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ABSTRACT

The present works, an ATLAS test for 4-Inch cold leg top-slot break LOCA and a simulation of
this test with RELAP5 Mod3.3 Patch5, are presented and the calculation results are compared
and discussed against the testdata. An ATLAS model for RELAPS was applied for steady state.
And then, a transient calculation was performed with a break line model that was developed for
the present work. The RELAPS calculations show a reasonable agreement with the test data.
Especially, the RELAPS predicted repeatable loop seal clearing and reformation in the test. The
loop seal clearing and reformation led no excursion in the cladding temperature in both the test
and RELAPS calculation.
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EXCUTIVE SUMMARY

The present works, an ATLAS test for 4-Inch cold leg top-slot break LOCA [1] and a simulation
of this test with RELAP5 Mod3.3 Patch5 are presented. The test was performed to resolve an
issue about the effect of loop seal clearing and reformation on a peak cladding temperature
during a cold leg top-slot break LOCA for APR1400. The calculation results are compared
against the test data and the major thermal-hydraulic behaviors were discussed in both the test
and calculation focused on loop seal clearing and reformation. An ATLAS model for RELAPS
was applied for steady state. And then, a transient calculation was performed with a break line
model that was developed for the present works.

The RELAPS5 calculations show a reasonable agreement with the test data. Especially, the
RELAPS5 predicted repeatable loop seal clearing and reformation in the test. The loop seal
clearing and reformation led no excursion in the cladding temperature in both the testand
RELAPS5 calculation. There are some discrepancies in the prediction of the secondary system
pressure. The reason for these discrepancies could be attributed to non-application of a heat
loss model to the secondary system of a steam generator. In terms of the overall trend for loop
seal behavior, the calculation shows a good agreement with the ATLAS data, but a detailed
timing of loop seal clearing and reformation shows a discrepancy between the test and the
calculation.
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1 INTRODUCTION

In the present works, an ATLAS test for 4-Inch cold leg top-slot break LOCA (Ref.1) and a
simulation of this test with RELAP5 Mod3.3 Patch5 are presented and the calculation results are
compared against the test data.

The test was performed to resolve an issue about the effect of loop seal clearing and
reformation on the peak cladding temperature during a cold leg top-slot break LOCA for
APR1400. For a short time period of reflood, the ECCS of APR1400 must be capable of
providing long term decay heat removal for up to 30 days. During a postulated design basis cold
leg slot break, the ECCS design must also provide decay heat removal to prevent the core from
being uncovered. With a reactor coolant pump suction side loop seal elevation close to the
midpoint of the core height, the steam pressure in the upper part of the core may increase to the
point of overcoming the static head of the loop seal. APR1400 design was required to provide
the technical basis to show that the reactor core cooling will be maintained before and after the
potential loop seal clearing and that the peak cladding temperature remains within acceptable
limits.

The assessment of RELAP5 Mod3.3 Patch5 was performed in the present ATLAS test. An
ATLAS model for RELAPS was applied for steady state. And then, a transient calculation was
performed with a break line model that was developed for the present work. The calculation
results are compared against the test data and the major thermal-hydraulic behaviors were
discussed in both the test and calculation focused on loop seal clearing and reformation.






2 EVALUATIONFOR4-INCH COLDLEGTOP-SLOT
BREAKIN ATLAS FACILITY

21  ATLAS Facility

211 Fluid System

ATLAS is a thermal-hydraulic integral effect test facility for evolutionary pressurized water
reactors of APR1400 and OPR1000. The reference plant of ATLAS is APR1400, which is an
advanced power reactor developed by the Korean nuclear industry and has a rated thermal
power of 4000 MW and a loop arrangement of 2 hot legs and 4 cold legs for the reactor coolant
system (Ref. 2). ATLAS also incorporates some specific design features of the Korean standard
nuclear power plant, OPR1000, such as a cold-leg injection and a low-pressure safety injection
mode for emergency core cooling. ATLAS can be used to investigate multiple responses
between the systems for a whole plant or between the subcomponents in a specific system
during anticipated transients and postulated accidents.

