

**Entergy Operations, Inc.** 1448 S.R. 333 Russellville, AR 72802 Tel 479-858-7826

**Riley D. Keele, Jr.** Manager, Regulatory Assurance Arkansas Nuclear One

0CAN052001

May 13, 2020

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

#### SUBJECT: Annual Radiological Environmental Operating Report for 2019

Arkansas Nuclear One – Units 1 and 2 NRC Docket Nos. 50-313 and 50-368 Renewed Facility Operating License Nos. DPR-51 and NPF-6

Reference: Entergy Operations, Inc. (Entergy) letter to the U. S. Nuclear Regulatory Commission (NRC), *Annual Radioactive Effluent Release Report for 2019*, Arkansas Nuclear One, Units 1 and 2 (0CAN042001), dated April 27, 2020.

In accordance with Arkansas Nuclear One (ANO), Unit 1 Technical Specification (TS) 5.6.2 and Unit 2 TS 6.6.2, the submittal of an annual radiological environmental operating report for the previous year is required by May 15 of each year. The subject ANO report for the calendar year 2019 is enclosed.

This report fulfills the reporting requirements of the TSs referenced above.

The radionuclides detected by the radiological environmental monitoring program during 2019 were significantly below the regulatory limits. The operation of the ANO station during 2019 had no harmful radiological effects nor resulted in any irreversible damage to the local environment.

Based on ANO's review, no environmental samples from the monitoring program equaled or exceeded the reporting levels for radioactivity concentration due to ANO effluents when averaged over any calendar quarter. A map of all sampling locations and a corresponding table providing the respective distances and directions from the reactor building is included in the Offsite Dose Calculation Manual submitted as part of the referenced Annual Radioactive Effluent Release Report.

0CAN052001 Page 2 of 2

This letter contains no new commitments.

If you have any questions or require additional information, please contact me.

Sincerely,

## ORIGINAL SIGNED BY RILEY D. KEELE, JR.

#### RDK/rwc

Enclosure: Annual Radiological Environmental Operating Report for 2019

cc: NRC Region IV Regional Administrator NRC Senior Resident Inspector – Arkansas Nuclear One NRC Project Manager – Arkansas Nuclear One Designated Arkansas State Official



| Plant: Arkansas Nuclear One                        | Page 1 of 55 |  |
|----------------------------------------------------|--------------|--|
| Plant. Arkansas Nuclear One                        | YEAR: 2019   |  |
| Document Number: 0CAN052001                        |              |  |
| Annual Radiological Environmental Operating Report |              |  |

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 2 of 55 |  |
|----------------------------------------------------|------------|--------------|--|
| Annual Radiological Environmental Operating Report |            |              |  |

# TABLE OF CONTENTS

| 1.0 | EXECUTIVE SUMMARY                                                                         | 3    |
|-----|-------------------------------------------------------------------------------------------|------|
| 2.0 |                                                                                           | 5    |
| 3.0 | RADIOLOGICAL ENVIRONMENTAL SAMPLING PROGRAM REQUIREMENTS                                  | 6    |
| 4.0 | INTERPRETATION AND TRENDS OF RESULTS                                                      | . 15 |
| 5.0 | RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY                                     | . 20 |
| ATT | ACHMENTS                                                                                  |      |
| At  | tachment 1 – Sample Deviations                                                            | . 25 |
| At  | tachment 2 – Monitoring Results Tables                                                    | . 26 |
| At  | tachment 3 – Interlaboratory Comparison Program Results                                   | . 40 |
| At  | tachment 4 – Environmental Dosimetry Company Interlaboratory<br>Comparison Program Report | 43   |

| Plant: Arkansas Nuclear One | Year: 2019 | Page 3 of 55 |
|-----------------------------|------------|--------------|
|                             |            |              |

### 1.0 EXECUTIVE SUMMARY

#### 1.1 Radiological Environmental Monitoring Program

The Annual Radiological Environmental Operating Report presents data obtained through analyses of environmental samples collected for Arkansas Nuclear One (ANO) Radiological Environmental Monitoring Program (REMP) for the period January 1 through December 31, 2019. This report fulfills the requirements of ANO, Unit 1 (ANO-1) Technical Specification (TS) 5.6.2 and ANO, Unit 2 (ANO-2) TS 6.6.2.

All required lower limit of detection (LLD) capabilities were achieved in all sample analyses during 2019, as required by the ANO's Offsite Dose Calculation Manual (ODCM). No measurable levels of radiation above baseline levels attributable to ANO operation were detected in the vicinity of ANO. The 2019 Radiological Environmental Monitoring Program thus substantiated the adequacy of source control and effluent monitoring at ANO with no observed impact of plant operations on the environment.

ANO established the REMP prior to the station's becoming operational (1974) to provide data on background radiation and radioactivity normally present in the area. ANO has continued to monitor the environment by sampling air, water, sediment, fish and food products, as well as measuring direct radiation. ANO also samples milk if milk-producing animals used for human consumption are present within five miles (8 km) of the plant.

The REMP includes sampling indicator and control locations within an approximate 20-mile radius of the plant. The REMP utilizes indicator locations near the site to show any increases or buildup of radioactivity that might occur due to station operation and control locations farther away from the site to indicate the presence of only naturally occurring radioactivity. ANO personnel compare indicator results with control and preoperational results to assess any impact ANO operation might have had on the surrounding environment.

In 2019, environmental samples were collected for radiological analysis. The results of indicator locations were compared with control locations and previous studies. It was concluded that no significant relationship exists between ANO operation and effect on the area around the plant. The review of 2019 data concluded that radioactivity levels in the environment were undetectable in many locations and near background levels in significant pathways.

### 1.2 <u>Reporting Levels</u>

No samples equaled or exceeded reporting levels.

### 1.3 Comparison to State and/or Federal Program

ANO personnel compared REMP data to state monitoring programs as results became available. Historically, the programs used for comparison have included the U.S. Nuclear Regulatory Commission (NRC) Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network and the Arkansas Department of Health.

| Plant: Arkansas Nuclear One | Year: 2019 | Page 4 of 55 |
|-----------------------------|------------|--------------|
|-----------------------------|------------|--------------|

The NRC TLD Network Program was discontinued in 1998. Historically these results have compared to those from the ANO REMP. ANO TLD results continue to remain similar to the historical average and continue to verify that plant operation is not affecting the ambient radiation levels in the environment.

The Arkansas Department of Health and the ANO REMP entail similar radiological environmental monitoring program requirements. These programs include collecting air samples and splitting or sharing sample media such as water, sediment and fish. Both programs have obtained similar results over previous years.

### 1.4 <u>Sample Deviations</u>

During 2019, environmental sampling was performed for eight (8) media types addressed in the ODCM and for direct radiation. A total of 292 samples of the 292 scheduled were obtained. Of the scheduled samples, 100% were collected and analyzed in accordance with the requirements specified in the ODCM. Attachment 1 contains the listing of sample deviations and actions taken.

### 1.5 Program Modifications

No changes were made to ANO REMP Procedure EN-CY-130-01.

Changes made to ANO ODCM:

- (Page11) Editorial fixes to the 3.1.1.b setpoint calculation. Changed units for gas to μCi/cc instead of μCi/ml since SPING data is provided in μCi/cc. Changed 'S' monitor setpoint from "cpm" to "cpm or μCi/cc". These changes resolved a preexisting issue with units for calculation with respect o to how they are implemented in the plant.
- (Page 12) Editorial change removed 2RX-9840 PASS Building Ventilation from list of SPING allocations. This should have been removed from the ODCM with Revision 028 where it was removed from the rest of the document in accordance with EC-71778 and 74229.
- (Page 58) Editorial change resolved a reference in L2.4.1 Action 'C'. Previously referenced L2.4.1.b.4 which does not exist. Reference was changed to L2.4.1.b.3.

These changes had no adverse impact to the stations ODCM, Technical Requirements Manual (TRM), Radioactive Effluents Control Program, or data trending. All changes made were enhancements.

| Plant: Arkansas Nuclear One | Year: 2019 | Page 5 of 55 |
|-----------------------------|------------|--------------|
|                             |            |              |

#### 2.0 INTRODUCTION

#### 2.1 <u>Radiological Environmental Monitoring Program</u>

ANO established the REMP to ensure that plant operating controls properly function to minimize any associated radiation endangerment to human health or the environment. The REMP is designed for:

- Analyzing applicable pathways for anticipated types and quantities of radionuclides released into the environment.
- Considering the possibility of a buildup of long-lived radionuclides in the environment and identifying physical and biological accumulations that may contribute to human exposures.
- Considering the potential radiation exposure to plant and animal life in the environment surrounding ANO.
- Correlating levels of radiation and radioactivity in the environment with radioactive releases from station operation.

#### 2.2 Pathways Monitored

The airborne, direct radiation, waterborne and ingestion pathways are monitored as required by ANO ODCM. A description of the REMP utilized to monitor the exposure pathways is described in the attached tables and figures.

Section 4.0 of this report provides a discussion of 2019 sampling results with Section 5.0 providing a summary of results for the monitored exposure pathways.

#### 2.3 Land Use Census

ANO conducts a land use census biennially, as required by Section B 2.5.2 of the ODCM. The purpose of this census is to identify changes in uses of land within five miles of ANO that would require modifications to the REMP and the ODCM. The most important criteria during this census are to determine the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft<sup>2</sup> producing fresh leafy vegetables in each of the 16 meteorological sectors within a 5-mile distance from one reactor (containment).

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 6 of 55 |  |
|----------------------------------------------------|------------|--------------|--|
| Annual Radiological Environmental Operating Report |            |              |  |

### 3.0 RADIOLOGICAL ENVIRONMENTAL SAMPLING PROGRAM REQUIREMENTS

| Table 1 – Exposure Pathway – Airborne                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Requirement                                                                                                                                                                    | Sample Point DescriptionSampling and ColleDistance and DirectionFrequency                                                                                                                                               |                                                                                                                               | on Type and Frequency of<br>Analyses                                                                                                                                          |  |
| <b>RADIOIODINE AND PARTICULATES</b><br>3 samples close to the Site Boundary, in (or<br>near) different sectors with the highest<br>calculated annual average ground level D/Q. | Station 2 (243° - 0.5 miles) - South<br>of the sewage treatment plant.<br>Station 56 (264° - 0.4 miles) –<br>West end of the sewage treatment<br>plant.<br>Station 1 (88° - 0.5 miles) - Near<br>the meteorology tower. | Continuous sampler operation<br>with sample collection every two<br>weeks, or more frequently if<br>required by dust loading. | <ul> <li>Radioiodine Canisters – I-131<br/>analysis every two weeks.</li> <li>Air Particulate – Gross beta<br/>radioactivity analysis following<br/>filter change.</li> </ul> |  |
| <b>RADIOIODINE AND PARTICULATES</b><br>1 sample from the vicinity of a community<br>having the highest calculated annual average<br>ground level D/Q.                          | <b>Station 6 (111° - 6.8 miles)</b> – Local<br>Entergy office, 305 South Knoxville<br>Avenue, Russellville                                                                                                              | Continuous sampler operation<br>with sample collection every two<br>weeks, or more frequently if<br>required by dust loading. | <ul> <li>Radioiodine Canisters – I-131<br/>analysis every two weeks.</li> <li>Air Particulate – Gross beta<br/>radioactivity analysis following<br/>filter change.</li> </ul> |  |
| <b>RADIOIODINE AND PARTICULATES</b><br>1 sample from a control location, as for<br>example 15 - 30 km distance and in the least<br>prevalent wind direction.                   | <b>Station 7 (210° - 19.0 miles)</b> –<br>Entergy Supply Yard on Highway<br>10 in Danville. (Control)                                                                                                                   | Continuous sampler operation<br>with sample collection every two<br>weeks, or more frequently if<br>required by dust loading. | <ul> <li>Radioiodine Canisters – I-131<br/>analysis every two weeks.</li> <li>Air Particulate – Gross beta<br/>radioactivity analysis following<br/>filter change.</li> </ul> |  |

| Plant: Arkansas N                                  | uclear One | Year: 2019 | Page 7 of 55 |
|----------------------------------------------------|------------|------------|--------------|
| Annual Radiological Environmental Operating Report |            |            |              |

| Table 2 – Exposure Pathway – Direct Radiation                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|
| Requirement                                                                                                                                              | Sample Point Description Distance and Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampling and Collection<br>Frequency | Type and Frequency of<br>Analyses |
| <b>TLDS</b><br>16 inner ring stations<br>with two or more<br>dosimeters in each<br>meteorological sector<br>in the general area of<br>the site boundary. | <ul> <li>Station 1 (88° - 0.5 miles) - On a pole near the meteorology tower.</li> <li>Station 2 (243° - 0.5 miles) - South of the sewage treatment plant.</li> <li>Station 3 (5° - 0.7 miles) – West of ANO Gate #2 on Highway 333 (approximately 0.35 miles)</li> <li>Station 4 (181° - 0.5 miles) – West of May Cemetery entrance on south side of the road.</li> <li>Station 56 (264° - 0.4 miles) – West end of the sewage treatment plant.</li> <li>Station 108 (306° - 0.9 miles) - South on Flatwood Road on a utility pole.</li> <li>Station 109 (291° - 0.6 miles) - Utility pole across from the junction of Flatwood Road and Round Mountain Road.</li> <li>Station 110 (138° - 0.8 miles) - Bunker Hill Lane on the first utility pole on the left.</li> <li>Station 145 (28° - 0.6 miles) - Near west entrance to the RERTC on a utility pole.</li> <li>Station 146 (45° - 0.6 miles) - South end of east parking lot at RERTC on a utility pole.</li> <li>Station 147 (61° - 0.6 miles) - Intersection of Bunker Hill Road, approximately 100 yards from intersection with State Highway 333.</li> <li>Station 148 (122° - 0.6 miles) - On a utility pole on the south side of May Road.</li> <li>Station 149 (156° - 0.5 miles) – North side of May Road on a utility pole past the McCurley Place turn.</li> <li>Station 151 (225° - 0.4 miles) – West side of sewage treatment plant near the lake on a metal post.</li> </ul> | Once per 92 days.                    | MR exposure quarterly.            |

Plant: Arkansas Nuclear One

Year: 2019

Page 8 of 55

## Annual Radiological Environmental Operating Report

| Table 2 – Exposure Pathway – Direct Radiation                                                      |                                                                                                                                            |                                      |                                   |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|--|
| Requirement                                                                                        | Sample Point Description Distance and Direction                                                                                            | Sampling and Collection<br>Frequency | Type and Frequency of<br>Analyses |  |
| Station 6 (111° - 6.8 miles) - Entergy local office<br>(305 South Knoxville Avenue).               | <b>Station 6 (111° - 6.8 miles)</b> - Entergy local office in Russellville (305 South Knoxville Avenue).                                   |                                      | mR exposure quarterly.            |  |
|                                                                                                    | <b>Station 7 (210° - 19.0 miles)</b> – Entergy Supply Yard on Highway 10 in Danville.                                                      |                                      |                                   |  |
| TLDS<br>8 stations with two or<br>more dosimeters in                                               | <b>Station 111 (120° - 2.0 miles)</b> – Marina Road on a utility pole on the left just prior to curve.                                     | Once per 92 days.                    |                                   |  |
| special interest areas<br>such as population                                                       | <b>Station 116 (318° - 1.8 miles)</b> - Highway 333 and Highway 64 in London on a utility pole north of the railroad tracks.               |                                      |                                   |  |
| centers, nearby<br>residences, schools,<br>and in 1 - 2 areas to<br>serve as control<br>locations. | <b>Station 125 (46° - 8.7 miles)</b> - College Street on a utility pole at the southeast corner of the red brick school building.          |                                      |                                   |  |
|                                                                                                    | Station 127 (100° - 5.2 miles) - Arkansas Tech Campus on a utility pole across from Paine Hall.                                            |                                      |                                   |  |
|                                                                                                    | <b>Station 137 (151° - 8.2 miles)</b> – On a speed limit sign on the right in front of the Morris R. Moore Arkansas National Guard Armory. |                                      |                                   |  |
|                                                                                                    | <b>Station 153 (304° - 9.2 miles)</b> - Knoxville Elementary School near the school entrance gate on a utility pole.                       |                                      |                                   |  |

