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ABSTRACT 

The present works, an ATLAS test for 4-Inch cold leg top-slot break LOCA and a simulation of 
this test with RELAP5 Mod3.3 Patch5, are presented and the calculation results are compared 
and discussed against the test data. An ATLAS model for RELAP5 was applied for steady state. 
And then, a transient calculation was performed with a break line model that was developed for 
the present work. The RELAP5 calculations show a reasonable agreement with the test data. 
Especially, the RELAP5 predicted repeatable loop seal clearing and reformation in the test.  The 
loop seal clearing and reformation led no excursion in the cladding temperature in both the test 
and RELAP5 calculation. 
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EXCUTIVE SUMMARY 

The present works, an ATLAS test for 4-Inch cold leg top-slot break LOCA [1] and a simulation 
of this test with RELAP5 Mod3.3 Patch5 are presented. The test was performed to resolve an 
issue about the effect of loop seal clearing and reformation on a peak cladding temperature 
during a cold leg top-slot break LOCA for APR1400. The calculation results are compared 
against the test data and the major thermal-hydraulic behaviors were discussed in both the test 
and calculation focused on loop seal clearing and reformation. An ATLAS model for RELAP5 
was applied for steady state. And then, a transient calculation was performed with a break line 
model that was developed for the present works.  
 
The RELAP5 calculations show a reasonable agreement with the test data. Especially, the 
RELAP5 predicted repeatable loop seal clearing and reformation in the test. The loop seal 
clearing and reformation led no excursion in the cladding temperature in both the test and 
RELAP5 calculation. There are some discrepancies in the prediction of the secondary system 
pressure. The reason for these discrepancies could be attributed to non-application of a heat 
loss model to the secondary system of a steam generator. In terms of the overall trend for loop 
seal behavior, the calculation shows a good agreement with the ATLAS data, but a detailed 
timing of loop seal clearing and reformation shows a discrepancy between the test and the 
calculation. 
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1    INTRODUCTION 

In the present works, an ATLAS test for 4-Inch cold leg top-slot break LOCA (Ref.1) and a 
simulation of this test with RELAP5 Mod3.3 Patch5 are presented and the calculation results are 
compared against the test data.  
 
The test was performed to resolve an issue about the effect of loop seal clearing and 
reformation on the peak cladding temperature during a cold leg top-slot break LOCA for 
APR1400. For a short time period of reflood, the ECCS of APR1400 must be capable of 
providing long term decay heat removal for up to 30 days. During a postulated design basis cold 
leg slot break, the ECCS design must also provide decay heat removal to prevent the core from 
being uncovered. With a reactor coolant pump suction side loop seal elevation close to the 
midpoint of the core height, the steam pressure in the upper part of the core may increase to the 
point of overcoming the static head of the loop seal. APR1400 design was required to provide 
the technical basis to show that the reactor core cooling will be maintained before and after the 
potential loop seal clearing and that the peak cladding temperature remains within acceptable 
limits. 
 
The assessment of RELAP5 Mod3.3 Patch5 was performed in the present ATLAS test. An 
ATLAS model for RELAP5 was applied for steady state. And then, a transient calculation was 
performed with a break line model that was developed for the present work. The calculation 
results are compared against the test data and the major thermal-hydraulic behaviors were 
discussed in both the test and calculation focused on loop seal clearing and reformation. 
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2    EVALUATION FOR 4-INCH COLD LEG TOP-SLOT 
BREAK IN ATLAS FACILITY 

2.1  ATLAS Facility 

2.1.1  Fluid System 

ATLAS is a thermal-hydraulic integral effect test facility for evolutionary pressurized water 
reactors of APR1400 and OPR1000. The reference plant of ATLAS is APR1400, which is an 
advanced power reactor developed by the Korean nuclear industry and has a rated thermal 
power of 4000 MW and a loop arrangement of 2 hot legs and 4 cold legs for the reactor coolant 
system (Ref. 2). ATLAS also incorporates some specific design features of the Korean standard 
nuclear power plant, OPR1000, such as a cold-leg injection and a low-pressure safety injection 
mode for emergency core cooling. ATLAS can be used to investigate multiple responses 
between the systems for a whole plant or between the subcomponents in a specific system 
during anticipated transients and postulated accidents. 

