

Adam G. Schuerman

Plant Manager

Nine Mile Point

P.O. Box 63

Lycoming, NY 13093

(315) 349-5205

Adam.Schuerman@Constellation.com

10 CFR 50.36a 10 CFR 72.44(d)(3) **Technical Specifications**

NMP1L3457 April 30, 2022

U. S. Nuclear Regulatory Commission

Attn: Document Control Desk Washington, DC 20555-0001

Nine Mile Point Nuclear Station, Units 1 and 2

Renewed Facility Operating License Nos. DPR-63 and NPF-69

NRC Docket Nos. 50-220 and 50-410

Independent Spent Fuel Storage Installation (ISFSI)

ISFSI Docket No. 72-1036

Subject: 2021 Radioactive Effluent Release Report for Nine Mile Point Units 1 and 2

In accordance with 10 CFR 50.36a, and the Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2) Technical Specifications, enclosed are the Radioactive Effluent Release Reports for NMP1 and NMP2 for the period of January through December 2021. This letter also satisfies the annual effluent reporting requirements for the ISFSI required by 10 CFR 72.44(d)(3).

The format used for the effluent data is outlined in Appendix B of Regulatory Guide 1.21, Revision 1. During the reporting period, NMP1, NMP2, and the ISFSI did not exceed any 10 CFR 20, 10 CFR 50, 10 CFR 72, Technical Specification, or ODCM limits for gaseous or liquid effluents.

Should you have questions regarding the information in this submittal, please contact Jeremy Kerling, Manager, Site Chemistry and Radwaste, at (315) 349-5226.

Sincerely,

Adam G Schuerman

Plant Manager, Nine Mile Point Nuclear Station

Exelon Generation Company, LLC

AGS/LAR

IE48 NMSSZ6 NRR NMSS

2021 RERR April 30, 2022 Page2

Enclosures:

(1) Nine Mile Point Nuclear Station, Unit 1
Radioactive Effluent Release Report, January – December 2021

(2) Nine Mile Point Nuclear Station, Unit 2 Radioactive Effluent Release Report, January – December 2021

Cc: NRC Regional Administrator, Region 1

NRC Project Manager NRC Resident Inspector

R. Rolph, NRC

Enclosure 1

Nine Mile Point Nuclear Station, Unit 1

Radioactive Effluent Release Report, January – December 2021

NINE MILE POINT NUCLEAR STATION - UNIT 1 RADIOACTIVE EFFLUENT RELEASE REPORT

January - December 2021

NINE MILE POINT NUCLEAR STATION - UNIT 1

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY - DECEMBER 2021

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit 1 Licensee: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION LIMITS/ODCM Limits

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at and beyond the site boundary shall be less than or equal to 500 mrem/year to the total body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose due to noble gases released in gaseous effluents from Nine Mile Point Unit 1 to areas at and beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 milliroentgen for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 milliroentgen for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of lodine-131, lodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at and beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 1 to areas at and beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- The concentration of radioactive material released in liquid effluents to unrestricted areas shall be limited to ten times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 1 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by on-line gross activity monitoring (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic stack sample stream.

B) IODINES

lodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic stack sample stream.

C) PARTICULATES

Activity released from the main stack is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus. Tritium effluent activity is measured during purge and weekly when fuel is offloaded until stable tritium release rates are demonstrated.

E) EMERGENCY CONDENSER VENT EFFLUENTS

The effluent curie quantities are estimated based on the isotopic distribution in the Condensate Storage Tank water and the Emergency Condenser shell water. Actual isotopic concentrations are found via gamma spectroscopy. Initial release rates of Sr-89, Sr-90 and Fe-55 are estimated by applying scaling factors to release rates of gamma emitters and actual release rates are determined from post offsite analysis results. The activity of fission and activation gases released due to tube leaks is based on reactor steam leak rates using offgas isotopic analyses.

F) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters. Tritium activity is estimated on the most recent analysis of the Condensate Storage Tank water. Initial release rates of Sr-89, Sr-90, and Fe-55 are estimated by applying scaling factors to release rates of gamma emitters and actual release rates are determined from post offsite analysis results.

G) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analysis of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

H) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, *Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents*, December 2010 and NUREG-0016, *Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)*.

3. METEOROLOGICAL DATA

Meteorological data is an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Radiological Effluent Release Report, the licensee is exercising the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

Unit 1	X Unit 2		•		Reportin	g Period: Ja	nuary - December 2021
Liquid Efflu	uents:			,,			
ODCM Req	uired Maximum Effluent Concentration (MEC) = 10 x 10C	FR20, Appendi	x B, Table 2, C	olumn 2		
There were	no batch discharges of liquid radwaste	requiring use of M	IEC to determin	e allowable rel	ease rate.		
MEC for the	Emergency Condenser Vent Liquid Dis	charge in the first	quarter of 202	1 is as follows:			
	Average MEC - μCi/ml (Qtr. <u>1</u>) = Average MEC - μCi/ml (Qtr. <u>2</u>) =	NO RELEASES	-	Average MEC Average MEC		-	NO RELEASES NO RELEASES
Average En	nergy (Fission and Activation gases -	MeV):	_				
	$\begin{array}{ccccc} \text{Qrtr. } \underline{1} \colon & \bar{\text{E}} \text{V} &= & \text{N/A} \\ \text{Qrtr. } \underline{2} \colon & \bar{\text{E}} \text{V} &= & \text{N/A} \\ \text{Qrtr. } \underline{3} \colon & \bar{\text{E}} \text{V} &= & \text{N/A} \\ \text{Qrtr. } \underline{4} \colon & \bar{\text{E}} \text{V} &= & \text{N/A} \end{array}$		Ēβ = Ēβ = Ēβ = Ēβ =	N/A N/A N/A			
Liquid:			Radwaste		EC Vent	· 	
	Number of Batch Releases Total Time Period for Batch Releases Maximum Time Period for a Batch Rel Average Time Period for a Batch Rel Minimum Time Period for a Batch Rel	elease (hrs) ease (hrs)	0 0 0 0 0 0 0 0		0.00 0.00 0.00 0.00 0.00		
	Total volume of water used to dilute the liquid effluent during release		<u>1st</u>	2 nd	<u>3rd</u>	<u>4th</u>	
	period (L)	Radwaste EC Vent	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Total volume of water available to		<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>	
	dilute the liquid effluent during report period (L)	Radwaste EC Vent	1.18E+11 N/A	1.18E+11 N/A	1.37E+11 N/A	1.35E+11 N/A]
Gaseous (E	Emergency Condenser Vent):		· · · · · ·		****		
	Number of Batch Releases		0	1			
	Total Time Period for Batch Releases	(hrs)	0.00	1			
	Maximum Time Period for a Batch Re	elease (hrs)	0.00]			
	Average Time Period for a Batch Rele	ease (hrs)	0.00				
	Minimum Time Period for a Batch Re	lease (hrs)	0.00				
Ganacia (S	Irlmani Contolomont Burgali		·			·	
Gaseous (P	Primary Containment Purge):		T 1	1			
	Number of Batch Releases Total Time Period for Batch Releases	(hrs)	36.85	1			Ì
	Maximum Time Period for a Batch Re		36.85	1			ļ
	Average Time Period for a Batch Rele		36.85	1			
	Minimum Time Period for a Batch Re		36.85	1			
		· -/					

		······································	
Unit 1 X		_	Reporting Period: January - December 2021
Abnormal Releases:			
A. Liquids:			
	Number of Releases	0	
	Total Activity Released	N/A Ci	·
		<u> </u>	
B. Gaseous:			
	Number of Releases	0	
	Total Activity Released	N/A Ci	
		<u> </u>	
	Residence of the speed of the Religion of the Religion of the Section of the Sect		
	·		
	•		
	•		

Unit 1 X Unit 2		-		Reporting	Period: Janua	ary - December 2021		
GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES, ELEVATED AND GROUND LEVEL								
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	EST. TOTAL ERROR, %		
A. Fission & Activation Gases (1) 1. Total Release 2. Average Release Rate	Ci μCi/sec	**	**	**	**	5.00E+01		
B. <u>lodines (1)</u> Total lodine - 131 Average Release Rate for Period	Ci µCi/sec	1.52E-05 1.95E-06	7.62E-05 9.69E-06	7.22E-05 9.08E-06	9.37E-05 1.18E-05	3.00E+01		
C. Particulates (1) Particulates with Half-lives>8 days Average Release Rate for Period Gross Alpha Radioactivity	Ci µCi/sec Ci	6.48E-03 8.33E-04	2.79E-03 3.55E-04	3.05E-03 3.84E-04	2.60E-03 3.27E-04	3.00E+01 2.50E+01		
D. <u>Tritium (1)</u> 1. Total Release 2. Average Release Rate for Period	Ci µCi/sec	4.00E+00 5.14E-01	1.47E+01 1.87E+00	5.25E+00 6.60E-01	5.02E+00 6.32E-01	5.00E+01		
E. <u>Percent of Tech. Spec. Limits</u> <u>Fission and Activation Gases</u>								
Percent of Quarterly Gamma Air Dose Limit (5 mR)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Percent of Quarterly Beta Air Dose Limit (10 mrad)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Percent of Annual Gamma Air Dose Limit to Date (10 mR)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Percent of Annual Beta Air Dose Limit to Date (20 mrad)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Percent of Whole Body Dose Rate Limit (500 mrem/yr)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Percent of Skin Dose Rate Limit (3000 mrem/yr)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Tritium, lodines, and Particulates (with half-lives greater than 8 days)								
Percent of Quarterly Dose Limit (7.5 mrem)	%	1.36E-01	9.36E-02	9.11E-02	9.98E-02	,		
Percent of Annual Dose Limit to Date (15 mrem)	%	1.36E-01	2.17E-01	3.08E-01	4.08E-01			
Percent of Organ Dose Limit (1500 mrem/yr	%	2.09E-03	1.25E-03	5.98E-04	6.53E-04			
(1) Concentrations less than the lower limit of	detection of	the counting sys	tem used are in	dicated with a d	ouble asterisk.			

