

LG-22-033

April 29, 2022

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Limerick Generating Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-39 and NPF-85 NRC Docket Nos. 50-352 and 50-353

Subject: 2021 Annual Radiological Environmental Operating Report

In accordance with the requirements of Section 6.9.1.7 of Limerick Generating Station (LGS) Units 1 and 2 Technical Specifications (TS), and Section 6.1 of the LGS Units 1 and 2 Offsite Dose Calculation Manual (ODCM), this letter submits the 2021 Annual Radiological Environmental Operating Report. This report provides the 2021 results for the Radiological Environmental Monitoring Program (REMP), as called for in the ODCM.

In assessing the data collected for the REMP, it has been concluded that the operation of LGS, Units 1 and 2 had no adverse impact on the environment. No plant-produced fission or activation products were found in any pathway modeled by the REMP. The results of the groundwater protection program are also included in this report.

There are no commitments contained in this letter.

If you have any questions or require additional information, please contact Amanda Sborz at 610-718-2700.

Respectfully,

Digitally signed by Sturniolo, Frank Date: 2022.04.28 12:42:35 -04'00'

Frank Sturniolo Site Vice President – Limerick Generating Station Constellation Energy Generation, LLC

Attachment: 2021 Annual Radiological Environmental Operating Report

CC:	Administrator, Region I, USNRC	(w/attachment)
	LGS USNRC Senior Resident Inspector	(w/attachment)
	M. Henrion, Inspector Region I, USNRC	(w/attachment)
	V. Sreenivas, LGS Senior Project Manager-NRR, USNRC	(w/attachment)

TS 6.9.1.7

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR THE LIMERICK GENERATING STATION

UNITS 1 AND 2

January 1 - December 31, 2021

Prepared by M. Aument A. M. Barnett

EXELON GENERATION EXELON NUCLEAR GENERATION

APRIL 2022

TABLE OF CONTENTS

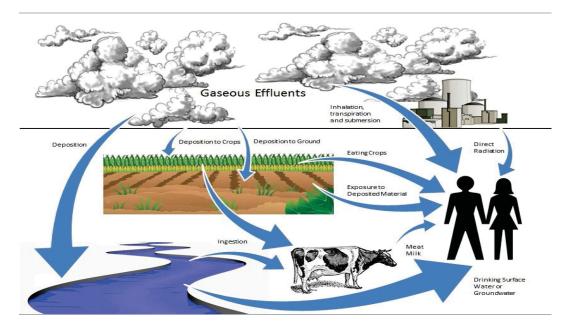
LIST OF FIGURES	ii
LIST OF TABLES	iii
I. SUMMARY	4
II. LIMERICK GENERATING STATION RADIOLOGICAL ENVIRONM	
MONITORING PROGRAM	
II.A. INTRODUCTION	
II.B. PROGRAM	
II.B.1 Objectives	
II.B.2 Sample Collection	
II.B.3 Data Interpretation	
II.B.4 Program Exceptions	17
II.C. RESULTS AND DISCUSSIONS	19
II.C.1 Aquatic Environment	
II.C.1.a Surface and Drinking Water	
II.C.1.b Aquatic Organisms	
II.C.1.c Shoreline Sediment	
II.C.2 Atmospheric Environment	
II.C.2.a Air Particulate Filters	
II.C.2.b Air Iodine	
II.C.3 Terrestrial Environment	
II.C.3.a Vegetation	
II.C.3.b Milk	
II.C.4 Direct Radiation	
II.D. CONCLUSION	
V. REFERENCES	
APPENDIX A Sample Locations for the REMP	
APPENDIX B Analysis Results for the REMP	42
APPENDIX C Quality Assurance Program	62
APPENDIX D Land Use Survey	91
APPENDIX E Annual Radiological Groundwater Protection Program Repor	<u>t for</u>
Limerick Generating Station	94

LIST OF FIGURES

Figure	Title	Page
A-1	Limerick Generating Station Sample Locations	34
A-2	Limerick Generating Station Sample Locations	
A-3	Limerick Generating Station Sample Locations	36
A-4	Gross Beta in Public Water for the Last Ten Years	37
A-5	Gross Beta in Air for the Last Ten Years	38
A-6	Annual Trending of Air Activity (Gross Beta)	39
A-7	2021 Monthly Gross Beta Concentrations in Drinking Water, (16C2)	40
A-8	2021 Weekly Gross Beta Concentrations in Air Particulate Samples from Co-Located	d
	Air samplers	41

LIST OF TABLES

Table	Title	Page
1	Synopsis of 2021. Limerick Generating Station Radiological Environmental Monitor Program	
2	Annual Summary of Radioactivity in the Environs of the Limerick Generating Station	n27
A-1	Locations of Environmental Sampling Stations for the Limerick Generating Station	32
A-2	Locations of Environmental Sampling Stations for the Limerick Generating Station	33
B-1	Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water	44
B-2	Concentration of Gamma Emitters in the Flesh of Edible Fish	46
B-3	Concentration of Gamma Emitters in Sediment	47
B-4	Concentration of Iodine-131 in Filtered Air	48
B-5	Concentration of Beta Emitters in Air Particulates – Onsite Samples	50
B-6	Concentration of Gamma Emitters in Air Particulates	
B-7	Concentration of Gamma Emitters in Vegetation Samples	54
B-8	Concentration of Gamma Emitters (including I-131) in Milk	
B-9	Typical MDA Ranges for Gamma Spectrometry	57
B-10	Typical LLDs for Gamma Spectrometry	58
B-11	Quarterly DLR Results for Limerick Generating Station, 2021	59
C-1	Results of Participation in Cross Check Programs	65
C-2	Results of Quality Assurance Program	73
C-2a	Results of Quality Assurance Program Co-Located Air Samplers	84
C-2b	Results of Quality Assurance Program Co-Located Air Samplers	87
C-3	Limerick Generating Station ODCM Required LLDs	90
D-1	Land Use Survey	91
E-1	Locations of Onsite Radiological Groundwater Protection Program – Limerick Generating Station, 2021	108
E-2	Routine Well Water Sample Locations for the Radiological Groundwater Protection Program, Limerick Generating Station, 2021	109
E-3	Routine Precipitation Sample Locations for the Radiological Groundwater Protection Program, Limerick Generating Station, 2021	
E-4	Hard to Detects in Groundwater	
E-5	Concentration of Radiostrontium in Groundwater	112
E-6	Concentration of Tritium in Groundwater	113
E-7	Concentration of Tritium in Surface Water, Precipitation, and Subsurface Drainage	114

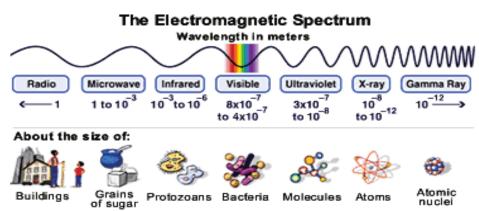

I. SUMMARY

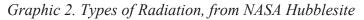
The following sections of the summary are meant to help define key concepts, provide clarity, and give context of the monitoring program and results to the readers of this report. Annual Reports

The Nuclear Regulatory Commission (NRC) is the federal agency who has the role to protect public health and safety related to nuclear energy. Nuclear Power Plants have made many commitments to the NRC to ensure the safety of the public. As part of these commitments, they provide two reports annually to specifically address how the station's operation impacts the environment of the local communities. The NRC then reviews these reports and makes them available to the public. The names of the reports are the Annual Radioactive Effluent Release Report (ARERR) and the Annual Radiological Environmental Operating Report (AREOR).

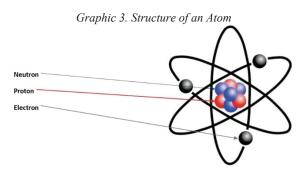
The ARERR reports the results of the analyses of samples taken from the effluent release paths at the station. An effluent is a liquid or gaseous waste, containing plant-related radioactive material emitted at the boundary of the facility.

The AREOR reports the results of the analyses of samples obtained in the environment surrounding the station. Environmental samples include air, water, vegetation, and other sample types that are identified as potential pathways radioactivity can reach humans.




Graphic 1. Examples of Gaseous and Liquid Effluent Pathways

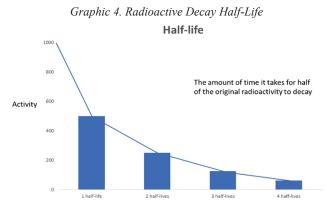
Graphic 1 demonstrates some potential exposure pathways from Limerick Generating Station. The ARERR and AREOR together ensure Nuclear Power Plants are operating in a manner that is within established regulatory commitments meant to adequately protect the public.


Understanding Radiation

Generally radiation is defined as emitted energy in the form of waves or particles. radiation has enough energy to displace electrons from an atom it is termed "ionizing", otherwise it is "nonionizing". Non-Ionizing radiation includes light, heat given off from a stove, radiowaves and microwaves. Ionizing radiation occurs in atoms, particles too small for the eye to see. So, what are atoms and how does radiation come from them?

An atom is the smallest part of an element that maintains the characteristics of that element. Atoms are made up of three parts: protons, neutrons, and electrons.

The number of protons in an atom determines the element. For example, a hydrogen atom will always have one proton while an oxygen atom will always have eight protons. The protons are clustered with the neutrons forming the nucleus at the center of the atom. Orbiting around the nucleus are the relatively small electrons.


Isotopes are atoms that have the same number of protons but different numbers of neutrons. Different isotopes of an element will all have the same chemical properties and many isotopes are radioactive while other isotopes are not radioactive. A radioactive isotope can emit radiation because it contains excess energy in its nucleus. Radioactive atoms and isotopes are also referred to as radionuclides and radioisotopes.

There are two basic ways that radionuclides are produced at a nuclear power plant. The first is fission, which creates radionuclides that are called *fission products*. Fission occurs when a very large atom, such as uranium-235 (U-235) or plutonium- 239 (Pu-239), absorbs a neutron into its nucleus making the atom unstable. The unstable atom can then split into smaller atoms. When fission occurs, there is a large amount of energy released in the form of heat. A nuclear power plant uses the heat generated to boil water that spins turbines to produce electricity.

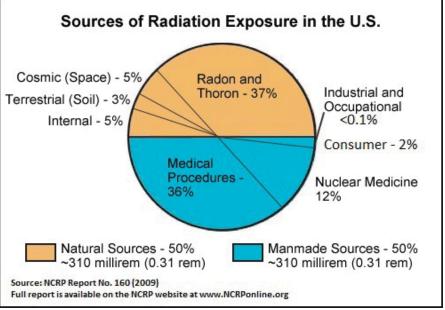
The second way a radionuclide is produced at a nuclear power plant is through a process called activation and the radionuclides produced in this method are termed *activation products*. Pure water that passes over the fissioning atoms is used to cool the reactor and also produce steam to turn the turbines. Although this water is considered to be very pure, there are always some contaminants within the water from material used in the plant's construction and operation. These contaminants are exposed to the fission process and may become activation products. The atoms in the water itself can also become activated and create radionuclides.

Over time, radioactive atoms will reach a stable state and no longer be radioactive. To do this they must release their excess energy. This release of excess energy is called radioactive decay. The time it takes for a radionuclide to become stable is measured in units called half-lives. A half-life is the amount of time it takes for half of the original radioactivity to decay. Each radionuclide has a specific half-life.

Some half-lives can be very long and measured in years while others may be very short and measured in seconds.

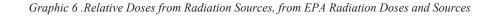
In the annual reports you will see both man made and naturally occurring radionuclides listed, for example potassium-40 (K-40, natural) and cobalt-60 (Co-60, man-made). We are mostly concerned about man-made radionuclides because they can be produced as by-products when generating electricity at a nuclear power plant. It is important to note that there are also other ways man-

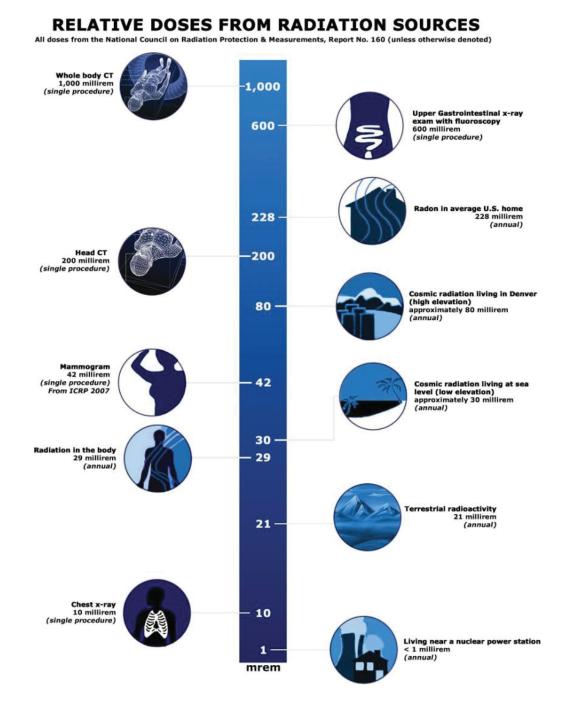
made radionuclides are produced, such as detonating nuclear weapons. Weapons testing has deposited some of the same man-made radionuclides into the environment as those generated by nuclear power, and some are still present today because of long half-lives.


Measuring Radiation

There are four different but interrelated units for measuring radioactivity, exposure, absorbed dose, and dose equivalent. Together, they are used to scientifically report the amount of radiation and its effects on humans.

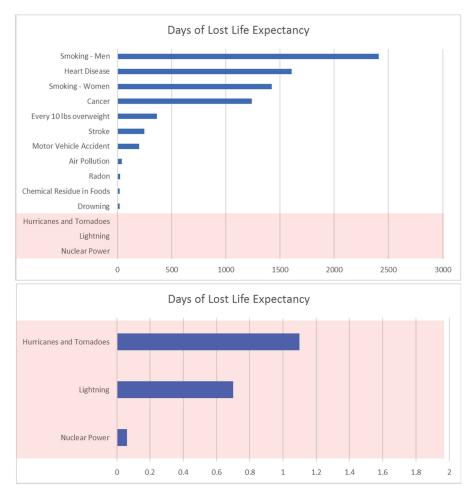
- Radioactivity refers to the amount of ionizing radiation released by a material. The units of measure for radioactivity used within the AREOR and ARERR are the Curie (Ci). Small fractions of the Ci often have a prefix, such as the microCurie (μ Ci), which means 1/1,000,000 of a Curie.
- Exposure describes the amount of radiation traveling through the air. The units of measure for exposure used within the AREOR and ARERR are the Roentgen (R). Traditionally direct radiation monitors placed around the site are measured milliRoentgen (mR), 1/1,000 of one R.
- Absorbed dose describes the amount of radiation absorbed by an object or person. The units of measure for absorbed dose used within the AREOR and ARERR are the rad. Noble gas air doses are reported by the site are measured in millirad (mrad), 1/1,000 of one rad.
- Dose equivalent (or effective dose) combines the amount of radiation absorbed and the health effects of that type of radiation. The units used within the AREOR and ARERR are the Roentgen equivalent man (rem). Regulations require doses to the whole body, specific organ, and direct radiation to be reported in millirem (mrem), 1/1,000 of one rem.

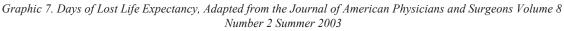

Sources of Radiation


People are exposed to radiation every day of their lives and have been since the dawn of mankind. Some of this radiation is naturally occurring while some is man- made. There are many factors that will determine the amount of radiation individuals will be exposed to such as where they live, medical treatments, etc. The average person in the United States is exposed to approximately 620 mrem each year. 310 mrem comes from natural sources and 310 from man-made sources. The Graphic 5 shows what the typical sources of radiation are for an individual over a calendar year:

Graphic 5. Sources of Radiation Exposure in the U.S., from NCRP Report No. 160

The radiation from a nuclear power plant is included in the chart as part of the "Industrial and Occupational" fraction, <0.1%. The largest natural source of radiation is from radon, because radon gas travels in the air we breathe. Perhaps you know someone who had a CT scan at a hospital to check his or her bones, brain, or heart. CT scans are included in the chart as "Medical Procedures", which make up the next largest fraction. Graphic 6 on the following page shows some of the common doses humans receive from radiation every year.





Radiation Risk

Current science suggests there is some risk from any exposure to radiation. However, it is very hard to tell whether cancers or deaths can be attributed to very low doses of radiation or by something else. U.S. radiation protection standards are based on the premise that any radiation exposure carries some risk.

The following graph is an example of one study that tries to relate risk from many different factors. This graph represents risk as "Days of Lost Life Expectancy". All the categories are averaged over the entire population except Male Smokers, Female Smokers, and individuals that are overweight. Those risks are only for people that fall into those categories. The category for Nuclear Power is a government estimate based on all radioactivity releases from nuclear power, including accidents and wastes.

In 2021, the Limerick Generating Station released to the environment through the radioactive effluent liquid and gaseous pathways approximately 132 curies of noble gas, fission and activation products and approximately 36 curies of tritium. The dose from both liquid and gaseous effluents was conservatively calculated for the Maximum Exposed Member of the Public. The results of those calculations and their comparison to the allowable limits were as follows:

Summary of Gaseous and Liquid Effluent Doses to Members of the Public at the Highest Dose Receptors Maximum % of Applicable Estimated Age Individual Limit Applicable Unit Limit Noble Gas Dose Dose Group Gamma Air Nearest Residence 1.97E-02 All 9.85E-02 20 mRad Dose Beta Air Nearest Residence 1.26E-02 All 3.15E-02 40 mRad Dose 10 Nearest Residence Total Body 1.89E-02 All 1.89E-01 Mrem Nearest Residence Skin 3.26E-02 All 1.09E-01 30 Mrem lodine, Particulate, C-14 & Tritium Vegetation Bone 1.27E+00 Child 4.24E+00 30 Mrem Liquid Aqua PA Total Body 7.84E-02 Child 1.31E+00 6 Mrem Aqua PA 7.90E-02 Child 3.95E-01 20 Thyroid Mrem

The calculated doses, from the radiological effluents released from Limerick, were a very small percentage of the allowable limits.

This report on the Radiological Environmental Monitoring Program conducted for the Limerick Generating Station (LGS) by Exelon covers the period 1 January 2021 through 31 December 2021. During that time period, 1,514 analyses were performed on 1,370 samples.

Surface and drinking water samples were analyzed for concentrations of tritium (H-3), low level iodine-131 (I-131) and gamma-emitting nuclides. Drinking water samples were also analyzed for concentrations of total gross beta. Total gross beta activities detected were consistent with those detected in previous years. No other fission or activation products were detected.

Fish (predator and bottom feeder) samples were analyzed for concentrations of gammaemitting nuclides. Concentrations of naturally occurring potassium-40 (K-40) were consistent with those detected in previous years. No fission or activation products were detected in fish.

Sediment samples were analyzed for concentrations of gamma-emitting nuclides. No stationproduced fission or activation products were found in sediment. For results, discussion, and dose to member of the public calculation see Section II.B.6.

Air particulate samples were analyzed for concentrations of gross beta and gamma- emitting nuclides. Gross beta and cosmogenic, naturally occurring beryllium-7

(Be-7) were detected at levels consistent with those detected in previous years. No fission or activation products were detected.

High-sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable concentration.

The air monitoring systems employed in the nuclear industry have proven to be capable of detecting very low levels of activity in the atmosphere, as activity from both the Chernobyl and Fukushima events was detected at many of the world's nuclear power plants, including Limerick Generating Station.

Cow milk samples were analyzed for concentrations of I-131 and gamma-emitting nuclides. Concentrations of naturally occurring K-40 were consistent with those detected in previous years. No fission or activation products were found.

Broadleaf vegetation samples were analyzed for gamma-emitting nuclides. Only naturally occurring activity was detected. K-40 was detected in all samples. Be-7 was found in 30 of 33 samples. Radium-226 (Ra-226) was found in 11 of 33 samples.

Thorium-228 (Th-228) was found in 18 of 32 samples. No activity due to plant operations were detected.

Review of the gamma spectroscopy results from the surface water samples located at the Limerick intake (24S1) and downstream of the 10 CFR 20.2002 permitted storage area showed no evidence of offsite radionuclide transport from the 2002 permitted storage area.

Environmental ambient gamma radiation measurements were performed quarterly using Dosimeters of Legal Record (DLR). Levels detected were consistent with those observed in previous years and no facility-related dose was detected. A review of the dosimetry data for the nearest residence to the Independent Spent Fuel Storage Installation (ISFSI) indicates no direct dose was received.

A Radiological Groundwater Protection Program (RGPP) was established in 2006 as part of an Exelon Nuclear fleetwide assessment of potential groundwater intrusion from the operation of the Station. Results and Discussion of groundwater samples are covered in Appendix E.

In assessing the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LGS had no adverse radiological impact on the environment.

II. LIMERICK GENERATING STATION RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

II.A. INTRODUCTION

The Limerick Generating Station (LGS), consisting of two 3,515 MW boiling water reactors owned and operated by Exelon Corporation, is located adjacent to the Schuylkill River in Montgomery County, Pennsylvania. Unit No. 1 went critical on 22 December 1984. Unit No. 2 went critical on 11 August 1989. The site is located in Piedmont countryside, transversed by numerous valleys containing small tributaries that feed into the Schuylkill River. On the eastern riverbank, elevation rises from approximately 110 to 300 feet mean sea level (MSL). On the western riverbank elevation rises to approximately 50 feet MSL to the western site boundary.

A Radiological Environmental Monitoring Program (REMP) for LGS was initiated in 1971. Review of the 1971 through 1977 REMP data resulted in the modification of the program to comply with changes in the Environmental Report Operating License Stage (EROL) and the Branch Technical Position Paper (Rev. 1, 1979). The preoperational period for most media covers the periods 1 January 1982 through 21 December 1984 and was summarized in a separate report. This report covers those analyses performed by Exelon Industrial Services (EIS), Mirion Technologies, and Teledyne Brown Engineering (TBE)/GEL Laboratories (GEL) on samples collected during the period 1 January 2021 through 31 December 2021.

