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ABSTRACT 

Flooding of nuclear power plants and other infrastructure can occur because of events involving 
one or multiple coincident or correlated flood mechanisms. Existing approaches for probabilistic 
flood hazard assessment (PFHA) focus primarily on the occurrence of a single flood hazard 
mechanism. However, multi-mechanism flood (MMF) events may result in flooding with severity, 
duration, characteristics, and extent of impacts that differ from the effects of floods involving a 
single mechanism. Moreover, the estimated frequency of occurrence of flood severity metrics 
(e.g., flood elevation or depth) may change (increase) when considering the enhanced impacts 
of MMF events. Thus, to have a comprehensive estimate of flood hazards for our critical 
infrastructures, events involving both single and multiple flood mechanisms must be considered. 

To extend the state of practice of MMF analysis, this study focuses on the identification of 
existing research and development of new methods to probabilistically assess hazards 
associated with MMF events. This research project is funded by the US Nuclear Regulatory 
Commission PFHA Research Program with an intent to support the development of future 
guidance on PFHA. This report provides an overview of project research activities focusing on 
identification of existing approaches for probabilistically assessing MMF events and provides a 
critique and gap assessment of the current state of practice. It further discusses options for 
leveraging and extending approaches that show promise (with or without modifications) to 
support probabilistic assessment of MMF hazards associated with the range of return periods of 
relevance to nuclear power plants and other critical infrastructure. Two case studies are 
included to demonstrate the implementation of MMF methods in practice. 
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FOREWORD 

This report documents the findings from the US Nuclear Regulatory Commission (NRC)–
sponsored research project Methods for Estimating Joint Probabilities of Coincident and 
Correlated Flooding Mechanisms for Nuclear Power Plant Flood Hazard Assessments.1 This 
research project is a part of NRC’s Probabilistic Flood Hazard Assessment Research Program 
and will aid the development of guidance on the use of probabilistic flood hazard assessment 
methods to evaluate infrastructure safety for existing and proposed US nuclear power plants. 
More specifically, this project intends to provide technical background for the development of 
flood hazard curves for multi-mechanism floods (MMFs). MMFs are flood events caused by 
more than one flooding mechanism (e.g., flood events caused by the simultaneous occurrence 
of precipitation-induced river flooding and storm surge). 

Project activities include three main tasks: 

• Task 1—Survey of current concepts and methods in assessing MMF hazards 

• Task 2—Critical assessment of selected methods and approaches for quantifying 
probabilistic MMF hazard risk 

• Task 3—Development of example case studies to illustrate best practices for quantifying 
probabilistic MMF hazard risk 

Tasks 1 and 2 were published by Bensi et al. (2020), which summarized the current state of 
practice in the probabilistic assessment of MMFs. Based on the critical review and insights 
developed under Tasks 1 and 2, the research team selected two case studies to illustrate 
approaches for quantifying probabilistic MMF hazards. These example case studies represent 
Task 3 and were published by Mohammadi et al. (2021). 

This NUREG/CR leverages and aggregates much of the content published by Bensi et al. 
(2020) and Mohammadi et al. (2021). Besides a new “Introduction” section and new “Summary 
and Conclusions” section, the remainder of the report’s content are largely duplicated from the 
prior publications. They are aggregated herein for completeness and ease of access. 

The discussion of specific references, methods, software, or tools in this report does not 
constitute endorsement or approval for any specific use by Oak Ridge National Laboratory, the 
University of Maryland, or NRC. 

 

 
1  NRC Agreement No. NRCHQ2514D0004, Task Order 31310018F0038, DOE Interagency 

AgreementNo. 1886-761-13 
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EXECUTIVE SUMMARY 

Flooding of nuclear power plants and other infrastructure can occur because of events involving 
one or multiple coincident or correlated flood mechanisms. Existing approaches for probabilistic 
flood hazard assessment (PFHA) focus primarily on the occurrence of a single flood hazard 
mechanism. However, multi-mechanism flood (MMF) events may result in flooding with severity, 
duration, characteristics, and extent of impacts that differ from the effects of floods involving a 
single mechanism. Moreover, the estimated frequency of occurrence of flood severity metrics 
(e.g., flood elevation or depth) may change (increase) when considering the enhanced impacts 
of MMF events. Thus, to have a comprehensive estimate of flood hazards for our critical 
infrastructures, events involving both single and multiple flood mechanisms must be considered. 

To extend the state-of-practice of MMF analysis, this study focuses on the identification of 
existing research and development of new methods to probabilistically assess hazards 
associated with MMF events. This report documents the findings from the US Nuclear 
Regulatory Commission (NRC)–sponsored research project Methods for Estimating Joint 
Probabilities of Coincident and Correlated Flooding Mechanisms for Nuclear Power Plant Flood 
Hazard Assessments.2 This research project is a part of NRC’s PFHA Research Program and 
will aid the development of guidance on the use of PFHA methods to evaluate infrastructure 
safety for existing and proposed US nuclear power plants. More specifically, this project intends 
to provide technical background for the development of flood hazard curves for MMFs. MMFs 
are flood events caused by more than one flooding mechanism (e.g., flood events due to the 
simultaneous occurrence of precipitation-induced river flooding and storm surge). 

Project activities include three main tasks: 

• Task 1—Survey of current concepts and methods in assessing MMF hazards 

• Task 2—Critical assessment of selected methods and approaches for quantifying 
probabilistic MMF hazard risk 

• Task 3—Development of example case studies to illustrate best practices for quantifying 
probabilistic MMF hazard risk 

Tasks 1 and 2 were published by Bensi et al. (2020), which summarized the current state of 
practice in the probabilistic assessment of MMFs. Based on the critical review and insights 
developed under Tasks 1 and 2, the research team selected two case studies to illustrate 
approaches for quantifying probabilistic MMF hazards. These example case studies represent 
Task 3 and were published by Mohammadi et al. (2021). 

This NUREG/CR leverages and aggregates much of the content published by Bensi et al. 
(2020) and Mohammadi et al. (2021). Besides a new “Introduction” section and new “Summary 
and Conclusions” section, the remainder of the report’s content are largely duplicated from the 
prior publications. They are aggregated herein for completeness and ease of access.  

 
2  NRC Agreement No. NRCHQ2514D0004, Task Order 31310018F0038, DOE Interagency Agreement 

No. 1886-761-13 
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1 INTRODUCTION 

1.1 Purpose and Objectives 

The purpose of this report is (1) to provide a summary of the current state of practice, including 
concepts and methods, used for assessing flood hazards caused by a combination of flood 
mechanisms; and (2) to document two case studies designed to illustrate approaches for 
quantifying probabilistic multi-mechanism flood (MMF) hazards. This report refers to a flood 
hazard caused by a combination of flood mechanisms as an MMF.  

Furthermore, this report provides a critical review of the current state of practice for MMF hazard 
assessment, with particular emphasis on assessing research and applied guidance from the 
perspective of nuclear power plant (NPP) applicability, which includes severe events with low 
annual frequencies of exceedance (long return periods). This report also provides background 
context regarding key components of probabilistic flood hazard assessment (PFHA) and related 
mathematical formulations necessary to assess MMFs. 

MMF events are caused by the combined effect of more than one flooding mechanism (e.g., 
flood events caused by the simultaneous occurrence of precipitation-induced river flooding and 
storm surge). Most conventional PFHA approaches focus on individual flood hazard 
mechanisms. However, MMF events may be more severe than single-mechanism events, or 
they may differ in characteristics. Therefore, realistic probabilistic assessment of flooding 
hazards requires consideration of MMFs.  

Based on the most recent studies and regulatory guidance, this report documents a broad range 
of flood-forcing phenomena, hydrologic settings (e.g., flooding in coastal, estuary, or riverine 
locations subject to various geographic and seasonal conditions), and available methods to 
estimate hazards associated with MMFs. The design of two case studies is intended to 
demonstrate MMF assessment procedures and example observations applicable to risk-
informed decision-making. 

This report has been developed through a research project funded by the US Nuclear 
Regulatory Commission (NRC) intended to assist NRC in developing the technical basis for 
guidance on developing probabilistic estimates of flood hazards for combinations of flood 
mechanisms. This research project is a part of NRC PFHA Research Program and will support 
development of guidance on the use of PFHA methods in safety evaluations for existing or 
proposed US NPP infrastructure. 

According to the NRC PFHA Research Plan (USNRC 2014), 

the current limited risk-informed guidance with respect to flooding constitutes a 
significant gap in the NRC’s risk-informed, performance-based regulatory approach to 
the assessment of natural hazards and potential consequences for safety of commercial 
nuclear facilities. 

According to Safety Strategy 2 of its Strategic Plan for Fiscal Years 2018–2022 (USNRC 
2018a), NRC aims to 

further risk-inform the current regulatory framework in response to advances in science 
and technology, policy decisions, and other factors, including prioritizing efforts to focus 
on the most safety-significant issues. 
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To support this strategy, NRC (USNRC 2018a) identifies a contributing activity to 

conduct research activities to confirm the safety of operations and enhance the 
regulatory framework by addressing changes in technology, science, and policies.  

The research effort documented in this report supports this activity. 

1.2 Report Scope 

This report summarizes the findings from the NRC-sponsored research project Methods for 
Estimating Joint Probabilities of Coincident and Correlated Flooding Mechanisms for Nuclear 
Power Plant Flood Hazard Assessments. This report’s content documents the project’s 
outcomes across three main research tasks. These three main project research tasks are 

• Task 1—Survey of current concepts and methods in assessing MMF hazards 

• Task 2—Critical assessment of selected methods and approaches for quantifying 
probabilistic MMF hazard risk 

• Task 3—Development of example case studies to illustrate best practices for quantifying 
probabilistic MMF hazard risk 

The main outcomes of Tasks 1 and 2 include documentation of (1) a reconnaissance-level 
survey of the current state of concepts and practice for MMF hazard assessment; (2) a 
generalized MMF assessment framework to address the distinctions among flood-forcing 
phenomena, flood mechanisms (which are categorized into three types of mechanisms), and 
flood severity metrics; (3) a wide-ranging survey of approaches and methods that have been 
applied to various flooding phenomena and settings; and (4) a critical assessment of MMF 
hazard assessment methods. Ultimately, this content aims to document a collection of available 
MMF methods that are sufficiently general or flexible for application to the range of flooding 
phenomena expected at US NPPs. 

Based on the critical review and insights developed in performing Tasks 1 and 2, the research 
team selected two case studies to illustrate approaches for probabilistic assessment of MMF 
hazards. These example case studies constitute Task 3 and leverage empirical data as well as 
synthetic data generated from numerical and surrogate modeling approaches. The case studies 
use Bayesian-motivated and copula-based approaches and were developed for inland and 
coastal flooding hazards. 

This report documents two use case studies. The first case study focuses on rainfall- and 
snowmelt-driven extreme streamflow events for an inland location. It uses copulas as the main 
computational approach. The case study application is intended to demonstrate 

(1) general procedures to construct multivariate joint distributions using copulas, 

(2) the identification of extreme samples for multivariate frequency analysis, 

(3) the selection of suitable marginal distributions and copula functions, 

(4) applications of copula-derived joint distributions in PFHA, and 
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(5) strengths and limitations of the copula-based MMF assessment approach. 

The second case study considers coastal hazards and uses a Bayesian-motivated approach for 
probabilistic hazard assessment. The case study builds off of the established joint probability 
method (JPM) commonly employed for the assessment of tropical cyclone (TC)–induced coastal 
storm surge hazards (Toro et al. 2010). The flood forcing phenomenon is a TC (hurricane), and 
the flood mechanisms involved in the analysis include hurricane-induced surge, precipitation, 
and river flow. The research objective is to develop a hazard curve for river discharge 
accounting for the effects of river base flow, hurricane-induced surge, tides, and precipitation-
induced runoff. The case study application is intended to demonstrate 

(1) the general conceptual approach to construct multivariate joint distributions using 
Bayesian modeling approaches, 

(2) the development and use of requisite marginal and conditional distributions (including 
use of numerical, empirical, or surrogate models to define conditional relationships 
between quantities), and 

(3) the quantification of joint distributions and development of hazard curves. 

The discussion of specific references, methods, software or tools in this report does not 
constitute endorsement or approval for any specific use by Oak Ridge National Laboratory, the 
University of Maryland, or NRC. 

1.3 Report Structure and Organization 

The report is organized into the following sections: 

• Section 2 provides background and context for the report, including defining key terms 
and concepts that will be used throughout the report and identifying flooding hazards of 
relevance to US NPPs. 

• Section 3 provides an overview of PFHA and summarizes the mathematical formulations 
necessary to assess MMFs, including an overview of random variables and distributions; 
approaches for developing joint distributions; and hazard curve development. 

• Section 4 provides a descriptive summary of available MMF-related literature and a 
description of the hazards and geographic regions/scales addressed in existing 
literature. It also identifies the data and statistical methods applied in existing studies. 

• Section 5 provides a critical review of identified resources and describes considerations 
in existing MMF-related studies with a focus on identifying key themes across the broad 
scope of studies reviewed under this project. Additionally, it identifies key gaps and 
challenges. 

• Section 6 summarizes the scope, settings, methodology, results, and discussion related 
to an inland MMF use case study. 

• Section 7 summarizes the scope, settings, methodology, results, and discussion related 
to a coastal MMF use case study. 
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• Section 8 provides an overall summary and conclusions related to the project’s research 
effort. 

This report also includes appendices that provide detailed information to supplement the main 
report’s more generalized content. Appendices address the following topics: 

• Appendix A summarizes the current practice related to MMFs by providing summaries of 
relevant guidance used in the United States and international nuclear industries, as well 
as nonnuclear applications. 

• Appendix B introduces key terminology related to the coastal hazard assessment. 
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2 BACKGROUND AND CONTEXT 

This background section identifies flood hazards of relevance to US NPPs, presents key 
terminology related to MMFs, and introduces a graphical model-based framework and 
terminology for discussing combinations of flooding mechanisms. 

2.1 Hazards of Relevance to US NPPs 

US NRC guidance for evaluation of flooding addresses the following hazards (USNRC 2007a): 

• Local intense precipitation (LIP) 
• River/streams 
• Dam failures 
• Storm surge 
• Seiches 
• Tsunamis 
• Ice effects  

Figure 2-1 shows the percentage of sites for which an analysis was performed for each hazard 
during NRC’s plant-specific Japan lessons-learned activities for flooding hazard reevaluation.3 A 
flooding hazard was considered to affect a US NPP if the mechanism (1) was included in the 
plant’s design basis or (2) was found to exceed or otherwise go beyond the hazards considered 
in a plant’s design basis based on evaluations performed as part of the post-Fukushima hazard 
reevaluations, as documented in NRC staff-issued interim staff responses (USNRC 2018b).4 
Figure 2-2 shows different NRC regions used for preparation of flood hazard maps. Figure 2-3 
through Figure 2-6 show the hazards evaluated at each nuclear site, segmented by region. 
These maps include sites for which LIP, fluvial (rivers/streams), dam failure, storm surge, and 
other (i.e., seiche-, tsunami-, and ice-induced) flooding were assessed.  

 
3  Figure 2-1 and the maps that follow reflect hazards for which an analysis was performed at each site. 

The performance of an analysis may, in some cases, identify that the analyzed hazard did not result in 
at-site flood effects. In these cases, if the hazard was assessed, it is included in the maps and figures 
presented herein. 

4  As a result of the lessons learned from the March 2011 events at the Fukushima Daichi nuclear power 
facility in Japan, NRC undertook a series of actions. One of those actions was to request that all US 
NPP licensees perform flood hazard reevaluations using present-day guidance and methods (which 
typically employ deterministic approaches). The staff evaluated the licensees’ reevaluations and issued 
summary information that included tables documenting the design basis flood hazard elevations 
(stillwater plus waves/runup) as well as the reevaluated flood hazard elevations, if those elevations 
exceeded the design basis elevations. 
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Figure 2-1 Flood Hazards Assessed at US NPP Sites Data from USNRC (2018b)5 

 

 

 

 

Figure 2-2 NRC Regions 

 

 
5 This figure includes NPP sites operating as of August 2019. 
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Figure 2-3 Map of Flood Hazards Assessed at US NPP Sites in Region 1 
Data from USNRC (2018b).5 
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Figure 2-4 Map of Flood Hazards Assessed at US NPP Sites in Region 2 
Data from USNRC (2018b).5 
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Figure 2-5 Map of Flood Hazards Assessed at US NPP Sites in Region 3 
Data from USNRC (2018b).5 
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Figure 2-6 Map of Flood Hazards Assessed at US NPP Sites in Region 4 
Data from USNRC (2018b).5 

2.2 Key Terminology and Flood Mechanism Types 

This section introduces terminology and contextual information that serves as the basis for 
discussions in the remainder of this report and is used in subsequent case studies. This section 
provides a hierarchical structure for discussing topics related to combinations of flood 
mechanisms, which is necessary because of the wide variety of terminology used across 
academic and scientific literature and across existing regulatory guidance and standards. For 
example, the literature reviewed as part of this study was found to use a range of terms to refer 
to combinations of flood mechanisms, including (but not limited to) coincident, combined, 
concurrent, compound, joint, cascading, concomitant, simultaneous, and successive. This report 
uses the phrase multi-mechanism flood. 

Existing NRC documents have also used various MMF-relevant terminology to describe 
deterministic flood hazards (e.g., “combined events” (USNRC 2007b) and “combined effects” 
(USNRC 2011). However, the existing terminology does not offer sufficient specificity and clarity 
to capture the considerations necessary for developing a mathematical framework for PFHA. 
For example, the terms “events” and “effects” do not provide information regarding the specific 
quantities being combined or the nature of the probabilistic relationship (e.g., the correlation or 
dependence structure). The existing terminology and hierarchy are also not fully consistent with 
various reviewed literature. Therefore, the terminology used in the following sections is more 
expansive than that used in existing NRC documentation. 

Figure 2-7 presents the hierarchy of flood terminology that will be used in this report. The MMF 
terminology hierarchy shown in Figure 2-7 includes three “tiers” with the first tier representing 



 

2-7 

the flood-forcing phenomena that can ultimately lead to MMFs. “Flood-forcing phenomena” 
refers to natural or man-made forcings that create conditions that can ultimately lead to flooding 
at a site. Relevant flood-forcing phenomena include severe weather events (e.g., hurricanes, 
LIP, rapid temperature changes), land movement events (e.g., earthquakes, landslides), 
operational events (e.g., releases from dams, equipment aging and failure), and natural cyclic 
processes (e.g., tides). 

Flood-forcing phenomena can lead to site flooding through a variety of different “flood 
mechanisms,” which are physical processes by which a natural or man-made flood-forcing 
phenomenon can lead to overflow or accumulation of water on or near a site. These flood 
mechanisms represent the second tier of the flood terminology hierarchy shown in Figure 2-7 
and used in this report. Overall, three primary flood mechanism types (separated in Figure 2-7 
into separate dashed-outline boxes) are identified: 

• “Pluvial flood mechanisms” occur when local precipitation or snowmelt directly cause 
flooding of a site. They are independent of the overflow of nearby major rivers or water 
bodies.  

• “Fluvial flood mechanisms” occur when the cumulative surface runoff, snowmelt, and 
baseflow from upstream watersheds increase significantly and result in a river or 
reservoir stage exceeding nearby riverbanks, levees, or dams.  

• “Coastal flood mechanisms” involve the flooding of land adjacent to a sea, ocean, lake, 
or other open or semi-enclosed body of water.  

Further discussion of these three flood mechanism types is provided in the following 
subsections, which aggregate information from several references (e.g., FEMA 2014; Maddox 
2014). 

In linking these broad flood mechanism types and the hazards described in NRC guidance (see 
Section 2.1), the authors note that LIP is a flood-forcing phenomenon associated with pluvial 
flooding. Flooding from rivers/streams, dam failures, and ice effects is associated with fluvial 
flooding. Storm surges, seiches, and tsunamis are coastal flooding mechanisms. As shown in 
Figure 2-1, all nuclear facilities can potentially be affected by pluvial (i.e., LIP) flooding hazards, 
and a large fraction can potentially be affected by fluvial flooding hazards (i.e., stream and 
rivers, dam failures, ice effects). A smaller portion of sites can be affected by coastal flooding 
hazards (i.e., storm surges, seiches, tsunamis). In addition to evaluating hazards individually, 
existing NRC guidance specifies that licensees should also consider deterministic combinations 
of these mechanisms. 

The third tier of the flood terminology hierarchy (Figure 2-7) captures the metrics used to 
measure flood severity. Flood severity is typically measured by (1) flood height (i.e., stage) or 
elevation, (2) flood volume, (3) peak discharge, (4) flood event duration, (5) associated effects, 
and (6) other study-specific metrics. 
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Figure 2-7 MMF Terminology Hierarchy 
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Pluvial flooding typically occurs when the volume and rate of precipitation or snowmelt exceed 
the capacity of drainage or pumping systems (if available) and otherwise cannot be infiltrated 
into the ground. Flood-forcing phenomena that are typically associated with pluvial flooding 
include tropical and extratropical storm systems, thunderstorms, mesoscale convective 
complexes, and other rainfall producing phenomena (e.g., atmospheric rivers). Additionally, 
pluvial flooding may be caused by melting snow or ice (e.g., due to a rapid increase in 
temperature) as well as combinations of rainfall and snow/ice melting (e.g., “rain-on-snow” 
events). 

This flooding type is associated with the movement of water (due to precipitation or snowmelt) 
via overland flow to points of relatively low elevation without reaching large natural river 
channels or constructed conveyance systems. However, pluvial flooding may involve movement 
of water via smaller conveyances (e.g., site drainage systems and ditches), as well as retention 
in small reservoirs and ponds. The primary flood mechanism associated with pluvial flooding is 
the movement of water via overland flow and the resultant local ponding that develops and 
persists in topographic depressions. Additionally, precipitation events can lead to the overflow of 
isolated retention facilities not associated with conveyance systems (e.g., cooling water ponds 
created by ring levees) and result in pluvial site flooding. Although pluvial and fluvial flooding are 
described as distinctive types of flood mechanisms herein, the distinction is not always obvious 
during flood events. 

Pluvial flooding is primarily related to the quantity, timing, and spatial and temporal distribution 
of precipitation over the site, or the rate of snow and ice melt. In urban areas, inadequately 
sized drainage systems, development activities that overtake natural drainage patterns, and 
increases in impervious areas can exacerbate pluvial flooding. For nuclear facility sites, clogged 
drains and culverts, changes to site layouts (e.g., the addition of security barriers), and new 
structures can change site drainage characteristics and potentially exacerbate pluvial flooding. 

In the context of US commercial nuclear power facilities, pluvial flooding is generally addressed 
in the evaluation of the impacts of LIP on site and roof drainage. LIP-related impacts have been 
evaluated for all US commercial nuclear facilities as a part of initial licensing or subsequent 
analyses and reviews performed as part of NRC’s response to the 2011 events at the 
Fukushima Dai-chi nuclear power facility. More broadly, pluvial flooding is being increasingly 
recognized as an important type of flooding in communities throughout the United States 
(Galloway et al. 2018). However, federal flood insurance rate maps, which delineate flooding 
hazards from fluvial and coastal flooding, do not generally capture the hazards from pluvial 
flooding. In the United States, about 25% of all national flood insurance claims come from areas 
that federal flood insurance rate maps indicate have low to moderate flood risks (i.e., claims 
made in regions that fall outside the 100-year flood zone) (FEMA n.d.). 

2.2.2 Fluvial Flooding 

Fluvial flooding is defined as flooding that occurs adjacent to a defined channel such as a river 
or stream. It may also be referred to as riverine or overbank flooding. It occurs when the 
cumulative surface runoff, snowmelt, and flow from upstream watersheds increase significantly 
and results in increased river stage. Fluvial floods can happen relatively slowly (e.g., over 
several days to weeks) or extremely quickly (e.g., in minutes to hours). Quickly developing river 
flooding is often referred to as “flash flooding.” Flood-forcing phenomena that typically lead to 
fluvial flooding include large-scale extreme precipitation events (e.g., tropical, and extratropical 
storm systems, mesoscale convective complexes, synoptic-scale storms), snowmelt events 
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(including gradual snowmelt events and rapid melting events that lead to pulse-like increases in 
river discharge), and dam failures and operational releases. 

This flooding type is associated with several flood mechanisms as shown in Figure 2-7. The 
most common type of fluvial flooding is river (overbank) flooding, which occurs when 
precipitation and snow/ice melt run off into a conveyance system. In that case, the severity of 
fluvial flooding is a function of the quantity, timing, and spatial and temporal distribution of 
precipitation over the site or the rate of snow and ice melt. It can be exacerbated by saturated 
soils, impervious surfaces, and steep terrain. 

Fluvial flooding can also be associated with dam failures due to seismic, hydrologic, and other 
failure mechanisms (e.g., piping, gate failure, or random design flaws) as well as intentional, 
operational releases from dams (e.g., releases to conform with regulatory and water use 
requirements or to provide flood protection to populated areas). Fluvial flooding is also 
associated with ice-induced flood mechanisms. For example, ice jams in a river can lead to a 
rise in the water upstream of the jam. Moreover, the failure (breakup) of the jam can lead to the 
sudden release of water to downstream locations. Fluvial flooding can also be caused by debris 
blockages and breakup releases and is associated with the movement (migration) of channels 
due to erosion, sedimentation, mud flows, and ground failures. 

In the context of nuclear facilities, fluvial flooding hazards are typically addressed as part of 
evaluations related to flooding on rivers and streams due to rainfall runoff, dam failure 
evaluations, and factors such as channel migration and ice effects. More broadly, fluvial flooding 
hazards are assessed for a variety of applications including dam safety analyses and the 
National Flood Insurance Program (FEMA 2018a). 

2.2.3 Coastal Flooding 

Coastal flooding is associated with flooding of land adjacent to a sea, ocean, lake, or other open 
or semi-enclosed body of water. Flood-forcing phenomena that typically lead to coastal flooding 
generally fall into two types: (1) storm-related phenomena, such as hurricanes and extratropical 
storms, and (2) displacement-related phenomena, such as earthquakes and subaerial and 
submarine landslides. Additionally, atmospheric forcing may lead to tides that can cause or 
exacerbate flooding resulting from other phenomena. 

This flooding type is associated with a wide variety and disparate set of flood mechanisms. 
These mechanisms include (1) storm surge,6 which is generated when a tropical or extratropical 
storm event pushes water toward the shore because of pressure differential, winds, and related 
effects; (2) seiche, which occurs when oscillations in an enclosed or semi-enclosed body of 
water are generated because of pressure- or displacement-related phenomena; and (3) 
tsunamis, which include (typically large) waves generated by earthquakes, landslides, and 
volcanic eruptions. In certain regions, a tsunami-like wave that has a meteorological origin (e.g., 
is due to a pressure change) may be referred to as a meteo-tsunami. For storm-generated 
phenomena, the severity of flooding relates to the characteristics of the metrological flood-
forcing conditions (e.g., pressure differentials, wind speeds). For displacement-related 

 
6  “Storm surge” is typically used to refer to the abnormal rise in water level generated by a meteorological 

event above the tide. When tides are included, the resulting flooding mechanism is typically referred to 
as “storm tide.” However, the terms may be used interchangeably in some applications. 
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phenomena, the severity of flooding relates to the characteristics of the geologic event (e.g., 
earthquake). Additionally, the bathymetry in the region affects the flooding severity. 

In the context of nuclear facilities, coastal flooding hazards are typically addressed as a part of 
evaluations related to storm surge, seiche, and tsunami hazard assessments. More broadly, 
coastal flooding hazards (particularly those associated with storm surge) are assessed by the 
US Army Corps of Engineers (USACE) and various state and local governments for the design 
of shoreline and infrastructure protection, and also by the Federal Emergency Management 
Agency (FEMA) to estimate risks for the National Flood Insurance Program (FEMA 2018a). 

Appendix B introduces coastal hazard terminology that will be used throughout this report.  

2.3 MMF Hazard Framework 

Literature related to MMF assessment is wide-ranging in context, application, and terminology. 
Existing literature and other resources may address combinations at any of the tiers illustrated 
in Figure 2-7. Efforts may seek to characterize hazards associated with combinations of (1) 
multiple flood-forcing phenomena (e.g., earthquakes and hurricanes), (2) multiple flood 
mechanisms (e.g., tides and storm surge), or (3) multiple flood severity metrics (e.g., water 
levels and wave heights). Overall, most existing methods for characterizing MMFs focus on 
characterizing the occurrence of multiple mechanisms or multiple flood severity metrics (i.e., the 
second and third tiers of the hierarchy in Figure 2-7). 

Although the focus of this research project is mostly on characterizing hazards associated with 
floods caused by combinations of multiple flood mechanisms (i.e., the second tier in Figure 2-7), 
the discussion of existing resources in this report extends to considering the literature 
addressing combinations at any of the tiers. The reason for this expansive approach is to 
broaden the range of techniques and tools considered for application within mathematical 
frameworks and to inform the subsequent case studies developed through this research project. 

To provide structure and consistency in describing the available literature within this report and 
broader project activities, the following paragraphs introduce a graphical model-based 
framework and terminology for discussing combinations of flooding mechanisms. In particular, 
three categories of flood mechanism combinations are defined in conjunction with the 
conceptual diagrams in Figure 2-8. These flood mechanisms may be associated with one or 
more flood-forcing phenomena and flood severity metrics. Throughout this report, graphical 
models such as those shown in Figure 2-8 are used as a means of representing probabilistic 
models. In these graphical models, nodes (ovals) represent random quantities (e.g., random 
variables or stochastic events) and links (arrows) represent dependencies. The direction of the 
arrow is typically used to represent a causal relationship. 

In this report, the phrase “coincident mechanisms” (see Figure 2-8a) is used to refer to two or 
more flood mechanisms that affect a facility at the same time but result from independent flood-
forcing phenomena. An example of coincident mechanisms is a fluvial flood caused by a 
seismically induced dam failure that occurs while a rainfall-induced river flood is also occurring. 
The flood resulting from the occurrence of coincident mechanisms may be characterized by a 
single flood severity metric (e.g., flood elevation) or multiple flood severity metrics. 

The phrase “correlated mechanisms” is used in this report to refer to combinations of flood 
mechanisms that are directly or indirectly driven by the same flood-forcing phenomena. This 
dependence takes two forms. 
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1. The phrase “concurrent correlated mechanisms” (see Figure 2-8b) is used to refer to 
flood mechanisms generated by a common flood-forcing phenomenon. For example, for 
sites located on estuaries or tidally influenced rivers, flooding mechanisms from both 
storm surge (coastal flooding) and rainfall runoff flooding (fluvial flooding) can be caused 
by a single hurricane event (flood-forcing phenomenon). 

2. The phrase “induced correlated mechanisms” (see Figure 2-8c) is used to refer to 
scenarios in which the occurrence of one flood mechanism leads to (induces) another 
flood mechanism. For example, a rainfall-induced river flood may lead to (induce) a 
hydrologic dam failure–induced flood. As with coincident mechanisms, the occurrence of 
correlated mechanisms may be associated with floods that are characterized by either a 
single or multiple flood severity metrics. 

 

   

(a) Coincident Mechanisms (b) Concurrent Correlated 
Mechanisms 

(c) Induced Correlated 
Mechanisms 

Figure 2-8 Categories of Flood Mechanism Combinations 
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3 OVERVIEW OF PFHA 

The following subsections provide information on deterministic flood hazard assessment 
(DFHA) and PFHA and summarize the mathematical formulations necessary to assess MMFs, 
including an overview of random variables and distributions, approaches for developing joint 
distributions, and hazard curve development. 

3.1 Introduction to Flood Hazard Assessment 

Two broad classes of approaches are used to assess flood hazards involving a single or 
multiple flood mechanisms: DFHA and PFHA. 

DFHA considers a single scenario, or a set of candidate scenarios intended to define a 
sufficiently severe flood hazard for consideration in a target application (e.g., design, analysis, 
or retrofit of a component or system). Following the terminology defined in Section 2, a 
deterministic MMF flood hazard scenario is characterized as consisting of the assumed 
occurrence of one or more flood-forcing phenomena leading to one or more flood mechanisms. 
Under deterministic frameworks, MMFs are typically addressed by considering a limited number 
of prespecified scenarios that involve the occurrence of multiple flood mechanisms. One or 
more flood severity metrics are then calculated under each of the limited number of assumed 
scenarios using numerical, empirical, or analytical models. Current NRC flooding guidance 
focuses on DFHA methods, which typically use a hierarchical hazard assessment in which a 
stepwise approach is applied to identify the most conservative plausible assumptions, 
consistent with available data (USNRC 2011). Current NRC guidance related to MMFs is further 
described in Appendix A. 

Although DFHA is the current standard approach for most US NPPs, given its deterministic 
nature, this approach offers limited risk information and cannot be used to support risk-informed 
decision-making. In contrast, PHFA enables quantitative estimation of flood risk. According to 
USNRC (2014), a truly risk-informed and performance-based approach requires quantitative 
probabilistic models for the flooding phenomena combined with probabilistic models for the 
fragility of flood protection features and reliability of flood protection or mitigation procedures. 

In other words, a PFHA is a systematic assessment of the likelihood that a specified flood 
severity metric or set of metrics will be exceeded at a site or in a region during a specified 
interval (typically one year). The results of such an assessment are expressed as estimated 
probabilities (e.g., annual exceedance probability [AEP]) or frequencies.7 

Results of a probabilistic hazard assessment are often displayed as a hazard curve or set of 
hazard curves that include a flood severity metric on one axis and the associated (annual) 
probability of exceedance (or return period) on the other axis. The disciplinary conventions for 
presenting hazard curves differ based on the hazard considered. Differences between 
conventions include the orientations of axes (e.g., in some cases, the severity parameters may 

 
7  The annual exceedance frequency represents the rate at which events of interest (e.g., floods more 

severe than a specified level) occur per year. It is the inverse of the return period, which represents the 
average time between two successive events of interest. The annual exceedance frequency differs 
from the AEP, which is the annual probability that at least one event of interest will occur in a given 
year. In practice, for events with moderate to long return periods, the practical quantitative distinction 
between annual exceedance frequencies and probabilities is negligible. In this section, consistent with 
typical terminology used in PFHA, the phrase annual exceedance probability is used. 
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be on the x-axis and in other cases, on the y-axis), the scaling of axes (e.g., use of log or linear 
scales), the direction of axes, and the use of annual probability (or frequency) of exceedance 
versus return period. Figure 3-1 provides four examples of hazard curve presentations showing 
the same information with different conventions. 
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Figure 3-1 Conceptual Example of Hazard Curves 

3.2 Introduction to Random Variables and Distributions 

This section presents an introduction to terminology and notation associated with single-variate 
(univariate) and multivariate distributions. Information presented in this section is adapted from 
Ang and Tang (2007). Consistent with the conventions of Ang and Tang (2007), throughout this 
document, capital letters are used to denote random variables and lowercase letters are used to 
represent realizations of a random variable. 

3.2.1 Univariate Distributions 

Consider a continuous random variable 𝑋𝑋. The univariate probability density function (PDF) is 
defined as 
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𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑃𝑃(𝑥𝑥 < 𝑋𝑋 ≤ 𝑥𝑥 + 𝑑𝑑𝑑𝑑) . 3.1 

where 𝑑𝑑𝑑𝑑 is an infinitely small differential element. The PDF 𝑓𝑓𝑋𝑋(𝑥𝑥) is not a probability but rather 
a probability density. For continuous random variables, no probability is assigned to a single 
outcome. Instead, 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑 represents the probability that the random variable 𝑋𝑋 will be in the 
interval (𝑥𝑥, 𝑥𝑥 + 𝑑𝑑𝑑𝑑). Therefore, the PDF can be viewed as providing information regarding the 
relative likelihood of one outcome occurring relative to other possible outcomes. 

The corresponding cumulative distribution function (CDF) for 𝑋𝑋 can be obtained from the PDF 
as 

𝐹𝐹𝑋𝑋(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = �𝑓𝑓𝑋𝑋(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑥𝑥

−∞

 . 3.2 

Figure 3-2 shows a conceptual example of a PDF and a CDF. If 𝐹𝐹𝑋𝑋(𝑥𝑥) has a first derivative, the 
PDF can expectedly be obtained from the CDF through differentiation: 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
𝑑𝑑𝐹𝐹𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑑𝑑

 . 3.3 

The probability of exceedance (often referred to as the complementary CDF) is 

𝑃𝑃(𝑋𝑋 > 𝑥𝑥) = 1 − 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) = 1 − 𝐹𝐹𝑋𝑋(𝑥𝑥). 3.4 

The probability of exceedance is generally the focus of PFHA studies. 

Figure 3-2 (Left) Conceptual Example of PDF and (Right) CDF 

3.2.2 Multivariate Distributions 

The univariate distributions described can be generalized to the notion of a “joint distribution,” 
which provides information about the relative likelihood that a set of multiple random variables 
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will take on particular values. In working with multiple random variables, the univariate 
expression for the distribution of a single random variable is often referred to as a “marginal 
distribution” because it provides the distribution of a variable irrespective of the values of other 
random variables. 

To expand upon the provided univariate expressions, consider a vector8 of random variables 
𝐗𝐗 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛]. The joint PDF of the random variables can be written as 

𝑓𝑓𝐗𝐗(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛 = 𝑃𝑃(𝑥𝑥1 < 𝑋𝑋1 ≤ 𝑥𝑥1 + 𝑑𝑑𝑥𝑥1 ∩ …∩ 𝑥𝑥𝑛𝑛 < 𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛 + 𝑑𝑑𝑥𝑥𝑛𝑛) , 3.5 

where 𝑑𝑑𝑥𝑥𝑖𝑖 is an infinitely small differential element. The joint CDF (JCDF) can be obtained from 
the joint PDF as 

𝐹𝐹𝐗𝐗(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑃𝑃(𝑋𝑋1 ≤ 𝑥𝑥1 ∩ …∩ 𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛) = � … � 𝑓𝑓𝐗𝐗(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑑𝑑𝑥𝑥1 …𝑑𝑑𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛

−∞

𝑥𝑥1

−∞

 . 3.6 

In Eq. 3.6, the symbol ∩ is the “intersection operator,” which is linked to the Boolean “and” 
concept. For example, 𝐴𝐴 ∩ 𝐵𝐵 is used to represent an event in which both events 𝐴𝐴 and 𝐵𝐵 occur. 

Similarly, the joint PDF can be naturally obtained from the JCDF through (partial) differentiation, 
if the JCDF is differentiable. The joint PDF of any subset of the random variables 𝐗𝐗′ =
[𝑋𝑋1, … ,𝑋𝑋𝑘𝑘] can be obtained from the joint PDF of 𝐗𝐗. In other words, the joint PDF of 𝐗𝐗′ can be 
obtained as 

𝑓𝑓𝐗𝐗′(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) = � … � 𝑓𝑓𝐗𝐗(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑑𝑑𝑘𝑘+1 …𝑑𝑑𝑥𝑥𝑛𝑛 .

∞

𝑥𝑥𝑘𝑘+1=−∞

∞

𝑥𝑥𝑛𝑛=−∞

 3.7 

The JCDF of the subset 𝑋𝑋′ can be obtained from the JCDF over 𝐗𝐗 as 

𝐹𝐹𝐗𝐗′(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) = 𝐹𝐹𝑋𝑋(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ,∞, …∞). 3.8 

The marginal PDF of a single random variable then becomes a special case of Eqs. 3.7 and 3.8. 
For example the marginal PDF of 𝑋𝑋1 can be derived as  

𝑓𝑓𝑋𝑋1(𝑥𝑥1) = � … � 𝑓𝑓𝐗𝐗(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑑𝑑2 …𝑑𝑑𝑥𝑥𝑛𝑛 .

∞

𝑥𝑥2=−∞

∞

𝑥𝑥𝑛𝑛=−∞

 3.9 

A “conditional distribution” provides the distribution of a random variable given (i.e., knowing or 
assuming) the value of another random variable or set of random variables. The conditional 
PDF of a subset of variables 𝐗𝐗′ = {𝑋𝑋1, … ,𝑋𝑋𝑘𝑘} given the remaining variables 𝐗𝐗\𝐗𝐗′ = {𝑋𝑋𝑘𝑘+1, … ,𝑋𝑋𝑛𝑛} 
can be obtained through a ratio of densities: 

8 Bold font represents vectors of random variables. 
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𝑓𝑓𝐗𝐗′|𝐗𝐗\𝐗𝐗′(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘+1, … , 𝑥𝑥𝑛𝑛) =
𝑓𝑓𝐗𝐗(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
𝑓𝑓𝐗𝐗\𝐗𝐗′(𝑥𝑥𝑘𝑘+1, … , 𝑥𝑥𝑛𝑛) . 3.10 

3.2.3 Special Case: Bivariate Distributions 

For the special case of two random variables, 𝑋𝑋 and 𝑌𝑌, the joint PDF is defined as 

𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃(𝑥𝑥 < 𝑋𝑋 ≤ 𝑥𝑥 + 𝑑𝑑𝑑𝑑 ∩ 𝑦𝑦 < 𝑌𝑌 ≤ 𝑦𝑦 + 𝑑𝑑𝑑𝑑) , 3.11 

where 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑 are infinitely small differential elements. If 𝐹𝐹𝑋𝑋(𝑥𝑥) has a first derivative, the PDF 
can be obtained from the CDF through differentiation. The JCDF 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) can be obtained from 
the joint PDF as 

𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥 ∩ 𝑌𝑌 ≤ 𝑦𝑦) = � �𝑓𝑓𝑋𝑋𝑋𝑋(𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .

𝑦𝑦

−∞

𝑥𝑥

−∞

 3.12 

 

Figure 3-3 provides an example of a bivariate PDF and bivariate CDF. 

 

Figure 3-3 (Left) Example of Bivariate PDF and (Right) Bivariate CDF 

Assuming differentiability, the joint PDF can be obtained from the JCDF as 

𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) =
𝜕𝜕2𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦)

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 . 3.13 

The marginal PDFs of 𝑋𝑋 and 𝑌𝑌 can be obtained from the joint PDF as 
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𝑓𝑓𝑋𝑋(𝑥𝑥) = � 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑
∞

−∞

 , 

𝑓𝑓𝑌𝑌(𝑦𝑦) = � 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 .
∞

−∞

 

3.14 

Similarly, the marginal CDFs of 𝑋𝑋 and 𝑌𝑌 can be obtained as 

𝐹𝐹𝑋𝑋(𝑥𝑥) = � 𝑓𝑓𝑋𝑋(𝑧𝑧)𝑑𝑑𝑑𝑑
𝑥𝑥

−∞
= 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,∞) , 

𝐹𝐹𝑌𝑌(𝑥𝑥) = � 𝑓𝑓𝑌𝑌(𝑧𝑧)𝑑𝑑𝑑𝑑
𝑦𝑦

−∞
= 𝐹𝐹𝑋𝑋𝑋𝑋(∞,𝑦𝑦) . 

3.15 

The conditional PDF can be obtained from the joint and marginal distribution as 

𝑓𝑓𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦) =
𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦)
𝑓𝑓𝑌𝑌(𝑦𝑦)

 . 3.16 

3.3 Summary of Approaches to Develop Joint Distributions 

PFHA approaches may use statistical analysis directly on data corresponding to quantities of 
interest (which may relate to any of the levels of the hierarchy in Figure 2-7) or may involve 
statistical analyses coupled with process models. Using the language of Der Kuireghian and 
Ditevsen (2009), “basic random variable approaches” refer to assessments that statistically 
analyze a data set directly corresponding to random variables that describe a quantity of 
interest. Under conventional univariate PFHA, these basic random variable approaches typically 
involve the estimation of empirical, parametric, and nonparametric (kernel density estimator) 
distributions using a set of observations corresponding to the quantity of interest. In considering 
multiple random variables related to one of the levels of the hierarchy in Figure 2-7, similar 
approaches can be used to directly estimate the parameters of a parametric joint distribution or 
to develop empirical joint distributions and other nonparametric distributions. Alternatively, the 
joint distribution may be “built up” using copula functions. These two strategies for implementing 
basic random variable approaches in the context of PFHA are described in Sections 3.3.1 and 
3.3.2. 

The basic random variable approaches are contrasted with the “derived random variable 
approaches” (Der Kiureghian and Ditlevsen 2009), which use process models to derive the 
random variables of interest as a function of other random variables. In this case, the other 
random variables correspond to input parameters representing a different (typically higher) tier 
of the Figure 2-7 hierarchy. Derived random variable approaches may use Bayesian-motivated 
approaches or stochastic simulation. In both cases, statistical analyses are used to define the 
distributions of input parameters, and process models are used to estimate the response 
(output) quantity (or quantities) as functions of input parameters. Bayesian-motivated 
approaches are further described in Section 3.3.3. 

