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ABSTRACT 

This NUREG, on probabilistic fracture mechanics (PFM), is a companion document to 
Regulatory Guide (RG) 1.245, Revision 0, “Preparing Probabilistic Fracture Mechanics (PFM) 
Submittals.” This NUREG describes a graded approach to developing PFM submittal 
documentation, provides a generalized technical basis for conducting PFM analyses, and 
constitutes the technical basis for RG-1.245. 
 
The graded approach that is outlined below represents a balance between the benefits of clear, 
consistent, and comprehensive submittals and the need to maintain flexibility for PFM analyses 
that, by their nature, include many situation-specific aspects. The resulting guidance, provided 
in RG1.245, outlines a procedure that includes this suggested graded approach for PFM 
analyses and submittals. The unique characteristics of the underlying regulatory application 
dictate the breadth and depth of content included in the submission. 
 
This document also describes a hypothetical process for conducting a PFM analysis. This 
process is aligned with the position on documentation elements given previously in the 
U.S. Nuclear Regulatory Commission’s (NRC’s) technical letter report, “Important Aspects of 
Probabilistic Fracture Mechanics Analyses,” issued in 2018. The NUREG provides fundamental 
background for the concepts and methods introduced in the analysis process. The examples 
give details for analysts on (nonprescriptive) approaches for PFM analyses.  
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EXECUTIVE SUMMARY 

This technical basis NUREG document, and the regulatory guide it is associated with, were 
developed from the concepts for using PFM in support of regulatory applications outlined in the 
technical letter report, “Important Aspects of Probabilistic Fracture Mechanics Analyses,” issued 
in 2018. In conjunction with the release of the technical letter report, the U.S. Nuclear 
Regulatory Commission held a series of public meetings to present a general framework of the 
expected content of a probabilistic fracture mechanics (PFM) analysis. This NUREG further 
develops the concept of a PFM analysis methodology and outlines important considerations for 
a high-quality and high-confidence PFM analysis.  
 
This NUREG contains three technical sections: Section 2 presents technical details for the 
contents of a PFM submittal following a graded approach, Section 3 presents the analytical 
steps in a PFM analysis, and Section 4 presents methods that can be used in PFM analysis. 
These three sections are linked together through the development structure, but the technical 
information provided in each section is geared toward different audiences. Section 2 is intended 
for applicants of all experience levels. Section 3 is intended to be used by applicants who are 
familiar with PFM submittals but are seeking additional information regarding the development 
of an analysis structure or formalism. Section 4 is intended to be used by applicants who are 
seeking to further understand the theoretical underpinnings of the processes that are used to 
establish the credibility of a PFM analysis. 
 
The technical background provided for PFM submittal documentation represents a balance 
between the efficiencies gained by clear, consistent, and comprehensive submittals and the 
need to maintain flexibility for PFM analyses that by their nature will include many situation-
specific aspects. The resulting guidance is provided in RG 1.245, and outlines a procedure in 
which a suggested minimum set of documented evidence may be augmented by additional 
details. As explained in RG 1.245, the unique characteristics of the underlying regulatory 
application dictate the breadth and depth of content included in the submission. Thus, the 
documentation elements that would be expected in an application are explicitly linked to the 
analysis framework that is described herein. 
 
This NUREG presents a general framework for describing, performing, and evaluating PFM that 
will produce a high-quality and high-confidence PFM analysis. The important pieces of a PFM 
analysis that should be considered include models, inputs, uncertainty characterization, 
probabilistic framework, and PFM outputs:  
 
• Models can be categorized into different types, but in all cases, model verification, 

validation, and uncertainty quantification are key steps to gain confidence in the 
adequacy of the models used.  

• Treatment of random inputs may consist of constructing probability distributions; 
determining input bounds if applicable; and quantifying any assumptions, conservatisms, 
or dependencies among inputs.  

• Uncertainty characterization and treatment are at the core of a PFM analysis. In many 
PFM analyses, separation of epistemic and aleatory uncertainty may be useful. 
Uncertainty identification, quantification, and propagation are essential elements in 
describing a PFM methodology or analysis. 
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• The proper choice of sampling techniques is an important step that needs justification. 
The report discusses concepts and methods to verify and validate a probabilistic 
framework.  

• Ways to demonstrate PFM convergence include varying sample size and sampling 
strategy, as well as performing stability analysis. Output uncertainty analysis can take 
various forms depending on the problem being analyzed. Sensitivity analyses can help 
to identify the drivers of uncertainty for a given problem or output. Sensitivity studies are 
useful to understand which parameters drive the issue being investigated, and to show 
that some expected trends are indeed reflected in the analysis results. The report 
presents methods to perform such studies.  
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1 INTRODUCTION 

The purpose of this NUREG is to provide a generalized technical basis for conducting 
probabilistic fracture mechanics (PFM) analyses and to describe a graded approach for 
developing submittal documentation. PFM is a subset of fracture mechanics that complements 
deterministic fracture analysis. Specifically, PFM is based on a deterministic fracture mechanics 
framework that quantifies crack propagation or damage accumulation while accounting for 
uncertainty in aspects such as the physical models, physical parameters, geometry, loading, 
deformation mechanisms, and environmental exposure. Analysis of a PFM framework allows for 
assessments of the structural integrity of components to enable risk-informed decisions in a 
regulatory application. PFM allows the direct representation of uncertainties using best estimate 
models and distributed inputs. 

1.1 Fracture Mechanics Approach to Structural Integrity Analysis 

Any fracture mechanics approach (deterministic or probabilistic) to structural integrity analysis 
quantifies the combination of at least three key elements: (1) the applied stress produced by 
structural loading, (2) the flaw size, and (3) the fracture toughness. The stress and flaw size 
provide the driving force for fracture, while the fracture toughness provides a measure of the 
material’s resistance to crack propagation and failure. Techniques for computing fracture driving 
force range from simple to complex, and the most appropriate methodology depends on the 
geometry, loading, and materials properties. Flaw size may be determined by nondestructive 
evaluation of an indication found to exist in the structure. It may represent the size of a flaw that 
nondestructive evaluation could miss, or it may represent a nominal flaw size agreed to as 
appropriate for certain types of assessments. The driving force and fracture toughness are 
compared to assess the likelihood of failure. Environment and time generally complete the list of 
other elements included in most fracture mechanics analyses. All these variables may or may 
not evolve with time and spatial location within a component or structure. Fracture mechanics 
provides mathematical relationships among these quantities. 
 
There are two general options for performing a fracture analysis (although they can be 
equivalent in certain circumstances)—the energy balance approach and the stress-intensity 
factor approach: 

• In the energy balance approach, a fracture mechanics-based failure criterion is 
considered when the strain energy release rate associated with crack advance matches 
or exceeds the energy needed to create new crack surfaces, to account for plastic flow, 
and to account for other types of energy dissipation associated with the degradation 
mechanisms considered. In this interpretation of fracture mechanics, the crack will grow 
when the critical energy release rate is exceeded. 

• In the stress-intensity factor approach, a fracture mechanics-based failure criterion 
considers that the material fails locally at some critical combination of stress and strain 
for given crack-tip conditions. In the case of a linear elastic body, the classic 
stress-intensity factor is used; in the case of a nonlinear body (or equivalently an 
elastic-plastic body under monotonic loading), the J-integral is used. 

For both the energy balance and stress-intensity factor approaches, the applied load is typically 
determined either through a finite-element analysis of the actual structure or by a closed-form 
analysis of a simplified representation of the structure. In the case of linear elastic fracture 
mechanics, one considers materials under quasistatic conditions, while elasto-plastic fracture 
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mechanics involve consideration of plastic deformation under quasistatic conditions. Dynamic, 
viscoelastic, and viscoplastic fracture mechanics include time as a variable. 

1.2 Historical Perspective on Probabilistic Fracture Mechanics Analysis of 
Nuclear Structures 

Historically, most assessments of structural integrity have been performed deterministically; for 
example, a single value of fracture toughness is used to estimate the failure stress or critical 
flaw size. This is true for many U.S. Nuclear Regulatory Commission (NRC) regulations. In the 
past, the NRC has typically regulated the use of nuclear reactor structural materials on a 
deterministic basis. Consensus codes and standards used for the design and analysis of such 
structures, such as the American Society of Mechanical Engineers (ASME) Boiler and Pressure 
Vessel Code, typically rely on conservative fracture models with applied safety factors and 
conservative bounding inputs to account for the numerous uncertainties that may be present. 
Improving the reliability of such models by quantifying the impacts of the assumptions and 
uncertainties becomes difficult because of the conservative nature of the models and inputs and 
the lack of historical documentation of the basis for safety factors. 
 
Observations of the character of the three key fracture mechanics elements show that (1) loads 
exerted on a structure may include random noise, (2) structures contain many flaws with various 
sizes, orientations, and locations, and (3) fracture toughness data in the ductile-brittle transition 
region are widely scattered. As such, the reliance on a deterministic basis for engineering 
designs and regulations has given way to increased use of probabilistic techniques. Many 
factors support and motivate this evolution: 

• NRC policy decision. In the mid-1990s, the NRC issued a policy statement 
(Reference 1-1) that encouraged the use of probabilistic risk assessments (PRAs) to 
improve safety decisionmaking and improve regulatory efficiency. This policy statement 
formalized the Commission’s commitment to the expanded use of PRA, stating in part 
that “the use of PRA technology should be increased in all regulatory matters to the 
extent supported by the state-of-the-art in PRA methods and data and in a manner that 
complements the NRC’s deterministic approach and supports the NRC’s traditional 
defense-in-depth philosophy.” Since that time, the NRC has made progress in its efforts 
to implement risk-informed and performance-based approaches into its regulation and 
continues to revisit and update the approaches on a regular basis. Two notable efforts in 
PFM include the FAVOR (Fracture Analysis of Vessels—Oak Ridge) (References 1-2, 1-
3) and xLPR (extremely low probability of rupture) projects (Reference 1-4). 

• Factors unanticipated in the design phase or not addressed by codes and 
standards. There is a fundamental difference between how deficiencies, or potential 
deficiencies, are addressed when they are discovered during the design and 
construction of a structure versus when they are revealed later, often after many years 
or decades of safe service. During design and construction, deficiencies that do not 
meet specifications are often addressed by repair, replacement, or reconstruction, 
because the effort to demonstrate the acceptability of the deficiency often exceeds the 
effort associated with correcting the deficiency. However, once operation begins, repairs 
that were considered feasible during construction can become cost prohibitive (“cost” in 
terms of dollars, time, or dose). While the NRC’s primary mission is safety, it is obligated 
(see Title 10 of the Code of Federal Regulations (10 CFR) 50.109(c)(5) and (7) 
(Reference 1-5)) to assess whether safety benefits justify the attendant cost. PFM 
assessments are ideally suited to such situations because PFM metrics relate directly 
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and clearly to systems that can challenge safety (i.e., probability of structural failure). 
Indeed, the Backfit Rule (Reference 1-5) explicitly requires an assessment of risk. PFM 
also provides more flexible methods to account for factors that occur during service 
(e.g., new damage mechanisms, unanticipated loadings, aging) that were not considered 
during design. Especially when such factors are encountered for the first time, the 
performance of deterministic analyses following the guidelines of codes, standards, and 
regulations can be difficult because these established procedures may not account for 
the new factors. Historically, unanticipated material degradation mechanisms have 
regularly arisen in nuclear power plants (Reference 1-6). Examples include the primary 
water stress-corrosion cracking aging issue in Alloy 600 and 182/82 welds in 
pressurized-water reactors (which led in part to the development of the xLPR code) and 
control rod drive mechanism thermal sleeve wear. 

• Need to understand conservatisms. One of the factors in the evolution of PFM is that 
bases are needed to understand the level of conservatism in typical deterministic 
evaluation. PFM is a means to calculate best estimate values and the associated 
uncertainties and margins, and in turn it is a means to quantify conservatisms. By 
understanding these conservatisms, analysts can refine the safety requirements.  

 
Over the years, the NRC has received numerous submittals that contain PFM results, with 
varying levels of quality. The inconsistency in the contents of the submittals has often led to low 
efficiency in the reviews and a lack of predictable regulatory outcomes. For example, the 
Electric Power Research Institute’s (EPRI’s) Materials Reliability Program (MRP) and Boiling 
Water Reactors Vessel and Internals Project (BWRVIP) has submitted to the NRC several 
reports containing PFM analyses, both for informational purposes and for seeking review and 
approval. Such efforts include the following: 
 
• “Materials Reliability Program: Probabilistic Fracture Mechanics Analysis of PWR 

Reactor Pressure Vessel Top Head Nozzle Cracking (MRP-105),” Report 1007834, 
issued 2004 (Reference 1-7) 

• “Materials Reliability Program: Alloy 82/182 Pipe Butt Weld Safety Assessment for 
U.S. PWR Plant Designs (MRP-113),” Report 1009549, issued 2006 (Reference 1-8) 

• “Materials Reliability Program: Probabilistic Risk Assessment of Alloy 82/182 Piping Butt 
Welds (MRP-116),” Report 1009806, issued 2004 (Reference 1-9) 

• “Materials Reliability Program: Inspection and Evaluation Guidelines for Reactor Vessel 
Bottom-Mounted Nozzles in U.S. PWR Plants (MRP-206),” Report 1016594, issued 
2009 (Reference 1-10) 

• “Materials Reliability Program: Topical Report for Primary Water Stress Corrosion 
Cracking Mitigation by Surface Stress Improvement (MRP-335 Revision 3-A),” 
Report 3002009241, issued 2016 (Reference 1-11) 

• “Materials Reliability Program: Reevaluation of Technical Basis for Inspection of 
Alloy 600 PWR Reactor Vessel Top Head Nozzles (MRP-395),” Report 3002003099, 
issued 2014 (Reference 1-12) 

• “BWRVIP-05: BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations 
(BWRVIP-05),” TR-105697, issued 1995 (Reference 1-13) 
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• “BWRVIP-241-A: BWR Vessel and Internals Project: Probabilistic Fracture Mechanics 
Evaluation for the Boiling Water Reactor Nozzle-to-Vessel Shell Welds and Nozzle 
Blend Radii,” Report 3002013093, issued 2018 (Reference 1-14) 

• “BWRVIP-108-A: BWR Vessel and Internals Project: Technical Basis for the Reduction 
of Inspection Requirements for the Boiling Water Reactor Nozzle-to-Vessel Shell Welds 
and Nozzle Blend Radii,” Report 3002013092, issued 2018 (Reference 1-15) 

1.3 Objective 

The NRC intends this document to provide a generalized technical basis for the following: 

• validating and verifying a PFM capability 

• developing input distributions that feed into the PFM framework 

• characterizing and propagating input and model uncertainties 

• understanding the impacts of problem assumptions on the adequacy of the results 

• choosing a methodology with the appropriate complexity for the intended application 

• properly conducting a PFM analysis 

• correctly interpreting the results of a PFM analysis in a regulatory context 

• documenting the important steps and information relevant to the PFM code and analysis 
at hand 

This NUREG describes how to improve confidence in structural analyses performed using PFM 
by focusing on topics such as problem definition, PFM model development, input definition, 
uncertainty analyses, probabilistic framework development, and output analysis, including 
sensitivity analyses (SAs) (to determine impact of uncertainties on result) and sensitivity studies 
(to determine impact of plausible changes to analysis assumptions). For each of these topics, 
this NUREG shows how a graded approach for PFM analyses and submittals can improve 
confidence in the structural analyses performed. 

1.4 Structure of This Document 

This NUREG has three technical sections. The content provided in all three sections is linked, 
but an applicant’s experience and familiarity with PFM analyses will determine whether it needs 
to refer to that content. 
 
Section 2 provides a tiered framework for a submittal that contains PFM analyses and results 
and could be used by applicants of all experience levels. This section provides a graded 
approach for developing PFM analyses and submittals. 
 
Section 3 provides a framework for performing a PFM analysis. This section could be used by 
applicants who have used PFM in prior submittals but who are seeking additional information 
regarding the development of an analysis structure or formalism. This section is not intended to 
prescribe a linear analysis, since PFM analyses are typically iterative in nature. Furthermore, 
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not every application needs all steps and actions, and the analyst can evaluate the necessity to 
perform each step and action on a case-by-case basis. Table 2-1 in Section 2 provides a 
mapping between the analysis actions given in Section 3 and the associated documentation. 
 
Section 4 details analysis methodologies, including notional examples for context. This section 
is intended to be used by applicants who are seeking to more fully understand the theoretical 
underpinnings of the processes that are used to establish the credibility of a PFM analysis. Each 
subsection is linked to an action that was introduced in Section 3. 

1.5 References 

1-1. “Use of Probabilistic Risk Assessment Methods in Nuclear Regulatory Activities; Final 
Policy Statement,” Federal Register, Vol. 60, No. 158, page 42622, August 16, 1995. 

1-2. Williams, P.T., Dickson, T.L., Bass, B.R., and Klasky, H.B., “Fracture Analysis of 
Vessels—Oak Ridge—FAVOR v16.1, Computer Code: Theory and Implementation 
Algorithms, Methods, and Correlations,” ORNL/LTR-2016/309, Oak Ridge National 
Laboratory, 2016 (ML16273A033). 

1-3. Dickson, T.L., Williams, P.T., Bass, B.R., and Klasky, H.B., “Fracture Analysis of 
Vessels—Oak Ridge—FAVOR v16.1, Computer Code: User’s Guide,” 
ORNL/LTR-2016/310, Oak Ridge National Laboratory, 2016 (ML16273A034). 

1-4. Rudland, D.L., and Harrington, C., “xLPR Pilot Study Report,” NUREG-2110, U.S. 
Nuclear Regulatory Commission, May 2012 (ML12145A470). 

1-5. Backfitting, 10 C.F.R. § 50.109(c)(3).  

1-6. Wilkowski, G., Tregoning, R., Scott, P., and Rudland, D., “Status of Efforts to Evaluate 
LOCA Frequency Estimates Using Combined PRA and PFM Approaches,” in 
Proceedings of 28th MPA Seminar, Stuttgart, Germany, October 2002. 

1-7. Electric Power Research Institute, “Materials Reliability Program: Probabilistic Fracture 
Mechanics Analysis of PWR Reactor Pressure Vessel Top Head Nozzle Cracking 
(MRP-105),” Report 1007834, 2004 (ML041680489). 

1-8. Electric Power Research Institute, “Materials Reliability Program: Alloy 82/182 Pipe Butt 
Weld Safety Assessment for US PWR Plant Designs (MRP-113),” Report 1007029, 
2004 (ML042080193). 

1-9. Electric Power Research Institute, “Materials Reliability Program: Probabilistic Risk 
Assessment of Alloy 82/182 Piping Butt Welds (MRP-116),” Report 1009806, 2004 
(ML043200641). 

1-10. Electric Power Research Institute, “Materials Reliability Program: Inspection and 
Evaluation Guidelines for Reactor Vessel Bottom-Mounted Nozzles in U.S. PWR Plants 
(MRP-206),” Report 1016594, 2009. 

1-11. Electric Power Research Institute, “Materials Reliability Program: Topical Report for 
Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement 
(MRP-335 Rev. 3-A),” Report 3002009241, 2016. 
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1-12. Electric Power Research Institute, “Materials Reliability Program: Reevaluation of 
Technical Basis for Inspection of Alloy 600 PWR Reactor Vessel Top Head Nozzles 
(MRP-395),” Report 3002003099, 2014 (ML14307B007). 

1-13. Electric Power Research Institute, “BWR Vessel and Internals Project: BWR Reactor 
Pressure Vessel Shell Weld Inspection Recommendations (BWRVIP-05),” TR-105697, 
1995 (ML032200246). 

1-14. Electric Power Research Institute, “BWRVIP-241-A: BWR Vessel and Internals Project: 
Probabilistic Fracture Mechanics Evaluation for the Boiling Water Reactor 
Nozzle-to-Vessel Shell Welds and Nozzle Blend Radii,” Report 3002013093, 2018 
(ML19297G738). 

1-15. Electric Power Research Institute, “BWRVIP-108-A: BWR Vessel and Internals Project: 
Technical Basis for the Reduction of Inspection Requirements for the Boiling Water 
Reactor Nozzle-to-Vessel Shell Welds and Nozzle Blend Radii,” Report 3002013092, 
2018 (ML19297F806). 
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2 PROBABILISTIC FRACTURE MECHANICS GRADED APPROACH  

This section provides background information on developing a graded approach for PFM 
analyses, and, where applicable, provides explanations and supporting information for portions 
of RG-1.245 (Reference 2-1). 

2.1 Background 

In the past, the NRC has typically regulated the use of nuclear structural materials on a 
deterministic basis. Safety factors, margins, and conservatisms were used to account for model 
and input uncertainty. However, as described in Section 1, the NRC has progressed in its efforts 
to implement risk-informed approaches into its regulation. In one such effort, the NRC 
developed guidance on a risk-informed decisionmaking process that is acceptable to use as a 
piece of evidence for design-basis changes. This guidance is contained in regulatory guide, RG-
1.245. 
 
When solving a probabilistic fracture mechanics problem, the level of effort associated with 
analysis and documentation activities is generally dependent upon the goals of the analysis. In 
fact, each analysis is usually considered uniquely within its own specific context to make 
determinations about the expected level of rigor and to demonstrate that the problem is resolved 
in a satisfactory way.  This is particularly true as the safety significance of the analysis 
application increases, and the consequences of an incorrect decision are more severe. The 
availability of supplemental evidence to support the decision is also part of the consideration. 
For example, if inspection data or operational measurements are available in addition to 
analysis results, the analysis may be viewed as one piece of evidence in a larger context, and 
the level of rigor may be adjusted accordingly. The guiding principle is that the level of detail 
should be commensurate with the safety significance of the subject and the complexity of the 
problem. 
 
In October 2018, the NRC held a public meeting to discuss a graded approach for PFM codes 
and analyses for regulatory applications. At the meeting, EPRI presented suggestions for 
expected content in a PFM submittal. EPRI also submitted a white paper containing additional 
details and guidelines. The NRC staff concurred that EPRI’s approach constituted a quality 
basis from which to build further guidance. Consequently, based on a submitted proposal from 
industry (Reference 2-2), the regulatory guide, RG-1.245, defines a practical framework for 
developing the content of PFM submittals that maintains the effectiveness of NRC reviews of 
such submittals while improving review efficiency. 
 
Table 2-1 gives the complete mapping between the guidance in RG-1.245, the NRC’s analytical 
steps in Section 3, and the item number of the suggested minimum content and considerations 
of additional content given in Tables 1 and 2 from EPRI’s white paper (Reference 2-2). 
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Table 2-1 Content Mapping between RG1.245, NUREG Section 3, and EPRI White Paper 
(Reference 2-2) 

RG-
1.245 

Section 
Content 

NUREG PFM 
Analytical 

Steps  
Section 3 

EPRI White Paper  
(Reference 2-2) 

Suggested 
Content, 
Table 1 

Additional 
Considerations, 

Table 2 
2.1 Regulatory Context 3.1.1 9 7, 8 

2.2 Information Made 
Available to NRC Staff  1 - 

2.2.1 PFM Software 3.1.3 1.1 1, 4, 11, 12, 13 
2.2.2 Supporting Documents 3.1.3 1.2 - 

2.3 Quantities of Interest and 
Acceptance Criteria 3.1.2 8 - 

2.4 
Software quality 
assurance and verification 
and validation 

3.1.3 6 1 

2.5 Models 3.1.3 2 1, 2, 5, 6, 9, 10 

2.6 Inputs 

3.2.1 
3.2.2 
3.3.1 
3.4.1 

3, 5 3, 4, 5, 6 

2.7 Uncertainty Propagation 3.3.1 7 3, 10 
2.8 Convergence 3.3.2 4 3 
2.9 Sensitivity Analyses 3.3.3 5 - 

2.10 Output Uncertainty 
Characterization 3.3.4 - - 

2.11 Sensitivity Studies 3.4.1 
3.4.2 5 1, 2, 11 

 

2.2 Supporting Information for RG-1.245 

This section presents useful explanations and background for topics addressed in RG-1.245. 

2.2.1 Quantities of Interest and Acceptance Criteria 

The NRC typically approves the acceptance criteria, which may be relative or absolute. A 
relative acceptance criterion refers to a relative comparison of probabilistic results under the 
proposed approach versus an already acceptable approach. In general, the rigor required in 
demonstrating that a relative acceptance criterion is met is lower than that required in 
demonstrating that an absolute acceptance criterion is met. 

2.2.2 Software Quality Assurance and Verification and Validation 

New or more complex PFM codes may warrant a more thorough review than codes that are less 
complex or more familiar to the NRC staff. The extent of the differences between a new PFM 
code and the codes previously approved by the NRC are likely to have an impact on the 
complexity and depth of a given regulatory review. Similar impacts on the scope of review may 
exist when a code previously reviewed by the NRC is applied in a new way (i.e., outside the 
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previously reviewed range of use for the code). Certain specific applications of the code, such 
as those involving a high safety significance or if the code is plant specific (versus an intended 
generic application), may also warrant deeper and more thorough investigations. 
 
For a code that the NRC has previously approved, the technical basis for using the code is likely 
well understood, such that supplemental SQA and V&V efforts are unnecessary to understand 
the credibility of the results. For a code that the NRC has previously approved but that has been 
modified for the analysis being performed, understanding the technical basis for the 
modifications is important. For a code that is new and has not been previously approved in any 
form, understanding the entire technical basis informs the credibility of the results. With this in 
mind, the set of different analysis codes can be divided into several categories that may warrant 
different levels of QA and V&V. 
 
In general, to meet the objectives of a given QA program, V&V may be performed on individual 
submodels and the unifying framework, or it can be performed directly on the overall code. 
Some QA programs also allow for checks using alternate calculation methods (e.g., 
spreadsheets or alternate implementations). The applicable QA program, plan, or procedures 
define the supporting documents created in conjunction with PFM analysis code development. A 
graded approach to QA for software development, with different minimum requirements 
depending on the software application, such as that outlined in International Atomic Energy 
Agency (IAEA) Technical Report Series No. 397, “Quality Assurance for Software Important to 
Safety,” issued in 2000 (Reference 2-3), may be useful to reduce unnecessary documentation. 
Furthermore, as the applicable QA program may depend on the safety significance of the 
component or system being evaluated, the corresponding rigor of V&V may also vary. 
 
If a code is used for an application that is different than the one for which it was developed, the 
existing verification may still be valid, but the validation may need to be extended or redone if 
the previous validation was specific to a different range of use. 

