

FEB 2 4 2020

L-2020-029 10 CFR 50.36a

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

Re: St. Lucie Units 1 and 2 Docket Nos. 50-335 and 50-389 2019 Annual Radioactive Effluent Release Report

Pursuant to 10 CFR 50.36a(a)(2) and Technical Specification (TS) 6.9.1.7, enclosed is the 2019 Annual Radioactive Effluent Release Report for St. Lucie Units 1 and 2. The report provides information for the 12-month period beginning January 1, 2019 and ending December 31, 2019.

Enclosure 1 includes the Combined Annual Radioactive Effluent Release Report. Enclosure 2 is a copy of *C-200, Offsite Dose Calculation Manual (ODCM), Revision 53.*

Please contact Richard Sciscente at 772-467-7156 with any questions regarding this submittal.

Sincerely,

W∮att Gódes Licensing Manager St. Lucie Plant

WG/rcs

Enclosures

Florida Power & Light Company

ENCLOSURE 1

COMBINED ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT (11 PAGES)

FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNITS 1 AND 2 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT JANUARY 1, 2019 THROUGH DECEMBER 31, 2019

1.0 PROGRAM DESCRIPTION

2.0 SUPPLEMENTAL INFORMATION

- 2.1 Abnormal Releases or Abnormal Discharges
- 2.2 Non-Routine Planned Discharges
- 2.3 Radioactive Waste Treatment System Changes
- 2.4 Annual Land Use Census Changes
- 2.5 Effluent Monitoring System Inoperability
- 2.6 Offsite Dose Calculation Manual Changes
- 2.7 Process Control Program Changes
- 2.8 Corrections to Previous Reports
- 2.9 Other
- 2.10 Groundwater Protection Program

3.0 TABLES

- 3.1 Gaseous Effluents and Liquid Effluents
- 3.2 Solid Waste Storage and Shipments
- 3.3 Dose Assessments
- 3.4 Visitor Dose

1.0 PROGRAM DESCRIPTION

Regulatory Limits

The Offsite Dose Calculation Manual (ODCM) Radiological Effluent Control limits applicable to the release of radioactive material in liquid and gaseous effluents are described in the following sections.

Fission and Activation Gases (Noble Gases)

The dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site boundary shall be limited to less than or equal to 500 mrem/yr to the whole body and less than or equal to 3000 mrem/yr to the skin.

The air dose due to noble gases released in gaseous effluents, from each unit, to areas at and beyond the site boundary shall be limited to the following:

a. During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and
b. During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

Iodine-131, Iodine-133, Tritium, Carbon-14, and Radioactive Material in Particulate Form

The dose rate due to iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives greater than 8 days, released in gaseous effluents from the site to areas at and beyond the site boundary, shall be limited to less than or equal to 1500 mrem/yr to any organ.

The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, carbon-14, and all radionuclides in particulate form with half lives greater than 8 days in gaseous effluents released, from each unit, to areas at and beyond the site boundary, shall be limited to the following: **a**. During any calendar quarter: Less than or equal to 7.5 mrem to any organ, and

b. During any calendar year: Less than or equal to 15 mrem to any organ.

Liquid Effluents

The concentration of radioactive material released in liquid effluents to unrestricted areas shall be limited to 10 times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to $2.0E-4 \mu$ Ci/ml total activity. The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each unit, to unrestricted areas shall be limited:

a. During any calendar quarter to less than or equal to 1.5 mRem to the whole body and to less than or equal to 5 mrem to any organ, and
b. During any calendar year to less than or equal to 3 mRem to the whole body and to less than or equal to 10 mrem to any organ.

Total Dose

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrem.

Effluent Concentration Limits Gaseous Effluents

For gaseous effluents, effluent concentration limits (ECL) values are not directly used in release rate calculations since the applicable limits are expressed in terms of dose rate at the site boundary.

Liquid Effluents

The values specified in 10 CFR Part 20, Appendix B, Table 2, Column 2 are used as the ECL for liquid radioactive effluents released to unrestricted areas. A value of 2.0E-04 μ Ci/ml is used as the ECL for dissolved and entrained noble gases in liquid effluents.

Measurements and Approximations of Total Radioactivity

Measurements of total radioactivity in liquid and gaseous radioactive effluents were accomplished in accordance with the sampling and analysis requirements of Tables 4.11-1 and 4.11-2, respectively, of the St. Lucie ODCM. Estimates of errors are in accordance with Methodology Section 4.0.4, of the ODCM.

	LIQU	GASE	ASEOUS	
Error Topic	<u>Avg.</u>	<u>% Max. %</u>	Avg. 0	<u>% Max. %</u>
Release Point Mixing	2	5	NA	NA
Sampling	1	5	2	5
Sample Preparation	1	5	1	5
Sample Analysis	3	10	3	10
Release Volume	2	5	4	15
Total %	9	30	10	35

The estimate of errors associated with values reported are as follows:

(above values are examples only)

The predictability of error for radioactive releases can only be applied to nuclides that are predominant in sample spectrums. Nuclides that are near background relative to the predominant nuclides in a given sample could easily have errors greater than the above listed maximums.

Liquid Radioactive Effluents

Each batch release was sampled and analyzed for gamma emitting radionuclides using gamma spectroscopy, prior to release. Composite samples were analyzed monthly for tritium and gross alpha radioactivity in the onsite laboratory using liquid scintillation and air ion chamber counting techniques, respectively. Composite samples were analyzed quarterly for Sr-89, Sr-90, Fe-55, Ni-63 and C-14 by a contract laboratory. The results of the composite analyses from the previous month or quarter were used to estimate the quantities of these radionuclides in liquid effluents during the current month or quarter.

The total radioactivity in liquid effluent releases was determined from the measured and estimated concentrations of each radionuclide present and the total volume of the effluent released during periods of discharge.

Gaseous Radioactive Effluents

Each gaseous batch was sampled and analyzed for radioactivity prior to release. For releases from gas decay tanks, noble gas grab samples were analyzed for gamma emitting radionuclides using gamma spectroscopy. For releases from the reactor containment buildings, samples were taken of noble gas and tritium grab samples and analyzed for gamma emitting radionuclides prior to each release. The results of the analyses and the total volume of effluent released were used to determine the total amount of radioactivity released in the batch mode.

For continuous effluent release pathways, noble gas and tritium grab samples were collected and analyzed weekly for gamma emitting radionuclides by gamma spectroscopy and liquid scintillation counting techniques, respectively. Continuous release pathways were continuously sampled using radioiodine absorbers and particulate filters. The radioiodine absorbers and particulate filters were analyzed weekly for gamma emitting radionuclides using gamma spectroscopy. Results of the noble gas and tritium grab samples, radioiodine absorber and particulate filter analyses from the current week and the average effluent flow rate for the previous week were used to determine the total amount of radioactivity released in the continuous mode. The particulate filters were analyzed weekly for gross alpha activity in the onsite laboratory using the air ion chamber counting technique. Quarterly composites of particulate filters were analyzed for Sr-89 and Sr-90 by a contract laboratory.

Meteorological Monitoring Program

In accordance with ODCM Administrative Control 3.11.2.6.b., a summary of hourly meteorological data, collected during 2019, is retained onsite. This data is available for review by the NRC upon request. During 2019, the goal of 90% joint data recovery was met. Actual meteorological data collected during the year was used for the offsite dose calculations in this report.

Carbon-14 Dose Estimation

The estimate of Carbon-14 (C-14) released from the St. Lucie Nuclear Plant was derived from the EPRI document, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents", Report 1021106, issued December 2010.

The site specific source term values used in the St. Lucie calculations were taken from the PWR Section, Page 4-28 of the report, and employed the proxy generation rate values for a Combustion Engineering reactor. The actual 2019 operating data for the units was employed for the calculations to derive the total curies released for each unit.

The total amount of C-14 released in 2019 for Unit 1 was 8.08 Ci, and the total amount of C-14 released in 2019 for Unit 2 was 11.53 Ci.

The highest calculated dose exposure pathway from C-14 is "Bone Dose" to a "Child" from consumption of garden produce. A "Child" consuming vegetables and produce from the garden located at 2.0 miles in the West direction from the plant would have received a total combined "Bone Dose", from C-14, of 1.487E-01 mrem/yr.

Assessment of radiation dose from radioactive effluents to members of the public due to their activities inside the site boundary assumes the visitor to be a lifeguard at Walton Rocks Beach Recreation Area located 1 mile southeast of the site. Dose to the visitor on site for calendar year 2019 is found to be 1.28E-04 mrem/yr, Total Body dose. See Section 3.4, Dose Assessments, for more detail.

This is a fraction of the 1 mrem annual whole body dose received by the average US citizen from natural occurring Carbon-14, primarily generated through cosmogenesis in the terrestrial biosphere. (Reference National Council of Radiation Protection Report 45, Natural Background Radiation in the United States.)

All C-14 dose calculations are based on Regulatory Guide 1.109 values.

2.0 SUPPLEMENTAL INFORMATION

2.1 Abnormal Releases or Abnormal Discharges

2B GDT Unplanned Release - (AR#02328736)

• One abnormal (unplanned) gas decay tank discharge from the site occurred on September 21, 2019. Operations entered 2-AOP-06.04, Uncontrolled Release of Radioactive Gas, due to loss of 18 psig in a 12-hour period from the 2B Gas Decay Tank (GDT).

The 2B GDT Unplanned Release was accounted for using an Abnormal Gas Decay Release Permit, G-19-332-B. AR #02328736 was generated to document the unplanned GDT release to the auxiliary building which was monitored by an operable plant vent radiation monitor on the plant vent stack. No additional leaks have been identified since its return to service.

Nuclide	µCi/cc concentration	µCi released
Ar-41	1.63E-05	1.48E+02
Kr-88	2.53E-06	2.30E+01
Kr-85m	3.22E-06	2.92E+01
Xe-133	5.78E-04	5.24E+03
Xe-135	1.11E-04	1.01E+03
Xe-133m	1.16E-05	1.05E+02

Release Estimates Are As Follows:

Maximum Infant Dose for NW Site Boundary:

Total Body	Skin	Gamma Air	Beta Air
(mRem)	(mRem)	(mRad)	(mRad)
2.57E-07	5.18E-07	2.83E-07	4.44E-07

2.2 Non-Routine Planned Discharges

No non-routine planned discharges were made during the report period.

2.3 Radioactive Waste Treatment System Changes

No changes were made to the radioactive waste treatment system during the report period.

2.4 Annual Land Use Census Changes

No changes were made to the Annual Land Use Census during the report period.

2.5 Effluent Monitoring System Inoperability

Four effluent monitors were out of service for greater than 30 days during the report period.

- AR#02291667: Unit 2 Plant Vent Radiation Monitor (RM-26-14) was out of service from 11/20/18 until 03/12/2019.
 - The failure occurred when the sample pumps would not restart following chemistry performing a weekly grab sample. It was found that the sample pumps did not have power and their supply fuse was blown. Per ODCM 3.3.3-10 Table 3.3-13 the minimum channels functional is 1/RX was met with RM-26-13 functional. No compensatory samples were needed, and all releases via the plant vent were monitored by RM-26-13.
- AR#02232782: The Unit 1 A Main Steam Line Radiation Monitor (RE-26-62) has been out of service since 10/25/2017.
 - After receiving multiple spiking alarms on RE-26-62, readings were compared to the Steam Jet Air Ejector Radiation Monitor to validate there was no rising trend. Alternate sampling is required per the ODCM 3.3.3.10 and CY-SL-108-0003, which requires Radiation Protection to perform 8 hour readings on the steam line.
- AR#02258456: The Unit 1 B Main Steam Line Radiation Monitor (RE-26-63) has been out of service since 04/08/18.
 - The Hi Alarm and spiking signals for RE-26-63 resulted in inaccurate radiation detection and was most likely caused by induced line noise from the power source. Alternate sampling is required per the ODCM 3.3.3.10 and CY-SL-108-0003, which requires Radiation Protection to perform 8 hour readings on the steam line.
- AR#2324205: The Unit 1 Steam Generator Blowdown Radiation Monitor (RY-23920-1 CH. 45) was out of service from 08/12/19 until 01/21/20.
 - The radiation monitor did not respond to the monthly check source requiring Operations to declare the monitor out of service. The primary cause was the failure of the Vicoreen Model rate meter. Alternate sampling was required per the ODCM 3.3.3.9, which required Chemistry to perform 24-hour grab samples for isotopic activity.

2.6 Offsite Dose Calculation Manual Changes

Two revision changes were made to the St. Lucie Site ODCM during the report period.

- **Revision 52** Incorporated PCR 2278129 to define a tank release to prevent accounting for the same radioactivity multiple times when performing activities such as maintenance, and to remove the requirement for the Steam Generator Blowdown Treatment Facility vent monitor to be operable when no releases are being made through that pathway (Author: C. Crawford)
- Revision 53- Incorporated PCR 2309983 to add clarification to Table 3.3-13 Action 51 for surveillance testing. Changed "Operative" to "In Service" in Table 4.3-9 notation ***. Added a contingency action for the CHF air sample pump. Deleted the word "vent" after CHF in Table 4.11-2 Notation 8. (Author: K. Toebe) and PCR 2314153 to correct typo in Table 3.3-13 (Author: N. Davidson)

2.7 Process Control Program Changes

There were no changes to the Process Control Program during the report period.

2.8 Corrections to Previous Reports

There were no corrections to previous reports during the report period.

2.9 Other

Three ODCM sampling frequency deviations occurred during the report period. Each deviation was documented in the correction action program.

- AR#02327076 documents the missed surveillance on the 1A/1B Main steam line. In accordance with the ODCM and CY-SL-108-0003, if the Main Steam Line Radiation Monitor is out of service then 8 hour surveys need to be taken and recorded as an alternate sampling plan. The Radiation Protection department was notified to perform the task. Due to possible conflicting responsibilities, RP was unable to take the reading until after the 8-hour time requirement. The Condenser Air Ejector Monitor was in service with no indication of activity, and the late readings came back as SAT.
- AR#02337624 documents the missed surveillance on the Steam Jet Air Ejector. Per the ODCM, grab samples are required once per 24 hours when the Steam Jet Air Ejector is aligned to atmosphere. Work involving air in-leakage detection was taking place, which required the Air Ejector to be aligned to atmosphere instead of the radiation

monitor. The Air Ejector remained aligned to atmosphere after work was completed which extended past the 8-hour sampling requirement. Tritium and isotopic analyses was performed prior to and following the duration of the Air Ejector's alignment to atmosphere. Results showed no detectable activity. The 1A Steam Generator blowdown radiation monitor was operable during the time the air ejectors was aligned to atmosphere with no detectable activity.

 AR#02335816 documents the 1A HI range ECCS Effluent Radiation monitor (RSC-26-2-2) being inoperable for longer than 72 hours. RSC-26-2-2 was declared inoperable on 11/14/19 at 01:55 and according to the ODCM Table 3.3-13 #8 Action 55, the site had 72 hours to restore the monitor to functional status or initiate the preplanned alternative method of sampling. The radiation monitor was placed back in service on 11/17/19 at 1403.

Twelve batch releases were made from the South Settling Basin to the Intake Canal during the report period to lower the water level from periods of higher than normal rainfall. All releases were analyzed according to the ODCM and site procedural requirements, and were found to have no detectable gamma, tritium, alpha, or hard to detect isotopes. The releases are listed below:

<u>Release Start Date</u>	Release Vo.	lume
01/28/2019	397,532	gallons
05/13/2019	462,662	gallons
06/13/2019	693,990	gallons
07/12/2019	3,525,955	gallons
08/01/2019	3,764,055	gallons
08/13/2019	11,315,688	gallons
08/24/2019	2,857,028	gallons
08/30/2019	602,036	gallons
09/15/2019	401,001	gallons
10/25/2019	10,600,313	gallons
11/06/2019	1,970,606	gallons
12/13/2019	1,846,313	gallons

2.10 Groundwater Protection Program

- No limits were exceeded for the analyzed St. Lucie Nuclear Site Groundwater Protection Program for the report period.
- St. Lucie Nuclear Site Groundwater Protection Program results for the report period are contained in the following tables.

2019 St. Lucie Nuclear Plant Groundwater Protection Program Tritium Results (pCi/L)

Well	Jan.	Feb.	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
1MW001		379										
1MW002		<208.00										
1MW003		<215.00										
1MW004		220										
1MW005		1610			1800			750				313
2MW001		477			<181.00			<210				<251
2MW002		1860			<203			<220				373
2MW003		619			722			765				1010
2MW004		523			<215			381				472
MW-15		<226			251			<211				<259
MW-16		261			193			<211				<245
MW-17	2710	2380	2490	1990	1970	1480	3400	3130	3080	2760	2020	2110
MW-18d	1020	1340	1270	1470	1660	1810	1830	1680	1760	1580	1350	1920
MW-19		<218			<172			<212				<255
MW-22D		<205			<175			<206				<245
MW-26		<208			<177			<220				<252
MW-3	630	757		847	669			550				766
MW-30		561			<226			<209				<246
MW-31		273			268			<215				<234
MW-32		304			431			224				414
MW-33		612			368			<210				537
MW-4		269			396			<214				<259
MW-5		<206			175			<213				<237
MW-6	7430	4800	9120	3490	13400	1500	15000	10700	13200	4020		6560
MW-7		<202			<234			<203				<252
NB-MW-1		<148										
NB-MW-2		<153										
PSLED-2		<148										
RW-2		<236			245			<217				<242
RW-4		<211			235			<208				<257
RW-5		<210			<196			<219				<189
S-MW-1		<208										
S-MW-11		<151										
S-MW-15D		183										
S-MW-16		<152										
S-MW-16i		<157										
S-MW-17		<172										
S-MW-18		<157										
S-MW-19		<151										
S-MW-4		<207										
S-MW-6		<153										
S-MW-7A		<153										

3.0 TABLES

- **3.1 Gaseous Effluents and Liquid Effluents**
- 3.2 Solid Waste Storage and Shipments
- **3.3 Dose Assessments**
- **3.4 Visitor Dose**

TABLE 3.1

GASEOUS EEFFLUENTS AND LIQUID EFFLUENTS (26 PAGES)

Reg. Guide 1.21, Table 5A and 5B - Liquid and Gas Batch Release Summary

Unit: Site

A. Liquid Batch Release Totals	Units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Year Totals
1. Number of Batch Releases		7	15	34	28	84
2. Total duration of batch releases	min	6.44E+03	2.28E+04	6.23E+04	3.87E+04	1.30E+05
3. Maximum batch release duration	min	1.38E+03	8.58E+03	8.64E+03	7.65E+03	8.64E+03
4. Average batch release duration	min	9.20E+02	1.52E+03	1.83E+03	1.38E+03	1.55E+03
5. Minimum batch release duration	min	6.97E+02	4.28E+02	3.75E+02	6.70E+02	3.75E+02
B. Gas Batch Release Totals	Units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Year Totals
1. Number of Batch Releases		45	59	60	63	227
2. Total duration of batch releases	min	1.16E+04	1.99E+04	2.02E+04	6.17E+04	1.13E+05
3. Maximum batch release duration	min	5.54E+02	6.60E+02	2.33E+03	1.16E+04	1.16E+04
4. Average batch release duration	min	2.57E+02	3.38E+02	3.36E+02	9.79E+02	4.99E+02
5. Minimum batch release duration	min	2.60E+01	4.00E+00	2.60E+01	4.00E+01	4.00E+00