ATLAS has the same two-loop features as APR1400 and was designed according to a well-
known scaling method suggested by Ishii and Kataoka (Ref. 3 and 4) to simulate various test
scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with
respect to a reference plant of APR1400. The main motive for adopting a reduced-height design
is to allow for an integrated annular downcomer where the multidimensional phenomena can be
important in some accident conditions with a DVI operation. According to the scaling law, the
reduced height scaling has the time-reducing results in the model. For the one-half-height
facility, the time for the scaled model is 1.4 times faster than the prototypical time. The friction
factors in the scaled model are maintained the same as those of the prototype. The hydraulic
diameter of the scaled model is maintained the same as that of the prototype to preserve the
prototypical conditions for the heat transfer coefficient. Major scaling parameters of ATLAS are
summarized in Table 1.

The fluid system of ATLAS consists of a primary system, a secondary system, a safety injection
system, a break simulating system, a containment simulating system, and auxiliary systems.
The primary system includes a reactor pressure vessel, two hot legs, four cold legs, a
pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of
ATLAS is simplified to be of a circulating loop-type. The steam generated at two steam
generators is condensed in a direct condenser tank and the condensed feedwater is again
injected to the steam generators. Most of the safety injection features of APR1400 and
OPR1000 are incorporated into the safety injection system of ATLAS. It consists of four safety
injection tanks (SITs), a high-pressure safety injection pump (SIP) which can simulate safety
injection and long-term cooling, a charging pump for charging an auxiliary spray, and a
shutdown cooling pump and a shutdown heat exchanger for low pressure safety injection,
shutdown cooling operation and recirculation operation. The break simulation system consists of
several break simulating lines such as LBLOCA, DVI line break LOCA, SBLOCA, SGTR, MSLB,
and FLB, etc. Each break simulating line consists of a quick opening valve, a break nozzle and
instruments. It is precisely manufactured to have a scaled break flow through it in the case of
LOCA tests. The containment simulating system of ATLAS has a function of collecting the break
flow rate and maintaining a specified back-pressure in order to simulate containment. Besides,
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ATLAS has some auxiliary systems such as a makeup system, a component cooling system, a
nitrogen/air/steam supply system, a vacuum system, and a heat tracing system.

A schematic diagram of ATLAS is shown in Figure 1. More realistic 3-dimensional view of
ATLAS is shown in Figure 2, including a reactor pressure vessel, two steam generators, four
reactor coolant pumps, a pressurizer, and four safety injection tanks. A system arrangement
and labeling of the primary loop for the cold leg SBLOCA test can be observed in Figure 3.
Detailed design and description of the ATLAS facility can be found in Ref. 5. The condensation
and break simulation systems in ATLAS are described in the following sections.

Table 1 Major Scaling Parameters of ALTAS

Parameters Scaling law ATLAS design
Length lor 1/2
Diameter dog 1/12
Area dép 1/144
Volume lopdis 1/288
Core DT AT, 1
Velocity Iy 1742
Time Ly 1/~/2
Power/Volume I’ V2
Heat flux I J2
Core power 1M2d;, 1/203.6
Flow rate 12d;, 1/203.6
Pressure drop lon 1/2

where, [ is length, d is diameter, and T is temperature.
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2.1.2 Condensation Tank and Break Simulation System

The break flow is discharged to a condensation tank, which consists of a sparger and a
measuring tank. Overall configuration of the condensation tank is shown in Figure 4. Discharged
steam and water flow into the sparger in the condensation tank and then steam is directly
condensed in the tank. Drained water and condensed steam are measured by the load cells and
the break flow is calculated by the mass increasing rate of load cells.

A break simulator consists of a quick opening valve (OV-CLBS-01), a break nozzle and its
housing, and related instruments. Detailed geometry of the break nozzle and the break line from
the cold leg to the condensation tank for the present test can be observed from Figure 5 to
Figure 7, respectively. The break line was installed at the top of the cold leg pipe to simulate a
top slot break. The inner diameter of the break nozzle was determined to be 7.12 mm which
corresponds to 1/203.6 of a 4 inch break area. The break nozzle has a well-rounded entrance
and the total length is up to 110 mm including the entrance region to comply with the long pipe
requirement that the length to diameter ratio should be above 12 and the length should be
longer than 100 mm. Before the test, the pipe line from the cold leg to the opening valve was
filled with water.
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2.1.3 Instrument and Control System

The control and data acquisition system of ATLAS has been built with a hybrid distributed
control system (DCS). The input and output modules are distributed in 10 cabinets and they are
controlled by two CPUs. Raw signals from the field are processed or converted to engineering
units (EU) in a system server and the processed or converted signals are monitored and
controlled through the Human Machine Interface (HMI) system by operators.