Unit 1	X Uni	nit 2		Reportin	ng Period: Jan	uary - December 2
		GASEOUS EFFLU	JENTS - ELEVA	TED RELEASE		
				Contin	nuous Mode (2)	1
luclides Rel	leased		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
	Fission Gases (1)				·	<u> </u>
	Argon-41	Cì	**	**	**	**
	Krypton-85	Ci	**	**	**	***
	Krypton-85m	Ci	**	**	**	**
	Krypton-87	Ci	**	**	**	**
	Krypton-88	Ci	**	**	**	**
	Xenon-127	Ci	**	**	**	**
	Xenon-131m	Ci	**	**	**	**
	Xenon-133	Ci [,]	**	**	**	**
	Xenon-133m	Ci	**	**	**	
	Xenon-135	Ci	**	**	**	***
	Xenon-135m	Ci	**	**	**	**
	Xenon-137	Ci	**	**	**	**
	Xenon-138	Ci	**	**	**	**
	lodines (1) lodine-131 lodine-133 lodine-135	Ci Ci Ci	1.52E-05 3.45E-04	7.62E-05 2.52E-03	7.22E-05 2.08E-03	9.37E-05 2.63E-03
	Particulates (1)					
	Chromium-51	Cì	9.65E-04	2.76E-04	**	**
	Manganese-54	Ci	2.48E-04	1.78E-04	1.68E-04	1.15E-04
	Iron-55	Ci	1.65E-03	4.75E-04	5.86E-04	2.84E-04
	Iron-59	Ci	2.91E-05	5.20E-06	**	**
	Cobalt-58	Ci	8.64E-04	6.58E-04	8.15E-04	7.93E-04
	Cobalt-60	Ci	2.38E-03	1.09E-03	1.16E-03	1.17E-03
	Zinc-65	Ci	2.14E-04	8.04E-05	3.01E-04	2.34E-04
	Strontium-89	Ci	**	**	**	**
	Strontium-90	Ci	**	**	,**	**
	Nioblum-95	Ci	**	**	**	**
	Mo-99	Ci	**	**	**	**
	Cesium-134	Ci	**	##	**	**
	Cesium-136	Ci	**	**	**	**
	Cesium-137	Ci	6.75E-05	1.97E-05	2.42E-05	5.91E-06
	Barium-140	Ci	**	**	**	**
	Lanthanum-140	Ci	**	**	**	**
	Cerium-141	Ci	**	44	**	**
	Cerium-144	Ci	**	. **	**	**
	Neodymium-147	Ci	A.A.	**	**	**
	Antimony-124	Ci	7.23E-05	8.33E-06	**	**
	•					

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates, 1.00E-12 μCi/ml for required lodines, and 1.00E-06 μCi/ml for Tritium as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges are included. There were no other batch releases during the reporting period.

Unit 1 X	Unit 2 Reporting Period: January - December 2021						
	GASEOUS EFFLUI	ENTS - ELEVA	red release				
			E	Batch Mode (2)	1		
Nuclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter		
Fission Gases (1)						
Argon-41	Ci	**	**	**	**,		
Krypton-85	Ci	**	**	**	••		
Krypton-85m	Ci	**	**	##	**		
Krypton-87	Ci	**	**	**	**		
Krypton-88	Ci	**	** -	**	**		
Xenon-127	Ci	**	**	**	**		
Xenon-131m	Ci	##	**	**	**		
Xenon-133	Ci	**	**	**	**		
Xenon-133m	Ci	**	**	**			
Xenon-135	Ci	**	**	**			
Xenon-135m	Ci	**	**	**	**		
Xenon-137	Ci	**	**	••	**		
Xenon-138	Ci	**	**	**	•		
lodines (1)							
lodine-131	Ci	**	**	**	,,,		
lodine-133	Ci	**		**	**		
lodine-135	Ci	ŔŔ	**	**	**		
Particulatos (1)							
Particulates (1) Strontium-89	Ci	••	1 44 1	**	**		
		—		**	**		
Strontium-90	Ci	**		**	". -		
Cesium-134	Ci	**		**	**		
Cesium-137	Ci	**	**		**		
Cobalt-60	Ci	**		**	<u> </u>		
Cobalt-58	Ci		**		**		
Manganese-54	Ci	**	**	**	**		
Barium-140	Ci	**	**	**	**		
Lanthanum-140	Ci	**	**	**	**		
Niobium-95	Ci	**	**	**	**		
Cerium-141	Cì	**	**	**	**		
Cerium-144	Ci	**	**	**	**		
Iron-59	Ci	**	**	**	**		
Cesium-136	Ci	**	**	**	4.4		
Chromium-51	Ci	**	40	**	**		
Zinc-65	Ci	**	**	ń t			
Iron-55	Ci	**	**	**	**		
Molybdenum-99	. Ci	**	**	**	••		
Neodymium-147		**	**	**	**		
Tritium (1)	Ci	**	**	**	••		
HAMMAH							

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates, 1.00E-12 μCi/ml for required lodines, and 1.00E-06 μCi/ml for Tritium as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges, if any, are included. There were no other batch releases during the reporting period.

GA	SEOUS EFFLU	ENTS - GROUND	LEVEL RELE/	ASES	
ound level releases are determined in a	ccordance with	the Off-Site Dose	Calculation Ma	nual and Chemi	istry procedures.
			Cor	ntinuous Mode	1
clides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Fission Gases (1)					
Argon-41	Ci	**	**	**	**
Krypton-85	Ci	**	**	**	**
Krypton-85m	Cì	**	ļ	**	**
Krypton-87	Ci	**	**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci	**	**	**	**
Xenon-131m	Ci	**	**	**	**
Xenon-133	Ci	**	**	**	**
Xenon-133m	Ci		**	**	**
Xenon-135	Ci	**		<u> </u>	1
Xenon-135m	Ci	**	**	**	**
Xenon-137	Ci	**	**	**	**
Xenon-138	Ci	**		L	
lodines (1)				•	
lodine-131	Ci	**	**	**	**
lodine-133	Ci	**	**	**	
lodine-135	Ci	**	**	**	**
Parished (4)					
Particulates (1) Strontium-89	Ci	**	**	**	**
Strontium-89 Strontium-90	Ci	** -	**	**	** /
Strontium-90 Cesium-134	Ci Ci	**	**	**	**
Cesium-134 Cesium-137		**	**	**	**
	Ci Ci	**	**	**	**
Cobalt-60	Ci Ci	**	**	**	**
Cobalt-58	Ci Ci	**	**	**	**
Manganese-54		**	**	**	**
Barium-140 Lanthanum-140	Ci	**	**	**	**
Lanthanum-140 Niobium-95	Ci Ci	**	**	**	**
		**	**	**	**
Cerium-141	Ci Ci	**	**	**	**
Cerium-144	Ci	**	**	**	**
Iron-59	Ci	**	**	**	**
Cesium-136	Ci	**	4.	**	**
Chromium-51	Ci	**	**	**	**
Zinc-65	Ci	**	**	**	**
(ron-55	Ci	**	**	**	**
Molybdenum-99	Ci Ci	**	**	**	**
Neodymium-147	Ci		لـــــــــــــــــــــــــــــــــــــ		
Tritium (1)	Ci	5.73E-01	1.26E+00	1.25E+00	9.31E-01

Unit 1 X Unit 2	-	_	Report	ing Period: Ja	nuary - December 2021				
	GASEOUS EFFLUENTS - GROUND LEVEL RELEASES								
Ground level releases are determined in accord	ance with t	he Off-Site Dose	Calculation Mar						
				Batch Mode					
Nuclides Released <u>1st Quarter</u> <u>2nd Quarter</u> <u>3rd Quarter</u> <u>4th Quarter</u>									
Fission Gases (1)			•						
Argon-41	Ci	**	**	**	**				
Krypton-85	Ci	**	**	**	**				
Krypton-85m	Ci	**	**	**	**				
Krypton-87	Ci	**	**	**	**				
Krypton-88	Ci	**	**	**	**				
Xenon-127	Ci	**	##	#4	**				
Xenon-131m	Ci	**	**	**	**				
Xenon-133	Ci	**	**	**	**				
Xenon-133m	Ci	21	**	**	**				
Xenon-135	Ci	**	**	**	**				
Xenon-135m	Ci	**	**	**	**				
Xenon-137	Ci	**	**	**	**				
Xenon-138	Ci	**	**	**	**				
lodines (1)									
lodine-131	Ci	**	4*	**	**				
lodine-133	Ci	**	##	**	**				
lodine-135	Cì	**	**	**	**				
Particulates (1)									
Strontium-89	Ci	**	**	**	**				
Strontium-90	Ci	**	**	**	**				
Cesium-134	Ci	**	**	**	**				
Cesium-137	Ci	**	**	**	**				
Cobalt-60	Ci	**	44	**	**				
Cobalt-58	Ci	**	**	**	**				
Manganese-54	Ci	4+	**	**	4*				
Barium-140	Ci	**	**	**	**				
Lanthanum-140	Ci	**	**	**	**				
Niobium-95	Ci	**	**	**	**				
Cerium-141	Ci	**	**	**	**				
Cerium-144	Ci	**	**	**	**				
Iron-59	Ci	**	**	. **	**				
Cesium-136	Ci	**	**	**	**				
Chromium-51	Ci	**	**	**	**				
Zinc-65	Ci	**	te	**	**				
Iron-55	Ci	**	**	**	##				
Molybdenum-99	Ci	**	**	**	**				
Neodymium-147	Ci	**	**	**	**				
<u>Tritium (1)</u>	Ci	**	**	**	**				
THE SHIP (1)	Oi.								
(1) Concentrations less than the lower limit of detec	tion of the	counting system	used are indicat	ed with a double	e asterisk.				