Stochastic simulation approaches typically sample from input parameter distributions and use 
process models to compute synthetic series of output quantities as functions of input 
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parameters using numerical or other models. Typically, basic random variable statistical 
approaches (as described in Sections 3.3.1 and 3.3.2) are then used to analyze the resulting 
synthetic data series as if it were an observational record. 

3.3.1 Direct Estimation of Joint Distributions 

In the context of the methods applied for assessment of MMF, some researchers have sought to 
directly develop joint distributions using empirical (observational) or synthetic data sets. That 
process includes the estimation of empirical distributions (e.g., empirical contours based on 
precipitation and surge [van den Hurk et al. 2015]) as well as estimation of parametric joint 
distributions (e.g., development of bivariate normal (NOR) distributions related to wave heights 
and sea level [Wadey et al. 2015]). Additional information regarding development of joint 
distributions is provided here. 

Joint distributions may be defined empirically using a data set consisting of two or more random 
variables of interest. The univariate empirical CDF is defined by estimating the fraction of 
observations in a sample of size 𝑛𝑛𝑠𝑠 that are less than or equal to a particular outcome 𝑥𝑥. The 
empirical CDF is expressed as 

𝐹𝐹𝑋𝑋
[𝑒𝑒](𝑥𝑥) =

∑ 𝕀𝕀[𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥]𝑛𝑛𝑠𝑠
𝑖𝑖=1

𝑛𝑛𝑠𝑠
 . 3.17 

In Eq. 3.17, 𝕀𝕀[𝑎𝑎] is an indicator function that equals one when the expression 𝑎𝑎 is “true,” and 
otherwise, zero. The 𝑘𝑘-dimensional, multivariate extension can be expressed as 

𝐹𝐹𝐗𝐗
[𝑒𝑒](𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) =

∑ 𝕀𝕀�𝑥𝑥𝑖𝑖,1 ≤ 𝑥𝑥1 ∩…∩ 𝑥𝑥𝑖𝑖,𝑘𝑘 ≤ 𝑥𝑥𝑘𝑘�
𝑛𝑛𝑠𝑠
𝑖𝑖=1  

𝑛𝑛𝑠𝑠
 . 3.18 

Nonparametric distributions do not have a defined parametric functional form for which 
parameters may be estimated using parameter estimation techniques. Nonparametric 
estimation may involve kernel density estimation techniques, which are not described in detail in 
this report. Conversely, parametric distributions provide a defined functional form for the PDF 
and CDF. A large number of defined parametric functional forms exists for univariate 
distributions, many of which are identified by name (e.g., NOR or Gaussian [GAU], exponential, 
Weibull, and lognormal [LN] distributions). A subset of univariate distributions is associated with 
multivariate generalized forms, the most well-known and widely applied of which is the 
multivariate NOR distribution. 

For multivariate distributions such as the multivariate NOR distribution, parameter estimation 
techniques can be used to directly estimate the parameters of the assumed joint distribution 
using a data set containing observations related to each random quantity of interest. Estimation 
of the parameters of a parametric probability distribution typically begins with selecting one or 
more candidate distributions based on considerations such as compatibility between physical 
processes and theoretical distribution characteristics (e.g., limiting conditions). Then, using an 
available data set, parameters of the distribution are estimated using one or more parameter 
estimation techniques (e.g., method of moments, maximum likelihood estimation, L-moments, or 
Bayesian parameters estimation). Then, the goodness-of-fit between the data and the fitted 
distribution may be assessed using graphical assessments, formal hypothesis tests, information 
criteria, or other measures. However, measures of fit are generally of limited value in 
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considering values in the tails of the distribution, which is the region of interest in most hazard 
assessments. 

Although conceptually straightforward to implement (though potentially nontrivial from a 
computational perspective), these multivariate techniques require an assumed functional form 
for the joint distribution, which is then associated with derived marginal distribution forms. For 
example, if two or more random variables are distributed according to the multivariate NOR 
distribution (parameterized by a mean vector and covariance matrix), their marginal distributions 
are likewise necessarily NOR. Similar considerations apply to other parametric multivariate 
distributions. For instance, in the multivariate NOR distribution case, a bivariate exponential 
distribution requires that both variables be marginally exponentially distributed. 

Although certain problem structures may be supported by such restrictive distribution 
assumptions, these assumptions may not be appropriate in all cases (e.g., if an analysis 
focuses on estimation of the joint distribution of random quantities associated with significantly 
different marginal distribution forms). Of particular interest to PFHA are a special class of 
parameter distributions called extreme value distributions, an overview of which is provided in 
Section 3.3.1.1  for the univariate case. 

3.3.1.1  Extreme Value Distribution 

Extreme value (EV) analysis (EVA) focuses on the estimation and application of probability 
distributions when the random variable range of interest deviates substantially from a central 
measure of the distribution. EVA is particularly important when there is limited empirical 
information to help define the distribution in these tail regions. There are two approaches that 
are broadly used in EVA: peak-over-threshold approaches and block extrema approaches. The 
peak-over-threshold approach is also referred to as a “partial duration series approach.” In 
PFHA, the block extrema approach most often corresponds to an annual maxima series 
approach in which the block is taken to be one year.  

The peak-over-threshold approach involves a (typically Poisson) point process of values 
exceeding a threshold, as well as the magnitude of the exceedance. Therefore, it focuses on 
estimating two components: (1) the probability distribution of a random variable that exceeds 
some threshold of interest and (2) the probability (or rate) at which events occur that meet the 
threshold criteria (Coles 2001; Madsen et al. 1997). Typically, peak-over-threshold focuses on 
estimating (and then using) a distribution fitted to a data series containing all observations of a 
flood severity metric that exceed a specified threshold, as well as estimating the rate at which 
those exceedance events occur. That is, let 𝑋𝑋 be a random variable representing a flood 
severity metric with CDF 𝐹𝐹𝑋𝑋(𝑥𝑥), and let 𝑢𝑢 be the selected threshold.9 The conditional CDF for 
the amount of the threshold exceedance (𝑌𝑌 = 𝑋𝑋 − 𝑢𝑢) given that an exceedance has occurred 
may be expressed as  

𝐹𝐹𝑌𝑌|𝑋𝑋>𝑢𝑢(𝑦𝑦|𝑋𝑋 > 𝑢𝑢) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦|𝑋𝑋 > 𝑢𝑢) = 𝑃𝑃(𝑋𝑋 − 𝑢𝑢 ≤ 𝑦𝑦|𝑋𝑋 > 𝑢𝑢) =
𝐹𝐹𝑋𝑋(𝑦𝑦 + 𝑢𝑢) − 𝐹𝐹𝑋𝑋(𝑢𝑢)

1 − 𝐹𝐹𝑋𝑋(𝑢𝑢)
 . 3.19 

 
9  Selection of the threshold is a nontrivial task requiring that the threshold be set at a sufficiently high 

level such that EVA assumptions are not violated and that observations can be considered 
independent. However, it must not be so high that the number of observations included in the dataset 
becomes small (leading to large variance). Various rules of thumb and other quantitatively motivated 
heuristics are available to support threshold selection (Coles 2001). 
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Thus, if the distribution of 𝑋𝑋 is known, and the distribution of the threshold exceedances will 
likewise be known. In general, this distribution of 𝑋𝑋 is not known. However, the EV theory 
provides that for a sufficiently large threshold 𝑢𝑢 and under certain assumptions (e.g., 
independence of exceedance events), this conditional distribution approaches the generalized 
Pareto distribution with shape parameter 𝜁𝜁 and scale parameter 𝛼𝛼. The conditional CDF in Eq. 
3.19 approaches the following functional form (Bommier, 2014): 

𝐹𝐹𝑌𝑌|𝑋𝑋>𝑢𝑢(𝑦𝑦|𝑋𝑋 > 𝑢𝑢) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1 − �1 +

𝜁𝜁𝜁𝜁
𝛼𝛼
�
−1𝜁𝜁

, 𝑦𝑦 ∈ (0,∞), 𝜁𝜁 > 0

1 − exp �−
𝑦𝑦
𝛼𝛼
� ,𝑦𝑦 ∈ (0,∞), 𝜁𝜁 = 0

1 − �1 +
𝜁𝜁𝜁𝜁
𝛼𝛼
�
−1𝜁𝜁

,𝑦𝑦 ∈ �0,−
𝛼𝛼
𝜁𝜁
� , 𝜁𝜁 < 0

 . 3.20 

The special case in which 𝜁𝜁 = 0 gives the exponential distribution.  

The probability of a flood with a severity metric 𝑋𝑋 greater than 𝑥𝑥 for a threshold exceedance 
event (i.e., the probability of a flood with severity greater than both 𝑥𝑥 and 𝑢𝑢) may be expressed 
as 

𝑃𝑃(𝑋𝑋 > 𝑥𝑥 ∩ 𝑋𝑋 > 𝑢𝑢) = �1 − 𝐹𝐹𝑌𝑌|𝑋𝑋>𝑢𝑢(𝑥𝑥 − 𝑢𝑢|𝑋𝑋 > 𝑢𝑢)� ∗ 𝑃𝑃(𝑋𝑋 > 𝑢𝑢) . 3.21 

In Eq. 3.21, 𝐹𝐹𝑌𝑌|𝑋𝑋>𝑢𝑢(𝑥𝑥 − 𝑢𝑢|𝑋𝑋 > 𝑢𝑢) may be defined by fitting a generalized Pareto distribution (e.g., 
using a statistical inference method such as maximum likelihood estimation) to an empirical 
data set containing all observations that exceed the selected threshold. The quantity 𝑃𝑃(𝑋𝑋 > 𝑢𝑢) 
may be defined by first estimating the rate at which exceedance events occur (i.e., the number 
of exceedance observations divided by the length of the period of record) and then converting 
the rate to a probability. 

Alternatively, block extrema EVA refers to a class of analyses that is focused on the estimation 
of probability distributions associated with block extrema (i.e., estimation of the distribution of 
the minima or maxima of a set of random variables [Ang and Tang 2007]). In the context of flood 
hazards, the univariate EVA is generally focused on estimation of the distribution of the annual 
maxima (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) of a series of random variables (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛): 

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) . 3.22 

Under the assumption that the 𝑋𝑋𝑖𝑖 variables in Eq. 3.22 are statistically independent and 
identically distributed, the exact form of the distribution for 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 can be derived if the underlying 
distribution of 𝑋𝑋𝑖𝑖 is known. The CDF for 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 is given by 

𝐹𝐹𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑃𝑃(𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) = [𝐹𝐹𝑋𝑋(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)]𝑛𝑛 . 3.23 

However, the underlying distribution for 𝑋𝑋𝑖𝑖 may not be known or even if it is known, the resulting 
exact form of the distribution for 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 may be mathematically complex. Instead, EVA typically 
makes use of asymptotic distributions. These asymptotic distributions are applicable as 𝑛𝑛 
becomes large (𝑛𝑛 → ∞) and require only an understanding of the behavior of the tail(s) of the 
underlying distribution for 𝑋𝑋𝑖𝑖 in the direction of the extreme. They do not require knowledge of 
the exact form of the underlying distribution for 𝑋𝑋𝑖𝑖 (Ang and Tang 2007). 
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There are three broad types of asymptotic distributions.10 The generalized EV (GEV) distribution 
provides a generalized functional form that captures all three types of these distributions in a 
single distribution function. The PDF of the GEV distribution is given by: 

𝑓𝑓𝑋𝑋(𝑥𝑥) = �
 
1
𝛼𝛼

exp �−(1 + 𝑘𝑘𝑘𝑘)−
1
𝑘𝑘� (1 + 𝑘𝑘𝑘𝑘)−1−

1
𝑘𝑘 ,  𝑘𝑘 ≠ 0 

 
1
𝛼𝛼

exp(−𝑦𝑦 − exp(−𝑦𝑦)) ,  𝑘𝑘 = 0
,𝑦𝑦 =

𝑥𝑥 − 𝛽𝛽
𝛼𝛼

,𝛼𝛼 > 0 . 3.24 

In above equation 𝑘𝑘, 𝛼𝛼 , and 𝛽𝛽  are shape parameter, scale parameter, and location parameter 
respectively. Setting the shape parameter 𝑘𝑘 equal to zero corresponds to a Type I EV 
distribution, 𝑘𝑘 greater than zero yields a Type II EV distribution, and 𝑘𝑘 less than zero provides a 
Type III distribution. Type I EV distributions are applicable when the tail of the distribution for 𝑋𝑋𝑖𝑖 
is unbounded and decays exponentially in the direction of the extreme. Type II EV distributions 
are applicable when the tail of the distribution for 𝑋𝑋𝑖𝑖 is unbounded and exhibits polynomial 
decay in the direction of the extreme. Type III distributions are applicable when the tail of the 
distribution for 𝑋𝑋𝑖𝑖 is bounded. These distributions may be known by various formal names (e.g., 
Gumbel [GUM], Frechet, and Weibull) depending on the distribution type, the direction of 
extreme, and conventions of the field of study (Ang and Tang 1984). Figure 3-4 shows 
examples of the GEV distribution with differing values of 𝑘𝑘 (but the same 𝛼𝛼 and 𝛽𝛽 parameter 
values). The Type I distribution tail decays faster than the tail of the Type II EV distribution; the 
Type III EV distribution has a strict upper bound. The behavior of the tail (rate of convergence) 
can significantly affect the estimated frequencies of exceedance for a given flood severity 
metric. 

 

Figure 3-4 Example of GEV Distribution with Differing 𝒌𝒌 Values (𝜶𝜶 = 𝟏𝟏,𝜷𝜷 = 𝟏𝟏) 

The EV theory leading to the aforementioned asymptotic distributions assumes that the 𝑋𝑋𝑖𝑖 
values are statistically independent and identically distributed, which is not a general 

 
10 These are not the only asymptotic extreme value distributions; however, these forms are most 

applicable in engineering practice (Ang and Tang 1984). 
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characteristic of flood discharge time series. For example, in one of the foundational texts for 
EVA, Gumbel (1958) notes that the application of the theory to the analysis of daily flood 
discharges is potentially problematic because of the requirement that the underlying daily 
observations be independent (which is unlikely to be true) and because the number of 
observations (approximately 365) may not be sufficiently large (Gumbel 1958). Subsequent 
mathematical justification has been developed to support relaxation of the assumption of 
statistical independence and has shown that limiting (asymptotic) distributions under classical 
EVA remain applicable under conditions in which the underlying process exhibits a weak 
dependence structure but remains stationary (Leadbetter 1983). Therefore, the consensus 
(based on both mathematical considerations and heuristics) is that the use of block maxima 
approaches remains appropriate in applications such as flood frequency analysis under 
stationary conditions because even when observations are not independent, the annual maxima 
are still approximately GEV-distributed and exhibit a low serial correlation (Bücher and Zhou 
2018). In other words, the dependence in the underlying 𝑋𝑋𝑖𝑖 values can be ignored from the 
perspective of modeling the distribution of block extrema in stationary processes (Coles 2001). 
Temporal non-stationarity can be addressed within the context of EVA by expressing one or 
more parameters of the underlying asymptotic distribution as a function of time (Coles 2001). 

Thus, the asymptotic distributions derived from EV theory provide parameterized functional 
forms for 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 that facilitate estimation of the parameters of the distributions via statistical 
analysis of a data set containing block extrema observations. Conventional PFHA for riverine 
applications, often referred to as “flood (flow) frequency analysis,” is an example of such an 
assessment approach. Under these assessments, the random variable 𝑋𝑋 typically corresponds 
to river discharge and the estimated probability distribution(s) are typically defined to correspond 
to an assumed asymptotic form or to an alternate formulation.11 In such assessments, data 
series consisting of the annual maximum river discharge values are used to estimate the 
parameters of the assumed distribution using maximum likelihood estimation, the method of 
(central or L-) moments, or other algorithms. Flood (peak flow) frequency analyses may include 
additional adjustments for outliers, historical information, and other considerations. EVA 
approaches are also used to estimate hazards associated with surge from extratropical events 
(USACE 2015) and precipitation (NOAA 2006). 

Peak-over-threshold annual maxima series approaches have their own strengths and 
limitations. The main challenge of peak-over-threshold is the selection of an appropriate 
threshold that can satisfy the EVA assumption that all samples can be considered independent 
while resulting in a sufficiently large number of samples to support the statistical analysis (Coles 
2001). On the other hand, the annual maxima series approach considers only the maximum 
value in a given year, and all other data are discarded. If multiple “large events” occur in a given 
year, only the maximum event for that year will be considered in the assessment. Conversely, 
the annual maxima approach will include a maximum value from a “dry year” even if no floods of 
significance have occurred. Therefore, the use of annual maxima series approaches can lead to 
lower estimates of the frequency of exceedance associated with a particular severity metric 
compared with assessments using partial duration series, which consider all (independent) 
events in a record that exceeds a particular threshold. However, for estimating hazards 

 
11 Extreme value distributions are used for flood (flow) frequency analysis in numerous countries 

internationally (Castellarin et al. 2012). In the United States, federal guidance prescribes use of the 
Log-Pearson Type III distribution (a generalization of the gamma distribution [Griffis and Stedinger 
2007]) for flood (flow) frequency analysis (England et al. 2018). 
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associated with returns periods of longer than about 10 to 20 years, the difference between 
results obtained using the two approaches is negligible (Ball et al. 2019; NOAA 2006). 

3.3.2 Copula-Based Approaches 

One challenge associated with direct parametric joint distribution fitting is that most of the 
formulated parametric multivariate distributions yield certain marginal distributions. The 
restriction that all random variables be distributed according to the same marginal functional 
form is generally limiting. Each individual variable can have quite different distributions (e.g., 
one random variable may be marginally lognormally distributed and the other may be distributed 
accordingly to an EV distribution). This reality motivates the use of copulas for a more 
generalized approach in constructing multivariate distributions. 

A copula function provides a mathematical expression for the JCDF of random variables. Using 
a copula, the JCDF can be estimated by first assuming functional forms for the copula and the 
marginal distributions and then using a set of observations to separately estimate (1) the 
parameters of the marginal distributions and (2) the parameters of the copulas, which are 
typically related to the correlation between the quantities, as estimated from data. For any set of 
marginal CDFs and an assumed copula function, a valid JCDF can be constructed. Therefore, 
copulas offer significant flexibility in developing joint distributions. Additional mathematical 
information regarding copulas is provided in the following equations. The information that 
follows is an amalgamation and simplification of information contained in more comprehensive 
introductions to copulas (Balakrishnan and Lai 2009; Genest and Favre 2007; Haugh 2016; 
Nelsen 2002). 

Let 𝐗𝐗 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛} be a vector of random variables with marginal (univariate) CDFs: 
𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛). A copula, 𝐶𝐶(∙), provides a mathematical expression for this JCDF. In 
particular, the copula expresses the JCDF as a function of the marginal CDFs and parameter(s) 
(𝜃𝜃) that provides a measure of association between the marginal CDFs. Following Sklar’s 
Theorem (Nelsen 1999), for an 𝑛𝑛-dimensional JCDF 𝐹𝐹𝐗𝐗(𝐱𝐱) with marginal CDFs 
𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛), a copula exists such that 

𝐹𝐹𝐗𝐗(𝐱𝐱) = 𝑃𝑃(𝑋𝑋1 ≤ 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛) = 𝐶𝐶(𝐹𝐹1(𝑥𝑥1), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛),𝜃𝜃). 3.25 

The PDF can then be expressed as 

𝑓𝑓𝐗𝐗(𝐱𝐱) =
𝜕𝜕𝑛𝑛𝐹𝐹𝐗𝐗(𝐱𝐱)

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2 …𝜕𝜕𝑥𝑥𝑛𝑛
=
𝜕𝜕𝑛𝑛𝐶𝐶(𝐹𝐹1(𝑥𝑥1), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛),𝜃𝜃)

𝜕𝜕𝐹𝐹1𝜕𝜕𝐹𝐹2 …𝜕𝜕𝐹𝐹𝑛𝑛
∗ 𝑓𝑓1(𝑥𝑥1)𝑓𝑓2(𝑥𝑥2) …𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛), 3.26 

where 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) represents the marginal PDF of 𝑋𝑋𝑖𝑖. 

As an example, the bivariate Farlie-GUM-Morgenstern family of copulas expresses the JCDF as 
a function of the marginal distributions 𝐹𝐹1(𝑥𝑥1) and 𝐹𝐹2(𝑥𝑥2) and the parameter 𝜃𝜃 (−1 ≤ 𝜃𝜃 ≤ 1) 
using the following functional form: 

 𝐶𝐶(𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2),𝜃𝜃) = 𝐹𝐹1(𝑥𝑥1)𝐹𝐹2(𝑥𝑥2) + 𝜃𝜃𝐹𝐹1(𝑥𝑥1)𝐹𝐹2(𝑥𝑥2)�1 − 𝐹𝐹1(𝑥𝑥1)��1− 𝐹𝐹2(𝑥𝑥2)� . 3.27 

In Eq. 3.27, the parameter 𝜃𝜃 provides information regarding the association between 𝑋𝑋1 and 𝑋𝑋2. 
The quantity can be related to Spearman’s 𝜌𝜌 (i.e., 𝜌𝜌 = 𝜃𝜃

3
 ) and to Kendall’s 𝜏𝜏 (i.e., 𝜏𝜏 = 2𝜃𝜃

9
) 

(Nelsen 1994), which are measures of association (correlation) between two quantities. When 
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𝑋𝑋1 and 𝑋𝑋2 are independent, 𝜃𝜃 is equal to zero and the JCDF is equal to the product of the 
marginal CDFs.  

Noting that the marginal CDF of 𝑋𝑋1 can be obtained as 𝐹𝐹1(𝑥𝑥1) = 𝐹𝐹𝑋𝑋1𝑋𝑋2(𝑥𝑥1,∞) (and similarly for 
𝑋𝑋2 as 𝐹𝐹2(𝑥𝑥2) = 𝐹𝐹𝑋𝑋1𝑋𝑋2(∞,𝑥𝑥2)), this copula (JCDF) will return 𝐹𝐹1(𝑥𝑥1) and 𝐹𝐹2(𝑥𝑥2) for the marginal 
distributions of 𝑋𝑋1 and 𝑋𝑋2, respectively. 

A large number of copula functions have been developed with various functional forms (e.g., 
GAU copulas, Archimedean copulas), each of which induces a different dependency structure. 
However, since they are all representations of the JCDF of a vector of random variables, these 
copulas all must abide by the properties of a CDF. In particular, in the notation of copulas, 𝐶𝐶(∙) 
must be a nondecreasing, monotonic function and 𝐶𝐶(1, …𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖) … ,1,𝜃𝜃) = 𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖).12 

For any set of marginal CDFs and an assumed copula function, a valid JCDF can be 
constructed. Thus, the JCDF can be estimated by first assuming functional forms for the copula 
and the marginal distributions and then using an 𝑛𝑛-dimensional set observations to separately 
estimate the (1) parameters of the 𝑛𝑛 marginal distributions, and (2) parameter 𝜃𝜃 of the copula. 

The copula function for the JCDF simply couples together information about the marginal 
distributions and association between the marginal distributions but allows each of the 
components to be investigated via separate statistical analyses. The marginal distributions (for 
assumed probability distribution functional forms such as an EV distribution) may be estimated 
using a variety of statistical techniques, including the method of moments, method of L-
moments, and maximum likelihood estimation. Conceptually similar techniques can be applied 
for estimation of the parameter 𝜃𝜃 of the copula. For example, in a technique conceptually 
analogous to the “moment matching” used in the method of moments,13 “association measure 
matching” can be used to estimate the parameter of the copula. That is, a population measure 
of association (e.g., Kendall’s 𝜏𝜏, Spearman’s 𝜌𝜌) is calculated for the assumed copula function 
and set equal to the corresponding measure of association estimated from a sample data set. 
The parameter 𝜃𝜃 is then estimated via algebraic operations. The copula parameter can also be 
estimated using maximum likelihood estimation techniques. 

Figure 3-5a presents an example of a joint PDF constructed using a GAU copula (with 
parameter 𝜌𝜌 = 0.5) and with marginal PDFs defined by the standard NOR PDF (i.e., NOR 
distribution with zero mean and unit standard deviation). In Figure 3-5a, the marginal PDFs are 
projected onto the sides of the figure as shown by the dotted lines. Figure 3-5b presents the 
contour view of the resulting joint PDF. Figure 3-5c shows the bivariate CDF (copula). 

12 This last property follows from the general consistency rule for multi-variate probability distributions, 
 meaning 𝑋𝑋 (∞, … 𝑥𝑥 𝑖𝑖 , … ∞) = 𝑃𝑃 (𝑋𝑋 1 ≤ ∞, … , 𝑋𝑋 𝑖𝑖  ≤ 𝑥𝑥 𝑖𝑖 , … , 𝑋𝑋 𝑛𝑛  ≤ ∞) = 𝑃𝑃 (𝑋𝑋 𝑖𝑖  ≤ 𝑥𝑥 𝑖𝑖 ) = 𝑖𝑖 (𝑥𝑥 𝑖𝑖 ). 

13 When using the method of moments, the moments (expected values) of the assumed (population)
    distribution are calculated and expressed as a function of the distribution parameters. These
    distribution moments are then set equal to the corresponding moments from a sample data set and
    the parameters are estimated via algebraic operations. 
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(a) (b) (c) 

Figure 3-5 Illustration of (a) the Joint PDF 𝒇𝒇𝑿𝑿𝑿𝑿(𝒙𝒙,𝒚𝒚) along with Projections of 
Marginal PDFs 𝒇𝒇𝑿𝑿(𝒙𝒙) and 𝒇𝒇𝒀𝒀(𝒚𝒚); (b) Contour Plot of Joint PDF 𝒇𝒇𝑿𝑿𝑿𝑿(𝒙𝒙,𝒚𝒚); 
and (c) JCDF 𝑭𝑭𝑿𝑿𝑿𝑿(𝒙𝒙,𝒚𝒚) Generated Using Copulas 

Given the flexibility offered by copulas, the copula method is a very popular strategy for 
characterizing the joint distribution of variables associated with MMF in the literature review for 
this study (Bender et al. 2016; De Michele et al. 2007; Gilja et al. 2018; Kao and Chang 2012; 
Lian et al. 2012; Masina et al. 2015; Moftakhari et al. 2017; Wahl et al. 2015; Zhong et al. 2013). 
Studies using copulas have been performed throughout the world, including in Italy (Bevacqua 
et al. 2017; Masina et al. 2015), the Netherlands (Zhong et al. 2013), China (Lian et al. 2012), 
and the United States (Moftakhari et al. 2017). However, this method does not appear to be 
popular in studies conducted in the United Kingdom (Hawkes et al. 2002; Hawkes 2008; Wadey 
et al. 2015), which typically use methods that directly estimate the parameters of bivariate 
distributions. 

3.3.3 Bayesian-Motivated Approaches 

The goal of the previous two approaches is to estimate the complete joint distribution using data 
sets directly related to the random variables of interest (i.e., basic random variable approaches, 
in the language of Der Kuireghian and Ditlevson 2009). The joint distribution is then used to 
estimate the marginal distribution of a flood severity metric or further estimate other statistical 
measures, such as quantiles, mean, and other moments. Instead of constructing the joint 
distribution directly from a data set related to basic random variables, the Bayesian-motivated 
approach provides a convenient alternative to estimate the joint distribution and derive marginal 
distributions from the conditional distributions. In particular, the chain (successive product) rule 
of probability allows any joint distribution to be expressed as the product of conditional 
probabilities. Although such approaches are popular in estimating seismic hazards (Baker 
2008), the review of literature did not identify the Bayesian-motivated approach as a common 
approach among studies that addressed estimation of flooding hazards from MMF. However, 
such an approach is commonly applied to the estimation of hazards from storm surge using the 
JPM, which uses the approach to develop the joint distribution of hurricane parameters (Toro 
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2008). This joint distribution is defined over parameters associated with the flood-forcing 
phenomena of a hurricane rather than parameters associated with flood mechanisms.  

Instead of directly constructing the joint distribution by assuming a defined function form or 
“building up” the joint distribution via copulas, the Bayesian-motivated approach provides a 
convenient alternative to construct the joint distribution from conditional distributions. In 
particular, the chain rule (successive product rule) of probability allows any joint distribution to 
be expressed as the product of conditional probabilities. That is, the joint distribution of a set of 
random variables 𝐗𝐗 = {𝑋𝑋1, … ,𝑋𝑋𝑛𝑛} can be expressed as the product of conditional relationships: 

𝑓𝑓𝐗𝐗(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
= 𝑓𝑓𝑋𝑋𝑛𝑛|𝑋𝑋1,..𝑋𝑋𝑛𝑛−1 (𝑥𝑥𝑛𝑛|𝑥𝑥1, . . 𝑥𝑥𝑛𝑛−1 )𝑓𝑓𝑋𝑋𝑛𝑛−1|𝑋𝑋1,..𝑋𝑋𝑛𝑛−2(𝑥𝑥𝑛𝑛−1|𝑥𝑥1, . . 𝑥𝑥𝑛𝑛−2 ) …𝑓𝑓𝑋𝑋2|𝑋𝑋1(𝑥𝑥2|𝑥𝑥1)𝑓𝑓𝑋𝑋1(𝑥𝑥1). 3.28 

In the general expression in Eq. 3.28, the random variables have no predefined order. However, 
by using knowledge of the underlying physical processes, the known (or assumed) conditional 
independence among variables can be used to order and simplify Eq. 3.28. Two random 
variables 𝑋𝑋 and 𝑌𝑌 are said to be conditionally independent given another random variable 𝑍𝑍 if 
𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦|𝑧𝑧) = 𝑓𝑓𝑋𝑋|𝑍𝑍(𝑥𝑥|𝑧𝑧) ∗ 𝑓𝑓𝑌𝑌|𝑍𝑍(𝑦𝑦|𝑧𝑧). Given the knowledge of conditional independence among 
random variables, the joint distribution may be factored into the product of local, conditional 
distributions. To illustrate and leverage this conceptual approach here and throughout this 
report, Bayesian networks [BNs] were used as a modeling structure. 

A BN is a graphical representation of a probabilistic model in which nodes (circles/ovals) 
represent random variables and directed links (arrows) represent probabilistic dependencies. 
Often, the direction of an arrow represents a causal relationship, although this causal 
relationship is not a requirement. BNs provide a graphical representation of probabilistic 
relationships and thus serve as a useful communication mechanism for discussing the 
Bayesian-motivated approach to probabilistic modeling. 

For example, consider a set of five random variables 𝐗𝐗 = {𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5}. There are many 
ways to express the joint distribution among these random variables using the chain rule. 
Specifically, there are 120 permutations of order in which the variables can appear using the 
expression in Eq. 3.28. However, if the relationship among variables is understood, this 
expression can be simplified. Suppose the quantities are related as shown in the BN in Figure 
3-6. In this figure, the random variable 𝑋𝑋3 is probabilistically dependent on 𝑋𝑋1 and 𝑋𝑋2 (in the BN
terminology, 𝑋𝑋3 is called a “child” of 𝑋𝑋1 and 𝑋𝑋2; in turn 𝑋𝑋1 and 𝑋𝑋2 are “parents” of 𝑋𝑋3). Moreover,
in this expression, 𝑋𝑋3 and 𝑋𝑋4 share a common parent, which is𝑋𝑋1. 𝑋𝑋3 and 𝑋𝑋4 are said to be
conditionally independent given 𝑋𝑋1 (i.e., knowing or assuming the occurrence of 𝑋𝑋1 renders 𝑋𝑋3
and 𝑋𝑋4 independent). Using a causal interpretation, observing the cause 𝑋𝑋1 will block any
dependence between the effects 𝑋𝑋3 and 𝑋𝑋4. Using the relationships expressed in this BN, the
joint distribution can be expressed as

𝑓𝑓𝐗𝐗(𝑥𝑥1, … , 𝑥𝑥5) = 𝑓𝑓𝑋𝑋5|𝑋𝑋4(𝑥𝑥5|𝑥𝑥4)𝑓𝑓𝑋𝑋4|𝑋𝑋1(𝑥𝑥4|𝑥𝑥1)𝑓𝑓𝑋𝑋3|𝑋𝑋2,𝑋𝑋1 (𝑥𝑥3|𝑥𝑥2,𝑥𝑥1)𝑓𝑓𝑋𝑋1(𝑥𝑥1)𝑓𝑓𝑋𝑋2(𝑥𝑥2). 3.29 
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Figure 3-6 Simple BN (Bensi et al. 2011)  

Applying this concept to PFHA for MMFs, the random variables may represent parameters 
associated with any of the levels of the hierarchy shown in Figure 2-7 (e.g., random variables 
corresponding to the characteristics of flood-forcing phenomena, flood mechanisms, or flood 
severity). Then, using knowledge of the relationship among quantities (e.g., based on physical 
reasoning or empirical models), a joint distribution can be constructed by applying the chain rule 
of probability and knowledge of conditional relationships and independence of quantities. For 
example, taking Figure 2-8b and letting 𝑋𝑋1 represent a random variable describing the flood-
forcing phenomena, 𝑌𝑌1and 𝑌𝑌2 represent random variables describing the two flood mechanisms, 
and 𝑍𝑍1 represents the targeted flood severity metric, the joint distribution over all random 
variables (Ω = {X1,𝑌𝑌1,𝑌𝑌2,𝑍𝑍1}) may be defined using the conditional relationships shown in the 
graphical model as 

𝑓𝑓Ω(𝑥𝑥1,𝑦𝑦1,𝑦𝑦2, 𝑧𝑧1) = 𝑓𝑓𝑍𝑍1|𝑌𝑌1,𝑌𝑌2(𝑧𝑧1|𝑦𝑦1,𝑦𝑦2)𝑓𝑓𝑌𝑌2|𝑋𝑋1(𝑦𝑦2|𝑥𝑥1)𝑓𝑓𝑌𝑌1|𝑋𝑋1(𝑦𝑦1|𝑥𝑥1)𝑓𝑓𝑋𝑋1(𝑥𝑥1). 3.30 

Although such distributions can be developed directly without the use of BNs, the use of such a 
graphical tool provides transparency regarding assumed relationships. 

Using the joint PDF expression in Eq. 3.30, the exceedance probability for the severity metric 𝑍𝑍1 
may be defined as 

𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1) = � 𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1|𝑥𝑥, 𝑦𝑦)𝑓𝑓𝑌𝑌2|𝑋𝑋1(𝑦𝑦2|𝑥𝑥1)𝑓𝑓𝑌𝑌1|𝑋𝑋1(𝑦𝑦1|𝑥𝑥1)𝑓𝑓𝑋𝑋1(𝑥𝑥1)𝑑𝑑𝑦𝑦2𝑑𝑑𝑦𝑦1𝑑𝑑𝑥𝑥1

∞

−∞

 

= � � 𝑓𝑓𝑍𝑍|𝑌𝑌𝑌𝑌(𝑧𝑧|𝑥𝑥,𝑦𝑦)𝑓𝑓𝑌𝑌2|𝑋𝑋1(𝑦𝑦2|𝑥𝑥1)𝑓𝑓𝑌𝑌1|𝑋𝑋1(𝑦𝑦1|𝑥𝑥1)𝑓𝑓𝑋𝑋1(𝑥𝑥1)𝑑𝑑𝑦𝑦2𝑑𝑑𝑦𝑦1𝑑𝑑𝑥𝑥1

∞

−∞

∞

𝑧𝑧=𝑧𝑧1 

𝑑𝑑𝑑𝑑 
3.31 

In Eq. 3.31, the conditional probability 𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1|𝑋𝑋,𝑌𝑌) may be implemented as an indicator 
function when a deterministic process model is used to map between the input parameters 𝑌𝑌1, 
𝑌𝑌2, and 𝑋𝑋1, and the response (output) parameter 𝑍𝑍1 (or as a probability if numerical model errors 
are considered). 

𝑋𝑋5

𝑋𝑋2

𝑋𝑋4 𝑋𝑋3

𝑋𝑋1
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3.3.4 Data Needs 

The development of marginal and joint distributions requires data to support the selection of 
distribution functional forms and estimation of associated parameters. Data used for such 
statistical assessments may come directly from observational records or may be generated 
synthetically. Observational data may provide information directly on the flood severity metric(s) 
of interest to the study (e.g., water levels or volumes). Univariate analyses supporting PFHA 
typically use EVAs, whereas multivariate extensions may be used to directly estimate the 
parameters of joint distributions or may use copula-based approaches. Observational data may 
also be used to develop probabilistic distributions assigned to random variables representing 
parameters or other quantities relevant to modeling flood-forcing phenomena (e.g., hurricane or 
meteorological event characteristics). Such distributions can then be used to support stochastic 
simulations or Bayesian probabilistic approaches. Observational data may also be available 
from paleo-flood studies or historical information, although such information is usually included 
in statistical analyses as censored observations (e.g., England et al. 2018). 

In some cases, observational records are insufficient (e.g., the temporal length of a record is too 
short) to support probabilistic analysis, particularly in performing assessments focused on 
hazards with longer return periods. In these situations, researchers have employed strategies to 
generate results that are more robust in data-sparse locations, including synthetic data 
generation. Different techniques are available for synthetic data generation, including using 
Monte Carlo methods as well as leveraging output from numerical models. Synthetic data 
generated using simulations (e.g., based on statistical models and/or analytical or numerical 
models) can be used in conjunction with standard statistical techniques (e.g., techniques that 
are used for analysis of observational data) to generate hazard estimates. Model simulations 
can also be useful in using Bayesian-motivated approaches by facilitating the generation of 
conditional distributions. 

Simulation techniques identified in the literature include analytical models, numerical models, 
and surrogate modeling methods. Physics-based models attempt to capture the physical 
behavior of a system or process (consistent with physical laws) using analytical/mathematical 
expressions, typically represented by a series of differential equations. Often, these physical 
models are applicable to simplified or idealized conditions. The use of physics-based models 
requires knowledge of the physical processes and interactions. Moreover, they may also require 
numerical solutions to extensive systems of equations that are mathematically complex and 
may become infeasible for complex domains, boundary conditions, and initial conditions. 

Numerical models seek to provide accurate approximations of such physical models, typically 
by discretizing the spatial domain and incrementally solving the problem at discrete spatial 
locations. Typically, solution algorithms use a time-stepping approach whereby the system is 
incrementally solved at discrete points in time. Numerical models can be computationally 
demanding and expensive to run. In response, surrogate modeling techniques have become 
increasingly popular. These modeling methods attempt to emulate (mimic) a complex numerical 
model by developing a response structure that maps a vector of input parameters to a single or 
a vector of output parameters. These model emulators are generally data driven and typically 
use a limited number of synthetic or historical observations (input-output pairs) from a numerical 
model to fit or train a surrogate model. In addition to seeking to emulate numerical process 
models, parametric and nonparametric models can be built to reflect physical processes using 
other data sources. For example, surrogate modeling tools have been developed using 
observational data as well as reanalysis or interpolated (gridded) data, and combinations of data 
types. Nonparametric models often rely on machine learning–derived modeling approaches. 
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Alternatively, conventional statistical modeling techniques (e.g., regression) may be used to 
build a parametric model for output parameters as a function of input parameters. Increasingly, 
machine learning methods are being used to create this mapping between input and output 
parameters. 

3.4 Development of Hazard Curves and Surfaces 

Most work related to PFHA focuses on estimating the annual probability of exceedance 
associated with a single measure of flood severity. Such studies take interest in the annual 
probability that a random variable 𝑍𝑍 representing flood severity (e.g. peak flow) will be 
exceeded: 

𝑃𝑃(𝑍𝑍 > 𝑧𝑧) = 1 − 𝑃𝑃(𝑍𝑍 ≤ 𝑧𝑧) = 1 − 𝐹𝐹𝑍𝑍(𝑧𝑧) , 3.32 

where 𝐹𝐹𝑍𝑍(𝑧𝑧) is the CDF of 𝑍𝑍. Such studies may or may not make distinctions regarding the 
flood-forcing phenomena and flood mechanisms that may lead to the exceedance of flood 
severity metrics considered in the assessment. 

Once the joint distribution over all random variables of interest is defined, the joint, marginal, 
and conditional distributions of any subset of the random variables can be obtained through a 
series of calculus and algebraic operations. In particular, the joint distribution of flood severity 
metrics can be obtained, which supports the development of hazard curves. 

Table 3-1 shows the development of the joint distribution using a Bayesian modeling formulation 
for numerous generalized combinations involving one or more flood-forcing phenomena, flood 
mechanisms, and flood severity metrics that might be of interest in probabilistic flood hazard 
studies.  
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Table 3-1 Illustrative Expressions of Joint Distributions for Several Applications 

BN Formulation Joint Distribution Examples 
𝐗𝐗 = [𝐗𝐗1] 
𝑌𝑌 = [𝑌𝑌1] 
𝑍𝑍 = [𝑍𝑍1] 

𝑓𝑓𝜴𝜴(𝝎𝝎) = 𝑓𝑓𝑍𝑍1|𝑌𝑌1(𝑧𝑧1|𝑦𝑦1)𝑓𝑓𝑌𝑌1|𝐗𝐗𝟏𝟏(𝑦𝑦1|𝐱𝐱1)𝑓𝑓𝐗𝐗1(𝐱𝐱1) 

• 𝐗𝐗 = severe weather (vector of
hurricane parameters)

• 𝑌𝑌 = storm surge
• 𝑍𝑍 = water elevation

𝐗𝐗 = [𝐗𝐗1] 
𝑌𝑌 = [𝑌𝑌1] 

𝐙𝐙 = [𝑍𝑍1,𝑍𝑍2] 
Without dashed link: 
𝑓𝑓𝛀𝛀(𝛚𝛚) = 𝑓𝑓𝑍𝑍1|𝑌𝑌1(𝑧𝑧1|𝑦𝑦1)𝑓𝑓𝑍𝑍2|𝑌𝑌1(𝑧𝑧2|𝑦𝑦1)𝒇𝒇𝒀𝒀𝟏𝟏|𝐗𝐗𝟏𝟏(𝑦𝑦1|𝐱𝐱1)𝑓𝑓𝐗𝐗1(𝐱𝐱1) 
With dashed link: 
𝑓𝑓𝛀𝛀(𝛚𝛚)
= 𝑓𝑓𝑍𝑍1|𝑌𝑌1(𝑧𝑧1|𝑦𝑦1)𝑓𝑓𝑍𝑍2|𝑍𝑍1𝑌𝑌1(𝑧𝑧2|𝑧𝑧1,𝑦𝑦1)𝑓𝑓𝑌𝑌1|𝐗𝐗1(𝑦𝑦1|𝐱𝐱1)𝑓𝑓𝐗𝐗1(𝐱𝐱1) 

• 𝐗𝐗 = severe weather (vector of
hurricane parameters)

• 𝑌𝑌 = storm surge
• 𝑍𝑍1 = water elevation; 𝑍𝑍2 =

waves 

Flood-forcing 
Phenomena

[𝐗𝐗1]

Flood Mechanism 
[𝑌𝑌1]

Flood Severity 
Metric

[𝑍𝑍1]

Flood-forcing 
Phenomena

[𝐗𝐗1]

Flood Mechanism 
[𝑌𝑌1]

Flood Severity 
Metric 1

[𝑍𝑍1]

Flood Severity 
Metric 2

[𝑍𝑍2]
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Table 3-1 Illustrative Expressions of Joint Distributions for Several Applications (Continued) 

BN Formulation Joint Distribution Examples 

 

𝐗𝐗 = [𝐗𝐗1] 
𝐘𝐘 = [Y1, Y2] 

Z = [𝑍𝑍1] 
 
 
Without dashed link: 
𝑓𝑓𝛀𝛀(𝛚𝛚)
= 𝑓𝑓𝑍𝑍1|𝑌𝑌1𝑌𝑌2(𝑧𝑧1|𝑦𝑦1,𝑦𝑦2)𝑓𝑓𝑌𝑌1|𝐗𝐗1(y1|𝐱𝐱1)𝑓𝑓𝑌𝑌2|𝐗𝐗1(𝑦𝑦2|𝐱𝐱1)𝑓𝑓𝐗𝐗1(𝐱𝐱1) 

 
With dashed link: 
𝑓𝑓𝛀𝛀(𝛚𝛚)
= 𝑓𝑓𝑍𝑍1|𝑌𝑌1𝑌𝑌2(𝑧𝑧1|y1,𝑦𝑦2)𝑓𝑓𝑌𝑌1|𝐗𝐗1(𝑦𝑦1|𝐱𝐱1)𝑓𝑓𝑌𝑌2|𝑌𝑌1,𝐗𝐗1(𝑦𝑦2|𝑦𝑦1,𝐱𝐱1)𝑓𝑓𝐗𝐗1(𝐱𝐱1  
 
 
 

Example (1): 
• 𝐗𝐗 = severe weather (vector of 

hurricane parameters) 
• 𝑌𝑌1 = storm surge; 𝑌𝑌2 = river flow 
• 𝑍𝑍 = water elevation 
 
 
Example (2): 
• 𝐗𝐗 = unspecific rainfall 

generation process (e.g., severe 
weather) 

• 𝑌𝑌1 = river flow 1; 𝑌𝑌2 = river flow 
2 (runoff-induced) 

• 𝑍𝑍 = water elevation 
Example (3): 
• 𝐗𝐗 = severe weather 
• 𝑌𝑌1 = river flow; 𝑌𝑌2 = operational 

event (dam release) 
• 𝑍𝑍 = water elevation 

 

𝐗𝐗 = [𝐗𝐗1,𝑿𝑿2] 
𝐘𝐘 = [Y1, Y𝟐𝟐] 

Z = [𝑍𝑍1] 
 
𝑓𝑓𝛀𝛀(𝛚𝛚)
= 𝑓𝑓𝑍𝑍1|𝑌𝑌1(𝑧𝑧1|𝑦𝑦1)𝑓𝑓𝑌𝑌1|𝐗𝐗1(𝑦𝑦1|𝐱𝐱1)𝑓𝑓Y2|𝐗𝐗2(𝑦𝑦2|𝐱𝐱2)𝑓𝑓𝐗𝐗1(𝐱𝐱1)𝑓𝑓𝐗𝐗2(𝐱𝐱2) 
 
 
 
 
 

• 𝐗𝐗1 = severe weather; 𝐗𝐗2 = 
cyclic process 

• 𝑌𝑌1 = storm surge; 𝑌𝑌2 = tides 
• 𝑍𝑍 = water elevation 

Notes: In this table, bold font represents vectors of random variables. 