Reg. Guide 1.21, Table 6A and 6B - Liquid and Gas Abnormal Release Summary

Unit: Site

A. Liquid Abnormal Release Totals	Units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Year Totals
1. Number of Abnormal Releases		0	0	0	0	0
2. Total Activity of abnormal releases	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
B. Gas Abnormal Release Totals	Units	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Year Totals
1. Number of Abnormal Releases		0	0	1	0	1
2. Total Activity of abnormal releases	Ci	0.00E+00	0.00E+00	6.55E-03	0.00E+00	6.55E-03

Page 1 of 1 Thursday, February 13, 2020 10:52:16AM Florida Power & Light St. Lucie Power Plant

Reg. Guide 1.21, Table 1A, Gaseous Effluents - Summation of All Releases

Unit: Site

Total Release	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	Uncertainty
A. Fission and Activation Gases							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	1.29E+00 1.66E-01	2.07E+00 2.63E-01	4.76E+00 5.99E-01	8.06E+00 1.01E+00	1.62E+01 5.13E-01	
B. Iodines and Halogens							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	1.50E-06 1.93E-07	0.00E+00 0.00E+00	1.89E-05 2.38E-06	8.28E-05 1.04E-05	1.03E-04 3.27E-06	
C. Particulates							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	4.22E-04 5.43E-05	3.28E-04 4.17E-05	9.44E-05 1.19E-05	7.06E-07 8.88E-08	8.45E-04 2.68E-05	
D. Tritium							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	5.00E-01 6.43E-02	1.56E+01 1.99E+00	6.12E+00 7.69E-01	5.99E+00 7.54E-01	2.82E+01 8.95E-01	
E. Gross Alpha							
1. Total Release	Ci	6.08E-10	3.04E-08	6.93E-09	5.58E-08	9.38E-08	
F. Carbon-14							
1. Total Release 2. Average Release Rate for Period	Ci uCi/s	5.68E+00 7.30E-01	3.95E+00 5.02E-01	5.35E+00 6.73E-01	4.64E+00 5.84E-01	1.96E+01 6.22E-01	
3. Percent of Limit	%						

Page 1 of 1 Thursday, February 13, 2020 10:52:39AM Florida Power & Light St. Lucie Power Plant

Reg. Guide 1.21, Table 1A, Gaseous Effluents - Summation of All Releases

Unit: PSL1

Starting: 1-Jan-2019 Ending: 31-Dec-2019

Total Release	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	Uncertainty
A. Fission and Activation Gases							······
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	4.67E-01 6.01E-02	1.85E+00 2.36E-01	4.54E+00 5.71E-01	7.82E+00 9.84E-01	1.47E+01 4.66E-01	
B. Iodines and Halogens							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	1.50E-06 1.93E-07	0.00E+00 0.00E+00	1.84E-05 2.32E-06	7.01E-05 8.83E-06	9.01E-05 2.86E-06	
C. Particulates							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	4.21E-04 5.41E-05	3.28E-04 4.17E-05	9.44E-05 1.19E-05	7.06E-07 8.88E-08	8.44E-04 2.68E-05	
D. Tritium							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	3.22E-01 4.14E-02	1.14E+01 1.45E+00	5.73E+00 7.21E-01	2.22E+00 2.79E-01	1.97E+01 6.25E-01	
E. Gross Alpha							
1. Total Release	Ci	6.08E-10	2.50E-08	6.93E-09	5.10E-08	8.35E-08	
F. Carbon-14							
1. Total Release 2. Average Release Rate for Period	Ci uCi/s	2.83E+00 3.64E-01	1.07E+00 1.36E-01	2.44E+00 3.07E-01	1.73E+00 2.17E-01	8.07E+00 2.56E-01	
3. Percent of Limit	%						

.

Reg. Guide 1.21, Table 1A, Gaseous Effluents - Summation of All Releases

Unit: PSL2

Total Release	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	Uncertainty
A. Fission and Activation Gases							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	8.26E-01 1.06E-01	2.17E-01 2.76E-02	2.25E-01 2.82E-02	2.41E-01 3.03E-02	1.51E+00 4.78E-02	
B. Iodines and Halogens							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	0.00E+00 0.00E+00	0.00E+00 0.00E+00	5.13E-07 6.45E-08	1.26E-05 1.59E-06	1.31E-05 4.16E-07	
C. Particulates							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	1.36E-06 1.75E-07	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.36E-06 4.32E-08	
D. Tritium							
 Total Release Average Release Rate for Period Percent of Limit 	Ci uCi/s %	1.78E-01 2.29E-02	4.20E+00 5.35E-01	3.85E-01 4.84E-02	3.77E+00 4.74E-01	8.54E+00 2.71E-01	
E. Gross Alpha							
1. Total Release	Ci	0.00E+00	5.42E-09	0.00E+00	4.84E-09	1.03E-08	
F. Carbon-14							
1. Total Release 2. Average Release Rate for Period 3. Percent of Limit	Ci uCi/s %	2.85E+00 3.67E-01	2.88E+00 3.66E-01	2.91E+00 3.66E-01	2.91E+00 3.66E-01	1.16E+01 3.66E-01	

Page 1 of 4 Thursday, February 13, 2020 10:54:43AM Florida Power & Light St. Lucie Power Plant

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Continuous Mode

Unit: Site Starting: 1-Jan-2019 Ending: 31-Dec-2019

			(Continuous Mod	e	
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
A. Fission and Activation Gases						
Ar-41	Ci	0.00E+00	1.63E+00	1.33E+00	0.00E+00	2.96E+00
Xe-133m	Ci	2.78E-01	0.00E+00	1.86E+00	0.00E+00	2.14E+00
Xe-133	Ci	6.05E-01	6.76E-03	5.16E-01	0.00E+00	1.13E+00
Xe-138	Ci	0.00E+00	0.00E+00	0.00E+00	4.40E+00	4.40E+00
Total For Period	Ci	8.83E-01	1.63E+00	3.71E+00	4.40E+00	1.06E+01
B. Iodines and Halogens						
I-131	Ċi	1.50E-06	0.00E+00	1.50E-06	2.05E-05	2.35E-05
I-133	Ci	0.00E+00	0.00E+00	1.74E-05	6.21E-05	7.95E-05
Total For Period	Ci	1.50E-06	0.00E+00	1.89E-05	8.26E-05	1.03E-04
C. Particulates						
Co-60	Ci	1.36E-06	0.00E+00	0.00E+00	0.00E+00	1.36E-06
Sr-90	Ci	3.05E-04	0.00E+00	0.00E+00	0.00E+00	3.05E-04
Total For Period	Ci	3.07E-04	0.00E+00	0.00E+00	0.00E+00	3.07E-04
D. Tritium						
Н-3	Ci	0.00E+00	3.91E+00	3.81E+00	3.48E+00	1.12E+01
E. Gross Alpha						
G-Alpha	Ci	6.08E-10	3.04E-08	6.93E-09	5.52E-08	9.32E-08

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Continuous Mode

Unit: Site Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Continuous Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
F. Carbon-14							
C-14	Ci	5.68E+00	3.95E+00	5.35E+00	4.64E+00	1.96E+01	
				, -			
, des l'estimations :							

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Batch Mode

Unit: Site Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode						
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual		
A. Fission and Activation Gases					······			
Ar-41	Ci	3.59E-01	3.06E-01	7.78E-01	3.27E+00	4.71E+00		
Kr-85m	Ci	0.00E+00	0.00E+00	2.92E-05	9.96E-05	1.29E-04		
Kr-88	Ci	0.00E+00	2.10E-04	2.29E-05	0.00E+00	2.33E-04		
Xe-127	Ci	0.00E+00	0.00E+00	4.63E-05	0.00E+00	4.63E-05		
Xe-131m	Ci	0.00E+00	1.17E-03	0.00E+00	0.00E+00	1.17E-03		
Xe-135	Ci	5.17E-04	4.57E-04	4.22E-03	2.13E-03	7.33E-03		
Xe-133m	Ci	1.18E-04	1.35E-05	3.38E-04	0.00E+00	4.69E-04		
Xe-133	Ci	5.14E-02	1.29E-01	2.66E-01	3.94E-01	8.41E-01		
Xe-135m	Cí	0.00E+00	2.08E-04	0.00E+00	0.00E+00	2.08E-04		
Xe-138	Ci	0.00E+00	0.00E+00	0.00E+00	4.73E-04	4.73E-04		
Total For Period	Ci	4.11E-01	4.38E-01	1.05E+00	3.67E+00	5.56E+00		
B. Iodines and Halogens								
I-131	Ci	0.00E+00	0.00E+00	0.00E+00	1.21E-07	1.21E-07		
C. Particulates								
Cr-51	Ci	0.00E+00	2.46E-04	0.00E+00	0.00E+00	2.46E-04		
Mn-54	Ci	1.16E-04	0.00E+00	0.00E+00	0.00E+00	1.16E-04		
Co-60	Ci	0.00E+00	8.21E-05	8.95E-05	6.20E-07	1.72E-04		
Cs-137	Ci	0.00E+00	0.00E+00	4.90E-06	8.53E-08	4.98E-06		
Total For Period	Ci	1.16E-04	3.28E-04	9.44E-05	7.06E-07	5.38E-04		
D. Tritium								
Н-3	Ci	5.00E-01	1.17E+01	2.31E+00	2.51E+00	1.70E+01		

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

et Aulusta

[Server]: PSLSA137 [Database]: NEPSOEMP

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Batch Mode

Unit: Site Starting: 1-Jan-2019 Ending: 31-Dec-2019

Nuclides Released	Batch Mode								
	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual			
E. Gross Alpha			······································	<u></u>					
G-Alpha	Ci	0.00E+00	0.00E+00	0.00E+00	6.00E-10	6.00E-10			
F. Carbon-14									
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Continuous Mode

Unit: PSL1 Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Continuous Mode						
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual		
A. Fission and Activation Gases								
Ar-41	Ci	0.00E+00	1.63E+00	1.33E+00	0.00E+00	2.96E+00		
Xe-133m	Ci	2.78E-01	0.00E+00	1.86E+00	0.00E+00	2.14E+00		
Xe-133	Ci	0.00E+00	0.00E+00	5.16E-01	0.00E+00	5.16E-01		
Xe-138	Ci	0.00E+00	0.00E+00	0.00E+00	4.40E+00	4.40E+00		
Total For Period	Ci	2.78E-01	1.63E+00	3.71E+00	4.40E+00	1.00E+01		
B. Iodines and Halogens								
I-131	Ci	1.50E-06	0.00E+00	9.82E-07	2.01E-05	2.25E-05		
I-133	Ci	0.00E+00	0.00E+00	1.74E-05	5.00E-05	6.74E-05		
Total For Period	Ci	1.50E-06	0.00E+00	1.84E-05	7.00E-05	8.99E-05		
C. Particulates								
Sr-90	Ci	3.05E-04	0.00E+00	0.00E+00	0.00E+00	3.05E-04		
D. Tritium								
H-3	Ci	0.00E+00	0.00E+00	3.81E+00	0.00E+00	3.81E+00		
E. Gross Alpha								
G-Alpha	Ci	6.08E-10	2.50E-08	6.93E-09	5.04E-08	8.29E-08		
F. Carbon-14								
C-14	Ci	2.83E+00	1.07E+00	2.44E+00	1.73E+00	8.07E+00		

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Page 2 of 3

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Batch Mode

Unit: PSL1

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode						
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual		
A. Fission and Activation Gases								
Ar-41	Ci	1.59E-01	1.16E-01	5.86E-01	3.06E+00	3.92E+00		
Xe-127	Ci	0.00E+00	0.00E+00	4.63E-05	0.00E+00	4.63E-05		
Xe-131m	Ci	0.00E+00	1.17E-03	0.00E+00	0.00E+00	1.17E-03		
Xe-135	Ci	0.00E+00	5.57E-05	2.40E-03	1.29E-03	3.75E-03		
Xe-133m	Ci	0.00E+00	1.35E-05	2.33E-04	0.00E+00	2.47E-04		
Xe-133	Ci	3.04E-02	1.10E-01	2.36E-01	3.68E-01	7.44E-01		
Xe-135m	Ci	0.00E+00	2.08E-04	0.00E+00	0.00E+00	2.08E-04		
Xe-138	Ci	0.00E+00	0.00E+00	0.00E+00	4.73E-04	4.73E-04		
Total For Period	Ci	1.89E-01	2.27E-01	8.25E-01	3.43E+00	4.67E+00		
B. Iodines and Halogens								
I-131	Ci	0.00E+00	0.00E+00	0.00E+00	1.21E-07	1.21E-07		
C. Particulates								
Cr-51	Ci	0.00E+00	2.46E-04	0.00E+00	0.00E+00	2.46E-04		
Mn-54	Ci	1.16E-04	0.00E+00	0.00E+00	0.00E+00	1.16E-04		
Co-60	Ci	0.00E+00	8.21E-05	8.95E-05	6.20E-07	1.72E-04		
Cs-137	Ci	0.00E+00	0.00E+00	4.90E-06	8.53E-08	4.98E-06		
Total For Period	Ci	1.16E-04	3.28E-04	9.44E-05	7.06E-07	5.38E-04		
D. Tritium								
H-3	Ci	3.22E-01	1.14E+01	1.92E+00	2.22E+00	1.59E+01		
E. Gross Alpha								
G-Alpha	Ci	0.00E+00	0.00E+00	0.00E+00	6.00E-10	6.00E-10		

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

User: Admin

[Server]: PSLSA137 [Database]: NEPSOEMP

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Batch Mode

Unit: PSL1

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
F. Carbon-14						······································	
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Page 1 of 2 Thursday, February 13, 2020 11:03:54AM Florida Power & Light St. Lucie Power Plant

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Continuous Mode

Unit: PSL2 Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Continuous Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
A. Fission and Activation Gases			<u> </u>		<u> </u>		
Xe-133	Ci	6.05E-01	6.76E-03	0.00E+00	0.00E+00	6.12E-01	
B. Iodines and Halogens	_						
I-131	Ci	0.00E+00	0.00E+00	5.13E-07	4.59E-07	9.71E-07	
I-133	Ci	0.00E+00	0.00E+00	0.00E+00	1.21E-05	1.21E-05	
Total For Period	Ci	0.00E+00	0.00E+00	5.13E-07	1.26E-05	1.31E-05	
C. Particulates							
Co-60	Ci	1.36E-06	0.00E+00	0.00E+00	0.00E+00	1.36E-06	
D. Tritium							
H-3	Ci	0.00E+00	3.91E+00	0.00E+00	3.48E+00	7.38E+00	
E. Gross Alpha							
G-Alpha	Ci	0.00E+00	5.42E-09	0.00E+00	4.84E-09	1.03E-08	
F. Carbon-14	— -						
C-14	Ci	2.85E+00	2.88E+00	2.91E+00	2.91E+00	1.16E+01	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

2/13/2020 11:03

Page 2 of 2

Reg. Guide 1.21, Table 1B, Gaseous Effluents - Ground Level Release - Batch Mode

Unit: PSL2 Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
A. Fission and Activation Gases			<u></u>		<u> </u>		
Ar-41	Ci	2.00E-01	1.90E-01	1.92E-01	2.14E-01	7.96E-01	
Kr-85m	Ci	0.00E+00	0.00E+00	2.92E-05	9.96E-05	1.29E-04	
Kr-88	Ci	0.00E+00	2.10E-04	2.29E-05	0.00E+00	2.33E-04	
Xe-133m	Ci	1.18E-04	0.00E+00	1.05E-04	0.00E+00	2.23E-04	
Xe-135	Ci	5.17E-04	4.01E-04	1.81E-03	8.46E-04	3.58E-03	
Xe-133	Ci	2.10E-02	1.97E-02	3.05E-02	2.59E-02	9.70E-02	
Total For Period	Ci	2.21E-01	2.11E-01	2.25E-01	2.41E-01	8.97E-01	
B. Iodines and Halogens							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
C. Particulates							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
D. Tritium	_						
H-3	Ci	1.78E-01	2.97E-01	3.85E-01	2.91E-01	1.15E+00	
E. Gross Alpha	_						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
F. Carbon-14							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

User: Admin

[Server]: PSLSA137 [Database]: NEPSOEMP

Reg. Guide 1.21, Table 2A, Liquid Effluents - Summation of All Releases

Unit: Site

Total Release	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	Uncertainty
A. Fission and Activation Products	1						······································
1. Total Release	Ci	9.99E-03	6.68E-03	1.34E-02	1.62E-02	4.63E-02	
2. Average Concentration	uCi/mL	4.95E-10	1.30E-10	8.96E-11	1.92E-10	1.52E-10	
3. Percent of Limit	%						
B. Tritium							
1. Total Release	Ci	3.06E+01	2.03E+02	3.67E+02	2.60E+02	8.61E+02	
2. Average Concentration	uCi/mL	1.52E-06	3.94E-06	2.46E-06	3.08E-06	2.82E-06	
3. Percent of Limit	%						
C. Dissolved and Entrained Gases							
1. Total Release	Ci	4.18E-06	0.00E+00	1.82E-03	5.19E-03	7.02E-03	
2. Average Concentration	uCi/mL	2.07E-13	0.00E+00	1.22E-11	6.14E-11	2.30E-11	
3, Percent of Limit	%						
D. Gross Alpha Activity							
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
2. Average Concentration	uCi/mL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
E. Primary Liquid Release Volume							
1. Total Release	Liters	2.15E+06	1.49E+08	2.01E+08	5.72E+07	4.09E+08	
F. Dilution Volume							
1. Total Release	Liters	2.02E+10	5.14E+10	1.49E+11	8.46E+10	3.06E+11	

Page 1 of 1 Thursday, February 13, 2020 10:57:05AM Florida Power & Light St. Lucie Power Plant

Reg. Guide 1.21, Table 2A, Liquid Effluents - Summation of All Releases

Unit: PSL1

Total Release	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	Uncertainty
A. Fission and Activation Products							
1. Total Release	Ci	5.00E-03	3.34E-03	6.69E-03	8.12E-03	2.32E-02	
2. Average Concentration	uCi/mL	4.95E-10	1.30E-10	8.96E-11	1.92E-10	1.52E-10	
3. Percent of Limit	%						
B. Tritium							
1. Total Release	Ci	1.53E+01	1.01E+02	1.83E+02	1.30E+02	4.30E+02	
2. Average Concentration	uCi/mL	1.52E-06	3.94E-06	2.46E-06	3.08E-06	2.82E-06	
3. Percent of Limit	%						
C. Dissolved and Entrained Gases							
1. Total Release	Ci	2.09E-06	0.00E+00	9.12E-04	2.60E-03	3.51E-03	
2. Average Concentration	uCi/mL	2.07E-13	0.00E+00	1.22E-11	6.14E-11	2.30E-11	
3. Percent of Limit	%						
D. Gross Alpha Activity							
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
2. Average Concentration	uCi/mL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
E. Primary Liquid Release Volume							
1. Total Release	Liters	1.08E+06	7.46E+07	1.00E+08	2.86E+07	2.05E+08	
F. Dilution Volume							
1. Total Release	Liters	1.01E+10	2.57E+10	7.47E+10	4.23E+10	1.53E+11	

Page 1 of 1 Thursday, February 13, 2020 10:57:29AM Florida Power & Light St. Lucie Power Plant

