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ABSTRACT 

In our previous study, the RELAP5/SNAP model of Maanshan PWR nuclear power plant is 
established. This model was used to perform the analysis of Main Steam Line break (MSLB) 
inside-containment transient. The analysis results of RELAP5/SNAP are consistent with the 
FSAR data.  In this study, the main purpose is to perform an uncertainty analysis for Maanshan 
MSLB by using RELAP5/SNAP model and DAKOTA code. Total 21 parameters which include 
initial power, accumulator volume, injection water temperature, injection flow, rod material 
thermal conductivity, discharge coefficient for break, slug flow drag, etc. are evaluated in this 
analysis. According to the uncertainty analysis results, discharge coefficient for break, slug flow 
drag, and annular-mist flow drag have larger effect in the calculation of break flow, and slug flow 
drag and annular-mist flow drag have larger effect in the calculation of void fraction. 
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FOREWORD 

RELAP5 is a thermal hydraulic analysis code and has been designed to perform best-estimate 
analysis of LOCA, operational transients, and other accident scenarios for nuclear power plants. 
Traditionally, RELAP5 models were developed by ASCII files, which was not intelligible for the 
beginners of computer analysis. A graphic input interface code-SNAP is developed by Applied 
Programming Technology Inc. and can process the establishment of the RELAP5 models more 
conveniently.  
 
Taiwan and the United States have signed an agreement on CAMP to obtain the authorization of 
these codes. NTHU is the organization in Taiwan responsible for the application RELAP5 and 
SNAP in safety analysis of nuclear power plants. Hence, the RELAP5/SNAP model of Maanshan 
PWR nuclear power plant has been developed. To expand the applicability of the RELAP5/SNAP 
model, a thermal hydraulic analysis methodology of the postulated MSLB is established in our 
previous study. By comparing the RELAP5 results and FSAR data, it indicates that the 
RELAP5/SNAP model has a respectable accuracy. Hence, this model was used to perform an 
uncertainty analysis of MSLB to understand the parameters effects in this study. 
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EXECUTIVE SUMMARY 

RELAP5 which is MOD3.3 Patch05 code was developed by Idaho National Engineering 
Laboratory for light water reactor transient analysis. RELAP5 can simulate the operation of 
NPPs under normal operations and transients, provide an accurate and rapid analysis patterns 
for NPP systems, and provide transients analysis results to NPPs and regulatory commission. 
RELAP5/MOD3.3 code is featured with nonhomogeneous and non-equilibrium model for the 
two-phase system and is a one-dimensional thermal hydraulic analysis code which uses Semi-
Implicit method numerical scheme. RELAP5/MOD3.3 code also includes some models to deal 
with some particular phenomenon, such as critical flow model, reflooding model, metal-water 
reaction model etc.  
 
SNAP which is developed by Applied Programming Technology, Inc. is a graphic interface code 
and different from the traditional input deck in ASCII files. SNAP can help users to easily build 
the RELAP5 models in a graphic interface. Furthermore, SNAP has the animation function to 
present RELAP5 analysis results. Hence, RELAP5/MOD3.3 and SNAP codes were used in this 
study. 
 
DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) is developed by 
Sandia National Laboratory. DAKOTA supplies a simple setting interface for researchers to 
perform different iteration method with the analysis code (ex: RELAP5). Therefore, uncertainty 
analysis can be determined by some simulations with different input parameters sets in RELAP5 
and DAKOTA.  
 
Maanshan NPP which is a PWR is located on the southern coast of Taiwan. The reactor coolant 
system of Maanshan NPP has three loops, each of which includes a reactor coolant pump and 
a steam generator. In addition, a pressurizer connects to the hot-leg piping in loop 2. In our 
previous study, to analyze the MSLB transient, the RELAP5/SNAP model of Maanshan NPP 
was established. The analysis results of RELAP5 were compared with the FSAR data. 
According to the compared RELAP5 results and FSAR data, it indicates that the RELAP5/SNAP 
model has the ability to predict the MSLB transient. 
 
