

An AEP Company

BOUNDLESS ENERGY-

April 28, 2021

Indiana Michigan Power Cook Nuclear Plant One Cook Place Bridgman, MI 49106 indianamichiganpower.com

AEP-NRC-2021-27 10 CFR 50.36a

Docket Nos.: 50-315 50-316

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Donald C. Cook Nuclear Plant Units 1 and 2 2020 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

In accordance with Technical Specification 5.6.3, Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Units 1 and 2, is providing the Annual Radioactive Effluent Release Report as Enclosure 1 to this letter. This report covers the period January 1, 2020, through December 31, 2020.

This letter contains no new or modified regulatory commitments. Should you have any questions, please contact me at (269) 466-2649.

Sincerely,

Surpl

Michael K. Scarpello Regulatory Affairs Director

JMT/mll

- Enclosure: Donald C. Cook Nuclear Plant Units 1 and 2 2020 Annual Radioactive Effluent Release Report
- c: R. J. Ancona MPSC EGLE – RMD/RPS J. B. Giessner – NRC, Region III NRC Resident Inspector R. M. Sistevaris – AEP Ft. Wayne, w/o enclosures J. E. Walcutt – AEP Ft. Wayne, w/o enclosures S. P. Wall – Washington, D.C. A. J. Williamson – AEP Ft. Wayne, w/o enclosures

ENCLOSURE to AEP-NRC-2021-27

DONALD C. COOK NUCLEAR PLANT UNITS 1 AND 2 2020 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

SOURCE DOCUMENT LIST

ACTION ITEM NO. DESCRIPTION

2020 Annual Radioactive Effluent Release Report

THE FOLLOWING DOCUMENTS HAVE BEEN USED AS SOURCES OF INFORMATION FOR PREPARATION OF THE ATTACHED. COPIES OF THESE DOCUMENTS ARE AVAILABLE FOR REVIEW AT THE LOCATION SPECIFIED.

NO	PAGE PARA.	SOURCE DOCUMENT DESCRIPTION TITLE, NUMBER, REVISION, ETC.	CURRENT SOURCE DOC. LOCATION (FILE NO., ETC.)
A	1	Control Room logs	PowerView and INPO web page
B	2	12-OHP-4021-006-004, Data Sheet 1 L-20-01 → L-20-103	NDM
		Radioactive waste shipments and Processor data	
С	3	Quarterly Dose Calculations with MIDAS and Site Specific Data and vendor Analysis of REMP TLDs	Source Docs in NDM, Vendor files, and REMP results
D	4	Control Room logs	PowerView
E	A1.1-1	PMP-6010-OSD-001 OFF-SITE DOSE CALCULATION MANUAL	Documentum
E	A1.1-2	PMP-6010-OSD-001 OFF-SITE DOSE CALCULATION MANUAL	Documentum
E	A1.1-3	PMP-6010-OSD-001 OFF-SITE DOSE CALCULATION MANUAL	Documentum
F	A1.1-4	12-OHP-4021-006-004, Data Sheet 1 L-20-01 → L-20-103	NDM
G	A1.1-5	1 -OHP-4021-028-005, Data Sheet 1; 2 -OHP-4021-028-005, Data Sheet 1; 1-OHP-4021-028-004, Data Sheet 1; 2-OHP-4021-028-004, Data Sheet 1; and 12-OHP-4021-023-002, Data Sheet 1 G-20-01 → G- 20-18; 1-CPR-20-01 → 1-CPR-20-115; and 2-CPR-20-01 → 2-CPR- 19-223	NDM
H	A1.1-6	None	
I	A1.1-7	12-THP-6020-ADM-010 Data Sheet 1	NDM
J	A1.1-8	1 -OHP-4021-028-005, Data Sheet 1; 2 -OHP-4021-028-005, Data Sheet 1; 1-OHP-4021-028-004, Data Sheet 1; 2-OHP-4021-028-004, Data Sheet 1; and 12-OHP-4021-023-002, Data Sheet 1 G-20-01 → G- 20-18; 1-CPR-20-01 → 1-CPR-20-115; and 2-CPR-20-01 → 2-CPR- 19-223	NDM
к	A1.1-9	Totals from pages A1.1-7 & 8. PMP-6010-OSD-001 OFF-SITE DOSE CALCULATION MANUAL (for % of quarterly limit)	Documentum
L	A1.1-10	12-OHP-4021-006-004, Data Sheet 1 L-20-01 → L-20-103 12 THP 6020 ADM 010 Data Sheet 1 Vendor Analysis of Quarterly Composites	NDM

SOURCE DOCUMENT LIST

ACTION ITEM NO. DESCRIPTION

2020 Annual Radioactive Effluent Release Report

THE FOLLOWING DOCUMENTS HAVE BEEN USED AS SOURCES OF INFORMATION FOR PREPARATION OF THE ATTACHED. COPIES OF THESE DOCUMENTS ARE AVAILABLE FOR REVIEW AT THE LOCATION SPECIFIED.

NO	PAGE PARA.	SOURCE DOCUMENT DESCRIPTION TITLE, NUMBER, REVISION, ETC.	CURRENT SOURCE DOC. LOCATION (FILE NO.,ETC.)
М	A1.1-11&12	Totals from page A1.1-10. Limits from 10 CFR Part 20, Appendix B and PMP-6010-OSD-001 <u>OFF-SITE DOSE CALCULATION</u> <u>MANUAL</u>	Documentum
N	A1.1-13	Radioactive Waste shipments	NDM
0	A1.1-14	Yearly totals and % of PMP-6010-OSD-001, <u>OFF-SITE DOSE</u> CALCULATION MANUAL	Documentum
P	A1.1-15	Site Specific Data for Site Boundary Distances	NDM
Q	A1.2-1 → 4	Quarterly Dose Calculations with MIDAS and Site Specific Data PMP-6010-OSD-001, OFF-SITE DOSE CALCULATION MANUAL	Source Docs in NDM
R	A1.3-1 → 6	GPI Sample Data	NDM
S	$A2.1-1 \rightarrow 8$ $A2.2-1 \rightarrow 8$ $A2.3-1 \rightarrow 8$ $A2.4-1 \rightarrow 8$	MIDAS System with Site Specific Data, Meteorological Joint Frequency Tables	IT Network drive
Т	A3.0-1	Off-Site Dose Calculation Manual Revision	Documentum

TABLE OF CONTENTS

Page

Table	of Contents		i
I.	Introduction		1
II.	Radioactive F	Releases and Radiological Impact on Man	1
	Gased	d Releases ous Releases Waste Disposition	2 2 2
III.	Meteorologic	al	3
IV.	Offsite Dose	Calculation Manual (ODCM) Changes	3
v.	Total Dose		3
VI.	Radiation Mc	nitors Inoperable Greater Than 30 Days	4
VII.	Noteworthy C	Conditions Identified in 2020	5
VIII.	Conclusion		7
IX.	Errata	LIST OF APPENDICES	7
	Appendix	Title	
	A1.1	2020 Effluent and Waste Disposal Annual Report – <u>Su</u> Information	<u>ipplemental</u>
	A1.2	Summary of Maximum Individual Doses: First Quarter, Seco Third Quarter, and Fourth Quarter 2020	nd Quarter,
	A1.3	2020 Groundwater Protection Initiative (GPI) Sample Data	
	A2.1	Hours at Each Wind Speed and Direction: First Quarter, 2020	
	A2.2	Hours at Each Wind Speed and Direction: Second Quarter, 202	0
	A2.3	Hours at Each Wind Speed and Direction: Third Quarter, 2020	
	A2.4	Hours at Each Wind Speed and Direction: Fourth Quarter, 2020)
	A3.0	Offsite Dose Calculation Manual (ODCM) Changes	

I. INTRODUCTION

This report discusses the radioactive discharges from Unit 1 and Unit 2 of the Donald C. Cook Nuclear Plant (CNP) during 2020. This is in accordance with the requirements of CNP Technical Specification (TS) 5.6.3.

The table below summarizes the pertinent statistics concerning the Plant's operation during the period from January 1, 2020, to December 31, 2020. The data in this table and the descriptive information on plant operation are based upon the respective unit's Monthly Operating Reports, Performance Indicators, and Control Room Logs for 2020.

Parameter	Unit 1	Unit 2	
Gross Electrical Energy Generation	8,586,090	10,252,710	
(Megawatt Hour (MWH))			
Unit Service Factor	91.7	95.9	
(Percent (%))			
Unit Capacity Factor	91.8	97.1	
(Maximum Dependable Capacity (MDC)) Net (%)			

Unit 1 entered the reporting period in Mode 1 at Nominal Full Power (NFP). Small power adjustments were made to facilitate main turbine valve testing throughout the year. The unit performed a normal downpower and was manually tripped on September 19, 2020, entering refueling outage U1C30. The unit attained criticality on October 18, 2020, and returned to NFP on October 23, 2020. The unit exited the reporting period at NFP.

Unit 2 entered the reporting period in Mode 1 at Nominal Full Power (NFP). Small power adjustments were made to facilitate main turbine valve testing throughout the year. The unit performed a rapid downpower and was manually tripped on May 1, 2020, to perform repairs for Reactor coolant leakage. The unit attained criticality on May 10, 2020, and attained NFP on May 12, 2020. The unit was manually tripped on September 4, 2020, to perform repairs on Pressurizer Spray controls. The unit attained criticality on September 7, 2020, and attained NFP on September 10, 2020. The unit was automatically tripped on October 12, 2020, due to lowering Steam Generator water level resulting from degraded condenser vaccum. The unit attained criticality on October 13, 2020, and attained NFP on October 15, 2020. The unit exited the reporting period at NFP.

II. RADIOACTIVE RELEASES AND RADIOLOGICAL IMPACT ON MAN

Since a number of release points are common to both units, the release data from both units are combined to form this two-unit, Annual Radioactive Effluent Release Report (ARERR). Appendix A1.1 through A2.4 of this report present the information in accordance with Section 5.6.3 of Appendix A to the Facility Operating Licenses, as specified in the Technical Specifications, Regulatory Guide 1.21, and 10 CFR Part 50, Appendix I.

The "MIDAS System" is a computer code that calculates doses due to radionuclides that were released from the CNP.

All liquid and gaseous releases were well within Offsite Dose Calculation Manual (ODCM) limits and federal limits.

There were no abnormal liquid or gaseous releases in 2020. There were no spills or leaks of radioactive liquids requiring voluntary notifications per the Industry Groundwater Protection Initiative or site procedures.

The Independent Spent Fuel Storage Installation (ISFSI) impacts are included with Unit 1 and Unit 2 statistics. The ISFSI cask system does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required. Technical Specifications for the HI-Storm 100 Cask System, Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the ISFSI.

Liquid Releases

During 2020 there were 99 liquid batch releases performed. The number of liquid batch releases for the 1st, 2nd, 3rd, and 4th quarters in 2020 were 13, 29, 32, and 25, respectively.

Estimated doses (in mrem) to maximally exposed individuals via the liquid release pathways are given in Appendix A1.2 of this report.

Gaseous Releases

During the first quarter of 2020 there were three batch releases from Gas Decay Tanks (GDT) and 124 Containment Pressure Reliefs (CPR). During the second quarter there were four batch releases from GDTs, two containment purges, and 80 CPR. During the third quarter there were two batch releases from GDTs, one system tank vent, one containment purge, and 66 CPR. During the fourth quarter there were five batch releases from GDTs and 68 CPR. The CPR continue to be listed as batch releases as described in Nuclear Regulatory Commission Inspections 50-315/89016 (DRSS); 50-316/89017 (DRSS) for CNP, dated June 1, 1989. Doses continue to be calculated utilizing continuous criteria as allowed by NUREG-0133. There were a total of fourteen GDT releases, three containment purge, one system tank vents, and 338 CPR gaseous batch releases made during 2020.

In calculating the dose consequences for continuous and batch gaseous releases during 2020, the meteorological data measured at the time of the release were used.

The estimated doses (in mrem) to maximally exposed individuals via the gaseous release pathways are given in Appendix A1.2 of this report. For individuals that are within the site boundary, the occupancy time is sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the site boundary.

Solid Waste Disposition

There were 16 shipments of radioactive waste made during 2020. These included shipments made from the site to various radioactive waste processors for ultimate disposal.

III. METEOROLOGICAL

Appendices A2.1, A2.2, A2.3, and A2.4 of this report contain the cumulative joint frequency distribution tables of wind speed and wind direction, corresponding to the various atmospheric stability classes for the first, second, third, and fourth quarters of 2020. Hourly meteorological data is available for review and/or inspection upon request.

IV. OFFSITE DOSE CALCULATION MANUAL (ODCM) CHANGES

The ODCM, PMP-6010-OSD-001, was revised during the report period. A revised copy is included and contains a description of the changes.

V. TOTAL DOSE

Section 3.2.5 of the ODCM requires that the dose or dose commitment to a real individual from all uranium fuel cycle sources in Berrien County be limited to no more than 25 mrem to the total body or any organ (except the thyroid, which is limited to no more than 75 mrem) over a period of 12 consecutive months to show conformance with the requirements of 40 CFR Part 190. The maximum cumulative dose to an individual from liquid and gaseous effluents during 2020 was well within the ODCM limits. Measurements using thermoluminescent dosimeters (TLD) at 12 onsite stations indicate that the dose due to direct radiation is consistent with preoperational and current control (background) levels. This is fully evaluated in CNP's 2020 Annual Radiological Environmental Operating Report. Additional TLD dosimetry installed by Radiation Protection department programs monitor dose received by individuals on site as visitors.

The annual dose to the maximum individual will be estimated by first summing the quarterly total body air dose, the quarterly skin air dose, the quarterly critical organ dose from iodines and particulates (I&P), the quarterly total body dose from liquid effluents, the quarterly critical organ dose from liquid effluents, and the Radiological Environmental Monitoring Program onsite direct radiation TLD data. These quarterly values are summed with the annual Carbon-14 dose and compared to the annual total body limit for conservative reasons. The table that follows here represents the above written description:

Dose (mrem)	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
I&P	1.73E-02	2.86E-02	3.95E-02	1.64E-02
Total Body Air	7.70E-05	2.60E-04	6.90E-04	2.00E-04
Skin	1.20E-04	4.10E-04	1.10E-03	3.30E-04
Liquid TB	3.84E-03	2.95E-02	4.08E-02	1.46E-02
Liquid Organ	3.84E-03	2.95E-02	4.08E-02	1.47E-02
Direct Radiation	0	0	0	0
Quarterly Dose Total	2.52E-02	8.83E-02	1.23E-01	4.62E-02
Sum of Quarter Doses				2.83E-01
C14 (Annual) Dose	2.33E+00			
Grand Total Dose (Total	2.61E+00			
Annual Dose Limit (mrer	25			
Percent of limit	1.05E+01			

The following data reflects a comparison between 2019 annual dose data and 2020 annual dose data. This indicates that 2020 annual dose was 'typical' in regards to radioactive effluents. The table is presented as follows:

	Annual Dose (mrem)	% of limit
2019	2.37E+00	9.49
2020	2.61E+00	10.5

VI. RADIATION MONITORS INOPERABLE GREATER THAN 30 DAYS

The Radiation Monitor System (RMS) has undergone an extensive replacement project to upgrade and modernize the equipment to support the expected operational lives of the two Cook Plant units. Three effluent monitors (and six area monitors for completeness) were inoperable entering 2020, with the Unit 1 Vent Stack 1-VRS-1500 and Unit 2 ESW monitors 2-WRA-714/ 2-WRA-718 being all out for more than 30 days. The appropriate compensatory sampling actions were taken throughout the year as releases on these pathways continued. The monitors were being upgraded and modernized, and this inoperable time period > 30days was planned for/ expected due to having to install all the hardware, wiring backbone, network, and displays. The RMS replacement project did significant work in 2020, with the table below providing the details on when work was started (starting the 30 day clock) and when it was returned to service. All were greater than 30 days and all had appropriate compensatory sampling actions or surveys performed throughout the duration. All effluent releases complied with ODCM requirements. The list includes some area radiation monitors which are not involved with effluent pathways, but are included for completeness. RMS Project work continued into 2020 and was completed on April 14, 2020, concluding the RMS Replacement Project. The table lists all monitors replaced and their times of inoperability.

1-WRA-713 East Essential Service Water Header Effluent	S: 1/15/19 F: 9/11/19
1-WRA-717 West Essential Service Water Header Effluent	S: 1/15/19 F: 9/11/19
12-RRC-330 Spent Fuel Pit Area	S: 12/18/18 F: 9/11/19
1-CRA-415 East Component Cooling Loop	S: 3/14/19 F: 9/11/19
1-CRA-425 West Component Cooling Loop	S: 3/12/19 F: 9/11/19
12-ERA-7000 Nuclear Sampling Room Area	S: 12/3/18 F: 9/19/19
1-ERA-7300 Aux Building Equipment Room	S: 1/28/19 F: 9/19/19
1-ERS-7400 Control Room, Instrument Room, and Aux building Area	S: 3/12/19 F: 9/19/19
12-ERA-7500 Aux Building Elevation 573' and 587' Area	S: 1/2/19 F: 9/19/19
12-RRS-1000 Waste Disposal Liquid Effluent	S: 7/8/19 F: 11/7/19
1-MRA-1600 SG 1 and 4 PORVs	S: 7/8/19 F: 11/21/19
1-MRA-1700 SG 2 and 3 PORVs	S: 7/8/19 F: 11/21/19
1-VRS-1200 Upper Containment Area	S: 7/8/19 F: 11/21/19
1-ERS-1400 Lower Containment Area	S: 7/8/19 F: 11/21/19
2-DRA-300 SG Blow-down Pre-treatment Effluent	S: 6/11/19 F: 12/4/19
2-DRA-353 SG Blow-down Post-treatment Effluent	S: 6/11/19 F: 12/4/19
2-CRA-415 East Component Cooling Loop	S: 6/11/19 F: 12/4/19
1-VRS-1500 Unit Vent Effluent	S: 8/19/19 F: 1/17/20
1-SRA-1800 Gland Steam Leak off Vent	S: 8/19/19 F: 12/18/19
1-SRA-1900 Steam Jet Air Ejector Vent	S: 9/30/19 F: 12/18/19
12-ERA-7600 Aux Building Elevation 633' and 650' Area	S: 8/19/19 F: 12/18/19
2-WRA-714 East Essential Service Water Header Effluent	S: 6/11/19 F: 1/23/20
2-WRA-718 West Essential Service Water Header Effluent	S: 6/11/19 F: 1/23/20
2-CRA-425 West Component Cooling Loop	S: 6/11/19 F: 1/23/20
1-VRS-1100 Upper Containment Area	5: 12/3/19 F: 4/7/20
1-ERS-1300 Lower Containment Area	S: 12/3/19 F: 4/7/20
2-VRS-2200 Upper Containment Area	S: 11/25/19 F: 2/7/20
2-ERS-2400 Lower Containment Area	S: 11/25/19 F: 2/7/20
2-ERA-8300 Aux Building Equipment Room	S: 10/8/19 F: 2/13/20
2-ERS-8400 Control Room, Instrument Room, and Aux Building Area	S: 12/2/19 F: 2/13/20
2-VRS-2500 Unit Vent Effluent	S: 2/11/20 F: 4/14/20
2-SRA-2800 Gland Steam Leak off Vent	S: 2/20/20 F: 4/14/20
2-SRA-2900 Steam Jet Air Ejector Vent	S: 2/20/20 F: 4/14/20
2-MRA-2700 SG 2 and 3 PORVs	S: 1/23/20 F: 4/14/20
2-VRS-2100 Upper Containment Area	S: 2/20/20 F: 4/14/20
2-MRA-2600 SG 1 and 4 PORVs	S: 1/21/20 F: 4/14/20
2-ERS-2300 Lower Containment Area	S: 2/12/20 F: 4/14/20

The RMS Project completion did result in several technical issues identified as the systems were put into normal usage with changing plant conditions. The new detectors were found to be considerably more sensitive to background radiation, resulting in modifications being required to increase shielding of those impacted detectors.

One effluent monitor pathway continues to have issues with the background radiation levels due to the detector sensitivities. 12-RRS-1001/1021 channels of the Waste Disposal liquid effluent monitors were declared inoperable on July 24, 2020 and are requiring software

changes in order to address the higher background detected. All releases on this pathway are complying with ODCM required compensatory actions while the solution is being developed and tested. These detectors remained inoperable to the end of the year.

VII. NOTEWORTHY CONDITIONS IDENTIFIED IN 2020

The RMS Replacement Project initiated physical plant alterations in preparation of upgrading and modernizing the plant's ability to monitor radioactive effluents starting at the end of 2018 and completed in 2020. The Offsite Dose Calculation Manual revisions completed in 2020 reflecting the completion of the project.

The usage of compensatory actions and sampling during the time periods for which a pathway's monitor is out of service does create some conservatism in the calculations for dose to ensure compliance with all regulations. This may take the form of using maximum design flow rates when a flow instrument is out of service, for example. Another example would be the inability to utilize fans during containment pressure reliefs, resulting in longer times of release to lower the observed pressure as well as more actual relief activities since pressure drops are limited. These conservative assumptions increase the calculated dose, and can be observed in the reporting this year. The increases are relatively small when compared to Carbon-14 dose, which was not affected. These conservatisms were removed as equipment was restored.

VIII. CONCLUSION

Based on the information presented in this report, it is concluded that CNP Units 1 and 2 performed their intended design function with no demonstrable adverse effect on the health and safety of the general public.

IX. ERRATA

There was an error identified in an information source document that has been provided in the "Gaseous Releases" information provided in Section II of this Introduction to the Annual Effluent Release Report for 2019. This document identification error was found to go back to 2011 when the template was updated incorrectly and transposed some numbers. The following reference information is the correct source:

Nuclear Regulatory Commission Inspections 50-315/89016 (DRSS); 50-316/89017 (DRSS) for CNP, dated June 1, 1989.

This reference source does not alter any of the reported data or doses, and is being updated here to ensure our documentation points to the correct source letters. This reference would be the correct source for our process of handling containment pressure reliefs and applies back to 2011. There are no other errata noted for 2020.

SUPPLEMENTAL INFORMATION

Facility: Donald C. Cook Nuclear Plant Licensee: Indiana Michigan Power Company

1 REGULATORY LIMITS

1.1 Noble Gases

The air dose in unrestricted areas due to noble gases released in gaseous effluents shall be limited to the following:

- 1.1.1 During any calendar quarter, to \leq 5 mrad/unit for gamma radiation and \leq 10 mrad/unit for beta radiation.
- 1.1.2 During any calendar year, to $\leq 10 \text{ mrad/unit}$ for gamma radiation and $\leq 20 \text{ mrad/unit}$ for beta radiation.
- 1.2 Iodines Particulates

The dose to a member of the public from radioiodines, radioactive materials in particulate form, and radionuclides other than noble gases with half-lives greater than eight days in gaseous effluents released to unrestricted areas shall be limited to the following:

- 1.2.1 During any calendar quarter to \leq 7.5 mrem/unit to any organ.
- 1.2.2 During any calendar year to \leq 15 mrem/unit to any organ.
- 1.3 Liquid Effluents

The dose or dose commitment to an individual from radioactive material in liquid effluents released to unrestricted areas shall be limited:

- 1.3.1 During any calendar quarter to ≤ 1.5 mrem/unit to the total body and to ≤ 5 mrem/unit to any organ.
- 1.3.2 During any calendar year to \leq 3 mrem/unit to the total body and to \leq 10 mrem/unit to any organ.

1.4 Total Dose

The dose or dose commitment to a real individual from all uranium fuel cycle sources is limited to ≤ 25 mrem to the total body or any organ (except the thyroid, which is limited to ≤ 75 mrem) over a period of 12 consecutive months.

2 MAXIMUM PERMISSIBLE CONCENTRATIONS

2.1 Gaseous Effluents

The dose rate due to radioactive materials released in gaseous effluents from the site shall be limited to the following:

- 2.1.1 For noble gases: \leq 500 mrem/yr to the total body and \leq 3000 mrem/yr to the skin.
- 2.1.2 For all radioiodines and for all radioactive materials in particulate form and radionuclides (other than noble gases) with half-lives greater than eight days: ≤ 1500 mrem/yr to any organ.

The above limits are provided to insure that radioactive material discharged in gaseous effluents will not result in the exposure of an individual in an unrestricted area to annual average concentrations exceeding the limits in 10 CFR Part 20, Appendix B, Table 2, Column 1.

2.2 Liquid Effluents

The concentration of radioactive material released at any time from the site to unrestricted areas shall be limited to the concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2, for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2 x 10^{-4} µCi/ml total activity.

3 AVERAGE ENERGY

The average energy (E) of the radionuclide mixture in releases of fission and activation gases as defined in Regulatory Guide 1.21, Appendix B, Section A.3 is not applicable because the limits used for gaseous releases are based on calculated dose to members of the public. Release rates are calculated using an isotopic mix from actual samples rather than average energy.

4 MEASUREMENTS and APPROXIMATIONS of TOTAL RADIOACTIVITY

4.1 Fission and Activation Gases

Sampled and analyzed on an 8192 channel analyzer and HpGe detector. Tritium analysis is performed using liquid scintillation counters.

4.2 Iodines

Sampled on iodine adsorbing media, and analyzed on an 8192 channel analyzer and HpGe detector.

4.3 Particulates

Sampled on a glass filter and analyzed on an 8192 channel analyzer and HpGe detector. Sr-89 and Sr-90 analyses are performed by offsite vendor.

4.4 Liquid Effluents

Sampled and analyzed on an 8192 channel analyzer and HpGe detector. Tritium analysis is performed using liquid scintillation counters. Fe-55, Sr-89 and Sr-90 analyses are performed by an offsite vendor. Ni-63 is also currently being analyzed by the offsite vendor in response to evaluation of the 10 CFR 61 sample results.

5 BATCH RELEASES

5.1 Liquid

5.1.1 Number of batch releases:

13 releases in the 1st quarter, 2020 $\overline{29}$ releases in the 2nd quarter, 2020 $\overline{32}$ releases in the 3rd quarter, 2020 $\overline{25}$ releases in the 4th quarter, 2020

5.1.2 Total time period for batch releases:

31,167 minutes

5.1.3 Maximum time for a batch release:

805 minutes

5.1.4 Average time period for batch release:

315 minutes

5.1.5 Minimum time period for a batch release:

134 minutes

5.1.6 Average stream flow during periods of release of effluent into a flowing stream:

6.89E+5 gpm circulating water

5.2 Gaseous

5.2.1 Number of batch releases:

 $\frac{127}{86}$ releases in the 1st quarter, 2020 $\frac{86}{70}$ releases in the 2nd quarter, 2020 $\frac{70}{73}$ releases in the 3rd quarter, 2020 $\frac{127}{73}$ releases in the 4th quarter, 2020

5.2.2 Total time period for batch releases:

23,239 minutes

5.2.3 Maximum time for a batch release:

354 minutes

5.2.4 Average time period for batch release:

65.3 minutes

5.2.5 Minimum time period for a batch release:

5 minutes

6 ABNORMAL RELEASES

- 6.1 Liquid
 - 6.1.1 Number of Releases:

1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
0	0	0	0

6.1.2 Total activity released (Ci):

1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
0	0	0	0

6.2 Gaseous

6.2.1 Number of Releases:

1 st Quarter	2 nd Quarter	3 rd Quarter	4th Quarter
0	0	0	0

6.2.2 Total activity released (Ci):

1 st Quarter	2 nd Quarter	3 rd Quarter	4th Quarter
0	0	0	0

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS-GROUND LEVEL RELEASES

1 N	uclides Released	d	Unit	1	1st Quarter	2nd Quarter!	3rd Quarter	4th Quarter
11	. FISSION GASES	1		I			1	1
1	нз	I	Ci	T	2.43E+01	2.11E+01	1.93E+01	1.97E+01
1	AR41	1	Ci	1		[}
1	KR85	1	Ci	1				1
1	XE133	1	Ci	1	()		
1	XE135	1	Ci	I	1)	1	
1	XE131m	1	Ci	I		1	1	
1	XE133m	I	Ci	1	1			1
1	XE135m	1	Ci	1	1			
T	otal for Period	J	Ci	I	2.43E+01	2.11E+01 (1.93E+01	1.97E+01
		_		_				

CONTINUOUS MOD	Ξ
----------------	---

2	. IODINES	I		1		1		T		1		1
1	1131	1	Ci	I		1	3.93E-06	١	4.15E-07	1	2.88E-10	1
1	1132	I	Ci	I		1		1		ł		1
l	1133	I	Ci	I		I		1		1	********	1
To	otal for Period	1	Ci	1		ł	3.93E-06	I	4.15E-07	1	2.88E-10	1
13	. PARTICULATES	ł		T		I		ł		Ł		۱
1	MN 54	1	Ci	1	*******	1		1		1		T
								·		<u>.</u>		
1	CO60	1	Ci	ł						r		
 	CO60 CS137	-	Ci Ci	! 		 				1		
		1	Ci			1				 		1

* DENOTES SUPPLEMENTAL ISOTOPES

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS-GROUND LEVEL RELEASES

BATCH MODE

Nuclides Release	d I	Unit	1	1st Quarter	1	2nd Quarter	c	3rd Quarter!	4th Quarte	r
11. FISSION GASES	1		1		1		I			1
і нз	1	Ci	I	1.61E-01	1	1.59E+00	۱	2.74E-01	6.66E-02	1
AR41	1	Ci	1	6.55£~02	1	2.12E-01	I	2.14E-01	1.41E-01	1
KR85	I	Ci	1	2.47E-02	1	3.05E-02	I	1.09E-02	1.47E-02	1
KR85m	1	Ci	I		I	1.06E-03	1	2.09E-05		1
KR87	1	Ci	1		1	1.08E-03	1			1
KR88	1	Ci	1		1	1.48E-03	1			1
XE133	I	Ci	ł	8.00E-03	1	5.47E-02	I	3.76E-02	1.07E-04	1
, XE135m	1	Ci	1		1		1	1.61E-04		1
XE135	1	Ci	I		1	1.61E-02	1	8.88E-04 I		1
Total for Period	1	Ci	1	2.59E-01	1	1.91E+00	1	5.38E-01	2.22E-01	1
2. IODINES	I		I.		1		1	1		1
1 1131	1	Ci	۱		1	3.09E-06	1			1
1132	1	Ci	1		1	1.12E-05	1	1		1
1133	1	Ci	I		1	2.48E-05	1	1		1
1134	1	Ci	T		1	5.81E-06	1			1
1135]	Ci	1		1	2.30E-06	1			1
Total for Period	1	Ci	1			4.72E-05	1	1		1

* DENOTES SUPPLEMENTAL ISOTOPES

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS-GROUND LEVEL RELEASES

BATCH MODE

Nuclides Release	11	Unit		lst Quarte	r	2nd Quarter	3rd Quarter	4th Quarter
3. PARTICULATES	1		 		1	í	1	
I CR51	1	Ci	1)	1.87E-05		1
C058	1	Ci	1		1	4.32E-05		
I CO60	1	Ci	I		1	1.12E-05)	1	1
NB95	1	Ci	1		1	4.90E-06		
Total for Period	I	Ci			1	7.80E-05	1	

* DENOTES SUPPLEMENTAL ISOTOPES

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES

GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES								
 	Units 	1st Quarter 			Quarter	Est. Total Error,%		
A. FISSION AND ACTIVATION GASES	1			•				
11. Total Release	Ci	9.82E-021	3.16E-01	2.67E-01	1.55E-01	13.1		
<pre>!2. Average release ! rate for period</pre>	uCi/sec 	1.25E-02 	4.02E-02	3.36E-02 	1.95E-02			
3. Percent of applicable limit*		1.27E-03 2.84E-04						
IB. I IODINES								
	Ci	0.00E+001	7.025-061	4.15E-071	2 88E-10	18.4		
		(0.00E+00)						
3. Percent of applicable limit		0.00E+00 	2.54E-06	1.49E-07 	1.03E-10			
IC. PARTICULATES								
<pre> 1.(Particulates with half lives>8 days</pre>		0.00E+00 	7.80E-05	0.00E+00I	0.00E+00	15.6		
2. Avcrage release rate for period	uCi/sec 	0.00E+00 	9.92E-06 	0.00E+001	0.00E+00			
3. Percent of applicable limit'		0.00E+00 	1.96E-051	0.00E+00 	0.00E+00			
4. Gross alpha radioactivity	Ci 	<8.35E-07 	<9.69E-07	<1.55E-06 	<1.13E-06	 		
D. TRITIUM	1	I	I	1)		
1. Total Release	Ci) 2.44E+01(2.27E+01	2.18E+01	1.98E+01	19.5		
2. Average release rate for period	uCi/sec 	3.11E+00 	2.89E+00 	2.74E+00 	2.49E+00			
3. Percent of applicable limit'		1.77E-02	1.65E-02	1.56E-02	1.42E-02			

* Applicable limits are expressed in terms of dose. See Appendices A1.2-1 through A1.2-4

CONTINUOUS MODE										
Nuclides Relea	sed) Unit	1st Quarter 2nd Quarter 3rd Quarter 4th Quarter								
H3	Ci	8.81E-03								
BATCH MODE										
Nuclides Relea	sed Unit	1st Quarter 2nd Quarter 3rd Quarter 4th Quarter								
НЗ	Ci	1.11E+02 1.05E+03 1.06E+03 4.27E+02								
CR51	Ci	6.35E-05								
MN54	Ci	3.24E-04 6.71E-05								
I C057	Ci	1.44E-05 3.09E-06								
I C058	Ci	2.57E-05 3.37E-05 5.10E-04 4.56E-04								
I CO60	Ci	9.71E-05 2.16E-05 5.07E-03 1.01E-03								
NI63	Ci	2.56E-05 2.05E-03 4.19E-04								
ZN65	Ci	1.71E-04 3.22E-05								
I ZR95	Ci	2.45E-05 2.77E-05								
I NB95	Ci	3.85E-05 4.82E-05								
ј мо99	I Ci	2.60E-05								
TC99m	Ci	2.50E-05 2.21E-06								
AG110m	Ci	2.83E-04 5.36E-05								
SB124	Ci	1.15E-05 3.92E-06 5.52E-06								
SB125	Ci	8.70E-05 7.84E-05 2.31E-04 7.82E-05								
(CS134	Ci	· / / / /								
CS137	Ci	2.04E-06								
I I131	Ci	7.02E-07								
1133	Ci	9.36E-07								
*SN113	Ci	9.00E-06								
(*SN117m	Ci	5.83E-07								
*XE133	Ci	4.91E-05 1.78E-04 1.49E-04								
*XE135	Ci	}								

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS CONTINUOUS MODE

* DENOTES SUPPLEMENTAL ISOTOPES

.