Reg. Guide 1.21, Table 2A, Liquid Effluents - Summation of All Releases

Unit: PSL2

Total Release	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	Uncertainty
A. Fission and Activation Products							
1. Total Release	Ci	5.00E-03	3.34E-03	6.69E-03	8.12E-03	2.32E-02	
 Average Concentration Percent of Limit 	uCi/mL %	4.95E-10	1.30E-10	8.96E-11	1.92E-10	1.52E-10	
B. Tritium							
1. Total Release	Ci	1.53E+01	1.01E+02	1.83E+02	1.30E+02	4.30E+02	
 Average Concentration Percent of Limit 	uCi/mL %	1.52E-06	3.94E-06	2 . 46E-06	3.08E-06	2.82E-06	
C. Dissolved and Entrained Gases							
1. Total Release	Ci	2.09E-06	0.00E+00	9.12E-04	2.60E-03	3.51E-03	
 Average Concentration Percent of Limit 	uCi/mL %	2.07E-13	0.00E+00	1.22E-11	6.14E-11	2.30E-11	
D. Gross Alpha Activity							
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
2. Average Concentration	uCi/mL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
E. Primary Liquid Release Volume							
1. Total Release	Liters	1.08E+06	7.46E+07	1.00E+08	2.86E+07	2.05E+08	
F. Dilution Volume							
1. Total Release	Liters	1.01E+10	2.57E+10	7.47E+10	4.23E+10	1.53E+11	

Reg. Guide 1.21, Table 2B, Liquid Effluents - Continuous Mode

Unit: Site

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Continuous Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
A. Fission and Activation Products							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
B. Tritium							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
C. Dissolved and Entrained Gases							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
D. Gross Alpha Activity							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Reg. Guide 1.21, Table 2B, Liquid Effluents - Batch Mode

Unit: Site Starting: 1-Jan-2019 Ending: 31-Dec-2019

:		Batch Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
A. Fission and Activation Products							
C-14	Ci	8.21E-03	1.02E-03	7.38E-03	4.92E-03	2.15E-02	
Na-24	Ci	0.00E+00	2.12E-06	1.83E-05	4.42E-05	6.47E-05	
Be-7	Ci	0.00E+00	2.88E-05	0.00E+00	0.00E+00	2.88E-05	
Cr-51	Ci	0.00E+00	0.00E+00	1.77E-05	7.46E-04	7.63E-04	
Mn-54	Ci	0.00E+00	8.12E-06	8.62E-05	7.29E-05	1.67E-04	
Fe-59	Ci	0.00E+00	0.00E+00	1.15E-05	1.48E-05	2.63E-05	
Co-58	Ci	7.05E-05	9.90E-05	3.72E-04	5.59E-04	1.10E-03	
Co-60	Ci	3.22E-04	6.08E-04	1.91E-03	2.50E-03	5.34E-03	
Ni-63	Ci	2.09E-04	1.36E-03	8.41E-04	0.00E+00	2.41E-03	
Zn-65	Ci	0.00E+00	0.00E+00	4.84E-05	0.00E+00	4.84E-05	
Rb-88	Ci	0.00E+00	0.00E+00	0.00E+00	5.26E-05	5.26E-05	
Y-92	Ci	0.00E+00	0.00E+00	6.23E-05	0.00E+00	6.23E-05	
Zr-95	Ci	0.00E+00	0.00E+00	8.78E-05	2.31E-04	3.19E-04	
Nb-95	Ci	4.91E-06	4.58E-06	1.66E-04	4.03E-04	5.79E-04	
Nb-97	Ci	2.95E-04	2.63E-04	2.76E-04	1.07E-03	1.90E-03	
Tc-99m	Ci	0.00E+00	0.00E+00	1.23E-06	0.00E+00	1.23E-06	
Ag-110m	Ci	2.55E-04	2.19E-04	2.13E-04	8.06E-04	1.49E-03	
Sn-117m	Ci	0.00E+00	0.00E+00	0.00E+00	2.22E-04	2.22E-04	
Sb-124	Ci	5.78E-05	1.98E-04	4.03E-04	1.33E-03	1.99E-03	
Sb-122	Ci	0.00E+00	3.66E-06	0.00E+00	0.00E+00	3.66E-06	
Sb-125	Ci	5.19E-04	2.79E-03	1.26E-03	9.82E-04	5.56E-03	
Te-123m	Ci	4.16E-06	2.01E-06	0.00E+00	9.45E-04	9.51E-04	
Te-129m	Ci	0.00E+00	0.00E+00	0.00E+00	4.40E-04	4.40E-04	
Te-129	Ci	0.00E+00	0.00E+00	0.00E+00	1.10E-04	1.10E-04	
Te-132	Ci	4.68E-06	0.00E+00	0.00E+00	3.27E-04	3.31E-04	
I-132	Ci	0.00E+00	0.00E+00	0.00E+00	3.17E-04	3.17E-04	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Reg. Guide 1.21, Table 2B, Liquid Effluents - Batch Mode

Unit: Site

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
Cs-137	Ci	1.80E-05	6.12E-05	2.24E-04	1.93E-05	3.22E-04	
Cs-138	Ci	1.97E-05	8.33E-06	0.00E+00	0.00E+00	2.80E-05	
La-140	Ci	0.00E+00	0.00E+00	0.00E+00	4.76E-05	4.76E-05	
W-187	Ci	0.00E+00	0.00E+00	5.94E-06	8.43E-05	9.02E-05	
Total For Period	Ci	9.99E-03	6.68E-03	1.34E-02	1.62E-02	4.63E-02	
B. Tritium							
H-3	Ci	3.06E+01	2.03E+02	3.67E+02	2.60E+02	8.61E+02	
C. Dissolved and Entrained Gases							
Ar-41	Ci	4.18E-06	0.00E+00	0.00E+00	4.81E-05	5.23E-05	
Kr-87	Ci	0.00E+00	0.00E+00	3.71E-06	0.00E+00	3.71E-06	
Xe-135	Ci	0.00E+00	0.00E+00	5.51E-06	1.06E-05	1.61E-05	
Xe-133	Ci	0.00E+00	0.00E+00	1.81E-03	5.14E-03	6.95E-03	
Total For Period	Ci	4.18E-06	0.00E+00	1.82E-03	5.19E-03	7.02E-03	
D. Gross Alpha Activity							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

User: Admin

[Server]: PSLSA137 [Database]: NEPSOEMP

Reg. Guide 1.21, Table 2B, Liquid Effluents - Continuous Mode

Unit: PSL1 Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Continuous Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
A. Fission and Activation Products							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
B. Tritium							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
C. Dissolved and Entrained Gases							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
D. Gross Alpha Activity							
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Page 2 of 3

Reg. Guide 1.21, Table 2B, Liquid Effluents - Batch Mode

Unit: PSL1

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode					
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual	
A. Fission and Activation Products					•		
C-14	Ci	4.11E-03	5.12E-04	3.69E-03	2.46E-03	1.08E-02	
Na-24	Ci	0.00E+00	1.06E-06	9.16E-06	2.21E-05	3.23E-05	
Be-7	Ci	0.00E+00	1.44E-05	0.00E+00	0.00E+00	1.44E-05	
Cr-51	Ci	0.00E+00	0.00E+00	8.86E-06	3.73E-04	3.82E-04	
Mn-54	Ci	0.00E+00	4.06E-06	4.31E-05	3.64E-05	8.36E-05	
Fe-59	Ci	0.00E+00	0.00E+00	5.77E-06	7.40E-06	1.32E-05	
Co-58	Ci	3.52E-05	4.95E-05	1.86E-04	2.79E-04	5.50E-04	
Co-60	Ci	1.61E-04	3.04E-04	9.54E-04	1.25E-03	2.67E-03	
Ni-63	Ci	1.05E-04	6.80E-04	4.21E-04	0.00E+00	1.21E-03	
Zn-65	Ci	0.00E+00	0.00E+00	2.42E-05	0.00E+00	2.42E-05	
Rb-88	Ci	0.00E+00	0.00E+00	0.00E+00	2.63E-05	2.63E-05	
Y-92 ^{1/2}	Ci	0.00E+00	0.00E+00	3.12E-05	0.00E+00	3.12E-05	
Zr-95	Ci	0.00E+00	0.00E+00	4.39E-05	1.16E-04	1.59E-04	
Nb-95	Ci	2.46E-06	2.29E-06	8.29E-05	2.02E-04	2.89E-04	
Nb-97	Ci	1.47E-04	1.31E-04	1.38E-04	5.33E-04	9.49E-04	
Tc-99m	Ci	0.00E+00	0.00E+00	6.14E-07	0.00E+00	6.14E-07	
Ag-110m	Ci	1.27E-04	1.09E-04	1.07E-04	4.03E-04	7.46E-04	
Sn-117m	Ci	0.00E+00	0.00E+00	0.00E+00	1.11E-04	1.11E-04	
Sb-124	Ci	2.89E-05	9.91E-05	2.01E-04	6.66E-04	9.95E-04	
Sb-122	Ci	0.00E+00	1.83E-06	0.00E+00	0.00E+00	1.83E-06	
Sb-125	Ci	2.59E-04	1.40E-03	6.32E-04	4.91E-04	2.78E-03	
Te-123m	Ci	2.08E-06	1.00E-06	0.00E+00	4.72E-04	4.75E-04	
Te-129m	Ci	0.00E+00	0.00E+00	0.00E+00	2.20E-04	2.20E-04	
Te-129	Ci	0.00E+00	0.00E+00	0.00E+00	5.50E-05	5.50E-05	
Te-132	Ci	2.34E-06	0.00E+00	0.00E+00	1.63E-04	1.66E-04	
I-132	Ci	0.00E+00	0.00E+00	0.00E+00	1.59E-04	1.59E-04	

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.
Reg. Guide 1.21, Table 2B, Liquid Effluents - Batch Mode

Unit: PSL1

Starting: 1-Jan-2019 Ending: 31-Dec-2019

				Batch Mode		
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
 Cs-137	Ci	9.01E-06	3.06E-05	1.12E-04	9.65E-06	1.61E-04
Cs-138	Ci	9.84E-06	4.16E-06	0.00E+00	0.00E+00	1.40E-05
La-140	Ci	0.00E+00	0.00E+00	0.00E+00	2.38E-05	2.38E-05
W-187	Ci	0.00E+00	0.00E+00	2.97E-06	4.21E-05	4.51E-05
Total For Period	Ci	5.00E-03	3.34E-03	6.69E-03	8.12E-03	2.32E-02
B. Tritium						
H-3	Ci	1.53E+01	1.01E+02	1.83E+02	1.30E+02	4.30E+02
C. Dissolved and Entrained Gases						
Ar-41	Ci	2.09E-06	0.00E+00	0.00E+00	2.41E-05	2.62E-05
Kr-87	Ci	0.00E+00	0.00E+00	1.85E-06	0.00E+00	1.85E-06
Xe-135	Ci	0.00E+00	0.00E+00	2.75E-06	5.31E-06	8.06E-06
Xe-133	Ci	0.00E+00	0.00E+00	9.07E-04	2.57E-03	3.48E-03
Total For Period	Ci	2.09E-06	0.00E+00	9.12E-04	2.60E-03	3.51E-03
D. Gross Alpha Activity						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

User: Admin

Reg. Guide 1.21, Table 2B, Liquid Effluents - Continuous Mode

Unit: PSL2

Starting: 1-Jan-2019 Ending: 31-Dec-2019

			Continuous Mode			
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
A. Fission and Activation Products						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
B. Tritium						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C. Dissolved and Entrained Gases						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
D. Gross Alpha Activity						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

Florida Power & Light, St. Lucie Power Plant

Page 2 of 3

Reg. Guide 1.21, Table 2B, Liquid Effluents - Batch Mode

Unit: PSL2

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		Batch Mode				
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
A. Fission and Activation Products						
C-14	Ci	4.11E-03	5.12E-04	3.69E-03	2.46E-03	1.08E-02
Na-24	Ci	0.00E+00	1.06E-06	9.16E-06	2.21E-05	3.23E-05
Be-7	Ci	0.00E+00	1.44E-05	0.00E+00	0.00E+00	1.44E-05
Čr-51	Ci	0.00E+00	0.00E+00	8.86E-06	3.73E-04	3.82E-04
Mn-54	Ci	0.00E+00	4.06E-06	4.31E-05	3.64E-05	8.36E-05
Fe-59	Ci	0.00E+00	0.00E+00	5.77E-06	7.40E-06	1.32E-05
Co-58	Ci	3.52E-05	4.95E-05	1.86E-04	2.79E-04	5.50E-04
Co-60	Ci	1.61E-04	3.04E-04	9.54E-04	1.25E-03	2.67E-03
Ni-63	Ci	1.05E-04	6.80E-04	4.21E-04	0.00E+00	1.21E-03
Zn-65	Ci	0.00E+00	0.00E+00	2.42E-05	0.00E+00	2.42E-05
Rb-88	Ci	0.00E+00	0.00E+00	0.00E+00	2.63E-05	2.63E-05
Y-92	Ci	0.00E+00	0.00E+00	3.12E-05	0.00E+00	3.12E-05
Zr-95	Ci	0.00E+00	0.00E+00	4.39E-05	1.16E-04	1.59E-04
Nb-95	Ci	2.46E-06	2.29E-06	8.29E-05	2.02E-04	2.89E-04
Nb-97	Ci	1.47E-04	1.31E-04	1.38E-04	5.33E-04	9.49E-04
Tc-99m	Ci	0.00E+00	0.00E+00	6.14E-07	0.00E+00	6.14E-07
Ag-110m	Ci	1.27E-04	1.09E-04	1.07E-04	4.03E-04	7.46E-04
Sn-117m	Ci	0.00E+00	0.00E+00	0.00E+00	1.11E-04	1.11E-04
Sb-124	Ci	2.89E-05	9.91E-05	2.01E-04	6.66E-04	9.95E-04
Sb-122	Ci	0.00E+00	1.83E-06	0.00E+00	0.00E+00	1.83E-06
Sb-125	Ci	2.59E-04	1.40E-03	6.32E-04	4.91E-04	2.78E-03
Te-123m	Ci	2.08E-06	1.00E-06	0.00E+00	4.72E-04	4.75E-04
Te-129m	Ci	0.00E+00	0.00E+00	0.00E+00	2.20E-04	2.20E-04
Te-129	Ci	0.00E+00	0.00E+00	0.00E+00	5.50E-05	5.50E-05
Te-132	Ci	2.34E-06	0.00E+00	0.00E+00	1.63E-04	1.66E-04
I-132	Ci	0.00E+00	0.00E+00	0.00E+00	1.59E-04	1.59E-04

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

User: Admin

Reg. Guide 1.21, Table 2B, Liquid Effluents - Batch Mode

Unit: PSL2

Starting: 1-Jan-2019 Ending: 31-Dec-2019

		······		Batch Mode		
Nuclides Released	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Cs-137	Ci	9.01E-06	3.06E-05	1.12E-04	9.65E-06	1.61E-04
Cs-138	Ci	9.84E-06	4.16E-06	0.00E+00	0.00E+00	1.40E-05
La-140	Ci	0.00E+00	0.00E+00	0.00E+00	2.38E-05	2.38E-05
W-187	Ci	0.00E+00	0.00E+00	2.97E-06	4.21E-05	4.51E-05
Total For Period	Ci	5.00E-03	3.34E-03	6.69E-03	8.12E-03	2.32E-02
B. Tritium						
H-3	Ci	1.53E+01	1.01E+02	1.83E+02	1.30E+02	4.30E+02
C. Dissolved and Entrained Gases						
Ar-41	Ci	2.09E-06	0.00E+00	0.00E+00	2.41E-05	2.62E-05
Kr-87	Ci	0.00E+00	0.00E+00	1.85E-06	0.00E+00	1.85E-06
Xe-135	Ci	0.00E+00	0.00E+00	2.75E-06	5.31E-06	8.06E-06
Xe-133	Ci	0.00E+00	0.00E+00	9.07E-04	2.57E-03	3.48E-03
Total For Period	Ci	2.09E-06	0.00E+00	9.12E-04	2.60E-03	3.51E-03
D. Gross Alpha Activity						
No Nuclides Found	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	. 0.00E+00

If Not Detected, Nuclide is Not Reported. Zeroes in this table indicates that no radioactivity was present at detectable levels.

User: Admin

TABLE 3.2

SOLID WASTE STORAGE AND SHIPMENTS (7 PAGES)

NRC Regulatory Guide 1.21 Report

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream During Period From: 01/01/2019 to 12/31/2019

Waste	Vol	ume	Curies
Class	ft³	m ³	Shipped
A	0.00E+00	0.00E+00	0.00E+00
В	0.00E+00	0.00E+00	0.00E+00
C	0.00E+00	0.00E+00	0.00E+00
Unclassified	0.00E+00	0.00E+00	0.00E+00
All	0.00E+00	0.00E+00	0.00E+00

Major Nuclides for the Above Table:

Dry Active Waste (DAW)				
Waste	Vol	ume	Curies	
Class	ft³	m ³	Shipped	
А	2.30E+04	6.51E+02	8.27E+00	
В	0.00E+00	0.00E+00	0.00E+00	
C	0.00E+00	0.00E+00	0.00E+00	
Unclassified	0.00E+00	0.00E+00	0.00E+00	
All	2.30E+04	6.51E+02	8.27E+00	

Major Nuclides for the Above Table:

H-3, C-14, Cr-51, Mn-54, Fe-55, Fe-59, Co-58, Co-60, Ni-59, Ni-63, Sr-90, Zr-95, Nb-95, Tc-99, Ag-110m, Sb-125, I-129, Cs-137, Ce-144, Pu-238, Pu-239, Am-241, Cm-242, Cm-243

Irradiated Components			
Waste	Vol	Jme	Curies
Class	ft³	m ³	Shipped
Α	0.00E+00	0.00E+00	0.00E+00
В	0.00E+00	0.00E+00	0.00E+00
C	0.00E+00	0.00E+00	0.00E+00
Unclassified	0.00E+00	0.00E+00	0.00E+00
All	0.00E+00	0.00E+00	0.00E+00

Major Nuclides for the Above Table:

	Oth	er Waste	
Waste	Volu	ime	Curies
Class	ft ³	m ³	Shipped
Α	1.40E+03	3.96E+01	5.63E-01
В	0.00E+00	0.00E+00	0.00E+00

_

NRC Regulatory Guide 1.21 Report

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Waste Class and Stream

During Period From: 01/01/2019 to 12/31/2019

С	0.00E+00	0,00E+00	0.00E+00
Unclassified	0.00E+00	0.00E+00	0.00E+00
All	1.40E+03	3.96E+01	5.63E-01

Major Nuclides for the Above Table:

H-3, C-14, Cr-51, Mn-54, Fe-55, Fe-59, Co-58, Co-60, Ni-63, Zr-95, Nb-95, Tc-99, Ag-110m, Sb-125, I-129, Cs-137, Pu-238, Pu-239, Am-241, Cm-242, Cm-243

Sum Of All Low-Level Waste Shipped From Site			
Waste	Volu	ume	Curies
Class	ft³	m ³	Shipped
A	2.44E+04	6.91E+02	8.84E+00
В	0.00E+00	0.00E+00	0.00E+00
С	0.00E+00	0.00E+00	0.00E+00
Unclassified	0.00E+00	0.00E+00	0.00E+00
All	2.44E+04	6.91E+02	8.84E+00

Major Nuclides for the Above Table:

H-3, C-14, Cr-51, Mn-54, Fe-55, Fe-59, Co-58, Co-60, Ni-59, Ni-63, Sr-90, Zr-95, Nb-95, Tc-99, Ag-110m, Sb-125, I-129, Cs-137, Ce-144, Pu-238, Pu-239, Am-241, Cm-242, Cm-243