However, to understand the effects of parameters for MSLB transient, the uncertainty analysis 
by using the RELAP5/SNAP model and DAKOTA code was performed in this study. Total 21 
parameters which include 13 parameters of NPP and 8 parameters of RELAP5 model are 
evaluated in this analysis. These parameters of NPP are initial power, accumulator volume, 
accumulator temperature, accumulator pressure, accumulator boron concentration, injection 
water temperature, high pressure injection flow, low pressure injection flow, rod material thermal 
conductivity, rod material heat capacity, RCP initial speed, RCP inertia, and pressurizer initial 
pressure. In addition, the parameters of RELAP5 model are discharge coefficient for break, two-
phase friction, junction form loss, bubbly flow drag, slug flow drag, annular-mist flow drag, 
dispersed flow drag, and reflood drag. The number of samples was determined by Wilks’ 
formula to generate the 95/95 confidence level and probability. Additionally, Pearson product-
moment correlation coefficients were calculated to confirm the parameters correlation size in the 
MSLB. The uncertainty analysis results indicate that the discharge coefficient for break, slug 
flow drag, and annular-mist flow drag have larger correlation size in the break flow, and slug 
flow drag and annular-mist flow drag have larger correlation size in the void fraction. 
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1    INTRODUCTION 

Maanshan NPP which located on the southern coast of Taiwan is the third NPP in Taiwan and 
the only one PWR. The NSSS of Maanshan NPP is built by Westinghouse and has three loops, 
which can be divided into primary side and secondary side. The original power of Maanshan 
NPP is 2775 MWt. After MUR finished, the power of Maanshan NPP is 2822 MWt. There is a 
RCP and a SG in each loop of the primary side. Pressurizer connects to the hot leg of the 
second loop, which can adjust the pressure of the RCS. In addition, each loop equipped with an 
ACC injection system, a HHSI and a LHSI.  

RELAP5, DAKOTA and SNAP codes are used in this study. RELAP5 is a thermal hydraulic 
analysis code and can simulate and analyze NPP transients [1]. We use the MOD3.3 Patch05 
version in our studies. DAKOTA can couple with RELAP5 to perform uncertainty analysis [2]. 
SNAP can process the input and output of RELAP5 and DAKOTA in thermal hydraulic analysis 
and uncertainty analysis [3]. 

In our previous study [4], the RELAP5/SNAP model of Maanshan PWR NPP for MSLB transient 
is established. The analysis results of RELAP5 were compared with the FSAR data. It indicates 
that the RELAP5/SNAP model has the ability to predict the MSLB transient. In this thermal 
hydraulic analysis, the values of parameters are constant which causes the only one result for 
RELAP5 calculation as Figure 1-1 [5]. However, the values of parameters have the variation in 
uncertainty analysis. This causes the different result for RELAP5 calculation as Figure 1-2 [5].  

Therefore, to understand the variation effects of parameters in the RELAP5 calculation for 
MSLB transient, the uncertainty analysis by using the RELAP5/SNAP model and DAKOTA code 
was performed in this study. Total 21 parameters which include 13 parameters of NPP and 8 
parameters of RELAP5 model are evaluated in this uncertainty analysis. The 13 parameters of 
NPP parameters are initial power, accumulator volume, accumulator temperature, accumulator 
pressure, accumulator boron concentration, injection water temperature, high pressure injection 
flow, low pressure injection flow, rod material thermal conductivity, rod material heat capacity, 
RCP initial speed, RCP inertia, and pressurizer initial pressure. The 8 parameters of RELAP5 
model are discharge coefficient for break, two-phase friction, junction form loss, bubbly flow 
drag, slug flow drag, annular-mist flow drag, dispersed flow drag, and reflood drag. The 
distributions and ranges of the parameters are from the references [6-8]. In addition, the number 
of samples was determined by Wilks’ formula [9-10] to generate the 95/95 confidence level and 
probability. Finally, to confirm the parameters correlation size in the MSLB transient, Pearson 
product-moment correlation coefficients [11] were calculated.  
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Figure 1-1    Thermal Hydraulic Analysis Schematic Diagram [5] 
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Figure 1-2    Uncertainty Analysis Schematic Diagram [5] 
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2    MODEL AND METHODOLOGY DESCRIPTION 