Instrumentation signals of ATLAS consist of measurement-based analog input signals and
control-based in-out signals such as Analog Input (Al), Analog Output (AO), Thermocouple
(TC), Digital Input (DI), Digital Output (DO), and Serial communication (SR). The number of
instruments is about 1,600 at present, and the number of each signal-processing group can be
identified in Table 2. Instrument signals can also be categorized according to the instrument
type such as temperature, static pressure, differential pressure, water level, flow rate, power,
and rotational speed. The locations of the instruments for measuring the water levels of a
reactor pressure vessel, a steam generator, and a pressurizer are shown in Figure 8 through
Figure 10, respectively. There are 390 electric heaters which are divided concentrically into 3
groups (Group-1, Group-2 and Group-3). Group-1, -2, and -3 heaters are located in inner,
middle, and outer regions of the heater bundle, respectively, and they have 102, 138 and 150
heaters, respectively. The cross-sectional locations of the thermocouples installed in the core
heater bundles are shown in Figure 11 and the axial locations of the thermocouples, spacer
grids, and level transmitters are shown in Figure 12.

The data logging system can be started or stopped by operators and a logging frequency can
be selected from among 0.5, 1, 2, 10 Hz. In the present test, the logging frequency was 1 Hz. In
the ATLAS test facility, about 1,600 instruments are installed for the measurement of thermal
hydraulics phenomena in the components. Most of the instruments are chosen from
commercially available ones. However, an average bi-directional flow tube (BDFT or BiFlow)
and a break flow system were specially developed or designed for the measurements of the
flow rates in the primary piping and in the containment system, respectively.
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Table 2 Summary of ATLAS Instrument Channels

\ Temperature Pressure Flow Etc.

TH | TF [TW[ TI| TA|PT|[DP | LT |QVIQMBDFT|LC |EP | TR | RS| VF | Total
RPV (262] 90| 38 (4| 2] 3 | 5 [26 3 433
Loop 72 | 56 |20 6 | 23|18 12 4 4 215
SG 1241 92 (6| 2| 6 | 2 [36]4 272
PZR 2 | 11113 ] 3 2111911 2 44

2nd sys 24 12 1 (12 49
SDS 2 1 3
SIS 4 | 36| 8 26 6 |14 94
CS 13 5 311 5 27
CWS 6 1 2 9
SSS 1 2 3
MWS 1 1 1 3
NSS 1 2 1 4
Spool 28 20| 2 2 52
CAS 1 1
Trace 25 25
VAS 1 1 2

268|409 207[33] 4 |89 33 ]198[39] 1| 12
Total 921 520 50 51341 0| 4| 01236
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2.1.4 Uncertainty Evaluation of Measured Data

Uncertainty of the measured test data was analyzed in accordance with a 95% confidence level.
According to the ASME performance test codes 19.1, the uncertainty interval of the present
results was given by the root-mean-square of a bias contribution and a precision contribution.
The bias and precision errors were evaluated from the data acquisition hardware specifications
and the calibration results performed once every year, respectively. Table 3 shows analyzed
uncertainty levels of each group of instruments.

Table 3 Uncertainty Levels of Instruments

ltems Unit Uncertainty
Static Pressure MPa 0.039
Differential Pressure kPa 0.23

0.18 (Core)

2.6 (Downcomer)
8.6 (RCP suction side of the
intermediate leg)

Collapsed Water Level %

Temperature °C maximum 2.4
Flow rate kgls 0.053
Loop flow rate % 15 (two-phase flow)

13 (liquid-phase flow)

0.07 (by the load cell-based
Break flow ka/s measuring)

by the RCS inventory change)

2.2 Major Test Results

ATLAS test, named LTC-CL-04R, was performed to investigate the effect of loop seal clearing
and reformation on coolability of APR1400 during a 4-Inch cold leg top-slot break LOCA
transient.

