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ORNL Strategic Directions in Al/ML
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Outline

e Overview
— Nondestructive examination (NDE)
— Artificial intelligence (Al)/machine learning (ML)

 Machine learning for nondestructive examination
- Background
- Objectives

e Key findings from literature assessment

e« SUMMary and next steps
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Nondestructive Examination (NDE) in Nuclear Power

Porosity Slag Inclusions
Detect surface or internal anomalies that could L ack of Fusion
compromise the ability of a component to perform its

function

- Examination methods generally classified as volumetric, surface
and visual f

Incomplete Penetration—=""Y

Inservice inspection (ISI) of nuclear power plant
components required by 10CFR50.55a which
incorporates by reference Sections lll and Xl of the ASME
Boiler and Pressure Vessel Code
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Weld Inspection Example (From J. Kim et al, QNDE
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Analysis of NDE examination data typically performed 2001)

manually by qualified inspectors

Increased interest in machine learning (ML) for flaw
detection in ASME Code-required inspections

- Anficipated cost savings, time savings, and expected
future shortage of qualified inspectors

— Potential for future Code activities in application of ML, and ™ Exaripi& sector -
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Machine Learning for NDE

o Objectives

— Assess current capabilities of ML and automated data
analysis for improving NDE reliability

— Provide technical basis to support regulatory decisions
regarding reviews of relief requests and Code actions that
implement automated data analysis for NDE of nuclear
power plant components

e Expected outcomes

- |ldentify capabilities and limitations of ML for ultrasonic NDE
applications

- |ldentify factors influencing ML performance and their
impact on NDE reliability

- Recommend verification and validation (V&V)
approaches and methods for qualifying ML for nuclear
power NDE

— |ldentify gaps in existing codes and standards relative to ML
for ultrasonic NDE
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Focus: Ultrasonic NDE, Data-driven Learning Algorithms

e Limited to NDE classification
problems with data from weld
iInspections

— Materials: Steel (carbon, austenitic,
cast,...), nickel alloys

- Flaw types: thermal fatigue, stress
corrosion cracking, weld fabrication
flaws

- Inspection setup assumed to be
appropriate for weld inspections

o Approach: Literature review
followed by empirical studies

— Literature set identified is large but not
exhaustive
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Data Flow in ML for Ultrasonic NDE
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Summary of Literature Dato

Ultrasonic measurement type Specimen materials Ultrasonic NDE: Frequencies
B-scan/Phsed array, | MHz 3.2%
11.1% Unknown, T 5 MHZ 9.7
A\ 22.6% S Mz 9.7%
B-scan/TOFD,
1A% — Unknown, Carbon steel,
38.7% 38.7% 2.25 MHz,
16.1%
B-scan/PE,
A-scan/PE,
o — 52.8% >5 Mz,
12.9%
A—scon/TOF_D// Both, 3.2% 4 MHz, 16.1%
19.4% ,3.2% ]
Stainless 5MHz, 19.4%
= Ascan/PE = A-scan/TOFD = B-scan/PE steel, 19.4%
= B-scan/TOFD = B-scan/Phsed array = Carbonsteel  =Stainless steel = Both = Unknown = 1 MHz = 1.5 MHz = 2.25 MHz = 4 MHz = 5 MHz 1 >5 MHz = Unknown
_ NP - — O
Total in- | Physical specimens Number of | Number of non- rRT  veri- | Ref. q;) Machine Learning Models with Feature Selection Methods
stances crack flaws crack flaws fication? Q9 o
50 Steel specimen 15 35 N/A [19] é
273 Simulated flaws 73 100 N/A 5] w
240 10 steel specimens N/A N/A Yes 28 8 s
282 1 steel specimen N/A N/A N/A 29 2
100 100 steel specimens 0 100 N/A [30] 5| 2
Gl Bearing steel samples N/A N/A N/A 15 9 15
438 438 specimens 0 217 N/A 14 2 L,
239 Steel specimen N/A N/A N/A 43| ]
135 135 specimens 45 90 Yes 7| % 5
246 EPRI database N/A N/A N/A R [
293 HPHI dﬂtﬂbﬂ-"&ﬁ N;"'A NJIFJ"L NIJFA 16 Support vector Ensemble method Shallow neural Deep neural Unsupervised Multiple models
a0 () steel spe{:imens a5 A4 NJ{A 21 machine network network learning
120 6 aluminum specimens N/A N/A N/A 6
240 12 steel spe:cimens N}’A Nf_:"l. Nl’fA |_8 B Wave/statistical parameter m Wavelet feature m Time/frequency domain signal = B-scan image m Mixed features
BT 19 ctanl ernninuano N SA N A N A 5] .
%OAKRIDGE  Examples of Data Distribution ML Models and Feature Selection
atio aboratory