2.1  RELAP5/SNAP Model Description 

Figure 2-1 shows the RELAP5/SNAP model of Maanshan NPP. This model was established in 
our previous study [4]. This model can be divided into primary side loop, secondary side loop, 
and ECCS and established by using Pipe, Valve, Branch, Pump and Single Volume, and Time 
Dependent Junction components. There are three loops in this model. Every loop has a RCP 
and SG. A pressurizer which can adjust the pressure of RCS with the spray valves connects to 
the hot leg in the second loop. Some Branch components and heat structure components were 
used to simulate the reactor vessel and fuels channels. Table 2-1 presents the initial conditions 
of the model for MSLB transient. In addition, the sequence of MSLB transient is shown in Table 
2-2. 

2.2  Analysis Methodology Description 

Figure 2-2 shows the analysis methodology of Maanshan NPP MSLB transient. The thermal 
hydraulic analysis was performed in our previous study [4] and the flow chart of analysis 
process is shown in Figure 2-2 green region. The main steps are as follows: 

 The model is established. 

 To perform the steady-state analysis and to confirm the analysis results of steady-state. 

 After the steady-state analysis results is consistent with the FSAR data, the transient 
analysis is performed. 

 To compare the transient analysis results with the FSAR data. 

The compared results indicate that the RELAP5/SNAP model has a respectable accuracy [4]. 
Hence, this RELAP5/SNAP model is used to perform an uncertainty analysis in this study and 
the flow chart of analysis process is shown in Figure 2-2 red region. The main steps are as 
follows: 

 To identify the parameters which are evaluated. 

 To identify the distributions and ranges of parameters. 

 To generate the sample number of code runs by using Wilks’ formula. 

 To input the above data in the DAKOTA code and the screen of uncertainty configuration is 
shown in Figure 2-3.  

 To perform the uncertainty analysis by using DAKOTA and RELAP5/SNAP model. 

Table 2-3 lists the distributions and ranges of parameters. Total 21 parameters which include 13 
parameters of NPP and 8 parameters of RELAP5/SNAP model are evaluated in the uncertainty 
analysis. Table 2-4 presents the required minimum number of RELAP5 runs which is dependent 
of the values of confidence level and probability. Wilks’ formula [9-10] was employed to 
determinate the minimum number of runs and as follows: 
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1-αn≧β                for one-side tolerance limit 

1-αn-n(1-α)αn-1≧β           for two-side tolerance limit 
 

Where α is probability, β is the confidence level, and n denotes the number of code runs. 

Hence, the required minimum number of RELAP5 runs for one-side tolerance limit is 59 to 
generate the 95/95 confidence level and probability in this study. Finally, to confirm the 
parameters correlation size in the MSLB transient, Pearson product-moment correlation 
coefficient [11] was calculated by using the analysis results and the equation is as follows: 

 

Where r is the Pearson product-moment correlation coefficient, n is the number of samples, and 
x and y denote two quantities. 
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Figure 2-1    The RELAP5/SNAP Model of Maanshan NPP  
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Figure 2-2    The Flow Chart of Analysis Methodology 
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Figure 2-3    Uncertainty Configuration Interface 
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Table 2-1    Initial Conditions of Maanshan NPP  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters RELAP5 