ATLAS has the same two-loop features as APR1400 and was designed according to a well-
known scaling method suggested by Ishii and Kataoka (Ref. 3 and 4) to simulate various test 
scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with 
respect to a reference plant of APR1400. The main motive for adopting a reduced-height design 
is to allow for an integrated annular downcomer where the multidimensional phenomena can be 
important in some accident conditions with a DVI operation. According to the scaling law, the 
reduced height scaling has the time-reducing results in the model. For the one-half-height 
facility, the time for the scaled model is 1.4 times faster than the prototypical time. The friction 
factors in the scaled model are maintained the same as those of the prototype. The hydraulic 
diameter of the scaled model is maintained the same as that of the prototype to preserve the 
prototypical conditions for the heat transfer coefficient. Major scaling parameters of ATLAS are 
summarized in Table 1. 

The fluid system of ATLAS consists of a primary system, a secondary system, a safety injection 
system, a break simulating system, a containment simulating system, and auxiliary systems. 
The primary system includes a reactor pressure vessel, two hot legs, four cold legs, a 
pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of 
ATLAS is simplified to be of a circulating loop-type. The steam generated at two steam 
generators is condensed in a direct condenser tank and the condensed feedwater is again 
injected to the steam generators. Most of the safety injection features of APR1400 and 
OPR1000 are incorporated into the safety injection system of ATLAS. It consists of four safety 
injection tanks (SITs), a high-pressure safety injection pump (SIP) which can simulate safety 
injection and long-term cooling, a charging pump for charging an auxiliary spray, and a 
shutdown cooling pump and a shutdown heat exchanger for low pressure safety injection, 
shutdown cooling operation and recirculation operation. The break simulation system consists of 
several break simulating lines such as LBLOCA, DVI line break LOCA, SBLOCA, SGTR, MSLB, 
and FLB, etc. Each break simulating line consists of a quick opening valve, a break nozzle and 
instruments. It is precisely manufactured to have a scaled break flow through it in the case of 
LOCA tests. The containment simulating system of ATLAS has a function of collecting the break 
flow rate and maintaining a specified back-pressure in order to simulate containment. Besides, 
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ATLAS has some auxiliary systems such as a makeup system, a component cooling system, a 
nitrogen/air/steam supply system, a vacuum system, and a heat tracing system.  
 
A schematic diagram of ATLAS is shown in Figure 1. More realistic 3-dimensional view of 
ATLAS is shown in Figure 2, including a reactor pressure vessel, two steam generators, four 
reactor coolant pumps, a pressurizer, and four safety injection tanks. A system arrangement 
and labeling of the primary loop for the cold leg SBLOCA test can be observed in Figure 3. 
Detailed design and description of the ATLAS facility can be found in Ref. 5. The condensation 
and break simulation systems in ATLAS are described in the following sections. 

Table 1   Major Scaling Parameters of ALTAS 

Parameters Scaling law ATLAS design 

Length Rl0  1/2 
Diameter Rd0  1/12 
Area 2

0Rd  1/144 

Volume 2
00 RR dl  1/288 

Core DT RT0∆  1 

Velocity 2/1
0Rl  2/1  

Time 2/1
0Rl  2/1  

Power/Volume 2/1
0
−
Rl  2  

Heat flux 2/1
0
−
Rl  2  

Core power 2
0

2/1
RoR dl  1/203.6 

Flow rate 2
0

2/1
RoR dl  1/203.6 

Pressure drop Rl0  1/2 
 
where, l is length, d is diameter, and T is temperature. 
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Figure 1 Schematic Diagram of ATLAS  
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Figure 2 Isometric View of ATLAS 

 

 



 

7 
 

 

Figure 3 Arrange of Primary Loop of ATLAS for Cold Leg Break Test 

 
2.1.2  Condensation Tank and Break Simulation System 

The break flow is discharged to a condensation tank, which consists of a sparger and a 
measuring tank. Overall configuration of the condensation tank is shown in Figure 4. Discharged 
steam and water flow into the sparger in the condensation tank and then steam is directly 
condensed in the tank. Drained water and condensed steam are measured by the load cells and 
the break flow is calculated by the mass increasing rate of load cells. 
 
A break simulator consists of a quick opening valve (OV-CLBS-01), a break nozzle and its 
housing, and related instruments. Detailed geometry of the break nozzle and the break line from 
the cold leg to the condensation tank for the present test can be observed from Figure 5 to 
Figure 7, respectively. The break line was installed at the top of the cold leg pipe to simulate a 
top slot break. The inner diameter of the break nozzle was determined to be 7.12 mm which 
corresponds to 1/203.6 of a 4 inch break area. The break nozzle has a well-rounded entrance 
and the total length is up to 110 mm including the entrance region to comply with the long pipe 
requirement that the length to diameter ratio should be above 12 and the length should be 
longer than 100 mm. Before the test, the pipe line from the cold leg to the opening valve was 
filled with water.  
 