2.21 TestConditions

In the present test, four SITs and four SIPs were utilized as a safety injection system during the
test period, and operation of the MSSVs and supply of the auxiliary feedwater were assumed to
be available. The initial and boundary conditions were obtained by applying the scaling ratios,
shownin Table 1.

A set of characterization tests was performed for reliable simulation of the scaled-down safety
injection flow rates by the SIPs. In the present test, the maximum SIP flow rate and relatively
cold ECC water temperature were assumed to promote repeatable loop seal clearing and
reformation. The estimated maximum SIP flow rate of APR1400 was about 65.2 kg/s and thus,
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according to the scaling ratio, 0.32 kg/s of ECC water should be delivered to the reactor
pressure vessel through the each DVI nozzle. In the ATLAS facility, the ECC water was
supplied from the RWT and the temperature of around 10 to 17 °C was in the operating range
as that of APR1400. The SIP flow rate was dependent on the pressure difference between the
SIT and the primary system.

The decay heat was simulated to be 1.2 times of the ANS-73 decay curve for the conservative
condition. The initial heater power was controlled to maintain at 1.64 MW, which is equal to the
sum of the scaled-down core power (1.567 MW) and the heat loss rate of the primary system
(about 88 kW), and then the heater power was controlled to follow the specified decay curve
after 31.7 seconds from the opening of the break valve as shown in Figure 13. There are four
bypass valves connected to the downcomer in ATLAS. Two bypass valves of FCV-RV-37 and
FCV-RV-38 are between the downcomer and the upper head, and two bypass valves of FCV-
RV-95 and FCV-RV-96 are between the downcomer and hot legs. All bypass valves were
closed to provide a conservative condition for loop seal clearing and reformation. In Table 4, the
major control logics are summarized. In Table 5, the actual initial and boundary conditions of the
LTC-CL-04R test can be observed.

2.2.2 TestProcedure

Prior to a transient test, several actions were taken. They included an instrument calibration with
the ATLAS system drained, purging and filling the ATLAS system including leakage tests, an
instrument calibration with the water-filled primary system, and an implementation of test
specific control logics into the process control computers for sequence control. The sequence
control logics executed the required control actions for the corresponding control devices such
as the main core heater, RCP, SIP, and valves.

The whole system reaching a specified initial condition for the test as shown in Table 6, the
steady-state conditions of the primary and secondary systems were maintained for more than
30 minutes. After this steady-state period, the main test started by opening of the break
simulation valve, OV-CLBS-01.

2.2.3 Sequence of Events

After opening the break simulation valve, OV-CLBS-01, the test sequence was controlled by the
corresponding control logic, which defined the set-point and related time delay as can be
observed in Table 4. When the pressurizer pressure measured by PT-PZR-01 decreased below
10.7 MPa, the LPP signal was issued. After the LPP signal, the reactor, RCP, and pressurizer
heater were tripped with no time delay. The main feed water isolation valves were closed with
the LPP signal. The actuation of the SIPs was setto occur with 28 seconds delay from the LPP
signal. Further decreasing of the primary pressure, below 4.03 MPa (the low upper downcomer
pressure, LUDP), resulted in passive injection of the SIT water. Table 6 shows the actual
progress of the events observed in the present LTC-CL-04R test.

2.24 Estimation of Heat Loss
The heat loss from the primary system to the environment cannot be completely prevented even

though thick insulation materials envelop the reactor pressure vessel and the primary pipelines.
The heat loss was estimated by the following simplified empirical correlation;
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Qe =0.32-(T, - T,,,) (3.4.1)

where Tw is outer wall surface temperature measured at the middle of the reactor pressure
vessel, TW-DC-04A and Taim is atmospheric temperature measured on the test day.

The heat loss from each steam generator to the environment was also estimated according to
the following empirical correlation;

_ T _ 1.8843
O = 0.00077-(T, ~T,,) (3.4.2)

where Tw is averaged values of the temperatures measured at the outer wall surface of the
steam generators, TW-SGP1-02A, TW-SGRS1-01A, TW-SGRS1-02A, TW-SGRS1-03A, TW-
SGSD1-01A, TW-SGSD1-02A and Tatm is atmospheric temperature.

