### 1.2 <u>Reporting Levels</u>

No samples equaled or exceeded reporting levels.

| Plant: River Bend Station    | Year: 2022 | Page 6 of 44 |
|------------------------------|------------|--------------|
| Annual Dadialania al Environ |            | 4            |

#### Annual Radiological Environmental Operating Report

#### 1.3 <u>Comparison to State and Federal Program</u>

RBS personnel compared REMP data to state monitoring programs as results became available. Historically, the programs used for comparison have included the U.S. Nuclear Regulatory Commission (NRC) Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network and the Louisiana Department of Environmental Quality – Office of Environmental Compliance (LDEQ-OEC).

The NRC TLD Network Program was discontinued in 1998. Historically these results have compared to those from the RBS REMP. RBS TLD results continue to remain similar to the historical average and continue to verify that plant operation is not affecting the ambient radiation levels in the environment.

The LDEQ-OEC and the RBS REMP entail similar radiological environmental monitoring program requirements. These programs include co-located air samples and splitting or sharing sample media such as water, sediment and fish. Both programs have obtained similar results over previous years.

#### 1.4 <u>Sample Deviations</u>

During 2022, environmental sampling was performed for eight media types addressed in the ODCM and for direct radiation. A total of 328 samples of the 328 scheduled were obtained. Of the scheduled samples, 100 percent were collected and analyzed in accordance with the requirements specified in the ODCM. Attachment 1 contains the listing of sample deviations and actions taken.

#### 1.5 <u>Program Modifications</u>

• There were no program modifications during the reporting period.

| Plant: River Bend Station    | Year: 2022             | Page 7 of 44 |
|------------------------------|------------------------|--------------|
| Annual Radiological Environm | nental Operating Repor | t            |

#### 2.0 INTRODUCTION

#### 2.1 <u>Radiological Environmental Monitoring Program</u>

River Bend Station established the REMP to ensure that plant operating controls properly function to minimize any associated radiation endangerment to human health or the environment. The REMP is designed for:

- Analyzing applicable pathways for anticipated types and quantities of radionuclides released into the environment.
- Considering the possibility of a buildup of long-lived radionuclides in the environment and identifying physical and biological accumulations that may contribute to human exposures.
- Considering the potential radiation exposure to plant and animal life in the environment surrounding River Bend Station.
- Correlating levels of radiation and radioactivity in the environment with radioactive releases from station operation.

#### 2.2 Pathways Monitored

The airborne, direct radiation, waterborne and ingestion pathways are monitored as required by RBS TRM 3.12.1. A description of the REMP utilized to monitor the exposure pathways is described in the attached Tables and Figures.

Section 4.0 of this report provides a discussion of 2022 sampling results with Section 5.0 providing a summary of results for the monitored exposure pathways.

#### 2.3 Land Use Census

RBS conducts a land use census biennially, as required by 3.12.2 of the TRM. The purpose of this census is to identify changes in uses of land within five miles of RBS that would require modifications to the REMP and the Offsite Dose Calculation Manual (ODCM/TRM). The next scheduled land use census will be performed in 2024. Section 4.5 on the report contains a narrative on the results of the 2022 land use census.

| Plant: River Bend Station                          | Year: 2022 | Page 8 of 44 |  |
|----------------------------------------------------|------------|--------------|--|
| Annual Radiological Environmental Operating Report |            |              |  |

#### 3.0 RADIOLOGICAL ENVIRONMENTAL SAMPLING PROGRAM REQUIREMENTS

### Table 1: Exposure Pathway – Airborne

| Requirement                                                                                                                                                                      | Sample Point Description<br>Distance and Direction                                                                                                             | Sampling and Collection<br>Frequency                                                                                          | Type and Frequency Of Analyses                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RADIOIODINE AND PARTICULATES<br>2 samples from close to the 2 SITE<br>BOUNDARY locations, in different sectors, of<br>the highest calculated annual average ground<br>level D/Q. | <ul> <li>AN1 (0.9 km W) - RBS site Hwy 965; 0.4 km south of Activity Center.</li> <li>AP1 (0.9 km WNW) – Behind River Bend Station Activity Center.</li> </ul> | Continuous sampler operation<br>with sample collection every two<br>weeks, or more frequently if<br>required by dust loading. | <ul> <li>Radioiodine Canisters – I-131 analysis every two weeks.</li> <li>Air Particulate – Gross beta radioactivity analysis following filter change.</li> </ul> |
| <b>RADIOIODINE AND PARTICULATES</b><br>1 sample from the vicinity of a community<br>having the highest calculated annual average<br>ground level D/Q.                            | <ul> <li>AQS2 (5.8 km NW) - St. Francis<br/>Substation on US Hwy. (Bus.)</li> <li>61 in St. Francisville.</li> </ul>                                           | Continuous sampler operation<br>with sample collection every two<br>weeks, or more frequently if<br>required by dust loading. | <ul> <li>Radioiodine Canisters – I-131 analysis every two weeks.</li> <li>Air Particulate – Gross beta radioactivity analysis following filter change.</li> </ul> |
| RADIOIODINE AND PARTICULATES<br>1 sample from a control location, as for<br>example 15 - 30 km distance and in the least<br>prevalent wind direction.                            | <ul> <li>AGC (17.0 km SE) – Entergy<br/>Service Center compound in<br/>Zachary. (Control)</li> </ul>                                                           | Continuous sampler operation<br>with sample collection every two<br>weeks, or more frequently if<br>required by dust loading. | <ul> <li>Radioiodine Canisters – I-131 analysis every two weeks.</li> <li>Air Particulate – Gross beta radioactivity analysis following filter change.</li> </ul> |

| Plant: River Bend Station     | Year: 2022             | Page 9 of 44 |
|-------------------------------|------------------------|--------------|
| Annual Radiological Environme | ental Operating Report |              |

# Table 2: Exposure Pathway – Direct Radiation

| TLDS       • TA1 (1.7 km N) - River Bend Training<br>Center.       Quarterly       • mR exposure quarterly.         • TB1 (0.5 km NNE) - Utility pole near<br>River Bend Station cooling tower yard<br>area.       • TC1 (1.7 km NE) - Telephone pole at<br>Jct. US Hwy. 61 and Old Highway 61.       • mR exposure quarterly.         • TD1 (1.6 km NE) - Telephone pole at<br>Jct. US Hwy. 61.       • TC1 (1.3 km EE) – Stub pole along<br>WF7, 150m S of Jct. WF7 and US<br>Hwy. 61.       • TE1 (1.3 km EE) – Stub pole along<br>WF7, 16.         • TT1 (1.1 km SS of Jct. WF7 and US<br>Hwy. 61.       • TT1 (1.6 km SE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.         • TG1 (1.6 km SE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.       • TG1 (1.6 km SE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.         • TG1 (1.6 km SE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.       • TG1 (1.6 km SE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.         • TT1 (1.7 km SSE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.       • TT1 (1.6 km SE) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.         • TT1 (1.5 km SD) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61.       • TT1 (1.5 km SD) – Stub pole along<br>WF7, 2 km S of Jct. WF7 and US<br>Hwy. 61. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Plant: River Bend Station   | Year: 2022              | Page 10 of 44 |
|-----------------------------|-------------------------|---------------|
| Annual Radiological Environ | mental Operating Report |               |

# Table 2: Exposure Pathway – Direct Radiation

| Requirement                                                                                                     | Sample Point Description Distance<br>and Direction                                                                                                        | Sampling and<br>Collection Frequency | Type and Frequency Of Analyses |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| TLDS<br>One ring of stations, one in each<br>meteorological sector in the general area of<br>the SITE BOUNDARY. | <ul> <li>TK1 (0.9 km SSW) – Utility pole on<br/>Powell Station Road (LA Hwy. 965),<br/>20 m S of River Bend Station River<br/>Access Road.</li> </ul>     | Quarterly                            | mR exposure quarterly.         |
|                                                                                                                 | <ul> <li>TL1 (1.0 km SW) – First utility pole on<br/>Powell Station Road (LA Hwy . 965) S<br/>of former Illinois Central Gulf RR<br/>crossing.</li> </ul> |                                      |                                |
|                                                                                                                 | <ul> <li>TM1 (0.9 km WSW) - Third utility pole<br/>on Powell Station Road (LA Hwy. 965)<br/>N of former Illinois Central Gulf RR<br/>crossing.</li> </ul> |                                      |                                |
|                                                                                                                 | <ul> <li>TN1 (0.9 km W) – Utility pole along<br/>Powell Station Road (LA Hwy. 965),<br/>near garden and AN1 air sampler<br/>location.</li> </ul>          |                                      |                                |
|                                                                                                                 | • <b>TP1 (0.9 km WNW)</b> - Behind River<br>Bend Station Activity Center at AP1<br>air sampler location.                                                  |                                      |                                |
|                                                                                                                 | <ul> <li>TQ1 (0.6 km NW) – Across from MA-1<br/>on RBS North Access Road.</li> </ul>                                                                      |                                      |                                |
|                                                                                                                 | <ul> <li>TR1 (0.8 km NNW) – River Bend<br/>Station North Access Road across<br/>from Main Plant entrance.</li> </ul>                                      |                                      |                                |

| Plant: River Bend Station                          | Year: 2022 | Page 11 of 44 |  |  |
|----------------------------------------------------|------------|---------------|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |

# Table 2: Exposure Pathway – Direct Radiation

| Requirement                                                                                       | Sample Point Description<br>Distance and Direction                                                                                                                                            | Sampling and<br>Collection Frequency | Type and Frequency Of Analyses |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| TLDS<br>The balance of the stations (8) to be placed in special interest areas such as population | <ul> <li>TAC (15.8 km N) – Utility pole at Jct.<br/>of US Hwy. 61 and LA Hwy. 421, 7.9<br/>km north of Bains. (Control)</li> </ul>                                                            | Quarterly                            | mR exposure quarterly.         |
| centers, nearby residences, schools, and in 1<br>or 2 areas to serve as control locations.        | <ul> <li>TCS (12.3 km NE) – Utility pole at<br/>gate to East Louisiana State Hospital<br/>in Jackson. (Special)</li> </ul>                                                                    |                                      |                                |
|                                                                                                   | <ul> <li>TEC (16.0 km E) – Stub pole at jct.<br/>of Hwy. 955 and Greenbrier Road,<br/>4.8 km North of Jct. of Hwys 955 and<br/>964. (Control)</li> </ul>                                      |                                      |                                |
|                                                                                                   | <ul> <li>TGS (17.0 km SE) – Entergy Service<br/>Center compound in Zachary.<br/>(Special)</li> </ul>                                                                                          |                                      |                                |
|                                                                                                   | <ul> <li>TNS (6.0 km W) – Utility pole with<br/>electrical meter at west bank ferry<br/>landing (LA Hwy. 10). (Special)</li> </ul>                                                            |                                      |                                |
|                                                                                                   | <ul> <li>TQS1 (4.0 km NW) – Utility pole front<br/>of Pentecostal church (opposite West<br/>Feliciana Parish Hospital) near Jct.<br/>US Hwy. 61 and Commerce Street.<br/>(Special)</li> </ul> |                                      |                                |
|                                                                                                   | <ul> <li>TQS2 (5.8 km NW) – St. Francis<br/>Substation on business US Hwy. 61<br/>in St. Francisville. (Special)</li> </ul>                                                                   |                                      |                                |
|                                                                                                   | <ul> <li>TRS (9.2 km NNW) - Stub pole at<br/>Jct. of US Hwy. 61 and WF2 near<br/>Bains (West Feliciana High School).<br/>(Special)</li> </ul>                                                 |                                      |                                |

| Plant: River Bend Station     | Year: 2022 | Page 12 of 44 |
|-------------------------------|------------|---------------|
| Annual Radiological Environme |            |               |

# Table 3: Exposure Pathway – Waterborne

| Requirement                                                                                                | Sample Point Description Distance<br>and Direction                                                                                                                                                                                                                                                   | Sampling and<br>Collection Frequency | Type and Frequency Of Analyses                                                  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|
| SURFACE WATER<br>1 sample upstream and 1 sample<br>downstream.                                             | <ul> <li>SWU (5.0 km W) - Mississippi River<br/>about 4 km upstream from the plant<br/>liquid discharge outfall, near LA Hwy.<br/>10 ferry crossing.</li> <li>SWD (7.75 km S) - Mississippi River<br/>about 4 km downstream from plant<br/>liquid discharge outfall, near paper<br/>mill.</li> </ul> | Grab samples quarterly               | <ul> <li>Gamma isotopic analysis and tritium analysis<br/>quarterly.</li> </ul> |
| GROUNDWATER<br>Samples from 1 or 2 sources only if likely to<br>be affected.                               | <ul> <li>WU (~470 m NNE) - Upland Terrace<br/>Aquifer well upgradient from plant.</li> <li>WD (~470 m SW) – Upland Terrace<br/>Aquifer well downgradient from plant.</li> </ul>                                                                                                                      | Semiannually                         | <ul> <li>Gamma isotopic and tritium analysis semiannually.</li> </ul>           |
| SEDIMENT FROM SHORELINE<br>1 sample from downstream area with existing<br>or potential recreational value. | <ul> <li>SEDD (7.75 km S) – Mississippi River<br/>about 4 km downstream from plant<br/>liquid discharge outfall, near paper<br/>mill.</li> </ul>                                                                                                                                                     | Annually                             | <ul> <li>Gamma isotopic analysis annually.</li> </ul>                           |

| Plant: River Bend Station     | Year: 2022             | Page 13 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report | 1X. 107221-1  |