Unit 1 X Unit 2		-		Reporting F	Period: Januar	ry - December 2021
LIQUID	EFFLUENTS	- SUMMATION	OF ALL RELE	ASES (1)		······
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Est. Total Error, %
A. Fission & Activation Products 1. Total Release (not including Tritium,	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
gases, alpha) 2. Average diluted concentration during reporting period	μCi/ml	No Releases	No Releases	No Réleases	No Releases	0.002 101
B. <u>Tritium</u>		,				
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
Average diluted concentration during the reporting period	μCi/ml	No Releases	No Releases	No Releases	No Releases	
C. <u>Dissolved and Entrained Gases</u>						
1. Total release	Cì	No Releases	No Releases	No Releases	No Releases	5.00E+01
Average diluted concentration during the reporting period	μCi/ml	No Releases	No Releases	No Releases	No Releases	
D. <u>Gross Alpha Radioactivity</u>						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. <u>Volumes</u>					·-·	
1. Prior to Dilution	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
Volume of dilution water used during release period	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
Volume of dilution water available during reporting period - Cooling Water	Liters	1.18E+11	1.18E+11	1.37E+11	1.35E+11	5.00E+01
F. Percent of Tech. Spec, Limits			_			
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of 10CFR20 Concentration Limit	%	No Releases	No Releases	No Releases	No Releases	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	No Releases	No Releases	No Releases	No Releases	
oncentrations less than the lower limit of dete	ction of the c	ounting system	used are indica	ted with a doub	le asterisk	
		•				

Unit 1	X Unit 2		-	Reporting	Period: Janu	ary - Decembe			
	***************************************	LIQUID E	FLUENTS RELE	ASED					
			Batch Mode (1),(2)						
Nuclides Re	eleased		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter			
	Nuclides Released					N. N. N. L. A.			
	Strontium-89	Ci	No Releases	No Releases	No Releases	No Releases			
	Strontium-90	Ci	No Releases	No Releases	No Releases	No Releases			
	Cesium-134	Ci	No Releases	No Releases	No Releases	No Releases			
	Cesium-137	Ci	No Releases	No Releases	No Releases	No Releases			
	lodine-131	Ci	No Releases	No Releases	No Releases	No Releases			
	Cobalt-58	Ci	No Releases	No Releases	No Releases	No Releases			
	Cobalt-60	Ci	No Releases	No Releases	No Releases	No Releases			
	Iron-59	Ci	No Releases	No Releases	No Releases	No Releases			
	Zinc-65	Ci	No Releases	No Releases	No Releases	No Releases			
	Manganese-54	Ci	No Releases	No Releases	No Releases	No Releases			
	Chromium-51	Ci	No Releases	No Releases	No Releases	No Releases			
	Zirconium-95	Ci	No Releases	No Releases	No Releases	No Releases			
	Niobium-95	Ci	No Releases	No Releases	No Releases	No Releases			
	Molybdenum-99	Ci	No Releases	No Releases	No Releases	No Releases			
	Barium-140	Ci	No Releases	No Releases	No Releases	No Releases			
	Lanthanum-140	Ci	No Releases	No Releases	No Releases	No Releases			
	Cerium-141	Ci	No Releases	No Releases	No Releases	No Releases			
			,						
	lodine-133	Ci	No Releases	No Releases	No Releases	No Releases			
	Iron-55	Ci	No Releases	No Releases	No Releases	No Releases			
	Cerium-144	Ci	No Releases	No Releases	No Releases	No Releases			
	Cesium-136	Ci	No Releases	No Releases	No Releases	No Releases			
	Copper-64	Ci	No Releases	No Releases	No Releases	No Releases			
	Manganese-56	Ci	No Releases	No Releases	No Releases	No Releases			
	Nickel-65	Ci	No Releases	No Releases	No Releases	No Releases			
	Sodium-24	Ci	No Releases	No Releases	No Releases	No Releases			
Disso	lved or Entrained Gases	Ci	No Releases	No Releases	No Releases	No Releases			
	Tritium	Ci	No Releases	No Releases	No Releases	No Releases			

⁽¹⁾ No continuous mode release occurred during the report period as indicated by effluent sampling. There were no Radwaste Batch Releases.

⁽²⁾ Concentrations less than the lower limit of detection of the counting system used have been verified for sampled effluents. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified. Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk.

Unit 1	х	Unit 2			Reporting Pe	riod: January - D	ecember 2021		
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS									
A1. TYPE		.'	<u>Volume</u> (m³)			Activity (1) (Ci)			
 - -			Class	;		Class			
		Α	В	C	Α	В	С		
a.1 Spent Resin ((Dewatered)	1.98E+01	0.00E+00	0.00E+00	2.92E+01	0.00E+00	0.00E+00		
a.2 Filter Sludge		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
a.3 Concentrated	Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Totals	1.98E+01	0.00E+00	0.00E+00	2.92E+01	0.00E+00	0.00E+00		
		•			-				
b.1 Dry Compres	sible Waste	2.34E+02	0.00E+00	0.00E+00	6.28E-01	0.00E+00	0.00E+00		
b.2 Dry Non-Com Waste (Conta Equipment)		0,00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00		
	Totals	2.34E+02	0.00E+00	0.00E+00	6.28E-01	0.00E+00	0.00E+00		
c. Irradiated Com Control Rods,		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
d. Other (to vendo	r for processing)							
d.1 Sewage Sludg	je	7.25E-01	0.00E+00	0.00E+00	1.30E-03	0.00E+00	0.00E+00		
(1) The estimated tot	(1) The estimated total error is 5.0E+01%.								

Unit 1 X	Unit 2	Reporting P	eriod: January - December 2021
	SOLID WASTE AND IRR	ADIATED FUEL SHIPMENTS	
A1. TYPE	<u>Container</u>	<u>Package</u>	Solidification Agent
a.1 Spent Resin	Poly Liner	General Design	None
a.2 Filter Sludge	Poly Liner	Туре В	None
b.1 Dry Compressible Waste	Seavan	General Design	None
b.2 Dry Non-Compressible Waste (contaminated equipment)	N/A	N/A	N/A
c. Irradiated Components,	AVA	N/A	Aug.
Control Rods	N/A	N/A	N/A
d. Other (To vendor for processing)			
d.1 Sewage Sludge	Sack	General Design	N/A

Unit 1 X	Unit 2	-	Reporting Period: January - December 2021					
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS								
A2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (BY TYPE OF WASTE)								
a. Spent Resins, Filter Sludges,	Concentrated Waste							
	ıclide	<u>Percent</u>	<u>Curies</u>					
	C-14	1.35%	3.95E-01					
	e-55	2.84%	8.28E-01					
	0-60	91.56%	2.67E+01					
Cs	÷137	2.56%	7.47E-01					
	Non-Compressible Waste (Contamir	, 						
	iclide	Percent	Curies					
	n-54" e-55	9.84%	6.18E-02					
	e-59	12.11% 1.19%	7.60E-02					
	e-59 0-58	2,34%	7.47E-03 1.47E-02					
	0-38	69.85%	4.38E-01					
	n-65	1.81%	4.36E-01 1.13E-02					
	:-137	2,49%	1.56E-02					
	-131	2.4976	1.50E-02					
c. Irradiated Components, Contr	ol Rods: There were no shipments.	<u> </u>						
<u>Nu</u>	<u>iclide</u>		<u>Percent</u>					
j	NA		NA					
d. Other: (To vendor for process	ng)							
1. Sump Liner								
<u>Nu</u>	<u>clide</u>	<u>Percent</u>	<u>Curies</u>					
M	n-54	8.13%	1.05E-04					
Fe	e-55	24.02%	3.11E-04					
C	o-58	1.10%	1.43E-05					
С	o-60	63.38%	8.22E-04					
Zı	1-65	1.42%	1.85E-05					

Unit 1 X	Unit 2	Reporting Period: January - December 2021
	SOLID WASTE AND IRRADIATED FUE	L SHIPMENTS
A3. SOLID WASTE DISPOSITION	ON	
Alimaka Chinmonto	Node of Transpadation	Destination
Number of Shipments	Mode of Transportation	Destination Francy Solutions Roar Crook
6	Truck, highway	Energy Solutions, Bear Creek
1	Truck, highway Truck, highway	Energy Solutions, Clive CWF Perma-Fix of Florida
<u> </u>	Truck, riighway	Perma-rix of rioliua
B. IRRADIATED FUEL SHIPME	:NTS (Disposition)	
Number of Shipments	Mode of Transportation	<u>Destination</u>
	ED TO A TREATMENT FACILITY FOR PROCESSII wage sludge with detectible quantities of plant-relate	

Unit 1	х	Unit 2				Reporting Period	l; January - December	2021
	SUMM	ARY OF CHANG	ES TO THE C	OFF-SITE D	OSE CALCU	ILATION MANUAL	(ODCM)	
No c	nanges wei	re made to the Ur	nit 1 Off-Site D	Pose Calcul	ation Manual	(ODCM) during the	e reporting period.	
					,			ļ
						·		
							,	
								į
						,		
					·			

SUMMARY OF CHANGES TO THE PROCESS CONTROL PROGRAM (PCP) No changes were made to the Process Control Program during the reporting period.	
No changes were made to the Process Control Program during the reporting period.	

	Ċ

Unit 1 X	Unit 2	Reporting Period: January - December 2021
	SUMMARY C	OF NON-FUNCTIONAL MONITORS
Monitor	Dates Monitor was Non-Functional	Cause and Corrective Actions
Liquid Radwaste Discharge Monitors 11 and 12	January 1, 2021 to December 31, 2021	These monitors were intentionally allowed to exceed their quarterly functional tests and annual calibration frequency, as no discharges are planned or expected. This condition is allowed as long as blank flanges are installed in the discharge line, precluding any unmonitored discharge. Blank flanges are currently installed and no liquid waste discharges were performed during 2021. This non-functionality is tracked in Equipment Status Log (ESL-Deficient-09-0029)

Unit 1 _	X	Unit 2	Reporting Period: January - December 2021
	DO:	SES TO MEMBERS OF THE PUBLIC DUE TO THEIR A	CTIVITIES INSIDE THE SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 1 (NMP1) liquid and gaseous effluents has been conducted for the period January through December 2021.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2021, the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

Dose Pathways

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP1 stack and emergency condenser vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP1 Stack and Emergency Condenser Vent.
- Direct radiation pathway; dose resulting from the operation of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP1 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

Unit 1_	<u>x</u>	Unit 2	Reporting Period: January - December 2021
	DO	SES TO MEMBEI	S OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2021 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- · Shore width factor = 0.3
- · Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time peric
- No radionuclides were detected in sediment samples for 2021.