Estimated heat losses through the primary and the secondary systems were about 88 kW and
33 kW, respectively. The estimated heat loss through the system can be observed in Figure 14.

2.2.5 Identified Thermal Hydraulic Phases During LTC-CL-04R

Loop seal clearing and reformation are recognized with the water level of the intermediate leg
(IL) of the primary loop. Figure 15 shows the installation position of the water level transmitter at
the intermediate leg. For the loop seal clearing, LT-ILj-03 became lower than the top of the
horizontal intermediate leg. In other hand, LT-ILj-03 became higher than the top of the
horizontal intermediate leg for the loop seal reformation. Figure 16 shows the water level
behavior measured by LT-ILj-03.

Figure 17 shows the water level of the core and the downcomer. The LTC-CL-04R test was
finished when the core water level recovered the elevation of hot legs and cold legs. During the
loop seal clearing, the coolant at the intermediate leg flowed to the core and the core water level
increased. After the loop seal reformation, the accumulated steam that was produced by decay
heat increased the upper head pressure and the increased pressure pushed down the core
water level.

Figure 18 shows the core temperatures and saturated temperature at the upper head. After the
loop seal reformation, the core temperatures slowly increased. A reason for this increase can be
attributed to the accumulated steam at the upper head that increased the pressure and
saturated temperatures. Therefore, this temperature behavior was not a critical phenomenon
that affected the overall coolability of the reactor coolant system during the transient.

Figure 19 shows the pressure behavior of pressurizer, steam generators, and SITs. The
pressure of pressurizer (PT-PZR-01-l) generally decreased during the test period and some
peaks were observed at the timing of loop seal clearing and reformation. The pressure of SITs
(PT-SIT1/2/3/4-02-1) decreased along the pressure of pressurizer after SIT valve opening. The
pressure of steam generators (PT-SGSD1-01-1, PT-SGSD2-01-1) increased after isolation of the
feed and steam lines and MSSVs started to be operated. After then, the pressure of steam
generators gradually decreased by heat transfer from the secondary side to the primary side at
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steam generators because the saturation temperatures of the primary system were lower than
those of the secondary system.

In Figure 20, the mass of inventory measured at the condensation tank (LC-CDT-01-1) and the
break flow rate were plotted. The condensation tank mass decreased during 4500 to 5500
seconds when corresponded to the drainage time of the condensation tank because the
accumulated mass of break flow at that time was beyond the capacity of the condensation tank.
There are two break flow rate curves — the black triangle and the red square in Figure 20. The
black triangle curve is a break flow rate that was estimated from the change of the coolant mass
inventory at the primary loop. The red square curve is a break flow rate that was calculated from
the change of the inventory mass in the condensation tank. The break flow by mass inventory
has an empty period due to the drainage time of the condensation tank. The break flow rates
were calculated using differential value of mass data. The original break flow data included
noise data by calculation. To reduce the calculation noise, 20 points moving averaged data was
presented in Figure 20. Before the operation of SIT, the break flow was relatively higher than
that after the operation of SIT since initially the water was discharged through the break. After
the operation of SIT, the break flow rate became similar with the safety injection flow rate as
shown in Figure 21.

Figure 22 and Figure 23 show the flow rate of hot legs and cold logs - legs, respectively. The
flow rate of cold leg 1A was negative value after the break because the flow meter was located
between the RPV and the break line as shown in Figure 24. For a normal operating condition,
the coolant in a cold leg flows from a steam generator to a RPV. In the case of LTC-CL-04R
test, however, flow direction at flow meter of cold leg 1A was opposite because the coolant
flowed out through the break line from both the RPV and the steam generator.

Differential pressures between the downcomer and the upper head of a RPV are shown in
Figure 25. From this graph, an inverse flow direction can be recognized. Figure 26 shows a
thermocouple distribution map in the downcomer of a RPV and Figure 27 to Figure 32 show the
fluid temperatures measured at the downcomer of a RPV. The fluid temperatures adjacent to
the lower plenum were relatively high, but there was no significant difference for the azimuthal
direction.