_____ | Units | 1st | 2nd | 3rd | 4th |Est. 1 1 | Quarter | Quarter | Quarter | Quarter |Total | - I 1 | | | | | | | Error, *| E ------------1 1 1 A. FISSION AND | |ACTIVATION 1 1 1 1 PRODUCTS 1 1 1 ______ 11. (Total Release) Ci | 1.60E-04 | 2.88E-04 | 8.71E-03 | 2.27E-03 | 11.7 | _______ 12. |Average diluted |uCi/ml | 2.86E-11| 1.04E-11| 2.76E-10| 1.39E-10| | | concentration | | | | 1 | |during period 1 1 1 1 1 1 ------_____ |3.|Percent of | % | 1.67E-04| 6.55E-05| 5.83E-03| 2.37E-03| | |applicable limit | | | 1 1 1 _____ ______ IB. ITRITIUM Т --------11. [Total Release | Ci | 1.11E+02| 1.05E+03| 1.06E+03| 4.27E+02| 10.1 | [2.]Average diluted |uCi/ml | 1.99E-05| 3.79E-05| 3.35E-05| 2.61E-05| | |concentration | | | | | |during period | | | - I I ł. 1 1 3. | Percent of | 1.99E+00| 3.79E+00| 3.35E+00| 2.61E+00 | |applicable limit | | | | | |C. |DISSOLVED AND | | | 1 1 1 1 | |ENTRAINED GASES | 1 1 1 11. |Total Release | Ci | 0.00E+00| 5.84E-05| 1.79E-04| 1.58E-04| 12.9 | [2.] Average diluted |uCi/ml | 0.00E+00| 2.11E-12| 5.68E-12| 9.66E-12| | |concentration | | | | 1 {during period | 1 £ [3.]Percent of [% [0.00E+00] 1.05E-06] 2.84E-06] 4.83E-06] | [applicable limit] |D.|GROSS ALPHA | Ci |<7.08E-05|<5.58E-04|<1.75E-04|<1.39E-04| N/A | - 1 -1 - 1 - 1 _____ [E. [VOLUME OF WASTE | Liters] 7.63E+05] 6.01E+06; 1.89E+06] 1.50E+06] 2.00] | |RELEASED | | | | | ---------------_ _ _ -------|F.|VOLUME OF | Liters| 5.59E+09| 3.01E+11| 3.15E+10| 1.64E+10| 3.48 | | DILUTION WATER | -1 USED DURING 1 ſ | (PERIOD 1 1 1 1 _____

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS-SUMMATION OF ALL RELEASES BATCH MODE

------| Units | 1st | 2nd | 3rd | 4th |Est. 1 1 | | Quarter | Quarter | Quarter | Quarter | Total | 1 | | | | | | | | | | | | Error, % | _____ -----_ _ _ _ ---------1 A. FISSION AND 1 1 | ACTIVATION 1 1 1 1 | | PRODUCTS 1 - 1 - 1 1 1 -------_____ -----|1.|Total Release | Ci | 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00| N/A | [2.[Average diluted |uCi/ml | 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00|] 1 1 - I ______ |3.|Percent of | 5 | 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00| | |applicable limit | | | | | | B. TRITIUM _____ |1.|Total Release | Ci | 0.00E+00| 8.81E-03| 0.00E+00| 0.00E+00| 56.4 | [2.]Average diluted |uCi/ml | 0.00E+00; 1.10E-11] 0.00E+00] 0.00E+00] | |concentration | | | | | |during period | | | 1 1 1 1 [3.]Percent of | % | 0.00E+00] 1.10E-06[0.00E+00] 0.00E+00] | |applicable limit | | | | | | | | IC. |DISSOLVED AND | | 1 1 | |ENTRAINED GASES | 1 1 _____ [1.]Total Release | Ci | 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00| N/A | [2.[Average diluted |uCi/m1 | 0.00E+00| 0.00E+00| 0.00E+00] | | concentration | | | | | | | | | |during period | 1 |3.|Percent of } % | 0.00E+00| 0.00E+00| 0.00E+00| 0.00E+00} | | applicable limit | | | | | | ID. | GROSS ALPHA | Ci | 0.00E+00|<3.97E-04| 0.00E+00| 0.00E+00| N/A | 1 1 - t 1 1 1 [E.|VOLUME OF WASTE | Liters| 0.00E+00| 4.28E+06| 0.00E+00| 0.00E+00| 2.00 | I RELEASED I I I I I I _ _ _ _ _ _ |F.|VOLUME OF | Liters| 0.00E+00| 8.04E+11| 0.00E+00| 0.00E+00| 3.48 | | | DILUTION WATER | 1 USED DURING - 1 1 | | PERIOD 1 1

2020 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS-SUMMATION OF ALL RELEASES CONTINUOUS MODE

2020 Effluent and Waste Disposal Annual Report Solid Waste and Irradiated Fuel Shipments

So	Ild Waste Shipped Offsite for Bu	rial or Dispos	al	
1)`	Type of Waste	Unit	Estimated amount	Estimated Total Error, %
a)	Spent resins, filters, studge, evaporator bottoms, etc.	m ³ Curies	1.65E+01 1.94E+02	1.00E+00 3.75E+00
b)	Dry compressible waste, contaminated equipment, etc.	m ³ Curies	3.66E+02 2.26E-01	1.00E+00 6.48E+00
c)	Irradiated components, control rods, etc.	m ³ Curies		
d)	Other (contaminated soll)	m ³ Curies		

	Mn-54	2%	0- 60	1	T		-	
			Co-60	10 %	Cs-134	4 %		
	Fe-55	8%	NI-63	52 %	C-14	1 %	1	
b)	Cr-51	1 %	Co-58	8%	Sb-125	1 %]	
	Mn-54	2 %	Co-60	24 %	Zr/Nb-95	4 %		
	Fe-55	21 %	Ni-63	29 %	Cs-137	9%	C-14	1 %

3) Solid Waste Disposition					
No. of Shipments	Mode of Transportation	Destination			
8	Truck	Oak Ridge, TN			
7	Truck	Andrews, TX			
1	Truck	Galnesville, FL			

4) Type of Containers used for Shipment: Containers used are excepted packages, Type A, Sea Land, metal boxes, drums, tankers, and high integrity containers (HICs).

5) Solidification Agent: There were no solidifications performed during this report period.

2020 Effluent and Waste Disposal Annual Report Yearly Release Rates

GASES		
Fission and Activation Gases	Total Release	8.36E-01 Curies
	Average Release Rate	2.65E-02 µCi/sec
	% of Applicable Limits*	γ 1.13E-02 % β 2.23E-03 %
Iodines	Total I-131 Release	7.44E-06 Curies
	Average Release Rate	2.36E-07 µCi/sec
	% of Applicable Limit*	3.39E-01 %
Particulates	Total Release	7.80E-05 Curies
	Average Release Rate	2.47E-06 µCi/sec
	% of Applicable Limit*	3.39E-01 %
LIQUIDS		••••••••••••••••••••••••••••••••••••••
Fission and Activation Products	Total Release	1.14E-02 Curies
	Average Diluted Concentration	1.41E-10 µCi/ml
	% of Applicable Limits*	Total Body 1.48E+00 % Organ 4.44E-01 %

* Applicable limits are expressed in terms of the annual 10 CFR 50, Appendix I, dose limits.

Site Boundary and Nearest Residence Listing

The following distances were used in the calculation of the maximum individual doses:

Sector	Direction	Boundary (Meters)	Nearest Residence (Meters)
A	N	651	659
В	NNE	617	660
С	NE	789	943
D	ENE	1497	1747
E	Е	1274	1716
F	ESE	972	1643
G	SE	629	1640
н	SSE	594	964
J	S	594	997
к	SSW	629	942

First Quarter 20	020
------------------	-----

EFFLUENT	APPLICABLE ORGAN	ESTIMATED DOSE (mrem)	AGE GROUP	LOCATION DIST DIR (M) (Toward)	% OF APPLICABLE LIMIT	LIMIT (mrem) QTR
Liquid	Total Body	3.84E-03	Child	Receptor 1	1.28E-01	1.5E+0
Liquid	GI-LLI	3.84E-03	Child	Receptor 1	3.85E-02	5.0E+0
Noble Gas	Air Dose (Gamma-mrad)	1.27E-04	Any Age	651 (N)	1.27E-03	5.0E+0
Noble Gas	Air dose (Beta-mrad)	5.67E-05	Any Age	594 (S)	2.84E-04	1.0E+1
lodines and Particulates	Total Body	1.73E-02	Child	659 (N)	1.15E-01	7.5E+0

EFFLUENT	APPLICABLE ORGAN	ESTIMATED DOSE (mrem)	AGE GROUP	LOCATION DIST DIR (M) (Toward)	% OF APPLICABLE LIMIT	LIMIT (mrem) QTR
Liquid	Total Body	2.95E-02	Child	Receptor 1	9.80E-01	1.5E+0
Liquid	Liver	2.95E-02	Child	Receptor 1	2.95E-01	5.0E +0
Noble Gas	Air Dose (Gamma-mrad)	6.03E-04	Any Age	629 (SSW)	6.05E-03	5.0E+0
Noble Gas	Air dose (Beta-mrad)	2.64E-04	Any Age	629 (SSW)	1.32E-03	1.0E+1
Iodines and Particulates	Total Body	2.86E-02	Child	1747 (ENE)	1.91E-01	7.5E+0

Second Quarter 2020

Third Quarter 2020

EFFLUENT	APPLICABLE ORGAN	ESTIMATED DOSE (mrem)	AGE GROUP	LOCATION DIST DIR (M) (Toward)	% OF APPLICABLE LIMIT	LIMIT (mrem) QTR
Liquid	Total Body	4.08E-02	Child	Receptor 1	1.36E+00	1.5E+0
Liquid	GI-LLI	4.08E-02	Child	Receptor 1	4.08E-01	5.0E+0
Noble Gas	Air Dose (Gamma-mrad)	1.20E-03	Any Age	651 (N)	1.20E-02	5.0E+0
Noble Gas	Air dose (Beta-mrad)	4.42E-04	Any Age	651 (N)	2.21E-03	1.0E+1
lodines and Particulates	Total Body	3.95E-02	Child	659 (N)	2.63E-01	7.5E+0

EFFLUENT	APPLICABLE ORGAN	ESTIMATED DOSE (mrem)	AGE GROUP	LOCATION DIST DIR (M) (Toward)	% OF APPLICABLE LIMIT	LIMIT (mrem) QTR
Liquid	Total Body	1.46E-02	Child	Receptor 1	4.86E-01	1.5E+0
Liquid	GI_LLI	1.47E-02	Child	Receptor 1	1.47E-01	5.0E+0
Noble Gas	Air Dose (Gamma-mrad)	3.27E-04	Any Age	651 (N)	3.27E-03	5.0E+0
Noble Gas	Air dose (Beta-mrad)	1.30E-04	Any Age	651 (N)	6.50E-04	1.0E+1
lodines and Particulates	Total Body	1.64E-02	Child	964 (SSE)	1.09E-01	7.5E+0

Fourth Quarter 2020

.

2020 GPI Sample Data

Samples analyzed for tritium. Values noted are in microcuries per milliliter (uCi/mL) Lower Limit of Detection = LLD

Date	MW-22D	MW- 22M	MW-22S	MW-24D	MW- 24M	MW-24S	MW-25D	MW- 25M
02/19/2020							<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
02/20/2020	<lld< td=""><td><lld< td=""><td><lld*< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld*<></td></lld<></td></lld<>	<lld< td=""><td><lld*< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld*<></td></lld<>	<lld*< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld*<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td></lld<>		
06/25/2020							<lld< td=""><td><lld*< td=""></lld*<></td></lld<>	<lld*< td=""></lld*<>
06/29/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td></lld<>		
08/20/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

- (Note: Wells MW-22 through MW- 27 are multi-port wells installed in the Fall of 2009, with three sample points placed at different depths. S= Shallow M= Middle D= Deep.)
- (Note: A "*" symbol following a sample result denotes a gamma count was performed. Any gamma results above LLD will be additionally flagged and documented in the analysis section.)

• 2020 GPI Sample Data

Samples analyzed for tritium. Values noted are in microcuries per milliliter (uCi/mL)
 Lower Limit of Detection = LLD

Date	MW-25S	MW-26D	MW- 26M	MW-26S	MW-27D	MW- 27M	MW-27S
02/19/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
06/25/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
08/20/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
				國自然和國家部		管理管理研究	

(Note: Wells MW-22 through MW- 27 are multi-port wells installed in the Fall of 2009, with three sample points placed at different depths. S = Shallow M= Middle D= Deep.)

(Note: A "*" symbol following a sample result denotes a gamma count was performed. Any gamma results above LLD will be additionally flagged and documented in the analysis section.)

2020 GPI Sample Data

Date	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8
01/14/2020				<lld< th=""><th><lld< th=""><th><lld< th=""><th></th><th></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th></th><th></th></lld<></th></lld<>	<lld< th=""><th></th><th></th></lld<>		
01/16/2020			a Markey				<lld< td=""><td>周期限認識</td></lld<>	周期限認識
01/23/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td></td><td></td><td><lld< td=""></lld<></td></lld<>					<lld< td=""></lld<>
04/07/2020	<lld< td=""><td>可國權認</td><td><lld< td=""><td></td><td></td><td>國國國際法</td><td>周期 副務約</td><td>n Si Ang</td></lld<></td></lld<>	可國權認	<lld< td=""><td></td><td></td><td>國國國際法</td><td>周期 副務約</td><td>n Si Ang</td></lld<>			國國國際法	周期 副務約	n Si Ang
04/14/2020							<lld< td=""><td></td></lld<>	
04/22/2020	No.	<lld< td=""><td></td><td></td><td></td><td>的影響器</td><td>的复数形式</td><td><lld< td=""></lld<></td></lld<>				的影響器	的复数形式	<lld< td=""></lld<>
07/14/2020	<lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td></td><td></td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>					<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
07/15/2020		12.1%。最高级	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td></lld<>		
10/14/2020	<lld< td=""><td></td><td><lld< td=""><td></td><td></td><td></td><td></td><td></td></lld<></td></lld<>		<lld< td=""><td></td><td></td><td></td><td></td><td></td></lld<>					
10/20/2020	[影響][1]	<lld< td=""><td>發展的感謝</td><td>全国际利益</td><td>引用限限的</td><td>因影響響響</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	發展的感謝	全国际利益	引用限限的	因影響響響	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
10/27/2020				<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td></lld<>		

Samples analyzed for tritium Values noted are in microcuries per milliliter (uCi/mL)

(Note: A "*" symbol following a sample result denotes a gamma count was performed. Any gamma results above LLD will be additionally flagged and documented in the analysis section.)

2020 GPI Sample Data

Samples analyzed for tritium. Values noted are in microcuries per milliliter (uCi/mL) Lower Limit of Detection - LLD MW-28 **MW-29** OW-1 OW-2 **OW-4** Date 95-11A <LLD 01/14/2020 01/22/2020 1.14e-6 <LLD 02/19/2020 <LLD <LLD <LLD <LLD 03/03/2020 04/16/2020 <LLD <LLD 06/24/2020 <LLD <LLD

<LLD

<LLD

<LLD*

<LLD

08/30/2020

11/09/2020

(Note: A "*" symbol following a sample result denotes a gamma count was performed. Any gamma results above LLD will be additionally flagged and documented in the analysis section.)

2020 GPI Sample Data

Samples analyzed for tritium.	Values noted are in microcuries per milliliter (uCi/mL)	
Lov	ver Limit of Detection = LLD	

Date	SG-1	SG-2	SG-4	SG-5	EW-19	MW-20	MW-21	EW-18
01/07/2020					<lld< td=""><td></td><td></td><td></td></lld<>			
01/16/2020	目時調約		目的政策的		如國際政策的	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
01/28/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td></td><td></td></lld<>				
04/14/2020	任职就提		の影響であ			<lld< td=""><td><lld< td=""><td>出版語 智慧的制</td></lld<></td></lld<>	<lld< td=""><td>出版語 智慧的制</td></lld<>	出版語 智慧的制
04/22/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td></td><td></td></lld<>				
07/06/2020	自然秘密	请你的问题。	目的國家是	的影响就能能	<lld< td=""><td></td><td></td><td></td></lld<>			
07/14/2020						<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
07/15/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td>机能和规则</td><td></td><td>目目的感觉影响</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td>机能和规则</td><td></td><td>目目的感觉影响</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td>机能和规则</td><td></td><td>目目的感觉影响</td></lld<></td></lld<>	<lld< td=""><td></td><td>机能和规则</td><td></td><td>目目的感觉影响</td></lld<>		机能和规则		目目的感觉影响
10/05/2020					<lld< td=""><td></td><td></td><td></td></lld<>			
10/15/2020			國語論認知		11月月月後後		<lld< td=""><td>民族风险的</td></lld<>	民族风险的
10/20/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td><lld< td=""><td></td><td></td></lld<></td></lld<>		<lld< td=""><td></td><td></td></lld<>		
		引起的主义	可能利用。				1回20月25	

(Note: A "*" symbol following a sample result denotes a gamma count was performed. Any gamma results above LLD will be additionally flagged and documented in the analysis section.)

2020 GPI Sample Data

Samples analyzed for tritium. Values noted are in microcuries per milliliter (uCi/mL) Lower Limit of Detection = LLD

Date	W-9	W-10	W-11	W-12	W-13	W-14	W-15
01/16/2020		<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
01/23/2020	<lld< td=""><td>自己的感觉</td><td></td><td>計測開始</td><td></td><td></td><td></td></lld<>	自己的感觉		計測開始			
04/07/2020	<lld< td=""><td></td><td></td><td></td><td></td><td></td><td><lld< td=""></lld<></td></lld<>						<lld< td=""></lld<>
04/14/2020	11/2/12/	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
07/14/2020	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
10/14/2020	<lld< td=""><td>自同的語言</td><td>活動動計</td><td></td><td>自然認知的</td><td>國自然國際同</td><td>전 등 (2011년 2012년 1월 1월 1일) 1월 19일 - 1일 - 1일 - 1일 - 1일 - 1일 - 1일 - 1일</td></lld<>	自同的語言	活動動計		自然認知的	國自然國際同	전 등 (2011년 2012년 1월 1월 1일) 1월 19일 - 1일
10/15/2020		<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td></td><td></td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td></td></lld<>			
10/20/2020	國際觀		國國國國際		<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

(Note: A "*" symbol following a sample result denotes a gamma count was performed. Any gamma results above LLD will be additionally flagged and documented in the analysis section.)

Analysis of the Sample Data

The Groundwater Protection Initiative (GPI) Sample Data for 2020 indicates no groundwater contamination in excess of the reporting threshold of 2.00E-5 uCi/mL for tritium. Gamma spectroscopy was performed on all Radiological Environmental Monitoring Program wells quarterly. Those results are not actual GPI results so are not included in the ARERR, but are part of CNP's 2020 Annual Radiological Environmental Operating Report. There were no positively identified gamma radionuclides from plant effluents detected in any of the GPI well samples, and one well with trace levels of tritium just above detection limits.

The LLD value used for tritium counting of the samples was 9.45E-7. This is well below the required maximum LLD value of 2.00E-6 uCi/mL per the ODCM.

No tritium values were found significantly above LLD for 2020, though values found above the LLD are not abnormal, unexpected, or inconsistent with past sampling history. The samples observed above LLD historically were expected results from the release of tritiated water into the Absorption Pond, a licensed pathway and part of plant design, or the result of recapture deposition of tritium from licensed radioactive gaseous release points. The 2020 results were within expected parameters considering the reduction in tritium released to the Absorption Pond and typical rainfall recapture of tritium experienced.

Wells located inside the Protected Area of the plant are subject to recapture deposition of tritium and may show occasional sample results above LLD values following rainfalls and snow melt. The results observed in 2020 continue to reflect normal expectations and behaviors as they relate to recaptured tritium for the weather conditions observed. Well MW-28 lies close to the vent stacks in the predominant wind directions, so it is expected to observe recaptured tritium from precipitation periodically.

There were impacts from the COVID-19 pandemic on sampling which resulted in slightly lower numbers of samples performed than in previous years. Sampling in support of the NEI 07-07 Groundwater Protection Initiative (GPI) was performed per our plant processes and procedures, though the efforts to prevent exposure of essential plant personnel to potential COVID-19 virus exposure led to reducing some sampling activities during periods of increasing trends in virus hospitalizations and positive test information provided by the State of Michigan. Our focus is always on the safety of our workers and the members of the public, and the Cook Plant management made every effort to keep non-essential personnel offsite if possible and away from essential workers required for safe operation of the plant. The GPI is a voluntary industry initiative, so focus was again made on assuring essential regulatory required activities received priority. ODCM required sampling activities as part of the REMP Program are very similar to the GPI utilizing many of the same wells. This redundancy allowed for the scaling back of the non-essential GPI sampling to help reduce worker risk to virus exposure.

The sample data indicates that no radioactive spills or unidentified leaks have occurred in 2020 impacting groundwater. The sample results indicate proper well placement to ensure the protection of the groundwater and early identification of any abnormal conditions involving groundwater. This is validated by the demonstrated ability to monitor percolation from the Absorption Pond and recaptured tritium in precipitation, with flow direction and behavior acting as described in the plant licensing documents.

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

Total Period

Period of Record -	1/1/2020 - 3/31/2020	
Elevation: Speed: SP10M	Direction: DIRIOM Lapse	: DT60M
Stability Class A	Delta Temperature Extremely Unsta	ble

Wind Speed (mph)

Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	<u>Total</u>
N	16	30	2	0	0	0	48
NNE	2	19	1	0	0	Ō	22
NE	2	2	0	0	0	0	4
ENE	6	3	0	0	0	0	9
E	13	4	0	0	0	0	17
ESE	5	5	0	0	0	Ó	10
SE	3	5	0	0	0	0	8
SSE	8	1	6	0	0	0	15
S	4	6	4	0	0	0	14
SSW	2	6	2	2	0	0	12
SW	3	5	8	0	0	0	16
wsw	3	12	8	0	0	0	23
W	0	9	1	0	0	0	10
WNW	2	4	0	0	0	Ó	6
NW	3	18	0	0	Ó	0	21
NNW	4	23	1	0	0	0	28
Total	76	152	33	2	0	0	263
Calm Hours n	ot Included a	bove for :		To	tal Period		8
Valid Hours fo		ty Class fo	r:	To	tal Period		263
Total Hours fo	Total Hours for Period						2184

A2.1-1

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

			То	tal Period	t		
Period of Record =			1/1/2020	- 3/31/	2020		
Elevation: Speed:	SPIOM	Di	rection: 1	DIRIOM	Lapse:	DT60M	
Stability Class B			emperature		erately Unsta		
			•		•		
			Wind	Speed (mp	h)		
Wind Direction	1-4	<u>4-8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	> 25	Total
N	2	7	4	0	0	0	13
NNE	1	2	0	0	0	0	3
NE	5	1	0	0	0	0	6
ENE	0	0	0	0	0	0	0
E	1	2	0	0	0	0	3
ESE	3	0	0	0	0	0	3
SE	2	7	0	0	0	0	9
SSE	2	3	1	0	0	0	6
S	2	3	6	0	0	0	11
SSW	1	2	2	1	0	0	6
SW	1	4	4	0	0	0	9
WSW	0	11	3	0	0	0	14
W	1	6	2	0	0	0	9
WNW	1	3	0	0	0	0	4
NW	0	5	0	0	0	0	5
NNW	2	12	1	0	0	0	15
Total	24	68	23	1	0	0	116
Calm Hours not	Included a	bove for :		To	tal Period		8
Valid Hours for	this Stabili	ty Class fo	r:	To	tal Period		116
Total Hours for	Period						2184

A2.1-2

Joint Frequency Distribution

			To	tat Period	ĺ			
Period of Record -		1/1/2020 - 3/31/2020						
Elevation: Speed:	SP10M	Di	rection: [DIRIOM	Lapse:	DT60M		
Stability Class C		Delta To	mperature	Sligh	tly Unstable			
gariesea a∎ na eran			-					
			White	Speed (mp	anj			
Wind Direction	<u>1-4</u>	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total	
N	2	15	3	0	0	0	20	
NNE	3	9	0	0	0	0	12	
NE	6	1	0	0	0	0	7	
ENE	2	3	0	0	0	0	5	
E	4	8	0	0	0	0	12	
ESE	4	2	0	0	0	0	6	
SE	1	4	0	0	0	0	5	
SSE	1	6	3	0	0	0	10	
S	0	3	5	0	0	0	8	
SSW	0	6	1	1	0	0	8	
SW	0	- 11	1	2	0	0	14	
WSW	1	11	L	0	0	0	13	
W	1	3	0	0	0	0	4	
WNW	0	3	1	0	0	0	4	
NW	2	6	0	0	0	0	8	
NNW	2	8	1	0	0	0	11	
Total	29	99	16	3	0	0	147	
Calm Hours not	t Included a	bove for :		Τα	tal Period		8	
Valid Hours for	this Stabili	ty Class fo	r:	To	tal Period		147	
Total Hours for	Period	0					2184	

Joint Frequency Distribution

			To	al Perioc	1		
Period of Record =			1/1/2020	- 3/31/	2020		
Elevation: Speed:	SPIOM	Di	rection: I	DIRIOM	Lapse:	DT60M	
Stability Class D		Delta To	emperature	Neut	2012/2024 - 2020/2021		
•				- 1 <i>1</i>			
			Wind	Speed (mp	(0)		
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u>19 - 25</u>	<u>> 25</u>	<u>Total</u>
N	38	54	24	1	0	0	117
NNE	27	58	2	0	0	0	87
NE	25	11	0	0	0	0	36
ENE	13	17	0	0	0	0	30
E	15	14	0	0	0	0	29
ESE	19	27	1	0	0	0	47
SE	17	29	23	0	0	0	69
SSE	30	28	16	1	0	0	75
S	22	49	32	6	0	0	109
SSW	9	34	32	8	0	0	83
SW	3	44	22	2	0	0	71
WSW	4	45	18	3	0	0	70
W	11	52	15	0	0	0	78
WNW	5	37	7	0	0	0	49
NW	12	62	6	0	0	0	80
NNW	18	63	11	0	0	0	92
Total	268	624	209	21	0	0	1122
Calm Hours not	t Included a	bove for :		Τα	tal Period		8
Valid Hours for	this Stabili	ity Class fo)r:	To	tal Period		1122
Total Hours for	Period						2184

			To	tal Period	l,		
Period of Record =			1/1/2020	- 3/31/	2020		
Elevation: Speed:	SPIOM	Di	rection:		Lapse:	DT60M	
Stability Class E	91 10101		emperature		tly Stable	DIGON	
Staunny Class L		Dena 1					
			Wind	Speed (mp	oh)		
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	8	1	0	0	0	0	9
NNE	16	0	0	0	0	0	16
NE	12	1	0	0	0	0	13
ENE	5	0	0	0	0	0	5
E	18	3	0	0	0	0	21
ESE	16	3	0	0	0	0	19
SE	11	5	0	0	0	0	16
SSE	17	17	1	0	0	0	35
S	19	37	9	0	0	0	65
SSW	9	17	26	6	0	0	58
SW	7	28	7	0	0	0	42
WSW	6	19	1	0	0	0	26
W	6	15	1	0	0	0	22
WNW	6	7	0	0	0	0	13
NW	6	12	0	0	0	0	18
NNW	7	5	0	0	0	0	12
Total	169	170	45	6	0	0	390
Calm Hours not	Included a	bove for :		Το	tal Period		8
Valid Hours for	this Stabili	ty Class fo	r:	Ta	tal Period		390
Total Hours for	Period						2184

Joint Frequency Distribution

			To	tal Period	I		
Period of Record =			1/1/2020	- 3/31/	2020		
Elevation: Speed:	SPIOM	Dir	ection: 1	DIRIOM	Lapse:	DT60M	
Stability Class F		000000-	mperature		erately Stabl		
			wina	Speed (mp	n)		
Wind Direction	1-4	4-8	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	<u>Total</u>
N	1	0	0	0	0	0	1
NNE	3	0	0	0	0	0	3
NE	3	0	0	0	0	0	3
ENE	8	0	0	0	0	0	8
E	11	0	0	0	0	0	11
ESE	4	0	0	0	0	0	4
SE	6	0	0	0	0	0	6
SSE	12	1	0	0	0	0	13
S	11	1	0	0	0	0	12
SSW	5	0	0	0	0	0	5
SW	6	0	0	0	0	0	6
WSW	2	0	0	0	0	0	2
W	2	0	0	0	0	0	2
WNW	1	0	0	0	0	0	1
NW	3	0	0	0	0	0	3
NNW	0	0	0	0	0	0	0
Total	78	2	0	0	0	0	80
Calm Hours no	t Included	bove for :		To	tal Period		8
Valid Hours for	this Stabili	ty Class fo	r:	Τα	tal Period		80
Total Hours for		8253					2184

Joint Frequency Distribution

Total Period 1/1/2020 - 3/31/2020 Period of Record -Elevation: Speed: SPIOM Direction: DIRIOM Lapse: DT60M Stability Class G Delta Temperature **Extremely Stable** Wind Speed (mph) Wind Direction 1-4 > 25 8 - 13 13 - 19 19-25 Total 4-8 N NNE I NE ENE Е ESE SE SSE S SSW SW WSW W WNW Ô NW NNW Total Calm Hours not Included above for : **Total Period** Valid Hours for this Stability Class for: **Total Period Total Hours for Period**

Hours at Each Wind Speed and Direction

A2.1-7

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

Total Period

Summary	of All	Stability	Classes
---------	--------	-----------	---------

Period of Re	cord =		1/1/202	0 - 3/31	/2020	
Elevation:	Speed:	SPIOM	Direction:	DIRIOM	Lapse:	DT60M

Delta Temperature

Wind Speed (mph)

Wind Direction	1-4	4-8	<u>8 - 13</u>	<u>13 - 19</u>	19 - 25	<u>> 25</u>	Total
N	67	107	33	1	0	0	208
NNE	53	88	3	0	0	0	144
NE	55	16	0	0	0	0	71
ENE	39	23	0	0	0	0	62
E	68	31	0	0	0	0	99
ESE	56	37	1	0	0	0	94
SE	45	50	23	0	0	0	118
SSE	73	56	27	1	0	0	157
S	60	99	56	6	0	0	221
SSW	26	65	63	18	0	0	172
SW	20	92	42	4	0	0	158
WSW	16	98	31	3	0	0	148
W	21	85	19	0	0	0	125
WNW	15	54	8	0	0	0	77
NW	26	103	6	0	0	0	135
NNW	35	111	14	0	0	0	160
Total	675	1115	326	33	0	0	2149
Calm Hours n	ot Included	bove for :		To	tal Period		8
Variable Dire	Variable Direction Hours for:				tal Period		0
Invalid Hours	for:			To	tal Period		27
Valid Hours f	or this Stabll	ity Class fo	r:	Ta	tal Period		2149
Total Hours f	or Period	45.					2184

A2.1-8

Hours at Each Wind Speed and Direction

	Total Period					
Period of Record =	4/1/2020 - 6/30/2020					
Elevation: Speed: SP10M	Direction: DIR10M Lapse: DT60M					
Stability Class A	Delta Temperature Extremely Unstable					

Wind Speed (mph)

Wind Direction	<u>1-4</u>	<u>4 - 8</u>	<u>8 • 13</u>	<u>13 - 19</u>	<u>19 - 25</u>	<u>> 25</u>	<u>Total</u>
N	20	79	13	0	0	0	112
NNE	6	10	1	0	0	0	17
NE	4	0	0	0	0	0	4
ENE	3	5	0	0	0	0	8
E	4	13	1	0	0	0	18
ESE	1	7	2	0	0	0	10
SE	5	20	5	0	0	0	30
SSE	0	14	3	0	0	0	17
S	3	10	4	0	0	0	17
SSW	0	2	1	0	0	0	3
SW	1	21	6	0	0	0	28
WSW	3	33	3	0	0	0	39
W	0	12	6	0	0	0	18
WNW	4	19	5	0	0	0	28
NW	7	20	3	0	0	0	30
NNW	29	53	5	0	0	0	87
Total	90	318	58	0	0	0	466
Calm Hours n	ot Included a	bove for :		To	tal Period		22
Valid Hours fo	or this Stabili	ity Class for	:	To	tal Period		466
Total Hours fo							2184

A2.2-1

Period of Record =

Stability Class B

Elevation: Speed: SP10M

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

Total	Period
4/1/2020	- 6'30 2020

Direction: DIR10M Lapse: DT60M Delta Temperature Moderately Unstable

Wind Speed (mph)

Wind Direction	<u>1 - 4</u>	4-8	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	8	9	2	0	0	0	19
NNE	1	2	1	0	0	0	4
NE	0	0	0	0	0	0	0
ENE	1	0	0	0	0	0	1
E	0	7	0	0	0	0	7
ESE	0	2	0	0	0	0	2
SE	1	3	0	0	0	0	4
SSE	1	10	1	0	0	0	12
S	0	9	2	0	0	0	11
SSW	0	3	1	0	0	0	4
SW	0	10	5	0	0	0	15
WSW	0	16	0	0	0	0	16
W	0	6	0	0	0	0	6
WNW	2	1	0	0	0	0	3
NW	1	0	0	0	0	0	1
NNW	5	4	1	0	0	0	10
Total	20	82	13	0	0	0	115
Calm Hours a	Calm Hours not Included above for :			Ta	tal Period		22
Valid Hours fo	or this Stabili	ity Class fo	r:	То	tal Period		115
Total Hours fo							2184

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

	Total Period
Period of Record =	4/1/2020 - 6/30/2020
Elevation: Speed: SPIOM	Direction: DIRIOM Lapse: DT60M
Stability Class C	Delta Temperature Slightly Unstable
	Wind Speed (math)

Wind Speed (mph)

Wind Direction	1-4	4-8	8-13	<u>13 - 19</u>	<u>19 - 25</u>	<u>> 25</u>	Total
N	11	9	3	0	0	0	23
NNE	3	0	0	0	0	0	3
NE	3	2	0	0	0	0	5
ENE	0	2	0	0	0	0	2
E	1	3	0	0	0	0	4
ESE	1	1	0	0	0	0	2
SE	3	5	1	0	0	0	9
SSE	3	4	1	0	0	0	8
S	2	4	0	0	0	0	6
SSW	1	5	1	0	0	0	7
SW	3	10	2	0	0	0	15
WSW	0	6	1	0	0	0	7
W	3	3	0	0	0	0	6
WNW	2	3	1	0	0	0	6
NW	1	I	2	0	0	0	4
NNW	12	5	1	0	0	0	18
Total	49	63	13	0	0	0	125
Calm Hours n	ot Included a	bove for :		To	tal Period		22
Valid Hours fo	or this Stabili	ty Class fo	r:	То	tal Period		125
Total Hours fo	r Period						2184

A2.2-3

Hours at Each Wind Speed and Direction

	Total Period									
Period of Record -			4/1/2020	- 6/30/	2020					
Elevation: Speed:	SP10M	Di	rection: I	DIRIOM	Lapse:	DT60M				
Stability Class D		Deita To	emperature	Neut	ral					
			Wind	Speed (mp	h)					
Wind Direction	1.4	<u>4 - 8</u>	8-13	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total			
N	39	38	12	0	0	0	89			
NNE	18	13	1	0	0	0	32			
NE	15	1	0	0	0	0	16			
ENE	9	21	0	0	0	0	30			
E	17	16	5	0	0	0	38			
ESE	14	26	1	0	0	0	41			
SE	14	29	0	0	0	0	43			
SSE	13	24	2	0	0	0	39			
S	14	19	3	0	0	0	36			
SSW	5	43	16	0	0	0	64			
SW	12	30	25	0	0	0	67			
WSW	9	13	2	0	0	0	24			
W	8	19	3	0	0	0	30			
WNW	3	11	1	0	0	0	15			
NW	7	10	3	0	0	0	20			
NNW	14	22	7	0	0	0	43			
Total	211	335	81	0	0	0	627			
Calm Hours not				To	tal Period		22			
Valid Hours for		ty Class fo	r:	To	tal Period		627			
Total Hours for	Period						2184			