## Annual Radiological Environmental Operating Report

| Table 3 – Exposure Pathway – Waterborne                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Requirement                                                                                                                                                                                | Sample Point Description Distance and<br>Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampling and Collection<br>Frequency | Type and Frequency of<br>Analyses                                              |
| SURFACE WATER<br>1 indicator location (influenced by plant<br>discharge)<br>1 control location (uninfluenced by<br>plant discharge)                                                        | Station 8 (166° - 0.2 miles) - Plant discharge canal.<br>Station 10 (95° - 0.5 miles) – Plant intake canal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Grab samples every 92 days.          | Gamma isotopic analysis<br>and tritium analysis<br>quarterly.                  |
| Drinking Water<br>1 indicator location (influenced by<br>plant discharge)<br>1 control location (uninfluenced by<br>plant discharge)                                                       | <ul> <li>Station 14 (70° - 5.1 miles) - Russellville city water system from the Illinois Bayou.</li> <li>Station 57 (208° - 19.5 miles) - Danville public water supply treatment on Fifth Street.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          | Once per 92 days.                    | I-131, gross beta, gamma<br>isotopic and tritium analyses<br>once per 92 days. |
| <b>GROUNDWATER</b><br>a control location up gradient from the<br>protected area<br>2 sample locations of Groundwater<br>from indicator locations down gradient<br>from the protected area. | <ul> <li>Station 58 (GWM-1, 22° - 0.3 miles) – North of<br/>Protected Area in Owner Control Area (OCA). West<br/>of Security North Check Point, east side of access<br/>road.</li> <li>Station 62 (GWM-101, 34° - 0.5 miles) – North of<br/>Protected Area in OCA. East of outside receiving<br/>building.</li> <li>Station 63 (GWM-103, 206° - 0.1 miles) – South of<br/>Protected area in OCA. North- east of Stator<br/>Rewind Bldg. near wood line.</li> <li>Station 64 (GWM-13, 112° - 0.1 miles) – South of<br/>Oily Water Separator facility, northwest corner of U-<br/>2 Intake Structure. Inside Protected area.</li> </ul> | Grab samples every 92 days.          | Gamma isotopic, gross beta,<br>and tritium analysis<br>quarterly.              |
| SEDIMENT FROM SHORELINE<br>1 indicator location (influenced by plant<br>discharge)<br>1 control location (uninfluenced by<br>plant discharge)                                              | Station 8 (243° - 0.9 miles) - Plant discharge canal.<br>Station 16 (287° - 5.5 miles) - Panther Bay on<br>south side of Arkansas River across from mouth of<br>Piney Creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Once per 365 days.                   | Gamma isotopic analysis<br>annually.                                           |

| Plant: Arkansas Nuclear One                       | Year: 2019 | Page 10 of 55 |  |
|---------------------------------------------------|------------|---------------|--|
| Annual Dedictorial Environmental Oncerting Devert |            |               |  |

| Table 4 – Exposure Pathway – Ingestion                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                        |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| Requirement                                                                                                                                                                                                                                                                                                                          | Sample Point Description Distance<br>and Direction                                                                                                                                               | Sampling and Collection<br>Frequency                   | Type and Frequency of<br>Analyses                                 |
| <ul> <li>MILK</li> <li>If commercially available, 1 sample from milking animals within 8 km distance where doses are calculated to be greater than 1 mrem per year.</li> <li>1 sample from milking animals at a control location 15 – 30 km distance when an indicator location exists.</li> </ul>                                   | Currently, no available milking animals<br>within 5 miles of ANO.                                                                                                                                | Gamma isotopic and I-131<br>analyses once per 92 days. | Gamma isotopic and I-131<br>analyses once per 92 days.            |
| <ul> <li>FISH AND INVERTEBRATES</li> <li>1 sample of a commercially and/or recreationally important species in vicinity of plant discharge area.</li> <li>1 sample of similar species in area not influenced by plant discharge.</li> </ul>                                                                                          | <ul> <li>Station 8 (212° - 0.5 miles) – Plant discharge canal.</li> <li>Station 16 (287° - 5.5 miles) - Panther Bay on south side of Arkansas River across from mouth of Piney Creek.</li> </ul> | Once per 365 days.                                     | Gamma isotopic analysis on<br>edible portions annually            |
| <ul> <li>FOOD PRODUCTS</li> <li>1 sample of one type of broadleaf vegetation grown near the SITE BOUNDARY location of highest predicted annual average ground level D/Q if milk sampling is not performed.</li> <li>1 sample of similar broadleaf vegetation grown 15 – 30 km distant, if milk sampling is not performed.</li> </ul> | <b>Station 13 (273° - 0.5 miles)</b> - West from<br>ANO toward Gate 4 onto Flatwood Road.<br><b>Station 55 (217° - 13.1 miles)</b> – Ozark<br>National Forest north of Danville                  | Three per 365 days.                                    | Gamma. isotopic and I-131<br>analyses three times per<br>365 days |

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 11 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

GASEOUS EFFLUENT NUCLEAR POWER PLANT lation ΩД LIQUID EFFLUENT n and Skin hosorption All Submersion osition to Ground Crop Deposition/Uptake Direct Radiation FUEL TRANSPORT Contraction of the second seco Shoreline Exposure Swimming, Boating Irrigation ジロロロロロCrop Ingestion ロロロロロロ Aquatic Food Indestion <sup>J</sup> W<sub>ater</sub> Ingestion Ingestion Milt Irrigation , Uptake <sub>by Aquatic Foods [</sub> Ingestion /12 estion

## Figure 1 – Exposure Pathway

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 12 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

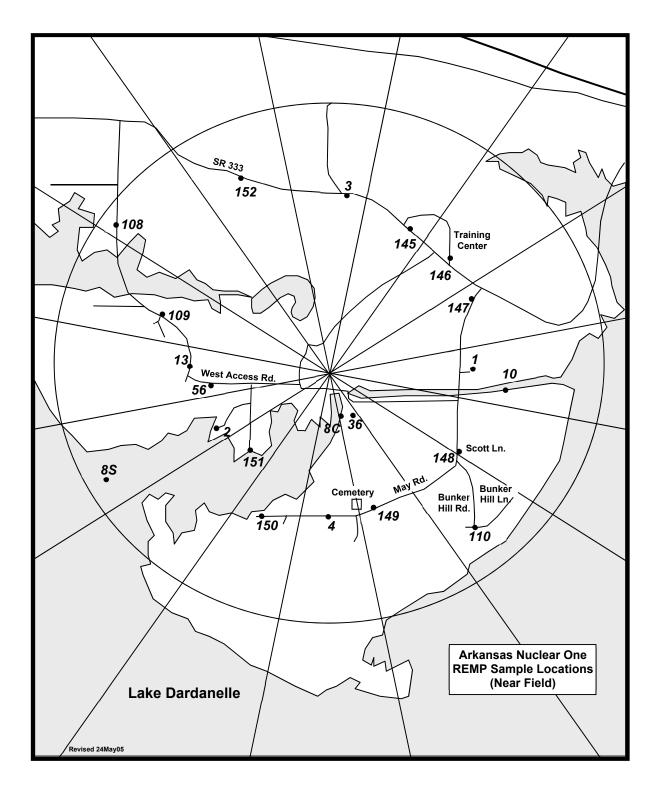



Figure 2 – Sample Collection Sites – Near Field

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 13 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

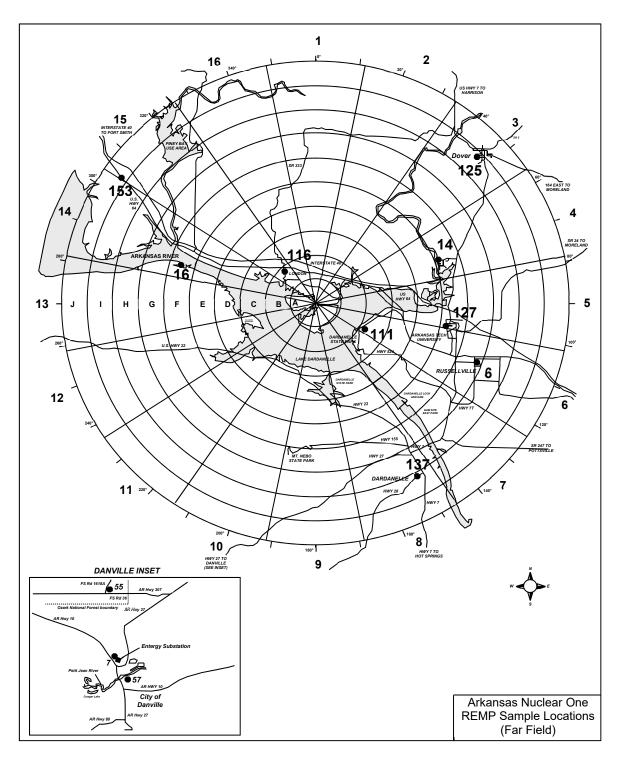



Figure3 – Sample Collection Sites – Far Field

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 14 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

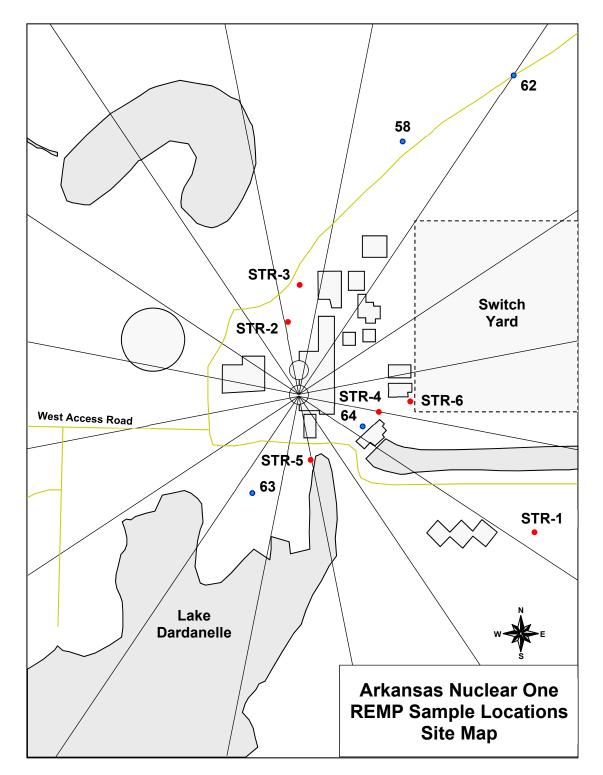



Figure 4 – Sample Collection Sites

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 15 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

## 4.0 INTERPRETATION AND TRENDS OF RESULTS

### 4.1 <u>Air Particulate and Radioiodine Sample Results – Example</u>

The REMP has detected radioactivity in the airborne pathway attributable to other sources. These include the 25th Chinese nuclear test explosion in 1980, the radioactive plume release due to reactor core degradation at Chernobyl Nuclear Power Plant in 1986, and the Fukushima Daiichi Nuclear Power Plant accident (March 11, 2011).

In 2019 there were no samples above the LLD for I-131. Indicator gross beta air particulate results for 2019 were comparable to results obtained from 2009-2018 of the operational REMP, but less than 2013 when the annual average was 0.043. Also, the 2019 gross beta annual average was less than the average for preoperational levels. Results are reported as annual average picocuries per cubic meter (pCi/m<sup>3</sup>).

| Monitoring Period           | <u>Result</u> |
|-----------------------------|---------------|
| 2009 – 2018 (Minimum Value) | 0.018         |
| 2019 Average Value          | 0.017         |
| 2009 – 2018 (Maximum Value) | 0.043         |
| Preoperational              | 0.050         |

In the absence of plant-related gamma radionuclides, gross beta activity is attributed to naturally occurring radionuclides. Table 9, "Air Particulate Data Summary," includes gross beta concentrations and provides a comparison of the indicator and control means and ranges emphasizing the consistent trends seen in this pathway to support the presence of naturally occurring activity. Therefore, it can be concluded that the airborne pathway continues to be unaffected by ANO operations.

### 4.2 <u>Thermoluminescent Dosimetry (TLD) Sample Results – Example</u>

ANO reports measured dose as net exposure (field reading less transit reading) normalized to 92 days and relies on comparison of the indicator locations to the control as a measure of plant impact. ANO's comparison of the inner ring and special interest area TLD results to the control, as seen in Table 5, "Direct Radiation Annual Summary," identified no noticeable trend that would indicate that the ambient radiation levels are being affected by plant operations. In addition, the inner ring value of 7.7 millirem (mrem) shown in Table 5 for 2019 is within the historical bounds of 2009 – 2018 annual average results, which have ranged from 7.5 to 8.5 mrem. Overall, ANO concluded that the ambient radiation levels are not being affected by plant operations.

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 16 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

| Table 5 – Direct Radiation Annual Summary |                        |                              |                              |
|-------------------------------------------|------------------------|------------------------------|------------------------------|
| Year                                      | Inner Ring<br>(mR/Qtr) | Special Interest<br>(mR/Qtr) | Control Location<br>(mR/Qtr) |
| 2009                                      | 8.3                    | 7.2                          | 6.5                          |
| 2010                                      | 8.3                    | 7.4                          | 6.9                          |
| 2011                                      | 8.5                    | 7.6                          | 6.9                          |
| 2012                                      | 8.0                    | 7.2                          | 7.0                          |
| 2013                                      | 8.3                    | 7.6                          | 6.8                          |
| 2014                                      | 7.8                    | 6.9                          | 6.1                          |
| 2015                                      | 7.6                    | 6.9                          | 6.1                          |
| 2016                                      | 8.0                    | 6.7                          | 6.5                          |
| 2017                                      | 8.2                    | 7.2                          | 6.7                          |
| 2018                                      | 7.7                    | 6.4                          | 5.7                          |
| 2019                                      | 7.7                    | 6.9                          | 6.9                          |

### 4.3 <u>Waterborne Sample Results – Example</u>

Analytical results for 2019 drinking water and ground water samples were similar to those reported in previous years. Gamma radionuclides analytical results for 2019 surface water samples were similar to those reported in previous years. Tritium in ANO surface water indicator samples continues to be detected, but at levels below those experienced in 2013 and below the ODCM-required LLD. These results are further explained below.

### 4.3.1 Surface Water

Samples were collected and analyzed for gamma radionuclides and tritium. Gamma radionuclides were below detectable limits which is consistent with results seen in previous operational years. Tritium continues to be detected at the indicator location (Station 8) where previously monitored liquid radioactive effluent from the plant is periodically discharged in accordance with the regulatory criteria established in the ODCM and, for 2019, at levels considerably lower than the ODCM-required LLD of 3000 pCi/l. Furthermore, unlike the elevated tritium levels observed in 2013 attributable to particular plant events, no elevated levels attributable to particular events were observed in 2019. Results are reported as annual average pCi/l.

| Monitoring Period           | <u>Result</u> |
|-----------------------------|---------------|
| 2009 – 2018 (Minimum Value) | 427.0         |
| 2019 Value                  | 963.5         |
| 2009 – 2018 (Maximum Value) | 2940*         |
| Preoperational              | 200.0         |
|                             |               |

\* Indicates value from 2013

| Plant: Arkansas Nuclear One | Year: 2019 | Page 17 of 55 |
|-----------------------------|------------|---------------|
|-----------------------------|------------|---------------|

ANO personnel have noted no definable increasing trends associated with the tritium levels at the discharge location. Levels detected during 2019 and previous operational years have been well below regulatory reporting limits. Therefore, the operation of ANO had no definable impact on this waterborne pathway during 2019 and levels of radionuclides remain similar to those obtained in previous operational years.