N
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Loop 2 Loop 1
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Pressure
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1A2B

2A
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Figure 4 Schematics of Condensation Tank 

 



 

9 
 

 

  

Figure 5 Drawing of Installation Scheme of Break Simulation 
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Figure 6 Drawing of Break Simulation Nozzle 
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Figure 7 ISO Drawing of Installation of Break Simulation 
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2.1.3  Instrument and Control System 

The control and data acquisition system of ATLAS has been built with a hybrid distributed 
control system (DCS). The input and output modules are distributed in 10 cabinets and they are 
controlled by two CPUs.  Raw signals from the field are processed or converted to engineering 
units (EU) in a system server and the processed or converted signals are monitored and 
controlled through the Human Machine Interface (HMI) system by operators.  
 
Instrumentation signals of ATLAS consist of measurement-based analog input signals and 
control-based in-out signals such as Analog Input (AI), Analog Output (AO), Thermocouple 
(TC), Digital Input (DI), Digital Output (DO), and Serial communication (SR). The number of 
instruments is about 1,600 at present, and the number of each signal-processing group can be 
identified in Table 2. Instrument signals can also be categorized according to the instrument 
type such as temperature, static pressure, differential pressure, water level, flow rate, power, 
and rotational speed. The locations of the instruments for measuring the water levels of a 
reactor pressure vessel, a steam generator, and a pressurizer are shown in Figure 8 through 
Figure 10, respectively. There are 390 electric heaters which are divided concentrically into 3 
groups (Group-1, Group-2 and Group-3). Group-1, -2, and -3 heaters are located in inner, 
middle, and outer regions of the heater bundle, respectively, and they have 102, 138 and 150 
heaters, respectively. The cross-sectional locations of the thermocouples installed in the core 
heater bundles are shown in Figure 11 and the axial locations of the thermocouples, spacer 
grids, and level transmitters are shown in Figure 12.  
 
The data logging system can be started or stopped by operators and a logging frequency can 
be selected from among 0.5, 1, 2, 10 Hz. In the present test, the logging frequency was 1 Hz. In 
the ATLAS test facility, about 1,600 instruments are installed for the measurement of thermal 
hydraulics phenomena in the components. Most of the instruments are chosen from 
commercially available ones. However, an average bi-directional flow tube (BDFT or BiFlow) 
and a break flow system were specially developed or designed for the measurements of the 
flow rates in the primary piping and in the containment system, respectively. 
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Table 2   Summary of ATLAS Instrument Channels 

  

Temperature Pressure Flow Etc. 

Total TH TF TW TI TA PT DP LT QV QM BDFT LC EP TR RS VF 
RPV 262 90 38 4 2 3 5 26     3    433 
Loop  72 56 20  6 23 18   12  4  4  215 
SG  124 92 6 2 6 2 36 4        272 
PZR 2 11 13 3  2 1 9 1    2    44 

2nd sys.  24    12  1 12        49 
SDS  2    1           3 
SIS 4 36 8   26  6 14        94 
CS  13    5   3 1  5     27 

CWS  6    1   2        9 
SSS  1    2           3 
MWS  1    1  1         3 
NSS  1    2   1        4 
Spool  28    20 2  2        52 
CAS      1           1 
Trace             25    25 
VAS      1  1         2 

Total 268 409 207 33 4 89 33 98 39 1 12 5 34 0 4 0 1236 921 220 52 
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Figure 8 Measuring Location of Water Level Transmitters Installed on RPV 

33
0

14
0 LT-LP-01

Bottom of Heated 
Length

20

End of Heated 
Length

57
2

31
7

31
7

31
7

31
8

31
8

31
8

LT-LP-02

LT-CO-01

LT-CO-02

LT-CO-03

LT-CO-04

LT-CO-05

LT-CO-06

LT-CO-0743
3

69
9 LT-UP-01

LT-UH-01

59
5.

5
59

5.
5

LT-UH-02

LT-UH-03

72
3.

6
44

7.
9

LT-UH-04

Level Transmeters

29
10

LT
-R

V-
01

30
61

.5
LT

-R
V-

02

59
71

.5
LT

-R
V-

03

45

48
17

.4
LT

-R
V-

04

Unit : mm



 

15 
 

 

Figure 9 Measuring Location of Water Level Transmitters Installed on SG 
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Figure 10 Measuring Location of Water Level Transmitters Installed on Pressurizer 
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Figure 11 Cross-sectional Location of Thermocouples Installed in Core Heater Bundle 
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Figure 12 Axial Locations of Thermocouples and Spacers Installed in Core Heater 
Bundle 
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2.1.4  Uncertainty Evaluation of Measured Data 

Uncertainty of the measured test data was analyzed in accordance with a 95% confidence level. 
According to the ASME performance test codes 19.1, the uncertainty interval of the present 
results was given by the root-mean-square of a bias contribution and a precision contribution. 
The bias and precision errors were evaluated from the data acquisition hardware specifications 
and the calibration results performed once every year, respectively. Table 3 shows analyzed 
uncertainty levels of each group of instruments. 