Flood-forcing 
Phenomena

[𝐗𝐗1]

Flood Mechanism 2 
[𝑌𝑌2]

Flood Severity 
Metric

[𝑍𝑍1]

Flood Mechanism 1 
[𝑌𝑌1]

Flood-forcing 
Phenomena 1

[𝐗𝐗1]

Flood Mechanism 2 
[𝑌𝑌2]

Flood Severity 
Metric

[𝑍𝑍1]

Flood Mechanism 1 
[𝑌𝑌1]

Flood-forcing 
Phenomena 2

[𝐗𝐗2]
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In Table 3-1, the set of random variables contained in the model is denoted: 

𝛀𝛀 = [𝐗𝐗,𝐘𝐘,𝐙𝐙] , 3.33 

where 

• 𝐗𝐗 = [𝐗𝐗1, … ,𝐗𝐗𝑛𝑛𝑥𝑥] with 𝐗𝐗𝑖𝑖 = �𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2, … ,𝑋𝑋𝑖𝑖,𝑛𝑛𝑖𝑖�, 𝑖𝑖 = 1, … ,𝑛𝑛𝑥𝑥 is a vector of random variables 
characterizing flood-forcing phenomena 𝑖𝑖. 

• 𝐘𝐘 = [𝐘𝐘1, … ,𝐘𝐘𝑛𝑛𝑦𝑦] with𝐘𝐘𝑗𝑗 = �𝑌𝑌𝑗𝑗,1,𝑌𝑌𝑗𝑗,2, … ,𝑌𝑌𝑗𝑗,𝑛𝑛𝑗𝑗� , 𝑗𝑗 = 1, … ,𝑛𝑛𝑦𝑦 is a vector of random variables 
characterizing flood mechanism 𝑗𝑗. 

• 𝐙𝐙 = [𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛𝑧𝑧] is a vector of random variables representing flood severity metrics. 

The joint PDF of flood severity metrics can then be obtained as 

𝑓𝑓𝐙𝐙(𝐳𝐳) = � 𝑓𝑓𝛀𝛀(𝛚𝛚)𝑑𝑑𝛀𝛀′

𝛀𝛀′

 , 3.34 

where 𝛀𝛀′ = 𝛀𝛀\𝐙𝐙 is the set of all random variables exclusive of the vector of random variables, 𝐙𝐙, 
representing flood severity. 

The probabilistic models may be developed using explicit probabilistic modeling of the 
conditional relationships associated with all relevant stochastic quantities. However, in many 
cases, only a subset of variables will be explicitly considered in an assessment. For example, a 
study may focus on developing the joint distribution of river discharge in two rivers (rainfall 
runoff flood mechanism) for the purpose of modeling the combined effect on flood elevation at 
the river confluence as the flood severity metric. In such cases, there may be no explicit 
consideration of the flood-forcing phenomena; instead, the study will focus on the development 
of the joint distribution of river discharge (e.g., via development of a joint distribution using 
copulas) and the conditional distribution of river elevation. 

The availability of the joint, marginal, and conditional distributions over the random variables 
selected to represent flood-forcing phenomena, flood mechanisms, and/or flood severity metrics 
facilitates development of a joint distribution for the subset of random variables representing 
flood severity (i.e., using the described mathematical operations). In turn, this process supports 
the development of hazard curves or, more generally, hazard surfaces. 

In a conventional hazard curve (Figure 3-1), one axis represents a measure of flood severity 
(e.g., flood height) and the other axis represents the annual probability (or frequency) of 
exceeding the measure of severity; in other words, 𝑃𝑃(𝑍𝑍 > 𝑥𝑥). In extending this concept to 
multiple measures of flood severity (and thus development of hazard surfaces), it is first 
necessary to identify what constitutes a hazard from the perspective of the exceedance events 
of interest. For example, some assessments focus on estimation of the “joint exceedance 
probability” (i.e., probability that multiple exceedance events will occur). In the case of two 
random variables representing flood severity metrics (𝑍𝑍1 and 𝑍𝑍2), this quantity may be written as 
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𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1 ∩ 𝑍𝑍2 > 𝑧𝑧2) = 1 − 𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1 ∩ 𝑍𝑍2 > 𝑧𝑧2�����������������������) 
= 1 − 𝑃𝑃(𝑍𝑍1 ≤ 𝑧𝑧1 ∪ 𝑍𝑍2 ≤ 𝑧𝑧2) 
= 1 − [𝑃𝑃(𝑍𝑍1 ≤ 𝑧𝑧1) + 𝑃𝑃(𝑍𝑍2 ≤ 𝑧𝑧2) − 𝑃𝑃(𝑍𝑍1 ≤ 𝑧𝑧1 ∩ 𝑍𝑍2 ≤ 𝑧𝑧2)] 
= 1 − �𝐹𝐹𝑍𝑍1(𝑧𝑧1) + 𝐹𝐹𝑍𝑍2(𝑧𝑧2) − 𝐹𝐹𝑍𝑍1𝑍𝑍2(𝑧𝑧1, 𝑧𝑧2)� , 

3.35 

where 𝐹𝐹𝑍𝑍1(𝑧𝑧1) and 𝐹𝐹𝑍𝑍2(𝑧𝑧2) represent the marginal CDFs of 𝑍𝑍1 and 𝑍𝑍2, and 𝐹𝐹𝑍𝑍1𝑍𝑍2(𝑧𝑧1, 𝑧𝑧2) 
represents their JCDF. As noted previously, these quantities can be readily obtained through 
integration over the joint distribution of all variables included in the model. Equation 3.35 can be 
extended to more than two random variables through application of an “inclusion/exclusion” 
formula for operations involving unions of events. For example, in the case of three random 
variables, Eq. 3.35 may be written as 

𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1 ∩ 𝑍𝑍2 > 𝑧𝑧2 ∩ 𝑍𝑍3 > 𝑧𝑧3) = 1 − 𝑃𝑃(𝑍𝑍1 ≤ 𝑧𝑧1 ∪ 𝑍𝑍2 ≤ 𝑧𝑧2 ∪ 𝑍𝑍3 ≤ 𝑧𝑧3) 
= 1

− �𝐹𝐹𝑍𝑍1(𝑧𝑧1) + 𝐹𝐹𝑍𝑍2(𝑧𝑧2) + 𝐹𝐹𝑍𝑍3(𝑧𝑧3) − 𝐹𝐹𝑍𝑍1𝑍𝑍2(𝑧𝑧1, 𝑧𝑧2)− 𝐹𝐹𝑍𝑍1𝑍𝑍3(𝑧𝑧1, 𝑧𝑧3)
− 𝐹𝐹𝑍𝑍2𝑍𝑍3(𝑧𝑧2, 𝑧𝑧3) + 𝐹𝐹𝑍𝑍1𝑍𝑍2𝑍𝑍3(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3)� . 

3.36 

Conversely, the hazard may be defined so that the quantity of interest is the probability that at 
least one exceedance event occurs. In the case of two flood severity metrics, this can be written 
as the union of exceedance events: 

𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1 ∪ 𝑍𝑍2 > 𝑧𝑧2) = 1 − 𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1 ∪ 𝑍𝑍2 > 𝑧𝑧2�����������������������) 
= 1 − 𝑃𝑃(𝑍𝑍1 ≤ 𝑧𝑧1 ∩ 𝑍𝑍2 ≤ 𝑧𝑧2) 
= 1 − 𝐹𝐹𝑍𝑍1𝑍𝑍2(𝑧𝑧1, 𝑧𝑧2) . 

3.37 

More generally, this can be expressed as 

𝑃𝑃 ��𝑍𝑍𝑖𝑖 > 𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = 1 − 𝐹𝐹𝐙𝐙(𝑧𝑧1, … ,𝑍𝑍𝑛𝑛) . 3.38 

The hazard of interest may also be the probability of exceedance of one flood severity metric 
conditioned on either (1) the value of another variable or (2) the exceedance of another variable. 
In the first case, the conditional exceedance event can be written as 

𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1|𝑍𝑍2 = 𝑧𝑧2) = 1 − 𝑃𝑃(𝑍𝑍1 ≤ 𝑧𝑧1|𝑍𝑍2 = 𝑧𝑧2) = 1 − 𝐹𝐹𝑍𝑍1|𝑍𝑍2(𝑧𝑧1|𝑧𝑧2) 

= 1 − � 𝑓𝑓𝑍𝑍1|𝑍𝑍2(𝑎𝑎|𝑧𝑧2)𝑑𝑑𝑑𝑑

𝑧𝑧1

−∞

= 1 − �
𝑓𝑓𝑍𝑍1𝑍𝑍2(𝑎𝑎, 𝑧𝑧2)
𝑓𝑓𝑍𝑍2(𝑧𝑧2)

𝑑𝑑𝑑𝑑 .

𝑧𝑧1

−∞
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In the second case, the conditional exceedance event can be written as a conditional 
expression involving both random variables exceeding specified values: 

𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1|𝑍𝑍2 > 𝑧𝑧2) =
𝑃𝑃(𝑍𝑍1 > 𝑧𝑧1 ∩ 𝑍𝑍2 > 𝑧𝑧2)

𝑃𝑃(𝑍𝑍2 > 𝑧𝑧2)
 

=
1 − �𝐹𝐹𝑍𝑍1(𝑧𝑧1) + 𝐹𝐹𝑍𝑍2(𝑧𝑧2) − 𝐹𝐹𝑍𝑍1𝑍𝑍2(𝑧𝑧1, 𝑧𝑧2)� 

1 − 𝐹𝐹𝑍𝑍2(𝑧𝑧2)
 . 

3.40 
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4 SUMMARY OF AVAILABLE LITERATURE 

This section provides a summary of available literature related to MMFs. The section begins 
with a descriptive summary of existing studies and then continues with an integrative summary 
that focuses on the hazards and geographic regions considered in existing studies, as well as 
data and statistical methods used. Additionally, Table 4-1 provides summary-level information 
related to studies reviewed under this project. The table seeks to provide quick-reference 
information about the following (as applicable): 

• Flood-forcing phenomena, flood mechanisms (and the associated pluvial, fluvial, and 
coastal types), and flood severity metrics considered in each study 

• Case studies or geographic regions addressed by each study 

• Joint probability analysis approach used (when applicable), data sources, and numerical 
models/software used in each study 

Distilling divergent research studies into a tabular summary format is challenging, so it is 
emphasized that Table 4-1 does not capture details and nuances associated with individual 
studies. 

This literature summary provides information about studies specifically focused on joint 
probability approaches. Studies not directly related to joint probability assessment are also 
included if they are judged to provide information/insights, computational “building blocks,” or 
mathematical formulations that may potentially be relevant to addressing MMFs. 

The subsections summarize the research literature rather than focusing on more applied 
guidance. Although MMFs have been the focus of research studies, limited guidance and 
experience exists regarding the application of MMF modeling frameworks, particularly for US 
applications (both nuclear and nonnuclear). Probabilistic frameworks used outside of nuclear 
applications generally focus on single-mechanism flood hazard assessments; however, some 
documentation does acknowledge the potential impacts of MMF hazards. Additional discussion 
of existing guidance used in the nuclear industry and more broadly is provided in APPENDIX A . 

4.1 Overview of Available Literature 

The text that follows provides a summary description of existing research reviewed in this study. 
Research summaries are organized by hazard focus; in other words, studies are grouped based 
on the hazard mechanism type(s) that they address. First, studies that address multiple 
mechanisms in the coastal mechanism type are addressed, followed by studies focusing on 
multiple mechanisms in the fluvial mechanism type. Then, studies addressing multiple flood 
mechanisms in multiple types are addressed (i.e. coastal and fluvial, coastal and pluvial). 

Although the following discussions focus specifically on flooding events, interest in compound 
events14 more broadly is growing in the academic and other research communities in the United 
States and internationally. This growing interest includes a focus on events (or series of events) 
that include hazards from multiple hazard groups such as earthquakes, wildfires, and floods, as 

 
14 For example, see “Compound Events,” http://compoundevents.org/ (accessed February 2019) 

http://compoundevents.org/
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well as consideration of the impacts of such factors on droughts (e.g., water availability, 
temperature, and soil moisture). 

Additionally, although the summaries focus on literature that addresses combinations of flood 
mechanisms and closely related topics, more general literature also addresses topics such as 
compound event frameworks (Leonard et al. 2014), best practices for estimation of extremes 
involving multiple characteristics of flood-forcing processes or flood severity measures (Hawkes 
et al. 2008), and general discussion of correlation models in flood risk applications (Diermanse 
and Geerse 2012) and joint probability analyses (Hawkes 2008). 

The studies summarized use disparate terminology to describe flood mechanisms and severity 
metrics, which is particularly noticeable in the context of coastal flooding hazards. The 
terminology used in the summaries aligns with the terminology used in the original references. 
Appendix B introduces key coastal hazard terminology and information regarding the 
relationship between terms, and it identifies some key synonyms. 

4.1.1 Coastal Flooding 

This section describes current research literature related to flood hazards involving multiple 
coastal flood mechanisms (e.g., tsunami and tidal processes). This section also includes a 
summary of selected literature related to multiple aspects of a coastal flood event that may be 
best characterized as involving several flood severity metrics (e.g., stillwater and wave 
characteristics). Coastal flooding from weather-induced phenomena (e.g., hurricane-induced 
storm surge) and land movement (e.g., earthquake-induced tsunami) are distinctive processes, 
and the induced waves are governed by fundamentally different physical phenomena. 
Therefore, they are discussed separately in the summaries that follow. 

Several studies have explored the interactions between tides and tsunamis in computing water 
levels. Those studies focused on modeling of processes and interactions and did not address 
probabilistic characterization or dependence structures. Kowalik and Proshutinsky (2010) 
investigated the interaction between tides and tsunamis using numerical experiments with an 
idealized 1D model and a 2D high-resolution regional model. The idealized model was 
developed by using 1D shallow water equations applied to a 1D idealized channel with a 
gradually decreasing depth from 1,000 m to 20 m. Based on the results of the idealized model 
experiments, the authors noted that simulated elevations, considering both tsunami and tides at 
the same time, were different from simulated elevations using linear superposition of tides and a 
tsunami in isolation. This finding emphasized the importance of considering the interaction 
between tides and tsunamis. The investigation using the high-resolution regional model involved 
a 2D numerical model for two sites along Cook Inlet in Alaska. Finally, based on the results of 
both models, it was concluded that interaction between tides and tsunamis varies depending on 
basin bathymetry, configuration of coastal line, and characteristics of tsunami and tidal forces. 
Tsunami–tide interactions can lead to both amplification and damping of impacts. Kowalik and 
Proshutinsky (2010) also recommended that simultaneous simulation of a tsunami and tides be 
conducted in cases with strong tides that have comparable magnitudes to water depths. 

Additionally, Zhang et al. (2011) investigated the interaction between a dynamic tide (i.e., a tide 
following the dynamic theory of tides as opposed to the static theory of tides) and a tsunami. 
The 3D finite element model SELFEE was used. Simulations were conducted for two scenarios. 
One scenario considered a tsunami with the presence of tides, and the other scenario 
considered a tsunami with the absence of dynamic tides. For model verification, observed 
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National Geodetic Data Center15 (NGDC) data were used. Based on the results of the study, the 
interaction between tsunami and tide significantly affected wave runup and inundation extent. In 
particular, the authors noted that the tide–tsunami interaction was responsible for around 50% 
of the wave runup and up to 100% of the inundation area in estuary and river environments. 
This interaction was negligible in open coast areas. The study also emphasized the importance 
of using a high-resolution digital elevation model (DEM) in simulations for key areas under 
study. A high-resolution DEM was created by using NGDC’s mosaic tsunami DEM16 and 0.3 m 
topographic Lidar17 derived data for Coos Bay, Oregon. 

Several coastal studies have explored the interaction of stillwater levels and wave effects or 
other wave characteristics during storm events (e.g., wave period). For example, Hawkes et al. 
(2002) explored the dependence between high stillwater levels and large waves, as well as 
wave height and period. In particular, the study developed a joint density function for water 
level, wave height, and wave period. The study focused on return periods of up to 200 years 
and on locations around England and Wales. Empirical records were compiled for each variable 
of interest: 10 years of available empirical water level data from measurements of stillwater level 
at high water, and estimated wave height and mean wave periods derived from hindcasts. The 
authors then fitted statistical distributions to each empirical data series, developed statistical 
models for the dependence between the variables of interest using one or more bivariate NOR 
distribution, used Monte Carlo simulation to generate simulated data from the models, 
performed joint extremal analysis on the simulated data, and computed overtopping rates for 
idealized slopes and walls. 

De Michele et al. (2007) proposed a copula-based statistical model for multidimensional 
frequency analysis of several variables related to sea storms (e.g., hurricane, typhoon, or any 
storm that can occur on the sea), including significant wave height (SWH), storm duration, storm 
direction, and storm interarrival time (i.e., the time interval between the occurrence of two 
storms). For multivariate analysis of variables, the study used a copula method that considered 
a mixture of conditional distributions on several distinct sets of the aforementioned variables. 
The objective was to compute the return periods associated with multivariate events and sea 
storm magnitude, which was defined by the authors as a function of SWH and duration. Events 
of interest had return periods of less than approximately 100 years. For model validation, the 
study used 12 years of data from the Alghero wave buoy in Sardinia, Italy. Observed 
parameters included the SWH, peak period, wave direction, and water temperature. 
Conclusions about model validity were based on an observed good fit between case study data 
and model results. 

Masina et al. (2015) investigated the joint occurrence of water levels and waves. The study 
used a simplified case study of a coastal zone of the Ravenna coast in Italy using 6 years of 
data related to sea level (i.e., peak water level [PWL]) and waves (i.e., SWH) in the area, and it 
estimated the number of events that exceeded a specified water level threshold within a 100-
year time period. In the study, coastal flooding was considered to be a function of water level, 
SWH, peak wave height, direction of wave propagation, and variations due to different seasons. 
The study investigated the dependence between PWL and SWH using Kendall’s rank 
correlation coefficient, Spearman’s correlation coefficient, and Pearson’s correlation coefficient. 
The dependence structure was characterized using a copula-based approach. Based on 

 
15 Now part of the National Center for Environmental Information. 
16 http://www.ngdc.noaa.gov/mgg/inundation/ (accessed February 2019) 
17 https://www.oregongeology.org/lidar/ (accessed February 2019) 

http://www.ngdc.noaa.gov/mgg/inundation/
https://www.oregongeology.org/lidar/


 

4-4 

statistical analysis of data, a one-parameter EV copula was selected for defining the 
dependence between the EVs of PWL and SWH. 

Corbella and Stretch (2013) used Archimedean copulas to explore dependencies between 
storm parameters. Wadey et al. (2015) assessed sea levels and waves that occurred in the 
2013/2014 storm seasons in two coastal areas in the United Kingdom. The study investigated 
the joint probability of sea levels and waves for these case studies. The data sources used 
included tide gauge records and wave buoy data. In the study, generalized Pareto distributions 
were fitted as marginal distributions to high water level and SWH. To capture the dependence 
structure between variables and then generate many pairs related to wave height and sea level, 
a single bivariate NOR distribution and a mixture of two bivariate NOR distributions were used. 

Orton et al. (2016) introduced an approach for flood hazard assessment that focused on 
predicting the risk of flooding at New York Harbor. The goal of the study was accurate prediction 
of storm tides for return periods from 5 to 10,000 years. This work separately analyzed the flood 
risk due to TCs and extratropical cyclones (ETCs). A statistical-stochastic model for North 
Atlantic TCs (1950–2013) was used for generation of synthetic storm events. In the case of 
ETCs, flood hazard assessment was conducted based on simulation of historical events (1950–
2009). The results were presented as hazard curves for TCs and ETCs. These curves were 
consistent with curves created form historical data. By combining ETC and TC results, the 100-
year flood level was calculated. Based on the results of the study, Hurricane Sandy’s storm tide, 
which hit the area in 2012, was found to be a 260-year flood level. 

Research has also explored the effects of sea level rise (SLR) on estimated coastal hazards. 
Tebaldi et al. (2012) used an EV theory framework to investigate the effects of SLR on storm 
surge–induced water levels and on the occurrence frequency of extreme water levels along the 
US coasts (where extreme was associated with a 1% chance of occurrence). Hourly and 
monthly data related to 55 tidal gauges located along the contiguous United States were used. 
The study demonstrated that even in the areas with slow SLR, a substantial increase in the 
frequency of extreme waters could occur. The study highlighted the importance of considering 
the joint effects of SLR with other flooding mechanisms. Vitousek et al. (2017) conducted a 
study at the global scale to analyze the effects of SLR in combination with other flooding 
mechanisms (i.e., tides, waves, and storm surges), focusing on the change in frequency of 
events currently estimated to have a return period of 50 years. That study investigated the 
combination of SLR with waves, surges, and tides by using EV theory, and it considered linear 
interactions among tides, surges, and waves. In the study, 21 years of coincident data related to 
tides, surges, and waves were used for 1993 to 2013. The data for deep-water wave height and 
wave period were obtained by Global Ocean Wave (GOW) reanalysis (Reguero et al. 2012). 
Storm surge and tidal water level data were obtained from the Mog2D barotropic model and 
TPXO tidal inversion model, respectively. The method used in the study ignored anomalies in 
sea level caused by seasonal differences and climate cycles such as El Nino. The authors 
concluded that the increase in flooding risk is particularly discernable in tropical areas. 

Probabilistic storm surge studies often refer to applications involving JPM. For example, Toro et 
al. (2010) assessed the accuracy of two JPMs for frequency analysis of hurricane surge, 
focusing on surge severities associated with approximately 100–500-year return periods. These 
two methods, based on optimal sampling of parameter values, are called “JPM–optimal 
sampling-response surface” and “JPM–optimal sampling–quadrature”. This subset of literature 
is not discussed in detail in this report because of its focus on the joint probability of flood-
forcing phenomena (e.g., hurricane characteristics) rather than on characterization of hazards 
from multiple flood mechanisms. 



 

4-5 

4.1.2 Fluvial Flooding 

This section describes current research literature related to flood hazards involving multiple 
fluvial flood mechanisms (e.g., combined runoff from basin-wide precipitation and snowmelt), as 
well as assessment of fluvial hazards at river confluences. 

Sui and Koehler (2001) investigated the joint occurrence of precipitation on snow and snow 
melt. The study involved the investigation of the spatiotemporal variability of precipitation and 
snow, as well as dependences between related quantities. Study activities included the EVA of 
several series of annual precipitation and snow (i.e., snow depth and snow water equivalent 
[SWE]), as well as discharge data, exploration of the simultaneous occurrence of snow melt and 
rain-on-snow events, and investigation of the characteristics of discharges from combined 
runoff. A forest region in southern Germany was selected as a case study. The study used long-
term data series for average monthly and annual precipitation data, as well as snow depth and 
SWE data observed at meteorological stations and discharge observed at hydrologic gauge 
stations. Comparisons were made with other regions in Germany. The authors concluded that 
for areas with elevations higher than 400 m from sea level, rainfall on snow was a more 
important significant contributor to the runoff-generating process than pure rainfall events. In a 
study not directly related to MMFs, Ozga-Zielinski et al. (2016) explored snowmelt-induced 
floods by developing a joint distribution between peak discharge and flood volume using a 
copula analysis and through development of a bivariate NOR distribution. The analysis was 
performed specifically for parameters extracted for snowmelt flood events in northeastern 
Poland. 

Several authors have addressed flooding at the confluence of two rivers. For example, Wang et 
al. (2009) developed a copula-based flood frequency (COFF) method that was employed for 
river confluences by using Archimedean copulas. The Des Moines River in Iowa was selected 
as a case study for the purposes of testing the proposed method against the National Flood 
Frequency Program model. Annual peak flow data from three US Geological Survey (USGS) 
gauge stations (two of the stations upstream of the confluence and the third one nearby) for 38 
years (1968–2005) were used. The COFF approach used in the study included (1) fitting a 
probability distribution to tributary stream flow data, (2) identifying a joint probability distribution 
by using a copula method, (3) identifying stream flow at the river confluences (synthetically and 
by using Monte Carlo simulation), and (4) identifying flood frequency at river confluences by 
applying univariate flood frequency analysis. The study considered return periods up to 200 
years. A companion paper applied a joint probability approach to looking at ungauged 
confluences (Wang 2016). 

Kao and Chang (2012) extended the use of the coincidental flood frequency analysis (CFFA) 
method to analyze coincident floods due to several tributary streams in ungauged basins. A 
step-by-step CFFA was conducted at ungauged basin confluences by using copulas. The 
method can be considered as an alternative to the National Flood Frequency Program model 
and the National Streamflow Statistics Program model, which have been developed for 
applications involving ungauged basins. The approach used in the study included four primary 
steps: (1) data collection and data quality control, (2) fitting of a marginal distribution to the peak 
flows of the tributaries, (3) using GAU copulas to construct dependence structure, and (4) 
estimating flood frequency at the river confluence. The study considered return periods of up to 
200 years. To evaluate the performance of the proposed approach, standard goodness-of-fit 
tests (Kolmogorov-Smirnov [KS] and Cramér–von Mises [CM]) were used, along with four 
numeric criteria (Nash-Sutcliffe efficiency coefficient, root-mean-square error, coefficient of 
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determination, and mean of percent error). The proposed approach was applied to an event in 
the case study region in Nashville, Tennessee. 

Bender et al. (2016) introduced a methodology for bivariate analysis by using multivariate 
copulas that allowed for differing assumptions: (1) considering that the annual maxima on both 
rivers occurs concurrently and (2) assuming that only a single river is in the maxima state at a 
point in time (with the other river not necessarily at its annual maxima). The second case is 
considered more realistic than the first. Thus, the authors focused on estimation of AEP (with a 
focus on an AEP of 0.01) for applications in which the annual maxima of river discharge on two 
rivers does not occur at the same time. As a case study, the proposed method was applied for a 
flood hazard assessment related to the confluence of the Rhine and Sieg Rivers in Germany. 
The study leveraged daily (or more frequent) mean discharge time series for both rivers 
recorded at gauges upstream of the confluence. The proposed method was based on bivariate 
statistical analysis (using copulas) of annual (block) maxima of discharge on one river, and the 
concurrent river discharge on the other river. For transforming discharge values into water levels 
(required for the design of flood protection facilities), the 2D hydrodynamic model Hydro_AS-2D, 
which uses the finite volume method for solving shallow water equations, was used. The results 
of the proposed method were different from the more conservative method in which the annual 
maxima values for both variables (river discharges) were assumed to occur simultaneously. The 
authors concluded that the proposed approach could be applied to any data in which EVs 
related to variables do not necessarily occur at the same time. 

Gilja et al. (2018) conducted a joint probability analysis related to flood hazards at river 
confluences. This work used bivariate GUM-Hougaard copulas to calculate the joint probability 
of peak flood discharge exceedance at two river confluences. The study considered return 
periods of up to 1,000 years. The Sava River (a tributary of the Danube River) in Europe was 
selected as the case study region. River discharge data were obtained from gauging station 
records near Kupa River and Una River confluences. Based on the results of the study, the use 
of traditional univariate flood frequency analysis was found to underestimate flood hazard. Flood 
hazard estimates using the multivariate copula method were significantly higher than the 
estimated values obtained by using the univariate method. Furthermore, based on the data 
observed, the authors concluded that the copula approach proposed in the study estimated 
flood events with higher accuracy. Gilja et al. (2018) also recommended the copula-based 
approach for areas with a change in flow regime or multiple variables that govern flood intensity. 

Research has also been performed by examining several flood severity metrics associated with 
a single fluvial mechanism to, for example, address flood peaks and volumes; volumes and 
durations (e.g., Bastian et al. 2010; Papaioannou et al. 2016; Yue et al. 1999; Zhang and Singh 
2006); or magnitudes and dates of occurrence(e.g., Lu et al. 2012). 

4.1.3 Coastal and Fluvial Joint Flooding 

This section describes current research literature related to flood hazards involving joint coastal 
and fluvial flooding mechanisms (typically hurricane-induced storm surge with concurrent river 
flooding caused by hurricane-induced precipitation). This section begins with descriptions of 
literature addressing coastal and fluvial flooding hazards that focus on investigating the degree 
of dependence or dependence structure between coastal and fluvial flooding mechanisms. This 
group of literature focuses on characterization of this dependence structure but does not 
typically include estimation of probabilistic hazard measures (e.g., probabilities or frequencies of 
exceedance). 
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Svensson and Jones (2002) conducted a research study in eastern Britain to investigate the 
dependence among high sea surge, river flow, and precipitation. An extremal dependence 
measure (𝜒𝜒) was used that estimated the probability of one variable’s being “extreme” 
conditioned on the other variable’s being extreme, in which the definition of “extreme” is based 
on a threshold that yields about 2.3 events per year. Sea surge and total sea level data were 
obtained from observations at eight stations located on the east coast of Britain for 1965 to 
1997. The differences between total sea level and predicted astronomical tide were considered 
as surge residuals. For river data, daily mean river flows from 40 stations in watersheds draining 
to the North Sea for 1965 to 1997 were used. Precipitation data were obtained from daily 
precipitation observations at 20 stations in eastern Britain for 1965 to 1997. Based on the 
statistical analysis of sea surge, river flow, and precipitation data, the strongest inter-station 
dependence measure (over longer distances) was observed for maximum values of daily sea 
surge. Maximum cross-variable dependence existed between river flow data related to the north 
shore of the Firth of Forth and sea surge in Scotland (at Aberdeen, Wick, and Lerwick). 
Seasonal analysis showed a stronger dependence between surge and flow during the winter, 
which emphasized the need to consider the effect of seasonality for dependence estimation and 
its temporal variations. Finally, a lag analysis was performed, which indicated that the strongest 
dependence between precipitation and sea surge existed if precipitation preceded the surge by 
one day. The same impact of lag was found for dependence between precipitation and river 
flow. The dependence between surge and flow was strongest when they occurred on the same 
day, with a strong dependence also found with lags on plus or minus one day. 

Subsequently, Svensson and Jones (2004) investigated the dependence among sea surge, 
river flow, and precipitation in coastal areas in south and west Britain. A dependence measure 
was used for estimating the probability of one variable’s being extreme conditioned on the other 
variable’s being extreme (as used in Svensson and Jones 2002). Sea surge data were collected 
from hourly sea surge and total sea level data related to 19 stations in the southern and western 
coasts of Britain for 1963 to 2001. River flow data related to 72 stations in watersheds draining 
to the south and west coasts of Britain were extracted for 1963 to 2001. Precipitation data were 
obtained from the UK Met office for 27 stations in watersheds draining to the south and west 
coasts of Britain for 1963 to 2001. Based on the results of the study, dependence between flow 
and surge was found to be strong in three regions of the study area, including the western part 
of the English south coast, southern Wales, and around the Solway Firth. The strongest 
dependence between river flow and precipitation was observed for cases in which both surge 
and river flow occurred at the same day. Based on seasonal analysis, in summer, a slightly 
stronger dependence between flow and surge was observed for the west coast from Wales and 
northward. However, for the southern part of the area under study, a stronger dependence was 
found in the winter. 

Building upon the aforementioned studies, Hawkes (2006) provides a “best practices” guide for 
the application of joint probability analysis. The guidance covers several combinations of 
mechanisms or combinations of flood severity metrics, including (1) wave height and surge (sea 
level); (2) river flow and surge; (3) precipitation and surge; and (4) wind and swell. It includes 
guidance on data preparation, parameter estimation, applications, treatment of climate change, 
and interpretation of results. It also provides several case studies. Two associated technical 
reports provide further supporting information. Hawkes and Svensson (2006) present the results 
of research related to the dependence between key pairs of variables related to waves, surge, 
tide, river flow, rainfall, swell, and wind around England, Wales, and Scotland. Svensson and 
Jones (2006) describe the dependence among extreme sea surge, river flow, and precipitation 
in south and west Britain. 
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Kew et al. (2013) explored the simultaneous occurrence of storm surge and river discharge 
under current and future climate scenarios. The study focused on the Rhine Delta in the 
Netherlands. In particular, the study explored the simultaneous occurrence of extreme winds 
and extreme n-day precipitation as proxies for storm surge and river discharge (where “extreme” 
is defined as events that exceed the 99% quantile). They explored the degree to which storm 
and precipitation are dependent by comparing the conditional probability of observing various 
wind events (conditioned on precipitation) with the marginal probability of those wind events. 
Klerk et al. (2015) also examined the occurrence of storm surge and extreme (i.e., up to return 
periods of 100 years) discharges within the Rhine-Meuse Delta using a cascade of models. 

Lian et al. (2012) investigated the joint effects of rainfall and tidal level in an urban area in China 
using precipitation and tidal data for a single hydrologic station. The optimal copula was used for 
joint exceedance probability estimation (i.e., to compute the probability of both rainfall and tidal 
level exceeding specified thresholds). To estimate flood severity (i.e., ratio of the flooded length 
of the rivers to the total length of the rivers) for combinations of rainfall intensities and tidal 
levels associated with return periods of 5 to 100 years, the hydrodynamic model HEC-RAS was 
used for a river network in the case study region. For verification of this model, observed data 
related to Typhoon Longman (2005) were used. Based on the results of the study, the authors 
concluded that the joint probability of both precipitation and tidal level exceeding a specified 
consequential threshold level was estimated to be low. However, the authors noted “some 
positive dependence” between rainfall and tidal levels. An extension of the study was published 
in Xu et al. (2014). 

Petroliagkis (2018) performed a statistical analysis of 32 rivers along European coasts to 
investigate the dependence between surge and wave height at river end points. The results of 
the study for 35 years of data obtained by hindcasting were presented in the form of correlation 
and statistical dependence (𝜒𝜒-value) between variables. This work also defined the top 80 
compound events for every river at their end points using a peak-over-threshold approach 
yielding 2.3 events per year. For surge hindcasts, the hydrodynamic model Delf3D-FLOW was 
used. This was done by introducing 6-hourly wind and pressure fields obtained from the 
ECMWF ERA-Interim18 reanalysis data set to the Deflt3D-FLOW model. For wave hindcasts, 
the latest stand-alone version of the ECWAM wave model was used to produce hourly wave 
data. Based on the results of the study, the frequency of occurrence for the top 80 compound 
events was higher during cold months. The work found significant dependence and noticeable 
values for positive correlation in some areas, whereas other areas were associated with 
moderate values of dependence and correlation near zero. Associated with this paper, 
Petroliagkis et al. (2016) is a comprehensive technical report published by the European 
Commission Joint Research Centre. 

Although global studies may have limited applicability to the site-specific evaluations performed 
for nuclear facilities, Ward et al. (2018) performed a global exploration of the dependence 
between coastal and river flooding on a global scale. The authors describe an initial assessment 
of the dependence between observations of high sea levels (from the GESLA-2 data set) and 
high river discharge (from the Global Runoff Data Centre) in 187 deltas and estuaries around 
the world. Dependence was assessed using Kendall’s rank correlation coefficient and copula 
models. 

 
18 ERA-Interim is a global atmospheric reanalysis product for 1979 to the present. 
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Going beyond the studies that investigate the dependence or dependence structure for coastal 
and fluvial mechanisms, several references seek to estimate the frequency of exceedance of 
water levels or inundation probabilities when considering combinations of flooding mechanisms. 

Zhong et al. (2013) performed a joint probability analysis in the Lower Rhine Delta. The goal of 
the study was to estimate the frequency of high-water levels and to quantify the exceedance 
probability of the current design water level, which is the level used for the design of flood 
protection features such as levees. The selected threshold for peak surge is a surge residual of 
1 m and peak flow of 6,000 m3/s. Flooding mechanisms discussed in the study were 
astronomical tide, wind-induced storm surge, and fluvial flow on the Rhine and Meuse rivers. 
Three combinations of variables were defined for the development of joint probability 
distributions: (1) surge tide and NOR upstream flow; (2) tide and high upstream flow; and (3) 
surge tide and high upstream flow. Joint probability distributions for each pair of variables were 
developed through statistical analysis of observed data using a copula-based approach for the 
first two combinations and a simple method (rather than copula) for the third combination. 
Sources of data used include observed sea level (1939–2009 in Hook of Holland station), 
predicted astronomic tidal level (1939–2009 in Hook of Holland station), and observed 
discharges for the Rhine and Meuse Rivers at the Lobith (1901–2009) and Borgharen stations 
(1911–2009), respectively. Monte Carlo simulation was used to generate many scenarios for 
data from the estimated joint probability distributions. To estimate high water levels, a simple, 
deterministic, 1D hydrodynamic model with a large grid size of 20 km was used. Simulated 
scenarios were introduced as inputs to the 1D hydraulic model to predict PWL. Finally, predicted 
PWLs and the associated probability or occurrence were used for generating PWL frequency 
curves. To consider the effects of climate changes, mean SLR and peak Rhine discharge 
estimates for 2050 were considered. 

Zheng et al. (2014) compared three bivariate statistical EV methods in terms of their ability to 
estimate the exceedance probability (focusing on return periods of up to 100 years) for given 
flood levels at a given location considering storm surge and rainfall. The three methods 
considered were (1) threshold-excess method, (2) point process method, and (3) conditional 
method. These methods were used for modeling dependence between extreme rainfall and 
storm surge, and the study assessed the ability of the models to accurately and efficiently 
simulate the dependence structure that is commonly observed in data related to storm surge 
and rainfall. Among the three methods, the threshold-excess method provided unbiased results; 
however, the authors noted it could not model scenarios in which just one of the variables was 
extreme. In this regard, the advantage of the point process and conditional methods could be 
their ability to cover the whole distributions of extremes. Based on study results, the 
disadvantages of point process and conditional methods are, respectively, overestimating and 
underestimating the dependence levels between variables. The authors concluded that the point 
process method was most suitable when dependence was relatively strong, but they noted that 
none of the methods produced satisfactory results for extremes with weak dependence. 
Additionally, the authors used a case study in Sydney, Australia to illustrate the three methods 
and to demonstrate the implications of various strengths of dependence on estimated flood 
hazards. Case study results showed that estimated hazard levels (i.e., flood levels for given 
average recurrence intervals) based on extrapolation results were sensitive to the strength of 
dependence. 

A PFHA study (Orton et al. 2018) investigated the joint combination of storm tides and riverine 
flow for the Hudson River. Flood-forcing phenomena in the study included TCs, ETCs, and wet 
ETCs (WETCs). The Stevens ECOM 3D hydrodynamic model was used to combine stream flow 
and storm tide and predict the response variable (water level). Sources of data included the 
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HURDAT2 for TCs, and USGS gauge data series for flow rate. Probabilistic analysis in the 
study covered long return periods of up to 1,000 years. For statistical analysis, a Bayesian 
simultaneous quantile regression approach was used to translate TC characteristics into river 
flow. The GEV distribution was used for fitting a distribution to the WETCs rate distributions, and 
empirical distribution were used for ETCs. Based on the results of the study, in the upper tidal 
part of the river, WETCs were important in terms of flood risk, and ETCs were important for 
flood risk in the estuary and lower tidal part of the river. TCs, however, were considered as an 
important factor causing flood risk at all locations because they can cause both surge and 
extreme precipitation. 

Moftakhari et al. (2017) investigated the combined effects of fluvial flow and SLR on computed 
“failure probabilities” (i.e., coastal inundation probabilities) using data for several estuaries in the 
United States, focusing on hazards associated with return periods of 5 to 50 years. The authors 
proposed a bivariate flood hazard assessment approach for assessing the compound effects of 
flooding induced by river flow and coastal water levels. To assess the extent to which compound 
effects of multiple flooding mechanisms could affect the failure probabilities, the study compared 
the results of multivariate and univariate flooding analyses. When applying the univariate model, 
one flooding mechanism (fluvial flow or coastal water level) was used to assess flooding 
hazards using GEV. In the case of the multivariate model, a copulas method was used for 
bivariate analysis. The authors also assessed failure probabilities under multiple future SLR 
scenarios. Based on the models considered in the study, the authors concluded that considering 
the compound effects of fluvial flow and coastal water level will increase failure probabilities. 
Moreover, the authors concluded that future SLR will exacerbate compounding effects. 

Bevacqua et al. (2017) developed a conceptual model for multivariate analysis of storm surge 
and river flow. Pair-copula constructions were used for multivariate dependency modeling. The 
conceptual conditional model used in the study included several components: (1) an impact 
function for quantifying water levels on the case study river due to the joint occurrence of surges 
and river flow; (2) predictors (𝑋𝑋) for contributing variables (𝑌𝑌); and (3) a conditional joint PDF of 
𝑌𝑌 given 𝑋𝑋. The predictors (𝑋𝑋) represented variables that provide insight into physical processes 
(e.g., meteorological variables), and the contributing variables (𝑌𝑌) represented sea and river 
levels. To apply the method developed in the paper, the Ravenna coast in Italy was considered 
as a case study. The data used in the study were in the form of daily winter water levels for 
2009 to 2015. Meteorological predictors were extracted from the ECMWF ERA-Interim 
reanalysis data set19 for 1979 to 2015 and resolution of 0.75×0.75°. Based on the results of the 
study, the authors concluded that ignoring the dependence between sea levels and river flow 
will lead to underestimation of flood risk (considering return periods of up to 100 years). In 
particular, the authors observed that ignoring the dependence between river flow and storm 
surge resulted in an increase in the estimated return period for the highest flood level (due to a 
combination of fluvial flow and storm surge) from 20 years when considering dependence to 32 
years when ignoring dependence. The authors cautioned that uncertainties associated with risk 
analysis were large as a result of the short period of data available. 

Serafin et al. (2019) investigated the compound effects of stillwater level and river flow on 
extreme water levels along the Quillayute River in Washington along the western coast of the 
United States. The data sources included tide gauge data and river gauge data (measuring river 
flow and stage). The study used a hybrid statistical-physical approach for predicting the 
response variable (water surface elevation). This hybrid model included a hydraulic model 
(HEC-RAS) for predicting water surface elevation and a probabilistic model (SR14, developed 

 
19 Available via http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ 

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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by Serafin and Ruggiero 2014) for simulation of joint boundary conditions due to stillwater level 
and river flow. Surrogate models were used to generate along-river water levels for different 
combinations of sea water level and river flow. To train the surrogate models, outputs from the 
HEC-RAS model for different combinations related to the joint occurrence of sea level and river 
discharge were used. 