### 4.3.2 Drinking Water

Samples were collected from two locations (indicator and control). Although ANO personnel utilize Station 14 (City of Russellville) as an indicator location due to the potential for the drinking water pathway to exist, the City of Russellville has not withdrawn water from Lake Dardanelle in the past several years.

Drinking water samples were analyzed for gross beta radionuclides, I-131, gamma radionuclides and tritium. Gamma radionuclides, gross beta radionuclides, I-131, and tritium concentrations were below the LLD limits at the indicator and control locations, which is consistent with the preoperational and operational years as shown below. Results from 2019 are summarized in table below. Results are reported as annual average pCi/L. The control location has historically shown gross beta above MDC but less than LLD, while the indicator location is below MDC and LLD.

| Radionuclide | <u>2019</u> | <u>2018</u> | <u> 2009 – 2017**</u> | <b>Preoperational</b> |
|--------------|-------------|-------------|-----------------------|-----------------------|
| Gross Beta   | 1.97*       | 3.59        | 2.17                  | 2.0                   |
| lodine-131   | < LLD       | < LLD       | < LLD                 | < LLD                 |
| Gamma        | < LLD       | < LLD       | < LLD                 | < LLD                 |
| Tritium      | < LLD       | < LLD       | < LLD                 | 200.0                 |

- \* Average for the control sample during 2019, gross beta was 1.97 pCi/L which is > MDC, but < LLD.
- \*\*\* Average of the results from the years 2009-2017.

ANO personnel have noted no definable trends associated with drinking water results at the indicator location. Therefore, the operation of ANO had no definable impact on this waterborne pathway during 2019 and levels of radionuclides remain similar to those obtained in previous operational years.

### 4.3.3 Groundwater

Samples were collected from four REMP locations (2 control, and 2 indicator locations). During 2011, ANO incorporated sixteen additional groundwater monitoring wells into the Groundwater Protection Initiative (GPI) site program. Sample data are compiled, organized and reviewed annually to:

- Analyze for increasing or decreasing trends at individual sample points, wells or groups of wells.
- Review the radionuclides detected to determine whether changes should be made to the analysis sites or sampling frequencies for each sampling location.

| Plant: Arkansas Nuclear One       | Year: 2019 | Page 18 of 55 |
|-----------------------------------|------------|---------------|
| Annual Radiological Environmental |            |               |

- Evaluate the locations of radionuclides in ground water to determine if changes should be made to the sampling locations.
- Review current investigation levels and determine if changes should be made.
- Determine if any change to the ODCM is required.
- Determine if a corrective action/remediation is required.

Groundwater samples from the four REMP locations were analyzed for tritium and gamma radionuclides. Tritium, gamma, and gross beta concentrations were below the LLD limits at all four locations. Listed below is a comparison of 2019 indicator results to past operational years. Results are reported as annual average pCi/I. REMP Groundwater data are captured in the table below. ANO operations had no significant impact on the environment or public by this waterborne pathway.

| <u>Radionuclide</u> | <u>2019</u> | <u> 2009 – 2087</u> |
|---------------------|-------------|---------------------|
| lodine-131          | < LLD       | < LLD               |
| Gamma               | < LLD       | < LLD               |
| Tritium             | < LLD       | < LLD               |
| Gross Beta          | 3.12*       | < LLD**             |

- \* Average for Indicator wells for 2019.
- \*\* Only 2014-2019 gross beta data available for review as historical data.

### 4.4 Soil Sample Results – Example

Sediment samples were collected from two locations in 2019 and analyzed for gamma radionuclides. Listed below is a comparison of 2019 indicator results to the 2009 – 2018 operational years. ANO operations had no significant impact on the environment or public by this waterborne pathway. Results are reported as pCi/kg.

| Monitoring Period           | <u>Result</u> |
|-----------------------------|---------------|
| 2009 – 2018 (Minimum Value) | 41.79         |
| 2019 Value                  | 253           |
| 2009 – 2018 (Maximum Value) | 661.0         |

Sediment samples were collected from two locations in 2019 and analyzed for gamma radionuclides. Cesium-137 has been detected in years prior to 2019, and gamma radionuclides from 2019 samples from the indicator location were above LLD. This is likely attributable to flooding of the Arkansas River in late spring of 2019 which removed sediment from the shoreline exposing underlying contaminated layers from previous years. No gamma radionuclides were observed at the control location. Therefore, ANO operations had no significant impact on the environment or public by this waterborne pathway.

| Plant: Arkansas Nuclear One       | Year: 2019              | Page 19 of 55 |
|-----------------------------------|-------------------------|---------------|
| Annual Radiological Environmental | <b>Operating Report</b> |               |

### 4.5 Ingestion Sample Results – Example

#### 4.5.1 Milk Sample Results

Milk samples were not collected during 2019 due to the unavailability of indicator locations within five miles of ANO.

#### 4.5.2 Fish Sample Results

Fish samples were collected from two locations and analyzed for gamma radionuclides. In 2019, gamma radionuclides were below detectable limits which are consistent with the preoperational monitoring period and operational results since 1997. Therefore, based on these measurements, ANO operations had no significant radiological impact upon the environment or public by this ingestion pathway.

#### 4.5.3 Food Product Sample Results

The REMP has detected radionuclides prior to 1990 that are attributable to other sources. These include the radioactive plume release due to reactor core degradation at Chernobyl Nuclear Power Plant in 1986 and atmospheric weapons testing.

In 2019, food product samples were collected when available from two locations and analyzed for lodine-131 and gamma radionuclides. The 2019 levels remained undetectable, as has been the case in previous years. Therefore, based on these measurements, ANO operations had no significant radiological impact upon the environment or public by this ingestion pathway.

#### 4.6 Land Use Census Results – Example

The latest land use census (performed in 2019) did not identify any new locations that yielded a calculated dose or dose commitment greater than those currently calculated Table 6, "Land Use Census – [2019] Nearest Residence Within Five Miles."

One cattle farm was observed in the NNE sector. An interview with the owner was performed and he stated that the cattle were for breeding.

ANO personnel chose not to perform a garden census in 2019, but instead to sample broadleaf vegetation which is allowed by ODCM Section L 2.5.2. As allowed by NRC Regulatory Guide 1.21, Revision 2, Section 3.2, broadleaf vegetation sampling in the meteorological sector (Sector 13) with a D/Q value within 10% of the sector with the highest D/Q (Sector 12) was performed.

| Plant: Arkansas Nuclear One       | Year: 2019              | Page 20 of 55 |
|-----------------------------------|-------------------------|---------------|
| Annual Radiological Environmental | <b>Operating Report</b> |               |

| Table 6 – Land Use Census – [2019] Nearest Residence Within Five Miles |           |                      |        |      |                        |         |  |
|------------------------------------------------------------------------|-----------|----------------------|--------|------|------------------------|---------|--|
| Sector                                                                 | Direction | Nearest<br>Residence | Garden | Meat | Nearest Milk<br>Animal | Comment |  |
| 1                                                                      | N         | 0.9                  | N/A    | > 5  | > 5                    | None    |  |
| 2                                                                      | NNE       | 1.3                  | N/A    | 2.8  | > 5                    | 1       |  |
| 3                                                                      | NE        | 0.9                  | N/A    | > 5  | > 5                    | None    |  |
| 4                                                                      | ENE       | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 5                                                                      | E         | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 6                                                                      | ESE       | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 7                                                                      | SE        | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 8                                                                      | SSE       | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 9                                                                      | S         | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 10                                                                     | SSW       | 0.7                  | N/A    | > 5  | > 5                    | None    |  |
| 11                                                                     | SW        | 2.8                  | N/A    | > 5  | > 5                    | None    |  |
| 12                                                                     | WSW       | 0.7                  | N/A    | > 5  | > 5                    | None    |  |
| 13                                                                     | W         | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 14                                                                     | WNW       | 0.8                  | N/A    | > 5  | > 5                    | None    |  |
| 15                                                                     | NW        | 1.0                  | N/A    | > 5  | > 5                    | None    |  |
| 16                                                                     | NNW       | 0.9                  | N/A    | > 5  | > 5                    | None    |  |

Comment 1: While performing the land use census, a cattle farm was identified. A phone interview was performed with the owner of the farm. The owner stated the cattle were mainly for breeding purposes but could provide an animal for consumption. The meat pathway is not required per ANO ODCM.

### 4.7 Interlaboratory Comparison Results

Attachment 3 and Attachment 4 contain result summaries for Interlaboratory Comparison Program for Teledyne Brown Engineering and Environmental Dosimetry Group.

## 5.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Table 7, "Radiological Environmental Monitoring Program Summary," summarizes data for the 2019 REMP program.

| Plant: Arkansas Nuclear                            | ne | Year: 2019 | Page 21 of 55 |  |  |  |
|----------------------------------------------------|----|------------|---------------|--|--|--|
| Annual Radiological Environmental Operating Report |    |            |               |  |  |  |

| Table 7 – Radiological Environmental Monitoring Program Summary |                      |          |                                       |                                                       |                              |                                       |                             |
|-----------------------------------------------------------------|----------------------|----------|---------------------------------------|-------------------------------------------------------|------------------------------|---------------------------------------|-----------------------------|
| Type /<br>Sample Type Number of                                 |                      | LLD      | Indicator<br>D Locations Mean         | Location <sup>[Note 4]</sup><br>[Highest Annual Mean] |                              | Control<br>Locations                  | Number of<br>Non-Routine    |
| (Units)                                                         | Analyses<br>[Note 1] | [Note 2] | (F) <sup>[Note 3]</sup><br>[Range]    | Location                                              | Mean (F) [Note 3]<br>[Range] |                                       | Results <sup>[Note 5]</sup> |
| Air<br>Particulates<br>(pCi/m³)                                 | GB / 130             | 0.01     | 0.0166 (81 / 81)<br>[0.0152 – 0.0175] | Station 6<br>(88°, 0.5 mi)                            |                              | 0.0171 (54 / 54)<br>[0.0166 - 0.0176] | 6                           |
| Airborne<br>Iodine (pCi/ m³)                                    | I-131 / 130          | 0.07     | < LLD                                 | N/A                                                   | N/A                          | < LLD                                 | 6                           |
| Inner Ring<br>TLDs (mR/Qtr)                                     | Gamma / 64           | [Note 6] | 7.69 (64 / 64)<br>[5.6 – 9.4]         | Station 56<br>(264°, 0.4 mi)                          | 9.4 (4 / 4)<br>[9.0 - 9.6]   | N/A                                   | 0                           |
| Special<br>Interest TLDs<br>(mR/Qtr)                            | Gamma / 28           | [Note 6] | 6.90 (28 / 28)<br>[4.9 – 8.4]         | Station 116<br>(318° - 1.8 mi)                        | 8.4 (4 / 4)<br>[7.7 - 8.7]   | N/A                                   | 0                           |
| Control TLD<br>(mR/Qtr)                                         | Gamma / 4            | [Note 6] | N/A                                   | N/A                                                   | N/A                          | 6.90 (4 / 4)<br>[5.8 – 9.0]           | 0                           |

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 22 of 55 |  |  |  |
|----------------------------------------------------|------------|---------------|--|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |  |

| Table 7 – Radiological Environmental Monitoring Program Summary |         |          |                                                        |                                                       |                                |                              |                                                         |
|-----------------------------------------------------------------|---------|----------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------|------------------------------|---------------------------------------------------------|
| Sample Type /<br>Number of<br>(Units) [Note 1]                  |         | LLD      | Indicator<br>Locations Mean                            | Location <sup>[Note 4]</sup><br>[Highest Annual Mean] |                                | Control<br>Locations         | Number of<br>Non-Routine<br>Results <sup>[Note 5]</sup> |
|                                                                 |         | [Note 2] | 2] (F) <sup>[Note 3]</sup><br>[Range] Location [Range] |                                                       | Mean (F) [Note 3]<br>[Range]   | Mean (F) [Note 3]<br>[Range] |                                                         |
|                                                                 | H-3 / 8 | 3000     | 963.5 (4 / 4)<br>[707 – 1,220]                         | Station 8<br>(166°, 0.2 mi)                           | 1,220 (4 / 4)<br>[707 – 1,220] | < LLD                        | 0                                                       |
|                                                                 | GS / 24 |          |                                                        |                                                       |                                |                              |                                                         |
|                                                                 | Mn-54   | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | Fe-59   | 30       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | Co-58   | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
| Surface Water                                                   | Co-60   | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
| (pCi/l)                                                         | Zn-65   | 30       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
| (0011)                                                          | Zr-95   | 30       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | Nb-95   | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | I-131   | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | Cs-134  | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | Cs-137  | 18       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | Ba-140  | 60       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |
|                                                                 | La-140  | 15       | < LLD                                                  | N/A                                                   | N/A                            | < LLD                        | 0                                                       |

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 23 of 55 |  |  |  |  |
|----------------------------------------------------|------------|---------------|--|--|--|--|
| Annual Radiological Environmental Operating Report |            |               |  |  |  |  |

|                | Table 7 – Radiological Environmental Monitoring Program Summary |      |                                    |                               |                                         |                                |                             |  |  |
|----------------|-----------------------------------------------------------------|------|------------------------------------|-------------------------------|-----------------------------------------|--------------------------------|-----------------------------|--|--|
| Sample Type    | Type /<br>Number of                                             | LLD  | Indicator<br>LLD Locations Mean    |                               | on <sup>[Note 4]</sup><br>Innual Mean]  | Control<br>Locations           | Number of<br>Non-Routine    |  |  |
| (Units)        | Analyses [Note 2]<br>[Note 1]                                   |      | (F) <sup>[Note 3]</sup><br>[Range] | Location                      | Mean (F) <sub>[Note 3]</sub><br>[Range] | Mean (F) [Note 3]<br>[Range]   | Results <sup>[Note 5]</sup> |  |  |
|                | GB / 8                                                          | 4    | 1.975 (4 / 4)<br>[1.83 – 2.12]     | Station 57<br>(208°, 19.5 mi) | 1.975 (4 / 4)<br>[1.83 – 2.12]          | 1.975 (4 / 4)<br>[1.83 – 2.12] | 0                           |  |  |
|                | I-131 / 8                                                       | 1    | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | H-3 / 8                                                         | 2000 | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | GS / 8                                                          |      |                                    |                               |                                         |                                |                             |  |  |
|                | Mn-54                                                           | 15   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
| Drinking Water | Fe-59                                                           | 30   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
| (pCi/1)        | Co-58                                                           | 15   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Co-60                                                           | 15   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Zn-65                                                           | 30   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Zr-95                                                           | 30   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Nb-95                                                           | 15   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Cs-134                                                          | 15   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Cs-137                                                          | 18   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | Ba-140                                                          | 60   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |
|                | La-140                                                          | 15   | < LLD                              | N/A                           | N/A                                     | < LLD                          | 0                           |  |  |

| Plant: Arkansas Nuclear One                        | Year: 2019 Page 24 of 55 |  |  |  |  |  |
|----------------------------------------------------|--------------------------|--|--|--|--|--|
| Annual Radiological Environmental Operating Report |                          |  |  |  |  |  |

|               | Table 7 – Radiological Environmental Monitoring Program Summary |          |                                    |          |                                        |                              |                             |  |  |
|---------------|-----------------------------------------------------------------|----------|------------------------------------|----------|----------------------------------------|------------------------------|-----------------------------|--|--|
| Sample Type   | Type /<br>Number of LLD                                         |          | Indicator<br>Locations Mean        |          | on <sup>[Note 4]</sup><br>Annual Mean] | Control<br>Locations         | Number of<br>Non-Routine    |  |  |
| (Units)       | Analyses<br>[Note 1]                                            | [Note 2] | (F) <sup>[Note 3]</sup><br>[Range] | Location | Mean (F) [Note 3]<br>[Range]           | Mean (F) [Note 3]<br>[Range] | Results <sup>[Note 5]</sup> |  |  |
|               | GS / 2                                                          |          |                                    |          |                                        |                              |                             |  |  |
|               | Mn-54                                                           | 130      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
|               | Fe-59                                                           | 260      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
| Fich (nCi/kg) | Co-58                                                           | 130      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
| Fish (pCi/kg) | Co-60                                                           | 130      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
|               | Zn-65                                                           | 260      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
|               | Cs-134                                                          | 130      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
|               | Cs-137                                                          | 150      | < LLD                              | N/A      | N/A                                    | < LLD                        | 0                           |  |  |
|               | I-131 / 6                                                       | 60       | < LLD                              | N/A      | N/A                                    | N/A                          | 0                           |  |  |
| Food Products | GS / 6                                                          |          |                                    |          |                                        |                              |                             |  |  |
| (pCi/kg)      | Cs-134                                                          | 60       | < LLD                              | N/A      | N/A                                    | N/A                          | 0                           |  |  |
|               | Cs-137                                                          | 80       | < LLD                              | N/A      | N/A                                    | N/A                          | 0                           |  |  |