Table 3   Uncertainty Levels of Instruments 

Items Unit Uncertainty 

Static Pressure MPa 0.039 
Differential Pressure kPa 0.23 

Collapsed Water Level % 

0.18 (Core) 
2.6 (Downcomer) 
8.6 (RCP suction side of the 
intermediate leg) 

Temperature oC maximum 2.4 
Flow rate kg/s 0.053 

Loop flow rate % 15 (two-phase flow) 
13 (liquid-phase flow) 

Break flow kg/s 
0.07 (by the load cell-based 
measuring) 
by the RCS inventory change) 

 
 
2.2  Major Test Results 

ATLAS test, named LTC-CL-04R, was performed to investigate the effect of loop seal clearing 
and reformation on coolability of APR1400 during a 4-Inch cold leg top-slot break LOCA 
transient.  
 
2.2.1  Test Conditions 

In the present test, four SITs and four SIPs were utilized as a safety injection system during the 
test period, and operation of the MSSVs and supply of the auxiliary feedwater were assumed to 
be available. The initial and boundary conditions were obtained by applying the scaling ratios, 
shown in Table 1.  
 
A set of characterization tests was performed for reliable simulation of the scaled-down safety 
injection flow rates by the SIPs. In the present test, the maximum SIP flow rate and relatively 
cold ECC water temperature were assumed to promote repeatable loop seal clearing and 
reformation. The estimated maximum SIP flow rate of APR1400 was about 65.2 kg/s and thus, 
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according to the scaling ratio, 0.32 kg/s of ECC water should be delivered to the reactor 
pressure vessel through the each DVI nozzle. In the ATLAS facility, the ECC water was 
supplied from the RWT and the temperature of around 10 to 17 oC was in the operating range 
as that of APR1400. The SIP flow rate was dependent on the pressure difference between the 
SIT and the primary system.  
 
The decay heat was simulated to be 1.2 times of the ANS-73 decay curve for the conservative 
condition. The initial heater power was controlled to maintain at 1.64 MW, which is equal to the 
sum of the scaled-down core power (1.567 MW) and the heat loss rate of the primary system 
(about 88 kW), and then the heater power was controlled to follow the specified decay curve 
after 31.7 seconds from the opening of the break valve as shown in Figure 13. There are four 
bypass valves connected to the downcomer in ATLAS. Two bypass valves of FCV-RV-37 and 
FCV-RV-38 are between the downcomer and the upper head, and two bypass valves of FCV-
RV-95 and FCV-RV-96 are between the downcomer and hot legs. All bypass valves were 
closed to provide a conservative condition for loop seal clearing and reformation. In Table 4, the 
major control logics are summarized. In Table 5, the actual initial and boundary conditions of the 
LTC-CL-04R test can be observed. 
 
2.2.2  Test Procedure  

Prior to a transient test, several actions were taken. They included an instrument calibration with 
the ATLAS system drained, purging and filling the ATLAS system including leakage tests, an 
instrument calibration with the water-filled primary system, and an implementation of test 
specific control logics into the process control computers for sequence control. The sequence 
control logics executed the required control actions for the corresponding control devices such 
as the main core heater, RCP, SIP, and valves.  
 
The whole system reaching a specified initial condition for the test as shown in Table 6, the 
steady-state conditions of the primary and secondary systems were maintained for more than 
30 minutes. After this steady-state period, the main test started by opening of the break 
simulation valve, OV-CLBS-01.  
 
2.2.3  Sequence of Events 

After opening the break simulation valve, OV-CLBS-01, the test sequence was controlled by the 
corresponding control logic, which defined the set-point and related time delay as can be 
observed in Table 4. When the pressurizer pressure measured by PT-PZR-01 decreased below 
10.7 MPa, the LPP signal was issued. After the LPP signal, the reactor, RCP, and pressurizer 
heater were tripped with no time delay. The main feed water isolation valves were closed with 
the LPP signal. The actuation of the SIPs was set to occur with 28 seconds delay from the LPP 
signal. Further decreasing of the primary pressure, below 4.03 MPa (the low upper downcomer 
pressure, LUDP), resulted in passive injection of the SIT water. Table 6 shows the actual 
progress of the events observed in the present LTC-CL-04R test.  
 