22



Table 4 Control Logic Setting for LTC-CL-04R Test

Turbine trip / MFIV and MSIV close

| Set point
Primary logic
By-pass rate 0%
Cold leg break 300 sec
LPP PT-PZR-01 < 12.48MPa
Reactor scram / TCP trip / RCP trip/ | LPP + 0.0 sec

SIP on PT-PZR-01 < 10.7MPa + 28sec delay

SIT on PT-DC-01 < 4.03MPa

SIT low flow conversion LT-SIT1,2,3,4-01 <72.8,72.6, 72.0, 72.2 %
SIT stop LT-SIT1,2,3,4-01 <47.4,47.2, 46.6, 47.0 %

Secondary logic

MSSV1,2-01 open
MSSV1,2-01 close

PT-SGSD1,2-01 > 8.1 MPa
PT-SGSD1,2-01 < 7.7 MPa

MSSV1,2-02 open
MSSV1,2-02 close

PT-SGSD1,2-01 > 8.3 MPa
PT-SGSD1,2-02 < 7.9 MPa

MSSV1,2-03 open
MSSV1,2-03 close

PT-SGSD1,2-01 > 8.48 MPa
PT-SGSD1,2-03 < 8.05 MPa

Aux. Feed Water open
Aux. Feed Water close

LT-SGSDRS2-01 < 2.76m
LT-SGSDRS2-01> 3.61m

Aux. Feed Water Flow rate

0.2 kg/s
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Table 5

Actual Initial and Boundary Condition for LTC-CL-04R Test

Design Parameter

Measured

value/ STDEV*

Remark (Sensor ID)

Primary System

Core Power (MW) 1.64/0.715 Heat loss: about 88 kW

Pressurizer Pressure (MPa) 15.5/0.0075 PT-PZR-01

Core Inlet Temperature (°C) 291.0/0.15 TF-LP-02G18

Core Outlet Temperature (°C) | 326.8/0.11 TF-CO-

07G14,18,21,25

Secondary System

Steam Flow Rate per EachSG | 0.382/0.031 SG-1 (QV-MS1-01)

(kg/s) 0.425/0.001 SG-2 (QV-MS2-01)

Feed Water Flow Rate per 0.410/0.001 SG-1 (QV-MF1-01, 2),

Each SG (kg/s) 0.413/0.003 SG-2 (QV-MF2-01, 2)

Feed Water Temperature (°C) | 233.9/0.117 SG-1 (TF-MF1-01),
233.0/0.131 SG-2 (TF-MF2-01)

Steam Pressure (MPa) 7.83/0.0005 SG-1 (PT-SGSD1-01),
7.83/0.0005 SG-2 (PT-SGSD2-01)

Steam Temperature (°C) 295.6/0.101 SG-1 (TF-SGSD1-03),
295.6/0.075 SG-2 (TF-SGSD2-03)

Secondary Side Level (m) 4.99/0.015 SG-1 (LT-SGSDRS1-
4.99/0.008 01),

SG-2 (LT-SGSDRS2-
01)

Etc.

Cold Leg Flow (kg/s) 1.98/0.062 Averaged Value for 4
CLs
(QV-CL1A,1B,2A,2B-
01B)

SIT temperature (°C) 122/0188 SIT1 (TF'SIT1‘03),
12.7/0.143 SIT2 (TF-SIT2-03),
14.2/0.147 SIT3 (TF-SIT3-03),
14.0/0.250 SIT4 (TF-SIT4-03)

* STDEV: Standard deviation
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Table 6 Actual Sequence of Events of LTC-CL-04R Test

Events Timing (seconds) Remarks

Break start 300 MFW terminated

MSSV 336/340 SG pressure

LPP trip 332 PT-PZR-01 < 12.48 MPa

SIP on 381 PT-PZR-01 < 10.7 MPa + 28sec delay
SIT on 1066 PT-DC-01<4.03 MPa

Loop seal clearing

733~3687 (1A)
754~3719 (2A)

4097~4151 (1A,1B)
4094~4160 (2B)

4982~5138 (1A)
4978~5150 (2A)

7322~ 7456 (1A)
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Figure 15 Diagram of Water Level Transmitter Installation at Intermediate Leg (j: Loop
index, 1A, 1B, 2A, 2B)
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Figure 21

Figure 22
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3 RELAPSINPUT MODELS