NRC Regulatory Guide 1.21 Activity Report

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Shipment, Package, and CategoryDuring Period From: 01/01/2019 to 12/31/2019Percent Cutoff: 1.0%

Dry Active Waste	A W	/aste Class A	Dry Active Waste	
	· · <u>kala</u>	Nuclide Name	Abundance	Activity (Ci)
		H-3	5.62%	4.65E-01
		Fe-55	45.58%	3.77E+00
		Co-60	33.55%	2.78E+00
		Ni-63	12.14%	1.00E+00
	Total To	otal Combined		
	Combined	Nuclide Name	Abundance	Activity (Ci)
		H-3	5.62%	4.65E-01
		Fe-55	45.58%	3.77E+00
		Co-60	33.55%	2.78E+00
		Ni-63	12.14%	1.00E+00
	Total			1. 1. /
Other			Other Waste	
A A	A W	aste Class A		
		Nuclide Name	Abundance	Activity (Ci)
		Fe-55	72.17%	4.07E-01
		Co-60	17.68%	9.96E-02
	001.033288	Ni-63	7.24%	4.08E-02
	Total To	otal Combined		
	Complined	Nuclide Name	Abundance	Activity (Ci)
		Fe-55	72.17%	4.07E-01
		Co-60	17.68%	9.96E-02
		Ni-63	7.24%	4.08E-02
	Total			- 11
Sum of All			Sum of All 4 Categories	
Categories	A W	aste Class A	Abundanaa	A objuitu (Ci)
			Abundance	
		H-3	5.29%	4.68E-01
		Fe-55	47.27%	4.18E+00
		Co-60	32.54%	2.88E+00
		Ni-63	11.83%	1.05E+00
	Total To	otal Combined		
	Complified	Nuclide Name	Abundance	Activity (Ci)
		H-3	5.29%	4.68E-01

NRC Regulatory Guide 1.21 Activity Report

Solid Waste Shipped Offsite for Disposal and Estimates of Major Nuclides by Shipment, Package, and CategoryDuring Period From: 01/01/2019 to 12/31/2019Percent Cutoff: 1.0%

Fe-55	47.27%	4.18E+00
Co-60	32.54%	2.88E+00
Ni-63	11.83%	1.05E+00

Total

Total Shipments by Carrier

Number of Shipments per each carrier

Number of Shipments	Mode of Transportation	Destination
4	Hittman Transport (SC)	Energy Solutions LLC (Bulk) Interstate 80, Exit 49
9	Hittman Transport (TN)	EnergySolutions Bear Creek 1560 Bear Creek Road
7	Hittman Transport (TN)	EnergySolutions Bear Creek 1560 Bear Creek Road

Solid Waste Shipped Offsite for Disposal

During Period from: 1/1/2019 to 12/31/2019

Shipment Date	Manifest ID	Destination	Package Name	Category Name	NRC Class	DOT Type
1/14/2019	1061-01-0004	Energy Solutions LLC (Bulk)	RCP Element U1 1A2 Impeller Shield	Dry Active Waste	A	A LSA-II
1/14/2019	1061-01-0003	Energy Solutions LLC (Bulk)	RCP Element U1 1B2 Impeller Shield	Dry Active Waste	A	A LSA-II
1/16/2019	FPL/PSL19-006	EnergySolutions Bear Creek	ESUU600028 20' Sealand	Other Waste	A	A LSA-II
1/23/2019	FPL/PSL19-007	EnergySolutions Bear Creek	ESUU300573 20' Sealand	Dry Active Waste	A	Exempt Quantity
2/15/2019	1061-01-0006	Energy Solutions LLC (Bulk)	RCP U2 2A1 Impeller Shield	Dry Active Waste	A	A LSA-II
2/15/2019	1061-01-0005	Energy Solutions LLC (Bulk)	RCP U2 2B1 Impeller Shield	Dry Active Waste	A	A LSA-II
3/1/2019	FPL/PSL 19- 015	EnergySolutions Bear Creek	ESUU600034 20' Sealand	Dry Active Waste	A	A LSA-II
6/12/2019	FPL/PSL 19- 029	EnergySolutions Bear Creek	ESUU8002211 20' Sealand	Dry Active Waste	A	Exempt Quantity
6/12/2019	FPL/PSL 19- 028	EnergySolutions Bear Creek	ESUU200397 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU200672 20' Sealand	Dry Active Waste	A	A LSA-I
8/14/2019	FPL/PSL 19- 049	EnergySolutions Bear Creek	ESUU 200568 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU 200640 20' Sealand	Dry Active Waste	A	Limited Quantity
10/8/2019	FPL/PSL 19- 067	EnergySolutions Bear Creek	ESUU 200775 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU 200387 20' Sealand	Dry Active Waste	A	A LSA-I
10/16/2019	FPL/PSL 19- 068	EnergySolutions Bear Creek	ESUU 200363 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU 200633 20' Sealand	Dry Active Waste	Α	A LSA-I
10/18/2019	FPL/PSL 19- 069	EnergySolutions Bear Creek	ESUU 200727 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU 200974 20' Sealand	Dry Active Waste	A	A LSA-I
10/22/2019	FPL/PSL 19- 070	EnergySolutions Bear Creek	ESUU 200817 20' Sealand	Dry Active Waste	A	Exempt Quantity
10/24/2019	FPL/PSL 19- 072	EnergySolutions Bear Creek	ESUU 200552 20' Sealand	Dry Active Waste	A	A LSA-I
10/25/2019	FPL/PSL 19- 074	EnergySolutions Bear Creek	ESUU 200542 20' Sealand	Dry Active Waste	A	A LSA-I

Solid Waste Shipped Offsite for Disposal

During Period from: 1/1/2019 to 12/31/2019

			ESUU 200533 20' Sealand	Dry Active Waste	A	A LSA-I
10/29/2019	FPL/PSL 19- 075	EnergySolutions Bear Creek	ESUU 200821 20' Sealand	Dry Active Waste	A	Exempt Quantity
10/31/2019	FPL/PSL 19- 078	EnergySolutions Bear Creek	ESUU300601 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU300543 20' Sealand	Dry Active Waste	A	A LSA-I
11/5/2019	FPL/PSL 19- 079	EnergySolutions Bear Creek	ESUU200691 20' Sealand	Dry Active Waste	A	A LSA-I
			ESUU300584 20' Sealand	Dry Active Waste	A	A LSA-I
11/7/2019	FPL/PSL 19- 082	EnergySolutions Bear Creek	ESUU300274 20' Sealand	Dry Active Waste	A	A LSA-I
		<u> </u>	ESUU300232 20' Sealand	Dry Active Waste	A	A LSA-I

TABLE 3.3

DOSE ASSESSMENTS (36 PAGES)

Reg. Guide 1.21, App B, Sec Doses due to Radioiodines, Tritium, and Particulates in Gaseous Releases

Unit: Site

Organ Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Bone	mRem	1.67E-03	1.43E-03	1.84E-03	1.19E-03	6.12E-03
Limit	mRem					
Percent of Limit	%					
Liver	mRem	1.29E-03	1.62E-03	1.77E-03	1.14E-03	5.82E-03
Limit	mRem					
Percent of Limit	%					
Total Body	mRem	1.30E-03	1.62E-03	1.77E-03	1.14E-03	5.83E-03
Limit	mRem					
Percent of Limit	%					
Thyroid	mRem	1.29E-03	1.62E-03	1.77E-03	1.16E-03	5.85E-03
Limit	mRem					
Percent of Limit	%					
Kidney	mRem	2.23E-04	6.88E-04	6.89E-04	1.98E-04	1.80E-03
Limit	mRem					
Percent of Limit	%					
Lung	mRem	1.49E-03	1.64E-03	1.79E-03	1.14E-03	6.05E-03
Limit	mRem					
Percent of Limit	%					
GI-Lli	mRem	1.29E-03	1.62E-03	1.77E-03	1.14E-03	5.82E-03
Limit	mRem					
Percent of Limit	%					

Reg. Guide 1.21, App B, Sec Doses due to Radioiodines, Tritium, and Particulates in Gaseous Releases

Unit: PSL1

Organ Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Bone	mRem	9.29E-04	6.93E-04	1.09E-03	4.43E-04	3.16E-03
Limit	mRem					
Percent of Limit	%					
Liver	mRem	6.61E-04	9.02E-04	1.12E-03	4.25E-04	3.11E-03
Limit	mRem					
Percent of Limit	%					
Total Body	mRem	6.71E-04	9.02E-04	1.12E-03	4.25E-04	3.12E-03
Limit	mRem					
Percent of Limit	%					
Thyroid	mRem	6.62E-04	9.02E-04	1.13E-03	4.46E-04	3.14E-03
Limit	mRem					
Percent of Limit	%					
Kidney	mRem	1.27E-04	5.61E-04	5.97E-04	7.39E-05	1.36E-03
Limit	mRem					
Percent of Limit	%					
Lung	mRem	8.55E-04	9.20E-04	1.14E-03	4.25E-04	3.34E-03
Limit	mRem					
Percent of Limit	%					
GI-Lli	mRem	6.63E-04	9.02E-04	1.12E-03	4.25E-04	3.11E-03
Limit	mRem					
Percent of Limit	%					

Reg. Guide 1.21, App B, Sec Doses due to Radioiodines, Tritium, and Particulates in Gaseous Releases

Unit: PSL2

Organ Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Bone	mRem	7.37E-04	7.38E-04	7.45E-04	7.46E-04	2.97E-03
Limit	mRem					
Percent of Limit	%					
Liver	mRem	6.31E-04	7.18E-04	6.41E-04	7.16E-04	2.71E-03
Limit	mRem					
Percent of Limit	%				······································	
Total Body	mRem	6.31E-04	7.18E-04	6.41E-04	7.16E-04	2.71E-03
Limit	mRem					
Percent of Limit	%					
Thyroid	mRem	6.31E-04	7.18E-04	6.41E-04	7.18E-04	2.71E-03
Limit	mRem					
Percent of Limit	%					
Kidney	mRem	9.53E-05	1.28E-04	9.21E-05	1.25E-04	4.39E-04
Limit	mRem					
Percent of Limit	%					
Lung	mRem	6.31E-04	7.18E-04	6.41E-04	7.16E-04	2.71E-03
Limit	mRem					
Percent of Limit	%					
GI-Lli	mRem	6.31E-04	7.18E-04	6.41E-04	7.16E-04	2.71E-03
Limit	mRem					
Percent of Limit	%					

Reg. Guide 1.21, App B, Sec Air Doses Due To Gaseous Releases

Unit: Site

Starting: 1-Jan-2019 Ending: 31-Dec-2019

NG Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Gamma Air	mRad	1.86E-04	9.14E-04	1.04E-03	3.61E-03	5.75E-03
Limit	mRad					
Percent of Limit	%					
Beta Air	mRad	1.16E-04	3.29E-04	5.34E-04	1.63E-03	2.60E-03
Limit	mRad					
Percent of Limit	%					
NG Total Body	mRem	1.74E-04	8.69E-04	9.83E-04	3.44E-03	5.47E-03
Limit	mRem					
Percent of Limit	%					
NG Skin	mRem	2.77E-04	1.27E-03	1.54E-03	5.34E-03	8.43E-03
Limit	mRem					
Percent of Limit	<u>%</u>					

.

Reg. Guide 1.21, App B, Sec Air Doses Due To Gaseous Releases

Unit: PSL1

NG Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Gamma Air	mRad	8.01E-05	8.24E-04	9.51E-04	3.50E-03	5.36E-03
Limit	mRad					
Percent of Limit	%					
Beta Air	mRad	4.89E-05	2.96E-04	5.00E-04	1.59E-03	2.43E-03
Limit	mRad					
Percent of Limit	%					
NG Total Body	mRem	7.52E-05	7.83E-04	8.96E-04	3.35E-03	5.10E-03
Limit	mRem					
Percent of Limit	%					
NG Skin	mRem	1.24E-04	1.15E-03	1.41E-03	5.20E-03	7.88E-03
Limit ,	mRem					
Percent of Limit	%					

Reg. Guide 1.21, App B, Sec Air Doses Due To Gaseous Releases

Unit: PSL2

NG Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Gamma Air	mRad	1.06E-04	9.05E-05	9.14E-05	1.01E-04	3.89E-04
Limit	mRad					
Percent of Limit	%			·		······
Beta Air	mRad	6.67E-05	3.32E-05	3.38E-05	3.71E-05	1.71E-04
Limit	mRad					
Percent of Limit	%					
NG Total Body	mRem	9.90E-05	8.60E-05	8.68E-05	9.63E-05	3.68E-04
Limit	mRem					
Percent of Limit	%					
NG Skin	mRem	1.53E-04	1.26E-04	1.27E-04	1.41E-04	5.48E-04
Limit	mRem					
Percent of Limit	%					

Reg. Guide 1.21, App B, Sec Doses to a member of the public due to Liquid Releases

Unit: Site

Organ Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Bone	mRem	1.22E-03	1.28E-03	1.34E-03	6.45E-04	4.29E-03
Limit	mRem					
Percent of Limit	%					
Liver	mRem	1.32E-03	1.28E-03	2.91E-03	2.54E-03	7.86E-03
Limit	mRem					
Percent of Limit	%					
Total Body	mRem	1.34E-03	1.26E-03	2.70E-03	2.62E-03	7.72E-03
Limit	mRem					
Percent of Limit	. %	,				-
Thyroid	mRem	1.28E-03	1.16E-03	2.32E-03	2.33E-03	6.88E-03
Limit	mRem					
Percent of Limit	%					
Kidney	mRem	9.52E-04	1.44E-03	2.96E-03	2.77E-03	8.13E-03
Limit	mRem					
Percent of Limit	%					
Lung	mRem	1.41E-03	2.24E-03	2.94E-03	2.68E-03	9.23E-03
Limit	mRem					
Percent of Limit	%					
GI-Lli	mRem	5.51E-03	3.96E-03	8.55E-03	2.65E-02	4.45E-02
Limit	mRem					
Percent of Limit	%					

Reg. Guide 1.21, App B, Sec Doses to a member of the public due to Liquid Releases

Unit: PSL1

Organ Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Bone	mRem	6.10E-04	6.42E-04	6.68E-04	3.23E-04	2.15E-03
Limit	mRem					
Percent of Limit	%					
Liver	mRem	6.60E-04	6.41E-04	1.45E-03	1.27E-03	3.93E-03
Limit	mRem					
Percent of Limit	%					
Total Body	mRem	6.71E-04	6.30E-04	1.35E-03	1.31E-03	3.86E-03
Limit	mRem					
Percent of Limit	%					
Thyroid	mRem	6.42E-04	5.78E-04	1.16E-03	1.16E-03	3.44E-03
Limit	mRem					
Percent of Limit	%					
Kidney	mRem	4.76E-04	7.19E-04	1.48E-03	1.39E-03	4.06E-03
Limit	mRem					
Percent of Limit	%					
Lung	mRem	7.07E-04	1.12E-03	1.47E-03	1.34E-03	4.61E-03
Limit	mRem		*			
Percent of Limit	%					
GI-Lli	mRem	2.75E-03	1.98E-03	4.27E-03	1.32E-02	2.23E-02
Limit	mRem					
Percent of Limit	%					

.

Reg. Guide 1.21, App B, Sec Doses to a member of the public due to Liquid Releases

Unit: PSL2

Organ Dose	Units	1ST Quarter	2ND Quarter	3RD Quarter	4TH Quarter	Annual
Bone	mRem	6.10E-04	6.42E-04	6.68E-04	3.23E-04	2.15E-03
Limit	mRem					
Percent of Limit	%			······································		
Liver	mRem	6.60E-04	6.41E-04	1.45E-03	1.27E-03	3.93E-03
Limit	mRem					
Percent of Limit	%					
Total Body	mRem	6.71E-04	6.30E-04	1.35E-03	1.31E-03	3.86E-03
Limit	mRem					
Percent of Limit	%				· <u>····································</u>	
Thyroid	mRem	6.42E-04	5.78E-04	1.16E-03	1.16E-03	3.44E-03
Limit	mRem					
Percent of Limit	%					
Kidney	mRem	4.76E-04	7.19E-04	1.48E-03	1.39E-03	4.06E-03
Limit	mRem					
Percent of Limit	%					
Lung	mRem	7.07E-04	1.12E-03	1.47E-03	1.34E-03	4.61E-03
Limit	mRem					
Percent of Limit	%					
GI-Lli	mRem	2.75E-03	1.98E-03	4.27E-03	1.32E-02	2.23E-02
Limit	mRem					
Percent of Limit	%					

Florida Power & Light St. Lucie Power Plant

-

Liquid Status Summary Report

Thursday, February 13, 2020 11:14

Page 1 of 6

Period: Ann, 2019

Site/Unit/Discharge Point: Site

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume (gal)	Release Flowrate (gpm)	Dilution Flowrate (gpm)
L-19-001-B	Closed/100.00	A Waste Monitor Tank	01/04/2019 09:25	1.045E+03	2.760E+04	1.700E+02	1.026E+06
L-19-003-B	Closed/100.00	B Waste Monitor Tank	01/11/2019 15:35	7.410E+02	2.440E+04	1.700E+02	1.026E+06
L-19-005-B	Closed/100.00	A Waste Monitor Tank	01/17/2019 17:20	9.100E+02	2.680E+04	1.700E+02	3.775E+05
L-19-012-B	Closed/100.00	B Waste Monitor Tank	02/01/2019 13:50	8.100E+02	2.520E+04	1.700E+02	1.026E+06
L-19-013-B	Closed/100.00	South Pond	01/28/2019 16:00	1.380E+03	3.972E+05	8.000E+03	3.775E+05
L-19-014-B	Closed/100.00	A Waste Monitor Tank	02/21/2019 22:45	8.600E+02	4.000E+04	1.700E+02	3.775E+05
L-19-015-B	Closed/100.00	B Waste Monitor Tank	03/05/2019 16:38	6.970E+02	2.680E+04	1.700E+02	1.026E+06
L-19-016-B	Closed/100.00	A Waste Monitor Tank	04/05/2019 14:45	8.430E+02	2.920E+04	1.700E+02	1.026E+06
L-19-017-B	Closed/100.00	B Waste Monitor Tank	04/20/2019 13:50	8.730E+02	3.040E+04	3.482E+01	1.026E+06
L-19-018-B	Closed/100.00	A Waste Monitor Tank	05/01/2019 15:50	6.780E+02	2.680E+04	1.700E+02	9.050E+05
L-19-019-B	Closed/100.00	B Waste Monitor Tank	05/07/2019 17:17	6.870E+02	2.440E+04	1.700E+02	9.050E+05
L-19-020-B	Closed/100.00	A Waste Monitor Tank	05/15/2019 08:41	7.830E+02	2.720E+04	1.700E+02	9.050E+05
L-19-021-B	Closed/100.00	B Waste Monitor Tank	05/29/2019 11:25	8.350E+02	2.760E+04	1.700E+02	7.695E+05
L-19-022-B	Closed/100.00	A Waste Monitor Tank	06/06/2019 13:15	7.450E+02	2.360E+04	1.700E+02	1.026E+06
L-19-023-B	Closed/100.00	B Waste Monitor Tank	06/09/2019 08:40	6.900E+02	2.040E+04	1.700E+02	1.026E+06
L-19-024-B	Closed/100.00	A Waste Monitor Tank	06/10/2019 13:43	6.470E+02	2.280E+04	1.700E+02	5.130E+05
L-19-025-B	Closed/100.00	B Waste Monitor Tank	06/14/2019 16:30	7.450E+02	2.840E+04	1.700E+02	1.026E+06
L-19-026-B	Closed/100.00	A Waste Monitor Tank	06/15/2019 20:00	7.000E+02	2.720E+04	1.700E+02	5.130E+05
L-19-027-B	Closed/100.00	A Waste Monitor Tank	06/19/2019 20:50	4.280E+02	1.920E+04	1.700E+02	1.026E+06
L-19-028-B	Closed/100.00	B Waste Monitor Tank	06/22/2019 03:30	7.650E+02	2.880E+04	1.700E+02	1.026E+06
L-19-029-B	Closed/100.00	South Pond	06/13/2019 08:30	8.580E+03	6.940E+05	8.000E+03	3.775E+05
L-19-030-B	Closed/100.00	B Waste Monitor Tank	07/03/2019 13:40	8.670E+02	2.760E+04	1.700E+02	1.026E+06
L-19-031-B	Closed/100.00	A Waste Monitor Tank	07/04/2019 13:20	7.250E+02	2.560E+04	1.700E+02	3.775E+05
L-19-032-B	Closed/100.00	B Waste Monitor Tank	07/09/2019 16:10	6.350E+02	2.720E+04	1.700E+02	1.026E+06
L-19-033-B	Closed/100.00	South Pond	07/12/2019 11:15	4.170E+03	3.336E+07	8.000E+03	3.775E+05
L-19-034-B	Closed/100.00	A Waste Monitor Tank	07/20/2019 11:16	8.720E+02	2.920E+04	1.700E+02	1.026E+06
L-19-035-B	Closed/100.00	B Waste Monitor Tank	07/26/2019 09:12	7.840E+02	3.080E+04	1.700E+02	1.026E+06
L-19-036-B	Closed/100.00	South Pond	05/13/2019 07:00	4.800E+03	3.840E+07	8.000E+03	3.775E+05
L-19-037-B	Closed/100.00	A Waste Monitor Tank	07/31/2019 13:38	7.770E+02	2.320E+04	1.700E+02	1.026E+06