### LEGEND:

- [Note 1] GB = Gross beta; I-131 = Iodine-131; H-3 = Tritium; GS = Gamma scan.
- [Note 2] LLD = Required lower limit of detection based on ANO-1 and ANO-2 ODCM Table 2.5-1.
- [Note 3] Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parenthesis (F).
- [Note 4] Locations are specified (1) by name and (2) degrees relative to reactor site.
- [Note 5] Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten times the preoperational value for the location.
- [Note 6] LLD is not defined in ANO-1 and ANO-2 ODCM Table 2.5-1.

## Annual Radiological Environmental Operating Report

## Attachment 1

Page 1 of 1

## Sample Deviations

|                | Table 8 – Sample Deviations |                           |            |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|----------------|-----------------------------|---------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Comment<br>No. | Sample Media<br>Affected    |                           |            | Evaluation / Actions                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 1              | Air Sample                  | Air Station 2             | 02/12/2019 | Hour meter<br>not<br>advancing                                                                                                                                                                                                                                        | Hour totalizer at Air Station 2 was not advancing. Replaced the faulty hour totalizer and verified it was working properly. CR-ANO-C-2019-0489.                                                                                                                                                  |  |  |  |  |  |
| 2              | Air Sample                  | Air Station 1             | 04/23/2019 | 9 Hole in air<br>particulate<br>filter Air Station 1 air particulate filter was found with a single h<br>saturated with water and pollen. The air station sample f<br>discharge line, and overall station integrity was found sat<br>as expected. CR-ANO-C-2019-1469. |                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 3              | Air Sample                  | Air Station 1,<br>2, & 56 | 07/16/2019 | Power<br>Loss                                                                                                                                                                                                                                                         | While performing bi-weekly Environmental Monitoring Sampling chemist discovered that Air Station locations 1, 2, & 56 runtimes were short by approximately two hours. This is due to the temporary loss of the London line on 7-5-19 from 21:35-23:45. CR-ANO-C-2019-2564.                       |  |  |  |  |  |
| 4              | Air Sample                  | Air Station 1             | 08/27/2019 | Power<br>Loss                                                                                                                                                                                                                                                         | While performing bi-weekly Environmental Monitoring Sampling<br>chemist discovered that Air Station 1 runtime was short by<br>approximately six hours. Suspect loss of power as the pump and<br>totalizer were operable upon arrival and departure.<br>CR-ANO-C-2019-3149.                       |  |  |  |  |  |
| 5              | Air Sample                  | Air Station 1             | 11/19/2019 | Pump<br>Failure                                                                                                                                                                                                                                                       | While performing the bi-weekly Air Particulate & lodine Sampling,<br>Air Station 1 sample pump was found not working. The run time for<br>this station was approximately as expected, which indicates<br>hour-meter working and no loss of power, but sample pump failed.<br>CR-ANO-C-2019-4560. |  |  |  |  |  |
| 6              | Air Sample                  | Air Station 7             | 12/03/2019 | Power<br>Loss                                                                                                                                                                                                                                                         | While conducting the bi-weekly Environmental Monitoring Sampling, Air Station 7 had a 2-hour delta from deploy time and retrieve time. CR-ANO-C-2019-4671.                                                                                                                                       |  |  |  |  |  |

| Plant: Arkansas Nuclear One | Year: 2019 | Page 26 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

### Attachment 2

Page 1 of 13

# **Monitoring Results Tables**

| Table 9 – Air Particulate Data Summary |             |                                            |                              |                              |                                            |                              |  |  |
|----------------------------------------|-------------|--------------------------------------------|------------------------------|------------------------------|--------------------------------------------|------------------------------|--|--|
|                                        | Analysis    | s: Gross Beta                              |                              | Units: pCi/m³                |                                            |                              |  |  |
| Start Date                             | End Date    | Date Station 1 Stati<br>(Indicator) (Indic |                              | Station 56<br>(Indicator)    | Station 6 <sup>[Note 1]</sup><br>(Control) | Station 7<br>(Control)       |  |  |
| REQUIRE                                | ED LLD 🗲    | <u>0.01</u>                                | <u>0.01</u>                  | <u>0.01</u>                  | <u>0.01</u>                                | <u>0.01</u>                  |  |  |
| 01/1/2019                              | 1/15/2019   | 2.23E-02                                   | 2.35E-02                     | 1.97E-02                     | 2.01E-02                                   | 1.74E-02                     |  |  |
| 1/15/2019                              | 1/29/2019   | 1.69E-02                                   | 1.87E-02                     | 1.27E-02                     | 1.89E-02                                   | 1.35E-02                     |  |  |
| 1/29/2019                              | 2/12/2019   | 1.96E-02                                   | 1.83E-02 <sup>[Note 2]</sup> | 1.79E-02                     | 1.52E-02                                   | 1.60E-02                     |  |  |
| 2/12/2019                              | 2/26/2019   | 2.49E-02                                   | 2.03E-02                     | 1.75E-02                     | 2.38E-02                                   | 2.01E-02                     |  |  |
| 2/26/2019                              | 3/12/2019   | 1.58E-02                                   | 1.66E-02                     | 1.38E-02                     | 1.55E-02                                   | 1.57E-02                     |  |  |
| 3/12/2019                              | 3/26/2019   | 1.17E-02                                   | 1.26E-02                     | 7.36E-03                     | 1.05E-02                                   | 1.07E-02                     |  |  |
| 3/26/2019                              | 4/9/2019    | 1.32E-02                                   | 1.27E-02                     | 1.19E-02                     | 1.05E-02                                   | 1.13E-02                     |  |  |
| 4/9/2019                               | 4/23/2019   | 1.35E-02 <sup>[Note 2]</sup>               | 1.19E-02                     | 9.36E-03                     | 1.11E-02                                   | 1.05E-02                     |  |  |
| 4/23/2019                              | 5/7/2019    | 1.27E-02                                   | 1.31E-02                     | 1.46E-02                     | 1.37E-02                                   | 1.42E-02                     |  |  |
| 5/7/2019                               | 5/21/2019   | 1.36E-02                                   | 1.62E-02                     | 1.22E-02                     | 1.67E-02                                   | 1.58E-02                     |  |  |
| 5/21/2019                              | 6/4/2019    | 1.48E-02                                   | 1.62E-02                     | 1.50E-02                     | 1.66E-02                                   | 1.49E-02                     |  |  |
| 6/4/2019                               | 6/18/2019   | 1.75E-02                                   | 1.25E-02                     | 1.23E-02                     | 1.58E-02                                   | 1.50E-02                     |  |  |
| 6/18/2019                              | 7/2/2019    | 1.31E-02                                   | 1.16E-02                     | 1.06E-02                     | 1.51E-02                                   | 1.15E-02                     |  |  |
| 7/2/2019                               | 7/16/2019   | 1.25E-02 <sup>[Note 2]</sup>               | 1.17E-02 <sup>[Note 2]</sup> | 8.81E-03 <sup>[Note 2]</sup> | 1.27E-02                                   | 1.03E-02                     |  |  |
| 7/16/2019                              | 7/30/2019   | 1.63E-02                                   | 1.48E-02                     | 1.44E-02                     | 1.58E-02                                   | 1.32E-02                     |  |  |
| 7/30/2019                              | 8/13/2019   | 2.35E-02                                   | 2.31E-02                     | 1.65E-02                     | 2.31E-02                                   | 2.26E-02                     |  |  |
| 8/13/2019                              | 8/27/2019   | 2.05E-02 <sup>[Note 2]</sup>               | 1.73E-02                     | 1.76E-02                     | 2.12E-02                                   | 1.68E-02                     |  |  |
| 8/27/2019                              | 9/10/2019   | 2.78E-02                                   | 2.93E-02                     | 2.32E-02                     | 2.86E-02                                   | 3.21E-02                     |  |  |
| 9/10/2019                              | 9/24/2019   | 2.73E-02                                   | 2.45E-02                     | 2.38E-02                     | 2.41E-02                                   | 2.16E-02                     |  |  |
| 9/24/2019                              | 10/8/2019   | 1.68E-02                                   | 1.75E-02                     | 1.52E-02                     | 2.20E-02                                   | 2.03E-02                     |  |  |
| 10/8/2019                              | 10/22/2019  | 1.98E-02                                   | 2.01E-02                     | 1.89E-02                     | 2.08E-02                                   | 2.15E-02                     |  |  |
| 10/22/2019                             | 11/5/2019   | 1.33E-02                                   | 1.29E-02                     | 1.23E-02                     | 1.28E-02                                   | 1.58E-02                     |  |  |
| 11/5/2019                              | 11/19/2019  | 8.37E-03 <sup>[Note 2]</sup>               | 2.00E-02                     | 2.11E-02                     | 1.71E-02                                   | 2.26E-02                     |  |  |
| 11/19/2019                             | 12/3/2019   | 1.25E-02                                   | 1.34E-02                     | 1.10E-02                     | 1.06E-02                                   | 1.24E-02 <sup>[Note 2]</sup> |  |  |
| 12/3/2019                              | 12/17/2019  | 2.27E-02                                   | 2.33E-02                     | 2.05E-02                     | 1.85E-02                                   | 1.93E-02                     |  |  |
| 12/17/2019                             | 12/31/2019  | 2.24E-02                                   | 2.15E-02                     | 1.58E-02                     | 2.23E-02                                   | 1.62E-02                     |  |  |
| Station Yea                            | rly Average | 1.74E-02                                   | 1.74E-02                     | 1.52E-02                     | 1.75E-02                                   | 1.66E-02                     |  |  |

[Note 1] – Station with highest annual mean.

[Note 2] - Reference Attachment 1, Table 8, "Sample Deviations".

| Plant: Arkansas Nuclear One | Year: 2019 | Page 27 of 55 |
|-----------------------------|------------|---------------|
|-----------------------------|------------|---------------|

# Attachment 2

Page 2 of 13

# **Monitoring Results Tables**

| Table 10 – Radioiodine Cartridge Data Table Summary |             |                                |                                |                                |                        |                                |  |  |
|-----------------------------------------------------|-------------|--------------------------------|--------------------------------|--------------------------------|------------------------|--------------------------------|--|--|
|                                                     | Anal        | ysis: I-131                    |                                | Units: pCi/m³                  |                        |                                |  |  |
| Start Date                                          | End Date    | Station 1<br>(Indicator)       | Station 2<br>(Indicator)       | Station 56<br>(Indicator)      | Station 6<br>(Control) | Station 7<br>(Control)         |  |  |
| 01/1/2019                                           | 1/15/2019   | < 2.73E-02                     | < 2.73E-02                     | < 2.74E-02                     | < 2.73E-02             | < 1.14E-02                     |  |  |
| 1/15/2019                                           | 1/29/2019   | < 3.25E-02                     | < 3.26E-02 <sup>[Note 1]</sup> | < 3.26E-02                     | < 1.37E-02             | < 3.23E-02                     |  |  |
| 1/29/2019                                           | 2/12/2019   | < 1.56E-02                     | < 3.72E-02                     | < 3.72E-02                     | < 3.69E-02             | < 3.70E-02                     |  |  |
| 2/12/2019                                           | 2/26/2019   | < 1.63E-02                     | < 3.89E-02                     | < 3.89E-02                     | < 3.88E-02             | < 3.86E-02                     |  |  |
| 2/26/2019                                           | 3/12/2019   | < 1.43E-02                     | < 3.40E-02                     | < 3.43E-02                     | < 3.43E-02             | < 3.42E-02                     |  |  |
| 3/12/2019                                           | 3/26/2019   | < 1.41E-02                     | < 3.37E-02                     | < 3.37E-02                     | < 3.36E-02             | < 3.35E-02                     |  |  |
| 3/26/2019                                           | 4/9/2019    | < 1.67E-02 <sup>[Note 1]</sup> | < 3.09E-02                     | < 3.10E-02                     | < 3.08E-02             | < 3.08E-02                     |  |  |
| 4/9/2019                                            | 4/23/2019   | < 3.38E-02                     | < 3.38E-02                     | < 3.39E-02                     | < 3.37E-02             | < 1.84E-02                     |  |  |
| 4/23/2019                                           | 5/7/2019    | < 1.08E-02                     | < 2.57E-02                     | < 2.56E-02                     | < 2.58E-02             | < 2.59E-02                     |  |  |
| 5/7/2019                                            | 5/21/2019   | < 2.04E-02                     | < 2.04E-02                     | <2.04e-02                      | < 2.03E-02             | < 1.12E-02                     |  |  |
| 5/21/2019                                           | 6/4/2019    | < 1.03E-02                     | < 2.46E-02                     | < 2.46E-02 < 2.46E-02          |                        | < 2.44E-02                     |  |  |
| 6/4/2019                                            | 6/18/2019   | < 1.13E-02                     | < 1.35E-02                     | < 1.35E-02                     | < 1.34E-02             | < 1.34E-02                     |  |  |
| 6/18/2019                                           | 7/2/2019    | < 1.80E-02 <sup>[Note 1]</sup> | < 1.80E-02 <sup>[Note 1]</sup> | < 1.51E-02 <sup>[Note 1]</sup> | < 1.79E-02             | < 1.79E-02                     |  |  |
| 7/2/2019                                            | 7/16/2019   | < 2.10E-02                     | < 2.12E-02                     | < 1.78E-02                     | < 2.07E-02             | < 2.06E-02                     |  |  |
| 7/16/2019                                           | 7/30/2019   | < 4.29E-02                     | < 4.30E-02                     | < 4.31E-02                     | < 1.51E-02             | < 4.28E-02                     |  |  |
| 7/30/2019                                           | 8/13/2019   | < 1.15E-02 <sup>[Note 1]</sup> | < 2.76E-02                     | < 2.76E-02                     | < 2.76E-02             | < 2.73E-02                     |  |  |
| 8/13/2019                                           | 8/27/2019   | < 1.55E-02                     | < 1.85E-02                     | < 1.84E-02                     | < 1.82E-02             | < 1.84E-02                     |  |  |
| 8/27/2019                                           | 9/10/2019   | < 1.79E-02                     | < 1.81E-02                     | < 2.88E-02                     | < 1.79E-02             | < 1.79E-02                     |  |  |
| 9/10/2019                                           | 9/24/2019   | < 1.61E-02                     | < 1.92E-02                     | < 1.92E-02                     | < 1.91E-02             | < 1.90E-02                     |  |  |
| 9/24/2019                                           | 10/8/2019   | < 4.06E-02                     | < 4.04E-02                     | < 1.69E-02                     | < 4.10E-02             | < 4.09E-02                     |  |  |
| 10/8/2019                                           | 10/22/2019  | < 1.30E-02                     | < 1.30E-02                     | < 1.30E-02                     | < 1.28E-02             | < 1.07E-02                     |  |  |
| 10/22/2019                                          | 11/5/2019   | < 1.90E-02 <sup>[Note 1]</sup> | < 1.91E-02                     | < 1.92E-02                     | < 1.60E-02             | < 1.90E-02                     |  |  |
| 11/5/2019                                           | 11/19/2019  | < 1.76E-02                     | < 2.10E-02                     | < 2.10E-02                     | < 2.07E-02             | < 2.07E-02 <sup>[Note 1]</sup> |  |  |
| 11/19/2019                                          | 12/3/2019   | < 2.74E-02                     | < 2.74E-02                     | < 2.74E-02                     | < 2.73E-02             | < 1.25E-02                     |  |  |
| 12/3/2019                                           | 12/17/2019  | < 2.35E-02                     | < 1.07E-02                     | < 2.36E-02                     | < 2.35E-02             | < 2.34E-02                     |  |  |
| 12/17/2019                                          | 12/31/2019  | < 1.70E-02                     | < 7.14E-03                     | < 1.71E-02                     | < 1.70E-02             | < 1.70E-02                     |  |  |
| Station Yea                                         | rly Average | < LLD                          | < LLD                          | < LLD                          | < LLD                  | < LLD                          |  |  |