31 RELAPS5 Input Model for ATLAS Simulation

3.1.1 RELAPS5 Nodalization for ATLAS Facility

KAERI has developed a standard input model for the ATLAS facility. The latest ATLAS input
model for a steady state condition is shown in Figure 33. In order to simulate a break in a cold
leg, a break line was added on the top of component 381 (C381) located between the RPV and
the RCP of CL-1A. In addition, an upward facing break was modelled using off-take model
applied to an affected junction from C381. Except for a break line, any node subdivision was not
applied in this study. As passive safety components, safety injection tanks were modelled as
accumulators equipped with fluidic device. SITs were connected to the direct vessel injection
line of RPV annular shroud.
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Figure 33 ATLAS Nodalization of SBLOCA (or IBLOCA)
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3.1.2 Break Modeling

It should be noted that a shape of slot break having a very slim line with narrow width is hardly
made in the test and modelled in one-dimensional (1-D) codes including the RELAPS code.
Thus, the break shape in the test and the present code calculation was simulated as a single
hole using a nozzle that has an inner diameter of 7.12 mm and a length of 100 mm.

In order to predict accurate behavior of break flow against the test data, a break line needs to be
modelled same with the test configuration as mentioned in section 2.1.2 . Figure 34 shows
nodalization of a break line. The 1-D break line consists of a break main line, a break nozzle,
break valve (trip valve), and sink volume. Among those components, modeling of the break
nozzle is the mostimportant in this simulation since choking in a single break line occurs at the
smallest area of the break line. Compared to the break main line having an inner diameter of
33.99 mm, the break nozzle and the break valve have the smallest inner diameter of 7.12 mm.
Thus, choking is expected to occur at the valve which is diverging the area of the break nozzle.
Choking condition was only applied to this part.

Break
valve

C5B = To =
Sink C595 (591

Break
nozzle

Break line

—] — | Y| W

C381

Figure 34 Nodalization of Break Line
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4 RESULTS

41 ATLAS Calculations and Discussions

The RELAPS calculation data were compared against the test data and the results are shownin
Figure 35 through Figure 46. The ATLAS test data are labeled as “Exp” and the RELAPS
calculation data are labeled as “RELAP5”.

RELAPS5 calculation shows a reasonable agreement with the test result for the primary loop
pressure, as presented in Figure 35. The predicted times of the firstand the second pressure
drop are similar with the test data during an early stage of the test. After the second pressure
drop, RELAPS calculated relatively higher pressure because the break flow rates of RELAP5
calculation were less than those of the test during this period. In Figure 37, the break flow rates
are compared. RELAPS5 predicted larger break flow rates than those of the test before 800
seconds and the calculated accumulated mass of break flow was also larger than that of the test
during an early period before 800 seconds. After 800 seconds, calculated break flow rates were
larger than those of the test and it induced a less accumulated break flow and a higher primary
pressure.
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RELAPS5 analysis reasonably predicted the core collapsed water level as shownin Figure 39.
The core collapsed water level sharply increased at the loop seal clearing because the water in
the loop seal flowed into the core. On the other hands, the core collapsed water level gradually
decreased after the loop seal reformation due to the evaporation at the core. The loop seal
clearing and reformation times of RELAPS calculation were different from those of the test. And
this discrepancy made a different oscillation pattern of the core collapsed water level. However,
the overall trend of collapsed water level was similar in both the test and the RELAPS
calculation.

The maximum heater wall temperatures are presented in Figure 40. In both data, temperature
reaches its peak after every loop seal reformation. The reason for the peak of temperature is
attributed to the increase of saturated temperature at the core. After loop seal reformation, the
evaporated steam at the core was accumulated at the upper head and so the upper head
pressure increased gradually. The increased pressure led to the increase of the saturated
temperature of the coolant at the core. Therefore, the heater wall temperatures also increased
with the increase of the saturated temperature of the coolant at the core. It could be found from
the RELAPS5 calculation that a loop seal reformation does not induce an excursion of the
cladding temperature which is also observed in the ATLAS test.
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The secondary system pressures of both steam generators are presented in Figure 41 and
Figure 42, respectively. RELAPS calculation over-predicted the secondary system pressure due
to non-application of a heat loss model to the secondary side of the steam generator. This led to
under-prediction of the cooling rate and the depressurization rate at steam generators.