2.2.3 Models 

The goal of any engineering assessment methodology is to determine the response of a system 
to a variety of inputs. The behavior of the system in question can be predicted more accurately 
when using a set of models that best represents the physical behavior of the system of interest. 
However, because of analytical and computational limitations, model selection may involve 
balancing the accuracy and practicality of various mathematical approaches. Whenever a model 
is constructed, inherent simplifications are injected into the representation to make model 
evaluation feasible. 
 
The process of developing a model begins with a conceptual model, which defines the physics 
to be included. This decision is often aided by a process that defines the most critical physics to 
capture in the analysis. Then, for each relevant physics, a mathematical model is chosen to 
represent that physics, and a code is selected or developed to solve the chosen mathematical 
model. Over the course of an analysis, the model and code may be updated, revised, or 
calibrated with available data to improve predictive capability and understand how similar the 
conditions of validation tests are to the application space of interest. Engineering judgment is an 
inevitable and integral part of model development. 
 
Another factor that influences model development is computational resources. While a particular 
approach may be considered the “best estimate,” it may not be practical for a PFM analysis 
given the time and resource constraints imposed on the analyst. The occasional need to choose 
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a model that has less fidelity but is easier to solve due to the solution speed requirements of 
PFM may affect results. Model choice can be complicated further by the fact that PFM 
encourages the use of the most accurate deterministic models rather than conservative models 
(so as to maximize accuracy in estimating quantities of interest and their uncertainty). These 
more accurate models may require longer solution times. 

2.3 References 

2-1. U.S. Nuclear Regulatory Commission, RG-1.245: Preparing Probabilistic Fracture 
Mechanics (PFM) Submittals, Washington, DC, USA: U.S. NRC.  

2-2. Palm, N., “White Paper on Suggested Content for PFM Submittals to the NRC,” 
BWRVIP 2019-016, Electrical Power Research Institute, 2019 (ML19241A545). 

2-3. International Atomic Energy Agency, “Quality Assurance for Software Important to 
Safety,” Technical Report Series No. 397 (TRS-397), Vienna, Austria, 2000. 
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3 ANALYTICAL STEPS IN A PROBABILISTIC FRACTURE 
MECHANICS ANALYSIS 

This section describes a process for conducting a PFM analysis. It is generally assumed that an 
analysis process is implemented after PFM code quality and credibility have been established 
through SQA processes and V&V. The process followed in performing analyses for a PFM 
submittal is not required to be the same as the process outlined here, but it should be structured 
to address the specific features of the application under investigation. 
 
A generalized PFM analysis process is structured according to five key steps: 

(1) Translate regulatory requirements into an analysis plan. 
(2) Characterize input uncertainty.  
(3) Estimate QoIs and their associated uncertainty. 
(4) Conduct sensitivity studies to assess credibility of modeling assumptions. 
(5) Draw conclusions from analysis results. 

This section describes each step in the PFM analysis process and its corresponding analyst 
actions, along with the following information: 

• Purpose. Motivation for including this step in a PFM analysis.  
• Description. High-level description of the concept. 

These steps and actions are intended to provide a conceptual framework for conducting and 
presenting the results of a PFM analysis that can be used in a risk-informed regulatory 
assessment, but they are not intended to be performed in a strictly linear fashion. PFM analyses 
are typically iterative in nature. Furthermore, not all steps and actions are needed in every 
application, and the analyst should evaluate the necessity to perform each step and action on a 
case-by-case basis. Different applications will warrant different levels of analysis complexity and 
documentation. If separate PFM analyses are conducted for different regulatory contexts or 
QoIs, then these analyses should be documented separately.  
 
Figure 3-1 summarizes the steps and actions and their relationship to one another. This figure 
also shows the organization of this section and the iterative nature of PFM analyses.  
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Figure 3-1 Flowchart Describing the Steps and Actions of a PFM Analysis 
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A key element of risk-informed decisionmaking is identifying uncertainties that impact the 
analysis results and subsequent regulatory decision. The proposed steps and actions are 
intended to reflect sources of uncertainty that are common to all PFM applications, including the 
following: 

• Step 2: Input uncertainty. The specific values of model inputs are typically unknown; 
this input uncertainty results in uncertainty in the model output, such as the likelihood of 
an adverse event. Accounting for this uncertainty in model inputs is what distinguishes 
deterministic and probabilistic fracture mechanics applications. 

• Step 3: QoI approximation uncertainty. PFM analyses are based on a finite number of 
model realizations, resulting in sampling uncertainty. This sampling uncertainty can 
impact the accuracy of the analysis results. 

• Step 4: Modeling assumption uncertainties. PFM analyses may rely on assumptions 
and approximations that introduce additional uncertainty into the analysis. The impact of 
various assumptions can be addressed using sensitivity studies. 

The discussion in this section refers to Section 4, which includes specific technical details about 
elements of PFM analyses. 

3.1 Step 1: Translation of Regulatory Requirements into an Analysis Plan 

The first step in a PFM analysis is translating regulatory requirements into a PFM analysis plan. 
This step involves four key actions: 

(1) Define the regulatory context. 
(2) Define the QoI and how it relates to the PFM model output. 
(3) Determine suitability of the PFM code for the application. 
(4) Identify key elements of the problem that impact analysis choices. 

3.1.1 Step 1: Action 1—Define the Regulatory Context 

Purpose: The purpose of this step is to define how PFM analyses will be used as a technical 
basis for a regulatory action, including the criteria to be used to support a proposed regulatory 
action. 
 
Description: When using PFM in support of an application to the NRC, it is important to 
understand how PFM informs whether regulatory requirements have been met, specifically why 
a probabilistic approach is appropriate for the problem at hand, and how the probabilistic 
approach is used to demonstrate compliance with the regulatory criteria. It is particularly 
important to explain how the probabilistic approach informs the regulatory action when no 
specific acceptance criteria exist to demonstrate compliance for the problem at hand.  

3.1.2 Step 1: Action 2—Define the Quantity of Interest and How it Relates to the Model 
Output and Acceptance Criteria 

Purpose: The purpose of this step is to directly map regulatory requirements onto specific 
model outputs, ensuring that the model is predicting appropriate and relevant quantities. 
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Description: The model output is directly linked to one or more QoIs and the acceptance 
criteria. 
 
A QoI is a quantity that is directly tied to a regulatory decision. The QoI is related to a model 
output or to a function of outputs; for a PFM model to be useful, understanding the relationship 
between the model output and the QoI is critical. For example, suppose the QoI is the 
probability of rupture by year for a single pipe. For each set of inputs, the PFM model may 
output the year in which rupture occurs. The QoI is then estimated by calculating the frequency 
of rupture by year across many realizations of this single pipe’s performance. 
 
In PFM analyses, the QoI will frequently be a probability of an adverse event; however, using a 
proxy for an adverse event may be necessary when its probability is too small to accurately 
estimate using computer simulation. For example, probability of rupture could be related to 
crack length or crack depth, and one or both of these quantities could potentially be used as 
surrogates for rupture.  
 
The QoI is typically tied to the acceptance criteria. Often, an acceptance criterion is expressed 
as a point in the QoI space at which decisions are determined based on whether the QoI 
exceeds the threshold. An example acceptance criterion is “the 95th percentile of the predicted 
leak rate must remain below the makeup capacity of the system.” 
 
Both the QoI and acceptance criteria are defined relative to the unit of measurement and the 
time period over which the QoI is calculated.  
 
The unit of measurement specifies the target population for inference, defined as the entire set 
of objects to which the analyst is trying to generalize the results of the analysis. The QoI is 
interpreted relative to the units of measurement, such as a fleet of power plants, a single plant, 
a line within the plant, or a single weld within a plant. The units of measurement can also be 
defined spatially, such as per kilometer of pipe.  
 
The time period is the interval of time over which the QoI is calculated, such as per year, per 
decade, or over the life of the plant. 
 
As an example, consider an analysis intended to show that the likelihood of a single pipe 
leaking is small over the life of a plant. The QoI is the probability of pipe leakage, the 
acceptance criterion is the acceptable upper limit on the probability of leakage, the time period 
is the plant life duration, and the units are the single pipe of interest. All quantities are 
dependent on the modeling assumptions. For example, no mitigation and 10-year inspection 
intervals both impact the assessments. 

3.1.3 Step 1: Action 3—Determine the Suitability of the Probabilistic Fracture 
Mechanics Code for the Specific Application 

Purpose: The purpose of this step is to determine whether a specific PFM code is suitable for 
the application of interest and to identify any potential limitations of the code with regard to the 
application. 
 
Description: The SQA process should follow the graded approach suggested in Section 2.2.2. 
It is intended to provide assurance that the software was developed in a deliberate and 
controlled manner, such that every aspect of the software is known and understood. 
Furthermore, the SQA process ensures source and version control, so as to prevent inadvertent 
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changes to the software that could have unintended consequences on the software predictions. 
For nuclear regulatory applications, Title 10 of the Code of Regulations, Part 50, “Domestic 
licensing of production and utilization facilities,” (Reference 3-1) Appendix B, “Quality Assurance 
Criteria for Nuclear Power Plants and Fuel Reprocessing Plants,” requires that the applicants 
have an approved QA process in place. 
 
The V&V process is intended to provide the critical evidence for the credibility of a code and a 
set of analysis tools, and it is composed of two primary activities, known as verification and 
validation. In general, verification seeks to determine whether a given mathematical model has 
been solved correctly within the analysis framework. This process has two components, referred 
to as code verification and solution verification. Code verification specifically focuses on the 
implementation of software to solve a given set of governing equations (i.e., the mathematical 
model). Solution verification focuses on approximations to the governing equations that are 
needed in order to solve them on a computer. These approximations may be made in space, 
time, or stochastic dimensions. Solution verification has the goal of quantifying the error incurred 
by these approximations and determining that these effects converge toward zero as resolution 
is increased (e.g., time steps are reduced or spatial approximations are refined). 
 
Validation seeks to determine whether a chosen mathematical model is an accurate description 
of reality. Traditional validation involves comparing outcomes of a simulation to experimental 
data taken from a representative real-world scenario to determine the accuracy of the overall 
model representation. An alternative validation approach in the absence of experimental data 
includes benchmarking the software with comparable software that has been verified (and 
ideally validated) previously. The model fidelity has several components, including the 
physics-based models, the material models, and the geometric description of a system of 
interest. 
 
Researchers have detailed these elements in a variety of references (e.g., References 3-2, 3-3, 
3-4) and a set of standards produced by ASME (References 3-5 and 3-6). While nominally 
discipline specific, the methods described in these guides and the references therein are very 
general in nature and provide a good basis for foundational V&V activities in support of model 
credibility. 
 
Section 2.2.2 provides information on SQA and V&V documentation for all PFM analysis codes. 
Individual analyses will apply the code in a specific manner; an important aspect of the 
credibility of the overall analysis is the degree of confidence in the code for the intended 
application. The intent of this action is to identify and resolve any important gaps in the code 
capabilities for the intended application.  
 
Code capabilities. Code capabilities refer to all scenarios for which a code has been through an 
appropriate set of V&V activities. Examples of code capabilities include (1) the range of inputs 
that were included in verification tests and validation test data, (2) the set of material models or 
geometries that have an established pedigree, (3) the underlying physics models and the 
assumptions underlying their range of applicability, and (4) the numerical approximation 
schemes (e.g., grid size, spatial and temporal resolution) with appropriate solution verification.  
 
Examples of questions to consider with regard to code capabilities include the following: 

• How well does the chosen model represent the application?  

• Is there a rationale for defining certain model assumptions as conservative?  
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• Is the coding for the physics-based models available for review? 

• Are the physics-based models well understood and established? 

• Are code limitations that may impact the regulatory question/issue identified? 

• Is mathematical justification for the model representation of the physics well 
established?  

• Are limitations of the methodology identified with respect to interpolation or 
extrapolation? 

Analysis features and code capabilities. An important first step in an analysis is to compare 
features of the intended application to the code capabilities to determine whether the code is 
suitable for the application. This process identifies any features that are incompatible with the 
code capabilities. Further, it identifies any features of the analysis for which the code does not 
have sufficient V&V evidence. As an example, if a PFM code was validated and calibrated for a 
specific range of weld residual stresses, then considering the implications of applying the code 
outside of this input range is critical for interpreting the model credibility.  
 
The following are some of the key considerations for code capability: 

• Does the range of inputs for which the code has been calibrated and validated include 
the range of inputs that are required for the specific application. Are the numerical 
approximations sufficient for the application? 

• If application-specific changes have been made, is the phenomenological behavior of 
the code expected to be similar for this application relative to the applications for which 
validation occurred (i.e., are the same physics models still relevant and adequate?) 

• Are there any additional test data to support the applicability of the code for the current 
application? 

Addressing code limitations. Potential limitations of the code for the application can be 
addressed in two ways:  

(1) Risk can be mitigated by collecting additional information to improve the vetting of the 
code in the identified risk areas.  

(2) When it is not possible to collect additional information, justification for the credibility of 
the code capabilities for the application can often be based on appropriate engineering 
arguments. When sufficient evidence cannot be collected to address certain gaps, 
understanding the associated risk to the analysis credibility is critical to interpreting the 
final results. 

3.1.4 Step 1: Action 4—Identify Key Elements of the Problem that Impact Analysis 
Choices 

Purpose: The purpose of this step is to identify key elements of the PFM application that will 
determine how to conduct the analysis. Simplifying assumptions and approximations may be 
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necessary based on the complexity of the problem or, conversely, may be justified because the 
problem at hand is inherently not complex. 
 
Description: Specific aspects of the application drive the methods used in a PFM analysis. In 
an ideal situation, simple analysis techniques can be applied. More sophisticated analysis 
methodologies are useful when the following is true: 

• The model is computationally expensive. When models are computationally inexpensive 
to run, sampling uncertainty due to limited model realizations is a secondary issue, 
because the sample size can often be made arbitrarily large such that sampling 
uncertainty is negligible. On the other hand, computationally expensive models require 
more forethought about how to select model realizations and how to design model 
sampling schemes to achieve converged results.  

• The QoI is a rare event probability. Estimating rare event likelihoods typically requires 
more realizations, more sophisticated sampling schemes, or both. Rare event 
probabilities (e.g., adverse event or failure probabilities) are defined as probabilities that 
are close enough to zero that the number of samples needed to estimate the probability 
is large with respect to computational budget. For example, to estimate a 
1x10-6 probability using simple Monte Carlo sampling (Section 4.3.1), more than 
1x106 model realizations are required.  

• There are many model inputs. When the number of model inputs is large, then there are 
more input uncertainties to characterize. Also, identifying important/sensitive model 
inputs is more difficult because there are more candidate inputs.  

• Separation of aleatory and epistemic uncertainty is maintained. Uncertainty can arise 
from different causes; the most commonly considered types of uncertainty are aleatory 
and epistemic uncertainty (Section 4.1.1). For a specific adverse event, the 
quantification of aleatory uncertainties targets the question, “How likely is the event to 
happen?” while the quantification of the epistemic uncertainties targets the question, 
“How confident are we in this estimate of the event likelihood?” PFM analyses can treat 
aleatory and epistemic uncertainties separately to distinguish the frequency of event 
occurrence from the confidence in the frequency estimate. Separating uncertainty 
introduces additional complexity and computational burden into an analysis, because of 
the double-looping algorithm for separation described in Section 4.1.1. Section 3.2.1 and 
Section 4.1.1 provide more details about classifying and separating aleatory and 
epistemic uncertainty.  

For each of these attributes, it is generally more challenging to conduct SAs to identify important 
inputs (Section 3.3.3) and design sampling algorithms to achieve statistical model convergence 
(Sections 3.3.1 and 3.3.2). The points at which these elements can impact the analysis 
decisions are highlighted throughout the PFM analysis process. 

3.2 Step 2: Model Input Uncertainty Characterization 

The second step in a PFM analysis is characterizing input uncertainty. This step involves two 
key actions: 

(1) Identify uncertain model inputs. 
(2) Specify probability distributions on uncertain inputs. 
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The end goal of this step is to determine probability distributions to represent input uncertainty. 

3.2.1 Step 2: Action 1—Identify Uncertain Model Inputs 

Purpose: The purpose of this step is to determine which model inputs are treated with 
uncertainty and, if relevant, the type of uncertainty (aleatory or epistemic) for each input. 
 
Description: This action includes classifying deterministic versus uncertain inputs and 
classifying aleatory versus epistemic uncertain inputs (if relevant). 
 
Deterministic versus uncertain inputs. Inputs to a PFM analysis can be represented in two ways:  

• Deterministic inputs take on a single value.  
• Uncertain inputs can take on a range of potential values.  

Deterministic inputs are fixed to a single value across all model realizations. Such inputs can be 
fixed for several reasons: (1) they have known physical values (e.g., a known yield strength of a 
material), (2) the chosen fixed value is determined to be a value of interest (e.g., a conservative 
value used for a specific reason or a value of relevance for sensitivity studies (see Section 3.4)), 
or (3) including uncertainty would not affect decisionmaking. Uncertain inputs determine the 
amount of variability in the model output, conditional on the values of the deterministic inputs. 
This uncertainty in model inputs is what distinguishes a purely deterministic analysis from a 
probabilistic analysis. If the QoI is a failure probability, this probability is determined based on 
the uncertainty in the model’s uncertain inputs, conditional on the values of the deterministic 
inputs. Data, expert judgment, and SA (Section 3.3.3) inform whether an input is modeled as 
deterministic or uncertain.  
 
Understanding the rationale for classifying inputs as deterministic or uncertain is important when 
interpreting the analysis results. If there is uncertainty as to whether an input is deterministic or 
uncertain, then modeling the input as uncertain is preferable.  
 
Avoiding excessive conservatism in model inputs. Deterministic fracture mechanics models 
have historically relied on conservatisms; introducing conservatism into a PFM analysis makes 
the results difficult to interpret. Conservatisms in inputs may propagate to produce an 
unrealistically conservative output. For example, the probability that 10 independent variables all 
take values at or above their respective 90th percentile is 1x10-10, or 1 chance in 10 billion. 
Hence, taking a conservative approach and setting each of these inputs to their 90th percentile 
in a deterministic model realization results in a highly unlikely output. Even setting a single input 
to a conservative value can substantively change the interpretation of the model results; if the 
model output is highly sensitive to this input, then subsequent modeling results will on average 
be conservative. Additionally, conservative assumptions in submodels may be anticonservative 
in full system models. For example, increases in leak rate may be considered conservative at a 
submodel level. However, when combined with leak rate detection, this conservatism could lead 
to the suppression of failures due to increased leak rate detection.  

Understanding when and why conservative inputs are used is important to interpreting the final 
model results. The influence of conservative choices can be addressed using sensitivity studies. 
Sensitivity studies are especially important when specifying a best estimate or conservative 
value is difficult due to limited information.  
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The best estimate is defined as an approximation based on the best available information. 
Using a best estimate does not imply the chosen deterministic value or input distribution has no 
uncertainty.  

Aleatory versus epistemic uncertain inputs. If an analysis maintains separation between aleatory 
and epistemic uncertainty, then uncertain inputs are classified as epistemic or aleatory. 
Section 4.1.1 provides more details on aleatory versus epistemic uncertainty. This classification 
is not necessarily straightforward, because the uncertainty type often depends on the context 
and granularity of the problem. As an example, in a conventional linear elastic fracture 
mechanics model, the uncertainty in the linear elastic plane strain fracture toughness (KIc) may 
be regarded as aleatory (irreducible or inherent). Conversely, in a micromechanics model that 
accounts for features such as grain size, inclusions, and dislocations (i.e., the factors that create 
the uncertainty in KIc), this uncertainty may be regarded as epistemic. Mixed situations (part 
aleatory, part epistemic) are also possible. The categorization of uncertainty is therefore not 
totally objective and may change depending on the context of the problem.  
 
To interpret modeling results, it is important to understand how aleatory and epistemic 
uncertainty are defined in the context of the application and to understand the rationale for 
classifying inputs as epistemic or aleatory. If it is uncertain whether an important input is 
aleatory or epistemic, sensitivity studies (Section 3.4) can be conducted to determine the impact 
of changing the classification. 

3.2.2 Step 2: Action 2—Specify Probability Distributions on Uncertain Inputs  

Purpose: In PFM analyses, uncertainty in model inputs is represented through probability 
distributions. This uncertainty is propagated forward to the model outputs to estimate and 
quantify uncertainty in QoIs.  
 
Description: This action includes considering attributes of input distribution specification, 
including the following: 

• iterative nature of input distribution specification 
• importance of analysis context in characterizing input uncertainty 
• nonprobabilistic representations of input uncertainty 
• expert judgment 
• distribution specification methods 
• bounding input distributions 
• accounting for correlation in model inputs 
• sampling frequency (if applicable, e.g. component-to-component, within-component, 

flaw-to-flaw, etc.) 

Iterative nature of input distribution specification. A PFM analysis focuses on those inputs that 
have the most influence on the model output. These influential inputs are typically identified 
using SA (Section 3.3.3). If an input’s uncertainty has little impact on the output uncertainty, a 
strong technical basis for the input distribution may not be necessary and a deterministic value 
could be used. If these results indicate a large impact, additional data, more refined statistical 
techniques, or further expert elicitation may be needed to further refine the input’s probability 
distribution. In this way, the development of inputs for PFM analysis is an iterative process, and 
the distributions specified in this step may be iteratively refined in the analysis process. 
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Importance of analysis context in characterizing input uncertainty. The context of the analysis 
impacts the input uncertainty. Specific analyses will often have narrower uncertainty ranges 
than more general analyses. For example, if an analysis is specific to a certain pipe in a specific 
plant, then the geometry and other characteristics of the system are likely to be defined 
precisely and the uncertainty range may be relatively small. In contrast, for an analysis meant to 
represent a series of welds or generic configurations across the U.S. reactor fleet, the variability 
in geometry, operating conditions, materials, and possible flaw mitigation is likely to be larger.  
 
Nonprobabilistic representations of input uncertainty. In PFM applications, it is common practice 
to represent input uncertainty by specifying probability distributions on the inputs. In some 
analyses, it may be appropriate to use other nonprobabilistic representations of uncertainty to 
characterize an unknown input. Specifically, for epistemic uncertainties, if the lack of knowledge 
is too great to specify a probability distribution on an input, then nonprobabilistic, interval-based 
bounding methods can be considered (References 3-2,3-7). Probabilistic representation of 
uncertainty is often sufficient in PFM applications; understanding the rationale for deviating from 
a fully probabilistic analysis is important to interpreting the analysis results.  
 
Expert judgment. In PFM applications, relevant data needed to define input distributions are 
often sparse or unavailable. In these cases, literature and expert opinion can be leveraged. The 
NRC has provided specific guidance on expert elicitation, with applications to uncertain model 
inputs (Reference 3-9).  
 
Distribution specification methods. Proper selection of a probability distribution for an uncertain 
input requires detailed knowledge of the available data as well as qualitative judgments. Expert 
judgment and the amount and pedigree of the data, as well as the importance of the particular 
input on the analysis results, are relevant considerations when justifying a distribution. 
Distribution specification can be highly subjective and uncertain when data are limited.  
 
Inputs with substantial uncertainty about the probability distribution or uncertainty representation 
may be candidates for future sensitivity studies to understand the impact of the chosen 
distribution on analysis results. 

Section 4.2.1 contains more information about fitting probability distributions to data.  

Bounding input distributions. Input bounds are the upper and lower truncation points defining the 
physical range of the input. In PFM applications, uncertain inputs are often bounded within a 
known range. Probability distributions that place nonzero likelihood only within this range can be 
used to prevent the sampling algorithm from selecting input values that are undesirable, 
nonphysical, or both. Section 4.2.1 discusses methods for specifying bounded probability 
distributions.  
 
Inputs with substantial uncertainty about the ranges may be candidates for future sensitivity 
studies. 
 
Accounting for correlation in model inputs. In a PFM analysis, some uncertain input variables 
may be statistically dependent (i.e., correlated). Accounting for the dependence between inputs 
often ensures a physically possible input set (i.e., ensures that physical laws are preserved).  

Section 4.2.2 contains more information on dependent inputs.  
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Sampling frequency. In some applications, the frequency with which the value of an input 
parameter is sampled may be related to the characteristics of the system being modeled.  For 
example, if deemed applicable, a variable may be sampled each time a new component is 
modeled, or each time a new flaw is being analyzed.  The sampling frequency (e.g. component-
to-component, within-component, flaw-to-flaw, etc.) is generally tied to both the characteristic of 
the system being modeled, and the statistical convergence of the analysis. 

3.3 Step 3: Estimation of Quantity of Interest and Associated Uncertainty 

The third step of a PFM analysis is propagating input uncertainty established in Step 2 through 
the model to provide a converged estimate of the QoI and characterize its uncertainty. The QoI 
uncertainty characterized in this step includes uncertainty induced by input uncertainty and 
sampling uncertainty.  
  
The goal is to estimate the QoI and its uncertainty with sufficient sampling precision 
(i.e., achieve converged model results). This step includes four key actions: 

(1) Select a sampling scheme for sampling uncertain model inputs. 
(2) Assess sampling uncertainty. 
(3) Conduct SA to determine input uncertainty importance.  
(4) Conduct output uncertainty analysis. 

These actions are iterative. First, a sampling scheme is selected and used to estimate the QoI. 
The second action uses the sampling scheme to estimate the sampling uncertainty in the QoI 
and determines whether the estimate has converged. The third action uses SAs to identify the 
input uncertainties that drive the problem. SAs help to better understand the input-output 
relationship. Results from the second and third actions can be used as a basis to update a 
sampling scheme to improve convergence. Once a converged solution is found, the fourth 
action provides a final estimate of the QoI and associated uncertainty.  

3.3.1 Step 3: Action 1—Select a Sampling Scheme for Sampling Uncertain Model 
Inputs 

Purpose: The purpose of this step is to select a method for propagating uncertainty in the 
model inputs through the model to estimate the QoI and the associated uncertainty.  
 
Description: This action involves selecting a sampling scheme and using it to estimate the QoI 
and its uncertainty. While many PFM analyses will rely on Monte Carlo sampling methods to 
estimate a QoI, nonsampling based methods are also available and may be appropriate in some 
applications.  
 
