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What I hope you get from today:
1. What is Machine Learning?
2. When is it helpful?
3. When is it not helpful?
4. Where do you go from here?
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1. What is the problem that needs solving?
2. How can machine learning help?
3. How do we know it is working?
4. When does it break down?
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Example: ARPA-E DIFFERENTIATE Program
Inverse Design of Aero & Heat 
Transfer Surfaces

Mach number, 𝑀𝑀𝑀𝑀
Reynolds number, 𝑅𝑅𝑅𝑅

Target lift coefficient, 𝐶𝐶𝑙𝑙

Optimized airfoil coordinates + Angle of attack, 𝛼𝛼
(192 x 2) (1, a scalar)

CFD + Supercomputer
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Example: ARPA-E DIFFERENTIATE Program
Inverse Design of Aero & Heat 
Transfer Surfaces

Mach number, 𝑀𝑀𝑀𝑀
Reynolds number, 𝑅𝑅𝑅𝑅

Target lift coefficient, 𝐶𝐶𝑙𝑙
ℙ(𝒙𝒙|𝑐𝑐)

Optimized airfoil coordinates + Angle of attack, 𝛼𝛼
(192 x 2) (1, a scalar)

CFD + Supercomputer

{𝑀𝑀𝑀𝑀, 𝑅𝑅𝑅𝑅, 𝐶𝐶𝑙𝑙 }
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Problem: Original airfoil representation (~100 coordinates) 
is too large to be useful.



The Manifold Hypothesis
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Where do you go from here?
Technical Challenges Socio-Economic Challenges

How do we create , collect, and share  benchmark 
datase ts?

How do we best combine  existing Engineering 
knowledge with ML techniques?

How do we perform Verification and Validation?

What are  appropriate  Standards for such models?

What are  the  key Figures of Merit we should be  
optimizing in such systems?

For more  de tails see :
- JMD Editorial: ML in Engineering Design: http://ideal.umd.edu/papers/paper/ml-eng-design-jmd
- Summary of Data-Driven Design workshop: http://ideal.umd.edu/papers/paper/d3-implications

How do we estimate  the  economic Return on 
Investment for ML techniques or datase ts? 

How do we protect IP or Privacy in trained models?

What regulatory frameworks do we need for 
verification of safe ty critical or other systems?

How should we train our workforce  differently to 
leverage  these  techniques?

http://ideal.umd.edu/papers/paper/ml-eng-design-jmd
http://ideal.umd.edu/papers/paper/d3-implications


Where do you go from here?
What can you do?

Continue  your education in these  areas, or for those  of your 
workforce .

Reach out to researchers and domain experts for new technical 
challenges we can resolve  in these  areas.

Provide  guidance  to policy and regulatory bodies on how these  
techniques might be  managed.

Advocate  for additional studies of impact in these  areas.



Thank you

Dr. Mark Fuge
Univ. of Maryland, College Park
(301) 405-2558
fuge@umd.edu  
ideal.umd.edu
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What are Generative Models doing? 
𝑓𝑓:𝒵𝒵 → 𝒳𝒳

𝑓𝑓−1:𝒳𝒳 → 𝒵𝒵
ℙ(𝒙𝒙|𝒛𝒛)
ℙ(𝒛𝒛|𝒙𝒙)

logℙ 𝒙𝒙 = logℙ 𝒛𝒛 + log | det∇𝒙𝒙𝑓𝑓−1 𝒙𝒙 |
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Example: Identifying Feasible Performance Regions
ModelInput Output
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