Enclosure 20 to LTR-RAC-20-94 Date: December 18, 2020

Enclosure 20

Response to Request for Additional Information

May 2019 air permit renewal application Table 4 – Emission Calculations for Scrubber **Table 4 – Emission Calculations for Scrubbers**

Table 4 - Emission Calculations for Scrubbers Westinghouse Electric Company LLC Hopkins, South Carolina prepared by GEL Engineering, LLC, May 30, 2019

		Α	В	С	D
		Emission Rate			
		from		_	
		February		Hourly	Maximum Annual
		2019		Emissions	Emissions
		Engineering Testing	Conservatism	Including	Including
				Conservatism	Conservatism
Source	Pollutant	(lbs/hr) ¹	Factor ²	Factor (lbs/hr)	Factor (tons/yr)
S-4025 Scrubber	Antimony	3.15E-06	5	1.58E-05	6.90E-05
	Arsenic	3.29E-06	5	1.65E-05	7.21E-05
	Beryllium	< 7.23E-07	5	3.62E-06	1.58E-05
	Cadmium	9.33E-05	5	4.67E-04	2.04E-03
	Chromium	1.09E-05	5	5.45E-05	2.39E-04
	Cobalt	2.98E-06	5	1.49E-05	6.53E-05
	Manganese	1.90E-05	5	9.50E-05	4.16E-04
	Nickel	1.43E-04	5	7.15E-04	3.13E-03
	Phosphorus	5.32E-04	5	2.66E-03	1.17E-02
	Selenium	6.26E-05	5	3.13E-04	1.37E-03
	Hydrogen Fluoride	0.0093	5	0.0465	0.2037
	Nitric Acid	0.0654	5	0.3270	1.4323
	Hydrochloric Acid	0.0075	5	0.0375	0.1643
	Sulfuric Acid	0.0285	5	0.1425	0.6242
	Lead	1.13E-05	5	5.65E-05	2.47E-04
S-1030 Scrubber	Hydrogen Fluoride	0.0020	5	0.0100	0.0438
3-1030 30100001	Nitric Acid	0.0100	5	0.0500	0.2190
	NILLIC ACIU	0.0100	5	0.0500	0.2190
	NOx	0.12	3	0.36	1.58
C OFO Comultan	Under see Elizabile	0.0000	-	0.0040	0.0175
S-958 Scrubber	Hydrogen Fluoride	0.0008	5 5	0.0040	0.0175
	Nitric Acid	0.0374	5	0.1870	0.8191
	NOx	1.76	2	3.52	15.42
S-1190 Scrubber		0.0009		0.0045	0.0107
2-1130 Sclubbel	Hydrogen Fluoride		5 5	0.0045	0.0197
	Nitric Acid	0.0022	5	0.0110	0.0482
S-2A/2B Scrubber	Hydrogen Fluoride	0.0006	5	0.0030	0.0131
5-ZAYZD SCIUDDEI	Nitric Acid	0.0008	5	0.0030	0.0307
	NILLIC ACIU	0.0014	J	0.0070	0.0307
S-1008 Scrubber	Hydrogen Fluoride	0.0003	5	0.0015	0.0066
2-1000 SCI UDDEI	Nitric Acid	0.0009	5	0.0015	0.0197
	NILLIC ACIU	0.0009	5	0.0045	0.0197

Footnotes:

¹ Please refer to Report on Engineering Evaluation Testing, CleanAir Project Number 13754, March 27, 2019. To provide conservatism in the emission calculations, this is the highest hourly rate from the three test runs (not the average hourly emission rate from the three runs).

² Allows for additional conservatism to account for the limited engineering test data set and potential process variation.

Example Calculations:

 $\begin{bmatrix} A \end{bmatrix} \frac{\text{lbs}}{\text{hour}} \text{ from source test } x \quad B \text{ conservatism factor } =$

 $\boxed{\textbf{C}} \frac{\text{lbs emissions}}{\text{hour}} \text{ including conservatism factor}$

$$\begin{array}{|c|c|c|c|c|c|} \hline \hline C & \frac{bs \ emissions}{hour} \ including \ conservatism \ factor \ x \ \frac{8760 \ hours}{year} \ x \ \frac{1 \ ton}{2000 \ lbs} = \\ \hline \hline D & \frac{tons \ emissions}{year} \ including \ conservatism \ factor \\ \end{array}$$

including conservatism factor year