On 6 July 1996, a 10 CFR 20.2002 permit was issued to Limerick for storage of slightly contaminated soils, sediments and sludges obtained from the holding pond, cooling tower and spray pond systems. These materials will decay to background while in storage. Final disposition will be determined at Station decommissioning.

On 21 July 2008, an ISFSI pad was put into service. The ISFSI is dry cask storage, where spent nuclear fuel is stored.

II.B. PROGRAM

II.B.1 Objectives

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs;
- 2. Validate the radioactive effluent control program by evaluating the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways
- 2. Establishing baseline radiological data of media within those pathways
- 3. Continuously monitoring those media before and during station operation to assess station radiological effects (if any) on man and the environment

II.B.2 Sample Collection and Analysis

Samples for the LGS REMP were collected for Exelon Nuclear by contractors to, or personnel of, EIS according to applicable procedures (Ref 6,12,13). Control locations are sample locations that are not expected to be impacted by plant operations and are used to determine a baseline in the environment for each type of sample. This section describes the general collection methods used to obtain environmental samples for the LGS REMP in 2021.

The locations of the individual sampling stations are listed in Table A-1 and A-2 and shown in Figures A-1, A-2, and A-3.

Analyses are performed in accordance with applicable procedures (Ref 7,10,11,13) and results are provided in Appendix B for primary REMP Analysis. Analysis results for quality assurance are provided in Appendix C. Analysis results for LGS RGPP are provided in Appendix E.

All Samples were collected and analyzed as required except as noted in section II.B.4 Program exceptions.

II.B.2.a Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, fish, and sediment. Two-gallon water samples were collected

monthly from composite samplers located at two surface water locations (13B1 and 24S1) and four drinking water locations (15F4, 15F7, 16C2, and 28F3). Control locations were 24S1, and 28F3. All samples were collected in new unused plastic bottles, which were rinsed at least twice with source water prior to collection. Fish samples comprising of the flesh of two groups, bottom feeder (Carp / Northern Hogsucker / Norther Sucker / White Sucker) and predator (American Eel / Black Crappie / Bluegill / Brown Trout / Channel Catfish / Flathead Catfish / Green Sunfish / Smallmouth Bass / Yellow Perch), were collected semiannually at two locations, 16C5 and 29C1 (control). Sediment samples composed of recently deposited substrate were collected at three locations semiannually, 16B2, 16C4, and 33A2 (control).

II.B.2.b Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Airborne iodine and particulate samples were collected and analyzed weekly at seven locations (6C1, 10S3, 11S1, 13S4, 14S1, 15D1, and 22G1). The control location was 22G1. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

II.B.2.c Terrestrial Environment

Milk samples were collected biweekly at four locations (18E1, 19B1, 23F1, and 25C1) from April through November, and monthly from December through March. Location 23F1 was the control. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory. Broadleaf vegetation was collected monthly, during the growing season, at three locations (11S3, 13S3, and 31G1). The control location was 31G1.

Twelve different kinds of vegetation samples were collected and placed in new unused plastic bags and sent to the laboratory for analysis.

II.B.2.d Ambient Gamma Radiation

Direct Radiation measurements were made using thermoluminescent dosimeters. The DLR locations were placed on and around the LGS site as follows:

A <u>site boundary ring</u> consisting of 16 locations (36S2, 3S1, 5S1, 7S1, 10S3, 11S1, 13S2, 14S1, 18S2, 21S2, 23S2, 25S2, 26S3, 29S1, 31S1, and 34S2)

near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off–site doses) from LGS releases.

An <u>intermediate distance ring</u> consisting of 16 locations (36D1, 2E1, 4E1, 7E1, 10E1, 10F3, 13E1, 16F1, 19D1, 20F1, 24D1, 25D1, 28D2, 29E1, 31D2,

and 34E1) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

The balance of eight locations (5H1, 6C1, 9C1, 13C1, 15D1, 17B1, 20D1, and 31D1) representing control and special interest areas such as population centers, schools, etc.

The balance of eight locations (5H1, 6C1, 9C1, 13C1, 15D1, 17B1, 20D1, and 31D1) representing control and special interest areas such as population centers, schools, etc.

The specific dosimetry locations were determined by the following criteria:

- 1. The presence of relatively dense population,
- 2. Site meteorological data taking into account distance and elevation for each of the sixteen–22 1/2-degree sectors around the site, where estimated annual dose from LGS, if any, would be most significant,
- 3. On hills free from local obstructions and within sight of the vents (where practical);
- 4. And near the closest dwelling to the vents in the prevailing downwind direction.

Two dosimeters were placed at each location in a mesh basket tube located approximately three feet above ground level. The dosimeters were exchanged quarterly and sent to Mirion Technologies for analysis.

II.B.2.e 10 CFR 20.2002 Permit Storage Area

In 1996, the Limerick Generating Station received NRC approval to store slightly contaminated soils, sludges, and sediments on site per the requirements of 10 CFR 20.2002. These materials will be stored until end of the site's renewed operating license. At that time the material will be evaluated along with the site for decommissioning. The area is approximately 1.5 acres in size and was evaluated to hold a maximum of 1.12E+06 cubic feet with no more than 7E+04 cubic feet added to the area in any single year. After each material placement on the storage area, the area is graded and seeded to prevent erosion. Since all groundwater movement is to the river, the use of the REMP surface water sampling program is used as a check on potential groundwater movement from the pad. In 2021, 0 cubic feet of cooling water sludge was placed on the permitted storage area.

II.B.2.f Independent Spent Fuel Storage Installation (ISFSI)

The results from the dosimeter locations 36S2 and 3S1 were used to determine the direct radiation exposure to the nearest residence from the ISFSI pad.

II.B.3 Data Interpretation

The radiological and direct radiation data collected prior to LGS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, LGS was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is intended as a before the fact estimate of a system (including instrumentation, procedure, and sample type) and not as an after the fact criteria for the

presence of activity. All analyses are designed to achieve the required LGS detection limits for environmental sample analysis.

2. <u>Reporting of Results</u>

Gamma spectroscopy analyzes samples for the full range of nuclides. All nuclides that identified positive results for non-natural gamma emitters are reported. Each type of sample also looks for specific nuclides which must meet LLD requirements as described above. The required nuclides and their LLDs for each type of sample are provided in Table C-3.

Means and standard deviations of positive results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

3. Minimum Detectable Activity

Many results in environmental monitoring occur at or below the minimum detectable activity (MDA). In this report, all results at or below the relevant MDA are reported as being "<MDA" indicating less than the MDA value of all non-natural gamma emitters.

II.B.4 Program Exceptions

For 2021 the LGS REMP had a sample recovery rate of greater than 99%. Program exceptions are listed below:

1. "2021 REMP Self-assessment Gap 1" that questions why a particular milk control location was not located for the REMP program.

An exception to ODCM Table 3.3-1 for control milk sample was found in the 2020 AREOR. Milk control location does not meet the specifications described in the ODCM. The ODCM requires 1 sample from milking animals at a control location (15-30km distance) and in the least prevalent wind direction. We currently have two control locations for milk, the distances for the two locations are 7.58km and 8.08km. The annual land use survey required by the ODCM determined that there are no milk farms available at 15-30km in the least prevalent wind direction. (IR 04446062)

- 2. Telemetry indicated that power supply was lost on 5/24/21 at LGS REMP air station 13S4, located on Long View across from the substation. It was determined that power supply was lost from the pole to the sampler housing. Insufficient sample volume was collected for the week ending 06/01/21. Site electricians restored power and no further loss of sampling occurred. (IR 04426002)
- 3. On 8/9/21 during a routine weekly water collection it was discovered that there was a fire at the Phoenixville Water Treatment Plant on 8/7/21. This caused the basement to

fill with approximately 4ft of water. The 15F7 ISCO water sampler was overturned and possibly submerged during the flood. This caused the sample to be lost and no grab sample was able to be collected as the plant was not processing drinking water due to damage. The missed sample is allowed by the ODCM under Table 3.3-1 "Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons (IR 04440941).

4. Vegetation samples at 31G1 were unavailable for collection on 09/20/21 due to plants being tilled in by the farm owner. (IR 04447818)

Each program exception was reviewed to understand the causes of the program exception. Occasional equipment breakdowns were unavoidable. The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

II.B.5 Program Changes

Revision 33 was approved and implemented on 12/14/21. Major changes include removal of the information center, addition of the hold pond as a release point, and an update to the X/Q factor for the milk receptor.

II.B.6 Compliance with 40CFR 190 Limits

1. Dose to Members of the Public at or Beyond Site Boundary

Per the ODCM Control 6.2, the Annual Radioactive Effluent Release Report shall include an assessment of the radiation doses to the hypothetically highest exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources. The ODCM does not require population doses to be calculated. For purposes of this calculation the following assumptions were made:

- Long term annual average meteorology X/Q and D/Q and
- actual gaseous effluent releases were used.
- Gamma air dose, Beta air dose, Total Body and Skin doses were attributed to noble gas releases.
- Critical organ and age group dose attributed to iodine, particulate, Carbon-14 and tritium releases.
- 100 percent occupancy factor was assumed.
- Dosimetry measurements obtained from the REMP for the nearest residence to the Independent Spent Fuel Storage Installation (ISFSI) was used to determine direct radiation exposure.
- The highest doses from the critical organ and critical age group for each release pathway was summed and added to the net dosimetry measurement from nearest residence to the ISFSI for 40 CFR 190 compliance.

40 CFR 190 Compliance:

The maximum calculated dose to a real individual would not exceed 0.26 mRem (total body), 1.27 mRem (organ), or 0.26 mRem (thyroid).

All doses calculated were below all ODCM and 40 CFR Part 190 limits to a real individual.

	-	40	CFR 190 C	ompliance		-		
	Gaseous	s Effluents						
	Noble	Particulate, Iodine, C- 14	Liquid Effluents	Net Direct Radiation	Total	% of Applicable Limit	Limit	Unit
	Gas	& Tritium						
Total Body Dose	1.89E-02	2.55E-01	7.83E-02	0.00E+00	3.52E-01	1.41E+00	25	mrem
Organ Dose	3.26E-02	1.27E+00	7.84E-02	0.00E+00	1.38E+00	5.52E+00	25	mrem
Thyroid Dose	NA	2.56E-01	7.89E-02	0.00E+00	3.35E-01	4.47E-01	75	mrem

II.C. RESULTS AND DISCUSSIONS

All the environmental samples collected during the year were analyzed using Exelon Industrial Services laboratory procedures CY-ES-205 and CY-ES-206, except Tritium which was analyzed by GEL Laboratories (GL-RAD-A-002 REV# 24), in accordance with analytical method EPA 906.0 Modified, and Dosimetry analysis by Mirion Technologies. The analytical results for this reporting period are presented in Appendix B and are also summarized in Table 2. For discussion, the analytical results are divided into four categories. The categories are Aquatic Environment, Atmospheric Environment, Terrestrial Environment, and Direct Radiation. These categories are further divided into subcategories according to sample type (e.g. Surface Water/Drinking Water and Aquatic Organisms for Aquatic Environment).

II.C.1 Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, fish, and sediment. Two-gallon water samples were collected monthly from composite samplers located at two surface water locations (13B1 and 24S1) and four drinking water locations (15F4, 15F7, 16C2, and 28F3). Control locations were 24S1, and 28F3. All samples were collected in new unused plastic bottles, which were rinsed at least twice with source water prior to collection. Fish samples comprising of the flesh of two groups, bottom feeder (Northern Hognose Sucker / Quillback / White Sucker) and predator (American Eel /

Black Crappie / Channel Catfish / Flathead Catfish / Red-Breast Sunfish / Rock Bass / Smallmouth Bass / Yellow Bullhead / White Perch), were collected semiannually at two locations, 16C5 and 29C1 (control). Sediment samples composed of recently deposited substrate were collected at three locations semiannually, 16B2, 16C4, and 33A2 (control).

II.C.1.a Surface and Drinking Water

- Surface and drinking water samples were analyzed for concentrations of tritium (H-3), low level iodine-131 (I-131) and gamma-emitting nuclides. Drinking water samples were also analyzed for concentrations of total gross beta. Total gross beta activities detected were consistent with those detected in previous years. No other fission or activation products were detected.
- Gamma and gross beta analysis were performed on all water samples on a monthly basis Composites are made from the weekly samples. Results for all water Gamma and gross beta analyses are listed in Table B-1.
- Tritium analysis was performed on all water samples on a quarterly basis. Composites are made from the weekly samples. Tritium data is given in Table B-1.

Review of the gamma spectroscopy results from the surface water samples located at the Limerick intake (24S1) and downstream of the 10 CFR 20.2002 permitted storage area showed no evidence of offsite radionuclide transport from the 2002 permitted storage area.

A Radiological Groundwater Protection Program (RGPP) was established in 2006 as part of an Exelon Nuclear fleetwide assessment of potential groundwater intrusion from the operation of the Station. Results and Discussion of groundwater samples are covered in Appendix E.

II.C.1.b Aquatic Organisms

Fish (predator and bottom feeder) samples were analyzed for concentrations of gamma-emitting nuclides. Concentrations of naturally occurring potassium-40

(K-40) were consistent with those detected in previous years. No fission or activation products were detected in fish.

II.C.1.c Shoreline Sediment

Sediment samples were analyzed for concentrations of gamma-emitting nuclides. No stationproduced fission or activation products were found in sediment. For results, discussion, and dose to member of the public calculation see Section <u>II.B.6</u>.

II.C.2 Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Airborne iodine and particulate samples were collected and analyzed weekly at seven locations (6C1, 10S3, 11S1, 13S4, 14S1, 15D1, and 22G1). The control location was 22G1. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

II.C.2.a Air Particulate Filters

Air particulate samples were analyzed for concentrations of gross beta and gamma- emitting nuclides. Gross beta and cosmogenic, naturally occurring beryllium-7 (Be-7) were detected at levels consistent with those detected in previous years. No fission or activation products were detected.

- Based on weekly comparisons, there was no statistical difference between the Control and Indicator radioactive particulate concentrations. The averages for the control samples were 0.021 pCi/m³, and the averages for the indicators were 0.021 pCi/m³ for the period of January to December, 2021. Maximum weekly concentrations for each station were less than 0.039 pCi/m³.
- The particulate filters from each sampling location were saved and a 13 week composite was made. A gamma isotopic analysis was performed for each sampling location and corrected for decay. The results of these analyses are listed in Table B-6

II.C.2.b Air Iodine

High-sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable concentration.

The air monitoring systems employed in the nuclear industry have proven to be capable of detecting very low levels of activity in the atmosphere, as activity from both the Chernobyl and Fukushima events was detected at many of the world's nuclear power plants, including Limerick Generating Station.

Radioiodine cartridges are placed at seven locations. These cartridges are changed and analyzed each week. No positive analytical results were found on any sample. A list of values for these cartridges is given in Table B-4.

II.C.3 Terrestrial Environment

II.C.3.a Vegetation

Broadleaf vegetation was collected monthly, during the growing season, at three locations (11S3, 13S3, and 31G1). The control location was 31G1.

Eleven different kinds of vegetation samples were collected and placed in new unused plastic bags and sent to the laboratory for analysis.

Broadleaf vegetation samples were analyzed for gamma-emitting nuclides. Only naturally occurring activity was detected. K-40 was detected in all samples. Be-7 was found in 30 of 33 samples. Radium-226 (Ra-226) was found in 11 of 33 samples.

Thorium-228 (Th-228) was found in 10 of 33 samples. No activity due to plant operations were detected.

Data for Non Natural Gamma Emitters is given in Table B-7.

II.C.3.b Milk

Milk samples were collected biweekly at four locations (18E1, 19B1, 23F1, and 25C1) from April through November, and monthly from December through March. Location 23F1 was the control. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Cow milk samples were analyzed for concentrations of I-131 and gamma-emitting nuclides. Concentrations of naturally-occurring K-40 were consistent with those detected in previous years. No fission or activation products were found.

Gamma isotopic data is given in Table B-8.

II.C.4 Direct Radiation

Environmental ambient gamma radiation measurements were performed quarterly using Dosimeters of Legal Record (DLR). Levels detected were consistent with those observed in previous years and no facility-related dose was detected. A review of the dosimetry data for the nearest residence to the Independent Spent Fuel Storage Installation (ISFSI) indicates no direct dose was received.

Ambient Gamma Radiation

Direct Radiation measurements were made using thermoluminescent dosimeters. The DLR locations were placed on and around the LGS site as follows:

A <u>site boundary ring</u> consisting of 16 locations (36S2, 3S1, 5S1, 7S1, 10S3, 11S1, 13S2, 14S1, 18S2, 21S2, 23S2, 25S2, 26S3, 29S1, 31S1, and 34S2)

near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off–site doses) from LGS releases.

An <u>intermediate distance ring</u> consisting of 16 locations (36D1, 2E1, 4E1, 7E1, 10E1, 10F3, 13E1, 16F1, 19D1, 20F1, 24D1, 25D1, 28D2, 29E1, 31D2,

and 34E1) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

The balance of eight locations (5H1, 6C1, 9C1, 13C1, 15D1, 17B1, 20D1, and 31D1) representing control and special interest areas such as population centers, schools, etc.

The specific dosimetry locations were determined by the following criteria:

- 1. The presence of relatively dense population,
- 2. Site meteorological data taking into account distance and elevation for each of the sixteen-22 ¹/₂-degree sectors around the site, where estimated annual dose from LGS, if any, would be most significant.
- 3. On hills free from local obstructions and within sight of the vents (where practical),
- 4. And near the closest dwelling to the vents in the prevailing downwind direction.

Two dosimeters were placed at each location in a mesh basket tube located approximately three feet above ground level. The dosimeters were exchanged quarterly and sent to Mirion Technologies for analysis.

10 CFR 20.2002 Permit Storage Area

In 1996, the Limerick Generating Station received NRC approval to store slightly contaminated soils, sludges, and sediments on site per the requirements of 10 CFR 20.2002. These materials will be stored until end of the site's renewed operating license. At that time the material will be evaluated along with the site for decommissioning. The area is approximately

1.5 acres in size and was evaluated to hold a maximum of 1.12E+06 cubic feet with no more than 7E+04 cubic feet added to the area in any single year. After each material placement on the storage area, the area is graded and seeded to prevent erosion. Since all groundwater movement is to the river, the use of the REMP surface water sampling program is used as a check on potential groundwater movement from the pad. In 2021, 0 cubic feet of cooling water sludge was placed on the permitted storage area.

Independent Spent Fuel Storage Installation (ISFSI)

The results from the dosimeter locations 36S2 and 3S1 were used to determine the direct radiation exposure to the nearest residence from the ISFSI pad.

II.D. CONCLUSION

In assessing the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LGS had no adverse radiological impact on the environment.

In 2021, the Limerick Generating Station released to the environment through the radioactive effluent liquid and gaseous pathways approximately 132 curies of noble gas, fission and activation products and approximately 36 curies of tritium. The dose from both liquid and gaseous effluents was conservatively calculated for the Maximum Exposed Member of the Public.

Synopsi Sample Type Sample Type Surface Water, Drinking Water,	Synopsis of 2021 Limerick Sampling Frequency ¹ MC		tion Radiological Number Collected 72	Generating Station Radiological Environmental Monitoring Program Number of Number Analysis Number of Number Analysis Locations Collected Analysis 6 72 Gamma MC Gross Beta MC Gross Beta MC	onitoring Progra Analysis Frequency ¹ MC	m Number Analyzed 72 48	
				Tritium	ØC	24	
Fish ²	SA	2	ω	Gamma	SA	Ø	
Shoreline Sediment	SA	n	ю	Gamma	SA	S	
Atmospheric Environment							
Air lodine ³	8	7	370	I-131	8	370	
Air Particulates ⁴	8	7	370	Gross Beta	8	370	
				Gamma	QC	28	

Table 1

25

January 1 - December 31, 2021 Docket Nos. 50-352, 50-353

			Table 1			
Syn	Synopsis of 2021 Limerick		ation Radiologic	Generating Station Radiological Environmental Monitoring Program	onitoring Progra	Е
Sample Type	Sampling Frequency ¹	Number of Locations	Number Collected	Analysis	Analysis Frequency ¹	Number Analyzed
Terrestrial Environment						
Milk ⁵	M/BW	4	88	Gamma	×	88
Vegetation ⁶	Σ	3	33	Gamma	Σ	33
Dosimetry	Ø	40	320	Direct Radiation	ð	320
¹ W=Weekly, BW=BiWeekly (15 days), M=Monthly ² Twice during fishing season including at least four ³ The collection device contains activated charcoal ⁴ Beta counting is performed >= 24 hours following	cekly (15 days), M=Mon ason including at least fo ontains activated charcos ned >= 24 hours followin	thly (31 days), Q=Quar our species ul ng filter change. Gamr	terly (92 days), SA= na spectroscopy per'	 W=Weekly, BW=BiWeekly (15 days), M=Monthly (31 days), Q=Quarterly (92 days), SA=Semiannual, A=Annual, C=Composite ² Twice during fishing season including at least four species ³ The collection device contains activated charcoal ⁴ Beta counting is performed >= 24 hours following filter change. Gamma spectroscopy performed on quarterly composite of weekly samples 	C=Composite osite of weekly sampl	So

January 1 - December 31, 2021 Docket Nos. 50-352, 50-353

JPJ PC ⁵ Bi-Weekly during growing season.