Nonsampling approaches. Reliability methods, such as the first-order reliability methods 
(FORM) and second-order reliability methods (SORM), use gradient-based methods to calculate 
failure probabilities (Section 4.3.4). These methods work best when the model output is 
sufficiently smooth and differentiable. In such conditions, they can estimate low probabilities 
(i.e., 1x10-4 probability or less) with greater accuracy and fewer realizations than with Monte 
Carlo sampling methods. These derivative methods are limited by the fact that calculating 
second-order derivatives can quickly become impracticable as the number of uncertain inputs 
increases beyond 15 or 20.  
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Sampling approaches. PFM analyses often use Monte Carlo methods to propagate input 
uncertainty through the model. Selecting a sampling scheme includes specifying the following: 

• sampling method  
• sample size 
• random seed 
• method for sampling aleatory and epistemic uncertainties, if relevant 

Sampling methods. Inputs can be sampled in different ways. The simplest form of Monte Carlo 
sampling is simple random sampling (SRS), described in Section 4.3.1. SRS is easy to 
implement but is often not the most statistically efficient method. Relative to SRS, other 
sampling schemes can produce more precise estimates of a QoI with the same number of 
model realizations. When models are computationally expensive or the QoI is a rare probability, 
or both, more targeted sampling methods can be implemented to decrease the number of 
realizations required for model convergence. Examples of targeted sampling methods include 
Latin hypercube sampling (LHS) (Section 4.3.2), importance sampling (Section 4.3.3), and 
adaptive sampling. 
 
Importance sampling (Section 4.3.3) is a common sampling method for oversampling important 
regions of the input space to reduce the sampling uncertainty of QoI estimates. When 
estimating rare probabilities, the regions of the input space where failures are more likely are 
oversampled to estimate the probability with less sampling uncertainty (making importance 
sampling particularly relevant for PFM applications targeting adverse event likelihoods). To 
implement importance sampling, the analyst selects variables on which the technique is to be 
applied and their respective importance distributions. One general strategy is to first find the 
failure regions that contribute to the probability of the rare event and construct the importance 
distributions based on this information. SAs (Section 3.3.3) and subject matter expertise on 
important inputs can inform this process. The choice of importance distributions is paramount, 
since poor choices can lead to higher variance estimates with higher sampling uncertainty. 
Inefficiency in importance sampling often occurs in high-dimensional problems where many 
variables are importance sampled (Reference 3-10).  
 
Sample size. The sample size is the number of realizations at different input settings (i.e., the 
number of sets of inputs that are propagated through the model). There is a natural relationship 
between the computational burden of the model, the sample size, and the sampling scheme. 
Specifically, computationally inexpensive models can be run many times, resulting in large 
sample sizes. In such cases, simple sampling schemes such as SRS are likely sufficient. If the 
model is computationally expensive, sample sizes will be lower and more efficient sampling 
schemes are required. Relatedly, if the QoI is a probability, the sample scheme and sample size 
are related to the magnitude of the probabilities. As the probability gets closer to 0 or 1, more 
samples or more efficient sampling schemes, or both, are required. 
 
Random seed. Sampling-based approaches rely on random number generators to select the 
random sample. Random seeds can be selected for a random number generator to ensure that 
the same random sample is selected each time a set of model realizations is run so that exact 
results can be reproduced. 
 
Separation of aleatory and epistemic uncertainty. If the analysis maintains separation of aleatory 
and epistemic uncertainty, then the input uncertainties are typically sampled using a double-loop 
method, described in Section 4.1.1. This method first samples epistemic inputs. Then, for each 
set of epistemic inputs, aleatory inputs are sampled numerous times to obtain a distribution of 
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model outputs over aleatory uncertainty. The double-loop structure is computationally 
expensive, because the QoI is estimated for each set of epistemic samples. Surrogate modeling 
(Section 4.3.10) is often used to increase the computational efficiency of the double-loop 
method, relying on a computationally inexpensive statistical model approximation to post hoc 
separate aleatory and epistemic uncertainty (as described in Section 4.1.1).  

3.3.2 Step 3: Action 2—Assess Sampling Uncertainty: Statistical Convergence 
Analysis 

Purpose: The purpose of this step is to assess the statistical convergence of QoI estimates 
from model outputs given a sampling scheme. 
 
Description: PFM analyses are based on a finite number of realizations. Since the model 
cannot be run at all points in the input space, sampling uncertainty is associated with estimating 
a QoI. Quantifying the sampling uncertainty of QoI estimates is important to determine whether 
the analysis conclusions might change with an improved sampling scheme. Methods to assess 
sampling uncertainty convergence include the following: 

• assessing stability of an estimate as the sample size increases 
• calculating statistical sampling uncertainty metrics 
• comparing replicates and assessing variation in the QoI estimates 
• using surrogate modeling to estimate sampling uncertainty 
• updating the sampling scheme 

Section 4.3.5 discusses these methods in more detail. 
 
Assessing stability in an estimate as the sample size increases. For a given sampling scheme, 
the sample size can be increased iteratively until QoI estimate is sufficiently stable, suggesting 
statistical convergence. For example, with an SRS sampling scheme, more input samples can 
be selected to increase the sample size. Augmented LHS designs can be used to add input 
samples to an initial LHS design. Stability in the QoI can again be measured as the sample size 
increases. The major advantages of this approach are that it can be applied to any sampling 
scheme and that it does not require multiple independent model realizations. However, the 
approach does not provide a direct measure of sampling uncertainty in the QoI estimate and 
can be rather computationally expensive.  
 
Calculating statistical sampling uncertainty metrics. Statistical sampling uncertainty metrics 
quantify the sampling uncertainty in the QoI estimate using statistical sampling theory. Methods 
for calculating statistical sampling uncertainty metrics are specific to the sampling scheme. 
Using an SRS sampling scheme, the standard deviation, coefficient of variation (CV), or 
confidence interval for a QoI can be calculated directly from the sample (Section 4.3.6). If the 
QoI for a PFM analysis is a rare probability and zero events are observed, then an upper bound 
on the probability can be calculated using statistical metrics under an SRS scheme. However, 
SRS is not the most efficient sampling scheme when the QoI is a rare probability.  
 
Under sampling schemes other than SRS, statistical resampling methods, such as 
bootstrapping, can be used to calculate statistical sampling uncertainty metrics (Section 4.3.7). 
Resampling methods are easy to implement but can be more computationally expensive; 
further, resampling methods can produce inaccurate estimates when the QoI is a rare 
probability. 
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LHS schemes do not offer a simple analytic form for an unbiased estimate of sampling 
uncertainties from a single sample (References 3-11, 3-12). Furthermore, bootstrapping an LHS 
is not possible. Since LHS is more efficient (Reference 3-11), SRS uncertainty metrics applied 
to an LHS scheme will be conservative.  
 
Comparing replicates and assessing variation in the QoI estimates. Another method to assess 
QoI convergence is to run the sampling scheme several independent times with unique random 
number seeds. The QoI is estimated for each independent realization, and the variation across 
the realizations is measured. Example metrics to assess convergence based on these 
realizations include the standard deviation of the QoI across realizations, the CV (ratio of the 
standard deviation to the mean), or a confidence interval on the QoI. These metrics can be 
compared to the desired level of convergence for the application. The major advantages of this 
approach are that it can be applied to any sampling scheme and that it gives a direct 
measurement of estimate variability; however, the approach is computationally expensive. In 
general, the number of replicates is selected to be large enough that the conclusion would not 
change significantly if more replicates were provided.  
 
Using surrogate modeling to estimate sampling uncertainty. When the model is computationally 
expensive to run and only a small number of input samples can be propagated through the 
model, surrogate models (Section 4.3.10) can be used to provide a computationally efficient 
alternative to the full model. A surrogate model is a statistical approximation to the full, 
computationally expensive model and is estimated from a set of model realizations. The 
sampling uncertainty in the surrogate model can be propagated to sampling uncertainty 
estimates for the QoI. 
 
Updating the Sampling Scheme. If the selected sampling scheme does not provide converged 
results, then this scheme can be updated by increasing the sample size, changing the sampling 
method (including sampling frequency if applicable), or both. 

3.3.3 Step 3: Action 3—Conduct Sensitivity Analyses to Determine Input Uncertainty 
Importance 

Purpose: SAs help identify problem drivers, defined as uncertain model inputs that explain 
substantial uncertainty in the model output. Understanding problem drivers allows the analyst to 
do the following: 

• Confirm that the model is behaving as expected.  

• Identify inputs whose uncertainty distribution is itself uncertain and that may need 
refinement before final estimation of the QoI.  

• Identify assumptions that are uncertain and thus may be candidates for sensitivity 
studies (Step 4).  

• Improve the accuracy of the output uncertainty analysis by reducing the dimension of the 
input space and identifying important inputs that can be used in more targeted sampling 
methods such as importance sampling. 

SA plays a critical role in improving output uncertainty analysis. A common goal of a PFM 
analysis is to accurately estimate a QoI along with its associated uncertainty. By informing the 
final sampling scheme, SAs can improve QoI estimation. For example, SA can identify inputs 
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with a large impact on the model output; these inputs may be candidates for importance 
sampling (Section 4.3.3) to increase the precision of QoI estimates. This action is closely tied to 
Step 3, Action 1, which provides more detail on selecting an appropriate sampling scheme for 
the estimation of a QoI and its uncertainty.  
 
Description: In broad terms, SA focuses on identifying how the input uncertainties contribute to 
the uncertainty in the outputs of interest. References 3-13, 3-14, 3-15, 3-16, 3-17, 3-18, and 3-
19 are some of the sources that describe SA techniques and examples. The discussion below 
addresses the following: 

• the types of SA 
• forward propagation of uncertainty for SA  
• the stages of SA 
• modeling nonlinearities and interactions in SA 
• SA for submodels 
• uncertainties in SA 

Types of SA. There are two general types of SA:  

(1) Global SA is the process of decomposing variance in the model output according to the 
model inputs (see Section 4.3.8). 

(2) Local SA is the process of determining how changes to uncertain inputs affect outputs 
with respect to a reference point in the input domain (see Section 4.3.9).  

Forward propagation of uncertainty for SA. SA is performed after an initial set of uncertain 
inputs has been propagated through the model, resulting in a distribution of model outputs. SA 
is often conducted on an initial set of model realizations, with uncertain inputs sampled using a 
standard Monte Carlo-based sampling scheme with broad coverage of the input space, such 
that model input-output relationships can be discerned from the sample. The number of model 
realizations needed depends on the goals of the SA and the computational burden of the model. 
For example, if the goal of global SA is to understand how inputs vary with the output to select 
the number of model realizations, the analyst can consider the complexity of the input-output 
relationship and the number of uncertain model inputs. Local SA typically requires fewer model 
realizations. After model results are obtained from forward propagation of uncertainty, the 
analyst can proceed with the two stages of SA described below.   
 
Stages of SA. Typically, SAs have two stages:  

(1) Exploratory data analysis involves graphically exploring input-output relationships using 
scatter plots and calculating local SA metrics, as needed. The SA results can present 
scatter plots for important inputs. Reference 3-20 describes formal procedures for the 
analysis of scatterplots.  

 
(2) Global sensitivity metrics estimation involves the estimation of the proportion of variance 

in the model output explained by each model input (first-order sensitivity index) and its 
interactions with other inputs (total-order sensitivity index). 

In practice, SA is an iterative process, and these two stages may repeat multiple times. For 
example, given a large number of inputs and complexities in the input-output relationships, 
selecting the correct visualizations and interpreting them can be difficult. Estimation of the global 
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sensitivity metrics in the second stage can help to identify the important inputs to visualize. 
These visualizations can inform results of the global SA.  
 
Model nonlinearities and interactions in SA. PFM applications often involve systems of linked 
models with complex relationships. SAs allow for the identification and quantification of the 
input-output relationship, including nonlinearities in the input-output relationship and interactions 
between model inputs. 
 
Global SA is a commonly used tool for summarizing input importance in PFM studies and 
identifying the effects of nonlinearities and interactions. Local SAs identify sensitivities within a 
small neighborhood around a point of interest and therefore do not identify nonlinearities and 
interactions; local SA is informative if the goal is to understand local variations (see 
Section 4.3.9 for more detail). Global and local SA are often used together in the same PFM 
analysis at different iterations of the SA.  

SA for submodels. Since PFM applications often involve systems of linked models, it may be 
appropriate to conduct SA on specific submodels (in addition to the full PFM model) as some 
dominant submodels may hide the results and impacts of other submodels. For example, to 
investigate the impact of active degradation mechanisms on the probability of leakage or 
rupture, it may be appropriate for the analysis to exclude fatigue damage. As another example, 
it may be prudent to identify inputs impacting crack growth before a full SA determining 
important inputs for rupture.  
 
Uncertainties in SA. Understanding aspects of the model and input uncertainty characterization 
informs how to conduct SA, as shown in the following examples:   

• Model approximations for computationally expensive models. Estimating sensitivity 
metrics is computationally expensive, often requiring many model realizations. As a 
solution, model approximations or surrogates (Section 4.3.10) are often used in SA as a 
computationally practical approximation to the full model. Sufficiently flexible model 
surrogates allow for nonlinearities and interactions between inputs. If the model 
approximation contains substantial uncertainty, then multiple different model 
approximation methods can be compared to assess robustness of the SA results to the 
model approximation method. 

• High-dimensional inputs. Building an accurate model approximation requires more 
model realizations when the input space is high dimensional. Without enough 
realizations, true input-output relationships may not be identified.  

• Continuous versus binary or discrete outputs for SA. Binary or discrete outputs (such as 
failure events) inherently contain less statistical information than continuous outputs. 
More realizations will be needed to identify important model inputs impacting a binary 
indicator variable than for a continuous model output. An alternative is to identify 
continuous responses associated with the binary event for SAs, insofar as there is a 
clear, justifiable connection between the binary event and the continuous variable. For 
example, instead of conducting SA on the binary indicator for rupture, the analyst could 
use crack length as the output for SA.  

• Separation of aleatory and epistemic uncertainty. If the separation of uncertainty types is 
maintained, SA is conducted for both uncertain aleatory and epistemic inputs. The SA 
can be run over all uncertainties to determine which inputs have the largest impact on 
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the outputs of interest. Additional SAs can be conducted for aleatory and epistemic 
inputs separately to identify the impacts of irreducible and reducible uncertainties, 
respectively.  

3.3.4 Step 3: Action 4—Conduct Output Uncertainty Analysis 

Purpose: The purpose of this step is to provide a final estimate, with associated uncertainty, of 
the QoI and to visualize results.  
 
Description: A summary of the QoI results may include the following:  

• a best estimate of the QoI  
• an estimate of uncertainty in the QoI 
• a graphical display of the QoI estimate and uncertainty 

Best estimate of a QoI. The definition of the best estimate of a QoI will depend on the 
application. When the QoI is uncertain, the best estimate is often quantified using either the 
mean or median of the QoI distribution. The mean is the arithmetic average over the QoI 
distribution, and the median is the 50th percentile of this distribution.  
 
Estimate of uncertainty in the QoI. When estimating and visualizing uncertainty in a QoI 
estimate, it is critical to be clear about the type of uncertainty being summarized. QoI 
uncertainty can refer to different types of uncertainty, depending on the relationship between the 
model output and the QoI. Example types of uncertainty include the following: 

• Input uncertainty. If the QoI is a model output, QoI uncertainty may refer to uncertainty in 
the QoI due to uncertain inputs. A best estimate of the QoI is the mean or median of the 
QoI over the input space, and the uncertainty in the QoI refers to the distribution of the 
QoI over uncertain inputs. 

• Sampling uncertainty (also called aleatory uncertainty). QoI uncertainty may also arise 
due to a limited number of model realizations resulting in uncertain QoI estimates. When 
convergence analyses (Section 3.3.2) suggest sampling uncertainty is negligible, then 
visualizing sampling uncertainty will not be necessary. If the sampling uncertainty is not 
sufficiently small based on convergence analysis results, then this sampling uncertainty 
can be measured and presented as a source of QoI uncertainty. 

• Epistemic (lack of knowledge) uncertainty. When aleatory and epistemic uncertainty are 
separated, the QoI is typically calculated for each epistemic sample. Epistemic 
uncertainty in the QoI measures how the QoI varies due to knowledge uncertainty. A 
best estimate of the QoI is the mean or median QoI estimate over all epistemic samples. 

• Uncertainty in the QoI results in a distribution of QoI estimates. This uncertainty can be 
summarized using percentiles of the uncertainty distribution; measures such as variance 
and standard deviation can also provide useful summaries of QoI uncertainty. 

If the QoI is a failure probability calculated from uncertain model outputs, then the QoI already 
incorporates uncertainty in the model inputs. In this case, if aleatory and epistemic uncertainty 
are not separated and sampling uncertainty is negligible (i.e., a high degree of statistical 
convergence has been achieved), then there may be no need to present a measure of 
uncertainty about the failure probability estimate. 
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Graphical display of the QoI estimate and uncertainty. Graphical displays of the best estimate 
and uncertainty in the QoI can be used to communicate the results of an uncertainty analysis. 
The form of the graphical display will depend on the types of uncertainty being visualized and 
whether the QoI is a function of time or a single scalar. The best approach to visualizing results 
is application specific. Section 4.3.11 provides more details on output uncertainty analysis. 

3.4 Step 4: Sensitivity Studies to Assess the Credibility of Modeling 
Assumptions 

The fourth step in a PFM analysis is conducting sensitivity studies, defined as additional 
analyses conducted under different, yet plausible, assumptions. The purpose of sensitivity 
studies is to challenge uncertain analysis assumptions that could substantively change the 
analysis results. Sensitivity studies involve two key actions: 

(1) Determine a set of sensitivity studies. 
(2) Conduct sensitivity studies and present results. 

3.4.1 Step 4: Action 1—Determine a Set of Sensitivity Studies 

Purpose: The purpose of this action is to identify important assumptions that merit further 
scrutiny to understand what might happen if these assumptions were changed. For example, in 
the study of a plant, the distribution of a specific input could have been calibrated using 
information from a global set of similar but different plants. This calibration raises the question of 
what might be different about the distribution for the individual plant and how that would change 
the conclusions of the analysis.  
 
Description: Given the complexity of PFM analyses, it is not possible to enumerate all plausible 
changes in the assumptions. Instead, to evaluate whether a sensitivity study is needed for a 
specific assumption, two criteria are evaluated: 

(1) Plausible alternate assumptions can be identified. 
(2) Changes to the assumption in question can substantively impact the calculated QoI. 

The specific number of sensitivity studies will depend on the application, but the goal is to 
conduct enough studies such that there is a sufficiently low chance that the results of the 
analysis depend heavily on unverifiable or uncertain assumptions.  
 
Uncertain analysis assumptions can often be classified as either modeling assumptions or input 
parameter specification assumptions. Modeling assumptions include any assumptions in the 
computational modeling framework, while input parameter specification assumptions refer to 
any assumptions made when specifying the values of the input parameters to the PFM model. 
Common types of sensitivity studies include considering changes in the results if the following 
occurs: 

• A plausible alternative model is used. 

• A different probability distribution for an uncertain input (or several uncertain inputs) is 
used. 

• The categorization of an input as aleatory or epistemic is changed. 
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Reference 3-21 provides guidance on selecting sensitivity studies, which this report reviews in 
Section 4.4.  

3.4.2 Step 4: Action 2—Conduct Sensitivity Studies and Present Results 

Purpose: The purpose of this action is to perform the sensitivity studies.  
 
Description: Sensitivity studies can take on many different forms, and there is no prescriptive 
method for conducting sensitivity studies. However, they will all include some common 
elements: 

• a reference realization (or baseline case) with a documentation of the QoI 
• one or several modified realizations illustrating the concept that needs to be represented 
• a comparison between the reference realization and the modified realization(s) 
• a comparison criterion to decide whether the change is significant 
• a conclusion, including potential consequences 

3.5 Step 5: Draw Conclusions from Analysis Results 

The fifth step in a PFM analysis is to draw conclusions using the results of Steps 1–4. This step 
includes two key actions: 

(1) Interpret analysis results. 
(2) Iterate on the analysis process to refine model results.  

3.5.1 Step 5: Action 1—Interpret Analysis Results 

Purpose. The purpose of this action is to synthesize the information gathered in Steps 1–4 and 
draw conclusions from this information. 
 
Description. In an ideal situation, PFM analysis results can be compared directly to acceptance 
criteria to make a regulatory decision. In practice, determinations about whether acceptance 
criteria are met are typically not made based on a single PFM calculation or analysis but rather 
based on a set of analyses that are compiled into an overall evidence package. Information 
about the analysis results, scope, and limitations must be considered when drawing final 
conclusions, considering all elements of the PFM analyses described above in Steps 1–4. 
Subsequently, drawing final conclusions based on the analysis requires substantial expert 
judgment to synthesize all information together to make actionable guidelines. 

3.5.2 Step 5: Action 2—Iterate on the Analysis Process to Refine Model Results  

Purpose. The purpose of this action is to determine whether additional analyses are required to 
draw informative conclusions from the modeling. 
 
Description. If analysis results are inconclusive concerning whether the acceptance criteria are 
met, then the analyst can consider additional refinements to the analysis to provide the required 
additional information. For example, the analyst can consider the following: 

• changing or clarifying aspects of the PFM code (Section 3.1.3) 

• refining the input uncertainty distributions (Section 3.2.2) 
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• choosing a different sampling scheme or increasing the number of model realizations 
(Section 3.3.1) 

• adding more sensitivity studies to address existing limitations (Section 3.3.3)   

PFM analyses are typically iterative in nature, such that initial modeling results inform future 
analyses. The iterative process continues until the analyst has sufficient information to draw 
clear conclusions about whether the acceptance criteria are met for the application. 
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4 USEFUL METHODS FOR ESTABLISHING CONFIDENCE IN 
PROBABILISTIC FRACTURE MECHANICS ANALYSIS 

This section details a concise review of analysis methodologies, including notional examples for 
context that are linked directly to an action introduced in Section 3. While this is not a 
comprehensive list of acceptable methodologies, this section can be used by applicants who are 
seeking to further understand the theoretical underpinnings of the processes that are used to 
establish the credibility of a PFM analysis. For example, Section 4.1 provides technical detail 
that could be used to develop the technical basis for the action defined in Section 3.1. Each 
section introduces a concept/method and provides the following information about it: 
 
• What is it?—Gives a high-level description of the concept/method. 
 
• How to use?—Provides general details on how the concept/method is used, including 

specific steps or an algorithm where appropriate. 
 

• When/Why?—Discusses the PFM context in which the concept/method is used and 
maps this use to the process described in Section 3. 

 
• Technical details—Describes technical details and complexities that are important to 

the use/implementation/interpretation of the method in the PFM context.  
 
• References—Lists references that provide further technical details. 

4.1 Useful Methods for Translating Regulatory Requirements into an Analysis 
Plan 

4.1.1 Separation of Aleatory and Epistemic Uncertainty 

When constructing an analysis plan, one aspect to consider is the treatment of uncertainty—
namely, will uncertainty be treated probabilistically, and, if so, will different types of uncertainty 
be distinguished? Separating types of uncertainty can be necessary when there is a need to 
quantify the uncertainty on a statistical QoI (a frequency or probability) or to separate inherent 
variability from lack-of-knowledge uncertainty. Such separation generally provides additional 
insights on the magnitude of the uncertainties and on whether they can be reduced. However, 
separation of uncertainties also comes with increased computational cost and analysis effort, 
and the decision to maintain the separation influences many steps of the subsequent analysis 
workflow. As a result, this tradeoff decision needs to be considered at an early stage of the 
analysis planning. 
 
Specifically, the strategy for handling uncertainty may vary for different types of analysis 
questions. If the analysis objective is to compute a single best estimate event probability, it is 
likely sufficient to consider all sources of uncertainty together to arrive at this probability. 
However, this approach can obscure information. Separating types of uncertainty instead of 
considering all sources of uncertainty together can lead to more interpretable analysis. For 
example, rather than computing a single best estimate probability, the analyst may want to 
understand the confidence in the computed frequency of an event given the current state of 
knowledge. Some elements of this knowledge uncertainty may be reducible, potentially 
improving confidence in the frequency estimate and increasing the precision of the analysis 
results. As described in this section, these reducible sources of uncertainty (referred to as 
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epistemic uncertainty) can be treated separately to maintain this information for the 
communication of results and decisionmaking about additional activities to conduct.  

4.1.1.1 What Is It?   

Two primary types of uncertainty sources are often considered in risk analysis (References 4-1, 
4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8): 

(1) Aleatory uncertainty is defined as “uncertainty based on the randomness of the nature 
of the events or phenomena that cannot be reduced by increasing the analyst’s 
knowledge of the systems being modeled” (Reference 4-9). Aleatory uncertainty 
represents the (perceived) randomness in the modeled system that cannot be reduced. 
Aleatory uncertainties reflect natural, intrinsic, or stochastic variability.  

(2) Epistemic uncertainty is defined as “the uncertainty related to the lack of knowledge or 
confidence about the system or model and is also known as state-of-knowledge 
uncertainty” (Reference 4-9). Epistemic uncertainty represents the lack-of-knowledge 
uncertainty in the modeled system that can be reduced. 

Historical PFM analyses of nuclear power plant structures either (1) do not distinguish between 
types of uncertainty (References 4-10, 4-11, 4-12, 4-13) or (2) treat the uncertainty as either 
aleatory or epistemic (References 4-14, 4-15).  

4.1.1.2 How to Use?  

If an analysis separates aleatory and epistemic uncertainty, then it requires additional effort to 
separate uncertainty types and iterate over epistemic samples in a “double-loop” sampling 
algorithm, as described below. This involves the following three steps: 

(1) Classify types of uncertainty for an application. The first step in separating types of 
uncertainty is classifying input variables as aleatory or epistemic. The specific PFM 
application typically drives classification choices. If it is unclear how to classify an 
uncertainty, it may be worth considering a sensitivity study (Section 4.4) to understand 
the impact of the classification. 

 
(2) Determine how to represent uncertainty. After classifying uncertainty types, the next 

step is to determine how to represent the different types of uncertainty. PFM analysis 
typically represents uncertainties using probability distributions, though other options are 
possible (see Section 4.1.1.4). 

 
(3) Propagate uncertainty while maintaining separation of types. Given a model output, 

a QoI, and uncertainties related to the model input parameters, the next step is 
propagating both types of uncertainty. For sampling-based uncertainty propagation, 
separation of aleatory and epistemic uncertainty is maintained using a double-loop 
(i.e., nested loop) framework. The following steps can be applied to propagate input 
uncertainty: 
 
– Epistemic variables are sampled in an outer loop. 