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP1 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2021 calculated using the following input parameters for gaseous effluents released from both the NMP1 Stack and Emergency Condenser Vent for the time period exposure is received:

NMP 1 Stack:

Variable	Fisherman ¹		
X/Q (s/m³)	8.9E-6		
Inhalation dose factor	Table E-7, Regulatory Guide 1.109		
Annual air intake (m³/year) (adult)	8000		
Fractional portion of the year	0.0356		
H-3 (pCi/sec)	9.07E+05		
C-14 (pCi/sec) ²	2.63E+05		
Mn-54 (pCi/sec)	1.93E+01		
Fe-55 (pCi/sec)	5.57E+01		
Fe-59 (pCi/sec)	2.19E-01		
Co-58 (pCi/sec)	9.70E+01		
Co-60 (pCi/sec)	1.44E+02		
Zn-65 (pCi/sec)	2.65E+01		
I-131 (pCi/sec)	1.02E+01		
I-133 (pCi/sec)	3.11E+02		
Cs-137 (pCi/sec)	9.58E+00		

Unit 1	X	Unit 2		Reporting Period: January - December 2021
	DOS	SES TO MEMBERS OF	THE PUBLIC DUE	TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2021 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time peric
- No radionuclides were detected in sediment samples for 2021.

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

<u>Inhalation</u>

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP1 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2021 calculated using the following input parameters for gaseous effluents released from both the NMP1 Stack and Emergency Condenser Vent for the time period exposure is received:

NMP 1 Stack:

Variable	Fisherman ¹		
X/Q (s/m³)	8.9E-6		
Inhalation dose factor	Table E-7, Regulatory Guide 1.109		
Annual air intake (m³/year) (adult)	8000		
Fractional portion of the year	0.0356		
H-3 (pCi/sec)	9.07E+05		
C-14 (pCi/sec) ²	2.63E+05		
Mn-54 (pCi/sec)	1.93E+01		
Fe-55 (pCi/sec)	5.57E+01		
Fe-59 (pCi/sec)	2.19E-01		
Co-58 (pCi/sec)	9.70E+01		
Co-60 (pCi/sec)	1.44E+02		
Zn-65 (pCi/sec)	2.65E+01		
I-131 (pCi/sec)	1.02E+01		
I-133 (pCi/sec)	3.11E+02		
Cs-137 (pCi/sec)	9.58E+00		

Unit 1 _	X	Unit 2	Reporting Period: January - December 2021
	DOS	SES TO MEMBE	RS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

NMP1 Emergency Condenser Vent:

Fisherman ¹
6.63E-06
Table E-7, Regulatory Guide 1.109
. 8000
0.0356
1.45E+05

- The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Emergency Condenser Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.
- C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP1 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2021 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.26E-03
Exposure time (hours)	312

Total doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

Unit 1 _ X _ Unit 2	Reporting Period: January - December 2021
DOSES TO MEMBERS OF THE PUBLIC DUE TO THE	EIR ACTIVITIES INSIDE THE SITE BOUNDARY

Dose Received By Hypothetical Maximum Exposed Member of the Public Inside the Site

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP1 during 2021:

TABLE 1
Exposure Pathway Annual Dose

Exposure Pathway	Dose Type	Fisherman (mrem)
Fitneral Crawnd	Whole Body	0.00E+00
External Ground	Skin of Whole Body	0.00E+00
	Whole Body	6.93E-04
Inhalation	Maximum Organ	Bone: 1.51E-03
	Thyroid	6.91E-04
Direct Radiation	Whole Body	0.39

Based on these values the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

TABLE 2
Annual Dose Summary

Total Annual Dose for 2021	Fisherman (mrem)
Total Whole Body	3.92E-01
Skin of Whole Body	0.00E+00
Maximum Organ	Bone: 3.92E-01
Thyroid	7.10E-04

Unit 1X	Unit 2	Reporting Period: January - December 2021	
DOS	ES TO MEMBERS OF	THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY	

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2021 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 1 (NMP1), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body
- < 25 mRem any organ (except thyroid)</p>
 - < 75 mRem thyroid

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP (including the Independent Spent Fuel Storage Installations (ISFSI)).

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP1 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2021 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2021; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2021.

Unit 1 _	X	Unit 2	Reporting Period: January - December 2021
	DOS	SES TO MEMBERS OF THE PU	BLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The dose for 2021 is calculated from actual analysis results of environmental vegetation samples taken near the most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2021; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2021.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in plant gaseous effluents.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP1 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2021; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2021.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. Actual meteorological data was used to calculate doses to the likely most exposed Member of the Public. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2021 provides a total dose to the whole body and maximum organ dose for this pathway.

Carbon-14 Dose Pathways Resulting from Gaseous Effluents

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2021 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010. The following methodology was used in estimating C-14 gaseous release activity and dose components for the 2021 ARERR.

EPRI methodology for estimating C-14 production rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that ~95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

Unit 1X	X	Unit 2				Reporting Perio	d: January - I	December 20	21
	DOS	ES TO	MEMBERS OF THE PUBLIC	C DUE TO TH	IEIR AC	TIVITIES OUT	SIDE THE SIT	TE BOUNDA	.RY

For NMP1 and NMP2, C-14 gaseous dose calculations in the site ARERR are made using the following assumptions for each unit: (1) continuous release of the estimated C-14 generated during power operation based on the number of Effective Full Power Days (EFPDs) for the period, (2) maximum C-14 activity from literature values cited in EPRI Report 1021106, and (3) typical fraction as carbon dioxide for gaseous releases from literature values also cited in EPRI Report 1021106.

Equation 1 estimates the maximum annual production of C-14, PR_{MAX}, for each BWR unit.

$$PR_{MAX} = 5.1 \cdot MWT / 1000$$
 [Eq 1]

Where:

5.1 = BWR Normalized Production (Ci/GWt-yr)

MWT = MegaWatts Thermal (MWt)

1000 = Conversion Factor (MWt to GWt)

Equation 2 estimates the C-14 activity released, A_{C-14} , into the gaseous pathway during the time period for each BWR unit.

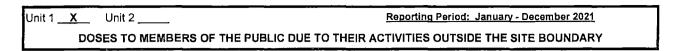
$$A_{C-14} = PR_{MAX} \cdot 0.99 \cdot EFPD / 365$$
, Ci (for time period) [Eq 2]

Where:

 PR_{MAX} = maximum annual production rate of C-14

0.99 = fraction of C-14 in BWR gaseous pathway releases (maximum

literature value in EPRI Report 1021106; also Table 1)


EFPD = number of effective full power days for the unit during the time

period; e.g., quarterly or yearly (Table 1)

365 = number of days in a typical year

[Eq 3]

ATTACHMENT 11

Equation 3 estimates the C-14 activity released in carbon dioxide form, $A_{C-14, CO2}$, into the gaseous pathway during the time period for each BWR unit.

PR_{MAX} · 0.99 · 0.95 · EFPD / 365, Ci (for time period)

Where:			
	PR _{MAX}	=	maximum annual production rate of C-14
	0.99	=	fraction of C-14 in BWR gaseous pathway releases (maximum literature value in EPRI Report 1021106; also Table 1)
	0.95	=	fraction of C-14 as carbon dioxide in BWR gaseous pathway releases (typical literature value in EPRI Report 1021106; also Table 1)
	EFPD	=	number of effective full power days for the unit during the time period, e.g. quarterly or yearly (Table 1)
	365	=	conversion factor, 365 days in a typical average year

For each BWR unit, the 2021 estimated C-14 activity releases (total and carbon dioxide chemical form) are summarized in Table 1.

<u>Table 1</u>
2021 BWR Estimated C-14 Gaseous Releases

ZOZI BYYK ZOMMACK O 11 OKOSOWO KOROGOO							
BWR	Gaseous Release Fraction ^(a)	CO ₂ Form Release Fraction ^(b)	EFPD Operation	Max. Annual Prod. Rate (Eq 1)	2021 Total Release (Eq 2)	2021 CO2 Release (Eq 3)	
NMP1	0.99	0.95	342.031 EFPD (93.71%)	9.44 Ci/yr	8.76 Ci	8.32 Ci	
NMP2	0.99	0.95	363.679 EFPD (99.64%)	20.33 Ci/yr ^(c)	20,05 Ci	19.05 Ci	
JAFNPP	0.99	0.95	364 EFPD (99.73%)	10.79 Ci/yr	10.65 Ci	10.12 Ci	

- (a) Maximum literature values from EPRI Report 1021106.
- (b) Typical value from EPRI Report 1021106.

A C-14, CO2

(c) NMP2 Reactor Power Rating increased to 3988 Megawatts thermal.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Unit 1	<u>X</u> _	Unit 2	Reporting Period: January - December 2021
İ	DOS	SEŚ TO MEMB	RS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2021, the closest residence and the critical downwind residence are at the same location.