[Note 1] - Reference Attachment 1, Table 8, "Sample Deviations"

| Plant: Arkansas Nuclear One | Year: 2019 | Page 28 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

# Attachment 2

Page 3 of 13

# **Monitoring Results Tables**

| Table 11 – Thermoluminescent Dosimeters – Inner Ring |                               |                               |                               |                               |                       |  |  |
|------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------|--|--|
| Α                                                    | nalysis: Gamn                 | na Dose                       |                               | Units: n                      | nrem                  |  |  |
| Station                                              | 1 <sup>st</sup> Qtr<br>[2019] | 2 <sup>nd</sup> Qtr<br>[2019] | 3 <sup>rd</sup> Qtr<br>[2019] | 4 <sup>th</sup> Qtr<br>[2019] | Annual Mean<br>[2019] |  |  |
| 1                                                    | 8.3                           | 7.9                           | 9.4                           | 8.7                           | 8.6                   |  |  |
| 2                                                    | 7.8                           | 7.5                           | 8.6                           | 7.7                           | 7.9                   |  |  |
| 3                                                    | 5.0                           | 5.6                           | 6.2                           | 5.4                           | 5.6                   |  |  |
| 4                                                    | 7.9                           | 7.3                           | 8.7                           | 7.4                           | 7.8                   |  |  |
| 56 <sup>[Note 1]</sup>                               | 9.2                           | 9.0                           | 9.6                           | 9.6                           | 9.4                   |  |  |
| 108                                                  | 8.1                           | 7.3                           | 8.4                           | 7.9                           | 7.9                   |  |  |
| 109                                                  | 8.4                           | 7.5                           | 9.0                           | 7.5                           | 8.1                   |  |  |
| 110                                                  | 8.2                           | 7.4                           | 8.1                           | 7.6                           | 7.8                   |  |  |
| 145                                                  | 7.3                           | 7.5                           | 7.6                           | 7.7                           | 7.5                   |  |  |
| 146                                                  | 6.5                           | 6.9                           | 7.3                           | 7.8                           | 7.1                   |  |  |
| 147                                                  | 6.7                           | 6.8                           | 7.2                           | 6.3                           | 6.8                   |  |  |
| 148                                                  | 7.5                           | 7.8                           | 8.8                           | 8.0                           | 8.0                   |  |  |
| 149                                                  | 6.4                           | 6.9                           | 8.0                           | 7.2                           | 7.1                   |  |  |
| 150                                                  | 8.6                           | 8.2                           | 8.8                           | 8.7                           | 8.6                   |  |  |
| 151                                                  | 7.9                           | 7.9                           | 8.6                           | 8.9                           | 8.3                   |  |  |
| 152                                                  | 6.1                           | 6.5                           | 7.1                           | 6.5                           | 6.6                   |  |  |

[Note 1] – Station with highest annual mean.

| Plant: Arkansas Nuclear One | Year: 2019 | Page 29 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

# Attachment 2

Page 4 of 13

# **Monitoring Results Tables**

| т                       | Table 12 – Thermoluminescent Dosimeters – Special Interest Areas |                               |                               |                       |     |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------|-------------------------------|-------------------------------|-----------------------|-----|--|--|--|--|--|
| Ana                     | lysis: Gamma                                                     | Dose                          | Units: mrem                   |                       |     |  |  |  |  |  |
| Station                 | 1 <sup>st</sup> Qtr<br>[2019]                                    | 2 <sup>nd</sup> Qtr<br>[2019] | 3 <sup>rd</sup> Qtr<br>[2019] | Annual Mean<br>[2019] |     |  |  |  |  |  |
| 6                       | 6.9                                                              | 6.7                           | 7.5                           | 7.2                   | 7.1 |  |  |  |  |  |
| 111                     | 5.6                                                              | 5.5                           | 5.5                           | 5.0                   | 5.4 |  |  |  |  |  |
| 116 <sup>[Note 1]</sup> | 8.7                                                              | 8.7                           | 8.5                           | 7.7                   | 8.4 |  |  |  |  |  |
| 125                     | 4.8                                                              | 4.4                           | 5.1                           | 5.4                   | 4.9 |  |  |  |  |  |
| 127                     | 6.5                                                              | 7.3                           | 7.2                           | 7.1                   | 7.0 |  |  |  |  |  |
| 137                     | 8.2                                                              | 7.5                           | 8.6                           | 7.6                   | 8.0 |  |  |  |  |  |
| 153                     | 7.4                                                              | 7.4                           | 7.9                           | 7.1                   | 7.5 |  |  |  |  |  |

[Note 1] – Station with highest annual mean.

| Table 13 – Thermoluminescent Dosimeters – Control |                   |                   |                   |                   |                       |  |  |  |  |
|---------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|--|--|--|--|
| Ana                                               | lysis: Gamma      | Dose              | Units: mrem       |                   |                       |  |  |  |  |
| Station                                           | 1st Qtr<br>[2019] | 2nd Qtr<br>[2019] | 3rd Qtr<br>[2019] | 4th Qtr<br>[2019] | Annual Mean<br>[2019] |  |  |  |  |
| 7                                                 | 9.0               | 6.1               | 6.7               | 5.8               | 6.9                   |  |  |  |  |

| Plant: Arkansas I | Nuclear One |
|-------------------|-------------|
|-------------------|-------------|

## Annual Radiological Environmental Operating Report

## Attachment 2

Page 5 of 13

|                          | Table 14 – Surface Water – Gamma |            |        |        |        |        |        |        |              |        |        |        |        |        |
|--------------------------|----------------------------------|------------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|
| Analysis: Gamma Isotopic |                                  |            |        |        |        |        |        |        | Units: pCi/L |        |        |        |        |        |
| Location                 | Start Date                       | End Date   | Mn-54  | Co-58  | Fe-59  | Co-60  | Zn-65  | Nb-95  | Zr-95        | I-131  | Cs-134 | Cs-137 | Ba-140 | La-140 |
| R                        | EQUIRED LLD                      | <b>→</b>   | 15     | 15     | 30     | 15     | 30     | 15     | 30           | 15     | 15     | 18     | 60     | 15     |
| Station 8<br>(Indicator) | 05/31/2019                       | 06/30/2019 | < 1.63 | < 1.66 | < 3.80 | < 1.62 | < 3.24 | < 1.78 | < 3.11       | < 7.02 | < 1.67 | < 1.60 | < 13.7 | < 4.65 |
| Station 10<br>(Control)  | 05/31/2019                       | 06/30/2019 | < 8.68 | < 7.21 | < 11.3 | < 9.90 | < 15.6 | < 7.64 | < 16.2       | < 9.33 | < 7.92 | < 8.17 | < 32.6 | < 11.0 |
| Station 8<br>(Indicator) | 06/30/2019                       | 07/31/2019 | < 2.01 | < 2.22 | < 4.86 | < 1.95 | < 4.04 | < 2.33 | < 3.99       | < 11.7 | < 2.14 | < 1.97 | < 20.4 | < 5.93 |
| Station 10<br>(Control)  | 06/30/2019                       | 07/31/2019 | < 4.64 | < 4.47 | < 9.85 | < 5.84 | < 9.37 | < 5.19 | < 8.70       | < 7.46 | < 4.78 | < 4.97 | < 20.7 | < 7.44 |
| Station 8<br>(Indicator) | 7/31/2019                        | 8/31/2019  | < 1.71 | < 1.96 | < 4.47 | < 1.94 | < 3.77 | < 2.15 | < 3.42       | < 9.60 | < 1.90 | < 1.85 | < 16.9 | < 5.60 |
| Station 10<br>(Control)  | 7/31/2019                        | 8/31/2019  | < 7.94 | < 8.11 | < 14.7 | < 8.45 | < 9.77 | < 9.73 | < 13.9       | < 12.8 | < 6.23 | < 7.76 | < 31.5 | < 12.7 |
| Station 8<br>(Indicator) | 08/31/2019                       | 09/30/2019 | < 2.11 | < 2.20 | < 5.01 | < 2.16 | < 4.48 | < 2.38 | < 4.21       | < 10.2 | < 2.20 | < 1.97 | < 19.0 | < 5.90 |
| Station 10<br>(Control)  | 08/31/2019                       | 09/30/2019 | < 5.55 | < 5.79 | < 12.4 | < 6.62 | < 13.3 | < 6.40 | < 11.7       | < 7.69 | < 6.78 | < 5.80 | < 21.0 | < 8.18 |
| Station 8<br>(Indicator) | 09/30/2019                       | 10/31/2019 | < 2.48 | < 2.65 | < 6.16 | < 2.53 | < 4.92 | < 2.59 | < 4.64       | < 12.6 | < 2.41 | < 2.36 | < 22.9 | < 7.38 |
| Station 10<br>(Control)  | 09/30/2019                       | 10/31/2019 | < 6.65 | < 8.10 | < 12.2 | < 8.45 | < 14.2 | < 7.26 | < 9.95       | < 9.61 | < 6.72 | < 6.44 | < 31.8 | < 7.70 |
| Station 8<br>(Indicator) | 10/31/2019                       | 11/30/2019 | < 1.73 | < 1.82 | < 4.51 | < 1.77 | < 3.52 | < 1.99 | < 3.54       | < 8.94 | < 1.82 | < 1.79 | < 16.2 | < 5.82 |
| Station 10<br>(Control)  | 10/31/2019                       | 11/30/2019 | < 7.13 | < 8.79 | < 12.2 | < 9.19 | < 14.1 | < 6.30 | < 14.7       | < 10.6 | < 6.76 | < 7.59 | < 35.3 | < 6.67 |

## Annual Radiological Environmental Operating Report

## Attachment 2

Page 5 of 13

|                          | Table 14 – Surface Water – Gamma |            |        |        |        |        |        |              |        |        |        |        |        |        |
|--------------------------|----------------------------------|------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|
| Analysis: Gamma Isotopic |                                  |            |        |        |        |        |        | Units: pCi/L |        |        |        |        |        |        |
| Location                 | Start Date                       | End Date   | Mn-54  | Co-58  | Fe-59  | Co-60  | Zn-65  | Nb-95        | Zr-95  | I-131  | Cs-134 | Cs-137 | Ba-140 | La-140 |
| <u>R</u>                 | EQUIRED LLD                      | <u>→</u>   | 15     | 15     | 30     | 15     | 30     | 15           | 30     | 15     | 15     | 18     | 60     | 15     |
| Station 8<br>(Indicator) | 12/31/2018                       | 01/31/2019 | < 2.75 | < 3.01 | < 7.73 | < 2.97 | < 5.56 | < 2.80       | < 5.37 | < 15.0 | < 3.10 | < 2.43 | < 26.8 | < 9.50 |
| Station 10<br>(Control)  | 12/31/2018                       | 01/31/2019 | < 6.08 | < 3.93 | < 13.2 | < 10.9 | < 13.2 | < 5.57       | < 9.98 | < 7.69 | < 7.91 | < 5.82 | < 18.9 | < 10.7 |
| Station 8<br>(Indicator) | 01/31/2019                       | 02/28/2019 | < 1.53 | < 1.87 | < 3.83 | < 1.86 | < 3.23 | < 1.90       | < 3.13 | < 8.67 | < 1.69 | < 1.64 | < 15.1 | < 5.90 |
| Station 10<br>(Control)  | 01/31/2019                       | 02/28/2019 | < 8.52 | < 8.51 | < 17.5 | < 8.86 | < 14.7 | < 9.06       | < 17.4 | < 14.6 | < 10.5 | < 8.71 | < 42.1 | < 13.1 |
| Station 8<br>(Indicator) | 02/28/2019                       | 03/31/2019 | < 1.58 | < 1.68 | < 3.96 | < 1.51 | < 3.31 | < 1.87       | < 2.96 | < 7.03 | < 1.82 | < 1.60 | < 14.0 | < 4.22 |
| Station 10<br>(Control)  | 02/28/2019                       | 03/31/2019 | < 1.54 | < 1.67 | < 3.53 | < 1.95 | < 3.49 | < 1.58       | < 2.68 | < 1.83 | < 1.76 | < 1.76 | < 6.04 | < 2.50 |
| Station 8<br>(Indicator) | 03/31/2019                       | 04/30/2019 | < 1.89 | < 2.20 | < 4.71 | < 2.24 | < 4.46 | < 2.17       | < 3.94 | < 9.16 | < 2.16 | < 2.10 | < 17.8 | < 6.31 |
| Station 10<br>(Control)  | 03/31/2019                       | 04/30/2019 | < 3.99 | < 3.88 | < 8.15 | < 4.35 | < 9.04 | < 3.99       | < 7.40 | < 5.44 | < 4.60 | < 4.44 | < 17.8 | < 4.80 |
| Station 8<br>(Indicator) | 04/30/2019                       | 05/31/2019 | < 1.68 | < 1.97 | < 4.36 | < 2.04 | < 3.64 | < 2.23       | < 3.34 | < 10.7 | < 1.85 | < 1.81 | < 18.1 | < 5.76 |
| Station 10<br>(Control)  | 04/30/2019                       | 05/31/2019 | < 7.87 | < 8.85 | < 7.83 | < 7.91 | < 13.6 | < 6.44       | < 10.7 | < 8.68 | < 7.16 | < 6.30 | < 25.5 | < 8.13 |
| Station 8<br>(Indicator) | 05/31/2019                       | 06/30/2019 | < 1.63 | < 1.66 | < 3.80 | < 1.62 | < 3.24 | < 1.78       | < 3.11 | < 7.02 | < 1.67 | < 1.60 | < 13.7 | < 4.65 |
| Station 10<br>(Control)  | 05/31/2019                       | 06/30/2019 | < 8.68 | < 7.21 | < 11.3 | < 9.90 | < 15.6 | < 7.64       | < 16.2 | < 9.33 | < 7.92 | < 8.17 | < 32.6 | < 11.0 |