– For each epistemic sample, aleatory variables are sampled in an inner loop. 
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– QoIs are calculated for each epistemic sample (calculated over all aleatory 
samples), generating an epistemic distribution of QoIs. 

The sections below provide more information about the double-loop procedure. 

4.1.1.3 When/Why?  

The risk community has made the distinction between the inherent risk (aleatory) and the 
uncertainty due to lack of knowledge (epistemic). The purpose of this distinction is to 
acknowledge there will always be a risk given a specific situation, and the consequences can 
lead to different interpretations in terms of decisionmaking. The analyst can choose whether to 
separate types of uncertainty. The decision to separate uncertainty types typically depends on 
several factors: 

• Computational feasibility. In practice, maintaining separation during uncertainty 
propagation (for example, through Monte Carlo sampling) can be computationally 
challenging, due to the need to construct a “double-loop” sampling scheme. 
Section 4.1.1.4 contains more information and suggestions for efficiently implementing 
the double-loop scheme. 

 
• Conceptual interpretation of results. The interpretation of the results of a PFM 

analysis changes depending on whether the separation of uncertainty types is 
maintained (Reference 4-2 and 4-18). Section 4.1.1.4 contains more information. 

 
• Strength of technical basis. Ultimately, the separation of uncertainties can help to 

make a stronger, more comprehensive case and help the analyst understand what 
needs to be done to improve the accuracy of the answer. 

4.1.1.4 Technical Details   

Representing epistemic uncertainty. In many risk analysis applications, it can be difficult to 
specify probability distributions on epistemic uncertainties because, by definition, these 
uncertainties arise due to lack of knowledge. While probabilistic representation of epistemic 
uncertainty will be sufficient for most PFM applications, nonprobabilistic representations may be 
appropriate in certain instances (Reference 4-3, 4-16, 4-17). For example, sensitivity studies 
(Section 4.4) conducted at deterministic (i.e., fixed) values of the epistemic inputs can inform 
about a “worst case scenario.”  
 
Computational burden of separating uncertainty. The double-loop framework for sampling 
typically requires a large sample size. For each epistemic sample, the aleatory sample is 
selected to be sufficiently large for the accurate estimation of the QoI (e.g., failure frequency). 
More sophisticated sampling schemes (Sections 4.3.2 and 4.3.3) may be needed to make 
double-looping computationally feasible. If the model is too computationally expensive to directly 
implement the double-loop sampling, there are two options: (1) do not separate uncertainty 
types, or (2) build a computationally efficient surrogate model to approximate the full model. 
Surrogate models are data-driven approximations of the physics model output across the input 
space, as discussed in Section 4.3.10. Surrogate models introduce additional uncertainty into 
the problem because the surrogate is itself a model approximation.  
 
Interpretation of results. Maintaining separation of the two types of uncertainty facilitates 
making statements about confidence in the frequency of an event or the probability of 
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frequency. Specifically, probability of frequency refers to an analysis that models aleatory and 
epistemic uncertainties probabilistically and separates them in presenting the results 
(References 4-2, 4-18). As an example, in a PFM analysis aiming to characterize the likelihood 
of an adverse event, aleatory probabilities represent the frequency of an adverse event 
(e.g., crack, rupture) given a set of epistemic inputs/assumptions. These frequencies will vary 
with the set of epistemic inputs/assumptions. This variation represents the epistemic 
uncertainty/confidence in the frequency. 
 
If an analysis does not distinguish between aleatory and epistemic uncertainties, frequencies of 
an adverse event are computed over all uncertainties, and the analysis cannot quantify the 
impact of uncertainties that arise due to lack of knowledge. The implications of such a choice 
are explained with an example of the double-loop procedure below.  
 
To illustrate the double-looping procedure, consider estimating the frequency of pipe rupture. 
The model output is a binary indicator taking the value 1 if the pipe ruptured and 0 otherwise. 
Each input is categorized as either epistemic or aleatory and is assigned a probability 
distribution to represent its uncertainty. Then, the model is run, each time with different inputs, 
using the double-loop algorithm to separate uncertainty: 

(1) A set of epistemic variables is sampled randomly from the variables’ probability 
distributions. 

(2) Fixing this set, many samples (e.g., 1x104) of the aleatory variables are sampled 
randomly and the model is run, collecting the binary output for each realization. 

(3) Steps 1 and 2 are repeated many times (e.g., 1x103). The separation of the results by 
epistemic variable is maintained. 

Example results appear in Figure 4-1, which shows the proportion of the 1x104 aleatory samples 
that resulted in pipe rupture for the first 50 epistemic samples. For each epistemic realization, 
this proportion is the estimated frequency of pipe rupture, given the set of epistemic variables.  
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Figure 4-1 The Estimated Probability of Pipe Rupture for the First 50 Epistemic Samples 
 
For many of the epistemic realizations, the estimated failure frequency is zero, meaning none of 
the 1x104 random realizations resulted in a pipe rupture. However, several of the estimates are 
nonzero. Across the 1x103 epistemic realizations, the estimated failure frequency ranges from 0 
to 0.99, with roughly 83 percent falling below 0.05 (the vertical line). The histogram of the 
estimated failure frequencies in Figure 4-2 shows this. 
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Figure 4-2 Histogram of Estimated Probabilities Across 1,000 Epistemic Realizations 
 
With maintaining the separation of aleatory and epistemic uncertainties, the results can be 
interpreted as follows: there is roughly 83-percent confidence that the rupture probability is 
below 0.05. This is likely an optimistic estimate of confidence in the sense that the sampling 
uncertainty (i.e., finite sample size uncertainty) for each of the estimated probabilities has not 
been considered.  
 
Without maintaining separation of aleatory and epistemic uncertainties, the estimate of pipe 
rupture probability would be the proportion over all samples. This proportion is 0.046, which is 
below the 0.05 threshold used above. However, such an approach mixes the likelihood of 
rupture (i.e., aleatory uncertainty in rupture) and the confidence associated with rupture 
(epistemic uncertainty of rupture). When separating, the conclusion is that roughly 17 percent of 
epistemic values result in rupture probabilities above 0.05. When not separating, the conclusion 
is the estimated probability of pipe rupture is 0.046. These are two very different conclusions. 
Regardless of the approach for preserving the separation of uncertainties or not, the mean 
results using either approach should be similar. 
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4.2 Methods for Model Input Uncertainty Characterization 

4.2.1 Statistical Distribution Fitting 

4.2.1.1 What Is It?  

Given a set of representative data about the input parameter, statistical distribution fitting is the 
process of estimating the probability distribution of the input parameter using the available data.  

4.2.1.2 How to Use?  

Statistical distribution fitting has five steps: 

(1) Determine relevant data. 
(2) Select candidate probability distributions. 
(3) Fit distributions to the data. 
(4) Evaluate the fit of the distributions to the data. 
(5) Select a final input distribution model. 

Given a candidate distribution and ample data, most statistical software programs can produce 
estimates of input distribution parameters, uncertainty in these parameters, and evaluations of 
model fit. Important considerations for statistical distribution fitting include the following: 

• How many data are available and what is the pedigree of those data? 

• How much subject matter knowledge is available about the range and shape of the input 
parameter distribution? 

• How much accuracy is needed in the input distribution? (More important inputs require 
more accuracy.) 

• After distribution fitting, how much uncertainty is there in the final estimate of the input 
distribution? 

Reference 4-19 provides specific guidance on fitting models to input distributions. The sections 
below provide more technical details on distribution fitting. 

4.2.1.3 When/Why?  

Probability distributions are often used to represent uncertainty in model inputs. Statistical 
distribution fitting is used when data are available to learn about the form of the input 
distribution.  
 
The chosen input distribution can impact the PFM results. Expert judgment can inform the 
distribution, especially when limited or inexact data are available. Additionally, sensitivity studies 
(Section 4.4) on important input distributions may be needed to assess the impact of 
assumptions made in the distribution fitting process. When data are not available to estimate 
probability distributions, expert elicitation can be used (Reference 4-20).  
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4.2.1.4 Technical Details  

This section discusses the five steps in statistical distribution fitting in more detail. 

(1) Determine relevant data.  

Data quality. The amount and pedigree of the source data are important considerations when 
determining an input distribution. In practice, cost and time limit data quality. Data quality 
considerations include the following: 

• limited data/small sample size (i.e., the sample is too small to estimate the input 
distribution with sufficient accuracy)  

• data relevance (i.e., not all data points are direct measures of the outcome of interest) 

• data uncertainty (i.e., individual data points can contain uncertainty due to measurement 
error) 

The minimum number of data points needed for a suitable fit is subjective and context specific, 
but smaller sample sizes lead to larger uncertainty in the best fitting input probability distribution. 
Additionally, very small sample sizes do not allow for data-driven statistical distribution fitting. 
Expert judgment about the input and its impact on the results can provide additional insight into 
the process of choosing the input probability distribution.  

(2) Select candidate probability distributions.  

Distribution models. There is a large set of possible distribution models for input parameters, 
but, in most cases, simple parametric forms for inputs are used. Common choices include the 
normal, truncated normal, lognormal, uniform, triangular, and Weibull distributions. Other 
distributions can be selected, based on their appropriateness for the application at hand. 
 
Considerations in choosing probability distributions include the following: 

• range of values the input takes 
• tail behavior and overall shape of the distribution 

Input Ranges. To specify an input distribution, it is important to consider the range of inputs. 
Specifically, the range of a distribution should be broad enough to include all possibilities but 
narrow enough to exclude unrealistic or nonphysical values.  
 
There are two options for bounding the range of an input: (1) select a probability distribution 
whose range is consistent with the known range of the data, or (2) use a truncated form of a 
probability distribution. For example, suppose we know an input parameter, such as material 
strength, is always greater than 0. Then, we can use a distributional model that puts 
0 probability mass on values less than 0, such as the lognormal, uniform, or Weibull model. 
Alternatively, we could use a truncated normal model that truncates the normal distribution such 
that the input is always greater than 0. Figure 4-3 depicts these two options. 
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Figure 4-3 Distributions with Nonnegative Input Parameters 
 

Tail behavior and shape. Examples of heavy-tailed and skewed distributions appear in Figure 
4-4. Determining the tail behavior and shape requires large sample sizes or expert judgment. 
Given that the tails of distributions often drive structural failures, it is important to investigate the 
confidence in the underlying probability distributional form and whether the specified distribution 
fits the underlying data well in the tails.  

 

 

Figure 4-4 Heavy-Tailed and Skewed Distributions 
 

Data transformations. Inputs can be modeled on different scales. A common data 
transformation is the natural logarithm, where inputs are modeled on the natural log scale, 
rather than the absolute scale, of the data. This transformation is particularly useful for skewed, 
positive inputs.  
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(3) Fit the distributions. 

Parameter estimation. Given a candidate probability distribution and a set of data, statistical 
inference can be used to estimate the parameters of that distribution. Most statistical software 
programs (e.g., R, Python, Minitab, MATLAB with the appropriate toolbox, Easyfit) can estimate 
distribution parameters, along with uncertainty in those parameters. These parameters are 
typically estimated using statistical inference techniques such as maximum likelihood 
estimation, Bayesian inference, or method of moments. If the data cannot be modeled well 
using a known probability distribution, then nonparametric approaches can be applied.  

 
Input uncertainty. The estimated distribution parameters contain sampling uncertainty, 
because they were estimated based on a finite sample of data (Figure 4-5). In the figure, the 
grey bars are a histogram of the data, with best fit normal distribution shown as the black line. 
The blue lines are sampling uncertainty in the distributional fit due to the limited sample size 
when n=10 (left) and n=100 (right).  

 

  

Figure 4-5 Sampling Uncertainty in Input Distribution Fits 

(4) Evaluate distributional fit. 

After fitting a distribution to data, it is important to evaluate how well the distribution matches the 
observed data. From Reference 4-19, the basic principle behind evaluating distributional fits is 
to compare the parametric estimates from the model fit to nonparametric quantities that are not 
based on a fitted model. Representations of some of the graphical tools, described below, 
appear in Figure 4-6: 

• Overlay a parametric fit of the probability density function onto a histogram of the data. 
The left plot shows n=50 data points fit to a Weibull distribution. Large differences 
between the histogram and parametric probability density function (PDF) estimate would 
signal poor model fit. 
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• Overlay a parametric fit of the cumulative distribution function (CDF) onto the empirical 
CDF of the data (middle plot). Large differences between the empirical CDF and 
parametric CDF estimate would signal poor model fit. 

• Construct a probability plot, also called a Quantile-Quantile plot (right plot). Probability 
plots compare model-estimated versus empirical quantiles of the data. A departure from 
the reference line indicates a region where the model poorly fits the data. Because there 
is sampling uncertainty in the quantile estimates, confidence intervals can help assess 
whether there is statistical evidence of a lack of model fit. Points falling outside the 
bounds indicate a lack of fit of the probability distribution.  

 

 

Figure 4-6 Graphical Diagnostics for Parametric Model Fit 
 

Additionally, statistical goodness-of-fit hypothesis tests (e.g., Chi Square, Kolmogorov-Smirnov, 
Anderson-Darling, or Shipiro-Wilk) can also be used to detect evidence of a poor model fit. 
These tests have strong, known limitations that limit their applicability in practice and must be 
supplemented with graphical tools and expert judgment to determine whether a model is a 
reasonable fit to data (Reference 4-19).  

(5) Select a final input distribution model.  

The final input distribution is an estimate of input uncertainty that reflects both data-driven 
evidence and expert judgment (particularly in limited-data scenarios). To select an input 
distribution, the analyst selects the following: 

• Distribution model. It is best practice to consider several different candidate probability 
distributions (e.g., normal, lognormal, Weibull), and select the final distribution based on 
which is the best fit to the data, a process known as model selection.  

• Values for the distribution parameters. Recall that input parameters are uncertain, 
due to estimation based on a finite sample size. 

In many instances, there will be uncertainty in the choice of the distribution model and 
distribution parameter values. Input distribution uncertainty can have a large impact on the final 
estimate in a PFM analysis. This source of uncertainty is most important when one of the 
following is true: 

• The output is sensitive to the input. 
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• There are insufficient data to accurately estimate an input distribution. 

• The acceptance criterion relates to bounding a probability below a very low threshold 
(e.g., p < 1x10-6). 

This uncertainty can be incorporated into the final PFM analysis in different ways: 

• Treat uncertain probability distributions and their parameters as additional sources of 
epistemic uncertainty.  

• Choose values of the distribution parameters resulting in conservative values for the 
inputs with respect to the application at hand. 

• Examine the robustness to changes in the input distribution using a sensitivity study 
(Section 4.4). 

4.2.2 Preserving Physical Relationships between Inputs 

4.2.2.1 What Is It?  

In a PFM analysis, most uncertain inputs are assumed to be statistically independent; that is, 
changing the value of one input does not impact the value of other inputs. However, a subset of 
input variables is often statistically dependent. For the input set to be physically realistic, these 
dependencies should be preserved. 

4.2.2.2 How to Use?  

Before modeling, expert judgment is applied and exploratory data analyses are conducted to 
understand the relationship between inputs. Relationships can manifest themselves as 
correlations or as more general dependencies such as nonlinear relationships or ordering 
relationships (i.e., input 1 must be larger than input 2). 
 
Some approaches to specifying statistically dependent inputs include the following:  

• inducing correlation in random samples through the transformation of independent 
samples  

• constructing a joint probability distribution for the inputs that includes the dependencies 

• specifying a conditional probability distribution for one input as a function of the other 
input 

• constraining the parameter space 

Section 4.2.2.4 provides technical details on these approaches. 

4.2.2.3 When/Why?  

Preserving dependence between variables is often needed to ensure a physically realistic input 
set or to maintain the physical laws that drive the problem. For example, the inner diameter of a 
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pipe must be smaller than its outer diameter, so a relationship between these variables may be 
imposed to ensure the physicality of the inputs.  

4.2.2.4 Technical Details  

The technical details below describe the four approaches to specifying statistically dependent 
inputs given above.  
 
Transforming Independent Samples. Correlated inputs can be generated by transforming 
independent random samples. If inputs follow a multivariate normal distribution, then we can 
directly transform the inputs to induce correlation. Specifically, consider two inputs x and y and a 
random, independent sample of size n for each. Center and scale the samples of x and y to 
have mean 0 and standard deviation 1. Let 𝑿𝑿 be the nx2 matrix whose columns are formed by 
the centered and scaled samples of x and y, respectively. Let 𝑺𝑺 be the 2x2 matrix specifying the 
correlation: 

𝑺𝑺 = �1 𝜌𝜌
𝜌𝜌 1�, 

 
where 𝜌𝜌 is the desired correlation between the inputs. Let 𝑺𝑺 = 𝑪𝑪⊤𝑪𝑪 be the Cholesky 
decomposition of 𝑺𝑺 and set 𝑿𝑿∗ =  𝑿𝑿𝑿𝑿. The correlation between the columns of 𝑿𝑿∗ is 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑿𝑿∗) =
 (𝑿𝑿𝑿𝑿)⊤(𝑿𝑿𝑿𝑿)  =  𝑪𝑪⊤ 𝑿𝑿⊤ 𝑿𝑿 𝑪𝑪 =  𝑪𝑪⊤ 𝑰𝑰 𝑪𝑪 =  𝑺𝑺. The desired standard deviation for each input can be 
achieved by scaling each column by its desired standard deviation. Next, the desired mean can 
be added to each column. If inputs are not normally distributed, then this transformation method 
will not preserve the probability distributions of the individual inputs (i.e., marginal distributions).   
 
If inputs are not normally distributed, then an alternative approach is to induce correlation on the 
ranks of the inputs (Reference 4-21). This approach has the advantages of being distribution 
free and preserving the marginal distribution of the inputs. To implement this approach, the 
analyst specifies the correlations between the ranks of the inputs, which ideally can be 
estimated using experimental data or expert judgment. This estimate can be applied with SRS 
and LHS. Reference 4-21 gives details on implementing the rank correlation method. Figure 4-7 
provides an example of the rank approach for two input variables. On the left is a scatterplot of a 
random sample of two variables. Transforming these points using the rank method results in the 
scatterplot on the right where a strong negative correlation now exists.   
 



 

46 

 

Figure 4-7 Randomly Sampled Inputs (Left) and Transformed Inputs (Right) 
 
Joint distribution modeling. Input parameters can be directly sampled from a joint distribution 
for the parameters that include a correlation structure. The multivariate normal distribution is a 
straightforward model for correlated inputs but is only appropriate when a normal distribution 
can reasonably represent the inputs. The multivariate normal distribution is parameterized by 
the mean and variance of each variable, along with the statistical (Pearson) correlation between 
pairs of variables.  
 
If a multivariate normal distribution cannot reasonably represent the joint distribution, more 
sophisticated statistical models can be applied to specify a joint distribution. Specifically, copula 
methods are a popular statistical approach for specifying joint distributions of correlated 
variables (Reference 4-22).  
 
Conditional probability. If one input is dependent on another input, the relationship can be 
modeled to induce correlation between inputs. Specifically, the joint distribution of inputs 𝑋𝑋 and 
𝑌𝑌 can be factorized as the product between the marginal distribution of 𝑋𝑋 and the conditional 
distribution of 𝑌𝑌 given 𝑋𝑋: 𝑓𝑓(𝑋𝑋,𝑌𝑌)  =  𝑓𝑓(𝑋𝑋)𝑓𝑓(𝑌𝑌|𝑋𝑋). As an example, suppose the marginal 
distribution of 𝑋𝑋 is Weibull:  

𝑋𝑋 ∼ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(1,1), (1) 

and the conditional distribution of 𝑌𝑌 given 𝑋𝑋 = 𝑥𝑥 is normal with a mean dependent on 𝑥𝑥: 

𝑌𝑌 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(15 + 2 log(𝑥𝑥) , .3). (2) 

Figure 4-8 displays samples from the joint distribution of 𝑋𝑋 and 𝑌𝑌. To sample from the joint 
distribution of 𝑋𝑋 and 𝑌𝑌, first sample a value of 𝑋𝑋 from the Weibull distribution (Eq. 1), and then 
sample the value of 𝑌𝑌 from a normal distribution with mean 15 + 2 log(𝑥𝑥) and variance 0.3 
(Eq. 2).  
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Figure 4-8 Sampled Inputs from the Joint Distribution of 𝑿𝑿 and 𝒀𝒀 
 
Constrain the parameter space. The input set can be constrained to ensure consistency and 
physicality. For example, yield strength of a material is lower than its ultimate tensile strength 
(Figure 4-9), and any samples not satisfying this constraint can simply be discarded. Note that 
constraining the input space changes the uncertainty distribution on the inputs and can induce 
correlation between inputs. Therefore, this approach should be used with caution to ensure that 
imposed constraints accurately represent uncertainty in the inputs.  
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Figure 4-9 Constraining Input Distributions to Ensure that Yield Strength Is Less than 
Ultimate Tensile Strength (Open Circles Are Not Admissible) 

 
All four of the above approaches are viable options for modeling dependencies in inputs. An 
advantage of the first approach (transforming independent samples) is that it is distribution free 
and requires only knowledge of the correlation between inputs (Reference 4-21). An advantage 
of the second approach (joint distribution modeling) is that correlation is directly built into the 
input parameter distribution. The third approach (conditional probability) gives flexibility with 
respect to the functional form of the dependency between variables. The fourth approach 
(constrain the parameter space) offers simplicity in implementation. 

4.3 Useful Methods for Forward Propagation of Input Uncertainty 

4.3.1 Simple Random Sampling 

4.3.1.1 What Is It?   

Simple random sampling (SRS) is a Monte Carlo sampling technique in which each uncertain 
input is sampled randomly from its corresponding probability distribution.  

4.3.1.2 How to Use?  

The SRS approach follows four steps: 

(1) Specify probability distributions for the uncertain inputs.  

(2) Choose the sample size. 

(3) Implement SRS by randomly sampling the inputs from their probability distributions.  
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(4) Evaluate the computer model at each of the sampled inputs. The sampled outputs 
represent a random sample of outputs corresponding to the probability distribution 
implied by the distributions on the inputs.  

4.3.1.3 When/Why?   

SRS is easy to implement and therefore serves as a good “first pass” sampling scheme for 
understanding output variability. However, SRS is often less efficient than alternative sampling 
schemes (see Sections 4.3.2, 4.3.3, and 4.3.4 for alternatives); that is, more realizations are 
needed using SRS than alternative sampling schemes to estimate a QoI with the same 
precision. Section 4.3.1.4 gives information on choosing a sample size for SRS. 

4.3.1.4 Technical Details   

Specifying probability distributions for the uncertain inputs. Section 4.2 discusses 
methods to identify and specify probability distributions for uncertain inputs.  
 
Choosing a sample size n. It is usually feasible to directly estimate the amount of sampling 
uncertainty in a QoI associated with SRS. For example, the law of large numbers indicates that 
the magnitude of the sampling error associated with many QoIs estimated using SRS will be 
proportional to 1 √𝑛𝑛⁄  where 𝑛𝑛 represents the sample size. 
 
To use SRS to estimate a probability, the number of samples should be large relative to the 
probability of the event occurring. As a rule of thumb, the sample size should be at least 10 to 
20 times larger than 1 𝑝𝑝⁄ , where 𝑝𝑝 < 0.5 is the probability of interest, to generate stable results 
(Reference 4-23). 
 
Implementing SRS. Most software programs can directly implement SRS for many common 
probability distributions. Alternatively, a simple random sample can be generated for general 
distributions by transforming uniform random samples on the interval 0 to 1 using the probability 
integral transform (Reference 4-24). The uniform samples represent the quantiles of the 
distribution from which the sample is desired. These quantiles are transformed by applying the 
inverse CDF for the desired distribution. All that is needed to implement the probability integral 
transform is the ability to randomly sample uniform variables and evaluate the inverse CDF. As 
an example, a two-dimensional sample of uniform variables appears in Figure 4-10. Each 
dimension is transformed using the probability integral transform to obtain the simple random 
sample of variables shown in Figure 4-11, where the first dimension is distributed uniformly on 
the interval -1, 1 (𝑈𝑈(−1,1)) and the second dimension is normally distributed with mean 0 and 
variance 1 (𝑁𝑁(0,1)).  
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Figure 4-10 SRS Sample in the Quantile Space for Two Input Variables (n=10) 
 

 

Figure 4-11 SRS Sample Transformed into the Input Space for Two Input Variables (n=10) 
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4.3.2 Latin Hypercube Sampling 

4.3.2.1 What Is It?   

Latin hypercube sampling (LHS) is a Monte Carlo sampling technique. LHS is a method to 
obtain a sample that is more spread out across the input space than a typical SRS sample, 
producing estimates with more statistical precision on average.  

4.3.2.2 How to Use?  

Many statistical software programs can implement LHS. The following steps describe a method 
for generating an LHS of size 𝑛𝑛 from independent input distributions associated with 𝑝𝑝 uncertain 
inputs (Reference 4-25): 

(1) Stratify the input space by dividing the range of each input, 𝑥𝑥𝑗𝑗, into 𝑛𝑛 disjoint intervals of 
equal probability. 

(2) For each input, randomly sample a single value from each interval, resulting in 𝑛𝑛 
sampled values for each input. For a given input and interval, the sample is taken from 
the conditional distribution of the input on the interval. 

(3) Randomly combine samples without replacement: 

a. Randomly pair, without replacement, the 𝑛𝑛 values sampled from the first input, 
𝑥𝑥1, with the 𝑛𝑛 values from the second input, 𝑥𝑥2, to produce 𝑛𝑛 pairs. 

b. Randomly combine these pairs, without replacement, with the 𝑛𝑛 values sampled 
from the third input, 𝑥𝑥3. 

c. Continue this process iteratively on 𝑥𝑥4, 𝑥𝑥5,… , 𝑥𝑥𝑝𝑝 resulting in a set of 𝑛𝑛 𝑝𝑝-tuples. 

The correlation between inputs can be incorporated using the Iman-Conover procedure that 
induces correlation based on the ranks of inputs (Reference 4.3; see Section 4.2.2). 
 
To summarize, LHS stratifies each input dimension into equally probable strata. In each 
dimension, each stratum is sampled once (the regions formed by the sampled strata create a 
pattern akin to a Latin hypercube in experimental design, such as described in Reference 4-26). 
Within each of the sampled regions, a single sample is randomly sampled according to the 
distribution within the region (Reference 4-25, 4-27).  