Power (MWt) 2900  
RCS temperature (K) 582.97 

Primary side  pressure (MPa) 15.862 
Secondary side pressure  (MPa) 6.845 

Scram setpoint (MPa) 12.8 
SI signal setpoint (MPa) 11.8 

ECCS electric delay time (s) 27 
ACC pressure (MPa) 4.24 

Auxiliary feedwater flow rate (kg/s) 7.965 
Break size (m2) 0.436 
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Table 2-2    Sequence of Events in MSLB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Events Time (sec) 
Steady-state 0 
Pipe break 400  

Reactor scram 418 
SI signal 427 

Auxiliary feedwater 446  
HHSI 447  

Accumulator injection 541  
End of Accumulator injection 1219  

Transient end 2000  
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Table 2-3    The Key Parameters of Uncertainty Analysis [6-8] 

 Parameters Distribution Range 

The parameters of NPP 

Initial power Uniform -1.02% ~ 1.02% 

Accumulator volume Uniform 985 ~ 1015 

Accumulator 

temperature 

Uniform 100 ~ 150 

Accumulator pressure Uniform 632 ~ 680 

Accumulator boron 

concentration 

Uniform 2300 ~ 2500 

Injection water 

temperature 

Uniform 70 ~ 130 

High pressure injection 

flow 

Uniform -5% ~ 5% 

Low pressure injection 

flow 

Uniform -5% ~ 5% 

Rod material thermal 

conductivity 

Normal -20% ~ 20% 

Rod material heat 

capacity 

Normal -10% ~ 10% 

RCP initial speed Uniform 1180 ~ 1190 

RCP inertia Uniform -5% ~ 5% 

Pressurizer Initial 

pressure 

Uniform 2200 ~ 2300 

The parameters of 
RELAP5/SNAP model 

Discharge coefficient for 

break 

Uniform -20% ~ 20% 

Two-phase friction Uniform 0.5 ~ 1.5 

Junction form loss Lognormal ξ = 0.1 (0.05 ~ 0.2) 

Bubbly flow drag Uniform 0.5 ~ 1.5 

Slug flow drag Uniform 0.5 ~ 1.5 

Annular-mist flow drag Uniform 0.5 ~ 1.5 

Dispersed flow drag Uniform 0.5 ~ 1.5 

Reflood drag Uniform 0.5 ~ 1.5 
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Table 2-4    Minimum Number of Code Runs for One-Side and Two-Side Tolerance Limits 
[9-10] 

 One-side tolerance limits Two-side tolerance limits 
         α 

β 0.90 0.95 0.99 0.90 0.95 0.99 

0.90 22 45 230 38 77 388 
0.95 29 59 299 46 93 473 
0.99 44 90 459 64 130 662 
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3    UNCERTAINTY ANALYSIS RESULTS 

Figure 3-1~3-11 are the analysis results of uncertainty analysis in this study. In general, the 
safety analysis of transients focus on the PCT criteria which is 2200 ºF in 10 CFR 50.46. Figure 
3-1 shows the PCT results. It indicates that the PCT results are lower than the criteria of 2200 
ºF. Additionally, the variation of PCT results are more obvious after 600 sec. That is because 
HHSI injects water to the core in this duration (see Figure 3-2). This causes the variation of core 
water level (see Figure 3-3) which affects the variation of PCT.  

Figure 3-4 and 3-5 present the results of primary side and secondary side pressure. By 
compared the results of primary side and secondary side pressure, it indicates that the variation 
of secondary side pressure results are more obvious in 600~1000 sec. This may be caused by 
the SG heat transfer coefficient. Figure 3-6 shows that the SG heat transfer coefficient has more 
variation in 600~1000 sec. Figure 3-7 presents the void fraction results which have larger 
variation than other parameters. Because the void fraction is also related to the water level, it 
also can see the similar symptom in the WRWL and NRWL (see Figure 3-8 and 3-9). In the 
analysis of MSLB transient, one of important parameters is the break mass flow rate. Figure 3-
10 shows the results of break mass flow rate. It indicates that the variation of break mass flow 
rate results are more obvious in 600~1000 sec and after 3000 sec.  