Although not focusing specifically on probabilistic characterization, several studies address the 
modeling of events involving the joint occurrence of coastal and fluvial flooding mechanisms. 
These studies do not seek to characterize the dependence structure or compute probabilities; 
rather, they focus on numerical modeling tools. For example, Bunya et al. (2010) developed a 
coupled model for simulating river flow, tide, wind, waves, and storm surge. Chen and Liu 
(2014) propose an integrated modeling system for simulation of storm surge and river discharge 
in a coastal area of Taiwan; they considered three scenarios. The first two scenarios focused on 
investigating the effects of surge and river flow in isolation. The third scenario investigated the 
joint effects of surge and river flow. The method used involved the use and modification of a 
numerical 3D model called SELFE, a finite element model that uses a semi-implicit Eulerian-
Lagrangian method for solving shallow water equations. For model validation, the study used 
three sets of observed data related to Typhoon Krosa (2007), Typhoon Kalmagei (2008), and 
Typhoon Morakot (2009). After model validation, the model was used for the investigation of 
surge and riverine flow in the Tsengwen River basin and neighboring coastal area in southern 
Taiwan. To investigate storm surge effects concurrent with a 200-year river flow, the super 
Typhoon Haiyan (2013) was synthetically shifted to hit the study region. Based on comparison 
of the models related to the aforementioned scenarios, the study concluded that considering the 
combined effects of surges and fluvial flow increased inundation areas. 

Bass and Bedient (2018) investigated the joint effects of hurricane-induced surge and 
precipitation-induced runoff in a coastal area in southeast Houston, Texas. In particular, the 
study analyzed rainfall runoff, storm surge, and the interaction between them for estimation of 
flood peaks (inundation level) in riverine flood plains in the case study region. The goal of the 
study was to develop a method for efficient and rapid flood estimation through the use of 
surrogate models that relate hurricane characteristics (e.g., minimum central pressure, radius to 
maximum winds, forward speed, angle of approach, and landfall location) to peak flood levels. 
The method was intended to facilitate efficient estimation of flood risk due to surge and 
precipitation caused by a hurricane using JPM with the fundamental integral calculated using 
Monte Carlo simulation. The surrogate model was built using aggregated results from a series 
of models, including the modified Smith rainfall model, HEC-HMS hydrologic model, ADCIRC 
and SWAN surge model, and HEC-RAS hydraulic model. Although the study did not focus 
specifically on probabilistic hazard assessment, comparisons were made for events associated 
with 10, 50, 100, and500 year return periods. These comparisons were achieved by performing 
Monte Carlo simulations in which storm parameters were sampled from the probability 
distributions employed in an existing study. A total of 100,000 synthetic storms (i.e., storm 
parameter combinations) were drawn from the assumed distributions, and the resulting surge 
was computed using a trained surrogate model. Then, hazard levels were computed by applying 
an empirical, rate-adjusted Weibull plotting position formula. 

4.1.4 Coastal and Pluvial Joint Flooding 

Archetti et al. (2011) performed a study aimed at quantifying the flooding threshold condition for 
a storm sewer network of a coastal town. The study included a probabilistic investigation of the 
simultaneous occurrence of two flooding mechanisms: precipitation (rainfall) and sea level 
conditions (storm surge, waves, and tides). The study considered rainfall and sea level with 
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return periods of up to 100 years. It focused on a case study drainage system along the Adriatic 
coast in Italy. To estimate the correlation between rainfall and sea level, a copula method was 
applied by using water level data derived from measurements at a regional tide gauge, and 
rainfall intensity data derived from annual maxima rainfall data series. The numerical modeling 
code, InfoWorks CS, was used to estimate the number of flooded nodes in the sewer network 
as a function of rainfall and sea level. Modeling results were verified by comparing the simulated 
results with results for one year of observed data for rainfall and sea level. The sources of data 
were a local utility database providing information on basement flooding, backwater effects, and 
sewer system malfunctions and a fire department emergency calls database. 

4.1.5 Coastal and Precipitation (Pluvial or Fluvial)  

This section describes current research literature related to flooding hazards involving joint 
coastal and pluvial flooding mechanisms. It also addresses literature related to coastal flooding 
mechanisms and precipitation in general (e.g., precipitation quantity, intensity) even when an 
explicit link is not made to subsequent pluvial or fluvial flooding. 

This section begins with descriptions of literature addressing coastal and pluvial flooding 
hazards (or coastal hazards in conjunction with precipitation events) that focus on investigating 
the degree of dependence or dependence structure between these mechanisms. For example, 
Zheng et al. (2013) explored the dependence between large rainfall and storm surge to assess 
flood risk in coastal zones of Australia. The study used processed tide level data (with tide 
effects removed) from 49 tide gauges along the Australian coast and daily precipitation data 
from 4,890 precipitation stations across the Australian continent. The study employed a 
bivariate logistic threshold-excess model to study the dependence between the two quantities. 
The study identified individual extreme rainfall and surge events (where “extreme” was based on 
a precipitation threshold of 40 mm and surge threshold of 0.3 m), with a subset involving both 
rainfall and surge co-occurrence. The study found significant dependence between extreme 
storm surge and rainfall for the majority of regions studied, although it noted spatial and 
seasonal differences in the dependence level. In particular, the study observed that—by 
considering the dependence between storm surge and precipitation—an increase of up to 35 
times was observed in the probability of extreme storm surge occurring when an extreme rainfall 
event is occurring compared with the assumption of independence. The study also explored 
related factors such as the relationship between the strength of dependence and temporal 
factors (e.g., the length of the storm burst and the time lag between the occurrences of 
extremes). The study provided insights regarding the causal mechanism of the dependence 
structure (e.g., synoptic-scale meteorological forcing). The paper was associated with a broader 
project associated with the Australian Rainfall and Runoff model referred to as Project 18, 
“Interaction of Coastal Processes and Severe Weather Events.” Project reports related to 
Project 18 are available on the project website (Engineers Australia 2015). 

Wahl et al. (2015) addressed the likelihood of the joint occurrence of storm surge and 
precipitation for the contiguous United States. In particular, the study investigated the 
dependence between storm surge and precipitation and explored how it has changed over time. 
The study used hourly storm surge data (with astronomical tide and mean sea level effects 
removed) for 30 tide gauges and  mean daily precipitation data derived from stations within 25 
miles of the tidal gauges. For measuring the dependence between precipitation and surge, 
Kendall’s rank correlation coefficient (𝜏𝜏) was used. To find the structure of the dependence 
between these two variables, a copula-based method was used in which three EV copulas were 
considered. The study found that the “risk of compound flooding is higher for the Atlantic/Gulf 
coast relative to the Pacific coast” and “the number of compound events has increased 
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significantly over the past century” for major cities along the coast of the contiguous United 
States. 

Van den Hurk et al. (2015) investigated the physical relationship between, and the joint 
probability distribution of, storm surge (which prevents discharge of water to the open sea) and 
precipitation (which generates inland water levels) using 800 years of simulated data related to 
current climate conditions. To generate these data, for 1950 to 2000, each member of the global 
climate model EC-Earth was downscaled and 800 years of simulated data were generated. The 
study focused on precipitation and surge in the Netherlands. The study analyzed compound 
events involving storm surge and precipitation using a regional climate model (RCM) called 
RACMO2. RACMO2 was used to generate synthetic weather and precipitation data. Bias in 
precipitation driven from the RACMO2 model were corrected based on observations from in situ 
stations and rainfall radar data. Then, an empirical relationship was used to estimate storm 
surge as a function of the synthetic wind speed and direction. To calibrate the empirical 
relationship used for deriving surge, simulated wind data from RACMO2 and local surge data at 
Lauwersoog station were used. To estimate extreme water levels due to precipitation and surge, 
an inland water model (RTC-Tools) was used. The study compared the joint distribution of surge 
and precipitation with a randomized set of simulations. Based on the results of the study, the 
authors observed that for inland water levels, correlation between precipitation and surge was 
noticeable up to a specified inland water level. However, this correlation decreased for higher 
water levels in which tides were dominant and important. 

Although not focusing specifically on probabilistic characterization or dependence structures, 
several studies address the modeling of events involving the joint occurrence of coastal and 
precipitation events. These studies focus on numerical modeling tools and approaches. 

Lin et al. (2010) investigated storm surge, wind, and precipitation from TCs. In particular, the 
study explored current modeling capabilities for simulation and forecasting of multiple hazards 
from TCs. The study focused on case study analyses of Hurricane Isabel (2003) and the 
urbanized coastal area in the Chesapeake Bay watershed in the United States. The Weather 
Research and Forecasting (WRF) model was used to simulate storm evolution following landfall. 
The WRF model simulations were coupled with the 2D Advanced Circulation (ADCIRC) model. 
A wide range of observation data were used to evaluate model performance. For evaluating the 
performance of the WRF-ADCIRC model in surge prediction, observed data at National Oceanic 
and Atmospheric Administration (NOAA) gauge stations were used. To assess simulated rainfall 
data, radar rainfall fields from Hydro-NEXRAD20 were used. Simulated wind fields were 
evaluated using time series related to local wind from stations located at the coastal area. The 
authors concluded that numerous factors leading to damage during the case study event were 
not captured in the models used, particularly those associated with outer rain bands, which 
produced wind damage and urban flash flooding. 

Lu et al. (2018) evaluated the ability of the physics-based TC rainfall (TCR) model to accurately 
reflect the magnitude and spatial distribution of such rainfall. In the study, simulation results 
from the WRF model for two case studies involving Hurricanes Isabel (2003) and Irene (2011) 
were used to assess the TCR model. Based on the results, rainfall fields resulting from TCR for 
both case studies matched the results of the WRF model. After coupling the simulated rainfall 
from TCR with the hydrologic model CUENCAS (a distributed, hillslope-based model discussed 
by Cunha [2012] and Mantilla and Gupta [2005]), the study found the estimated peak flood 
results from TCR were at the same level of accuracy as WRF. The authors concluded that 

 
20 Hydro- Next-Generation Doppler Radar (Hydro-NEXRAD) system 
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spatiotemporal changes in TC-induced winds greatly affected simulated rainfall distributions. 
Finally, the authors noted that if the TCR model could be coupled with some analytical models 
for wind, climatology, and hydrology, it could produce synthetic events for risk analysis related 
to flooding from TC-induced rainfall. Additional focused case study applications have also been 
published (e.g., Martyr et al. 2013; Torres et al. 2015; Tyler et al. 2011). 

In addition to literature that focuses directly on coastal hazards and pluvial hazards (or 
precipitation), additional studies are available that provide building blocks for further evaluation 
involving multiple mechanisms. These studies focus on improving the capabilities for modeling 
TC-induced precipitation. For example, Lonfat et al. (2007) developed a parametric hurricane 
rainfall model (PHRaM) that considers the effects of topography and shear and can model an 
asymmetric hurricane rainfall field. In that work, the effects of shear and stress were modeled 
parametrically and were combined with the R-CLIPER model to form PHRaM. For considering 
the effects of shear and topography, two models were developed: one incorporated only shear 
effects and the other considered the effects of both vertical shear and topography. In the work, 
all storms that made landfall along US coasts in 2004 were simulated by the two proposed 
models and the R-CLIPER model. The resolution considered for all of the models was 10 km. 
Fifteen-minute rainfalls were estimated for each grid cell in the models. To evaluate the 
performance of the two proposed models and the R-CLIPER model, a comparison was made 
between radar observations and the results of the three models. The comparison demonstrated 
that including shear in the model improved the simulated results (in terms of special distribution 
and amplitude of rainfall) to some extent relative to the R-CLIPER results; however, considering 
both topography and shear led to a higher level of accuracy in results. As another example, 
Langousis and Veneziano (2009) developed a combined physical-statistical model to estimate 
the frequency of extreme precipitation intensity induced by TCs, considering return periods of 
100 years or more. Since the method presented in the study ignored landfall effects, it is more 
suitable for coastal areas that are flat. A mean rainfall field was calculated using a physics-
based model. Variations in rainfall were calculated statistically. The method quantified the 
distribution of the intensity of maximum rainfall in each location and for an averaging duration. 
The data used in the study included precipitation radar data from the Tropical Rainfall 
Measuring Mission. To demonstrate application of the model for long-term rainfall risk 
assessment, the model was used to assess rainfall risk in New Orleans. Based on the results of 
the study, the authors concluded that TCs are the dominant type of rainfall for return periods of 
100 years or more and long averaging duration of 12 to 24 hours. The inverse is true for shorter 
return periods (i.e., TCs are not responsible for dominant rainfall related to short return periods). 

4.2 Scope of Hazards Addressed 

The technical literature related to the probabilistic assessment of MMFs is wide-ranging in 
application and scope (e.g., hazards considered, geographic regions of focus, study objectives). 
Despite this diversity in application and scope, recent literature (which is the focus of this 
report’s literature review) primarily addresses concurrent flood mechanisms, and concurrent 
correlated mechanisms (Figure 2-8b) are addressed more frequently than induced correlated 
mechanisms (Figure 2-8c). Figure 4-1 provides an example of how this existing literature maps 
into the framework proposed in Section 2.3. Coincident mechanisms (Figure 2-8a) are rarely 
addressed in the literature because their independence makes probabilistic assessment 
relatively trivial. Table 4-1 includes columns that identify, for each study reviewed, the flood-
forcing phenomena, flood mechanisms, and flood severity metrics considered. 

As shown in Table 4-1, in the context of MMFs, several combinations of flood hazard 
mechanisms have been considered in existing literature, and combinations involving at least 
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one coastal hazard mechanism are a common research focus. A significant portion of existing 
literature focuses on analysis of the joint probability of storm surge in conjunction with 
precipitation and/or river flow, (Archetti et al. 2011; Bevacqua et al. 2017; Chen and Liu 2014; 
van den Hurk et al. 2015; Kew et al. 2013; Moftakhari et al. 2017; Orton et al. 2016; 2018; 
Serafin et al. 2019; Svensson and Jones 2002; Svensson and Jones 2004; Wahl et al. 2015; 
Zheng et al. 2013, 2014; Zhong et al. 2013; Bass and Bedient 2018). In fact, combinations 
involving surge hazards in conjunction with another flood mechanism have been analyzed in 
existing literature more frequently than other pairs of mechanisms. Typically, these studies can 
be categorized as addressing concurrent correlated mechanisms associated with hurricanes or 
ETC events as the common flood-forcing phenomena. 

In addition to literature directly related to MMFs, further studies have focused on rainfall hazards 
due to hurricanes (TCs), with particular emphasis on predicting hurricane-induced precipitation 
(Langousis and Veneziano 2009; Lin et al. 2010; Lonfat et al. 2007). Although not specifically 
involving MMFs, such studies provide a building block for work focused on combinations of 
mechanisms generated by hurricanes as the flood-forcing phenomena. A smaller portion of 
literature related to coastal hazards has investigated the joint probability of multiple flood 
severity metrics associated with surge events, typically waves and water levels (Hawkes et al. 
2002; Masina et al. 2015; Wadey et al. 2015). A few researchers have also analyzed a more 
comprehensive combination of flood mechanisms from the perspective of process modeling (but 
without addressing considerations associated with probability of occurrence). For example, 
Bunya et al. (2010) developed a coupled model of river flows, tide, wind, wind wave, and storm 
surge for southern Louisiana and Mississippi. Work has also addressed combinations of 
mechanisms involving tsunami hazards (Kowalik and Proshutinsky 2010; Zhang et al. 2011); 
however, as shown in Figure 4-1, tsunami hazards are not a dominant hazard for the majority of 
US NPPs; thus, those studies are not a focus of this report. 

MMFs not associated with a coastal hazard have received less attention in the literature. 
Several researchers have performed joint probability analyses of combined discharges at river 
confluences. Bender et al. (2016), Gilja et al. (2018), and others have performed COFF 
analyses for river confluences (Kao and Chang 2012; Wang et al. 2009). Additionally, several 
researchers have explored dependences between multiple flood severity metrics associated 
with fluvial hazards (Yue 2001; Yue et al. 1999; Zhang and Singh 2006). Overall, gaps exist in 
addressing several fluvial flood mechanisms of interest. One of these gaps is rain on snow (i.e., 
liquid precipitation that falls on an existing snowpack). Sui and Koehler (2001) identified that rain 
on snow can generate more runoff than a pure rainfall event. In addition to rain on snow, the 
literature review found few studies that involve probabilistic assessment of event combinations 
involving dam failures and ice effects, both of which involve fluvial flood mechanisms and may 
occur in combination with antecedent or concurrent large discharges. 
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Figure 4-1 Illustration of Concurrent Correlated Flood Mechanisms (Storm Surge 
and Runoff-Induced River Flooding) Generated by a Common Flood-
Forcing Phenomena (Hurricane) 

4.2.1 Study Regions and Scales Covered 

Literature reviewed includes MMF case studies for a range of locations across multiple scales. 
For example, Hawkes et al. (2002), Lian et al. (2012), Masina et al. (2015), Moftakhari et al. 
(2017), Svensson and Jones (2002), Wadey et al. (2015), and Zheng et al. (2014) performed 
local-scale studies. At the national scale, Wahl et al. (2015) performed a study for the 
contiguous United States, and van den Hurk et al. (2015) analyzed events involving surge and 
precipitation in the Netherlands. Vitousek et al. (2017) performed work related to combinations 
involving global scale SLR (i.e., tides, waves, and storm surge). Generally, a plurality of studies 
reviewed focused on UK or US applications. 

4.2.2 Data Used 

Data source information is included in the Data Sources column of Table 4-1. Reviewed studies 
have used empirical data related to numerous flood-relevant variables from a variety of sources. 
Some studies have generated or used synthetic data to support assessment. 

A substantial portion of the studies reviewed in this report use observational data from tide, 
rainfall, or streamflow gauges, with the frequency of observations differing among studies. Daily 
data are most common, but a limited number of studies consider hourly data. Data series record 
length varies from 10 years or less (e.g., Masina et al. 2015, Hawkes et al. 2002) to over 30 
years (e.g., Wahl et al. 2015). Synthetic data generation techniques have also been employed 
in existing literature to supplement observational data. For example, Monte Carlo methods have 
been used to develop synthetic sequences of data observations (Hawkes et al. 2002; Wang 
2016; Zhong et al. 2013). Studies have also leveraged output from numerical models (e.g., the 
WRF model, Lu et al. 2012).  

A subset of existing literature focuses specifically on process-based methods and models. 
These studies focus on understanding the physical interactions between flood mechanisms, as 
well as the modeling of multiple flood mechanisms using coupled or integrated modeling tools. 
However, these modeling-focused studies do not typically address estimation of probabilities 
and risks (e.g., Chen and Liu [2014] addressed storm surge and river flow deterministically). 
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Nonetheless, they are included in Table 4-1 because they provide a set of tools that can be 
used in conjunction with stochastic simulations or Bayesian-motivated approaches to support 
probabilistic hazard assessments. 
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Table 4-1 Summary of Research Studies 

Reference Flood 
type 

Flood-forcing 
phenomenaa 

Flood 
mechanism 

Flood severity 
metric 

MMF flood 
mechanismb 

Joint probability 
approachc 

Data sources and models/software 
used (if applicable) 

Case study/ 
focus area 

Archetti et al. 
2011 

Coastal, 
pluvial 

Storms, 
astronomical 
forces 

Sea level 
(storm surge, 
tide, waves), 
precipitation 

Number of 
flooded nodes 

Precipitation, storm 
surge, wave, tide 

Copula-based 
approach 

Regional tide gauge, observed data for 
rainfall and sea level 

Drainage system 
along the 
Adriatic coast, 
Italy 

Bass and 
Bedient 2018 

Coastal, 
fluvial TCs 

Sea level 
(surge, tide), 
precipitation-
induced runoff 

Peak 
inundation 
levels 

Rainfall runoff 
processes—river, 
storm surge, wind 

Bayesian-motivated 
approach (surrogate 
modeling focus) 

Gridded hourly observed rainfall; 
observed river streamflow and stage 
(for validation); HURDAT TC 
parameters; synthetic storms and flood 
peaks 
Models/software: HEC-HMS, ADCIRC 
model, SWAN, HEC-RAS 

Southeast 
Houston, Texas 

Bender et al. 
2016 Fluvial Winter storm, 

snowmelt 

Runoff-
induced 
flooding 

Flood level, 
discharge 

Rainfall runoff 
processes—river 

Copula-based 
approach Daily mean discharge time series Rhine and Sieg 

Rivers, Germany 

Bevacqua 
et al. 2017 

Coastal, 
fluvial 

Low-pressure 
system, winds 

Sea level 
(surge, tide), 
precipitation-
induced runoff 

Flood level 
Rainfall runoff 
processes—river, 
storm surge 

Copula-based 
approach (pair-copula 
construction) 

Daily winter water, reanalysis dataset Ravenna, Italy 

Bunya et al. 
2010 

Coastal, 
fluvial 

Hurricane, 
astronomical 
forcing 

Flow, tide, 
wind, wave, 
storm surge 

Water level 

Rainfall runoff 
processes—river, 
storm surge, wave, 
tide 

N/A 
(process-based, 
numerical method; 
coupled model for 
simulation of river 
flow, tide, wind 
waves, and storm 
surge) 

Anemometers, airborne and land-based 
Doppler radar, airborne stepped-
frequency microwave radiometer, 
buoys, ships, aircraft, coastal stations, 
satellite measurements, and observed 
water marks 
Models/software: Wave Model (WAM) 
offshore and Steady-State Irregular 
Wave (STWAVE), ADCIRC model 

Southern 
Mississippi and 
Louisiana 

Chen and 
Liu 2014 

Coastal, 
fluvial 

Typhoons, 
monsoon (or 
other rain 
inducing 
storms) 

River flow 
(runoff-
induced 
flooding), tides 
and storm 
surge 

Flood depth, 
inundation area 

Rainfall runoff 
processes—river, 
storm surge, tides 

N/A 
(process-based 
methods, numerical 
model; considered 
scenarios involving an 
historical typhoon and 
concurrent river floods 
with specified return 
periods) 

Observed data related to Typhoon 
Krosa (2007), Typhoon Kalmagei 
(2008), and Typhoon Morakot (2009) 
Models/software: SELFE 

Tsengwen River 
basin and 
neighboring 
coastal area, 
southern Taiwan 
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Table 4-1 Summary of Research Studies (Continued) 

Reference Flood 
type 

Flood-forcing 
phenomenaa 

Flood 
mechanism 

Flood 
severity 
metric 

MMF flood 
mechanismb 

Joint probability 
approachc 

Data sources and models/software 
used (if applicable) 

Case study/ 
focus area 

De Michele 
et al. 2007 Coastal Sea storm Surge, waves 

Sea storm 
magnitude 
(function of 
SWH and 
storm 
duration) 

Storm surge, 
waves 

Copula-based 
approach Wave buoy data 

Wave buoy in 
Sardinia, Italy 
(model validation) 

Gilja et al. 
2018 

Fluvial Hydrologic event 
(rain, snowmelt) 

Runoff-
induced 
flooding 

Flood 
discharge 

Rainfall runoff 
processes—river 

Copula-based 
approach 

Measured river discharge data  Sava River (a 
tributary of Danube 
River), Europe 

Hawkes et 
al. 2002 

Coastal Meteorological 
conditions (wind), 
astronomic forces 

Sea water 
level (storm 
surge, waves, 
tides) 

Water level, 
wave height, 
wave period, 
overtopping 
rate 

Storm surge, 
waves, tides,  

Fitting of parametric 
joint distributions, 
stochastic simulation, 
Monte Carlo 

Observed data, hindcasting, synthetic 
data 

Locations around 
England and Wales 

Kao and 
Chang 2012 

Fluvial N/A Runoff-
induced 
flooding 

Peak 
streamflow 
discharge,  

Rainfall runoff 
processes—river 

Copula-based 
approach (GAU 
copulas) 

Peak annual and daily discharge data Nashville, 
Tennessee 

Kew et al. 
2013 

Coastal, 
fluvial 

Meteorological 
“joint events” 

Surge, 
precipitation-
induced runoff 

Winds, n-day 
precipitation 
(proxies for 
storm surge 
and river 
discharge) 

Rainfall runoff 
processes—
river, storm 
surge, tides 

N/A 
(statistical analysis 
addressing conditional 
probability of winds 
and surge given 
occurrence of extreme 
precipitation) 
 

ESSENCE synthetic data set 
Models/software: ECHAM5/MPI-OM 
coupled global climate model 

Rhine delta, the 
Netherlands 

Kowalik and 
Proshutinsky 
2010 

Coastal Earthquake in 
water bodies, 
astronomic forces 

Tsunami, tide Sea level Tsunami, tide N/A 
(process-based, 
numerical model 
addressing 
interactions of tide 
and tsunami) 

Empirical/simulated data Cook Inlet, Alaska 

Langousis 
and 
Veneziano 
2009 

Coastal, 
pluvial  

Hurricane Hurricane-
induced 
precipitation 

N/A Precipitation—
site or rainfall 
runoff 
processes—river 

N/A 
(combined process-
based [physics-based] 
and statistical model 
of hurricane 
precipitation as a 
function of multiple 
hurricane parameters) 

Precipitation radar data  New Orleans, 
Louisiana 
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Table 4-1 Summary of Research Studies (Continued) 

Reference Flood 
type 

Flood-forcing 
phenomenaa 

Flood 
mechanism 

Flood 
severity 
metric 

MMF flood 
mechanismb 

Joint probability 
approachc 

Data sources and models/software 
used (if applicable) 

Case study/ 
focus area 

Lian et al. 
2012 

Coastal, 
fluvial 

Typhoon, 
astronomical 
forcing 

Typhoon-
induced 
precipitation, 
tide level 
(storm tide) 

Ratio of the 
flooded 
length of the 
rivers to the 
total length of 
the rivers 

Rainfall runoff 
processes—
river, storm 
surge, tide 

Copula-based 
approach (optimal 
copula) 

Precipitation and tidal level records 
Models/software: HEC-RAS 

City on southeast 
coast of China 

Lin et al. 
2010 

Coastal, 
pluvial 

TC Rainfall, 
surge, storm 
tide 

N/A Storm surge, 
tide, 
precipitation—
site or rainfall 
runoff 
processes—river 

N/A 
(process-based, 
numerical model 
addressing hurricane 
rainfall, winds, and 
surge) 

Surge gauge data, radar rainfall 
fields, time series related to local 
wind from stations located at the 
coastal area 
Models/software: 2D ADCIRC 

Hurricane Isabel 
(2003) and the 
urbanized coastal 
area in the 
Chesapeake Bay 
watershed, United 
States 

Lonfat et al. 
2007 

Coastal, 
pluvial 

Hurricane Precipitation-
induced runoff 

N/A Precipitation—
site or rainfall 
runoff 
processes—river 

N/A 
(PHRaM) 

Gridded rainfall data (rain gauges), 
radar data 

All storms that 
made landfall along 
US coasts in 2004 

Lu et al. 
2018 

Coastal, 
pluvial  

TC Runoff-
induced 
flooding  

Discharge  Precipitation—
site or rainfall 
runoff 
processes—river 

N/A 
(process- and 
physics-based model 
of hurricane-induced 
rainfall) 

Outputs from WRF model 
Models/software: CUENCAS 

Hurricanes Isabel 
(2003) and Irene 
(2011), Delaware 
River Basin 

Masina et al. 
2015 

Coastal Meteorological 
conditions (strong 
onshore winds, 
low atmospheric 
pressure 
systems), 
astronomical 
forces 

Sea level, 
wave 

PWL, SWH Storm surge, 
wave, tide 

Copula-based 
approach 

SWH, mean and peak wave period, 
average water temperature, direction 
of wave 

Ravenna coast in 
Italy 

Moftakhari et 
al. 2017 

Coastal, 
fluvial 

Storms, 
astronomical 
forces, SLR 
forcing 

Fluvial flow, 
surge, tide, 
SLR 

Water level Rainfall runoff 
processes—
river, storm 
surge, tide, SLR 

Copula-based 
approach 

Hourly coastal water levels, daily 
river flow, future SLR projections 

Multiple coastal 
estuaries 

Orton et al. 
2016 

Coastal TCs, ETCs  Storm tide Water level Storm surge, 
wave, tide 

Statistical analysis 
using the results of 
the physical models, 
EVA 

Extratropical storm set and tide 
gauge data, historical TC data 

New York Harbor 
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Table 4-1 Summary of Research Studies (Continued) 

Reference Flood 
type 

Flood-forcing 
phenomenaa 

Flood 
mechanism 

Flood 
severity 
metric 

MMF flood 
mechanismb 

Joint probability 
approachc 

Data sources and models/software 
used (if applicable) 

Case study/ 
focus area 

Orton et al. 
2018 

Coastal, 
fluvial 

Tropical, wet 
extratropical, and 
ETCs; SLR forcing 

Storm tide, 
river flow, SLR 

Water level Rainfall runoff 
processes—
river, storm 
surge, tide, SLR 

Statistical analysis 
involving combination 
of numerical 
modeling, Bayesian-
motivated 
approaches, EVA 

HURDAT2 TC data, USGS river 
gauge flow data, meteorological 
reanalysis data  
Models/software: Stevens ECOM 3D 
hydrodynamic model 

Hudson River, 
United States 

Petroliagkis 
2018 

Coastal, 
fluvial 

Weather event Storm surge, 
wave 

N/A Rainfall runoff 
processes—
river, storm 
surge, wave 

N/A 
(analysis of statistical 
dependence between 
quantities) 

Hindcasted wind, pressure field data 
Models/software: Delf3D-Flow 

32 rivers along 
European coasts 

Serafin et al. 
2019 

Coastal, 
fluvial 

Oceanographic 
and riverine 
processes 

Fluvial (river) 
flow, coastal 
water level 

Water levels Rainfall runoff 
processes—
river, storm 
surge, wave 

N/A 
(process model 
involving numerical 
model, machine 
learning, probabilistic 
simulation model) 

Hourly discharge and stage 
observations; hourly stillwater level  
Models/software: HEC-RAS 

Washington coast 

Sui and 
Koehler 2001 

Fluvial Precipitation-
producing events 

Precipitation 
on snow and 
snow melt 

Runoff depth, 
peak 
discharge 

Rainfall runoff 
processes—
river, rain-on-
snow events, 
snowmelt 

N/A 
(statistical analysis 
[EVA] of rain-on-snow 
events) 

Average monthly and annual 
precipitation data, snow depth and 
SWE data; discharge 

A forest region, 
Southern Germany 

Svensson 
and Jones 
2002 

Coastal, 
fluvial 

Mid-latitude 
cyclones 

Sea surge, 
precipitation-
induced 
runoff, tide 

Flow and 
surge 
residuals 

Rainfall runoff 
processes—
river, storm 
surge, wave, tide 

N/A 
(analysis of statistical 
dependence between 
[extremal] quantities) 

Daily mean river flows; daily 
precipitation observations; sea surge 
and total sea levels 

Eastern Britain 

Svensson 
and Jones 
2004 

Coastal, 
fluvial 

Mid-latitude 
cyclones 

Sea surge, 
precipitation-
induced 
runoff, tide 

Flow and 
surge 
residuals 

Rainfall runoff 
processes—
river, storm 
surge, wave, tide 

N/A 
(analysis of statistical 
dependence between 
[extremal] quantities) 

Hourly sea surge and total sea level, 
river flow data, precipitation data 

Coastal areas in 
south and west 
Britain 

Tebaldi et al. 
2012 

Coastal Storms, SLR 
forcing, 
astronomic forces 

Storm, tide, 
SLR 

Water level Storm surge, 
wave, tide, SLR 

N/A 
(EVA considering 
impacts of SLR on 
water levels) 

Hourly and monthly tide records  Coasts of the 
contiguous United 
States 

Toro et al. 
2008 

Coastal Hurricane Storm surge Water level 
(elevation) 

Storm surge (compares JPM and 
JPM-OS methods) 

 Historical/synthetic storm data Mississippi coast 

Van den 
Hurk et al. 
2015 

Coastal, 
fluvial 

Meteorological 
condition, 

Storm surge 
and 
precipitation-

Water level Rainfall runoff 
processes—

Empirical joint 
distributions 
(statistical and 

Observations from in situ stations 
and rainfall radar data, local surge 
data 

Netherlands 
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Table 4-1 Summary of Research Studies (Continued) 

Reference Flood 
type 

Flood-forcing 
phenomenaa 

Flood 
mechanism 

Flood 
severity 
metric 

MMF flood 
mechanismb 

Joint probability 
approachc 

Data sources and models/software 
used (if applicable) 

Case study/ 
focus area 

astronomical 
forcing 

induced 
runoff, tide 

river, storm 
surge, wave, tide 

process-based 
method using RCM) 

Vitousek et 
al. 2017 

Coastal Coastal storms/ 
meteorological 
conditions, 
astronomical 
forces, SLR 
forcing 

Wave (runup 
= setup + 
swash), storm 
surge, tide, 
SLR 

Total water 
level 

Rainfall runoff 
processes—
river, storm 
surge, wave, 
tide, SLR 

N/A 
(EVA considering 
impacts of SLR on 
water levels) 

Reanalysis data and model results Global 

Wadey et al. 
2015 

Coastal Winter sea storm, 
astronomical 
forces 

Storm surge, 
wave, tide 

Sea level, 
SWH 

Storm surge, 
wave, tide 

Parametric joint 
distribution (bivariate 
NOR distribution) 

Tide gauge records and wave buoy 
data  

UK coastal regions 
(Sefton in 
northwest coast, 
Suffolk in east 
coast) 

Wahl et al. 
2015 

Coastal, 
pluvial 

Hurricane Storm surge 
and 
precipitation 

N/A Storm surge, 
Precipitation—
site or rainfall 
runoff 
processes—river 

Copula-based 
approach 

Storm surge; mean daily precipitation 
data 

Contiguous United 
States 

Wang et al. 
2009 

Fluvial N/A Runoff-
induced 
flooding 

Discharge Rainfall runoff 
processes—river 

Copula-based 
approach 
(Archimedean 
copulas) 

Daily/hourly observational data for 
flow rate 

Des Moines River, 
Iowa 

Ward et al. 
2018 

Coastal, 
fluvial 

Coastal and 
inland storms 

Surge, river 
flow 

Water level, 
(skew surge), 
peak 
discharge 

N/A 
(rainfall runoff 
processes—
river, storm 
surge, wave) 

Copula-based method Observations of high sea levels and 
high river discharge 

Global 

Zhang et al. 
2011 

Coastal Earthquake in 
water bodies, 
astronomical 
forces 

Tsunami, tide Wave runup, 
inundation 
extent 

Tsunami, tide N/A 
(process-based, 
numerical model 
addressing 
interactions of tides 
and tsunamis) 

Observed tide and wave data 
Models/software: SELFEE 

Prince William 
Sound Earthquake, 
Gulf of Alaska 

Zheng et al. 
2013 

Coastal, 
pluvial 

Cyclonic systems Storm surge 
and 
precipitation 

N/A Storm surge, 
precipitation—
site or rainfall 
runoff 
processes—river 

N/A 
(dependence study 
involving bivariate 
logistic threshold-
excess model) 

Processed tide level data daily 
precipitation data 

Australian coast 
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Table 4-1 Summary of Research Studies (Continued) 

Reference Flood 
type 

Flood-forcing 
phenomenaa 

Flood 
mechanism 

Flood 
severity 
metric 

MMF flood 
mechanismb 

Joint probability 
approachc 

Data sources and models/software 
used (if applicable) 

Case study/ 
focus area 

Zheng et al. 
2014 

Coastal, 
fluvial 

Hurricane, 
meteorological 
conditions 

Runoff-
induced 
flooding and 
surge 

Flood level Rainfall runoff 
processes—
river, storm 
surge 

N/A 
(extremal dependence 
study using multiple 
statistical 
assessments) 

Synthetic data sets, daily rainfall 
gauges and the storm tide gauge 
(case study) 

Hawkesbury-
Nepean catchment, 
north of Sydney, 
Australia 

Zhong et al. 
2013 

Coastal, 
fluvial 

Astronomical 
forces, 
meteorological 
conditions, SLR 
forcing, operations 

Astronomical 
tide, wind-
induced storm 
surge, fluvial 
(river) flow 

Water levels Precipitation—
site or rainfall 
runoff 
processes—
river, storm 
surge, wave, 
tide, snowmelt, 
river structure 
operations, SLR 

Copula-based 
approach (also used 
Monte Carlo 
simulation) 

Observed sea level, predicted 
astronomic tidal level, observed 
discharges  

Lower Rhine Delta, 
Europe 

a In this table, the entry “N/A” is used to indicate that information was not explicitly stated in the subject paper or that the information is otherwise not available or applicable for the 
study. In some cases, the flood-forcing phenomena listed in this table are based on the judgement of this report’s authors regarding the flood-forcing that is relevant to the process 
under consideration in a particular study. 

b Different terminology is used across the literature to describe flood-forcing phenomena, mechanisms, and severity (including multiple terms used to describe similar metrics). In this 
table, terms used to describe flood-forcing phenomena, mechanisms, and severity metrics are taken from the source papers. To link to the MMF Framework and terminology, the 
flood mechanism as described in that terminology is shown in this column. 

c The column identifies which of the joint probability approaches introduced in Section 3.3 are applicable to the study being summarized. When the study does not use one of the 
approaches noted in Section 3.3, the statistical method is identified as “N/A” (not applicable) and a note is included regarding the alternate focus of the paper. Studies not directly 
related to statistical methods are included in this table because they are judged to provide information/insights, “building blocks,” or formulations that may potentially be relevant to 
addressing MMFs. 
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5 CRITICAL REVIEW OF EXISTING PRACTICE AND RESEARCH 

The subsections that follow provide insights resulting from the critical assessment of existing 
approaches, with particular emphasis on identifying key themes as well as issues and 
challenges of relevance to the assessment of MMFs at nuclear facilities. Relevant insights 
include the following: 

Site-Specific Assessments (Section 5.1): Most existing studies have involved analysis 
of site-specific data. Therefore, quantitative conclusions from existing studies may not be 
directly generalizable or applicable to other locations. Instead, extrapolation of insights 
must focus on broader, thematic issues. 

Definition of Flood Severity Metrics (Section 5.2): In existing studies, flood severity 
metrics are defined in various ways, even when the same (or similar) flood-forcing 
phenomena or flood mechanisms are considered. Even when metrics are physically 
equivalent between one or more studies, different terminology may be used to define 
and describe those metrics. 

Modeling Considerations (Section 5.3): The following subsections describe the range 
of modeling considerations addressed in existing studies: 

• Return Periods Considered in Existing Assessments: Existing studies have 
generally focused on hazards associated with return periods of 5–100 years (a few 
studies extend to 500–1,000 years). This range does not reach the length of return 
periods relevant to NPPs. Therefore, future work that builds on existing studies will need 
to include careful consideration of unique issues that arise when working with hazards 
associated with long return periods. 

• Length of Record and Characteristics of Available Data Series: The length of record 
and characteristics (e.g., spatial, and temporal resolution) of the data series used in a 
statistical assessment of flood frequencies can affect the validity and reliability of results, 
especially for studies targeting long return periods. Therefore, explicitly addressing data 
limitations in a probabilistic assessment of MMFs (e.g., via uncertainty analysis for bias 
corrections) may be necessary. Expansion of the data record through model simulation 
provides a mechanism for addressing some data limitations. 

• Statistical Modeling Choices: Numerous modeling decisions must be made in 
performing probabilistic assessments that rely on statistical analysis for development of 
model input. These decisions lead to epistemic uncertainties that can have meaningful 
impacts on the results of statistical assessments. 

• Assumptions Regarding Concurrence of Extrema: When extending conventional 
PFHA techniques based on EVA methods to the assessment of MMFs, a challenge 
arises because extrema associated with multiple flood mechanisms or severity 
measures typically do not coincide temporally. That is, when one random quantity is in 
the extremal state, the other quantity is typically in a non-extremal state. PFHA methods 
for MMFs must then account for this lack of concurrence. 
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• Model Validation: Validation of numerical, surrogate, probabilistic, and other models 
used in MMF studies remains a challenge because of a scarcity of data, which is 
particularly true for assessments focusing on severe events. 

Gaps and Challenges (Section 5.4): Numerous challenges and gaps were identified 
related to the existing literature, including inconsistencies in terminology (and the 
associated mathematical implications), the limited number of studies focusing on 
development of conventional hazard curves or surfaces, and a lack of a comprehensive 
framework for analyzing the range of potential sources of dependency among quantities 
and for treating temporal non-stationarities. 

Additional discussion of each of those insights is provided in the subsections that follow. 
Furthermore, commentary is provided in conjunction with each subsection describing the 
potential implications of the insight on future work to be performed under this project. 

5.1 Site-Specific Assessments 

Most existing studies have involved the analysis of site-specific data. Therefore, quantitative 
conclusions from existing studies may not be directly generalizable or applicable to other 
locations. Instead, extrapolation of insights must focus on broader, thematic issues. Additional 
discussion is provided in this section. 

A significant component of analyzing MMFs involves characterizing the dependence between 
variables (e.g., flood severity metrics resulting from one or more flood mechanisms). This 
dependence between variables is affected by hydraulic, hydrologic, and meteorological factors 
(Hawkes 2008), as well as other environmental factors and topographic/bathymetric features 
that vary from one location to another. MMF analysis involving empirical data related to these 
quantities will inevitably yield site-specific results. Therefore, a significant portion of the literature 
identified as part of this project relates to site-specific studies. Specific study regions are noted 
in the relevant column of Table 4-1. However, only a limited number of studies analyze joint 
probabilities and/or dependence among variables on a larger spatial scale. The few studies that 
address these broader geographic regions typically focus on identifying how patterns and the 
levels of dependence among variables range across locations. One example is the work 
performed by Wahl et al. (2015) in which dependence between surge and precipitation was 
investigated for the contiguous United States. The study found spatial variation in dependence 
between storm surge and precipitation across the country. Svensson and Jones (2004) also 
investigated the dependence between sea surge, river flow, and precipitation in south and west 
Britain to analyze spatial changes in dependence. 

Considering the site-specific nature of the results related to analyzing the dependence between 
variables associated with MMFs, generalizing or spatially extrapolating specific conclusions is 
challenging (and perhaps technically inappropriate) regarding the magnitude and characteristics 
of dependence among variables from a site-specific study. Therefore, site-specific conclusions 
are not emphasized in this report (e.g., for consideration in subsequent project activities). This 
report and the assessment that follows do not focus on analysis of location-specific quantitative 
results, but instead focus on a broader, more thematically oriented approach. In particular, the 
assessment that follows focuses on general methods and on understanding the degree to which 
they are sufficiently flexible to be applied to the wide range of MMFs that are expected at NPPs. 
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5.2 Definition of Flood Severity Metrics 

Flood severity metrics are diversely defined in existing studies, even when considering the 
same (or similar) flood-forcing phenomena or flood mechanisms and metrics that are physically 
equivalent between one or more studies. 

The definition and specification of the flood severity metrics of relevance to a particular study 
naturally change the interpretation of what is considered a flood hazard. In the current literature, 
no unique definition exists for a flood severity metric, even in assessing hazards for a particular 
hazard group or hazard mechanism. For example, in some studies, flood height is the relevant 
flood severity metric (Bass and Bedient 2018; Bevacqua et al. 2017; Bender et al. 2016). Other 
common severity metrics include volumetric measures (e.g., discharge) and durations (e.g., 
Gilja et al. 2018). However, other works focus on flood severity metrics in a manner that goes 
beyond physical measures. For example, Lian et al. (2012) defined a flood severity metric (the 
“flood severity index”) that is interpreted as the ratio of the flooded length of the river to the total 
length of the river. In another work, Archetti et al. (2011) used flooded nodes of an urban 
drainage network to define flood risk. 

Even when the flood severity metric used in one study is physically equivalent to that used in 
another study, the terminology used by the studies may differ substantially. Although this 
circumstance is a natural result of differing study focuses, this diversity in terminology terms can 
lead to challenges in identifying related literature and building off existing studies. Thus, 
although the development of a definition of a unique flood severity metric that is relevant for all 
studies is not feasible, that lack of a common/consistent language may create some challenges 
relative to sharing information and comparing insights across studies. In the context of this 
report, flood severity metrics will be defined in the context of hazard parameters of primary 
relevance to NPP design or analysis (i.e., flood elevation or depth). Because the focus of this 
project is on the probabilistic assessment of combinations of flood mechanisms (rather than at 
other tiers of the hierarchy in Figure 2-7), combinations of flood severity metrics (e.g., flood 
elevation and duration of inundation) are not a focus. 

5.3 Modeling Considerations 

The following subsections describe the range of modeling considerations addressed in reviewed 
studies. 