4.3.2.3 When/Why?   

LHS is designed to cover the range of the input space more efficiently than SRS (Section 4.3.1). 
For this reason, it is a common technique for forward propagation of uncertainty and for building 
surrogate models (Section 4.3.10). Compared to SRS, LHS will typically result in more 
statistically precise estimates of a QoI; however, the increase in precision diminishes as the 
sample size increases. Quantifying statistical uncertainties on QoIs calculated using LHS is 
more challenging.  
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4.3.2.4 Technical Details   

The following simple example demonstrates the steps of the LHS algorithm outlined above. It 
shows an LHS for two input variables, 𝑥𝑥1 and 𝑥𝑥2, with 𝑛𝑛=10 samples. In this example, 𝑥𝑥1 is 
uniformly distributed from -1 to 1, and 𝑥𝑥2 is normally distributed with a mean of 0 and a standard 
deviation of 1:  

(1) Stratify the input space. First, each input distribution is divided into 𝑛𝑛 = 10 intervals 
(strata) of equal probability according to their respective distributions. This stratification 
can be done first in the quantile space defined as the two-dimensional hypercube on 
(0,1). The intervals (strata) in the quantile space are evenly spaced, as displayed in 
Figure 4-12. 

 

Figure 4-12 Example of an LHS in the Quantile Space for Two Input Variables (n=10) 
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Figure 4-13 LHS Transformed into the Input Space for Two Input Variables (n=10) 
 

(2) Randomly sample from each interval. Next, random uniform samples are taken on 
each interval in each dimension. These samples are transformed to a sample from their 
specified input distributions using the probability integral transform (Reference 4-28). 
Figure 4-12 shows uniform samples for each stratum plotted in the two-dimensional 
quantile space. The transformed samples (and strata) appear in Figure 4-13. The next 
step describes the displayed pairing of each 𝑥𝑥1 sample with an 𝑥𝑥2 sample.  

 
(3) Randomly combine samples without replacement. Finally, the values sampled from 

the first input, 𝑥𝑥1, are randomly paired without replacement with the values sampled from 
the second input, 𝑥𝑥2. Once a sampled value of 𝑥𝑥2 is randomly paired with a sampled 
value of 𝑥𝑥1, this sampled value of 𝑥𝑥2 cannot be paired with a different value of 𝑥𝑥1. In the 
example shown in Figure 4-12, the sample from the first strata of 𝑥𝑥1 is randomly paired 
with the sample from the ninth strata of 𝑥𝑥2. The sample from the first strata of 𝑥𝑥1 is not 
paired with any other samples of 𝑥𝑥2. Similarly, the sample from the ninth strata of 𝑥𝑥2 is 
not paired with any other samples of 𝑥𝑥1. Next, the sample from the second strata of 𝑥𝑥1 is 
randomly paired with the sample from the sixth strata of 𝑥𝑥2, and so on, until all 𝑛𝑛=10 
pairs are selected.  

Augmenting LHS designs. The design of an LHS depends on a known sample size. If, after a 
sample is selected, the analyst wants to decrease sampling uncertainty in a QoI by increasing 
the sample size, care must be taken to preserve the properties of an LHS. Reference 4-29 
outlines one method for augmenting an initial LHS while preserving the LHS structure. 
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Discrete Probability Distributions. A discrete probability distribution is a related method that 
produces a discrete approximation to a continuous distribution (Reference 4-30). Like LHS, 
strata are created in each dimension. Rather than sampling within each stratum, the conditional 
mean within the stratum is chosen as the sample point.  

4.3.3 Importance Sampling 

4.3.3.1 What Is It? 

Importance sampling is a Monte Carlo technique that can be used to more efficiently sample 
from the model input space than equal-probability sampling methods such as SRS and LHS 
(Reference 4-31). Importance sampling concentrates samples in a specific area of interest in 
the input space to improve estimation of QoIs (e.g., failure probabilities). 

4.3.3.2 How to Use?  

The implementation of importance sampling follows three steps: 

(1) Choose an importance distribution for the model inputs. The importance sampling 
distribution concentrates samples in regions of the input range that have a strong 
influence on the estimate of the QoI. The importance distribution depends on the 
relationship between the QoI and the inputs and therefore can be informed by SA. The 
distribution should be selected such that the estimated QoI has smaller variance than a 
QoI estimate from an equal-probability sample.  

 
(2) Sample inputs from the importance distribution and run the model at these inputs.  
 
(3) Estimate the QoI. Importance samples are weighted to obtain an unbiased estimate of 

the QoI. The importance weights are derived from the density functions of the original 
input distribution and the importance distribution (Reference 4-32). 

4.3.3.3 When/Why?   

Importance sampling is used to reduce the sampling uncertainty in the estimate of a QoI. If a 
good importance sampling distribution has been selected, then the estimate of the QoI will be 
more precise with fewer samples relative to SRS or LHS. Importance sampling reduces 
sampling uncertainty by concentrating samples in the regions of importance (i.e., those regions 
that contribute most to the QoI). While importance sampling is theoretically used for variance 
reduction, poor choice of an importance distribution will increase the variance of a QoI estimate 
(Reference 4-31). 
 
Importance sampling can be particularly beneficial in PFM applications when the QoI is a rare 
probability. That is, to estimate a 1x10-6 probability, it is more computationally efficient to 
concentrate more samples around the area where events are more likely to occur. Without 
importance sampling, an event will only be observed, on average, every one million samples. 
Importance sampling algorithms can be designed to dramatically increase the number of 
observed events and, subsequently, decrease the variance of the probability estimate for a fixed 
number of samples. 
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4.3.3.4 Technical Details   

Many QoI estimation problems can be formulated as the estimation of an expectation: 
 

𝐸𝐸𝜋𝜋[𝑓𝑓(𝒙𝒙)] = ∫ 𝑓𝑓(𝒙𝒙)𝜋𝜋(𝒙𝒙)𝑑𝑑𝒙𝒙 
 
A common PFM example is when 𝜋𝜋(𝒙𝒙) represents the probability distribution on a multivariate 
input 𝒙𝒙 and 𝑓𝑓(𝒙𝒙) is a model output; that is, the indicator of an adverse event (e.g., pipe rupture) 
at input 𝑥𝑥 (i.e., 𝑓𝑓(𝒙𝒙)  =  1 if the event occurs and 0 otherwise). In this case, the expectation 
reduces to the probability of the adverse event.  
 
By the law of large numbers, the average of 𝑓𝑓 over a random sample 𝒙𝒙(1),𝒙𝒙(2), … ,𝒙𝒙(𝑛𝑛) from 𝜋𝜋(𝒙𝒙) 
will converge to 𝐸𝐸𝜋𝜋[𝑓𝑓(𝒙𝒙)] as 𝑛𝑛 grows. Hence, it is straightforward to estimate the integral with 
the average: 

𝐸𝐸𝜋𝜋[𝑓𝑓(𝒙𝒙)] ≈
1
𝑛𝑛
�𝑓𝑓�𝒙𝒙(𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

 

 
In the case of an indicator of a rare event (and other cases), this average is inefficient since very 
few of the random samples will result in 𝑓𝑓(𝒙𝒙)  =  1 (i.e., it is difficult to randomly sample an input 
that results in the adverse event). Instead of sampling from 𝜋𝜋(𝒙𝒙), importance sampling takes its 
sample from an importance distribution ℎ(𝒙𝒙). Rewriting the above integral as 

𝐸𝐸𝜋𝜋[𝑓𝑓(𝒙𝒙)] = ∫ 𝑓𝑓(𝒙𝒙)
𝜋𝜋(𝒙𝒙)
ℎ(𝒙𝒙) ℎ

(𝒙𝒙)𝑑𝑑𝒙𝒙 = 𝐸𝐸ℎ �𝑓𝑓(𝒙𝒙)
𝜋𝜋(𝒙𝒙)
ℎ(𝒙𝒙)�, 

 
we notice that it can be estimated from a sample 𝒙𝒙(1),𝒙𝒙(2), … ,𝒙𝒙(𝑛𝑛) from ℎ(𝒙𝒙) using a weighted 
average: 

𝐸𝐸𝜋𝜋[𝑓𝑓(𝒙𝒙)] ≈
1
𝑛𝑛
�𝑓𝑓�𝒙𝒙(𝑖𝑖)�

𝜋𝜋�𝒙𝒙(𝑖𝑖)�
ℎ(𝒙𝒙(𝑖𝑖))

𝑛𝑛

𝑖𝑖=1

. 

 
The values 𝑤𝑤(𝑖𝑖) = 𝜋𝜋�𝒙𝒙(𝑖𝑖)�

ℎ�𝒙𝒙(𝑖𝑖)�
 are importance weights on the 𝒙𝒙(𝑖𝑖). As we demonstrate below, the 

careful choice of importance distribution ℎ can dramatically reduce sampling uncertainty of the 
estimate. Reference 4-32 gives the technical conditions on ℎ needed for the weighted average 
to converge to 𝐸𝐸𝜋𝜋[𝑓𝑓(𝒙𝒙)] as 𝑛𝑛 grows. 
 
Choose an importance distribution for the model inputs. In practice, choosing the 
importance distribution ℎ usually involves selecting individual importance distributions for a few 
of the inputs. An incorrect choice of inputs for importance sampling or a poor selection of the 
importance distribution may lead to increasing the sampling uncertainty in the estimate of the 
QoI when compared to an estimate generated without the use of importance sampling. As a 
result, a careful and thorough analysis is necessary before selecting the importance distribution. 
Effective implementation of importance sampling requires (1) understanding what regions of the 
input space are important to the QoI and (2) selecting the importance distribution correctly given 
the relationship between the important input and the QoI (References 4-31, 4-33, 4-34, 4-35). 
This aspect of importance sampling is often not straightforward in PFM studies and requires 
SAs to support the selected inputs, which are often confirmed with expert elicitation. 
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Inputs that have a strong relationship with the output are good candidates for importance 
sampling. SA methods (Section 4.3.8) can be used to quantify the input-output relationship and 
rank variables in terms of their influence on the QoI. The variables that are found to have the 
strongest relationship with the QoI are considered for importance sampling.  
 
Inefficiency in importance sampling often occurs in high-dimensional problems where too many 
variables are importance sampled (Reference 4-36). To avoid this inefficiency, importance 
sampling should be limited to only a few important variables.  
 
Importance sampling and estimation of the QoI. After the nontrivial task of choosing a good 
importance distribution, the implementation of the importance sampling methodology is 
straightforward. Inputs are randomly sampled from their importance distribution and propagated 
through the model. The final QoI is then estimated as a weighted average, weighted by the 
importance weights (References 4-31, 4-33, 4-35). 
 
Illustration of importance sampling. Importance sampling can be demonstrated as follows. 
Suppose there is one normally distributed input 𝑥𝑥 ∼  𝑁𝑁(0,1), and the goal is to estimate 
𝐸𝐸[𝑓𝑓(𝑥𝑥)]  =  𝑃𝑃(𝑋𝑋 > 2.5). The true probability is known to be 0.0062. Figure 4-14 shows estimates 
using repeated simple random samples of size 𝑛𝑛 = 1,000 from 𝑁𝑁(0,1) and repeated importance 
samples from a Student-t distribution centered at 2.5 with 3 degrees of freedom. The 
importance distribution was chosen to ensure more samples fell inside the failure region (> 2.5), 
and 3 degrees of freedom were used to produce a heavy-tailed Student-t distribution in that 
region, as smaller degrees of freedom increase the tail weight of the distribution. The 
histograms in Figure 4-14 represent sampling uncertainty in the QoI estimate. While both 
estimates are unbiased around the true probability indicated by the vertical dashed line, the 
standard deviation of the estimates under importance sampling is 0.0003 compared to 0.003 
under random sampling. This change represents a reduction in the sampling uncertainty by an 
order of magnitude. Reference 4-32 describes a similar example. 
 

 

Figure 4-14 Example of Estimating a Probability Using Random Sampling and Importance 
Sampling 

 



 

57 

Adaptive importance sampling. In reliability analysis (see Section 4.3.4), whose goal is to 
estimate a failure probability, adaptive importance sampling techniques are often used to help 
refine the importance distribution. The goal in these applications is to detect the failure 
boundary, defined as the boundary of the region separating failures and nonfailures 
(Reference 4-37), in order to improve failure probability estimates. Adaptive methods iteratively 
update the importance distribution to better estimate this boundary by considering the outputs of 
previously sampled points in the domain (References 4-38, 4-39). 
 
To implement adaptive importance sampling, first, an optimization problem is solved to find a 
particular point on the failure boundary known as the most probable point (MPP). The MPP can 
be used as a starting point to define an initial importance distribution, which through adaptive 
sampling is updated as model evaluations are obtained. For example, multimodal sampling 
(Reference 4-38) and curvature-based sampling (Reference 4-39) begin centered at the MPP 
and then update the sampling distribution by assigning weights to various candidate density 
functions. Many software packages such as DAKOTA (Reference 4-31) have the capability to 
implement adaptive sampling methods. 
 
Instead of using additional evaluations of the computational model, adaptive sampling can also 
use information from surrogate models (Section 4.3.10). This feature is most useful when there 
is a need to reduce the computational expense of model evaluations. For example, efficient 
global reliability analysis (Reference 4-40) aims to create a Gaussian process (GP) surrogate 
model for the function of interest and then adaptively select sample points in the domain near 
the failure region to improve the quality of the surrogate model. 

4.3.4 First- and Second-Order Reliability Methods 

4.3.4.1 What Is It? 

Reliability methods estimate a failure probability by approximating the probability of violating a 
certain threshold criterion for a probabilistic analysis of continuous random variables. For 
example, these methods can estimate the probability that a particular material stress is greater 
than the yield stress. Often, the estimate requires many fewer samples of the computer model 
than using Monte Carlo sampling methods. The methods described here are known as the 
first-order reliability method (FORM) and the second order reliability method (SORM). 

4.3.4.2 How to Use? 

The use of FORM and SORM follows three steps: 

(1) Define the failure region in terms of a continuous output and a threshold value. 
Specifically, a failure occurs when the output exceeds the threshold. The failure 
probability is the integral of the input probability distributions over the failure region. 

(2) Approximate the failure region using FORM or SORM Taylor series approximation 
around the MPP. The MPP is the point on the failure region boundary with highest input 
probability density. Determining the location of the MPP requires evaluating the 
computational model within an optimization algorithm.  

(3) Estimate the failure probability using the integral over the approximate failure region.  
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4.3.4.3 When/Why? 

Reliability methods are particularly useful because of the computational efficiency of the 
algorithms. As described in Sections 4.3.1, 4.3.2, and 4.3.3, sampling-based algorithms can 
also be used to approximate the failure probability of a system. However, these methods often 
require thousands or tens of thousands of samples to provide good estimates. In contrast, 
FORM and SORM are more efficient reliability methods because they seek to directly 
understand the location and probabilistic distance to the limit state (i.e., the boundary of the 
failure region). Often, for some low-dimensional input spaces, the MPP can be located 
accurately with a small number of model evaluations (on the order of 10 points). This difference 
provides substantial computational savings especially when the analysis model is 
computationally expensive to evaluate. However, the failure probability estimate obtained from 
FORM or SORM relies on a Taylor series approximation to the shape of the limit state 
(first-order series in FORM and second-order series in SORM) and can result in a poor estimate 
if the approximation is not good. 

4.3.4.4 Technical Details 

Defining the failure region: Following Reference 4-41, consider a model that predicts an 
output 𝑌𝑌 as a function 𝑔𝑔 of some set of input random variables 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛): 

𝑌𝑌 = 𝑔𝑔(𝑿𝑿)  

Suppose a failure event of interest is defined when 𝑦𝑦 < 0. Note that any problem can be 
formulated in this way by considering 𝑦𝑦 to be a margin against failure. For example, 𝑋𝑋1 might be 
the predicted stress in a material, and 𝑋𝑋2 might be the yield stress of the material. If we define 
failure when the material yields, then the margin 𝑌𝑌 against failure is defined as 𝑌𝑌 = 𝑋𝑋2 − 𝑋𝑋1, and 
failure occurs when 𝑦𝑦 < 0 for some values (𝑥𝑥1, 𝑥𝑥2). 
 
In any such scenario, the goal of reliability methods is to compute the failure probability 𝑝𝑝𝑓𝑓 =
𝑃𝑃(𝑌𝑌 < 0) = ∫ 𝜋𝜋(𝒙𝒙)𝑑𝑑𝒙𝒙𝐹𝐹𝐹𝐹  , where 𝜋𝜋 is the joint probability density function of the inputs 𝑿𝑿 and  
𝐹𝐹𝐹𝐹 = {𝑿𝑿 ∶ 𝑌𝑌 = 𝑔𝑔(𝑋𝑋) < 0} is the failure region. The unknown and potentially complex failure 
region makes computing the integral difficult. To simplify the computation, reliability methods 
like FORM and SORM make simplifying assumptions on 𝑔𝑔(𝑿𝑿). 
 
Approximating the failure region using FORM with normally distributed inputs. After the 
failure region has been defined, the failure probability can be estimated with FORM using the 
following steps, described in detail below:  

(1) Transform each input variable into the standard normal space.  

(2) Find the MPP, 𝒙𝒙′∗.  

(3) Calculate the distance, 𝛽𝛽, from 0 to the MPP. 

(4) Use this distance to estimate the failure probability 𝑝𝑝𝑓𝑓 ≈ 1 −  Φ(𝛽𝛽), where Φ is the CDF 
of the standard normal distribution. 

Figure 4-15 depicts this process visually (following Reference 4-42).  
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Transformation of inputs. A problem first addressed by the Hasofer-Lind method 
(Reference 4-43) assumes each input is independently normally distributed. The first step in this 
method (and others that relax the normality assumption) is to transform each random variable 
into the standard normal space (i.e., 𝑁𝑁(0,1)) so that all variables in the input domain have a 
common scale: 

𝑋𝑋𝑖𝑖′ =
𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑋𝑋𝑖𝑖
𝜎𝜎𝑋𝑋𝑖𝑖

 , ∀𝑋𝑋𝑖𝑖 ∈ 𝑖𝑖 = 1,2, … ,𝑛𝑛 

Here, 𝑋𝑋𝑖𝑖′ denotes the standard normal transformation of input random variable 𝑋𝑋𝑖𝑖. Figure 4-15 
depicts this transformation.  
 
Find the MPP. Once this transformation has been performed for all the input random variables, 
determining the location of the MPP (𝒙𝒙′∗) involves solving the following inverse problem: 

𝒙𝒙′∗ = argmin�𝒙𝒙′𝑇𝑇𝒙𝒙′ 
𝑠𝑠. 𝑡𝑡.𝑔𝑔(𝒙𝒙′) = 0 

The point 𝒙𝒙′∗ is estimated by finding the values of 𝒙𝒙′ that fall on the failure region boundary 
(𝑔𝑔(𝒙𝒙′) = 0) and are the closest (minimum) distance to 0 (the mean of the transformed random 
variables). The inverse equation above can be solved by optimization methods such as the 
Rackwitz algorithm (Reference 4-44) and the Newton-Raphson recursive algorithm 
(Reference 4-45).  
 
Calculate the distance from the MPP to 0. Once 𝒙𝒙′∗ is found, its distance from 0 can be 
calculated as 𝛽𝛽 =  �𝒙𝒙′∗𝑻𝑻𝒙𝒙′∗. A visualization of 𝒙𝒙′∗ and 𝛽𝛽 appears in Figure 4-15. The parameter 
𝛽𝛽 is the distance from 0 to the MPP 𝒙𝒙′∗ and is known as the safety index for the reliability 
problem. 
 
Estimate the failure probability. The failure probability 𝑝𝑝𝑓𝑓 can then be approximated directly 
by making an assumption about the shape of the failure envelope. The simplest assumption, 
known as the FORM, is to assume the failure envelope is linear, as shown by the blue dashed 
line in Figure 4-15. In this case, the approximation of 𝑝𝑝𝑓𝑓 becomes  

𝑝𝑝𝑓𝑓 ≈ 𝑃𝑃(𝑙𝑙(𝒙𝒙) < 0) =  Φ(−𝛽𝛽) = 1 −Φ(𝛽𝛽), 

where 𝑙𝑙(𝒙𝒙) is the first-order Taylor series approximation of 𝑔𝑔(𝒙𝒙) about 𝒙𝒙′∗ and Φ is the standard 
normal CDF. The first equality follows from the linear (and normal) assumption on 𝑙𝑙(𝒙𝒙) with 
parameters governed by the Taylor series about 𝒙𝒙′∗. The second equality follows from the 
symmetry of the standard normal distribution. Figure 4-15 shows the linear approximation of the 
failure envelope using the FORM method.  
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Figure 4-15 Example of the FORM and SORM Methods in the Standard Normal Space 

(Following Reference 4-42) 
 
Nonnormally distributed inputs. One limitation of the approach above is that all input 
variables must be independent normal random variables in order for the approach to be valid. 
When they are instead independent nonnormal random variables, they can be transformed into 
approximate standard normal random variables by estimating equivalent normal distribution 
parameters 𝜇𝜇𝑋𝑋𝑖𝑖

𝑁𝑁  and 𝜎𝜎𝑋𝑋𝑖𝑖
𝑁𝑁  for each nonnormal random variable 𝑋𝑋𝑖𝑖. The Rackwitz-Fiessler 

two-parameter equivalent normal transformation (Reference 4-46) achieves this by equating the 
PDF and CDF of variable 𝑋𝑋𝑖𝑖 to the PDF and CDF of an equivalent standard normal distribution. 
Once this additional transformation is performed, the same inverse problem can be solved by 
the previously mentioned optimization methods to arrive at the MPP in equivalent standard 
normal space.  
 
Approximating the failure region using SORM. Another limitation of the FORM approximation 
is that it may be overly conservative when the actual failure envelope is highly nonlinear. To 
improve upon this limitation, curvature of the limit state can be considered by also including the 
partial derivatives 𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋𝑖𝑖
(𝒙𝒙∗) of the function 𝑔𝑔 with respect to each 𝑋𝑋𝑖𝑖 in the Taylor series 

expansion of the function 𝑔𝑔. These improvements to the approximation of the limit state function 
lead to an improvement to the approximation of 𝑝𝑝𝑓𝑓. Since the approximation is now a 
second-order Taylor series, the method is called the second-order reflexibility method (SORM). 
The yellow dashed line in Figure 4-15 provides a notional example of the curved approximation 
to the failure envelope using SORM. References 4-47, 4-48, and 4-49 provide further details. 

4.3.5 Convergence Analysis 

4.3.5.1 What Is It? 

When propagating uncertainty forward through a model, there will be uncertainty in the estimate 
of the QoI due to the limited number of model realizations. The purpose of a convergence 
analysis is to assess the magnitude of sampling uncertainty associated with the QoI estimates 
obtained from Monte Carlo forward propagation of uncertainty (e.g., Sections 4.3.1, 4.3.2, and 
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4.3.3). Ultimately, an estimate has converged if the conclusions of the analysis do not change 
solely due to sampling uncertainty. 

4.3.5.2 How to Use? 

To conduct a convergence analysis, the analyst will take the following steps: 

(1) Quantify sampling uncertainty with a metric. 
(2) Compare the metric to a threshold value.  

The threshold defines the maximum level of uncertainty acceptable for the application.  
 
When Monte Carlo sampling (e.g., Sections 4.3.1, 4.3.2, and 4.3.3) is used to estimate a QoI, 
the following are three general methods for quantifying sampling uncertainty: 

• Calculate sampling uncertainty metrics for an estimate. Section 4.3.6 covers 
closed-form sampling uncertainty metrics under SRS for probability estimates. 
Section 4.3.7 discusses statistical bootstrapping as an alternative to closed-form metrics. 
The metrics are calculated on a single simulation but require statistical assumptions that 
must be evaluated in practice. 

• Assess stability of a QoI estimate as the sample size increases. The estimate of the 
QoI is monitored as the sample size grows to determine the appropriate sample size. 

• Compare QoI estimates over replicate simulations. Several independent replicates of 
the model simulations are needed, which may not be feasible to implement in practice. 
The variation between these replicate simulations is assessed. 

Section 4.3.5.4 discusses these methods in more depth. In general, the best method for 
convergence analysis depends on the computational complexity of the model as well as the 
type of sampling scheme. 

4.3.5.3 When/Why? 

In PFM, sampling uncertainty exists in estimates of QoIs. Rigorous assessment of the sampling 
uncertainty is conducted to ensure that the conclusions of the PFM analysis would not change 
solely due to random variations of estimates in different simulations.  

4.3.5.4 Technical Details 

Sampling uncertainty. Sampling uncertainty arises because the model can only be run for a 
finite number of realizations; a set of model realizations used to estimate a QoI such as a failure 
probability is called a model simulation. Replicate model simulations at different random seeds 
will produce different results. Consider the problem of estimating a rare probability. The 
histogram in Figure 4-16 displays estimates of this probability from many independent 
simulations; each simulation is based on n=10,000 model realizations sampled using SRS. This 
histogram represents the sampling distribution of the probability estimate, defined as the 
distribution of estimates obtained from repeated simulations. The true probability is 0.001, 
indicated by the red vertical dashed line, with estimates ranging from 0 to approximately 0.003. 
This range represents the sampling uncertainty. For a PFM analysis, this range could be 
acceptable or unacceptable, depending on the requirements of the analysis. 
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Figure 4-16 Histogram of Probability Estimates from a Simple Random Sample 
 
Quantifying sampling uncertainty with a statistical metric. A convergence metric quantifies 
the sampling uncertainty in the estimate of a QoI, calculated using the output realizations. 
Convergence metrics can be compared to a prespecified threshold to determine whether the 
sample size is sufficiently large. Examples of statistical metrics to quantify sampling uncertainty 
in a convergence analysis include the following: 

• Standard error is the standard deviation of the sampling distribution of the QoI. It is a 
measure of the variation in the estimate across repeated simulations. 

• Coefficient of variation (CV) is the ratio of the estimated standard error of the QoI to the 
mean estimate of the QoI. The CV should only be used for a positive QoI, and it is not 
recommended if the mean estimate of the QoI is close to zero because the estimate of 
the CV can become very volatile. 

• Confidence interval is an interval estimate of a QoI, providing a range of values for which 
we have high confidence that the true value of the QoI lies in the interval.  

