CAP Automation and Informed Inspection Preparation Project

Tim Alvey, Manager, Exelon Nuclear Innovation Group

Ahmad Al Rashdan, Ph.D. Senior Research and Development Scientist, Idaho National Laboratory

Jonathan Hodges, PhD., Global Service Lead for Data Analytics, Jensen Hughes

August 18, 2021, NRC Workshop

Agenda

Introduction – Tim

- Vision
- Incentive
- Technical Approach Jonathan
 - Challenges
 - Text Confidence Scores
 - Neural network architecture
 - Measuring success
- Broader Industry Potential Ahmad
 - Integrating data from multiple plants
 - Data-driven keywords
- Future Work and Concluding Remarks Tim

Vision

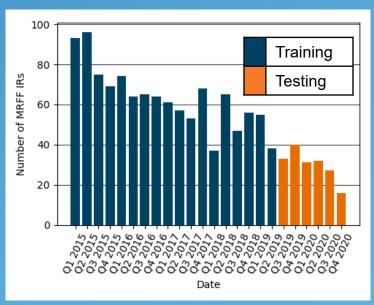
- Explore artificial intelligence and machine learning techniques to improve use of plant information
- Leverage rapidly advancing technologies/methods
- Opportunities to improve process (e.g., CAP)

Incentive for Change ... Why CAP?

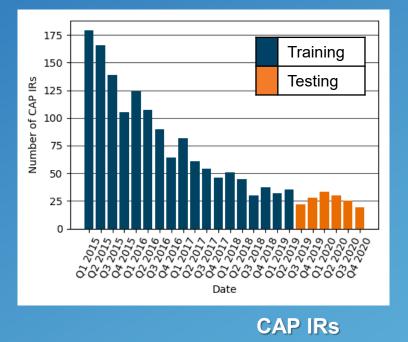
- Cornerstone of Reactor Oversight Process (ROP)
- Streamline and improve corrective action program (CAP) and process
- Better inform the information provided for NRC inspection planning and support purposes