, 2021	5
r 31	í.
dmi c-03	2
- Dece	
- E	12120
January Dock	2

Table 2

Annual Summary of Radioactivity in the Environs of the

Limerick Generating Station

Control Locations Mean (F)/Range		3 (12/12) (2.44-4.45)		2.1 (53/53) (1.0-3.6)	22.1 (8/8) (19.6-24.7)
Highest Annual Mean (F) / Range ¹		3 (12/12) (1.94-4.38)		2.3 (52/52) (1.2-3.8)	22.6 (8/8) (14.5-27.5)
Location with Highest Annual Mean Name/Distance & Direction ²		AQUA Water 15F4 13.9 km		Spring City Sub. 15D1 5.14 km SE	500KV Substation 13S2 0.04 km SE
Indicator Locations Mean (F)/Range ¹		3 (36/36) (1.43-4.38)		2.1 (317/317) (0.9-3.9)	17.9(312/312) (11.5-27.5)
Lower Limit of Detection (LLD)		4		1.0	NA
Type and Total Number of Analyses Performed		Gross Beta (48)		Gross Beta (370)	Thermoluminescent Dosimetry (320)
Medium or Pathway Sampled (Unit of Measurement)	Aquatic Environment	Surface Water, Drinking Water (pCi/L)	Atmospheric Environment	Air Particulates (10 ⁻² pCi/m ³)	Dosimetry (mrem/Qtr)

¹ Mean and range based upon detectable measurements only. Fraction (F) of detectable measurements at specified location is indicated in parentheses ² From the centerpoint of the containment building

V. REFERENCES

- (1) Environmental Report Operating License Stage, Limerick Generating Station, Units 1 and 2, Volumes 1–5 Philadelphia Electric Company
- (2) NUREG-1302 Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Boiling Water Reactors
- (3) Branch Technical Position Paper, Regulatory Guide 4.8, Revision 1, November 1979
- (4) Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21 December 1984, Teledyne Isotopes and Radiation Management Corporation
- (5) CY-LG-170-301 Current Revision, Limerick Generating Station Units 1 and 2 Offsite Dose Calculation Manual
- (6) Exelon Industrial Services Sampling Procedures

a. CY-ES-214, Collection of RGPP Water Samples for Radiological Analysis
b. CY-ES-237, Air Iodine and Air Particulate Sample Collection for Radiological
c. CY-ES-239, EIS Collection Exchange of Field Dosimeters for Radiological Analysis
d. CY-ES-241, Vegetation Sample Collection for Radiological Analysis
e. CY-ES-242, Soil and Sediment Sample Collection for Radiological Analysis
f. CY-ES-247, Precipitation Sampling and Collection for Radiological Analysis

- (7) Exelon Industrial Services Analytical Procedures
 - a. CY-ES-204, Sample Preparation for Gamma Analysis
 - b. CY-ES-205, Operation of HPGE Detectors with the Genie PC Counting System
 - c. CY-ES-206, Operation of the Tennelec S5E Proportional Counter
 - d. CY-ES-246, Sample Preparation for Gross Beta Analysis
- (8) Limerick Generating Station 2021 Land use Survey
- (9) CY-AA-170-1000, Radiological Environmental Monitoring Program (REMP) and Meteorological Program Implementation.
- (10) Teledyne Browne Engineering, (TBE) 2018 Analysis Procedures Current Revisions a. TBE-2001 Alpha Isotopic and Pu-241
 - b. TBE-2006 Iron-55 Activity in Various Matrices
 - c. TBE-2007 Gamma Emitting Radioisotope Analysis
 - d. TBE-2008 Gross Alpha and/or Gross Beta Activity in Various Matrices
 - d. TBE-2011 Tritium Analysis in Drinking Water by Liquid Scintillation
 - e. TBE-2013 Radionickel Activity in Various Matrices

f. TBE-2019 Radiostrontium Analysis by Ion Exchange

- (11) GEL Laboratory Procedures
 a. GL-RAD-A-002 Tritium
 b. GL-RAD-A-022 Ni-63
 c. GL-RAD-A-004 Sr89/90, Liquid
 d. GL-RAD-A-040 Fe-55
- (12) Normandeau Associates, Inc. (NAI) Sampling Procedures Current Revisionsa. Procedure No. ER20 Collection of Bottom Sediment for Radiological Analysis
- (13) Mirion Technologies, Proprietary procedures

(14) Teledyne Browne Engineering Environmental Services, 4th Quarter 2021 Quality Assurance Report, January – December 2021

(15) GEL 2021 Annual Environmental QA Report

APPENDIX A

Sample Locations for the REMP

Appendix A contains information concerning the environmental samples which were collected during this operating period.

Sample locations and specific information about individual locations for the Limerick Generating Station are given in Table A-1 and A-2. Figure A-1 shows the Environmental Sampling Locations within 1 mile of the Limerick Generating Station. Figures A-2 shows the Environmental Sampling Locations Between 1 and 5 miles and A-3 shows the locations Greater than 5 miles from Limerick Generating Station

Table	Title	Page
A-1	Locations of Environmental Sampling Stations for the Limerick Generating Station	32

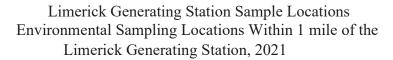
A-2 Locations of Environmental Sampling Stations for the Limerick Generating Station33

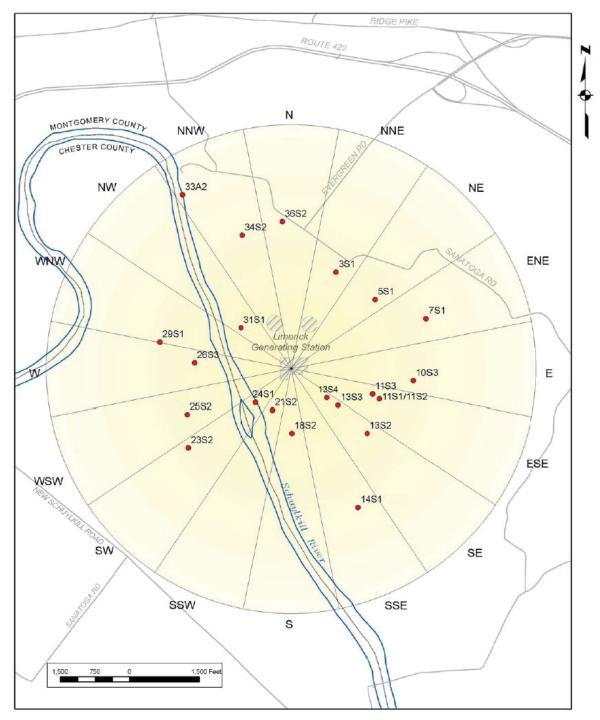
Figure Title	Page

A-1	Limerick Generating Station Sample Locations	34
A-2	Limerick Generating Station Sample Locations Locations	35
A-3	Limerick Generating Station Sample Locations	36
A-4	Gross Beta in Public Water for the Last Ten Years	37
A-5	Gross Beta in Air for the Last Ten Years	38
A-6	Annual Trending of Air Activity (Gross Beta)	39
A-7	2021 Monthly Gross Beta Concentrations in Drinking Water, (16C2)	40
A-8	2021 Weekly Gross Beta Concentrations in Air Particulate Samples from Co-Locate	d
	Air samplers	41

TABLE A-1

Locations of Environmental Sampling Stations for the Limerick Generating Station


			Distance and Direction from Site		
Station	Description	(KM)	(Miles)	(Sector)	
10S3	10S3	0.8	0.5	E	
11S1	11S1	0.6	0.4	ESE	
11S3	Training Center	0.6	0.3	ESE	
13B1	PA American	2.8	1.7	SE	
13S3	500 Kv Sub	0.4	0.2	SE	
13S4	13S4	0.4	0.2	SE	
14S1	14S1	1.0	0.6	SSE	
15D1	15D1	5.1	3.2	SE	
15F4	15F4	13.9	8.6	SE	
15F7	15F7	10.2	6.3	SSE	
16B2	16B2	2.2	1.3	SSE	
16C2	16C2	4.3	2.7	SSE	
16C4	16C4	3.5	2.2	SSE	
16C5	16C5			Downstream	
				of Discharge	
18E1	18E1	6.8	4.2	S	
19B1	19B1	3.1	2.0	SSW	
22G1	22G1 (Control)	28.5	17.7	SW	
23F1	23F1 (Control)	8.1	5.0	SW	
24S1	24S1 (Control)	0.3	0.2	SW	
25C1	25C1	4.3	2.7	WSW	
28F3	28F3 (Control)	9.4	5.8	WNW	
29C1	29C1 (Control)			Upstream of	
				Intake	
31G1	31G1 (Control)	21.9	13.6	NW	
33A2	33A2 (Control)	1.4	0.8	NNW	
6C1	6C1	3.4	2.1	Ne	
11S2	11S2 (QC collocated with 11S1)	0.6	0.4	ESE	


TABLE A-2

Locations of Environmental Dosimetry for the Limerick Generating Station

Location	Location Description	Distance and Direction from Site (KM) (Miles) (Sector)		
Inner Ding				
Inner Ring	36S2 Evergreen & Sanatoga Road	1.0	0.6	Ν
	3S1 Sanatoga Road	0.7	0.0	NNE
	5S1 Possum Hollow Road	0.7	0.4	NE
	7S1 LGS Training Center	0.9	0.4	ENE
	10S3 Keen Road	0.8	0.5	E
	11S1 LGS Information Center	0.6	0.5	ESE
	13S2 500 KV Substation	0.0	0.4	SE
	14S1 Longview Road	1.0	0.6	SSE
	18S2 Rail Line along Longview Road	0.4	0.3	S
	21S2 Near Intake Building	0.3	0.2	SSW
	23S2 Transmission Tower	0.9	0.2	SW
	25S2 Sector Site Boundary	0.7	0.5	WSW
	26S3 Met. Tower #2	0.6	0.4	W
	29S1 Sector Site Boundary	0.9	0.5	WNW
	31S1 Sector Site Boundary	0.4	0.3	NW
	34S2 Met. Tower #1	0.9	0.6	NNW
Outer Ring	*36D1 Siren Tower No. 147 *2E1 Laughing Waters GSC *4E1 Neiffer Road *7E1 Pheasant Road *10E1 Royersford Road *10F3 Trappe Substation *13E1 Vaughn Substation *16F1 Pikeland Substation *19D1 Snowden Substation *20F1 Sheeder Substation *20F1 Sheeder Substation *25D1 Hoffecker & Keim Streets *28D2 W. Cedarville Road *29E1 Prince Street *31D2 Popular Substation 34E1 Varnell Road	5.6 7.7 7.7 6.9 6.3 9.0 6.9 8.1 5.6 8.4 6.4 6.4 6.4 6.2 8.0 6.2 7.4	$\begin{array}{c} 3.5 \\ 4.8 \\ 4.8 \\ 4.3 \\ 4.0 \\ 5.6 \\ 4.3 \\ 5.0 \\ 3.5 \\ 5.2 \\ 4.0 \\ 4.0 \\ 4.0 \\ 5.0 \\ 4.0 \\ 4.0 \\ 4.6 \end{array}$	N NNE ENE E SE SSE SSW SW WSW WSW WSW WSW WSW WNW NWW
Control & Special Interest	5H1 C Birch Substation (control) 6C1 Limerick Airport 9C1 Reed Road 13C1 King Road 15D1 Spring City Substation 17B1 Linfield Substation 20D1 Ellis Woods Road 31D1 Lincoln Substation	40.0 3.4 3.5 4.6 5.1 2.6 5.0 4.8	24.8 2.1 2.2 2.8 3.2 1.6 3.0 3.0	NE NE E SE SE SSW WNW

Figure A-1

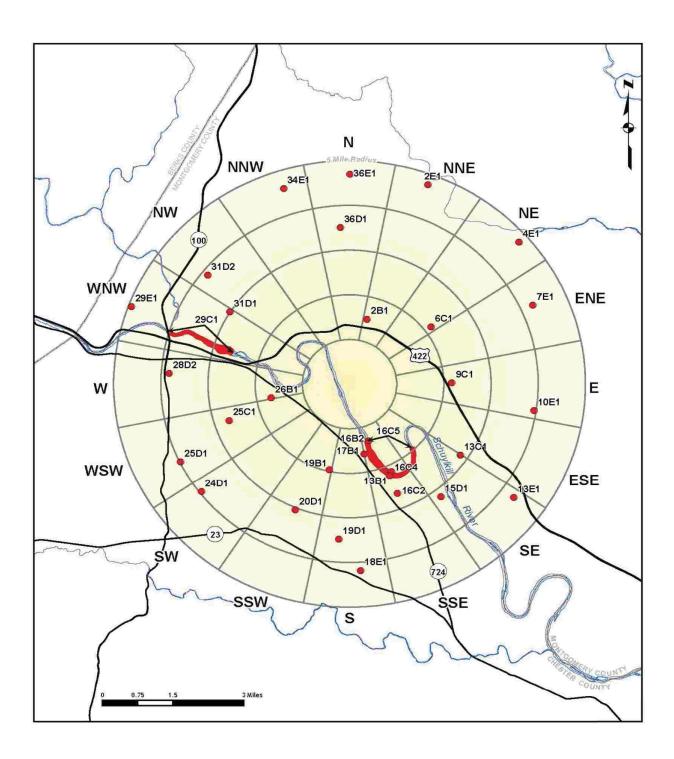


Figure A-2

Limerick Generating Station Sample Locations

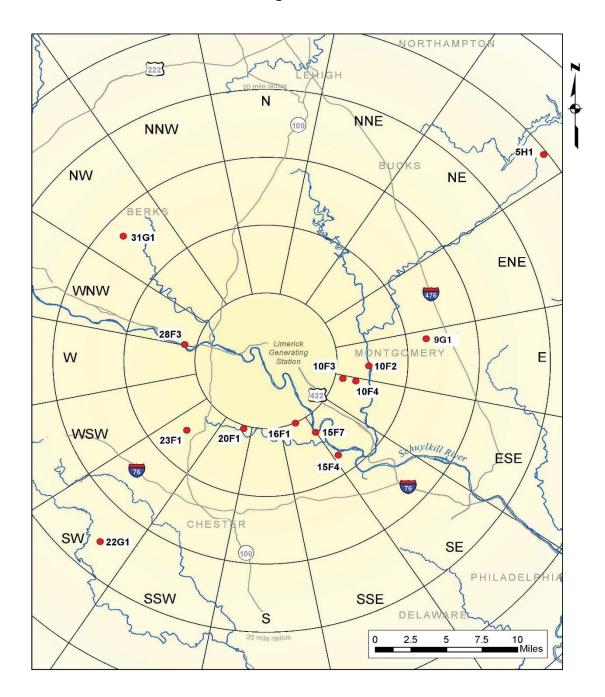

Environmental Sampling Locations Between 1 and 5 miles from the Limerick Generating Station, 2021

Figure A-3

Limerick Generating Station Sample Locations

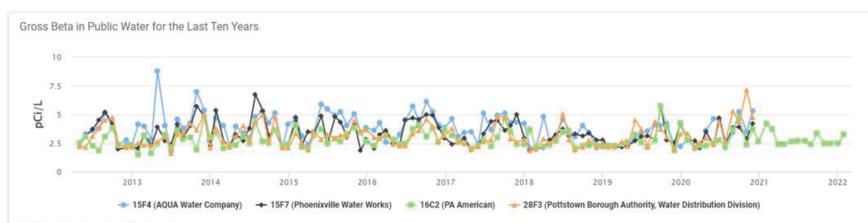
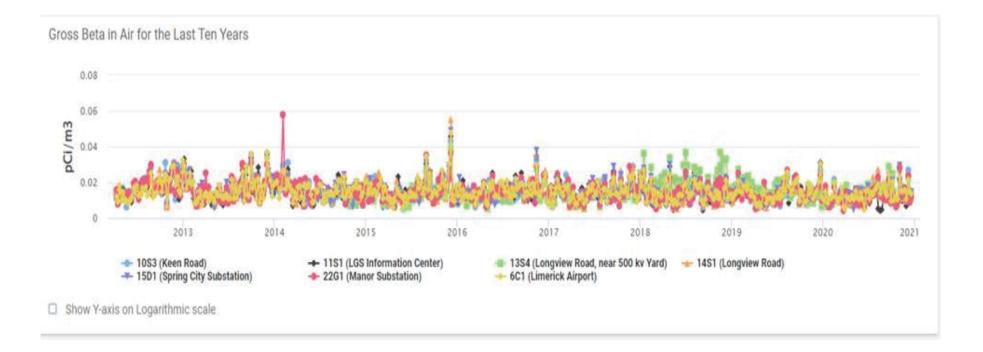

Environmental Sampling Locations Greater than 5 miles from the Limerick Generating Station, 2021

Figure A-4

Gross Beta in Public Water for the Last Ten Years

2012-2021



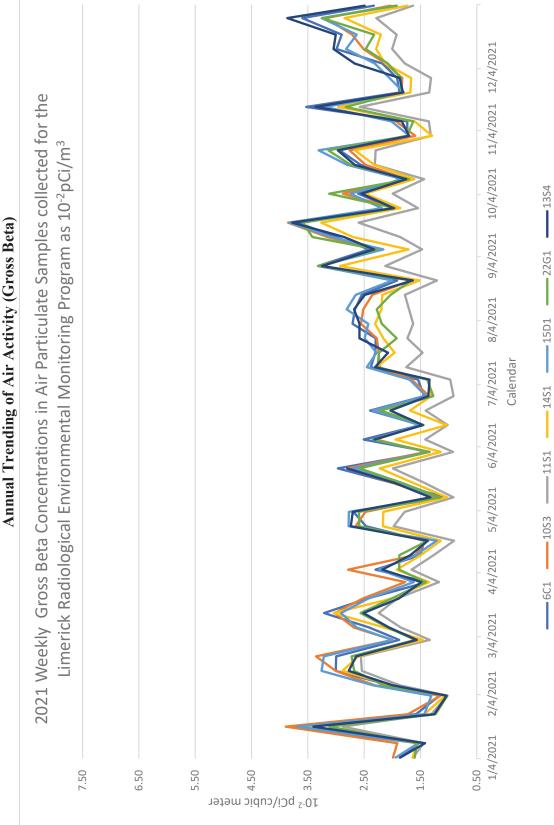

Show Y-axis on Logarithmic scale

Figure A-5

Gross Beta in Air for the Last Ten Years

2012-2021

Annual Trending of Air Activity (Gross Beta) Figure A-6

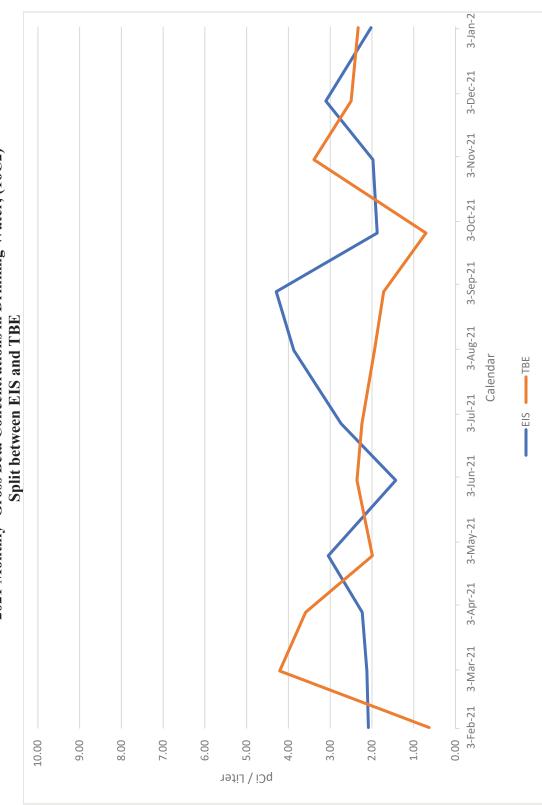
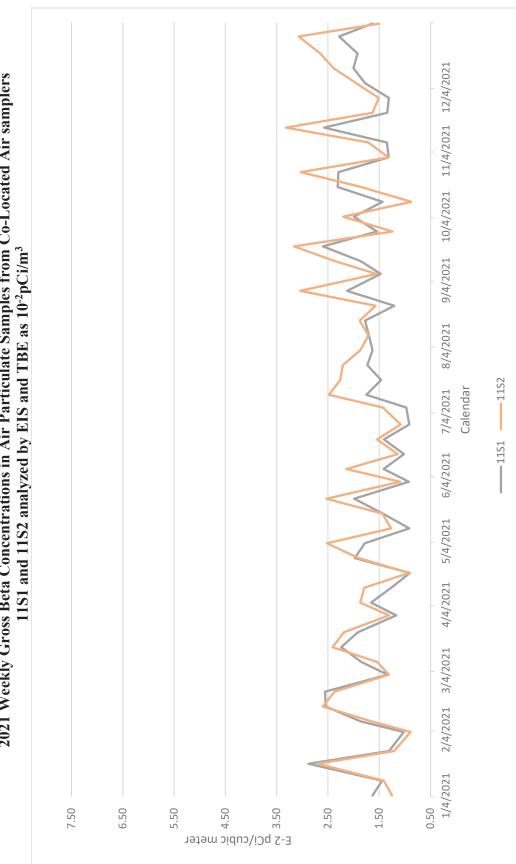



Figure A-7 2021 Monthly Gross Beta Concentrations in Drinking Water, (16C2) Split between EIS and TBE

2021 Weekly Gross Beta Concentrations in Air Particulate Samples from Co-Located Air samplers Figure A-8

APPENDIX B

Analysis Results for the REMP

Appendix B is a presentation of the analytical results for the Limerick Generating Station radiological environmental monitoring programs.