5.3.1 Return Periods Considered in Existing Assessments 

NPPs are somewhat unique in the length of return periods considered as part of hazard 
assessment, with most NPP-related probabilistic flood hazard estimates focusing on long return 
periods (e.g., 10,000 years or longer). Most other noncritical infrastructure systems are 
designed for hazards associated with significantly shorter return periods. Existing literature has 
not focused on assessment of hazards in the context of the design/analysis of nuclear facilities, 
but rather, the literature typically focuses on shorter return periods. For example, Masina et al. 
(2015) considered assessment of hazards with a return period of 100 years, Lian et al. (2012) 
considered return periods of 5 to 100 years, and Kao and Chang (2012) considered return 
periods of up to 200 years. Moftakhari et al. (2017), using data for several estuaries in the 
United States, considered hazards associated with 5-to-50-year return periods. One of the few 
studies that considered longer return periods is the work by Gilja et al. (2018), which conducted 
a joint probability analysis related to flood hazards at river confluences by considering a return 
period of 1,000 years. Orton et al. (2018) analyzed the combination of storm tides and riverine 
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flow for a return period of 1,000 years, and Orton et al. (2016) considered longer return periods 
in assessing hazard contributions from both extratropical and tropical events. 

Considering the focus of most existing studies is on (relatively) short return periods, future work 
using the methods proposed in those works will need to include careful consideration of 
technical issues that arise in working with hazards associated with long return periods (e.g., the 
effect of epistemic uncertainties, nonlinearity in phenomenological processes, and physical 
upper limits). 

5.3.2 Length of Record and Characteristics of Available Data Series 

Data series record lengths can affect the validity and reliability of statistical flood frequency 
assessments, especially for studies targeting long return periods. Unfortunately, in many 
locations, complete records of long duration are simply not available. Some studies have 
proceeded considering limited data; for example, Masina et al. (2015) used six years of data 
related to sea level (i.e., PWL) and waves (i.e., SWH and direction) to estimate the joint 
probability of water levels and waves. However, researchers have typically employed alternative 
strategies to generate results that are more robust in data-sparse situations. One of these 
strategies is generating synthetic data. Different techniques exist for synthetic data generation, 
including Monte Carlo methods (Hawkes et al. 2002; Wang 2016; Zhong et al. 2013) and 
leveraging output from numerical models (e.g., the WRF model [Lu et al. 2012]). 

In addition to challenges arising from limited record length and varying degrees of 
completeness, further challenges arise from the resolution of data. For example, for considering 
precipitation, river discharge, and tidal gauge data series, often only averaged metrics (e.g., 
mean daily discharge) are available. The limits of the data can lead to missed peaks and can 
result in a low bias when used in, for example, EVAs. Of course, the use of mean data over 
more refined data (e.g., “instantaneous” data) is typically simply due to the availability of one 
type of data over another. For example, Wahl et al. (2015) used mean daily precipitation data, 
and Bender et al. (2016), Svensson and Jones (2002, 2004), and Zhong et al. (2013) used daily 
mean discharge time series. 

In developing probabilistic assessments for MMFs, using averaged data may be necessary 
because more temporally refined data may not be available. However, in such cases, care 
should be taken to understand the potential bias that may be introduced using average data 
(e.g., the low bias may be more pronounced in watersheds with shorter times of concentration 
and thus more rapidly changing time series). In cases in which potential differences exist 
between results that may be generated using average or using instantaneous data, correction 
factors may need to be considered in the analysis. 

5.3.3 Statistical Modeling Choices 

In performing probabilistic assessments that rely on statistical analysis for the development of 
model input (e.g., development of distributions for probabilistic characterization of the variability 
associated with one or more random variables), numerous modeling decisions are required. The 
decisions may include identification, processing, and filtering of data sets; selection of 
distributions and estimation of associated parameters; and the development, calibration, and 
validation of numerical models. Generally, little guidance is available to support such modeling 
decisions, particularly for the development of hazard assessments associated with the range of 
return periods of relevance to nuclear facilities. Although some guidance is available for shorter 
return periods (e.g., England et al. [2018] provides explicit guidelines for treatment of data, 



 

5-5 

distribution selection, and parameter estimation), such guidance remains focused on univariate 
assessments rather than MMFs. The modeling decisions taken as part of statistical and 
probabilistic assessments can have a significant effect on estimated frequencies. No definitive 
decision metric or statistical criteria exists for distribution selection. However, statistical tests 
can be used to eliminate distributions from further consideration and various goodness-of-fit 
metrics can provide insights regarding relative measures. Moreover, physical considerations 
(e.g., physical process limits) and other considerations (e.g., preference for conservative 
decision-making in distribution selection) may be helpful informing distribution selection. 

The epistemic uncertainties associated with statistical modeling decisions continue to aggregate 
when an assessment is extended from univariate to multivariate. As noted in Section 3.3.2, 
copula modeling has been widely used for bivariate and multivariate analyses involving MMFs. 
Copulas are commonly used because they are relatively simple to apply and offer flexibility in 
functional forms, particularly in the form of the marginal distributions. However, similar to 
univariate assessments, the functional form of the copula is a potentially significant modeling 
decision. The choice of copula type for multivariate analysis involving MMFs is often based on 
common practice rather than a theoretical basis. Although various goodness-of-fit metrics have 
been employed in the literature (De Michele et al. 2007; Kao and Chang 2012; Lian et al. 2012; 
Masina et al. 2015), there continues to be a lack of robust criteria and a general process to 
decide on a candidate copula method (e.g., to select a best fit or understand the 
appropriateness of one copula function over another). Moreover, the basis for selection of one 
copula function over another in any particular study is often not clearly defined. In most studies, 
the stated goal is not usually to describe how the best copula can be chosen, but rather to 
define an overall procedure (under the assumption that the best or an acceptable copula is 
chosen). Table 5-1 shows the various types of copula functions used in existing literature 
related to MMF. This table also provides the reason for selecting the type of copula for analysis 
in each particular study. Modeling decisions associated with epistemic uncertainties extend 
beyond the noted challenges related to the assumed functional form of marginal distributions 
and copula functions. For example, a lack of a general process exists for defining how threshold 
values can be defined for consideration in extremal analysis involving analysis of partial duration 
data series. In most studies, threshold levels are defined based on expert judgement or other 
expert defined methods. Tebaldi et al. (2012) conducted a peak-over-threshold analysis by 
selecting a threshold related to the 99th percentile based on trial and error. Zhong et al. (2013) 
defined a fixed threshold for the peak surge residual. Kjeldsen et al. (2010) used a threshold 
related to 5% of the 2-year return period rainfall. 

Although many of the mentioned issues are relevant to univariate assessments, further 
considerations become relevant in the context of multivariate assessments. For example, 
Hawkes (2008) explained that “sometimes, when dependence exists, it is more marked 
amongst the higher observed values (stormy conditions) than amongst the lower values.” This 
explanation implies that the choice of threshold value will affect the degree of dependence 
between variables, which adds to the importance of selected threshold value not only from the 
perspective of quantity of useful data available for analysis, but also from the perspective of the 
degree of dependence between variables. 

Therefore, future work under this project that uses statistical assessments is expected to include 
consideration of the effects of statistical modeling choices leading to epistemic uncertainties in 
analysis results. Potential strategies for addressing these uncertainties include sensitivity 
studies and the application of established approaches for identifying and addressing epistemic 
uncertainties (e.g., using Bayesian approaches or logic trees). 
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Table 5-1 Summary of Copulas Used in Literature and Basis for Selection 

Reference Type of copula used Reason for selection 
Masina et al. (2015) • Archimedean 

• EV 
• Archimax, which encompass the 

EV and Archimedean classes 
• Metaelliptical, including 

o GAU 
o t 

• Miscellaneous, including 
o Farlie-GUM-Morgenstern 

Several parametric copula 
families were applied to 
cover a wide range of 
possible patterns for 
dependencies between 
variables 

Kao and Chang 
(2012) 

• GAU This type of copula was 
selected because it was 
considered to be well-
accepted in the literature 

Gilja, Ocvirk, and 
Kuspilić (2018) 

• Archimedean GUM-Hougaard  These types of copulas were 
selected because they are 
the most frequently used 
one-parameter Archimedean 
copulas in the literature 

Bender et al. (2016) • Three Archimedean family, 
including 

o Clayton Archimedean 
o Frank Archimedean 
o GUM Archimedean 

These types of copula were 
selected because they are 
relatively easy to construct, 
flexible, and capable of 
covering the full range of tail 
dependence 

Lian, Xu, and Ma 
(2012) 

• GAU 
• t 
• Clayton 
• Frank 
• GUM 

These types of copula were 
selected because they are 
widely used in hydrology 

Zhong, Overloop, 
and Gelder (2013) 

• GUM 
• GAU 

A GUM copula was selected 
to describe the dependency 
for high river flows because 
it exhibits a stronger 
dependency in the positive 
tail. No basis was identified 
for selection of GAU copula 
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Table 5-1 Summary of Copulas Used in Literature and Basis for Selection 
(Continued) 

Reference Type of copula used Reason for selection 
Wahl et al. (2015) • Three EVfamily, including 

o GUM 
o Galambos 
o Hüsler-Reiss 

• Archimedean family, including 
o Clayton 
o GUM 

 (GUM belongs to both classes) 

No basis was identified for 
selection for the choice of 
these copula types 

Moftakhari et al. 
(2017) 

o Archimedean family, including 
o Ali-Mikhail-Haq 
o Clayton 
o Frank 
o GUM 
o Joe 

• Elliptical family, including 
o NOR 
o t 

• EV family, including 
o Galambos 
o Hüsler-Reiss 
o Tawn 

• Farlie-GUM-Morgenstern 

These copula families were 
considered to cover a wide 
variety of dependencies that 
can exist between variables 

De Michele et al. 
(2007) 

• Ali-Mikhail-Haq 
• Frank 
• GUM 

These copula families 
commonly used in literature 
were selected to cover a 
wide range of dependencies 
that can exist between 
variables 

 

5.3.4 Assumptions Regarding Concurrence of Extrema 

Univariate statistical assessments to support PFHA often use EVA based on annual maximum 
series in which distributions are fit to a data series that contains a single annual maxima value 
for every year contained in the overall data set. However, challenges arise in seeking to extend 
these concepts to multivariate assessments because in considering multiple random variables 
corresponding to multiple flood-forcing phenomena, flood mechanisms, or flood severity metrics, 
the occurrence of the annual maxima for one variable may not (and likely will not) coincide with 
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the occurrence of the annual maxima for the other variable. Bender et al. (2016) noted that “it 
might even be that the simultaneous occurrence is physically impossible or at least very 
unlikely.” 

Nonetheless, one of the common strategies for probabilistic assessment of MMFs is to conduct 
multivariate analysis by considering pairs of data related to annual maximum values of the 
involved variables (i.e., by assuming that the annual maxima of variables coincide). Some 
examples are the work by Gilja et al. (2018) in which pairs of annual maximum discharge were 
used for joint probability analysis related to flood hazard at river confluences by using a copula 
method. Also, Wang (2016) and Wang et al. (2009) used annual peak discharge data related to 
upstream tributaries of river confluence. Svensson and Jones (2002, 2004) also conducted 
extremal dependence analysis based on an extremal dependence measure, which was defined 
as the probability of one variable’s being extreme, conditioned on the other variable’s being 
extreme. 

Given that extremal values may be unlikely to occur at the same time, some researchers have 
employed different approaches to analyze pairs of annual extremal values of involved variables. 
Typically, these approaches involve identifying the extremal (e.g., annual maxima) value for one 
quantity (e.g., 𝑌𝑌1) and then selecting the contemporaneous value of the other quantity (e.g., 𝑌𝑌2); 
for instance, if 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,1 refers to the time at which the EV of 𝑌𝑌1 occurs, the quantity of 𝑌𝑌2 would be 
extracted at time 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,1. Extensions to this approach may consider a “buffer” around 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,1 so that 
rather than taking the value of 𝑌𝑌2 at exactly 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,1, the maximum value of 𝑌𝑌2 is taken within an 
interval 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒,1 ± Δ𝑡𝑡, where Δ𝑡𝑡 is often taken as one day. 

For example, Masina et al. (2015) considered peak sea level due to surge/tides and 
contemporary SWHs. To analyze the compounding effects of SLR and fluvial flooding, 
Moftakhari et al. (2017) analyzed the annual maximum fluvial flow and the corresponding 
maximum coastal water level measured within one day of the flood peak. To analyze compound 
floods, Wahl et al. (2015) used the highest annual storm surge and the highest precipitation 
within a time range of ±1 day, and also the highest annual precipitation and corresponding 
highest storm surge within ±1 day. For analyzing the joint impact of rainfall and tidal level, Lian 
et al. (2012) considered maximum annual 24 h rainfall and the highest tidal level during the time 
window corresponding to that rainfall. In a study focused on fluvial flooding, Kao and Chang 
(2012) confirmed that pairs of annual peak data for two variables may correspond to floods at 
different times during the year. They used pairs of data related to high flows (top 20% of flow 
pairs) instead of peak annual pairs. Bender et al. (2016) worked with data pairs in which the 
maximum value of one variable was considered along with the simultaneously measured value 
of a second variable (and vice versa). The study demonstrated that results related to the 
proposed approach were distinctively different from the results of the conservative method of 
considering the simultaneous occurrence of annual maximum values related to both variables. 

Overall, as noted in previous paragraphs, the most common approach for addressing MMFs is 
via assessments using annual maxima series without assuming the peaks coincide include the 
following strategies: 

• Considering the annual peak value of the first variable and simultaneous value of the 
second variable and vice versa (Masina et al. 2015 and Bender et al. 2016) 

• Considering the annual peak value for the first variable and the corresponding highest 
value for the second variable within an appropriate time span (e.g., ±1 day) so that they 
can be considered dependent (Wahl et al. 2015) 
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In the second case, an additional modeling decision arises from the need to select the 
appropriate time window for consideration of dependence events. For some random quantities 
of interest, data may only be available for annual maximum values (rather than at more refined 
time intervals), which may limit the flexibility of analysis that can be performed in some 
locations. Moreover, even when time series information is available, as noted in Section 5.3.2, 
data may be available only at insufficient discretization so that true maximum values over an 
interval may be missed. 

5.3.5 Model Validation 

Validation of numerical, surrogate, probabilistic, and other models used in MMF studies remains 
a challenge because of the scarcity of data. In most studies in identified literature, models and 
results were validated using data related to one event. For example, Archetti et al. (2011) 
developed flood probability charts for an urban drainage network and compared them with the 
time series of one year of rainfall-sea level. Gilja et al. (2018) compared the estimated trend of 
peak discharge obtained from bivariate copulas with measured values of a flood event that 
occurred in 2014. Demonstration of good performance for one flood event does not necessarily 
provide high confidence in good performance of the model for other flood events. For a PFHA 
involving the prediction of severe hazards associated with long return periods, the model and 
results should ideally be validated for at least several different sets of observed data related to 
different severities, time periods, and flood events. However, this validation must be balanced 
against the need to use historical events in building the model (e.g., training empirical or 
calibrating numerical models). 

5.4 Gaps and Challenges 

The following subsections describe numerous challenges and gaps that were identified related 
to existing literature, particularly when assessed from the perspective of issues of relevance to 
flooding hazards at NPPs. These gaps and challenges include inconsistencies in terminology 
(and the associated mathematical implications); the limited number of studies focusing on the 
development of conventional hazard curves or surfaces; a lack of a comprehensive framework 
for analyzing the range of potential sources of dependency between quantities; the limited 
number of process variables explicitly modeled in existing studies; and the treatment of 
temporal non-stationarities. Additional gaps were also articulated in Section 3 in conjunction 
with the overall summary of available literature. Those gaps focused primarily on topics (e.g., 
specific flood hazard mechanisms) not addressed in the identified literature. 

5.4.1 Inconsistency in Terminology 

The existing literature is relatively fragmented in the use of terminology related to MMFs. The 
fragmentation can lead to challenges in identifying relevant literature and applying it to specific 
applied and research problems. Moreover, it has important implications for the development of 
mathematical details related to the probabilistic assessment of hazards, as well as the 
presentation of the results of those assessments. 

Of particular note is “joint probability analysis” (or a closely related terminology variant), which is 
often used in the context of assessing MMFs. In this report, “joint probability” has been defined 
within the context of multiple random variables related to the Boolean “and” scenario (see 
Section 3.2.2). However, although the phrase “joint probability analysis” is widely used, diversity 
exists in the way that “joint” is mathematically defined in studies. In particular, in the context of 
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bivariate assessments, studies have defined “joint hazards” to mean cases in which the 
following are true: 

1. the two hazard relevant variables (e.g., parameters related to flood mechanisms or flood 
severity metrics) are both exceeded (Boolean “and” scenario), 

2. either hazard relevant variable is exceeded (Boolean “or” scenario), or 

3. one variable (e.g., flood severity metric) is exceeded, given that another variable equals 
a specified value or exceeds a specified threshold (conditional scenario). 

Similar extensions can be considered within the context of more than two variables. Moreover, 
these definitions may consider “joint occurrence” to imply a temporally simultaneous occurrence 
or may consider occurrence within some defined time window. 

Hawkes (2008) identified a comprehensive bibliography related to definition and how joint 
probability should be applied in the United Kingdom (e.g., Coles and Tawn 1991, 1994; Hawkes 
2006; Hawkes et al. 2002). However, outside of those studies, there remains diversity in 
definitions. For example, Gilja et al. (2018), Wang (2016), Wang et al. (2009), and Svensson 
and Jones (2002, 2004) use “joint -probability analysis” to refer to extremal analysis in which 
both variables are at an extremal level. However, other studies use this phrase to refer to the 
simultaneous occurrence of one variable conditioned on another variable’s being an EV (Bender 
et al. 2016; Lian et al. 2012; Masina et al. 2015). Other work has considered the analysis of the 
EV of one variable and highest value of the second variable within (usually) ±1 day (Wahl et al. 
2015). Moftakhari et al. (2017) used an “or” scenario logic in defining hazards.  

5.4.2 Presentation of Results 

Hazard curves are one of the most common ways of presenting the results of a conventional 
PFHA, for example, as generated by the USGS flood frequency tool PEAK-FQ (USGS 2018) or 
as part of the North Atlantic Comprehensive Coastal Study (NACCS) of storm surge hazards 
(USACE 2015; see Section 3.3.4 for additional information regarding development of hazard 
curves). However, probabilistic assessment of MMFs leads to challenges in generating hazard 
curves due to the presence of more than one flood mechanism or flood severity metric in the 
analysis, which is exacerbated by the challenges in defining “joint hazards.” 

Only a limited number of existing studies present results in the form of conventional hazard 
curves (i.e., a plot with one axis corresponding to a flood severity metric and the other showing 
the probability of exceedance or return period). For example, Orton et al. (2016, 2018) 
presented the results of a study related to the combined effects of TC and ETC as flood 
exceedance curves showing water levels for different return periods. Bass and Bedient (2018) 
presented the results in the form of inundation area versus return period. Bevacqua et al. (2017) 
presented the results as water level versus return period, along with some measures of 
uncertainty. Other studies provide information in the form of graphs but not necessarily 
conventional hazard curves. For example, Lian et al. (2012) presented graphs related to the 
joint probability of precipitation and tide. To analyze the increasing risk of compound flooding 
from storm surge and rainfall for major US cities, Wahl et al. (2015) presented the results in 
terms of the spatial variability of the dependency between storm surge and precipitation. Gilja et 
al. (2018) provided scatter plots of measured data pairs and simulated values generated from 
the copula model for the river confluence under study by considering different return periods. To 
analyze the joint probability of waves and water levels, Hawkes et al. (2002) provided joint 



 

5-11 

exceedance curves of wave heights and water levels for different return periods and different 
locations. 

5.4.3 Lack of a Comprehensive Framework for Analyzing Dependence among Variables 

An important aspect of assessing MMFs is understanding and capturing dependence among 
variables of interest. Several factors affect the dependence among variables involved in MMF 
analysis, including spatial factors, temporal factors, and selected threshold values. Spatial 
factors include the spatial extent of flood-forcing phenomena, as well as location-specific factors 
(e.g., topography and bathymetry) that vary from one place to another but that may affect the 
occurrence and degree of dependence between flood mechanisms or other related quantities 
(e.g., see the work by Svensson and Jones 2002, 2004; Wahl et al. 2015). Temporal changes in 
dependence among variables can be captured in terms of seasonal, annual, and long-term 
variations. For example, Bender et al. (2016), Gilja et al. (2018), Moftakhari et al. (2017), Wang 
(2016), and Wang et al. (2009) considered annual data in investigating dependence. 
Consideration of annual metrics can mask the seasonal dependence among variables, which is 
especially important where conditions change with season. Hawkes (2008) considered short-
term, midterm (seasonal) and long-term dependence in joint probability analysis. Svensson and 
Jones (2002, 2004) conducted a seasonal analysis for dependence among sea surge, river 
flow, and precipitation in south and west Britain. Masina et al. (2015) considered seasonal 
analysis for dependence to estimate the joint probability of water levels and waves in a coastal 
area in Italy by using a copula-based approach. Some researchers have also analyzed changes 
in dependence over time (Hawkes 2008; Wahl et al. 2015). The choice of threshold values also 
can change dependence levels among variables; for example, a higher threshold value used in 
defining extrema may be associated with differing dependencies among variables (Hawkes 
2008). 

Despite the recognition of these factors, the existing literature (and guidance) lacks a 
comprehensive framework for addressing and analyzing the dependence among variables, and 
most studies have addressed only one source of dependency. For contexts in which multiple 
sources of dependencies may be relevant (e.g., when considering potential changes in hazards 
over time or seeking to capture dependencies under severe conditions), additional research 
may be required to understand how multiple sources of dependencies may interact or 
compound. 

5.4.4 Limited Scope of Variables Included in Existing Models 

A review of existing literature related to the hazard of MMFs indicates that frequently, a limited 
number of process variables (i.e., variables related to flood-forcing phenomena or the flood 
mechanisms that contribute to a particular flood severity metric) are explicitly considered in 
some studies. Although the variables included in existing studies are often sufficient for the 
purposes of the studies, the limited explicit consideration of a broad range of process variables 
can affect the degree to which those models are able to incorporate process knowledge that 
extends beyond the often-limited historical record (e.g., as is often done in using Bayesian-
motivated approaches to consider severe event conditions that have not been observed). The 
following discussion describes how existing studies can be expanded to consider a broader 
suite of process variables more explicitly via development of graphical models (BNs) for several 
example applications. 

Archetti et al. (2011) explored the effects of precipitation and sea level on the operations of a 
sewer system during storm events. In the study, flood severity was measured as the number of 
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flooded nodes in the sewer network. The study involved a copula analysis of data from a tidal 
gage and a rain gage. Tidal gage data provided sea water levels at the sewer network outfall 
and included the effects of tides, storm surge, and wave setup. An analysis of a 1-year time 
series (69 rain events) containing rainfall and sea water levels was used to drive a simulation 
model. The statistical analysis contained in the paper developed a copula on the two flood 
mechanism variables (sea water level and precipitation quantity), and the simulation study 
estimated the flood severity metric (number of flooded nodes in the sewer system) because of 
changes in those two variables. Although the study included the statistical analysis of two 
variables associated with flood mechanisms and one variable representing a flood severity 
metric, other relevant variables related to flood-forcing phenomena and flood mechanisms were 
not explicitly modeled. For example, Figure 5-1a provides a graphical illustration of the flood-
forcing phenomena and flood mechanisms that are applicable to the process of interest for 
Archetti et al. (2011).21 In Figure 5-1, shaded nodes represent the variables explicitly modeled 
by Archetti et al. (2011), and white nodes represent variables that are not explicitly included in 
their statistical assessment. Although the data series considered by Archetti et al. (2011) reflect 
the impacts of storms, the occurrence of storms and storm characteristics are not modeled. 
Similarly, although sea levels reflected in the tidal gage record used by Archetti et al. (2011) 
include the effects of tides, storm surge, and waves, the constituent impacts from tide, waves, 
and storm surge (and the resulting storm tide) are not individually or explicitly modeled. Figure 
5-1b provides a simplified model reflecting only the variables included in the study. 

Lian et al. (2012) explored the effects of rainfall and tide levels on flood severity (characterized 
by the ratio of the river’s flood length to its total length). A data series was developed containing 
pairwise observations of the annual maxima 24-hour rainfall and the coincident highest sea level 
during the day on which the annual maxima occurred.22 A copula was fit to the data series to 
develop a joint distribution. Additionally, a hydrodynamic model was developed that predicted 
flood severity as a function of rainfall and tidal levels. In particular, rainfall amounts were 
translated into model inflow boundary conditions (rainfall runoff hydrographs), and sea levels 
were translated into outlet boundary conditions. Once again, although Lian et al. (2012) included 
the statistical analysis of two variables associated with flood mechanisms and one variable 
representing a flood severity metric, other relevant variables related to flood-forcing phenomena 
and flood mechanisms were not explicitly modeled. Figure 5-2a provides a graphical illustration 
of the flood-forcing phenomena and flood mechanisms applicable to the process of interest in 
Lian et al. (2012).23 For example, although the data series considered in Lian et al. (2012) 
reflects typhoon impacts, the occurrence of typhoons and their associated characteristics were 
not modeled. Similarly, although sea levels reflected in the tidal gage record used by Lian et al. 
(2012) included the effects of tides and storm surge, constituent impacts from tide and storm 
surge were not individually modeled. 

Although Archetti et al. (2011) and Lian et al. (2012) (and other cited literature; see Section 4) 
focus on modeling a subset of variables involved in processes leading to both precipitation and 

 
21 This graphical model was developed by the authors of the current report as an interpretation of the 

process modeled by Archetti et al. (2011) and does not represent the work or interpretation of Archetti 
et al. (2011). 

22 Lian et al. (2012) refers to “tidal levels” rather than “sea levels.” “Sea level” is used here because the 
authors of the current report have interpreted the water levels recorded by gages used in Lian et al. 
(2012) as containing the effects of tide as well as storm-induced surge and waves. 

23 This graphical model was developed by the authors of the current report as an interpretation of the 
process modeled by Lian et al. (2012) and does not represent the work or interpretation of Lian et al. 
(2012). Conventions regarding shading of nodes in Figure 5-2 remain consistent with those used 
previously in Figure 5-1. 
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coastal flooding hazards, some works explicitly consider a broader suite of variables. For 
example, Bass and Bedient (2018) developed a surrogate model for estimating inundation 
levels as a function of TC parameters in considering the contribution from rainfall runoff and 
storm surge (and associated interactions). In the study, high-fidelity simulations of storm surges 
and waves were coupled with inland hydraulic and hydrologic models to estimate inundation 
levels (output) as a function of TC parameters (input). Input-output pairs were then used to train 
a surrogate model capable of predicting inundation levels as a function of TC characteristics. 
The graphical representations of the quantities explicitly modeled in the numerical model are 
shown in Figure 5-3a, and the quantities explicitly modeled in the simplified surrogate model are 
shown in Figure 5-3b. Although the trained surrogate model provides a direct mapping between 
TC characteristics and inundation levels, it can only implicitly capture the effects of multiple 
flood mechanisms (rainfall runoff, waves, storm surge, sea level) because it does not use input 
or generate output related to these quantities. 
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(a) 

 
(b) 

Figure 5-1 (A) Graphical Model Representing the Process Considered in Archetti Et 
Al. (2011). (B) Graphical Model Presenting Variables Included in Model 
Developed in Archetti Et Al. (2011) 
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(a) 

 
(b) 

Figure 5-2 (A) Graphical Model Representing the Process Considered in Lian Et Al. 
(2012). (B) Graphical Model Presenting Variables Included in Model 
Developed in Lian Et Al. (2012) 
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(a) 

 
(b) 

Figure 5-3 (A) Graphical Model Representing the Process Considered in Bass and 
Bedient (2018). (B) Graphical Model Presenting Variables Included in 
Model Developed in Bass and Bedient (2018) 
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5.4.5 Temporal Non-Stationarities 

Projected variations in climate and accelerated SLR, as well as changes in weather patterns 
due to global warming, may also affect the dependence among variables involved in MMF 
assessment. Explicit consideration of these factors requires a non-stationary framework for 
probabilistic assessment of MMFs. 

Wahl et al. (2015) demonstrated the existence of non-stationarity in the dependence between 
storm surge and precipitation for the contiguous United States and recommended MMF 
assessment in a non-stationary framework with linkages to the changing weather and climate. 
Moftakhari et al. (2017) quantified the increased probability of coastal inundation for 2030 and 
2050 due to SLR and concluded that future SLR would exacerbate compound flood events. Kew 
et al. (2013) investigated the simultaneous occurrence of storm surge and river discharge for 
both current and future climate scenarios. Tebaldi et al. (2012) considered SLR through 2050 
and investigated SLR impacts on storm surges along US coasts. The study showed that floods 
with only a 1% chance of annual occurrence currently will occur more frequently in the future. 
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6 INLAND MMF USE CASE STUDY 

6.1 Introduction 

Among various potential hazards, combined rainfall- and snowmelt-driven extreme streamflow 
events were studied. With the trend of earlier snowmelt in recent decades (mostly due to 
atmospheric warming; Ashfaq et al. 2013), there is a growing interest in understanding how 
peak streamflow estimates and the corresponding hazard curves may be affected by the co-
occurrence of major streamflow and snowmelt events. As opposed to the conventional 
univariate analysis that only analyzes the time series of streamflow to derive hazard curves, 
copulas were used to construct joint distributions that combine multiple variables (e.g., 
streamflow, precipitation, temperature, and snowmelt) for the derivation of conditional hazard 
curves. This inland case study serves as an example of copula-based analysis, which can be 
expanded for broader MMF analyses in a variety of PFHA applications. It should be interpreted 
as a demonstration of a process rather than a definitive hazard assessment for the target 
location. 

6.2 Inland Case Study Scope and Settings 

To select suitable study areas (watersheds) in this case study, the following criteria were 
considered: 

• Long-term historic streamflow observations should be available at the watershed outlet 
to support model validation and frequency analysis. 

• Existing hydrologic model with acceptable performance should be available at the 
selected watershed to simulate snow processes and further data synthetization. 

• To avoid overcomplicating the use case study, the watershed should not be under strong 
flow regulation (e.g., presence of major dams). A headwater basin is preferred. 

• Significant snowpack is expected in the watershed to enable the assessment of 
snowmelt-influenced events. 

To help effectively identify suitable study areas, watersheds documented in the Catchment 
Attributes and Meteorological for Large-sample Studies (CAMELS) data set (Newman et al. 
2014; Addor et al. 2017) were leveraged. CAMELS is a community data set that provides daily 
meteorologic and streamflow observations for 671 small- to medium-sized watersheds across 
the contiguous United States. Watersheds in this data set have minimal human interference and 
span diverse climatic and geographical conditions, making it suitable for this analysis. Among 
CAMELS watersheds with snow fraction (i.e., fraction of snow days) greater than 40%, three 
watersheds that have the largest annual average streamflow were selected: 

• S1: Clearwater River at Orofino, Idaho (USGS ID: 13340000) 

• S2: Yellowstone River at Corwin Springs, Montana (USGS ID: 06191500) 

• S3: NF (North Fork) Clearwater River NR (near) Canyon Ranger Station, Idaho (USGS 
ID: 13340600) 
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Further information of these three selected study areas is shown in Table 6-1 and Figure 6-1. 
The size of these watersheds ranges from 3,357 to 1,4263 km2, and the mean elevation ranges 
from 569 to 2,542 m. At each watershed, two types of data are available: 

• Observations: Given the design of CAMELS, long-term USGS daily streamflow gage 
stations are available at the outlet of each watershed. In addition, daily meteorological 
observations (e.g., precipitation, temperature) from Daymet (Thornton et al. 1997) were 
collected to support joint probability analysis. 

• Observation-driven hydrologic model outputs: To simulate snow processes in each 
watershed, an existing contiguous US Variable Infiltration Capacity (VIC) model 
implemented by Oubeidillah et al. (2014) and Naz et al. (2016) was leveraged. The 
historic Daymet meteorological forcings were used to drive VIC to estimate surface 
runoff, base flow, evapotranspiration, SWE, and other hydrologic variables. The total 
runoff (surface runoff + base flow) from VIC was then used to simulate daily streamflow 
by the Routing Application for Parallel Computation of Discharge (RAPID) (David et al. 
2011) routing model along the NHDPlus (National Hydrography Dataset Plus) (McKay et 
al. 2012) river network. Satisfactory model performance (R2 > 0.7) was identified by 
comparing the simulated VIC-RAPID with observed USGS daily streamflow at each 
watershed outlet. 

Table 6-1 Selected Watersheds in the Inland MMF Case Study 

Site 
ID Site name Watershed 

area (km2) 
USGS gage/ 

period 
Annual 

mean flow 
(m3/s) 

Mean 
elevation 

(m) 
VIC-RAPID 

daily R2 

S1 Clearwater River at 
Orofino, Idaho 14,263 

13340000 
(1965–
present) 

247.2 1451 0.74 

S2 
Yellowstone River at 
Corwin Springs, 
Montana 

6,775 
06191500 

(1911–
present) 

88.6 2542 0.80 

S3 
NF Clearwater River 
NR Canyon Ranger 
Station, Idaho 

3,357 
13340600 

(1867–
present) 

98.2 569 0.71 
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Figure 6-1 Location of Selected MMF Watersheds 

The case study specifically focused on four variables: daily streamflow (Qdy, m3/s), 3-day total 
precipitation (P3d, mm), 3-day average temperature (T3d, °C), and change of 3-day SWE (dS3d, 
mm). Daily streamflow Qdy has been the main target in a variety of flood hazard assessment 
studies. The other three variables were selected based on their potential relevance to snowmelt 
to explore how these variables may affect the development of MMF hazard curves. The timing 
of Qdy occurred at the third day of P3d, T3d, and dS3d. For convenience, the change of SWE was 
calculated by past minus future so that a positive value of SWE change refers to a reduction in 
SWE. 

Considering the common periods when all data are available, watershed-average daily time 
series of these four variables from 1980 to 2015 were calculated. Although gage-based snow 
observations are also available at some locations in the watersheds, they only reflect gage-
specific snow cover conditions and cannot be used to represent the overall snowpack status in 
a watershed. The VIC hydrologic model, on the other hand, simulates snow processes within 
each grid cell with varying elevation bands across the entire watershed. Thus, VIC can be 
suitable to simulate the watershed-scale SWE status. The model based SWE is a reasonable 
and sufficient choice to demonstrate multivariate copula analysis for the purpose of this case 
study. Alternative snow data can be explored when conducting site-specific MMF analysis at 
different study areas. 

6.3 Methodology 

The assessment of this inland copula based MMF analysis includes the following steps. A 
conceptual diagram is illustrated in Figure 6-2. 

(1) Selection of maximum events: Given that the maximum events of each variable occur at 
different time, the selection of maximum events in a multivariate setting becomes 
nontrivial. In this case study, different ways to define maximum events were tested, and 
their impacts on the constructed joint distributions were compared. 

(2) Selection and fitting of marginal distributions: The conventional univariate frequency 
analysis approach was used to select and fit suitable marginal distribution of each 
variable. Commonly used PDFs were tested and selected. 
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(3) Selection and fitting of copula functions: Conceptually like the selection of marginal 
distributions, several commonly used copula functions such as Frank (FRK), GUM, 
Clayton (CLT), GAU, and t copulas were tested and selected to represent the 
dependence structures between pairs of variables. 

(4) Goodness-of-fit tests: Rank-based empirical distribution and several commonly used 
goodness-of-fit tests (e.g., KS, CM, Akaike information criterion [AIC], Bayesian 
information criterion [BIC]) were used in the case study to demonstrate how these tests 
may be used to evaluate and select suitable marginal and copula functions. 

(5) Construction of joint distributions: The forming of joint distribution through the connection 
of marginal distributions and a copula function was demonstrated. The challenges and 
some special considerations when constructing joint distributions with higher dimensions 
(i.e., greater than 2) are discussed. 

(6) Application of derived joint distribution: Finally, how to use the derived joint distribution 
for potential PFHA applications is demonstrated (e.g., for given snow and temperature 
conditions, how to derive the conditional peak streamflow distribution and use them for 
flood hazard curve calculation). 

 

 

Figure 6-2 Assessment Procedures of Inland Copula-Based Analysis 

6.4 Selection of Maximum Events 

In the conventional univariate frequency analysis, two methods are commonly used to select 
maximum events for PDF fitting: annual maximum, and peak-over-threshold (Rao and Hamed 
2000). Both methods focus on identifying the maxima of a single variable without considering its 
relationships with other variables. Because the annual maximums of the variables occur at 
different times, selecting maximum events in a multivariate setting is challenging. Taking data 
from S2 as an example, the histograms of months when annual maximum events occur are 
shown in Figure 6-3. For this site, none of the variables had consistent annual maximum timing; 
most peaks for dS, Q, and T occurred in April, May, and July, respectively, and P had no clear 

Selection of maximum 
events 

Fitting of marginal 
distributions Fitting of copula functions 

Distribution selection 
and goodness-of-fit tests 

Function selection 
and goodness-of-fit tests 

Construction & applications 
of joint distributions 
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peak. This suggests that different maximum event concepts and definitions are required for 
multivariate frequency analysis. 

 

Figure 6-3 Annual Maximum Timing of the Selected Variables (S2; 1980–2015) 

To understand how different maximum event definitions may affect the constructed joint 
distributions, three ways to search maximum events were compared for each study area: 

• M1—univariate maximum: In this approach, the maximum daily streamflow (Qdy) in 
each year was identified. The corresponding values of other variables (P3d, T3d, and 
dS3d) were then identified to form the set of maximum events for fitting. Because the 
selection is only based on Qdy, other variables can be small. 

• M2—multivariate peak-over-threshold: In this approach, an average sampling rate r 
(e.g., 5 events per year) was set up. Then, a quantile threshold q was gradually lowered 
from 100% to select events that satisfy {Qdy > Qdy,q}∩{P3d > P3d,q}∩{T3d > 
T3d,q}∩{dS3d > dS3d,q}, in which Qdy,q, P3d,q, T3d,q, and dS3d,q are the q quantile of 
Qdy, P3d, T3d, and dS3d. During the selection, events within ±3 days of other selected 
events were not selected. The process stopped when a total number of (r × years) 
events was identified. Clearly, the quantile levels do not need to be the same for each 
variable. However, to simplify the case study, the same quantile level was used for 
consistency across all variables. Other M2 examples were examined by Kew et al. 
(2013) and Bevacqua et al. (2019). 

• M3—maximum joint empirical probability: In this approach, the cumulative joint 
empirical probability of each data point (qdy, p3d, t3d, ds3d) (i.e., P[{Qdy ≤ qdy}∩{P3d ≤ 
p3d}∩{T3d ≤ t3d}∩{dS3d ≤ ds3d}]) was calculated. Then, an average sampling rate r was set 
up, and the top (r × years) events with higher cumulative empirical probability values 
were selected. Like in M2, events within ±3 days of other selected larger events were not 
selected. A similar method was used and discussed by Kao and Govindaraju (2007). 

To focus on snowmelt-related events, the search was further limited to the months of April 
through June. With 36 years of data (1980–2015), a sampling rate of an average of 5 events per 
year was selected for both M2 and M3 so that 180 maximum events per method could be 
gathered for analysis. An example of Qdy versus dS3d for S2 is shown in Figure 6-4. Among the 
three methods, both M2 and M3 look more like each other than either one to M1, with the only 
difference being in the lower corner of both variables. Given the design, M1 selected less 
events. It did not capture any dS3d > 45 mm, and missed many large Qdy likely in wetter years. 
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This could cause some issues during multivariate frequency analysis that are demonstrated in 
the following sections. 

 

Figure 6-4 An Example of Maximum Event Selection (Left: M1; Middle: M2; Right: M3) 
For S2  The Grey Crosses Show All Data Points and Blue Circles Show the 
Selected Maximum Events by Each Method. 

6.5 Fitting and Selection of Marginal Distributions 

For copula-based multivariate analysis, the first step is to determine the most suitable PDF 𝑓𝑓(𝑥𝑥) 
and CDF 𝐹𝐹(𝑥𝑥) for each variable (i.e., marginal distributions). Because this step can be achieved 
through conventional univariate frequency analysis, many existing tools and methods can be 
used to help select distributions and estimate their parameters. In this case study, the MATLAB 
statistical toolbox was used. Five commonly used distributions are tested, including log-Pearson 
type III (LP3), GEV, LN, gamma (GM), and NOR distributions. Rao and Hamed (2000), as well 
as other statistical analysis textbooks, provided the theoretical background of univariate 
analysis. Model parameters were estimated by the maximum likelihood method. 

To assess the goodness-of-fit, KS and CM tests at a 5% significance level were used. 
Additionally, the fitted CDF 𝐹𝐹(𝑥𝑥) was compared with the empirical CDF 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) derived from the 
Gringorton plotting position formula: 

 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑚𝑚−0.44
𝑛𝑛+0.12

 , (6.1) 

where n is the total number of samples, and m is the rank in the ascending order. For the 
selection of a suitable distribution, AIC (Akaike 1973) and BIC (Schwarz 1978) were used to 
help select a suitable distribution. Their formulations are as follows: 

 AIC = −2 × (log-likelihood) + 2 × (numParam) , (6.2) 

 BIC = −2 × (log-likelihood) + numParam × log(numObs) , (6.3) 

where log-likelihood refers to the log of likelihood function that can be calculated by the product 
of PDF values with fitted parameters across all samples, numParam is the number of 
parameters in a PDF, and numObs is the number of observations. In general, AIC and BIC 
consider the joint effects of fitting (likelihood) and the number of parameters. A smaller AIC 
and/or BIC value suggests better performance of a selected PDF. Additionally, the differences 
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between fitted and empirical CDFs on the hazard curves were compared to help determine the 
most suitable PDF. The results of marginal distributions were compared first across different 
maximum events and then across different study areas. 

6.5.1 Comparison across Different Maximum Events 

Taking S2 as an example, the five distributions were fitted to three sets of maximum events of 
each variable. If a distribution failed to pass KS and CM tests, they are excluded from further 
consideration. The resulting AIC and BIC values of each fitted distribution are summarized in 
Table 6-2. 

To help visualize the differences among fitted CDFs, hazard curves (i.e., magnitude of extremes 
versus return periods) of each variable were plotted. For a random variable X with T-year return 
period, 𝑥𝑥(𝑇𝑇) can be calculated by 

 𝑥𝑥(𝑇𝑇) = 𝐹𝐹−1 �1 − 1
𝑇𝑇∗𝑟𝑟
� , (6.4) 

where 𝐹𝐹−1 is the inverse CDF, T is the return period in years, and r is the average sampling 
rate. In this case study, r = 1 for M1 events, and r = 5 for M2 and M3 events. 
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Table 6-2 Fitting of Marginal Distributions Using Three Maximum Event Searching 
Approaches for S2 (USGS ID: 06191500) 

 Streamflow (Qdy) Precipitation (P3d) Temperature (T3d) SWE change 
(dS3d) 

 AIC BIC AIC BIC AIC BIC AIC BIC 
M1 Univariate Maximum 

LP3 — — — — — — — — 
GEV 693.3 698.0 250.4 255.1 183.7 188.5 296.9 301.7 
NOR 695.4 698.5 266.8 270.0 184.9 188.0 296.3 299.4 
LN 691.1 694.2 — — 182.4 185.6 — — 
GM 691.6 694.7 — — 181.0 184.2 — — 

M2 Multivariate Peak-over-threshold 
LP3 3,362.2 3,371.8 — — — — — — 
GEV 3,362.0 3,371.6 985.7 995.3 770.9 780.5 1,298.4 1,308.0 
NOR — — — — 787.6 794.0 — — 
LN 3,368.9 3,375.2 985.4 991.8 767.9 774.3 1,286.9 1,293.3 
GM 3,382.2 3,388.6 996.6 1,003.0 770.3 776.7 1,289.2 1,295.6 

M3 Maximum Joint Empirical Probability 
LP3 3,430.7 3,440.3 — — — — — — 
GEV 3,431.5 3,441.1 1,251.6 1,261.2 800.5 810.1 1,339.1 1,348.7 
NOR — — — — 803.1 809.5 — — 
LN 3,429.8 3,436.2 1,249.5 1,255.9 — — 1,337.1 1,343.5 
GM 3,435.7 3,442.1 1,251.5 1,257.9 800.7 807.1 1,324.5 1,330.9 

 

The hazard curves of daily streamflow (Qdy) are shown in Figure 6-5. They are visualized in 
semi-log scale to emphasize the fitting of the right tail. In terms of the general selection process, 
KS and CM tests were first used to remove unsuitable PDFs. Then, AIC and BIC were used to 
identify better-fitted PDFs, and finally, hazard curves were used to help determine suitable 
PDFs. For M1, LN and GM provide better fits than GEV and NOR based on AIC and BIC. The 
hazard curves further suggest that GM may provide a better fit of the right tail. For M2, LP3 and 
GEV provide relatively better fits based on AIC and BIC. The hazard curves further suggest that 
LP3 may provide a better fit of the right tail. For M3, LP3 and LN provide relatively better fits 
based on AIC and BIC. Although the hazard curves show that LN may provide a slightly better 
fit than LP3, LP3 was eventually selected because of its overall good fitting of peak streamflow 
across multiple sites and maximum searching methods. 
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Figure 6-5 Fitting of Qdy Using Maximum Events Identified by (Left) M1, (Middle) M2, 
and (Right) M3 for S2 

Given the nature of the annual maximum searching approach, the sample size of M1 is much 
smaller than M2 and M3. This size explains why M1 tends to provide smaller estimates than M2 
and M3. Also, although LP3 has been a widely accepted distribution for streamflow, suitable 
LP3 parameters cannot be found for M1. Again, this could be because of the smaller sample 
size of M1. Although LP3 did not provide the lowest AIC and BIC values for M2 and M3, it 
overall performed well and seemed to have a more reasonable tail behavior in M2. Since LP3 is 
commonly used for peak streamflow analysis, it is a good choice to model Qdy in M2 and M3. 