# Table 4: Exposure Pathway – Ingestion

| Requirement                                                                                                                                                                                                                                                                                                                          | Sample Point Description Distance<br>and Direction                                                                                                                                                                                                                                                                  | Sampling and Collection<br>Frequency   | Type and Frequency Of Analyses                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|
| <ul> <li>MILK</li> <li>If commercially available, 1 sample from milking animals within 8 km distant where doses are calculated to be greater than 1 mrem per year.</li> <li>1 sample from milking animals at a control location 15 – 30 km distant when an indicator location exists.</li> </ul>                                     | <ul> <li>Currently, no available milking animals<br/>within 8 km of RBS.</li> </ul>                                                                                                                                                                                                                                 | Quarterly when animals are on pasture. | Gamma isotopic and I-131 analysis quarterly when animals are on pasture. |
| <ul> <li>FISH AND INVERTEBRATES</li> <li>1 sample of a commercially and/or recreationally important species in vicinity of plant discharge area.</li> <li>1 sample of similar species in area not influenced by plant discharge.</li> </ul>                                                                                          | <ul> <li>FD (7.75 km S) - One sample of a commercially and/or recreationally important species from downstream area influenced by plant discharge.</li> <li>FU (4.0 km WSW) - One sample of a commercially and/or recreationally important species from upstream area not influenced by plant discharge.</li> </ul> | Annually                               | Gamma isotopic analysis on edible portions<br>annually                   |
| <ul> <li>FOOD PRODUCTS</li> <li>1 sample of one type of broadleaf vegetation grown near the SITE BOUNDARY location of highest predicted annual average ground level D/Q if milk sampling is not performed.</li> <li>1 sample of similar broadleaf vegetation grown 15 – 30 km distant, if milk sampling is not performed.</li> </ul> | <ul> <li>GN1 (0.9 km W) – Sampling will be performed in accordance with Table 3.12.1-1 Section 4.a of the Technical Requirements Manual.</li> <li>GQC (32.0 km NW) - One sample of similar vegetables from LA State Penitentiary at Angola. (Control)</li> </ul>                                                    | Quarterly during the growing season.   | Gamma isotopic and I-131 analysis quarterly.                             |

| Plant: River Bend Station   | Year: 2022              | Page 14 of 44 |
|-----------------------------|-------------------------|---------------|
| Annual Radiological Environ | mental Operating Report | t             |



Figure 1: Exposure Pathway

# Plant: River Bend StationYear: 2022Page 15 of 44Annual Radiological Environmental Operating Report



Figure 2: Sample Collection Sites - Near Field

| Plant: River Bend Station     | Year: 2022             | Page 16 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report |               |



Figure 3: Sample Collection Sites - Far Field

| Plant: River Bend Station     | Year: 2022             | Page 17 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report |               |

#### 4.0 INTERPRETATION AND TRENDS OF RESULTS

#### 4.1 <u>Air Particulate and Radioiodine Sample Results</u>

In 2022 there were no samples above the LLD for I-131. Indicator gross beta air particulate results for 2022 were comparable to results obtained from 2012-2021 of the operational REMP. Also, the 2022 gross beta annual average was less than the average for preoperational levels. Results are reported as annual average picocuries per cubic meter (pCi/m<sup>3</sup>).

| Monitoring Period           | <u>Result</u> |
|-----------------------------|---------------|
| 2012 – 2021 (Minimum Value) | 0.016         |
| 2022 Average Value          | 0.020         |
| 2012 – 2021 (Maximum Value) | 0.024         |
| Preoperational              | 0.030         |

Gross beta activity is attributed to naturally occurring radionuclides. Table 6, which include gross beta concentrations and provide a comparison of the indicator and control means and ranges emphasizes the consistent trends seen in this pathway to support the presence of naturally occurring activity. Therefore, it can be concluded that the airborne pathway continues to be unaffected by River Bend Station operations.



| Plant: River Bend Station    | Year: 2022             | Page 18 of 44 |
|------------------------------|------------------------|---------------|
| Annual Radiological Environn | nental Operating Repor | t             |

#### 4.2 <u>Thermoluminescent Dosimetry (TLD) Sample Results</u>

River Bend Station reports measured dose as net exposure (field reading less transit reading) normalized to 90 days and relies on comparison of the indicator locations to the control as a measure of plant impact. River Bend Station's comparison of the indicator and special interest area TLD results to the control, as seen in Table 6, identified no noticeable trend that would indicate that the ambient radiation levels are being affected by plant operations. In addition, the indicator value of 13.3 millirem (mrem) shown in the TLD radiation dose comparison graph below shows the 2022 concentration is comparable to historic results. Overall, River Bend Station concluded that the ambient radiation levels are not being affected by plant operations.



#### 4.3 Waterborne Sample Results

Analytical results for 2022 surface water and groundwater water samples were similar to those reported in previous years. Gamma radionuclides and tritium analytical results for 2022 waterborne samples were below the ODCM-required LLD similar to those reported in previous years. These results are further explained below.

| Plant: River Bend Station     | Year: 2022             | Page 19 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report |               |

#### 4.3.1 Surface Water Results

Samples were collected from one indicator and one control location and analyzed for gamma radionuclides and tritium. Tritium and gamma radionuclides were below detectable limits which is consistent with results seen in previous operational years. Therefore, the operation of River Bend Station had no definable impact on this waterborne pathway during 2022.

#### 4.3.2 Groundwater Results

Samples were collected from one indicator and one control location. Groundwater samples were analyzed for gamma radionuclides and tritium. Gamma radionuclides and tritium concentrations were below the LLD limits at the indicator and control locations. The operation of River Bend Station had no definable impact on this waterborne pathway during 2022.

#### 4.3.3 <u>Sediment Sample Results</u>

Sediment samples were collected from one indicator and one control location in 2022 and analyzed for gamma radionuclides. Gamma radionuclides were below the LLD limits at both indicator and control locations. River Bend Station operations had no significant impact on the environment or public by this waterborne pathway.

#### 4.4 Ingestion Sample Results

#### 4.4.1 Fish Sample Results

Fish samples were collected from one indicator and one control location and analyzed for gamma radionuclides. In 2022, gamma radionuclides were below detectable limits which are consistent with the preoperational monitoring period and operational results. Therefore, based on these measurements, River Bend Station operations had no significant radiological impact upon the environment or public by this ingestion pathway.

#### 4.4.2 Food Products Sample Results

The REMP has detected radionuclides prior to 1990 that are attributable to other sources. These include the radioactive plume release due to reactor core degradation at Chernobyl Nuclear Power Plant in 1986 and atmospheric weapons testing.

In 2022, food products samples were collected when available from one indicator and one control location and analyzed for gamma radionuclides. The 2022 levels remained undetectable, as has been the case in previous years. Therefore, based on these measurements, River Bend Station operations had no significant radiological impact upon the environment or public by this ingestion pathway.

| Plant: River Bend Station     | Year: 2022             | Page 20 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report |               |

#### 4.4.3 <u>Milk Sample Results</u>

In 2022 milk samples within five miles (8 km) of River Bend Station were unable to be collected due to the unavailability of milk-producing animals used for human consumption. The River Bend Station Technical Requirements Manual requires collection of milk samples if available commercially within 8 km (5 miles) of the plant. River Bend Station personnel collected food product samples to monitor the ingestion pathway, as specified in River Bend Station Technical Requirements Manual Table 3.12.1-1, because of milk unavailability. Food product sample results are in section 4.4.2.

#### 4.5 Land Use Census Results

The latest land use census (performed in 2022) did not identify any new locations that yielded a calculated dose or dose commitment greater than those currently calculated (see Table 5).

A garden census is not conducted pursuant to the footnote in the TRM (TLCO 3.12.2) that allows the sampling of broad leaf vegetation in the highest calculated average ground-level D/Q sector (Sector N) near site boundary in lieu of the garden census.

The land use census identified no changes in the new resident census.

There were no changes in the milk cows or food products in 2022.

| Plant: River Bend Station     | Year: 2022             | Page 21 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report |               |

#### Table 5: Land Use Census –2022 Nearest Residence And Milk Animal Within Five Miles

| Sector | Direction | Nearest<br>Residence                                   | Range<br>(Unit) | Nearest Milk Animal | Range<br>(Unit) | Comment |
|--------|-----------|--------------------------------------------------------|-----------------|---------------------|-----------------|---------|
| A      | N         | 5637 Hwy 61<br>St. Francisville, LA 70775              | 1.7             | -                   | -               | 2       |
| В      | NNE       | 4549 Old Hwy 61<br>St. Francisville, LA 70775          | 1.4             | -                   | -               | 2       |
| с      | NE        | 4553 Old Hwy 61<br>St. Francisville, LA 70775          | 1.5             | -                   | -               | 2       |
| D      | ENE       | 12657 Powell Station Rd.<br>St. Francisville, LA 70775 | 1.4             | -                   | -               | 2       |
| E      | E         | 4635 Hwy 61<br>St. Francisville, LA 70775              | 2.4             | -                   | -               | 2       |
| F      | ESE       | 12019 Fairview Way<br>Jackson, LA 70748                | 2.6             | -                   | -               | 2       |
| G      | SE        | 3319 Hwy 964<br>Jackson, LA 70748                      | 3.7             | -                   | -               | 2       |
| н      | SSE       | 11813 Powell Station Rd.<br>St. Francisville, LA 70775 | 1.7             | -                   | -               | 2       |
| J      | S         | 11649 Powell Station Rd.<br>St. Francisville, LA 70775 | 1.8             | -                   | -               | 2       |
| к      | SSW       | 8909 Hwy 981<br>New Roads, LA 70760                    | 6.6             | -                   | -               | 2       |
| L      | sw        |                                                        |                 | -                   | -               | 1, 2    |
| м      | wsw       | 8809 Hwy 981<br>New Roads, LA 70760                    | 5.1             | -                   | -               | 2       |
| N      | w         |                                                        |                 | -                   | -               | 1, 2    |
| Р      | WNW       | 10426 Old Field Rd.<br>St. Francisville, LA 70775      | 3.7             | -                   | -               | 2       |
| Q      | NW        | 9537 Hwy 965<br>St. Francisville, LA 70775             | 1.3             | -                   | -               | 2       |
| R      | NNW       | 9794 Hwy 965<br>St. Francisville, LA 70775             | 1.6             | 5 <b></b>           | -               | 2       |

| # | Comment                                                                                      |  |
|---|----------------------------------------------------------------------------------------------|--|
| 1 | No Residence was located within a five-mile (8 km) radius of River Bend Station 3.           |  |
| 2 | No Milk animals were found located within a five-mile (8 km) radius of River Bend Station 3. |  |

| Plant: River Bend Station     | Year: 2022             | Page 22 of 44 |
|-------------------------------|------------------------|---------------|
| Annual Radiological Environme | ental Operating Report |               |

#### 4.6 Interlaboratory Comparison Results

Attachment 3 contains result summary for Interlaboratory Comparison program for Teledyne Brown Engineering to fulfill the requirements of River Bend Station's Technical Requirements Manual 3.12.3.