TABLE OF CONTENTS - ANALYTICAL RESULTS

Table	Title	Page
B-1	Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water	
B-2	Concentration of Gamma Emitters in the Flesh of Edible Fish	
B-3	Concentration of Gamma Emitters in Sediment	
B-4	Concentration of Iodine-131 in Filtered Air	48
B-5	Concentration of Beta Emitters in Air Particulates – Onsite Samples	50
B-6	Concentration of Gamma Emitters in Air Particulates	53
B- 7	Concentration of Gamma Emitters in Vegetation Samples	54
B-8	Concentration of Gamma Emitters (including I-131) in Milk	55
B-9	Typical MDA Ranges for Gamma Spectrometry	57
B-10	Typical LLDs for Gamma Spectrometry	58
B-11	Quarterly DLR Results for Limerick Generating Station	59

Concentration of Gamma Emitters, Tritium, and Gross Beta in Surface and Drinking Water

(Results in units of pCi/L +/- 2o)

Sample Code	Sample Date	Gamma Emitters	Tritium ²	Gross Beta ³
13B1				
Vincent Dam	2/3/2021	*		ND
	3/2/2021	*		ND
	3/30/2021	*	<124	ND
	4/26/2021	*		ND
	6/1/2021	*		ND
	6/28/2021	*	<118	ND
	8/2/2021	*		ND
	8/30/2021	*		ND
	9/27/2021	*	<118	ND
	11/1/2021	*		ND
	11/29/2021	*		ND
	1/3/2022	*	<115	ND
15F4				
AQUA Water	2/3/2021	*		1.94 +/- 0.77
-	3/2/2021	*		3.07 +/- 0.91
	3/30/2021	*	<122	2.64 +/- 0.81
	4/26/2021	*		3.03 +/- 0.85
	6/1/2021	*		2.18 +/- 0.82
	6/28/2021	*	<117	3.37 +/- 0.92
	8/2/2021	*		4.38 +/- 0.93
	8/30/2021	*		4.38 +/- 0.89
	9/27/2021	*	<123	3.75 +/- 0.90
	11/1/2021	*		3.94 +/- 0.89
	11/29/2021	*		3.78 +/- 0.92
	1/3/2022	*	<131	2.50 +/- 0.83
15F7				
Phoenixville	2/3/2021	*		2.33 +/- 0.80
	3/2/2021	*		2.90 +/- 0.89
	3/30/2021	*	<121	2.27 +/- 0.78
	4/26/2021	*		2.76 +/- 0.82
	6/1/2021	*		2.32 +/- 0.83
	6/28/2021	*	<125	2.44 +/- 0.86
	8/2/2021	*		3.59 +/- 0.88
	8/30/2021	*		3.36 +/- 0.82
	9/27/2021	*	<118	3.15 +/- 0.85
	11/1/2021	*		3.89 +/- 0.89
	11/29/2021	*		2.94 +/- 0.87
	1/3/2022	*	<124	2.19 +/- 0.81
16C2				
PA American	2/3/2021	*		2.09 +/- 0.79
	3/2/2021	*		2.12 +/- 0.85
	3/30/2021	*	<128	2.23 +/- 0.79
	4/26/2021	*	-	3.05 +/- 0.84

Concentration of Gamma Emitters, Tritium, and Gross Beta in Surface and Drinking Water

(Results in units of pCi/L +/- 2o)

Sample Code	Sample Date	Gamma Emitters	Tritium ²	Gross Beta ³
	6/1/2021	*		1.43 +/- 0.77
	6/28/2021	*	<117	2.74 +/- 0.89
	8/2/2021	*		3.87 +/- 0.91
	8/30/2021	*		4.29 +/- 0.89
	9/27/2021	*	<123	1.87 +/- 0.78
	11/1/2021	*		1.98 +/- 0.77
	11/29/2021	*		3.11 +/- 0.89
	1/3/2022	*	<126	2.02 +/- 0.81
24S1 ¹				
LGS Intake	2/3/2021	*		ND
	3/2/2021	*		ND
	3/30/2021	*	<123	ND
	4/26/2021	*		ND
	6/1/2021	*		ND
	6/28/2021	*	<114	ND
	8/2/2021	*		ND
	8/30/2021	*		ND
	9/27/2021	*	<117	ND
	11/1/2021	*		ND
	11/29/2021	*		ND
	1/3/2022	*	<113	ND
28F3 ¹				
Pottstown	2/3/2021	*		2.55 +/- 0.81
	3/2/2021	*		2.44 +/- 0.86
	3/30/2021	*	<125	2.55 +/- 0.80
	4/26/2021	*		2.88 +/- 0.84
	6/1/2021	*		2.74 +/- 0.85
	6/28/2021	*	<124	3.38 +/- 0.92
	8/2/2021	*		3.18 +/- 0.85
	8/30/2021	*		4.45 +/- 0.90
	9/27/2021	*	<123	3.29 +/- 0.87
	11/1/2021	*		3.12 +/- 0.84
	11/29/2021	*		3.03 +/- 0.87
	1/3/2022	*	<121	2.47 +/- 0.83

¹ Control Location
 ² Tritium result for the quarterly composite
 ³ ND, No Data, analysis not required
 * All Non-Natural Gamma Emitters <MDA

Concentration of Gamma Emitters in the Flesh of Edible Fish

(Results in units of pCi/kg (wet) +/- 2 σ)

Sample Code	Sample Date	Sample Type	Gamma Emitters
16C5			
SE Sector	5/14/2021	Bottom Feeder Fish	*
	5/14/2021	Predator Fish	*
	11/4/2021	Bottom Feeder Fish	*
	11/4/2021	Predator Fish	*
29C1 ¹			
WNW Sector	5/11/2021	Bottom Feeder Fish	*
	5/11/2021	Predator Fish	*
	11/5/2021	Bottom Feeder Fish	*
	11/5/2021	Predator Fish	*

¹ Control Location

* All Non-Natural Gamma Emitters < MDA

Concentration of Gamma Emitters in Sediment

(Results in units of pCi/kg (wet) +/- 2 σ)

Sample Code	Sample Date	Gamma Emitters
16B2 SSE Sector	6/11/2021	*
16C4 SSE Sector	6/11/2021	*
33A2 ¹ NNW Sector ¹ Control Location	6/11/2021	*

¹ Control Location * All Non-Natural Gamma Emitters <MDA

Start Coll date	End Coll date	6C1	10S3	11 S 1	14S1	15D1	22G1 ¹	13S4
12/28/2020	1/4/2021	*	*	*	*	*	*	*
1/4/2021	1/11/2021	*	*	*	*	*	*	*
1/11/2021	1/19/2021	*	*	*	*	*	*	*
1/19/2021	1/25/2021	*	*	*	*	*	*	*
1/25/2021	2/3/2021	*	*	*	*	*	*	*
2/3/2021	2/8/2021	*	*	*	*	*	*	*
2/8/2021	2/15/2021	*	*	*	*	*	*	*
2/15/2021	2/22/2021	*	*	*	*	*	*	*
2/22/2021	3/2/2021	*	*	*	*	*	*	*
3/2/2021	3/8/2021	*	*	*	*	*	*	*
3/8/2021	3/15/2021	*	*	*	*	*	*	*
3/15/2021	3/22/2021	*	*	*	*	*	*	*
3/22/2021	3/30/2021	*	*	*	*	*	*	*
3/30/2021	4/5/2021	*	*	*	*	*	*	*
4/5/2021	4/12/2021	*	*	*	*	*	*	*
4/12/2021	4/19/2021	*	*	*	*	*	*	*
4/19/2021	4/26/2021	*	*	*	*	*	*	*
4/26/2021	5/3/2021	*	*	*	*	*	*	*
5/3/2021	5/10/2021	*	*	*	*	*	*	*
5/10/2021	5/17/2021	*	*	*	*	*	*	*
5/17/2021	5/24/2021	*	*	*	*	*	*	*
5/24/2021	6/1/2021	*	*	*	*	*	*	2
6/1/2021	6/7/2021	*	*	*	*	*	*	*
6/7/2021	6/14/2021	*	*	*	*	*	*	*
6/14/2021	6/21/2021	*	*	*	*	*	*	*
6/21/2021	6/28/2021	*	*	*	*	*	*	*
6/28/2021	7/6/2021	*	*	*	*	*	*	*

Table B-4Concentration of Iodine-131 in Filtered Air(Results in units of 10-3 pCi/m³ +/- 2ơ)

Start Coll date	End Coll date	6C1	10S3	11S1	14S1	15D1	22G11	1384
7/6/2021	7/12/2021	*	*	*	*	*	*	*
7/12/2021	7/19/2021	*	*	*	*	*	*	*
7/19/2021	7/26/2021	*	*	*	*	*	*	*
7/26/2021	8/2/2021	*	*	*	*	*	*	*
8/2/2021	8/9/2021	*	*	*	*	*	*	*
8/9/2021	8/16/2021	*	*	*	*	*	*	*
8/16/2021	8/23/2021	*	*	*	*	*	*	*
8/23/2021	8/30/2021	*	*	*	*	*	*	*
8/30/2021	9/7/2021	*	*	*	*	*	*	*
9/7/2021	9/13/2021	*	*	*	*	*	*	*
9/13/2021	9/20/2021	*	*	*	*	*	*	*
9/20/2021	9/27/2021	*	*	*	*	*	*	*
9/27/2021	10/4/2021	*	*	*	*	*	*	*
10/4/2021	10/11/2021	*	*	*	*	*	*	*
10/11/2021	10/18/2021	*	*	*	*	*	*	*
10/18/2021	10/25/2021	*	*	*	*	*	*	*
10/25/2021	11/1/2021	*	*	*	*	*	*	*
11/1/2021	11/8/2021	*	*	*	*	*	*	*
11/8/2021	11/15/2021	*	*	*	*	*	*	*
11/15/2021	11/22/2021	*	*	*	*	*	*	*
11/22/2021	11/29/2021	*	*	*	*	*	*	*
11/29/2021	12/6/2021	*	*	*	*	*	*	*
12/6/2021	12/13/2021	*	*	*	*	*	*	*
12/13/2021	12/20/2021	*	*	*	*	*	*	*
12/20/2021	12/28/2021	*	*	*	*	*	*	*
12/28/2021	1/3/2022	*	*	*	*	*	*	*

¹ Control Location ² Lost Sample- power failure * <MDA (I-131)

Table B-5Concentration of Beta Emitters in Air Particulates(Results in units of 10⁻² pCi/m³ +/- 2ơ)

$\begin{array}{c} \pm & 0.22 \\ \pm & 0.21 \\ \pm & 0.20 \\ \pm & 0.16 \\ \pm & 0.17 \\ \pm & 0.17 \\ \pm & 0.17 \\ \pm & 0.20 \\ \pm & 0.20 \\ \pm & 0.21 \\ \pm & 0.21 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c} \pm & 0.25 \\ \pm & 0.24 \\ \pm & 0.22 \\ \pm & 0.18 \\ \pm & 0.19 \\ \pm & 0.19 \\ \pm & 0.19 \\ \pm & 0.12 \\ \pm & 0.22 \\ \pm & 0.22 \\ \pm & 0.24 \\ \pm & 0.24 \\ \pm & 0.17 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Concentration of Beta Emitters in Air Particulates (Results in units of 10⁻² pCi/m³ +/- 20)

Start Date	Stop Date	6C1	10S3	11S1	14S1	15D1	22G1 ¹	13S4
	6/7/2021	H	2.29 ±	0.21	+1	+1	H	H
	6/14/2021	$1.50 \hspace{0.2cm} \pm \hspace{0.2cm} 0.18$	$1.50 \hspace{0.2cm} \pm \hspace{0.2cm} 0.18$	H			H	H
	6/21/2021	H	2.27 ± 0.22	H	H	H	H	H
	6/28/2021	H	H	0.91 ± 0.16	1.31 ± 0.18	1.40 ± 0.18	1.27 ± 0.18	1.36 ± 0.18
	7/12/2021	2.38 ± 0.24	H	H	H	H	H	$+\!\!\!+\!\!\!$
	7/19/2021	H	H	H	H	H	H	$+\!\!\!+\!\!\!$
	7/26/2021	H	H	H	H	H	H	$+\!\!\!+\!\!\!$
	8/2/2021	2.71 ± 0.23	2.56 ± 0.23	1.63 ± 0.20	2.31 ± 0.22	2.43 ± 0.23	2.19 ± 0.22	2.58 ± 0.23
	8/9/2021	H	2.52 ± 0.22	+1	H	H	++	H
	8/16/2021	H	H	H	H	H	H	$+\!\!\!+\!\!\!$
	8/23/2021	H	H	$+\!\!\!+\!\!\!\!$	$+\!\!\!+\!\!\!\!$	H	$+\!\!\!+\!\!\!$	$+\!\!\!+\!\!\!\!$
8/23/2021	8/30/2021	3.32 ± 0.25	3.25 ± 0.25	2.13 ± 0.21	2.93 ± 0.24	3.30 ± 0.25	H	3.25 ± 0.25
	9/7/2021	H	H	1.47 ± 0.17		2.16 ± 0.20	2.26 ± 0.20	H
	9/13/2021	H	H	H	H	H	H	$+\!\!\!+\!\!\!\!$
	9/20/2021	H	H	H	H	H	H	$+\!\!\!+\!\!\!$
9/20/2021	9/27/2021	H	H	H	H	H	H	$+\!\!\!+\!\!\!$
	10/4/2021	2.61 ± 0.24	2.88 ± 0.24	1.99 ± 0.21	2.49 ± 0.23	2.74 ± 0.23	H	2.55 ± 0.23
	10/11/2021	++	H	++	++	++	H	+
10/11/2021	10/18/2021	H	+H	H	H	H	H	$+\!\!\!\!+\!\!\!\!$
	10/25/2021	2.94 ± 0.24	2.76 ± 0.24	2.30 ± 0.22	2.66 ± 0.23	3.31 ± 0.25	3.14 ± 0.25	2.97 ± 0.24
10/25/2021	11/1/2021	H	++	H	H	1.70 ± 0.20	H	$+\!\!\!+\!\!\!\!$

11/1/2021 11/8/2021 11/15/2021 11/122/2021	11/8/2021 11/15/2021 11/22/2021 11/29/2021	1.73 3.53 1.87 1.91	$\begin{array}{rrrr} 1.73 & \pm & 0.20 \\ 3.53 & \pm & 0.25 \\ 1.87 & \pm & 0.21 \\ 1.91 & \pm & 0.20 \end{array}$	$\begin{array}{rrrrr} 1.93 & \pm & 0.20 \\ 3.23 & \pm & 0.25 \\ 1.84 & \pm & 0.21 \\ 1.82 & \pm & 0.20 \end{array}$	$\begin{array}{rrrrr} 1.35 & \pm & 0.18 \\ 2.58 & \pm & 0.23 \\ 1.34 & \pm & 0.19 \\ 1.31 & \pm & 0.18 \end{array}$	$\begin{array}{rrrr} 1.60 & \pm & 0.19 \\ 2.96 & \pm & 0.24 \\ 1.68 & \pm & 0.20 \\ 1.67 & \pm & 0.20 \end{array}$	$\begin{array}{rrrrr} 2.02 & \pm & 0.20 \\ 3.20 & \pm & 0.25 \\ 1.79 & \pm & 0.21 \\ 2.05 & \pm & 0.21 \end{array}$	$\begin{array}{rrrr} 1.63 & \pm & 0.19 \\ 2.83 & \pm & 0.23 \\ 1.84 & \pm & 0.21 \\ 1.85 & \pm & 0.21 \end{array}$	$\begin{array}{rrrr} 1.83 \pm 0.20 \\ 3.36 \pm 0.25 \\ 1.81 \pm 0.21 \\ 1.87 \pm 0.20 \end{array}$
11/29/2021 12/ 12/6/2021 12/ 12/13/2021 12/ 12/28/2021 1/3	12/6/2021 12/13/2021 12/20/2021 12/28/2021 1/3/2022	2.18 2.99 3.60 2.33	$\begin{array}{rrrrr} 2.18 & \pm & 0.21 \\ 2.99 & \pm & 0.23 \\ 2.90 & \pm & 0.23 \\ 3.60 & \pm & 0.23 \\ 2.33 & \pm & 0.22 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrr} 1.78 & \pm & 0.20 \\ 2.00 & \pm & 0.21 \\ 1.92 & \pm & 0.20 \\ 2.28 & \pm & 0.20 \\ 1.63 & \pm & 0.21 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

¹ Control Location ² Lost Sample- power failure

Concentration of Gamma Emitters in Air Particulates

(Results in units of 10⁻³ pCi/m³ +/- 2o⁻)

Start Date	Stop Date	6C1 10S3 11S1 14S1 15D1 22G1 ¹ 13S4	10S3	11S1	14S1	15D1	22G1 ¹	13S4
12/28/2020	3/30/2021	*	*	*	*	*	*	*
3/30/2021	6/28/2021	*	*	*	*	*	*	*
6/28/2021	9/27/2021	*	*	*	*	*	*	*
9/27/2021	1/3/2022	*	*	*	*	*	*	*

¹ Control Location * All Non-Natural Gamma Emitters <MDA

Concentration of Gamma Emitters in Vegetation Samples

(Results in units of pCi/kg (wet) +/- 2o)

Sample Code	Sample Date	Sample Type	Gamma Emitters
11S3			
LGS	6/15/2021	Chard	*
Information Ctr	6/15/2021	Kale	*
	6/15/2021	Cabbage	*
	7/13/2021	Chard	*
	7/13/2021	Cabbage	*
	7/13/2021	Kale	*
	8/17/2021	Chard	*
	8/17/2021	Kale	*
	8/17/2021	Cantaloupe Leaves	*
	9/20/2021	Broccoli	*
	9/20/2021	Cabbage	*
	9/20/2021	Chard	*
13S3			
LGS	6/15/2021	Chard	*
500 KV Yard	6/15/2021	Kale	*
500 KV 1 ald	6/15/2021	Broccoli	*
	7/13/2021	Chard	*
	7/13/2021	Kale	*
	7/13/2021	Cabbage	*
	8/17/2021	Chard	*
	8/17/2021	Zucchini Leaves	*
	8/17/2021	Squash Leaves	*
	9/20/2021	Chard	*
	9/20/2021	Zucchini Leaves	*
	9/20/2021	Cucumbers	*
31G1 ¹ Jollyview Farm	6/15/2021	Broccoli	*
	6/15/2021	Cabbage	*
	6/15/2021	Cauliflower	*
	7/13/2021	Broccoli	*
	7/13/2021	Cabbage	*
	7/13/2021	Cauliflower	*
	8/17/2021	Kale	*
	8/17/2021	Eggplant Leaves	*
	8/17/2021	Radish Leaves	*
	9/20/2021	NA	2
	9/20/2021	NA	2
	9/20/2021	NA	2

¹ Control Location

² NCR, Lost Sample, Insufficient vegetation available to sample,
 * All Non-Natural Gamma Emitters <MDA

Sample Code	Sample Date	Gamma Emitters
18E1		
Miller Farm	1/12/2021	*
	2/9/2021	*
	3/9/2021	*
	4/6/2021	*
	4/19/2021	*
	5/4/2021	*
	5/18/2021	*
	6/1/2021	*
	6/15/2021	*
		*
	6/29/2021	*
	7/13/2021	*
	7/27/2021	*
	8/10/2021	
	8/24/2021	*
	9/7/2021	*
	9/20/2021	*
	10/5/2021	*
	10/19/2021	*
	11/1/2021	*
	11/15/2021	*
	11/29/2021	*
	12/20/2021	*
19B1		
Kolb Farm	1/12/2021	*
	2/9/2021	*
	3/9/2021	*
	4/6/2021	*
	4/19/2021	*
	5/4/2021	*
	5/18/2021	*
	6/1/2021	*
	6/15/2021	*
	6/29/2021	*
	7/13/2021	*
	7/27/2021	*
	8/10/2021	*
	8/24/2021	*
	9/7/2021	*
	9/20/2021	*
		*
	10/5/2021	*
	10/19/2021	
	11/1/2021	*
	11/15/2021	*
	11/29/2021	*
	12/20/2021	*

Table B-8Concentration of Gamma Emitters (including I-131) in Milk
(Results in units of pCi/Liter +/- 20

Sample Code	Sample Date	Gamma Emitters
23F1 ¹		
Guest Farm	1/12/2021	*
	2/9/2021	*
	3/9/2021	*
	4/6/2021	*
	4/19/2021	*
	5/4/2021	*
	5/18/2021	*
	6/1/2021	*
	6/15/2021	*
	6/29/2021	*
		*
	7/13/2021	*
	7/27/2021	
	8/10/2021	*
	8/24/2021	*
	9/7/2021	*
	9/20/2021	*
	10/5/2021	*
	10/19/2021	*
	11/1/2021	*
	11/15/2021	*
	11/29/2021	*
	12/20/2021	*
25C1		
Kulp Farm	1/12/2021	*
-	2/9/2021	*
	3/9/2021	*
	4/6/2021	*
	4/19/2021	*
	5/4/2021	*
	5/18/2021	*
	6/1/2021	*
	6/15/2021	*
	6/29/2021	*
		*
	7/13/2021	*
	7/27/2021	*
	8/10/2021	*
	8/24/2021	
	9/7/2021	*
	9/20/2021	*
	10/5/2021	*
	10/19/2021	*
	11/1/2021	*
	11/15/2021	*
	11/29/2021	*
	12/20/2021	*

Table B-8Concentration of Gamma Emitters (including I-131) in Milk
 (Results in units of pCi/Liter +/- 20