Thursday, February 13, 2020 11:14

Page 2 of 6

Period: Ann, 2019

Site/Unit/Discharge Point: Site

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume	Release Flowrate	Dilution Flowrate
L-19-038-B	Closed/100.00	B Waste Monitor Tank	08/09/2019 02:29	6 310E+02	2 440F+04	1 700E+02	1.026EL06
L-19-039-B	Closed/100.00	A Waste Monitor Tank	08/10/2019 01:30	3.750E+02	1 640E+04	1.700E+02	1.020E+00
L-19-040-B	Closed/100.00	South Pond	08/01/2019 16:00	8.070E+03	3 764E+06	8.000E+02	3.775E±05
L-19-041-B	Closed/100.00	B Waste Monitor Tank	08/13/2019 00:50	7.200E+02	2 680E+04	1 700E+02	1.026E±06
L-19-043-B	Closed/100.00	A Waste Monitor Tank	08/14/2019 15:00	8.000E+02	2.000E+04	1.700E+02	1.026E+06
L-19-044-B	Closed/100.00	A Waste Monitor Tank	08/16/2019 10:55	6.500E+02	2.640E+04	1.700E+02	1.026E+06
L-19-045-B	Closed/100.00	B Waste Monitor Tank	08/17/2019 03:30	8.060E+02	2.840E+04	1.700E+02	1.020E+00
L-19-046-B	Closed/100.00	B Waste Monitor Tank	08/22/2019 22:20	7.620E+02	2.010E+04	1.700E+02	1.0265+06
L-19-047-B	Closed/100.00	B Waste Monitor Tank	08/24/2019 20:50	5.130E+02	2.160E+04	1.700E+02	1.026E+00
L-19-048-B	Closed/100.00	B Waste Monitor Tank	08/26/2019 08:25	7.450E+02	2.840E+04	1.700E+02	1.026E+00
L-19-049-B	Closed/100.00	B Waste Monitor Tank	08/28/2019 11:05	6.900E+02	2.560E+04	1.700E+02	9.970E±05
L-19-050-B	Closed/100.00	A Waste Monitor Tank	08/29/2019 13:50	6.650E+02	1.920E+04	1.700E+02	1.026E+05
L-19-051-B	Closed/100.00	A Waste Monitor Tank	08/31/2019 11:50	9.000E+02	4.000E+04	1.700E+02	1.026E+06
L-19-052-B	Closed/100.00	B Waste Monitor Tank	09/08/2019 00:30	6.000E+02	2.160E+04	1.700E+02	1.026E+06
L-19-053-B	Closed/100.00	A Waste Monitor Tank	09/13/2019 00:08	8.920E+02	2.400E+04	1.700E+02	1.026E+06
L-19-054-B	Closed/100.00	South Pond	08/13/2019 15:30	8.100E+03	1.132E+07	3 000E+03	3 775E+05
L-19-056-B	Closed/100.00	South Pond	08/30/2019 08:00	8.640E+03	6.020E+05	8.000E+03	3 775E+05
L-19-057-B	Closed/100.00	A Waste Monitor Tank	09/17/2019 02:50	7.980E+02	2.840E+04	1.700E+02	1.026E+06
L-19-058-B	Closed/100.00	B Waste Monitor Tank	09/18/2019 03:15	8.170E+02	2.920E+04	1.700E+02	1.026E+06
L-19-059-B	Closed/100.00	A Waste Monitor Tank	09/19/2019 11:15	6.750E+02	2.840E+04	1.700E+02	1.026E+06
L-19-060-B	Closed/100.00	A Waste Monitor Tank	09/22/2019 09:45	6.600E+02	2.400E+04	1.700E+02	1.026E+06
L-19-062-B	Closed/100.00	B Waste Monitor Tank	09/24/2019 12:00	6.770E+02	2.680E+04	1.700E+02	1.026E+06
L-19-065-B	Closed/100.00	A Waste Monitor Tank	09/25/2019 13:12	6.270E+02	2.680E+04	1.700E+02	1.026E+06
L-19-067-B	Closed/100.00	A Waste Monitor Tank	09/28/2019 09:50	9.580E+02	2.880E+04	1.700E+02	1.026E+06
L-19-069-B	Closed/100.00	B Waste Monitor Tank	09/29/2019 09:10	6.630E+02	2.200E+04	1.700E+02	1.026E+06
L-19-071-B	Closed/100.00	A Waste Monitor Tank	10/02/2019 16:35	7.250E+02	2.760E+04	5.556E+01	1.026E+06
L-19-073-B	Closed/100.00	B Waste Monitor Tank	10/04/2019 12:38	8.470E+02	3.000E+04	1.700E+02	1.026E+06
L-19-075-B	Closed/100.00	A Waste Monitor Tank	10/05/2019 10:30	7.700E+02	2.600E+04	1.700E+02	1.026E+06
L-19-076-B	Closed/100.00	South Pond	09/15/2019 14:30	4.410E+03	4.010E+05	8.000E+03	3.775E+05
L-19-077-B	Closed/100.00	B Waste Monitor Tank	10/11/2019 22:06	7.740E+02	2.800E+04	1.700E+02	1 026E+06
L-19-078-B	Closed/100.00	A Waste Monitor Tank	10/13/2019 03:45	2.430E+03	2.920E+04	1.700E+02	1.026E+06
L-19-080-B	Closed/100.00	B Waste Monitor Tank	10/16/2019 03:05	6.800E+02	2,480E+04	1.700E+02	6.485E+05
L-19-081-B	Closed/100.00	A Waste Monitor Tank	10/17/2019 03:00	8.250E+02	2.960E+04	1.700E+02	5.275E+05

Period: Ann, 2019

Site/Unit/Discharge Point: Site

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume (gal)	Release Flowrate (gpm)	Dilution Flowrate (gpm)
L-19-082-B	Closed/100.00	B Waste Monitor Tank	10/19/2019 01:45	8.150E+02	2.720E+04	1.700E+02	5.275E+05
L-19-083-B	Closed/100.00	A Waste Monitor Tank	10/21/2019 02:30	7.350E+02	2.880E+04	1.700E+02	5.275E+05
L-19-084-B	Closed/100.00	B Waste Monitor Tank	10/22/2019 02:50	6.700E+02	2.800E+04	1.700E+02	5.275E+05
L-19-088-B	Closed/100.00	A Waste Monitor Tank	10/26/2019 21:30	9.000E+02	3.640E+04	1.700E+02	5.130E+05
L-19-089-B	Closed/100.00	B Waste Monitor Tank	10/27/2019 21:40	9.150E+02	2.720E+04	1.700E+02	5.130E+05
L-19-091-B	Closed/100.00	A Waste Monitor Tank	10/28/2019 20:15	7.100E+02	2.520E+04	1.700E+02	5.275E+05
L-19-093-B	Closed/100.00	B Waste Monitor Tank	11/05/2019 00:55	7.900E+02	2.760E+04	1.700E+02	5.420E+05
L-19-094-B	Closed/100.00	A Waste Monitor Tank	11/06/2019 13:28	7.470E+02	2.960E+04	1.700E+02	5.420E+05
L-19-095-B	Closed/100.00	B Waste Monitor Tank	11/07/2019 22:25	8.730E+02	2.760E+04	1.700E+02	5.420E+05
L-19-097-B	Closed/100.00	A Waste Monitor Tank	11/09/2019 13:58	7.370E+02	2.920E+04	1.700E+02	5.420E+05
L-19-100-B	Closed/100.00	B Waste Monitor Tank	11/10/2019 12:15	7.650E+02	2.840E+04	1.700E+02	5.420E+05
L-19-102-B	Closed/100.00	A Waste Monitor Tank	11/11/2019 13:25	7.400E+02	2.840E+04	1.700E+02	5.420E+05
L-19-103-B	Closed/100.00	B Waste Monitor Tank	11/12/2019 14:26	6.890E+02	2.600E+04	1.700E+02	6.630E+05
L-19-105-B	Closed/100.00	A Waste Monitor Tank	11/13/2019 15:30	7.820E+02	2.920E+04	5.556E+01	7.840E+05
L-19-106-B	Closed/100.00	B Waste Monitor Tank	11/14/2019 16:38	7.450E+02	2.760E+04	1.700E+02	9.050E+05
L-19-107-B	Closed/100.00	A Waste Monitor Tank	11/19/2019 22:15	7.650E+02	2.760E+04	1.700E+02	1.026E+06
L-19-108-B	Closed/100.00	B Waste Monitor Tank	12/06/2019 03:30	7.900E+02	2.880E+04	5.556E+01	1.026E+06
L-19-109-B	Closed/100.00	A Waste Monitor Tank	12/13/2019 15:36	7.040E+02	2.520E+04	1.700E+02	1.026E+06
L-19-110-B	Closed/100.00	South Pond	10/25/2019 13:00	6.060E+03	1.060E+07	8.000E+03	3.775E+05
L-19-111-B	Closed/100.00	South Pond	11/06/2019 11:45	4.065E+03	1.971E+06	8.000E+03	3.775E+05
L-19-112-B	Closed/100.00	South Pond	12/12/2019 06:30	7.650E+03	1.846E+06	8.000E+03	3.775E+05
L-19-459-B	Closed/100.00	South Pond	08/24/2019 08:00	8.640E+03	2.857E+06	8.000E+03	3.775E+05

Total Release Volume:1.082E+08 galTotal Dilution Volume:8.063E+10 gal

Page 4 of 6

Period: Ann, 2019

Site/Unit/Discharge Point: Site

Nuclide Xe-133	Type N	Activity (uCi) 6.950E+03	Avg Conc (uCi/mL) 1.698E-08	Avg Conc/10xECL 8.488E-06	Dil Conc (uCi/mL) 2.274E-11	Dil Conc/10xECL 1.137E-08
Xe-135	N	1.612E+01	3.938E-11	1.969E-08	5.276E-14	2.638E-11
Ar-41	N	5.232E+01	1.278E-10	6.390E-08	1.712E-13	8.559E-11
Kr-87	N	3.709E+00	9.059E-12	4.530E-09	1.214E-14	6.068E-12
Nuclide Type Tot	al	7.023E+03	1.715E-08	8.576E-06	2.298E-11	1.149E-08

Ni-63	<u>Type</u> 0	<u>Activity (uCi)</u> 2.412E+03	Avg Conc (uCi/mL) 5.891E-09	Avg Conc/10xECL 5.891E-06	Dil Conc (uCi/mL) 7.891E-12	Dil Conc/10xECL 7.891E-09
C-14	0	2.154E+04	5.262E-08	1.754E-04	7.049E-11	2.350E-07
H-3	0	8.607E+08	2.102E-03	2.102E-01	2.816E-06	2.816E-04
Nuclide Type T	otal	8.607E+08	2.102E-03	2.104E-01	2.816E-06	2.819E-04

<u>Nuclide</u>	<u>Type</u>	<u>Activity (uCi)</u>	<u>Avg Conc (uCi/mL)</u>	Avg Conc/10xECL	Dil Conc (uCi/mL)	Dil Conc/10xECL
W-187	Р	9.024E+01	2.204E-10	7.347E-07	2.953E-13	9.842E-10
Te-123m	Р	9.508E+02	2.322E-09	0.000E+00	3.111E-12	0.000E+00
Y-92	P	6.234E+01	1.523E-10	3.807E-07	2.040E-13	5.099E-10
Sb-124	Ρ	1.990E+03	4.862E-09	6.945E-05	6.513E-12	9.304E-08
Sn-117m	Р	2.223E+02	5.430E-10	0.000E+00	7.273E-13	0.000E+00
Na-24	Р	6.469E+01	1.580E-10	3.160E-07	2.116E-13	4.233E-10
Be-7	Р	2.881E+01	7.037E-11	0.000E+00	9.427E-14	0.000E+00
Te-129	Р	1.101E+02	2.689E-10	6.723E-08	3.602E-13	9.005E-11
Zr-95	Р	3.189E+02	7.789E-10	3.895E-06	1.043E-12	5.217E-09
Nb-95	Р	5.786E+02	1.413E-09	4.711E-06	1.893E-12	6.311E-09
Mn-54	Р	1.672E+02	4.084E-10	1.361E-06	5.470E-13	1.823E-09
Fe-59	Р	2.633E+01	6.431E-11	6.431E-07	8.614E-14	8.614E-10
Cs-138	Р	2.800E+01	6.839E-11	1.710E-08	9.161E-14	2.290E-11
Zn-65	Р	4.839E+01	1.182E-10	2.364E-06	1.583E-13	3.166E-09
Sb-125	Р	5.557E+03	1.357E-08	4.524E-05	1.818E-11	6.061E-08
Co-58	Р	1.100E+03	2.687E-09	1.343E-05	3.599E-12	1.800E-08
Co-60	Р	5.340E+03	1.304E-08	4.348E-04	1.747E-11	5.824E-07

Page 5 of 6

Nuclide	Type	Activity (uCi)	Ava Conc (uCi/mL)	Ava Conc/10xECL	Dil Conc (uCi/ml.)	Dil Conc/10xFCI
Nb-97	P	1.899E+03	4.637E-09	1.546E-06	6.212E-12	2.071E-09
Tc-99m	Р	1.228E+00	3.001E-12	3.001E-10	4.019E-15	4.019E-13
La-140	Р	4.757E+01	1.162E-10	1.291E-06	1.556E-13	1.729E-09
Te-132	Р	3.314E+02	8.095E-10	8.994E-06	1.084E-12	1.205E-08
Ag-110m	Р	1.492E+03	3.645E-09	6.075E-05	4.883E-12	8.138E-08
Te-129m	Ρ	4.404E+02	1.076E-09	1.537E-05	1.441E-12	2.058E-08
Cs-137	Р	3.224E+02	7.876E-10	7.876E-05	1.055E-12	1.055E-07
Sb-122	Р	3.663E+00	8.947E-12	8.947E-08	1.199E-14	1.199E-10
Cr-51	Р	7.635E+02	1.865E-09	3.730E-07	2.498E-12	4.996E-10
Rb-88	Р	5.257E+01	1.284E-10	3.210E-08	1.720E-13	4.300E-11
Nuclide Type T	ſotal	2.204E+04	5.383E-08	7.446E-04	7.211E-11	9.975E-07
Nuclide I-132	Type R	<u>Activity (uCi)</u> 3.171E+02	Avg Conc (uCi/mL) 7.745E-10	Avg Conc/10xECL 7.745E-07	Dil Conc (uCi/mL) 1.037E-12	Dil Conc/10xECL 1.037E-09
Nuclide Type 1	ſotal	3.171E+02	7.745E-10	7.745E-07	1.037E-12	1.037E-09
Total		8.608E+08	2.102E-03	2.112E-01	2.816E-06	2.829E-04

Period: Ann, 2019

Site/Unit/Discharge Point: Site

al and a second

Period: Ann, 2019

Site/Unit/Discharge Point: Site

Liquid Dose Summary - Note: All Doses in mRem

<u>Receptor</u> Liquid Receptor - Teenager	Agegroup Teenager	Bone 4.294E-03	Liver 7.862E-03	Total Body 7.724E-03	<u>Thyroid</u> 6.880E-03	Kidney 8.127E-03	Lung 9.227E-03	<u>GI-Lli</u> 4.451E-02	<u>Skin</u> 0.000E+00
Liquid Recptor - Child	Child	3.526E-03	7.141E-03	7.287E-03	6.573E-03	3.530E-03	7.588E-03	2.157E-02	0.000E+00
Maximum Dose by Organ:		4.294E-03	7.862E-03	7.724E-03	6.880E-03	8.127E-03	9.227E-03	4.451E-02	0.000E+00

Maximum Organ Dose (mRem): 4.451E-02

Maximum Total Body Dose (mRem): 7.724E-03

Period: Ann, 2019

Site/Unit/Discharge Point: Site

Xe-127 Xe-135m Xe-133m	N N	2.077E+02 2.142E+06	5.430E-14 5.601E-10	1.357E-07 9.334E-05	6.585E-06 6.792E-02
Kr-88 Xe-138	N N	2.331E+02 4.399E+06	6.095E-14 1.150E-09	6.772E-07 5.751E-03	7.391E-06 1.395E-01
Nuclide Type	Total	1.619E+07	4.234E-09	2.601E-02	5.134E-01

Nuclide	Type	Activity (uCi)	Avg Conc (uCi/cc)	Avg Conc/10xECL	Avg Rel Rate (uCi/sec)
G-Alpna	0	9.378E-02	2.452E-1/	2.452E-03	2.9/4E-09
H-3	0	2.824E+07	7.384E-09	7.384E-03	8.954E-01
Sr-90	0	3.054E+02	7.985E-14	1.331E-03	9.683E-06
C-14	0	1.962E+07	5.130E-09	1.710E-01	6.221E-01
Nuclide Type T	otal	4.786E+07	1.251E-08	1.822E-01	1.518E+00
Nuclide	Туре	Activity (uCi)	<u>Avg Conc (uCi/cc)</u>	Avg Conc/10xECL	Avg Rel Rate (uCi/sec)
Cs-137	 P	4.983E+00	1.303E-15	6.515E-07	1.580E-07
Mn-54	Р	1.156E+02	3.024E-14	3.024E-06	3.667E-06
Co-60	Р	1.735E+02	4.537E-14	9.074E-05	5.502E-06
Cr-51	Р	2.457E+02	6.425E-14	2.142E-07	7.791E-06
Nuclide Type T	otal	5.398E+02	1.412E-13	9.463E-05	1.712E-05
Nuclide	Туре	Activity (uCi)	<u>Avg Conc (uCi/cc)</u>	Avg Conc/10xECL	<u>Avg Rel Rate (uCi/sec)</u>
I-131	R	2.364E+01	6.182E-15	3.091E-06	7.497E-07
I-133	R	7.953E+01	2.080E-14	2.080E-06	2.522E-06
Nuclide Type T	otal	1.032E+02	2.698E-14	5.171E-06	3.272E-06
Total		6.405E+07	1.675E-08	2.083E-01	2.031E+00