#### 5.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

1. Table 6, Radiological Environmental Monitoring Program Summary, summarizes data for the 2022 REMP program.

| Plant: River Bend Station                 |                                                                |                    | Year                                                           | Year: 2022 Page 23 of 44                            |                                    |                                                         |                                                    |  |
|-------------------------------------------|----------------------------------------------------------------|--------------------|----------------------------------------------------------------|-----------------------------------------------------|------------------------------------|---------------------------------------------------------|----------------------------------------------------|--|
|                                           |                                                                | Annua              | I Radiological Enviro                                          | nmental Operation                                   | ng Report                          |                                                         |                                                    |  |
|                                           | Table 6: Radiological Environmental Monitoring Program Summary |                    |                                                                |                                                     |                                    |                                                         |                                                    |  |
| Sample Type<br>(Units)                    | Type / Number<br>of Analyses <sup>(1)</sup>                    | LLD <sup>(2)</sup> | Indicator Locations<br>Mean (F) <sup>(3)</sup><br>[Range]      | Location <sup>(4)</sup><br>[Highest Annual<br>Mean] | Mean (F) <sup>(3)</sup><br>[Range] | Control<br>Locations Mean<br>(F) <sup>(3)</sup> [Range] | Number of<br>Non Routine<br>Results <sup>(5)</sup> |  |
| Air Particulates<br>(pCi/m <sup>3</sup> ) | GB / 104                                                       | 0.01               | 0.019 (78/78)<br>[0.008 - 0.033]                               | AQS2<br>(5.8 km NW)                                 | 0.020 (26/26)<br>[0.012 - 0.033]   | 0.020 (26/26)<br>[0.012 - 0.030]                        | 0                                                  |  |
| Airborne lodine<br>(pCi/m <sup>3</sup> )  | I-131 / 104                                                    | 0.07               | < LLD                                                          | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |  |
| Indicator TLDs<br>(mR/Qtr)                | Gamma / 64                                                     | (6)                | 13.3 (64/64)<br>[10.2 - 16.6]                                  | TG1<br>(1.6 km SE)                                  | 16.0 (4/4)<br>[15.5 - 16.6]        | N/A                                                     | 0                                                  |  |
| Special Interest<br>TLDs (mR/Qtr)         | Gamma / 24                                                     | (6)                | 13.8 (24/24)<br>[12.1 - 16.1]                                  | TGS<br>(17.0 km SE)                                 | 15.5 (4/4)<br>[15.1 - 16.1]        | N/A                                                     | 0                                                  |  |
| Control TLDs<br>(mR/Qtr)                  | Gamma / 8                                                      | (6)                | N/A                                                            | TAC<br>(15.8 km N)                                  | 15.0 (4/4)<br>[14.2 - 15.4]        | 14.3 (8/8)<br>[13.1 - 15.4]                             | 0                                                  |  |
|                                           | H-3 / 8                                                        | 700                | < LLD                                                          | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |  |
|                                           | GS/8                                                           | 15                 |                                                                |                                                     |                                    |                                                         |                                                    |  |
|                                           | Mn-54                                                          | 15                 | < LLD                                                          | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |  |
|                                           | Co-58                                                          | 15                 |                                                                | N/A                                                 | N/A                                |                                                         | 0                                                  |  |
|                                           | FE-59                                                          | 30                 |                                                                | IN/A<br>N/A                                         |                                    |                                                         | 0                                                  |  |
| Surface Water                             | C0-60<br>Zp 65                                                 | 30                 |                                                                |                                                     |                                    |                                                         | 0                                                  |  |
| (pCi/L)                                   | Nh-95                                                          | 15                 |                                                                | N/A                                                 | N/A                                |                                                         | 0                                                  |  |
|                                           | 1-131                                                          | 15                 |                                                                | N/A                                                 | N/A                                |                                                         | 0                                                  |  |
|                                           | Zr-95                                                          | 30                 | <lld< td=""><td>N/A</td><td>N/A</td><td></td><td>0</td></lld<> | N/A                                                 | N/A                                |                                                         | 0                                                  |  |
|                                           | Cs-134                                                         | 15                 | < LLD                                                          | N/A                                                 | N/A                                | <lld< td=""><td>0</td></lld<>                           | 0                                                  |  |
|                                           | Cs-137                                                         | 18                 | < LLD                                                          | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |  |
|                                           | Ba-140                                                         | 60                 | < LLD                                                          | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |  |
|                                           | La-140                                                         | 15                 | < LLD                                                          | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |  |

| Plant: River Bend Station | Year: 2022                   | Page 24 of 44 |
|---------------------------|------------------------------|---------------|
| Annual Radiological En    | vironmental Operating Report |               |

| Table 6: Radiological | Environmental Monitoring | Program Summ | ary |  |
|-----------------------|--------------------------|--------------|-----|--|
|                       |                          |              |     |  |

| Sample Type<br>(Units) | Type / Number<br>of Analyses <sup>(1)</sup> | LLD <sup>(2)</sup> | Indicator Locations<br>Mean (F) <sup>(3)</sup><br>[Range]                         | Location <sup>(4)</sup><br>[Highest Annual<br>Mean] | Mean (F) <sup>(3)</sup><br>[Range] | Control<br>Locations Mean<br>(F) <sup>(3)</sup> [Range] | Number of<br>Non Routine<br>Results <sup>(5)</sup> |
|------------------------|---------------------------------------------|--------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|---------------------------------------------------------|----------------------------------------------------|
|                        | H-3/4                                       | 2000               | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
|                        | GS / 4<br>Mn-54                             | 15                 | <11 D                                                                             | N/A                                                 | N/A                                | <u.d< td=""><td>0</td></u.d<>                           | 0                                                  |
|                        | Co-58                                       | 15                 | < LLD                                                                             | N/A                                                 | N/A                                | <lld< td=""><td>0</td></lld<>                           | 0                                                  |
|                        | Fe-59                                       | 30                 | <lld< td=""><td>N/A</td><td>N/A</td><td><lld< td=""><td>0</td></lld<></td></lld<> | N/A                                                 | N/A                                | <lld< td=""><td>0</td></lld<>                           | 0                                                  |
| Croundurator           | Co-60                                       | 15                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
| Groundwater            | Zn-65                                       | 30                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
| (pci/c)                | Nb-95                                       | 15                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
|                        | <sup>*</sup> I-131                          | 15                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
|                        | Zr-95                                       | 30                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
|                        | Cs-134                                      | 15                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
|                        | Cs-137                                      | 18                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
| 2                      | Ba-140                                      | 60                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |
|                        | La-140                                      | 15                 | < LLD                                                                             | N/A                                                 | N/A                                | < LLD                                                   | 0                                                  |

| Plant: River Bend Station                                      |                                                                         |                                               |                                                             | Year                                                | Year: 2022 Page 25 of 44               |                                                                      |                                                    |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|--|--|--|
|                                                                | Annual Radiological Environmental Operating Report                      |                                               |                                                             |                                                     |                                        |                                                                      |                                                    |  |  |  |
| Table 6: Radiological Environmental Monitoring Program Summary |                                                                         |                                               |                                                             |                                                     |                                        |                                                                      |                                                    |  |  |  |
| Sample Type<br>(Units)                                         | Type / Number<br>of Analyses <sup>(1)</sup>                             | LLD <sup>(2)</sup>                            | Indicator Locations<br>Mean (F) <sup>(3)</sup><br>[Range]   | Location <sup>(4)</sup><br>[Highest Annual<br>Mean] | Mean (F) <sup>(3)</sup><br>[Range]     | Control<br>Locations Mean<br>(F) <sup>(3)</sup> [Range]              | Number of<br>Non Routine<br>Results <sup>(5)</sup> |  |  |  |
| Sediment<br>(pCi/kg dry)                                       | GS / 2<br>Cs-134<br>Cs-137                                              | 150<br>180                                    | < LLD<br>< LLD                                              | N/A<br>N/A                                          | N/A<br>N/A                             | < LLD<br>< LLD                                                       | 0                                                  |  |  |  |
| Fish<br>(pCi/kg wet)                                           | GS / 2<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Cs-134<br>Cs-137 | 130<br>130<br>260<br>130<br>260<br>130<br>150 | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A       | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | < LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD<br>< LLD | 0<br>0<br>0<br>0<br>0<br>0<br>0                    |  |  |  |
| Food Products<br>(pCi/kg wet)                                  | GS / 8<br>I-131<br>Cs-134<br>Cs-137                                     | 60<br>60<br>80 °                              | < LLD<br>< LLD<br>< LLD                                     | N/A<br>N/A<br>N/A                                   | N/A<br>N/A<br>N/A                      | < LLD<br>< LLD<br>< LLD                                              | 0<br>0<br>0                                        |  |  |  |

#### LEGEND:

<sup>(1)</sup> - GB = Gross beta; I-131 = Iodine-131; H-3 = Tritium; GS = Gamma scan.

 $^{(2)}$  - LLD = Required lower limit of detection based on River Bend Station TRM.

- <sup>(3)</sup> Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parenthesis (F).
- <sup>(4)</sup> Locations are specified (1) by name and (2) direction relative to reactor site.

<sup>(5)</sup> - Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten times the preoperational value for the location.

<sup>(6)</sup> - LLD is not defined in River Bend Station TRM.

| Plant: River Bend Station     | Year: 2022 | Page 26 of 44 |
|-------------------------------|------------|---------------|
| Annual Radiological Environme |            |               |

Page 1 of 2

Interlaboratory Comparison Program Results

| Table | 7: | Sample | <b>Deviations</b> | Table |
|-------|----|--------|-------------------|-------|
|-------|----|--------|-------------------|-------|

| Comment<br>No. | Sample<br>Media<br>Affected | Sample<br>Location              | Date       | Problem      | Evaluation / Actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-----------------------------|---------------------------------|------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | Air<br>Sample               | AR1<br>AQ1<br>AP1<br>AN1        | 07/19/2022 | Power Outage | During the performance of REMP-3, it was noted that air samplers at locations AR1, AQ1, AP1, and AN1 lost power for three hours and thirty-three minutes. This was caused by a loss of Grant Substation during a severe thunderstorm event. AR1, AQ1, and AP1 resumed normal operation after power restoration, and it was verified that sufficient sample volume was obtained for the period. Due to an unknown error, AN1 did not resume normal operation and an insufficient sample volume was collected for the period. The digital unit on the sampler was reset and it returned to normal operation with no further issues. These events will be documented in the 2022 AREOR as sample deviations. No further actions are needed at this time. (CR-RBS-2022-04115) |
| 2              | Air<br>Sample               | AGC<br>AR1<br>AQ1<br>AP1<br>AN1 | 08/04/2022 | Power Outage | During the performance of REMP-3, several air samplers logged power outages during the sample period. The sampler at location AGC logged a 0-minute power outage on 7/22/22 06:09. The samplers at locations AR1, AQ1, AP1, and AN1 logged power outages on 7/24/22 17:16 for a duration of 4 hours and 20 minutes. These temporary outages were caused by severe weather events. All samples obtained had sufficient sample volume to meet the required LLD for the period. These events will be reported in the 2022 AREOR as sample deviations. No further actions are needed at this time. (CR-RBS-2022-04467)                                                                                                                                                        |
| 3              | Air<br>Sample               | AR1<br>AQ1<br>AP1<br>AN1        | 09/13/2022 | Power Outage | During the performance of REMP-3 on 09/12/22, it was noted that REMP air samplers at locations AR1, AQ1, AP1, and AN1 experienced a loss of power on 09/01/22 2308. The duration of the power outage was approximately two hours and thirty-five minutes. This outage was caused by a loss of Grant Substation power documented previously in CR-RBS-2022-5082. It was verified that sufficient sample volumes were obtained to meet the required LLD. This event will be reported in the 2022 AREOR as a sample deviation. No further actions are needed at this time. (CR-RBS-2022-05300)                                                                                                                                                                               |

| Plant: River Bend Station     | Year: 2022 | Page 27 of 44 |
|-------------------------------|------------|---------------|
| Annual Radiological Environme |            |               |

Page 2 of 2

Interlaboratory Comparison Program Results

| Comment<br>No. | Sample<br>Media<br>Affected | Sample<br>Location | Date       | Problem                                  | Evaluation / Actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|-----------------------------|--------------------|------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4              | Air<br>Sample               | AGC                | 10/11/2022 | Power Outage                             | During the performance of REMP-3, it was discovered that the REMP air<br>sampler at location AGC logged a power outage on 09/26/22 1157 for a duration<br>of three hours and fifty-five minutes. The air sampler was operating normally on<br>discovery of the outage event, and it was verified that a sufficient sample<br>volume was obtained to meet the required LLD. This condition will be reported<br>in the 2022 AREOR as a sample deviation. No further actions are needed at<br>this time. (CR-RBS-2022-05853)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5              | TLD                         | TAC                | 02/23/2023 | TLD not<br>processed in<br>timely manner | During the performance of the REMP-2 surveillance, it was identified that the result for one control TLD, #3740 for location TAC, was missing from the vendor processing report. The vendor noted that TLD#3276 was received instead. Further investigation revealed that the vendor performing the TLD collection/deployment for REMP-1 accidentally confused the 4th Qtr. 2022 TAC TLD with the 1st Qtr. 2023 TLD. This resulted in the 4th Qtr. TLD being redeployed at location TAC and the unexposed TLD was returned to the vendor for processing in its place. Results for this TLD will not be available during the performance of REMP-2, WO-53021025.<br>No other actions are required except documentation by this condition report as an Environmental Deviation to be included in the Annual Radiological Environmental Operating Report for year 2022. Such deviations are permitted in accordance with RBS TRM, Table 3.12.1-1, note (a). (CR-RBS-2023-01696) NOTE: TLD #3740 was retrieved and processed the following quarter and the reported result is the 90-day normalized dose for the period. |

| Plant: River Bend Station                          | Year: 2022 | Page 28 of 44 |  |  |  |  |  |
|----------------------------------------------------|------------|---------------|--|--|--|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |  |  |  |