Table 2

Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2021

Exposure Pathway	Dose Type	Dose (mrem)
Fish and Vegetation	Total Whole Body	No Dose
Consumption	Total Maximum Organ	No Dose
Charalina Cadimant	Total Whole Body	No Dose
Shoreline Sediment	Total Skin of Whole Body	No Dose
	Total Whole Body	2.70E-03
Gaseous Effluents (excluding C-14)	Thyroid	6.50E-03
(excluding 0-14)	Maximum Organ	Thyroid: 6.50E-03
Gaseous Effluent	Total Whole Body	2.49E-01
(C-14 only)	Maximum Organ	Bone : 1.25E+00
Direct Radiation	Total Whole Body	1.69E+00

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2021 is as follows:

Total Whole Body:

1.94E+00

Total Thyroid:

6.50E-03

Maximum Organ:

Bone: 1.25E+00

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAFNPP facilities. The maximum organ dose (Bone: 1.25 mrem), maximum thyroid dose (6.50E-03 mrem) and the maximum whole body dose (1.94 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

			·	T
Well Identification Number	# Samples Collected	# Positive Samples	Minimum Concentration (pCi/l)	Maximum Concentration (pCi/l
GMX-MW1*	1	0	<176	<176
MW-1	1	0	<180	<180
MW-5	3	0	<181	<196
MW-6	1	0	<172	<172
MW-7	1	0	<188	<188
MW-8	3	0	<179	<192
MW-91	3	0	<179	<195
MW-101	1	0	<177	<177
MW-11	1	. 0	<183	<183
MW-12	1	0	<178	<178
MW-13	1	0	<181	<181
MW-14*	1	. 0	<179	<179
MW-15	3	0	<178	<191
MW-16	1	0	<175	<175
MW-17	3	0	<179	<192
MW-18	3	0	<180	<193
MW-19	1	0	<182	<182
MW-20	1	0	<180	<180
MW-21	1	0	<179	<179
NMP2 MAT 2,3	4	1	<183	<226
PZ-1	2	0	<174	<194
PZ-2	1	0	<178	<178
PZ-3	1	0	<177	<177
PZ-4	1	0	<177	<177
PZ-5	1	0	<175	<175
PZ-6	1	0	<184	<184
PZ-7	3	1	<181	242
PZ-8	3	0	<180	<195
PZ-9*	1	0	<178	<178

Notes:

- * Control Location
- ¹ Sentinel well location
- ² NMP2 Groundwater Depression Cone
- ³ Samples collected from storm drain system which includes precipitation
- ⁴ No samples were collected during 2nd due to Covid-19

Unit 1	X Unit 2	Reporting Period: January - December 2021
		·
	Off-Site Do	se Calculation Manual (ODCM)
	Unit 1 ODCM not include	d since there were no changes made in the last calendar year.

Unit 1	x	Unit 2	Reporting Period: January - December 2021		
		`			
; ;					
		Process C There were no change	ontrol Progra	m (PCP) Program in 2021.	
		,			
		•			
		,			

Enclosure 1

Nine Mile Point Nuclear Station, Unit 2

Radioactive Effluent Release Report, January – December 2021

NINE MILE POINT NUCLEAR STATION - UNIT 2 RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2021

NINE MILE POINT NUCLEAR STATION - UNIT 2 RADIOACTIVE EFFLUENT RELEASE REPORT JANUARY - DECEMBER 2021

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit 2 Licensee: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION/ODCM LIMITS

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- The dose rate limit of lodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- Improved Technical Specifications (ITS) limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by an on-line scintillation detector (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic sample stream.

B) IODINES

lodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

G) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, *Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents*, December 2010 and NUREG-0016, *Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)*.

3. METEOROLOGICAL DATA

Meteorological data is an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Radiological Effluent Release Report, the licensee is exercising the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

ATTACHMENT 1 SUMMARY DATA

Unit 1	Unit 2 X	Reporting Per	riod: January - December 2021
Liquid Efflu	uents:		
ODCM Requ	uired Maximum Effluent Concentration (MEC) = 10 x 10C	320.1001 - 20.2402, Appendix B, Table 2, Colur	nn 2
,			
İ	Average MEC - µCi/ml (Qtr. 1) = NO RELEASES	Average MEC - μ Ci/ml (Qtr. 3) =	NO RELEASES
	Average MEC - μ Ci/ml (Qtr. $\underline{2}$) = NO RELEASES	Average MEC - μCi/ml (Qtr. 4) =	NO RELEASES
		_ ·	
Average En	ergy (Fission and Activation gases - MEV):		
	Qrtr. 1: $\vec{E}_{\gamma} = 1.13E-01$	Ēβ = 4.05E-02	
	Qrtr. 2: EV = N/A	$\overline{E}_{B} = \frac{4.03E-52}{N/A}$	
	Qrtr. $\underline{2}$: $\overline{E}\gamma$ = $\frac{N/A}{N/A}$	Ēβ = N/A Ēβ = N/A	
	$Qrtr. \underline{4}: \overline{E}\gamma = \frac{N/A}{N/A}$	$E_{\beta} = \frac{N/A}{N/A}$	
l	Qrii. 4. Εγ - <u>iv/A</u>		
Liquid:			
			\$
	Number of Batch Releases	0	
1	Total Time Period for Batch Releases (hrs)	0.0	•
	Maximum Time Period for a Batch Release (hrs) Average Time Period for a Batch Release (hrs)	0.0	
[Minimum Time Period for a Batch Release	0.0	
	Withinfull Time Fellow for a Bator Release		
	Total volume of water used to dilute the liquid	<u>1st 2nd 3rd</u>	<u>4th</u>
	during the release period (L)	N/A N/A N/A	N/A
l	Total column of contar positivity to diffuse the liquid	dat Ond Ord	416
1	Total volume of water available to dilute the liquid	<u>1st</u> <u>2nd</u> <u>3rd</u> 1.08E+10 1.13E+10 1.24E+10 1.1	4th 1E+10
	effluent during the report period (L)	1.082+10 1.132+10 1.242+10 1.1	TE+10
			·
Gaseous (E	mergency Condenser Vent) "Not applicable for Unit 2		
	Number of Batch Releases	N/A	
	Total Time Period for Batch Releases (hrs)	N/A	
u,	Maximum Time Period for a Batch Release (hrs)	N/A	
	Average Time Period for a Batch Release (hrs)	N/A	
	Minimum Time Period for a Batch Release	N/A	•
	,		
Gaseous (P	rimary Containment Purge)		
	Number of Datab Dalassa		
ĺ	Number of Batch Releases Total Time Period for Batch Releases (hrs)	1	
1		5.1 5.1	
]	Maximum Time Period for a Batch Release (hrs)		
1	Average Time Period for a Batch Release (hrs)	5.1	
	Minimum Time Period for a Batch Release (hrs)	5.1	·

Unit 1	Unit 2 X		Reporting Period: January - December 2021
Abnormal Release	s:		
A. Liquids:			
	Number of Releases 0 Total Activity Released N/A	Ci	·
B. Gaseous:			·
	Number of Releases 0 Total Activity Released N/A	Ci	

Uni	it 1 Unit 2	X	-		Reporting	Period: Januar	ry - December 2021
	GASEOUS EFFLU	ENTS - SUN	MATION OF A	LL RELEASES	, ELEVATED A	ND GROUND LE	VEL
			<u>1st</u> Quarter	2nd Quarter	<u>3rd</u> Quarter	4th Quarter	Est. Total Error, %
	sion & Activation Gases					· · · · · · · · · · · · · · · · · · ·	
	Total Release	Ci	8.73E-02	0.00E+00	0.00E+00	0.00E+00	5.00E+01
2.	Average Release Rate	μCi/sec	1.12E-02	0.00E+00	0.00E+00	0.00E+00	
3. <u>lodir</u>	nes						
	Total lodine - 131	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.00E+01
	Average Release Rate for Period	μCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
_							
	ticulates Padiculates with Half lives adays	C:	4 005 04	4 00E 04	7 205 05	T 4 44E 04	2 005±04
	Particulates with Half-lives>8days Average Release Rate for Period	Ci µCi/sec	1.80E-04 2.31E-05	1.60E-04 2.03E-05	7.38E-05 9.29E-06	1.44E-04 1.81E-05	3.00E+01
	Average Release Rate for Period Gross Alpha Radioactivity	μCi/sec Ci	0.00E+00	0.00E+00	9.29E-06 0.00E+00	0.00E+00	2.50E+01
J	31088 Alpha Madioactivity	G	0.000	0.002.00	0.00000	0.002.00	2,00E+01
. Tritic	um						
1.	Total Release	Ci	2.32E+01	1.67E+01	2.62E+01	5.09E+01	5.00E+01
2.	Average Release Rate for Period	μCi/sec	2.98E+00	2.13E+00	3.29E+00	6.40E+00	
Fissio	cent of Tech. Spec. Limits on and Activation Gases				T	 1	
(5 mR)		%	2.78E-04	0.00E+00	0.00E+00	0.00E+00	
nrad)	nt of Quarterly Beta Air Dose Limit (10	%	4.09E-06	0.00E+00	0.00E+00	0.00E+00	
	nt of Annual Gamma Air Dose Limit to 10 mR)	%	1.39E-04	1.39E-04	1.39E-04	1.39E-04	
	nt of Annual Beta Air Dose Limit to 20 mrad)	%	2.04E-06	2.04E-06	2.04E-06	2.04E-06	
Percent nrem/y	nt of Whole Body Dose Rate Limit (500 yr)	%	1.08E-05	0.00E+00	0.00E+00	0.00E+00	
Percent mrem/y	nt of Skin Dose Rate Limit (3000 yr)	%	2.12E-06	0.00E+00	0.00E+00	0.00E+00	
lives gre Percent Percent mrem)	. Jodines, and Particulates (with half-reater than 8 days) at of Quarterly Dose Limit (7.5 mrem) at of Annual Dose Limit to Date (15	% %	8.18E-03 8.18E-03 1.58E-04	6.87E-03 1.50E-02 1.30E-04	7.08E-03 2.21E-02 1.37E-04	1.95E-02 4.16E-02 3.89E-04	