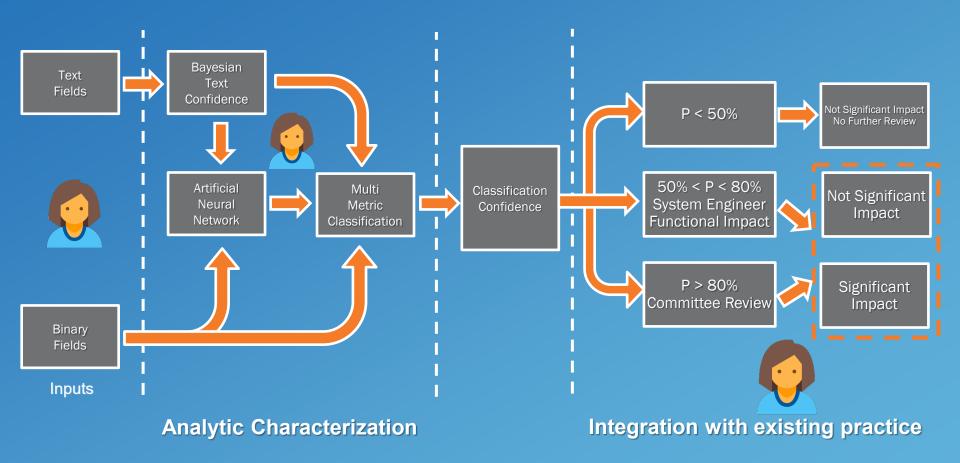
Challenges – Available Data

Category	Field	Description	
Identifiers	FACILITY	Site affected by the incident	
	IR_NUMBER	Numeric identifier	
	ORIGINATION_DATE	Date the incident report was written	
	SYSTEM_CODE	Which system was affected	
	UNIT	Which unit was affected	
	IR_SUBJECT	Subject line describing the incident	
Initial Text	CONDITION_DESCRIPTION	Primary text field describing the incident.	
Description	IMMEDIATE_ACTIONS_TAKEN	Describes immediate actions responding to the incident.	
	RECOMMENDED_ACTIONS	Describes actions recommended by the reporter	
	HAS_EQUIPMENT	Was the incident associated with a specific piece of equipment?	
	INITIAL_SCREENING_1	Is the equipment located in the Vital Area, Protected Area, or other owner controlled properties?	
	INITIAL_SCREENING_2	Procedure or process issues with the potential to affect compliance with TS or license conditions?	
Initial Careening	INITIAL_SCREENING_3	Potential reportability concerns?	
Initial Screening Questions	INITIAL_SCREENING_4	Analysis or setpoint deficiencies that impact onsite or offsite dose or dose rates?	
Questions	INITIAL_SCREENING_5	Nuclear safety issue?	
	INITIAL_SCREENING_6	Significant Industrial Safety Issue (i.e.; excluding First Aids, non-work related issues, PPE Issues, etc?	
	INITIAL_SCREENING_7	Personnel injury requiring offsite medical attention?	
	INITIAL_SCREENING_8	Tampering, vandalism or malicious mischief?	
	EQUIPMENT_FUNCTIONAL	Binary field - Did the equipment lose functionality due to the event represented by IR?	
	EQUIPMENT_OPERABLE	Binary field - Was the equipment operable at the time the incident occurred?	
Shift Review	EVENT_REPORTABLE	Binary field - Does the incident represent a reportable incident?	
Questions	FUNCTIONAL_BASIS	Text describing why the incident represents a loss of functionality.	
Questions	OPERABLE_BASIS	Text describing why the incident represents a loss of operability	
	REPORTABILITY_BASIS	Text describing why the incident represents a reportable incident	
	HAS_WORK_REQUEST	Is there a work request associated with the incident report?	
Station Ownership	IR_PRIOIRTY	Investigation class of an event, based on risk impact and risk of recurrence.	
Committee (SOC)	IR_SEVERITY	Significance level of an event, based on consequence of what happened and could have happened.	
Review	MRFF	Does the event qualify as a maintenance rule functional failure.	

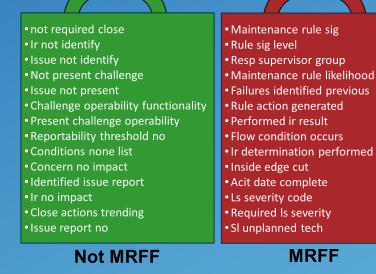


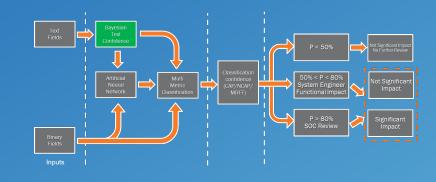
Challenges – IR Statistics

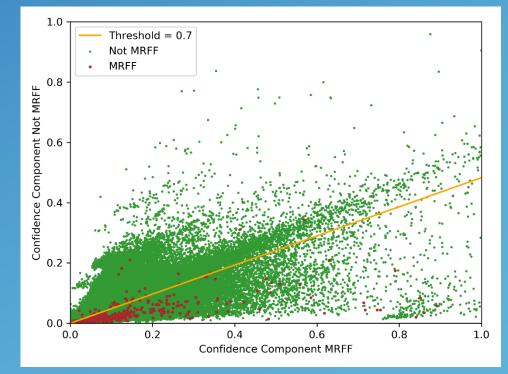

- Highly skewed datasets
- Adverse to Quality IRs ~0.1-0.2% of data


Total IRs

Exelon Generation.

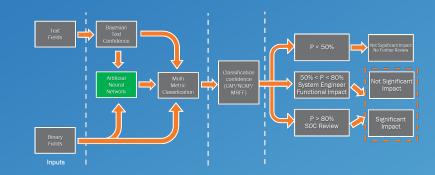

The Approach

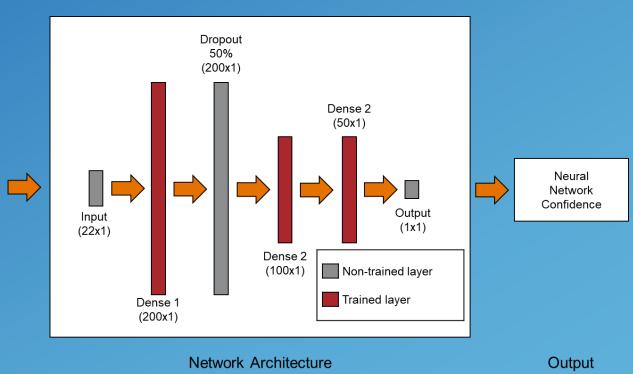




Text Confidence Scores

- Bag of words approach to Natural Language Processing (NLP)
- Split each text field into 1-word, 2word, and 3-word phrases
- Bayesian inference uses conditional probability of class 1 versus class 2





Artificial Neural Network

SUBJECT-CONFIDENCE CONDITION DESCRIPTION-CONFIDENCE IMMEDIATE_ACTIONS_TAKEN-CONFIDENCE RECOMMENDED_ACTIONS-CONFIDENCE OPERABLE BASIS-CONFIDENCE REPORTABLE BASIS-CONFIDENCE FUNCTIONAL BASIS-CONFIDENCE SOC COMMENTS-CONFIDENCE EQUIPMENT OPERABLE EQUIPMENT_FUNCTIONAL EVENT_REPORTABLE UNIT **INITIAL SCREENING 1 INITIAL SCREENING 2 INITIAL SCREENING 3 INITIAL SCREENING 4** INITIAL_SCREENING_5 **INITIAL SCREENING 6 INITIAL SCREENING 7** Text Confidence **INITIAL SCREENING 8** Numeric/Binary Data HAS EQUIPMENT HAS_WORK_REQUEST_NUMBER

Exelon Generation.