## Annual Radiological Environmental Operating Report

## Attachment 2

Page 6 of 13

|                          | Table 14 – Surface Water – Gamma |            |        |        |        |        |        |              |        |        |        |        |        |        |
|--------------------------|----------------------------------|------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|
| Analysis: Gamma Isotopic |                                  |            |        |        |        |        |        | Units: pCi/L |        |        |        |        |        |        |
| Location                 | Start Date                       | End Date   | Mn-54  | Co-58  | Fe-59  | Co-60  | Zn-65  | Nb-95        | Zr-95  | I-131  | Cs-134 | Cs-137 | Ba-140 | La-140 |
| <u></u>                  | EQUIRED LLD                      | <u>→</u>   | 15     | 15     | 30     | 15     | 30     | 15           | 30     | 15     | 15     | 18     | 60     | 15     |
| Station 8<br>(Indicator) | 06/30/2019                       | 07/31/2019 | < 2.01 | < 2.22 | < 4.86 | < 1.95 | < 4.04 | < 2.33       | < 3.99 | < 11.7 | < 2.14 | < 1.97 | < 20.4 | < 5.93 |
| Station 10<br>(Control)  | 06/30/2019                       | 07/31/2019 | < 4.64 | < 4.47 | < 9.85 | < 5.84 | < 9.37 | < 5.19       | < 8.70 | < 7.46 | < 4.78 | < 4.97 | < 20.7 | < 7.44 |
| Station 8<br>(Indicator) | 7/31/2019                        | 8/31/2019  | < 1.71 | < 1.96 | < 4.47 | < 1.94 | < 3.77 | < 2.15       | < 3.42 | < 9.60 | < 1.90 | < 1.85 | < 16.9 | < 5.60 |
| Station 10<br>(Control)  | 7/31/2019                        | 8/31/2019  | < 7.94 | < 8.11 | < 14.7 | < 8.45 | < 9.77 | < 9.73       | < 13.9 | < 12.8 | < 6.23 | < 7.76 | < 31.5 | < 12.7 |
| Station 8<br>(Indicator) | 08/31/2019                       | 09/30/2019 | < 2.11 | < 2.20 | < 5.01 | < 2.16 | < 4.48 | < 2.38       | < 4.21 | < 10.2 | < 2.20 | < 1.97 | < 19.0 | < 5.90 |
| Station 10<br>(Control)  | 08/31/2019                       | 09/30/2019 | < 5.55 | < 5.79 | < 12.4 | < 6.62 | < 13.3 | < 6.40       | < 11.7 | < 7.69 | < 6.78 | < 5.80 | < 21.0 | < 8.18 |
| Station 8<br>(Indicator) | 09/30/2019                       | 10/31/2019 | < 2.48 | < 2.65 | < 6.16 | < 2.53 | < 4.92 | < 2.59       | < 4.64 | < 12.6 | < 2.41 | < 2.36 | < 22.9 | < 7.38 |
| Station 10<br>(Control)  | 09/30/2019                       | 10/31/2019 | < 6.65 | < 8.10 | < 12.2 | < 8.45 | < 14.2 | < 7.26       | < 9.95 | < 9.61 | < 6.72 | < 6.44 | < 31.8 | < 7.70 |
| Station 8<br>(Indicator) | 10/31/2019                       | 11/30/2019 | < 1.73 | < 1.82 | < 4.51 | < 1.77 | < 3.52 | < 1.99       | < 3.54 | < 8.94 | < 1.82 | < 1.79 | < 16.2 | < 5.82 |
| Station 10<br>(Control)  | 10/31/2019                       | 11/30/2019 | < 7.13 | < 8.79 | < 12.2 | < 9.19 | < 14.1 | < 6.30       | < 14.7 | < 10.6 | < 6.76 | < 7.59 | < 35.3 | < 6.67 |
| Station 8<br>(Indicator) | 11/30/2019                       | 12/31/2019 | < 1.84 | < 2.09 | < 5.21 | < 1.93 | < 4.02 | < 2.04       | < 3.76 | < 11.0 | < 1.92 | < 1.76 | < 19.1 | < 6.52 |
| Station 10<br>(Control)  | 11/30/2019                       | 12/31/2019 | < 5.01 | < 6.35 | < 7.77 | < 6.32 | < 11.3 | < 5.76       | < 8.63 | < 11.1 | < 5.96 | < 4.14 | < 32.8 | < 7.48 |

| Plant: Arkansas Nuclear One Year: 2019 Page 33 of 55 |
|------------------------------------------------------|
|------------------------------------------------------|

# Attachment 2

Page 7 of 13

| Table 15 – Surface Water – Tritium |                              |            |       |  |  |  |  |  |
|------------------------------------|------------------------------|------------|-------|--|--|--|--|--|
| Analysis: H-3 Units: pCi/L         |                              |            |       |  |  |  |  |  |
| Location                           | Location Start Date End Date |            |       |  |  |  |  |  |
|                                    | 3000                         |            |       |  |  |  |  |  |
| Station 8 (Indicator)              | 12/31/2018                   | 3/31/2019  | < 390 |  |  |  |  |  |
| Station 10 (Control)               | 12/31/2018                   | 3/31/2019  | < 387 |  |  |  |  |  |
| Station 8 (Indicator)              | 3/31/2019                    | 6/30/2019  | 1,220 |  |  |  |  |  |
| Station 10 (Control)               | 3/31/2019                    | 6/30/2019  | < 196 |  |  |  |  |  |
| Station 8 (Indicator)              | 6/30/2019                    | 9/30/2019  | < 391 |  |  |  |  |  |
| Station 10 (Control)               | 6/30/2019                    | 9/30/2019  | < 391 |  |  |  |  |  |
| Station 8 (Indicator)              | 9/30/2019                    | 12/31/2019 | 707   |  |  |  |  |  |
| Station 10 (Control)               | 9/30/2019                    | 12/31/2019 | < 384 |  |  |  |  |  |

| Plant: Arkansas Nuclear One                                     | Year: 2019 | Page 34 of 55 |  |  |  |  |  |
|-----------------------------------------------------------------|------------|---------------|--|--|--|--|--|
| A second De die la sie al Escaine anne stal Os anstin a Den ant |            |               |  |  |  |  |  |

## Attachment 2

Page 8 of 13

| Table 16 – Drinking Water –Gamma, GB, I-131 |                    |               |        |        |        |        |        |              |        |         |        |        |        |        |
|---------------------------------------------|--------------------|---------------|--------|--------|--------|--------|--------|--------------|--------|---------|--------|--------|--------|--------|
| Analysis: Gamma Isotopic, Gross Beta, I-131 |                    |               |        |        |        |        |        | Units: pCi/L |        |         |        |        |        |        |
| Location                                    | Collection<br>Date | Gross<br>Beta | Mn-54  | Co-58  | Fe-59  | Co-60  | Zn-65  | Nb-95        | Zr-95  | I-131   | Cs-134 | Cs-137 | Ba-140 | La-140 |
| REQUIRED LLD ->                             |                    | 4.0           | 15     | 15     | 30     | 15     | 30     | 15           | 30     | 1.0     | 15     | 18     | 60     | 15     |
| Station 14<br>(Indicator)                   | 01/01/2019         | < 1.59        | < 1.54 | < 1.49 | < 3.06 | < 1.71 | < 3.08 | < 1.51       | < 2.68 | < 0.328 | < 1.64 | < 1.61 | < 6.14 | < 2.02 |
| Station 57<br>(Control)                     | 01/01/2019         | < 1.68        | < 1.55 | < 1.53 | < 3.18 | < 1.59 | < 3.08 | < 1.56       | < 2.81 | < 0.262 | < 1.84 | < 1.77 | < 6.18 | < 1.89 |
| Station 14<br>(Indicator)                   | 04/04/2019         | < 1.56        | < 7.93 | < 5.35 | < 12.0 | < 7.86 | < 15.2 | < 6.48       | < 13.5 | < 0.687 | < 8.01 | < 7.46 | < 32.6 | < 8.22 |
| Station 57<br>(Control)                     | 04/04/2019         | < 1.65        | < 6.99 | < 5.58 | < 16.5 | < 7.05 | < 11.5 | < 6.41       | < 12.3 | < 0.522 | < 5.63 | < 6.26 | < 25.7 | < 13.0 |
| Station 14<br>(Indicator)                   | 07/02/2019         | < 1.57        | < 4.70 | < 6.67 | < 11.0 | < 5.91 | < 9.30 | < 5.47       | < 9.10 | < 0.846 | < 5.05 | < 6.37 | < 20.2 | < 9.20 |
| Station 57<br>(Control)                     | 07/02/2019         | 1.83          | < 6.10 | < 8.43 | < 10.1 | < 7.68 | < 13.8 | < 7.42       | < 11.9 | < 0.696 | < 8.60 | < 8.04 | < 28.3 | < 8.53 |
| Station 14<br>(Indicator)                   | 10/08/2019         | < 1.78        | < 5.74 | < 4.20 | < 11.5 | < 3.36 | < 8.78 | < 5.07       | < 8.56 | < 0.779 | < 6.20 | < 5.83 | < 25.4 | < 9.95 |
| Station 57<br>(Control)                     | 10/08/2019         | 2.12          | < 5.04 | < 5.41 | < 12.8 | < 5.42 | < 13.5 | < 7.18       | < 8.31 | < 0.888 | < 7.59 | < 6.35 | < 30.4 | < 9.44 |

|--|

# Attachment 2

Page 9 of 13

| Table 17 – Drinking Water – Tritium |        |             |             |  |  |  |  |
|-------------------------------------|--------|-------------|-------------|--|--|--|--|
| Analysis: H-3                       |        | Ur          | iits: pCi/L |  |  |  |  |
| Location                            | Colle  | ection Date | H-3         |  |  |  |  |
|                                     | REQUIF | RED LLD 🗲   | 2000        |  |  |  |  |
| Station 14 (Indicator)              | 01     | /01/2019    | < 377       |  |  |  |  |
| Station 57 (Control)                | 01     | /01/2019    | < 383       |  |  |  |  |
| Station 14 (Indicator)              | 04     | /04/2019    | < 328       |  |  |  |  |
| Station 57 (Control)                | 04     | /04/2019    | < 320       |  |  |  |  |
| Station 14 (Indicator)              | 07     | /02/2019    | < 324       |  |  |  |  |
| Station 57 (Control)                | 07     | /02/2019    | < 323       |  |  |  |  |
| Station 14 (Indicator)              | 10     | /08/2019    | < 341       |  |  |  |  |
| Station 57 (Control)                | 10     | /08/2019    | < 337       |  |  |  |  |

| Table 18 – Sediment   |                 |        |        |  |  |  |  |
|-----------------------|-----------------|--------|--------|--|--|--|--|
| Analysis: Gamr        | Units: pCi/kg   |        |        |  |  |  |  |
| Location              | Collection Date | Cs-134 | Cs-137 |  |  |  |  |
| <u> </u>              | 150             | 180    |        |  |  |  |  |
| Station 8 (Indicator) | 08/23/2019      | < 106  | 253    |  |  |  |  |
| Station 16 (Control)  | 08/23/2019      | < 106  | < 91   |  |  |  |  |

| Table 19 – Fish          |                  |         |                  |        |        |        |        |        |  |  |  |
|--------------------------|------------------|---------|------------------|--------|--------|--------|--------|--------|--|--|--|
| А                        | nalysis: Gamma l | sotopic | Units: pCi/kg    |        |        |        |        |        |  |  |  |
| Location                 | Collection Date  | Mn-54   | 54 Co-58 Fe-59 ( |        |        | Zn-65  | Cs-134 | Cs-137 |  |  |  |
| REQUIRED LLD ->          |                  | 130     | 130              | 260    | 130    | 260    | 130    | 150    |  |  |  |
| Station 8<br>(Indicator) | 04/05/2019       | < 29.5  | < 30.4           | < 52.4 | < 40.8 | < 74.1 | < 28.2 | < 28.6 |  |  |  |
| Station 16<br>(Control)  | 06/14/2019       | < 50.3  | < 75.8           | < 139  | < 70.1 | < 141  | < 47.1 | < 53.3 |  |  |  |

| Plant: Arkansas Nuclear One Year: 2019 Page 36 of 55 |
|------------------------------------------------------|
|------------------------------------------------------|

# Attachment 2

Page 10 of 13

| Table 20 – Food Products |                |               |        |        |  |  |  |  |
|--------------------------|----------------|---------------|--------|--------|--|--|--|--|
| Analysis: I-131, G       | amma Isotopic  | Units: pCi/kg |        |        |  |  |  |  |
| Location Collection Date |                | I-131         | Cs-134 | Cs-137 |  |  |  |  |
|                          | REQUIRED LLD → | 60            | 60     | 80     |  |  |  |  |
| Station 13 (Indicator)   | 06/18/2019     | < 50.6        | < 47.1 | < 43.1 |  |  |  |  |
| Station 55 (Control)     | 06/18/2019     | < 38.5        | < 36.5 | < 38.7 |  |  |  |  |
| Station 13 (Indicator)   | 07/16/2019     | < 44.3        | < 29.9 | < 33.6 |  |  |  |  |
| Station 55 (Control)     | 07/16/2019     | < 40.5        | < 39.5 | < 38.8 |  |  |  |  |
| Station 13 (Indicator)   | 08/13/2019     | < 42.4        | < 24.9 | < 33.0 |  |  |  |  |
| Station 55 (Control)     | 08/13/2019     | < 44.2        | < 33.4 | < 33.4 |  |  |  |  |

| Plant: Arkansas Nuclear One | Year: 2019 | Page 37 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