2.2.4  Estimation of Heat Loss  

 
The heat loss from the primary system to the environment cannot be completely prevented even 
though thick insulation materials envelop the reactor pressure vessel and the primary pipelines. 
The heat loss was estimated by the following simplified empirical correlation; 
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)(32.01, atmwloss TTQ −⋅=                   (3.4.1) 

 
where TW is outer wall surface temperature measured at the middle of the reactor pressure 
vessel, TW-DC-04A and Tatm is atmospheric temperature measured on the test day.  
 
The heat loss from each steam generator to the environment was also estimated according to 
the following empirical correlation; 
 

8843.1
2, )(00077.0 atmwloss TTQ −⋅=           (3.4.2) 

 
where TW is averaged values of the temperatures measured at the outer wall surface of the 
steam generators, TW-SGP1-02A, TW-SGRS1-01A, TW-SGRS1-02A, TW-SGRS1-03A, TW-
SGSD1-01A, TW-SGSD1-02A and Tatm is atmospheric temperature. 
 
Estimated heat losses through the primary and the secondary systems were about 88 kW and 
33 kW, respectively. The estimated heat loss through the system can be observed in Figure 14.  
 
2.2.5  Identified Thermal Hydraulic Phases During LTC-CL-04R  

Loop seal clearing and reformation are recognized with the water level of the intermediate leg 
(IL) of the primary loop. Figure 15 shows the installation position of the water level transmitter at 
the intermediate leg. For the loop seal clearing, LT-ILj-03 became lower than the top of the 
horizontal intermediate leg. In other hand, LT-ILj-03 became higher than the top of the 
horizontal intermediate leg for the loop seal reformation. Figure 16 shows the water level 
behavior measured by LT-ILj-03. 
 
Figure 17 shows the water level of the core and the downcomer. The LTC-CL-04R test was 
finished when the core water level recovered the elevation of hot legs and cold legs. During the 
loop seal clearing, the coolant at the intermediate leg flowed to the core and the core water level 
increased. After the loop seal reformation, the accumulated steam that was produced by decay 
heat increased the upper head pressure and the increased pressure pushed down the core 
water level.  
 
Figure 18 shows the core temperatures and saturated temperature at the upper head. After the 
loop seal reformation, the core temperatures slowly increased. A reason for this increase can be 
attributed to the accumulated steam at the upper head that increased the pressure and 
saturated temperatures. Therefore, this temperature behavior was not a critical phenomenon 
that affected the overall coolability of the reactor coolant system during the transient. 
 
Figure 19 shows the pressure behavior of pressurizer, steam generators, and SITs. The 
pressure of pressurizer (PT-PZR-01-I) generally decreased during the test period and some 
peaks were observed at the timing of loop seal clearing and reformation. The pressure of SITs 
(PT-SIT1/2/3/4-02-I) decreased along the pressure of pressurizer after SIT valve opening. The 
pressure of steam generators (PT-SGSD1-01-I, PT-SGSD2-01-I) increased after isolation of the 
feed and steam lines and MSSVs started to be operated. After then, the pressure of steam 
generators gradually decreased by heat transfer from the secondary side to the primary side at 
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steam generators because the saturation temperatures of the primary system were lower than 
those of the secondary system.   
 
In Figure 20, the mass of inventory measured at the condensation tank (LC-CDT-01-I) and the 
break flow rate were plotted. The condensation tank mass decreased during 4500 to 5500 
seconds when corresponded to the drainage time of the condensation tank because the 
accumulated mass of break flow at that time was beyond the capacity of the condensation tank. 
There are two break flow rate curves – the black triangle and the red square in Figure 20. The 
black triangle curve is a break flow rate that was estimated from the change of the coolant mass 
inventory at the primary loop. The red square curve is a break flow rate that was calculated from 
the change of the inventory mass in the condensation tank. The break flow by mass inventory 
has an empty period due to the drainage time of the condensation tank. The break flow rates 
were calculated using differential value of mass data. The original break flow data included 
noise data by calculation. To reduce the calculation noise, 20 points moving averaged data was 
presented in Figure 20. Before the operation of SIT, the break flow was relatively higher than 
that after the operation of SIT since initially the water was discharged through the break. After 
the operation of SIT, the break flow rate became similar with the safety injection flow rate as 
shown in Figure 21.  
 
Figure 22 and Figure 23 show the flow rate of hot legs and cold logs  legs, respectively. The 
flow rate of cold leg 1A was negative value after the break because the flow meter was located 
between the RPV and the break line as shown in Figure 24. For a normal operating condition, 
the coolant in a cold leg flows from a steam generator to a RPV. In the case of LTC-CL-04R 
test, however, flow direction at flow meter of cold leg 1A was opposite because the coolant 
flowed out through the break line from both the RPV and the steam generator.  
 