Measuring Success

- Accuracy
 - Bad metric for skewed data
 - 99.8% accurate by predicting NO system issues
- False Negative Rate (FNR)
 - Fraction of real issues which may have regulatory implications depending on the significance
- False Discovery Rate (FDR)
 - Fraction which will need to be evaluated by plant personnel due to false alarms

	Ground Truth		
Model	Issue	Not Issue	
Issue	True Positive (TP)	False Positive (FP)	
Not Issue	False Negative (FN)	True Negative (TN)	

Dataset	Training		Testing	
Metric	FDR	FNR	FDR	FNR
ANN Alone	2%	0%	3%	6%
Multi Metric Class.	15%	0%	20%	2%

Misses:	Pot
False Positives:	Pro
System Bias:	Fals

Potential regulatory impacts Process efficiency impacts False Positives > Misses

$$Accuracy = \frac{(TP+TN)}{(TP+FP+TN+FN)}$$

$$FNR = \frac{FN}{(TP+FN)}$$

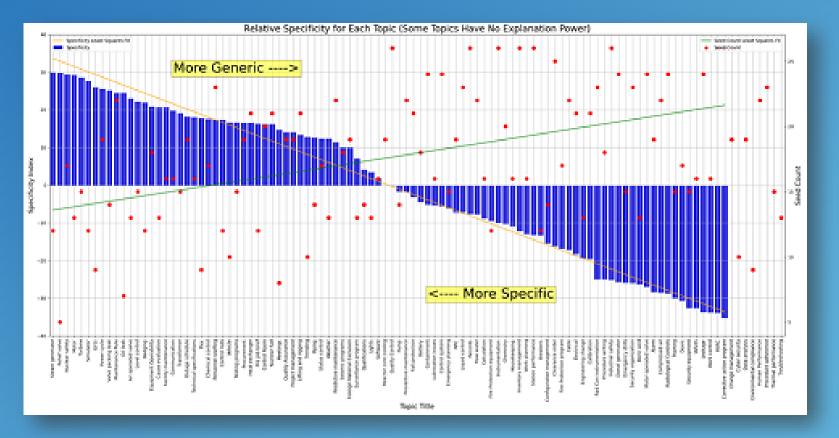
$$FDR = \frac{FP}{(TP+FP)}$$

Broader Industry Potential

- Integrate data from multiple plants to improve AI/ML model performance
- Create industry scalable model for CR data-mining
- Validate plant Al/ML models via benchmarking

How can data from the broader industry be used to improve model results?

MIRACLE (Machine Intelligence for Review and Analysis of Condition Logs and Entries)


	Utility 1 Model	Utility 2 Model	Combined Model using fewer fields
Utility 1 Data (large dataset)	84%	75%	>85%
Utility 2 Data (medium dataset)	77%	90%	>90%

Broader Industry Potential

Create data-driven keywords using industry data to standardize usage for industry-wide trending

Exelon Generation.

Future Work

- Validate plant models independently via benchmarking
- Enhance assessments and inform inspections
 - Streamline information sharing through an inspection data portal
 - Develop data-driven metrics to support inspection outcomes
 - Inform these processes though automation
- Develop tools to automate and identify risk contributors
 - Components and/or operator actions
 - Programmatic and predictive trends
- Deploy open-source tools for broad industry use

Concluding Remarks

- AI/ML will strengthen Corrective Action Program
- Improve Exelon's internal governance and oversight
- Technologies and methods are improving rapidly
- Integration of similar applications with NRC (e.g., pilot project) presents the opportunity for a powerful outcome

Questions?

Tim Alvey Manager Exelon Nuclear Innovation Group Tim.Alvey@exeloncorp.com

Jonathan Hodges Service Line Leader in Advanced Modeling Jensen Hughes jhodges@jensenhughes.com

Ahmad Al Rashdan Senior R&D Scientist Idaho National Laboratory Ahmad.alrahdan@inl.gov