A2.2-4

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

Total	Period

Period of Record =	20	
Elevation: Speed: SP10M	Direction: DIR10M	Lapse: DT60M
Stability Class E	Delta Temperature Slightly	Stable

Wind Speed (mph)

Wind Direction	<u>1-4</u>	<u>4 - 8</u>	8-13	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	33	13	1	0	0	0	47
NNE	28	11	0	0	0	0	39
NE	29	0	0	0	0	0	29
ENE	13	2	0	0	0	0	15
E	21	8	0	0	0	0	29
ESE	24	4	0	0	0	0	28
SE	19	3	0	0	0	0	22
SSE	31	19	0	0	0	0	50
S	36	17	3	0	0	0	56
SSW	9	12	5	2	0	0	28
SW	11	22	3	0	0	0	36
WSW	6	13	0	0	0	0	19
W	2	5	0	0	0	0	7
WNW	5	1	1	0	0	0	7
NW	8	2	1	0	0	0	11
NNW	15	5	0	0	0	0	20
Total	290	137	14	2	0	0	443
Caim Hours n	ot Included a	bove far :		То	tal Period		22
Valid Hours fo	or this Stabili	ity Class fo	r:	Τα	tal Period		443
Total Hours for Period							2184

Hours at Each Wind Speed and Direction

	Total Period									
Period of Record -			4/1/2020	- 6/30	2020					
Elevation: Speed:	SPIOM	Di	rection:	DIRIOM	Lapse:	DT60M				
Stability Class F		Delta To	emperature	Mode	erately Stable	•				
				Speed (mp	_					
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total			
N	6	0	0	0	0	0	6			
NNE	11	0	0	0	0	0	11			
NE	19	0	0	0	0	0	19			
ENE	15	0	0	0	0	0	15			
E	25	0	0	0	0	0	25			
ESE	28	0	0	0	0	0	28			
· SE	21	0	0	0	0	0	21			
SSE	20	0	0	0	0	0	20			
S	16	3	0	0	0	0	19			
SSW	3	2	0	0	0	0	5			
SW	1	0	0	0	0	0	1			
WSW	4	1	0	0	0	0	5			
W	1	0	0	0	0	0	1			
WNW	1	0	0	0	0	0	1			
NW	1	1	0	0	0	0	2			
NNW	7	0	0	0	0	0	7			
Total	179	7	0	0	0	0	186			
Calm Hours not				To	tal Period		22			
Valid Hours for		ty Class for	r:	To	tal Period		186			
Total Hours for	Period						2184			

Total Dania d

A2.2-6

Hours at Each Wind Speed and Direction

			To	tal Perioc	L		
Period of Record =			4/1/2020	- 6/30/	2020		
Elevation: Speed:	SPIOM	Di	ection:	DIRIOM	Lapse:	DT60M	
Stability Class G			emperature		mely Stable		
				Speed (mp	5		
				opera ()	,		
Wind Direction	1-4	4-8	<u>8 - 13</u>	<u>[3 - 19</u>	<u>19 - 25</u>	<u>> 25</u>	Total
N	1	0	0	0	0	0	1
NNE	3	0	0	0	0	0	3
NE	13	1	0	0	0	0	14
ENE	26	0	0	0	0	0	26
E	47	0	0	0	0	0	47
ESE	20	0	0	0	0	0	20
SE	14	0	0	0	0	0	14
SSE	24	0	0	0	0	0	24
S	11	0	0	0	0	0	11
SSW	4	0	0	0	0	0	4
SW	5	0	0	0	0	0	5
WSW	2	0	0	0	0	0	2
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	3	0	0	0	0	0	3
NNW	4	0	0	0	0	0	4
Total	177	1	0	0	0	0	178
Calm Hours not				To	tal Period		22
Valid Hours for		ty Class fo	r:	To	tal Period		178
Total Hours for	Period						2184

A2.2-7

Hours at Each Wind Speed and Direction

Summary of All Stability Classes

			Т	otal Period		
Period of R	ecord =		4/1/20	20 - 6/30/2	2020	
Elevation:	Speed:	SPIOM	Direction:	DIRIOM	Lapse:	DT60M
			Delta Temperatu	re		

Wind Speed (mph)

> 25 Wind Direction 13 - 19 4-8 8-13 19-25 Total 1-4 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW Total Calm Hours not Included above for : **Total Period Total Period** Variable Direction Hours for: **Total Period** Invalid Hours for: Valid Hours for this Stability Class for: **Total Period Total Hours for Period**

	Total Period								
Period of Record =			7/1/2020	- 9/30	2020				
Elevation: Speed:	SPIOM								
Stability Class A	A Delta Temperature Extremely Unstable								
•			Wind	Speed (mp	ь)				
				opero (mp	,				
Wind Direction	1-4	4 - 8	8-13	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total		
N	41	7 9	0	0	0	0	120		
NNE	11	8	0	0	0	0	19		
NE	5	5	0	0	0	0	10		
ENE	2	3	0	0	0	0	5		
E	3	6	0	0	0	0	9		
ESE	5	10	0	0	0	0	15		
SE	4	4	0	0	0	0	8		
SSE	2	12	0	0	0	0	14		
S	0	12	2	0	0	0	14		
SSW	1	13	4	0	0	0	18		
SW	3	34	2	0	0	0	39		
WSW	4	24	0	0	0	0	28		
W	7	19	0	0	0	0	26		
WNW	10	11	0	0	0	0	21		
NW	8	7	0	0	0	0	15		
NNW	27	32	0	0	0	0	59		
Total	133	279	8	0	0	0	420		
Calm Hours no	t Included a	bove for :		To	tal Period		74		
Valid Hours for	r this Stabili	ty Class fo	or:	To	tal Period		420		
Total Hours for	r Period						2208		

Hours at Each Wind Speed and Direction

	Total Period								
Period of Record =			7/1/2020	- 9/30	2020				
Elevation: Speed:	SP10M	Di	ection: I		100 E. A. 10 E.	DT60M			
Stability Class B		Delta Te	mperature	Mod	erately Unsta				
0.55444									
			wina	Speed (mp	n)				
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	<u>Total</u>		
N	8	3	0	0	0	0	11		
NNE	2	0	0	0	0	0	2		
NE	1	0	0	0	0	0	1		
ENE	1	0	0	0	0	0	1		
E	1	0	0	0	0	0	I		
ESE	5	1	0	0	0	0	6		
SE	0	1	0	0	0	`О	L		
SSE	1	2	0	0	0	0	3		
S	6	8	3	0	0	0	17		
SSW	2	22	7	0	0	0	31		
SW	4	18	0	0	0	0	22		
WSW	1	5	0	0	0	0	6		
w	5	1	0	0	0	0	6		
WNW	3	2	0	0	0	0	5		
NW	4	0	0	0	0	0	4		
NNW	5	1	0	0	0	0	6		
Total	49	64	10	0	0	0	123		
Calm Hours not	Included a	bove for :		Τα	tal Period		74		
Valid Hours for	this Stabili	ty Class fo	r:	Τα	tal Period		123		
Total Hours for	Period						2208		

Hours at Each Wind Speed and Direction

	Total Period								
Period of Record =			7/1/2020	- 9/30/	2020				
Elevation: Speed:	SP10M	Dire	ection: [DIRIOM	Lapse:	DT60M			
Stability Class C			mperature		tly Unstable				
•				-					
			Wind	Speed (mp	h)				
Wind Direction	<u>1 - 4</u>	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	> 25	<u>Total</u>		
N	8	8	0	0	0	0	16		
NNE	L	0	0	0	0	0	1		
NE	5	2	0	0	0	0	7		
ENE	I	1	0	0	0	0	2		
E	5	0	0	0	0	0	5		
ESE	3	0	0	0	0	0	3		
SE	5	2	0	0	0	0	7		
SSE	3	0	0	0	0	0	3		
S	1	6	0	0	0	0	7		
SSW	2	7	2	0	0	0	11		
SW	2	14	1	0	0	0	17		
WSW	4	0	0	0	0	0	4		
W	1	0	0	0	0	0	1		
WNW	5	0	0	0	0	0	5		
NW	3	1	1	0	0	0	5		
NNW	4	0	0	0	0	0	4		
Total	53	41	4	0	0	0	98		
Calm Hours not	Included a	bove for :		То	tal Period		74		
Valid Hours for	this Stabili	ty Class for	:	То	tal Period		98		
Total Hours for	Period						2208		

Hours at Each Wind Speed and Direction

			To	tal Period	l		
Period of Record =			7/1/2020	- 9:30	2020		
Elevation: Speed:	SPIOM	Di	rection: 1	DIRIOM	Lapse:	DT60M	
Stability Class D		Deita To	emperature	Neut	-		
			Wind	Speed (mp	h)		
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	60	17	0	0	0	0	77
NNE	25	1	0	0	0	0	26
NE	17	5	0	0	0	0	22
ENE	13	1	0	0	0	0	14
E	9	6	0	0	0	0	15
ESE	13	4	0	0	0	0	17
SE	12	7	0	0	0	0	19
SSE	9	3	0	0	0	0	12
S	13	20	18	0	0	0	51
SSW	3	57	15	2	0	0	77
SW	7	52	5	0	0	0	64
WSW	5	12	0	0	0	0	17
W	8	4	1	0	0	0	13
WNW	12	4	0	0	0	0	16
NW	7	4	2	0	0	0	13
NNW	18	2	0	0	0	0	20
Total	231	199	41	2	0	0	473
Caim Hours not				To	tal Period		74
Valid Hours for	this Stabili	ty Class fo	r:	То	tal Period		473
Total Hours for	Period						2208

Hours at Each Wind Speed and Direction

	Total Period
Period of Record =	7/1/2020 - 9/30/2020
Elevation: Speed: SP10M	Direction: DIRIOM Lapse: DT60M
Stability Class E	Delta Temperature Slightly Stable

Wind Speed (mph)

Wind Direction	<u>1-4</u>	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	40	21	0	0	0	0	61
NNE	36	1	0	0	0	Õ	37
NE	34	1	1	0	0	0	36
ENE	11	0	0	0	0	0	11
E	19	0	0	0	0	0	19
ESE	22	0	0	0	0	0	22
SE	17	0	0	0	0	0	17
SSE	20	0	0	0	0	0	20
S	35	26	1	0	0	0	62
SSW	15	28	0	0	0	0	43
SW	15	10	0	0	0	0	25
WSW	6	7	0	0	0	0	13
W	5	7	0	0	0	0	12
WNW	9	5	1	0	0	0	15
NW	8	4	0	0	0	0	12
NNW	13	5	0	0	0	0	18
Total	305	115	3	0	0	0	423
Calm Hours n	Calm Hours not Included above for :			To	tal Period		74
Valid Hours f	or this Stabili	ty Class for	r:	То	tal Period		423
Total Hours for Period							2208

Hours at Each Wind Speed and Direction

			To	tal Period	ł		
Period of Record -			7/1/2020	- 9/30/	2020		
Elevation: Speed:	SPIOM	Dir	ection:	DIRIOM	Lapse:	DT60M	
Stability Class F		Deita Te	mperature	Mode	erately Stabl		
			wing	Speed (mp	n)		
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u>19 - 25</u>	<u>> 25</u>	Total
N	9	0	0	0	0	0	9
NNE	6	0	0	0	0	0	6
NE	25	0	0	0	0	0	25
ENE	22	0	0	0	0	0	22
E	32	0	0	0	0	0	32
ESE	28	0	0	0	0	0	28
SE	21	0	0	0	0	0	21
SSE	36	0	0	0	0	0	36
S	33	3	0	0	0	0	36
SSW	10	0	0	0	0	0	10
SW	2	0	0	0	0	0	2
WSW	2	0	0	0	0	0	2
w	4	0	0	0	0	0	4
WNW	2	0	0	0	0	0	2
NW	5	0	0	0	0	0	5
NNW	5	0	0	0	0	0	5
Total	242	3	0	0	0	0	245
Calm Hours not	Included a	bove for :		Τα	tal Period		74
Valid Hours for	this Stabili	ity Class fo	f:	Ta	tal Period		245
Total Hours for	Period						2208

Hours at Each Wind Speed and Direction

			Total Period						
Period of Re	cord =		7/1/202	- 9/30/20	020				
Elevation:	Speed:	SPIOM	Direction:	DIRIOM	Lapse:	DT60M			
Stability Cla	ss G		Delta Temperatur	e Extrem	ely Stable				

Wind Speed (mph)

Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	19 - 25	> 25	<u>Total</u>
N	2	0	0	0	0	0	2
NNE	2	0	0	0	0	0	2
NE	25	0	0	0	0	0	25
ENE	33	0	0	0	0	0	33
C	64	0	0	0	0	0	64
ESE	40	0	0	0	0	0	40
SE	40	0	0	0	0	0	40
SSE	60	0	0	0	0	0	60
S	52	0	0	0	0	0	52
SSW	19	0	0	0	0	0	19
SW	3	0	0	0	0	0	3
WSW	0	0	0	0	0	0	0
w	2	0	0	0	0	0	2
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	3	0	0	0	0	0	3
Total	345	0	0	0	0	0	345
Calm Hours	Calm Hours not Included above for :			Τα	tal Period		74
Valid Hours	for this Stabili	ty Class fo	r:	Τα	tal Period		345
Total Hours for Period							2208

Summary of	All Stabil	ity Classes				
			т	otal Period		
Period of Rea	cord =		7/1/20	20 - 9'30'20	20	
Elevation:	Speed:	SP10M	Direction:	DIRIOM	Lapse:	DT60M

Hours at Each Wind Speed and Direction

Delta Temperature

Wind Speed (mph)

Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	168	128	0	0	0	0	296
NNE	83	10	0	0	0	0	93
NE	112	13	1	0	0	0	126
ENE	83	5	0	0	0	0	88
E	133	12	0	0	0	0	145
ESE	116	15	0	0	0	0	131
SE	99	14	0	0	0	0	113
SSE	131	17	0	0	0	0	148
S	140	75	24	0	0	0	239
SSW	52	127	28	2	0	0	209
SW	36	128	8	0	0	0	172
WSW	22	48	0	0	0	0	70
W	32	31	1	0	0	0	64
WNW	41	22	1	0	0	0	64
NW	35	16	3	0	0	0	54
NNW	75	40	0	0	0	0	115
Total	1358	701	66	2	0	0	2127
Calm Hours	not Included a	bove for :		Та	tal Period		74
Variable Dire	Variable Direction Hours for:			Т	tal Period		0
Invalid Hour	s for:			To	tal Period		7
Valid Hours	for this Stabili	ity Class for	r:	Ta	tal Period		2127
Total Hours	for Period						2208

Hours at Each Wind Speed and Direction

			То	tal Period	Í						
Period of Record -	10/1/2020 - 12/31/2020										
Elevation: Speed:	SPIOM	Di	rection: 1	DIRIOM	Lapse	DT60M					
Stability Class A			emperature		mely Unsta						
and the second second second											
			wind	Speed (mp	n)						
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	<u>Total</u>				
N	2	9	2	0	0	0	13				
NNE	1	2	0	0	0	0	3				
NE	0	1	0	0	0	0	1				
ENE	0	2	0	0	0	0	2				
E	0	4	0	0	0	0	4				
ESE	0	2	0	0	0	0	2				
SE	0	2	0	0	0	0	2 2				
SSE	0	2	0	0	0	0	2				
S	0	0	3	1	0	0	4				
SSW	0	0	1	0	0	0	1				
SW	0	7	3	0	0	0	10				
WSW	0	4	2	0	0	0	6				
W	0	2	1	0	0	0	3				
WNW	0	4	1	0	0	0	5				
NW	1	7	0	0	0	0	8				
NNW	1	11	0	0	0	0	12				
Total	5	59	13	1	0	0	78				
Calm Hours not	Included a	bove for :		To	tal Period		3				
Valid Hours for	this Stabili	ty Class fo) 7 :	Ta	tal Period		78				
Total Hours for	Period	3					2208				

Hours at Each Wind Speed and Direction

	Total Period					
Period of Record =	10/1/2020 - 12/31/2020					
Elevation: Speed: SP10M	Direction: DIR10M Lapse: DT60M					
Stability Class B	Delta Temperature Moderately Unstable					

Wind Speed (mph)

Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	> 25	Total
N	1	1	0	0	0	0	2
NNE	0	2	0	0	0	0	2
NE	0	1	0	0	0	0	1
ENE	1	1	0	0	0	0	2
E	0	3	0	0	0	0	3
ESE	0	3	0	0	0	0	3
SE	0	0	0	0	0	0	0
SSE	0	6	0	0	0	0	6
S	0	3	11	1	0	0	15
SSW	0	3	7	0	0	0	10
SW	0	13	7	0	0	0	20
WSW	0	2	0	0	0	0	2
W	0	5	0	0	0	0	5
WNW	0	3	0	0	0	0	3
NW	0	1	0	0	0	0	1
NNW	1	3	0	0	0	0	4
Total	3	50	25	1	0	0	7 9
Calm Hours no	Calm Hours not Included above for :			To	tal Period		3
Valid Hours for this Stability Class for:			r:	To	tal Period		79
Total Hours for	r Period						2208

NNW

Joint Frequency Distribution

Hours at Each Wind Speed and Direction

Dedud - Channel -				tal Period								
Period of Record = Elevation: Speed: Stability Class C	SPIOM	Di	rection: I emperature	A REPORTED THE	Lapse: tly Unstable	DT60M						
			Wind	Speed (mp	oh)							
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	> 25	<u>Total</u>					
N	1	3	0	0	0	0	4					
NNE	1	3	0	0	0	0	4					
NE	0	2	0	0	0	0	2					
ENE	0	3	0	0	0	0	3					
E	1	2	0	0	0	0	3					
ESE	0	1	0	0	0	0	1					
SE	1	1	0	0	0	0	2					
SSE	0	9	1	0	0	0	10					
S	0	6	12	1	0	0	19					
SSW	0	6	8	1	0	0	15					
SW	0	8	5	0	0	0	13					
WSW	0	9	1	0	0	0	10					
W	2	0	0	0	0	0	2					
WNW	1	3	0	0	0	0	4					
NW	0	6	0	0	0	0	6					
					-							

Total	10	65	27	2	0	0	104
Calm Hours no	t Included a	bove for :		Tota	l Period		3
Valid Hours for	this Stabili	ty Class for:	:	Tota	I Period		104
Total Hours for	Period						2208

Hours at Each Wind Speed and Direction

	Total Period				
Period of Record =	10/1/2020 - 12/31/20	20			
Elevation: Speed: SP10M	Direction: DIRIOM	Lapse: DT60M			
Stability Class D	Deita Temperature Neutral				

Wind Speed (mpb)

Wind Direction	<u>1-4</u>	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	> 25	Total
N	20	43	24	0	0	0	87
NNE	29	8	0	0	0	0	37
NE	23	2	0	0	0	0	25
ENE	19	24	0	0	0	0	43
E	28	19	1	0	0	0	48
ESE	17	8	0	0	0	0	25
SE	24	37	17	0	0	0	78
SSE	19	37	16	1	0	0	73
S	12	45	57	16	0	0	130
SSW	5	46	35	8	0	0	94
SW	3	50	30	5	0	0	88
WSW	6	32	20	9	0	0	67
W	4	31	16	1	0	0	52
WNW	11	34	9	0	0	0	54
NW	13	58	11	0	0	0	82
NNW	10	48	36	0	0	0	94
Total	243	522	272	40	0	0	1077
Caim Hours a Valid Hours f Total Hours f	or this Stabil				otal Period Ital Period		3 1077 2208

Hours at Each Wind Speed and Direction

			То	tal Period	1		
Period of Record =			10/1/2020	- 12/31	/2020		
Elevation: Speed:	SPIOM	Dù	rection:	DIRIOM	Lapse:	DT60M	
Stability Class E			mperature		tly Stable		
				_			
			Wind	Speed (mp	h)		
Wind Direction	<u>1-4</u>	<u>4-8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	28	9	0	0	0	0	37
NNE	26	0	0	0	0	0	26
NE	35	0	0	0	0	0	35
ENE	15	0	0	0	0	0	15
E	22	2	0	0	0	0	24
ESE	24	8	0	0	0	0	32
SE	25	13	2	0	0	0	40
SSE	32	21	15	0	0	0	68
S	12	80	31	1	0	0	124
SSW	12	27	22	1	0	0	62
SW	6	28	13	0	0	0	47
WSW	4	7	1	0	0	0	12
W	6	8	0	0	0	0	14
WNW	11	9	0	0	0	0	20
NW	18	24	1	0	0	0	43
NNW	9	37	0	0	0	0	46
Total	285	273	85	2	0	0	645
Calm Hours not	Included a	bove for :		To	tal Period		3
Valid Hours for	this Stabili	ty Class fo	r:	Ta	tal Period		645
Total Hours for	Period						2208

Hours at Each Wind Speed and Direction

Total Period

Period of Re	cord =		10/1/202	20 - 12/3	1/2020	
Elevation:	Speed:	SPIOM	Direction:	DIRIOM	Lapse:	DT60M
Stability Cla	ss F		Delta Temperatu	re Moo	derately Stable	

Wind Speed (mph)

Wind Direction	1-4	4-8	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	Total
N	2	0	0	0	0	0	2
NNE	5	0	0	0	0	0	5
NE	5	0	0	0	0	0	5
ENE	7	0	0	0	0	0	7
E	2	0	0	0	0	0	2
ESE	12	0	0	0	0	0	12
SE	22	3	0	0	0	0	25
SSE	33	13	0	0	0	0	46
S	8	7	0	0	0	0	15
SSW	3	1	0	0	0	0	4
SW	1	0	0	0	0	0	1
WSW	1	0	0	0	0	0	1
W	0	0	0	0	0	0	0
WNW	1	0	0	0	0	0	1
NW	0	0	0	0	0	0	0
NNW	1	0	0	0	0	0	1
Total	103	24	0	0	0	0	127
Calm Hours	not Included a	bove for :		Τα	tal Period		3
Valid Hours	for this Stabili	ity Class for	r:	To	tal Period		127
Total Hours	for Period						2208

Hours at Each Wind Speed and Direction

			To	tal Period	I.		
Period of Record =		1	10/1/2020	- 12/31	/2020		
Elevation: Speed:	SPIOM		ection: I		Lapse:	DT60M	
Stability Class G			mperature		mely Stable	DIOUM	
		20110-10			•		
			Wind	Speed (mp	h)		
Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	<u> 19 - 25</u>	<u>> 25</u>	<u>Total</u>
N	0	0	0	0	0	0	0
NNE	1	0	0	0	0	Ó	1
NE	3	0	0	0	0	0	3
ENE	9	0	0	0	0	0	9
E	11	0	0	0	0	0	11
ESE	15	0	0	0	0	0	15
SE	23	1	0	0	0	0	24
SSE	18	0	0	0	0	0	18
S	9	0	0	0	0	0	9
SSW	3	0	0	0	0	0	3
SW	1	0	0	0	0	0	1
WSW	0	0	0	0	0	0	0
w	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	1	0	0	0	0	0	1
Total	94	1	0	0	0	0	95
Calm Hours not	Included a	bove for :		To	tal Period		3
Valid Hours for	this Stabili	ty Class for	r:	To	tal Period		95
Total Hours for	Period						2208

Summary of All Stability Classes **Total Period** 10/1/2020 - 12/31/2020 Pe Ek Direction: DIR10M Lapse: DT60M

Hours at Each Wind Speed and Direction

riod of Re	cord =		
levation:	Speed:	SPIOM	

Delta Temperature

Wind Speed (mph)

Wind Direction	1-4	<u>4 - 8</u>	<u>8 - 13</u>	<u>13 - 19</u>	19-25	<u>> 25</u>	Total
N	54	65	26	0	0	0	145
NNE	63	15	0	0	0	0	78
NE	66	6	0	0	0	0	72
ENE	51	30	0	0	0	0	81
E	64	30	1	0	0	0	95
ESE	68	22	0	0	0	0	90
SE	95	57	19	0	0	0	171
SSE	102	88	32	1	0	0	223
S	41	141	114	20	0	0	316
SSW	23	83	73	10	0	0	189
SW	11	106	58	5	0	0	180
WSW	11	54	24	9	0	0	98
W	12	46	17	1	0	0	76
WNW	24	53	10	0	0	0	87
NW	32	96	12	0	0	0	140
NNW	26	102	36	0	0	0	164
Total	743	994	422	46	0	0	2205
Calm Hours	ot Included a	bove for :		Ta	tal Period		3
Variable Dire	ction Hours f	or:		To	tal Period		0
Invalid Hours	for:			Te	kal Period		0
Valid Hours f	Valid Hours for this Stability Class for:						2205
Total Hours f	or Period						2208

OFF-SITE DOSE CALCULATION MANUAL CHANGES

The Off-Site Dose Calculation Manual, PMP-6010-OSD-001, was revised during this 2020 reporting period. The new revision (#27) was supporting the Radiation Monitor Replacement projects, and went into effect on December 15, 2020. This revision completes the transition, removing the older monitors and leaving just the applicable new replacements. Revision 27 has been attached.

American Electric Power Service Corporation - Cook

Document Info

Document Number : PMP-6010-OSD-001

Title : OFF-SITE DOSE CALCULATION MANUAL Effective Date: 12/15/2020

Workflow Info

Revision Type: Major Editorial Correction

Admin Hold AR #:

CDI/50.59/EC #:

PORC Mtg #: 4824

CARB Mtg #:

Superseding Proc(s):

Training Required: No

Verification/Validation Complete: No

Approvals

Name	Review/Approval	Date
Dave Raye-i728074	Emergency Preparedness - Cross Discipline Review	10/21/2020 1:26:13 PM
Bob Bennett-i059343	Operations - Cross Discipline Review	10/21/2020 2:47:32 PM
Phil Sobottke-i834691	Chemistry - Cross Discipline Review	10/21/2020 2:57:03 PM
Kyle A Gerard-s295619	Radiation Protection - Cross Discipline Review	10/21/2020 3:40:06 PM
Bruce Abbgy-i001155	Qualified Technical Review	10/22/2020 8:49:42 AM
Kelly J Ferneau-s252555	Approval Authority	11/4/2020 10:51:36 AM

Signature Comments

Revision Number: 027

Form Number: CNP-WF-1877

Type: Procedure

		MIC	NANA CHIGAN WER	PMP-6010-OSD-001	Rev. 27	Page 1 of 92
			O	FF-SITE DOSE CALCULATI	ON MANUAL	
	Information			· · · · · · · · · · · · · · · · · · ·		
Γ		Erik Me		Environmental Manage		ronmental
L	and the second	Writ	er	Document Owner	Cogniza	nt Organization
				TABLE OF CONTE	NTS	
1	PUR	POSE A	ND SCC	DPE		4
2	DEF	INITION	IS AND	ABBREVIATIONS		4
3	DET	AILS				6
	3.1	Calcula	ation of (Off-Site Doses	••••••	6
		3.1.1	Gaseou	us Effluent Releases		6
		3.1.2	Liquid	Effluent Releases		12
	3.2	Limits	of Opera	ation and Surveillances of the l	Effluent Release F	Points15
		3.2.1	Radioa	active Liquid Effluent Monitor	ing Instrumentati	on15
		3.2.2	Radioa	active Gaseous Effluent Monito	oring Instrumenta	ition16
		3.2.3	a. C (b. C c. D	I Effluents Concentration Excluding Release TRS) Discharge Concentration of Releases from the Dose iquid Radwaste Treatment Syste	s via the Turbine he TRS Discharge	Room Sump 17 18 19
		3.2.4	a. D b. D c. D ir	us Effluents Dose Rate Dose – Noble Gases Dose – Iodine-131, Iodine-133, T n Particulate Form Gaseous Radwaste Treatment	ritium, and Radio	22 22 active Material 23
		3.2.5 R	adioacti	ve Effluents – Total Dose		26
	3.3	Calcula	ation of A	Alarm/Trip Setpoints		27
		3.3.1	a. L	I Monitors iquid Batch Monitor Setpoint M iquid Continuous Monitor Setpo	ethodology	
		3.3.2	a.P b.W c.C d.S	us Monitors Plant Unit Vent Vaste Gas Storage Tanks Containment Purge and Exhaust S team Jet Air Ejector System (SJ Gland Seal Condenser Exhaust	System AE)	

	INDIANA MICHIGAN POWER			PMP-6010-OSD-001	Rev. 27	Page 2 of 92			
-	OFF-SITE DOSE CALCULATION MANUAL								
	Information								
		Erik Mer	A DECOMPOSITION TO DE	Environmental Manage		vironmental			
L		Write	er	Document Owner	Cogniz	ant Organization			
	3.4	Radioac	tive Ef	fluents Total Dose					
	3.5	Radiolo	gical E	nvironmental Monitoring Prog	ram (REMP)				
		3.5.1	Purpo	ose of the REMP					
		3.5.2	Cond	uct of the REMP					
		3.5.3	Annu	al Land Use Census		42			
		3.5.4	Interi	aboratory Comparison Program	n	42			
	3.6	Meteoro	ological	Model		43			
	3.7	Reporti	ng Req	uirements		43			
		3.7.1	Annu	al Radiological Environmental	Operating Repor	t (AREOR)43			
		3.7.2	Annu	al Radiological Effluent Release	e Report (ARERI	₹)44			
	3.8 10 CFR 50.75 (g) Implementation								
	3.9 Reporting/Management Review								
4	FINAL CONDITIONS47								
5	REF	ERENCE	S			47			

SUPPLEMENTS

Attachment 3.1	Dose Factors for Various PathwaysPages 51 - 54
Attachment 3.2	Radioactive Liquid Effluent Monitoring InstrumentsPages 55 - 57
Attachment 3.3	Radioactive Liquid Effluent Monitoring Instrumentation Surveillance RequirementsPages 58 - 59Attachment 3.4 Radioactive Gaseous Effluent Monitoring Instrumentation
Attachment 3.5	Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance RequirementsPages 63 - 64
Attachment 3.6	Radioactive Liquid Waste Sampling and Analysis ProgramPages 65 - 66
Attachment 3.7	Radioactive Gaseous Waste Sampling and Analysis ProgramPages 67 - 68
Attachment 3.8	Multiple Release Point Factors for Release PointsPage 69

11					
INDIANA MICHIGAN POWER		PMP-6010-OSD-001	Rev. 27	Page 3 of 92	
OFF-SITE DOSE CALCULATION MANUAL					
Informat	ion				
Erik Merchant		Environmental Manage	er Env	ironmental	
Writer		Document Owner	Cogniza	nt Organization	
Attachment 3.9	Liquid I	Effluent Release Systems		Page 70	
Attachment 3.10	Plant Li	quid Effluent Parameters	•••••	Page 71	
Attachment 3.11	Volumetric Detection Efficiencies for Principle Gamma Emitting Radionuclides for Mirion Liquid MonitorsPage 72				
Attachment 3.12	Counting Efficiency for 1/2- DRA-300 and 1/2-DRA-353Pages 73 - 74				
Attachment 3.13	Counting Efficiency for 1-WRA-713, 2-WRA-714, 1-WRA-717, and 2-WRA-718Page 75-76				
Attachment 3.14	Gaseous Effluent Release SystemsPage 77				
Attachment 3.15	Plant Gaseous Effluent ParametersPage 78				
Attachment 3.16	10 Year Average of 1995-2004 DataPages 79 - 80				
Attachment 3.17	Annual Evaluation of $\overline{\chi/Q}$ and $\overline{D/Q}$ Values For All SectorsPage 81				
Attachment 3.18	Dose FactorsPages 82 - 83				
Attachment 3.19	Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample FrequenciesPages 84 - 87				
Attachment 3.20	Maximum Values for Lower Limits of Detections A,B - REMPPages 88 - 89				
Attachment 3.21	Reporting Levels for Radioactivity Concentrations in Environmental SamplesPage 90				
Attachment 3.22	On-Site Monitoring Location - REMPPage 91				
Attachment 3.23	Off-Site Monitoring Locations - REMPPage 92				

1.0	-						
- 11	nt	or	m	2	t١	0	n
- 11	111	UI.	111	a	ιı	υ	

PN	ΛP.	-60	10	-0	SE).
1.13	VII -	-00	10	-0	JL	-

Rev. 27

OFF-SITE DOSE CALCULATION MANUAL

1 PURPOSE AND SCOPE

- The Off-Site Dose Calculation Manual (ODCM) is the top tier document for the Radiological Environmental Monitoring Program (REMP), the Radioactive Effluent Controls Program (RECP), contains criteria pertaining to the previous Radiological Effluent Technical Specifications (RETS) as defined in NUREG-0472, and fully implements the requirements of Technical Specification 5.5.3, Radioactive Effluent Controls Program.
- The ODCM contains the methodologies and parameters to be used in the calculation of off-site doses due to radioactive liquid and gaseous effluents and in the calculation of liquid and gaseous monitoring instrumentation alarm/trip setpoints.
- The ODCM provides flow diagrams detailing the treatment path and the major components of the radioactive liquid and gaseous waste management systems.
- The ODCM presents maps of the sample locations and the meteorological model used to estimate the atmospheric dispersion and deposition parameters.
- The ODCM specifically addresses the design characteristics of the Donald C. Cook Nuclear Plant based on the flow diagrams contained on the "OP Drawings" and plant "System Description" documents.

NOTE: Revision 27 of this document concludes the transition of Radiation Monitoring System (RMS) equipment. Sections and attachments will have guidance for only the currently installed Mirion equipment. Legacy guidance has been removed.

2 DEFINITIONS AND ABBREVIATIONS

Term:	Meaning:
S or shiftly	At least once per 12 hours
D or daily	At least once per 24 hours
W or weekly	At least once per 7 days
M or monthly	At least once per 31 days
Q or quarterly	At least once per 92 days
SA or semi-annually	At least once per 184 days
R	At least once per 549 days.
S/U	Prior to each reactor startup
Р	Completed prior to each release
В	At least once per 24 months
Sampling evolution	Process of changing filters or obtaining grab samples

Information

PMP-6010-OSD-001

1 Rev. 27

Page 5 of 92

OFF-SITE DOSE CALCULATION MANUAL

Member(s) of Public	All persons who are not occupationally associated with the plant. Does not include employees of the utility, its contractors or its vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational or other purposes not associated with the plant.
Purge/purging	The controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.
Source check	The qualitative assessment of Channel response when the Channel sensor is exposed to a radioactive source.
Total Fractional	
Level (TFL)	Total Fractional Level is defined as: $TFL = \frac{C_{(1)}}{L_{(1)}} + \frac{C_{(2)}}{L_{(2)}} + \dots \ge I$
	Where:
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Venting	Controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required. Vent, used in system names, does not imply a venting process.