Differential pressures between the downcomer and the upper head of a RPV are shown in 
Figure 25. From this graph, an inverse flow direction can be recognized. Figure 26 shows a 
thermocouple distribution map in the downcomer of a RPV and Figure 27 to Figure 32 show the 
fluid temperatures measured at the downcomer of a RPV. The fluid temperatures adjacent to 
the lower plenum were relatively high, but there was no significant difference for the azimuthal 
direction. 
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Table 4   Control Logic Setting for LTC-CL-04R Test 
 

Set point 
Primary logic 
By-pass rate 0 % 

Cold leg break  300 sec 

LPP PT-PZR-01 < 12.48MPa  

Reactor scram / TCP trip / RCP trip/ 
Turbine trip / MFIV and MSIV close 

LPP + 0.0 sec 

SIP on  PT-PZR-01 < 10.7MPa + 28sec delay 

SIT on  
SIT low flow conversion 
SIT stop 

PT-DC-01 < 4.03MPa 
LT-SIT1,2,3,4-01 < 72.8, 72.6, 72.0, 72.2 % 
LT-SIT1,2,3,4-01 < 47.4, 47.2, 46.6, 47.0 % 

Secondary logic 
MSSV1,2-01 open 
MSSV1,2-01 close 

PT-SGSD1,2-01 > 8.1 MPa 
PT-SGSD1,2-01 < 7.7 MPa 

MSSV1,2-02 open 
MSSV1,2-02 close 

PT-SGSD1,2-01 > 8.3 MPa 
PT-SGSD1,2-02 < 7.9 MPa 

MSSV1,2-03 open 
MSSV1,2-03 close 

PT-SGSD1,2-01 > 8.48 MPa 
PT-SGSD1,2-03 < 8.05 MPa 

Aux. Feed Water open 
Aux. Feed Water close 

LT-SGSDRS2-01 < 2.76m 
LT-SGSDRS2-01 > 3.61m 

Aux. Feed Water Flow rate  0.2 kg/s 
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Table 5   Actual Initial and Boundary Condition for LTC-CL-04R Test 

Design Parameter Measured 
value/ STDEV* 

Remark (Sensor ID) 

Primary System 
Core Power (MW) 1.64/0.715 Heat loss: about 88 kW 
Pressurizer Pressure (MPa) 15.5/0.0075 PT-PZR-01  

Core Inlet Temperature (℃) 291.0/0.15 TF-LP-02G18  

Core Outlet Temperature (℃) 326.8/0.11 TF-CO-
07G14,18,21,25  

Secondary System 
Steam Flow Rate per Each SG 
(kg/s) 

0.382/0.031 
0.425/0.001 

SG-1 (QV-MS1-01) 
SG-2 (QV-MS2-01) 

Feed Water Flow Rate per 
Each SG (kg/s) 

0.410/0.001 
0.413/0.003 

SG-1 (QV-MF1-01, 2), 
SG-2 (QV-MF2-01, 2) 

Feed Water Temperature (℃) 233.9/0.117 
233.0/0.131 

SG-1 (TF-MF1-01), 
SG-2 (TF-MF2-01) 

Steam Pressure (MPa) 7.83/0.0005 
7.83/0.0005 

SG-1 (PT-SGSD1-01), 
SG-2 (PT-SGSD2-01) 

Steam Temperature (℃) 295.6/0.101 
295.6/0.075 

SG-1 (TF-SGSD1-03),  
SG-2 (TF-SGSD2-03) 

Secondary Side Level (m) 4.99/0.015 
4.99/0.008 

SG-1 (LT-SGSDRS1-
01),  
SG-2 (LT-SGSDRS2-
01) 

Etc. 
Cold Leg Flow (kg/s) 1.98/0.062 Averaged Value for 4 

CLs  
(QV-CL1A,1B,2A,2B-
01B) 

SIT temperature (℃)  12.2/0.188 
12.7/0.143 
14.2/0.147 
14.0/0.250 

SIT1 (TF-SIT1-03),  
SIT2 (TF-SIT2-03),  
SIT3 (TF-SIT3-03),  
SIT4 (TF-SIT4-03) 

* STDEV: Standard deviation 
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Table 6   Actual Sequence of Events of LTC-CL-04R Test 

Events Timing (seconds) Remarks 
Break start 300 MFW terminated 
MSSV 336/340 SG pressure 
LPP trip 332 PT-PZR-01 < 12.48 MPa 
SIP on  381 PT-PZR-01 < 10.7 MPa + 28sec delay 
SIT on 1066 PT-DC-01 < 4.03 MPa 
Loop seal clearing 733~3687 (1A) 