Sections 4.3.6 and 4.3.7 discuss methods for calculating these metrics based on a model 
simulation. These metrics are compared against predetermined thresholds to determine 
whether sampling uncertainty is sufficiently low. For example, the standard error or CV can be 
compared to a threshold defining the maximum acceptable value. The maximum acceptable 
width of a confidence interval is another possible threshold (Reference 4-50).  
 
Assessing the stability of an estimate as the sample size increases. One common method 
for assessing model convergence is incrementally increasing the sample size and examining 
the stability of the QoI estimate as a function of sample size. As the sample size increases and 
sampling uncertainty decreases, the estimate of the QoI will stabilize. Metrics for QoI stability 
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include the standard error, CV, and confidence intervals, all of which are calculated from the 
sample.  

Figure 4-17 depicts an example demonstrating the convergence of estimating a small probability 
(1x10-3) using SRS. The simulation was run for 1x107 iterations, and the x-axis is plotted on the 
log scale. The estimated probability is plotted as the black line in the figure. This estimate is 0 
until a sampling size of about 1x103. Then it is volatile until a sample size of around 1x106, 
where it begins to converge to the true value. A two-sided 95-percent confidence interval, 
represented by the red dashed lines, provides a convergence metric. This bound was 
constructed using the Clopper-Pearson confidence interval (References 4-50, 4-51). Suppose 
that the threshold for model convergence is met when the 95-percent confidence interval has 
width less than 1x10-4. It takes 1,516,000 samples to satisfy the metric in this case. 
 

 

Figure 4-17 Confidence Interval used to Assess the Convergence of a Probability Estimate 
 
Comparing estimates over replicate simulations. A more computationally expensive 
approach to assessing convergence of a QoI is to conduct many replicate simulations to 
repeatedly estimate a QoI and then directly estimate variability in the QoI across replicates. The 
variability in the QoI estimate across simulations provides information for sampling uncertainty. 
The advantage of this method is that it is easy to apply to any sampling scheme. The 
disadvantage is that conducting replicate simulations is computationally expensive. To 
determine whether a sample of size 𝑛𝑛 is sufficient, a total of 𝑛𝑛𝑛𝑛 realizations is computed, where 
𝑟𝑟 is the number of replications of the simulation. The specific sample size and reasonable 
number of resamples depend on the application. The sample size of each replicate set should 



 

64 

be close to that of the empirical data. Further, these samples can later be combined to produce 
a more precise final estimate of the QoI. 
 
This sampling uncertainty can be quantified using different metrics, such as the standard 
deviation of the QoI estimates, the CV, or a statistical prediction interval for future QoI 
estimates. A prediction interval is similar to a confidence interval and provides interval bounds 
such that there is a high level of confidence that a new QoI estimate would lie in this range. An 
approximate 100(1 − 𝛼𝛼)% confident prediction interval for a normally distributed random 
variable is  

𝑥̅𝑥 ± 𝑡𝑡𝛼𝛼/2,𝑟𝑟−1�𝑠𝑠2 �1 + 1
𝑟𝑟
� ,  

where 𝑥̅𝑥 is the average of the QoI estimates, 𝑠𝑠 is the standard deviation of the QoI estimates, 
and 𝑡𝑡𝛼𝛼

2,𝑟𝑟−1 is the (𝛼𝛼/2)𝑡𝑡ℎ percentile of the Student-t distribution with 𝑟𝑟 − 1 degrees of freedom. 
Note that, to compute a prediction interval, the distribution of the QoI estimate must be known. 
Often, the QoI is an average of many model realizations such that QoI estimates will be 
approximately normally distributed (based on the central limit theorem). When the QoI is a rare 
probability, this normal approximation can perform poorly, and normal prediction intervals 
should be interpreted with caution.  
 
As an example, suppose we are measuring sampling variability in an estimate of the probability 
of an axial crack in a pipe over 60 years. Figure 4-18 plots replicate QoI estimates as a function 
of time based on 𝑟𝑟 = 5 replications. Figure 4-19 shows the two-sided 95-percent prediction 
interval for this example. The width of the prediction interval as a function of time can be 
compared to a predetermined threshold on the acceptable maximal width to assess 
convergence. The choice of 𝑟𝑟 = 5 should be justified. The more replicates the better, and one 
can assess the stability of the estimated standard deviation as 𝑟𝑟 increases. Second, the chosen 
threshold (width of the prediction interval) is important. In more typical PFM analyses where the 
probability of the event is much lower, the threshold will be much more difficult to achieve than 
in this simple example. 
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Figure 4-18 Estimates of the Probability of Axial Crack for r=5 Independent Replications 
Using the Same Sampling Scheme 
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Figure 4-19 Prediction Interval Computed from the Five Independent Simulations 

4.3.6 Closed-Form Metric for Simple Random Sampling Uncertainty in a Probability 
Estimate 

4.3.6.1 What Is It? 

When estimating the probability of an event (e.g., some failure scenario of interest), the 
sampling uncertainty in the estimate should be well understood to determine model 
convergence (Section 4.3.5). Both the sample size and the rarity of the event under 
consideration influence the accuracy of the estimate. This section provides a sampling 
uncertainty metric for a probability estimate when SRS is applied in uncertainty propagation. 

4.3.6.2 How to Use? 

Computing this sampling uncertainty metric involves the following three steps: 

(1) Propagate an SRS of size n from the inputs through the model. Record the number of 
events and nonevents. 

(2) Estimate the probability of the event using the total number of recorded events divided 
by the sample size.  

(3) Compute a sampling uncertainty metric, such as the standard error, the CV, or 
confidence interval (see Section 4.3.5). 

When LHS or adaptive sampling methods are used, care should be taken when estimating 
closed-form metrics for sampling uncertainty since assumptions may be violated. Sampling 
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uncertainty is still present when these sampling algorithms are used and should be assessed 
using alternative approaches (see Sections 4.3.5 and 4.3.7).  

4.3.6.3 When/Why? 

When SRS is used for forward propagation of uncertainty, these metrics can be computed to 
quantify sampling uncertainty in the probability estimate, providing useful insight about the 
precision of the estimate. Results may suggest that a larger sample or other variance reduction 
techniques (see Sections 4.3.2 and 4.3.3) are needed if the precision is insufficient. 

4.3.6.4 Technical Details 

Estimate the event probability. After propagating inputs sampled using SRS through the 
model and recording whether the event occurred, the probability of failure 𝑝𝑝𝑓𝑓 can be estimated 
by the ratio of number of failures (𝑛𝑛𝑓𝑓) to the number of trials (𝑛𝑛), known as a binomial proportion 

𝑝𝑝𝑓𝑓 ≈ 𝑝̂𝑝𝑓𝑓 =
𝑛𝑛𝑓𝑓
𝑛𝑛

. 

 
Compute the standard error and CV. The sampling uncertainty of 𝑝̂𝑝𝑓𝑓 relative to 𝑝𝑝𝑓𝑓 decreases 
as 𝑛𝑛 → ∞ and 𝑝𝑝𝑓𝑓 → 1. That is, increasing n will decrease the sampling uncertainty in the 
estimate, but the relative decrease depends on the failure probability, with smaller 𝑝𝑝𝑓𝑓 resulting in 
larger relative sampling uncertainty. References 4-52 and 4-53 explain SRS and its associated 
uncertainty in estimation in detail. 
 
Assuming each 0/1 outcome is independent, the number of failures 𝑛𝑛𝑓𝑓 can be assumed to follow 
a binomial distribution. Based on the binomial distribution, the estimated standard error of 𝑝̂𝑝𝑓𝑓 is  

𝜎𝜎�𝑝𝑝�𝑓𝑓 ≈ ��1 − 𝑝̂𝑝𝑓𝑓�𝑝̂𝑝𝑓𝑓
𝑛𝑛

 

The accuracy of this approximation increases as 𝑛𝑛/𝑝𝑝(1 − 𝑝𝑝) gets large. Given the estimated 
standard error, the CV is 

𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑓𝑓� =
𝜎𝜎𝑝𝑝�𝑓𝑓
𝜇𝜇𝑝𝑝�𝑓𝑓

=

��1 − 𝑝𝑝𝑓𝑓�𝑝𝑝𝑓𝑓
𝑛𝑛

 𝑝𝑝𝑓𝑓
 

where 𝜇𝜇𝑝𝑝�𝑓𝑓 and 𝜎𝜎𝑝𝑝�𝑓𝑓 are the mean and standard error of the 𝑝̂𝑝𝑓𝑓, respectively.  
 
The CV highlights the fact that the relative uncertainty in a probability estimate 𝑝̂𝑝𝑓𝑓  can be quite 
large, especially when the target 𝑝𝑝𝑓𝑓 is small. For example, for 10,000 simulations of an event 
with 𝑝𝑝𝑓𝑓 = 0.01, 𝜎𝜎�𝑝𝑝�𝑓𝑓 is about 0.001 (or 10 percent of the desired estimate), but if 𝑝𝑝𝑓𝑓 = 0.001, with 
10,000 simulations 𝜎𝜎�𝑝𝑝�𝑓𝑓 is about 0.00032 (32 percent of the desired estimate).  
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Compute a confidence Interval. Statistical confidence intervals provide a plausible range in 
which a parameter is likely to fall based on the observed data. There are many methods for 
computing confidence intervals for 𝑝𝑝𝑓𝑓; Reference 4-54 discusses several in detail. A commonly 
used approximate 100(1 − 𝛼𝛼)% confidence interval for a binomial proportion is  

𝑝̂𝑝𝑓𝑓 ± 𝑧𝑧𝛼𝛼/2 𝜎𝜎�𝑝𝑝�𝑓𝑓 

where 𝑧𝑧𝛼𝛼/2 is the (𝛼𝛼/2)𝑡𝑡ℎ percentile of the standard normal distribution. This confidence interval 
relies on approximate normality of 𝑝̂𝑝𝑓𝑓, which is valid only if 𝑝̂𝑝𝑓𝑓 is not too close to 0 or 1. A rule of 
thumb is to use this interval only if 𝑛𝑛𝑝̂𝑝𝑓𝑓 > 5 and 𝑛𝑛�1 − 𝑝̂𝑝𝑓𝑓� > 5; that is, at least five failures and 
nonfailures are observed. In PFM applications where the true probability of failure is very small, 
this confidence interval is unlikely to perform well since the number of observed failures under 
SRS will often be very small. In addition, when 𝑛𝑛𝑝𝑝𝑓𝑓  is small, zero failures may be observed, and 
the interval above is meaningless. Reference 4-54 outlines several alternative confidence 
intervals for binomial proportions. The next paragraph outlines one method for bounding the 
probability of failure when no failures are observed.  
 
Confidence interval when no failures are observed. If 𝑛𝑛𝑓𝑓 = 0 failures are observed in 
𝑛𝑛 realizations, then we can use the fact that 𝑛𝑛𝑓𝑓 follows a binomial distribution to place a 
one-sided confidence interval on the probability of failure. Specifically, there is 100(1-𝛼𝛼)% 
confidence that 𝑝𝑝𝑓𝑓  <  𝑝𝑝𝑢𝑢, where  

𝑝𝑝𝑢𝑢 = 1 − 𝛼𝛼
1
𝑛𝑛  

For example, if it must be established that 𝑝𝑝𝑓𝑓 < 10−6 with 95-percent confidence, a simple 
random sample of size n=log(. 05) / log(1 − 10−6) ≈ 3 × 106 with no observed failures is 
needed. References 4-55 and 4-56 provide more details. 

4.3.7 Statistical Bootstrapping 

4.3.7.1 What Is It? 

Statistical bootstrapping is a flexible statistical method for calculating sampling uncertainty in a 
QoI estimate. Bootstrapping relies on resampling from the observed data to calculate QoI 
uncertainty and is particularly useful when closed-form metrics (as described in Section 4.3.6) 
are difficult or impossible to derive.  
 
While there are many versions of bootstrapping, the general idea is to repeatedly resample from 
the observed data, each time estimating the QoI. The variability in the QoI estimates across 
bootstrap resamples provides a measure of sampling uncertainty.  

4.3.7.2 How to Use? 

The most common bootstrap method is to resample directly from the observed data. This form 
of bootstrapping has three steps: 

(1) Take a sample from the observed data. The sample size is the same size as the 
observed data. The sample is taken with replacement, where single observations in the 
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data can be included multiple times in a single bootstrap resample. The sampling at this 
step should be consistent with the way the data were generated. 

(2) Calculate the QoI from the sampled data. 

(3) Repeat steps 1 and 2 many times. Use the collection of calculated QoIs to approximate 
the sampling uncertainty in the QoI. For example, the standard deviation of the collection 
of QoIs is an estimate of the standard error.  

4.3.7.3 When/Why? 

Bootstrapping offers a flexible method for estimating sampling uncertainty. The following are the 
main reasons to use bootstrapping:  

• The algorithm is generic, so it can be applied to most QoIs and many sampling 
schemes. 

• The algorithm is simple to implement, requiring only the ability to resample from the data 
and repeatedly calculate the QoI. 

• Closed-form metrics for sampling uncertainty (e.g., Section 4.3.6 for a probability 
estimate) are difficult to estimate without violating assumptions in many cases. 

However, it is important to understand when not to use bootstrapping. The bootstrap will result 
in inaccurate measures of sampling uncertainty when either of the following is true: 

• The sample size is small (i.e., sparse data). 

• The original sample was drawn using a complex sampling scheme that cannot be 
resampled (e.g., LHS). 

Section 4.3.7.4 contains more information about conditions for bootstrap failure. 

4.3.7.4 Technical Details 

Figure 4-20 depicts the steps of the bootstrap. The left plot is a histogram of the original data. 
The middle histograms displayed vertically represent B different bootstrap samples of the 
original data. Each of these has the same sample size as the original data. However, these 
samples are taken with replacement, meaning that some values may be observed more than 
once. The variation among these histograms is an estimate of the sampling variation of the 
observed sample. For each of the bootstrap samples, an estimate of the QoI is computed and is 
aggregated in the histogram on the right. This right-most histogram is an estimate of the 
sampling uncertainty in the estimate of the QoI. The vertical dashed lines are the 0.025 and 
0.975 quantiles of the bootstrap QoI estimates and correspond to an estimate of a 95-percent 
confidence interval.  
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Figure 4-20 Visualization of the Steps Taken for the Standard Statistical Bootstrap 
 
The following are the most common ways the bootstrap fails: 

• Data are too sparse. 
• The resampling does not reflect how the data were generated. 

The bootstrap can underestimate uncertainty when data are sparse. Specifically, standard 
errors will be too small, and confidence intervals will be too narrow. In PFM applications, sparse 
data are likely to occur when the number of computer realizations is small relative to the QoI. 
More samples are needed for estimating rare event probabilities and extreme percentiles, 
because the sparsity of the data is not judged based on the overall number of model realizations 
but on the overall number of events of interest that occur. Therefore, we may need many more 
than 1x106 simulated realizations to accurately quantify uncertainty in a 1x10-6 probability.  
 
Further, the bootstrap will not accurately estimate sampling uncertainty unless, in the 
resampling step, the resampling reflects how the data were generated. In PFM applications, the 
bootstrap can be used with both simple random samples and importance sampling. The 
bootstrap cannot provide accurate uncertainty quantification in complex sampling schemes such 
as LHS because there is no way to resample from the observed data in a way that 
approximates the original LHS scheme.  
 
More technically, the major assumption of the bootstrap is that, by resampling from the data, we 
are constructing samples that approximate the empirical distribution of the data. When data are 
sparse, we cannot approximate this distribution well. When data are generated from a complex 
sampling scheme such as LHS, we cannot resample from the data in a way that approximates 
the empirical distribution of the original sample obtained using LHS.  
 
Bootstrap confidence intervals. Confidence intervals are often desired to provide a plausible 
range in which a parameter is likely to fall based on the sampled data (see Section 4.3.5). 
Commonly, a probability distribution for the observed data is assumed (either through fitting to 
data or by expert judgment), and confidence intervals can be derived directly from this 
assumption. If the choice of probability distribution does not have a strong basis, the bootstrap 
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is an alternative approach as it bypasses the need to analytically derive confidence intervals 
using an assumed probability distribution.  
 
For example, suppose the QoI is the mean 𝜇𝜇 from a population from which a sample of data of 
size 𝑛𝑛 is collected: 𝑥𝑥(1), … , 𝑥𝑥(𝑛𝑛). If it is assumed the population is normally distributed, then the 
analytically derived 100(1 − 𝛼𝛼)% confidence interval is 

 
 
 
 

where 𝑥̅𝑥 and 𝑠𝑠 are the sample mean and standard deviation and 𝑡𝑡𝑛𝑛−1,𝛼𝛼/2 is the 𝛼𝛼/2 quantile of a 
t-distribution with 𝑛𝑛 − 1 degrees of freedom.  
 
The nonparametric bootstrap approach to the above problem takes a sample of the data of size 
𝑛𝑛 with replacement 𝐵𝐵 times (commonly 1,000 or more), each time computing the sample mean. 
This procedure results in a collection of sample means from which confidence intervals can be 
constructed. The simplest, but often least accurate, approach to constructing bootstrap 
confidence interval for a QoI 𝜃𝜃 is using empirical quantiles of the bootstrap distribution 

(𝜃𝜃∗𝛼𝛼/2,𝜃𝜃∗1−𝛼𝛼/2) , 
 
where 𝜃𝜃∗𝛼𝛼/2 is the 𝛼𝛼/2th percentile of the bootstrap distribution of 𝜃𝜃. Another approach is the 
basic method, defined as  

(2𝜃𝜃� −  𝜃𝜃1−𝛼𝛼/2
∗ , 2𝜃𝜃� −  𝜃𝜃𝛼𝛼/2

∗ ), 
 
where 𝜃𝜃� is the estimate of 𝜃𝜃 from the original sample and 𝜃𝜃1−𝛼𝛼/2

∗  is the 1 − (𝛼𝛼/2)th percentile of 
the bootstrap distribution for 𝜃𝜃. Alternatively, the Studentized method for estimating a 
confidence interval can be calculated as  
 

(𝜃𝜃 − 𝑡𝑡1−𝛼𝛼/2
∗ 𝑠𝑠𝑒𝑒𝜃𝜃� ,𝜃𝜃 − 𝑡𝑡𝛼𝛼/2

∗ 𝑠𝑠𝑒𝑒𝜃𝜃� ),   
 
where 𝑡𝑡1−𝛼𝛼/2

∗  is the 1 − (𝛼𝛼/2)th percentile of the bootstrapped Student’s t-test  
𝑡𝑡∗ = (𝜃𝜃�∗ −  𝜃𝜃�)/𝑠𝑠𝑒𝑒𝜃𝜃� . Here, 𝜃𝜃�∗ and 𝑠𝑠𝑒𝑒𝜃𝜃�  are the estimate and the standard error, respectively, of the 
bootstrap distribution of 𝜃𝜃. There are many other ways to construct bootstrap intervals, each 
with their own advantages and disadvantages. References 4-57 and 4-58 provide more 
information. 
 
When no closed-form expression is available for a confidence interval, bootstrapping is often a 
simple solution for obtaining a confidence interval. As an example, suppose the QoI was some 
function of the population mean and standard deviation, such as (𝜇𝜇2 + 𝜇𝜇)/𝜎𝜎. For each bootstrap 
sample, the estimated QoI (𝑥̅𝑥2 + 𝑥̅𝑥)/𝑠𝑠 is computed. 
 
As an example, Figure 4-21 shows the bootstrap distribution of this statistic from a sample of 
size 100 of data from a normal distribution with mean and variance 1. Using the bootstrap 
distribution, a confidence interval for (𝜇𝜇2 + 𝜇𝜇)/𝜎𝜎 can be easily calculated (see References 4-57 
and 4-58). The vertical dashed lines in the figure show a 95-percent bootstrap interval. In this 
example, the true value of (𝜇𝜇2 + 𝜇𝜇)/𝜎𝜎 is known to be 2, which is clearly within the bootstrap 
confidence interval. 
 

𝑥̅𝑥 ± 𝑡𝑡𝑛𝑛−1,𝛼𝛼/2
𝑠𝑠
√𝑛𝑛

 , 
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Figure 4-21 Bootstrap Sampling Distribution along with a 95-Percent Confidence Interval 
for the Complex Estimator Example 

4.3.8 Global Sensitivity Analysis 

4.3.8.1 What Is It?  

Sensitivity analysis (SA) seeks to answer a fundamental question: how sensitive is a model to 
its input parameters and which inputs are most important (Reference 4-59)? SA can be used to 
identify the inputs that have the strongest impact on the outputs (i.e., most sensitive or important 
inputs). Further, SA can help understand the nature of the input-output relationship. Global SA 
is used to quantify the amount of output uncertainty that can be attributed to uncertainty in the 
input variables (Reference 4-59). 

4.3.8.2 How to Use?  

Before performing a SA, it is important to choose a relevant output to analyze. The output 
should be closely related to the QoI. Further, binary/categorical outputs inherently contain less 
statistical information than continuous outputs. Frequently, the binary output is a function of 
continuous outputs, and these continuous outputs can often provide better information on input 
sensitivity with fewer samples. Because of this, it is generally beneficial to use continuous 
outputs for SA when possible.  
 
After an output has been chosen, an SA can be performed using exploratory data analysis and 
global sensitivity metrics estimation: 

• Exploratory data analysis. Exploratory data analysis summarizes characteristics of the 
input-output relationships using summary statistics and visualizations (Reference 4-60). 
Perhaps the most useful visualization to understand the relationship between PFM 
inputs and outputs is a scatterplot. If the number of input and output variables is small, 
scatterplots can be produced for each output with each input. With many inputs and 
outputs, relevant visualizations may be chosen based on subject matter knowledge. 
Alternatively, one can estimate the global sensitivity metrics first and use these to 
choose the visualizations.  
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• Global sensitivity metrics estimation. Sensitivity metrics provide a quantitative value 
that characterizes the relationship between inputs and outputs. The following two metrics 
can be used to quantify the input/output relationship (References 4-59, 4-61, 4-62): 

– First-order sensitivity indices refer to the proportion of the variance in the output 
that is explained by the variance in a single input. 

– Total-order sensitivity indices refer to the proportion of the variance in the output 
that is explained by the variance in an input and its interactions with other inputs. 

Section 4.3.8.4 includes details about estimating these sensitivity metrics. 

4.3.8.3 When/Why?  

SA can be performed to achieve the following:  

• Understand the problem drivers and rank inputs based on the magnitude of their effect 
on the output(s).  

• Improve the precision and accuracy of uncertainty propagation by doing the following: 

– identifying important inputs whose uncertainty distributions may need further 
refinement 

– determining candidate inputs for importance sampling  

4.3.8.4 Technical Details  

Exploratory data analysis. Scatterplots can be used to visually assess the nature and 
magnitude of the relationship between an input and output. 
 
Figure 4-22 shows an example of an input without (left) and with (right) a strong relationship 
with the response. For important inputs, scatterplots can also be used to determine whether the 
relationship is roughly linear, monotonic (i.e., entirely increasing or decreasing), or more 
complex.  
 
Figure 4-23 shows examples of linear (left), nonlinear/monotonic (middle), and 
nonlinear/nonmonotonic (right) input/output relationships. Reference 4-63 gives formal 
procedures for analyzing scatter plots. In practice, it can be difficult to visually inspect a large 
number of scatter plots, and more complex relationships involving interactions can often be 
missed. Estimating sensitivity metrics can help identify the most important relationships to 
visualize. 
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Figure 4-22 Scatterplots Showing an Input Without (Left) and with (Right) a Significant 
Relationship with the Output Variable 

 

 

Figure 4-23 Scatterplots Showing Linear (Left), Nonlinear/Monotonic (Middle), and 
Nonlinear/Nonmonotonic (Right) Relationships between the Input and Output 
Variables 

 
Global sensitivity metrics estimation. Input sensitivity can be measured in a variety of 
different ways (References 4-64 and 4-65). Variance-based indices are common sensitivity 
metrics that decompose the output variance and attribute this variance to certain inputs. 
Heuristically, the first-order sensitivity index reflects the proportion of the total output uncertainty 
that is explained by the uncertainty in the input 𝑥𝑥𝑗𝑗 alone. The total effects sensitivity index 
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reflects the fraction of the output uncertainty that is explained by 𝑥𝑥𝑗𝑗 by itself and together with its 
interaction with other variables.  
 
Mathematically, the first-order and total effects sensitivity indices can be described as follows. 
Suppose the output of the computer model is 

𝑦𝑦 = 𝑓𝑓(𝒙𝒙), (3) 

where 𝑦𝑦 is the model output, 𝒙𝒙 = [𝑥𝑥1, … , 𝑥𝑥𝑝𝑝] is a vector of 𝑝𝑝 input variables, and 𝑓𝑓 is the model. 
The first- and total-order sensitivity indices for an input 𝑥𝑥𝑗𝑗 (denoted 𝑆𝑆𝑗𝑗 and 𝑇𝑇𝑗𝑗, respectively) are 
defined as 

𝑆𝑆𝑗𝑗 =  
𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸[𝑓𝑓(𝒙𝒙)|𝑥𝑥𝑗𝑗])

𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓(𝒙𝒙))
, (4) 

𝑇𝑇𝑗𝑗 =  
𝐸𝐸(𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓(𝒙𝒙)�𝒙𝒙(−𝒋𝒋)�)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓(𝒙𝒙))
= 1 −  

𝑉𝑉𝑉𝑉𝑉𝑉(𝐸𝐸�𝑓𝑓(𝒙𝒙)�𝒙𝒙(−𝒋𝒋)�)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓(𝒙𝒙))

, (5) 

where 𝒙𝒙(−𝒋𝒋) is a vector of all 𝑝𝑝 input variables, excluding the 𝑗𝑗𝑡𝑡ℎ input (Reference 4-59). The 
numerator of the first-order sensitivity metric in Eq. 4 is the variance of 𝐸𝐸[𝑓𝑓(𝒙𝒙)|𝑥𝑥𝑗𝑗], the average 
value of the output 𝑓𝑓(𝒙𝒙), conditional on the input of interest 𝑥𝑥𝑗𝑗. This variance is taken with 
respect to the distribution on 𝑥𝑥𝑗𝑗; therefore, the numerator measures how much the average 
output varies as 𝑥𝑥𝑗𝑗 varies. A large variance indicates 𝑥𝑥𝑗𝑗 affects the output 𝑓𝑓(𝒙𝒙) and a small 
variance indicates it does not. The meaning of “large” and “small” is relative to the total variation 
of the output, the denominator of Eq. 4.  
 