Period: Ann, 2019 Site/Unit/Discharge Point: Site

Site Boundary NNG Doserate Summary - Note: All Doses in mRem/yr

Receptor	Agegroup	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-Lli	Skin
NW Site Boundary - In	Infant	6.124E-03	5.817E-03	5.827E-03	5.846E-03	1.799E-03	6.051E-03	5.819E-03	0.000E+00
WNW Site Boundary - I	Infant	2.330E-04	2.330E-04	2.330E-04	2.330E-04	2.330E-04	2.330E-04	2.330E-04	0.000E+00
Maximum Doserate by O	rgan:	6.124E-03	5.817E-03	5.827E-03	5.846E-03	1.799E-03	6.051E-03	5.819E-03	0.000E+00

Maximum Organ Doserate (mRem/yr):6.124E-03Maximum Total Body Doserate (mRem/yr):5.827E-03

Site Boundary NG Doserate Summary

Gas Receptor Location	Gamma (mRad/yr)	Beta (mRad/yr)	Total Body (mRem/yr)	Skin (mRem/yr)
NW Site Boundary	5.747E-03	2.604E-03	5.469E-03	8.430E-03
WNW Site Boundary	4.951E-03	2.243E-03	4.712E-03	7.262E-03
Maximum NG Dose Rate:	5.747E-03	2.604E-03	5.469E-03	8.430E-03

Page 15 of 15

Period: Ann, 2019 Site/U

Site/Unit/Discharge Point: Site

Maximum Individual NNG Dose Summary - Note: All Doses in mRem

Receptor	Agegroup	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-Lli	Skin
NW - Near Milk - Adult	Adult	4.078E-04	5.958E-05	1.199E-04	1.112E-04	5.913E-05	7.703E-05	6.365E-05	0.000E+00
NW Near Milk - Child	Child	5.978E-04	6.139E-05	1.916E-04	2.127E-04	5.915E-05	8.459E-05	6.680E-05	0.000E+00
NW Near Milk - Infant	Infant	8.331E-04	6.526E-05	2.528E-04	4.256E-04	5.912E-05	8.440E-05	6.682E-05	0.000E+00
NW Near Milk - Teenager	Teenager	4.530E-04	6.024E-05	1.536E-04	1.373E-04	5.928E-05	8.861E-05	6.881E-05	0.000E+00
SE Nearest Res - Adult	Adult	9.137E-04	3.430E-04	3.780E-04	3.525E-04	3.429E-04	4.206E-04	3.481E-04	0.000E+00
SE Nearest Res - Child	Child	4.373E-04	3.430E-04	3.486E-04	3.572E-04	3.428E-04	4.520E-04	3.452E-04	0.000E+00
SE Nearest Res - Infant	Infant	4.189E-04	3.429E-04	3.475E-04	3.560E-04	3.428E-04	4.495E-04	3.437E-04	0.000E+00
SE Nearest Res - Teenager	Teenager	4.108E-04	3.430E-04	3.470E-04	3.547E-04	3.429E-04	4.693E-04	3.479E-04	0.000E+00
SE Visitor - Lifeguard 1.0 mi	Adult	4.084E-04	1.593E-04	1.746E-04	1.634E-04	1.592E-04	1.932E-04	1.615E-04	0.000E+00
W Near Garden - Adult	Adult	3.965E-04	1.609E-04	1.753E-04	1.648E-04	1.608E-04	1.929E-04	1.630E-04	0.000E+00
W Near Garden - Child	Child	1.998E-04	1.608E-04	1.632E-04	1.667E-04	1.608E-04	2.058E-04	1.618E-04	0.000E+00
W Near Garden - Teenager	Teenager	1.889E-04	1.609E-04	1.625E-04	1.657E-04	1.608E-04	2.130E-04	1.629E-04	0.000E+00
Maximum Dose by Organ	ו:	9.137E-04	3.430E-04	3.780E-04	4.256E-04	3.429E-04	4.693E-04	3.481E-04	0.000E+00

Maximum Organ Dose (mRem):9.137E-04Maximum Total Body Dose (mRem):3.780E-04

Maximum Individual NG Dose Summary

Gas Receptor Location	Gamma (mRad)	Beta (mRad)	Total Body (mRem)	Skin (mRem)
NW Near Milk 4.25 mi	5.029E-04	2.278E-04	4.786E-04	7.377E-04
SE Nearest Res 1.52 mi 142 deg	2.558E-03	1.159E-03	2.434E-03	3.752E-03
SE Visitor @ 1 mi	1.108E-03	5.018E-04	1.054E-03	1.625E-03
W Near Gard 2.0 miles	8.801E-04	3.987E-04	8.375E-04	1.291E-03
Maximum NG Dose:	2.558E-03	1.159E-03	2.434E-03	3.752E-03

Florida Power & Light St. Lucie Power Plant

.

Gas Status Summary Report

Thursday, February 13, 2020 11:18

Page 1 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume (ft^3)	Release Flowrate (cfm)
G-19-006-B	Closed	Unit 1 Mini-Purge	01/03/2019 03:30	3.600E+02	9.000E+04	2.500E+02
G-19-006-C	Closed	Unit 1 Plant Vent	12/31/2019 07:40	1.039E+04	9.684E+08	9.325E+04
G-19-007-C	Closed	Unit 1 Fuel Handling Building	12/31/2019 07:55	1.035E+04	1.946E+08	1.880E+04
G-19-009-B	Closed	Unit 1 Mini-Purge	01/05/2019 06:36	2.630E+02	6.575E+04	2.500E+02
G-19-010-C	Closed	Unit 1 Plant Vent	01/01/2019 07:15	1.012E+04	9.428E+08	9.316E+04
G-19-011-C	Closed	Unit 1 Fuel Handling Building	01/01/2019 07:40	1.007E+04	1.892E+08	1.880E+04
G-19-014-B	Closed	Unit 1 Mini-Purge	01/09/2019 11:00	4.940E+02	1.235E+05	2.500E+02
G-19-016-C	Closed	Unit 1 Plant Vent	01/08/2019 07:55	1.009E+04	9.401E+08	9.321E+04
G-19-017-C	Closed	Unit 1 Fuel Handling Building	01/08/2019 07:25	1.014E+04	1.905E+08	1.880E+04
G-19-020-B	Closed	Unit 1 Mini-Purge	01/16/2019 17:50	3.000E+02	7.500E+04	2.500E+02
G-19-023-B	Closed	Unit 1 Mini-Purge	01/19/2019 00:52	4.570E+02	1.143E+05	2.500E+02
G-19-025-B	Ciosed	Unit 1 Mini-Purge	01/20/2019 04:45	3.750E+02	9.375E+04	2.500E+02
G-19-026-C	Closed	Unit 1 Plant Vent	01/15/2019 08:00	1.010E+04	9.409E+08	9.316E+04
G-19-029-C	Closed	Unit 1 Fuel Handling Building	01/15/2019 08:20	1.010E+04	1.898E+08	1.880E+04
G-19-033-B	Closed	Unit 1 Mini-Purge	01/24/2019 05:18	3.420E+02	8.550E+04	2.500E+02
G-19-035-B	Closed	Unit 1 Mini-Purge	01/27/2019 15:55	4.290E+02	1.072E+05	2.500E+02
G-19-037-C	Closed	Unit 1 Plant Vent	01/22/2019 08:20	1.016E+04	9.400E+08	9.256E+04
G-19-038-C	Closed	Unit 1 Fuel Handling Building	01/22/2019 08:35	1.017E+04	2.176E+08	2.140E+04
G-19-041-B	Closed	Unit 1 Mini-Purge	02/02/2019 13:27	5.000E+02	1.250E+05	2.500E+02
G-19-043-B	Closed	Unit 1 Mini-Purge	02/05/2019 17:20	3.200E+02	8.000E+04	2.500E+02
G-19-044-C	Closed	Unit 1 Plant Vent	01/29/2019 09:35	1.005E+04	9.400E+08	9.353E+04
G-19-045-C	Closed	Unit 1 Fuel Handling Building	01/29/2019 10:05	1.004E+04	2.399E+08	2.391E+04
G-19-048-B	Closed	Unit 1 Mini-Purge	02/08/2019 21:35	4.050E+02	1.013E+05	2.500E+02
G-19-050-B	Closed	Unit 1 Mini-Purge	02/11/2019 01:40	3.280E+02	8.200E+04	2.500E+02
G-19-051-C	Closed	Unit 1 Plant Vent	02/05/2019 09:05	1.002E+04	9.339E+08	9.325E+04
G-19-052-C	Closed	Unit 1 Fuel Handling Building	02/05/2019 09:20	1.002E+04	1.058E+08	1.056E+04
G-19-054-B	Closed	Unit 1 Containment Hatch	09/17/2019 14:02	2.328E+03	1.164E+07	5.000E+03
G-19-056-B	Closed	Unit 1 Mini-Purge	02/13/2019 01:40	3.870E+02	9.675E+04	2.500E+02
G-19-057-B	Closed	Unit 1 Mini-Purge	02/17/2019 22:17	5.030E+02	1.258E+05	2.500E+02
G-19-058-B (In Progre	Completed/Deleted/100.	Unit 1 Containment Hatch	10/14/2019 12:58		2.884E+07	5.000E+03
G-19-059-C	Closed	Unit 1 Plant Vent	02/12/2019 08:00	1.010E+04	9.412E+08	9.316E+04
G-19-060-C	Closed	Unit 1 Fuel Handling Building	02/12/2019 08:20	1.011E+04	1.901E+08	1.880E+04
G-19-064-B	Closed	Unit 1 Mini-Purge	02/21/2019 04:47	2.800E+02	7.000E+04	2.500E+02
G-19-065-B	Closed	Unit 1 Mini-Purge	02/23/2019 16:02	5.380E+02	1.345E+05	2.500E+02
G-19-066-C	Closed	Unit 1 Plant Vent	02/19/2019 08:23	1.007E+04	9.392E+08	9.325E+04

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

				Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-067-C	Closed	Unit 1 Fuel Handling Building	02/19/2019 08:50	1.007E+04	1.892E+08	1.880E+04
G-19-070-B	Closed	Unit 1. Mini-Purge	02/27/2019 10:30	5.070E+02	1.267E+05	2.500E+02
G-19-072-B	Closed	Unit 1 Mini-Purge	03/03/2019 01:00	5.270E+02	1.317E+05	2.500E+02
G-19-074-C	Closed	Unit 1 Plant Vent	02/26/2019 08:15	1.011E+04	9.428E+08	9.325E+04
G-19-075-C	Closed	Unit 1 Fuel Handling Building	02/26/2019 08:35	1.007E+04	1.893E+08	1.880F+04
G-19-079-B	Closed	Unit 1 Mini-Purge	03/08/2019 16:46	2.690E+02	6.725E+04	2.500E+02
G-19-081-B	Closed	Unit 1 Mini-Purge	03/11/2019 15:35	4.950E+02	1.238E+05	2.500E+02
G-19-082-C	Closed	Unit 1 Plant Vent	03/05/2019 08:45	1.002E+04	9.331E+08	9.312E+04
G-19-083-C	Closed	Unit 1 Fuel Handling Building	03/05/2019 08:25	1.006E+04	1.891E+08	1.880F+04
G-19-086-B	Closed	Unit 1 Mini-Purge	03/13/2019 16:40	2.440E+02	6.100E+04	2.500E+02
G-19-088-B	Closed	Unit 1 Mini-Purge	03/16/2019 13:38	4.780E+02	1.195E+05	2.500E+02
G-19-089-C	Closed	Unit 1 Plant Vent	03/12/2019 07:46	1.029E+04	9.594E+08	9.325E+04
G-19-090-C	Closed	Unit 1 Fuel Handling Building	03/12/2019 08:05	1.031E+04	1.938E+08	1.880E+04
G-19-091-B	Closed	Unit 1 Mini-Purge	03/20/2019 16:30	3.500E+02	8.750E+04	2.500E+02
G-19-095-B	Closed	Unit 1 Mini-Purge	03/24/2019 23:43	4.780E+02	1.195E+05	2.500E+02
G-19-097-B	Closed	Unit 1 Mini-Purge	03/26/2019 15:00	5.540E+02	1.385E+05	2.500E+02
G-19-098-C	Closed	Unit 1 Plant Vent	03/19/2019 11:15	9.860E+03	9.194E+08	9.325E+04
G-19-099-Č	Closed	Unit 1 Fuel Handling Building	03/19/2019 11:55	9.835E+03	1.849E+08	1.880E+04
G-19-102-C	Closed	Unit 1 CHF	03/18/2019 07:00	1.190E+04	1.785E+07	1.500E+03
G-19-104-B	Closed	Unit 1 Mini-Purge	03/31/2019 17:45	4.550E+02	1.137E+05	2.500E+02
G-19-108-C	Closed	Unit 1 Plant Vent	03/26/2019 07:35	1.032E+04	9.619E+08	9.325E+04
G-19-109-C	Closed	Unit 1 Fuel Handling Building	03/26/2019 07:50	1.026E+04	1.928E+08	1.880E+04
G-19-110-B	Closed	Unit 1 Mini-Purge	04/04/2019 04:15	2.890E+02	7.225E+04	2.500E+02
G-19-112-C	Closed	Unit 1 CHF	03/26/2019 13:20	1.156E+04	1.733E+07	1.500E+02
G-19-114-B	Closed	Unit 1 Mini-Purge	04/06/2019 14:00	5.460E+02	1.365E+05	2.500E+02
G-19-115-B	Closed	Unit 1 Mini-Purge	04/08/2019 13:45	6.600E+02	1.650E+05	2.500E+02
G-19-119-C	Closed	Unit 1 Fuel Handling Building	04/02/2019 10:45	1.012E+04	1.902E+08	1.880E+04
G-19-120-C	Closed	Unit 1 Plant Vent	04/02/2019 11:30	1.004E+04	9.358E+08	9 325E+04
G-19-121-C	Closed	Unit 1 CHF	04/03/2019 13:55	8.665E+03	1.300E+07	1.500E+03
G-19-122-B	Closed	Unit 1 Mini-Purge	04/10/2019 04:07	4.500E+02	1.125E+05	2.500E+02
G-19-123-B	Closed	Unit 1 Mini-Purge	04/11/2019 16:37	4.200E+02	1.050E+05	2 500E+02
G-19-124-B	Closed	Unit 1 Mini-Purge	04/13/2019 17:10	5.850E+02	1.463E+05	2.500E+02
G-19-126-B	Closed	Unit 1 Mini-Purge	04/16/2019 04:20	4.600E+02	1.150E+05	2 500E+02
G-19-127-C	Closed	Unit 1 Plant Vent	04/09/2019 10:45	9.985E+03	9.297E+08	9 311E+04
G-19-128-C	Closed	Unit 1 Fuel Handling Building	04/09/2019 11:20	9.930E+03	1.867E+08	1 880F+04
G-19-129-C	Closed	Unit 1 CHF	04/09/2019 14:20	9.825E+03	1.452E+07	1.000E+01
G-19-132-B	Closed	Unit 1 Mini-Purge	04/17/2019 16:50	6.340F+02	1.585E+05	2 5005+02
G-19-133-B	Closed	Unit 1 Mini-Purge	04/19/2019 13:20	5.800F+02	1.450E+05	2.500E+02
G-19-135-B	Closed	Unit 1 Mini-Purge	04/23/2019 01:26	5.780F+02	1.445F+05	2.500E+02
G-19-137-C	Closed	Unit 1 CHF	04/16/2019 10:05	9.945E+03	1.492E+07	1.500E+02

User: Admin

Page 3 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

				Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-138-C	Closed	Unit 1 Fuel Handling Building	04/16/2019 08:50	1.005E+04	1.889F+08	1 880F+04
G-19-140-C	Closed	Unit 1 Plant Vent	04/16/2019 09:10	1.002E+04	9.339E+08	9 325E+04
G-19-141-B	Closed	Unit 1 Mini-Purge	04/24/2019 15:24	5.080E+02	1.270E+05	2 500E+02
G-19-142-B	Closed	Unit 1 Mini-Purge	04/26/2019 09:57	5.690E+02	1.423E+05	2.500E+02 2 500E+02
G-19-144-B	Closed	Unit 1 Mini-Purge	04/28/2019 17:31	5.610E+02	1.402E+05	2 500E+02
G-19-145-C	Closed	Unit 1 Plant Vent	04/23/2019 08:05	1.006E+04	9.376E+08	9 325E+04
G-19-146-C	Closed	Unit 1 Fuel Handling Building	04/23/2019 08:20	1.006E+04	1.890E+08	1 880E+04
G-19-150-C	Closed	Unit 1 CHF	04/23/2019 07:50	1.026E+04	1.539E+07	1.500E+03
G-19-151-B	Closed	Unit 1 Mini-Purge	04/30/2019 23:52	5.100E+02	1.275E+05	2 500E+02
G-19-153-B	Closed	Unit 1 Mini-Purge	05/02/2019 08:40	5.550E+02	1.388E+05	2 500E+02
G-19-154-B	Closed	Unit 1. Mini-Purge	05/04/2019 16:00	6.000E+02	1.500E+05	2.500E+02
G-19-155-B	Closed	Unit 1 Mini-Purge	05/07/2019 09:35	5.990E+02	1.498E+05	2.500E+02
G-19-156-C	Closed	Unit 1 Plant Vent	04/30/2019 07:40	1.010E+04	9.418E+08	9 325E+04
G-19-157-C	Closed	Unit 1 Fuel Handling Building	04/30/2019 07:55	1.011E+04	1.900E+08	1 880E+04
G-19-161-B	Closed	Unit 1. Mini-Purge	05/09/2019 01:48	5.480E+02	1.370E+05	2 500E+02
G-19-162-B	Closed	1B Gas Decay Tank	05/08/2019 20:30	1.560E+02	1.437E+03	1 000E+01
G-19-163-B	Closed	1A Gas Decay Tank	05/09/2019 00:09	8.400E+01	8.400E+02	1.000E+01
G-19-164-B	Closed	Unit 1. Mini-Purge	05/10/2019 04:25	1.900E+02	4.750E+04	2.500E+02
G-19-166-B	Closed	Unit 1. Mini-Purge	05/12/2019 04:00	3.600E+02	9.000E+04	2 500E+02
G-19-169-B	Closed	Unit 1 Mini-Purge	05/14/2019 02:30	4.850E+02	1.212E+05	2.500E+02
G-19-173-C	Closed	Unit 1 Plant Vent	05/07/2019 08:00	1.047E+04	9.400E+08	8 978E+04
G-19-174-C	Closed	Unit 1 Fuel Handling Building	05/07/2019 08:20	1.042E+04	1.895E+08	1.819E+04
G-19-175-B	Closed	Unit 1 Mini-Purge	05/16/2019 03:51	5.040E+02	1.260E+05	2.500E+02
G-19-177-B	Closed	Unit 1 Main Purge	05/16/2019 15:35	4.000E+00	4.642E+05	1.161E+05
G-19-178-B	Closed	Unit 1 Mini-Purge	05/18/2019 09:12	5.700E+02	1.425E+05	2.500E+02
G-19-180-B	Closed	Unit 1 Mini-Purge	05/20/2019 06:30	5.400E+02	1.350E+05	2.500E+02
G-19-181-C	Closed	Unit 1 Plant Vent	05/14/2019 14:30	9.765E+03	9.084E+08	9.303E+04
G-19-182-C	Closed	Unit 1 Fuel Handling Building	05/14/2019 14:00	9.815E+03	1.845E+08	1.880E+04
G-19-186-B	Closed	Unit 1 Mini-Purge	05/22/2019 15:40	5.400E+02	1.350E+05	2.500E+02
G-19-188-B	Closed	Unit 1 Mini-Purge	05/24/2019 14:15	6.550E+02	1.637E+05	2.500E+02
G-19-189-B	Closed	Unit 1 Main Purge	05/25/2019 12:45	6.000E+02	6.963E+07	1 161E+05
G-19-194-C	Closed	Unit 1 Fuel Handling Building	05/21/2019 09:35	1.020E+04	1.917E+08	1.880E+04
G-19-195-C	Closed	Unit 1 Plant Vent	05/21/2019 09:15	1.019E+04	1.156E+09	1.134E+05
G-19-196-B	Closed	1C Gas Decay Tank	05/30/2019 01:50	3.200E+01	3.200E+02	1.000E+01
G-19-198-C	Closed	Unit 1 Plant Vent	05/28/2019 11:05	9.840E+03	1.142E+09	1.161E+05
G-19-199-C	Closed	Unit 1 Fuel Handling Building	05/28/2019 11:30	9.830E+03	1.848E+08	1.880E+04
G-19-204-B	Closed	Unit 1 Mini-Purge	06/10/2019 16:51	5.640E+02	1.410E+05	2.500E+07
G-19-205-C	Closed	Unit 1 Plant Vent	06/04/2019 07:05	1.009E+04	1.036E+09	1.028E+05
G-19-206-C	Closed	Unit 1 Fuel Handling Building	06/04/2019 07:20	1.009E+04	1.897E+08	1.880E+04
G-19-210-B	Closed	Unit 1 Mini-Purge	06/12/2019 03:20	4.920E+02	1.230E+05	2.500E+02