754~3719 (2A) 

 

4097~4151 (1A,1B) 
4094~4160 (2B) 

4982~5138 (1A) 
4978~5150 (2A) 

7322~ 7456 (1A) 

 
 
  

Break 
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Figure 13 Decay Power for LTC-CL-04R Test 

 

Figure 14 Estimated Heat Loss through System of LTC-CL-04R Test 
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Figure 15 Diagram of Water Level Transmitter Installation at Intermediate Leg (j: Loop 
index, 1A, 1B, 2A, 2B) 
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Figure 16 Water Level Behavior of LT-ILj-03 (j: Loop Index, 1A, 1B, 2A, 2B) 

 



 

29 
 

 

Figure 17 Water Level of Core and Downcomer of RPV 

 

Figure 18 Core Temperatures and Saturated Temperature at Upper Head 
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Figure 19 Pressure at Pressurizer, Steam Generators and SITs 

 

 

Figure 20 Condensation Tank Mass (LC-CDT-01-I) and Break Flow Rates (Triangle, 
Square) 
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Figure 21 Flow Rate of SIPs and SITs 

 

Figure 22 Flow Rate of Hot Legs 
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Figure 23 Flow Rate of Cold Legs 

 

 

Figure 24 Location of Flow Meter of Cold Leg 1A 
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Figure 25 Differential Pressure between Downcomer and Upper Head 

 

Figure 26 Thermocouple Distribution Map in Downcomer of RPV 
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Figure 27 Temperature of Downcomer (TF-DC-011 ~ 016) 

 

Figure 28 Temperature of Downcomer (TF-DC-021 ~ 026) 
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Figure 29 Temperature of Downcomer (TF-DC-031 ~ 036) 

 

Figure 30 Temperature of Downcomer (TF-DC-041 ~ 046) 
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Figure 31 Temperature of Downcomer (TF-DC-051 ~ 056) 

 

Figure 32 Temperature of Downcomer (TF-DC-061 ~ 066) 
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3    RELAP5 INPUT MODELS 

 
3.1  RELAP5 Input Model for ATLAS Simulation 

 
3.1.1  RELAP5 Nodalization for ATLAS Facility 

 
KAERI has developed a standard input model for the ATLAS facility. The latest ATLAS input 
model for a steady state condition is shown in Figure 33. In order to simulate a break in a cold 
leg, a break line was added on the top of component 381 (C381) located between the RPV and 
the RCP of CL-1A. In addition, an upward facing break was modelled using off-take model 
applied to an affected junction from C381. Except for a break line, any node subdivision was not 
applied in this study. As passive safety components, safety injection tanks were modelled as 
accumulators equipped with fluidic device. SITs were connected to the direct vessel injection 
line of RPV annular shroud. 
 

 

Figure 33 ATLAS Nodalization of SBLOCA (or IBLOCA) 
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3.1.2  Break Modeling 

 
It should be noted that a shape of slot break having a very slim line with narrow width is hardly 
made in the test and modelled in one-dimensional (1-D) codes including the RELAP5 code. 
Thus, the break shape in the test and the present code calculation was simulated as a single 
hole using a nozzle that has an inner diameter of 7.12 mm and a length of 100 mm.  
 
In order to predict accurate behavior of break flow against the test data, a break line needs to be 
modelled same with the test configuration as mentioned in section 2.1.2 . Figure 34 shows 
nodalization of a break line. The 1-D break line consists of a break main line, a break nozzle, 
break valve (trip valve), and sink volume. Among those components, modeling of the break 
nozzle is the most important in this simulation since choking in a single break line occurs at the 
smallest area of the break line. Compared to the break main line having an inner diameter of 
33.99 mm, the break nozzle and the break valve have the smallest inner diameter of 7.12 mm. 
Thus, choking is expected to occur at the valve which is diverging the area of the break nozzle. 
Choking condition was only applied to this part.  
 
 

 

Figure 34 Nodalization of Break Line 
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4    RESULTS 

4.1  ATLAS Calculations and Discussions 

 
The RELAP5 calculation data were compared against the test data and the results are shown in 
Figure 35 through Figure 46. The ATLAS test data are labeled as “Exp” and the RELAP5 
calculation data are labeled as “RELAP5”. 
 