Rev. 27

OFF-SITE DOSE CALCULATION MANUAL

- 3 DETAILS
- 3.1 Calculation of Off-Site Doses
 - 3.1.1 Gaseous Effluent Releases
 - The computer program MIDAS (Meteorological Information and Dose a. Assessment System) performs the calculation of doses from effluent releases. The site-specific parameters associated with MIDAS reside in the following subprograms:
 - MIDER .
 - MIDEX
 - MIDEL
 - MIDEG
 - MIDEN
 - b. The subprogram used to enter and edit gaseous release data is called MD1EQ (EQ). The data entered in EQ can be used to calculate the accumulation of dose to individual land based receptors based on hourly meteorology and release data. The air dose from this data is calculated via the XDAIR subprogram in MIDAS. It computes air dose results for use in Reg. Guide 1.21 reports and 10 CFR 50 Appendix I calculations based on routine releases.
 - The formula used for the calculation of the air dose is generated from C. site specific parameters and Req. Guide 1.109 (Eq 7):

$$D_{\gamma}, D_{\beta} air = \frac{\chi}{Q} * \Sigma[(M_i \text{ or } N_i) * Q_i * 3.17E - 8]$$

- D_{γ} , D_{β} air = the gamma or beta air dose in mrad/yr to an individual receptor
 - = the annual average or real time atmospheric x10 dispersion factor over land, sec/m³ from Attachment 3.16, 10 Year Average of 1995-2004 Data
 - Mi = the gamma air dose factor, mrad m^3 / yr μ Ci, from Attachment 3.18, Dose Factors
 - Ni = the beta air dose factor, mrad m^3 / yr μ Ci, from Attachment 3.18, Dose Factors

Q_i = the release rate of radionuclide, "i", in μCi/yr. Quantities are determined utilizing typical concentration times volumes equations that are documented in 12-THP-6010-RPP-601, Preparation of the Annual Radioactive Effluent Release Report.

Rev. 27

d. The value for the ground average $\overline{\chi/Q}$ for each sector is calculated using equations shown below. Formula used for the calculation is generated from parameters contained in MIDAS Technical Manual, XDCALC (Eq 2).

$$\overline{\chi/Q} = \frac{2.03}{\overline{u_{m_g}} * x * \Sigma_g} * T_f$$

Where:

$$\Sigma_g = minimum of \sqrt{\sigma_{z_g}^2 + \frac{H_c^2}{2\pi}} or \Sigma_g = \sqrt{3} \sigma_{z_g}$$

- x = distance downwind of the source, meters. This information is found in parameter 5 of MIDEX.
- $\overline{u}_{m_{e}}$ = wind speed for ground release, (meters/second)
- σ_{z_g} = vertical dispersion coefficient for ground release, (meters), (Reg. Guide 1.111 Fig.1)
 - H_c = building height (meters) from parameter 28 of MIDER. (Containment Building = 49.4 meters)
 - T_f = terrain factor (= 1 for Cook Nuclear Plant) because we consider all our releases to be ground level (see parameter 5 in MIDEX).

$$2.03 = \sqrt{2 \div \pi} \div 0.393 \text{ radians} (22.5^\circ)$$

e. The dose due to gaseous releases, other than the air dose, is calculated by the MIDAS subprogram GASPRO. GASPRO computes the accumulation of dose to individual receptors based on hourly meteorology and release data. Calculations consider the effect of each important radionuclide for each pathway, organ, age group, distance and direction.

Information	PMP-6010-OSD-001	Rev. 27	Page 8 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
f.	Calculations are based on the envir in Reg. Guide 1.109. The program and 4 age groups in 16 direction see from the MIDEG file.	n considers 7 path	ways, 8 organs,
g.	The formulas used for the followin site specific parameters and Reg. C	•	generated from
	1. Total Body Plume Pathway (E	q 10)	
	Dose (mrem/year) = 3.17E	$-8*\Sigma(Q_i*\overline{\chi/Q}*Z)$	$S_f * DFB_i$
	Where:		
	S _f = shielding factor that to shielding provide occupancy (maximu Table E-15 of Reg.	d by residential str im exposed individ	uctures during

- $\label{eq:DFB} \begin{array}{l} \mathsf{DFB}_i = \text{the whole body dose factor from Table B-1 of Reg.} \\ & \text{Guide 1.109, mrem } m^3 \text{ per } \mu \text{Ci yr.} \end{array} \\ \begin{array}{l} \text{See Attachment} \\ 3.18, \text{ Dose Factors.} \end{array}$
 - Q_i = the release rate of radionuclide "i", in μ Ci/yr
- 2. Skin Plume Pathway (Eq 11)

$$Dose(mrem/yr) = 3.17E - 8 * S_f * \frac{\chi}{Q} * [\Sigma(Q_i * 1.11 * DF_i^{\gamma}) + \Sigma(Q_i * DFS_i)]$$

- 1.11 = conversion factor, tissue to air, mrem/mrad
- DF $_{i}$ $^{\gamma}$ = the gamma air dose factor for a uniform semi-infinite cloud of radionuclide "i", in mrad m³/µCi yr from Table B-1, Reg. Guide 1.109. See Attachment 3.18, Dose Factors.
- DFS_i = the beta skin dose factor for a semi-infinite cloud of radionuclide "i", in mrem m³/µCi yr from Table B-1, Reg. Guide 1.109. See Attachment 3.18, Dose Factors.

3. Radionuclide and Radioactive Particulate Doses (Eq 13 & 14)

The dose, D_{IP} in mrem/yr, to an individual from radionuclides, other than noble gases, with half-lives greater than eight days in gaseous effluents released to unrestricted areas will be determined as follows:

 $D_{IP}(mrem/year) = 3.17E - 8 * \sum (R_i * W * Q_{ic})$

Where:

R_i = the most restrictive dose factor for each identified radionuclide "i", in m² mrem sec / yr μCi (for food and ground pathways) or mrem m³ / yr μCi (for inhalation pathway), for the appropriate pathway

Rev. 27

For sectors with existing pathways within five miles of the site, use the values of R_i for these real pathways, otherwise use pathways distance of five miles. See Attachment 3.1, Dose Factors for Various Pathways, for the maximum R_i values for the most controlling age group for selected radionuclides. R_i values were generated by computer code PARTS, see NUREG-0133, Appendix D.

- W = the annual average or real time atmospheric dispersion parameters for estimating doses to an individual at the worst case location, and where W is further defined as:
 - $W_{in} = \overline{\chi/Q}$ for the inhalation pathway, in sec/m³ -OR-
 - $W_{fg} = \overline{D/Q}$ for the food and ground pathways in $1/m^2$
- Q_{ic} = the release rate of those radioiodines, radioactive materials in particulate form and radionuclides other than noble gases with half-lives greater than eight days, in μ Ci/yr
- h. This calculation is made for each pathway. The maximum computed dose at any receptor for each pathway is selected. These are summed together to get the dose to compare to the limits. Only the maximum of the cow milk or goat milk pathway (not both) is included in the total.

Information	PMP-6010-OSD-001	Rev. 27	Page 10 of 92
(OFF-SITE DOSE CALCULAT	ION MANUAL	

- i. In addition to the above routines, the QUICKG routine of the MIDAS system may be used to provide data used in the monthly reports due to its ability to use annual average meteorological data rather than real time data, thus shortening the run time involved.
- j. Carbon-14 (C-14) supplemental information
 - The quantity of C-14 released to the environment may be estimated by use of a C-14 source term scaling factor based on power generation (Ref. RG 1.21, Revision 2). A recent study recommends a source term scaling factor of approximately 9.0 to 9.8 Curies/GWe-yr for a Westinghouse Pressurized Water Reactor (Ref. EPRI 1021106 "Estimation of Carbon-14 in Nuclear Plant Gaseous Effluents" December 23, 2010). For this method, a scaling factor of 9.4 Curies/GWe-yr shall be used.
 - 2. C-14 releases from PWRs occur primarily as a mix of organic carbon (methane) and inorganic carbon (carbon dioxide). For this method, an average organic fraction of 80% with the remaining 20% being assumed as carbon dioxide shall be used.
 - 3. Dose is calculated utilizing the methodology prescribed in RG 1.109 Appendix C, with the vegetation dose being the most predominant. Adjustments for growing seasons, percentage of C-14 generated assumed released from the reactor coolant in gaseous form via batch releases, seasonal $\overline{\chi'Q}$, and other industry methodologies being considered by the NRC may be applied as desired should their acceptance of these methods occur.
- k. Steam Generator Blowdown System (Start Up Flash Tank Vent)
 - 1. The amount of radioiodine and other radionuclides that are released via the startup flash tank and its vent are calculated through actual sample results while the startup flash tank is in service.
 - 2. The following calculation is performed to determine the amount of curies released through this pathway. (Plant established formula.)

$$Curies = \frac{\mu Ci}{ml} * GPM * time on flash tank (min) * 3.785E - 3$$

Where: 3.785E-3 = conversion factor, ml Ci/µCi gal.

3. The flow rate is determined from the blowdown valve position and the time on the startup flash tank, or using installed plant blowdown flow instrumentation. Chemistry Department performs the sampling and analysis of the samples.

Information	PMP-6010-OSD-001	Rev. 27	Page 11 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
	 This data is provided to the M (liquid and gas) are performed 3.2, Limits of Operation and S Points, dose limits. MIDAS u Liquid Effluent Releases, to ca public. 	to ensure compliar urveillances of the ses the formulas gi	nce with Subsection Effluent Release ven in step 3.1.2,
Cook	ection provides the minimum requine Nuclear Plant. This would be used ble each time the startup flash tank	if actual sample da	
	5. The radioiodine release rate m the following equation every 3 activity of the secondary coola dose equivalent I-131.	1 day period when	ever the specific

 IF the specific activity of the secondary coolant system is less than 0.01 µCi/g dose equivalent I-131, THEN the release rate must be determined once every six months. Use the following plant established equation:

$$Q_y = Ci * IPF * R_{sgb}$$

- Q_y = the release rate of I-131 from the steam generator flash tank vent, in $\mu Ci/sec$
- Ci = the concentration ($\mu Ci/cc$) of I-131 in the secondary coolant averaged over a period not exceeding seven days
- IPF = the iodine partition factor for the Start Up Flash Tank, 0.05, in accordance with NUREG-0017
- Rsgb = the steam generator blowdown rate to the startup flash tank, in cc/sec
- 7. Use the calculated release rate in monthly dose projections until the next determination to ensure compliance with Subsection 3.2, Limits of Operation and Surveillances of the Effluent Release Points, dose limits. Report the release rate calculations in the Annual Radioactive Effluent Release Report.

3.1.2 Liquid Effluent Releases

a. The calculation of doses from liquid effluent releases is also performed by the MIDAS program. The subprogram used to enter and edit liquid release data is called MD1EB (EB).

Rev. 27

- b. To calculate the individual dose (mrem), the program DS1LI (LD) is used. It computes the individual dose for up to 5 receptors for 14 liquid pathways due to release of radioactive liquid effluents. The pathways can be selected using the MIDEL program and changing the values in parameter 1. D.C. Cook Nuclear Plant uses 3 pathways: potable water, shoreline, and aquatic foods (fresh water sport fishing).
- c. Steam Generators are typically sparged, sampled, and drained as batches usually early in outages to facilitate cooldown for entry into the steam generator. This is also typically repeated prior to startup to improve steam generator chemistry for the startup. The sample stream, if being routed to the operating unit blowdown, is classified as a continuous release for quantification purposes to maintain uniformity with this defined pathway.
- d. The equations used are generated from site specific data and Reg. Guide 1.109. They are as follows:
 - 1. Potable Water (Eq 1)

$$R_{apj} = 1100 * \frac{U_{ap}}{M_{P} * F * 2.23E - 3} * \sum_{i} Q_{i} * D_{aipj} e^{-\lambda_{i} t_{P}}$$

- R_{apj} = the total annual dose to organ "j" to individuals of age groups "a" from all of the nuclides "i" in pathway "p", in mrem/year
- 1100 = conversion factor, yr ft³ ρ Ci / Ci sec L
 - U_{ap} = a usage factor that specifies the exposure time or intake rate for an individual of age group "a" associated with pathway "p". Given in #29-84 of parameter 4 in MIDEL and Reg. Guide 1.109 Table E-5. See Attachment 3.1, Dose Factors for Various Pathways.
 - M_p = the dilution factor at the point of exposure (or the point of withdrawal of drinking water or point of harvest of aquatic food). Given in parameter 5 of MIDEL as 2.6.

Information PI	MP-6010-OSD-001	Rev. 27	Page 13 of 92
OFF-SI	TE DOSE CALCULAT	FION MANUAL	

- F = the circulation water system water flow rate, in gpm, is used for evaluating dose via these pathways as dilution flow
- $2.23E-3 = \text{conversion factor, } ft^3 \min / \sec gal$
 - Q_i = the release rate of nuclide "i" for the time period of the run input via MIDEB, Curies/year
 - D_{aipj} = the dose factor, specific to a given age group "a", radionuclide "i", pathway "p", and organ "j", which can be used to calculate the radiation dose from an intake of a radionuclide, in mrem/pCi. These values are taken from tables E-11 through E-14 of Reg. Guide 1.109 and are located within the MIDAS code.
 - λ_i = the radioactive decay constant for radionuclide "i", in hours⁻¹
 - t_p = the average transit time required for nuclides to reach the point of exposure, 12 hours. This allows for nuclide transport through the water purification plant and the water distribution system. For internal dose, t_p is the total elapsed time between release of the nuclides and ingestion of food or water, in hours. Given as #25 of parameter 4 in MIDEL. ($t_p = 12$ hours)
- 2. Aquatic Foods (Eq 2)

$$R_{apj} = 1100 * \frac{U_{ap}}{M_P * F * 2.23E - 3} * \sum_i Q_i * B_{ip} * D_{aipj} e^{-\lambda_i t_P}$$

- B_{ip} = the equilibrium bioaccumulation factor for nuclide "i" in pathway "p", expressed as pCi L / kg pCi. The factors are located within the MIDAS code and are taken from Table A-1 of Reg. Guide 1.109. See Attachment 3.1, Dose Factors for Various Pathways.
- $t_{p} = \text{the average transit time required for nuclides to reach the point of exposure, 24 hours. This allows for decay during transit through the food chain, as well as during food preparation. Given as #26 of parameter 4 in MIDEL. (t_{p} = 24 hours)$
- M_p = the dilution factor at the point of exposure, 1.0 for Aquatic Foods. Given in parameter 5 of MIDEL as 1.0.

3. Shoreline Deposits (Eq 3)

$$R_{apj} = 110,000 * \frac{U_{ap} * W}{M_{p} * F * 2.23E - 3} * \sum_{i} Q_{i} * T_{i} * D_{aipj} \left[e^{-\lambda_{i}t_{p}} \right] * \left[1 - e^{-\lambda_{i}t_{b}} \right]$$

- W = the shoreline width factor. Given as an input of 0.3 when running the program, based on Table A-2 in Reg. Guide 1.109.
- T_i = the radioactive half-life of the nuclide, "i", in days
- $$\begin{split} D_{aipj} = & \text{the dose factor for standing on contaminated ground, in} \\ & \text{mrem } m^2 \, / \, \text{hr } \rho \text{Ci.} \quad \text{The values are taken from table E-6 of} \\ & \text{Reg. Guide 1.109 and are located within the MIDAS code.} \\ & \text{See Attachment 3.1, Dose Factors for Various Pathways.} \end{split}$$
- t_b = the period of time for which sediment or soil is exposed to the contaminated water, 1.31E+5 hours. Given in MIDEL as item 6 of parameter 4.
- t_p = the average transit time required for nuclides to reach the point of exposure, 0 hours. Given as #28 of parameter 4 in MIDEL.
- $\begin{array}{ll} 110,000 &= \mbox{ conversion factor yr ft}^3 \ \mbox{ρCi / Ci sec m2 day, this} \\ & \mbox{ accounts for proportionality constant in the sediment} \\ & \mbox{ radioactivity model} \end{array}$
 - M_p = the dilution factor at the point of exposure (or the point of withdrawal of drinking water or point of harvest of aquatic food). Given in parameter 5 of MIDEL as 2.6.
- e. The MIDAS program uses the following plant specific parameters, which are entered by the operator.
 - 1. Irrigation rate = 0
 - 2. Fraction of time on pasture = 0
 - 3. Fraction of feed on pasture = 0
 - 4. Shore width factor = 0.3 (from Reg. Guide 1.109, Table A-2)
- f. The results of DS1LI are printed in LDRPT (LP). These results are used in the monthly report of liquid releases.

ALCULATION MANU	JAL
1	

g. In addition, the program DOSUM (DM) is used to search the results files of DS1LI to find the maximum liquid pathway individual doses. The highest exposures are then printed in a summary table. Each line is compared with the appropriate dose limit. The table provides a concise summary of off-site environmental dose calculations for inclusion in Annual Radioactive Effluent Release Reports, required by Reg. Guide 1.21.

NOTE: The performance of each surveillance requirement must be within the specified time interval with a maximum allowable extension not to exceed 25% of the specified surveillance interval.

- 3.2 Limits of Operation and Surveillances of the Effluent Release Points
 - 3.2.1 Radioactive Liquid Effluent Monitoring Instrumentation
 - a. The radioactive liquid effluent monitoring instrumentation channels shown in Attachment 3.2, Radioactive Liquid Effluent Monitoring Instruments, are operable with their alarm/trip setpoints set to ensure that the limits of step 3.2.3a, Concentration Excluding Releases via the Turbine Room Sump (TRS) Discharge, are not exceeded.
 - b. The applicability of each channel is shown in Attachment 3.2, Radioactive Liquid Effluent Monitoring Instruments.
 - c. With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than a value which will ensure the limits of step 3.2.3a, Concentration Excluding Releases via the Turbine Room Sump (TRS) Discharge, are met without delay, suspend the release of radioactive liquid effluents monitored by the affected channel and reset or declare the monitor inoperable.
 - d. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels operable, take the applicable action shown in Attachment 3.2, Radioactive Liquid Effluent Monitoring Instruments, with a maximum allowable extension not to exceed 25% of the surveillance interval, excluding the initial performance.
 - e. Determine the setpoints in accordance with the methodology described in step 3.3.1, Liquid Monitors. Record the setpoints.

	mation	PMP-6010-OSD-001	Rev. 27	Page 16 of 92
OFF-SITE DOSE CALCULATION MANUAL				

f. Demonstrate each radioactive liquid effluent monitoring instrumentation channel is operable by performing the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL OPERATIONAL TEST at the frequencies shown in Attachment 3.3, Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements.

BASES – LIQUID

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to ensure the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria specified in Section 11.3 of the Final Safety Analysis Report for the Donald C. Cook Nuclear Plant. Due to the location of the ESW monitors, outlet line of containment spray heat exchanger (typically out of service), weekly sampling is required of the ESW system for radioactivity. This is necessary to ensure monitoring of a CCW to ESW system leak. [Ref 5.2.1hh]

- 3.2.2 Radioactive Gaseous Effluent Monitoring Instrumentation
 - a. The radioactive gaseous process and effluent monitoring instrumentation channels shown in Attachment 3.4, Radioactive Gaseous Effluent Monitoring Instrumentation, are operable with their alarm/trip setpoints set to ensure that the limits of step 3.2.4a, Dose Rate, are not exceeded.
 - b. The applicability of each channel is shown in Attachment 3.4, Radioactive Gaseous Effluent Monitoring Instrumentation.
 - c. With a radioactive gaseous process or effluent monitoring instrumentation channel alarm/trip setpoint less conservative than a value which will ensure that the limits of step 3.2.4a, Dose Rate, are met, without delay, suspend the release of radioactive gaseous effluents monitored by the affected channel and reset or declare the channel inoperable.

d. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels operable, take the action shown in Attachment 3.4, Radioactive Gaseous Effluent Monitoring Instrumentation, with a maximum allowable extension not to exceed 25% of the surveillance interval, excluding the initial performance.

NOTE: This surveillance requirement does not apply to the waste gas holdup system hydrogen and oxygen monitors, as their setpoints are not addressed in this document.

- e. Determine the setpoints in accordance with the methodology as described in step 3.3.2, Gaseous Monitors. Record the setpoints.
- f. Demonstrate each radioactive gaseous process or effluent monitoring instrumentation channel is operable by performing the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL OPERATIONAL TEST operations at the frequencies shown in Attachment 3.5, Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements.

BASES – GASEOUS

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases. The alarm/trip setpoints for these instruments shall be calculated in accordance with NRC approved methods in the ODCM to ensure the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria specified in Section 11.3 of the Final Safety Analysis Report for the Donald C. Cook Nuclear Plant.

- 3.2.3 Liquid Effluents
 - a. Concentration Excluding Releases via the Turbine Room Sump (TRS) Discharge
 - Limit the concentration of radioactive material released via the Batch Release Tanks or Plant Continuous Releases (excluding only TRS discharge to the Absorption Pond) to unrestricted areas to the concentrations in 10 CFR 20, Appendix B, Table 2, Column 2, for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, limit the concentration to 2E-4 µCi/ml total activity.

	Information	PMP-6010-OSD-001	Rev. 27	Page 18 of 92
--	-------------	------------------	---------	---------------

- 2. With the concentration of radioactive material released from the site via the Batch Release Tanks or Plant Continuous Releases (other than the TRS to the Absorption Pond) exceeding the above limits, without delay restore the concentration to within the above limits.
- 3. Sample and analyze radioactive liquid wastes according to the sampling and analysis program of Attachment 3.6, Radioactive Liquid Waste Sampling and Analysis Program.
- 4. Use the results of radioactive analysis in accordance with the methods of this document to assure that all concentrations at the point of release are maintained within limits.
- b. Concentration of Releases from the TRS Discharge
 - Limit releases via the TRS discharge to the on-site Absorption Pond to the concentrations specified in 10 CFR 20, Appendix B, Table 2, Column 2. For dissolved or entrained noble gases, limit the concentration to 2E-4 µCi/ml total activity.
 - 2. With releases from the TRS exceeding the above limits, perform a dose projection due to liquid releases to UNRESTRICTED AREAS to determine if the limits of step 3.2.3c.1 have been exceeded. If the dose limits have been exceeded, follow the directions in step 3.2.3c.2, as applicable.
 - 3. Sample and analyze radioactive liquid wastes according to the program in Attachment 3.6, Radioactive Liquid Waste Sampling and Analysis Program.
 - 4. Use the results of radioactive analysis in accordance with the methods of this document to assure that all concentrations at the point of release are maintained within the limits stated above.

- c. Dose
 - 1. Limit the dose or dose commitment to an individual from radioactive material in liquid effluents released to unrestricted areas during any calendar quarter to ≤ 1.5 mrem/unit to the total body and to ≤ 5 mrem/unit to any organ, and during any calendar year to ≤ 3 mrem/unit to the total body and to ≤ 10 mrem/unit to any organ.

Rev. 27

- 2. With the calculated release of radioactive materials in liquid effluents exceeding ten times any of the limits in Steps 3.2.3a or 3.2.3b, or exceeding 3.2.3c.1 above, prepare and submit a Written Report, pursuant to 10 CFR 20.2203, within 30 days after learning of the event. This report must describe the extent of exposure of individuals to radiation and radioactive material, including, as appropriate:
 - a) Estimate of each individual's dose. This is to include the radiological impacts on finished drinking water supplies with regard to the requirements of 40 CFR 141, Safe Drinking Water Act (applicable due to Lake Township water treatment facility),
 - b) Levels of radiation and concentration of radioactive material involved,
 - c) Cause of elevated exposures, dose rates or concentrations, -AND-
 - Corrective steps taken or planned to ensure against recurrence, including schedule for achieving conformance with applicable limits.

These reports must be formatted in accordance with PMP-7030-001-002, Licensee Event Reports, Special and Routine Reports, even though this is not an LER.

- 3. Determine cumulative and projected dose contributions from liquid effluents in accordance with this document at least once per 31 days. Dose may be projected based on estimates from previous monthly projections and current or future plant conditions.
- d. Liquid Radwaste Treatment System
 - 1. Use the liquid radwaste treatment system to reduce the radioactive materials in liquid wastes prior to their discharge when the projected doses due to the liquid effluent from the site when averaged over 31 days, would exceed 0.12 mrem (0.06 mrem/unit x 2 units) to the total body or 0.4 mrem (0.2 mrem/unit x 2 units) to any organ.
 - 2. Project doses due to liquid releases to UNRESTRICTED AREAS at least once per 31 days, in accordance with this document.

Information	PMP-6010-OSD-001	Rev. 27	Page 20 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	

e. During times of primary to secondary leakage, the use of the startup flash tank should be minimized to reduce the release of curies from the secondary system and to maintain the dose to the public ALARA.

Drainage of high conductivity water (Component Cooling Water and ice melt water containing sodium tetraborate) shall be evaluated to decide whether it should be drained to waste (small volumes only), the Turbine Room Sump (low activity water only) or routed without demineralization processing to a monitor tank for release. This is necessary in order to minimize the detrimental effect that high conductivity water has on the radioactive wastewater demineralization system. The standard concentration and volume equation can be utilized to determine the impact on each method and is given here. The units for concentration and volume need to be consistent across the equation:

$$(C_i)(V_i) + (C_a)(V_a) = (C_b)(V_b)$$

Where:

C_i	=	the initial concentration of the system being added to
V_i	=	the initial volume of the system being added to
C_a	=	the concentration of the water that is being added to the system
V_a	=	the volume of the water that is being added to the system
Ct	=	the final concentration of the system after the addition
V_t	Ξ	the final volume of the system after the addition

The intent is to keep the:

- WDS below 500 µmhos/cc.
- TRS below 1E-5 μ C/cc.
- Monitor Tank release ALARA to members of the public.

Wastewater leakage into the liquid waste disposal system will be monitored routinely. In the event the leak rate is determined to be over two gallons per minute (the assumed plant design leakage based on the original 2 gpm waste evaporator), increased scrutiny will be placed on locating in-leakage, timeliness of job order activities, and/or activities causing increased production of waste water.

	~						
-	fo	100	2	0		~	5
 r 1	111			1		11	
	ιv			u	••	~	••

Rev. 27

BASES – CONCENTRATION

This specification is provided to ensure the concentration of radioactive materials released in liquid waste effluents from the site to unrestricted areas will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water outside the site will not result in exposures greater than 1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to an individual and 2) the limits of 10 CFR Part 20. The concentration limit for noble gasses is based upon the assumption that Xe-135 is the controlling radionuclide and its Effluent Concentration Unit in air (submersion) was converted to an equivalent concentration in water using the methods described in the International Commission on Radiological Protection (ICRP) Publication 2.

DOSE

This specification is provided to implement the requirements of Sections II.A, III.A, and IV.A of Appendix I, 10 CFR Part 50. The dose limits implement the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time, implement the guides set forth in Section IV.A of Appendix I to assure the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable". Also, for fresh water sites with drinking water supplies which can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR 141. The dose calculations in the ODCM implement the requirements in Section III. A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents, will be consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977, and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I", April 1977. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guide 1.109 and 1.113.

This specification applies to the release of liquid effluents from each reactor at the site. The liquid effluents from the shared system are proportioned among the units sharing the system.

	-			
In	tor	m	ate	nn
	for	111	αιι	ULI

Rev. 27

LIQUID WASTE TREATMENT

The operability of the liquid radwaste treatment system ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirements that the appropriate portions of this system be used when specified provide assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criteria Section 11.1 of the Final Safety Analysis Report for the Donald C. Cook Nuclear Plant, and design objective Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents.

3.2.4 Gaseous Effluents

- a. Dose Rate
 - Limit the dose rate due to radioactive materials released in gaseous effluents from the site to ≤ 500 mrem/yr to the total body and ≤ 3000 mrem/yr to the skin for noble gases. Limit the dose rate due to all radioiodines and for all radioactive materials in particulate form and radionuclides (other than noble gases) with half-lives greater than eight days to ≤ 1500 mrem/yr to any organ.
 - 2. With the dose rate(s) exceeding the above limits, without delay decrease the release rate to within the above limit(s).
 - 3. Determine the dose rate due to noble gases in gaseous effluents to be within the above limits in accordance with the methods and procedures described in this document.
 - 4. Determine the dose rate due to radioactive materials, other than noble gases, in gaseous effluents to be within the above limits in accordance with the methods and procedures of this document by obtaining representative samples and performing analyses in accordance with the sampling and analysis program in Attachment 3.7, Radioactive Gaseous Waste Sampling and Analysis Program.
- b. Dose Noble Gases
 - 1. Limit the air dose in unrestricted areas due to noble gases released in gaseous effluents during any calendar quarter, to $\leq 5 \text{ mrad/unit}$ for gamma radiation and $\leq 10 \text{ mrad/unit}$ for beta radiation and during any calendar year, to $\leq 10 \text{ mrad/unit}$ for gamma radiation and $\leq 20 \text{ mrad/unit}$ for beta radiation.

- 2. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit a Written Report, pursuant to 10 CFR 20.2203 and addressed in step 3.2.3c.2, within 30 days after learning of the event.
- 3. Determine cumulative and projected dose contributions for the total time period in accordance with this document at least once every 31 days.

Rev. 27

- c. Dose Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form
 - 1. Limit the dose to a MEMBER OF THE PUBLIC from radioiodine, radioactive materials in particulate form, and radionuclides other than noble gases with half-lives greater than eight days in gaseous effluents released to unrestricted areas (site boundary) to the following:
 - a) During any calendar quarter to less than or equal to 7.5 mrem/unit to any organ
 - b) During any calendar year to less than or equal to 15 mrem/unit to any organ.
 - 2. With the calculated dose from the release of radioiodines, radioactive materials in particulate form, or radionuclides other than noble gases in gaseous effluents exceeding any of the above limits, prepare and submit a Written Report, pursuant to 10 CFR 20.2203 and addressed in step 3.2.3c.2, within 30 days after learning of the event.
 - 3. Determine cumulative and projected dose contributions for the total time period in accordance with this document at least once every 31 days.
- d. Gaseous Radwaste Treatment
 - 1. The UFSAR (Updated Final Safety Analysis Report) states that radioactive waste gas should be held for 45 days of decay time.
 - 2. Use the gaseous radwaste treatment system and the ventilation exhaust treatment system to reduce radioactive materials in gaseous wastes prior to their discharge when projected gaseous effluent air doses due to gaseous effluent releases to unrestricted areas when averaged over 31 days, would exceed 0.4 mrad (0.2 mrad/unit x 2 units) for gamma radiation and 0.8 mrad (0.4 mrad/unit x 2 units) for beta radiation. Use the ventilation exhaust treatment system to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases to unrestricted areas when averaged over 31 days, would exceed 0.3 mrem/unit to any organ.

		-					. 4		
 *	•	٠	2		 2	2		0	n
 г	н	E		а.		1			
٠	٠		~			-	~	-	

3. Project doses due to gaseous releases to UNRESTRICTED AREAS at least once per 31 days in accordance with this document.

Rev. 27

BASES -- GASEOUS EFFLUENTS

This specification provides reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a Member of the Public in an unrestricted area, either at or beyond the site boundary in excess of the design objectives of appendix I to 10 CFR 50. This specification is provided to ensure that gaseous effluents from all units on the site will be appropriately controlled. It provides operational flexibility for releasing gaseous effluents to satisfy the Section II.A and II.C design objectives of appendix I to 10 CFR 50. For individuals who may at times be within the site boundary, the occupancy of the individual will be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the site boundary. The specified instantaneous release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to an individual at or beyond the site boundary to \leq 500 mrem/yr to the total body or to \leq 3000 mrem/yr to the skin. These instantaneous release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to ≤ 1500 mrem/yr. Limitations on the dose rate resulting from radioactive material released in gaseous effluents to areas beyond the site boundary conforming to the doses associated with 10 CFR 20, Appendix B, Table 2, Column 1.

This specification applies to the release of gaseous effluents from all reactors at the site. The gaseous effluents from the shared system are proportioned among the units sharing that system.

DOSE, NOBLE GASES

This specification is provided to implement the requirements of Sections II.B, III.A, and IV.A of Appendix I, 10 CFR Part 50. The dose limits implement the guides set forth in Section II.B of Appendix I.

The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable". The Surveillance Requirements implement the requirements in Section III. A of Appendix I that conform with the guides of Appendix I to be shown by calculational procedures based on models and data such that the actual exposure of an individual through the appropriate pathways is unlikely to be substantially underestimated. The dose calculations established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents will be consistent with the methodology provided in Regulatory Guide 1,109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors", Revision 1, July 1977. The ODCM equations provided for determining the air doses at the site boundary will be based upon the historical average atmospherical conditions. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.111.

Information

OFF-SITE DOSE CALCULATION MANUAL

Rev. 27

DOSE, RADIOIODINES, RADIOACTIVE MATERIAL IN PARTICULATE FORM, AND RADIONUCLIDES OTHER THAN NOBLE GASES

This specification is provided to implement the requirements of Sections II.C, III.A, and IV.A of Appendix I, 10 CFR Part 50. The dose limits are the guides set forth in Section II.C of Appendix I.

The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable". The ODCM calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conform with the guides of Appendix I to be shown by calculational procedures based on models and data such that the actual exposure of an individual through the appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methods approved by the NRC for calculating the doses due to the actual release rates of the subject materials are required to be consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors", Revision 1, July 1977. These equations also provide the methodology for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for radioiodines, radioactive material in particulate form, and radionuclides, other than noble gases, are dependent on the existing radionuclide pathways to man, in the unrestricted area. The pathways which are examined in the development of these calculations are: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, 3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and 4) deposition on the ground with subsequent exposure of man.

GASEOUS WASTE TREATMENT

The operability of the gaseous radwaste treatment system and the ventilation exhaust treatment systems ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used when specified provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion Section 11.1 of the Final Safety Analysis Report for the Donald C. Cook Nuclear Plant, and design objective Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the guides forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

	-			
In	to	rm	not.	nn
	τu		nati	ULI
			i ca c i	0.

3.2.5 Radioactive Effluents - Total Dose

a. The dose or dose commitment to a real individual from all uranium fuel cycle sources is limited to ≤ 25 mrem to the total body or any organ (except the thyroid, which is limited to ≤ 75 mrem) over a period of 12 consecutive months.

Rev. 27

- b. With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of steps 3.2.3c (Dose), 3.2.4b (Dose - Noble Gases), or 3.2.4c (Dose – Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form) during any calendar quarter, perform the following:
 - Investigate and identify the causes for such release rates;
 - Define and initiate a program for corrective action;
 - Report these actions to the NRC within 30 days from the end of the quarter during which the release occurred.

IF the estimated dose(s) exceeds the limits above, and IF the release condition resulting in violation has not already been corrected prior to violation of 40 CFR 190, THEN include in the report a request for a variance in accordance with the provisions of 40 CFR 190 and including the specified information of paragraph 190.11(b). Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete. The variance only relates to the limits of 40 CFR 190, and does not apply in any way to the requirements for dose limitation of 10 CFR 50, as addressed in other sections of this document.

c. Determine cumulative dose contributions from liquid and gaseous effluents in accordance with this document (including steps 3.2.3c [Dose], 3.2.4b [Dose - Noble Gases], or 3.2.4c [Dose - Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form]).

