

Autonomous Control Algorithms to Simulate Boiling Water Reactor Cycle Depletion

NRC Team:

Nate Hudson, Ph.D. Nathanael.Hudson@nrc.govNazila Tehrani, Ph.D. Nazila.Tehrani @nrc.govPeter Yarsky, Ph.D. Peter.Yarsky@nrc.gov

Regulatory Purpose

NRC then

- Reactive
- Plant specific
- Traditional methods

NRC now

- Proactive
- Generic model
- Advanced methods

NRC is exploring innovative tools

- Perform independent transients/accidents analysis
- Increase staff efficiency
- Identify/focus safety significant issues
- Boost confidence in licensee results
 - uncertainty high
 - margin low
- Address emergent issues

Motivation

- Automate LWR core/cycle design
- Create models not associated with any specific licensing action
- Use autonomous control methods

RES develops generic LWR TRACE models for accident/transient analysis

Boiling water reactor

- Peter Yarsky (Project Lead, Senior Reactor Systems Engineer, Code And Reactor Analysis Branch)
- Nate Hudson (Reactor Systems Engineer, Code And Reactor Analysis Branch)
- Nazila Tehrani (Reactor Systems Engineer, Accident Analysis Branch)

Pressurized water reactor

- Andy Bielen (Project Lead, Nuclear Engineer (Fuels/Neutronics), Fuel & Source Term Code Development Branch)
- Mike Rose (Reactor System Engineer (Neutronics Analyst, Fuel & Source Term Code Development Branch)
- Alice Chung (Reactor System Engineer (Fuel Analyst), Fuel & Source Term Code Development Branch)

United States Nuclear Regulatory Commission Protecting People and the Environment

TRACE/PARCS models of PWR/BWR transients/accidents analysis

Necessity

Traditional NRC

- NRC used PARCS to simulate BWR cycle depletion
- calculate cycle power and burnup distributions
- transient analyses need burnup-dependent
 - rod patterns
 - flow rate
 - EOC bundle shuffle sequence

Innovative NRC

- develop an alternative approach for BWR core designs
- generate a BWR equilibrium cycle
 - theoretical concept
 - operate a "typical" plant
 - given fuel design
 - over a long time

Autonomous control algorithms

Literature review

- Proposed micro-reactor
- sense reactor conditions
- sense reactor coolant system
- judge qualification of signals
- evaluate current state of system
- make decisions about actions
- implement actions for operation

NRC goals

- PARCS models
- dynamically adjust
 - fuel loading between cycles
 - control rod pattern
 - flow rate during cycle
- yield all statepoint information over full cycle

9/8/2021

Data Sci/AI Reg Applications Workshop

Literature Review

Bayesian networks for dynamic (PRA)

Annealing method

- studies evolution of risk during postulated events
- makes decisions during a transient for reducing risk
- artificial reasoning rely on surrogate models
- NRC wants to create surrogate models

use core simulator

٠

- use sampling of design choices similar to particles distribution at a temperature
- iteratively lowering temperature, algorithm finds optimal solution
- ~100,000 core simulator runs
- NRC wants to optimize loading patterns

DNNs to optimize core loading pattern for BWR

- DNNs trained against core simulator
- artificial reasoning makes decisions about core loading patterns
- meeting power peaking limits
- cycle energy demand
- reasonable computational expense/accuracy
- used to find optimal designs
- ~10,000 simulations to train
- NRC wants to optimize loading patterns

Work to be Performed

- Autonomous control for BWR core/cycle design feasible?
 - Apply combination of existing decision-making methods
 - Bayesian
 - Neural Networks
 - Machine Learning
 - etc.
 - Approximate core loading design/control rod sequence
- Contingency (Traditional Methods)
- Need feedback

Definitions

- BWR: Boiling water reactor
- DNN: Deep neural networks
- EOC: End of cycle
- LWR: Light water reactor
- PARCS: NRC Reactor Kinetics code
- PRA: Probabilistic risk assessment
- PWR: Pressurized water reactor
- RES: Office of Nuclear Regulatory Research
- TH: Thermal-Hydraulics
- TRACE: NRC Thermal-Hydraulics code