RELAP5 calculation shows a reasonable agreement with the test result for the primary loop 
pressure, as presented in Figure 35. The predicted times of the first and the second pressure 
drop are similar with the test data during an early stage of the test. After the second pressure 
drop, RELAP5 calculated relatively higher pressure because the break flow rates of RELAP5 
calculation were less than those of the test during this period. In Figure 37, the break flow rates 
are compared. RELAP5 predicted larger break flow rates than those of the test before 800 
seconds and the calculated accumulated mass of break flow was also larger than that of the test 
during an early period before 800 seconds. After 800 seconds, calculated break flow rates were 
larger than those of the test and it induced a less accumulated break flow and a higher primary 
pressure.  
 

 

Figure 35 Pressurizer Pressure 
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Figure 36 Core Power 

 

Figure 37 Break Flow Rate 
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Figure 38 Accumulated Break Flow 

 
RELAP5 analysis reasonably predicted the core collapsed water level as shown in Figure 39. 
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the loop seal flowed into the core. On the other hands, the core collapsed water level gradually 
decreased after the loop seal reformation due to the evaporation at the core. The loop seal 
clearing and reformation times of RELAP5 calculation were different from those of the test. And 
this discrepancy made a different oscillation pattern of the core collapsed water level. However, 
the overall trend of collapsed water level was similar in both the test and the RELAP5 
calculation.  
 
The maximum heater wall temperatures are presented in Figure 40. In both data, temperature 
reaches its peak after every loop seal reformation. The reason for the peak of temperature is 
attributed to the increase of saturated temperature at the core. After loop seal reformation, the 
evaporated steam at the core was accumulated at the upper head and so the upper head 
pressure increased gradually. The increased pressure led to the increase of the saturated 
temperature of the coolant at the core. Therefore, the heater wall temperatures also increased 
with the increase of the saturated temperature of the coolant at the core. It could be found from 
the RELAP5 calculation that a loop seal reformation does not induce an excursion of the 
cladding temperature which is also observed in the ATLAS test.  
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Figure 39 Core Collapsed Water Level 

 

Figure 40 Maximum Core Temperature 
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The secondary system pressures of both steam generators are presented in Figure 41 and 
Figure 42, respectively. RELAP5 calculation over-predicted the secondary system pressure due 
to non-application of a heat loss model to the secondary side of the steam generator. This led to 
under-prediction of the cooling rate and the depressurization rate at steam generators.  
 
The discrepancy of the secondary system pressures between the two steam generators was 
relatively larger in the RELAP5 calculation compared to the ATLAS test. The reason for this 
discrepancy can be attributed to the different flow rates between the loops. Figure 43 and Figure 
44 show the flow rates at the hot legs. In the test, the flow rates were similar for both loops. 
However, the flow rate at hot leg 1 was almost zero in the RELAP5 calculation. The Coolant 
flow rate at the loop is the most important parameter for evaluating the heat transfer 
characteristics. The relatively small flow rate at hot leg 1 indicates that the heat transfer rate at 
the steam generator 1 was smaller than that at the steam generator 2.  
 

 

Figure 41 Steam Dome Pressure of Steam Generator-1 
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Figure 42 Steam Dome Pressure of Steam Generator-2 

 

Figure 43 Hot Leg-1 Flow Rate 
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Figure 44 Hot Leg-2 Flow Rate 
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Figure 45 Collapsed Water Level at Vertical Intermediate Leg (Exp.) 
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Figure 46 Collapsed Water Level at Vertical Intermediate Leg (RELAP5) 
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5    RUN STATISTICS 

 
The calculations were performed using Intel® Core™ i7-6700 @ 3.40 GHz processor. The 
operating system is Windows 7 Enterprise K. Table 7 shows the run statistics for the RELAP5 
calculation. 

Table 7   Run Statistics 

Code Transient Time 
(s) 

CPU Time 
(s) 

CPU/Transient 
Time 

Number of Time 
Steps 

RELAP5 Mod3.3 
Patch5 8000.0 41945.3 5.2 4 41945.3 
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6    CONCLUSIONS 

 
The ATLAS test for 4-Inch cold leg top-slot break LOCA was calculated using the RELAP5 
Mod3.3 Patch5 code. Focused on the loop seal clearing and reformation phenomena, the 
calculation results were compared to the test data. In general, the RELAP5 calculation results 
show a reasonable agreement with the ATLAS test data. The RELAP5 code predicted 
repeatable loop seal clearing and reformation which was observed in the ATLAS test. The loop 
seal clearing and reformation led no excursion of the cladding temperature during the transient 
in both the test and the RELAP5 calculation. There are discrepancies in prediction of the 
secondary system pressure at steam generators. The reason for these discrepancies could be 
attributed to non-application of a heat loss model to the steam generator. In terms of the overall 
trend for loop seal behavior, the calculation shows a good agreement with the ATLAS data, but 
a detailed timing of loop seal clearing and reformation shows a discrepancy between the test 
and the calculation.  
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