Hazard curves for 3-day total precipitation (P3d) are shown in Figure 6-6. For M1, NOR provides 
the relative best fit. Because M1 events were selected based on the annual maximum Qdy, the 
corresponding P3d could sometimes be small and makes the fitting more challenging. For M2 
and M3, GEV and LN provide the relative best fits. Because LN has a more reasonable tail 
behavior in M2, LN is a better choice for both M2 and M3. The hazard curves of 3-day average 
temperature (T3d) are shown in Figure 6-7. For M1, GM provides the relative best fit. Although 
the hazard curves also suggest that GEV may provide good fits of the right tail, its overall fitting 
is relatively poor and thus affected its AIC and BIC values. For M2, both LN and GEV provide a 
good fit, and for M3, GEV provides the best fit. Overall, the M1 results are more different than 
M2 and M3. Again, this difference may be caused by their different sample sizes. Finally, the 
hazard curves of the decrease of 3-day SWE reduction (dS3d) are shown in Figure 6-8. For M1, 
both GEV and NOR provide relative better fits, and for M2 and M3, GM provides the relative 
best fit. 
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Figure 6-6 Fitting of P3d Using Maximum Events Identified by (Left) M1, (Middle) M2, 
and (Right) M3 for S2 

 

Figure 6-7 Fitting of T3d Using Maximum Events Identified by (Left) M1, (Middle) M2, 
and (Right) M3 for S2 

 

Figure 6-8 Fitting of dS3d Using Maximum Events Identified by (Left) M1, (Middle) M2, 
and (Right) M3 for S2 
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6.5.2 Comparison across Different Study Areas 

This section shows the difference of marginal distributions across the three study areas. Taking 
M2 maximum events as an example, the five distributions were fitted across S1–S3 study areas. 
If a distribution failed to pass KS and CM tests, it was excluded from further consideration. The 
resulting AIC and BIC values are summarized in Table 6-3. 

Table 6-3 Fitting of Marginal Distributions Using M2 for the Three Study Areas 

 Streamflow (Qdy) Precipitation (P3d) Temperature (T3d) SWE Change 
(dS3d) 

 AIC BIC AIC BIC AIC BIC AIC BIC 
S1 Clearwater River at Orofino, ID (USGS ID: 13340000) 

LP3 3,593.4 3,603.0 — — 794.0 803.5 — — 
GEV 3,595.7 3,605.2 1,070.8 1,080.4 792.7 802.3 1,151.6 1,161.2 
NOR — — 1,116.5 1,122.9 — — — — 
LN 3,626.5 3,632.9 1,066.7 1,073.1 803.3 809.7 1,157.4 1,163.8 
GM — — 1,070.3 1,076.7 811.3 817.7 — — 

S2 Yellowstone River at Corwin Springs, MT (USGS ID: 06191500) 
LP3 3,362.2 3,371.8 — — — — — — 
GEV 3,362.0 3,371.6 985.7 995.3 770.9 780.5 1,298.4 1,308.0 
NOR — — — — 787.6 794.0 — — 
LN 3,368.9 3,375.2 985.4 991.8 767.9 774.3 1,286.9 1,293.3 
GM 3,382.2 3,388.6 996.6 1,003.0 770.3 776.7 1,289.2 1,295.6 

S3 NF Clearwater River NR Canyon Ranger Station, ID (USGS ID: 13340600) 
LP3 3,308.8 3,318.4 — — 772.7 782.3 — — 
GEV 3,309.9 3,319.5 1,151.2 1,160.8 772.2 781.8 — — 
NOR — — — — — — — — 
LN 3,342.0 3,348.4 1,145.6 1,151.9 790.4 796.8 — — 
GM — — 1,154.4 1,160.8 801.9 808.3 1,441.8 1,448.2 

 

The hazard curves of daily streamflow (Qdy) are shown in Figure 6-9. Despite the different site 
characteristics, the fitting results here are generally consistent across the three study areas. For 
all sites, LP3 provides the best (or nearly best) AIC and BIC values. The tail behaviors of LP3 
are more reasonable than GEV in the hazard curves, which is consistent with the general 
understanding that LP3 is a suitable distribution for peak streamflow analysis. Therefore, LP3 is 
a good choice to model M2 Qdy events across all sites. 
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Figure 6-9 Fitting of Qdy Using M2 Maximum Events for (Left) S1, (Middle) S2, and 
(Right) S3 

The hazard curves of 3-day total precipitation (P3d) are shown in Figure 6-10. Again, despite 
different site characteristics, LN performs the best across the three sites and is a suitable choice 
for follow-up analysis. The hazard curves of 3-day average temperature (T3d) are shown in 
Figure 6-11. Based on the AIC and BIC values and hazard curves, both GEV and LN provide 
good fits. The hazard curves of the 3-day SWE reduction (dS3d) are shown in Figure 6-12. For 
S1, LN provides the best fit, whereas for S2 and S3, GM provides the best fit. 

 

Figure 6-10 Fitting of P3d Using M2 Maximum Events for (Left) S1, (Middle) S2, and 
(Right) S3 
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Figure 6-11 Fitting of T3d Using M2 Maximum Events for (Left) S1, (Middle) S2, and 
(Right) S3 

 

Figure 6-12 Fitting of dS3d Using M2 Maximum Events for (Left) S1, (Middle) S2, and 
(Right) S3 

Overall, different maximum event searching approaches seem to have more profound effects 
than different sites. The results of annual maximum–based M1 events are more different than 
peak-over-threshold–based M2 and M3 events. This difference can be largely affected by the 
number of samples, in which five times larger samples are allowed in M2 and M3 so that they 
may capture more larger events in a wetter (or hotter) year. More importantly, because M1 only 
identifies the maximum Qdy events, other variables can be quite small and lead to lower 
estimates than M2 and M3. The smaller sample size of M1 is also too limited to support 
multivariate analysis. Because of various disadvantages, M1 was excluded in the following 
analysis. The selected marginal distributions and their parameters are summarized in Table 9-4. 
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Table 6-4 Selected Marginal Distribution and Fitted Parameters 

Variables Selected 
distribution 

Location  
parameter (µ) 

Scale  
parameter (α) 

Shape  
parameter (ξ) 

S1 Clearwater River at Orofino, ID; M2 Multivariate Peak-over-threshold 
Streamflow (Qdy) LP3 5.8112 0.1357 4.1249 
Precipitation (P3d) LN 2.28162 0.474342 — 
Temperature 
(T3d) LN 2.25578 0.234191 — 

SWE Change 
(dS3d) LN 1.66314 1.13264 — 

S2 Yellowstone River at Corwin Springs, MT; M2 Multivariate Peak-over-threshold 
Streamflow (Qdy) LP3 3.4186 0.0853 21.8906 
Precipitation (P3d) LN 2.1799 0.419003 — 
Temperature 
(T3d) LN 1.88482 0.307596 — 

SWE Change 
(dS3d) GM 2.61021 6.12062 — 

S2 Yellowstone River at Corwin Springs, MT; M3 Maximum Joint Empirical Probability 
Streamflow (Qdy) LP3 4.7865 0.1525 4.3023 
Precipitation (P3d) LN 2.33897 0.557574 — 
Temperature 
(T3d) GEV 7.91694 1.54965 0.194182 

SWE Change 
(dS3d) GM 0.814919 24.8653 — 

S3 NF Clearwater River NR Canyon Ranger Station, ID; M2 Multivariate Peak-over-threshold 
Streamflow (Qdy) LP3 2.3983 0.0392 81.1015 
Precipitation (P3d) LN 2.70661 0.515288 — 
Temperature 
(T3d) GEV 6.0053 2.11848 −0.225228 

SWE Change 
(dS3d) GM 2.18285 7.61097 — 

Note: For LP3 and GEV, parameter 1 is the location parameter (µ), parameter 2 is the scale parameter 
(α), and parameter 3 is the shape parameter (ξ). For LN, parameter 1 is the location parameter (µ), and 
parameter 2 is the scale parameter (α). For GM, parameter 1 is the shape parameter (α), and parameter 
2 is the rate parameter (β).  

6.6 Fitting and Selection of Copula Functions 

Following the selection of marginal distributions, the second step is to determine the most 
suitable copula function 𝐶𝐶𝑈𝑈𝑈𝑈(𝑢𝑢, 𝑣𝑣) that can couple marginal distributions into a joint probability 
distribution 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦). General mathematical expressions for copula cumulative distribution and 
density functions are 

 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝐶𝐶𝑈𝑈𝑈𝑈(𝑢𝑢 = 𝐹𝐹𝑋𝑋(𝑥𝑥), 𝑣𝑣 = 𝐹𝐹𝑌𝑌(𝑦𝑦)) = 𝐶𝐶𝑈𝑈𝑈𝑈(𝑢𝑢, 𝑣𝑣) , (6.5) 
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 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝐶𝐶𝑈𝑈𝑈𝑈(𝑢𝑢,𝑣𝑣)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑦𝑦)𝑐𝑐𝑈𝑈𝑈𝑈(𝑢𝑢, 𝑣𝑣) , (6.6) 

where 𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) is the JCDF, and 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦) is the joint-PDF of variables X and Y, 𝑢𝑢 = 𝐹𝐹𝑋𝑋(𝑥𝑥) is the 
marginal distribution of X, 𝑣𝑣 = 𝐹𝐹𝑌𝑌(𝑦𝑦) is the marginal distribution of Y, 𝐶𝐶𝑈𝑈𝑈𝑈(𝑢𝑢, 𝑣𝑣) is the copula 
function, and 𝑐𝑐𝑈𝑈𝑈𝑈(𝑢𝑢, 𝑣𝑣) is the copula density function. Equation (2.5) can be interpreted as a 
transformation of JCDF from the XY to UV domain. Because U and V are uniformly distributed 
after this transformation, the copula function is hence marginal free and only retains information 
related the dependence structure among two variables. This important feature allows one to 
sperate any JCDF into two components—marginal distributions and dependence structure. One 
can identify the most suitable mathematical expressions of both components and then combine 
them to form a JCDF. The approach is flexible and compatible to most existing JCDF models, 
such as bivariate GAU and exponential distributions. Nelsen (2006) provided the theoretical 
background of copulas. 

Although the concept of copulas is relatively new compared with conventional univariate 
frequency analysis, the procedure is conceptually similar. It starts by selecting and fitting 
different copula functions. In this case study, five commonly used copula functions were tested: 
GAU, t with degree of freedom = 2 (TD2), FRK, CLT, and GUM. The first two copulas (GAU and 
TD2) belong to the family of meta-elliptical copulas, which are transformations of the well-known 
meta-elliptical distributions that include both multivariate GAU and t distributions (Genest et al. 
2007). The other three copulas (FRK, CLT, and GUM) belong to a special class of Archimedean 
copulas. For each Archimedean copula, a generator 𝜙𝜙 exists such that the following relationship 
holds: 

 𝜙𝜙�𝐶𝐶𝑈𝑈𝑈𝑈(𝑢𝑢, 𝑣𝑣)� = 𝜙𝜙(𝑢𝑢) + 𝜙𝜙(𝑣𝑣) , (6.7) 

where the generator 𝜙𝜙 should be a continuous strictly decreasing function in [0,1] with 𝜙𝜙(0) = ∞ 
and 𝜙𝜙(1) = 0, and the inverse 𝜙𝜙−1 should be strictly monotonic (Nelsen 2006). For 
Archimedean copulas, several statistical properties can be simply expressed in terms of the 
generator 𝜙𝜙, such as the Kendall’s concordance measure 𝜏𝜏: 

 𝜏𝜏 = 1 + 4∫ 𝜙𝜙(𝑡𝑡)
𝜙𝜙′(𝑡𝑡)

1
0 𝑑𝑑𝑑𝑑 . (6.8) 

An example of FRK Archimedean copulas (𝜙𝜙(𝑡𝑡) = − 𝑙𝑙𝑙𝑙 𝑒𝑒−𝜃𝜃𝜃𝜃−1

𝑒𝑒−𝜃𝜃−1
) is shown in Figure 6-13, where the 

parameter θ controls the shape of dependence structure between marginals U and V. 
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Figure 6-13 An Example of the FRK Copula Function 

For parameter estimation and goodness-of-fit, the rank-based empirical copula 𝐶𝐶𝑛𝑛 (Nelsen 
2006) can be used: 

 𝐶𝐶𝑛𝑛 �
𝑖𝑖
𝑛𝑛

, 𝑗𝑗
𝑛𝑛
� = 𝑎𝑎

𝑛𝑛
 , (6.9) 

where n is the total number of samples, a is the number of pairs (𝑥𝑥,𝑦𝑦) with 𝑥𝑥 ≤ 𝑥𝑥(𝑖𝑖) and 𝑦𝑦 ≤ 𝑦𝑦(𝑗𝑗), 
and 𝑥𝑥(𝑖𝑖), 𝑦𝑦(𝑗𝑗), 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 is the rank of each sample. To estimate the copula function parameter, 
one can either select the inference functions for margins approach that uses fitted marginals, or 
the canonical maximum likelihood approach that uses rank-based empirical marginals to 
analyze the copulas. Canonical maximum likelihood was selected because it is purely based on 
samples’ rank and is unrelated to the selection of marginal CDFs. Another approach that solves 
the copula parameter using Kendall’s 𝜏𝜏 is also widely used for the family of Archimedean 
copulas (e.g., FRK, CLT, GUM; Kao and Govindaraju 2007). 

To assess the goodness-of-fit, the multidimensional KS test (Saunders and Laud 1980) at a 5% 
significance level was used. For the selection of a suitable distribution, AIC and BIC (Eqs. 2.2 
and 2.3) were used by calculating a likelihood function as the product of copula density values 
with fitted parameters across all samples. The five selected copula functions were fitted to all 
four cases reported in Table 6-4, and the resulting AIC and BIC values are reported in     
Table 6-5. 
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Table 6-5 Fitting of Copula Function for the Four Selected Cases 

 Between Qdy and P3d Between Qdy and T3d Between Qdy and dS3d 
 AIC BIC AIC BIC AIC BIC 

S1 Clearwater River at Orofino, ID; M2 Multivariate Peak-over-threshold 
GAU −0.51 2.68 1.96 5.16 −64.4 −61.2 
TD2 7.40 10.59 28.68 31.87 −34.5 −31.3 
FRK 0.27 3.46 1.86 5.05 −65.1 −61.9 
CLT 0.28 3.47 1.94 5.14 −61.8 −58.6 
GUM −1.54 1.65 2.00 5.19 −46.9 −43.7 
S2 Yellowstone River at Corwin Springs, MT; M2 Multivariate Peak-over-threshold 
GAU −5.39 −2.19 −8.65 −5.46 −40.8 −37.6 
TD2 −15.2 −12.0 −9.09 −5.90 −35.5 −32.3 
FRK −5.46 −2.27 −9.64 −6.45 −36.0 −32.8 
CLT −2.03 1.15 −11.2 −8.01 −36.5 −33.3 
GUM −11.3 −8.15 −8.12 −4.93 −37.3 −34.1 

S2 Yellowstone River at Corwin Springs, MT; M3 Maximum Joint Empirical Probability 
GAU −3.80 −0.61 −5.62 −2.42 −35.2 −32.0 
TD2 28.8 32.0 1.15 4.34 −0.90 2.30 
FRK −1.47 1.72 −5.47 −2.27 −32.4 −29.2 
CLT 2.00 5.19 −2.02 1.18 −22.0 −18.8 
GUM 2.00 5.19 −7.55 −4.36 −30.2 −27.0 
S3 NF Clearwater River NR Canyon Ranger Station, ID; M2 Multivariate Peak-over-

threshold 
GAU 0.28 3.48 2.03 5.22 −85.2 −82.0 
TD2 10.64 13.83 10.7 13.9 −57.7 −54.5 
FRK −0.49 2.71 2.01 5.20 −79.8 −76.6 
CLT 1.41 4.61 1.67 4.86 −73.2 −70.0 
GUM −0.01 3.18 2.00 5.19 −69.2 −66.0 

 

To help visualize the results, the spread in both XY and UV domains of each pair of variables 
were plotted with Qdy as shown in Figure 6-14 to Figure 6-17. In addition, Kendall’s distribution 
function 𝐾𝐾𝐶𝐶 (Genest and Rivest 1993), which projects the cumulative value of a copula into a 
single dimension (i.e., CDF of a copula), was plotted to compare the performance of different 
copula functions more easily. The theoretical formulation and empirical distribution of 𝐾𝐾𝐶𝐶 are 
provided as follows. 

 𝐾𝐾𝐶𝐶(𝑡𝑡) = 𝑃𝑃[𝐶𝐶(𝑢𝑢, 𝑣𝑣) ≤ 𝑡𝑡] , (6.10) 

 𝐾𝐾𝐶𝐶𝑛𝑛 �
𝑙𝑙
𝑛𝑛
� = 𝑏𝑏

𝑛𝑛
 , (6.11) 
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where 𝐾𝐾𝐶𝐶𝑛𝑛 is the empirical Kendall’s distribution, and b is the number of pairs (𝑥𝑥,𝑦𝑦) in the 
samples with the empirical copula values 𝐶𝐶𝑛𝑛(𝑖𝑖 𝑛𝑛⁄ , 𝑗𝑗 𝑛𝑛⁄ ) ≤ 𝑙𝑙 𝑛𝑛⁄  (Eq. 2.9). In other words, one may 
use different l values from 1 to n to calculate the empirical copula values 𝐶𝐶𝑛𝑛 and construct 𝐾𝐾𝐶𝐶𝑛𝑛. 

 

 

 

Figure 6-14 Fitting of Copulas for S1 Using M2 Events The Spread in XY and UV Domains 
are Shown in the Upper and Middle Rows. The Kendall’s Distribution Function is 
Shown in the Lower Row. The Results Between Qdy and P3d, Qdy and T3d, and Qdy 
and Ds3d are Shown in Left, Middle, And Right Columns 



 

6-19 

 

 

 

Figure 6-15 Fitting of Copulas for S2 Using M2 Events The Spread in XY and UV Domains 
are Shown in the Upper and Middle Rows. The Kendall’s Distribution Function is 
Shown in the Lower Row. The Results Between Qdy and P3d, Qdy and T3d, and Qdy 
and Ds3d are Shown in Left, Middle, and Right Columns 
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Figure 6-16 Fitting of Copulas for S2 Using M3 Events The Spread in XY and UV Domains 
are Shown in the Upper and Middle Rows. The Kendall’s Distribution Function is 
Shown in the Lower Row. The Results Between Qdy and P3d, Qdy and T3d, and Qdy 
and Ds3d are Shown in Left, Middle, and Right Columns 
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Figure 6-17 Fitting of Copulas for S3 Using M2 Events The Spread in XY and UV Domains 
are Shown in the Upper and Middle Rows. The Kendall’s Distribution Function is 
Shown in the Lower Row. The Results Between Qdy and P3d, Qdy and T3d, and Qdy 
and Ds3d are Shown in Left, Middle, and Right Columns 

Overall, the results suggest that the strongest correlation/dependence existed between Qdy and 
dS3d, with a correlation coefficient ranging from 0.40 to 0.53. The correlation between other 
pairs of variables were weaker and were both site- and method-specific. In some cases, slightly 
negative correlations were also found. In terms of suitable copula functions, none was 
determined to be the best. Best-performing copulas were identified among GAU, FRK, CLT, and 
GUM. In terms of goodness-of-fit, all cases passed the multivariate KS test at a 5% significant 
level, and most of the cases showed reasonable fit on the 𝐾𝐾𝐶𝐶 plot. Because the multivariate KS 
test and 𝐾𝐾𝐶𝐶 plots were less discriminating, AIC and BIC values were heavily relied upon in 
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selecting suitable copulas. The selected copulas and their parameters are summarized in    
Table 6-6. 

Table 6-5 Selected Copula Functions and Fitted Parameters 

Variables Correlation 
coefficient (ρ) Kendall’s τ Selected copula 

function 
Copula 

parameter 
S1 Clearwater River at Orofino, ID; M2 Multivariate Peak-over-threshold 

Qdy and P3d 0.1537 0.0606 GUM 1.0697 
Qdy and T3d −0.0455 −0.0077 FRK −0.0933 

Qdy and dS3d 0.3828 0.4045 FRK 4.0447 
S2 Yellowstone River at Corwin Springs, MT; M2 Multivariate Peak-over-threshold 

Qdy and P3d 0.2381 0.1387 GUM 1.1793 
Qdy and T3d 0.2311 0.1762 CLT 0.3145 

Qdy and dS3d 0.4555 0.3112 GAU 0.4461 
S2 Yellowstone River at Corwin Springs, MT; M3 Maximum Joint Empirical Probability 

Qdy and P3d −0.1256 −0.0906 GAU −0.1637 
Qdy and T3d 0.2428 0.1351 GUM 1.1398 

Qdy and dS3d 0.4287 0.2852 GAU 0.4247 
S3 NF Clearwater River NR Canyon Ranger Station, ID; M2 Multivariate Peak-over-threshold 

Qdy and P3d 0.1071 0.0673 FRK 0.6349 
Qdy and T3d 0.0049 0.0026 CLT 0.0368 

Qdy and dS3d 0.5273 0.4438 GAU 0.6124 

Note: All selected copula functions have one parameter. 

6.7 Construction of Joint Distributions and Potential Applications 

After the selection of both marginal distributions and the copula function, a JCDF can be formed 
using Eq. (2.5). An example of the constructed bivariate JCDF for S2 using M2 events is shown 
in Figure 6-18. Because this copula-based approach allows for the combination of different 
types of marginal distributions and dependence structures, it provides great flexibility to derive 
the most suitable JCDF based on data. 
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Figure 6-18 Example of Constructed Bivariate Joint Distributions by Copulas for S2 
Using M2 Events 

Additional examples are shown for each site in Figure 6-19 to Figure 6-22. In each figure, the 
constructed JCDFs are colored by different zones, in which the contours represent JCDF values 
from 0.1 to 0.9 in 0.1 increments. Contour lines derived from empirical copulas are also included 
for comparison. Overall, contour lines based on fitted copula are fairly similar to the ones based 
on empirical copulas, suggesting the reasonableness of the derived models. 

 

 

Figure 6-19 Joint Distributions and Conditional Hazard Curves of S1 Using M2 Events 
The Derived Joint Distributions were Compared with the Empirical Copula Values 
at Each 0.1 Contour Line in the Upper Panels. An Example of the Conditional 
Hazard Curves is Shown in the Lower Panel 



 

6-24 

 

 

Figure 6-20 Joint Distributions and Conditional Hazard Curves of S2 Using M2 Events 
The Derived Joint Distributions were Compared with the Empirical Copula Values 
at Each 0.1 Contour Line in the Upper Panels. An Example of the Conditional 
Hazard Curves is Shown in the Lower Panel 

 

 

Figure 6-21 Joint Distributions and Conditional Hazard Curves of S2 Using M3 Events 
The Derived Joint Distributions were Compared with the Empirical Copula Values 
at Each 0.1 Contour Line in the Upper Panels. An Example of the Conditional 
Hazard Curves is Shown in the Lower Panel 
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Figure 6-22 Joint Distributions and Conditional Hazard Curves of S3 Using M2 Events 
The Derived Joint Distributions were Compared with the Empirical Copula Values 
at Each 0.1 Contour Line in the Upper Panels. An Example of the Conditional 
Hazard Curves is Shown in the Lower Panel 

The derived JCDF allows a variety of applications. For instance, with a given condition of 
interest such as {dS3d > a}, the conditional distribution of Qdy can be written as 

 𝐹𝐹𝑄𝑄𝑑𝑑𝑑𝑑(𝑥𝑥|𝑑𝑑𝑑𝑑3𝑑𝑑 > 𝑎𝑎) =
𝐹𝐹𝑄𝑄𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑3𝑑𝑑(𝑥𝑥,𝑎𝑎)

1−𝐹𝐹𝑑𝑑𝑑𝑑3𝑑𝑑(𝑎𝑎)  . (6.12) 

By plugging Eq. (2.10) into Eq. (2.4), the conditional hazard curves of Qdy were estimated. 
Seven hazard curves were plotted: 

• Univariate: hazard curves derived by marginal distributions (from Section 6.5.1) 

• {P3d < P3d,20%}: conditional hazard curves when P3d is less than the 20% quantile of P3d 

• {T3d < T3d,20%}: conditional hazard curves when T3d is less than the 20% quantile of T3d 

• {dS3d < dS3d,20%}: conditional hazard curves when dS3d is less than the 20% quantile of dS3d 

• {P3d > P3d,80%}: conditional hazard curves when P3d is greater than the 80% quantile of P3d 

• {T3d > T3d,80%}: conditional hazard curves when T3d is greater than the 80% quantile of T3d 

• {dS3d > dS3d,80%}: conditional hazard curves when dS3d is greater than the 80% quantile of 
dS3d 
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The results show that a stronger correlation (such as between Qdy and dS3d) would lead to 
larger differences in conditional hazards, and vice versa. Therefore, the copula-based analysis 
can be applied if highly correlated variables can be identified. However, if the correlation 
between two variables is weak or statistically insignificant, one may not need to conduct 
multivariate analysis since the results will not be very different from the conventional univariate 
analysis. In the inland case study, the change of SWE had the highest correlation to streamflow 
and is the most important ancillary variable for the development of a multivariate distribution to 
analyze MMF and develop hazard curves. 

6.8 Discussion 

Based on this inland case study, strengths and limitations of the copula-based MMF 
assessment approach were identified as described here. 

• Compatibility with the conventional univariate frequency analysis: One important 
advantage of the copulas-based assessment approach is that it can build on the existing 
understanding of univariate frequency analysis. Many existing theories and tools can 
continue to be applied for analyzing marginal distributions. Additionally, like the selection 
of suitable PDFs to represent marginal distributions, a variety of copula functions can be 
tested and selected to represent dependence structure and form multivariate joint 
distributions. Although the concept of multivariate joint distribution may seem 
complicated, copulas can provide a natural extension to help better understand and 
leverage the existing univariate PFHA tools for multivariate applications. 

• Flexibility with different types of distributions: Given the varying nature and physical 
processes, variables involved in MMF may follow different statistical distributions (e.g., 
LP3, GEV). Because the theory of copulas can allow for the separation of marginal 
distributions and dependence structures, the copula-based assessment is not limited to 
specific types of probabilistic distributions. This flexibility is desirable for wider 
applications of copulas in other MMF assessments. 

• Definition of maximum events: The definition of maximum events represents one of 
the most significant differences to the conventional univariate frequency analysis. To 
support a meaningful statistical analysis, the selection of maximum events must consider 
their joint occurrence across all dimensions and cannot be done separately for each 
variable. To demonstrate its sensitivity in MMF assessments, three definitions of 
maximum events in this case study were compared, and relatively better performance 
was observed when using M2. However, because this issue has not been extensively 
studied whether such a maximum event selection approach can also work for other 
applications is unclear. The most suitable strategy to select and define maximum events 
for the purpose of MMF assessment must be more fully explored. 

• Data availability: Data availability is one of the greatest known challenges in univariate 
frequency analysis. Given the inconsistent data coverage, measurement, and accuracy 
across multiple variables, data availability is an even more critical issue for multivariate 
frequency analysis. Except for some data-rich watersheds and sites, the number of 
observations is likely insufficient for many potential MMF applications. Where data are 
sparse, one may need to identify suitable ways to leverage numeric model outputs to 
help expand the sample size for more reliable estimates. In other words, one will need to 
find a balance between the bias of numerical models and the bias caused by insufficient 
observations to support multivariate frequency analysis. 
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• Challenge of dimensionality: Although copulas have found wide applicability at the 
bivariate level, their application to higher dimensions (≥3) is not straightforward and 
entails more mathematical challenges. For instance, the commonly used Archimedean 
copulas cannot be directly extended to higher dimensions, or they will lead to the same 
bivariate dependence structures of each pair of variables. At higher dimensions, meta-
elliptical copulas (including GAU and t) or a mixture of bivariate copulas through the vine 
copulas approach (e.g., Vernieuwe et al. 2015) must be used. Data requirements will 
also increase significantly at higher dimensions, adding more challenges to the higher-
dimension applications. 
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7 COASTAL MMF USE CASE STUDY 

7.1 Introduction 

This case study used a Bayesian-motivated approach to assess MMF hazards in a coastal 
setting, specifically a site located in a tidal reach of the Delaware River. The flood forcing 
phenomena was a TC (hurricane), and the flood mechanisms involved in the analysis included 
hurricane-induced surge, precipitation, and river flow. The research objective was to develop a 
hazard curve for the river discharge flood severity metric accounting for the effects of river base 
flow, hurricane-induced surge, tides, and precipitation-induced runoff. This study aims to 
demonstrate the process of implementing the Bayesian-motivated approach to perform a 
probabilistic hazard assessment that accounts for MMFs. Although this is not a predictive 
modeling application, implementation of the Bayesian-motivated approach requires models that 
allow development of conditional probabilistic relationships between involved variables. To 
achieve this goal, this work combined a series of surrogate/statistical and analytical models to 
model river discharge caused by storm occurrence in a coastal area. These simplified models 
(relative to more robust numerical models) allow for demonstration of the Bayesian-motivated 
approach and are discussed in more detail in Section 7.4. This case study should be interpreted 
as a demonstration of a process rather than a definitive hazard assessment for the target 
location. 

7.2 Coastal Case Study Scope and Setting 

This case study focused on probabilistic assessment of MMF hazards from hurricane-induced 
storm surge, tides, and precipitation-induced discharge (rainfall runoff). The case study focused 
on a site located on the Delaware River near Trenton, New Jersey. Figure 7-1 shows the case 
study location. 

 

Figure 7-1 Case Study Location 
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Multiple candidate case study regions were considered prior to the selection of the Trenton, 
New Jersey site. A key criterion used in selecting the case study location was the availability of 
the data needed to develop surrogate model components required to implement the framework 
described in Section 7.3. One of the limiting characteristics was the availability of 15-min stage-
discharge measurements, which were not available along some tidally influenced rivers near 
other candidate locations.  

The 15-min stage-discharge information was available near the case study location using USGS 
gage 01463500 (USGS 2021). Furthermore, ADCIRC model surge height simulations (i.e., 
simulations predicting storm surge still-water elevations as a function of hurricane 
characteristics) are readily available for the North Atlantic coast. Specifically, ADCIRC 
simulation results from the USACE NACCS (Nadal-Caraballo et al. 2015) were obtained from 
the USACE Coastal Hazards System (USACE 2021). For this case study region, the furthest 
upstream location for which ADCIRC simulation data are available is NACCS save point 5373. 
The save point is approximately 1.5 km downstream of USGS river gage 01463500. The 
location of save point 5373 was selected as the target study location for this case study.  

To incorporate the effects of tides, NOAA tide gage 8539993 (NOAA 2021) was the closest 
gage to the study location. However, this tide gage is approximately 2.5 km downstream of the 
target study location (save point 5373). To confirm the consistency in the surge propagation 
between the locations of tide gage 8539993 and save point 5373, this study considered NACCS 
save point 7624, which is close to tide gage 8539993. The locations of the two save points, 
NOAA tide gage, and USGS gage are shown in Figure 7-2. 

 

Figure 7-2 Location of the USGS Gage, NOAA Tide Gage, Save Point 5373, and Save 
Point 7624 

7.3 Methodology 

This case study used a Bayesian-motivated approach to generate a multi-mechanism 
probabilistic flood hazard curve using discharge as the flood severity parameter of interest. The 
Bayesian-motivated model developed in this case study is presented as a BN (an acyclic 
graphical model). Because of its graphical nature, the BN provides a transparent means of 
presenting the proposed model and a convenient method for performing calculations involving 
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the discretized forms of requisite integrals. However, the proposed approach does not require 
the use of BNs, and the fundamental integrals (specifically, their discrete counterparts) can be 
calculated directly. 

The Bayesian-motivated approach in this case study began with understanding physical 
relationships between involved variables and using these relationships to develop the 
fundamental integrals that will be used to calculate exceedance probabilities necessary to 
develop hazard curves (Section 7.3). The next step involved defining storm parameters and 
developing models to predict response variables (Section 7.4) as a function of storm parameters 
and other intermediate quantities. After developing predictive models and the definition of storm 
parameters as model input, discretized values of input and predicted variables and their 
corresponding (conditional) probability mass functions (PMFs) were specified (Section 7.4.9). 
Using the PMFs, a hazard curve was generated (Section 7.5). 

Figure 7-3 presents a BN formulation of the model used in this case study. Using the BN as a 
guide, the foundational integral for computing the probability that total river discharge (𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
exceeds flood discharge severity 𝑞𝑞 is represented as 

𝑃𝑃(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞) = � … � 𝑃𝑃�𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞�𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇},𝑄𝑄𝑃𝑃�
∞

−∞

∞

−∞
 𝑓𝑓�𝑄𝑄𝑃𝑃�𝑄𝑄�𝑃𝑃 , 𝜀𝜀𝑄𝑄𝑃𝑃� 𝑓𝑓�𝜀𝜀𝑄𝑄𝑃𝑃�𝑓𝑓�𝑄𝑄�𝑃𝑃�𝑃𝑃𝐵𝐵𝐵𝐵�  

 𝑓𝑓�𝑃𝑃𝐵𝐵𝐵𝐵�𝑃𝑃�𝐵𝐵𝐵𝐵, 𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵� 𝑓𝑓�𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵� 𝑓𝑓�𝑃𝑃�𝐵𝐵𝐵𝐵�𝑉𝑉𝑤𝑤 ,𝜃𝜃, 𝑥𝑥0,𝑉𝑉𝑓𝑓� 𝑓𝑓�𝑉𝑉𝑤𝑤�𝑉𝑉𝑤𝑤�, 𝜀𝜀𝑉𝑉𝑤𝑤� 𝑓𝑓�𝜀𝜀𝑉𝑉𝑤𝑤� 𝑓𝑓�𝑉𝑉𝑤𝑤��∆𝑝𝑝� 𝑓𝑓(∆𝑝𝑝) 𝑓𝑓(𝑥𝑥0) 

 𝑓𝑓�𝑉𝑉𝑓𝑓� 𝑓𝑓(𝜃𝜃) 𝑓𝑓(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) 𝑓𝑓 �𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇}, 𝜀𝜀𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�  𝑓𝑓 �𝜀𝜀𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�  𝑓𝑓�𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇}�𝜂𝜂,𝑄𝑄𝑅𝑅 ,𝑇𝑇� 𝑓𝑓(𝑄𝑄𝑅𝑅) 

𝑓𝑓(𝑇𝑇) 𝑓𝑓�𝜂𝜂�𝜂̂𝜂, 𝜀𝜀𝜂𝜂� 𝑓𝑓�𝜀𝜀𝜂𝜂� 𝑓𝑓�𝜂̂𝜂�𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝜃𝜃, 𝑥𝑥0,𝑉𝑉𝑓𝑓 ,∆𝑝𝑝�𝑑𝑑Ω , 

(7.1) 

Where: 

• 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: total discharge, accounting for hurricane-induced surge, precipitation-induced 
runoff, concurrent base flow, and tides (cfs), 

• 𝑄𝑄𝑅𝑅: concurrent river base flow (cfs), 

• 𝑄𝑄𝑃𝑃: hurricane-induced precipitation discharge (cfs), 

• 𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}: discharge caused by surge, river base flow, and tides (cfs), 

• 𝑇𝑇: elevation of the tides (ft), 

• 𝑃𝑃𝐵𝐵𝐵𝐵: average basin precipitation (in./day), 

• 𝜂𝜂: surge elevation (m), 

• Δ𝑝𝑝: the storm’s central pressure deficit (hPa), computed as the difference between a 
peripheral atmospheric pressure of 1,013 hPa and the storm’s central pressure (hPa),  

• 𝑉𝑉𝑓𝑓: the storm’s forward velocity (speed) (km/h), 
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• 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚: the storm’s radius to the maximum wind (km), 

• 𝜃𝜃: the storms heading (direction) measured in degrees clockwise from north, 

• 𝑥𝑥0: the storm’s reference location (e.g., landfall location), and 

• 𝑉𝑉𝑤𝑤: wind velocity (km/h). 

 

Figure 7-3 BN Representation of Fundamental Integral Used in Case Study 

The “hat” notation indicates quantities predicted by a model. The “𝜀𝜀 quantities” refer to model 
errors with subscripts, indicating the model to which they apply. 

The integral in Eq. (7.1) is calculated in discrete form as 

𝑃𝑃(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞) 

= �…�𝑃𝑃(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞|𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇},𝑄𝑄𝑃𝑃) 𝑝𝑝�𝑄𝑄𝑃𝑃�𝑄𝑄�𝑃𝑃 , 𝜀𝜀𝑄𝑄𝑃𝑃� 𝑝𝑝�𝜀𝜀𝑄𝑄𝑃𝑃� 𝑝𝑝�𝑄𝑄�𝑃𝑃�𝑃𝑃𝐵𝐵𝐵𝐵�  

 𝑝𝑝�𝑃𝑃𝐵𝐵𝐵𝐵�𝑃𝑃�𝐵𝐵𝐵𝐵, 𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵� 𝑝𝑝�𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵� 𝑝𝑝�𝑃𝑃�𝐵𝐵𝐵𝐵�𝑉𝑉𝑤𝑤 ,𝜃𝜃, 𝑥𝑥0,𝑉𝑉𝑓𝑓� 𝑝𝑝�𝑉𝑉𝑤𝑤�𝑉𝑉𝑤𝑤�, 𝜀𝜀𝑉𝑉𝑤𝑤� 𝑝𝑝�𝜀𝜀𝑉𝑉𝑤𝑤� 𝑝𝑝�𝑉𝑉𝑤𝑤��∆𝑝𝑝� 𝑝𝑝(∆𝑝𝑝) 𝑝𝑝(𝑥𝑥0)  

 𝑝𝑝�𝑉𝑉𝑓𝑓� 𝑝𝑝(𝜃𝜃) 𝑝𝑝(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) 𝑝𝑝 �𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇}, 𝜀𝜀𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�  𝑝𝑝 �𝜀𝜀𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�  𝑝𝑝�𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇}�𝜂𝜂,𝑄𝑄𝑅𝑅 ,𝑇𝑇�  

𝑝𝑝(𝑄𝑄𝑅𝑅) 𝑝𝑝(𝑇𝑇) 𝑝𝑝�𝜂𝜂�𝜂̂𝜂, 𝜀𝜀𝜂𝜂� 𝑝𝑝�𝜀𝜀𝜂𝜂� 𝑝𝑝�𝜂̂𝜂�𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝜃𝜃, 𝑥𝑥0,𝑉𝑉𝑓𝑓 ,∆𝑝𝑝� . 

(7.2) 
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Using a Poisson process assumption regarding the occurrence of hurricane events (as is 
typically assumed), the annual rate of exceedance is computed as 

 𝜆𝜆𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡>𝑞𝑞 = 𝜆𝜆𝐻𝐻 ∗ 𝑃𝑃(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞) , (7.3) 

where 𝜆𝜆𝐻𝐻 is the rate at which hurricanes affect an area, and 𝑃𝑃(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞) is computed as in Eq. 
(7.2). 

7.4 Key Assumptions 

After developing the quantitative expression for the probability of exceedance of the severity 
measure, the next step in the analysis is to calculate the conditional and marginal probability 
distributions required to evaluate the expression shown in Eq. (7.2). The development of these 
distributions requires evaluation of statistical data and use of the predictive models. Five key 
predictive models were used in this case study. These models are shown in Figure 7-4: 

• Surge model: a surrogate model for predicting surge height (𝜂𝜂) as a function of 
hurricane parameters (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑋𝑋𝑜𝑜,𝑉𝑉𝑓𝑓 ,𝜃𝜃,Δ𝑝𝑝)  

• Wind model: a statistical model for predicting maximum wind velocity (𝑉𝑉𝑤𝑤) as a function 
of central pressure deficit (Δ𝑝𝑝) 

• Precipitation model: a statistical-empirical model for predicting hurricane-induced 
precipitation across the regional watershed as a function of selected hurricane 
characteristics (i.e., hurricane track and a decayed wind velocity) 

• Precipitation-induced discharge model: a statistical model for predicting precipitation-
induced discharge 

• Surge-, tide-, and river base flow–induced discharge model (also referred to herein 
as the combined discharge model): a statistical model for predicting river discharge 
caused by surge, tides, and river base flow 

These models were used to develop the conditional probability tables (CPTs) associated with 
the nodes highlighted in the BN in Figure 7-5. Additional information about the development of 
conditional probability distributions is provided in the subsections that follow (Section 7.4.1 
through Section 7.4.9). Once all distributions were defined, the next step in the analysis involved 
discretization of all variables (Section 7.4.9) and the evaluation of the expression in Eq. (7.2). 
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Figure 7-4 Key Models Used in the Case Study 

 

Figure 7-5 Key Models Used to Develop BN Representation Used in the Case Study 

7.4.1 Storm Parameters 

In this case study, a hurricane was parameterized using five quantities: 

Surge modelPrecipitation model

Wind model

Wind model

Precipitation model

Precipitation-induced
discharge  model 

Combined discharge 
model 

Surge model

Superposition

Superposition
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• Δ𝑝𝑝 = the storm’s central pressure deficit (hPa), computed as the difference between a 
peripheral atmospheric pressure of 1,013 hPa and the storm’s central pressure (hPa), 

• 𝑉𝑉𝑓𝑓 = the storm’s forward velocity (speed) (km/h), 

• 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = the storm’s radius to the maximum wind (km), 

• 𝜃𝜃 = the storm’s heading (direction) measured in degrees clockwise from north, and 

•  𝑥𝑥0 = the storm’s reference location (e.g., landfall location). 

In the BN in Figure 7-3, these quantities are represented by the root (top) nodes. 

Typically, the development of probability distributions for storm parameters requires statistical 
assessment of historical hurricane track data (potentially augmented with synthetic data 
sources). In this study, the distributions suggested by NACCS for the area under study (Nadal-
Caraballo et al. 2015) were used to define the distributions assigned to storm parameters: 
distributions 𝑓𝑓(∆𝑝𝑝), 𝑓𝑓(𝑥𝑥0), 𝑓𝑓�𝑉𝑉𝑓𝑓�, 𝑓𝑓(𝜃𝜃), and 𝑓𝑓(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) in Eq. (7.2). Consistent with NACCS, 
hurricane parameters were treated as statistically independent quantities. Table 7-1 shows the 
distributions and corresponding parameters. NACCS considered three sub-regions for the 
analysis in the North Atlantic region. Distributions and corresponding parameters in Table 7-1 
are related to Region 2, where the area under study is located. 