User: Admin

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

				Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-212-B	Closed	Unit 1 Mini-Purge	06/14/2019 11:45	4.770E+02	1.192E+05	2.500E+02
G-19-214-B	Closed	Unit 1 Mini-Purge	06/16/2019 02:06	4.520E+02	1.130E+05	2.500E+02
G-19-215-B	Closed	1B Gas Decay Tank	06/16/2019 14:26	9.800E+01	7.709E+02	1 000E+01
G-19-216-B	Closed	Unit 1 Mini-Purge	06/18/2019 12:53	5.400E+02	1.350E+05	2.500E+02
G-19-219-C	Closed	Unit 1 Plant Vent	06/11/2019 07:10	1.023E+04	9.344E+08	9.138F+04
G-19-220-C	Closed	Unit 1 Fuel Handling Building	06/11/2019 07:30	1.018E+04	1.895E+08	1 862E+04
G-19-222-B	Closed	Unit 1 Mini-Purge	06/20/2019 15:32	5.150E+02	1.288E+05	2.500E+02
G-19-223-B	Closed	Unit 1 Mini-Purge	06/23/2019 16:36	5.040E+02	1.260E+05	2.500E+02
G-19-225-C	Closed	Unit 1 Plant Vent	06/18/2019 09:35	9.980E+03	9.306E+08	9 325E+04
G-19-226-C	Closed	Unit 1 Fuel Handling Building	06/18/2019 09:05	1.003E+04	1 886F+08	1 880E+04
G-19-230-B	Closed	Unit 1 Mini-Purge	06/26/2019 10:05	5.740E+02	1.435E+05	2500E+07
G-19-232-B	Closed	Unit 1 Mini-Purge	06/28/2019 17:24	4.260E+02	1.065E+05	2.500E+02
G-19-233-B	Closed	Unit 1 Mini-Purge	07/02/2019 01:20	3.960E+02	9.900E+04	2.500E+02
G-19-234-C	Closed	Unit 1 Plant Vent	06/25/2019 07:55	1.010E+04	9.093E+08	9.003E+04
G-19-235-C	Closed	Unit 1 Fuel Handling Building	06/25/2019 08:15	1.005E+04	1 889E+08	1 880F±04
G-19-238-B	Closed	Unit 1 Mini-Purge	07/03/2019 14:40	4.850E+07	1.005E+00	2 500E+02
G-19-240-B	Closed	Unit 1 Mini-Purge	07/07/2019 17:42	4.570E+02	1.212E+05	2.500E+02
G-19-241-C	Closed	Unit 1 Plant Vent	07/02/2019 08:15	9.995E+03	9 325E+08	9 330E+04
G-19-242-C	Closed	Unit 1 Fuel Handling Building	07/02/2019 07:45	1.004E+04	1 888F+08	1 880E+04
G-19-245-B	Closed	Unit 1 Mini-Purge	07/10/2019 16:05	3.350E+02	8.375E+04	2 500E+04
G-19-246-B	Closed	Unit 1 Mini-Purge	07/12/2019 16:10	3 750E+02	9 375E+04	2.500E+02
G-19-248-B	Closed	Unit 1 Mini-Purge	07/15/2019 03:00	5.030E+02	1 258E+05	2.500E+02
G-19-249-C	Closed	Unit 1 Plant Vent	07/09/2019 06:50	1 011F+04	9 421E+08	9 318E+04
G-19-250-C	Closed	Unit 1 Fuel Handling Building	07/09/2019 07:05	1 012E+04	1 902E+08	1 880E±04
G-19-253-B	Closed	Unit 1 Mini-Purge	07/17/2019 05:22	3 780E+02	9 450E+04	2 500E+04
G-19-255-B	Closed	Unit 1 Mini-Purge	07/19/2019 05:04	3.810E+02	9.525E+04	2.5000+02
G-19-256-B	Closed	Unit 1 Mini-Purge	07/22/2019 03:22	5 340E+02	1 335E+05	2.500E+02
G-19-258-C	Closed	Unit 1 Plant Vent	07/16/2019 07:20	1 010E+02	9 396E+08	9 307E+04
G-19-259-C	Closed	Unit 1 Fuel Handling Building	07/16/2019 07:40	1.010E+04	1 891E+08	1 880E±04
G-19-262-B	Closed	Unit 1 Mini-Purge	07/23/2019 22:30	4 820E+07	1 2055+05	2500E+07
G-19-263-B	Closed	Unit 1 Mini-Purae	07/27/2019 08:11	4 760F+02	1 190E+05	2.500E+02
G-19-265-B	Closed	Unit 1 Mini-Purge	07/29/2019 04:00	4 800E+02	1.1906105	2.5000-02
G-19-267-C	Closed	Unit 1 Plant Vent	07/23/2019 07:35	1.003E+02	9 344E+08	9 134F+02
G-19-268-C	Closed	Unit 1 Fuel Handling Building	07/23/2019 07:20	1.022E+04	1 895E+08	1 854E±04
G-19-271-B	Closed	Unit 1 Mini-Purge	07/31/2019 15:40	4 100E+02	1.025E+05	2 500E+07
G-19-272-B	Closed	Unit 1 Mini-Purge	08/02/2019 14:21	4 340E+02	1.0256105	2.500E+02
G-19-274-B	Closed	Unit 1 Mini-Purae	08/06/2019 04:00	4 000F+02	1 000E+05	2.500L+02
G-19-275-C	Closed	Unit 1 Plant Vent	07/30/2019 01:00	1 0375+04	0 673ETUS	2.JUUETUZ
G-19-276-C	Closed	Unit 1 Fuel Handling Building	07/30/2019 10:05	1 032E+04	1 9405-09	1 990E±04
G-19-279-B	Closed	Unit 1 Mini-Purge	08/07/2019 15:56	3.400E+02	8.500E+04	2.500E+04

•• • ••••

Page 5 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume (ft^3)	Release Flowrate (cfm)
G-19-28	Closed	Unit 1 Mini-Purge	08/09/2019 16:59	3 7005 1 02		
G-19-282-B	Closed	Unit 1 Mini-Purge	08/12/2019 10:39	4.350E+02	9.475E+04	2.500E+02
G-19-286-C	Closed	Linit 1 Plant Vent	08/06/2019 14:05	4.530L+02	1.0000-+05	2.500E+02
G-19-287-C	Closed	Unit 1 Fuel Handling Building	08/06/2019 13:39		9.392E+08	9.263E+04
G-19-288-B	Closed/Deleted/100.00	Unit 1 Mini-Purge	08/14/2019 08:00		1.095E+08	1.8086+04
G-19-289-B	Closed	Unit 1 Mini-Purge	08/14/2010 12:00	2 9505:02	5.95ZE+03	9.921E+01
G-19-290-B	Closed	Unit 1 Mini-Purge	08/17/2019 15:22	5.050E+02	9.0Z5E+04	2.500E+02
G-19-291-C	Closed	Unit 1 Plant Vent	08/13/2019 15:05	0.720E+02	1.29/E+05	2.500E+02
G-19-292-C	Closed	Unit 1 Fuel Handling Building	08/12/2019 13:03	9.720E+03	9.064E+08	9.325E+04
G-19-296-B	Closed	Unit 1 Mini-Purge	08/21/2010 06:17	9.755E+03	1.035E+08	1.6/6E+04
G-19-297-B	Closed	Unit 1 Mini-Purge	08/22/2019 00.1/	5.110E+02	1.2//E+U5	2.500E+02
G-19-299-B	Closed	Unit 1 Mini-Purge	08/25/2019 01.30	4.020E+02	1.205E+05	2.500E+02
G-19-300-C	Closed	Linit 1 Plant Vent		1.00CE+02	1.3/5E+05	2.500E+02
G-19-303-C	Closed	Unit 1 Fuel Handling Building	08/20/2019 09:03	1.00000404	9.363E+08	9.30/E+04
G-19-305-B	Closed	Unit 1 Mini-Purge	08/28/2019 09:20	1.002E+04	1.883E+08	1.880E+04
G-19-307-B	Closed	Unit 1 Mini-Purge	08/20/2019 03.30	5.320E+02	1.330E+05	2.500E+02
G-19-308-B	Closed	Unit 1 Mini-Purge	09/01/2019 10:23	5 220E+02	1.0526+05	2.500E+02
G-19-310-C	Closed	Unit 1 Plant Vent	08/27/2019 14.37	0.700E+02	1.332E+05	2.500E+02
G-19-311-C	Closed	Unit 1 Fuel Handling Building	08/27/2019 08.45	9.700E+03	9.0450+08	9.325E+04
G-19-312-B	Closed	Unit 1 Mini-Purge	00/07/2019 08:13	9.710E+03	1.825E+08	1.880E+04
G-19-315-B	Closed	Unit 1 Mini-Purge	09/07/2019 08:40	2.400E+02	6.000E+04	2.500E+02
G-19-316-B	Closed	Unit 1 Mini-Purge	00/08/2010 22:00	2.710E+02	6.775E+04	2.500E+02
G-19-317-B	Closed	Unit 1 Main Purge	09/06/2019 22.00	5.380E+02	8.450E+04	2.500E+02
G-19-319-C	Closed	Unit 1 Plant Vent	09/10/2019 07:35	0.000E+02	6.963E+07	1.161E+05
G-19-320-C	Closed	Unit 1 Fuel Handling Building	. 09/03/2019 02.25	1.046E+04	9.749E+08	9.325E+04
G-19-323-B	Closed	1B Gas Decay Tank	09/05/2019 02:05	1.0405+04	1.9662+08	1.880E+04
G-19-325-C	Closed	Unit 1 Plant Vent	09/10/2010 09:40	1.2806+02	5.456E+U2	1.000E+01
G-19-326-C	Closed	Unit 1 Fuel Handling Building	09/10/2019 08:40	1.01/E+04	1.115E+09	1.09/E+05
G-19-330-B	Closed	Unit 1 Mini-Purge	09/10/2019 08.20	1.010E+04	1.910E+08	1.880E+04
G-19-331-B	Closed	Unit 1 Mini-Purge	09/19/2019 17.30	5.300E+02	1.325E+05	2.500E+02
G-19-333-B	Closed	Unit 1 Mini-Purge	09/20/2019 22.25	5.230E+02	1.55/E+05	2.500E+02
G-19-334-C	Closed	linit 1 Plant Vent	09/22/2019 10.2/	5.660E+02	1.4/0E+05	2.500E+02
G-19-335-C	Closed	Unit 1 Fuel Handling Building	09/17/2019 09:40	9.925E+03	9.748E+08	9.822E+04
G-19-339-B	Closed	Unit 1 Mini-Durge	09/17/2019 09:40	9.940E+03	1.868E+08	1.8/9E+04
G-19-340-B	Closed	14 Gas Decay Tank	09/24/2019 17:10	4.940E+02	1.235E+05	2.500E+02
G-19-341-B	Closed	Linit 1 Mini-Durge	09/25/2019 21:50	5.400E+01	5.400E+02	1.000E+01
G-19-342-B	Closed	Unit 1 Mini-Durge	09/27/2010 10:52	3.450E+02	8.6256+04	2.500E+02
G-19-344-B	Closed	Unit 1 Mini-Purge	00/20/2010 21-22	1.0905+02	4./25E+04	2.500E+02
G-19-345-C	Closed	Unit 1 Plant Vent	00/24/2010 07-05	4.0201+02	1.005E+05	2.500E+02
G-19-346-C	Closed	Unit 1 Fuel Handling Building	09/24/2019 07:05	1.01/04	9.4/9E+08	9.325E+04
	0.0000	onic in a nanaling building	09/24/2019 07:20	1.0125+04	1.903E+08	1.880E+04

User: Admin
Page 6 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Pormit Number	Status (Alles	Balance Course		Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Anoc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-349-B	Closed	Unit 1 Mini-Purge	10/02/2019 04:08	5.800E+02	1.450E+05	2,500E+02
G-19-351-B	Closed	Unit 1 Mini-Purge	10/05/2019 19:00	4.300E+02	1.075E+05	2.500E+02
G-19-352-B	Closed	Unit 1 Mini-Purge	10/07/2019 09:03	4.370E+02	1.092E+05	2.500E+02
G-19-354-C	Closed	Unit 1 Plant Vent	10/01/2019 08:30	1.001E+04	9.321E+08	9.316E+04
G-19-355-C	Closed	Unit 1 Fuel Handling Building	10/01/2019 08:00	1.006E+04	1.890E+08	1.880E+04
G-19-358-B	Closed	Unit 1 Mini-Purge	10/09/2019 00:51	6.000E+02	1.500E+05	2.500E+02
G-19-360-B	Closed	Unit 1 Mini-Purge	10/09/2019 10:51	6.000E+02	1.500E+05	2.500E+02
G-19-361-B	Closed	Unit 1 Mini-Purge	10/09/2019 20:51	6.000E+02	1.500E+05	2.500E+02
G-19-362-B	Closed	Unit 1. Mini-Purge	10/10/2019 06:51	6.000E+02	1.500E+05	2.500E+02
G-19-363-B	Closed	Unit 1 Mini-Purge	10/10/2019 16:51	6.000E+02	1.500E+05	2.500E+02
G-19-364-B	Closed	Unit 1 Mini-Purge	10/11/2019 02:51	6.000E+02	1.500E+05	2.500E+02
G-19-365-B	Closed	Unit 1 Mini-Purge	10/11/2019 12:51	6.000E+02	1.500E+05	2.500E+02
G-19-366-B	Closed	1B Gas Decay Tank	10/11/2019 23:16	5.600E+01	8.297E+02	1 487E+01
G-19-367-B	Closed	Unit 1 Mini-Purge	10/12/2019 02:09	6.000E+02	1.500E+05	2 500E+02
G-19-368-B	Closed	Unit 1 Mini-Purge	10/12/2019 12:09	6.000E+02	1.500E+05	2 500E+02
G-19-369-B	Closed	Unit 1 Mini-Purge	10/12/2019 22:09	5.910E+02	1.477E+05	2.500E+02
G-19-370-B	Closed	Unit 1 Mini-Purge	10/13/2019 08:00	4.800E+02	1.200E+05	2.500E+02
G-19-371-B	Closed	Unit 1 Mini-Purge	10/13/2019 16:00	2.490E+02	6.225E+04	2.500E+02
G-19-373-B	Closed	Unit 1 Main Purge	10/14/2019 10:50	6.000E+02	6.963E+07	1.161E+05
G-19-374-C	Closed	Unit 1 Plant Vent	10/08/2019 07:15	1.012E+04	9.428E+08	9.316E+04
G-19-375-C	Closed	Unit 1 Fuel Handling Building	10/08/2019 07:35	1.008E+04	1.781E+08	1.766E+04
G-19-380-C	Closed	Unit 1 Plant Vent	10/15/2019 07:55	1.004E+04	1.162E+09	1.158E+05
G-19-381-C	Closed	Unit 1 Fuel Handling Building	10/15/2019 07:35	1.007E+04	1.751E+08	1.739E+04
G-19-384-B	Closed	Unit 1 Containment Hatch	10/18/2019 13:05	5.625E+03	2.813E+07	5.000E+03
G-19-386-C	Closed	Unit 1 Plant Vent	10/22/2019 07:10	1.017E+04	1.017E+09	1.000E+05
G-19-387-C	Closed	Unit 1 Fuel Handling Building	10/22/2019 07:25	1.013E+04	8.239E+07	8.133E+03
G-19-391-B	Closed	Unit 1 RWT Vent	10/23/2019 08:00	1.500E+03	1.500E+06	1.000E+03
G-19-392-B	Closed	Unit 1 RWT Vent	10/24/2019 09:00	5.220E+03	5.220E+06	1.000E+03
G-19-393-C	Closed	Unit 1 Plant Vent	10/29/2019 08:40	9.985E+03	1.156E+09	1.158E+05
G-19-394-C	Closed	Unit 1 Fuel Handling Building	10/29/2019 08:15	1.003E+04	1.886E+08	1.880E+04
G-19-397-B	Closed	Unit 1 Main Purge	11/08/2019 20:52	6.000E+02	6.963E+07	1.161E+05
G-19-399-B	Closed	1B Gas Decay Tank	11/12/2019 10:47	1.030E+02	1.241E+03	1.709E+01
G-19-400-B	Closed	Unit 1 Mini-Purge	11/11/2019 00:34	4.960E+02	1.240E+05	2.500E+02
G-19-401-B	Closed	Unit 1 Mini-Purge	11/11/2019 22:55	6.000E+02	1.500E+05	2.500E+02
G-19-404-C	Closed	Unit 1 Plant Vent	11/05/2019 07:05	1.016E+04	1.175E+09	1.157E+05
G-19-405-C	Closed	Unit 1 Fuel Handling Building	11/05/2019 07:25	1.012E+04	2.119E+08	2.093E+04
G-19-406-B	Closed	1C Gas Decay Tank	11/12/2019 15:50	1.000E+02	1.858E+03	1.858E+01
G-19-407-B	Closed	1A Gas Decay Tank	11/14/2019 02:35	1.150E+02	1.349E+03	1.173E+01
G-19-408-B	Closed	Unit 1 Mini-Purge	11/13/2019 19:03	4.200E+02	1.050E+05	2.500E+02
G-19-409-B	Closed	Unit 1 Mini-Purge	11/15/2019 15:05	4.950E+02	1.238E+05	2.500E+02