	G^	SEOUS EFFLUENT	O ELEVATED OF	El CAGE		
		SEOUS EFFLUENT		us Mode (2)		
			-	, m. a		
Nuclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	·
Fission Gases (1)	Ci	8.73E-02	**	**	, 	
Argon-41	Ci	8.73E-U2	**	**	**	
Krypton-85 Krypton-85m	Ci	**	**	**	**	
Krypton-87	Cí	**	**	**	**	
Krypton-88	Ci	**	**	**	**	
Xenon-127	Ci	**	**	**	**	
Xenon-131m	Ci	**	**	**	**	
Xenon-133	Ci	**	**	**	**	
Xenon-133 Xenon-133m	Ci	t#	**	**	**	
Xenon-133m Xenon-135	Ci Ci	**	**	**	**	
	Ci Ci	**	**	**	**	
Xenon-135m		**	**	**	**	
Xenon-137 Xenon-138	Ci Ci	**	**	**	**	
Venou-120	Oi				<u></u>	
lodines (1)						
lodine-131	Ci	**	**	**	1	
lodine-133	Ci	**	**	**	4.41E-05	
lodine-135	Ci	**	84	**	**	
Particulates (1)	-	**	**	**		
Chromium-51	Ci	**	l	**		
Manganese-54	Ci		**		**	
Iron-55	Ci	**	**	**	**	
Iron-59	Ci	**	••	**	**	
Cobalt-58	Ci	**	**	**	**	
Cobalt-60	Ci	6.24E-05	4.52E-05	3.00E-05	1.02E-05	
Zinc-65	Ci	**	**	**	**	
Strontium-89	Ci	**	**	**	**	
Strontium-90	Ci	**	**	**	**	
Niobium-95	Cì	**	et	**	••	
Molybdenum-99	Ci	**	**	**	h+	
Cesium-134	Ci	**	**	**	**	
Cesium-136	Ci	**	**	**	**	
Cesium-137	Ci	**	**	**	**	
Barium-140	Ci	**	**	**	**	
Lanthanum-140	Ci	**	**	**	**	
Cerium-141	Ci	**	**	**	**	
Cerium-144	Ci	**	**	**	**	
Neodymium-147	Ci	**	**	**	**	
•	Ci	**	**	**	**	
	Ci	**	**	**	**	
<u>Tritium (1)</u>	Ci	1.79E+01	1.26E+01	1.71E+01	1.62E+01	

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required lodines, 1.00E-11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges are included. There were no other batch releases during the reporting period.

Unit 1	Unit 2 X			Reporting P	eriod: January - D	ecember 2021
		GASEOUS EFFLUENT	S - ELEVATED RE	LEASE		
			Batch I	Vlode (2)		
Nuclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
Fission Gas	ses (1)					
Argon-41	Ci	**	**	**	**	
Krypton-85	Ci		**	**	**	
Krypton-85n	n Ci	**	**	**	**	
Krypton-87	Cì	**	**	**	**	
Krypton-88	Ci		**	**	**	
Xenon-127	Ci		**	**	**	
Xenon-131n			**	**	**	
Xenon-133	. Ci		**	**	**	
Xenon-133n			**	**	**	
Xenon-135	Cí	<u></u>	**	**	**	
Xenon-135 Xenon-135n		<u> </u>	**	**	**	
Xenon-137	Ci		**	**	44	
Xenon-137 Xenon-138	Ci		**	**	**	
V61011-120	Ci	<u> </u>	<u> </u>	l	L	
lodines (1)						
lodine-131	Ci	**	**	**	**	
lodine-133	Ci		**	**	**	
lodine-135	Ci		**	**	. **	:
Todine 100	O1	<u> </u>	<u> </u>	لــــــــــــــــــــــــــــــــــــ	<u></u>	
<u>Particulates</u>	<u>s (1)</u>					
Chromlum-5	:1 . Ci	**	**	**	**	
Manganese-	-54 Ci	**	**	**	**	
Iron-55	, Ci	**	**	**	**	
Iron-59	Ci	**	**	**	**	
Cobalt-58	Ci	**	**	**	**	
Cobalt-60	Ci	**	**	4+	**	
Neodymium-			**	**	**	
Zinc-65	Ci		**	**	22	
Strontium-89		**	**	**		
Stronium-90	-	**	**	**	**	
Niobium-95	Ci	**	**	**	**	
Zirconium-93		**	**	**	**	
Molybdenum		L	**	**	**	
Ruthenium-1			**	##	**	
Cesium-134			**	**	**	
		<u> </u>	**	**	•*	
Cesium-136			**	. **	**	
Cesium-137			**	**	**	
Barium-140	Ci		**	**		
Lanthanum-		**	**	**	**	
Cerium-141	Ci	**	**	**	**	
Cerium-144	Ci					

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required lodines, 1.00E-11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges are included. There were no other batch releases during the reporting period.

Unit 1	Unit 2	X	_		Reporting	Period: Janu	ary - December 202
		GASEOUS	EFFLUENTS - G	ROUND LEVE	RELEASES		
			• •	Continuou	s Mode (2)		-
Nuclides F	Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
	Fission Gases (1)						
	Argon-41	Ci	**	**	**	**	
	Krypton-85	Ci	**	**	**	**	
	Krypton-85m	Ci	**	**	**	**	
	Krypton-87	Ci	**	**	**	**	·
	Krypton-88	Ci	**	**	**	**	
	Xenon-127	Ci	**	**	**	**	
	Xenon-131m	Ci	**	**	**	**	
	Xenon-133	Ci	**	**	**	**	
	Xenon-133m	Ci	**	**	**	**	
	Xenon-135	Ci	**	**	**	**	
	Xenon-135m	Ci	**	**	**	**	
	Xenon-137	Ci	**	**	**	**	
	Xenon-138	Ci	**	**	**	**	
							
	lodines (1)						•
	lodine-131	Ci	**	**	**	**	
	lodine-133	Ci	**	**	**	A+	
	lodine-135	Ci	**	**	**	**	
	-						
0 "1	Particulates (1)		**	**	**	**	
Cr-51	Chromium-51	Ci	**	**	**	24	
Mn-54	Manganese-54	Ci	**	**	**	**	
Fe-55	Iron-55	Ci	**			**	
Fe-59	Iron-59	Ci	**	**	**		
Co-58	Cobalt-58	Ci	,				
Co-60	Cobalt-60	Ci	1.17E-04	1.14E-04	4.38E-05	1.19E-04	
Zn-65	Zinc-65	Ci	**	**	**	**	
Sr-89	Strontium-89	Ci	**	**	##	**	
Sr-90	Strontium-90	Ci	**	**	**	**	
Nb-95	Niobium-95	Ci	**	**	**	. **	
Mo-99	Molybdenum-99	Ci	**	**	**	**	
Cs-134	Cesium-134	Ci	**	**	**	**	
Cs-136	Cesium-136	Ci	**	**	**	**	
Cs-137	Cesium-137	Ci	**	**	44	**	
Ba-140	Barium-140	Ci	**	**	**		
La-140	Lanthanum-140	Ci	**	4*	**	**	
Ce-141	Cerium-141	Ci	**	**	**		
Ce-144	Cerium-144	Ci	**	**	**	**	
Nd-147	Neodymium-147	Ci		**		•••	
	Tritium (1)	Ci	5.30E+00	4.09E+00	9.11E+00	3.47E+01	

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required iodines, 1.00E - 11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

⁽²⁾ There were no batch releases from this path during the reporting period.

Unit 1	Unit 2 X	_		Reportin	g Period: Janu	ary - December 2021
	GASEOUS E	FFLUENTS - GR	OUND LEVEL R	ELEASES	_	
-			Batch	Mode		
Nuclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
Fission Gases (1	B	. <u>-</u> .				
Ar-41	Ci	**	**	**	**	1
Kr-85	Ci	••	**	**	**	'
Kr-85m	Ci	**	**	**	**	
Kr-87	Ci	**	**	**	**	
Kr-88	Ci	4*	**	**	**	
Xe-127	Ci	**	**	**	**	
Xe-131m	Ci	**	**	. **	**	
Xe-133	Ci	**	**	**	**	
Xe-133m	Ci	**	**	**	**	
Xe-135	Ci	**	**	**	**	
Xe-135m	Ci	**	4+	**	**	
Xe-137	Ci	**	**	**	**	
Xe-138	Ci _.	**	4.6	**	**	
			·			
lodines (1)						-
. I-131	Ci	**	**	**	**	
I-132	Ci	**	**	**	**	
I-133	Ci	**	**	**	**	
Particulates (1)	0.	**	**	**	**	1
Cr-51	Ci Ci	**	**	**	**	
Mn-54	Ci	**	**	**	**	
Fe-55 Fe-59	Ci Ci	**	**	**	**	
re-59 Co-58	Ci	**	**	**	**	
Co-60	Ci	**	**	**	**	
Nd-147	. Ci	**	**	**	**	
Zn-65	Ci	**	**	**	**	
Sr-89	Ci	**	**	**	**	
Sr-90	Ci	**	**	**	**	
Nb-95	Ci	**	**	**	**	
Zr-95	Ci	**	**	**	**	,
Mo-99	Ci	**	**	**	**	
Ru-103	Ci	**	**	**	44	
Cs-134	Ci	**	**	**	44 .	
Cs-136	Ci	**	**	**	**	
Cs-137	Ci	**	**	**	**	
Ba-140	Ci	••	**	**	**	
La-140	Ci	**	**	**	**	
Ce-141	Ci	**	**	**	**	
Ce-144	Ci	**	4.	**	**	
				.		
Tritium (1)	Ci	**	**	**	**	
				· · · · · · · · · · · · · · · · · · ·		

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double **.