Page 1 of 11

# Monitoring Results Tables

| Ana        | alysis: Gros | ss Beta              |                      | Units: pCi/m <sup>3</sup>          |                      |
|------------|--------------|----------------------|----------------------|------------------------------------|----------------------|
| Start Date | End Date     | AN1<br>(Indicator)   | AP1<br>(Indicator)   | AQS2 <sup>(1)</sup><br>(Indicator) | AGC<br>(Control)     |
|            |              | <u>0.01</u>          | <u>0.01</u>          | <u>0.01</u>                        | <u>0.01</u>          |
| 01/04/2022 | 01/18/2022   | 0.016                | 0.020                | 0.024                              | 0.023                |
| 01/18/2022 | 01/31/2022   | 0.019                | 0.023                | 0.016                              | 0.023                |
| 01/31/2022 | 02/14/2022   | 0.021                | 0.022                | 0.021                              | 0.019                |
| 02/14/2022 | 02/28/2022   | 0.015                | 0.016                | 0.017                              | 0.017                |
| 02/28/2022 | 03/14/2022   | 0.019                | 0.019                | 0.022                              | 0.022                |
| 03/14/2022 | 03/28/2022   | 0.013                | 0.012                | 0.014                              | 0.013                |
| 03/28/2022 | 04/11/2022   | 0.017                | 0.016                | 0.020                              | 0.021                |
| 04/11/2022 | 04/25/2022   | 0.017                | 0.018                | 0.019                              | 0.019                |
| 04/25/2022 | 05/09/2022   | 0.017                | 0.021                | 0.018                              | 0.015                |
| 05/09/2022 | 05/23/2022   | 0.022                | 0.020                | 0.019                              | 0.021                |
| 05/23/2022 | 06/06/2022   | 0.018                | 0.017                | 0.018                              | 0.020                |
| 06/06/2022 | 06/20/2022   | 0.015                | 0.016                | 0.013                              | 0.014                |
| 06/20/2022 | 07/05/2022   | 0.016                | 0.016                | 0.017                              | 0.016                |
| 07/05/2022 | 07/19/2022   | 0.008 <sup>(2)</sup> | 0.013 <sup>(2)</sup> | 0.014                              | 0.014                |
| 07/19/2022 | 08/02/2022   | 0.010                | 0.013                | 0.014                              | 0.012                |
| 08/02/2022 | 08/15/2022   | 0.011 <sup>(3)</sup> | 0.013 <sup>(3)</sup> | 0.012                              | 0.013 <sup>(3)</sup> |
| 08/15/2022 | 08/29/2022   | 0.012                | 0.010                | 0.012                              | 0.013                |
| 08/29/2022 | 09/12/2022   | 0.015                | 0.014                | 0.014                              | 0.018                |
| 09/12/2022 | 09/26/2022   | 0.032 <sup>(4)</sup> | 0.032 <sup>(4)</sup> | 0.033                              | 0.030                |
| 09/26/2022 | 10/10/2022   | 0.029                | 0.031                | 0.028                              | 0.029                |
| 10/10/2022 | 10/24/2022   | 0.022                | 0.032                | 0.031                              | 0.027 <sup>(5)</sup> |
| 10/24/2022 | 11/07/2022   | 0.028                | 0.025                | 0.026                              | 0.028                |
| 11/07/2022 | 11/21/2022   | 0.027                | 0.023                | 0.028                              | 0.025                |
| 11/21/2022 | 12/05/2022   | 0.026                | 0.020                | 0.029                              | 0.025                |
| 12/05/2022 | 12/20/2022   | 0.016                | 0.017                | 0.016                              | 0.013                |
| 12/20/2022 | 01/03/2023   | 0.015                | 0.013                | 0.016                              | 0.017                |

<sup>(1)</sup> Station with highest annual mean.

<sup>(2)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #1

<sup>(3)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #2

<sup>(4)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #3

<sup>(5)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #4

| <br>Plant: River Bend Station   | Year: 2022       | Page 29 of 44 |
|---------------------------------|------------------|---------------|
| Annual Radiological Environment | al Operating Rep | ort           |
|                                 |                  | 0.111         |

Page 2 of 11

# Monitoring Results Tables

|            | Analysis: I | -131                   | Units: pCi/m <sup>3</sup> |                     |                        |  |
|------------|-------------|------------------------|---------------------------|---------------------|------------------------|--|
| Start Date | End Date    | AN1<br>(Indicator)     | AP1<br>(Indicator)        | AQS2<br>(Indicator) | AGC<br>(Control)       |  |
|            |             | <u>0.07</u>            | <u>0.07</u>               | <u>0.07</u>         | <u>0.07</u>            |  |
| 01/04/2022 | 01/18/2022  | < 0.008                | < 0.020                   | < 0.019             | < 0.008                |  |
| 01/18/2022 | 01/31/2022  | < 0.013                | < 0.023                   | < 0.010             | < 0.024                |  |
| 01/31/2022 | 02/14/2022  | < 0.010                | < 0.017                   | < 0.017             | < 0.007                |  |
| 02/14/2022 | 02/28/2022  | < 0.012                | < 0.023                   | < 0.023             | < 0.010                |  |
| 02/28/2022 | 03/14/2022  | < 0.010                | < 0.023                   | < 0.024             | < 0.010                |  |
| 03/14/2022 | 03/28/2022  | < 0.013                | < 0.015                   | < 0.015             | < 0.007                |  |
| 03/28/2022 | 04/11/2022  | < 0.013                | < 0.018                   | < 0.019             | < 0.008                |  |
| 04/11/2022 | 04/25/2022  | < 0.008                | < 0.018                   | < 0.019             | < 0.012                |  |
| 04/25/2022 | 05/09/2022  | < 0.006                | < 0.012                   | < 0.012             | < 0.006                |  |
| 05/09/2022 | 05/23/2022  | < 0.011                | < 0.017                   | < 0.017             | < 0.007                |  |
| 05/23/2022 | 06/06/2022  | < 0.008                | < 0.019                   | < 0.019             | < 0.015                |  |
| 06/06/2022 | 06/20/2022  | < 0.023                | < 0.023                   | < 0.010             | < 0.023                |  |
| 06/20/2022 | 07/05/2022  | < 0.006                | < 0.014                   | < 0.006             | < 0.014                |  |
| 07/05/2022 | 07/19/2022  | < 0.035 <sup>(1)</sup> | < 0.015 <sup>(1)</sup>    | < 0.015             | < 0.022                |  |
| 07/19/2022 | 08/02/2022  | < 0.011                | < 0.017                   | < 0.017             | < 0.007                |  |
| 08/02/2022 | 08/15/2022  | < 0.010 <sup>(2)</sup> | < 0.022 <sup>(2)</sup>    | < 0.022             | < 0.012 <sup>(2)</sup> |  |
| 08/15/2022 | 08/29/2022  | < 0.015                | < 0.015                   | < 0.006             | < 0.010                |  |
| 08/29/2022 | 09/12/2022  | < 0.009                | < 0.020                   | < 0.020             | < 0.009                |  |
| 09/12/2022 | 09/26/2022  | < 0.014 <sup>(3)</sup> | < 0.018 <sup>(3)</sup>    | < 0.018             | < 0.008                |  |
| 09/26/2022 | 10/10/2022  | < 0.020                | < 0.020                   | < 0.009             | < 0.011                |  |
| 10/10/2022 | 10/24/2022  | < 0.016                | < 0.018                   | < 0.018             | < 0.008 <sup>(4)</sup> |  |
| 10/24/2022 | 11/07/2022  | < 0.014                | < 0.019                   | < 0.019             | < 0.008                |  |
| 11/07/2022 | 11/21/2022  | < 0.010                | < 0.023                   | < 0.023             | < 0.007                |  |
| 11/21/2022 | 12/05/2022  | < 0.024                | < 0.024                   | < 0.011             | < 0.010                |  |
| 12/05/2022 | 12/20/2022  | < 0.016                | < 0.009                   | < 0.020             | < 0.021                |  |
| 12/20/2022 | 01/03/2023  | < 0.007                | < 0.016                   | < 0.017             | < 0.007                |  |

#### Table 9: Radioiodine Cartridge Data Table

<sup>(1)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #1

<sup>(2)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #2

<sup>(3)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #3

<sup>(4)</sup> See Attachment 1, Table 7, Sample Deviations Table, Comment #4

| Plant: River Bend Station | Year: 2022              | Page 30 of 44 |
|---------------------------|-------------------------|---------------|
| Annual Radiological Envir | onmental Operating Repo | ort           |

Page 3 of 11

# Monitoring Results Tables

| Ana                | lysis: Gamma D              | ose                         | U                           | nits: mrem/Std.             | Qtr.                |
|--------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|
| Station            | 1 <sup>st</sup> Qtr<br>2022 | 2 <sup>nd</sup> Qtr<br>2022 | 3 <sup>rd</sup> Qtr<br>2022 | 4 <sup>th</sup> Qtr<br>2022 | Annual<br>Mean 2022 |
| TA1                | 11.0                        | 10.6                        | 11.0                        | 10.5                        | 10.8                |
| TB1                | 14.3                        | 15.0                        | 15.0                        | 14.3                        | 14.7                |
| TC1                | 15.3                        | 15.3                        | 15.6                        | 15.1                        | 15.3                |
| TD1                | 15.2                        | 14.8                        | 15.7                        | 14.7                        | 15.1                |
| TE1                | 13.3                        | 13.8                        | 14.7                        | 13.4                        | 13.8                |
| TF1                | 13.8                        | 14.3                        | 14.2                        | 13.7                        | 14.0                |
| TG1 <sup>(1)</sup> | 15.7                        | 15.5                        | 16.6                        | 16.1                        | 16.0                |
| TH1                | 12.8                        | 12.1                        | 12.5                        | 11.8                        | 12.3                |
| TJ1                | 13.2                        | 12.8                        | 13.4                        | 12.9                        | 13.1                |
| TK1                | 13.3                        | 13.3                        | 14.4                        | 13.2                        | 13.6                |
| TL1                | 14.1                        | 14.2                        | 14.1                        | 13.8                        | 14.1                |
| TM1                | 11.6                        | 11.7                        | 12.1                        | 11.5                        | 11.7                |
| TN1                | 14.0                        | 14.1                        | 14.5                        | 14.1                        | 14.2                |
| TP1                | 14.8                        | 12.9                        | 12.9                        | 12.2                        | 13.2                |
| TQ1                | 10.5                        | 10.7                        | 11.1                        | 10.7                        | 10.7                |
| TR1                | 10.4                        | 10.5                        | 11.1                        | 10.2                        | 10.5                |

ningscont Do -----.

<sup>(1)</sup> Indicator station with highest annual mean.

| Plant: River Bend Station                          | Year: 2022 | Page 31 of 44 |  |  |  |
|----------------------------------------------------|------------|---------------|--|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |  |

Page 4 of 11

# Monitoring Results Tables

| Analysis: Gamma Dose |                             |                             | U                           | Units: mrem/Std. Qtr.       |                     |  |  |  |
|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|--|--|--|
| Station              | 1 <sup>st</sup> Qtr<br>2022 | 2 <sup>nd</sup> Qtr<br>2022 | 3 <sup>rd</sup> Qtr<br>2022 | 4 <sup>th</sup> Qtr<br>2022 | Annual<br>Mean 2022 |  |  |  |
| TCS                  | 12.4                        | 12.1                        | 12.9                        | 12.6                        | 12.5                |  |  |  |
| TGS <sup>(1)</sup>   | 15.4                        | 15.1                        | 16.1                        | 15.3                        | 15.5                |  |  |  |
| TNS                  | 13.3                        | 12.6                        | 13.9                        | 13.0                        | 13.2                |  |  |  |
| TRS                  | 14.2                        | 14.0                        | 14.3                        | 13.8                        | 14.1                |  |  |  |
| TQS1                 | 14.9                        | 14.8                        | 15.5                        | 14.3                        | 14.9                |  |  |  |
| TQS2                 | 12.6                        | 12.2                        | 13.1                        | 12.3                        | 12.5                |  |  |  |

# Table 11: Thermoluminescent Dosimeters – Special Interest Areas

<sup>(1)</sup> Special interest station with highest annual mean.

| Analysis: Gamma Dose |                             |                             | Ui                          | nits: mrem/Std.             | Qtr.                |
|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|
| Station              | 1 <sup>st</sup> Qtr<br>2022 | 2 <sup>nd</sup> Qtr<br>2022 | 3 <sup>rd</sup> Qtr<br>2022 | 4 <sup>th</sup> Qtr<br>2022 | Annual<br>Mean 2022 |
| TAC <sup>(1)</sup>   | 15.4                        | 15.0                        | 15.4                        | 14.2                        | 15.0                |
| TEC                  | 13.2                        | 13.1                        | 14.2                        | 13.6                        | 13.5                |

# Table 12: Thermoluminescent Dosimeters – Control

<sup>(1)</sup> Control station with highest annual mean.