𝑆𝑆𝑗𝑗 reflects the proportion of the total output uncertainty that is explained by the uncertainty in 𝑥𝑥𝑗𝑗 
alone, though a similar metric, 𝑇𝑇𝑗𝑗, is used to assess the proportion of uncertainty in the output 
explained by 𝑥𝑥𝑗𝑗 and its interactions with other variables. The numerator in the total-order 
sensitivity metric in Eq. 5 is the expectation (average) of 𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓(𝒙𝒙)�𝒙𝒙(−𝒋𝒋)�, the variance of the 
output 𝑓𝑓(𝒙𝒙) given all but the 𝑗𝑗𝑡𝑡ℎ input. If there is high variation for a wide range of 𝒙𝒙(−𝒋𝒋), then the 
outer expectation will be large, resulting in a large value for 𝑇𝑇𝑗𝑗. If 𝑇𝑇𝑗𝑗 is much larger than 𝑆𝑆𝑗𝑗, it 
implies that there are significant interactions between 𝑥𝑥𝑗𝑗 and the other inputs.  
 
Estimating sensitivity metrics using surrogate models. The calculation of first- and 
total-order sensitivity indices involves the estimation of high-dimensional integrals representing 
the expectations and variances in Eq. 4 and Eq. 5. The Monte Carlo integration approaches 
detailed in References 4-59 and 4-66 can be used to estimate these indices. However, this can 
be computationally prohibitive for many applications because it requires a large number of 
realizations when there are a large number of inputs. To address this problem, surrogate 
models can be used to estimate the indices (References 4-67 and 4-68). Section 4.3.10 
contains more information on surrogate models.  
 
Active subspaces. At times, the dimensionality of the input space may be prohibitively large for 
performing SAs. If this is the case, dimensionality reduction methods such as active subspaces 
may be useful. Active subspaces are a way to identify important directions of the input space 
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that affect the QOI. Directions that are not important can be ignored, resulting in reduced 
dimensionality. References 4-69 and 4-70 provide more information on active subspaces. 

4.3.9 Local Sensitivity Analysis 

4.3.9.1 What Is It? 

Local SA specifically focuses on how changes to each input at or near a specific reference point 
in the input domain, like a mean or median, affect outputs of interest (Reference 4-71). 
Alternatively, global SA attempts to quantify the effects of the uncertain inputs on the output 
relative to the entire input space (Section 4.3.8). 

4.3.9.2 How to Use? 

Local SA determines the rate of change of a specified output with respect to a given model 
input. The aim is to compute the partial derivative with respect to the input at a specific point in 
the domain (input space). One method for computing this partial derivative for a single input 
involves the following steps: 

(1) Run the model at the specified value of the input. 
(2) Perturb the input and run the model again. 
(3) Measure the change in the output by estimating the partial derivative. 

Typically, the other inputs remain fixed during this process, and the measured change in the 
output is attributed to a single input, conditional on the values of the other inputs. 

4.3.9.3 When/Why? 

Local SA is a relatively efficient first step toward learning about the important parameters in a 
model. With only two evaluations of a model, the linear effect on an output of changing a single 
parameter can be estimated. This step can help down-select to a smaller set of parameters to 
study in a full uncertainty analysis. It also provides some physical intuition for how certain 
parameters affect the output. However, the local nature of this analysis should always be kept in 
mind because (1) a parameter with low local sensitivity can still have a major effect on an output 
of interest if its associated uncertainty is large, and (2) the local sensitivity of a parameter can 
sometimes change significantly over the domain of interest. Global SA informs the effect of the 
parameter over its full uncertainty range and across the entire domain. 

4.3.9.4 Technical Details 

Calculating local sensitivity metrics. Local SA only requires a small number of model 
evaluations. First, a nominal input value is chosen and that value is perturbed by some amount 
in one direction (i.e., perturb one dimension of the input space). The amount chosen should be 
large enough so that a significant change in the output can be observed, but it should be small 
enough to stay within the region of the input space of concern.  
 
The sensitivity is measured by the partial derivative, which is estimated by a finite difference. 
For example, for some output of interest ℎ, the sensitivity of a single input 𝑥𝑥𝑖𝑖 at 
𝒙𝒙 =  (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝) is approximated by perturbing 𝑥𝑥𝑖𝑖 by an amount 𝛿𝛿𝑥𝑥𝑖𝑖 and approximating the 
partial derivative with the finite difference: 
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𝜕𝜕ℎ(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑖𝑖

≈
ℎ�𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 + 𝛿𝛿𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑝𝑝� − ℎ(𝒙𝒙) 

𝛿𝛿𝑥𝑥𝑖𝑖
 (6) 

Partial derivatives can be compared across a set of inputs by repeating Steps 1–3 in 
Section 4.3.9.2, perturbing a single input each time. Approximating the partial derivative with a 
finite difference is effectively a polynomial approximation using a Taylor series expansion 
around the reference point (Reference 4-71, 4-72). Note that the reference point (the model 
realization at the nominal input values) can be reused for the computation for each input. From 
the results of the local SA, the inputs can be ranked in terms of their contribution to an output of 
interest.  

4.3.10 Surrogate Models 

4.3.10.1 What Is It? 

Surrogate models (also known as emulators, metamodels, and response surfaces) are relatively 
fast statistical models that approximate more complex computer models. Surrogates are less 
computationally expensive to evaluate than the computer model and can be useful for SA and 
uncertainty propagation when conducting a sufficient number of computer model realizations is 
computationally prohibitive. 

4.3.10.2 How to Use? 

Surrogate models are constructed using the following steps (with more information in 
Section 4.3.10.4):  

(1) Generate training data by running the computer model using several sets of input values 
and obtaining the corresponding output values.  

(2) Use the training data to construct the surrogate model.  

(3) Validate the surrogate on a new set of computer model realizations (testing data) to 
check its quality. 

A surrogate can be used to approximate the full computer model for SA and uncertainty 
propagation. The choice of surrogate is dependent on the assumptions the user is willing to 
make, which relate to the type of output and the complexity of the input/output relationship. Two 
different output types are commonly seen in PFM models:  

(1) Continuous data can take on an infinite number of possible (physical) values 
(e.g., crack length). Common surrogates for continuous data include linear regression, 
multivariate adaptive regression splines, and GP regression. 

(2) Binary data take on only two levels for the output. Typically, the binary variable is an 
indicator for an event, taking on 0 if the event did not occur and 1 if it did (e.g., rupture or 
no rupture). Surrogates for binary data model the probability of the event occurring. An 
example surrogate for binary data is a generalized linear model. 
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4.3.10.3 When/Why? 

Surrogate models can be used to decrease computation time through building a computationally 
efficient computer model approximation. In PFM applications, surrogates can be used in SA and 
uncertainty propagation: 

• In SA, surrogates can be used to determine how uncertainty in the inputs affects 
uncertainty in the outputs (Sections 4.3.8 and 4.3.9).  

• In uncertainty propagation, surrogates can be used for propagating uncertainty in the 
inputs through the computer model (Section 4.3). Input samples are propagated through 
the surrogate model rather than the full computer model to allow for many more 
evaluations.  

Surrogate models approximate the computer model, and this approximation adds uncertainty in 
the PFM analysis. Surrogate uncertainty should be considered in the interpretation of the results 
under the following conditions:  

• If surrogates are used for SA, several different surrogates can be tried to explore the 
sensitivity of the SA results to the selected surrogate model.  

• If surrogates are used for uncertainty propagation, the magnitude of error associated 
with the surrogate model approximation can be quantified and included as additional 
uncertainty in the estimation of the QoI. 

4.3.10.4 Technical Details 

Generate training data. An output 𝑦𝑦 of a physical process or computer model can be 
represented as a function of the input 𝒙𝒙: 

𝑦𝑦 =  𝑓𝑓(𝒙𝒙). 
 
The representation here is deterministic; given the same value of 𝒙𝒙, the same value of the 
output 𝑦𝑦 will result. A surrogate estimates the true process function 𝑓𝑓 statistically using a set of 
training data (𝑦𝑦(𝑖𝑖),𝒙𝒙(𝑖𝑖)) , 𝑖𝑖 =  1, 2, … ,𝑛𝑛 where 𝒙𝒙(𝑖𝑖) is the 𝑖𝑖𝑡𝑡ℎ set of inputs on which a computer 
model of the process is evaluated resulting in the output 𝑦𝑦(𝑖𝑖).  
 
The accuracy of the surrogate increases with the size of the training set. For continuous 
outputs, a general rule of thumb for the number of data points n is approximately 10p, where p 
is the number of input variables (Reference 4-73). Reference 4-74 gives an overview of options 
for choosing the input combinations that will be used in constructing the surrogate model. A 
useful and common choice is an LHS (Section 4.3.2). This section outlines several options for 
constructing a surrogate. 
 
Construct the surrogate model. The training data are used to fit a statistical model 
approximating 𝑓𝑓(𝒙𝒙) for any 𝒙𝒙. The choice of surrogate model to use will depend on several 
aspects of the problem, such as the type of output variable (e.g., continuous or binary), 
continuity or discontinuity of 𝑓𝑓, the size of the training data set, and the domain on which a 
surrogate is required. This section discusses several types of surrogate models. Ideally, 
uncertainty in the surrogate model predictions are measured. An example surrogate appears in 
Figure 4-24 where the black points represent the training data, the blue curve represents the 
true computer model 𝑓𝑓(𝒙𝒙) across the entire input space, the red curve is the surrogate estimate 
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𝑓𝑓(𝒙𝒙), and the gray curves represent statistical uncertainty in the surrogate estimate. This 
particular surrogate, a GP, interpolates the training data and has the intuitive property that 
statistical uncertainty is larger for locations farther away from the training data 
(e.g., Reference 4-75). 
 

 

Figure 4-24 GP Surrogate Fit to Training Data (Black Points) from the True but Unknown 
Function 𝒇𝒇(𝒙𝒙) 

 
Surrogate validation. Validation of the surrogate can be done using the following steps:  

(1) Use the surrogate to predict the response at a set of new input values 𝒙𝒙 not used in 
construction of the surrogate.  

(2) Run the full computer model at 𝒙𝒙. 

(3) Compare the predicted response using the surrogate to the response using the 
computer model.  

(4) Determine whether the surrogate is sufficiently accurate. If not, then more realizations 
from the computer model are needed to improve the surrogate, or a different surrogate 
model is needed.  

(5) If the surrogate is used for uncertainty propagation, the error associated with the 
surrogate’s approximation should be considered when quantifying uncertainty in the QoI.  

Reference 4-74 provides more information on surrogate validation. 
 
It is important to ensure that the surrogate model is properly approximating the computer model 
by checking for potential over- or under-fitting of the surrogate, and multicollinearity. Overfitting 
refers to a surrogate representing the training data set so well that the surrogate does not 
generalize to new datasets and has low prediction capabilities. Underfitting refers to a surrogate 
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that does not represent the training data well and therefore also does not generalize well. 
Multicollinearity may arise when two or more independent input variables in a surrogate model 
are correlated. This is potentially concerning because multicollinearity can result in unstable and 
unreliable output results. 
 
Iterating between the surrogate model construction and validation steps is necessary to develop 
the most appropriate surrogate model for approximating the computer model. 
 
Surrogate models for continuous data. There are many types of surrogates for continuous 
data. Examples of surrogate models include linear regression (Reference 4-76), multivariate 
adaptive regression splines (MARS) (Reference 4-77), and GPs (Reference 4-75). 
References 4-78 and 4-79 provide detailed overviews of these and other techniques, as well as 
details on how to use these surrogates for SA. The following gives a brief description of them:  

• Linear regression is a statistical surrogate that models the output as a linear function of 
the inputs and tends to be one of the more interpretable models. It includes uncertainty 
in the coefficients and allows for uncertainty estimates in the outputs. Linear regression 
is often used as an initial screening tool in SA to identify the most important variables 
and can be used as a surrogate for the computer model.  
 
Despite the name, it is possible to model interactions and nonlinearities within a linear 
model. To sort through the many potential model candidates, fit criteria can be used to 
find the best model. For example, the Akaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC) can be used to quantify model fit to the data, as 
well as automated methods to find the optimal AIC/BIC, such as stepwise selection. 

• Multivariate adaptive regression splines (MARS) is a machine learning (ML) method 
that is used for flexible nonparametric regression modeling of high-dimensional data. 
Separate splines are fit to different intervals of the predictor variables. Variables, knots 
and interactions are evaluated simultaneously to produce an optimal fit. MARS allows for 
automatic variable selection and transformations and for variable interactions. 

• Gaussian process (GP) regression is an ML method that assumes the input-output 
relationship can be modeled as a GP, which is a specific type of multivariate normal 
distribution. Specifically, correlation between the outputs is induced using a correlation 
structure that is a function of the inputs. The correlation structure is constructed such 
that inputs close together produce more similar outputs. GP is a flexible tool for 
interpolating outputs throughout the parameter input space. A primary disadvantage of 
GP is that it can become computationally expensive and unstable with large training sets 
or many inputs. Dimension reduction approximation techniques can be applied to make 
GPs more computationally feasible (Reference 4-78). 

Surrogates for binary data. Binary data can arise in PFM applications when the model output 
is the occurrence of an adverse event (such as crack or rupture). As with continuous data, there 
are many different options for fitting surrogates to binary data. Because binary data contain less 
information than continuous data do, more initial computer model realizations (i.e., a larger 
training sample) are required to accurately model the relationship between inputs and outputs. 
In particular, to create a surrogate for rare events, more initial computer model realizations are 
commonly required, along with a strategic sampling plan, such as importance sampling 
(Section 4.3.3).  
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For example, a generalized linear model is a flexible extension of linear regression that can be 
used when the response does not satisfy the assumption of having a normal error distribution 
(e.g., when the response variable is binary). Common examples of generalized linear models for 
binary data are logistic regression and probit regression (References 4-80, 4-81).  
 
Additional methods. Additional methods (for both continuous and binary data) include the 
following: 

• Machine learning (ML) covers a broad group of flexible techniques that fit complex 
relationships in the data, with the goal of predicting an unobserved output as accurately 
as possible. ML methods can be used for both continuous and binary outputs. Examples 
of ML techniques include the already mentioned MARS and GP models, as well as 
neural networks (deep learning), regression trees, and support vector machines. Many 
texts (e.g., Reference 4-82, 4-83, 4-84, 4-85) provide technical details for a wide range 
of ML and statistical learning methods. Note that whether a model is considered to be an 
ML model varies from group to group. Some texts also consider select Bayesian models 
to be ML models. While some ML models may be limited in interpretability and 
uncertainty quantification, research is underway to improve interpretability and 
uncertainty estimates for ML models. 

 
• Bayesian models integrate information based on probability theory. These models take 

into consideration prior knowledge with data to produce an output using the Bayes 
Theorem. The posterior distribution (output) is proportional to the product of the 
likelihood distribution (probability distribution that represents the observed test data from 
the computer experiment) and the prior distribution (probability distribution that 
represents the knowledge before observing the test data). All statistical inferences on 
the QoI are done on the posterior distribution. 

Figure 4-25 shows an example of a surrogate prediction for binary data, where the probability of 
failure is predicted as a function of a single input variable—age. The surrogate models the 
probability of failure based on observed pass/fail (y=0 or y=1) outputs; the surrogate model is 
then compared to predictions of the failure probability from the computer model as validation of 
the surrogate. The points represent responses for components of varying ages, with a 0 
meaning the component did not fail and a 1 meaning the component did fail. The orange line 
shows the true probability of failure (estimated from the computer model). The teal line shows 
the estimated probability of failure using logistic regression. The gray band represents 
95-percent confidence bands on the probability. 
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Figure 4-25 Example of a Generalized Linear Model for Binary Data—Component Failure 
as a Function of Age 

4.3.11 Visualizing Output Uncertainty Due to Input Uncertainty 

4.3.11.1 What Is It? 

PFM analyses are conducted to estimate a specific QoI, though QoIs are never estimated as a 
single exact value due to uncertainty. Uncertainty analysis is the process of understanding and 
documenting uncertainty in a QoI estimate across model realizations. The uncertainty analysis 
approach depends on the QoI and the sampling design for the model realizations. 
Communication of the uncertainty analysis involves visualization. This section outlines common 
techniques for visualizing QoI estimates along with the quantifiable uncertainty in those 
estimates.  

4.3.11.2 How to Use? 

The appropriate visualization technique depends on three considerations:  

(1) whether the analysis separates aleatory and epistemic uncertainties 

(2) the type of the QoI (i.e., whether the probability QoI is represented as a function of time 
(continuous performance measure) or for a single point in time) 

(3) whether the model realizations have equal weight 

Section 4.3.11.4 describes the appropriate visualization techniques based on these three 
dependencies.  
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4.3.11.3 When/Why 

Analysts visualize uncertainty and variability throughout a study. Thoughtful visualizations 
enhance the final results and help communicate the results effectively.  

4.3.11.4 Technical Details 

This section distinguishes the cases with and without separation of uncertainty types and 
discusses the type of the QoI. It also gives an overview of visualizing results with unequal 
weighting.  
 
No separation of aleatory and epistemic uncertainty. Without separation of uncertainty, the 
model results will consist of a set of n outputs, where the outputs may be measured over time.  
 
QoI is a continuous performance measure. Often, the QoI is continuous, such as crack length or 
leak rate. When the output is continuous and is not measured over time, the empirical CDF of 
the output samples should be plotted. When the output is measured over time, uncertainty in a 
continuous output can be visualized by plotting the output over time for each of the 
n realizations and overlaying the best estimate (e.g., a mean or median) and measure of 
uncertainty (e.g., quantiles of the output) at each time point. Figure 4-26 provides an example 
for two scenarios: (1) the output is not measured over time, and (2) the output is measured over 
time. The left plot shows an empirical CDF of a continuous output at a single time point over 
1,000 realizations, with a solid vertical line at the median and dashed vertical lines at the 5th 
and 95th percentiles of the output. The right plot shows a continuous output over time over 
1,000 realizations, with a solid line at the median and dashed lines at the 5th and 95th 
percentiles of the output. 

 

Figure 4-26 Continuous Output at a Single Time Point (Left) and Over Time (Right) 
 
QoI is a probability. If the QoI is a probability (e.g., probability of failure), the model often outputs 
a binary 0/1 variable indicating that an event did or did not occur for that realization. The number 
of the 0/1 outputs divided by n number of samples is then used to estimate the probability of the 
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event. Sampling uncertainty in the probability estimate can be computed using confidence 
intervals or other methods for computing sampling uncertainty. 
 
When the QoI is measured over time, a graph of the estimate over time provides insight into 
how the estimate changes with time (Figure 4-27). When estimating rare probabilities, it is often 
more informative to plot the estimates on the log scale, so that the order of magnitude of the 
probability can be easily ascertained from the plot.  
 

  

Figure 4-27 Failure Probability Over Time when Aleatory and Epistemic Uncertainty are 
not Separated; Linear Scale (Left) and Log Scale (Right) 

 
Separation of aleatory and epistemic uncertainty. Separating uncertainties allows for the 
direct quantification of the impact of epistemic uncertainty (Section 4.1.1). Specifically, when 
uncertainties are separated using a double-loop algorithm, the set of model realizations will 
consist of ne unique epistemic samples and na aleatory samples within each epistemic sample. 
The final sample size is then 𝑛𝑛 = 𝑛𝑛𝑒𝑒 ∗ 𝑛𝑛𝑎𝑎.  
 
QoI is a continuous performance measure. An estimate of the QoI, say Qi, is computed from the 
output across the aleatory samples for each unique epistemic sample i = 1,2,..., ne. A best 
estimate of the QoI is a measure of centrality (e.g., the mean or median) of the set of Qis. The 
epistemic uncertainty in the QoI can be represented using percentiles of the Qis. Specifically, 
the median, 5th, and 95th percentile of the Qis can be presented as a best estimate and 
uncertainty for the QoI.  
 
QoI is a probability. When the QoI is a probability, the average of the 0/1 output across the 
aleatory samples for each unique epistemic sample is computed to estimate the probability of 
the event, conditioned on the value of the epistemic input. A best estimate of the probability is 
the mean or median of these estimates. The epistemic uncertainty in the probability can be 
represented using percentiles of the estimates. Specifically, the median, 5th, and 95th 
percentiles can be presented as a best estimate with uncertainty.  
 
In general, an estimate Qi is provided for each epistemic input. These estimates contain 
sampling uncertainty due to a finite aleatory sample size. The precision of the individual Qis 
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should be considered. The number of samples na and sampling scheme determine how 
accurately each Qi can be estimated. For example, if the probability of failure is on the order of 
1x10-3, then more than 1x103 samples (na > 103) will be required to accurately estimate each Qi 
using equal-probability weighted samples of 0/1 outputs (see Section 4.1.1).  
 
The left plot in Figure 4-28 displays visualizations for the case when a probability is estimated at 
a single time point (or not a function of time) from 0/1 output. The figure plots the CDF of the 
estimated probabilities for each epistemic sample out of 1,000 samples. The solid vertical line is 
the median, and the dashed vertical lines are the 5th and 95th percentiles of the output. The 
estimated probabilities represent frequencies of the event over the aleatory samples. While it 
looks similar to the plot in Figure 4-26, its interpretation is different. If the aleatory sample size is 
large enough to make the sampling uncertainty in each estimate negligible, the spread in this 
CDF represents the spread due to epistemic uncertainty. Likewise, the plot on the right 
visualizes probability estimates as a function of time. Each blue curve represents an estimate of 
the probability given a fixed epistemic parameter. The solid line is the median, and the dashed 
lines are the 5th and 95th percentiles of the epistemic output. If the aleatory sample size is large 
enough, the spread in these blue curves represents uncertainty due to epistemic uncertainty in 
the inputs.  
 
It is important to understand that if the aleatory uncertainty is a significant contributor to the 
uncertainty in each Qi, the variability observed in these plots is due to both aleatory and 
epistemic uncertainty (Reference 4-86).  
 

   

Figure 4-28 Frequency over Aleatory Samples at a Single Time Point (Left) and as a 
Function of Time (Right) 

 
Weighting model realizations. When inputs are sampled using SRS or LHS, the generated 
inputs all have an equal probability of selection and the outputs are weighted equally when 
calculating a QoI. When inputs are sampled using importance sampling or another weighted 
sampling method, the model outputs are weighted differently. When calculating the best 
estimate and uncertainty in a QoI, the relevant weights should be applied. When visualizing 
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uncertainty, realizations from the true output distribution should be plotted, rather than the 
observed output distribution with unequally weighted outputs. Sampling from the true output 
distribution can be achieved by sampling with replacement from the observed, weighted data 
using the following algorithm: 

(1) Each output 𝑖𝑖 has a corresponding weight 𝑤𝑤𝑖𝑖 based on the selected sampling method 
(under SRS or LHS with no importance sampling, 𝑤𝑤𝑖𝑖 = 1 for each 𝑖𝑖). 

(2) The analyst should resample with replacement from the n outputs, where each output 
has a probability of being sampled proportional to its weight. 

(3) The resampled data can be considered an unweighted, simple random sample of 
outputs. 

Figure 4-29 shows an example of reweighting an importance-sampled distribution. The figure 
displays empirical CDFs of a probability of failure. The blue CDF is that of the output from the 
importance sampling. Since the importance sampling oversamples regions where failures are 
likely to occur, the CDF calculated directly from these outputs results in much larger estimated 
probabilities than those computed under SRS (black CDF). The green CDF is created by 
resampling the importance-sampled distribution using the importance sampling weights as 
described in the algorithm above. As desired, this reconstructed CDF is much closer to the one 
observed under SRS and actually estimates the distribution of failure probability.  
 

 

Figure 4-29 Importance-Sampled Distribution (Blue), Simple Random Sample (Black) 
Distribution, and Reconstructed Unweighted Distribution (Green) for a 
Probability of Failure 
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4.4 Useful Methods for Sensitivity Studies 

4.4.1 Sensitivity Studies  

4.4.1.1 What Is It? 

Sensitivity studies are case studies that exercise the PFM computational framework under 
different assumptions. The goal of sensitivity studies is to determine whether uncertain 
assumptions impact the conclusions of the PFM analysis. 

4.4.1.2 How to Use? 

Key aspects of conducting sensitivity studies include the following: 

• determining the set of uncertain assumptions that will be evaluated using sensitivity 
studies 

• designing and running sensitivity studies 

Determining the set of uncertain assumptions. The complexity of PFM computational 
frameworks results in a large set of assumptions, some of which may be uncertain and thus 
candidates for sensitivity studies. Assumption uncertainties can often be categorized as model 
uncertainty or input uncertainty. Further, uncertain assumptions can often be categorized by the 
degree of uncertainty in the assumption. Section 4.4.1.4 contains more information on model 
versus input uncertainty and classifying the degree of uncertainty to determine whether a 
sensitivity study is needed. 
 
Designing and running sensitivity studies. When setting up a sensitivity study, the settings in 
the model and inputs are changed to reflect the plausible alternative assumption(s) under study. 
The analyst has a choice to conduct deterministic model realizations at a single value of the 
model inputs or to conduct probabilistic analyses over the range of the model inputs. The 
analyst will select either probabilistic or deterministic analysis for the sensitivity studies based 
on the change in the assumptions and the specific question being asked.  
 
The sensitivity studies are designed to evaluate how changing an assumption impacts the 
results of the analysis. This requires knowledge gained throughout the PFM process as well as 
subject matter expertise. For example, the inputs whose assumptions are natural candidates for 
sensitivity studies are those considered important in SAs. Subject matter experts can help 
determine the credibility of the models and input parameters and identify plausible alternatives.  

4.4.1.3 When/Why? 

A typical PFM analysis relies on a complex model that consists of many submodels with many 
inputs and outputs joined together in an overall model framework. The complexity of these 
models results in a large set of assumptions, some of which may be uncertain. Each submodel 
and parameter input relies on assumptions that represents a decision to set up the problem and 
model in a specific way. Since the results of the PFM analysis depend on these uncertain 
assumptions, the effect of the assumptions should be studied with the goal of understanding 
whether plausible alternative assumptions will significantly change the results. 
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4.4.1.4 Technical Details 

Determining a set of uncertain assumptions to study. PFM analyses contain many uncertain 
assumptions, but sensitivity studies should not be conducted for all such assumptions. Two 
primary factors should drive whether sensitivity studies are conducted (Reference 4-87):  

(1) plausibility of assumption violation 
(2) impact on analysis results 

In general, sensitivity studies should be considered for more plausible assumptions that can 
impact the QoI. If subject matter experts or SAs cannot determine the plausibility or impact of a 
particular assumption a priori, a sensitivity study should generally be considered.  
 