To confirm the correlation size of parameters in the void fraction and break mass flow rate, 
Pearson product-moment correlation coefficients were calculated. Figure 3-11 shows the results 
of Pearson product-moment correlation coefficient for break mass flow rate. It indicates that the 
maximum correlation size is the discharge coefficient. In addition, the slug flow drag and 
annular-mist flow drag also have the larger correlation size in the calculation of break mass flow 
rate. Therefore, the discharge coefficient, slug flow drag, and annular-mist flow drag may 
dominate the break mass flow rate. Figure 3-12 presents the results of Pearson product-
moment correlation coefficient for void fraction. It indicates that the maximum correlation size is 
the slug flow drag. The second correlation size is the annular-mist flow drag. This indicates that 
slug flow drag and annular-mist flow drag may dominate the calculation of void fraction. In 
addition, it also can find that the parameters of RELAP5/SNAP model have the larger effects 
than the parameters of NPP in the void fraction and break mass flow rate.   
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Figure 3-1    The Uncertainty Analysis Results of PCT 
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Figure 3-2    The Uncertainty Analysis Results of HHSI Mass Flow Rate 
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Figure 3-3    The Uncertainty Analysis Results of Core Collapsed Water Level 
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Figure 3-4    The Uncertainty Analysis Results of Primary Side Pressure 
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Figure 3-5    The Uncertainty Analysis Results of Secondary Side Pressure 
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Figure 3-6    The Uncertainty Analysis Results of SG Heat Transfer Coefficient 
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Figure 3-7    The Uncertainty Analysis Results of SG Void Fraction 
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Figure 3-8    The Uncertainty Analysis Results of SG WRWL 
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Figure 3-9    The Uncertainty Analysis Results of SG NRWL 
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Figure 3-10    The Uncertainty Analysis Results of Break Mass Flow Rate 
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Figure 3-11    The Parameters Correlation Size in Break Mass Flow Rate 
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Figure 3-12    The Parameters Correlation Size in Void Fraction 
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4    CONCLUSION 

The RELAP5/SNAP model of Maanshan PWR was used to perform a thermal hydraulic analysis 
for MSLB in our previous study [4]. The analysis results are similar to the FSAR data [6]. This 
indicates that the RELAP5/SNAP model has a respectable accuracy. Therefore, to understand 
the parameters effects for MSLB, an uncertainty analysis of Maanshan PWR MSLB by using 
RELAP5/SNAP model and DAKOTA code is performed in this study. This uncertainty analysis 
evaluates total 21 parameters which include initial power, accumulator volume, injection water 
temperature, injection flow, rod material thermal conductivity, discharge coefficient for break, 
slug flow drag, etc. According to the results of uncertainty analysis, in the calculation of break 
flow, discharge coefficient for break, slug flow drag, and annular-mist flow drag have larger 
effect. However, in the calculation of void fraction, slug flow drag and annular-mist flow drag 
have larger effect. 
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In our previous study, the RELAP5/SNAP model of Maanshan PWR nuclear power plant is established. This 
model was used to perform the analysis of Main Steam Line break (MSLB) inside-containment transient. The 
analysis results of RELAP5/SNAP are consistent with the FSAR data.  In this study, the main purpose is to 
perform an uncertainty analysis for Maanshan MSLB by using RELAP5/SNAP model and DAKOTA code. 
Total 21 parameters which include initial power, accumulator volume, injection water temperature, injection 
flow, rod material thermal conductivity, discharge coefficient for break, slug flow drag, etc. are evaluated in 
this analysis. According to the uncertainty analysis results, discharge coefficient for break, slug flow drag, and 
annular-mist flow drag have larger effect in the calculation of break flow, and slug flow drag and annular-mist 
flow drag have larger effect in the calculation of void fraction. 
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