Summary of Literature Dato

Ultrasonic measurement type Specimen materials Ultrasonic NDE: Frequencies
B-scan/Phsed array,
11.1% Unknown, | MHZ 32% 1.5 MHz, 9.7%

B-scan/TOFD,

%~ Unknown,
38.7%
o — e A

RPN

22.6%
Carbon steel,
38.7% 2.25 MHz,
16.1%
>5 MHz,
12.9%

Lack of common data sets and diversity in methods/data sets challenge
direct comparisons, though general insights info capabilities possible.

Total in- | Physical specimens Number of | Number of non- rRT  veri- | Ref. ";) Machine Learning Models with Feature Selection Methods

stances crack flaws crack flaws fication? Q9 o

50 Steel specimen 15 35 N/A [19] 8
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240 10 steel specimens N/A N/A Yes 28 8 s
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100 100 steel specimens 0 100 N/A [30] 5| 2 '

Gl Bearing steel samples N/A N/A N/A 15 9 15 .
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135 135 specimens 45 90 Yes 7| % 5 -

246 EPRI database N/A N/A N/A R [

293 EPPRI database N,v"lA Nl.l‘r.l"ln NIJ‘IA lﬁl Support vector Ensemble method Shallow neural Deep neural Unsupervised Multiple models

a0 90 steel specimens 25 44 N/A a1 machitie RETWOrK netirork leaming
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Examples of Reported ML Performance in the Literature

What factors influence the performance of machine

learning (ML) and automated data analysis techniques
when applied to NDE data?
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Examples of Reported ML Performance in the Literature

What factors influence the performance of machine o

learning (ML) and automated data analysis techniques ‘:’ﬁ o
when applied to NDE data? P[® ") et
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‘ ® o

TPR) (%)

High classification accuracy (high true positive rate and low false posi’rive}negoﬂve rate) is
possible with ML applied to ultrasonic NDE data

Most ML methods are likely to be capable of good classification performance, with
performance depending on the data used for model fraining and model parameter tuning

There may be a need for common data sets to compare across methods/solution providers
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ML and Ultrasonic NDE Reliability

e Limited information in literature on:

— Sensitivity of classification performance to various factors

- Demonstrating confidence in generalization
performance

- Quantifying impact of ML on ultrasonic NDE probability
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(From Cruz et al, Ultrasonics 73, pp 1-8 (2017))
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A Need for Representative, Common, Public NDE Data
Sets

o Sample size and representativeness seem to be a limiting condition in most
ML for ultrasonic NDE studies

- Data augmentation approaches have been applied in some studies to mitigate sample
size concerns

- Unclear whether data augmentation helps with generalization performance

e Representative, common data sets
— Enable comparison between methods
— Support V&V approaches to demonstrate impact of ML on NDE reliability
— Enable reproducibility of ML research results
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Robustness of ML Solution

o Sensitivity studies relative to model parameters are likely to be important
to improving confidence in the reported results

— Impact of noise in the data on the results is part of the assessment

- Model tuning should be a standard part of the methodology for developing ML
solutions for NDE

e Effective V&V approaches to quantify confidence in ML solution
necessary

e Robustness assessment/V&V of ML will need information on software tools
and development environment
- Enables assessment of potential limitations with tools
— Increases reproducibility of results
— Simplifies maintainability of code-base
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Summary and Future Plans

« Assessment of literature demonstrates the potential of ML for automating
ultrasonic NDE data analysis

— Literature survey to assess the state of art in ML for ultrasonic NDE being finalized for
publication

e Literature review identified several open questions related to the impact
of factors that influence ML performance, and the contribution of ML to
increasing NDE reliability

« Recommendations being formulated for addressing these questions and
developing the technical bases to support regulatory decisions regarding
reviews of relief requests and Code actions that that include ML

e Future plans: compilation of reference data sets and empirical studies to
address open questions from literature review
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Questions?