Table 7-1 Distributions and Corresponding Parameters for Hurricane Parameters 

No. Hurricane 
parameters 

Distribution Functional form Distribution 
parameters  

1 Δ𝑝𝑝 Doubly truncated 
Weibull distribution 

𝑃𝑃[∆𝑝𝑝 > 𝑥𝑥]

=
exp �− �𝑥𝑥𝑈𝑈�

𝑘𝑘
�  − exp �− �∆𝑝𝑝2𝑈𝑈 �

𝑘𝑘
�

exp �− �∆𝑝𝑝1𝑈𝑈 �
𝑘𝑘
� − exp �− �∆𝑝𝑝2𝑈𝑈 �

𝑘𝑘
�
 

 

∆𝑝𝑝1 = 25 hpa 
∆𝑝𝑝2 = 93 hpa 
𝑈𝑈 = 35.77 
𝑘𝑘 = 1.41 

2 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 LN distribution 
𝑓𝑓(𝑥𝑥) =

1
𝑥𝑥𝜁𝜁√2𝜋𝜋

exp �−
1
2

 �
𝑙𝑙𝑙𝑙(𝑥𝑥) − 𝜆𝜆

𝜁𝜁
�
2

� 

 

𝜆𝜆 = 4.215, 𝜁𝜁 = 0.45 

3 𝑉𝑉𝑓𝑓 NOR distribution 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
exp �−

1
2

 �
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
2
� 

 

𝜇𝜇 = 44.05, 𝜎𝜎 = 
16.06 

4 𝜃𝜃 NOR distribution 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
exp �−

1
2

 �
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
2
� 𝜇𝜇 = 16.48, 𝜎𝜎 = 

36.17 
5 𝑥𝑥0 Uniform distribution — — 

 

7.4.2 Storm Surge Model 

The storm surge model represents surge height (𝜂𝜂) as a function of a surge prediction (𝜂̂𝜂) and a 
prediction error term (𝜀𝜀𝜂𝜂): 
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 𝜂𝜂 = 𝜂̂𝜂 + 𝜀𝜀𝜂𝜂 . (7.4) 

This function is used to generate the conditional distribution 𝑝𝑝�𝜂𝜂�𝜂̂𝜂, 𝜀𝜀𝜂𝜂� shown in Eq. (7.2) (and 
equivalently, the CPT assigned to node 𝜂𝜂 in Figure 7-3). Conceptually, Eq. (7.4) specifies that 
for each combination of 𝜂̂𝜂 and 𝜀𝜀𝜂𝜂, 𝜂𝜂 is simply a deterministic combination of both quantities. 
However, when 𝜂̂𝜂 and 𝜀𝜀𝜂𝜂 are discretized, a finite number of combinations of the discretized 
“bins” are associated with 𝜂̂𝜂 and 𝜀𝜀𝜂𝜂. Letting 𝜂𝜂𝚤𝚤�  indicate {𝜂𝜂𝑖𝑖 ≤ 𝜂̂𝜂 < 𝜂𝜂𝑖𝑖+1} and 𝜀𝜀𝜂𝜂,𝑗𝑗 indicate {𝜀𝜀𝜂𝜂,𝑗𝑗 ≤
𝜀𝜀𝜂𝜂 < 𝜀𝜀𝜂𝜂,𝑗𝑗+1}, then 𝑝𝑝 �𝜂𝜂�𝜂𝜂𝚤𝚤� , 𝜀𝜀𝜂𝜂,𝑗𝑗� represents the conditional PMF of 𝜂𝜂 given that 𝜂̂𝜂 and 𝜀𝜀𝜂𝜂 are within 
the ranges {𝜂𝜂𝑖𝑖 ≤ 𝜂̂𝜂 < 𝜂𝜂𝑖𝑖+1} and {𝜀𝜀𝜂𝜂,𝑗𝑗 ≤ 𝜀𝜀𝜂𝜂 < 𝜀𝜀𝜂𝜂,𝑗𝑗+1}, respectively. To limit the impact of this 
discretization, this conditional PMF was developed using Monte Carlo simulation, as described 
in Section 7.4.9. This approach was used to develop the conditional PMFs associated with all 
deterministic functions presented in this case study. 

The conditional distribution 𝑝𝑝�𝜂̂𝜂�𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝜃𝜃, 𝑥𝑥0,𝑉𝑉𝑓𝑓 ,∆𝑝𝑝� in Eq. (7.2) (and equivalently, the CPT for 
node 𝜂̂𝜂 in Figure 7-3) is generated using a surrogate model developed to predict surge height 
(𝜂̂𝜂, m MSL) as a function of representative synthetic hurricane track parameters: 

 𝜂̂𝜂 = 𝑔𝑔(Δ𝑝𝑝,𝑉𝑉𝑓𝑓 ,𝜃𝜃,𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑥𝑥0) , (7.5) 

where all quantities are as defined in Section 7.3.  

In this use case study, a surrogate model using a GAU process regression (GPR) (Al Kajbaf 
and Bensi 2020; Bass and Bedient 2018; Jia et al. 2016; Jia and Taflanidis 2013) was 
developed. The regression model was trained to emulate the ADCIRC-computed surge values 
generated by NACCS (Nadal-Caraballo et al. 2015) for the closest study save point to the target 
location (save point 5373; see Figure 7-1). The data required for training and testing the model 
were obtained from the USACE coastal hazard system website 
(https://chswebtool.erdc.dren.mil/). Alternative predictive models, including neural network 
(NNET) and support vector machine (SVM), were considered, and tested; however, the GPR 
model showed the overall best performance. For example, Figure 7-6 shows the surge height 
predicted using these surrogate models versus the simulated ADCIRC surge height for one 
example of a 70/30 holdout validation (i.e., 70% of the data are designated as training data and 
used to “fit” the model, and the remaining 30% of the data are withheld for testing the “fitted 
model” against “unseen” data). Table 7-2 shows the estimated root mean square error (RMSE) 
and correlation for these three models for this single holdout validation example. Given the 
better performance of the GPR for the proposed application and the commonality of its use in 
surge surrogate models, the GPR was used for this study.  

https://chswebtool.erdc.dren.mil/
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Figure 7-6 Correlation between ADCIRC-Simulated Surge Height and Predicted Surge 
Height Using GPR, NNET, and SVM Models 

Table 7-2 Correlation and RMSE Values Related to GPR, NNET, and SVM Models 

Error metrics GPR NNET SVM 
Correlation coefficient  
(surrogate versus ADCIRC-simulated 
surge) 

0.98 0.97 0.83 

RMSE (m) 0.20 0.22 0.56 

To provide insights regarding the magnitude of the NACCS ADCIRC–computed surge at the 
save point, Figure 7-7 shows the peak surge height estimated for each of the 1,031 storms in 
the synthetic TC storm suite considered in NACCS. Surge was computed for base conditions 
(i.e., storm surge computed on mean sea level without tidal or sea-level rise considerations). 
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Figure 7-7 NACCS ADCIRC–computed Storm Surge at the Target Save Point for 1,031 
Storms 

To assess the out-of-sample prediction abilities of the GPR model used to estimate peak storm 
surge, a holdout validation was performed using 50 holdout folds, each consisting of a 70/30 
split of randomly selected training and testing (holdout) data. For each fold, 70% of the data 
were designated as training data, which was used to fit the model. The remaining 30% of the 
data were withheld for testing the fitted model against unseen data. Figure 7-8 (left) shows a 
scatterplot of surrogate model and ADCIRC simulations for the out-of-sample predictions across 
all 50 holdout sets. Figure 7-8 (right) shows a histogram of the computed correlation coefficient 
across the 50 folds. The correlation coefficients vary from approximately 0.96 to 0.99. 
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Figure 7-8 (Left) Scatterplot of Surrogate and Numerical (ADCIRC) Model Predictions 
Related to Surge Height (M) for the Out-Of-Sample Predictions for the 50 
Holdout Sets, and (Right) Histogram of Computed Correlation Coefficients 
Across the 50 Holdout Sets 

Figure 7-9 (left) presents a scatterplot of computed out-of-sample prediction errors (ADCIRC 
estimate minus surrogate model prediction), and Figure 7-9 (right) shows the histogram of the 
computed RMSE across the 50 folds. The RMSE varied between 0.14 and 0.22 m across the 50 
folds, and the mean RMSE was 0.16 m. The mean RMSE was used in characterizing the 
distribution of the model error term used in the analysis. The overall bias (mean error) was small 
(ranging between −0.02 and 0.02 m). However, a trend is observable in Figure 7-9 (left), with 
larger ADCIRC-estimated surges being associated with a larger (positive) error, suggesting the 
surrogate model may under-predict larger surge values. Although not addressed in this case 
study, modification of the standard deviation of the error term in the BN model to account for 
larger errors with increasing surge height is identified as an area for future study. 
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Figure 7-9 (Left) Scatterplot of Computed Out-Of-Sample Prediction Error and 
Numerical (ADCIRC) Model Predictions for Across the 50 Holdout Sets, and 
(Right) Histogram of Computed RMSE Values Across the 50 Holdout Sets 

Following the assessment of model performance using the holdout validation approach, all 
available data were used to train a surrogate model used for predictions. To visualize the 
surrogate model used in this case study, Figure 7-10 shows the surrogate model–predicted 
partial-variable response functions. That is, the figure shows the predicted surge values when 
varying one variable (on-diagonal plots) or two variables (off-diagonal plots) while holding other 
variables at representative values. The representative values are Δ𝑝𝑝 = −55.7, 𝑉𝑉𝑓𝑓 = 40.1, 
𝜃𝜃 = −4.1, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 68.9, 𝑥𝑥0,𝑙𝑙𝑙𝑙𝑙𝑙 = −71.3, and 𝑥𝑥0.𝑙𝑙𝑙𝑙𝑙𝑙 = 40.8. The surrogate model trained on the full 
data set was used to make the predictions needed to specify the distribution (and, equivalently, 
to generate CPTs for node 𝜂̂𝜂 in Figure 7-3) by assuming that the model prediction is a 
deterministic function of the hurricane parameters (see Eq. (7.5)). 

The marginal distribution 𝑝𝑝�𝜀𝜀𝜂𝜂� in Eq. (7.2) (or equivalently, the marginal probability table 
assigned to node 𝜀𝜀𝜂𝜂) is generated by assuming 𝜀𝜀𝜂𝜂 is equal to the sum of the surrogate model 
error (𝜀𝜀𝜂𝜂,𝑆𝑆) and the error associated with the ADCIRC simulations (𝜀𝜀𝜂𝜂,𝐴𝐴): 

 𝜀𝜀𝜂𝜂 = 𝜀𝜀𝜂𝜂,𝑆𝑆 + 𝜀𝜀𝜂𝜂,𝐴𝐴 , (7.6) 

where 𝜀𝜀𝜂𝜂,𝑆𝑆 is normally distributed with a mean of zero and standard deviation equal to the mean 
RMSE from surrogate model testing, and 𝜀𝜀𝜂𝜂,𝐴𝐴 is assumed to be normally distributed with 
parameters as defined in NACCS (Nadal-Caraballo et al. 2015); i.e., mean of zero and standard 
deviation equal to 0.48 m. 
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Figure 7-10 Surrogate Model–Predicted Partial-Variable Response Functions 
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7.4.3 Wind Velocity Model 

The wind velocity model represents wind velocity (𝑉𝑉𝑤𝑤) as a function of a statistical model 
prediction and a prediction error term (𝜀𝜀𝑉𝑉𝑓𝑓): 

 𝑉𝑉𝑤𝑤 = 𝑉𝑉�𝑤𝑤 + 𝜀𝜀𝑉𝑉𝑤𝑤 . (7.7) 

This function is used to define the conditional distribution of 𝑉𝑉𝑤𝑤 in Eq. (7.2) (and equivalently, 
CPT assigned to node 𝑉𝑉𝑤𝑤 as a function of 𝑉𝑉�𝑤𝑤 and 𝜀𝜀𝑉𝑉𝑤𝑤 in Figure 7-3). The conditional distribution 
for 𝑉𝑉�𝑤𝑤 is generated using a statistical model that relates wind velocity and central pressure 
deficit. The statistical equation introduced in NACCS was used to predict maximum wind 
velocity (km/h) as a function of central pressure deficit (hPa) (Nadal-Caraballo et al. 2015): 

 𝑉𝑉�𝑤𝑤 = 42.4807− 0.0084∆𝑝𝑝2 + 2.9752∆𝑝𝑝 . (7.8) 

Figure 7-11 shows plotted North American Hurricane Database (NOAA 2018) data and the 
prediction equation developed in NACCS (Nadal-Caraballo et al. 2015) to estimate wind velocity 
as a function of central pressure deficit.  

The marginal distribution 𝑝𝑝�𝜀𝜀𝑉𝑉𝑤𝑤� in Eq. (7.2) (and equivalently, the marginal probability table for 
node 𝜀𝜀𝑉𝑉𝑤𝑤 in Figure 7-3) is generated by assuming that 𝜀𝜀𝑉𝑉𝑤𝑤 is normally distributed with zero mean 
and standard deviation of 18.66 km/h, consistent with the standard error for the wind velocity 
prediction equation documented in NACCS (Nadal-Caraballo et al. 2015). 

 

Figure 7-11 Statistical Wind Velocity Prediction Model Used in this Study and Plotted 
North American Hurricane Database (HURDAT2) Data 

880 900 920 940 960 980 1000 1020 1040

Central pressure (mb)

0

20

40

60

80

100

120

140

160

180

W
in

ds
pe

ed
 (k

ts
)

HURDAT2 Data

NACCS



7-15

7.4.4 Precipitation Model 

The precipitation model predicts basin-wide average precipitation (𝑃𝑃𝐵𝐵𝐵𝐵) as a function of a 
statistical model prediction and a prediction error term (𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵): 

𝑃𝑃𝐵𝐵𝐵𝐵 = 𝑃𝑃�𝐵𝐵𝐵𝐵 + 𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵 . (7.9) 

This function is used to generate the conditional probability distribution 𝑝𝑝�𝑃𝑃𝐵𝐵𝐵𝐵�𝑃𝑃�𝐵𝐵𝐵𝐵, 𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵� in Eq. 
(7.2) (and equivalently, to generate the CPT assigned to node 𝑃𝑃𝐵𝐵𝐵𝐵 in Figure 7-3). The 
conditional distribution 𝑝𝑝�𝑃𝑃�𝐵𝐵𝐵𝐵�𝑉𝑉𝑤𝑤 ,𝜃𝜃, 𝑥𝑥0,𝑉𝑉𝑓𝑓� (or equivalently, the CPT for node 𝑃𝑃�𝐵𝐵𝐵𝐵 in Figure 7-3) is 
generated using a statistical model that relates a regional rain field and hurricane track 
parameters using a multi-part model. 

The Tropical Rainfall Measuring Mission rainfall rates (TRR) model suggested by Tuleya et al. 
(2007) was leveraged, in which the rainfall rate at a point location is estimated as a function of 
maximum wind speed of the storm and the distance from the hurricane center. The TRR model 
represents rainfall rate (𝑅𝑅𝑅𝑅; in./day) as a function of the radial distance from the center of the 
storm and the maximum wind speed using the expression 

𝑅𝑅𝑅𝑅(𝑟𝑟,𝑉𝑉𝑤𝑤) = �
𝑇𝑇0 + (𝑇𝑇𝑚𝑚 − 𝑇𝑇0) � 𝑟𝑟

𝑟𝑟𝑚𝑚
� , 𝑟𝑟 < 𝑟𝑟𝑚𝑚

𝑇𝑇𝑚𝑚 exp �− 𝑟𝑟−𝑟𝑟𝑚𝑚
𝑟𝑟𝑒𝑒

� , 𝑟𝑟 ≥ 𝑟𝑟𝑚𝑚
 , (7.10) 

where 𝑟𝑟 is the radius from hurricane center (km) to the point of interest (i.e., the point at which 
the rainfall rate will be predicted). The remaining quantities in Eq. (7.10) are coefficients defined 
as 

𝑇𝑇0 = 𝑎𝑎1 + 𝑏𝑏1𝑈𝑈 , (7.11) 

𝑇𝑇𝑚𝑚 = 𝑎𝑎2 + 𝑏𝑏2𝑈𝑈 , (7.12) 

𝑟𝑟𝑚𝑚 = 𝑎𝑎3 + 𝑏𝑏3𝑈𝑈 , (7.13) 

𝑟𝑟𝑒𝑒 = 𝑎𝑎4 + 𝑏𝑏4𝑈𝑈 , (7.14) 

where 𝑟𝑟𝑚𝑚 is representative of the radial extent of the inner core rain rate, and 𝑟𝑟𝑒𝑒 is a measure of 
the radial extent of TCR. 𝑇𝑇0 is representative of rain rate at 𝑟𝑟 = 0, and 𝑇𝑇𝑚𝑚 is representative of 
maximum rain rate at 𝑟𝑟 = 𝑟𝑟𝑚𝑚. 𝑈𝑈 is the normalized wind velocity (kn) described by 

𝑈𝑈 = 1 + (𝑉𝑉𝑤𝑤 − 35)/33 , (7.15) 

where 𝑉𝑉𝑤𝑤 is the maximum windspeed (kn). The coefficients 𝑎𝑎1 through 𝑎𝑎4 and 𝑏𝑏1 through 𝑏𝑏4 
were obtained by Tuleya et al. (2007) using Tropical Rainfall Measuring Mission rainfall profiles. 
Table 10-3 shows bias-corrected coefficients using rain gage data (Marks et al. 2002). 
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Table 7-3 Bias-corrected Constants for the TRR model 

𝑎𝑎1 = −1.1 in.day−1 𝑏𝑏1 = 3.96 in.day−1 

𝑎𝑎2 = −1.6 in.day−1 𝑏𝑏2 = 4.8 in.day−1 
𝑎𝑎3 = 64.5 km 𝑏𝑏3 = −13.0 km 
𝑎𝑎4 = 150 km 𝑏𝑏4 = −16.0 km 

Figure 7-12 shows the variation of rainfall rate (𝑅𝑅𝑅𝑅) with radial distance from the storm center 
using the TRR model (Tuleya et al. 2007). As shown in Eq. (7.10) and Figure 7-12, when 𝑟𝑟 is 
smaller than 𝑟𝑟𝑚𝑚, 𝑅𝑅𝑅𝑅 increases linearly with radial distance and then decreases exponentially for 
𝑟𝑟 values higher than 𝑟𝑟𝑚𝑚. In Eqs. (7.11)–(7.14), 𝑈𝑈 is the normalized wind speed, with a maximum 
value of 115 kn. The RMSE of the model fitted to TRR using Eqs. (7.11)–(7.14) was estimated 
by Tuleya et al. (2007) as 0.28 in.day−1. 

Figure 7-12 Decay of Rainfall Rate with Radial Distance Using a TRR Model (Tuleya et 
al. 2007) 

A TRR model was used to predict rainfall at discrete gridded points across the watershed 
upstream of the case study location. The grid is shown in Figure 7-13. It consists of 1,454 grid 
points on a 4 × 4 km grid. To estimate storm rainfall, a discretized hurricane track containing 
information about the location of the hurricane at 1 h time steps after landfall was created. 
These spatial and temporal track parameters were calculated as a function of hurricane speed 
(forward velocity), landfall location, and heading. Then, the radial rain field was computed using 
the aforementioned TRR model. However, the TRR model provides rainfall rates per day, 
whereas the basin-wide rain field was estimated at 1 h time steps. Therefore, daily point rainfall 
rates produced by the model were scaled (by a factor of 24) to produce rates of inches per hour. 
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Figure 7-13 Gridded Points in the Watershed Upstream of Case Study Location 

Because maximum wind velocity decays after landfall, and to better capture spatial-temporal 
changes in precipitation rates, a wind decay model was incorporated into the hurricane-induced 
precipitation model. The wind decay model used in this study was suggested by Kaplan and 
DeMaria (1995; 2011) and is represented by 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑏𝑏 + (𝑅𝑅𝑉𝑉0 − 𝑉𝑉𝑏𝑏)𝑒𝑒−𝛼𝛼𝛼𝛼 , (7.16) 

where 𝑉𝑉(𝑡𝑡) is the wind velocity (kn) at time 𝑡𝑡 after landfall, and 𝑉𝑉𝑏𝑏 and 𝛼𝛼 are estimated 
parameters. 𝑅𝑅 is a reduction factor related to increased roughness of the land surface, and 𝑉𝑉0 is 
the maximum wind speed at landfall. The wind velocity output of Eq. (7.16) was converted from 
knots to kilometers per hour for subsequent calculations. Table 7-4 shows the RMSE (kn) and 
coefficients of wind decay model for the area under study suggested by (Kaplan and Demaria 
2001). Figure 7-14 presents two examples of hurricane track wind decay using the model in Eq. 
(7.16), with wind speeds presented in kilometers per hour. 

Table 7-4 Wind Decay Model Coefficients for the Area Under Study 

RMSE (kn) R 𝛼𝛼 (h−1) 𝑉𝑉𝑏𝑏 (kn) 
11.4 0.9 0.187 29.6 
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Figure 7-14 Examples of Hurricane Track Wind Decay; Color Key Represents Wind 
Speeds (km/h) 

To illustrate the implementation of the precipitation prediction model, Figure 7-15 shows a 
synthetic hurricane track along with the rain field over the watershed at six example discrete 
time steps. The total rainfall over the watershed during the 24 h following landfall was computed 
as the sum of the hourly rainfall quantities at each point. Figure 7-16 shows the total 24 h 
precipitation for the track shown in Figure 7-15. Then, the basin average precipitation (𝑃𝑃�𝐵𝐵𝐵𝐵) was 
computed by averaging over all grid points. 
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Figure 7-15 Hurricane-induced Precipitation in the Upstream Area for an Example 
Storm Track (Red) at Discrete Time Steps after Storm Landfall; the Red Star 
Represents Storm Center at Specific Points after Landfall; the Color Key 
Represents Rainfall (In./H) 
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Figure 7-16 Total Daily Rainfall for the Upstream Watershed for an Example Storm 
Track (Red); the Color Key Represents Rainfall (In./Day) 

The model error term (𝜀𝜀𝑃𝑃𝐵𝐵𝐵𝐵) (see Eq. (7.9)) is assumed to be normally distributed with mean 
zero and standard deviation equal to the RMSE of the TRR model. Consideration of a more 
sophisticated approach to defining this error, accounting for error in precipitation and wind 
decay models, is identified as a potential area for future research. 

7.4.5 Precipitation-Induced Discharge Model 

The precipitation-induced discharge model represents estimates in river discharge caused by 
upstream hurricane-induced precipitation. It takes the form 

 𝑄𝑄𝑃𝑃 = 𝑄𝑄�𝑃𝑃 + 𝜀𝜀𝑄𝑄𝑃𝑃  , (7.17) 

where 𝑄𝑄�𝑃𝑃 is the predicted change in river discharge (cfs) caused by precipitation, and 𝜀𝜀𝑃𝑃 is a 
prediction error term. This function is used to generate the distribution 𝑝𝑝�𝑄𝑄𝑃𝑃�𝑄𝑄�𝑃𝑃 , 𝜀𝜀𝑄𝑄𝑃𝑃� in Eq. (7.2) 
(or equivalently, the CPT assigned to node 𝑄𝑄𝑃𝑃 in Figure 7-3). 𝑄𝑄�𝑃𝑃 is predicted as a function of the 
upstream basin-wide average precipitation (𝑃𝑃𝐵𝐵𝐵𝐵): 

 𝑄𝑄�𝑃𝑃 = 𝑔𝑔(𝑃𝑃𝐵𝐵𝐵𝐵) . (7.18) 

The predictive model in Eq. (7.18) was developed using daily precipitation and runoff data 
extracted from RAPID (David et al. 2011) and VIC (Oubeidillah et al. 2013) from 1980 to 2015. 
Figure 7-17 shows the time series of runoff (top panel) and precipitation (bottom panel) for the 
noted time period, as well as the time series filtered to include only the portions of the time 
series during hurricane season (orange). This hurricane season–filtered data set was used in 
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the surrogate model development. Figure 7-18 shows the scatterplot of runoff and basin-wide 
average precipitation for “all data” and hurricane-season data. In Figure 7-17 and Figure 7-18, 
the unit of precipitation is millimeters (consistent with original model results), but to estimate 
runoff in cubic feet per second in subsequent calculations, precipitation was converted to feet. 

 

Figure 7-17 Time Series of (Top) Runoff and (Bottom) Basin-Wide Average Daily 
Precipitation 

 

Figure 7-18 Scatterplot of Runoff and Basin-Wide Average Daily Precipitation 

Different predictive models, including generalized linear models and polynomial models, were 
fitted to data and tested for their performance. The second-degree polynomial model showed 
the best overall performance. This model takes the form 
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 𝑄𝑄�𝑃𝑃 = 𝛼𝛼1 + 𝛼𝛼2𝑃𝑃𝐵𝐵𝐵𝐵 + 𝛼𝛼3𝑃𝑃𝐵𝐵𝐵𝐵2 . (7.19) 

The linear and second-degree polynomial regression lines are plotted along with the input data 
in Figure 7-19. The second-order model has a relatively high adjusted 𝑅𝑅-squared value (over 
0.95) and an RMSE of 2,970 cfs when computed as a measure of fit. 

 

Figure 7-19 Scatterplot of Runoff and Basin-Wide Average Daily Precipitation 
Superimposed with Linear and Polynomial Regression Lines 

A holdout validation was performed to assess the variation in RMSE (cfs) and the correlation 
coefficient (𝑅𝑅) between predicted and observed values using 50 holdout folds consisting of a 
70/30 split of randomly selected training and testing data. Figure 7-20 (left) shows a scatterplot 
of surrogate and RAPID-VIC predictions for the out-of-sample predictions across all 50 holdout 
sets. Figure 7-20 (right) shows a histogram of the computed correlation coefficient across the 50 
folds. The correlation coefficients vary from approximately 0.97 to 0.98. 
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Figure 7-20 (Left) Scatterplot of Surrogate and Numerical (RAPID-VIC) Model 
Predictions Related to Discharge (Cfs) for the Out-Of-Sample Predictions 
for the 50 Holdout Sets, and (Right) Histogram of Computed Correlation 
Coefficients across the 50 Holdout Sets 

Figure 7-21 (left) presents a scatterplot of computed out-of-sample prediction errors (RAPID-
VIC estimate minus surrogate model prediction), and Figure 7-21 (right) shows the histogram of 
the calculated RMSEs across the 50 folds. The RMSE varied between approximately 2,300 and 
3,100 cfs across the 50 folds, and the mean RMSE was 2,707 cfs. The mean RMSE was used 
in characterizing the distribution of the model error term used in the analysis. The overall bias 
(mean error) was relatively small (ranging between approximately −163 and 198 cfs). 
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Figure 7-21 (Left) Scatterplot of Computed Out-Of-Sample Prediction Error and 
Numerical (RAPID-VIC) Model Predictions for across the 50 Holdout Sets, 
and (Right) Histogram of Computed RMSE Values across the 50 Holdout 
Sets 

7.4.6 Surge-, Tide-, and River Base Flow–Induced Discharge Model (Combined 
Discharge Model) 

The surge-, tide-, and river base flow–induced (combined) discharge model was developed to 
predict river discharge caused by the simultaneous occurrence of storm surge, tides, and river 
base flow. It takes the form 

 𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇} = 𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇} + 𝜀𝜀𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇} , (7.20) 

where 𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇} is the (equivalent) total discharge (cfs) caused by surge, river base flow, and 
tides. 𝜀𝜀𝑄𝑄𝑆𝑆_𝑅𝑅_𝑇𝑇 is a prediction error term. To estimate 𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇} , river base flow was converted to 
equivalent river depth, and surge and tides were added to river base flow–equivalent depth to 
estimate total water level caused by river surge, tides, and base flow. In the next step, this total 
water level was converted to discharge using stage-discharge relationship. The predictive model 
takes the form 

𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇} = 𝑔𝑔(𝜂𝜂,𝑇𝑇,𝑄𝑄𝑅𝑅) (7.21) 

where 𝑔𝑔(𝜂𝜂,𝑇𝑇,𝑄𝑄𝑅𝑅) is a function that “maps” surge, river base flow–equivalent depth, and tide 
water levels, respectively, to an equivalent discharge. This mapping between water level and an 
equivalent discharge value was done using a stage-discharge relationship developed for a gage 
located near the case study location. In the area under study, the error caused by nonlinear 
interaction between tides and storm surge is negligible (Nadal-Caraballo et al. 2015). Therefore, 
the simple superposition of tides and surges was judged to generate reasonable results. 
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Equation (7.21) facilitates specification of 𝑝𝑝�𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇}�𝜂𝜂,𝑄𝑄𝑅𝑅 ,𝑇𝑇� in Eq. (7.2) (and equivalently, 
definition of the CPT of node 𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇} in Figure 7-3). Equation (7.20) also facilitates specification 
of 𝑝𝑝 �𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}�𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇}, 𝜀𝜀𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇}� in Eq. (7.2) (and equivalently, definition of the CPT of node 𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇} 
in Figure 7-3). Data used in developing the stage-discharge relationship were extracted from 
USGS 15-min stage-discharge data for the case study location using gage 01463500 located on 
the Delaware River near Trenton, New Jersey. The gage location is shown in Figure 7-2. Stage-
discharge information was available for 14 years, from 2007 to 2020. The time series of stage 
and discharge, as well as the scatter plot relating both quantities, are shown in Figure 7-22. 

 

Figure 7-22 (Left) Time Series of Stage and Discharge and (Right) a Scatterplot of 
Surge and Discharge 

Given the observed relationship, a simple polynomial model was fitted to the quantities. First- 
through fourth-order polynomials were fitted to the data, and the resulting functions are shown in 
Figure 7-23. 

 

Figure 7-23 Scatterplot of Stage and Discharge with Fitted Polynomial Models of 
Varying Degrees 
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The third-order polynomial was selected as the predictive model. This model takes the form 

 𝑄𝑄�{𝜂𝜂,𝑅𝑅,𝑇𝑇} = 𝛼𝛼1 + 𝛼𝛼2ℎ + 𝛼𝛼3ℎ2 + 𝛼𝛼4ℎ3 , (7.22) 

where ℎ is the sum of the river base flow–equivalent stage, tides, and surge. This model has a 
high adjusted 𝑅𝑅-squared value (nearly 1) and an RMSE of 465 cfs. However, for several points 
shown in Figure 7-23, the model did not perform well. These points are highlighted in red in 
Figure 7-24. As can be seen, a limited number of poor-fit points are related to two distinct 
segments of the overall time series (Figure 7-24, right). 

 

Figure 7-24 (Left) Scatterplot of Recorded Stage and Discharge and (Right) the 
Recorded Time Series; Poor-Fitting Points are Highlighted in Red 

A holdout validation was performed to assess the variation in RMSE (cfs) and the correlation 
coefficient (𝑅𝑅) between predicted and observed values using 50 holdout folds consisting of a 
70/30 split of randomly selected training and testing data. The boxplots of the computed RMSE 
and 𝑅𝑅 values are shown in Figure 7-25. 

 

Figure 7-25 Boxplots of (Left) RMSE and (Right) the Correlation Coefficient (R) between 
Predicted and Observed Values for Holdout Validation 
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To develop the marginal distribution for river base flow, 𝑓𝑓(𝑄𝑄𝑅𝑅) in Eq. (7.2) (or equivalently, the 
probability table assigned to node 𝑄𝑄𝑅𝑅 in (Figure 7-5), a statistical analysis was performed using 
discharge data available for gage 01463500 located near the case study region (see Figure 7-
1). First, the portion of the time series of relevance to the hurricane season was extracted. 
Then, to capture a “hurricane-independent” flow, portions of the hurricane record corresponding 
to dates in which hurricane events were expected to be contributing to river discharge were 
removed. Then, 5% of the overall time series was randomly selected to approximate a random 
sample of discharges; then, a series of candidate distributions was fitted to the data set. Figure 
7-26 (left) shows the normalized frequency histogram of the selected data set along with PDFs 
estimated for candidate distributions, and Figure 7-26 (right) shows the empirical CDF for the 
selected data set along with CDFs estimated for candidate distributions. Table 10-5 shows the 
estimated AIC and BIC values for the candidate distributions. Ultimately, based on the 
estimated AIC and BIC and judgment, the LN distribution was selected for modeling the 
distribution of river base flow (Figure 7-27). 

 

 

Figure 7-26 (Left) Normalized Frequency Histogram of the Selected Data Set along with 
Pdfs Fitted for Candidate Distributions, and (Right) Empirical CDF for the 
Selected Data Set along with Cdfs Fitted for Candidate Distributions 
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Figure 7-27 (Left) Normalized Frequency Histogram of the Selected Data Set along with 
LN PDF, and (Right) Empirical CDF for the Selected Data Set along with LN 
CDF 
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Table 7-5 AIC and BIC Values Estimated for Candidate Distributions for Base Flow 

Distribution name AIC BIC 
GPD 6194 6202 

Weibull 6344 6352 
NOR 6663  6671 
LN 6219 6226 
GM 28108 28119 

Exponential 6365 6368  
 

To include the effects of tides in the analysis (shown as 𝑇𝑇 in Figure 7-3), predicted tidal 
elevations from the NOAA water level station located at station 8539993 (Marine Terminal Park, 
Trenton, New Jersey) were used. Using these data, positive and negative tidal elevations were 
separated, and empirical CDFs of high (positive) and low (negative) tides were generated. The 
empirical CDFs were used to generate conditional distributions for water level, given that peak 
surge occurs during high- and low-tide time periods. A 0.5 probability of peak surge occurring at 
high tide and at low tide were assumed. That is, 𝑃𝑃(𝑇𝑇 =  𝑡𝑡𝑖𝑖) = 𝑃𝑃(𝑇𝑇 =  𝑡𝑡𝑖𝑖|𝑙𝑙𝑙𝑙𝑙𝑙)𝑃𝑃(𝑙𝑙𝑙𝑙𝑙𝑙) +
𝑃𝑃(𝑇𝑇 =  𝑡𝑡𝑖𝑖|ℎ𝑖𝑖𝑖𝑖ℎ)𝑃𝑃(ℎ𝑖𝑖𝑖𝑖ℎ). Figure 7-28 shows the empirical CDF and PMF for high and low tides. 
Although the two empirical CDFs were used to generate the conditional PMFs of tide, 
alternative approaches could be used, including fitting of nonparametric kernel distributions or a 
multimodal parametric distribution. 

 

Figure 7-28 Empirical (Left) CDF and (Right) PMF Related to High and Low Tides 

7.4.7 Calculation of Total Discharge 

Total equivalent discharge caused by tides, river base flow, storm surge, and storm-induced 
precipitation was modeled as the simple superposition of the precipitation-induced discharge 
and surge–tide–river base flow–equivalent discharge: 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇} + 𝑄𝑄𝑃𝑃 (7.23) 
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This simple superposition expression is used to generate the conditional distribution 
𝑝𝑝(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇},𝑄𝑄𝑃𝑃) (and equivalently, conditional probabilities for node 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 shown in the BN 
in Figure 7-3), which facilitates the calculation of 𝑝𝑝�𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 𝑞𝑞|𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇},𝑄𝑄𝑃𝑃�. 

7.4.8 Model Limitations 

This study used a simplified approach that did not account for the complex interactions of 
physical processes, but which enabled the illustration of the overall Bayesian modeling process. 
This case study used a strategy in which the sum of river base flow–equivalent stage, tide, and 
surge were used to generate a water level, and then converted that water level to an equivalent 
discharge. This discharge was then superimposed with the precipitation-induced discharge to 
generate a total discharge. In addition to the impacts of “simple superposition,” errors were also 
introduced by the locations of the gages for which data were collected. “Time lags” occurred 
between the occurrence of peak surge at a location and the timing of peak discharge. This study 
did not account for the differences in timing and instead assumed that the peaks temporally 
align, which creates a conservative bias in the model.  

Superimposing values at the target study location was assumed to be possible. As shown in 
Figure 7-2, the location of the USGS gage used for developing stage-discharge relationship, the 
location of save point 5373 used for simulating surge height, and the location of the NOAA tide 
gage do not coincide. The location of the USGS gage is 1.5 km upstream of save point 5373. 
This gage is also located upstream of rock riffles that generally prevent tides from propagating 
up to the gage station, except in the case of large surges and king tides. Save point 5373 is 
located downstream of these rock riffles and is affected by tides. Figure 7-29 shows the location 
of the rock riffles, the USGS gage, and save point 5373. To incorporate the river base flow and 
for applicability of the stage-discharge relationship developed for the USGS gage location, river 
characteristics that contribute to the development of the stage-discharge relationship were 
assumed to be almost unchanged along the 1.5 km distance between the USGS gage and save 
point 5373. Figure 7-29 shows that the river cross-section between the USGS gage and save 
point 5373 does not change noticeably. 
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Figure 7-29 The Location of USGS Gage, Rock Riffles and Save Point 5373 

As shown in Figure 7-30, the location of the NOAA tide gage is 2.5 km downstream of save 
point 5373. To analyze how this distance can affect the surge height and propagation of the 
tides toward the upstream save point 5373, an additional save point 7624 was considered, 
which is close to tide gage 8539993. Figure 7-31 shows the ADCIRC-simulated surge height for 
these two save points across the same storms. The analysis of the surge height at save points 
5373 and 7624 showed that similar storms generated similar surge heights at these two points. 
Considering the similarity between surge heights in these two save points, the tidal levels 
observed at the location of save point 7624 were added to the surge height simulated at save 
point 5373 upstream of the tide gage. 
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Figure 7-30 Location of Save Points 5373 and 7624 and the NOAA Tide Gage 

 

Figure 7-31 ADCIRC-simulated Surge Height (M) for Save Points 7624 and 5373 
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7.4.9 Discretization of Distributions 

Consistent with the implementation of the JPM in general, Eq. (7.2) (and the BN) requires the 
discretization of all modeled random variables. Table 7-6 shows discretized values related to 
constitute random variables. 

Table 7-6 Discretized Values for the Parameters Required in the Bayesian 
Formulation 

No. Variable Discretized values 
1 𝑥𝑥0 (33.16417, –79.2011), (33.94843,–77.9277), (34.93409,–76.2995), 

(35.8801,–75.5935), (37.19846,–75.8545), (37.92462, –75.4296), 
(38.78565, –75.0918), (39.68712,–74.1428), (40.92737, –73.7382), 
(41.39125, –71.4794), (41.67301, –69.9293), (42.08063, –70.1512), 
(42.60478, –70.6388), (43.75627,–69.982), (44.47684, –68.1531) 

2 Δ𝑝𝑝 (hpa) 10, 23.83,37.66, 51.50, 65.33, 79.16 
3 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 (km) 0, 50, 87.50, 125, 162.50, 200 
4 𝑉𝑉𝑓𝑓 (km.h−1) 0, 20, 35, 50, 65, 80 
5 𝜃𝜃 (°) –60, –40,–20, 0, 20 
6 𝑄𝑄𝑅𝑅 (cfs) 20 values interpolated between 0 and 100,000 at an interval of 5,000 cfs 
7 𝑇𝑇 (ft) –4.763, –4.53, –4.291, –4.05, –3.810, –3.570, –3.340, –3.110, –2.860, –

2.620, –2.380, –2.14, –1.90, –1.670, –1.430, –1.190, –0.950, –0.710, –
0.470, –0.230, 0.310, 0.620, 0.930, 1.240, 1.550, 1.860, 2.170, 2.480, 
2.790, 3.10, 3.410, 3.72, 4.030, 4.34, 4.65, 4.96, 5.27, 5.581, 5.891 

8 𝜂𝜂 (m)  40 values interpolated between 0 and 6 at an interval of 0.15 m 
9 𝑃𝑃𝐵𝐵𝐵𝐵 (in.day−1) 15 values interpolated between 0 and 3 at an interval of 0.2 in./day–1 
10 𝑄𝑄{𝜂𝜂,𝑅𝑅,𝑇𝑇} (cfs) 80 values interpolated between 0 and 950,000 cfs at an 

interval of 11,875 cfs 
11 𝑄𝑄𝑃𝑃 (cfs)  80 values interpolated between 0 and 260,000 at an interval of 3,250 cfs 
12 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (cfs) 300 values interpolated between 0 and 1,225,500 at an interval of 

4,085 cfs 

Note: The discretized values presented in row 2 to 12 provide the lower edge (value) of each bin. The 
values in row 1 provide the landfall location. 
 

To reduce the impact of discretization errors, a Monte Carlo simulation was used in the 
generation of the CPTs in the BN, which was used to evaluate the expression shown in Eq. 
(7.2). Although this simulation strategy was used in the context of the BNs, such an approach 
can be used more generally to reduce discretization errors in the implementation of Bayesian-
motivated approaches requiring discretization of the parameter space. Figure 7-32 illustrates the 
Monte Carlo simulation approach. Under this approach, to generate the CPT for a child node, a 
Monte Carlo simulation was performed for each combination of the discrete states of its parent 
nodes, and a conditional distribution was computed and assigned to the child node. For 
example, in Figure 7-32, a combination of the bins colored in green, purple, orange, and pink 
represent one combination of the states of the parents to node 𝜂𝜂 (excluding landfall location). 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 simulated values were generated by taking random draws from within the four colored 
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bins, resulting in 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 combinations of the hurricane parameters. The surge height was 
estimated for each of these 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 combinations of hurricane parameters using the surrogate 
mode. Then, these 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 surge values were “binned” into the state intervals for node 𝜂𝜂, and the 
result was used to compute the discrete CPT assigned to node 𝜂𝜂 for the combination of parent 
nodes. The process was repeated for all combinations of parent nodes, and the process was 
executed for all nodes in the BN. 

 

Figure 7-32 Illustration of Monte Carlo Simulation Approach for Generating CPTs 

7.5 Results 

The capabilities of the BNs were used to “integrate over” (sum over) all nodes shown in the BN 
in Figure 7-3. The calculation was repeated to solve the discrete form of the integral in Eq. (7.1) 
for a range of value of 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The result was used to generate a hazard curve. For the 
assumptions described, the resulting illustrative hazard curve is shown in Figure 7-33. To 
generate this curve, the annual hurricane occurrence rate was assumed to be 0.18 storms per 
year for the area under study (Nadal-Caraballo et al. 2015). 
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Figure 7-33 Total Discharge Hazard Curve (Presented for Illustrative Purposes) 

7.6 Model Performance Assessment 

The last step in this study included a semi-qualitative evaluation to assess the performance of 
the Bayesian-motivated model against historical events to ensure that the results were 
reasonable. As noted previously, the goal of this study was to demonstrate the process of using 
a Bayesian-motivated approach while using a series of simplified empirical, statistical, and 
surrogate process models. An actual application of the Bayesian-motivated approach would 
likely replace these simplified models with more robust numerical or analytical models. 
Nevertheless, an initial performance assessment of the compilation of models used in the case 
study was performed. The Bayesian-motivated model is intended for probabilistic hazard 
assessment rather than as a predictive model. Therefore, this performance assessment should 
not be interpreted as a formal model validation study. 

The model was assessed by leveraging the capabilities of the BN to facilitate information 
updating. “Evidence” was entered into nodes within the BN (i.e., the states of certain nodes 
were set as known), and the posterior distributions were extracted and used in the performance 
assessment. Specifically, by specifying storm parameters, river base flow, and tides associated 
with observed events, evidence was introduced. Then, the resulting posterior distribution of total 
discharge was compared with the peak discharge levels observed at the gage 01463500 
location on the Delaware River near Trenton, New Jersey. As noted previously, the USGS gage 
is located 1.5 km upstream of the target location with intervening rock riffles that limit (but do not 
prevent) surges and tides from propagating from the study location (save point 5373) to the 
location of the river gage. Furthermore, the assumption was made that peak surge and 
discharge temporally coincide. Therefore, the BN model was expected to produce consistently 
higher discharge values than observed at the river gage for historical storms.  
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Considering the availability of storm data (especially Rmax data, which were only available after 
2005 at the time this case study was developed), a limited number of the historical storms 
occurring in the case study area was available for the performance assessment. Figure 7-34 
through Figure 7-36 show the observed storm tracks of three storms affecting the case study 
region. These figures also include the synthetic storm tracked modeled in this study. Table 7-7 
shows the corresponding representative storm parameters as well as measured discharge. The 
representative values are the values of the storm parameters specified in NOAA IBTrACS 
(International Best Track Archive for Climate Stewardship) database (NOAA n.d.-a) taken at the 
point before landfall. Figure 7-37 through Figure 7-39 also show the locations at which the 
representative values were taken. For each storm, these storm parameters were entered as 
evidence for the corresponding nodes in the BN. 

Assumed river base flow values are shown in Table 7-7 (column labeled “QR”). These values 
were extracted from the gage record for gage 01463500 by investigating 15-min stage values 
and selecting a base flow value prior to the storm affecting the area (e.g., one day prior to storm 
landfall).  

Tidal values were extracted from the record for NOAA tide station 8539993 (Marine Terminal 
Park, Trenton, New Jersey) by finding the tide level corresponding to the time of the observed 
PWL at gage 01463500. Tide values at the time of peak surge are provided in the column 
labeled “Tide at peak WL.” When the time of PWL occurred for an extend period of time (e.g., 1 
h or more), a representative “midpoint” tide value was selected from the time period. For each 
storm, the river base flow and tide values were entered in the corresponding nodes in the BN. 
Model output was highly sensitive to the assumed tide values, and minor changes substantially 
changed the computed total discharge results.  

For each storm, the poster distributions of total discharge were computed using the BN. In 
Figure 7-41 and Figure 7-42, blue bar plots represent the posterior distribution of modeled 
discharge values for each storm scenario. In addition to providing the PMF of combined 
discharge for all three storms, Table 7-7 also provides the “modal bin” of the distribution (i.e., 
the bin with the highest probability mass in the PMF). As can be seen, the bins associated with 
the highest probability for all three storms differed from the USGS data. This is partially because 
of simplifications in modeling that will tend to bias model results higher (e.g., the assumption of 
temporal alignment of peaks), as well as physical considerations (e.g., the observed values at 
the USGS gage will not fully account for the contribution of surge because of the presence of 
the rock riffles).  