¹ Control Location

* All Non-Natural Gamma Emitters < MDA

Table B-9

(pCi/kg) Wet 671 - 11,829 Vegetation 10.3 - 53.010.9 - 59.8 12.9 - 55.0 24.7 - 116 10.1 - 61.4 19.3 - 116 10.9 - 90.5 11.1 - 62.3 46.6 - 289 93.9 - 850 22.0 - 151 92.9 - 541 13.4 - 854 11.1 - 58.1 9.1 - 388 9.1 - 388 8.9 - 54.1 Soil (pCi/kg) 789 - 10,713 314.0 - 840489 - 1,810 37.4 - 91.9 40.7 - 99.4139 - 8,060 36 - 1,820 36 - 1,820 32.8 - 85.8 96.4 - 27561.5 - 22736.4 - 92.4 96.4 - 38944.6 - 13384.6 - 26133.4 - 109 39.1 - 135 191 - 414 Dry pCi/kg)Dry 781 - 13,761 53.7 - 82.9 38.6 - 57.9 327.0 - 570470 - 2,040 43.3 - 82.4 38.4 - 65.4 711 - 1,110 46.4 - 77.4 41.4 - 67.1 36.6 - 175 82.1 - 157 Shoreline Sediment 142 - 251 112 - 198 93.5 - 151 368 - 773 368 - 773208 - 279 1,269 - 2,069 10.8 - 16.4 29.3 - 56.7 10.5 - 19.3 11.7 - 17.0 22.0 - 43.3 19.0 - 34.0 13.9 - 24.3 10.0 - 16.7 24.1 - 80.4 24.1 - 80.4 42.6 - 72.6 97.0 - 199 13.4 - 19.5 Oysters (pCi/kg) 8.7 - 16.0 22.4 - 107 88.0 - 141 9.7 - 16.5 **Typical MDA Ranges for Gamma Spectrometry** 1,286 - 1,529 20.5 - 31.0 30.4 - 46.8 29.3 - 51.8 4.08 - 5.29 4.89 - 6.28 4.89 - 6.28 9.2 - 15.9 5.8 - 11.5 0.5 - 7.03 4.09 - 4.82 9.4 - 16.1 3.26-5.64 3.6 - 6.6 3.9 - 6.5 4.9 - 8.5 (pCi/L) 3.7 - 6.3 4.1 - 7.2 Milk Ground water 3.01 - 5.38 5.62 - 8.75 5.86 - 26.0 17.8 - 32.0 2.78 - 5.94 6.41 - 14.4 2.79 - 5.06 25.6 - 45.3 4.87 - 9.04 2.92 - 5.48 2.97 - 5.43 4.87 - 10.3 26.7 - 42.1 2.86 - 5.14 6.04 - 11.7 2.86 - 5.27 21.5 -66.4 3.3 - 5.88 (pCi/L) (pCi/kg) Wet 2,747 - 4,505 21.4 - 2,34012.1 - 28.0 38.1 - 70.9 31.6 - 93.2 10.9 - 28.3 10.9 - 24.3 23.3 - 57.2 20.0 - 47.1 13.7 - 42.7 9.8 - 19.6 77.1 - 197 7.8 - 16.0 3.8 - 17.5 15.9 - 444 15.9 - 444 93.0 - 395 8.2 - 18.1Fish Drinking Water (pCi/L) 23.2 - 50.6 0.52 - 11.7 5.05 - 11.5 5.05 - 11.5 6.8 - 36.7 2.42 - 4.96 23.8 - 48.1 5.6 - 13.2 5.5 - 11.4 4.7 - 10.2 3.7 - 5.9 2.7 - 6.0 2.9 - 6.0 16 - 182 2.7 - 5.6 2.7 - 5.6 2.8 - 5.5 3.2 - 5.7 Surface Water. 10⁻³ pCi/m³ Particulates 5.65 - 24.6 0.32 - 1.16 0.33 - 1.060.72 - 3.88 4.90 - 45.0 0.34 - 1.33 1.01 - 8.52 0.28 - 1.09 0.81 - 3.10 0.47 - 0.88 0.46 - 0.882.01 - 1161.12 - 3.27 0.38 - 2.07 2.01 - 116 0.56 - 4.91 3.00 - 12.1 2.73 - 914 Air Ag-110m Selected Nuclides Ru-106 Cs-134 La-140 Ba-140 Ce-144 Cs-137 **Mn-54** Fe-59 Co-58 Co-60 Zn-65 Zr-95 Nb-95 I-131¹ Na-22 K-40 Cr-51

¹ This MDA range for I-131 on a charcoal cartridge is typically 5.22 x 10⁻³ to 1.37 x 10⁻² pCi/m

Table B-10

Typical LLDs for Gamma Spectrometry

Selected Nuclides	Air Particulates 10-3 pCi/m3	Drinking Water pCi/L	Fish pCi/kg (wet)	Ground water pCi/L	Oysters pCi/kg (wet)	Milk pCi/L	Soil pCi/kg (dry)	Vegetation pCi/kg (wet)
Na-22	5	5.3	12	5.3	12	9.1	78	27
Cr-51	74	37	76	37	76	62	452	174
Mn-54	4.6	4.7	13	4.7	13	7.4	63	19
Co-58	6.7	4.3	12	4.3	12	8.2	78	23
Fe-59	20	11	27	11	27	18	123	57
Co-60	3.5	4.8	12	4.8	12	7.5	59	24
Zn-65	8.9	11	27	11	27	17	162	55
Nb-95	9.8	4.5	13	4.5	13	9.5	73	25
Zr-95	11	7.9	18	7.9	18	14	117	34
Ru-106	43	38	111	38	111	62	624	174
Ag-110m	4.2	4.3	11	4.3	11	6	65	20
Te-129m	101	56	118	56	118	06	833	263
I-131*	90	0.8	11	6.4	11	0.8	58	42
Cs-134	4.7	4.7	11	4.7	11	6.7	66	18
Cs-137	4.2	5.1	11	5.1	11	6.9	78	21
Ba-140	47	23	39	23	39	46	103	111
La-140	47	9.2	15	9.2	15	13	103	30
Ce-144	15	23	45	23	45	37	288	70

Direct Radiation

(Results in Units of mR/91 days $\pm 2\sigma$)

Location	Quarter 1	Quarter Quarter Quarter 1 2 3	Quarter 3	Quarter 4	Normalized Annual Dose, MA (mrem/yr)	BA	BA + MDDA	Annual Facility Dose, FA (mrem)	Annual Facility Dose, FA >10 mrem
10E1	16.4	21.0	18.8	20.0	76.2	71.0	82.7	ND	No
10F3	15.1	20.7	19.3	21.6	76.7	69.7	81.4	ND	No
10S3	16.6	20.5	18.8	21.1	77.0	70.9	82.6	ND	No
1151	19.4	22.9	21.4	14.1	77.8	83.1	94.8	ND	No
13C1 ¹	12.4	14.7	14.0	11.5	52.5	49.8	61.5	ND	No
13E1	17.8	20.2	20.1	14.5	72.5	70.1	81.8	ND	No
13S2	23.2	27.5	25.2	14.5	90.4	112.1	123.8	ND	No
14S1	15.4	18.5	17.0	15.4	66.3	63.2	74.9	ND	No
15D1 ¹	16.1	19.7	18.8	22.0	76.6	72.5	84.2	ND	No
16F1 ¹	16.1	20.5	18.3	20.6	75.4	73.4	85.1	ND	No
17B1	15.4	19.0	17.6	12.4	64.5	66.8	78.5	ND	No
18S2	17.9	21.7	20.6	18.0	78.2	78.4	90.1	ND	No
19D1	16.2	19.7	16.8	19.1	71.8	66.3	78.0	ND	No
20D1 ¹	15.6	18.2	17.3	16.9	68.0	63.0	74.7	ND	No

Direct Radiation

(Results in Units of mR/91 days $\pm 2\sigma$)

Location	Quarter 1	Quarter Quarter Quarter 1 2 3	Quarter 3	Quarter 4	Normalized Annual Dose, MA (mrem/yr)	BA	BA + MDDA	Annual Facility Dose, FA (mrem)	Annual Facility Dose, FA >10 mrem
20F1	16.4	19.9	17.9	20.8	75.1	67.5	79.2	ND	No
21S2	15.2	17.9	17.1	16.0	66.2	64.1	75.8	ND	No
23S2	15.4	19.2	17.5	15.8	67.9	63.9	75.6	ND	No
24D1	14.7	18.0	15.0	18.5	66.3	59.7	71.4	ND	No
25D1	14.4	16.2	15.1	14.2	59.9	56.5	68.2	ND	No
25S2	14.9	18.4	15.6	11.8	60.7	58.1	69.8	ND	No
26S3	15.6	18.0	16.1	14.6	64.3	60.4	72.1	ND	No
28D2	16.8	18.4	16.5	18.4	70.0	63.5	75.2	ND	No
29E1	16.4	19.5	17.0	14.6	67.5	62.3	74.0	ND	No
29S1	16.4	18.4	16.6	14.3	65.7	61.4	73.1	ND	No
2E1	17.9	20.9	17.9	20.7	77.4	71.9	83.6	ND	No
$31D1^{1}$	18.8	23.5	21.1	18.3	81.6	83.0	94.7	ND	No
31D2	18.3	21.5	18.4	19.9	78.1	71.2	82.9	ND	No
31S1	17.6	21.5	19.6	16.1	74.8	71.6	83.3	ND	No
34E1	16.8	18.5	17.8	21.2	74.3	67.0	78.7	ND	No

Table B-11

Direct Radiation

(Results in Units of mR/91 days $\pm 2\sigma$)

Quarter Location 1	Quarter 1	Quarter Quarter Quarter 1 2 3	Quarter 3	Quarter 4	Normalized Annual Dose, MA (mrem/yr)	BA	BA + MDDA	Annual Facility Dose, FA (mrem)	Annual Facility Dose, FA >10 mrem
34S2	18.1	19.7	17.5	11.5	66.7	71.6	83.3	ND	No
36D1	13.4	15.8	16.0	14.9	60.0	62.1	73.8	ND	No
36S2	18.8	22.2	19.4	18.0	78.4	73.4	85.1	ND	No
3S1	16.6	20.9	18.8	14.2	70.4	70.1	81.8	ND	No
4E1	12.9	14.5	14.3	15.3	57.0	51.4	63.1	ND	No
$5H1^{1}$	19.6	24.7	22.2	22.0	88.6	86.3	98.0	ND	No
5S1	19.3	22.7	21.1	21.1	84.2	80.0	91.7	ND	No
6C1 ¹	17.8	18.9	19.6	14.5	70.7	69.5	81.2	ND	No
7E1	17.4	20.7	20.8	17.4	76.3	74.6	86.3	ND	No
7S1	17.1	20.4	19.1	17.0	73.6	73.1	84.8	ND	No
9C1 ¹	17.4	20.0	18.3	19.9	75.6	68.1	79.8	ND	No
1 Control & Special Interest Locations	cial Interest Lo	ocations							

APPENDIX C

Quality Assurance Program

Appendix C is a summary of Exelon Industrial Services (EIS) laboratory's quality assurance program. It consists of Table C-1 which is a compilation of the results of the EIS laboratory's participation in an interlaboratory comparison program with Environmental Resource Associates (ERA) located in Arvada, Colorado and Eckert and Ziegler Analytics, Inc. (EZA) located in Atlanta, Georgia. It also includes Table C-2, which is a compilation of the results of the Exelon Industrial Services (EIS) Laboratory's participation in a split sample program with Teledyne Brown Engineering located in Knoxville, Tennessee and Table C-3, which is a list of the Site Specific LLDs required by the ODCM.

The EIS laboratory's results contained in Table C-1, intercomparison results, are in full agreement when they were evaluated using the NRC Resolution Test Criteria [1] except as noted in the Pass/Fail column and described below. The EIS Laboratory's results are provided with their analytical uncertainties of 2 sigma. When evaluating with the NRC Resolution Test a one sigma uncertainty is used to determine Pass or Fail and noted accordingly. There were no failures of crosscheck studies in 2021. All results reported passed their respective vendor acceptance ranges and NRC Resolution Test Criteria [1]

The vendor laboratories used by EIS for subcontracting and interlaboratory comparison samples, GEL Laboratories and Teledyne Brown Engineering, also participate in the ERA and EZA interlaboratory comparison program. A presentation of their full data report is provided in their Annual Environmental Quality Assurance Program Reports, (Ref 14,15). In summary Gel and TBE reported results met vendor and laboratory acceptance ranges with the following exceptions discussed here:

- 1. TBE results for Gross Beta in Drinking water submitted in October 2021 failed the upper acceptance limit specified by the vendor. The laboratory investigated and the study results were within the acceptable range specified in TBE's QA plan, 70-130% of True Value. A repeat study was analyzed in December 2021 and also failed the vendor's upper acceptance limit. In both cases TBE's published QA requirements of acceptable range being 70-130% of True value were met. The lab's performance is within the acceptable range specified in their QA plan. This same range is considered acceptable by Exelon Nuclear Quality Assurance Requirements as well. TBE states in their investigation that there was no impact to sample data and no further action is warranted.
- 2. GEL results for MRAD-34, Fe-55 in water did not meet vendor acceptance criteria. The laboratory review of this analysis revealed loose fittings and

3. GEL results for RAD-126 Sr-90 failed vendor acceptance criteria, exceeding the maximum range by 0.1pCi/L. The laboratory review did not reveal any gross errors or possible contributors to the high bias. The reported value is 115% of the reference value which is within the laboratory's standard acceptance criteria of +/- 25% for Laboratory Control Samples.

The Inter and Intra laboratory results contained in Table C-2 are intercomparison results for routine samples analyzed for replicate and split analyses and evaluated for beta and non-natural gamma emitters. The EIS laboratory's results are provided with their analytical uncertainties of 2 sigma. When evaluating with the NRC Resolution Test a one sigma uncertainty is used to determine Pass or Fail and noted accordingly. In the event there are no non-natural isotopes detected, the samples are reported <MDA and designated as Pass.

All the results contained in Table C-2 agree with their respective EIS laboratory original, replicate and/or Teledyne Brown Engineering's split laboratory samples.

The original analysis of soil collected on March 15, 2021, at SFS5 indicated low level, Non Plant related Cs-137 just above the analyses Minimum Detectable Activity. The replicate and split samples did not indicate Cs-137 above the Minimum Detectable Activity, MDA, of the analysis. In this case the original, replicate and split results pass the NRC Resolution Test Criteria¹, as specified in the rule. When compared to the MDA of the replicate and split analysis, the positive result is less than five times the MDA value. The low-level Cs-137 observed in these soil analyses is consistent with weapons related fallout previously identified in the environs around Limerick Nuclear Power Plant.

All air particulate samples contain Beta emitters and are reported with a 2sigma uncertainty. The original and replicate analyses are evaluated for agreement using the NRC Resolution Test Criteria¹. These samples must be composited for further analysis and this precludes them from being split for analysis of beta emitters. Filters and other samples whose nature generally preclude sample splitting are marked "**" in the Split Analysis column.

TABLE OF CONTENTS - Appendix C ANALYTICAL RESULTS

Table	Title	Page
C-1	Results of Participation in Cross Check Programs	65
C-2	Results of Quality Assurance Program	73
C-2a	Results of Quality Assurance Program Co-Located Air Samplers	
C-2b	Results of Quality Assurance Program Co-Located Air Samplers	
C-3	Limerick Generating Station ODCM Required LLDs	90

uary 1 - December 31, 2021	Jocket Nos. 50-352, 50-353
Januar	Doc

	Pass/Fail	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	¢	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
	Cross Check Lab Results	86.9	151	110	125	242	112	128	109	154	211		80.9	151	110	125	242	112	128	109
	cd ry's	18.0	7.1	10.3	12.4	83.6	10.3	12.4	14.6	9.5	21.7		1/.8	7.9	11.3	15.2	7.97	10.7	11.1	14.7
1	Reported Laboratory's Results	H	H	H	+1	+H	+1	+1	H	+1	H	-	H	H	++	H	++	++	+1	+1
	R Lat	105	145	116	122	257	122	126	116	155	195	Ċ	89	134	111	127	302	118	118	121
	Isotope Observed	I-131	Cs-134	Cs-137	Ce-141	Cr-51	Mn-54	Co-58	Fe-59	Co-60	Zn-65		1-131	Cs-134	Cs-137	Ce-141	Cr-51	Mn-54	Co-58	Fe-59
	Sample Type and Units	Milk Gamma pCi/L										Milk Gamma	pC1/L							
	Study ID	E13390											E13390							
	Sample Date	3/11/2021											3/11/2021							

Table C-1 Results of Participation in Cross Check Programs

65

Pass Pass

154 211

8.9 22.2

++ ++

147 190

Co-60 Zn-65

Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
283	88.2	88.2	67.5	26.7	156	138	132	390	183	131	134
4.7	5.7	5.3	2.3	3.6	4.6	7.0	6.1	36.0	8.7	7.0	10.0
H	H	H	H	H	H	$+\!\!\!+\!\!\!\!$	H	$+\!\!\!+\!\!\!\!+$	$+\!\!\!+\!\!\!\!$	$+\!\!\!+\!\!\!\!+$	$+\!\!\!+\!\!\!\!$
250	80	79	58	29	136	138	146	416	204	133	161
Cs-137	I-131	I-131	Cs-137	I-131	Cs-134	Cs-137	Ce-141	Cr-51	Mn-54	Co-58	Fe-59
Water Beta pCi/L	Cartridge Gamma pCi	Cartridge Gamma pCi	Water Beta pCi/L	Water Gamma pCi/L	Filter Gamma pCi						
E13391	E13392	E13392	RAD 125	RAD 125	E13395						
3/11/2021	3/11/2021	3/11/2021	4/5/2021	4/5/2021	6/3/2021						

99

Pass Pass

158 220

6.2 17.0

171 255

Co-60 Zn-65

++ ++

Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
156	138	132	390	183	131	134	158	220	143	143	180	179	215	533	213	188	183	92	249	300
4.6	7.2	6.1	39.4	8.8	6.8	9.2	6.1	15.2	2.7	2.7	20.2	15.5	12.9	98.0	10.6	16.6	19.4	17.2	18.4	30.9
+1	$+\!\!\!+\!\!\!\!$	$+\!\!\!+\!\!\!\!+$	$+\!\!\!+\!\!\!\!$	$+\!\!\!+\!\!\!\!+$	H	$+\!\!\!+\!\!\!\!+$	+1	H	H	+1	H	H	+1	++	++	++	++	++	++	H
138	142	141	426	208	136	163	164	230	166	163	201	168	226	521	193	187	199	91	247	275
Cs-134	Cs-137	Ce-141	Cr-51	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-137	Cs-137	Ce-141	Co-58	Co-60	Cr-51	Cs-134	Cs-137	Fe-59	I-131	Mn-54	Zn-65
Filter Gamma pCi									Filter Beta pCi	Filter Beta pCi	Water Gamma pCi									
E13395									E13396	E13396	E13394									
6/3/2021									6/3/2021	6/3/2021	6/3/2021									

Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
180	179	215	533	213	188	183	92	249	300	180	179	215	533	213	188	183	92	249	300	250	217	217
18.8	15.2	12.6	80.6	10.1	15.9	19.4	22.1	18.4	33.6	18.4	17.9	13.9	95.7	10.6	16.6	21.8	20.2	19.7	35.8	4.5	3.1	3.0
H	H	H	H	$+\!\!\!+\!\!\!\!$	+1	H	+1	H	+1	+1	H	++	H	H	H	H	$+\!\!\!+\!\!\!\!$	H	H	H	H	+1
176	173	216	514	195	193	181	94	236	298	161	176	222	506	198	193	202	103	250	304	225	220	211
Ce-141	Co-58	Co-60	Cr-51	Cs-134	Cs-137	Fe-59	I-131	Mn-54	Zn-65	Ce-141	Co-58	Co-60	Cr-51	Cs-134	Cs-137	Fe-59	I-131	Mn-54	Zn-65	Cs-137	Cs-137	Cs-137
Water Gamma pCi										Water Gamma pCi	4									Water Beta pCi	Filter Beta pCi	Filter Beta pCi
E13394										E13394										E13393	E13397	E13397
6/3/2021										6/3/2021										6/3/2021	9/9/2021	9/9/2021

9/20/2021	MRAD035	MRAD035 Filter Gamma pCi	Cs-134	218	++ -	7.1	241 187	Pass
			Cs-137 Co-60	210	++ ++	10.4 11.4	187 310	Pass
			Zn-65	411	H	28.3	366	Pass
10/6/2021	RAD127	Water Gamma pCi	Ba-133	84	H	4.7	87.5	Pass
			Cs-134	67	H	3.1	70.1	Pass
			Cs-137	152	H	7.1	156	Pass
			Co-60	83	$+\!\!\!+\!\!\!\!$	4.3	85.9	Pass
			Zn-65	142	$+\!\!\!+\!\!\!\!$	11.2	145	Pass
10/6/2021	RAD127	Water Gamma pCi	I-131	30	Н	6.1	26.4	Pass
12/2/2021	E13398	Filter Gamma pCi	Ce-141	92	H	6.4	99.7	Pass
			Co-58	62	H	7.7	86.6	Pass
			Co-60	167	H	7.8	169	Pass
			Cr-51	190	H	40.4	222	Pass
			Cs-134	98	$+\!\!\!+\!\!\!\!$	4.7	126	Pass
			Cs-137	62	+1	6.2	88.7	Pass
			Fe-59	85	H	10.6	85.3	Pass
			Mn-54	110	+1	8.0	115	Pass
			Zn-65	180	+1	17.9	195	Pass

Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
126 88.7	7.66	222	115	86.6	85.3	169	195	281	94.3	94.3	94.3
4.1 5.8	6.3	41.7	7.3	6.7	8.7	6.7	15.9	5.0	13.2	5.9	6.8
++ ++	H	$+\!\!\!+\!\!\!\!$	H	H	H	H	++	H	H	H	H
95 76	95	212	110	80	93	154	182	287	92	89	89
Cs-134 Cs-137	Ce-141	Cr-51	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-137	I-131	I-131	I-131
Filter Gamma pCi								Water Beta pCi	Cartridge Gamma pCi	Cartridge Gamma pCi	Cartridge Gamma pCi
E13398								E13399	E13400	E13400	E13400
12/2/2021								12/2/2021	12/2/2021	12/2/2021	12/2/2021