| Plant: River Bend Station |                                                    |            |           |             |           |             | Year      | 2022          | Page 3    | 2 of 44   |              |           |               |           |
|---------------------------|----------------------------------------------------|------------|-----------|-------------|-----------|-------------|-----------|---------------|-----------|-----------|--------------|-----------|---------------|-----------|
|                           | Annual Radiological Environmental Operating Report |            |           |             |           |             |           |               |           |           |              |           |               |           |
| ŀ                         | Attachment                                         | 2          |           |             |           |             |           |               |           |           |              | Page      | e 5 of 11     |           |
|                           |                                                    |            |           |             | N         | lonitoring  | Results 1 | <b>Fables</b> |           |           |              |           |               |           |
|                           |                                                    |            |           |             | Table     | e 13: Surfa | ace Water | – Gamma       | 1         |           |              |           |               |           |
| ÷                         | a n                                                | Analy      | sis: Gamn | na Isotopic | Sc.       | 19          |           |               | e).       |           | Units: pCi/l |           | 10 - 202 - 10 |           |
| Location                  | Start Date                                         | End Date   | Mn-54     | Co-58       | Fe-59     | Co-60       | Zn-65     | Nb-95         | I-131     | Zr-95     | Cs-134       | Cs-137    | Ba-140        | La-140    |
| RE                        | QUIRED LLC                                         | •          | <u>15</u> | <u>15</u>   | <u>30</u> | <u>15</u>   | <u>30</u> | <u>15</u>     | <u>15</u> | <u>30</u> | <u>15</u>    | <u>18</u> | <u>60</u>     | <u>15</u> |
| SWD<br>(Indicator)        | 02/09/2022                                         | 02/09/2022 | < 7.20    | < 7.93      | < 15.1    | < 8.82      | < 12.6    | < 6.75        | < 11.6    | < 12.5    | < 7.81       | < 9.71    | < 37.1        | < 9.80    |
| SWU<br>(Control)          | 02/09/2022                                         | 02/09/2022 | < 7.96    | < 7.98      | < 15.3    | < 5.52      | < 14.5    | < 7.19        | < 13.7    | < 13.5    | < 6.39       | < 6.07    | < 29.2        | < 12.1    |
| SWD<br>(Indicator)        | 06/03/2022                                         | 06/03/2022 | < 5.21    | < 7.21      | < 13.2    | < 6.03      | < 8.40    | < 7.31        | < 8.84    | < 11.9    | < 6.77       | < 5.73    | < 28.1        | < 11.1    |
| SWU<br>(Control)          | 06/03/2022                                         | 06/03/2022 | < 6.29    | < 6.11      | < 14.9    | < 5.55      | < 13.5    | < 7.30        | < 8.18    | < 11.7    | < 6.36       | < 7.17    | < 26.9        | < 11.1    |
| SWD<br>(Indicator)        | 08/15/2022                                         | 08/15/2022 | < 1.38    | < 1.66      | < 3.42    | < 1.48      | < 2.87    | < 1.76        | < 14.8    | < 2.96    | < 1.59       | < 1.37    | < 20.9        | < 7.20    |
| SWU<br>(Control)          | 08/15/2022                                         | 08/15/2022 | < 1.51    | < 1.51      | < 4.07    | < 1.48      | < 3.02    | < 1.73        | < 14.3    | < 3.09    | < 1.49       | < 1.40    | < 20.9        | < 7.77    |
| SWD<br>(Indicator)        | 11/02/2022                                         | 11/02/2022 | < 2.62    | < 2.58      | < 5.68    | < 2.74      | < 5.26    | < 2.91        | < 8.47    | < 4.86    | < 3.15       | < 2.55    | < 18.9        | < 7.18    |
| SWU<br>(Control)          | 11/02/2022                                         | 11/02/2022 | < 2.82    | < 2.56      | < 6.11    | < 3.39      | < 6.05    | < 2.74        | < 8.10    | < 5.08    | < 2.83       | < 2.76    | < 19.1        | < 6.77    |

| Plant: River Bend Station | Year: 2022      | Page 33 of 44 |
|---------------------------|-----------------|---------------|
| Annual Radiological Envi  | ronmental Opera | ting Report   |

Page 6 of 11

# Monitoring Results Tables

| Analysis:       | H-3        | Units: p   | Ci/L  |
|-----------------|------------|------------|-------|
| Location        | Start Date | End Date   | H-3   |
|                 |            |            | 2000  |
| SWD (Indicator) | 02/09/2022 | 02/09/2022 | < 525 |
| SWU (Control)   | 02/09/2022 | 02/09/2022 | < 536 |
| SWD (Indicator) | 06/03/2022 | 06/03/2022 | < 534 |
| SWU (Control)   | 06/03/2022 | 06/03/2022 | < 534 |
| SWD (Indicator) | 08/15/2022 | 08/15/2022 | < 568 |
| SWU (Control)   | 08/15/2022 | 08/15/2022 | < 588 |
| SWD (Indicator) | 11/02/2022 | 11/02/2022 | < 583 |
| SWU (Control)   | 11/02/2022 | 11/02/2022 | < 582 |

# Table 14: Surface Water – Tritium

| Plant: River Bend Station                          | Year: 2022 | Page 34 of 44 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

Monitoring Results Tables

Page 7 of 11

Analysis: Gamma Isotopic Units: pCi/L Collection Cs-134 Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 1-131 Zr-95 Cs-137 Ba-140 La-140 Location Date REQUIRED LLD -> 15 <u>15</u> <u>15</u> <u>30</u> <u>30</u> 15 <u>15</u> <u>30</u> <u>15</u> <u>18</u> <u>60</u> <u>15</u> WD (Indicator) 05/26/2022 < 5.31 < 4.84 < 11.5 < 5.85 < 9.95 < 32.6 < 5.68 < 13.8 < 7.79 < 5.52 < 5.85 < 9.99 WU (Control) 05/26/2022 < 5.71 < 6.88 < 17.6 < 6.63 < 10.8 < 7.16 < 14.2 < 11.9 < 6.56 < 39.8 < 6.54 < 14.4 10/10/2022 < 8.18 WD (Indicator) < 8.69 < 15.8 < 9.86 < 21.5 < 9.93 < 10.9 < 14.9 < 8.95 < 9.71 < 37.4 < 9.71 WU (Control) 10/10/2022 < 7.49 < 8.64 < 5.47 < 15.2 < 8.41 < 14.0 < 9.59 < 10.3 < 12.5 < 8.55 < 8.06 < 28.3

#### Table 15: Groundwater – Gamma

| Plant: River Bend Station                          | Year: 2022 | Page 35 of 44 |  |  |  |  |
|----------------------------------------------------|------------|---------------|--|--|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |  |  |

Page 8 of 11

# Monitoring Results Tables

| Analysis: H-3  |            | Units           | : pCi/L |  |  |  |
|----------------|------------|-----------------|---------|--|--|--|
| Location       | Start Date | End Date        | H-3     |  |  |  |
|                |            | REQUIRED LLD -> | 2000    |  |  |  |
| WD (Indicator) | 05/26/2022 | 05/26/2022      | < 540   |  |  |  |
| WU (Control)   | 05/26/2022 | 05/26/2022      | < 522   |  |  |  |
| WD (Indicator) | 10/10/2022 | 10/10/2022      | < 463   |  |  |  |
| WU (Control)   | 10/10/2022 | 10/10/2022      | < 470   |  |  |  |

# Table 16: Groundwater – Tritium

| Plant: River Bend Station                          | Year: 2022 | Page 36 of 44 |  |  |  |  |
|----------------------------------------------------|------------|---------------|--|--|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |  |  |

Page 9 of 11

# Monitoring Results Tables

| Analysis: Ga     | nma Isotopic    | Units: pCi/kg (dry) |            |  |
|------------------|-----------------|---------------------|------------|--|
| Location         | Collection Date | Cs-134              | Cs-137     |  |
|                  | REQUIRED LLD -> | <u>150</u>          | <u>180</u> |  |
| SEDD (Indicator) | 11/02/2022      | < 78.93             | < 53.07    |  |
| SEDU (Control)   | 11/02/2022      | < 62.43             | < 58.16    |  |

# Table 17: Sediment - Gamma

| Plant: River Bend Station     | Year: 2022         | Page 37 of 44 |
|-------------------------------|--------------------|---------------|
| Annual Radiological Environme | ental Operating Re | eport         |

Page 10 of 11

# Monitoring Results Tables

| Ar                | nalysis: Gam       | Units: pCi/kg (wet) |            |            |            |            |            |            |
|-------------------|--------------------|---------------------|------------|------------|------------|------------|------------|------------|
| Location          | Collection<br>Date | Mn-54               | Co-58      | Fe-59      | Co-60      | Zn-65      | Cs-134     | Cs-137     |
| REQUIRED LLD ->   |                    | <u>130</u>          | <u>130</u> | <u>260</u> | <u>130</u> | <u>260</u> | <u>130</u> | <u>150</u> |
| FD<br>(Indicator) | 09/20/2022         | < 58.81             | < 43.19    | < 119.9    | < 68.35    | < 99.44    | < 48.95    | < 55.29    |
| FU<br>(Control)   | 09/20/2022         | < 58.04             | < 64.93    | < 134.3    | < 76.24    | < 159.9    | < 74.16    | < 68.56    |

Table 18: Fish - Gamma

| Plant: River Bend Station   | Year: 2022            | Page 38 of 44 |
|-----------------------------|-----------------------|---------------|
| Annual Radiological Environ | mental Operating Repo | rt            |

Page 11 of 11

# Monitoring Results Tables

| Analysis:       | Gamma Isotopic  |           | Units: pCi/kg (wet) |           |  |  |  |  |  |
|-----------------|-----------------|-----------|---------------------|-----------|--|--|--|--|--|
| Location        | Collection Date | I-131     | Cs-134              | Cs-137    |  |  |  |  |  |
|                 |                 | <u>60</u> | <u>60</u>           | <u>80</u> |  |  |  |  |  |
| GN1 (Indicator) | 02/10/2022      | < 28.16   | < 31.43             | < 30.90   |  |  |  |  |  |
| GQC (Control)   | 02/09/2022      | < 30.32   | < 32.86             | < 28.70   |  |  |  |  |  |
| GN1 (Indicator) | 04/26/2022      | < 35.63   | < 34.32             | < 24.69   |  |  |  |  |  |
| GQC (Control)   | 04/26/2022      | < 25.98   | < 22.01             | < 19.41   |  |  |  |  |  |
| GN1 (Indicator) | 08/03/2022      | < 28.75   | < 26.53             | < 26.79   |  |  |  |  |  |
| GQC (Control)   | 08/03/2022      | < 21.65   | < 16.06             | < 21.17   |  |  |  |  |  |
| GN1 (Indicator) | 11/02/2022      | < 29.80   | < 12.85             | < 11.60   |  |  |  |  |  |
| GQC (Control)   | 11/02/2022      | < 35.49   | < 12.59             | < 12.13   |  |  |  |  |  |

# Table 19: Food Products - Gamma

| Plant: River Bend Station     | Year: 2022            | Page 39 of 44 |
|-------------------------------|-----------------------|---------------|
| Annual Radiological Environme | ntal Operating Report |               |

Page 1 of 6

#### Interlaboratory Comparison Program Results

#### 1.0 Summary

For the Teledyne Brown Engineering (TBE) laboratory, 142 out of 150 analyses performed met the specified acceptance criteria. Eight analyses did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program. *NOTE: Two analyses (soil for Tc-99 and U-238) that did not meet acceptance criteria was performed for TBE information and is not on the list of required ICP analyses.* 

Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

- The Analytics March 2022 AP Ce-141 result was evaluated as Not Acceptable. The reported value for Ce-141 was 60.9 pCi and the known result was 42.0 pCi/L (1.45 ratio of reported result vs. known; TBE's internal acceptance range is 0.70 - 1.30). This sample was used as the workgroup duplicate with a result of 45.7 (109% of known) and was also counted on a different detector with a result of 50.9 (121% of known). This was TBE's first failure for AP Ce-141. (NCR 22-04)
- 2. The MAPEP February 2022 Urine U-234 & U-238 results were evaluated as Not Acceptable. TBE's reported values of 0.142 and 0.0254 were above the known upper ranges of 0.0096 and 0.0134 respectively for U-234 and U-238. These spiked values were below TBE's typical MDC for urine client samples. The samples were re-prepped using a larger sample aliquot and counted for 60 hours as opposed to 48 hours. The recount results were 0.00732 for U-234 and 0.0119 for U-238 (both within acceptable range). MAPEP urine samples will be flagged to use a larger sample aliquot and counting time than typical client samples. MAPEP did not include any urine cross-check samples in August. (NCR 22-05)
- 3. The ERA MRAD September 2022 AP Pu-238 was evaluated as Not Acceptable. The reported value was 38.8 pCi and the known result was 29.9 (acceptance range 22.6 – 36.7). The AP filter was cut in half prior to digestion (shared with Fe-55) but should have been complete digested together and aliquoted afterwards like typical client samples. This is the first failure for AP Pu-238. (NCR 22-19)
- 4. The ERA October 2022 water Uranium result was evaluated as Not Acceptable. The reported value was 10.54 pCi/L and the known was 8.53 (acceptance range 6.60 – 9.88) or 124% of the known (acceptable for TBE QC). The 2-sigma error was 3.2, placing the reported result well within the acceptable range. This sample was used as the workgroup duplicate with a result of 8.2 +/- 2.9 pCi/L (also within the acceptable range). All other QA was reviewed with no anomalies. (NCR 22-20)

| Plant: River Bend Station | Year: 2022 | Page 40 of 44 |
|---------------------------|------------|---------------|
|                           |            |               |

### Annual Radiological Environmental Operating Report

Page 2 of 6

# Attachment 3Interlaboratory Comparison Program Results5.The Analytics AP Co-60 result was evaluated as Not Accepta<br/>value was 207 pCi and the known was 147 (141% of the known