In general, the model results appear to be reasonable considering the high level of uncertainty 
involved in the prediction of river discharge using storm parameters, particularly given the 
limited fidelity of models and assumptions used in this case study. Limitations associated with 
physical modeling were discussed. Furthermore, an additional source of uncertainty arose from 
the limited number of landfall locations modeled for the case study region, which is consistent 
with other probabilistic studies. An approximation in landfall location caused a noticeable 
increase or decrease in estimated surge height (and thus the equivalent river discharge), which 
is presented in the partial-variable response functions in Figure 7-10. Furthermore, landfall 
locations notably affected the track path of the storm and thus the spatial distribution of the rain 
field leading to runoff. Storms can make landfall at any point along the coast. However, 
modeling a high number of the points along the coast is computationally expensive for the 
synthetic tracks used in the probabilistic assessment. 
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The change in storm characteristic after landfall is another factor contributing to the aggregation 
of uncertainty in the model. Synthetic tracks modeled in this study did not account for the factors 
that affect the storm path on land. In the case study, synthetic tracks were generated using an 
idealized track path (a straight line) defined by a landfall location and heading direction. A 
different, more realistic, storm path can contribute to more decay of storm intensity and a 
change in the amount of precipitation affecting the area. 

In this study, hourly precipitation values were estimated using the TRR model augmented with a 
model to decay wind speeds after landfall. However, the TRR model provides the daily 
precipitation rate and, to convert the daily precipitation rate into an hourly rate, the assumption 
of the uniform hourly distribution of the precipitation was made in this study. Furthermore, there 
are no well-developed (statistical/analytical) models for the decay of storm speed on the land, 
which affects the location of the storm at each time and the precipitation received at each point 
located at the upstream watershed. This study assumed constant forward velocity for the storm 
on the land, which can underestimate the estimated precipitation by considering the fast 
movement of the storm while the wind is decaying over time. 

Table 7-7 Storm Parameters and Surge and Discharge Values Related to USGS Gage 
and Modeling Results 

Name 
of 

storm 
Time of 
landfall LAT LON ∆𝑷𝑷 

(hPa) 
𝑽𝑽𝒘𝒘 

(km/h) 
𝜽𝜽 

(degree
) 

𝑽𝑽𝒇𝒇 
(km/h) 

𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎 
 (km) 

Tide at 
peak 

WL (ft) 
QR 

(cfs) 
USGS 
Q (cfs) 

Modal bin 
of PMF1 

for 
discharge 

Isaias 8/4/2020 
00:00 

33.724
4 

-
78.5834 

25.25 138 19 37 37 4.56 4,000 75,800 118465–
122550 

Fay 7/10/202
0 18:00 

39.547
3 

-
74.3161 

15.25 92 7 25 166 -1.86 4,500 19,000 44935–
49020 

Irene 8/28/201
1 09:00 

39.178
3 

-74.49 55.25 111 20 42 185 5.25 15,00
0 

146,00
0 

236930–
241015 

1Bin associated with the highest probability mass 
WL = water level 
 



 

7-38 

 

Figure 7-34 Synthetic and Observed Storm Track Related to Hurricane Isaias 

 

Figure 7-35 Synthetic and Observed Storm Track Related to Tropical Storm Fay 
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Figure 7-36 Synthetic and Observed Storm Track Related to Hurricane Irene 

 

Figure 7-37 Location of the Representative Point for Extracting Information at Landfall 
Location for Hurricane Isaias 
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Figure 7-38 Location of the Representative Point for Extracting Information at Landfall 
Location for Tropical Storm Fay 

 

Figure 7-39 Location of the Representative Point for Extracting Information at Landfall 
Location for Hurricane Irene 
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Figure 7-40 Posterior Distribution of the Modeled Discharge Values for Hurricane Isaias 

 

Figure 7-41 Posterior Distribution of the Modeled Discharge Values for Tropical Storm 
Fay 
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Figure 7-42 Posterior Distribution of the Modeled Discharge Values for Hurricane Irene 

7.7 Discussion 

Based on this coastal case study, strengths and limitations of the Bayesian-motivated MMF 
assessment approach were identified. The primary advantage of Bayesian-motivated 
approaches is the capability to (explicitly) incorporate physical process knowledge in the 
probabilistic assessment. The Bayesian-motivated approach develops a series of conditional 
probability distributions that represent the physical relationships between quantities, “builds up” 
the joint distribution from those conditional relationships, and then “integrates over” that joint 
distribution to derive marginal quantities (and specifically, probabilities of exceedance) of 
interest. This capability to integrate physical process knowledge is particularly useful in 
applications with (1) limited data (common in single-mechanism PFHAs and exacerbated when 
considering MMFs) and (2) a need to estimate flood hazards associated with moderate to long 
return periods (including hazard severities that may not appear within the historical record). 
However, the Bayesian-motivated approach is not without challenges. 

Similar to statistics-based approaches, the Bayesian-motivated approach typically requires 
statistical analysis of observational or synthetic data series (e.g., storm parameters, tide gage 
data, river discharge data). This means that many of the statistical modeling challenges 
articulated in conjunction with the inland case study carry over into the Bayesian approach, 
including challenges associated with statistical modeling assumptions. 

Furthermore, physical process knowledge is necessary to build the probabilistic model. Thus, 
the probabilistic model is necessarily limited by the state of knowledge. When physical 
processes are not well understood or associated with epistemic uncertainties, these limitations 
affect the ability to develop a robust Bayesian-motivated model. 

The computational effort associated with the Bayesian-motivated model is non-negligible. 
Numerical, analytical, empirical, or other models are necessary to describe the relationship 
between involved quantities. In the case study developed herein, five empirical and surrogate 

1.5 2 2.5 3 3.5

Discharge (cfs) 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

PM
F



 

7-43 

models were used (plus several additional models consisting of linear superposition). Although 
the development of these empirical and surrogate models was not trivial, the use of more 
sophisticated numerical models would increase the computational requirements. Furthermore, 
the use of a Monte Carlo simulation to reduce discretization error in the development of discrete 
conditional PMFs requires a potentially significant computational effort. Finally, the process of 
performing calculations necessary to evaluate the expressions shown in Eq. (7.2) can be more 
challenging than statistical approaches. 
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8 SUMMARY AND CONCLUSIONS 

This report provides a critical review of the current state of MMF practice and demonstrates 
example use case studies for inland and coastal applications. A summary of key takeaways is 
provided here. 

8.1 Considerations for PFHA Applications 

Overall, the following three MMF-related considerations are needed for future PFHA 
applications. 

Site-specific nature of MMF assessment: Numerous studies were identified and reviewed 
as part of this project, many of which were highly site- or application-specific. The site-
specific nature of existing studies means that quantitative conclusions from those studies 
may not be directly generalizable or applicable to other locations. Moreover, the range of 
hazards and geographic regions considered in the existing literature—as well as the 
diversity of flood-forcing phenomena, flooding mechanisms, and flood severity metrics 
considered in those studies—leads to challenges in drawing broad conclusions regarding 
specific relationships of interest to MMFs. Given the varying geographical, geological, 
hydrological, and climatic characteristics, each site is likely to be controlled by different 
flood-forcing phenomena and mechanisms and may need specific metrics. Nonetheless, the 
existing studies provide information regarding useful modeling approaches and tool sets for 
performing probabilistic MMF assessments. 

Choice of JPM: Based on insights from the existing literature, PFHA applications for MMF 
assessment may prioritize the use of copula-based and Bayesian-motivated approaches 
using both empirical and synthetic (simulation-derived) data sources. In particular, copula-
based approaches are the most common approaches used in existing studies for the 
development of joint distributions. Although copulas provide numerous computational 
advantages (particularly their flexibility for accommodating a range of marginal distribution 
and dependency structures, as well as their relative ease of application), they have 
challenges. In particular, copulas are typically used to perform statistical analysis of 
empirical data, which is generally not directly associated with physical process 
considerations. Moreover, as with any statistically based approach (including direct 
estimation of parametric marginal and joint distributions), use of a copula-based approach 
requires that numerous modeling assumptions be made. These assumptions include 
decisions associated with processing of data, selection of marginal distributions, measures 
of dependence, and copula functional form, as well as parameter estimation techniques. 
These decisions can lead to important sources of epistemic uncertainty, the importance of 
which generally increases when long return periods are considered. Bayesian approaches 
provide a means of incorporating physical process knowledge through probabilistic, 
numerical, and other models. 

Data sufficiency and expansion through model simulation: In light of limited data and 
the potential for nonlinearities in physical processes when the severe events associated with 
long return periods are considered, an increased need exists to consider physical process 
knowledge in the probabilistic assessment of MMFs for NPPs. Data sufficiency is one main 
challenge of the univariate probabilistic assessment, and its importance is further highlighted 
given that long-term, multivariate observations will be needed to capture both the individual 
distributions and their dependence structures. When a situation allows, either physics- or 
surrogate-based models may be used to synthesize a large number of correlated variables 
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to support further PFHA analysis. Bayesian-motivated approaches provide a structure for 
incorporating such knowledge into the probabilistic assessment. However, Bayesian 
approaches have not been broadly considered in existing studies related specifically to 
MMFs, although they have been used in probabilistic hazard assessments within other 
contexts. Therefore, their use in this project will represent an expansion of existing methods. 
Given the return periods of relevance to NPPs (which extend beyond those considered in 
most studies), further project activities will need to address several issues that have not 
been a focus of the majority of existing studies. These issues include the potential 
implications of the length of record and characteristics of available data series, assumptions 
regarding the occurrence of extrema, statistical modeling choices, and model validations for 
severe events. 

8.2 Discussion of Case Studies 

Sections 6 and 7 of this report documents two illustrative case study applications. The first case 
study focused on inland flooding, specifically snowmelt-driven extreme streamflow events, and 
used copulas as the main computational approach. The inland case study application 
demonstrated general procedures involved in the application copulas (e.g., statistical modeling 
steps). In addition, the case study helped to identify the strengths and limitations of the copula-
based MMF assessment approach. A key advantage of the copula-based approach is the 
general conceptual consistency with conventional univariate PFHA approaches, making the 
extension from single-mechanism to multi-mechanism assessments straightforward. Copula-
based approaches provide flexibility in statistical modeling choices. However, as with univariate 
approaches, results derived from copula-based approaches are sensitive to statistical modeling 
assumptions, and limited data may be insufficient to constrain those choices. Furthermore, 
although bivariate copula analyses are relatively straightforward to implement, extension 
beyond two variables becomes mathematically more complex. 

The second case study considered coastal hazards and used a Bayesian-motivated approach 
for probabilistic hazard assessment. An illustrative hazard curve was developed for river 
discharge accounting for the effects of river base flow, hurricane-induced surge, tides, and 
precipitation-induced runoff. The case study application demonstrates the general conceptual 
approach to implementing a Bayesian-motivated approach and used a series of empirical and 
surrogate models to demonstrate implementation. The case study helped to identify the 
strengths and limitations of the Bayesian-motivated modeling approach. The key advantage of 
the Bayesian-motivated modeling approach is the capability to incorporate physical process 
knowledge in the probabilistic assessment. Thus, the approach can serve to overcome certain 
data limitations and support estimation hazards of associated with moderate to long return 
periods. However, the Bayesian-motivated approach typically requires statistical analysis of 
observational or synthetic data series, which means that analyses can be sensitive to statistical 
modeling assumptions. Furthermore, the Bayesian-motivated approach simply reflects the state 
of knowledge. Thus, models derived with a Bayesian-motivated approach are subject to existing 
knowledge gaps. Finally, the computational effort associated with the Bayesian-motivated model 
is non-negligible and may be substantial. The process of performing calculations necessary to 
estimate exceedance probabilities of interest can be more challenging than statistical 
approaches. 

Overall, these two case studies provide examples to illustrate two approaches for the 
probabilistic assessment of MMF hazards. Given the flexibilities of both approaches, we believe 
that they can be applied more broadly in other MMF applications, not limited to the two specific 
cases here. Future efforts can be to explore the best practices to incorporate MMF analysis in 
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PFHA, as well as to investigate other suitable methods / tools for more convenient MMF 
applications. 
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 APPENDIX A  
SUMMARY OF CURRENT US AND INTERNATIONAL MMF 

 ASSESSMENT PRACTICE 

This appendix describes the current practice for estimation of hazards from combinations of 
flood mechanisms, as defined in existing guidance and standards used by the nuclear industry, 
and summarizes guidance and documents used by federal agencies in the United States. The 
current practice in this field generally focuses on single-mechanism flood hazard assessments, 
and although some documentation acknowledges MMF hazards, it generally lacks analytical 
frameworks and guidance for MMF assessment. Additionally, much of the existing 
documentation focuses on deterministic approaches rather than probabilistic approaches for 
flood hazard assessment. 

Although the existing guidance and standards referenced in this appendix use varying 
terminology, the following sections use the terminology described in the main body of this report 
to maintain consistency across the literature. 

A.1 Nuclear Applications

A.1.1 NRC Guidance and Standards

For US commercial nuclear power facilities, Regulatory Guide 1.59 (RG 1.59), “Design-Basis 
Floods for Nuclear Power Plants” (USNRC 1977), describes the design basis floods that NPPs 
should be designed to withstand. In turn, RG 1.59 endorses (with limited exceptions) the 
ANS/ANSI Standard N170-1976, “American National Standard for Determining Design Basis 
Flooding at Power Reactor Sites” (ANS/ANSI 1977). An update to N170-1976 (identified as 
ANS/ANSI-2.8-1992) was published in 1992 (ANSI/ANS 1992) and was subsequently withdrawn 
in 2002, consistent with normal publishing practices for standards. NRC staff is currently 
revising RG 1.59. To support efforts to update RG1.59, NRC issued NUREG/CR-7046, “Design-
Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of 
America” in November 2011 (USNRC 2011). In addition to the regulatory guidance intended for 
use by applicants, the Standard Review Plan (SRP) provides guidance to NRC for the 
evaluation of analyses performed by applicants for commercial nuclear power facilities (USNRC 
2007b). The SRP is currently being updated (USNRC 2018c). 

The current guidance for flood hazard assessment used for siting of commercial NPPs in the 
United States (identified in the previous paragraph) remains primarily deterministic for the 
assessment of both individual and combinations of flood mechanisms. In the context of 
combinations of flooding mechanisms, ANS/ANSI-2.8-1992 and NUREG/CR-7046 identify 
deterministic scenarios that are deemed acceptable and sufficient for use in defining design 
bases at commercial nuclear facilities. These guidance documents adopt a deterministic, 
standards-based approach to flood hazard assessment that focuses on a limited number of 
prescribed scenarios involving combinations of mechanisms. Appendix H of NUREG/CR-7046 
provides a summary of those combinations. The combinations outlined in the guidance 
documents include coincident combinations of flood mechanisms (e.g., a seismically induced 
dam failure coinciding with a river flood event), concurrent correlated flood mechanisms (e.g., 
concurrent river flooding and storm surge induced by a hurricane in estuary environments), and 
induced correlated flood mechanisms (e.g., precipitation leading to large inflow into a reservoir 
and subsequent hydrologic dam failure). For example, current NRC guidance specifies 
consideration of scenarios involving a probable maximum storm surge occurring along with a 
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25-year river flood. Although phenomenological origins are not explicitly specified in the
guidance, such surge–river flooding scenarios may result from what the terminology of this
report refers to as “coincident mechanisms” (e.g., the storm surge results from a hurricane, and
the river flood results from an unrelated antecedent rain event) or “concurrent correlated
mechanisms” (e.g., a hurricane leads to storm surge as well as precipitation-induced river
flooding). Another example of a scenario considered in current NRC guidance is seismically
induced dam failure coinciding with a 25-year river flood. Given the necessarily independent
nature of the flood-forcing phenomena (i.e., earthquake and meteorological events), such
scenarios result in coincident mechanisms. Although the combinations specific in these design
basis guidance documents were thought to have a sufficiently small frequency of occurrence or
exceedance, this conclusion had been based on judgement rather than rigorous quantitative
assessment.

A.1.2 International Guidance and Standards

The International Atomic Energy Agency (IAEA) standards for the siting of nuclear installations 
are in Safety Requirements Standard No. NS-R-3 (IAEA 2016a). General Criterion 2.5 specifies 
that proposed sites “shall be evaluated with regard to the frequency and severity of external 
natural and human induced events, and potential combinations of such events, that could affect 
the safety of the installation.” Furthermore, Criteria 2.7 and 2.8 reference combinations of 
external hazard events in the context of selecting external hazard-specific parameters and 
ambient conditions for use in facility design. In the context of flooding, Criterion 3.20 specifies 
that combinations of effects from several causes (e.g., a combination of high tide, wind effects, 
and wave action) shall be assessed. 

In addition to the criteria outlined in IAEA Safety Requirements Standard NS-R-3, Specific 
Safety Guide No. SSG-18 (IAEA 2011) outlines standards for the evaluation of meteorological 
and hydrologic hazards for nuclear installations. The document includes considerations 
associated with individual and combinations of flood mechanisms. Specific Safety Guide No. 
SSG-18 specifies that “combined events should be considered as well as the single events” in 
deriving the design-basis flood for a nuclear facility. Although the document provides limited 
commentary on the need to consider combinations of events, explicit guidance for performance 
of quantitative assessments is not provided. For example, the document notes that in 
considering combinations of events, although treating “all input parameters as random 
processes, with given autocorrelation and cross-correlation functions” is “desirable,” simplified 
approaches may be used. The IAEA document discusses deterministic, probabilistic, and hybrid 
approaches at a high level but provides limited guidance relative to the quantitative assessment 
of combinations of flood mechanisms. For example, the document specifies that reasonable 
conservative values of the frequency of exceedance for a given level of severity, for a specific 
effect resulting from individual or combinations of events, should be estimated by considering 
the annual frequency of exceedance of the separate events and the likelihood that the events 
may occur together in combination. 

Along with guidance related to siting and selecting plant design bases, combinations of flood 
mechanisms are also relevant in the context of probabilistic risk assessment (PRA), which is 
also referred to as probabilistic safety assessment (PSA). The ASME/ANS RA-S–2008 
Standard for Level I PRA (ASME/ANS 2009) provides limited requirements related to 
considering combinations of external hazard events. Regarding combinations of flood 
mechanisms, no specific requirements address the topic in Part 8 (which addresses external 
flooding PRA) of the current version of the standard. However, the external flooding PRA scope 
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specifies, “It is also important to consider rational probabilistic-based combinations of [flooding-
causing] phenomena.” 

IAEA (2010) provides “recommendations for meeting the requirements of [the IAEA 2009 
‘Safety Assessment for Facilities and Activities,’ IAEA Safety Standards Series No. GSR Part 4; 
revised as IAEA (2016b) ] in performing or managing a Level 1 PSA project for an NPP and 
using it to support its safe design and operation.” IAEA (2010) specifies the need for assessing 
combined effects from extreme natural hazards and provides recommendations for identifying 
and screening combined hazards (see Section 6 of the IAEA report). Additionally, the report 
provides recommendations for considering combinations of hazards involving flooding, wind, 
and other hazards (see Section 8 of the IAEA report). IAEA (1995) provides guidance on 
conduct of a PSA for events leading to core damage with particular emphasis on treatment of 
external hazards. No specific procedural steps are provided in the document. The report 
discusses combined effects in the context of high-wind hazards combined with temperatures, 
precipitation, and flooding (see Section 2.2.3 of the IAEA report). IAEA Safety Report Series 
Standard No. 92 (IAEA 2018) provides standards for consideration of external hazards in a 
PSA. High-level considerations are provided for treatment of combinations of external hazards. 
The document refers to NUREG/CR-7046 (USNRC 2011) as providing guidance for selecting 
combinations of natural hazards and external artificial hazards. Furthermore, the document 
refers to ASME/ANS RA-S-2008 for further requirements applicable to external hazards PSA. 

IAEA Safety Report Series Standard No. 92 explicitly discusses correlated hazards, which 
include hazards of two types: induced hazards and combined hazards. Induced hazards result 
when the occurrence of an initial hazard creates conditions that result in a second hazard soon 
after (e.g., earthquake followed by seismically induced flood). Combined hazards occur when a 
hazard has multiple manifestations such that a secondary effect often accompanies the primary 
effect (e.g., hurricane-induced high winds, precipitation, and storm surge). The document 
specifies that “there are no published examples of treatment of correlated hazards” in a PSA 
and that “procedures for identifying correlated hazards have not been formalized in the nuclear 
industry.” Instead, the identification is left to the analyst and peer review team. However, the 
document does provide guidance for screening correlated hazards. 

EPRI (2015) reviewed the current state of nuclear industry practice for identifying and screening 
external hazards. Although the report is broad in scope, it includes a section focused on multiple 
or combined hazards, which the report groups into three types: 

• Consequential hazards—“one or more hazards that affect the plant and occur as the 
result of a separate event that also affects the plant” 

• Correlated hazards—“one or more hazards that affect the plant in the same time-frame 
due to persistence or similar causal factors” 

• Coincidental hazards—“realistic combinations of randomly occurring independent events 
affecting the plant simultaneously” 

The report considers a range of hazards in addition to flooding hazards. In the context of 
combined hazards, the report identifies several IAEA documents of relevance (which are 
included in the previously provided summary), as well as the ASME/ANS combined PRA 
Standard (also previously summarized). Additionally, the EPRI report includes high-level 
summaries of methods used for screening or other treatment of combined events in France, 
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Sweden,24 Finland, Germany, and Switzerland. The EPRI report also summarizes other 
international experiences, including outcomes of an IAEA-sponsored technical meeting in 2014 
(for which a separate report was not identified), which noted some of the challenges related to 
assessment of combined hazards (e.g., lack of detailed guidance, reliance on expert judgement, 
challenges associated with development of joint distributions, and the need for practical 
guidance). Finally, the EPRI report includes a high-level framework for identifying and screening 
combinations of hazards; however, the report does not explicitly address flooding hazards or 
details of implementation. 

A.2 Nonnuclear Applications

Various US federal agencies provide guidance and other resources relevant to assessing flood 
hazards for nonnuclear applications. The following subsections summarize some relevant flood 
hazard literature among US federal agencies for nonnuclear flood hazard assessment 
applications. 

A.2.1 FEMA

FEMA is an agency within the US Department of Homeland Security responsible for developing, 
implementing, and supporting policies and programs for emergency management at the 
national, state, and local levels. FEMA also has the lead responsibility for coordinating federal 
efforts in dam safety and assisting states in improving their dam safety regulatory programs. 
Regarding floods, FEMA manages the National Flood Insurance Program, which aims to reduce 
“the socio-economic impact of disasters by promoting the purchase and retention of general risk 
insurance, but also of flood insurance, specifically” (FEMA 2018a). 

FEMA provides guidelines and standards for flood risk analysis and mapping through its Risk 
Mapping, Assessment, and Planning (Risk MAP) program (FEMA 2018b). The program 
provides guidance for estimating flood scenarios of a particular frequency (typically 1 and 0.2% 
AEP, or commonly known as a 100- and 500-year return period), although the methods 
described could be used for evaluating alternative scenarios. Each existing Risk MAP guidance 
document focuses on a single flood hazard with limited or no combinations of flood 
mechanisms. 

FEMA (2016a) includes Risk MAP guidance for estimating coastal water levels, including linear 
and nonlinear methods for combining tidal effects and storm surge effects. Linear interaction is 
assumed if it can be shown that neither effect physically alters the other. Linear methods 
proposed in the guidance include adding a storm surge peak and high tide, simplifying the tidal 
PDF to only represent a low tide and a high tide (or another representation), and linearly 
summing the storm surge and tidal PDFs. More complex nonlinear tidal interactions include an 
integrated JPM approach, a regression-based approach, a random timing approach, and a 
hybrid random timing approach. Additional physical parameters that are documented for 
modeling consideration include tidal, wind, and pressure boundary conditions; wind and bottom 
drag effects; land cover characteristics; and wave setup. Considerations for seiche effects are 
included for enclosed or semi-enclosed waterbodies. Additional Risk MAP guidance is provided 
for coastal flooding mechanisms, including coastal wave setup (FEMA 2015) and coastal wave 
runup and overtopping (FEMA 2018c). 

24 The Swedish report (Knochenhauer and Louko 2003) provides guidance for external event analysis, 
with specific adaptations for hazards in the country. 
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Risk MAP guidance for fluvial flooding along inland waterways is covered in multiple guidance 
documents on general hydrologic considerations (FEMA 2018d), general hydraulics 
considerations (FEMA 2016b), 1D and 2D analysis (FEMA 2016c; 2016d), ice jams (FEMA 
2018e), and floodway analysis and mapping (FEMA 2016e), among others. 

A.2.2 US Bureau of Reclamation and USACE 

The US Bureau of Reclamation (USBR) is a federal water resource management and 
development agency operating in 17 western states as a part of the US Department of the 
Interior. USACE is a federal agency within the US Department of Defense consisting of civilian 
and military personnel operating across the United States and in multiple international locations. 
Both USBR and USACE own and operate dams across the United States, with USBR owning 
474 dams and USACE owning 709 dams (FEMA 2016f). 

Together, USBR and USACE play significant roles in shaping federal dam safety in the US and 
have developed joint documentation on best practices in dam and levee safety risk analysis 
(USBR and USACE 2017). USBR pioneered risk-informed dam safety techniques in the United 
States, and most USBR practices have been adopted by USACE. Current dam risk assessment 
practice in the United States typically requires detailed, site-specific analysis of hazards, 
vulnerability (fragility), and consequences, with the vulnerability estimation often involving expert 
elicitation. 

According to USBR (2017), “manuals, guidelines, standards, and practical reference material on 
how to perform risk analysis for dam safety applications are lacking.” To fill this gap, the Dam 
Safety Risk Analysis Best Practices Training Manual (USBR and USACE 2017) describes 
practices currently in use for estimating dam safety risks. The manual includes methods for 
performing probabilistic hydrologic hazard analysis (Ch. II-2) and seismic hazard analysis (Ch. 
II-3), both of which rely on probabilistic approaches to establish loading conditions as input to 
dam failure analysis. Methods for combining dam failure risk are also discussed (Ch. I-8). 

In addition to ensuring dam safety and operations, the USACE is also responsible for broader 
flood control, response, and reduction for interior and coastal waterways under their jurisdiction, 
including providing disaster preparedness and response services. The USACE National Flood 
Risk Management Program (NFRMP)25 was established in 2006 with two primary purposes: (1) 
to focus USACE policies, programs, and expertise toward reducing overall flood risk; and (2) to 
develop a national vision for flood risk management with support at all levels of government. In 
its current guidance (updated in April 2018), NFRMP mentions the use of flooding probability 
and consequences (exposure and vulnerability) as important aspects of integrated management 
(USACE 2008). Current USACE guidance related to coincident and probabilistic flooding include 
the engineering and design manuals on “Hydrologic Analysis of Interior Areas” “Hydrologic 
Frequency Analysis” (USACE 2018), and “Hydrologic Engineering Requirements for Flood 
Damage Reduction Studies” (USACE 1995). A coincident frequency analysis editor designed 
based on USACE (1993) is also included in HEC-SSP for computing the exceedance frequency 
relationship for a variable (e.g., flow, stage, precipitation, wind) that is a function of two other 
variables. 

 
25 https://www.iwr.usace.army.mil/Missions/Flood-Risk-Management/Flood-Risk-Management-Program/ 

(accessed July 2019) 

https://www.iwr.usace.army.mil/Missions/Flood-Risk-Management/Flood-Risk-Management-Program/
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A.2.3 Federal Energy Regulatory Commission

The Federal Energy Regulatory Commission (FERC) is an independent agency within the US 
Department of Energy and is responsible for, among other activities, regulating the interstate 
transmission of electricity, natural gas, and oil; overseeing environmental matters related to 
natural gas and hydropower projects (including regulating nonfederal hydropower dams); and 
monitoring and investigating energy markets. Since it regulates hydropower projects, many of 
which contain dams, FERC is integrally involved in reviewing and approving hydropower 
licenses and in inspecting hydropower projects during and after construction. Therefore, FERC 
maintains responsibility for overseeing dam safety for some 2,525 dams in the United States 
(FEMA 2016f). Similar to USACE, FERC has adopted most USBR dam safety practices and 
provides relevant dam safety guidelines on its website.26 

A.2.4 USGS

USGS is a science agency within the US Department of the Interior and provides science 
expertise about natural resource conditions and monitoring. Related to flooding, USGS is 
responsible for monitoring a network of more than 9,000 stream gauges nationwide. Data 
collected from these gauges are highly important for forecasting and monitoring floods and for 
conducting hydrologic research and assessments. 

Related to probabilistic flood estimation, the Advisory Committee on Water Information, 
Subcommittee on Hydrology, Hydrologic Frequency Analysis Workgroup published Bulletin 17C 
(England et al. 2018) and its predecessor, Bulletin 17B, which have served as important 
guidelines for estimating flood flow frequency and are used by many hydrologic and hydraulic 
engineers. Although published as USGS documents, both were created by interagency 
committees. In particular, Bulletin 17B was created by the Interagency Advisory Committee on 
Water Data and Bulletin 17C was developed by the Advisory Committee on Water Information, 
Subcommittee on Hydrology. Within the guidelines is a discussion of the various types of 
meteorological events that contribute to flooding. This combination of different events is referred 
to as “mixed populations,” in that the flood frequency data, unless otherwise separated, 
comprises a mixture of different flood-driving mechanisms (e.g., rainfall runoff mixed with 
snowmelt; ice-jam floods mixed with unobstructed floods). The report identifies a few cases in 
which mixed-population analysis is used but acknowledges the need for additional efforts to 
provide guidance on identifying and handling mixed distributions. 

26 https://www.ferc.gov/industries-data/hydropower/dam-safety-and-inspections/eng-guidelines (accessed 
September 2022) 

https://www.ferc.gov/industries-data/hydropower/dam-safety-and-inspections/eng-guidelines
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 APPENDIX B  
KEY COASTAL HAZARD TERMINOLOGY 

This appendix provides an introductory-level explanation of key terms used to describe hazards 
from coastal flood mechanisms. 

B.1 Water Level Terminology

A “tide” is a long-period wave that moves through the ocean as a result of the gravitational 
forces exerted on the ocean by the sun and moon. These waves move from the ocean toward 
the coastline and back again, resulting in the rise and fall of water observable at the coast 
(referred to as a “tide level”), as well as a tidal current (NOAA n.d.-b). Tide levels can be 
predicted by considering the positions and movement of the Earth and of the sun relative to the 
Earth, as well as bathymetric information (Benningfield 2018). The water levels predicted using 
only information related to tidal waves are referred to as “predicted water levels.” 

The actual water levels observed at a location (typically measured by a tidal gauge) will 
generally differ from the predicted water levels. This difference may be due to factors such as 
changes in air pressure and winds caused by storms. The actual water level measured at a 
gauge is referred to as the “observed water level.” Figure B-1 (top) shows an example of 
predicted water levels (solid orange line denoted by 𝑃𝑃𝑡𝑡) and observed water levels (solid purple 
line denoted by 𝑂𝑂𝑡𝑡) from October 28 through November 1, 2011 for National Oceanographic and 
Atmospheric Administration (NOAA) Station 8518750, which is located at the Battery in New 
York City (NOAA n.d.-c). 

The difference between the predicted and observed water levels is referred to as the “nontidal 
residual.” It is shown by the solid blue line in Figure B-1 and denoted 𝜂𝜂𝑡𝑡. It is computed as 

𝜂𝜂𝑡𝑡 = 𝑂𝑂𝑡𝑡 − 𝑃𝑃𝑡𝑡  , 

where 𝑃𝑃𝑡𝑡 represents the predicted water level at time 𝑡𝑡, and 𝑂𝑂𝑡𝑡 represents the observed water 
level at time 𝑡𝑡. The nontidal residual is also referred to as “sea surge” and “surge residual.” 

“Skew surge” is a related quantity computed as the difference between the maximum observed 
sea level and the maximum predicted tide during a tidal cycle. There is one skew surge value 
per tidal cycle (NTSLF 2019). Skew surge is shown by the dotted red line in Figure B-1 and is 
computed as 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 = 𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚.𝑖𝑖 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑖𝑖 , 

where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.𝑖𝑖 = max
𝑡𝑡𝑖𝑖≤𝑡𝑡<𝑡𝑡𝑖𝑖+1

[𝑃𝑃𝑡𝑡] is the maximum predicted water level during tidal cycle 𝑖𝑖 (shown by 

the dotted orange line in Figure B-1), and 𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚.𝑖𝑖 = max
𝑡𝑡𝑖𝑖≤𝑡𝑡<𝑡𝑡𝑖𝑖+1

[𝑂𝑂𝑡𝑡] is the maximum observed water 

level during tidal cycle 𝑖𝑖 (shown by the dotted purple line in Figure B-1). 

When the difference in observed water levels relative to predicted water levels can be attributed 
to a storm event (e.g., TC or extratropical storm), a special set of terminology is employed. 
“Storm tide” refers the observed water level during a storm, considering the contributions of 
storm surge and tides. The observed water levels shown in Figure B-1 are, in fact, the result of 
a storm event (Hurricane Sandy); thus, the observed water level (solid purple line) measures the 
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storm tide for this storm event. “Storm surge” is the observed water level minus the predicted 
tides. Thus, for the storm event in Figure B-1 (bottom), the storm surge is equivalent to the 
nontidal residual shown by the solid blue line. Figure B-2 illustrates the concept of storm tide 
and storm surge (simply labeled “Surge”) (NOAA n.d.-d). 

Storm surge and tides are not the only contributors to the water levels experienced during a 
storm event. During a storm, the total water level experienced on shore is the result of tides, 
storm surge, and breaking waves.27 As water is pushed on shore, waves become larger and 
contribute to higher water levels (NOAA NHC n.d.). Breaking waves contribute to water levels 
through “wave runup” and “wave setup” (NOAA NHC n.d.). Wave runup occurs when a wave 
breaks and the waves are propelled onto the shore (NOAA NHC n.d.). It is generally 
represented as the height above the “stillwater level” reached by the swash (FEMA 2005a).28 
Wave setup describes the “additional elevation of the water level due to the effects of 
transferring wave-related momentum to the surf zone” (FEMA 2005a). 

 

Figure B-1 (Top) Example of Observed Water Levels and Predicted Water Levels and 
(Bottom) Example of Storm Surge and Skew Surge 

 
27 Additional contributors to total water level experienced during a storm come from the precipitation that 

falls during a storm event. Precipitation falling over the coastal waters can directly lead to increases in 
coastal water levels. Precipitation over land can also lead to rainfall runoff that discharges into the 
coastal environment. Contributions to water levels from these inputs are not addressed in this appendix.  

28 In describing the effects of coastal water levels on natural and built coastal structures, stillwater level 
describes a flood level not including the effect of waves. For storm-generated coastal water levels, 
stillwater includes the effects of storm surge and tide (FEMA 2005b). Stillwater is also used in 
describing hazards from a variety of flood mechanisms (e.g., river flooding) to refer to water levels in 
the absence of wave effects. 

𝜂𝜂𝑒𝑒

𝜂𝜂𝑚𝑚𝑚𝑚𝑥𝑥 ,𝑖𝑖
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Figure B-2 Illustration of Storm Tide and Storm Surge 

B.2 Datums29

In identifying coastal water levels, the water levels need to be referenced to a vertical datum, 
which provides a baseline elevation from which heights and depths can be reckoned. Numerous 
vertical datums are used in determining coastal water levels and coastal hazards. Geodetic 
datums provide a reference surface whereby the Earth is represented by an ellipsoid, and water 
levels are provided relative to a “zero level” located on the surface of the reference ellipsoid. 
Examples of geodetic datums include the North American Vertical Datum of 1988 (NAVD88) 
and the superseded National Geodetic Vertical Datum of 1929 (NGVD 29). 

Tidal datums are based on averages of tide levels over a specific time period known as a “tidal 
epoch.” The National Tidal Datum Epoch represents the standardized time period defined by 
NOAA over which tidal observations are used to obtain the mean values on which tidal datums 
are based. Typically, a tidal epoch lasts 19 years; however, certain regions with irregular sea 
level changes use a shorter tidal epoch for estimating tidal datums (e.g., 5 years). Currently, the 
National Tidal Datum Epoch is 1983–2001. Because tidal datums are based on recordings at 
specific gauges, they are generally only applicable to the location for which the measurements 
were taken. Table B.1 provides examples of several tidal datums (NOAA n.d.-e). 

Geodetic datums provide reference points that remain consistent across large geographic 
regions (i.e., they provide a global reference system), whereas tidal datums provide highly 
localized datums. Globally referenced data provide the advantage of broad applicability; 
however, the idealization used to define the reference ellipsoid means that in performing 
assessments for small areas, local datums will generally provide higher accuracy. 

29 Information is this section is aggregated from several NOAA resources (NOAA 2018, 2019, n.d.-e; 
NOAA NHC 2016). 
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Table B.1 Examples of Tidal Datums 

Tidal datum Explanation 
Highest 
astronomical tide 

The elevation of the highest predicted astronomical tide expected to 
occur at a specific tide station over the National Tidal Datum Epoch 

Mean higher high 
water 

For any given day, “higher high water” refers to the higher of the two 
tides per day (if applicable). “Mean higher high water” is the average of 
the higher high water height of each tidal day observed over the National 
Tidal Datum Epoch 

Mean high water The average of all the high water heights observed over the National 
Tidal Datum Epoch 

Mean tide level The arithmetic mean of mean high water and mean low water 
Mean sea level The arithmetic mean of hourly heights observed over the National Tidal 

Datum Epoch. Shorter series are specified in the name (e.g., monthly 
mean sea level and yearly mean sea level) 

Mean low water The average of all the low water heights observed over the National 
Tidal Datum Epoch 

Mean lower low 
water 

For any given day, “lower low water” refers to the lower of the two tides 
per day (if applicable). “Mean lower low water” is the average of the 
lower low water height of each tidal day observed over the National Tidal 
Datum Epoch 



NUREG/CR-7296 

Michelle Bensi, Somayeh Mohammadi, 
Shih-Chieh Kao, Scott T. DeNeale, 
Elena Yegorova, Joe Kanney 

Shih-Chieh Kao, Scott T. DeNeale 
Oak Ridge National Laboratory  Oak 
Ridge, TN 37831-6038 

E. Yegorova

Division of Risk Assessment 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
Washington, D.C. 20555-0001 

Flooding of nuclear power plants and other infrastructure can occur as a result of events involving one or 
multiple coincident or correlated flood mechanisms. Existing approaches for probabilistic flood hazard 
assessment (PFHA) focus primarily on the occurrence of a single flood hazard mechanism. However, 
multi-mechanism flood (MMF) events may result in flooding with severity, duration, characteristics, and 
extent of impacts that differ from the effects of floods involving a single mechanism. Moreover, the 
estimated frequency of occurrence of flood severity metrics may change (increase) when considering the 
enhanced impacts of MMF events. Thus, to have a comprehensive estimate of flood hazards for our 
critical infrastructures, events involving both single and multiple flood mechanisms must be considered.  
To extend the state of practice of MMF analysis, this study focuses on the identification of existing 
research and development of new methods to probabilistically assess hazards associated with MMF 
events. This report provides an overview of project research activities focusing on identification of existing 
approaches for probabilistically assessing MMF events and provides a critique and gap assessment of the 
current state of practice. It further discusses options for leveraging and extending approaches that show 
promise to support probabilistic assessment of MMF hazards associated with the range of return periods 
of relevance to nuclear power plants and other critical infrastructure. 

Probabilistic flood hazard assessment 
Multi-mechanism flood 
Joint distribution 
Hazard curve 
Coastal flooding 
Fluvial joint flooding 
Pluvial joint flooding 

October 2022 

Technical 

Multi-Mechanism Flood Hazard Assessment: Critical Review of Current 
Practice and Approaches and Example Use Case Studies









N
U

R
EG

/C
R

-7296 
M

ulti-M
echanism

 Flood H
azard A

ssessm
ent: C

ritical R
eview

 of C
urrent Practice and 

A
pproaches and Exam

ple U
se C

ase Studies
O

ctober 2022 


	ABSTRACT
	FOREWORD
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	ACKNOWLEDGMENTS
	ABBREVIATIONS
	1 INTRODUCTION
	1.1 Purpose and Objectives
	1.2 Report Scope
	1.3 Report Structure and Organization

	2 BACKGROUND AND CONTEXT
	2.1 Hazards of Relevance to US NPPs
	2.2 Key Terminology and Flood Mechanism Types
	2.2.1 Pluvial Flooding
	2.2.2 Fluvial Flooding
	2.2.3 Coastal Flooding

	2.3 MMF Hazard Framework

	3 OVERVIEW OF PFHA
	3.1 Introduction to Flood Hazard Assessment
	3.2 Introduction to Random Variables and Distributions
	3.2.1 Univariate Distributions
	3.2.2 Multivariate Distributions
	3.2.3 Special Case: Bivariate Distributions

	3.3 Summary of Approaches to Develop Joint Distributions
	3.3.1 Direct Estimation of Joint Distributions
	3.3.1.1  Extreme Value Distribution

	3.3.2 Copula-Based Approaches
	3.3.3 Bayesian-Motivated Approaches
	3.3.4 Data Needs

	3.4 Development of Hazard Curves and Surfaces

	4 SUMMARY OF AVAILABLE LITERATURE
	4.1 Overview of Available Literature
	4.1.1 Coastal Flooding
	4.1.2 Fluvial Flooding
	4.1.3 Coastal and Fluvial Joint Flooding
	4.1.4 Coastal and Pluvial Joint Flooding
	4.1.5 Coastal and Precipitation (Pluvial or Fluvial)

	4.2 Scope of Hazards Addressed
	4.2.1 Study Regions and Scales Covered
	4.2.2 Data Used


	5 CRITICAL REVIEW OF EXISTING PRACTICE AND RESEARCH
	5.1 Site-Specific Assessments
	5.2 Definition of Flood Severity Metrics
	5.3 Modeling Considerations
	5.3.1 Return Periods Considered in Existing Assessments
	5.3.2 Length of Record and Characteristics of Available Data Series
	5.3.3 Statistical Modeling Choices
	5.3.4 Assumptions Regarding Concurrence of Extrema
	5.3.5 Model Validation

	5.4 Gaps and Challenges
	5.4.1 Inconsistency in Terminology
	5.4.2 Presentation of Results
	5.4.3 Lack of a Comprehensive Framework for Analyzing Dependence among Variables
	5.4.4 Limited Scope of Variables Included in Existing Models
	5.4.5 Temporal Non-Stationarities


	6 INLAND MMF USE CASE STUDY
	6.1 Introduction
	6.2 Inland Case Study Scope and Settings
	6.3 Methodology
	6.4 Selection of Maximum Events
	6.5 Fitting and Selection of Marginal Distributions
	6.5.1 Comparison across Different Maximum Events
	6.5.2 Comparison across Different Study Areas

	6.6 Fitting and Selection of Copula Functions
	6.7 Construction of Joint Distributions and Potential Applications
	6.8 Discussion

	7 COASTAL MMF USE CASE STUDY
	7.1 Introduction
	7.2 Coastal Case Study Scope and Setting
	7.3 Methodology
	7.4 Key Assumptions
	7.4.1 Storm Parameters
	7.4.2 Storm Surge Model
	7.4.3 Wind Velocity Model
	7.4.4 Precipitation Model
	7.4.5 Precipitation-Induced Discharge Model
	7.4.6 Surge-, Tide-, and River Base Flow–Induced Discharge Model (Combined Discharge Model)
	7.4.7 Calculation of Total Discharge
	7.4.8 Model Limitations
	7.4.9 Discretization of Distributions

	7.5 Results
	7.6 Model Performance Assessment
	7.7 Discussion

	8 SUMMARY AND CONCLUSIONS
	8.1 Considerations for PFHA Applications
	8.2 Discussion of Case Studies

	9 REFERENCES
	APPENDIX A   SUMMARY OF CURRENT US AND INTERNATIONAL MMF ASSESSMENT PRACTICE

	A.1 Nuclear Applications
	A.1.1 NRC Guidance and Standards
	A.1.2 International Guidance and Standards
	A.2 Nonnuclear Applications
	A.2.1 FEMA
	A.2.2 US Bureau of Reclamation and USACE
	A.2.3 Federal Energy Regulatory Commission
	A.2.4 USGS
	APPENDIX B   KEY COASTAL HAZARD TERMINOLOGY

	B.1 Water Level Terminology
	B.2 Datums28F28F
	Blank Page
	Blank Page