The discrepancy of the secondary system pressures between the two steam generators was
relatively larger in the RELAPS5 calculation compared to the ATLAS test. The reason for this
discrepancy can be attributed to the different flow rates between the loops. Figure 43 and Figure
44 show the flow rates at the hot legs. In the test, the flow rates were similar for both loops.
However, the flow rate at hot leg 1 was almost zero in the RELAPS5 calculation. The Coolant
flow rate at the loop is the mostimportant parameter for evaluating the heat transfer
characteristics. The relatively small flow rate at hot leg 1 indicates that the heat transfer rate at
the steam generator 1 was smaller than that at the steam generator 2.

LTC-CL-04R

8x10°
7x10°

6x10° F
- SG1-Steamdome

5x10° - (PT-SGSD1-01)
4x10°
3x10°
2x10°
1x10°
O ) 1 ) 1 ) 1 )
0 2000 4000 6000 8000
Time(sec)

—~

—— Exp
—o— RELAPS

Pressure (Pa

Figure 41 Steam Dome Pressure of Steam Generator-1

43



LTC-CL-04R

6x10° |-
R o[ SG1-Steamdome
$ 9x10° - (PT-SGSD2-01) o Exp

O 4x1 06 L —o— RELAPS

Pressur:
< X &
— — —
QL <
T T T

0 2000 4000 6000 8000
Time(sec)

Figure 42 Steam Dome Pressure of Steam Generator-2

LTC-CL-04R

| Hot Leg Flow Rate
20 | (QV-HL1-01)

30

10 —* Exp

Flow rate (kg/sec)

20E

0 2000 4000 6000 8000
Time(sec)

Figure 43 Hot Leg-1 Flow Rate

44



LTC-CL-04R

30
| Hot Leg Flow Rate
o0 [(QV-HL2-01)
3 — o RELAP5
E; | |
g OE AJ’ ! AW by “\ “ {1 IVl jf "l A “N-.‘ | I Ll .‘4
g
3 10
L
20
'30 L | L 1 i | .
0 2000 4000 6000 8000

Time(sec)

Figure 44 Hot Leg-2 Flow Rate

To compare the characteristics of loop seal clearing and reformation, the collapsed water levels
of intermediate legs are presented in Figure 45 and Figure 46. If the water level of the vertical
intermediate leg is lower than the horizontal dash line, which marks the height of the horizontal
pipe at the intermediate leg, this loop seal can be assumed to be cleared. RELAPS calculation
cannot predict the exact time for loop seal clearing and reformation. However, the calculation
predicted similar trends for loop seal clearing and reformation. Duration of loop seal clearing for
the early stage was longer than that of the long-term stage and loop seal cleared more times for
the early phase than those of the long-term phase.
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5 RUN STATISTICS

The calculations were performed using Intel® Core™ i7-6700 @ 3.40 GHz processor. The
operating system is Windows 7 Enterprise K. Table 7 shows the run statistics for the RELAPS

calculation.

Table 7 Run Statistics

Transient Time | CPU Time CPU/Transient Number of Time
Code :

(s) (s) Time Steps
RELAP5 Mod3.3 | 8000.0 419453 524 419453
Patch5
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6 CONCLUSIONS

The ATLAS test for 4-Inch cold leg top-slot break LOCA was calculated using the RELAPS
Mod3.3 Patch5 code. Focused on the loop seal clearing and reformation phenomena, the
calculation results were compared to the testdata. In general, the RELAP5 calculation results
show a reasonable agreement with the ATLAS test data. The RELAPS5 code predicted
repeatable loop seal clearing and reformation which was observed in the ATLAS test. The loop
seal clearing and reformation led no excursion of the cladding temperature during the transient
in both the test and the RELAPS calculation. There are discrepancies in prediction of the
secondary system pressure at steam generators. The reason for these discrepancies could be
attributed to non-application of a heat loss model to the steam generator. In terms of the overall
trend for loop seal behavior, the calculation shows a good agreement with the ATLAS data, but
a detailed timing of loop seal clearing and reformation shows a discrepancy between the test
and the calculation.
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