### Attachment 2

Page 11 of 13

|                                             | Table 21 – Groundwater - Gamma and Iodine |                         |        |        |        |        |        |        |              |        |        |        |        |        |
|---------------------------------------------|-------------------------------------------|-------------------------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|
| Analysis: Gross Beta, I-131, Gamma Isotopic |                                           |                         |        |        |        |        |        |        | Units: pCi/L |        |        |        |        |        |
| Location                                    | Collection<br>Date                        | Gr-B                    | Mn-54  | Co-58  | Fe-59  | Co-60  | Zn-65  | Nb-95  | Zr-95        | I-131  | Cs-134 | Cs-137 | Ba-140 | La-140 |
| REQUIR                                      | ED LLD 🗲                                  | N/A <sup>[Note 1]</sup> | 15     | 15     | 30     | 15     | 30     | 15     | 30           | 15     | 15     | 18     | 60     | 15     |
| Station 58<br>(Control)                     | 3/13/2019                                 | < 2.55                  | < 6.12 | < 6.52 | < 11.3 | < 7.23 | < 11.8 | < 7.35 | < 13.0       | < 13.9 | < 7.91 | < 6.22 | < 34.8 | < 13.5 |
| Station 62<br>(Control)                     | 3/12/2019                                 | 4.01                    | < 5.54 | < 6.76 | < 15.8 | < 5.76 | < 14.2 | < 6.97 | < 8.45       | < 14.2 | < 7.78 | < 7.35 | < 34.7 | < 12.2 |
| Station 63<br>(Indicator)                   | 3/12/2019                                 | < 1.65                  | < 6.46 | < 6.25 | < 13.9 | < 6.56 | < 10.5 | < 8.32 | < 9.80       | < 12.5 | < 7.87 | < 5.94 | < 39.2 | < 10.4 |
| Station 64<br>(Indicator)                   | 3/13/2019                                 | < 2.26                  | < 5.09 | < 5.91 | < 14.1 | < 6.13 | < 11.3 | < 7.98 | < 11.4       | < 11.3 | < 5.33 | < 5.06 | < 29.1 | < 14.3 |
| Station 58<br>(Control)                     | 6/11/2019                                 | < 2.41                  | < 6.41 | < 5.39 | < 13.7 | < 6.08 | < 13.7 | < 5.75 | < 9.24       | < 12.8 | < 6.44 | < 5.47 | < 26.0 | < 10.5 |
| Station 62<br>(Control)                     | 6/11/2019                                 | < 3.75                  | < 5.45 | < 5.27 | < 12.1 | < 5.71 | < 11.3 | < 4.75 | < 11.3       | < 14.0 | < 6.52 | < 7.24 | < 31.4 | < 10.3 |
| Station 63<br>(Indicator)                   | 6/11/2019                                 | < 3.76                  | < 6.68 | < 5.36 | < 11.1 | < 4.87 | < 7.24 | < 6.45 | < 12.6       | < 12.0 | < 7.13 | < 5.23 | < 25.9 | < 11.2 |
| Station 64<br>(Indicator)                   | 6/12/2019                                 | < 3.27                  | < 6.08 | < 6.99 | < 11.5 | < 6.30 | < 15.3 | < 6.80 | < 9.58       | < 11.5 | < 6.15 | < 5.94 | < 27.1 | < 11.4 |
| Station 58<br>(Control)                     | 9/10/2019                                 | < 1.90                  | < 5.50 | < 6.55 | < 11.2 | < 6.39 | < 13.3 | < 6.40 | < 11.9       | < 12.4 | < 6.62 | < 6.69 | < 28.8 | < 10.3 |
| Station 62<br>(Control)                     | 9/10/2019                                 | < 3.64                  | < 3.91 | < 3.78 | < 8.38 | < 4.90 | < 6.91 | < 4.04 | < 6.80       | < 7.92 | < 4.04 | < 4.24 | < 17.1 | < 6.96 |

| Plant: Arkansas Nuclear One                         | Year: 2019 | Page 38 of 55 |  |  |  |  |
|-----------------------------------------------------|------------|---------------|--|--|--|--|
| Annual Dedials rised Environmental Onemating Depart |            |               |  |  |  |  |

### Attachment 2

Page 12 of 13

### Monitoring Results Tables

| Table 21 – Groundwater - Gamma and Iodine   |                    |                         |        |        |        |        |        |              |        |        |        |        |        |        |
|---------------------------------------------|--------------------|-------------------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|
| Analysis: Gross Beta, I-131, Gamma Isotopic |                    |                         |        |        |        |        |        | Units: pCi/L |        |        |        |        |        |        |
| Location                                    | Collection<br>Date | Gr-B                    | Mn-54  | Co-58  | Fe-59  | Co-60  | Zn-65  | Nb-95        | Zr-95  | I-131  | Cs-134 | Cs-137 | Ba-140 | La-140 |
| REQUIR                                      | ED LLD 🗲           | N/A <sup>[Note 1]</sup> | 15     | 15     | 30     | 15     | 30     | 15           | 30     | 15     | 15     | 18     | 60     | 15     |
| Station 63<br>(Indicator)                   | 9/10/2019          | < 3.62                  | < 4.82 | < 7.27 | < 12.3 | < 7.37 | < 11.1 | < 6.88       | < 10.5 | < 12.7 | < 7.24 | < 7.15 | < 28.5 | < 11.2 |
| Station 64<br>(Indicator)                   | 9/11/2019          | 2.86                    | < 2.90 | < 2.99 | < 6.15 | < 3.00 | < 6.61 | < 3.40       | < 5.83 | < 5.77 | < 3.50 | < 3.25 | < 16.4 | < 5.10 |
| Station 58<br>(Control)                     | 12/10/2019         | 2.52                    | < 7.74 | < 6.81 | < 12.8 | < 6.62 | < 13.2 | < 7.38       | < 12.7 | < 10.7 | < 8.52 | < 6.12 | < 33.0 | < 13.0 |
| Station 62<br>(Control)                     | 12/10/2019         | 3.08                    | < 6.47 | < 5.82 | < 13.0 | < 9.24 | < 13.1 | < 6.16       | < 14.4 | < 10.0 | < 8.63 | < 7.24 | < 26.6 | < 8.45 |
| Station 63<br>(Indicator)                   | 12/10/2019         | < 3.91                  | < 7.31 | < 6.03 | < 12.3 | < 8.49 | < 14.8 | < 7.26       | < 11.8 | < 11.1 | < 6.76 | < 7.18 | < 24.3 | < 12.4 |
| Station 64<br>(Indicator)                   | 12/11/2019         | < 2.95                  | < 6.15 | < 7.01 | < 16.5 | < 7.35 | < 17.0 | < 9.35       | < 11.5 | < 10.4 | < 7.92 | < 6.59 | < 27.2 | < 7.48 |

[Note 1] – Per ANO's ODCM there is no LLD for groundwater or a reportable detectable concentration.

# Attachment 2

# Page 13 of 13

| Table 22 – Groundwater – Tritium |        |           |            |     |  |  |  |
|----------------------------------|--------|-----------|------------|-----|--|--|--|
| Analysis: H-3                    |        | Uni       | its: pCi/L |     |  |  |  |
| Location                         | Collec | tion Date | н          | -3  |  |  |  |
| REQUIRED                         | LLD 🗲  |           | 30         | 00  |  |  |  |
| Station 58 (Control)             | 3/1    | 3/2019    | < 3        | 00  |  |  |  |
| Station 62 (Control)             | 3/1    | 2/2019    | < 2        | 97  |  |  |  |
| Station 63 (Indicator)           | 3/1    | 2/2019    | < 2        | 99  |  |  |  |
| Station 64 (Indicator)           | 3/1    | 3/2019    | < 3        | 603 |  |  |  |
| Station 58 (Control)             | 6/1    | 1/2019    | < 3        | 60  |  |  |  |
| Station 62 (Control)             | 6/1    | 1/2019    | < 3        | 58  |  |  |  |
| Station 63 (Indicator)           | 6/1    | 1/2019    | < 3        | 55  |  |  |  |
| Station 64 (Indicator)           | 6/1    | 2/2019    | < 3        | 62  |  |  |  |
| Station 58 (Control)             | 9/1    | 0/2019    | < 3        | 61  |  |  |  |
| Station 62 (Control)             | 9/1    | 0/2019    | < 3        | 64  |  |  |  |
| Station 63 (Indicator)           | 9/1    | 0/2019    | < 3        | 58  |  |  |  |
| Station 64 (Indicator)           | 9/1    | 1/2019    | < 3        | 58  |  |  |  |
| Station 58 (Control)             | 12/2   | 10/2019   | < 3        | 68  |  |  |  |
| Station 62 (Control)             | 12/2   | 0/2019    | < 3        | 371 |  |  |  |
| Station 63 (Indicator)           | 12/1   | 0/2019    | < 3        | 69  |  |  |  |
| Station 64 (Indicator)           | 12/1   | 1/2019    | < 3        | 377 |  |  |  |

| Plant: Arkansas Nuclear One | Year: 2019 | Page 40 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

### Attachment 3

Page 1 of 3

### Interlaboratory Comparison Program Results

#### 1.0 SUMMARY

#### 1.1 <u>Summary of Results – Inter-laboratory Comparison Program (ICP)</u>

The TBE Laboratory analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation, and water matrices for various analytes. The PE samples supplied by Analytics Inc., Environmental Resource Associates (ERA) and Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of TBE's result and Analytics' known value. Since flag values are not assigned by Analytics, TBE evaluates the reported ratios based on internal Quality Control (QC) requirements based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the United States Environmental Protection Agency (US EPA), National Environmental Laboratory Accreditation Conference (NELAC), state-specific Performance Testing (PT) program requirements, or ERA's Standard Operating Procedure (SOP) for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values. MAPEP defines three levels of performance:

- Acceptable (flag = "A") result within ± 20% of the reference value
- Acceptable with Warning (flag = "W") result falls in the ± 20% to ± 30% of the reference value
- Not Acceptable (flag = "N") bias is greater than 30% of the reference value
- *Note:* The DOE MAPEP samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

| Plant: Arkansas Nuclear One | Year: 2019 | Page 41 of 55 |
|-----------------------------|------------|---------------|
|-----------------------------|------------|---------------|

### Attachment 3

Page 2 of 3

### Interlaboratory Comparison Program Results

- 4. For the TBE laboratory, 119 out of 129 analyses performed met the specified acceptance criteria. Ten analyses did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program. A summary is included below:
  - a. The ERA April 2019 water Cs-134 result was evaluated as Not Acceptable. The reported value was 15.2 pCi/L (error 2.82 pCi/L) and the known result was 12.1 pCi/L (acceptance range of 8.39 14.4 pCi/L). With the error, the reported result overlaps the acceptable range. This sample was run as the workgroup duplicate on a different detector with a result of 10.7 pCi/L (within acceptable range). (NCR 19-10)
  - b. The ERA April 2019 water Sr-89 result was evaluated as Not Acceptable. The reported value was 44.9 pCi/L and the known result was 33.3 pCi/L (acceptance range of 24.5 40.1 pCi/L). The sample was only counted for 15 minutes instead of 200 minutes. The sample was re-prepped in duplicate and counted for 200 minutes with results of 30.7 ± 5.37 pCi/L and 33.0 ± 8.71 pCi/L. This was the 1st "high" failure for Sr-89 in 5 years. (NCR 19-11)
  - c. The MAPEP February 2019 soil Sr-90 result was not submitted and therefore evaluated as Not Acceptable. The sample was run in duplicate, with results of 1.32 ± 4.09 Bq/kg (< 6.87) and -1.030 ± 3.55 Bq/kg (< 5.97). The known result was a false positive test (no significant activity). TBE did not submit a result because it appeared that the results may not be accurate. TBE analyzed a substitute soil Sr-90 sample from another vendor, with a result within the acceptable range. (NCR 19-12)</p>
  - d. The MAPEP February 2019 water Am-241 result was evaluated as Not Acceptable. The reported value was 0.764 ± 0.00725 Bq/L with a known result of 0.582 Bq/L (acceptable range 0.407 - 0.757 Bq/L). TBE's result falls within the upper acceptable range with the error. It appeared that a non-radiological interference was added and lead to an increased mass and higher result. (NCR 19-13)
  - e. The MAPEP February 2019 vegetation Sr-90 result was evaluated as Not Acceptable. The reported result was -0.1060 ± 0.0328 Bq/kg and the known result was a false positive test (no significant activity). TBE's result was correct in that there was no activity. MAPEP's evaluation was a "statistical failure" at 3 standard deviations. (NCR 19-14)
  - f. The ERA October 2019 water Gross Alpha result was evaluated as Not Acceptable. TBE's reported result was 40.5 ± 10.3 pCi/L and the known result was 27.6 pCi/L (ratio of TBE to known result at 135%). With the associated error, the result falls within the acceptable range (14.0 - 36.3 pCi/L). The sample was run as the workgroup duplicate on a different detector with a result of 30.8 ± 9.17 pCi/L (within the acceptable range). This was the first failure for drinking water Gr-A since 2012. (NCR 19-23)
  - g. The ERA October 2019 water Sr-90 result was evaluated as Not Acceptable. TBE's reported result was 32.5 ± 2.12 pCi/L and the known result was 26.5 pCi/L (ratio of TBE to known result at 123%). With the associated error, the result falls within the

| Plant: Arkansas Nuclear One | Year: 2019 | Page 42 of 55 |
|-----------------------------|------------|---------------|
|-----------------------------|------------|---------------|

#### Attachment 3

Page 3 of 3

### Interlaboratory Comparison Program Results

acceptable range (19.2 - 30.9 pCi/L). The sample was run as the workgroup duplicate on a different detector with a result of 20.0  $\pm$  1.91 pCi/L (within the acceptable range). Both TBE results are within internal QC limits. A substitute "quick response" sample was analyzed with an acceptable result of 20.1 pCi/L (known range of 13.2 - 22.1 pCi/L). (NCR 19-24)

- h. The ERA October 2019 water Sr-90 result was evaluated as Not Acceptable. TBE's reported result was 32.5 ± 2.12 pCi/L and the known result was 26.5 pCi/L (ratio of TBE to known result at 123%). With the associated error, the result falls within the acceptable range (19.2 30.9 pCi/L). The sample was run as the workgroup duplicate on a different detector with a result of 20.0 ± 1.91 pCi/L (within the acceptable range). Both TBE results are within internal QC limits. A substitute "quick response" sample was analyzed with an acceptable result of 20.1 pCi/L (known range of 13.2 22.1 pCi/L). (NCR 19-24)
- The MAPEP August 2019 water Am-241 result was not reported and therefore evaluated as Not Acceptable. Initial review of the results showed a large peak where Am-241 should be (same as the February, 2019 sample results). It is believed that Th-228 was intentionally added as an interference. The sample was re-prepped and analyzed using a smaller sample aliquot. The unusual large peak (Th-228) was seen again along with a smaller peak (Am-241). The result was 436 ± 22.8 Bq/L (acceptable range 0.365 ± 0.679 Bq/L). Th-228 is not a typical nuclide requested by clients, so there is no analytical purpose to take samples through an additional separation step. TBE will pursue using another vendor for Am-241 water cross-checks that more closely reflects actual customer samples. (NCR 19-26)
- j. The Analytics September 2019 soil Cr-51 sample was evaluated as Not Acceptable. TBE's reported result of 0.765 ± 0.135 pCi/g exceeded the upper acceptance range (140% of the known result of 0.547 pCi/g). The TBE result was within the acceptable range (0.63 - 0.90 pCi/g) with the associated error. The Cr-51 result is very close to TBE's normal detection limit. In order to get a reportable result, the sample must be counted for 15 hours (10x longer than client samples). There is no client or regulatory requirement for this nuclide and TBE will remove Cr-51 from the reported gamma nuclides going forward. (NCR 19-27)
- 5. The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 43 of 55 |  |
|----------------------------------------------------|------------|---------------|--|
| Annual Radiological Environmental Operating Report |            |               |  |

Page 1 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### ENVIRONMENTAL DOSIMETRY COMPANY

#### ANNUAL QUALITY ASSURANCE STATUS REPORT

January - December 2019

10 Ashton Lane Sterling, MA 01564

| Plant: Arkansas Nuclear One | Year: 2019 | Page 44 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

#### Attachment 4

Page 2 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### 1.0 EXECUTIVE SUMMARY

Routine quality control (QC) testing was performed for dosimeters issued by the Environmental Dosimetry Company (EDC).

During this annual period 100% (72/72) of the individual dosimeters evaluated against the EDC internal performance acceptance criteria (high-energy photons only) met the criterion for accuracy and 100% (72/72) met the criterion for precision (Table 1). In addition, 100% (12/12) of the dosimeter sets evaluated against the internal tolerance limits met EDC acceptance criteria (Table 2) and 100% (6/6) of independent testing passed the performance criteria (Table 3). Trending graphs, which evaluate performance statistic for high-energy photon irradiations and co-located stations, are given in Appendix A.

One internal assessment and one external audit were performed in 2019. There were no findings identified.