Pass Pass Pass Pass Pass Pass Pass Pass	Pass Pass Pass Pass Pass Pass Pass Pass
90.3 166 117 132 293 152 114 113 223 223	90.3 166 117 132 293 132 293 114 113 223 257
$\begin{array}{c} 21.1\\ 8.1\\ 12.3\\ 16.0\\ 76.5\\ 13.7\\ 14.1\\ 18.1\\ 18.1\\ 12.5\\ 28.0\end{array}$	16.6 8.1 12.2 12.2 13.3 77.6 11.5 11.5 11.5 11.2 26.1
* * * * * * * * *	+ + + + + + + + + +
84 1160 114 131 285 156 104 125 224 253	95 161 116 115 265 164 106 119 232 232 261
I-131 Cs-134 Cs-137 Cs-137 Ce-141 Cr-51 Mn-54 Co-58 Fe-59 Co-60 Zn-65	I-131 Cs-134 Cs-137 Cs-137 Cs-137 Cs-137 Cs-137 Cs-137 Cs-137 Cs-59 Fe-59 Co-60 Zn-65
Milk Gamma pCi	Milk Gamma pCi
E13401	E13401
12/2/2021	12/2/2021

71

Cs-137114 \pm 12.3117PassCe-141131 \pm 16.0132Pass	$285 \pm 76.5 293$	$156 \pm 13.7 152$	104 ± 14.1 114	$125 \pm 18.1 113$	$224 \pm 12.5 223$	$261 \pm 26.1 = 257$
114 ± 12.3 131 ± 16.0	285 ± 76.5	156 ± 13.7	104 ± 14.1	125 ± 18.1	224 ± 12.5	261 ± 26.1
$114 \pm 131 \pm$	285 ±	$156 \pm$	$104 \pm$	125 ±	224 ±	261 ±
114 131	285	156	104	125	224	261
Cs-137 Ce-141	Cr-51	1-54	58	6		
	-	M_1	C0-	Fe-5(Co-6(Zn-65

¹ See discussion at the beginning of the Appendix

72

January 1 - December 31, 2021 Docket Nos. 50-352, 50-353

4
Ú
e
q
$\mathbf{T}_{\mathbf{a}}$

Results of Quality Assurance Program

Sample Type and Location	Sample Date	Type of Analysis	Result Units	Original Analysis	Replicate Analysis	Split Analysis	Pass/Fail (Replicate)	Pass/Fail (Split)
Water-16C2	02/03/21	Gross Beta	pCi/L	2.09 +/- 0.8	NA	<2.67	NA	PASS
Water-16C2	02/03/21	Gamma	pCi/L	<mda< td=""><td>NA</td><td><mda< td=""><td>NA</td><td>PASS</td></mda<></td></mda<>	NA	<mda< td=""><td>NA</td><td>PASS</td></mda<>	NA	PASS
Milk-19B1	1/12/2021	Gamma	pCi/L	<mda< td=""><td>NA</td><td><mda< td=""><td>NA</td><td>PASS</td></mda<></td></mda<>	NA	<mda< td=""><td>NA</td><td>PASS</td></mda<>	NA	PASS
Milk-25C1	1/12/2021	Gamma	pCi/L	<mda< td=""><td>NA</td><td><mda< td=""><td>NA</td><td>PASS</td></mda<></td></mda<>	NA	<mda< td=""><td>NA</td><td>PASS</td></mda<>	NA	PASS
Milk-19B1	1/12/2021	I-131	pCi/L	<mda< td=""><td>NA</td><td><mda< td=""><td>NA</td><td>PASS</td></mda<></td></mda<>	NA	<mda< td=""><td>NA</td><td>PASS</td></mda<>	NA	PASS
Milk-25C1	1/12/2021	I-131	pCi/L	<mda< td=""><td>NA</td><td><mda< td=""><td>NA</td><td>PASS</td></mda<></td></mda<>	NA	<mda< td=""><td>NA</td><td>PASS</td></mda<>	NA	PASS
Air Filter - A1	01/25/21	Gross Beta	10 ⁻² pCi/m ⁵	1.8 +/- 0.1	1.7 +/- 0.1	* *	PASS	NA
Air Filter - A2	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.7 +/- 0.1	1.7 +/- 0.1	* *	PASS	NA
Air Filter - A3	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.7 +/- 0.1	1.6 +/- 0.1	* *	PASS	NA
Air Filter - A4	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.9 +/- 0.1	1.8 +/- 0.1	* *	PASS	NA
Air Filter - A5	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.6 +/- 0.1	1.6 +/- 0.1	*	PASS	NA
Air Filter - SFA1	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.5 +/- 0.1	1.6 +/- 0.1	*	PASS	NA
Air Filter - SFA2	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.7 +/- 0.1	1.8 +/- 0.1	*	PASS	NA
Air Filter - SFA3	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.7 + - 0.1	1.7 +/- 0.1	*	PASS	NA
Air Filter - SFA4	01/25/21	Gross Beta	10 ⁻² pCi/m ³	1.7 +/- 0.1	1.8 +/- 0.1	* *	PASS	NA
Air Iodine - A1	02/15/21	I-131	pCi/m ³	<mda< td=""><td><mda< td=""><td>* *</td><td>PASS</td><td>NA</td></mda<></td></mda<>	<mda< td=""><td>* *</td><td>PASS</td><td>NA</td></mda<>	* *	PASS	NA
Air Iodine - A2	02/15/21	I-131	pCi/m ⁵	<mda< td=""><td><mda< td=""><td>*</td><td>PASS</td><td>NA</td></mda<></td></mda<>	<mda< td=""><td>*</td><td>PASS</td><td>NA</td></mda<>	*	PASS	NA
Air Iodine - A3	02/15/21	I-131	pCi/m ³	<mda< td=""><td><mda< td=""><td>* *</td><td>PASS</td><td>NA</td></mda<></td></mda<>	<mda< td=""><td>* *</td><td>PASS</td><td>NA</td></mda<>	* *	PASS	NA
Air Iodine - A4	02/15/21	I-131	pCi/m ⁵	<mda< td=""><td><mda< td=""><td>* *</td><td>PASS</td><td>NA</td></mda<></td></mda<>	<mda< td=""><td>* *</td><td>PASS</td><td>NA</td></mda<>	* *	PASS	NA

NA NA NA NA	PASS PASS	NA										
PASS PASS PASS PASS PASS	NA NA	PASS										
* * * * * * * * * *	4.21+/- 1.7 <mda< th=""><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th><th>* *</th></mda<>	* *										
<td>NA NA</td> <td>1.7 +/- 0.1</td> <td>1.7 +/- 0.1</td> <td>1.6 +/- 0.2</td> <td>1.7 +/- 0.1</td> <td>1.7 +/- 0.1</td> <td>1.8 +/- 0.1</td> <td>2.2 +/- 0.2</td> <td>1.7 +/- 0.2</td> <td>1.8 +/- 0.1</td> <td>1.6 +/- 0.1</td> <td>1.6 +/- 0.1</td>	NA NA	1.7 +/- 0.1	1.7 +/- 0.1	1.6 +/- 0.2	1.7 +/- 0.1	1.7 +/- 0.1	1.8 +/- 0.1	2.2 +/- 0.2	1.7 +/- 0.2	1.8 +/- 0.1	1.6 +/- 0.1	1.6 +/- 0.1
<pre><mda <mda="" <mda<="" pre=""></mda></pre>	2.12 +/- 0.8 <mda< td=""><td>1.7 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.6 +/- 0.2</td><td>1.6 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.8 +/- 0.1</td><td>2.1 +/- 0.2</td><td>1.9 +/- 0.1</td><td>1.7 +/- 0.1</td><td>1.6 +/- 0.1</td><td>1.7 +/- 0.1</td></mda<>	1.7 +/- 0.1	1.8 +/- 0.1	1.6 +/- 0.2	1.6 +/- 0.1	1.8 +/- 0.1	1.8 +/- 0.1	2.1 +/- 0.2	1.9 +/- 0.1	1.7 +/- 0.1	1.6 +/- 0.1	1.7 +/- 0.1
pCi/m ⁵ pCi/m ⁵ pCi/m ⁵ pCi/m ⁵	pCi/L pCi/L	10 ⁻² pCi/m ³										
I-131 I-131 I-131 I-131 I-131 I-131	Gross Beta Gamma	Gross Beta										
02/15/21 02/15/21 02/15/21 02/15/21 02/15/21	03/02/21 03/02/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21	03/29/21
Air Iodine - A5 Air Iodine - SFA1 Air Iodine - SFA2 Air Iodine - SFA3 Air Iodine - SFA4	Water-16C2 Water-16C2	Air Filter – STATION-02	Air Filter – STATION-03	Air Filter – STATION-04	Air Filter – STATION-05	Air Filter – STATION-06	Air Filter – STATION-07	Air Filter – STATION-08	Air Filter – STATION-09	Air Filter – STATION-10	Air Filter – STATION-11	Air Filter – STATION-12

NA	PASS PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS		CCA 1	PASS	NA	NA	NA	NA	NA	NA	NA	NA	NA
PASS	NA NA	PASS	PASS	PASS	NA	NA	NA	NA	A T A	NA	NA	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
* *	<3.74 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<>	<mda< td=""><td></td><td>60.72</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<>		60.72	<mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<>	* *	* *	* *	* *	* *	* *	* *	* *	* *
1.7 +/- 0.1	NA NA	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>V I V</td><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>V I V</td><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>V I V</td><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	NA	NA	NA	NA	V I V	NA	NA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
1.7 +/- 0.1	2.23 +/- 0.8 <mda< td=""><td><mda< td=""><td>87.2 +/- 37.6</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>87.2 +/- 37.6</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	87.2 +/- 37.6	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>0 0 / - <u>20 c</u></td><td>0.U -/+ CU.C</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	0 0 / - <u>20 c</u>	0.U -/+ CU.C	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
10 ⁻² pCi/m ³	pCi/L pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/L	pCi/L	pCi/L		pull p	pCi/L	pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³
Gross Beta	Gross Beta Gamma	Gamma	Cs-137	Gamma	Gamma	Gamma	I-131	I-131		Uross bela	Gamma	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131
03/29/21	03/30/21 03/30/21	03/15/21	03/15/21	03//2921	4/06/2021	4/06/2021	4/06/2021	4/06/2021		04/20/21	04/26/21	04/26/21	04/26/21	04/26/21	04/26/21	04/26/21	04/26/21	04/26/21	04/26/21	04/26/21
Air Filter – STATION-13	Water-16C2 Water-16C2	Soil – SFS1	Soil – SFS5 ¹	Soil-WB1	Milk-19B1	Milk-25C1	Milk-19B1	Milk-25C1		Waler-10C2	Water-16C2	Air Iodine - Al	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Air Iodine - SFA4

NA	NA NA	NA	NA	NA	NA	NA	NA	PASS	PASS	PASS	PASS	NA						
PASS DASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	NA	NA	NA	NA	PASS						
* * * *	* *	*	* *	* *	* *	* *	* *	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<>	<mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<>	* *						
d	<mbody></mbody>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.7 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.3 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.7 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.3 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.7 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.3 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.7 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.3 +/- 0.2</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.7 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.3 +/- 0.2</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.7 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.3 +/- 0.2</td></mda<>	NA	NA	NA	NA	2.5 +/- 0.1	2.5 +/- 0.2	2.7 +/- 0.3	2.6 +/- 0.2	2.5 +/- 0.1	2.5 +/- 0.2	3.3 +/- 0.2
	<mbody></mbody>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<></td></mda<>	<mda< td=""><td>2.6 +/- 0.1</td><td>2.5 +/- 0.2</td><td>2.6 +/- 0.3</td><td>2.6 +/- 0.2</td><td>2.5 +/- 0.1</td><td>2.5 +/- 0.2</td><td>3.4 +/- 0.2</td></mda<>	2.6 +/- 0.1	2.5 +/- 0.2	2.6 +/- 0.3	2.6 +/- 0.2	2.5 +/- 0.1	2.5 +/- 0.2	3.4 +/- 0.2
pCi/m ⁵	pCı/mč pCi/mč	pCi/m ³	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³	pCi/m ³	pCi/kg	pCi/kg	pCi/kg	pCi/kg	10 ⁻² pCi/m ³						
I-131	I-131 I-131	I-131	I-131	I-131	I-131	I-131	I-131	Gamma	Gamma	Gamma	Gamma	Gross Beta						
05/10/21	05/10/21	05/10/21	05/10/21	05/10/21	05/10/21	05/10/21	05/10/21	5/14/21	5/14/21	5/11/21	5/11/21	05/03/21	05/03/21	05/03/21	05/03/21	05/03/21	05/03/21	05/03/21
Air Iodine - A1	Air Iodine - A2 Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Air Iodine - SFA4	Predator-16C5	Bottom Feeder- 16C5	Predator-29C1	Bottom Feeder- 29C1	Air Filter – STATION-02	Air Filter – STATION-03	Air Filter – STATION-04	Air Filter – STATION-05	Air Filter – STATION-06	Air Filter – STATION-07	Air Filter – STATION-08

NA	NA	NA	NA	NA	PASS	PASS	PASS	PASS	NA	NA	NA	NA	NA	NA	NA	NA	NA	DAGC	PASS	PASS
PASS	PASS	PASS	PASS	PASS	PASS	PASS	NA	NA	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	DA SS	PASS	PASS
* *	* *	* *	* *	* *	<mda< td=""><td><mda< td=""><td><2.38</td><td><mda< td=""><td>* *</td><td>*</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><2.38</td><td><mda< td=""><td>* *</td><td>*</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<>	<2.38	<mda< td=""><td>* *</td><td>*</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td></td><td><td><mda< td=""></mda<></td></td></mda<>	* *	*	* *	* *	* *	* *	* *	* *	* *		<td><mda< td=""></mda<></td>	<mda< td=""></mda<>
2.6 +/- 0.2	2.4 +/- 0.1	2.5 +/- 0.2	2.5 +/- 0.2	2.5 +/- 0.2	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	NA	NA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td></td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>		<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
2.7 +/- 0.2	2.6 +/- 0.1	2.4 +/- 0.2	2.6 +/- 0.2	2.6 +/- 0.1	<mda< td=""><td><mda< td=""><td>1.43 +/- 0.8</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>1.43 +/- 0.8</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	1.43 +/- 0.8	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<></td></mda<>	<mda< td=""><td></td><td><td><mda< td=""></mda<></td></td></mda<>		<td><mda< td=""></mda<></td>	<mda< td=""></mda<>
10 ⁻² pCi/m ³	pCi/L	pCi/L	pCi/L	pCi/L	pCi/m ⁵	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	5	pCi/m ⁵	pCi/m ³				
Gross Beta	Gamma	Gamma	Gross Beta	Gamma	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	Commo	Gamma	Gamma				
05/03/21	05/03/21	05/03/21	05/03/21	05/03/21	6/01/2021	6/01/2021	06/01/21	06/01/21	06/14/21	06/14/21	06/14/21	06/14/21	06/14/21	06/14/21	06/14/21	06/14/21	06/14/21	10/80/9	6/28/21	6/28/21
Air Filter – STATION-09	Air Filter – STATION-10	Air Filter – STATION-11	Air Filter – STATION-12	Air Filter – STATION-13	Water – WA2	Water – WA1	Water-16C2	Water-16C2	Air Iodine - A1	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Air Iodine - SFA4	Air Filter A1	Air Filter - A2	Air Filter - A3

LL

PASS PASS PASS	PASS	PASS	PASS	PASS	PASS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PASS PASS PASS	PASS	PASS	PASS	NA	NA	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
<pre><mda <="" pre=""></mda></pre>	<mda <<="" td=""><td><mda< td=""><td><mda< td=""><td><2.64</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda>	<mda< td=""><td><mda< td=""><td><2.64</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><2.64</td><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<>	<2.64	<mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<>	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *
<td><mda <<="" td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>1.8 + - 0.1</td><td>2.1 +/- 0.1</td><td>2.4 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda></td>	<mda <<="" td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>1.8 + - 0.1</td><td>2.1 +/- 0.1</td><td>2.4 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda>	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>1.8 + - 0.1</td><td>2.1 +/- 0.1</td><td>2.4 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>2.1 +/- 0.1</td><td>1.8 + - 0.1</td><td>1.8 + - 0.1</td><td>2.1 +/- 0.1</td><td>2.4 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	NA	NA	2.1 +/- 0.1	1.8 + - 0.1	2.0 +/- 0.1	1.8 +/- 0.1	2.1 +/- 0.1	1.8 + - 0.1	1.8 + - 0.1	2.1 +/- 0.1	2.4 +/- 0.2	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
<td><mda <<="" td=""><td><mda< td=""><td><mda< td=""><td>2.74 +/- 0.8</td><td><mda< td=""><td>2.1 +/- 0.1</td><td>2.0 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.9 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.2 +/- 0.1</td><td>2.3 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda></td>	<mda <<="" td=""><td><mda< td=""><td><mda< td=""><td>2.74 +/- 0.8</td><td><mda< td=""><td>2.1 +/- 0.1</td><td>2.0 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.9 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.2 +/- 0.1</td><td>2.3 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda>	<mda< td=""><td><mda< td=""><td>2.74 +/- 0.8</td><td><mda< td=""><td>2.1 +/- 0.1</td><td>2.0 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.9 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.2 +/- 0.1</td><td>2.3 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>2.74 +/- 0.8</td><td><mda< td=""><td>2.1 +/- 0.1</td><td>2.0 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.9 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.2 +/- 0.1</td><td>2.3 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	2.74 +/- 0.8	<mda< td=""><td>2.1 +/- 0.1</td><td>2.0 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.9 +/- 0.1</td><td>2.0 +/- 0.1</td><td>1.8 +/- 0.1</td><td>1.8 + - 0.1</td><td>2.2 +/- 0.1</td><td>2.3 +/- 0.2</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	2.1 +/- 0.1	2.0 +/- 0.1	2.0 +/- 0.1	1.9 +/- 0.1	2.0 +/- 0.1	1.8 +/- 0.1	1.8 + - 0.1	2.2 +/- 0.1	2.3 +/- 0.2	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
pCi/m ⁵ pCi/m ⁵	pCI/m ³	pCi/m ³	pCi/m ³	pCi/L	pCi/L	10 ⁻² pCi/m ³	10 ⁻² pCi/m ³	10 ⁻² pCi/m ³	10^{-2} pCi/m^3	10 ⁻² pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³				
Gamma Gamma	Gamma	Gamma	Gamma	Gross Beta	Gamma	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131
6/28/21 6/28/21	6/28/21 6/28/21	6/28/21	6/28/21	06/28/21	06/28/21	07/19/21	07/19/21	07/19/21	07/19/21	07/19/21	07/19/21	07/19/21	07/19/21	07/19/21	07/06/21	07/06/21	07/06/21	07/06/21	07/06/21	07/06/21	07/06/21	07/06/21	07/06/21
Air Filter - A4 Air Filter - A5	Air Filter - SFA1 Air Filter - SFA2	Air Filter - SFA3	Air Filter - SFA4	Water-16C2	Water-16C2	Air Filter - Al	Air Filter - A2	Air Filter - A3	Air Filter - A4	Air Filter - A5	Air Filter - SFA1	Air Filter - SFA2	Air Filter - SFA3	Air Filter - SFA4	Air Iodine - A1	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine – A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Air Iodine – SFA4

PASS PASS	PASS	PASS	NA	NA	NA	PASS	PASS	PASS	PASS	PASS	PASS	NA	NA	NA	NA	NA	NA	NA	NA	NA
NA NA	NA	NA	PASS	PASS	PASS	NA	NA	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
<mda <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><2.72</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></mda 	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><2.72</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><2.72</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><2.72</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><2.72</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><2.72</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<2.72	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<>	<mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<>	* *	* *	* *	* *	* *	* *	* *	* *	* *
NA NA	NA	NA	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	NA	NA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<></td></mda<>	<mda< td=""><td>3.0 +/- 0.2</td><td>3.2 +/- 0.2</td><td>2.9 +/- 0.2</td><td>3.1 +/- 0.2</td><td>3.0 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.8 +/- 0.2</td><td>3.5 +/- 0.2</td><td>2.4 +/- 0.1</td></mda<>	3.0 +/- 0.2	3.2 +/- 0.2	2.9 +/- 0.2	3.1 +/- 0.2	3.0 +/- 0.2	3.5 +/- 0.2	2.8 +/- 0.2	3.5 +/- 0.2	2.4 +/- 0.1
<mda <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.87 +/- 0.9</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></mda 	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.87 +/- 0.9</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>3.87 +/- 0.9</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>3.87 +/- 0.9</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>3.87 +/- 0.9</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>3.87 +/- 0.9</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	3.87 +/- 0.9	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<></td></mda<>	<mda< td=""><td>2.9 +/- 0.2</td><td>2.8 +/- 0.2</td><td>2.7 +/- 0.2</td><td>2.6 +/- 0.2</td><td>2.6 +/- 0.1</td><td>2.8 +/- 0.2</td><td>2.4 +/- 0.1</td><td>2.9 +/- 0.2</td><td>2.5 +/- 0.1</td></mda<>	2.9 +/- 0.2	2.8 +/- 0.2	2.7 +/- 0.2	2.6 +/- 0.2	2.6 +/- 0.1	2.8 +/- 0.2	2.4 +/- 0.1	2.9 +/- 0.2	2.5 +/- 0.1
pCi/L pCi/L	pCi/L	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/L	pCi/L	pCi/kg	pCi/kg	pCi/kg	pCi/kg	10 ⁻² pCi/m ³	10^{-2} pCi/m^3	10 ⁻² pCi/m ³	10 ⁻² pCi/m ³	10 ⁻² pCi/m ³	10^{-2} pCi/m^3	10^{-2} pCi/m^3	10^{-2} pCi/m^3	10 ⁻² pCi/m ³
Gamma Gamma	I-131	I-131	Gamma	Gamma	Gamma	Gross Beta	Gamma	Gamma	Gamma	Gamma	Gamma	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta	Gross Beta
7/13/2021 7/13/2021	7/13/2021	7/13/2021	7/27/2020	7/27/2020	7/27/2020	08/02/21	08/02/21	08/24/21	08/24/21	08/24/21	08/24/21	08/30/21	08/30/21	08/30/21	08/30/21	08/30/21	08/30/21	08/30/21	08/30/21	08/30/21
Milk-19B1 Milk-25C1	Milk-19B1	Milk-25C1	Kale - IB4	Kale - IB7	Kale - IB10	Water-16C2	Water-16C2	Spot – IA1	Spot – IA5	Oysters – IA3	Oysters – IA6	Air Filter - A1	Air Filter - A2	Air Filter - A3	Air Filter - A4	Air Filter - A5	Air Filter - SFA1	Air Filter - SFA2	Air Filter - SFA3	Air Filter - SFA4