 -			 na	 • ^	-
 г	а.	 FL.		 	
		 	 10	 IU	

	P	ſ	V	1	P	_	6	0	1	0)-	С	S	D)-	0	0	1	
--	---	---	---	---	---	---	---	---	---	---	----	---	---	---	----	---	---	---	--

Rev. 27

BASES -- TOTAL DOSE

This specification is provided to meet the dose limitations of 40 CFR 190. The specification requires the preparation and submittal of a Special Report whenever the calculated doses from plant radioactive effluents exceed twice the design objective doses of Appendix I. For sites containing up to 4 reactors, it is highly unlikely that the resultant dose to a member of the public will exceed the dose limits of 40 CFR 190 if the individual reactors remain within the reporting requirement level. The Special Report will describe a course of action, which should result in the limitations of dose to a member of the public for 12 consecutive months to within the 40 CFR 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to any member of the public from other uranium fuel cycle sources is negligible with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 5 miles must be considered. If the dose to any member of the public is estimated to exceed the requirements of 40 CFR 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR 190 have not already been corrected, in accordance with the provision of 40 CFR 190.11), is considered to be a timely request and fulfills the requirements of 40 CFR 190 until NRC staff action is completed. An individual is not considered a member of the public during any period in which he/she is engaged in carrying out any operation, which is part of the nuclear fuel cycle.

3.3 Calculation of Alarm/Trip Setpoints

The alarm and trip setpoints are to provide monitoring, indication, and control of liquid and gaseous effluents. The setpoints are used in conjunction with sampling programs to assure that the releases are kept within the limits of 10 CFR 20, Appendix B, Table 2. Establish setpoints for liquid and gaseous monitors. Depending on the monitor function, it would be a continuous or batch monitor. The different types of monitors are subject to different setpoint methodologies.

One variable used in setpoint calculations is the multiple release point (MRP) factor. The MRP is a factor used such that when all the releases are integrated, the applicable LIMIT value will not be exceeded. The MRP is determined such that the sum of the MRP's for that effluent type (liquid or gaseous) is less than or equal to 1. The value of the MRP is arbitrary, and it should be assigned based on operational performance. The values of the MRP's for each liquid release point are given in Attachment 3.8, Multiple Release Point Factors for Release Points.

The Site stance on instrument uncertainty is taken from HPPOS-223, Consideration of Measurement Uncertainty When Measuring Radiation Levels Approaching Regulatory Limits, which states the NRC position is the result of a valid measurement obtained by a method, which provides a reasonable demonstration of compliance. This value should be accepted and the uncertainty in that measured value need not be considered.

3.3.1 Liquid Monitors

Establish liquid monitor setpoints for each monitor of the liquid effluent release systems. A schematic of the liquid effluent release systems is shown as Attachment 3.9, Liquid Effluent Release Systems. A list of the Plant Liquid Effluent Parameters is in Attachment 3.10, Plant Liquid Effluent Parameters. The details of each system design and operation can be found in the system descriptions. The setpoints are intended to keep releases within the limits of 10 CFR 20, Appendix B, Table 2, Column 2. Determine setpoints using either the batch or the continuous methodology.

Rev. 27

NOTE: The naming of specific monitors and detectors may vary due to software limitations requiring the usage of an approved acronym or alias to compensate for this inability of the software to accept the actual plant component label on redundant equipment. RRS-1001 is an example where the RRS-1001-B has a software alias of RRS-1021-B and either label is correct. The OPS procedures utilize the RRS-1021-B naming and this will be reflected throughout the ODCM.

- a. Liquid Batch Monitor Setpoint Methodology
 - 1. There are two monitors used on the Waste Disposal System for liquid batch releases. These monitors are identified as RRS-1001-A [primary] and RRS-1021-B [back-up]. Steam Generator Blowdown radiation monitors also can be used to monitor batch releases while draining steam generators. The function of these monitors is to act as a check on the sampling program. The sampling program determines the nuclides and concentrations of those nuclides prior to release. The discharge and dilution flow rates are then adjusted to keep the release within the limits of 10 CFR 20. Based on the concentrations of nuclides in the release, the count rate on the monitor can be predicted. The high alarm setpoint can then be set above the predicted value up to the maximum setpoint of the system.
 - 2. The radioactive concentration of each batch of radioactive liquid waste to be discharged is determined prior to each release by sampling and analysis in accordance with Attachment 3.6, Radioactive Liquid Waste Sampling and Analysis Program.
 - 3. The allowable release flow rates are determined in order to keep the release concentrations within the requirements of 10 CFR 20, Appendix B, Table 2, Column 2. The equation to calculate the flow rate is from Addendum AA1 of NUREG-0133:

$$\left[\Sigma \frac{C_i}{LIMIT_i}\right] * \frac{f}{MRP} \le F + f$$

Where:

- C_i = the concentration of nuclide "i" in μ Ci/ml
- $LIMIT_i$ = the 10 CFR 20, Appendix B, Table 2, Column 2 limit of nuclide "i" in μ Ci/ml

Rev. 27

- f = the effluent flow rate in gpm (Attachment 3.10, Plant Liquid Effluent Parameters)
- F = the dilution water flow rate as estimated prior to release. The dilution flow rate is a multiple of 230,000 gpm depending on the number of circulation pumps in operation.
- MRP = the multiple release point factor. A factor such that when all the release points are operating at one time the limits of 10 CFR 20 will not be exceeded.
- 4. This equation must be true during the batch release. Before the release is started, substitute the maximum effluent flow rate and the minimum dilution flow rate for f and F, respectively. If the equation is true, the release can proceed with those flow rates as the limits of operation. If the equation is not true, the effluent flow rate can be reduced or the dilution flow rate can be increased to make the equation true. This equation may be rearranged to solve for the maximum effluent release flow rate (f).
- 5. The setpoint is used as a quality check on the sampling program. The setpoint is used to stop the effluent flow when the monitor reading is significantly greater than the predicted value from the sampling program. The predicted value is generated by converting the effluent concentration for each gamma emitting radionuclide to counts per unit of time as per Attachment 3.11, Volumetric Detection Efficiencies for Principle Gamma Emitting Radionuclides for Mirion Liquid Monitors, or Attachment 3.12, Counting Efficiency for 1/2-DRA-300 and 1/2-DRA-353. The sum of all the counts per unit of time is the predicted count rate. The predicted count rate can then be multiplied by a factor and combined with the background counts to determine the high alarm setpoint that will provide a high degree of conservatism and eliminate spurious alarms.

Information	PMP-6010-OSD-001	Rev. 27	Page 30 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	

- b. Liquid Continuous Monitor Setpoint Methodology
 - 1. There are eight monitors used as potential continuous liquid release monitors. These monitors are used in the steam generator blowdown (SGBD), blowdown treatment (BDT), and essential service water (ESW) systems.
 - 2. These Mirion monitors are identified as:
 - 1/2-DRA-300 for SGBD
 - 1/2-DRA-353 for BDT
 - Unit 1: WRA-713, WRA-717 and Unit 2: WRA-714, WRA-718 for ESW

The function of these monitors is to assure that releases are kept within the concentration limits of 10 CFR 20, Appendix B, Table 2, Column 2, entering the unrestricted area following dilution.

- The monitors on steam generator blowdown and blowdown treatment systems have trip functions associated with their setpoints. Essential service water monitors are equipped with an alarm function only and monitor effluent in the event the Containment Spray Heat Exchangers are used.
- 4. The equation used to determine the setpoint for continuous monitors is from Addendum AA1 of NUREG-0133:

$$S_p \leq \frac{C * Eff * MRP * F * SF}{f}$$

- S_p = setpoint of monitor (cpm)
- C = 5E-7 μCi/ml, maximum effluent control limit from 10 CFR 20, Appendix B, Table 2, Column 2 of a known possible nuclide in effluent stream. (The limiting nuclide shall be evaluated annually by reviewing current nuclides against historical ones in order to determine if one with a more restrictive effluent concentration limit than Sr90 is found. The concentration limit shall be adjusted appropriately.)
 -OR-

if a mixture is to be specified,

$$\frac{\sum C_i}{\sum \frac{C_i}{LIMIT_i}}$$

Eff = Efficiency, this information is located in Attachment 3.11, Volumetric Detection Efficiencies for Principle Gamma Emitting Radionuclides for Mirion Liquid Monitors, through Attachment 3.13, Counting Efficiency for 1-WRA-713, 2-WRA-714, 1-WRA-717, and 2-WRA-718, for the specific monitors. For Mirion monitors, the efficiency is nuclide specific and the calculation changes slightly to:

Rev. 27

$$\frac{\sum (C_i * Eff_i)}{\sum \frac{C_i}{LIMIT_i}} replaces C * Eff$$

- MRP = multiple release point factor. A factor such that when all the release points are operating at one time the limits of 10 CFR 20 will not be exceeded (Attachment 3.8, Multiple Release Point Factors for Release Points). The MRP for ESW monitors is set to 1.
 - F = dilution water (circ water) flow rate in gpm obtained from Attachment 3.10, Plant Liquid Effluent Parameters.
 For routine operation, the setpoint should be calculated using the minimum dilution flow rate of 230,000 gpm.
 - SF = Safety Factor, 0.9.
 - f = applicable effluent release flow rate in gpm. For routine operation, the setpoint should be calculated using maximum effluent flow rate (Attachment 3.10, Plant Liquid Effluent Parameters).

			•				. 1		
	r	۱Ť	n	r	m	na	T	ı۸	r
- 1	н.	11	U	Υ.	11	Ia	L	IU	
	•	••	-	•	•••		-	-	

3.3.2 Gaseous Monitors

For the purpose of implementing Step 3.2.2, Radioactive Gaseous Effluent Monitoring Instrumentation, and Substep 3.2.4a, Dose Rate, the alarm setpoints for gaseous effluents released into unrestricted areas will be established using the following methodology. In addition, the above steps do not apply to instantaneous alarm and trip setpoints for integrating radiation monitors sampling radioiodines, radioactive materials in particulate form and radionuclides other than noble gases. A schematic of the gaseous effluent release systems is presented in Attachment 3.14, Gaseous Effluent Release Systems. Attachment 3.15, Plant Gaseous Effluent Parameters, presents the effluent flow rate parameter(s).

Rev. 27

Gaseous effluent monitor high alarm setpoints will routinely be established at a fraction of the maximum allowable setpoint (typically 10% of the setpoint) for ALARA purposes. Alert alarms will normally be set to provide adequate indications of small changes in radiological conditions.

NOTE: IF the setpoint calculation methodology changes or the associated factors change for Unit Vent, Air Ejector and/or Gland Seal monitors, THEN initiate a review by Emergency Planning to ensure that the requirements of 10 CFR 50.54 (q) are maintained.

a. Plant Unit Vent

 The gaseous effluents discharged from the plant vent will be monitored by the plant vent radiation monitor low (normal) range noble gas channel [VRS-1505A/ VRS-1505B for Unit 1 and VRS-2505A/ VRS-2505B for Unit 2] to assure that applicable alarms and trip actions (isolation of gaseous release) will occur prior to exceeding the limits in step 3.2.4, Gaseous Effluents. The alarm setpoint values will be established using the following unit analysis equation:

$$S_{p} = \frac{SF * MRP * DL_{j}}{F_{p} * \overline{\chi/Q} * \sum_{i} (W_{i} * DCF_{ij})}$$

Where:

 S_p = the maximum setpoint of the monitor in μ Ci/cc for release point p, based on the most limiting organ

SF = an administrative operation safety factor, less than 1.0

In	TOP	m	atic	۱n
		111/	71.11	

PMP-6010-OSD-001

Page 33 of 92

OFF-SITE DOSE CALCULATION MANUAL

MRP = a weighted multiple release point factor (≤ 1.0), such that when all site gaseous releases are integrated, the applicable dose will not be exceeded based on the release rate of each effluent point. The MRP is an arbitrary value based on the ratio of the release rate or the volumetric flow rate of each effluent point to the total respective flow rate value of the plant and will be consistent with past operational experience. The MRP is computed as follows:

Rev. 27

- Compute the average release rate, Q_p, (or the volumetric flow rate, f_p) from each release point p.
- Compute ΣQp (or Σfp) for all release points.
- Ratio Qp/ΣQp (or fp/Σfp) for each release point. This ratio is the MRP for that specific release point
- Repeat the above bullets for each of the site's eight gaseous release points.
- F_p = the maximum volumetric flow rate of release point "p", at the time of the release, in cc/sec. The maximum Unit Vent flow rate, by design, is 186,600 cfm for Unit 1 and 143,400 cfm for Unit 2.
- DL_j = dose rate limit to organ "j" in an unrestricted area (mrem/yr).

Based on continuous releases, the dose rate limits, DL_j, from step 3.2.4a, Dose Rate, are as follows:

- Total Body ≤ 500 mrem/year
- Skin ≤ 3000 mrem/year
- Any Organ ≤ 1500 mrem/year
- $\overline{\chi/Q}$ = The worst case annual average relative concentration in the applicable sector or area, in sec/m³ (see Attachment 3.16, 10 Year Average of 1995-2004 Data).
 - W_i = weighted factor for the radionuclide:

$$W_i = \frac{C_i}{\sum C_k}$$

- C_i = concentration of the most abundant radionuclide "i"
- C_k = total concentration of all identified radionuclides in that release pathway. For batch releases, this value may be set to 1 for conservatism.

-			-						٠			
	*	•	٠	0	• •	~	a	•		2	2	
	L	L	L	IJ		н	10		J.		1	Ł
- 1		٠	۰	-			14		٠	~		

Page 34 of 92

OFF-SITE DOSE CALCULATION MANUAL

 DCF_{ij} = dose conversion factor used to relate radiation dose to organ "j", from exposure to radionuclide "i" in mrem m³ / yr µCi. See following equations.

Rev. 27

The dose conversion factor, DCF_{ij}, is dependent upon the organ of concern.

For the whole body: $DCF_{ij} = K_i$

Where:

 K_i = whole body dose factor due to gamma emissions for each identified noble gas radionuclide in mrem m³ / yr µCi. See Attachment 3.18, Dose Factors.

For the skin:

 $DCF_{ij} = L_i + 1.1M_j$

Where:

- L_i = skin dose factor due to beta emissions for each identified noble gas radionuclide, in mrem m³ / yr µCi. See Attachment 3.18, Dose Factors.
- 1.1 = the ratio of tissue to air absorption coefficient over the energy range of photons of interest. This ratio converts absorbed dose (mrad) to dose equivalent (mrem).
- M_i = the air dose factor due to gamma emissions for each identified noble gas radionuclide in mrad m³ / yr µCi. See Attachment 3.18, Dose Factors.

For the thyroid, via inhalation: $DCF_{ij} = P_i$

Where:

 P_i = the dose parameter, for radionuclides other than noble gas, for the inhalation pathway in mrem m³ / yr µCi (and the food and ground path, as appropriate). See Attachment 3.18, Dose Factors.

2.	The plant vent radiation monitor low (normal) range noble gas high
	alarm channel setpoint, S_p , will be set such that the dose rate in
	unrestricted areas to the whole body, skin and thyroid (or any other
	organ), whichever is most limiting, will be less than or equal to 500
	mrem/yr, 3000 mrem/yr, and 1500 mrem/yr respectively.

Rev. 27

- 3. The thyroid dose is limited to the inhalation pathway only.
- 4. The plant vent radiation monitor low (normal) range noble gas setpoint, S_p , will be recomputed whenever gaseous releases like Containment Purge, Gas Decay Tanks and CVCS HUTs are discharged through the plant vent to determine the most limiting organ.
- 5. The high alarm setpoint, S_p , may be established at a lower value than the lowest computed value via the setpoint equation.
- 6. Containment Pressure Reliefs will not have a recomputed high alarm setpoint, but will use the normal high alarm setpoint due to their randomness and the time constraints involved in recomputation.
- 7. At certain times, it may be desirable to increase the high alarm setpoint, if the vent flow rate is decreased. This may be accomplished in one of two ways.

 $\frac{\text{Max Conc} (\mu Ci/cc) * \text{Max Flowrate} (cfm)}{\text{New Max Concentration} (\mu Ci/cc)} = \text{New Max cfm}$

-OR-

 $\frac{\text{Max Conc} (\mu Ci/cc) * \text{Max Flowrate} (cfm)}{\text{New Max Flowrate} (cfm)} = \text{New Max } \mu Ci/cc$

- b. Waste Gas Storage Tanks
 - The gaseous effluents discharged from the Waste Gas System are monitored by the plant vent radiation monitor noble gas channels VRS-1505A/ VRS-1505B for Unit 1 and the channels VRS-2505A/ VRS-2505B for Unit 2.

Information PMP-6010-OSD-001 Rev. 27	Page 36 of 92
--------------------------------------	---------------

2. In the event of a high radiation alarm, an automatic termination of the release from the waste gas system will be initiated from the plant vent radiation monitor low (normal) range noble gas channel VRS-1505A/ VRS-1505B for Unit 1 and VRS-2505A/ VRS-2505B for Unit 2. Therefore, for any gaseous release configuration, which includes normal operation and waste gas system gaseous discharges, the alarm setpoint of the plant vent radiation monitor will be recomputed to determine the most limiting organ based on all gaseous effluent source terms.

Chemical and Volume Control System Hold Up Tanks (CVCS HUT), containing high gaseous oxygen concentrations, may be released under the guidance of waste gas storage tank utilizing approved Operations' procedures.

- 3. It is normally prudent to allow 45 days of decay prior to releasing a Gas Decay Tank (GDT). There are extenuating, operational circumstances that may prevent this from occurring. Under these circumstances, such as high oxygen concentration creating a combustible atmosphere, it is prudent to waive the 45-day decay for safety's sake.
- c. Containment Purge and Exhaust System
 - The gaseous effluents discharged by the Containment Purge and Exhaust Systems and Instrumentation Room Purge and Exhaust System are monitored by the plant vent radiation monitor noble gas channels VRS-1505A/ VRS-1505B for Unit 1 and VRS-2505A/ VRS-2505B for Unit 2; and alarms and trip actions will occur prior to exceeding the limits in step 3.2.4a, Dose Rate.
 - 2. For the Containment System, a continuous air sample from the containment atmosphere is drawn through a closed, sealed system to the radiation monitors (ERS-1300/1400 for Unit 1 and ERS-2300/2400 for Unit 2). During purges, these monitor setpoints will give a Purge and Exhaust Isolation signal upon actuation of high alarm setpoints for particulate and noble gas channels. The sample is then returned to containment. Grab sample analysis is performed for a Containment purge before release.
 - 3. The Upper Containment area is monitored by normal range area gamma monitors (VRS-1101/1201 for Unit 1 and VRS-2101/2201 for Unit 2), which also give Purge and Exhaust Isolation Trip signals upon actuation of their high alarm.
 - 4. For the Containment Pressure Relief System, no sample is routinely taken prior to release, but a sample is obtained twice per month.

Information	PMP-6010-OSD-001	Rev. 27	Page 37 of 92

- 5. The containment airborne and area monitors, upon actuation of their high alarm, will automatically initiate closure of the Containment and Instrument Room purge supply and exhaust duct valves and containment pressure relief system valves. Complete trip of all isolation control devices requires high alarm of one of the two Train A monitors (ERS-1300/2300 or VRS-1101/2101) and one of the two Train B monitors (ERS-1400/2400 or VRS-1201/2201).
- d. Steam Jet Air Ejector System (SJAE)
 - The gaseous effluents from the Steam Jet Air Ejector System discharged to the environment are continuously monitored by radiation monitor (Tag No. SRA-1900 for Unit 1 and SRA-2900 for Unit 2). The monitor will alarm prior to exceeding the limits of step 3.2.4a, Dose Rate. The alarm setpoint for the Condenser Air Ejector System monitor will be based on the maximum air ejector exhaust flow rate, (Attachment 3.15, Plant Gaseous Effluent Parameters). The alarm setpoint value will be established using the following unit analysis equation:

$$S_{SJAE} = \frac{SF * MRP * DL_j}{F_p * \frac{1}{\chi/Q} * \sum_i (W_i * DCF_{ij})}$$

- S_{SJAE} = the maximum setpoint, based on the most limiting organ, in μ Ci/cc and where the other terms are as previously defined
- e. Gland Seal Condenser Exhaust
 - The gaseous effluents from the Gland Seal Condenser Exhaust discharged to the environment are continuously monitored by radiation monitor (Tag No. SRA-1800 for Unit 1 and SRA-2800 for Unit 2). The radiation monitor will alarm prior to exceeding the limits of step 3.2.4a, Dose Rate. The alarm setpoint for the GSCE monitor will be based on the maximum condenser exhaust flow rate (1260 CFM for Unit 1, 2754 CFM each for the two Unit 2 vents). The alarm setpoint value will be established using the following unit analysis equation:

$$S_{GSCE} = \frac{SF * MRP * DL_j}{F_p * \overline{\chi/Q} * \sum_i (W_i * DCF_{ij})}$$

Where:

 S_{GSCE} = the maximum setpoint, based on the most limiting organ, in μ Ci/cc and where the other terms are as previously defined

Rev. 27

- 3.4 Radioactive Effluents Total Dose
 - 3.4.1 The cumulative dose contributions from liquid and gaseous effluents will be determined by summing the cumulative doses as derived in steps 3.2.3c (Dose), 3.2.4b (Dose Noble Gases), and 3.2.4c (Dose Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form) of this procedure. Dose contribution from direct radiation exposure will be based on the results of the direct radiation monitoring devices located at the REMP monitoring stations, and reflects direct dose both from the Dry Cask Storage Facility (ISFSI) licensed under Holtech International and both units of Cook. See NUREG-0133, section 3.8.
- 3.5 Radiological Environmental Monitoring Program (REMP)
 - 3.5.1 Purpose of the REMP
 - a. The purpose of the REMP is to:
 - Establish baseline radiation and radioactivity concentrations in the environs prior to reactor operations,
 - Monitor critical environmental exposure pathways,
 - Determine the radiological impact, if any, caused by the operation of the Donald C. Cook Nuclear Plant upon the local environment.
 - Assist with fulfilling the requirements of the Groundwater Protection Initiative (GPI).

PMP-6010-OSD-001	Rev. 27	Page 39 of 92
		PMP-6010-OSD-001 Rev. 27

b. The first purpose of the REMP was completed prior to the initial operation of either of the two nuclear units at the Donald C. Cook Nuclear Plant Site. The remaining purposes of the REMP are an ongoing operation and as such various environmental media and exposure pathways are examined. The various pathways and sample media used are delineated in Attachment 3.19, Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample Frequencies. Included is a list of the sample media, analysis required, sample stations, and frequency requirements for both collection and analysis. Attachment 3.19, Radiological Environmental Monitoring Program Sample Stations, Sample Frequencies, defines the scope of the REMP for the Donald C. Cook Nuclear Plant.

3.5.2 Conduct of the REMP [Ref. 5.2.1t]

- a. Conduct sample collection and analysis for the REMP in accordance with Attachment 3.19, Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample Frequencies, Attachment 3.20, Maximum Values for Lower Limits of Detections A³B - REMP, and Attachment 3.21, Reporting Levels for Radioactivity Concentrations in Environmental Samples. These are applicable at all times. The on-site monitoring locations are shown on Attachment 3.22, On-Site Monitoring Location - REMP, and the off-site monitoring locations are shown on Attachment 3.23, Off-Site Monitoring Locations - REMP.
 - Perform each surveillance requirement within the specified time interval in Attachment 3.19, Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample Frequencies, with a maximum allowable extension not to exceed 25% of the surveillance interval.
 - 2. If an environmental sample cannot be collected in accordance with step 3.5.2a, submit a description of the reasons for deviation and the actions taken to prevent a reoccurrence as part of the Annual Radiological Environmental Operating Report (AREOR).

	Information	PMP-6010-OSD-001	Rev. 27	Page 40 of 92
--	-------------	------------------	---------	---------------

3. Deviations from the required sampling schedule are permitted if specimens are unobtainable due to hazardous conditions, seasonal unavailability, or malfunction of automatic sampling equipment. If the deviation from the required sampling schedule is due to the malfunction of automatic sampling equipment, make every effort to complete the corrective action prior to the end of the next sampling period.

NOTE: Only one report per event is required.

NOTE: Radioactivity from sources other than plant effluents do not require a Special Report.

- 4. IF any of the following conditions are identified:
 - A radionuclide associated with plant effluents is detected in any REMP sample medium AND its concentration exceeded the limits specified in Attachment 3.21, Reporting Levels for Radioactivity Concentrations in Environmental Samples,
 - More than one radionuclide associated with plant effluents is detected in any REMP sample medium AND the Total Fractional Level, when averaged over the calendar quarter, is greater than or equal to 1.

THEN complete the following steps, as applicable:

- Submit a Special Report to the Nuclear Regulatory Commission within 30 days.
- Submit a Special Report to designated state and local organizations for groundwater or surface water media which could be used as drinking water.
- Evaluate the following items for inclusion in Special Reports:
 - 1) Release conditions
 - 2) Environmental factors
 - 3) Corrective actions
 - 4) Additional factors which may have contributed to the identified levels

Information	PMP-6010-OSD-001	Rev. 27	Page 41 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	

- 5. WHEN submission of a Special Report to designated state and local organizations is required, THEN perform the following:
 - Communicate event specific information to designated state and local organization personnel by the end of the next business day.
 - Document the notification using PMP-6090-PCP-100, Data Sheet 2, Part 4 Radioactive Liquid Spill Which May Impact Groundwater.
 - Forward a copy of the notification to the Environmental Department Manager.
- 6. IF a currently sampled milk farm location becomes unavailable, THEN conduct a special milk farm survey within 15 days.
 - a) IF the unavailable location was an indicator farm, THEN an alternate sample location may be established within eight miles of the Donald C. Cook Nuclear Plant, if one is available.
 - b) IF the unavailable location was a background farm, THEN an alternate sample location may be established greater than 15 but less than 25 miles of the Donald C. Cook Nuclear Plant in one of the less prevalent wind direction sectors, if one is available.
 - c) IF a replacement farm is unobtainable and the total number of indicator farms is less than three or the background farms is less than one, THEN perform monthly vegetation sampling in lieu of milk sampling when vegetation is available.

BASES - RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

The REMP provides measurements of radiation and radioactive materials in those exposure pathways and for those radionuclides, which lead to the highest potential radiation exposures of individuals resulting from the station operation. Thereby, this monitoring program supplements the radiological effluent monitoring program by verifying the measurable concentration of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and modeling of the environmental exposure pathways. The initially specified REMP was effective for the first three years of commercial operation. Program changes may be initiated based on operational experience in accordance with the requirements of Technical Specification 5.5.1.c.

The detection capabilities, required by Attachment 3.20, Maximum Values for Lower Limits of Detections A·B - REMP, are the state-of-the-art for routine environmental measurements in industrial laboratories.

Information

OFF-SITE DOSE CALCULATION MANUAL

Rev. 27

It should be recognized that the LLD is defined as a priori (before the fact) limit representing the capability of a measurement system and not as a posteriori (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine analysis conditions. Occasionally, background fluctuations, unavoidably small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors will be identified and described in the Annual Radiological Environmental Operating Report.

- 3.5.3 Annual Land Use Census [Ref. 5.2.1t]
 - a. Conduct a land use census and identify the location of the nearest milk animal, the nearest residence and the nearest garden of greater than 500 square feet producing fresh leafy vegetables in each of the ten land sectors within a distance of five miles.
 - b. In lieu of the garden census, broad leaf vegetation sampling of at least three different kinds of vegetation (if available) may be performed as close to the site boundary as possible (within 5 miles) in each of two different direction sectors with the highest average deposition factor (D/Q) value.
 - c. Conduct this land use census annually between the dates of June 1 and October 1 by door-to-door survey, aerial survey, or by consulting local agricultural authorities.
 - 1. With a land use census identifying a location(s), which yields a calculated dose or dose commitment greater than the values currently being calculated in this document, make appropriate changes to incorporate the new location(s) within 30 days, if possible.

BASES – LAND USE CENSUS

This is provided to ensure changes in the use of unrestricted areas are identified and modifications to the monitoring program are made, if required by the results of the census. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 500 square feet provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/yr) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were used: 1) that 20% of the garden was used for growing broad leaf vegetation (that is, similar to lettuce and cabbage), and 2) a vegetation yield of 2 kg/square meter.

- 3.5.4 Interlaboratory Comparison Program
 - a. In order to comply with Reg. Guides 4.1 and 4.15, the analytical vendor participates in an Interlaboratory Comparison Program, for radioactive materials. Address program results and identified deficiencies in the AREOR.

1. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the AREOR.

Rev. 27

BASES – INTERLABORATORY COMPARISON PROGRAM

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate the results are reasonably valid.

- 3.6 Meteorological Model
 - 3.6.1 Three towers are used to determine the meteorological conditions at Donald C. Cook Nuclear Plant. One of the towers is located at the Lake Michigan shoreline to determine the meteorological parameters associated with unmodified shoreline air. The data is accumulated by microprocessors at the tower sites and normally transferred to the central computer every 15 minutes.
 - 3.6.2 The central computer uses a meteorological software program to provide atmospheric dispersion and deposition parameters. The meteorological model used is based on guidance provided in Reg. Guide 1.111 for routine releases. All calculations use the Gaussian plume model.
- 3.7 Reporting Requirements
 - 3.7.1 Annual Radiological Environmental Operating Report (AREOR)
 - Submit routine radiological environmental operating reports covering the operation of the units during the previous calendar year prior to May 15 of each year. [Ref 5.2.1j, TS 5.6.2]
 - b. Include in the AREOR:
 - Summaries, interpretations, and statistical evaluation of the results of the radiological environmental surveillance activities for the reporting period.
 - A comparison with pre-operational studies, operational controls (as appropriate), and previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment.
 - The results of the land use censuses required by step 3.5.3, Annual Land Use Census.

Information	PMP-6010-OSD-001	Rev. 27	Page 44 of 92
			1 490 44 01 02
	OFF-SITE DOSE CALCULAT	ION MANUAL	
	If harmful effects or evidence of	of irreversible dama	age are detected by

a planned course of action to alleviate the problem.
Summarized and tabulated results of all radiological environmental samples taken during the reporting period. In the event that some results are not available for inclusion with the report, submit the

the monitoring, provide in the report an analysis of the problem and

- results are not available for inclusion with the report, submit the report noting and explaining the reasons for the missing results. Submit the missing data as soon as possible in a supplementary report.
- A summary description of the REMP including sampling methods for each sample type, size and physical characteristics of each sample type, sample preparation methods, analytical methods, and measuring equipment used.
- A map of all sample locations keyed to a table giving distances and directions from one reactor.
- The results of participation in the Interlaboratory Comparison Program required by step 3.5.4, Interlaboratory Comparison Program.
- The results of non-REMP samples taken for informational purposes in support of non-program specific investigations, such as rainfall studies of tritium recapture for example.
- 3.7.2 Annual Radiological Effluent Release Report (ARERR)
 - Submit routine ARERR covering the operation of the unit during the previous 12 months of operation prior to May 1st of each year. [Ref 5.2.1j, TS 5.6.3]
 - b. Include in the ARERR a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the units as outlined in Reg. Guide 1.21, "Measuring, Evaluating and Reporting in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water Cooled Nuclear Power Plants," with data summarized on a quarterly basis following the format of Appendix B, thereof.

Information	PMP-6010-OSD-001	Rev. 27	Page 45 of 92
	OFF-SITE DOSE CALCULAT		
	OT STE DOSE ORECOERT		

- c. Submit in the ARERR prior to May 1st of each year and include a quarterly summary of hourly meteorological data collected during the reporting period.
 - This summary may be in the form of an hour-by-hour listing of wind speed, wind direction, atmospheric stability, and precipitation (if measured) on magnetic tape, or in the form of joint frequency distributions of wind speed, wind direction and atmospheric stability.
 - Include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year.
 - Include an assessment of the radiation doses from radioactive liquid and gaseous effluents to members of the public due to their activities inside the site boundary during the reporting period. Include all assumptions used in making these assessments (that is, specific activity, exposure time and location) in these reports.
 - Use the meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents (as determined by sampling frequency and measurement) for determining the gaseous pathway doses.
 - Inoperable radiation monitor periods exceeding 30 continuous days; explain causes of inoperability and actions taken to prevent reoccurrence.
- d. Submit the ARERR [Ref. 5.2.1v] prior to May 1st of each year and include an assessment of radiation doses to the likely most exposed member of the public from reactor releases and other nearby uranium fuel cycle sources (including doses from primary effluent pathways and direct radiation) for the previous 12 consecutive months to show conformance with 40 CFR 190, Environmental Radiation Protection Standards for Nuclear Power Operation. Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Reg. Guide 1.109, Rev.1.
- e. Include in the ARERR the following information for each type of solid waste shipped off-site during the report period:
 - Volume (cubic meters),
 - Total curie quantity (specify whether determined by measurement or estimate),

Information	PMP-6010-OSD-001	Rev. 27	Page 46 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
	· · · · · · · · · · · · · · · · · · ·		- <u>-</u>

- Principle radionuclides (specify whether determined by measurement or estimate),
- Type of waste (example: spent resin, compacted dry waste, evaporator bottoms),
- Type of container (example: LSA, Type A, Type B, Large Quantity),
 - -AND-
- Solidification agent (example: cement).
- f. Include in the ARERR unplanned releases of radioactive materials in gaseous and liquid effluent from the site to unrestricted areas on a quarterly basis.
- g. Include in the ARERR any change to this procedure made during the reporting period.
- h. Due to the site having shared gaseous and liquid waste systems dose calculations will be performed on a per site bases using the per unit values. This is ALARA and will ensure compliance with 40 CFR 141, National Primary Drinking Water Regulations. Unit specific values are site values divided by two.
- i. Include in the ARERR groundwater sample results taken that are in support of the Groundwater Protection Initiative (GPI) but are not part of the REMP.

3.8 10 CFR 50.75 (g) Implementation

- 3.8.1 Records of spills or other unusual occurrences involving the spread of contamination in and around the site. These records may be limited to instances when significant contamination remains after decontamination or when there is a reasonable likelihood that contaminants may have spread to inaccessible areas, as in the case of possible seepages.
- 3.8.2 These records shall include any known information or identification of involved nuclides, quantities, and concentrations.
- 3.8.3 This information is necessary to ensure all areas outside the radiologicalrestricted area are documented for surveying and remediation during decommissioning. There is a retention schedule item for 10 CFR 50.75(g) where this information is filed in Nuclear Documents Management to ensure all required areas are listed to prevent their omission.