- . The Analytics AP Co-60 result was evaluated as Not Acceptable. The reported value was 207 pCi and the known was 147 (141% of the known). TBE's internal QC acceptance is 70 130%. All QA was reviewed with no anomalies. This sample was used as the workgroup duplicate and counted on a different detector with a result of 167 pCi (114% of the known). This is the first failure for AP Co-60 average result ratio compared to the known is 109%. (NCR 22-21)
- 6. The MAPEP August 2022 water Tc-99 result was evaluated as Not Acceptable. The reported value was 1.86 +/- 0.414 Bq/L for this "false positive" test. The evaluation of the submitted result to the 3 times the uncertainty indicated a slight positive. This sample was used as the workgroup duplicate with a result of 0.88 +/- 0.374 Bq/L. All QC was reviewed, and no anomalies found. This is the first unacceptable since the resumption of reporting water Tc-99 for the 3rd quarter of 2020. TBE to known ratios have ranged from 94-109% during this time. (NCR 22-22) The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

| Pla        | Plant: River Bend Station |           |          |          |                   |                               | Page 41 of 44                       |                           |  |
|------------|---------------------------|-----------|----------|----------|-------------------|-------------------------------|-------------------------------------|---------------------------|--|
|            | Annua                     | I Radiolo | ogical E | nviror   | mental C          | Operating                     | Report                              |                           |  |
| At         | achment 3                 |           |          |          |                   |                               | Page 3 of 6                         |                           |  |
|            | Table 20: A               | alytics E | nvironme | ental Ra | dioactivity       | Cross Che                     | ock Program                         |                           |  |
|            | Te                        | edyne Bro | own Eng  | neering  | Environm          | ental Servi                   | Ces                                 |                           |  |
| Month/Year | Identification<br>Number  | Matrix    | Nuclide  | Units    | Reported<br>Value | Known<br>Value <sup>(a)</sup> | Ratio of TBE to<br>Analytics Result | Evaluation <sup>(b)</sup> |  |
| March 2022 | E13706                    | Milk      | Sr-89    | pCi/L    | 80.3              | 96.8                          | 0.83                                | А                         |  |
|            |                           |           | Sr-90    | pCi/L    | 12.7              | 12.6                          | 1.01                                | Α                         |  |
|            | E13707                    | Milk      | Ce-141   | pCi/L    | 62.3              | 65                            | 0.96                                | А                         |  |
|            |                           |           | Co-58    | pCi/L    | 158               | 164                           | 0.96                                | Α                         |  |
|            |                           |           | Co-60    | pCi/L    | 286               | 302                           | 0.95                                | Α                         |  |
|            |                           |           | Cr-51    | pCi/L    | 314               | 339                           | 0.93                                | А                         |  |
|            |                           |           | Cs-134   | pCi/L    | 155               | 182                           | 0.85                                | А                         |  |
|            |                           |           | Cs-137   | pCi/L    | 210               | 223                           | 0.94                                | А                         |  |
|            |                           |           | Fe-59    | pCi/L    | 211               | 185                           | 1.14                                | А                         |  |
|            |                           |           | I-131    | pCi/L    | 88.0              | 96.7                          | 0.91                                | Α                         |  |
|            |                           |           | Mn-54    | pCi/L    | 169               | 164                           | 1.03                                | Α                         |  |
|            |                           |           | Zn-65    | pCi/L    | 238               | 246                           | 0.97                                | Α                         |  |
|            | E13708                    | Charcoal  | I-131    | рСі      | 79.9              | 87.1                          | 0.92                                | А                         |  |
|            | E13709                    | AP        | Ce-141   | рСі      | 60.9              | 42.0                          | 1.45                                | N <sup>(1)</sup>          |  |
|            |                           |           | Co-58    | рСі      | 118               | 107                           | 1.11                                | Α                         |  |
|            |                           |           | Co-60    | рСі      | 218               | 196                           | 1.11                                | Α                         |  |
|            |                           |           | Cr-51    | рСі      | 251               | 221                           | 1.14                                | А                         |  |
|            |                           |           | Cs-134   | рСі      | 129               | 118                           | 1.09                                | А                         |  |
|            |                           |           | Cs-137   | рСі      | 156               | 145.0                         | 1.07                                | А                         |  |
|            |                           |           | Fe-59    | рСі      | 124               | 120.0                         | 1.03                                | А                         |  |
|            |                           |           | Mn-54    | рСі      | 120               | 107                           | 1.12                                | А                         |  |
|            |                           |           | Zn-65    | рСі      | 162               | 160                           | 1.01                                | Α                         |  |
|            | E13710                    | Soil      | Ce-141   | pCi/g    | 0.123             | 0.103                         | 1.19                                | А                         |  |
|            |                           |           | Co-58    | pCi/g    | 0.254             | 0.263                         | 0.97                                | А                         |  |
|            |                           |           | Co-60    | pCi/g    | 0.493             | 0.483                         | 1.02                                | Α                         |  |
|            |                           |           | Cr-51    | pCi/g    | 0.603             | 0.543                         | 1.11                                | Α                         |  |
|            |                           |           | Cs-134   | pCi/g    | 0.268             | 0.292                         | 0.92                                | Α                         |  |
|            |                           |           | Cs-137   | pCi/g    | 0.399             | 0.431                         | 0.93                                | Α                         |  |
|            |                           |           | Fe-59    | pCi/g    | 0.320             | 0.296                         | 1.08                                | Α                         |  |
|            |                           |           | Mn-54    | pCi/g    | 0.263             | 0.263                         | 1.00                                | Α                         |  |
|            |                           |           | Zn-65    | pCi/g    | 0.407             | 0.395                         | 1.03                                | Α                         |  |
|            | E13711                    | AP        | Sr-89    | рСі      | 83.2              | 97.4                          | 0.85                                | А                         |  |
|            |                           |           | Sr-90    | рСі      | 12.7              | 12.7                          | 1.00                                | Α                         |  |