### 2.0 INTRODUCTION

The Thermoluminescent Dosimeter (TLD) systems at the EDC are calibrated and operated to ensure consistent and accurate evaluation of TLDs. The quality of the dosimetric results reported to EDC clients is ensured by in house performance testing and independent performance testing by EDC clients, and both internal and client directed program assessments.

The purpose of the dosimetry quality assurance (QA) program is to provide performance documentation of the routine processing of EDC dosimeters. Performance testing provides a statistical measure of the bias and precision of dosimetry processing against a reliable standard, which in turn points out any trends or performance changes. Two programs are used:

### 2.1 QC Program

Dosimetry quality control tests are performed on EDC Panasonic 814 Environmental dosimeters. These tests include: (1) the in house testing program coordinated by the EDC QA Officer and (2) independent test perform by EDC clients. In-house test are performed using six pairs of 814 dosimeters; a pair is reported as an individual result and six pairs are reported as the mean result. Results of these tests are described in this report.

Excluded from this report are instrumentation checks. Although instrumentation checks represent an important aspect of the quality assurance program, they are not included as process checks in this report. Instrumentation checks represent between 5-10% of the TLDs processed.

| Plant: Arkansas Nuclear One | Year: 2019 | Page 45 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

#### Attachment 4

Page 3 of 13

### Environmental Dosimetry Company Interlaboratory Comparison Program Report

### 2.2 QA Program

An internal assessment of dosimetry activities is conducted annually by the Quality Assurance Officer (Reference 1). The purpose of the assessment is to review procedures, results, materials or components to identify opportunities to improve or enhance processes and/or services.

### 3.0 PERFORMANCE EVALUATION CRITERIA

### 3.1 Acceptance Criteria for Internal Evaluations

1. Bias

For each dosimeter tested, the measure of bias is the percent deviation of the reported result relative to the delivered exposure. The percent deviation relative to the delivered exposure is calculated as follows:

$$\frac{\left(H_{i}^{\prime}-H_{i}\right)}{H_{i}}100$$

Where:

- H'<sub>i</sub> = the corresponding reported exposure for the ith dosimeter (i.e., the reported exposure)
- H<sub>i</sub> = the exposure delivered to the ith irradiated dosimeter (i.e., the delivered exposure)
- 2. Mean Bias

For each group of test dosimeters, the mean bias is the average percent deviation of the reported result relative to the delivered exposure. The mean percent deviation relative to the delivered exposure is calculated as follows:

$$\sum \! \left( \frac{\left( H_i' - H_i \right)}{H_i} \right) \! 100 \! \left( \frac{1}{n} \right)$$

Where:

- H'<sub>1</sub> = the corresponding reported exposure for the ith dosimeter (i.e., the reported exposure)
- H<sub>i</sub> = the exposure delivered to the ith irradiated test dosimeter (i.e., the delivered exposure)
- n = the number of dosimeters in the test group

| Plant: Arkansas Nuclear One | Year: 2019 | Page 46 of 55 |
|-----------------------------|------------|---------------|
|                             |            |               |

### Attachment 4

Page 4 of 13

### Environmental Dosimetry Company Interlaboratory Comparison Program Report

3. Precision

For a group of test dosimeters irradiated to a given exposure, the measure of precision is the percent deviation of individual results relative to the mean reported exposure. At least two values are required for the determination of precision. The measure of precision for the ith dosimeter is:

$$\sum \left(\frac{\left(\mathsf{H}_{i}^{\prime}-\mathsf{H}_{i}\right)}{\mathsf{H}_{i}}\right) 100 \left(\frac{1}{\mathsf{n}}\right)$$

Where:

- H'<sub>i</sub> = the reported exposure for the ith dosimeter (i.e., the reported exposure)
- $H_i$  = the mean reported exposure; i.e.
- n = the number of dosimeters in the test group
- 4. EDC Internal Tolerance Limits

All evaluation criteria are taken from the "EDC Quality System Manual," (Reference 2). These criteria are only applied to individual test dosimeters irradiated with high-energy photons (Cs 137) and are as follows for Panasonic Environmental dosimeters:  $\pm$  15% for bias and  $\pm$  12.8% for precision.

### 3.2 QC Investigation Criteria and Result Reporting

EDC Quality System Manual (Reference 2) specifies when an investigation is required due to a QC analysis that has failed the EDC bias criteria. The criteria are as follows:

- 1. No investigation is necessary when an individual QC result falls outside the QC performance criteria for accuracy.
- 2. Investigations are initiated when the mean of a QC processing batch is outside the performance criterion for bias.

### 3.3 <u>Reporting of Environmental Dosimetry Results to EDC Customers</u>

- 1. All results are to be reported in a timely fashion.
- 2. If the QA Officer determines that an investigation is required for a process, the results shall be issued as normal. If the QC results prompting the investigation have a mean bias from the known of greater than ± 20%, the results shall be issued with a note indicating that they may be updated in the future, pending resolution of a QA issue.
- 3. Environmental dosimetry results do not require updating if the investigation has shown that the mean bias between the original results and the corrected results, based on applicable correction factors from the investigation, does not exceed ± 20%.

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 47 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

Page 5 of 13

**Environmental Dosimetry Company Interlaboratory Comparison Program Report** 

### 4.0 DATA SUMMARY FOR ISSUANCE PERIOD JANUARY-DECEMBER 2019

#### 4.1 <u>General Discussion</u>

Results of performance tests conducted are summarized and discussed in the following sections. Summaries of the performance tests for the reporting period are given in Tables 1 through 3 and Figures 1 through 4.

Table 1 provides a summary of individual dosimeter results evaluated against the EDC internal acceptance criteria for high-energy photons only. During this period 100% (72/72) of the individual dosimeters evaluated against these criteria met the tolerance limits for accuracy and 100% (72/72) met the criterion for precision. A graphical interpretation is provided in Figures 1 and 2.

Table 2 provides the bias and standard deviation results for each group (N=6) of dosimeters evaluated against the internal tolerance criteria. Overall, 100% (12/12) of the dosimeter sets evaluated against the internal tolerance performance criteria met these criteria. A graphical interpretation is provided in Figure 3.

Table 3 presents the independent blind spike results for dosimeters processed during this annual period. All results passed the performance acceptance criterion. Figure 4 is a graphical interpretation of Seabrook Station blind co-located station results.

#### 4.2 Result Trending

One of the main benefits of performing quality control tests on a routine basis is to identify trends or performance changes. The results of the Panasonic environmental dosimeter performance tests are presented in Appendix A. The results are evaluated against each of the performance criteria listed in Section II, namely: individual dosimeter accuracy, individual dosimeter precision, and mean bias.

All of the results presented in Appendix A are plotted sequentially by processing date.

#### 5.0 STATUS OF EDC CONDITION REPORTS (CR)

No condition reports were issued during this annual period.

#### 6.0 STATUS OF AUDITS/ASSESSMENTS

1. Internal

EDC Internal Quality Assurance Assessment was conducted during the fourth quarter 2019. There were no findings identified.

2. External

None.

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 48 of 55 |
|----------------------------------------------------|------------|---------------|
| Annual Radiological Environmental Operating Report |            |               |

Page 6 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### 7.0 PROCEDURES AND MANUALS REVISED DURING JANUARY - DECEMBER 2018

No procedures or manuals were revised in 2019.

#### 8.0 CONCLUSION AND RECOMMENDATIONS

The quality control evaluations continue to indicate the dosimetry processing programs at the EDC satisfy the criteria specified in the Quality System Manual. The EDC demonstrated the ability to meet all applicable acceptance criteria.

#### 9.0 REFERENCES

- 1. EDC Quality Control and Audit Assessment Schedule, 2019.
- 2. EDC Manual 1, Quality System Manual, Rev. 3, August 1, 2017.

### TABLE 1

#### PERCENTAGE OF INDIVIDUAL DOSIMETERS THAT PASSED EDC INTERNAL CRITERIA JANUARY – DECEMBER 2019<sup>(1), (2)</sup>

| Dosimeter Type          | Number Tested | % Passed Bias<br>Criteria | % Passed Precision<br>Criteria |
|-------------------------|---------------|---------------------------|--------------------------------|
| Panasonic Environmental | 72            | 100                       | 100                            |

<sup>(1)</sup> This table summarizes results of tests conducted by EDC.

<sup>(2)</sup> Environmental dosimeter results are free in air.

| Plant: Arkansas Nuclear One | Year: 2019 | Page 49 of 55 |
|-----------------------------|------------|---------------|
|-----------------------------|------------|---------------|

#### Attachment 4

Page 7 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### TABLE 2

# MEAN DOSIMETER ANALYSES (N=6) JANUARY – DECEMBER 2019<sup>(1), (2)</sup>

| Process Date | Exposure Level | Mean Bias % | Standard<br>Deviation % | Tolerance<br>Limit +/-15% |
|--------------|----------------|-------------|-------------------------|---------------------------|
| 4/25/2019    | 26             | 1.8         | 1.7                     | Pass                      |
| 4/29/2019    | 51             | 3.1         | 1.5                     | Pass                      |
| 5/04/2019    | 85             | -0.4        | 1.4                     | Pass                      |
| 7/28/2019    | 75             | 5.9         | 1.1                     | Pass                      |
| 7/30/2019    | 32             | 2.8         | 1.2                     | Pass                      |
| 8/4/2019     | 107            | -0.7        | 1.2                     | Pass                      |
| 10/25/2019   | 64             | 1.8         | 1.2                     | Pass                      |
| 11/04/2019   | 90             | -0.5        | 1.8                     | Pass                      |
| 11/05/2019   | 117            | 3.0         | 1.7                     | Pass                      |
| 01/20/2020   | 45             | 1.0         | 2.0                     | Pass                      |
| 01/30/2020   | 57             | 1.8         | 2.6                     | Pass                      |
| 02/17/2020   | 121            | -2.6        | 2.4                     | Pass                      |

<sup>(1)</sup> This table summarizes results of tests conducted by EDC for TLDs issued in 2019.

<sup>(2)</sup> Environmental dosimeter results are free in air.

|  | Plant: Arkansas Nuclear One | Year: 2019 | Page 50 of 55 |
|--|-----------------------------|------------|---------------|
|--|-----------------------------|------------|---------------|

#### Attachment 4

Page 8 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### TABLE 3

#### SUMMARY OF INDEPENDENT DOSIMETER TESTING JANUARY – DECEMBER 2019<sup>(1), (2)</sup>

| Issuance Period | Client      | Mean Bias % | Standard<br>Deviation % | Pass / Fail |
|-----------------|-------------|-------------|-------------------------|-------------|
| 1st Qtr. 2019   | Millstone   | 0.6         | 2.6                     | Pass        |
| 2nd Qtr.2019    | Seabrook    | 7.8         | 2.0                     | Pass        |
| 3rd Qtr. 2019   | SONGS       | 0.1         | 2.4                     | Pass        |
| 3rd Qtr. 2019   | Millstone   | 1.1         | 1.9                     | Pass        |
| 4th Qtr.2019    | PSEG (PNNL) | -3.2        | 0.9                     | Pass        |
| 4th Qtr.2019    | Seabrook    | 0.9         | 1.0                     | Pass        |

<sup>(1)</sup> Performance criteria are +/- 15%.

(2) Blind spike irradiations using Cs-137

| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 51 of 55 |  |
|----------------------------------------------------|------------|---------------|--|
| Annual Radiological Environmental Operating Report |            |               |  |

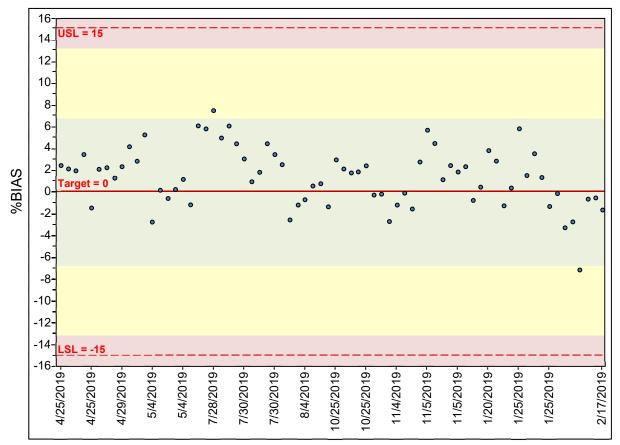
Page 9 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

## APPENDIX A

### DOSIMETRY QUALITY CONTROL TRENDING GRAPHS

# **ISSUE PERIOD JANAURY - DECEMBER 2019**


| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 52 of 55 |  |
|----------------------------------------------------|------------|---------------|--|
| Annual Radiological Environmental Operating Report |            |               |  |

Page 10 of 13

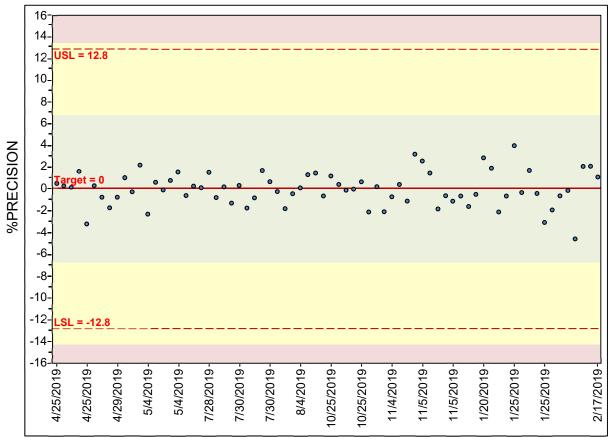
Environmental Dosimetry Company Interlaboratory Comparison Program Report

### FIGURE 1

#### INDIVIDUAL ACCURACY ENVIRONMENTAL



**Processing Date** 


| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 53 of 55 |  |
|----------------------------------------------------|------------|---------------|--|
| Annual Radiological Environmental Operating Report |            |               |  |

Page 11 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### **FIGURE 2**

### INDIVIDUAL PRECISION ENVIRONMENTAL



**PROCESSING DATE** 


| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 54 of 55 |  |
|----------------------------------------------------|------------|---------------|--|
| Annual Radiological Environmental Operating Report |            |               |  |

Page 12 of 13

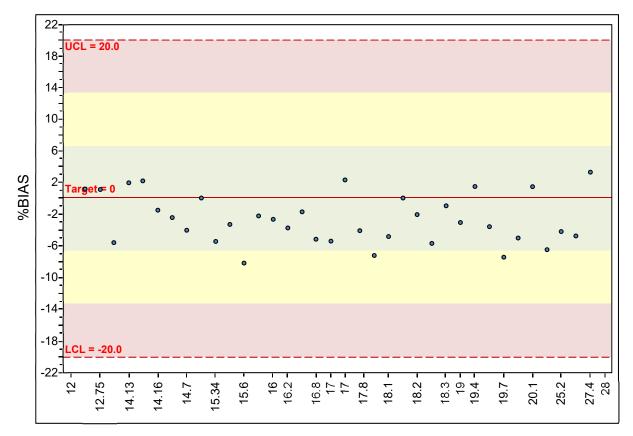
Environmental Dosimetry Company Interlaboratory Comparison Program Report

### FIGURE 3

#### MEAN ACCURACY ENVIRONMENTAL



PROCESSING DATE


| Plant: Arkansas Nuclear One                        | Year: 2019 | Page 55 of 55 |  |
|----------------------------------------------------|------------|---------------|--|
| Annual Radiological Environmental Operating Report |            |               |  |

Page 13 of 13

Environmental Dosimetry Company Interlaboratory Comparison Program Report

### **FIGURE 4**

### SEABROOK CO-LOCATE ACCURACY



EXPECTED FIELD EXPOSURE (mR/STD. QUARTER)