NA	NA	NA	NA	NA	NA	NA	NA	PASS	PASS		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	NA	NA	• •	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS
*	* *	* *	* *	* *	* *	* *	*	<2.71	<td></td> <td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<></td>		<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<></td></mda<>	<mda< td=""><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td></mda<>	* *	* *	* *	* *	* *	* *	* *	* *	* *
<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td>4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	NA	NA	4	<mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<></td></mda<>	<mda< td=""><td>4.29 +/- 0.9</td><td><td></td><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></td></mda<>	4.29 +/- 0.9	<td></td> <td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td>		<mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>< MDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	< MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³	pCi/L	nCi/L		pCi/kg	pCi/kg	pCi/kg	pCi/kg	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³
I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	Gross Beta	Gamma		Gamma	Gamma	Gamma	Gamma	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131
08/16/21	08/16/21	08/16/21	08/16/21	08/16/21	08/16/21	08/16/21	08/16/21	08/30/21	08/30/21	1	09/02/21	09/02/21	09/20/21	09/20/21	09/14/21	09/14/21	09/14/21	09/14/21	09/14/21	09/14/21	09/14/21	09/14/21	09/14/21
Air Iodine - A1	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Water-16C2	Water-16C2		Pears - Albion	Grapes - East	Swiss Chard-IB4	Swiss Chard-IB10	Air Iodine - A1	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Air Iodine - SFA4

PASS PASS	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PASS	PASS	PASS	PASS
NA NA	PASS PASS	PASS PASS	PASS PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	NA	NA	NA	NA
<2.38 <mda< td=""><td>* * - * * -</td><td>* * * *</td><td>* * * *</td><td>* *</td><td>*</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td>* *</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	* * - * * -	* * * *	* * * *	* *	*	* *	* *	* *	* *	* *	* *	* *	* *	* *	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
NA NA	3.1 +/- 0.2 3.1 +/- 0.2	2.9 +/- 0.2 3.1 +/- 0.2	3.4 +/- 0.2 3.5 +/- 0.2	2.7 +/- 0.1	3.4 +/- 0.2	3.2 +/- 0.2	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>NA</td><td>NA</td><td>NA</td></mda<>	NA	NA	NA	NA
1.87 +/- 0.8 <mda< td=""><td>3.0 +/- 0.2 3.0 +/- 0.2</td><td>3.1 +/- 0.2 3.0 +/- 0.2</td><td>3.5 +/- 0.2 3.5 +/- 0.2</td><td>2.7 +/- 0.2</td><td>3.5 +/- 0.2</td><td>3.0 +/- 0.2</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	3.0 +/- 0.2 3.0 +/- 0.2	3.1 +/- 0.2 3.0 +/- 0.2	3.5 +/- 0.2 3.5 +/- 0.2	2.7 +/- 0.2	3.5 +/- 0.2	3.0 +/- 0.2	<mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
pCi/L pCi/L	10 ⁻² pCi/m ³ 10 ⁻² pCi/m ³	10 ⁻² pCi/m ³ 10 ⁻² pCi/m ³	10 ⁻² pCi/m ⁵ 10 ⁻² pCi/m ⁵	10 ⁻² pCi/m ³	$10^{-2} \text{ pCi/m}^{3}$	10 ⁻² pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³	pCi/m ³	pCi/L	pCi/L	pCi/L	pCi/L
Gross Beta Gamma	Gross Beta Gross Beta	Gross Beta Gross Beta	Gross Beta Gross Beta	Gross Beta	Gross Beta	Gross Beta	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	Gamma	Gamma	I-131	I-131
09/27/21 09/27/21	10/04/21 10/04/21	10/04/21 10/04/21	10/04/21 10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/04/21	10/05/21	10/05/21	10/05/21	10/05/21
Water-16C2 Water-16C2	Air Filter - A1 Air Filter - A2	Air Filter - A3 Air Filter - A4	Air Filter - A5 Air Filter - SFA1	Air Filter - SFA2	Air Filter - SFA3	Air Filter - SFA4	Air Iodine - A1	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA3	Air Iodine - SFA4	Milk-19B1	Milk-25C1	Milk-19B1	Milk-25C1

NA	PASS PASS	PASS											
PASS	NA NA	NA											
* *	3.39 +/- 1.6 <mda< td=""><td>2.5 +/- 1.3</td></mda<>	2.5 +/- 1.3											
2.8 +/- 0.2	3.0 +/- 0.2	2.8 +/- 0.2	2.8 +/- 0.2	2.8 +/- 0.2	3.9 +/- 0.3	2.7 +/- 0.3	2.7 +/- 0.1	2.9 +/- 0.2	3.0 +/- 0.2	3.0 +/- 0.2	2.6 +/- 0.1	NA NA	NA
2.9 +/- 0.2	2.9 +/- 0.2	2.8 +/- 0.2	2.8 +/- 0.2	2.9 +/- 0.2	4.1 +/- 0.3	2.8 +/- 0.3	2.6 +/- 0.1	2.9 +/- 0.2	2.9 +/- 0.2	3.0 +/- 0.2	2.7 +/- 0.1	1.98 +/- 0.8 <mda< td=""><td>3.11 +/- 0.9</td></mda<>	3.11 +/- 0.9
10 ⁻² pCi/m ³	pCi/L pCi/L	pCi/L											
Gross Beta	Gross Beta Gamma	Gross Beta											
10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	10/26/21	11/01/21 11/01/21	11/29/21
Air Filter – STATION-02	Air Filter – STATION-03	Air Filter – STATION-04	Air Filter – STATION-05	Air Filter – STATION-06	Air Filter – STATION-07	Air Filter – STATION-08	Air Filter – STATION-09	Air Filter – STATION-10	Air Filter – STATION-11	Air Filter – STATION-12	Air Filter – STATION-13	Water-16C2 Water-16C2	Water-16C2

NA	NA	NA	NA	NA	NA	NA	NA	NA	PASS PASS	
PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	NA NA	
* *	* *	* *	* *	* *	* *	* *	* *	* *	<2.48 <mda< td=""><td></td></mda<>	
<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NA NA</td><td></td></mda<></td></mda<>	<mda< td=""><td>NA NA</td><td></td></mda<>	NA NA	
<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<></td></mda<>	<mda< td=""><td>2.02 +/- 0.8 <mda< td=""><td></td></mda<></td></mda<>	2.02 +/- 0.8 <mda< td=""><td></td></mda<>	
pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/m ⁵	pCi/m ³	pCi/L pCi/L	
I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	I-131	Gross Beta Gamma	
12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	01/03/22 01/03/22	
Air Iodine - A1	Air Iodine - A2	Air Iodine - A3	Air Iodine - A4	Air Iodine - A5	Air Iodine - SFA1	Air Iodine - SFA2	Air Iodine - SFA3	Air Iodine - SFA4	Water-16C2 Water-16C2	

¹ See discussion at the beginning of the Appendix ** The nature of these samples precluded splitting them with an independent laboratory.

Table C-2a

Results of Quality Assurance Program Co-Located Air Samplers 11S1 and 11S2

Concentration of Iodine-131 in Filtered Air (Results in units of 10^{-3} pCi/m³ ± 2 σ)

Start Date	Stop Date	Isotope Observed	11S1 Analysis	11S2 Analysis	NRC Acceptance
12/28/2020	1/4/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
1/4/2021	1/11/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
1/11/2021	1/19/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
1/19/2021	1/25/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
1/25/2021	2/3/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
2/3/2021	2/8/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
2/8/2021	2/15/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
2/15/2021	2/22/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
2/22/2021	3/2/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
3/2/2021	3/8/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
3/8/2021	3/15/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
3/15/2021	3/22/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
3/22/2021	3/30/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
3/30/2021	4/5/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
4/5/2021	4/12/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
4/12/2021	4/19/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
4/19/2021	4/26/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
4/26/2021	5/3/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
5/3/2021	5/10/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
5/10/2021	5/17/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass

Table C-2a

Results of Quality Assurance Program Co-Located Air Samplers 11S1 and 11S2

Concentration of Iodine-131 in Filtered Air (Results in units of 10^{-3} pCi/m³ ± 2 σ)

Start Date	Stop Date	Isotope Observed	11S1 Analysis	11S2 Analysis	NRC Acceptance
5/17/2021	5/24/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
5/24/2021	6/1/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
6/1/2021	6/7/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
6/7/2021	6/14/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
6/14/2021	6/21/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
6/21/2021	6/28/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
6/28/2021	7/6/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
7/6/2021	7/12/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
7/12/2021	7/19/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
7/19/2021	7/26/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
7/26/2021	8/2/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
8/2/2021	8/9/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
8/9/2021	8/16/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
8/16/2021	8/23/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
8/23/2021	8/30/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
8/30/2021	9/7/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
9/7/2021	9/13/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
9/13/2021	9/20/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
9/20/2021	9/27/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass
9/27/2021	10/4/2021	I-131	<mda< th=""><th><mda< th=""><th>Pass</th></mda<></th></mda<>	<mda< th=""><th>Pass</th></mda<>	Pass

Table C-2a

Results of Quality Assurance Program Co-Located Air Samplers 11S1 and 11S2

Concentration of Iodine-131 in Filtered Air (Results in units of 10^{-3} pCi/m³ ± 2 σ)

Start Date	Stop Date	Isotope Observed	11S1 Analysis	11S2 Analysis	NRC Acceptance
10/4/2021	10/11/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
10/11/2021	10/18/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
10/18/2021	10/25/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
10/25/2021	11/1/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
11/1/2021	11/8/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
11/8/2021	11/15/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
11/15/2021	11/22/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
11/22/2021	11/29/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
11/29/2021	12/6/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
12/6/2021	12/13/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
12/13/2021	12/20/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
12/20/2021	12/28/2021	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass
12/28/2021	1/3/2022	I-131	<mda< td=""><td><mda< td=""><td>Pass</td></mda<></td></mda<>	<mda< td=""><td>Pass</td></mda<>	Pass

Table C-2b

Results of Quality Assurance Program

Co-Located Air Samplers 11S1 and 11S2

Concentration of Beta Emitters in Air Particulates

(Results in units of 10^{-2} pCi/m³ ± 2 σ)

Start Date	Stop Date	11S1 Analysis by EIS	11S2 Analysis by TBE	NRC Acceptance
12/28/2020	1/4/2021	1.6 ± 0.2	1.3 ± 0.4	PASS
1/4/2021	1/11/2021	1.4 ± 0.2	1.4 ± 0.4	PASS
1/11/2021	1/19/2021	2.9 ± 0.2	2.7 ± 0.4	PASS
1/19/2021	1/25/2021	1.3 ± 0.2	1.2 ± 0.4	PASS
1/25/2021	2/3/2021	1.0 ± 0.1	0.9 ± 0.3	PASS
2/3/2021	2/8/2021	1.9 ± 0.3	1.7 ± 0.5	PASS
2/8/2021	2/15/2021	2.5 ± 0.2	2.6 ± 0.5	PASS
2/15/2021	2/22/2021	2.6 ± 0.2	2.4 ± 0.4	PASS
2/22/2021	3/2/2021	1.3 ± 0.2	1.3 ± 0.3	PASS
3/2/2021	3/8/2021	1.8 ± 0.2	1.5 ± 0.4	PASS
3/8/2021	3/15/2021	2.2 ± 0.2	$2.4 \hspace{0.1in} \pm \hspace{0.1in} 0.4$	PASS
3/15/2021	3/22/2021	1.9 ± 0.2	2.2 ± 0.4	PASS
3/22/2021	3/30/2021	1.2 ± 0.2	1.3 ± 0.4	PASS
3/30/2021	4/5/2021	1.7 ± 0.2	1.9 ± 0.5	PASS
4/5/2021	4/12/2021	1.3 ± 0.2	1.8 ± 0.4	PASS
4/12/2021	4/19/2021	0.9 ± 0.2	$0.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.3$	PASS
4/19/2021	4/26/2021	2.0 ± 0.2	1.9 ± 0.4	PASS
4/26/2021	5/3/2021	1.8 ± 0.2	$2.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	PASS

Table C-2b

Results of Quality Assurance Program

Co-Located Air Samplers 11S1 and 11S2

Concentration of Beta Emitters in Air Particulates

(Results in units of $10^{-2} \text{ pCi/m}^3 \pm 2\sigma$)

				-	,			
Start Date	Stop Date	1	1S1			11S	NRC	
Start Date	Stop Dute	Analys	Analysis by EIS			vsis by	Acceptance	
5/3/2021	5/10/2021	0.9	±	0.2	1.3	3 ±	0.4	PASS
5/10/2021	5/17/2021	1.4	±	0.2	1.4	1 ±	0.4	PASS
5/17/2021	5/24/2021	2.0	±	0.2	2.:	5 ±	0.5	PASS
5/24/2021	6/1/2021	0.9	±	0.1	1.1	L ±	0.3	PASS
6/1/2021	6/7/2021	1.4	±	0.2	2.1	l ±	0.5	PASS
6/7/2021	6/14/2021	1.0	±	0.2	1.1	l ±	0.4	PASS
6/14/2021	6/21/2021	1.4	±	0.2	1.:	5 ±	0.4	PASS
6/21/2021	6/28/2021	0.9	±	0.2	1.1	l ±	0.4	PASS
6/28/2021	7/6/2021	1.0	±	0.2	1.4	1 ±	0.4	PASS
7/6/2021	7/12/2021	1.8	±	0.2	2.5	5 ±	0.5	PASS
7/12/2021	7/19/2021	1.5	±	0.2	2.3	3 ±	0.4	PASS
7/19/2021	7/26/2021	1.7	±	0.2	2.2	2 ±	0.4	PASS
7/26/2021	8/2/2021	1.6	±	0.2	1.9) ±	0.4	PASS
8/2/2021	8/9/2021	1.7	±	0.2	1.7	7 ±	0.4	PASS
8/9/2021	8/16/2021	1.8	±	0.2	1.9) ±	0.4	PASS
8/16/2021	8/23/2021	1.2	±	0.2	1.0	5 ±	0.4	PASS
8/23/2021	8/30/2021	2.1	±	0.2	3.0) ±	0.5	PASS
8/30/2021	9/7/2021	1.5	±	0.2	1.0	5 ±	0.4	PASS
9/7/2021	9/13/2021	1.9	±	0.2	2.4	1 ±	0.5	PASS
9/13/2021	9/20/2021	2.6	±	0.2	3.2	2 ±	0.5	PASS
9/20/2021	9/27/2021	1.5	±	0.2	1.2	2 ±	0.4	PASS

Table C-2b

Results of Quality Assurance Program

Co-Located Air Samplers 11S1 and 11S2

Concentration of Beta Emitters in Air Particulates

(Results in units of 10^{-2} pCi/m³ ± 2 σ)

Start Date	Stop Data	11S1	1182	NRC
Start Date	Stop Date	Analysis by EIS	Analysis by TBE	Acceptance
9/27/2021	10/4/2021	2.0 ± 0.2	2.2 ± 0.5	PASS
10/4/2021	10/11/2021	1.4 ± 0.2	0.9 ± 0.4	PASS
10/11/2021	10/18/2021	2.3 ± 0.2	1.9 ± 0.4	PASS
10/18/2021	10/25/2021	2.3 ± 0.2	$2.3.0 \pm 0.5$	PASS
10/25/2021	11/1/2021	1.3 ± 0.2	1.3 ± 0.4	PASS
11/1/2021	11/8/2021	1.4 ± 0.2	1.7 ± 0.4	PASS
11/8/2021	11/15/2021	2.6 ± 0.2	$2.$ 3.3 ± 0.5	PASS
11/15/2021	11/22/2021	1.3 ± 0.2	1.6 ± 0.4	PASS
11/22/2021	11/29/2021	1.3 ± 0.2	1.5 ± 0.4	PASS
11/29/2021	12/6/2021	1.8 ± 0.2	2.0 ± 0.4	PASS
12/6/2021	12/13/2021	2.0 ± 0.2	2.4 ± 0.5	PASS
12/13/2021	12/20/2021	1.9 ± 0.2	2.7 ± 0.5	PASS
12/20/2021	12/28/2021	2.3 ± 0.2	$2. 3.1 \pm 0.5$	PASS
12/28/2021	1/3/2022	1.6 ± 0.2	1.5 ± 0.5	PASS

TABLE C-3

Selected Nuclides	Water pCi/l	Fish/Shellfish pCi/kg	Milk pCi/L	Sediment pCi/kg	Vegetation pCi/kg	Particulates ¹ pCi/m ³
H-3	2000					
Mn-54	15	130				
Co-58	15	130				
Fe-59	30	260				
Co-60	15	130				
Zn-65	30	260				
Zr-95/Nb-95	15					
I-131	15		1		60	0.07^{2}
Cs-134	15	130	15	150	60	0.05
Cs-137	18	150	18	180	80	0.06
Ba-140	60		60			
La-140	15		15			

Limerick Generating Station ODCM Required LLDs

 $\frac{10}{10}$ ¹Gross Beta activity LLD = 0.01pCi/m³ ² Air samples for I-131 are collected separately on a charcoal radioiodine cannister

APPENDIX D

Land Use Survey

Appendix D contains the results of a Land Use Survey conducted in the fall of 2021 around Limerick Generating Station (LGS), performed by Exelon Industrial Services to comply with Bases 3.3.2 of the Limerick's Offsite Dose Calculation Manual. The purpose of the land use survey is to look for all potential pathways of radiation to a person. This is accomplished by documenting the nearest resident, milk- producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors out to five miles around the site. The distance and direction of all locations from the LGS reactor buildings were positioned using Global Positioning System (GPS) technology.

The 2021 Land Use Survey identified differences in locations for gardens and meat animals between 2020 and 2021. Nine (9) new gardens were located this year in sectors N, NNE, NW, and WSW meteorological sectors. Gardens planted in sectors ESE and SE that are maintained for the REMP program were not included in the survey because of location on LGS property. These REMP program gardens are used as the sample locations for the REMP program. A new garden observed in the NNE sector was identified as the closest in the sector.

There were six (6) new meat sites identified this year in NE, E, SSW, and WSW sectors. All other locations were the same as in the 2020 report. The new locations in the E, and SSW were identified as the closest meat animals in that sector. There were no changes required to the LGS REMP as a result of this survey. There was no observed water usage for agricultural irrigation of root vegetables drawn directly from the Schuylkill River downriver from Limerick Generation Station. The results of this survey are summarized in Table D-1

Table D-1Distance of the Nearest Residence, Garden, Dairy,
Meat Animal within a Five Mile Radius of
Limerick Generating Station
(Distance in feet)
2021

Sector	Residence	Garden ⁽¹⁾	Dairy Animal	Meat Animal
N	3,109	3,333	24,775*	10,077
NNE	2,706	11,378	-	13,418
NE	3,469	13,452	-	16,044
ENE	3,231	8,241	-	7,451
E	2,864	4,117	-	3,890
ESE	3,434	3,434	-	12,264
SE	3,928	6,376	-	10,903
SSE	5,403	6,912	-	8,177
S	4,347	6,103	22,114*	12,210
SSW	5,063	5,732	10,390*	7,729
SW	3,251	6,319	-	23,145
WSW	3,799	4,507	14,177*	4,084
W	3,627	8,886	-	14,123
WNW	3,685	12,022	-	-
NW	3,619	8,200	-	-
NNW	5,050	6,473	-	12,065

* Denotes current REMP Dairy sample location

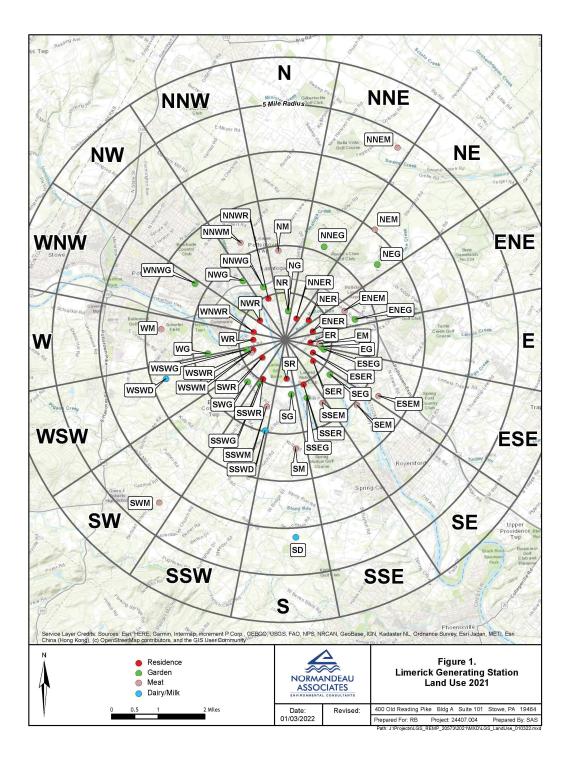


Figure D-1 Limerick Generating Station Land Use Census

APPENDIX E

Annual Radiological Groundwater Protection Program Report

For Limerick Generating Station

This report on the Radiological Groundwater Protection Program (RGPP) conducted for the Limerick Generating Station (LGS) by Exelon Nuclear covers the period 01 January 2021 through 31 December 2021. During that time period:

59 analyses were performed on 24 samples from 13 groundwater locations and 20 analyses were performed on 12 precipitation water locations collected from the environment, both on and off station property in 2021.