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

(1) See NCR 22-04

| Annual Radiological Environmental Operating Report           Attachment 3           Page 4 of 6           Table 20: Analytics Environmental Radioactivity Cross Check Program<br>Indextrement Engineering Environmental Services           Month/Year         Identification<br>Number         Matrix         Nuclide         Units         Tell<br>Reported<br>Value         Known<br>Value         Ratio of TBE to<br>Analytics Result         Evaluation (%)           September 2022         E13712         Milk         Sr-99         pCi/L         7.1.1         98.1         0.80         A           E13713         Milk         Ce-141         pCi/L         1.48         161         0.92         A           Co-580         pCi/L         1.78         189         0.94         A           Co-590         pCi/L         229         260         0.88         A           Co-511         pCi/L         203         222         0.92         A           Ca-134         pCi/L         203         222         0.92         A           Monthy/Fear         Fe-59         pCi/L         174         173         1.01         A           Linstop         Ca-134         pCi/L         203         222         0.92 <t< th=""><th colspan="5">Plant: River Bend Station</th><th>Year</th><th>: 2022</th><th colspan="3">Page 42 of 44</th></t<> | Plant: River Bend Station |                          |             |          |          | Year              | : 2022                        | Page 42 of 44                       |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------|----------|----------|-------------------|-------------------------------|-------------------------------------|---------------------------|--|
| Page 4 of 6           Table 20: Analytics Environmental Radioactivity Cross Check Program<br>Teledy no Brown Engineering Environmental Services           Month/Year         Identification<br>Number         Matrix         Nuclide         Units<br>Call         Reported<br>Value         Known<br>Value         Ratio of TBE to<br>Analytics Result         Evaluation <sup>(b)</sup> September 2022         E13712         Milk         Sr-89         pCi/L         71.1         89.1         0.80         A           E13713         Milk         Ce-141         pCi/L         17.8         18.9         0.94         A           Co-58         pCi/L         178         189         0.94         A           Co-60         pCi/L         129         280         0.88         A           Co-59         pCi/L         128         0.92         A           Co-610         pCi/L         203         222         0.92         A           Co-137         pCi/L         203         222         0.92         A           Co-141         pCi/L         269         282         0.95         A           A         pCi/L         769         9.42         0.81         A           Min-54         pCi/L         26                                                                                                                                  |                           | Annua                    | I Radiolo   | ogical E | nviror   | nmental C         | Operating                     | Report                              |                           |  |
| Table 20: Aralytics Environmental variables           Table 20: Aralytics Barytering Environmental Services           Month/VYear         Identification         Matrix         Nuclide         Table 20: Aralytics Result         Ratio of TBE to Analytics Result         Evaluation (%)           September 2022         E13712         Milk         Sr-89         pCi/L         12.0         13.6         0.80         A           E13713         Milk         Ce-141         pCi/L         17.0         18.9         0.94         A           Co-80         pCi/L         17.8         18.9         0.94         A           Co-80         pCi/L         229         26.0         0.81         A           Co-81         pCi/L         203         222         0.87         A           Co-81         pCi/L         203         222         0.87         A           Co-81         pCi/L         203         222         0.81         A           Listin provide         PCi/L         203         222         0.81         A           Listin provide         PCi/L         203         222         0.81         A           Listin provide         PCi/L         174         173                                                                                                                                                                 | Atta                      | achment 3                |             |          |          |                   |                               | Page 4 of 6                         |                           |  |
| Telecytre Brown Englacetring Environmental Services           Month/Year         Identification<br>Number         Matrix         Nuclide         Units         Tegeorde<br>Reported<br>Value         Ratio of TBE to<br>Value         Evaluation           September 2022         E13712         Milk         Sr-89         pCi/L         71.1         89.1         0.80         A           E13713         Milk         Co-58         pCi/L         178         189         0.94         A           Co-58         pCi/L         178         189         0.94         A           Co-57         pCi/L         229         260         0.80         A           Co-58         pCi/L         178         189         0.94         A           Co-57         pCi/L         220         252         0.87         A           Co-513         pCi/L         270         222         0.97         A           Co-513         pCi/L         75.9         94.2         0.81         A           L131         pCi/L         266         262         0.97         A           L131         pCi/L         364         373         0.97         A           L131         pCi/L         266<                                                                                                                                                                         |                           | Table 20: A              | Analytics E | nvironme | ontal Ra | adioactivity      | Cross Che                     | ock Program                         |                           |  |
| Month/Year         Identification<br>Number         Matrix         Nuclide         Unite         Reported<br>Reported<br>Value         Known<br>Value         Ration (TBE to<br>Analytics Result         Evaluation (b)           September 2022         E13712         Milk         Sr-89         pCi/L         71.1         89.1         0.80         A           E13713         Milk         Sr-89         pCi/L         17.8         89.1         0.80         A           E13713         Milk         Ce-141         pCi/L         178         189         0.944         A           Co-58         pCi/L         178         189         0.944         A         A           Co-51         pCi/L         229         260         0.88         A         A           Co-51         pCi/L         203         222         0.92         A         A           Co-53         pCi/L         174         173         1.01         A         A           Min54         pCi/L         203         222         0.92         A         A           Min54         pCi/L         164         373         0.97         A           E13714         Charceal         I-131         pCi         102                                                                                                                                                                |                           | Te                       | eledyne Bro | own Engi | neering  | Environm          | ental Servi                   | Ces                                 |                           |  |
| September 2022         E13712         Milk         Sr-89         pCi/L         71.1         89.1         0.80         A           E13713         Milk         Ce-141         pCi/L         12.0         13.6         0.80         A           E13713         Milk         Ce-141         pCi/L         148         161         0.92         A           Co-58         pCi/L         178         189         0.94         A           Co-60         pCi/L         178         189         0.94         A           Co-513         pCi/L         174         173         101         A           Co-513         pCi/L         174         173         101         A           Co-513         pCi/L         174         173         101         A           L-131         pCi/L         174         173         101         A           L-131         pCi/L         269         282         0.95         A           Zn-65         pCi/L         164         373         0.97         A           E13714         Charcoal         1-131         pCi         112         A           Co-58         pCi<1         118                                                                                                                                                                                                                                        | Month/Year                | Identification<br>Number | Matrix      | Nuclide  | Units    | Reported<br>Value | Known<br>Value <sup>(a)</sup> | Ratio of TBE to<br>Analytics Result | Evaluation <sup>(b)</sup> |  |
| Sr-90         pCi/L         12.0         13.6         0.88         A           E13713         Milk         Ce-141         pCi/L         148         161         0.92         A           Co-58         pCi/L         178         189         0.94         A           Co-60         pCi/L         229         260         0.88         A           Co-61         pCi/L         220         252         0.87         A           Cs-134         pCi/L         203         222         0.92         A           Fe59         pCi/L         174         173         1.01         A           Min54         pCi/L         269         282         0.95         A           J131         pCi/L         364         373         0.97         A           E13714         Charceal         I-131         pCi         81.4         83.6         0.97         A           E13715         AP         Ce-141         pCi         102         91         1.12         A           Co-58         pCi/L         118         107         1.11         A         A           Co-51         pCi         310         257         1.                                                                                                                                                                                                                                        | September 2022            | E13712                   | Milk        | Sr-89    | pCi/L    | 71.1              | 89.1                          | 0.80                                | А                         |  |
| E13713       Milk       Co-141       pCi/L       148       161       0.92       A         Co-68       pCi/L       178       189       0.94       A         Co-60       pCi/L       229       220       0.88       A         Co-751       pCi/L       220       252       0.87       A         Cs-134       pCi/L       203       222       0.92       A         Fe-59       pCi/L       174       173       1.01       A         Min-54       pCi/L       75.9       94.2       0.81       A         Mn-54       pCi/L       364       373       0.97       A         E13714       Charceal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-58       pCi       118       107       1.11       A         Co-51       pCi       310       257       1.21       W         Ca-137       pCi       137       125       1.10       A         Ca-53       pCi       118       107       1.11       A      <                                                                                                                                                                                                                                                                                                                                     |                           |                          |             | Sr-90    | pCi/L    | 12.0              | 13.6                          | 0.88                                | Α                         |  |
| Co-58       pCi/L       178       189       0.94       A         Co-60       pCi/L       229       260       0.88       A         Cr-51       pCi/L       486       456       107       A         Cs-134       pCi/L       220       252       0.87       A         Cs-137       pCi/L       203       222       0.92       A         Fe-59       pCi/L       174       173       1.01       A         J.131       pCi/L       75.9       94.2       0.81       A         Zn-65       pCi/L       364       373       0.97       A         E13714       Charcoal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-60       pCi       102       91       1.12       A         Cs-137       pCi       310       257       1.21       W         Cs-137       pCi       113       107       1.11       A         Cs-137       pCi       130       257       1.21       W         Cs-137       pCi                                                                                                                                                                                                                                                                                                                                             |                           | E13713                   | Milk        | Ce-141   | pCi/L    | 148               | 161                           | 0.92                                | А                         |  |
| Co-60       pCi/L       229       260       0.88       A         Cr-51       pCi/L       486       456       1.07       A         Cs-134       pCi/L       220       252       0.87       A         Cs-137       pCi/L       203       222       0.92       A         Fe-59       pCi/L       174       173       1.01       A         H131       pCi/L       75.9       94.2       0.81       A         Mm-54       pCi/L       269       282       0.95       A         Zn-65       pCi/L       364       373       0.97       A         E13714       Charcoal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       130       257       1.21       W         Cs-134       pCi       168       159       1.05       A         Zr-65       pCi       137       25       1.10       A         Co-60       pCi/g<                                                                                                                                                                                                                                                                                                                                      |                           |                          |             | Co-58    | pCi/L    | 178               | 189                           | 0.94                                | Α                         |  |
| Cr-51       pCi/L       486       456       1.07       A         Cs-134       pCi/L       220       252       0.87       A         Cs-137       pCi/L       203       222       0.92       A         Fe-59       pCi/L       174       173       1.01       A         H131       pCi/L       269       282       0.95       A         Zn-65       pCi/L       364       373       0.97       A         E13714       Charcoal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-58       pCi       118       107       1.11       A         Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       310       257       1.21       W         Cs-137       pCi       148       142       1.04       A         Cs-137       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi                                                                                                                                                                                                                                                                                                                                              |                           |                          |             | Co-60    | pCi/L    | 229               | 260                           | 0.88                                | Α                         |  |
| Cs-134       pCi/L       220       252       0.87       A         Cs-137       pCi/L       203       222       0.92       A         Fe-59       pCi/L       174       173       1.01       A         I-131       pCi/L       259       94.2       0.81       A         Mn-54       pCi/L       269       282       0.95       A         Zn-65       pCi/L       384       373       0.97       A         E13714       Charcoal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-58       pCi       118       107       1.11       A         Co-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Gs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g <td></td> <td></td> <td></td> <td>Cr-51</td> <td>pCi/L</td> <td>486</td> <td>456</td> <td>1.07</td> <td>А</td>                                                                                                                                                                                                                            |                           |                          |             | Cr-51    | pCi/L    | 486               | 456                           | 1.07                                | А                         |  |
| Cs-137         pCi/L         203         222         0.92         A           Fe-59         pCi/L         174         173         1.01         A           I-131         pCi/L         75.9         94.2         0.81         A           Mn-54         pCi/L         269         282         0.95         A           Zn-65         pCi/L         364         373         0.97         A           E13714         Charcoal         I-131         pCi         81.4         83.6         0.97         A           E13715         AP         Ce-141         pCi         102         91         1.12         A           Co-58         pCi         118         107         1.11         A         Co-58         pCi         118         107         1.41         N <sup>(2)</sup> Co-60         pCi         310         257         1.21         W         Cs-134         pCi         148         142         1.04         A           Cs-137         pCi         137         125         1.10         A         Zn-65         pCi         168         159         1.05         A           Cs-137         pCi         137                                                                                                                                                                                                                                 |                           |                          |             | Cs-134   | pCi/L    | 220               | 252                           | 0.87                                | А                         |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                          |             | Cs-137   | pCi/L    | 203               | 222                           | 0.92                                | А                         |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                          |             | Fe-59    | pCi/L    | 174               | 173                           | 1.01                                | А                         |  |
| Mn-54         pCi/L         269         282         0.95         A           E13714         Charcoal         I-131         pCi         81.4         83.6         0.97         A           E13714         Charcoal         I-131         pCi         81.4         83.6         0.97         A           E13715         AP         Ce-141         pCi         102         91         1.12         A           Co-58         pCi         118         107         1.11         A           Co-58         pCi         118         107         1.41         N <sup>(2)</sup> Cr-51         pCi         310         257         1.21         W           Cs-134         pCi         148         142         1.04         A           Cs-137         pCi         137         125         1.10         A           Fe-59         pCi         115         98         1.18         A           Mn-54         pCi         168         159         1.05         A           Zn-65         pCi/g         0.288         0.284         1.01         A           Co-58         pCi/g         0.320         0.334         0.96                                                                                                                                                                                                                                            |                           |                          |             | I-131    | pCi/L    | 75.9              | 94.2                          | 0.81                                | Α                         |  |
| Zn-65       pCi/L       364       373       0.97       A         E13714       Charcoal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-58       pCi       118       107       1.11       A         Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi/g       0.288       0.284       1.01       A         Zn-65       pCi/g       0.483       0.805       1.10       A         Co-58       pCi/g       0.483       0.805       1.10       A         Cs-137       pCi/g       0.483       0.805       1.10       A         Cs-137       pCi/g       0.447       0.465       0.96       A         Cs-137                                                                                                                                                                                                                                                                                                                                  |                           |                          |             | Mn-54    | pCi/L    | 269               | 282                           | 0.95                                | Α                         |  |
| E13714       Charcoal       I-131       pCi       81.4       83.6       0.97       A         E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-58       pCi       118       107       1.11       A         Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         Co-58       pCi/g       0.288       0.284       1.01       A         Co-51       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.445       0.459       0.97       A         Co-58       pCi/g       0.445       0.459       0.97       A         Cr-51                                                                                                                                                                                                                                                                                                                                             |                           |                          |             | Zn-65    | pCi/L    | 364               | 373                           | 0.97                                | Α                         |  |
| E13715       AP       Ce-141       pCi       102       91       1.12       A         Co-58       pCi       118       107       1.11       A         Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-51       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-137       pCi/g       0.445 <t< td=""><td></td><td>E13714</td><td>Charcoal</td><td>I-131</td><td>рСі</td><td>81.4</td><td>83.6</td><td>0.97</td><td>Α</td></t<>                                                                                                                                                                                                       |                           | E13714                   | Charcoal    | I-131    | рСі      | 81.4              | 83.6                          | 0.97                                | Α                         |  |
| Co-58       pCi       118       107       1.11       A         Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-134       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Cs-137       pCi/g       0.447       0.465       0.966                                                                                                                                                                                                                                                                                                                                  |                           | E13715                   | AP          | Ce-141   | рСі      | 102               | 91                            | 1.12                                | Α                         |  |
| Co-60       pCi       207       147       1.41       N <sup>(2)</sup> Cr-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         Co-60       pCi/g       0.320       0.334       0.96       A         Co-61       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-137       pCi/g       0.841       0.446       0.92       A         Cs-137       pCi/g       0.447       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03                                                                                                                                                                                                                                                                                                                             |                           |                          |             | Co-58    | рСі      | 118               | 107                           | 1.11                                | Α                         |  |
| Cr-51       pCi       310       257       1.21       W         Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cs-134       pCi/g       0.445       0.459       0.97       A         Cs-134       pCi/g       0.447       0.465       0.96       A         Cs-137       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         Sr-90       pCi       87.5                                                                                                                                                                                                                                                                                                                               |                           |                          |             | Co-60    | рСі      | 207               | 147                           | 1.41                                | N <sup>(2)</sup>          |  |
| Cs-134       pCi       148       142       1.04       A         Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.410       0.446       0.92       A         A       Sr-59       pCi/g       0.489       0.98       A         Zn-65       pCi/g <td< td=""><td></td><td></td><td></td><td>Cr-51</td><td>рСі</td><td>310</td><td>257</td><td>1.21</td><td>w</td></td<>                                                                                                                                                                                                               |                           |                          |             | Cr-51    | рСі      | 310               | 257                           | 1.21                                | w                         |  |
| Cs-137       pCi       137       125       1.10       A         Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.447       0.465       0.96       A         Cs-137       pCi/g       0.314       0.305       1.03       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                          |             | Cs-134   | рСі      | 148               | 142                           | 1.04                                | Α                         |  |
| Fe-59       pCi       115       98       1.18       A         Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.417       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         Zn-65       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A        E13717       AP                                                                                                                                                                                                                                                                                                                            |                           |                          |             | Cs-137   | рСі      | 137               | 125                           | 1.10                                | А                         |  |
| Mn-54       pCi       168       159       1.05       A         Zn-65       pCi       240       211       1.14       A         E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.314       0.305       1.03       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         E13717       AP       Sr-89       pCi       87.5       98.3       0.89       A         Sr-90       pCi       12.6       15.0       0.84       A                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                          |             | Fe-59    | pCi      | 115               | 98                            | 1.18                                | А                         |  |
| Zn-65       pCi       240       211       1.14       A         E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.417       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                          |             | Mn-54    | рСі      | 168               | 159                           | 1.05                                | А                         |  |
| E13716       Soil       Ce-141       pCi/g       0.288       0.284       1.01       A         Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.314       0.305       1.03       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         E13717       AP       Sr-89       pCi       87.5       98.3       0.89       A         Sr-90       pCi       12.6       15.0       0.84       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                          |             | Zn-65    | рСі      | 240               | 211                           | 1.14                                | Α                         |  |
| Co-58       pCi/g       0.320       0.334       0.96       A         Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.417       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | E13716                   | Soil        | Ce-141   | pCi/g    | 0.288             | 0.284                         | 1.01                                | А                         |  |
| Co-60       pCi/g       0.445       0.459       0.97       A         Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.447       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         E13717       AP       Sr-89       pCi       87.5       98.3       0.89       A         Sr-90       pCi       12.6       15.0       0.84       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                          |             | Co-58    | pCi/g    | 0.320             | 0.334                         | 0.96                                | А                         |  |
| Cr-51       pCi/g       0.883       0.805       1.10       A         Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.447       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                          |             | Co-60    | pCi/g    | 0.445             | 0.459                         | 0.97                                | Α                         |  |
| Cs-134       pCi/g       0.410       0.446       0.92       A         Cs-137       pCi/g       0.447       0.465       0.96       A         Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         E13717       AP       Sr-89       pCi       87.5       98.3       0.89       A         Sr-90       pCi       12.6       15.0       0.84       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                          |             | Cr-51    | pCi/g    | 0.883             | 0.805                         | 1.10                                | Α                         |  |
| Cs-137         pCi/g         0.447         0.465         0.96         A           Fe-59         pCi/g         0.314         0.305         1.03         A           Mn-54         pCi/g         0.489         0.499         0.98         A           Zn-65         pCi/g         0.666         0.660         1.01         A           E13717         AP         Sr-89         pCi         87.5         98.3         0.89         A           Sr-90         pCi         12.6         15.0         0.84         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                          |             | Cs-134   | pCi/g    | 0.410             | 0.446                         | 0.92                                | Α                         |  |
| Fe-59       pCi/g       0.314       0.305       1.03       A         Mn-54       pCi/g       0.489       0.499       0.98       A         Zn-65       pCi/g       0.666       0.660       1.01       A         E13717       AP       Sr-89       pCi       87.5       98.3       0.89       A         Sr-90       pCi       12.6       15.0       0.84       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                          |             | Cs-137   | pCi/g    | 0.447             | 0.465                         | 0.96                                | Α                         |  |
| Mn-54 pCi/g 0.489 0.499 0.98 A<br>Zn-65 pCi/g 0.666 0.660 1.01 A<br>E13717 AP Sr-89 pCi 87.5 98.3 0.89 A<br>Sr-90 pCi 12.6 15.0 0.84 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                          |             | Fe-59    | pCi/g    | 0.314             | 0.305                         | 1.03                                | Α                         |  |
| Zn-65 pCi/g 0.666 0.660 1.01 A<br>E13717 AP Sr-89 pCi 87.5 98.3 0.89 A<br>Sr-90 pCi 12.6 15.0 0.84 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                          |             | Mn-54    | pCi/g    | 0.489             | 0.499                         | 0.98                                | А                         |  |
| E13717 AP Sr-89 pCi 87.5 98.3 0.89 A<br>Sr-90 pCi 12.6 15.0 0.84 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                          |             | Zn-65    | pCi/g    | 0.666             | 0.660                         | 1.01                                | Α                         |  |
| Sr-90 pCi 12.6 15.0 0.84 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | E13717                   | AP          | Sr-89    | pCi      | 87.5              | 98.3                          | 0.89                                | А                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                          |             | Sr-90    | рСі      | 12.6              | 15.0                          | 0.84                                | Α                         |  |