Unit 1	Unit 2	X			Reporting	Period: Janua	ary - December 2021
		LIQUID EFF	LUENTS - SUM	MATION OF AL	L RELEASES	(1)	
		·	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Est. Total Error, 9
A. Fission & Activation 1. Total Release (not in gases, alpha)		Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
Average diluted concreporting period	entration during	μCi/ml	No Releases	No Releases	No Releases	No Releases	
B. <u>Tritium</u>							
1.Total release		Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted cond reporting period	entration during the	µCi/ml	No Releases	No Releases	No Releases	No Releases	
C. Dissolved and Entra	ned Gases						
1. Total release		Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
Average diluted concreporting period	entration during the	μ Ci/m l	No Releases	No Releases	No Releases	No Releases	
D. Gross Alpha Radioa	ctivity						
1. Total release		Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. Volumes							
1. Prior to Dilution		Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Volume of dilution warelease period	ater used during	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
Volume of dilution was reporting period	ater available during	Liters	1.08E+10	1.13E+10	1.24E+10	1.11E+10	5.00E+01
F. Percent of Tech. Spe	ec. Limits						
Percent of Quarterly WI (1.5 mrem)	nole Body Dose Limit	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Who Date (3 mrem)	le Body Dose Limit to	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Ormrem)	gan Dose Limit (5	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Orga (10 mrem)		%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of 10CFR20 Co (3)	• •	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Dissolved or Limit (2.00E-04 µCi/ml)	Entrained Noble Gas	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as required by the Off-Site Dose Calculation Manual (ODCM), has been verified.

⁽²⁾ The percent of 10CFR20 concentration limit is based on the average concentration during the quarter.

⁽³⁾ Improved Technical Specifications limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2. Maximum Effluent Concentrations (MEC) numerically equal to ten times the 10CFR20.1001 - 20.2402 concentrations were adopted to evaluate liquid effluents.

Unit 1	Unit 2	x	Reporting Period: January - December 2021
		L	LIQUID EFFLUENTS RELEASED
			Batch Mode (1),(2)
Nuclides Re	eleased		1st Quarter 2nd Quarter 3rd Quarter 4th Quarter
· · · · · · · · · · · · · · · · · · ·	Nuclides Released		
	Strontium-89	Ci	No Releases No Releases No Releases
	Strontium-90	Ci	No Releases No Releases No Releases
	Cesium-134	Ci	No Releases No Releases No Releases
	Cesium-137	Ci	No Releases No Releases No Releases
	lodine-131	Ci	No Releases No Releases No Releases
	Cobalt-58	Ci	No Releases No Releases No Releases
	Cobalt-60	Ci	No Releases No Releases No Releases
	Iron-59	Ci	No Releases No Releases No Releases
	Zinc-65	Ci	No Releases No Releases No Releases
	Manganese-54	Ci	No Releases No Releases No Releases
	Chromium-51	Ci	No Releases No Releases No Releases
	Zirconium-95	Ci	No Releases No Releases No Releases
	Niobium-95	Ci	No Releases No Releases No Releases
	Molybdenum-99	Ci	No Releases No Releases No Releases
	Technetium-99m	Ci	No Releases No Releases No Releases
	Barium-140	Ci	No Releases No Releases No Releases
	Lanthanum-140	Ci	No Releases No Releases No Releases
ì	Cerium-141	Ci	No Releases No Releases No Releases
	Tungsten-187	Ci	No Releases No Releases No Releases
	Arsenic-76	Ci	No Releases No Releases No Releases
	lodine-133	Ci	No Releases No Releases No Releases
	Iron-55	Ci	No Releases No Releases No Releases
	Neptunium-239	Ci	No Releases No Releases No Releases
	Silver-110m	Ci	No Releases No Releases No Releases
	Gold-199	Ci	No Releases No Releases No Releases
	Cerium-144	Ci	No Releases No Releases No Releases
:	Cesium-136	Ci	No Releases No Releases No Releases
	Copper-64	Ci	No Releases No Releases No Releases
Dissolved of	or Entrained Gases	Ci	No Releases No Releases No Releases
	Tritium	Ci	No Releases No Releases No Releases

⁽¹⁾ No continuous mode release occurred during the report period as indicated by effluent sampling.

⁽²⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified.

Unit 1	Unit 2	х	Reporting Period: January - December 2021
			LIQUID EFFLENTS RELEASED
Analysis Table D 3.1.1-1 analyzed every 31 days December 2021 sample	I, Service Wat for Principal G was not collec	er Effluent A samma Emit cted, and the	M) sampling frequency states in Radioactive Liquid Waste Sampling and and Service Water Effluent B, and Cooling Tower Blowdown is to be ters, I-131, Dissolved and Entrained Gases, tritium, and gross alpha. The erefore not analyzed. The November 2021 and January 2022 samples were tring the period, the liquid effluents pathway was not cycled and the system
			,
			·
			,

Unit 1	Unit 2	X	Reporting Period: January - December 202				
<u></u>	SOLID W	ASTE AND IRRA	DIATED FUEL SH	IPMENTS			
A1. TYPE		<u>Volume</u> (m³)		<u>Activity (1)</u> (CI)			
•		<u>Class</u>			Class		
	Α	В	С	Α	В	С	
a.1 Spent Resin (Dewatered)	2.48E+01	0.00E+00	0.00E+00	3.71E+01	0.00E+00	0.00E+00	
a.2 Filter Sludge	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	0.00E+00	
Totals	2.48E+01	0.00E+00	0.00E+00	3.71E+01	0.00E+00	0.00E+0	
o.1 Dry Compressible Waste	2.53E+02	0.00E+00	0.00E+00	3.55E+00	0.00E+00	0.00E+00	
Dry Non-Compressible Waste (Contaminated Equipment)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Totals	2.53E+02	0.00E+00	0.00E+00	3.55E+00	0.00E+00	0.00E+00	
c. Irradiated Components, Control Rods, etc.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
d. Other (to vendor for processing)					<u></u>	
d.1 Other waste	2.91E+01	0.00E+00	0.00E+00	1.19E+01	0.00E+00	0.00E+00	

Unit 1	Unit 2 X	Reporting P	eriod: January - December 20								
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS											
A1. TYPE	Container	<u>Package</u>	Solidification Agent								
a.1 Spent Resin (Dewatered)	· Poly Liner	General Design	None								
a.2 Filter Sludge	Poly Liner	Туре В	None								
b.1 Dry Compressible Waste	Seavan	General Design	None								
b.2 Dry Non-Compressible Waste (contaminated equipment)	N/A	N/A	N/a								
c. Irradiated Components, Control Rods	N/A	N/A	N/A								
d. Other (To vendor for processing)											
Oil/Aqueous Liquid	55 gallon drums	General Design	None								

Unit 1	it 1 Unit 2 X Reporting Period: January - December 202					
	SOLID WA	ASTE AND IRRADIAT	ED FUEL SHI	PMENTS		
A2. ESTIMATE OF MAJO	R NUCLIDE COMPOSITIO	N (BY TYPE OF WA	STE)			
a. Spent Resins, Filter Slu	dges, Concentrated Waste					
	Nuclide Mn-54 Fe-55 Co-60		Percent 1.14% 6.67% 85.91%	<u>Curies</u> 4.24E-01 3.97E+00 3.19E+01		
b. Dry Compressible Wast	e, Dry Non-Compressible \ Nuclide Mn-54	Naste (Contaminated	Equipment) Percent 4.44%	<u>Curies</u> 1.58E-01		
	Fe-55 Co-60		7.12% 88.05%	2.52E-01 3.12E+00		
c. Irradiated Components,	Control Rods: There were	no shipments.				
	<u>Nuclide</u> N/A			<u>Percent</u> N/A		
d. Other: (To vendor for pr	ocessing)	•				
	Nuclide Mn-54 Fe-55 Co-60		Percent 3.62% 6.67% 88.70%	<u>Curies</u> 4.32E-01 7.96E-01 1.06E+01		

Unit 1	Unit 2 X	Reporting Period: January - December 2021				
	SOLID WASTE AND IRRADIATED FUEL SHIPMENTS					
A3. SOLID WASTE DISPOSITION						
Number of Shipments	Mode of Transportation	Destination				
14	Truck,highway	Bear Creek				
. 5	Truck,highway	Clive CWF				
		,				
B. IRRADIATED FUEL SHIPMENT	FS (Disposition)					
Number of Shipments	Mode of Transportation	<u>Destination</u>				
0 ,	N/A	N/A				
D. SEWAGE WASTES SHIPPED	TO A TREATMENT FACILITY FOR PRO	CESSING AND BURIAL				
There are no shipments of sewage during the reporting period.	sludge with detectible quantities of plant	-related nuclides from NMP to the treatment facility				

Unit 1	Unit 2	х	Reporting Period: January - December 2021
SUMN	MARY OF CHANG	ES TO T	HE OFF-SITE DOSE CALCULATION MANUAL (ODCM)
No changes we	ere made to the U	nit 2 Off-	Site Dose Calculation Manual (ODCM) during the reporting period.
			•
	`		

Unit 1	Unit 2 X Reporting Period: January - December 2021
- v .aı	SUMMARY OF CHANGES TO THE PROCESS CONTROL PROGRAM (PCP)
	No changes were made to the Process Control Program during the reporting period.

Unit 1	Uņit 2 X	Reporting Period: January - December 2021			
	SUMMARY OF NON-FUNCTIONAL MONITORS				
Monitor	Dates Monitor was	Cause and Corrective Actions			
	Non-Functional				
2LWS-CAB206, 2LWS-FT330 & 2LWS-FT331, Liquid Waste Discharge Monitor	January 1, 2021 to December 31, 2021	No liquid waste discharges were performed during 2021, and therefore, these monitors were not returned to service. The discharge manual isolation valves, 2LWS-V420 and 2LWS-V422, are locked closed during inoperable periods, therefore, no inadvertent discharge can occur. Reference Equipment Status Log (ESL) 2010-0243.			

Unit 1	Unit 2	X.	Reporting Period: January - December 2021
DO	SES TO M	EMBERS (F THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 2 (NMP2) liquid and gaseous effluents has been conducted for the period January through December 2021.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2021 the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

Dose Pathways

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP2 Stack and Radwaste/Reactor Building Vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP2 Stack and Radwaste/Reactor Building Vent.
- Direct radiation pathway; dose resulting from the operation of Nine Mile Point Unit 1 (NMP1),
 NMP2 and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP2 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

Unit 1	Unit 2 _	X			Reporti	ng Period:	January - [December 202	<u>:1</u>
DOS	SES TO M	EMBERS O	F THE PUBLIC DUE T	O THEIR AC	CTIVITIES	S INSIDE T	THE SITE I	BOUNDARY	

The total dose received by the whole body and skin of the maximum exposed individual during 2021 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)□
- Density in grams per square meter = 40,000□
- Shore width factor = 0.3□
 - Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.□
- Fractional portion of the year = 1 (used average radionuclide concentration over total time period)□
- No radionuclides were detected in sediment samples for 2021.