Groundwater samples were analyzed for tritium. Low levels of tritium were detected at 3 of the 13 groundwater monitoring locations. All other results were less than the required Exelon-specified LLD of 200 pCi/L.

Groundwater samples were analyzed for strontium-89 (Sr-89) and strontium-90 (Sr-90). All Sr-89 and Sr-90 results were less than the MDC.

Hard-To-Detect (HTD) analyses are routinely performed on a once per five year frequency for all groundwater monitoring locations. HTD analyses were performed in 2021 for 7 samples. All HTD results were less than the MDC.

Precipitation water samples were analyzed for tritium. Tritium was detected at 8 of 12 precipitation locations sampled.

In assessing all the data gathered for this report, it was concluded that the operation of Limerick Generating Station had no adverse radiological impact on the environment offsite of LGS. Additionally, there does not appear to be an active source of tritium to groundwater at the Station.

II. Introduction

The Limerick Generating Station (LGS), consisting of two 3515 MW boiling water reactors owned and operated by Exelon Corporation, is located adjacent to the Schuylkill River in Montgomery County, Pennsylvania. Unit No. 1 went critical on 22 December 1984. Unit No. 2 went critical on 11 August 1989.

The site is located in Piedmont countryside, transversed by numerous valleys containing small tributaries that feed into the Schuylkill River. On the eastern riverbank elevation rises from approximately 110 to 300 feet mean sea level (MSL). On the western riverbank elevation rises to approximately 50 feet MSL.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2021 and analysis for replicate samples performed by GEL Laboratories.

In 2006, Exelon instituted a comprehensive program to evaluate the impact of station operations on groundwater and surface water in the vicinity of Limerick Generating Station. This evaluation involved numerous station personnel and contractor support personnel.

A. Objective of the RGPP

The long-term objectives of the RGPP are as follows:

- 1. Identify suitable locations to monitor and evaluate potential impacts from station operations before significant radiological impact to the environment and potential drinking water sources.
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.
- 3. Perform routine water sampling and radiological analysis of water from selected locations.
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 5. Regularly assess analytical results to identify adverse trends.
- 6. Take necessary corrective actions to protect groundwater resources.

B. Implementation of the Objectives

The objectives identified have been implemented at Limerick Generating Station as discussed below:

1. Exelon and its consultant identified locations as described in the 2006

Phase 1 study. The Phase 1 study results and conclusions were made available to state and federal regulators in station specific reports.

2. The Limerick Generating Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements.

3. Limerick Generating Station will continue to perform routine sampling and radiological analysis of water from selected locations.

4. Limerick Generating Station has procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.

5. Limerick Generating Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.

C. Program Description

Samples for the ongoing ground water monitoring program were collected by Exelon Industrial Services (EIS). This section describes the general collection methods used to obtain environmental samples for the LGS RGPP in 2021. Sample locations can be found in Table E–1, Appendix E.

1. Sample Collection

Groundwater

Samples of groundwater were collected, managed, transported and analyzed in accordance with approved procedures following EPA methods. Sample locations, sample collection frequencies and analytical frequencies were controlled in accordance with approved station procedures. Contractor and/or station personnel were trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories were subject to internal quality assurance programs, industry cross- check programs, as well as nuclear industry audits. Station personnel reviewed and evaluated all analytical data deliverables as data were received. Both station personnel and an independent hydrogeologist reviewed analytical data results for adverse trends or changes to hydrogeological conditions.

Precipitation

A five-gallon precipitation collection bucket fitted with a funnel was installed at four locations around the Limerick Generating Station. Three collection buckets were located on site in the highest prevalent wind sectors and one located on site in the least prevalent wind sector.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters

the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non- tritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low- energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues

is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section lists the analyses performed by TBE and GEL Laboratories, LLC (GEL) on environmental samples for the LGS RGPP in 2021. The analytical procedures used by the laboratories are listed in the AREOR References.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of tritium in groundwater and precipitation water
- 2. Concentrations of gross alpha (dissolved and suspended) in groundwater

3. Concentrations of gamma-emitters (Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140, and La-140) in groundwater

4. Concentrations of strontium (Sr-89 and Sr-90) in groundwater

B. Data Interpretation

The radiological data collected prior to Limerick Generating Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Limerick Generating Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criterion for the presence of activity. All analyses were designed to achieve the required LGS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. LaboratoryMeasurementsUncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus (\pm) the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

C. <u>Background Analysis</u>

A pre-operational radiological environmental monitoring program (preoperational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, aquatic life, and foodstuffs. The results of the monitoring were detailed in the report entitled *Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21 December*

1984, Teledyne Isotopes and Radiation Management Corporation.

The pre-operational REMP contained analytical results from samples collected from both surface water and groundwater.

Monthly surface water sampling began in 1982, and the samples were analyzed for tritium as well as other radioactive analytes. During the preoperational program tritium was detected at a maximum concentration of

420 pCi/L, indicating that these preoperational results were from nuclear

weapons testing and is radioactively decaying as predicted. Gamma isotopic results from the preoperational program were all less than or at the minimum detectable concentration (MDC) level.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references.

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., manmade) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which

will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production

of tritium is usually negligible compared to other sources due to the

limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and Sr-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected worldwide since 1960. RadNet provides tritium precipitation concentration data for samples collected at stations throughout the U.S. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until

1975 followed by a gradual decline since that time. Tritium concentrations have typically been below 100 pCi/L since approximately 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above.

Water from previous years was naturally captured in groundwater. As a result, some well water sources today are affected by the surface water from the 1960s that contained elevated tritium activity.

c. Surface Water Data

Tritium concentrations are routinely measured in the Schuylkill and Delaware Rivers. Pennsylvania surface water data are typically less than 100 pCi/L.

The USEPA RadNet surface water data typically has a reported

'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

The radioanalytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or

 140 ± 100 pCi/L. Clearly, these sample results cannot be

distinguished as different from background at this concentration. The surface water data ends in 1999 as the USEPA RadNet surface water program was terminated in March 1999.

The Exelon fleet-wide and Limerick RGPP was modified at the beginning of 2020. Changes to the RGPP included sample locations, frequency and the removal of surface water sampling.

IV. Results and Discussion

A. Groundwater Results

Samples were collected from onsite wells throughout the year in accordance with the station Radiological Groundwater Protection Program. Analytical results and anomalies are discussed below:

<u>Tritium</u>

Samples from 13 locations were analyzed for tritium activity. (Appendix E, Table E–6) Tritium values ranged from non-detectable to 2190 pCi/L. Although no drinking water pathway is available from groundwater, the theoretical dose via the drinking water pathway was calculated at 0.130 mrem to a child (total body), which represents 2.159% of the 10 CFR 50, Appendix I dose limit of 6 mrem.

Strontium

Samples were analyzed for Sr-89 and Sr-90. All results were below the required LLDs. (Appendix E, Table E–5)

GrossAlpha(dissolvedandsuspended)

No analyses for gross alpha were performed in 2021

GammaEmitters

No analyses for gamma emitting nuclides were performed in 2021

Hard-To-Detect

HTD analyses were performed in 2021 on 7 groundwater locations. There were no detects and all results were below the required LLDs (Appendix E, Table E-4) B. Precipitation Sample Results

<u>Tritium</u>

Tritium activity was detected in 8 of 12 precipitation water locations analyzed. The concentrations ranged from 200 to 1200 pCi/L. These concentrations are consistent with historical values observed. (Appendix E, Table E-7)

C. Drinking Water Well Survey

In April, 2019, GHD (formerly Conestoga Rover Associates) conducted a comprehensive database search (PaGWIS) for private and public wells within one mile of the Station. The detailed results of the 2019 well search are presented in Appendix C of the 2019 Hydrogeologic Investigation Report for Limerick Generating Station. In general, the well depths range from 45 to 585 feet below ground surface, (bgs), and yield between 2 and 65 gpm. All wells are completed in the Brunswick Formation. In the GHD report, Figure 2.3 presents the approximate locations of the water wells that surround the Station.

A review of the PaGWIS database table reveals the following type and associated number of off-Station wells within the on-mile radius of the Station:

- x Domestic = 41 wells (68%)
- x Industrial = 5 wells (8%)
- x Observation = 9 wells (15%)
- x Abandoned = 5 wells (8%)
- x Total = 60 wells

One well was identified at the active quarry, which is approximately 2,000 feet to the northwest of the Station. The PaGWIS database search identifies the quarry well as constructed to a depth of 100 feet bgs, and reportedly yields at least 50,400 gpd (35 gpm). A well inventory included in the Station's USFAR cites the total depth of the quarry supply well as 130 feet bgs, with a yield of 100 gpm, and typical operation of 50 gpm for ten hours a day.

The Station has one potable supply well and one fire water well. The potable supply well is constructed as an open-rock borehole. Groundwater was measured at a depth 102 feet bgs during a well pump replacement in

2014. The pump was placed at a depth of approximately 294 feet bgs. The total well depth and the depth of the steel casing are approximately 310 feet bgs. The well is located approximately 175 feet east of the Reactor Building. The potable supply well is sampled as part of the RGPP and designated as DW-LR-1. In 2019, DW-LR-1 pumped 6,785,500 gallons.

The fire water well is constructed as an open-rock borehole. Groundwater was encountered at 121 feet bgs during a well pump replacement in 2004. The well pump was placed at a depth of approximately 399 feet bgs. The total well depth and the depth of the steel casing are unknown. The well is located approximately 500 feet east of the cooling towers. The well is used in an emergency fire situation and for system testing and flushing. In 2019, 1,709,275 gallons were pumped from the well.

D. Summary of Results- Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE are presented in the Annual Radiological Environmental Operating Report. In addition, the results for interlaboratory comparison RGPP samples are included in the data tables in Appendix E.

E. Leaks, Spill, and Releases

There were no spills to ground containing radioactive material in 2021.

F. Trends

Low level tritium detections in monitoring well MW-LR-9 are being trended.

G. Investigations

Intermittent, low-level tritium detections in monitoring well MW-LR-9 are currently being investigated.

- H. Actions Taken
 - 1. Compensatory Actions

There have been no station events requiring compensatory actions at the Limerick Generating Station.

2. Installation of Monitoring Wells

No new monitoring wells.

3. Actions to Recover/Reverse Plumes

No actions were required to recover or reverse groundwater plumes.

V. References

1. GHD, Inc. Hydrogeologic Investigation Report, Limerick Generating Station,

3146 Sanatoga Road, Pottstown, Pennsylvania, Ref. No. 11189800(1), December 2019

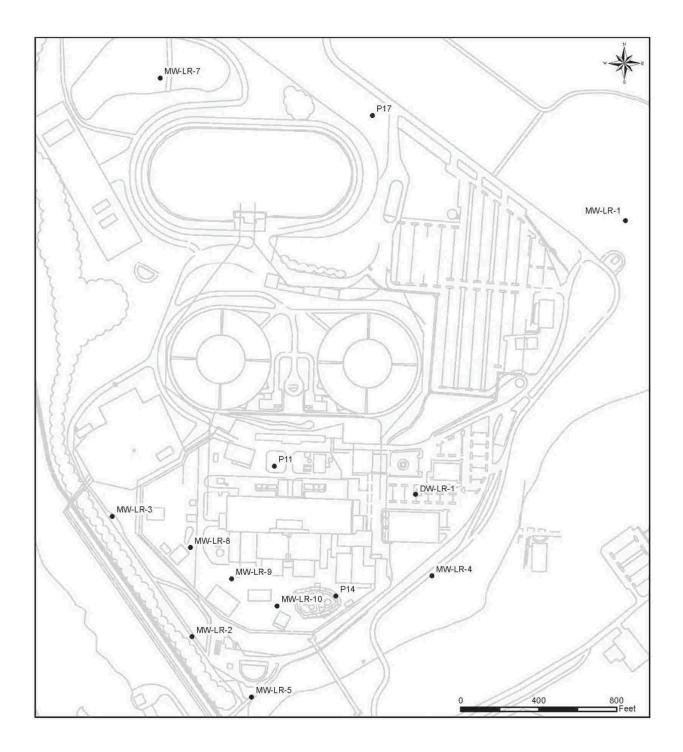
2. Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21

December 1984, Teledyne Isotopes and Radiation Management Corporation

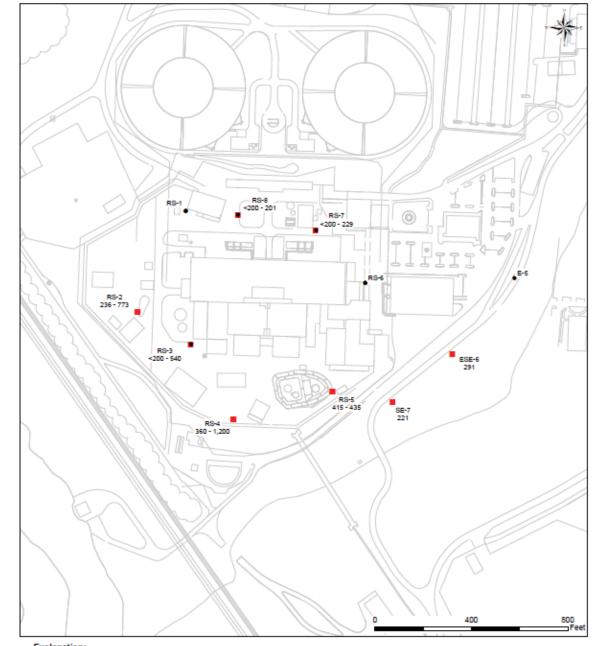
3. 2021 Annual RGPP Monitoring Report Summary of Results and Conclusions, Limerick Generating Station, AMO Environmental Decisions, Pottstown, Pennsylvania, Feb28, 2022

TABLE OF CONTENTS - ANALYTICAL RESULTS

Table	Title	Page
E-1	Locations of Onsite Radiological Groundwater Protection Program – Limerick Ge Station, 2021	U
E-2	Routine Precipitation Sample Locations for the Radiological Groundwater Protect Limerick Generating Station, 2021	•
E-3	Routine Precipitation Sample Locations for the Radiological Groundwater Protect Limerick Generating Station, 2021	•
E-4	Hard to Detects in Groundwater	111
E-5	Concentration of Radiostrontium in Groundwater	112
E-6	Concentration of Tritium in Groundwater	113
E-7	Concentration of Tritium in Surface Water, Precipitation, and Subsurface Drainage	114


TABLE E-1

Locations of Onsite Radiological Groundwater Protection Program


Limerick Generating Station, 2021

RGPP	Description
MW-LR-1	Monitoring Well
MW-LR-1 MW-LR-2	
	Monitoring Well
MW-LR-3	Monitoring Well
MW-LR-4	Monitoring Well
MW-LR-5	Monitoring Well
MW-LR-6	Monitoring Well
MW-LR-7	Monitoring Well
MW-LR-8	Monitoring Well
MW-LR-9	Monitoring Well
MW-LR-10	Monitoring Well
P3	Monitoring Well
P11	Monitoring Well
P14	Monitoring Well
P17	Monitoring Well
DW-LR-1	Monitoring Well
3683	Precipitation Water
E-5	Precipitation Water
ESE-6	Precipitation Water
RS-1	Precipitation Water
RS-2	Precipitation Water
RS-3	Precipitation Water
RS-4	Precipitation Water
RS-5	Precipitation Water
RS-6	Precipitation Water
RS-7	Precipitation Water
RS-8	Precipitation Water
SE-7	Precipitation Water

Figure E-2 Routine Well Water Sample Locations for the Radiological Groundwater Protection Program, Limerick Generating Station, 2021

Figure E-3

Routine Precipitation Sample Locations for the Radiological Groundwater Protection Program, **Limerick Generating Station, 2021**

Explanation:

- 2021 Precipitation Recapture Sample Locations
 - Result >200 pCI/L
- Result <200 pCI/L 415 - 435 - Tritlum concentration range in pCI/L in 2021
 - Precipitation recapture samples collected in February and October 2021.

Figure 3 2021 Precipitation Recapture Sample Locations Exelon Corporation Limerick Generating Station

Table E-4

Hard to Detects in Groundwater (Results in units of $pCi/L \pm 2\sigma$)

Ni-63	<4.47	<4.31	<4.48	<4.02	<20.9	<4.94	<4.66	<4.18	<4.96	
Fe-55	<190	<105	<57.6	<179	<52.8	<1118.1	<1116.5	<41.28	<108.7	
Sample Date	4/20/2021	4/22/2021	4/22/2021	4/22/2021	4/22/2021	4/22/2021	4/22/2021	4/22/2021	4/22/2021	
Station	MW-LR-4	MW-LR-1	MW-LR-8	MW-LR-8(Dup)	MW-LR-8(QA)	MW-LR-9	MW-LR-10	P11	P14	

Table E-5

Station	Sample Date	SR-89 (pCi/L)	SR-90 (pCi/L)
MW-LR-4	4/20/21	<5.95	<.599
MW-LR-1	4/22/21	<6.74	<.595
MW-LR-8	4/22/21	<7.9	<.582
MW-LR-8(Dup)	4/22/21	<8.71	<.6
MW-LR-8(QA)	4/22/21	<1.07	<0.84
MW-LR-9	4/22/21	<4.03	<.623
MW-LR-10	4/22/21	<6.85	<.589
P11	4/22/21	<6.1	<.639
P14	4/22/21	<6.72	<.636

$\label{eq:concentration} Concentration of Radiostrontium in Groundwater (Results in units of pCi/L \pm 2\sigma)$

Table E-6

Concentration of Tritium in Groundwater (Results in units of $pCi/L \pm 2\sigma$)

LOCATION	01/27/2021	4/20/21	4/22/21	5/7/21	6/4/21	7/21/21	9/3/21	9/29/21	10/27/21	11/24/21	12/17/21
DW-LR-1	<185	<179	<178	ŊŊ	ND	<177	ND	ND	<188	ND	ND
DW-LR-1(Dup)	ND	<177	<177	ND	ND	ND	ŊŊ	ŊŊ	ND	ŊŊ	ND
DW-LR-1(QA)	ND	<179	ND	ND	ND	ND	ŊŊ	ŊŊ	ND	ŊŊ	ND
MW-LR-2	ND	ŊŊ	<176	ND	ND	ND	ŊŊ	ŊŊ	ND	ŊŊ	ND
MW-LR-3	ND	ŊŊ	<173	ND	ND	ND	ŊŊ	ŊŊ	ND	ŊŊ	ND
MW-LR-4	<184	<179	ND	ND	ND	<178	ŊŊ	ŊŊ	<196	ŊŊ	ND
MW-LR-5	ND	194 ± 118	ND	ND	ND	ND	ŊŊ	ŊŊ	ND	ŊŊ	ND
MW-LR-7	ND	<178	ND	ND	ND	ND	ŊŊ	ŊŊ	ND	ŊŊ	ND
MW-LR-8	340±124	ŊŊ	420±131	ND	ND	376±125	ŊŊ	ŊŊ	383±132	ŊŊ	ND
MW-LR-8 (Dup)	ND	ND	493±133	ND	ND	406±128	QN	ŊŊ	387±135	ND	ND
MW-LR-8 (QA)	ND	ND	271±94	ND	ND	405 ± 100	ŊŊ	ND	288±124	ND	ND
MW-LR-9	721 ± 151	ŊŊ	2080±270	1960±282	2190±287	2020±269	1890±252	1910 ± 260	1290 ± 206	1620±233	1610 ± 225
MW-LR-9(Dup)	606 ± 143	ND	ND	ND	ND	ND	ŊŊ	ND	ND	ND	ND
MW-LR-9(QA)	701±251	ND	ND	ŊŊ	ND	ND	ŊŊ	ND	ND	ND	ND
MW-LR-10	<182	ŊŊ	<180	ND	ND	<181	ŊŊ	ŊŊ	<190	ŊŊ	ND
LR-P11	<181	ND	<181	ND	ND	<195	QN	ŊŊ	<197	ND	ND
LR-P14	<185	ND	<178	ND	ND	<174	ŊŊ	ND	<192	ND	ND
LR-P17	ND	<177	ND	ND	ND	ND	ND	ND	ND	ND	ND

ND – No Data, Sample obtained as required (Dup) –Sample analyzed in duplicate by TBE (QA) –Additional sample collected and analyzed for Quality Assurance by GEL Laboratories

Table E-7

$\begin{array}{c} Concentration \ of \ Tritium \ in \ Surface \ Water, \ Precipitation, \ and \\ Subsurface \ Drainage \\ (Results \ in \ units \ of \ pCi/L \pm 2\sigma) \end{array}$

LOCATION	2/15/22	01/03/22	
RS-1	<174	<182	
RS-2	773 ± 147	236±124	
RS-3	540±134	200±118	
RS-4	1200±185	360±132	
RS-5	435±127	415±141	
RS-6	<182	<176	
RS-7	<179	229±122	
RS-8	<183	201±124	
SE-7	ND	221±119	
ESE-6	ND	291±126	
E-5	ND	<177	
3683	ND	<177	