- 3.9 Reporting/Management Review
 - 3.9.1 Incorporate any changes to this procedure in the ARERR.
 - 3.9.2 Update this procedure when required for changes made to the Radiation Monitoring System, its instruments, or the specifications of instruments.
 - 3.9.3 Review or revise this procedure as appropriate based on the results of the land use census and REMP.
 - 3.9.4 Consider any changes to this procedure for potential impact on other related Department Procedures.
 - 3.9.5 Review the past year's meteorological data during the first quarter of each year and update the ODCM as necessary. Review Attachment 3.16, 10 Year Average of 1995-2004 Data, and document using Attachment 3.17, Annual Evaluation of $\overline{x/Q}_{and} \overline{D/Q}_{Values}$ For All Sectors. The $\overline{x/Q}$ and $\overline{D/Q}$ values will be processed using ± 3 standard deviations of the data and evaluated against the 10 year annual average data. Documentation is done by completing Attachment 3.17, Annual Evaluation of $\overline{x/Q}_{and} \overline{D/Q}_{Values}$ For All Sectors, and filed in accordance with the retention schedule.
- 4 FINAL CONDITIONS
- 4.1 None.
- 5 REFERENCES
- 5.1 Use References:
 - 5.1.1 "Implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Off-Site Dose Calculation Manual or to the Process Control Program (Generic Letter 89-01)", United States Nuclear Regulatory Commission, January 31, 1989
 - 5.1.2 12-THP-6010-RPP-601, Preparation of the Annual Radioactive Effluent Release Report
 - 5.1.3 12-THP-6010-RPP-639, Annual Radiological Environmental Operating Report (AREOR) Preparation And Submittal
 - 5.1.4 PMP-6090-PCP-100, Spill Response- Oil, Polluting, Hazardous Materials, and Radioactive Spills

5.2 Writing References:

- 5.2.1 Source References:
 - a. 10 CFR 20, Standards for Protection Against Radiation
 - b. 10 CFR 50, Domestic Licensing of Production and Utilization Facilities

Rev. 27

- c. PMI-6010, Radiation Protection Plan
- d. NUREG-0472
- e. NUREG-1301
- f. NUREG-0133
- g. Regulatory Guide 1.109, non-listed parameters are taken from these data tables
- h. Regulatory Guide 1.111
- i. Regulatory Guide 1.113
- j. Updated Final Safety Analysis Report (UFSAR)
- k. Technical Specifications 5.4.1.e, 5.5.1.c, 5.5.3, 5.6.2, and 5.6.3
- I. Final Environmental Statement Donald. C. Cook Nuclear Plant, August 1973
- m. NUREG-0017
- n. ODCM Setpoints for Liquid [and Gaseous] Effluent Monitors (Bases), ENGR 107-04 8112.1 Environs Rad Monitor System
- o. HPPOS-223, Consideration of Measurement Uncertainty When Measuring Radiation Levels Approaching Regulatory Limits
- p. 40 CFR 190, Environmental Radiation Protection Standards for Nuclear Power Operations
- q. NRC Commitment 6309 (N94083 dated 11/10/94)
- r. NRC Commitment 1151
- s. NRC Commitment 1217
- t. NRC Commitment 3240
- u. NRC Commitment 3850
- v. NRC Commitment 4859

Rev. 27

- w. NRC Commitment 6442
- x. NRC Commitment 3768
- y. DIT-B-00277-00, HVAC Systems Design Flows
- z. Regulatory Guide 1.21
- aa. Regulatory Guide 4.1
- bb. 1-2-V3-02-Calc #4, Unit Vent Sample Flow rate for isokinetic particulates and lodine sampling
- cc. HPS N13.30-1996, Appendix A Rationale for Methods of Determining Minimum Detectable Amount (MDA) and Minimum Testing Level (MDL
- dd. DIT-B-01971-00, Dose Factors for Radioactive Particulate Gaseous Effluents Associated with the Child by the Inhalation Pathway
- ee. DIT-B-01987-00, Ground Plane & Food Dose Factors P_i for Radioiodines and Radioactive Particulate Gaseous Effluents
- ff. NRC Commitment 1010
- gg. NEI 07-07 Groundwater Protection Initiative
- hh. ANI 07-01 Potential for Unmonitored and Unplanned Off-Site Releases of Radioactive Material
- ii. RD-16-03, Mirion MCNPX Analysis Report

5.2.2 General References

- a. Cook Nuclear Plant Start-Up Flash Tank Flow Rate letter from D. L. Boston dated January 21, 1997
- b. Letter from B.P. Lauzau, Venting of Middle CVCS Hold-Up Tank Directly to Unit Vent, May 1, 1992
- c. AEP Design Information Transmittal on Aux Building Ventilation Systems
- d. PMP-4030.EIS.001, Event-Initiated Surveillance Testing
- e. Environmental Position Paper, Fe Impact on Release Rates, approved 3/14/00
- f. Environmental Position Paper, Methodology Change from Sampling Secondary System Gaseous Effluents for Power Changes Exceeding 15% within 1 hour to Responding to Gaseous Alert Alarms, approved 4/4/00.

Information	PMP-6010-OSD-001	Rev. 27	Page 50 of 92
(OFF-SITE DOSE CALCULAT	ION MANUAL	
.			·····

- g. CR 02150078, RRS-1000 efficiency curve usage
- h. Environmental Position Paper, Unit Vent Compensatory Sampling, approved 4/14/05

Remainder of this page left blank intentionally

Information	Page 51 of 92				
OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.1 Dose Factors for Various Pathways			Pages: 51 - 54		

R_i Dose Factors

PATHWAY

Nuclide	Ground	Vegetable	Meat	Cow Milk	Goat Milk	Inhalation
H-3	0.0E+00	4.0E+03	3.3E+02	2.4E+03	4.9E+03	1.3E+03
C-14	0.0E+00	3.5E+06	5.3E+05	3.2E+06	3.2E+06	3.6E+04
Cr-51	5.4E+06	1.1E+07	1.5E+06	6.9E+06	8.3E+05	2.1E+04
Mn-54	1.6E+09	9.4E+08	2.1E+07	2.9E+07	3.5E+06	2.0E+06
Fe-59	3.2E+08	9.6E+08	1.7E+09	3.1E+08	4.0E+07	1.5E+06
Co-58	4.4E+08	6.0E+08	2.9E+08	8.4E+07	1.0E+07	1.3E+06
Co-60	2.5E+10	3.2E+09	1.0E+09	2.7E+08	3.2E+07	8.6E+06
Zn-65	8.5E+08	2.7E+09	9.5E+08	1.6E+10	1.9E+09	1.2E+06
Sr-89	2.5E+04	3.5E+10	3.8E+08	9.9E+09	2.1E+10	2.4E+06
Sr-90	0.0E+00	1.4E+12	9.6E+09	9.4E+10	2.0E+11	1.1E+08
Zr-95	2.9E+08	1.2E+09	1.5E+09	9.3E+05	1.1E+05	2.7E+06
Sb-124	6.9E+08	3.0E+09	4.4E+08	7.2E+08	8.6E+07	3.8E+06
I-131	1.0E+07	2.4E+10	2.5E+09	4.8E+11	5.8E+11	1.6E+07
I-133	1.5E+06	4.0E+08	6.0E+01	4.4E+09	5.3E+09	3.8E+06
Cs-134	7.9E+09	2.5E+10	1.1E+09	5.0E+10	1.5E+11	1.1E+06
Cs-136	1.7E+08	2.2E+08	4.2E+07	5.1E+09	1.5E+10	1.9E+05
Cs-137	1.2E+10	2.5E+10	1.0E+09	4.5E+10	1.4E+11	9.0E+05
Ba-140	2.3E+07	2.7E+08	5.2E+07	2.1E+08	2.6E+07	2.0E+06
Ce-141	1.5E+07	5.3E+08	3.0E+07	8.3E+07	1.0E+07	6.1E+05
Ce-144	7.9E+07	1.3E+10	3.6E+08	7.3E+08	8.7E+07	1.3E+07

Units for all except inhalation pathway are m² mr sec / yr μ Ci, inhalation pathway units are mr m³ / yr μ Ci.

 U_{ap} Values to be Used For the Maximum Exposed Individual

Pathway	Infant	Child	Teen	Adult
Fruits, vegetables and grain (kg/yr)		520	630	520
Leafy vegetables (kg/yr)		26	42	64
Milk (L/yr)	330	330	400	310
Meat and poultry (kg/yr)		41	65	110
Fish (kg/yr)		6.9	16	21
Drinking water (L/yr)	330	510	510	730
Shoreline recreation (hr/yr)		14	67	12
Inhalation (m ³ /yr)	1400	3700	8000	8000

Table E-5 of Reg. Guide 1.109.

Information	PMP-6010-OSD-001	Rev. 27	Page 52 of 92	
OFF-SITE DOSE CALCULATION MANUAL				
Attachment 3.1 Dose Factors for Various Pathways			Pages: 51 - 54	

B_{ip} Factors for Aquatic Foods ρCi I / kg ρCi

Element	Fish	Invertebrate
H	9.0E-1	9.0E-1
С	4.6E3	9.1E3
Na	1.0E2	2.0E2
Р	1.0E5	2.0E4
Cr	2.0E2	2.0E3
Mn	4.0E2	9.0E4
Fe	1.0E2	3.2E3
Со	5.0E1	2.0E2
Ni	1.0E2	1.0E2
Cu	5.0E1	4.0E2
Zn	2.0E3	1.0E4
Br	4.2E2	3.3E2
Rb	2.0E3	1.0E3
Sr	3.0E1	1.0E2
Y	2.5E1	1.0E3
Zr	3.3E0	6.7E0
Nb	3.0E4	1.0E2
Мо	1.0E1	1.0E1
Тс	1.5E1	5.0E0
Ru	1.0E1	3.0E2
Rh	1.0E1	3.0E2
Те	4.0E2	6.1E3
	1.5E1	5.0E0
Cs	2.0E3	1.0E3
Ba	4.0E0	2.0E2
La	2.5E1	1.0E3
Се	1.0E0	1.0E3
Pr	2.5E1	1.0E3
Nd	2.5E1	1.0E3
W	1.2E3	1.0E1
Np	1.0E1	4.0E2

Table A-1 of Reg. Guide 1.109.

Information	PMP-6010-OSD-001	Rev. 27	Page 53 of 92
	DEF-SITE DOSE CALCULAT		

Attachment 3.1

Dose Factors for Various Pathways

Pages: 51 - 54

D_{aipj} External Dose Factors for Standing on Contaminated Ground mrem m² / hr ρCi

Radionuclide	Total Body	Skin
H-3	0	0
C-14	0	0
Na-24	2.5E-8	2.9E-8
P-32	0	0
Cr-51	2.2E-10	2.6E-10
Mn-54	5.8E-9	6.8E-9
Mn-56	1.1E-8	1.3E-8
Fe-55	0	0
Fe-59	8.0E-9	9.4E-9
Co-58	7.0E-9	8.2E-9
Co-60	1.7E-8	2.0E-8
Ni-63	0	0
Ni-65	3.7E-9	4.3E-9
Cu-64	1.5E-9	1.7E-9
Zn-65	4.0E-9	4.6E-9
Zn-69	0	0
Br-83	6.4E-11	9.3E-11
Br-84	1.2E-8	1.4E-8
Br-85	0	0
Rb-86	6.3E-10	7.2E-10
Rb-88	3.5E-9	4.0E-9
Rb-89	1.5E-8	1.8E-8
Sr-89	5.6E-13	6.5E-13
Sr-91	7.1E-9	8.3E-9
Sr-92	9.0E-9	1.0E-8
Y-90	2.2E-12	2.6E-12
Y-91m	3.8E-9	4.4E-9
Y-91	2.4E-11	2.7E-11
Y-92	1.6E-9	1.9E-9
Y-93	5.7E-10	7.8E-10
Zr-95	5.0E-9	5.8E-9
Zr-97	5.5E-9	6.4E-9
Nb-95	5.1E-9	6.0E-9
Mo-99	1.9E-9	2.2E-9
Tc-99m	9.6E-10	1.1E-9
Tc-101	2.7E-9	3.0E-9
Ru-103	3.6E-9	4.2E-9
Ru-105	4.5E-9	5.1E-9
Ru-106	1.5E-9	1.8E-9
Ag-110m	1.8E-8	2.1E-8
Te-125m	3.5E-11	4.8E-11

Information	PMP-6010-OSD-001	Rev. 27	Page 54 of 92

Attachment 3.1

Dose Factors for Various Pathways

Pages: 51 - 54

Radionuclide	Total Body	Skin
Te-127m	1.1E-12	1.3E-12
Te-127	1.0E-11	1.1E-11
Te-129m	7.7E-10	9.0E-10
Te-129	7.1E-10	8.4E-10
Te-131m	8.4E-9	9.9E-9
Te-131	2.2E-9	2.6E-6
Te-132	1.7E-9	2.0E-9
I-130	1.4E-8	1.7E-8
1-131	2.8E-9	3.4E-9
I-132	1.7E-8	2.0E-8
I-133	3.7E-9	4.5E-9
1-134	1.6E-8	1.9E-8
I-135	1.2E-8	1.4E-8
Cs-134	1.2E-8	1.4E-8
Cs-136	1.5E-8	1.7E-8
Cs-137	4.2E-9	4.9E-9
Cs-138	2.1E-8	2.4E-8
Ba-139	2.4E-9	2.7E-9
Ba-140	2.1E-9	2.4E-9
Ba-141	4.3E-9	4.9E-9
Ba-142	7.9E-9	9.0E-9
La-140	1.5E-8	1.7E-8
La-142	1.5E-8	1.8E-8
Ce-141	5.5E-10	6.2E-10
Ce-143	2.2E-9	2.5E-9
Ce-144	3.2E-10	3.7E-10
Pr-143	0	0
Pr-144	2.0E-10	2.3E-10
Nd-147	1.0E-9	1.2E-9
W-187	3.1E-9	3.6E-9
Np-239	9.5E-10	1.1E-9

Table E-6 of Reg. Guide 1.109.

	Information	PMP-6010-OSD-00)1	Rev. 27	Page 5	5 of 92
		OFF-SITE DOSE CALCU	ILATION M	IANUAL		-
	Attachment 3.2	Radioactive Liquid Effluer	nt Monitoring	g Instruments	Page 55 -	
IN	ISTRUMENT		Minimum Channels Operable ^a	Applicat	oility	Action
1.	Gross Radioact	ivity Monitors Providing Au	tomatic Rele	ase Terminatio	n	
	a. Mirion Liquid F Effluent Line (F	Radwaste RRS-1001-A, RRS-1021-B)	(1)	At times of r	elease	1
	b. Mirion Steam C Blowdown Line		(1)	At times of n	elease**	2
	c. Mirion Steam C Blowdown Trea Effluent (DRA-	atment	(1)	At times of r	elease	2
2.	Gross Radioact	ivity Monitors Not Providing	g Automatic	Release Termi	nation	
		Water t Line (Unit 1:WRA-713, (Unit 2: WRA-714,	(1) per train	At all times		3
3.	Continuous Compo Sampler Flow Mon					
	a. Turbine Buildir Effluent Line	ig Sump	(1)	At all times		3
4.	Flow Rate Measure	ment Devices				
	a. Liquid Radwast (RFI-285)	e Line	(1)	At times of r	elease	4
	b. Discharge Pipe	\$ [*]	(1)	At all times		NA
	c. Steam Generato Treatment Efflu		(1)	At times of r	elease	4
		n Generator sample flow Idiation monitors alarm , 330 and 340)	(1) per generator	At times of r	elease	5

* Pump curves and valve settings may be utilized to estimate flow; in such cases, Action Statement 4 is not applicable. This is primarily in reference to start up flash tank flow.

** Since these monitors can be used for either batch or continuous release the appropriate action statement of 1 or 2 should apply (that is, Action 1 if a steam generator drain is being performed in lieu of Action 2). It is possible, due to the steam generator sampling system lineup, that BOTH action statements are actually entered. This would be the case when sampling for steam generator draining requires duplicate samples while the sample system is lined up to discharge to the operating units blowdown system. In this case the steam generator drain samples can fulfill the sample requirement for Action 2 also. Action 2 would be exited when sampling was terminated.

Information	PMP-6010-OSD-001	Rev. 27	Page 56 of 92			
OFF-SITE DOSE CALCULATION MANUAL						
Attachment 3.2	Pages: 55 - 57					

- a IF an RMS monitor is inoperable solely as the result of the loss of its control room alarm annunciation, THEN one of the following actions is acceptable to satisfy the ODCM action statement compensatory surveillance requirement:
 - Collect grab samples and conduct laboratory analyses per the specific monitor's action statement, -OR-
 - Collect local monitor readings at a frequency equal to or greater than (more frequently than) the action frequency.

IF the RMS monitor is inoperable for reasons other than the loss of control room annunciation, THEN the only acceptable action is taking grab samples and conducting laboratory analyses as the reading is equivalent to a grab sample when the monitor is functional.

TABLE NOTATION

- Action 1 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue, provided that prior to initiating a release:
 - 1. At least two independent samples (taken at different times) are analyzed in accordance with Step 3.2.3a and;
 - 2. At least two technically qualified members of the Facility Staff independently verify the discharge valve lineup. Otherwise, suspend release of radioactive effluents via this pathway.
- Action 2 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 10-7 µCi/gram:
 - 1. At least once per shift when the specific activity of the secondary coolant is > 0.01 $\mu Ci/gram$ DOSE EQUIVALENT I-131.
 - 2. At least once per 24 hours when the specific activity of the secondary coolant is \leq 0.01 $\mu Ci/gram DOSE EQUIVALENT I-131.$

After 30 days, IF the channels are not OPERABLE, THEN continue releases with required grab samples provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent release Report.

- Action 3 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided that at least once per shift, grab samples are collected and analyzed for gross radioactivity (beta or gamma) at a lower limit of detection of at least 10-7 μCi/mI. Since the Mirion ESW monitors (WRA-713/717 U1 and WRA-714/718 U2) are only used for post LOCA leak detection and have no auto trip function associated with them, grab samples are only needed if the Containment Spray Heat Exchanger is in service. After 30 days, IF the channels are not OPERABLE, THEN continue releases with grab samples once per shift and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent release Report.
- Action 4 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is estimated at least once per 4 hours during actual releases. After 30 days, IF the channels are not OPERABLE, THEN continue releases with flow rate estimates once every 4 hours during actual releases and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent release Report.

Information	PMP-6010-OSD-001	Rev. 27	Page 57 of 92			
OFF-SITE DOSE CALCULATION MANUAL						
Attachment 3.2	Pages: 55 - 57					

Action 5 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is verified to be within the required band at least once per 4 hours during actual releases. After 30 days, IF the channels are not OPERABLE, THEN continue releases with grab samples once per shift and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent release Report. IF the flow cannot be obtained within the desired band, THEN declare the radiation monitor inoperable and enter the appropriate actions statement, Action 2.

Compensatory actions are governed by PMP-4030-EIS-001, Event-Initiated Surveillance Testing

Rest of page left blank intentionally

Information		PMP-6010-OS	D-001	Rev. 27	Page 58 of 92	
	OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.3		Radioactive Lic strumentation S			Pages: 58 - 59	
Instrument		CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL OPERATIONAL TEST	
1. Gross Radioactivity	/ Monitor		· · · · · · · · · · · · · · · · · · ·			
a. Mirion Liquid Radwaste Effluent Line (RRS-1001-A, 1021-B)	RRS-	D*	Ρ	B(3)	Q(5)	
 b. Steam Generat Blowdown Eff Line 		D*	M	B(3)	Q(1)	
 c. Steam Generat Blowdown Tre Effluent Line 		D*	М	B(3)	Q(1)	
2. Gross Radioad	tivity Mo	nitors Not Prov	iding Autom	atic Release Termi	nation	
a. Service Water System Effluer Line	nt	D	М	B(3)	Q(2)	
3. Continuous Co	mposite	Samplers		· · · · · · · · · · · · · · · · · · ·		
a. Turbine Buildi Sump Effluent	ng	D*	N/A	N/A	N/A	
4. Flow Rate Me	asuremen	t Devices				

N/A

N/A

В

N/A

Q

N/A

* During releases via this pathway. This is applicable to all surveillances for the appropriate monitor.

D(4)*

D(4)*

a. Liquid Radwaste Effluent

b. Steam Generator

Line

Blowdown Treatment

Information	PMP-6010-OSD-001	Rev. 27	Page 59 of 92

Attachment 3.3	Radioactive Liquid Effluent Monitoring	Pages:
Attachment 5.5	Instrumentation Surveillance Requirements	58 - 59

TABLE NOTATION

- 1. Demonstrate with the CHANNEL OPERATIONAL TEST that automatic isolation of this pathway and control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm/trip setpoint.
 - 2. Circuit failure.*
 - 3. Instrument indicates a downscale failure.*
 - 4. Instrument control not set in operating mode.*
- Demonstrate with the CHANNEL OPERATIONAL TEST that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - 2. Circuit failure.
 - 3. Instrument indicates a downscale failure.
 - 4. Instrument controls not set in operating mode.
- Perform the initial CHANNEL CALIBRATION using one or more sources with traceability back to the National Institute of Standards and Technology (NIST). These sources permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration may be used.
- 4. Verify indication of flow during periods of release with the CHANNEL CHECK. Perform the CHANNEL CHECK at least once per 24 hours on days on which continuous, periodic or batch releases are made.
- 5. Demonstrate with the CHANNEL OPERATIONAL TEST that automatic isolation of this pathway and control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm/trip setpoint (either detector)
 - 2. Circuit failure of BOTH detectors.**
 - 3. Instruments indicates a downscale failure for BOTH detectors.**
 - 4. Instrument control not set in operating mode for BOTH detectors.*
- * Instrument indicates, but does not provide for automatic isolation
- ** Instrument indicates, but does not necessarily cause automatic isolation. No credit is taken for the automatic isolation on such occurrences.

Operations currently performs the routine channel checks and source checks. Maintenance and Radiation Protection perform channel calibrations and channel operational tests. Chemistry performs the channel check on the continuous composite sampler. These responsibilities are subject to change without revision to this document.

Information	PMP-6010-OSD-001	Rev. 27	Page 60 of 92

Attachment	3.4	

T

Radioactive Gaseous Effluent Monitoring Instrumentation

Pages: 60 - 62

Ins	strument (Instrument #)	Operable ¹	Minimum Channels Action	Action
1.	Condenser Evacuation System			
	a. Mirion Noble Gas Activity Monitor (SRA-1905-A/1905-B and SRA- 2905-A/2905-B)	(1)	***	6
	 Mirion Flow Rate Monitor (SFR-401 and PPC/RadServe SJAE display point) OR (SFR-402 and U1/U2 PPC/RadServe SJAE display point) 	(1)	***	5
2.	Unit Vent. Auxiliary Building Ventilation System			······
	a. Mirion Noble Gas Activity Monitor (VRS-1505-A/1505-B and VRS- 2505-A/2505-B)	(1)	*	6
	b. Iodine Sampler Cartridge for VRA-1503/2503	(1)	*	8
	c. Particulate Sampler Filter for VRA-1501/2501	(1)	*	8
	 Mirion Effluent System Flow Rate Measuring Device (VFR-315 and U1/U2 PPC/RadServe VAB display point VFR- 1510/2510) 	(1)	*	5
	e. Sampler Flow Rate Measuring Device (U1/U2 PPC/RadServe VAB display point PP-1500/2500) OR (VRS- 1500/2500 local display)	(1)	* #	5
3.	Containment Purge and Containment Pressure Relief (Vent) **		·	
	a. Containment Noble Gas Activity Monitor ERS-1305/1405 (ERS-2305/2405)	(1)	****2, 3	7
	b. Containment Particulate Sampler Filter ERS-1301/1401 (ERS-2301/2401)	(1)	***	10
4.	Waste Gas Holdup System and CVCS HUT (Batch releases)**			
	a. Mirion Noble Gas Activity Alarm and Termination of Waste Gas Releases (VRS-1505-A/1505-B and VRS-2505-A/2505-B)	(1)	***4	9
5.	Gland Seal Exhaust			
	a. Noble Gas Activity Monitor (SRA-1805/2805)	(1)	***	6
	 Mirion Flow Rate Monitor (SFR-201 and U1/U2 PPC/RadServe GSLO display point) <u>OR</u> (SFR-201 and SFR-1810/2810 local display) 	(1)	***	5

Information	PMP-6010-OSD-001	Rev. 27	Page 61 of 92
	OFF-SITE DOSE CALCULATIO	ON MANUAL	
Attachment 3.4	Radioactive Gaseous Effluent Monitorin	g Instrumentation	Pages: 60 - 62

- At all times
- ** Containment Purge and other identified gaseous batch releases can be released utilizing the same double sampling compensatory action requirements of action 9 identified here even if there is no termination function associated with it like that associated with the two specific tank types listed here.
- **** During releases via this pathway
- #. Unit 1/2 Channel 7: VFS-1525A, Channel 27: VFS-1521B, Channel 8: VFS-1525C

TABLE NOTATIONS

- IF an RMS monitor is INOPERABLE solely as the result of the loss of its control room alarm annunciation, THEN one of the following actions is acceptable to satisfy the ODCM action statement compensatory surveillance requirement:
 - 1. Take grab samples and conduct laboratory analyses per the specific monitor's action statement, -OR-
 - 2. Take local monitor readings at a frequency equal to or greater than (more frequently than) the action frequency.

IF the RMS monitor is inoperable for reasons other than the loss of control room annunciation, THEN the only acceptable action is taking grab samples and conducting laboratory analyses as the reading is equivalent to a grab sample when the monitor is functional.

With the Mirion RMS Upgrades, it is intended that an OPERABLE instrument/channel listed in the ODCM has both an operable transmitter and an operable display point, which may be local to the skid or on the PPC/RadServe system. This is in addition to control room annunciation function, if applicable.

- 2. Consider releases as occurring "via this pathway" under the following three conditions:
 - The Containment Purge System is in operation and Containment Operability is applicable, -OR-
 - The Containment Purge System is in operation and the 'Clean-up' batch release of the Containment air volume has not been fully completed.

Note: IF neither of the above are applicable AND the unit is in Mode 5 or 6, THEN the containment purge system is acting as a ventilation system (an extension of the Auxiliary Building) and is covered by Item 2 of this Attachment. This is called 'Ventilation Mode'. 'Ventilate Mode' cannot be entered without performing a Clean-up batch release.

- -OR-
- A Containment Pressure Relief (CPR) is being performed.

Once the 'Clean-up' batch release has been completed and 'Ventilation' mode of Purge has commenced – resultant return to 'Clean-up' mode can be made with no additional sampling requirements or paperwork – so long as either ERS-1305/2305 OR ERS-1405/2405 are operable. Containment particulate channels are not needed once the RCS has entered Mode 5 per Technical Specification 3.4.15.

- 3. For purge (including pressure relief) purposes only. Reference TS 3.3.6, Containment Purge Supply and Exhaust System Isolation Instrumentation and 3.4.15, RCS Leakage Detection Instrumentation for additional information.
- 4. For waste gas releases only, see Item 2 (Unit Vent, Auxiliary Building Ventilation System) for additional requirements.

Information	PMP-6010-OSD-001	Rev. 27	Page 62 of 92
	OFF-SITE DOSE CALCULATIO	ON MANUAL	
Attachment 3.4	Radioactive Gaseous Effluent Monitorin	g Instrumentation	Pages: 60 - 62

ACTIONS

- 5. With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is estimated at least once per 4 hours. After 30 days, IF the channels are not OPERABLE, THEN continue releases with estimation of the flow rate once per 4 hours and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent Release Report.
- 6. With the number of channels OPERABLE less required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are taken at least once per shift and these samples are analyzed for gross activity within 24 hours. After 30 days, IF the channels are not OPERABLE, THEN continue releases with grab samples once per shift and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent release Report.
- 7. With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirements, immediately suspend PURGING or VENTING (CPR) of radioactive effluents via this pathway.
- 8. With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the affected pathway may continue for up to 30 days provided samples required for weekly lodine & Particulates analysis are continuously collected with auxiliary sampling equipment as required in Attachment 3.7, Radioactive Gaseous Waste Sampling and Analysis Program. After 30 days, IF the channels are not OPERABLE, THEN continue releases with sample collection by auxiliary sampling equipment and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent Release Report.

Sampling evolutions are not an interruption of a continuous release or sampling period.

- 9. With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be released to the environment for up to 14 days provided that prior to initiating the release:
 - a. At least two independent samples (taken at a different times) of the tank's contents are analyzed and,
 - b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge valve lineups; otherwise, suspend release of radioactive effluents via this pathway.

After 14 days, IF the channels are not OPERABLE, THEN continue releases with sample collection by auxiliary sampling equipment and provide a description of why the inoperability was not corrected in the next Annual Radiological Effluent Release Report

10. Technical Specification 3.4.15, RCS Leakage Detection System Instrumentation.

Compensatory actions are governed by PMP-4030-EIS-001, Event-Initiated Surveillance Testing.

Information	PMP-6010-OSD-001	Rev. 27	Page 63 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
Attachment 3.5	Radioactive Gaseous Efflue Instrumentation Surveillance	<u> </u>	Pages: 63 - 64

Instrument	CHANNEL CHECK	SOURCE CHECK	CHANNEL	CHANNEL OPERATIONAL TEST
1. Condenser Evacuation System	Alarm Only			<u> </u>
a. Mirion Noble Gas Activity Monitor (SRA-1905-A/ 1905- B, SRA-2905-A/ 2905-B)	D**	М	B(2)	Q(1)
 b. Mirion System Effluent Flow Rate (SFR-401, SFR-402, U1/U2 PPC/RadServe SJAE display point, SRA- 1910/2910) 	D**	NA	В	Q
 Auxiliary Building Unit Ventilation System 	Alarm Only			
 a. Mirion Noble Gas Activity Monitor (VRS-1505-A/ 1505- B and VRS-2505-A/ 2505-B) 	D*	М	B(2)	Q(1)
b. lodine Sampler (For VRA-1503/2503)	W*	NA	NA	NA
c. Particulate Sampler (For VRA-1501/2501)	W*	NA	NA	NA
d. Mirion System Effluent Flow Rate Measurement Device (VFR-315, U1/U2 PPC/RadServe VAB display point, VRS-1510/2510)	D*	NA	В	Q
 e. Mirion Sampler Flow Rate Measuring Device (U1/U2 PPC/RadServe VAB display point PP-1500/2500 or local display) 	D*	N/A	В	Q
3. Containment Purge System and Containment Pressure Relief	Alarm and Tri	p		
a. Containment Noble Gas Activity Monitor (ERS- 13/1405 and ERS-23/2405)	S	Р	B(2)	Q
 b. Containment Particulate Sampler (ERS-13/1401 and ERS-23/2401) 	S	NA	В	Q
4. Waste Gas Holdup System Including CVCS HUT	Alarm and Tri	p		
 a. Mirion Noble Gas Activity Monitor Providing Alarm and Termination (VRS-1505- A/1505-B and VRS-2505- A/2505-B) 	Ρ	Ρ	B(2)	Q(3)
-			-	

ormation	PMP-6010-OSD-001	Rev. 27	Page 64 of 9
I		· ····	·
0	FF-SITE DOSE CALCULAT	ION MANUAL	

Attachment 2.5	Radioactive Gaseous Effluent Monitoring	Pages
Attachment 3.5	Instrumentation Surveillance Requirements	63 - 6

					~
entation	Surveill	ance	Requ	iireme	nts
			1		

S: 63 - 64

Instrument	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL OPERATIONAL TEST
5. Gland Seal Exhaust	Alarm Only			· · · · · · · · · · · · · · · · · · ·
a. Mirion Noble Gas Activity (SRA-1805/2805)	D**	М	B(2)	Q(1)
 b. System Effluent Flow Rate (SFR-201, U1/U2 PPC/RadServe GSLO display point, SRA-1810/2810) 	D**	NA	В	Q

* At all times

** During releases via this pathway. This is applicable to all surveillances for the appropriate monitor.

TABLE NOTATIONS

- 1. Demonstrate with the CHANNEL OPERATIONAL TEST that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - 2. Circuit failure.
 - 3. Instrument indicates a downscale failure.
 - 4. Instrument controls not set in operate mode.
- 2. Perform the initial CHANNEL CALIBRATION using one or more sources with traceability back to the NIST. These sources permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration may be used.
- 3. Demonstrate with the CHANNEL OPERATIONAL TEST that automatic isolation of this pathway and control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm/trip setpoint.
 - 2. Circuit failure.*
 - 3. Instrument indicates a downscale failure.*
 - 4. Instrument controls not set in operate mode.*
- Instrument indicates, but does not provide automatic isolation.

Operations currently performs the routine channel checks, and source checks. Maintenance and Radiation Protection perform channel calibrations and channel operational tests. These responsibilities are subject to change without revision to this document.

Rest of this page intentionally blank

Information	PMP-6010-OSD-001	Rev. 27	Page 65 of 92
	OFF-SITE DOSE CALCULATIO	ON MANUAL	
Attachment 3.6	Radioactive Liquid Waste Sampling and	l Analysis Program	Pages: 65 - 66

[Ref. 5.2.1r]

LIQUID RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) (µCi/ml) ^a
A. Batch Waste Release Tanks ^c	P Each Batch	P Each Batch	Principal Gamma Emitters ^e	5x10 ⁻⁷
			I-131	1x10 ⁻⁶
	P Each Batch	P Each Batch	Dissolved and Entrained Gases (Gamma Emitters)	1x10⁻⁵
	P Each Batch	M Composite ^b	H-3	1x10 ⁻⁵
			Gross Alpha	1x10 ⁻⁷
	P Each Batch	Q Composite ^b	Sr-89, Sr-90	5x10 ⁻⁸
			Fe-55	1x10 ⁻⁶
B. Plant Continuous Releases* ^d	Daily	W Composite ^b	Principal Gamma Emitters ^e	5x10 ⁻⁷
			I-131	1x10 ⁻⁶
	M Grab Sample	М	Dissolved and Entrained Gases (Gamma Emitters)	1x10 ⁻⁵
	Daily	M Composite ^b	H-3	1x10 ⁻⁵
			Gross Alpha	1x10 ⁻⁷
	Daily	Q Composite ^b	Sr-89, Sr-90	5x10 ⁻⁸
			Fe-55	1x10 ⁻⁶

*During releases via this pathway

This table provides the minimum requirements for the liquid sampling program. If additional sampling is performed then those sample results can be used to quantify releases in lieu of composite data for a more accurate quantification. Examples of these samples are the 72 hour secondary coolant activity and Monitor Tank tritium samples.

Information	PMP-6010-OSD-001	Rev. 27	Page 66 of 92
	OFF-SITE DOSE CALCULATION	ON MANUAL	
Attachment 3.6	Radioactive Liquid Waste Sampling and	d Analysis Program	Pages: 65 - 66

TABLE NOTATION

- a. The lower limit of detection (LLD) is defined in Table Notation A. of Attachment 3.20, Maximum Values for Lower Limits of Detections ^{A,B} REMP
- b. A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen which is representative of the liquids released.
- c. A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analysis, isolate and ensure thorough mixing (recirculate, sparge, etc) for each batch. Examples of these are Monitor Tank and Steam Generator Drains. Before a batch is released the tank is sampled and analyzed to determine that it can be released without exceeding federal standards.
- d. A continuous release is the discharge of liquid of a non-discrete volume; e.g. from a volume of system that has an input flow during the continuous release. This type of release includes the Turbine Room Sump, Steam Generator Blowdown and the Steam Generator Sampling System.
- e. The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144. This list does not mean that only these nuclides are to be detected and reported. Identify and report other peaks, which are measurable and identifiable, together with the above nuclides.