Types of uncertain assumptions. To determine a set of plausible alternative assumptions, 
Reference 4-87 distinguishes between two types of assumptions:  

(1) Modeling assumptions refer to the types of submodels used in the PFM code, the 
assumptions made to develop each of the submodels, and any approximations made 
during calculations performed within each of the submodels. Modeling assumptions also 
include context assumptions that pertain to the context of the PFM analysis. Changes in 
analysis context are related to completeness uncertainty, defined as “uncertainty caused 
by the limitations in the scope of the model, such as whether all applicable physical 
phenomena have been adequately represented, and all accident scenarios that could 
significantly affect the determination of risk have been identified” (Reference 4-87). 
Examples of context assumptions for PFM applications include alternate scenarios, such 
as worst case scenarios and different intervention scenarios (discussed more below). 

(2) Input parameter specification assumptions refer to any assumptions made when 
specifying the values of the input parameters to propagate through the PFM code. These 
include the choice to explicitly separate aleatory and epistemic uncertainties and the 
classification of each variable into these categories, the choice of fixed probability 
distributions for the inputs, the choice of correlation structure between the inputs, and 
the choice to treat certain inputs as deterministic (i.e., fixed).  

Degree of assumption uncertainty. Reference 4-87 provides a useful set of categories for 
models and input parameter assumptions that helps to identify and rank sensitivity studies in 
terms of their plausibility and impact, as summarized below. The summary describes a list of 
categories for both models and input parameters, with a corresponding suggestion for whether a 
sensitivity study is needed:  

• Model categories:0F

1 Models can be categorized according to the uncertainty in the 
modeling assumptions. Potential categorizations include the following: 
 
– The model/submodel is a correct and credible representation of the underlying 

physical process. Sensitivity studies are typically not needed. There is little 
benefit in subjecting a correct model to a sensitivity study. This category implies 

 
1  “Model” and “submodel” are used interchangeably here and should not cause confusion. Typically, it is the 

individual submodels that are categorized before the categorization of the overall model.  
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that there are either no other plausible models or any other plausible model is 
similar to the current model and would have low impact on the QoI.  

– The applicability of this model to all conditions of interest cannot be assessed 
reliably with the current state of knowledge. Sensitivity studies should be 
considered. The correctness of the model is unknown. It is possible that there is 
no known plausible alternative model on which to develop a sensitivity study. In 
such cases, sensitivity studies scrutinizing the engineering decisions made in 
developing the model can help determine whether these decisions have 
unforeseen significant effects on the results. That is, there are potentially other 
plausible engineering decisions that could have been made and that would 
impact the QoI.  

– Plausible alternatives to the model adopted exist for a given physical process, 
and these alternatives have roughly equal justification to the model adopted. 
Sensitivity studies should be considered. The alternative plausible models with 
roughly equal justification are usually candidates for sensitivity studies, especially 
if the model affects the QoI. The alternatives may include context assumptions 
such as worst case scenarios and intervention scenarios.  

– A model provides a conservative representation of the underlying physical 
process. Sensitivity studies might be conducted. Conservative models are often 
adopted because of a lack of information. It may be necessary to set up studies 
to quantify the impact of the conservative choices.  

• Input parameter categories: Inputs can also be categorized according to uncertainty in 
their assumptions. Potential categorizations include the following: 

– The uncertainty distribution for the input parameter accurately represents the 
input for the conditions of interest. Additionally, the choice to classify the input as 
aleatory or epistemic is unambiguous. A sensitivity study is not needed. This 
category implies there are no alternatives worth considering for the input 
parameter specification.  

– The value or the uncertainty distribution was developed using limited prior 
information or data. Alternatively (or in addition), the choice to classify the 
parameter as aleatory or epistemic is ambiguous. A sensitivity study should be 
considered. Given the limited information used to specify the input, plausible 
alternatives likely exist and are candidates for sensitivity studies. The analyst 
considers the impact the input has on the QoI when determining whether a study 
is needed. If the distribution/value is highly uncertain, but SA results and expert 
judgment agree that the input does not drive variability in the QoI, then a 
sensitivity study is typically not necessary. Alternatively, if the variable does drive 
variability in the QoI, a sensitivity study should be conducted. 

– The distribution for the input parameter is considered a conservative 
representation of the parameter for the conditions of interest. A sensitivity study 
might be conducted. Conservative input parameters are often used out of 
necessity due to a lack of information. As plausible alternative and potentially 
less conservative input specifications exist, quantifying the impact of these 
conservatisms could be helpful in building credibility.  
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Designing sensitivity studies. Sensitivity studies are designed based on the question of 
interest. Typical questions asked in sensitivity studies include the following: 

• Do the results change significantly if a plausible alternative model is used? (Step 1: 
Action 3) 

If assumptions about the underlying code or physics model may be violated for the 
specific application, then sensitivity studies can address how the QoI changes under 
different model form assumptions (e.g., geometric fidelity, material model selection, new 
submodels). Sensitivity studies can demonstrate that the overall behavior of the PFM 
code is consistent with expert understanding of the expected system behavior, including 
demonstrating expected trends and correlations between inputs and outputs of interest. 
Benchmarking against other comparable codes may be used to increase confidence in 
the PFM code by demonstrating that the results produced by the PFM code are 
reasonable and can be predicted by similar codes (Reference 4-88). 

• Do the results change significantly if a different distribution is used for an important input 
variable? (Step 2: Action 2) 

Sensitivity studies that vary the type of input distribution or distribution parameters can 
be conducted to determine the impact of the chosen distribution. The analyst should 
consider changing the characteristics of input distributions (e.g., shifting the mean, 
variance, or other distribution moments, such as skewness and kurtosis) as well as 
changing the distribution itself to highlight the uncertainty in specifying the distribution 
correctly.  

• Do the results change significantly if a variable is considered aleatory rather than 
epistemic or vice versa? (Step 2: Action 1) 

If the analysis maintains the separation of aleatory and epistemic uncertainty and the 
uncertainty of an input cannot be clearly defined as aleatory or epistemic, then sensitivity 
studies can address how the analysis results change depending on the classification of 
this uncertainty type.  

• Do the results change significantly under different context assumptions used to set up 
the problem (Step 1: Action 1)  

Examples of alternate scenarios could include the following:  

– Worst case scenarios or any adverse condition (such as accidents) are often 
considered for sensitivity studies in support of defense in depth. They are either 
designed by experts or found in benchmarking studies. 

– Intervention scenarios study the impact of some (usually positive) changes in the 
system, such as inspection or mitigation. 

– Defense-in-depth scenarios involve changes to nominal assumptions to 
represent adverse conditions or beyond-design-basis conditions. Such studies 
can be combined with different intervention scenarios to assess the benefit of the 
interventions under extreme conditions.  
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Sensitivity studies are important for both deterministic and probabilistic fracture analyses. For 
example, Reference 4-89 describes sensitivity studies conducted to understand the effects of 
potential changes to selected inputs and mechanisms in calculating failure probabilities under 
different inservice inspections programs. Sensitivity studies have also been used in support of 
defense in depth by considering beyond-design-basis accidents (see Reference 4-9 for some 
examples). Sensitivity studies seek to assess the credibility of the PFM model and analysis 
within the domain of the application. This is different from credibility in the context of V&V or 
statistical and numerical stability, where the goal is to build trust that the results are computed 
correctly and accurately enough to represent the phenomenon under study. Rather, sensitivity 
studies seek to inform what may happen under alternative assumptions made when defining the 
problem under consideration by quantifying the effects of the alternative assumptions.  
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5 SUMMARY AND CONCLUSIONS 

This document outlines a framework for conducting PFM analyses that recognizes the fact that 
each regulatory application may have unique characteristics. To address the unique 
characteristics of diverse PFM applications, this NUREG presents the elements of a graded 
approach for PFM analyses and the corresponding recommendations for supporting 
documentation. These elements are aligned with the documentation elements previously given 
in the NRC’s technical letter report, “Important Aspects of Probabilistic Fracture Mechanics 
Analyses,” and the outcomes from the NRC public meeting discussing a graded approach for 
PFM codes and analyses for regulatory applications.  
 
The three technical sections (Sections 2, 3, and 4) develop the concept of PFM analysis 
methodology and outline important considerations for a high-quality and high-confidence PFM 
analysis. The sections are linked together and progressively dive into more detailed elements of 
PFM applications; each section is intended for audiences of different experience levels and 
differing levels of familiarity with PFM: 

• Section 2 is intended for applicants of all experience levels. Each subsection introduces 
an element of content that would be expected in a PFM submittal and only covers a 
handful of topics from RG-1.245. Topics include: QoI and acceptance criteria, software 
quality assurance, verification and validation, and models. Remaining topics are 
discussed directly in RG-1.245. It identifies representative circumstances for a submittal 
and describes a graded approach for the specific information to provide to the NRC. 

 
• Section 3 could be used by applicants who are familiar with PFM submittals but are 

seeking additional information on the development of an analysis structure or on 
formalism. Each subsection presents an analytical step that may exist in a PFM 
submittal.  

 
• Section 4 could be used by applicants who are seeking to further understand the 

theoretical underpinnings of the processes used to establish the credibility of a PFM 
analysis. Each subsection presents the fundamental background for the concepts and 
methods used in a PFM analysis. Examples give details for analysts on (nonprescriptive) 
approaches for PFM analyses. The concepts and methods are linked directly to the 
analysis steps presented in Section 3. 

The NRC does not require PFM submittals to follow the process outlined in this NUREG.  
Applicants seeking guidance on using PFM for regulatory submittals should refer to RG-1.245. 
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GLOSSARY 

Acceptance Criteria 
Set of conditions that must be met to achieve success for the desired application.  
 
Accuracy and Precision 
“Accuracy” is the degree to which the result of a measurement, calculation, or specification 
conforms to the correct value (i.e., reality or a standard accepted value). “Precision” is a 
description of random errors and a measure of statistical variability for a given quantity. In other 
words, “accuracy” is the proximity of measurement results to the true value; “precision” is the 
repeatability or reproducibility of the measurement. 
 
Aleatory Uncertainty 
Uncertainty based on the randomness of the nature of the events or phenomena that cannot be 
reduced by increasing the analyst’s knowledge of the systems being modeled (Reference 0-1). 
 
Assumption 
A decision or judgment made in the development of a model or analysis (Reference 0-1). 
 
Bayesian Inference 
Type of data analysis in which an initial estimate about a parameter value is combined with 
evidence to arrive at a more informed estimate (Reference 0-1). 
 
Benchmark (in the context of PFM computational analyses) 
An established point of reference against which computers or programs can be measured in 
tests comparing their performance, reliability, output, etc. A standard against which similar 
analyses must be measured or judged. Benchmarks are often a part of validation for scientific 
analysis software. 
 
Best Estimate 
Approximation of a quantity based on the best available information (Reference 0-1). Models 
that attempt to fit data or phenomena as best as possible. That is, models that do not 
intentionally bound data for a given phenomenon or are not intentionally conservative or 
optimistic. 
 
Calibration 
The process of adjusting physical modeling parameters in the computational model to improve 
agreement with data (Reference 0-2). 
 
Code 
The computer implementation of algorithms developed to facilitate the formulation and 
approximation solution of a class of problems. (Reference 0-2). 
 
Code Verification 
The process of determining and documenting the extent to which a computer program (“code”) 
correctly solves the equations of the mathematical model (Reference 0-3). 

PAR3
Line



 

102 

Completeness Uncertainty 
Caused by the limitations in the scope of the model, such as whether all applicable physical 
phenomena have been adequately represented and all accident scenarios that could 
significantly affect the determination of risk have been identified (Reference 0-1). 
 
Component 
A part of a system in a nuclear power plant (Reference 0-1). 
 
Conditional Probability 
Probability of occurrence of an event, given that a prior event has occurred (Reference 0-1). 
 
Confidence Interval 
A range of values that has a specified likelihood of including the true value of a random variable 
(Reference 0-1). 
 
Consequence 
In the context of nuclear regulatory submittals, the health effects or the economic costs resulting 
from a nuclear power plant accident (Reference 0-1). 
 
Conservative Analysis 
An analysis that uses assumptions such that the assessed outcome is meant or found to be less 
favorable than the expected outcome (Reference 0-1). 
 
Continuous variable 
See “Discrete versus Continuous Variables.” 
 
Convergence Analysis 
An analysis with the purpose of assessing the approximation error in the quantity of interest 
estimates to establish that conclusions of the analysis would not change solely due to sampling 
uncertainty. 
 
Correlation 
A general term for interdependence between pairs of variables (Reference 0-4). 
 
Credibility 
The quality to elicit belief or trust in modeling and simulation results (Reference 0-5). 
 
Cumulative Distribution Function 
A function that provides the probability that a parameter is less than or equal to a given value 
(Reference 0-1). 
 
Dependent 
Not independent. 
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Deterministic 
A characteristic of decisionmaking in which results from engineering analyses not involving 
probabilistic considerations are used to support a decision (Reference 0-1). Consistent with the 
principles of determinism, which hold that specific causes completely and certainly determine 
effects of all sorts (Reference 0-6). Also refers to fixed model inputs. 
 
Deterministic Fracture Mechanics 
An analysis that uses fixed values of input parameters to a fracture mechanics model to 
estimate a fixed model output or quantity of interest computed from the output. 
 
Discrete versus Continuous Variables 
A discrete random variable is a variable that has a nonzero probability for only a finite, or 
countably infinite, set of values. A continuous random variable is a variable that has an 
absolutely continuous cumulative distribution function (Reference 0-3). 
 
Distribution 
A function specifying the values that the random variable can take and the likelihood they will 
occur. 
 
Engineering Judgment 
The scientific process by which a design, installation, operation/maintenance, or safety problem 
is systematically evaluated. The decision made by an engineer based on the available data to 
propose a design or a line of action. 
 
Epistemic Uncertainty 
The uncertainty related to the lack of knowledge or confidence about the system or model; also 
known as “state-of-knowledge uncertainty.” As defined by the American Society of Mechanical 
Engineers (ASME)/American Nuclear Society (ANS) probabilistic risk assessment (PRA) 
standard (Reference 0-1), “the uncertainty attributable to incomplete knowledge about a 
phenomenon that affects our ability to model it. Epistemic uncertainty is reflected in ranges of 
values for parameters, a range of viable models, the level of model detail, multiple expert 
interpretations, and statistical confidence. In principle, epistemic uncertainty can be reduced by 
the accumulation of additional information. (Epistemic uncertainty is sometimes also called 
‘modeling uncertainty.’)” (Reference 0-1) 
 
Expert Elicitation 
A formal, structured, and documented process to obtain judgments from expert(s). May be used 
to obtain information from technical experts on topics that are uncertain. A process in which 
experts are assembled and their judgment is sought and aggregated in a formal way. 
(Reference 0-1) 
 
Expert Judgment 
Information (or opinion) provided by one or more technical experts based on their experience 
and knowledge. Used when there is a lack of information, for example, if certain parameter 
values are unknown, or there are questions about phenomenology in accident progression. May 
be part of a structured approach, such as expert elicitation, but is not necessarily as formal. May 
be the opinion of one or more experts, whereas expert elicitation is a highly structured process 
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in which the opinions of several experts are sought, collected, and aggregated in a very formal 
way. (Reference 0-1) 

Failure Probability 
As defined in the ASME/ANS PRA standard (Reference 0-1), “the likelihood that a system or 
component will fail to operate upon demand or fail to operate for a specific mission time” 
(Reference 0-1). For components, can also be the likelihood of a component being in a 
defective, unacceptable condition (adverse condition or event) (e.g., leakage from reactor 
coolant pressure boundary). 
 
Frequency 
The expected number of occurrences of an event or accident condition expressed per unit of 
time. Normally expressed in events per plant (or reactor) operating year or events per plant (or 
reactor) calendar year (Reference 0-1). 
 
Global Sensitivity Analysis 
The study of how the uncertainty in the output or quantity of interest of a model (numerical or 
otherwise) can be apportioned to different sources of uncertainty in the model input. The term 
“global” ensures that the analysis considers more than just local or one-factor-at-a-time effects. 
Hence, interactions and nonlinearities are important components of a global statistical sensitivity 
analysis (Reference 0-3). 
 
Important Variable 
A variable whose uncertainty contributes substantially to the uncertainty in the response 
(Reference 0-7).  
 
Independent 
Two events are said to be independent if knowing the outcome of one tells us nothing about the 
other (Reference 0-4). 
 
Input 
Data or parameters that users can specify for a model; the output of the model varies as a 
function of the inputs, which can consist of physical values (e.g., material properties, tolerances) 
and model specifications (e.g., spatial resolution). 
 
Input Uncertainty 
The uncertainty in the values of the inputs to the model represented by probabilistic distributions 
(Reference 0-1). 
 
Interaction Effect 
A term applied when two (or more) explanatory variables do not act independently on a 
response variable. 
 
Level of Detail 
The degree of resolution or specificity in the analyses performed. Generally refers to the level to 
which a system is modeled; dictated by (1) the level of detail to which information is available, 
(2) the level of detail required so that dependencies are included, (3) the level of detail so that 
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the risk contributors are included, and (4) the level of detail sufficient to support the application 
(Reference 0-1). 

Local Sensitivity Analysis 
A sensitivity analysis that is relative to the location in the input space chosen and not for the 
entire input space (Reference 0-7). 
 
Margin 
The distance between the quantity of interest and the acceptance criteria. 
 
Mean 
The average of a set of numerical values; more technically, the expected value of a random 
variable (Reference 0-1). 
 
Median 
The value that a random variable is equally likely to be above and below. Also known as the 
50th percentile of the distribution of a random variable (Reference 0-1). 
 
Model 
A representation of a physical process that allows for prediction of the process’ behavior 
(Reference 0-1). 
 
Model Uncertainty 
Related to an issue for which no consensus approach or model exists and where the choice of 
approach or model is known to have an effect on the decision made (Reference 0-1). 
 
Output 
A value calculated by the model given a set of inputs. 
 
Parameter 
A numerical characteristic of a population or probability distribution. More technically, the 
variables used to calculate and describe frequencies and probabilities (Reference 0-1). 
 
Percentile 
The set of divisions that produce exactly 100 equal parts in a series of continuous values 
(Reference 0-4). 
 
Point Estimate 
An estimate of a parameter in the form of a single value (Reference 0-1). 
 
Precision 
See “Accuracy and Precision.” 
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Prediction 
The use of a model to make statements about quantities of interest in settings (initial conditions, 
physical regimes, parameter values, etc.) that are inside (interpolative) or outside (extrapolative) 
the conditions for which the model validation effort occurred (Reference 0-3). 
 
Probabilistic 
A characteristic of an evaluation that considers the likelihood of events (Reference 0-1). 
 
Probabilistic Fracture Mechanics 
An analysis that uses probabilistic representations of uncertain input parameters to a fracture 
mechanics model to estimate uncertainty in the model outputs or quantities of interest computed 
from the outputs (Reference 0-8).  
 
Probabilistic Risk Assessment 
A systematic method for assessing the likelihood of accidents and their potential consequences 
(Reference 0-1). 
 
Probability 
A number between 0 and 1 describing the likelihood or chance of an event occurring. There are 
two main interpretations of probability: 

(1) Frequency interpretation. The probability of an event is the relative frequency of the 
occurrence of the event in a long sequence of trials in which the event does or does not 
occur. In other words, the likelihood that an event will occur is expressed by the ratio of 
the number of actual occurrences to the total number of possible occurrences 
(Reference 0-1). 

(2) Subjective interpretation. The probability of an event comes from expert judgment about 
uncertain events or quantities, in the form of probability statements about future events. 
It is not based on any precise computation but is often a reasonable assessment by a 
knowledgeable person (Reference 0-3). 

Probability Density Function 
A function of a continuous random variable whose integral over an interval gives the probability 
that its value will fall within the interval (Reference 0-1). Analogous to probability distribution for 
continuous random variables. 
 
Probability Distribution 
A function specifying the values that the random variable can take and the likelihood they will 
occur (Reference 0-1). 
 
Quantiles 
Divisions of a probability distribution or frequency distribution into equal, ordered subgroups 
(Reference 0-4). 
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Quantity of Interest 
A numerical characteristic of the system being modeled, the value of which is of interest to 
stakeholders, typically because it informs a decision (Reference 0-3). Can refer to either a 
physical quantity that is an output from a model or a given feature of the probability distribution 
function of the output of a deterministic model with uncertain inputs. (Reference 0-9)  
 
Random Uncertainty 
See “Aleatory Uncertainty.” 
 
Random Variable 
A variable, the values of which occur according to some specified probability distribution 
(Reference 0-4). 
 
Rank 
The relative position of the members of a sample with respect to some characteristic 
(Reference 0-4). 
 
Rare 
Events that are unlikely to occur. Rare event probabilities are defined as probabilities that are 
close enough to 0 that the number of samples needed to estimate the probability is large 
relative to the computational budget.  
 
Realization 
The execution of a model for a single set of input parameter values (Reference 0-8).   
 
Regression 
A form of statistical analysis in which observational data are used to statistically fit a 
mathematical function that presents the data (i.e., dependent variables) as a function of a set of 
parameters and one or more independent variables (Reference 0-3). 

Reliability 
The likelihood that a system, structure, or component performs its required function(s) for a 
specific period of time (Reference 0-1). 
 
Risk 
The combined answer to the three questions that consider (1) what can go wrong, (2) how likely 
it is, and (3) what its consequences might be (Reference 0-1). 
 
Risk-Informed 
A characteristic of decisionmaking in which risk results or insights are used together with other 
factors to support a decision (Reference 0-1). 
 
Robustness 
The degree to which deviations from a “best” decision provide suboptimal values of the desired 
criterion. These deviations can be due to uncertainty in model formulation, assumed parameter 
values, etc. (Reference 0-3). 
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Sampling 
The process of selecting some part of a population to observe, so as to estimate something of 
interest about the whole population (Reference 0-4). 
 
Sampling Uncertainty 
The uncertainty in an estimate of a quantity of interest that arises due to finite sampling. 
Different sets of model realizations will result in different estimates. This type of uncertainty 
contributes to uncertainty in the true value of the quantity of interest and is often summarized 
using the sampling variance. 
 
Sampling Variance 
The variance of an estimate of a quantity of interest that arises due to sampling uncertainty 
(i.e., finite sampling). An estimate of this variance is often used to summarize sampling 
uncertainty.  
 
Sensitive Variable  
A variable that has a significant influence on the response (Reference 0-10). 

Sensitivity Analysis 
The study of how uncertainty in the output of a model can be apportioned to different sources of 
uncertainty in the model input (Reference 0-10). 
 
Sensitivity Metrics 
Quantitative values that characterize the relationship between input and output variables. The 
following two metrics can be used: 

(1) First-order sensitivity indices measure the proportion of the uncertainty in the output that 
is explained by the uncertainty in a single input. 

(2) Total-order sensitivity indices measure the proportion of the uncertainty in the output that 
is explained by the uncertainty in an input and its interactions with other inputs 
(Reference 0-10). 

Sensitivity Studies  
Probabilistic fracture mechanics analyses that are conducted under credible alternative 
assumptions (Reference 0-11). 
 
Significant  
A factor that can have a major or notable influence on the results of a risk analysis 
(Reference 0-1). 
 
Simulation 
The execution of a computer code to mimic an actual system (Reference 0-3). Typically 
comprises a set of model realizations. 
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Software Quality Assurance 
A planned and systematic pattern of all actions necessary to provide adequate confidence that a 
software item or product conforms to established technical requirements; a set of activities 
designed to evaluate the process by which the software products are developed or 
manufactured (Reference 0-12).  
 
Solution Verification 
The process of determining as completely as possible the accuracy with which the algorithms 
solve the mathematical-model equations for a specified quantity of interest (Reference 0-3). 
 
State-of-Knowledge Uncertainty 
See “Epistemic Uncertainty” (Reference 0-1). 
 
Statistic 
A numerical characteristic of a sample, such as the sample mean and sample variance 
(Reference 0-4). 
 
Statistical Model 
A description of the assumed structure of a set of observations that can range from a fairly 
imprecise verbal account to, more usually, a formalized mathematical expression of the process 
assumed to have generated the data (Reference 0-4). 
 
Stochastic Uncertainty 
See “Aleatory Uncertainty” (Reference 0-1). 
 
Subjective Probability 
Expert judgment about uncertain events or quantities, in the form of probability statements 
about future events. Not based on any precise computation but often a reasonable assessment 
by a knowledgeable person (Reference 0-3). 
 
Surrogate 
A function that predicts outputs from a model as a function of the model inputs (Reference 0-3). 
Also known as response surface, metamodel, or emulator.  
  
Uncertainty 
Variability in an estimate because of the randomness of the data or the lack of knowledge 
(Reference 0-1). 
 
Uncertainty Analysis 
A process for determining the level of imprecision in the results of the probabilistic analysis and 
its parameters (Reference 0-1). 
 
Uncertainty Distribution 
See “Probability Distribution” (Reference 0-1). 
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Uncertainty Interval/Range 
A range that bounds the uncertainty value(s) of a parameter or analysis result by establishing 
upper and lower limits (see “Confidence Interval,” “Probability Distribution”) (Reference 0-1). 
 
Uncertainty Propagation  
Characterizing the uncertainty of a model’s responses that results from the propagation through 
the model of the uncertainty in the model’s inputs (Reference 0-3). 
 
Uncertainty Quantification 
The process of characterizing all relevant uncertainties in a model and quantifying their effect on 
a quantity of interest (Reference 0-3). 
 
Validation 
The process of determining the degree to which a model is an accurate representation of the 
real world from the perspective of the intended uses of the model (Reference 0-3). 
 
Variable 
Some characteristic that differs from subject to subject or from time to time (Reference 0-4). 
 
Variance 

The second moment of a probability distribution, defined as 𝐸𝐸(𝑋𝑋 − 𝜇𝜇)2, where 𝜇𝜇 is the first 
moment of the random variable 𝑋𝑋. A common measure of variability around the mean of a 
distribution (Reference 0-3). 
 
Verification 
The process of determining whether a computer program (“code”) correctly solves the 
mathematical-model equations. This includes code verification (determining whether the code 
correctly implements the intended algorithms) and solution verification (determining the 
accuracy with which the algorithms solve the mathematical-model equations for specified 
quantities of interest) (Reference 0-3). 
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