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP2 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2021 calculated using the following input parameters for gaseous effluents released from both the NMP2 Stack and Radwaste/Reactor Building Vent for the time period exposure is received:

NMP2 Stack:

Variable	Fisherman ¹
X/Q (s/m³)	9.60E-07
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	1,93E+06
Co-60 (pCi/sec)	3.59E+00
I-133 (pCi/sec)	1.86E+00
C-14 (pCi/sec) ²	6.03E+05

NMP2 Radwaste/Reactor Building Vent:

Variable	Fisherman ¹
X/Q (s/m³)	2.80E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	2.02E+06
Co-60 (pCi/sec)	1.16E+01

Unit 1 Unit 2	X	Reporting Period: January - December 2021
DOSES TO	MEMBERS OF THE PUBLIC DUE TO THE	EIR ACTIVITIES INSIDE THE SITE BOUNDARY

- 1. The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Radwaste/Reactor Building Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.
- 2. C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2021 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.26E-03
Exposure time (hours)	312

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

Unit 1	Unit 2	X	Reporting Period: January - December 2021
DOS	SES TO N	IEMBERS OF	E PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

<u>Dose Received By A Hypothetical Maximum Exposed Member of the Public Inside the Site</u> <u>Boundary During 2021</u>

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP2 during 2021:

TABLE 1
Exposure Pathway Annual Dose

Exposure Pathway	Dose Type	Fisherman (mrem)
External Ground	Whole Body	0.00E+00
External Ground	Skin of Whole Body	0.00E+00
	Whole Body	4.08E-04
Inhalation	Maximum Organ	Lung: 4.15E-04
	Thyroid	4.08E-04
Direct Radiation	Whole Body	0.39

Based on these values, the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

TABLE 2
Annual Dose Summary

Total Annual Dose for 2021	Fisherman (mrem)
Total Whole Body	3.92E-01
Skin of Whole Body	0.00E+00
Maximum Organ	Lung: 4.15E-04
Thyroid	4.08E-04

Unit 1	Unit 2 X	Reporting Period: January - December 2021	
ł	DOSES TO MEMBERS	OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY	

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2021 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 1 (NMP1), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body
- < 25 mRem any organ (except thyroid)</p>
- < 75 mRem thyroid

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have concentrated in vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP facilities (including the Independent Spent Fuel Storage Installations (ISFSI)).

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP1 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2021 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2021; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2021.

Unit 1	Unit 2 X	-	Reporting Period: January - December 2021
	DOSES TO M	MEMBERS OF THE PUBLIC DUE TO THEIR A	CTIVITIES OUTSIDE THE SITE BOUNDARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The dose for 2021 is calculated from actual analysis results of environmental vegetation samples taken near the most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2021; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2021.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in plant gaseous effluents.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP1 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2021; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2021.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. Actual meteorological data was used to calculate doses to the likely most exposed Member of the Public. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2021 provides a total dose to the whole body and maximum organ dose for this pathway.

<u>Carbon-14 Dose Pathways Resulting from Gaseous Effluents</u>

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2021 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010. The following methodology was used in estimating C-14 gaseous release activity and dose components for the 2021 ARERR.

EPRI methodology for estimating C-14 production rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that ~95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

Unit 1	Unit 2 X	Reporting Period: January - December 2021
	DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR A	CTIVITIES OUTSIDE THE SITE BOUNDARY

For NMP1 and NMP2, C-14 gaseous dose calculations in the site ARERR are made using the following assumptions for each unit: (1) continuous release of the estimated C-14 generated during power operation based on the number of Effective Full Power Days (EFPDs) for the period, (2) maximum C-14 activity from literature values cited in EPRI Report 1021106, and (3) typical fraction as carbon dioxide for gaseous releases from literature values also cited in EPRI Report 1021106.

Equation 1 estimates the maximum annual production of C-14, PR_{MAX}, for each BWR unit.

 $PR_{MAX} = 5.1 \cdot MWT / 1000$

[Eq 1]

Where:

5.1 = BWR Normalized Production (Ci/GWt-yr)

MWT = MegaWatts Thermal (MWt)

1000 = Conversion Factor (MWt to GWt)

Equation 2 estimates the C-14 activity released, A_{C-14} , into the gaseous pathway during the time period for each BWR unit.

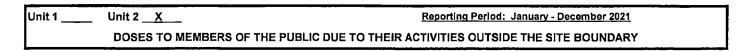
 $A_{C-14} = PR_{MAX} \cdot 0.99 \cdot EFPD / 365$, Ci (for time period) [Eq 2]

Where:

 PR_{MAX} = maximum annual production rate of C-14

0.99 = fraction of C-14 in BWR gaseous pathway releases (maximum

literature value in EPRI Report 1021106; also Table 1)


EFPD = number of effective full power days for the unit during the time

period; e.g., quarterly or yearly (Table 1)

365 = number of days in a typical year

[Eq 3]

ATTACHMENT 11

Equation 3 estimates the C-14 activity released in carbon dioxide form, $A_{C-14, CO2}$, into the gaseous pathway during the time period for each BWR unit.

PR_{MAX} · 0.99 · 0.95 · EFPD / 365, Ci (for time period)

For each BWR unit, the 2021 estimated C-14 activity releases (total and carbon dioxide chemical form) are summarized in Table 1.

Table 1
2021 BWR Estimated C-14 Gaseous Releases

BWR	Gaseous Release Fraction ^(a)	CO ₂ Form Release Fraction ^(b)	EFPD Operation	Max. Annual Prod. Rate (Eq 1)	2021 Total Release (Eq 2)	2021 CO2 Release (Eq 3)
NMP1	0.99	0.95	342.031 EFPD (93.71%)	9.44 Сі/уг	8.76 Ci	8.32 Ci
NMP2	0.99	0.95	363.679 EFPD (99.64%)	20.33 Ci/yr ^(c)	20,05 Ci	19.05 Ci
JAFNPP	0.99	0.95	364 EFPD (99.73%)	12.93 Ci/yr	10.65 Ci	10.12 Ci

- (a) Maximum literature values from EPRI Report 1021106.
- (b) Typical value from EPRI Report 1021106.

A C-14, CO2

(c) NMP2 Reactor Power Rating increased to 3988 Megawatts thermal.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Unit 1	Unit 2 X	Reporting Period: January - December 2021
	DOSES TO MEMBERS	OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2021, the closest residence and the critical downwind residence are at the same location.

Table 2

Dose Potentially Received by the Likely Most Exposed Member of the Public

Outside the Site Boundary During 2021

Exposure Pathway	Dose Type	Dose (mrem)
Fish and Vegetation	Total Whole Body	No Dose
Consumption	Total Maximum Organ	No Dose
Chambina Codinant	Total Whole Body	No Dose
Shoreline Sediment	Total Skin of Whole Body	No Dose
	Total Whole Body	2.70E-03
Gaseous Effluents (excluding C-14)	Thyroid	6.50E-03
(excluding O-14)	Maximum Organ	Thyroid: 6.50E-03
Gaseous Effiuent	Total Whole Body	2.49E-01
(C-14 only)	Maximum Organ	Bone : 1.25E+00
Direct Radiation	Total Whole Body	1.69E+00

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2021 is as follows (mrem):

Total Whole Body:

1.94E+00

Total Thyroid:

6.50E-03

Maximum Organ:

Bone: 1.25E+00

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAFNPP facilities. The maximum organ dose (Bone: 1.25 mrem), maximum thyroid dose (6.50E-03 mrem) and the maximum whole body dose (1.94 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

Unit 1 Unit 2 _	<u>x</u>	Reporting Period: January - December 2021		
Well Identification Number	# Samples Collected	# Positive Samples	Minimum Concentration (pCi/l)	Maximum Concentration (pCi/l)
GMX-MW1*	1	0	<176	<176
MW-1	1	0	<180	<180
MW-5	3	0	<181	<196
MW-6	1	0	<172	<172
MW-7	1	0	<188	<188
MW-8	3	0	<179	<192
MW-91	3	0	<179	<195
MW-101	1	0	<177	<177
MW-11	1	0	<183	<183
MW-12	1	0	<178	<178
MW-13	1	0	<181	<181
MW-14*	1	0	<179	<179
MW-15	3	0	<178	<191
MW-16	1	0	<175	<175
MW-17	3	0	<179	<192
MW-18	3	0	<180	<193
MW-19	1	0	<182	<182
MW-20	1	0	<180	<180
MW-21	1	0	<179	<179
NMP2 MAT 2,3	4	1	<183	<226
PZ-1	2	0	<174	<194
PZ-2	1	0	<178	<178
PZ-3	1	0	<177	<177
PZ-4	1	0	<177	<177
PZ-5	1	0	<175	<175
PZ-6	1	0	<184	<184
PZ-7	3	1	<181	242
PZ-8	3	0	<180	<195
PZ-9*	1	0	<178	<178

Notes:

- * Control Location
- ¹ Sentinel well location
- ² NMP2 Groundwater Depression Cone
- 3 Samples collected from storm drain system which includes precipitation
 4 No samples were collected during 2nd due to Covid-19

Unit 1	Unit 2 X Reporting Period: January - December 2021
	·
	Off-Site Dose Calculation Manual (ODCM)
	Unit 2 ODCM is not included as there were no changes made in 2021.
_	
Í	
	•

Unit 1	Unit 2 X	Reporting Period: January - December 2021
		Control Program (PCP) s to the Process Control Program in 2021.
	•	
	•	
,		
	·	
	•	
•		