	Information	PMP-6010-OSD-001	Rev. 27	Page 67 of 92
--	-------------	------------------	---------	---------------

Attachment 3.7	Radioactive Gaseous Waste Sampling and	Pages:
	Analysis Program	67 - 68

Gaseous Release Type	Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (µCi/cc) ^a
a. Waste Gas Storage Tanks and CVCS HUTs	P Each Tank Grab Sample	P Each Tank	Principal Gamma Emitters ^d	1 x 10⁴
			H-3	1 x 10 ⁻⁶
b. Containment Purge	P Each Purge Grab Sample	P Each Purge	Principal Gamma Emitters ^d	1 x 10 ⁻⁴
CPR (vent)**	Twice per Month	Twice per Month		
			H-3	1 x 10⁻6
c. Condenser Evacuation System	W or M Grab Sample	M Particulate Sample	Principal Gamma Emitters ^d	1 x 10 ⁻¹¹
Gland Seal Exhaust* i		М	H-3	1 x 10 ⁻⁶
		W ^g Noble Gas	Principle Gamma Emitters ^d	1 x 10-⁴
		M Iodine Adsorbing Media	1-131	1 x 10 ⁻¹²
	Continuous	W ^g Noble Gas Monitor	Noble Gases	1 x 10 ⁻⁶
 Auxiliary Building Unit Vent* 	Continuous ^c	₩ ^ь Iodine Adsorbing Media	I-131	1 x 10 ⁻¹²
	Continuous ^c	W ^b Particulate Sample	Principal Gamma Emitters ^d	1 x 10 ⁻¹¹
	Continuous ^c	M Composite Particulate Sample	Gross Alpha	1 x 10 ⁻¹¹
	W Grab Sample	W ^h H-3 Sample	H-3	1 x 10 ⁻⁶
		له W Noble Gas	Principle Gamma Emitters ^d	1 x 10 ⁻⁴
	Continuous ^c	Q Composite Particulate Sample	Sr-89, Sr-90	1 x 10 ⁻¹¹
	Continuous ^c	Noble Gas Monitor	Noble Gases	1 x 10 ⁻⁶
e. Incinerated Oil ^e	P Each Batch ^f	P Each Batch ^f	Principal Gamma Emitters ^d	5 x 10 ⁻⁷

*During releases via this pathway **Only a twice per month sampling program for containment noble gases and H_3 is required

This table provides the minimum requirements for the gaseous sampling program. If additional sampling is performed then those sample results can be used to quantify releases in lieu of composite data for a more accurate quantification. Examples of these samples are verification or compensatory action sample results.

Information	PMP-6010-OSD-001	Rev. 27	Page 68 of 92	
OFF-SITE DOSE CALCULATION MANUAL				
Attachment 3.7 Radioactive Gaseous Waste Sampling and Analysis Program			Pages: 67 - 68	

TABLE NOTATION

- a. The lower limit of detection (LLD) is defined in Table Notation A. of Attachment 3.20, Maximum Values for Lower Limits of Detections ^{A,B} - REMP
- b. Change samples at least once per 7 days and complete analyses within 48 hours after changing. Perform analyses at least once per 24 hours for 7 days following each shutdown, startup or THERMAL POWER change greater than 15% per hour of RATED THERMAL POWER. WHEN samples collected for 24 hours are analyzed, THEN the corresponding LLDs may be increased by a factor of 10. This requirement does not apply IF (1) analysis shows that DOSEQ I131 concentration in the RCS has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3. IF the daily sample requirement has been entered, THEN it can be exited early once both the radiation monitor reading and the RCS DOSEQ I131 levels have returned to within the factor of 3 of the pre-event 'normal'.[Ref. 5.2.1x]
- c. Know the ratio of the sample flow rate to the sampled stream flow rate for the time period covered by each dose or dose rate calculation made in accordance with steps 3.2.4a, 3.2.4b, and 3.2.4c of this document.

Sampling evolutions or momentary interruptions to maintain sampling capability are not an interruption of a continuous release or sampling period.

- d. The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133M, Xe-135 and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Identify and report other peaks, which are measurable and identifiable, together with the above nuclides.
- e. Releases from incinerated radioactive oil are discharged through the Auxiliary Boiler System. Account for releases based on pre-release grab sample data.
- f. Collect samples of waste oil to be incinerated from the container in which the waste oil is stored (example: waste oil storage tanks, 55 gal. drums) prior to transfer to the Auxiliary Boiler System. Ensure samples are representative of container contents.
- g. Obtain and analyze a gas marinelli grab sample weekly for noble gases effluent quantification.
- h. Take tritium grab samples at least once per 24 hours when the refueling cavity is flooded.
- i. Grab sampling of the Gland Seal Exhaust pathway need not be performed if the RMS low range channel readings are less than 1E-6 μC/cc. Attach the RMS daily averages in lieu of sampling. This is based on operating experience indicating no activity is detected in the Gland Seal Exhaust below this value. Compensatory sampling for out of service monitor is still required in the event the detector is inoperable.
- j. Sampling and analysis shall also be performed following shutdown, startup or THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a one hour period. This noble gas sample shall be performed within four hours of the event. Evaluation of the sample results, based on previous samples, will be performed to determine if any further sampling is necessary.

Information	PMP-6010-OSD-001	Rev. 27	Page 69 of
			J

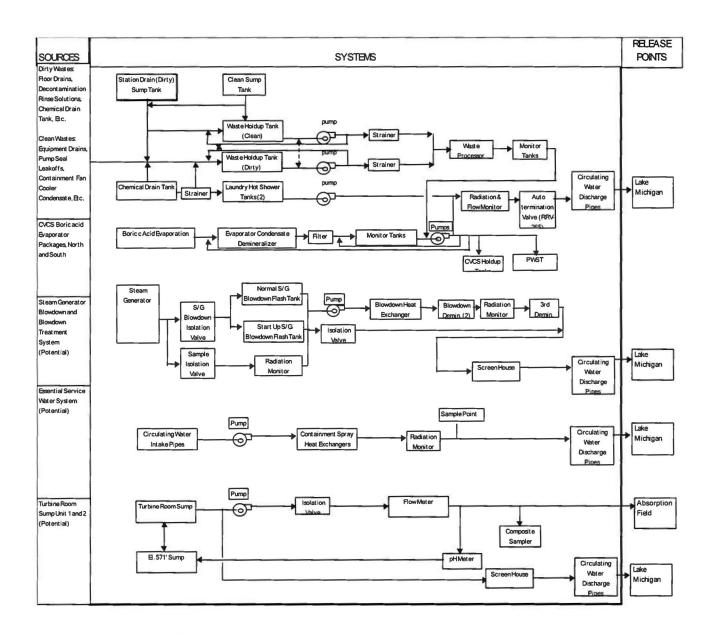
Attachment 3.8

Multiple Release Point Factors for Release Points

Page: 69

Liquid Factors				
Monitor Description	Monitor Number	MRP #		
U 1 SG Blowdown	1-DRA-300, 1-DRA-353	0.35		
U 2 SG Blowdown	2-DRA-300, 2-DRA-353	0.35		
U 1 & 2 Liquid Waste Discharge	RRS-1001-A, RRS-1021-B	0.30		

Sources of radioactivity released from the Turbine Room Sump (TRS) typically originate from the secondary cycle which is already being monitored by instrumentation that utilizes multiple release point (MRP) factors. The MRP is an administrative value that is used to assist with maintaining releases ALARA. The TRS has no actual radiation monitor, but utilizes an automatic compositor for monitoring what has been released. The batch release path, through RRS-1001-A/ 1021-B, is the predominant release path by several magnitudes. Tritium is the predominant radionuclide released from the site and the radiation monitors do not respond to this low energy beta emitter. Based on this information and the large degree of conservatism built into the radiation monitor setpoint methodology it does not appear to warrant further reduction for the TRS release path since its source is predominantly the secondary cycle which is adequately covered by this factor.


Gaseous Factors			
Monitor Description	Monitor Number	Flow Rate (cfm)	MRP #
Unit 1			
Unit Vent	VRS-1500	186,600	0.54
Gland Seal Vent	SRA-1800	1,260	0.00363
Steam Jet Air Ejector	SRA-1900	3,600 (b)	0.01
Start Up FT Vent		1,536	0.004
Total		192,996	
Unit 2			
Unit Vent	VRS-2500	143,400	0.41
Gland Seal Vent	SRA-2800	5,508 (a)	0.02
Steam Jet Air Ejector	SRA-2900	3,600 (b)	0.01
Start Up FT Vent		1,536	0.004
Total		154,044	

Nominal Values

a Two release points of 2,754 cfm each are totaled for this value.

b This is the total design maximum of the Start Up Air Ejectors. This is a conservative value for unit 1.

Information	PMP-6010-OSD-001	Rev. 27	Page 70 of 92	
OFF-SITE DOSE CALCULATION MANUAL				
Attachment 3.9 Liquid Effluent Release Systems		Page: 70		

Information	PMP-6010-OSD-001	Rev. 27	Page 71 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
Attachment 3.10 Plant Liquid Effluent Parameters		Page: 71	

SYSTEM	COMPO	NENTS	CAPACITY	FLOW RATE
	TANKS	PUMPS	(EACH)	(EACH)*
I Waste Disposal System				······
+ Chemical Drain Tank	1	1	600 GAL.	20 GPM
+ Laundry & Hot Shower Tanks	2	1	600 GAL.	20 GPM
+ Monitor Tanks	4	2	21,600 GAL.	150 GPM
+ Waste Holdup Tanks	2		25,000 GAL.	
+ Waste Evaporators	3			30 GPM
 + Waste Evaporator Condensate Tanks 	2	2	6,450 GAL	150 GPM
II Steam Generator Blowdown and Blowdown Treatment Systems				
+ Start-up Flash Tank (Vented)#	1		1,800 GAL.	580 GPM
 + Normal Flash Tank (Not Vented) 	1		525 GAL.	100 GPM
+ Blowdown Treatment System		1		60 GPM
III Essential Service Water System				
+ Water Pumps		4		10,000 GPM
+ Containment Spray Heat Exchanger Outlet	4			3,300 GPM
IV Circulating Water Pumps				
Unit 1		3		230,000 GPM
Unit 2		4		230,000 GPM

* Nominal Values

The 580 gpm value is calculated from the Estimated Steam Generator Blowdown Flow vs. DRV Valve Position letter prepared by M. J. O'Keefe, dated 9/27/93. This is 830 gpm times the 70% that remains as liquid while the other 30% flashes to steam and exhausts out the flash tank vent.

Information	PMP-6010-OSD-001	Rev. 27	Page 72 of 92	
OFF-SITE DOSE CALCULATION MANUAL				
Attachment 3.11	Volumetric Detection Efficiencies for Principle Gamma Emitting Radionuclides for Mirion Liquid Monitors		Pages: 72	

IVIITION	RRS-1001A/ 1021B	
	Detection efficiency	Detection efficiency
Nuclide	{cps/(Bq/m3)}	{cpm/(µCi/cc)}
		μοι/το/)
Ag-108m	7.22E-04	1.60E+09
Ag-110m	8.45E-04	1.88E+09
Ba-137m	2.42E-04	5.37E+08
Ce-144	1.01E-05	2.24E+07
Co-57	6.78E-05	1.51E+08
Co-58	3.38E-04	7.50E+08
Co-60	4.99E-04	1.11E+09
Cr-51	2.47E-05	5.48E+07
Cs-134	5.92E-04	1.31E+09
Cs-137	2.27E-04	5.04E+08
Fe-55	9.91E-14	2.20E-01
Fe-59	2.62E-04	5.82E+08
I-131	2.50E-04	5.55E+08
I-133	2.71E-04	6.02E+08
In-113m	1.71E-04	3.80E+08
Kr-85	1.15E-06	2.55E+06
Mn-54	2.67E-04	5.93E+08
Mo-99	1.53E-04	3.40E+08
Na-24	4.23E-04	9.39E+08
Nb-95	2.66E-04	5.91E+08
Pr-144	5.93E-06	1.32E+07
Sb-122	2.02E-04	4.48E+08
Sb-124	4.75E-04	1.05E+09
Sb-125	2.23E-04	4.95E+08
Sn-113	1.75E-04	3.89E+08
Sn-117m	1.19E-04	2.64E+08
Tc-99m	9.10E-05	2.02E+08
Xe-131m	2.84E-06	6.30E+06
Xe-133	1.32E-07	2.93E+05
Xe-133m	2.19E-05	4.86E+07
Xe-135	2.08E-04	4.62E+08
Zn-65	1.33E-04	2.95E+08
Zr-95	2.66E-04	5.91E+08

RRS-1001A/ 1021B Mirion

Bq=Becquerel Note: 1 cps/(Bq/m3) = 2.22e + 12 cpm/(µCi/cc)

Information	PMP-6010-OSD-001	Rev. 27	Page 73 of 92
	OFF-SITE DOSE CALCULATION MANUAL		
Attachment 3.12	Counting Efficiency for 1/2-DRA-300 and 1/2-DRA-	353	Pages: 73 - 74

Mirion	1/2-DRA-300	4π Shield		
	Detection efficiency	Detection efficiency {cpm/(µCi/cc)}		
Nuclide	{cps/(Bq/m3)}			
Mn-54	3.37E-06	7.48E+06		
Co-58	4.45E-06	9.88E+06		
Co-60	6.69E-06	1.49E+07		
Cs-137	2.90E-06	6.44E+06		
I-131	3.63E-06	8.06E+06		
I-132	1.00E-05	2.22E+07		
I-133	3.61E-06	8.01E+06		
I- 134	1.03E-05	2.29E+07		
I-135D	8.89E-06	1.97E+07		

(based on actual pre-installation counting performed with an iodine source term)

Bq = Becquerel

Note: $1 \text{ cps/(Bq/m3)} = 2.22e + 12 \text{ cpm/(}\mu\text{Ci/cc)}$

 4π Shield = shielding encompasses the detector and the sample piping per design criteria

Mirion Detectors 1/2-DRA-300 replaced the R-19 and DRS-3100/4100 detectors

Information	PMP-6010-OSD-001	Page 74 of 92				
	OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.12	Counting Efficiency for 1/2-DRA-300 and 1/2-DRA-35	3	Pages: 73 - 74			

Mirion	1/2-DRA-353	4π Shield		
	Detection efficiency	Detection efficiency {cpm/(µCi/cc)}		
Nuclide	(cps/ (Bq/ m ₃₎)			
Mn-54	1.09E-05	2.42E+07		
Co-58	1.43E-05	3.17E+07		
Co-60	2.20E-05	4.88E+07		
Cs-137	9.31E-06	2.07E+07		
I-131	1.05E-05	2.33E+07		
I-132	3.22E-05	7.15E+07		
I-133	1.13E-05	2.51E+07		
I- 134	3.29E-05	7.30E+07		
I-135D	2.55E-05	5.66E+07		

(based on actual pre-installation counting performed with an iodine source term)

Bq = Becquerel

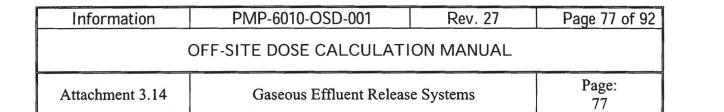
Note: 1 cps/(Bq/m3) = 2.22e + 12 cpm/(μ Ci/cc)

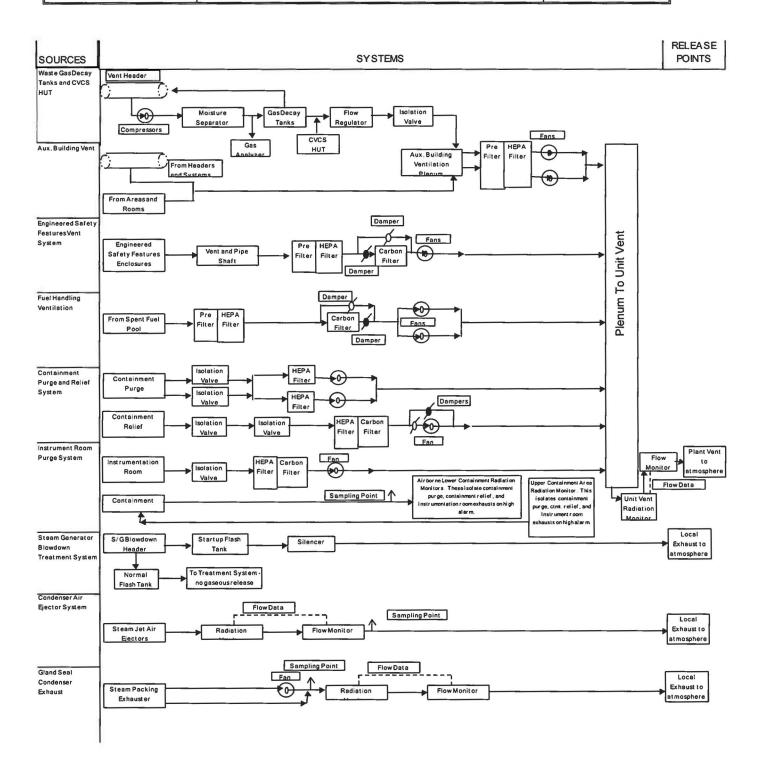
 4π Shield = shielding encompasses the detector and the sample piping per design criteria

Mirion Detectors 1/2-DRA-353 replaced the R-24 and DRS-3200/4200 detectors

Information	PMP-6010-OSD-001	Page 75 of 92			
OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.13	Counting Efficiency for 1-WRA-713, 2-WRA-714, 1-WRA-717, and 2-	Pages: 75-76			

Mirion	1-WRA713, 2-WRA-714		Mirion	Mirion 1-WRA713, 2-WRA-714		Mirion	1-WRA713, 2-WRA-714	
	Detection	Detection		Detection efficiency	Detection efficiency		Detection efficiency	Detection efficiency
Nuclide	efficiency {cps/(Bq/m3)}	efficiency {cpm/(µCi/cc)}	Nuclide	{cps/(Bq/m3)}	{cpm/(µCi/cc)}	Nuclide	{cps/(Bq/m3)}	{cpm/(µCi/cc)}
42.500 Million of the Condition	4.81E-10	1.07E+03	Kr-88	4.04E-06	8.97E+06	Sb-129	5.56E-06	1.23E+07
Am-241			La-140	6.50E-06	1.44E+07	Sr-89	2.89E-10	6.42E+02
Ba-137m	2.79E-06	6.19E+06	La-141	5.68E-08	1.26E+05	Sr-91	4.55E-06	1.01E+07
Ba-139	8.02E-07	1.78E+06	La-142	4.43E-06	9.83E+06	Sr-92	3.02E-06	6.70E+06
Ba-140	1.31E-06	2.91E+06	Mo-99	3.25E-06	7.22E+06	Tc-99m	2.37E-06	5.26E+06
Ce-141	1.34E-06	2.97E+06	Nb-95	3.08E-06	6.84E+06	Te-127	4.25E-08	9.44E+04
Ce-143	2.18E-06	4.84E+06	Nd-147	7.07E-07	1.57E+06	Te-127m	5.49E-10	1.22E+03
Ce-144	2.54E-07	5.64E+05	Np-239	1.90E-06	4.22E+06	Te-129	3.87E-07	8.59E+05
Cm-242	7.56E-11	1.68E+02	Pr-143	3.78E-14	8.39E-02	Te-129m	1.32E-07	2.93E+05
Cm-244	5.06E-11	1.12E+02	Pr-144	7.41E-08	1.65E+05	Te-131m	6.53E-06	1.45E+07
Cs-134	7.26E-06	1.61E+07	Pu-238	6.62E-11	1.47E+02	Te-132	3.25E-06	7.22E+06
Cs-136	8.68E-06	1.93E+07	Pu-239	4.97E-10	1.10E+03	Xe-133	3.42E-09	7.59E+03
Cs-137	2.63E-06	5.84E+06	Pu-240	6.93E-11	1.54E+02	Xe-135	3.37E-06	7.48E+06
I-131	3.45E-06	7.66E+06	Pu-241	1.18E-11	2.62E+01	Y-90	3.83E-14	8.50E-02
I-132	9.53E-06	2.12E+07	Rb-86	2.56E-07	5.68E+05	Y-91	7.49E-09	1.66E+04
I-133	3.35E-06	7.44E+06	Rh-103m	0.00E+00	0.00E+00	Y-92	8.13E-07	1.80E+06
I-134	9.04E-06	2.01E+07	Rh-105	8.74E-07	1.94E+06	Y-93	4.56E-07	1.01E+06
I-135D	8.02E-06	1.78E+07	Rh-106	1.08E-06	2.40E+06	Zr-95	4.56E-07 3.11E-06	6.90E+06
Kr-85	1.39E-08	3.09E+04						
Kr-85m	2.81E-06	6.24E+06	Ru-103	3.13E-06	6.95E+06	Zr-97	3.82E-06	8.48E+06
Kr-87	2.68E-06	5.95E+06	Ru-105	4.22E-06	9.37E+06			
Bq = Becquer	el N	Note: 1	Sb-127	3.82E-06	8.48E+06	cps/(Bg/m3) =	= 2.22e+12 cpr	m/(µCi/cc)


Information	PMP-6010-OSD-001	Rev. 27	Page 76 of 92
	OFF-SITE DOSE CALCULATION MANUAL		
Attachment 3.13	Counting Efficiency for 1-WRA-713, 2-WRA-714, 1-WRA-717, and 2	2-WRA-718	Pages: 75-76


Mirion 1-WRA-717, 2-WRA-718

	Detection	Detection	Mirion	1-WRA-717, 2-WR	A-718	Mirion	1-WRA-717, 2-WR	A-718
Nuclide	efficiency {cps/(Bq/m3)}	efficiency {cpm/(μCi/cc)}		Detection efficiency	Detection efficiency		Detection efficiency	Detection efficiency
Am-241	7.29E-10	1.62E+03	Nuclide	{cps/(Bq/m3)}	{cpm/(µCi/cc)}	Nuclide	{cps/(Bq/m3)}	{cpm/(µCi/cc)}
Ba-137m	1.71E-05	3.80E+07	Kr-88	2.45E-05	5.44E+07	Sb-129	3.56E-05	7.90E+07
Ba-139	1.47E-06	3.26E+06	La-140	4.13E-05	9.17E+07	Sr -89	1.93E-09	4.28E+03
Ba-140	6.64E-06	1.47E+07	La-141	4.33E-07	9.61E+05	Sr-91	2.85E-05	6.33E+07
Ce-141	1.85E-06	4.11E+06	La-142	2.90E-05	6.44E+07	Sr -92	2.20E-05	4.88E+07
Ce-143	9.67E-06	2.15E+07	Mo-99	7.11E-06	1.58E+07	Tc-99m	2.95E-06	6.55E+06
Ce-144	2.90E-07	6.44E+05	Nb-95	1.98E-05	4.40E+07	Te-127	2.08E-07	4.62E+05
Cm-242	1.38E-10	3.06E+02	Nd-147	3.34E-06	7.41E+06	Te-127m	3.25E-09	7.22E+03
Cm-244	1.15E-10	2.55E+02	Np-239	4.80E-06	1.07E+07	Te-129	2.05E-06	4.55E+06
Cs-134	4.33E-05	9.61E+07	Pr-143	2.40E-13	5.33E-01	Te-129m	7.88E-07	1.75E+06
Cs-136	5.19E-05	1.15E+08	Pr-144	4.93E-07	1.09E+06	Te-131m	3.55E-05	7.88E+07
Cs-137	1.67E-05	3.71E+07	Pu-238	6.08E-11	1.35E+02	Te-132	9.88E-06	2.19E+07
I-131	1.59E-05	3.53E+07	Pu-239	1.46E-09	3.24E+03	Xe-133	4.99E-09	1.11E+04
I-132	5.72E-05	1.27E+08	Pu-240	5.84E-11	1.30E+02	Xe-135	1.25E-05	2.78E+07
I-133	1.95E-05	4.33E+07	Pu-241	1.17E-11	2.60E+01	Y-90	3.01E-13	6.68E-01
I-134	6.14E-05	1.36E+08	Rb-86	1.78E-06	3.95E+06	Y-91	5.46E-08	1.21E+05
I-135D	4.15E-05	9.21E+07	Rb-103m	0.00E+00	0.00E+00	Y-92	5.51E-06	1.22E+07
Kr-85	7.94E-08	1.76E+05	Rh -10 5	3.54E-06	7.86E+06	Y-93	2.19E-06	4.86E+06
Kr-85m	5.53E-06	1.23E+07	Rh -106	6.25E-06	1.39E+07	Zr-95	1.90E-05	4.22E+07
Kr-87	1.55E-05	3.44E+07	Ru-103	1.74E-05	3.86E+07	Zr-97	2.36E-05	5.24E+07
	· · · · · · · · · · · · · · · · · · ·	·	Ru - 10 5	2.23E-05	4.95E+07			
			Sb-127	2.07E-05	4.60E+07			

Bq = Becquerel

Note: 1 cps/(Bq/m3) = 2.22e + 12 cpm/(µCi/cc)

	Information	PMP-6010-OSD-001	Rev. 27	Page 78 of 92
--	-------------	------------------	---------	---------------

OFF-SITE DOSE CALCULATION MANUAL

Attachment 3.15

Plant Gaseous Effluent Parameters

SY	STEM	UNIT	EXHAUST FLOW RATE (CFM)	CAPACITY
ł	PLANT AUXILIARY BUILDING UNIT VENT	1 2	186,600 max 143,400 max	
	WASTE GAS DECAY TANKS (8) AND CHEMICAL & VOLUME CONTROL SYSTEM HOLD UP TANKS (3)	1	125	4082 FT ³ @100 psig 28,741 ft ³ max @ 8#, 0 level
	+ AUXILIARY BUILDING EXHAUST	1 2	72,660 59,400	
	+ ENG. SAFETY FEATURES VENT	1 & 2	50,000	
	+ FUEL HANDLING AREA VENT SYSTEM	1	30,000	
	CONTAINMENT PURGE SYSTEM	1&2	32,000	
	CONTAINMENT PRESSURE RELIEF SYSTEM	1 & 2	1,000	
	INSTRUMENT ROOM PURGE SYSTEM	1 & 2	1,000	

II	CONDENSER AIR EJECTOR SYSTEM			2 Release Points One for Each Unit
	NORMAL STEAM JET AIR EJECTORS	1 & 2	230	
	START UP STEAM JET AIR EJECTORS	1 & 2	3,600	

III TURBINE SEALS SYSTEM	1	1,260	
	2	5,508	2 Release Points for Unit 2

IV START UP FLASH TANK VENT	1	1,536	
	2	1,536	

+ Designates total flow for all fans.

Information	PMP-6010-OSD-001	Rev. 27	Page 79 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	

Attachment 3.16

10 Year Average of 1995-2004 Data

Pages: 79 - 80

$\overline{\chi/Q}$ GROUND AVERAGE (sec/m³)

DIRECTION			DISTANCE (ME	TERS)	
(WIND FROM)	594	2416	4020	5630	7240
N	4.17E-06	4.82E-07	2.25E-07	1.33E-07	9.32E-08
NNE	3.02E-06	3.64E-07	1.73E-07	1.04E-07	7.29E-08
NE	4.54E-06	5.31E-07	2.60E-07	1.59E-07	1.13E-07
ENE	7.16E-06	7.99E-07	4.04E-07	2.52E-07	1.80E-07
E	1.04E-05	1.13E-06	5.82E-07	3.66E-07	2.63E-07
ESE	1.07E-05	1.18E-06	6.04E-07	3.78E-07	2.72E-07
SE	1.15E-05	1.24E-06	6.36E-07	4.00E-07	2.88E-07
SSE	1.30E-05	1.42E-06	7.27E-07	4.57E-07	3.29E-07
S	1.41E-05	1.57E-06	7.92E-07	4.93E-07	3.54E-07
SSW	7.03E-06	7.81E-07	3.90E-07	2.41E-07	1.72E-07
ŚW	4.12E-06	4.73E-07	2.28E-07	1.38E-07	9.73E-08
WSW	3.29E-06	3.65E-07	1.76E-07	1.06E-07	7.52E-08
W	3.63E-06	4.11E-07	1.96E-07	1.18E-07	8.31E-08
WNW	3.02E-06	3.43E-07	1.61E-07	9.59E-08	6.71E-08
NW	3.22E-06	3.61E-07	1.71E-07	1.02E-07	7.16E-08
NNW	3.84E-06	4.29E-07	2.02E-07	1.20E-07	8.40E-08

DIRECTION			DISTANCE (ME	TERS)	
(WIND FROM)	12067	24135	40225	56315	80500
N	4.64E-08	1.79E-08	8.89E-09	5.68E-09	3.56E-09
NNE	3.66E-08	1.43E-08	7.13E-09	4.56E-09	2.87E-09
NE	5.75E-08	2.30E-08	1.15E-08	7.41E-09	4.72E-09
ENE	9.30E-08	3.80E-08	1.91E-08	1.23E-08	7.90E-09
E	1.37E-07	5.65E-08	2.85E-08	1.83E-08	1.18E-08
ESE	1.41E-07	5.81E-08	2.93E-08	1.88E-08	1.22E-08
SE	1.50E-07	6.20E-08	3.12E-08	2.01E-08	1.30E-08
SSE	1.71E-07	7.06E-08	3.56E-08	2.29E-08	1.48E-08
S	1.84E-07	7.49E-08	3.77E-08	2.43E-08	1.56E-08
SSW	8.86E-08	3.59E-08	1.80E-08	1.15E-08	7.39E-09
SW	4.93E-08	1.96E-08	9.77E-09	6.27E-09	3.98E-09
WSW	3.80E-08	1.51E-08	7.53E-09	4.83E-09	3.07E-09
W	4.17E-08	1.64E-08	8.13E-09	5.20E-09	3.28E-09
WNW	3.34E-08	1.29E-08	6.41E-09	4.10E-09	2.57E-09
NW	3.57E-08	1.39E-08	6.89E-09	4.41E-09	2.77E-09
NNW	4.19E-08	3.35E-08	8.10E-09	5.19E-09	3.27E-09

DIREC	CTION TO - SECTOR						
N	= A	E	= E	S	= J	W	= N
NNE	= B	ESE	= F	SSW	= K	WNW	= P
NE	= C	SE	= G	SW	= Ĺ	NW	= Q
ENE	= D	SSE	= H	WSW	= M	NNW	= R

Worst Case $\overline{\chi/Q}$ = 2.04E-05 sec/m³ in Sector H 2004

Information	PMP	-6010-OSD-00	1 Re	ev. 27	Page	80 of 92
	OFF-SITE	DOSE CALC	ULATION M	ANUAL		
Attachment 3.16	10 \	Year Average o	of 1995-2004 D	ata	Pages:	79 - 80
		D/Q DEPOSIT				
DIRECTION			DISTANCE (ME			
(WIND FROM)	594	2416	4020	5630	724	10
N	2.37E-08	2.29E-09	1.04E-09	5.44E-10	3.4	7E-10
NNE	9.86E-09	9.52E-10	4.32E-10	2.27E-10		5E-10
NE	1.29E-08	1.25E-09	5.67E-10	2.97E-10		0E-10
ENE	1.59E-08	1.54E-09	6.97E-10	3.66E-10		3E-10
E	1.87E-08	1.81E-09	8.20E-10	4.30E-10		5E-10
ESE	1.85E-08	1.79E-09	8.12E-10	4.26E-10		2E-10
SE	1.90E-08	1.83E-09	8.30E-10	4.36E-10		8E-10
SSE	2.40E-08	2.32E-09	1.05E-09	5.52E-10		2E-10
S	3.68E-08	3.56E-09	1.61E-09	8.46E-10		0E-10
SSW	2.30E-08	2.22E-09	1.01E-09	5.28E-10		7E-10
SW	2.22E-08	2.15E-09	9.74E-10	5.11E-10		6E-10
WSW	2.11E-08	2.04E-09	9.23E-10	4.84E-10		9E-10
W	2.00E-08	1.93E-09	8.74E-10	4.59E-10		3E-10
WNW	1.75E-08	1.69E-09	7.64E-10	4.01E-10		6E-10
NW	1.58E-08	1.53E-09	6.94E-10	3.64E-10		2E-10
NNW	2.30E-08	2.22E-09	1.01E-09	5.28E-10		7E-10
DIRECTION			DISTANCE (ME	TERS)		
DIRECTION (WIND FROM)	12067	24135	DISTANCE (ME 40225	TERS) 56315	805	500
(WIND FROM)		24135	40225	56315		
(WIND FROM)	12067	24135 4.72E-11	40225			500 5E-12
(WIND FROM) N NNE		24135	40225	56315	4.6	
(WIND FROM) N NNE NE	1.45E-10	24135 4.72E-11	40225	56315 9.27E-12	4.6	5E-12
(WIND FROM) N NNE	1.45E-10 6.36E-11 8.07E-11 9.77E-11	24135 4.72E-11 1.97E-11	40225 1.74E-11 7.24E-12	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12	4.6 1.9 2.5 3.1	5E-12 4E-12
(WIND FROM) N NNE NE ENE E	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12	4.6 1.9 2.5 3.1 3.6	5E-12 4E-12 4E-12
(WIND FROM) N NNE NE ENE E ESE	1.45E-10 6.36E-11 8.07E-11 9.77E-11	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12	4.6 1.9 2.5 3.1 3.6	5E-12 4E-12 4E-12 3E-12
(WIND FROM) N NNE NE ENE E ESE SE	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12	4.6 1.9 2.5 3.1 3.6 3.6	5E-12 4E-12 4E-12 3E-12 8E-12
(WIND FROM) N NNE NE ENE ESE ESE SE SSE	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7	5E-12 4E-12 4E-12 3E-12 8E-12 4E-12
(WIND FROM) N NNE NE ENE E ESE SE	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7	5E-12 4E-12 4E-12 3E-12 8E-12 4E-12 2E-12
(WIND FROM) N NNE NE ENE ESE ESE SE SSE	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10 1.47E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2	5E-12 4E-12 3E-12 8E-12 4E-12 4E-12 2E-12 2E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SE SE SSE SSE	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10 1.47E-10 2.25E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5	5E-12 4E-12 3E-12 8E-12 4E-12 2E-12 2E-12 2E-12 3E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSE SSE SSW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.47E-10 2.25E-10 1.41E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3	5E-12 4E-12 3E-12 8E-12 4E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSE SSW SSW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 4.20E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.55E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1	5E-12 4E-12 3E-12 8E-12 4E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12 7E-12 4E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSE SSW SSW SW WSW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10 1.22E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 4.20E-11 3.98E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.55E-11 1.47E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 8.26E-12 7.82E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1 3.9	5E-12 4E-12 3E-12 8E-12 4E-12 2E-12 2E-12 2E-12 2E-12 2E-12 7E-12 4E-12 2E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSE SSW SSW SW WSW WSW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10 1.22E-10 1.07E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.73E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 4.20E-11 3.98E-11 3.48E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.55E-11 1.47E-11 1.28E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 8.26E-12 7.82E-12 6.84E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1 3.9 3.4	5E-12 4E-12 3E-12 8E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12 7E-12 4E-12 2E-12 3E-12 3E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSE SSW SSW SW WSW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10 1.22E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.17E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 4.20E-11 3.98E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.55E-11 1.47E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 8.26E-12 7.82E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1 3.9 3.4 3.1	5E-12 4E-12 3E-12 8E-12 4E-12 2E-12 2E-12 2E-12 2E-12 2E-12 7E-12 4E-12 2E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSW SSW SW WSW W W W	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10 1.22E-10 1.22E-10 9.70E-11	24135 4.72E-11 1.97E-11 2.58E-11 3.73E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 3.98E-11 3.48E-11 3.16E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.55E-11 1.47E-11 1.28E-11 1.16E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 8.71E-12 8.26E-12 7.82E-12 6.84E-12 6.20E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1 3.9 3.4 3.1	5E-12 4E-12 3E-12 8E-12 2E-12 2E-12 2E-12 3E-12 2E-12 7E-12 4E-12 2E-12 2E-12 3E-12 3E-12 3E-12 3E-12 1E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSW SSW SW WSW W W W W W NW NW NW NNW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.16E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10 1.22E-10 1.22E-10 1.07E-10 9.70E-11 1.41E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.73E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 3.98E-11 3.98E-11 3.48E-11 4.58E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.47E-11 1.28E-11 1.16E-11 1.69E-11	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 8.26E-12 7.82E-12 6.84E-12 6.20E-12 9.00E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1 3.9 3.4 3.1 4.5	5E-12 4E-12 3E-12 8E-12 4E-12 2E-12 2E-12 2E-12 2E-12 7E-12 4E-12 2E-12 3E-12 2E-12 3E-12 2E-12 3E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSW SW WSW W W W W W W W NW NW NW NW NW NW NW NW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.22E-10 1.07E-10 9.70E-11 1.41E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.73E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 3.98E-11 3.98E-11 3.48E-11 3.16E-11 4.58E-11 4.58E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.47E-11 1.28E-11 1.16E-11 1.69E-11 S = J	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 7.82E-12 6.84E-12 6.20E-12 9.00E-12	$ \begin{array}{c} 4.6\\ 1.9\\ 2.5\\ 3.1\\ 3.6\\ 3.6\\ 3.6\\ 3.7\\ 4.7\\ 7.2\\ 4.5\\ 4.3\\ 4.1\\ 3.9\\ 3.4\\ 3.1\\ 4.5\\ \end{array} $	5E-12 4E-12 3E-12 8E-12 2E-12 2E-12 2E-12 2E-12 2E-12 7E-12 4E-12 2E-12 3E-12 2E-12 3E-12 3E-12 3E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSW SW WW WW WNW NW NW NW NW NW NW NW NW NW N	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.29E-10 1.07E-10 9.70E-11 1.41E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.73E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 3.98E-11 3.48E-11 3.16E-11 4.58E-11 4.58E-11 5.68E-11 4.58E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.69E-11 1.63E-11 1.63E-11 1.47E-11 1.28E-11 1.16E-11 1.69E-11 SSW = K	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 7.82E-12 6.84E-12 6.20E-12 9.00E-12	4.6 1.9 2.5 3.1 3.6 3.6 3.7 4.7 7.2 4.5 4.3 4.1 3.9 3.4 3.1 4.5 (/ = 1 //NW = 1	5E-12 4E-12 3E-12 8E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12 3E-12 2E-12 3E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12
(WIND FROM) N NNE NE ENE ESE SSE SSE SSW SW WSW W W W W W W W NW NW NW NW NW NW NW NW	1.45E-10 6.36E-11 8.07E-11 9.77E-11 1.14E-10 1.13E-10 1.47E-10 2.25E-10 1.41E-10 1.36E-10 1.22E-10 1.07E-10 9.70E-11 1.41E-10	24135 4.72E-11 1.97E-11 2.58E-11 3.73E-11 3.73E-11 3.70E-11 3.78E-11 4.79E-11 7.34E-11 4.59E-11 4.43E-11 3.98E-11 3.98E-11 3.48E-11 3.16E-11 4.58E-11 4.58E-11	40225 1.74E-11 7.24E-12 9.51E-12 1.17E-11 1.37E-11 1.36E-11 1.39E-11 1.76E-11 2.70E-11 1.69E-11 1.63E-11 1.47E-11 1.28E-11 1.16E-11 1.69E-11 S = J	56315 9.27E-12 3.86E-12 5.07E-12 6.23E-12 7.34E-12 7.26E-12 7.42E-12 9.41E-12 1.44E-11 9.01E-12 8.71E-12 7.82E-12 6.84E-12 6.20E-12 9.00E-12	$ \begin{array}{c} 4.6\\ 1.9\\ 2.5\\ 3.1\\ 3.6\\ 3.6\\ 3.6\\ 3.7\\ 4.7\\ 7.2\\ 4.5\\ 4.3\\ 4.1\\ 3.9\\ 3.4\\ 3.1\\ 4.5\\ \end{array} $	5E-12 4E-12 3E-12 8E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12 3E-12 2E-12 3E-12 2E-12 2E-12 2E-12 3E-12 2E-12 2E-12

Worst Case $D/Q = 4.46E-08 \ 1/m^2$ in Sector A 2001

Information	PMP-6010-OSD-001	Rev. 27	Page 81 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
Attachment 3.17	Annual Evaluation of $\overline{\chi/Q}$ and All Sectors	$\overline{D/Q}$ Values For	Page: 81

1. Performed or received annual update of $\overline{\chi/Q}$ and $\overline{D/Q}$ values. Provide a description of what has been received.