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

(2) See NCR 22-21

| Plant: River Bend Station |                                                                      |            |                     |                  |                   | 2022                          | Page 43 of 44       |                           |  |  |  |
|---------------------------|----------------------------------------------------------------------|------------|---------------------|------------------|-------------------|-------------------------------|---------------------|---------------------------|--|--|--|
|                           | Ann                                                                  | ual Radio  | logical Env         | /ironment        | al Opera          | ting Re                       | port                |                           |  |  |  |
| At                        | tachment 3                                                           |            |                     |                  | -                 |                               | Page 5 of 6         | 6                         |  |  |  |
|                           | Table 21: DOE's Mixed Analyte Performance Evaluation Program (MAPEP) |            |                     |                  |                   |                               |                     |                           |  |  |  |
|                           |                                                                      | Teledyne B | <b>Irown Engine</b> | ering Envir      | onmental          | Services                      |                     |                           |  |  |  |
| Month/Year                | Identification<br>Number                                             | Matrix     | Nuclide             | Units            | Reported<br>Value | Known<br>Value <sup>(a)</sup> | Acceptance<br>Range | Evaluation <sup>(b)</sup> |  |  |  |
| February 2022             | 22-GrF46                                                             | AP         | Gross Alpha         | Bq/sample        | 0.402             | 1.20                          | 0.36 - 2.04         | Α                         |  |  |  |
|                           |                                                                      |            | Gross Beta          | Bq/sample        | 0.669             | 0.68                          | 0.341 - 1.022       | Α                         |  |  |  |
|                           | 22-MaS46                                                             | Soil       | Ni-63               | Bq/kg            | 645               | 780                           | 546 - 1014          | Α                         |  |  |  |
|                           |                                                                      |            | Tc-99               | Bq/kg            | 526               | 778                           | 545 - 1011          | N <sup>(3)</sup>          |  |  |  |
|                           | 22-MaSU46                                                            | Urine      | Cs-134              | Bq/L             | 1.67              | 1.77                          | 1.24 - 2.30         | А                         |  |  |  |
|                           |                                                                      |            | Cs-137              | Bq/L             | 1.50              | 1.56                          | 1.09 - 2.03         | Α                         |  |  |  |
|                           |                                                                      |            | Co-57               | Bq/L             | 4.93              | 5.39                          | 3.77 - 7.01         | Α                         |  |  |  |
|                           |                                                                      |            | Co-60               | Bq/L             | 2.13              | 2.06                          | 1.44 - 2.68         | А                         |  |  |  |
|                           |                                                                      |            | Mn-54               | Bq/L             | 4.83              | 5.08                          | 3.56 - 6.60         | А                         |  |  |  |
|                           |                                                                      |            | U-234               | Bq/L             | 0.142             | 0.0074                        | 0.0052 - 0.0096     | N <sup>(4)</sup>          |  |  |  |
|                           |                                                                      |            | U-238               | Bq/L             | 0.0254            | 0.0103                        | 0.0072 - 0.0134     | N <sup>(4)</sup>          |  |  |  |
|                           |                                                                      |            | Zn-65               | Bq/L             | 4.71              | 4.48                          | 3.14 - 5.82         | Α                         |  |  |  |
|                           | 22-MaW46                                                             | Water      | Ni-63               | Bq/L             | 28.6              | 34.0                          | 23.8 - 44.2         | А                         |  |  |  |
|                           |                                                                      |            | Tc-99               | Bq/L             | 8.59              | 7.90                          | 5.5 - 10.3          | Α                         |  |  |  |
|                           | 22-RdV46                                                             | Vegetation | Cs-134              | Bq/sample        | 6.61              | 7.61                          | 5.33 - 9.89         | Α                         |  |  |  |
|                           |                                                                      |            | Cs-137              | <b>Bq/sample</b> | 1.50              | 1.52                          | 1.06 - 1.98         | Α                         |  |  |  |
|                           |                                                                      |            | Co-57               | Bq/sample        | 5.11              | 5.09                          | 3.56 - 6.62         | А                         |  |  |  |
|                           |                                                                      |            | Co-60               | Bq/sample        | 0.0162            |                               | (1)                 | А                         |  |  |  |
|                           |                                                                      |            | Mn-54               | Bq/sample        | 2.42              | 2.59                          | 1.81 - 3.37         | А                         |  |  |  |
|                           |                                                                      |            | Sr-90               | Bq/sample        | 0.684             | 0.789                         | 0.552 - 1.026       | А                         |  |  |  |
|                           |                                                                      |            | Zn-65               | Bq/sample        | 1.44              | 1.47                          | 1.03 - 1.91         | Α                         |  |  |  |
| August 2022               | 22-MaS47                                                             | Soil       | Ni-63               | Bq/kg            | 14.6              |                               | (1)                 | Α                         |  |  |  |
|                           |                                                                      |            | Tc-99               | Bq/kg            | 994               | 1000                          | 700 - 1300          | Α                         |  |  |  |
|                           | 22-MaW47                                                             | Water      | Ni-63               | Bq/L             | 24.4              | 32.9                          | 23.0 - 42.8         | Α                         |  |  |  |
|                           |                                                                      |            | Tc-99               | Bq/L             | 1.9               |                               | (1)                 | N <sup>(5)</sup>          |  |  |  |
|                           | 25-RdV47                                                             | Vegetation | Cs-134              | Bq/sample        | 0.032             |                               | (1)                 | Α                         |  |  |  |
|                           |                                                                      |            | Cs-137              | Bq/sample        | 0.891             | 1.08                          | 0.758 - 1.408       | Α                         |  |  |  |
|                           |                                                                      |            | Co-57               | Bq/sample        | 0.006             |                               | (1)                 | Α                         |  |  |  |
|                           |                                                                      |            | Co-60               | Bq/sample        | 4.04              | 4.62                          | 3.23 - 6.01         | Α                         |  |  |  |
|                           |                                                                      |            | Mn-54               | Bq/sample        | 2.01              | 2.43                          | 1.70 - 3.16         | Α                         |  |  |  |
|                           |                                                                      |            | Sr-90               | Bq/sample        | 1.25              | 1.60                          | 1.12 - 2.08         | w                         |  |  |  |
|                           |                                                                      |            | Zn-65               | Bq/sample        | 6.16              | 7.49                          | 5.24 - 9.74         | Α                         |  |  |  |

(a) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(b) DOE/MAPEP evaluation:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

- $W = Acceptable with warning reported result falls within 0.70-0.80 or 1.20-1.30 \\ N = Not Acceptable reported result falls outside the ratio limits of < 0.70 and > 1.30 \\ \end{array}$
- (1) False positive test
- (2) Sensitivity evaluation
- (3) Tc-99 soil cross-checks done for TBE information only not required (4) See NCR 22-05
- (5) See NCR 22-22

Plant: River Bend Station Year: 2022 Page 44 of 44

# Annual Radiological Environmental Operating Report Attachment 3 Page 6 of 6 ERA Environmental Radioactivity Cross Check Program Taledure Prove Engineering Environmental Services

| NUMBER OF STREET |                | Teledylle | BIOWITE      | ngineering | Ellanolimenta | 1 Jervices           |                              |                  |
|------------------|----------------|-----------|--------------|------------|---------------|----------------------|------------------------------|------------------|
| Month/Year       | Identification | Matrix    | Nuclide      | Units      | TBE Reported  | Known                | Acceptance                   | Evaluation (b)   |
|                  | Number         |           |              |            | Value         | Value <sup>(a)</sup> | Limits                       | Lvaidation       |
| March 2022       | MRAD-36        | Water     | Am-241       | pCi/L      | 68.3          | 74.6                 | 51.2 - 95.4                  | Α                |
|                  |                |           | Fe-55        | pCi/L      | 797           | 1140                 | 670 - 1660                   | Α                |
|                  |                |           | Pu-238       | pCi/L      | 146           | 147                  | 88.4 - 190                   | Α                |
|                  |                |           | Pu-239       | pCi/L      | 69.9          | 71.9                 | 44.5 - 88.6                  | Α                |
|                  |                | Soil      | Sr-90        | pCi/kg     | 8050          | 6720                 | 2090 - 10500                 | А                |
|                  |                | AP        | Fe-55        | pCi/filter | 148           | 127                  | 46.4 - 203                   | А                |
|                  |                |           | Pu-238       | pCi/filter | 29.9          | 29.6                 | 22.3 - 36.4                  | Α                |
|                  |                |           | Pu-239       | pCi/filter | 51.6          | 49.7                 | 37.2 - 60.0                  | Α                |
|                  |                |           | U-234        | pCi/filter | 59.9          | 67.3                 | 49.9 - 78.9                  | Α                |
|                  |                |           | U-238        | pCi/filter | 59.0          | 66.7                 | 50.4 - 79.6                  | A                |
|                  |                |           | GR-A         | pCi/filter | 95.6          | 94.2                 | 49 2 - 155                   | A                |
|                  |                |           | GR-B         | pCi/filter | 71.2          | 66.8                 | 40.5 - 101                   | A                |
| April 2022       | RAD-129        | Water     | Ba-133       | pCi/L      | 61.7          | 62.9                 | 52.3 - 69.2                  | А                |
|                  |                |           | Cs-134       | pCi/L      | 80.9          | 81.6                 | 68.8 - 89.8                  | Α                |
|                  |                |           | Cs-137       | pCi/L      | 37.4          | 36.6                 | 32.1 - 43.3                  | A                |
|                  |                |           | Co-60        | nCi/l      | 103           | 97.4                 | 87 7 - 109                   | Δ                |
|                  |                |           | Zn-65        | nCi/l      | 318           | 302                  | 272 - 353                    | Δ                |
|                  |                |           | GR-A         | nCi/l      | 26.9          | 20.8                 | 10 4 - 28 3                  | Δ                |
|                  |                |           | CR-R         | pCi/L      | 49.7          | 51.0                 | 347-581                      | A                |
|                  |                |           | U Not        |            | 45.7          | 51.0                 | 562 759                      | ~                |
|                  |                |           |              |            | 17 000        | 19 100               | 15 800 10 000                | ~                |
|                  |                |           | n-3<br>8- 90 |            | 65.2          | 67.0                 | 15,600 - 19,000<br>55 2 76 1 | A                |
|                  |                |           | 51-09        |            | 00.3          | 07.9                 | 55.3 - 70.1                  | A                |
|                  |                |           | 51-90        |            | 42.1          | 42.7                 | 31.5 - 49.0                  | A                |
|                  |                |           | 1-131        | pCI/L      | 25.7          | 20.2                 | 21.8 - 30.9                  | A                |
| September 2022   | MRAD-37        | Water     | Am-241       | pCi/L      | 111           | 96.2                 | 66.0 - 123                   | Α                |
|                  |                |           | Fe-55        | pCi/L      | 850           | 926                  | 544 - 1350                   | Α                |
|                  |                |           | Pu-238       | pCi/L      | 62.1          | 52.6                 | 31.6 - 68.2                  | Α                |
|                  |                |           | Pu-239       | pCi/L      | 139.5         | 117                  | 72.5 - 144                   | A                |
|                  |                | Soil      | Sr-90        | pCi/kg     | 3350          | 6270                 | 1950 - 9770                  | Α                |
|                  |                |           | U-234        | pCi/kg     | 1684          | 3350                 | 1570 - 4390                  | Α                |
|                  |                |           | U-238        | pCi/kg     | 1658          | 3320                 | 1820 - 4460                  | N <sup>(2)</sup> |
|                  |                | AP        | Fe-55        | pCi/filter | 71.9          | 122                  | 44.5 - 195                   | А                |
|                  |                |           | Pu-238       | pCi/filter | 38.8          | 29.9                 | 22.6 - 36.7                  | N <sup>(1)</sup> |
|                  |                |           | Pu-239       | pCi/filter | 14.5          | 13.0                 | 9.73 - 15.7                  | A                |
|                  |                |           | U-234        | pCi/filter | 78.0          | 71.5                 | 53.0 - 83.8                  | Α                |
|                  |                |           | U-238        | pCi/filter | 79.7          | 70.9                 | 53.5 - 84.6                  | Α                |
|                  |                |           | GR-A         | pCi/filter | 62.8          | 55.5                 | 29.0 - 91.4                  | Α                |
|                  |                |           | GR-B         | pCi/filter | 70.9          | 64.8                 | 39.3 - 97.9                  | Α                |
| October 2022     | RAD-131        | Water     | Ba-133       | pCi/L      | 76.2          | 79.4                 | 66.6 - 87.3                  | Α                |
|                  |                |           | Cs-134       | pCi/L      | 28.0          | 30.5                 | 23.9 - 33.6                  | Α                |
|                  |                |           | Cs-137       | pCi/L      | 202           | 212                  | 191 - 235                    | Α                |
|                  |                |           | Co-60        | pCi/L      | 52.4          | 51.4                 | 46.3 - 59.1                  | Α                |
|                  |                |           | Zn-65        | pCi/L      | 216           | 216                  | 194 - 253                    | Α                |
|                  |                |           | GR-A         | pCi/L      | 19.7          | 16.9                 | 8.28 - 23.7                  | A                |
|                  |                |           | GR-B         | pCi/L      | 49.8          | 53.0                 | 36.1 - 60.0                  | A                |
|                  |                |           | U-Nat        | pCi/L      | 10.54         | 8.53                 | 6.60 - 9.88                  | N <sup>(3)</sup> |
|                  |                |           | H-3          | pCi/l      | 13,900        | 15,100               | 13.200 - 16.600              | A                |
|                  |                |           | Sr-89        | pCi/L      | 59.7          | 64.5                 | 52.3 - 72.5                  | A                |
|                  |                |           | Sr-90        | pCi/L      | 32.9          | 37.3                 | 27.4 - 43.0                  | A                |
|                  |                |           | 1-131        | pCi/L      | 26.9          | 24.4                 | 20.2 - 28.9                  | A                |

(a) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(b) ERA evaluation:

A = Acceptable - Reported value falls within the Acceptance Limits

N = Not Acceptable - Reported value falls outside of the Acceptance Limits

(1) See NCR 22-19

(2) U soil cross-checks done for TBE information only - not required

(3) See NCR 22-20