Data

Signature Date

Environmental Department (print name, title)

2. Worst $\overline{\chi/Q}$ and $\overline{D/Q}$ value and sector determined. PMP-6010-OSD-001 has been updated, if necessary. Provide an evaluation.

Signature Date

Environmental Department (print name, title)

3. Review nuclide mix for gaseous and liquid release paths to determine if the dose conversion factor of total body is still applicable. Provide an evaluation.

/ Date

Signature

Environmental Department (print name, title)

4. Approved and verified by:

/ Signature Date

Environmental Department (print name, title)

Information	PMP-6010-OSD-001	Rev. 27	Page 82 of 92
	OFF-SITE DOSE CALCULAT	ION MANUAL	
Attachment 3.18	Dose Factors		Pages: 82 - 83

DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS*

	TOTAL BODY DOSE FACTOR K _i (DFB _i)	SKIN DOSE FACTOR L _i (DFS _i)	GAMMA AIR DOSE FACTOR Mi (DF ^r i)	BETA AIR DOSE FACTOR N _i (DF ^β _i)
RADIONUCLIDE	mrem m³ per μCi yr)	(mrem m³ per μCi yr)	(mrad m³ per μCi yr)	(mrad m³ per μCi yr)
Kr-83m	7.56E-02		1.93E+01	2.88E+02
Kr-85m	1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85	1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87	5.92E+03	9.73E+03	6.17E+03	1.03E+04
Kr-88	1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89	1.66E+04	1.01E+04	1.73E+04	1.06E+04
Kr-90	1.56E+04	7.29E+03	1.63E+04	7.83E+03
Xe-131m	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133m	2.51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133	2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135m	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135	1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137	1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138	8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41	8.84E+03	2.69E+03	9.30E+03	3.28E+03

* The listed dose factors are for radionuclides that may be detected in gaseous effluents, from Reg. Guide 1.109, Table B-1.

.

	-			•	
10	to	rm	of.	inn	
				ion	
			uu	1011	

PMP-6010-OSD-001

Page 83 of 92

OFF-SITE DOSE CALCULATION MANUAL

Attachment 3.18

Dose Factors

Rev. 27

Pages: 82 - 83

DOSE FACTORS FOR RADIOIODINES AND RADIOACTIVE PARTICULATE, IN GASEOUS EFFLUENTS FOR CHILD* Ref. 5.2.1ee and ff

D	D
	P _i FOOD & GROUND
	PATHWAY
A170	(mrem m ² sec
	per µCi yr)
1.12E+03	1.57E+03 #
2.60E+06	7.76E+10
1.70E+04	1.20E+07
1.58E+06	1.12E+09
1.27E+06	5.92E+08
1.11E+06	5.97E+08
7.07E+06	4.63E+09
9.95E+05	1.17E+10
1.98E+05	8.78E+09
2.16E+06	6.62E+09
1.01E+08	1.12E+11
2.63E+06	6.72E+06
2.23E+06	3.44E+08
6.14E+05	4.24E+08
6.62E+05	1.55E+08
1.43E+07	3.01E+08
5.48E+06	1.99E+10
1.62E+07	4.34E+11
1.94E+05	1.78E+06
3.85E+06	3.95E+09
7.92E+05	1.22E+07
1.01E+06	4.00E+10
1.71E+05	3.00E+09
9.07E+05	3.34E+10
1.74E+06	1.46E+08
5.44E+05	3.31E+07
	1.91E+08
	$\begin{array}{r} 2.60E+06\\ \hline 1.70E+04\\ \hline 1.58E+06\\ \hline 1.27E+06\\ \hline 1.27E+06\\ \hline 1.11E+06\\ \hline 7.07E+06\\ \hline 9.95E+05\\ \hline 1.98E+05\\ \hline 2.16E+06\\ \hline 1.01E+08\\ \hline 2.63E+06\\ \hline 2.23E+06\\ \hline 6.14E+05\\ \hline 6.62E+05\\ \hline 1.43E+07\\ \hline 5.48E+06\\ \hline 1.62E+07\\ \hline 1.94E+05\\ \hline 3.85E+06\\ \hline 7.92E+05\\ \hline 1.01E+06\\ \hline 1.71E+05\\ \hline 9.07E+05\\ \hline 1.74E+06\end{array}$

*As Sr-90, Ru-106 and I-131 analyses are performed, THEN use P_i given in P-32 for nonlisted radionuclides.

" The units for both H3 factors are the same, mrem m³ per μCi yr

Information

PMP-6010-OSD-001

Page 84 of 92

OFF-SITE DOSE CALCULATION MANUAL

Attachment 3.19

Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample Frequencies

Rev. 27

Pages: 84 - 87

[Ref. 5.2.1u, 5.2.1w, 5.2.1s]

SAMPLE	DESCRIPTION/	SAMPLE	SAMPLE	ANALYSIS	ANALYSIS
STATION	LOCATION	TYPE	FREQUENCY	TYPE	FREQUENCY
ON-SITE AIR	BORNE AND DIRECT RADIAT	ON (TLD) STATION	S	·	
ONS-1 (T-1)	1945 ft @ 18° from Plant Axis	Airborne Particulate	Weekly	Gross Beta	Weekly
			,	Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		1-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
ONS-2 (T-2)	2338 ft @ 48° from Plant Axis	Airborne Particulate	Weekly	Gross Beta	Weekly
0.00 2 (. 2)			l	Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		1-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
ONS-3 (T-3)	2407 ft @ 90° from Plant Axis	Airborne Particulate	Weekly	Gross Beta	Weekly
	1			Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		1-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
ONS-4 (T-4)	1852 ft. @ 118° from Plant Axis	Airborne Particulate	Weekly	Gross Beta	Weekly
				Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		I-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
ONS-5 (T-5)	1895 ft @ 189° from Plant Axis	Airborne Particulate	Weekly	Gross Beta	Weekly
			21	Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		1-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
ONS-6 (T-6)	1917 ft @ 210° from Plant Axis	Airborne Particulate	Weekly	Gross Beta	Weekly
				Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		I-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
T-7	2103 ft @ 36° from Plant Axis	TLD	Quarterly	Direct Radiation	Quarterly
T-8	2208 ft @ 82° from Plant Axis	TLD	Quarterly	Direct Radiation	Quarterly
T-9	1368 ft @ 149° from Plant Axis	TLD	Quarterly	Direct Radiation	Quarterly
T-10	1390 ft @ 127° from Plant Axis	TLD	Quarterly	Direct Radiation	Quarterly
T-11	1969 ft @ 11° from Plant Axis	TLD	Quarterly	Direct Radiation	Quarterly
T-12	2292 ft @ 63° from Plant Axis	TLD	Quarterly	Direct Radiation	Quarterly

CONTROL	AIRBORNE AND DIRECT	RADIATION (TLD) STATION	S		
NBF	15.6 miles SSW	Airborne Particulate	Weekly	Gross Beta	Weekly
	New Buffalo, MI		-	Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		1-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
SBN	26.2 miles SE	Airborne Particulate	Weekly	Gross Beta	Weekly
	South Bend, IN			Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		I-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
DOW	24.3 miles ENE	Airborne Particulate	Weekly	Gross Beta	Weekly
	Dowagiac, MI			Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		I-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly
COL	18.9 miles NNE	Airborne Particulate	Weekly	Gross Beta	Weekly
	Coloma, MI			Gamma Isotopic	Quart. Comp.
		Airborne Radioiodine		I-131	Weekly
		TLD	Quarterly	Direct Radiation	Quarterly

Information	
-------------	--

PMP-6010-OSD-001

Page 85 of 92

OFF-SITE DOSE CALCULATION MANUAL

Attachment 3.19

Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample Frequencies

Rev. 27

Pages: 84 - 87

SAMPLE STATION	DESCRIPTION/ LOCATION	SAMPLE TYPE	SAMPLE FREQUENCY	ANALYSIS TYPE	ANALYSIS FREQUENCY
OFF-SITE DIR	ECT RADIATION (TLD) STATI	ONS			
OFT-1	4.5 miles NE, Pole #B294-44	TLD	Quarterly	Direct Radiation	Quarterly
OFT-2	3.6 miles, NE, Stevensville Substation	TLD	Quarterly	Direct Radiation	Quarterly
OFT-3	5.1 miles NE, Pole #B296-13	TLD	Quarterly	Direct Radiation	Quarterly
OFT-4	4.1 miles, E, Pole #B350-72	TLD	Quarterly	Direct Radiation	Quarterly
OFT-5	4.2 miles ESE, Pole #B387-32	TLD	Quarterly	Direct Radiation	Quarterly
OFT-6	4.9 miles SE, Pole #B426-1	TLD	Quarterly	Direct Radiation	Quarterly
OFT-7	2.5 miles S, Bridgman Substation	TLD	Quarterly	Direct Radiation	Quarterly
OFT-8	4.0 miles S, Pole #B424-20	TLD	Quarterly	Direct Radiation	Quarterly
OFT-9	4.4 miles ESE, Pole #B369-214	TLD	Quarterly	Direct Radiation	Quarterly
OFT-10	3.8 miles S, Pole #B422-99	TLD	Quarterly	Direct Radiation	Quarterly
OFT-11	3.8 miles S, Pole #B423-12	TLD	Quarterly	Direct Radiation	Quarterly

GROUND	WATER (WELL WATER) SAMPLE S	STATIONS			
W-1	1969 ft @ 11° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-2	2302 ft @ 63° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-3	3279 ft @ 107° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-4	418 ft @ 301° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-5	404 ft @ 290° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-6	424 ft @ 273° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-7	1895 ft @ 189° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
	(2) Approximation of the standard stan Standard standard st Standard standard st Standard standard st Standard standard st Standard standard st Standard standard stand Standard standard stand Standard standard stand Standard standard stand Standard standard standard standard sta			Tritium	Quarterly
W-8	1274 ft @ 54° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-9	1447 ft @ 22° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-10	4216 ft @ 129° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
	processing and provide the second			Tritium	Quarterly
W-11	3206 ft @ 153° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-12	2631 ft @ 162° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-13	2152 ft @ 182° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
				Tritium	Quarterly
W-14	1780 ft @ 164° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
			-	Tritium	Quarterly
W-15	725 ft @ 202° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
	NPDES well MW-12C			Tritium	Quarterly
W-16	2200 ft @ 208° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
	NPDES well MW-20			Tritium	Quarterly
W-17	2200 ft @ 180° from Plant Axis	Groundwater	Quarterly	Gamma Isotopic	Quarterly
	NPDES well MW-21			Tritium	Quarterly

Information	PMP-6010-OSD-001	Rev. 27	Page 86 of 92
	OFF-SITE DOSE CALCULATI	ON MANUAL	
Attachment 3.19	Radiological Environmental Mo Sample Stations, Sample Types, S	0 0	Pages: 84 - 87

STJ	St. Joseph Public Intake Sta.	Drinking water	Once per calendar	Gross Beta	14 day Comp
	9 mi. NE		Day	Gamma Isotopic	14 day Com
				1-131	14 day Comp
				Tritium	Quart. Comp
LTW	Lake Twp. Public Intake Sta.	Drinking water	Once per calendar	Gross Beta	14 day Comp
	0.6 mi. S		Day	Gamma Isotopic	14 day Comp
				I-131	14 day Comp
		1		Tritium	Quart. Comp

SAMPLE STATION	DESCRIPTION/ LOCATION	SAMPLE TYPE	SAMPLE FREQUENCY	ANALYSIS TYPE	ANALYSIS FREQUENCY
SURFACE W	ATER				
SWL-2	Plant Site Boundary – South ~ 500 ft. south of Plant Centerline	Surface Water	Once per calendar Day	Gamma Isotopic Tritium	Month. Comp. Quart. Comp
SWL-3	Plant Site Boundary – North ~ 500 ft. north of Plant Centerline	Surface Water	Once per calendar Day	Gamma Isotopic Tritium	Month. Comp. Quart. Comp.

SEDIMENT					
SL-2	Plant Site Boundary – South ~ 500 ft. south of Plant Centerline	Sediment	Semi-Ann.	Gamma Isotopic	Semi-Annual
SL-3	Plant Site Boundary – North ~ 500 ft. north of Plant Centerline	Sediment	Semi-Ann.	Gamma Isotopic	Semi-Annual

INGESTION - MILK Indicator Far	ms*			
	Milk	Once every	I-131	per sample
		15 days	Gamma Isotopic	per sample
	Milk	Once every	I-131	per sample
		15 days	Gamma Isotopic	per sample
	Milk	Once every	1-131	per sample
		15 days	Gamma Isotopic	per sample

INGESTION – MILK Background Farm				
	Milk	Once every	1-131	per sample
		15 days	Gamma Isotopic	per sample

SAMPLE STATION	DESCRIPTION/ LOCATION	SAMPLE TYPE	SAMPLE FREQUENCY	ANALYSIS TYPE	ANALYSIS FREQUENCY
INGESTION -	FISH **				
ONS-N	0.3 mile N, Lake Michigan	Fish – edible portion	2/year	Gamma Isotopic	per sample
ONS-S	0.4 mile S, Lake Michigan	Fish - edible portion	2/year	Gamma Isotopic	per sample
OFS-N	3.5 mile N, Lake Michigan	Fish - edible portion	2/year	Gamma Isotopic	per sample
OFS-S	5.0 mile S, Lake Michigan	Fish - edible portion	2/year	Gamma Isotopic	per sample

Information

PMP-6010-OSD-001

Page 87 of 92

OFF-SITE DOSE CALCULATION MANUAL

Attachment 3.19

Radiological Environmental Monitoring Program Sample Stations, Sample Types, Sample Frequencies

Rev. 27

Pages: 84 - 87

INGESTION - FOOD PRODUCTS On Site ONS-G Nearest sample to Plant in the Food Products At time of Gamma Isotopic At time of highest D/Q land sector harvest harvest containing media. ONS-V Broadleaf At time of Gamma Isotopic At time of harvest harvest vegetation Off Site At time of At time of OFS-G Food Products Gamma Isotopic In a land sector containing food products, approximately 20 harvest Harvest miles from the plant, in one of the less prevalent D/Q land sectors OFS-V Broadleaf At time of Gamma Isotopic At time of harvest harvest vegetation

INGESTION - BROADLEAF IN LIEU OF GARDEN CENSUS OR IN LIEU OF MILK (*)				
3 samples of different kinds of broad leaf vegetation collected at the site boundary, within five miles of the plant, in each of 2 different sectors with the highest annual average D/Q containing media	Broadleaf vegetation	Monthly when available	Gamma Isotopic 1131	Monthly when available
1 background sample of similar vegetation grown 10-20 miles distant in one of the less prevalent wind directions.	Broadleaf vegetation	Monthly when available	Gamma Isotopic 1131	Monthly when available

Collect composite samples of Drinking and Surface water at least daily. Analyze particulate sample filters for gross beta activity 24 or more hours following filter removal. This will allow for radon and thoron daughter decay. If gross beta activity in air or water is greater than 10 times the yearly mean of control samples for any medium, perform gamma isotopic analysis on the individual samples.

*IF at least three indicator milk samples and one background milk sample cannot be obtained, THEN three broad leaf samples of different kinds will be collected in each of 2 different offsite locations, within five miles of the plant, with the highest D/Q (refers to the highest annual average ground D/Q). Also, one background broad leaf sample of similar kinds will be collected 10 to 20 miles from the plant in one of the less prevalent D/Q land sectors.

The three milk indicator and one background farm will be determined by the Annual Land Use Census and those that are willing to participate. IF it is determined that the milk animals are fed stored feed, THEN monthly sampling is appropriate for that time period.

Evaluate samples that identified positive plant effluent related radionuclides and determine if additional analysis are necessary to identify hard to detect radionuclides. The 10 CFR 61 scaling factor report should be consulted along with the radioactive material shipping program owner and the ODCM program owner to assist with this determination.

** Due to the transient nature of fish throughout the year due to lake temperatures and food supplies, it is acceptable to obtain fish sample from alternate locations so long as the intent of sampling fish from close to the plant site and samples of fish serving as a background exist.

Information	PMP-6010-OSD-001	Page 88 of 92			
OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.20Maximum Values for Lower Limits of Detections A,B - REMPPages: 88 - 89					

[Ref. 5.2.1u]

Radionuclides	Food Product	Water	Milk	Air Filter	Fish	Sediment
	ρCi/kg, wet	ρCi/l	ρCi/l	ρCi/m ³	pCi/kg, wet	ρCi/kg, dry
Gross Beta		4		0.01		
H-3		2000				
Ba-140		60	60			
La-140		15	15			
Cs-134	60	15	15	0.06	130	150
Cs-137	60	18	18	0.06	150	180
Zr-95		30				
Nb-95		15				
Mn-54		15			130	
Fe-59		30			260	
Zn-65		30			260	
Co-58		15			130	
Co-60	-	15			130	
I-131	60	1	1	0.07		

This Data is directly from our plant-specific Technical Specification.

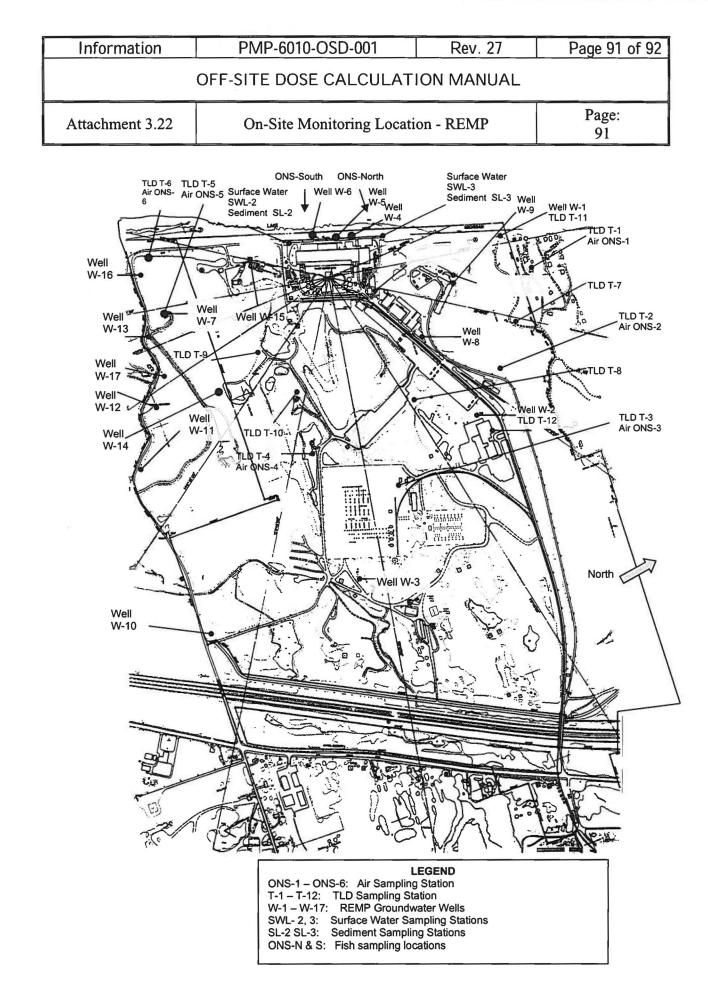
Information	PMP-6010-OSD-001	Page 89 of 92			
OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.20	ment 3.20 Maximum Values for Lower Limits of Detections A,B - REMP Pages: 88 - 89				

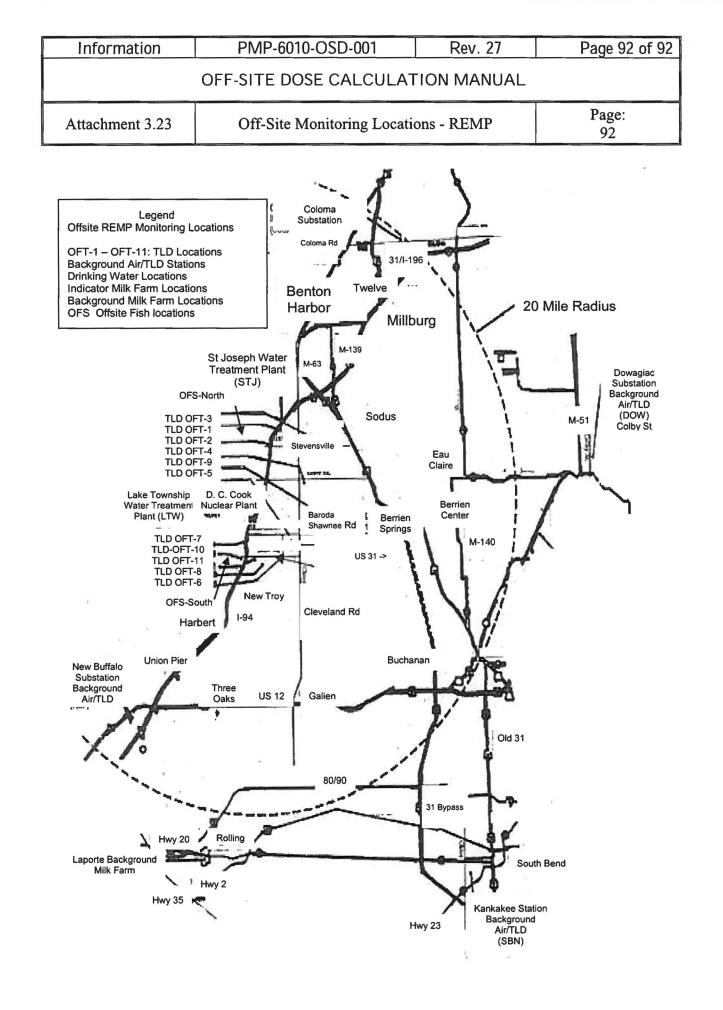
NOTES

A. The Lower Limit of Detection (LLD) is defined as the smallest concentration of radioactive material in a sample that will be detected with 95% probability and 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation), the LLD is given by the equation:

$$LLD = \frac{4.66^{a} * S}{E * V * 2.22 * Y * e^{(-\lambda * \Delta t)}}$$


Where LLD is the <u>a priori</u> lower limit of detection as defined above (as pCi per unit mass or volume). Perform analysis in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidably small sample sizes, the presence of interfering radionuclides, or other uncontrollable circumstances may render these LLDs unachievable. It should be further clarified that the LLD represents the capability of a measurement system and not as an after the fact limit for a particular measurement.


- S is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute).
- E is the counting efficiency of the detection equipment as counts per transformation (that is, disintegration)
- V is the sample size in appropriate mass or volume units
- 2.22 is the conversion factor from picocuries (ρ Ci) to transformations (disintegrations) per minute
 - Y is the fractional radiochemical yield as appropriate
 - λ is the radioactive decay constant for the particular radionuclide
 - Δt is the elapsed time between the midpoint of sample collection (or end of sample collection period) and time of counting.
- B. Identify and report other peaks which are measurable and identifiable, together with the radionuclides listed in Attachment 3.20, Maximum Values for Lower Limits of Detections ^A, B - REMP.
- α A 2.71 value may be added to the equation to provide correction for deviations in the Poisson distribution at low count rates, that is, 2.71 + 4.66 x S.

Information	Information PMP-6010-OSD-001 Rev. 27				
OFF-SITE DOSE CALCULATION MANUAL					
Attachment 3.21	Reporting Levels for Radioactivity ConcentrationsPage:in Environmental Samples90				

Radionuclides	Food Product pCi/kg, wet	Water pCi/l	Milk pCi/l	Air Filter pCi/m ³	Fish ρCi/kg, wet
H-3		20000			
Ba-140		200	300		
La-140		200	300		
Cs-134	1000	30	60	10	1000
Cs-137	2000	50	70	20	2000
Zr-95		400			
Nb-95		400			
Mn-54		1000			30000
Fe-59		400			10000
Zn-65		300			20000
Co-58		1000			30000
Co-60		300	<i></i>		10000
I-131	100	2	3	0.90	

IF any of the above concentration levels are exceeded THEN see guidance contained in step 3.5.2a. for additional information.

Procedure No.: PMP-6010-OSD-001

Rev. No.: 27

Title: OFF-SITE DOSE CALCULATION MANUAL

Alteration	Justification
10 CFR 50.59 is not applicable to this procedu PMP-2010-PRC-002. This is an administrativ operations. Changes to this document are mad 5.5.1 and implemented through 12-EA-6090-E ODCM/PCP Programs.	e procedure governing the conduct of facility le in accordance with Technical Specification
Security review per PMP-2060-SEC-007 is nor review responses of the pre-screening in Data and peer reviewed per Step 3.3.1.	
Section 1.0 - Added note informing users that the revision reflects the completed RMS Project changes to upgrade the system to Mirion detectors.	This is an editorial change to ensure users understand that the transition of the RMS replacement project to the new Mirion equipment has completed, and old equipment referenced in past revisions were removed. GT-2020-0319
Revised Table of Contents and renumbered as needed; no margin marks used.	Multiple Sections and Attachments required updating of titles and/or updating the contents contained inside which lengthened the documentation. This altered page numbering throughout.
3.3.1- Revised the step to reflect the completed replacement of detectors (Mirion). Updated Attachment Titles as needed. Margin marks used on affected sub-steps.	Editorial correction to remove old equipment guidance now that the new detectors are installed. No changes to intent made, and Titles revisions made to reflect the changing attachments. Added Note to clarify the naming of RRS-1001-B/1021-B and explain why the difference existed from other plant documentation. Both are equivalent and point to the same single component.
3.3.2- Revised the step to reflect the completed replacement of detectors (Mirion). Updated Attachment Titles as needed. Margin marks used on affected sub-steps.	Editorial correction to remove old equipment guidance now that the new detectors are installed. No changes to intent made, and Titles revisions made to reflect the changing attachments
5.2- Removed Eberline references and re- lettered the step as needed.	Editorial correction to remove equipment references no longer applicable in this revision.

Office Information for Form Tracking Only - Not Part of Form This is a free-form as called out in PMP-2010-PRC-002, Procedure Alteration, Review, and Approval.

Procedure No.: PMP-6010-OSD-001

Rev. No.: 27

Title: OFF-SITE DOSE CALCULATION MANUAL

Alteration	Justification
Attachment 3.2- Rewritten to include Mirion	Editorial correction to remove old equipment
information while removing old monitor	guidance now that the new detectors are
data. Updated guidance and provided	installed as well as make clarifications on
corrections on associated actions. No margin	actions requiring independent samples taken.
marks used.	AR#2019-7934
Attachment 3.3- Rewritten to include Mirion	Editorial correction to remove old equipment
information while removing old monitor	guidance now that the new detectors are
data. Updated guidance and provided	installed as well as make clarifications on
corrections on associated actions. No margin	when alarm annunciations are expected to
marks used.	occur.
Attachment 3.4- Rewritten to include Mirion information while removing old monitor data. Updated guidance and provided corrections on associated actions. No margin marks used.	Editorial correction to remove old equipment guidance now that the new detectors are installed and updated equipment labels. Specific guidance updated for local display units and computer based data displays (PPC/RadServe). AR#2019-9650, AR#2020-4600
Attachment 3.5- Rewritten to include Mirion	Editorial correction to remove old equipment
information while removing old monitor	guidance now that the new detectors are
data. Updated guidance and provided	installed, adding updated equipment ID
corrections on associated table notations. No	information.
margin marks used.	AR#2019-9650
Attachment 3.8- Rewritten to include Mirion information while removing old monitor data. No margin marks used.	Removed old Eberline detector instruments, with no changes made to MRP or flowrates as these remain unaffected by the RMS project.
Attachment 3.11- Removed old tables and notes pertaining to the Eberline monitors. No margin marks used.	Editorial correction to remove old equipment guidance, removing the old detector efficiency data.
Attachment 3.12- Removed old tables and	Editorial correction to remove old equipment
notes pertaining to the Eberline monitors.	guidance, removing the old detector
Updated the detector efficiencies for DRA-	efficiency data. Updated the blowdown
300/DRA-353 for 4 pi shielding. No margin	detector efficiencies for the new 4 pi
marks used.	shielding.

Procedure No.: PMP-6010-OSD-001 Rev. No.: 27

OFF-SITE DOSE CALCULATION MANUAL Title:

Alteration	Justification
Attachment 3.13- Retitled the Attachment to remove reference to the old Eberline monitors. Removed old tables and notes pertaining to the Eberline monitors. No margin marks used.	Editorial correction to remove old equipment guidance, removing the old detector efficiency data.

Office Information for Form Tracking Only - Not Part of Form This is a free-form as called out in PMP-2010-PRC-002, Procedure Alteration, Review, and Approval.

Page 3 of 5

Procedure No.: PMP-6010-OSD-001 OFF-SITE DOSE CALCULATION MANUAL Title:

Rev. No.:

27

IMPLEMENTATION PLAN

Summary of Change

See Revision Summary for details.

Reason for Change

See Revision Summary for details.

Implementation Schedule

Procedure to be made effective following PORC and upon Plant Manager's approval.

Training Needs N/A

Expiration Date N/A

Required Basis Documents Update None

Related Processes and Procedures

12-THP-6010-RPI-805, Radiation Monitoring System Setpoints

12-THP-6010-RPP-709, Radiation Monitoring System Liquid Effluent Alarm.

These procedures are being updated to reflect the new Mirion monitors and their efficiencies as noted in this procedure. Changes are being tracked by GTs entered in the Corrective Action Program.

Transition Plan

Attachments from previous revision of 12-THP-6010-OSD-001 may be used subject to the conditions described in PMP-2010-PRC-003. The actual equipment transition occurred with the previous revision, and this revision primarily is cleaning up the old uninstalled equipment references and guidance now that the Project has been RTO'd to Operations.

Related Equipment Modifications

Installation of new Mirion radiation monitors in both units per EC-53363 and EC-53364.

Communication Plan

Effective date of this revisions will be communicated via email to interested groups.

Special Tools, Aids, Permits, Etc. N/A

Related Condition Reports

GT 2020-4600; GT-2020-0319; GT 2019-7934; AR-2019-9650

Office Information for Form Tracking Only - Not Part of Form

This is a free-form as called out in PMP-2010-PRC-002, Procedure Alteration, Review, and Approval.