Page 7 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume (ft^3)	Release Flowrate (cfm)
G-19-411-B	Closed	Unit 1 Mini-Purge	11/18/2019 16:10	1.787E+03	4.467E+05	2.500E+02
G-19-412-C	Closed	Unit 1 Plant Vent	11/12/2019 08:25	1.002E+04	9.333E+08	9.315E+04
G-19-413-C	Closed	Unit 1 Fuel Handling Building	11/12/2019 08:05	1.006E+04	2.393E+08	2.380E+04
G-19-416-B	Closed	Unit 1 Mini-Purge	11/22/2019 01:30	5.000E+02	1.250E+05	2.500E+02
G-19-418-B	Closed	Unit 1 Mini-Purge	11/23/2019 16:25	6.000E+02	1.500E+05	2.500E+02
G-19-420-B	Closed	Unit 1 Mini-Purge	11/26/2019 14:00	3.900E+02	9.750E+04	2.500E+02
G-19-421-C	Closed	Unit 1 Plant Vent	11/19/2019 07:25	1.014E+04	9.456E+08	9.325E+04
G-19-422-C	Closed	Unit 1 Fuel Handling Building	11/19/2019 07:40	1.015E+04	2.342E+08	2.309E+04
G-19-425-B	Closed	Unit 1 Mini-Purge	11/29/2019 04:30	5.130E+02	1.282E+05	2.500E+02
G-19-427-B	Closed	Unit 1 Mini-Purge	12/01/2019 13:45	4.840E+02	1.210E+05	2.500E+02
G-19-428-C	Closed	Unit 1 Plant Vent	11/26/2019 08:25	1.004E+04	9.191E+08	9.154E+04
G-19-429-C	Closed	Unit 1 Fuel Handling Building	11/26/2019 08:45	1.004E+04	1.888E+08	1.880E+04
G-19-432-B	Closed	Unit 1 Mini-Purge	12/07/2019 00:47	5.460E+02	1.365E+05	2.500E+02
G-19-433-B	Closed	Unit 1 Mini-Purge	12/08/2019 19:26	2.290E+02	5.725E+04	2.500E+02
G-19-435-B	Closed	Unit 1 Mini-Purge	12/10/2019 12:00	5.600E+02	1.400E+05	2.500E+02
G-19-436-C	Closed	Unit 1 Plant Vent	12/03/2019 07:45	1.007E+04	9.357E+08	9.289E+04
G-19-439-C	Closed	Unit 1 Fuel Handling Building	12/03/2019 08:05	1.008E+04	1.894E+08	1.880E+04
G-19-440-B	Closed	Unit 1 Mini-Purge	12/12/2019 15:44	4.360E+02	1.090E+05	2.500E+02
G-19-441-B	Closed	Unit 1 Mini-Purge	12/13/2019 16:10	2.880E+02	7.200E+04	2.500E+02
G-19-443-B	Closed	Unit 1 Mini-Purge	12/16/2019 19:56	5.310E+02	1.328E+05	2.500E+02
G-19-444-C	Closed	Unit 1 Plant Vent	12/10/2019 07:38	1.007E+04	9.381E+08	9.314E+04
G-19-445-C	Closed	Unit 1 Fuel Handling Building	12/10/2019 08:02	1.007E+04	1.862E+08	1.849E+04
G-19-448-B	Closed	Unit 1 Mini-Purge	12/21/2019 16:49	5.210E+02	1.303E+05	2.500E+02
G-19-449-B	Closed	Unit 1 Mini-Purge	12/22/2019 20:50	4.750E+02	1.187E+05	2.500E+02
G-19-451-C	Closed	Unit 1 Plant Vent	12/17/2019 07:30	1.010E+04	9.418E+08	9.325E+04
G-19-452-C	Closed	Unit 1 Fuel Handling Building	12/17/2019 07:50	1.010E+04	1.796E+08	1.779E+04
G-19-455-B	Closed	Unit 1 Mini-Purge	12/24/2019 16:08	3.970E+02	9.925E+04	2.500E+02
G-19-456-B	Closed	Unit 1 Mini-Purge	12/28/2019 14:00	6.000E+02	1.500E+05	2.500E+02
G-19-458-B	Closed	Unit 1 Mini-Purge	12/30/2019 17:30	4.500E+02	1.125E+05	2.500E+02
G-19-459-C	Closed	Unit 1 Plant Vent	12/24/2019 07:50	1.007E+04	9.390E+08	9.325E+04
G-19-460-C	Closed	Unit 1 Fuel Handling Building	12/24/2019 08:10	1.007E+04	1.890E+08	1.880E+04
G-20-059-B	Closed	Unit 1 Containment Hatch	10/14/2019 12:58	5.767E+03	2.884E+07	5.000E+03
G-20-060-B	Closed	Unit 1 Containment Hatch	10/22/2019 10:50	1.003E+04	5.015E+07	5.000E+03
G-20-061-B	Closed	Unit 1 Containment Hatch	10/29/2019 10:00	1.155E+04	5.776E+07	5.000E+03

~

Page 8 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Nuclide	Туре	Activity (uCi)	Avg Conc (uCi/cc)	Avg Conc/10xECL	Avg Rel Rate (uCi/sec)
Xe-138	N	4.399E+06	2.516E-09	1.258E-02	1.395E-01
Xe-133	Ν	1.260E+06	7.208E-10	1.442E-04	3.996E-02
Xe-131m	Ν	1.167E+03	6.677E-13	3.339E-08	3.702E-05
Xe-127	Ν	4.626E+01	2.646E-14	0.000E+00	1.467E-06
Xe-133m	Ν	2.142E+06	1.225E-09	2.042E-04	6.791E-02
Xe-135m	N	2.077E+02	1.188E-13	2.969E-07	6.585E-06
Xe-135	Ν	3.749E+03	2.145E-12	3.064E-06	1.189E-04
Ar-41	Ν	6.877E+06	3.934E-09	3.934E-02	2.181E-01
Nuclide Type T	fotal	1.468E+07	8.398E-09	5.227E-02	4.656E-01
<u>Nuclide</u>	Туре	<u>Activity (uCi)</u>	Avg Conc (uCi/cc)	Avg Conc/10xECL	Avg Rel Rate (uCi/sec)
Sr-90	0	3.054E+02	1.747E-13	2.911E-03	9.683E-06
C-14	0	8.069E+06	4.616E-09	1.539E-01	2.559E-01
H-3	0	1.970E+07	1.127E-08	1.127E-02	6.248E-01
G-Alpha	0	8.352E-02	4.778E-17	4.778E-03	2.648E-09
Nuclide Type	Total	2.777E+07	1.589E-08	1.728E-01	8.807E-01
Nuclide	Түре	Activity (uCi)	Avg Conc (uCi/cc)	Avg Conc/10xECL	Avg Rel Rate (uCi/sec)
Mn-54	P	1.156E+02	6.614E-14	6.614E-06	3.667E-06
Co-60	Р	1.721E+02	9.847E-14	1.969E-04	5.459E-06
Cr-51	P	2.457E+02	1.405E-13	4.685E-07	7.791E-06
Cs-137	Р	4.983E+00	2.850E-15	1.425E-06	1.580E-07
Nuclide Type	Total	5.385E+02	3.080E-13	2.054E-04	1.707E-05
Nuclide	Туре	Activity (uCi)	Avg Conc (uCi/cc)	Avg Conc/10xECL	Avg Rel Rate (uCi/sec)
I-133	R	6.738E+01	3.854E-14	3.854E-06	2.137E-06
I-131	R	2.267E+01	1.297E-14	6.484E-06	7.189E-07
Nuclide Type	Total	9.005E+01	5.151E-14	1.034E-05	2.856E-06
Total	······································	4.246E+07	2.428E-08	2.253E-01	1.346E+00

Thursday, February 13, 2020 11:18

Page 9 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Site Boundary NNG Doserate Summary - Note: All Doses in mRem/yr

Receptor	Agegroup	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-Lli	Skin
NW Site Boundary - In	Infant	3.159E-03	3.112E-03	3.122E-03	3.137E-03	1.359E-03	3.345E-03	3.113E-03	0.000E+00
WNW Site Boundary - I	Infant	2.315E-04	2.315E-04	2.315E-04	2.315E-04	2.315E-04	2.315E-04	2.315E-04	0.000E+00
Maximum Doserate by O	rgan:	3.159E-03	3.112E-03	3.122E-03	3.137E-03	1.359E-03	3.345E-03	3.113E-03	0.000E+00

Maximum Organ Doserate (mRem/yr):3.345E-03Maximum Total Body Doserate (mRem/yr):3.122E-03

Site Boundary NG Doserate Summary

Gas Receptor Location	Gamma (mRad/yr)	Beta (mRad/yr)	Total Body (mRem/yr)	Skin (mRem/yr)
NW Site Boundary	5.359E-03	2.433E-03	5.101E-03	7.883E-03
WNW Site Boundary	4.616E-03	2.096E-03	4.394E-03	6.791E-03
Maximum NG Dose Rate:	5.359E-03	2.433E-03	5.101E-03	7.883E-03

Page 10 of 10

Period: Ann, 2019

Site/Unit/Discharge Point: PSL1

Maximum Individual NNG Dose Summary - Note: All Doses in mRem

Receptor	Agegroup	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-Lli	Skin
NW - Near Milk - Adult	Adult	4.074E-04	5.913E-05	1.194E-04	1.083E-04	5.868E-05	7.655E-05	6.320E-05	0.000E+00
NW Near Milk - Child	Child	5.974E-04	6.093E-05	1.911E-04	2.050E-04	5.870E-05	8.411E-05	6.635E-05	0.000E+00
NW Near Milk - Infant	Infant	8.326E-04	6.477E-05	2.523E-04	4.081E-04	5.867E-05	8.393E-05	6.638E-05	0.000E+00
NW Near Milk - Teenager	Teenager	4.526E-04	5.979E-05	1.532E-04	1.332E-04	5.882E-05	8.813E-05	6.836E-05	0.000E+00
SE Nearest Res - Adult	Adult	9.111E-04	3.405E-04	3.755E-04	3.490E-04	3.403E-04	4.179E-04	3.455E-04	0.000E+00
SE Nearest Res - Child	Child	4.347E-04	3.404E-04	3.460E-04	3.532E-04	3.403E-04	4.492E-04	3.426E-04	0.000E+00
SE Nearest Res - Infant	Infant	4.163E-04	3.404E-04	3.449E-04	3.521E-04	3.403E-04	4.468E-04	3.412E-04	0.000E+00
SE Nearest Res - Teenager	Teenager	4.082E-04	3.405E-04	3.445E-04	3.510E-04	3.403E-04	4.666E-04	3.454E-04	0.000E+00
SE Visitor - Lifeguard 1.0 mi	Adult	4.072E-04	1.581E-04	1.734E-04	1.618E-04	1.581E-04	1.919E-04	1.603E-04	0.000E+00
W Near Garden - Adult	Adult	3.953E-04	1.597E-04	1.741E-04	1.632E-04	1.596E-04	1.917E-04	1.618E-04	0.000E+00
W Near Garden - Child	Child	1.986E-04	1.596E-04	1.620E-04	1.649E-04	1.596E-04	2.046E-04	1.606E-04	0.000E+00
W Near Garden - Teenager	Teenager	1.876E-04	1.597E-04	1.613E-04	1.640E-04	1.596E-04	2.117E-04	1.617E-04	0.000E+00
Maximum Dose by Organ	n: ⁻	9.111E-04	3.405E-04	3.755E-04	4.081E-04	3.403E-04	4.666E-04	3.455E-04	0.000E+00

Maximum Organ Dose (mRem):	9.111E-04
Maximum Total Body Dose (mRem):	3.755E-04

Maximum Individual NG Dose Summary

Gas Receptor Location	Gamma (mRad)	Beta (mRad)	Total Body (mRem)	Skin (mRem)
NW Near Milk 4.25 mi	4.689E-04	2.129E-04	4.464E-04	6.897E-04
SE Nearest Res 1.52 mi 142 deg	2.385E-03	1.083E-03	2.271E-03	3.509E-03
SE Visitor @ 1 mi	1.033E-03	4.689E-04	9.831E-04	1.519E-03
W Near Gard 2.0 miles	8.206E-04	3.725E-04	7.811E-04	1.207E-03
Maximum NG Dose:	2.385E-03	1.083E-03	2.271E-03	3.509E-03

Florida Power & Light St. Lucie Power Plant

Gas Status Summary Report

Thursday, February 13, 2020 11:19

Page 1 of 8

Period: Ann, 2019

Site/Unit/Discharge Point:

				Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-004-C	Closed	Unit 2 Plant Vent	12/31/2019 08:55	1.004E+04	1.126E+09	1.122E+05
G-19-005-B	Closed	Unit 2 Mini-Purge	01/03/2019 20:40	4.200E+01	1.071E+05	2.550E+03
G-19-005-C	Closed	Unit 2 Fuel Handling Building	12/31/2019 08:55	1.007E+04	2.589E+08	2.570E+04
G-19-012-C	Closed	Unit 2 Plant Vent	01/01/2019 08:15	1.013E+04	1.130E+09	1.116E+05
G-19-013-C	Closed	Unit 2 Fuel Handling Building	01/01/2019 08:45	1.007E+04	1.581E+08	1.570E+04
G-19-015-B	Closed	Unit 2 Mini-Purge	01/10/2019 10:05	5.400E+01	1.377E+05	2.550E+03
G-19-018-C	Closed	Unit 2 Plant Vent	01/08/2019 09:05	1.012E+04	1.046E+09	1.034E+05
G-19-019-C	Closed	Unit 2 Fuel Handling Building	01/08/2019 08:35	1.014E+04	2.605E+08	2.570E+04
G-19-021-B	Closed	Unit 2 Mini-Purge	01/16/2019 12:09	2.600E+01	6.630E+04	2.550E+03
G-19-022-B	Closed	Unit 2 Mini-Purge	01/17/2019 11:08	4.200E+01	1.071E+05	2.550E+03
G-19-024-B	Closed	Unit 2 Mini-Purge	01/19/2019 13:14	6.000E+01	1.530E+05	2.550E+03
G-19-030-C	Closed	Unit 2 Plant Vent	01/15/2019 09:45	1.007E+04	1.116E+09	1.109E+05
G-19-031-C	Closed	Unit 2 Fuel Handling Building	01/15/2019 09:30	1.011E+04	2.585E+08	2.559E+04
G-19-032-B	Closed	Unit 2 Mini-Purge	01/22/2019 22:07	5.800E+01	1.479E+05	2.550E+03
G-19-034-B	Closed	Unit 2 Mini-Purge	01/27/2019 15:51	4.700E+01	1.199E+05	2.550E+03
G-19-039-C	Closed	Unit 2 Plant Vent	01/22/2019 09:30	1.009E+04	1.131E+09	1.122E+05
G-19-040-C	Closed	Unit 2 Fuel Handling Building	01/22/2019 09:55	1.011E+04	2.597E+08	2.570E+04
G-19-042-B	Closed	Unit 2 Mini-Purge	02/03/2019 13:15	4.500E+01	1.148E+05	2.550E+03
G-19-046-C	Closed	Unit 2 Plant Vent	01/29/2019 09:35	1.009E+04	1.131E+09	1.121E+05
G-19-047-C	Closed	Unit 2 Plant Vent	01/29/2019 10:20	1.001E+04	2.591E+08	2.589E+04
G-19-049-B	Closed	Unit 2 Mini-Purge	02/09/2019 03:25	4.000E+01	1.020E+05	2.550E+03
G-19-053-C	Closed	Unit 2 Plant Vent	02/05/2019 09:40	1.008E+04	1.134E+09	1.122E+05
G-19-054-C	Closed	Unit 2 Fuel Handling Building	02/05/2019 09:05	1.009E+04	2.592E+08	2.570E+04
G-19-055-B	Closed	Unit 2 Mini-Purge	02/12/2019 19:12	4.100E+01	1.045E+05	2.550E+03
G-19-058-B	Closed	Unit 2 Mini-Purge	02/18/2019 02:52	5.500E+01	1.403E+05	2.550E+03
G-19-061-C	Closed	Unit 2 Plant Vent	02/12/2019 09:35	1.015E+04	1.138E+09	1.122E+05
G-19-062-C	Closed	Unit 2 Fuel Handling Building	02/12/2019 09:10	1.016E+04	2.610E+08	2.570E+04
G-19-063-B	Closed	Unit 2 Mini-Purge	02/20/2019 16:04	5.500E+01	1.403E+05	2.550E+03
G-19-068-C	Closed	Unit 2 Plant Vent	02/19/2019 10:45	1.003E+04	1.118E+09	1.122E+05
G-19-069-C	Closed	Unit 2 Fuel Handling Building	02/19/2019 10:25	1.003E+04	2.440E+08	2.432E+04
G-19-071-B	Closed	Unit 2 Mini-Purge	02/27/2019 07:54	5.900E+01	1.504E+05	2.550E+03
G-19-073-B	Closed	Unit 2 Mini-Purge	03/03/2019 01:35	5.400E+01	1.377E+05	2.550E+03
G-19-076-C	Closed	Unit 2 Fuel Handling Building	02/26/2019 09:35	1.009E+04	2.591E+08	2.569E+04
G-19-077-C	Closed	Unit 2 Plant Vent	02/26/2019 09:55	1.029E+04	1.131E+09	1.099E+05
G-19-080-B	Closed	Unit 2 Mini-Purge	03/11/2019 15:07	4.700E+01	1.198E+05	2.550E+03

PSL2

User: Admin

Page 2 of 8

Period: Ann, 2019

Site/Unit/Discharge Point: PSL2

				Release	Release	Release
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	riowrate (cfm)
G-19-084-C	Closed	Unit 2 Plant Vent	03/05/2019 13:20	9.790E+03	1.095E+09	1 118E+05
G-19-085-C	Closed	Unit 2 Fuel Handling Building	03/05/2019 09:40	9.990E+03	2.359E+08	2.361E+04
G-19-087-B	Closed	Unit 2 Mini-Purge	03/15/2019 21:30	4.000E+01	1.020E+05	2.550E+03
G-19-092-C	Closed	Unit 2 Plant Vent	03/12/2019 08:30	1.052E+04	1.179E+09	1.122E+05
G+19-093-C	Closed	Unit 2 Fuel Handling Building	03/12/2019 08:10	1.048E+04	2.693E+08	2.570E+04
G-19-094-B	Closed	Unit 2 Mini-Purge	03/20/2019 15:02	5.800E+01	1.479E+05	2.550E+03
G-19-096-B	Closed	Unit 2 Mini-Purge	03/25/2019 21:25	4.000E+01	1.020E+05	2.550E+03
G-19-100-C	Closed	Unit 2 Plant Vent	03/19/2019 15:45	9.675E+03	1.085E+09	1.122E+05
G-19-101-C	Closed	Unit 2 Fuel Handling Building	03/19/2019 14:50	9.710E+03	2.495E+08	2.570E+04
G-19-103-B	Closed	Unit 2 Mini-Purge	03/31/2019 12:42	6.000E+01	1.530E+05	2.550E+03
G-19-105-C	Closed	Unit 2 Plant Vent	03/26/2019 09:00	1.011E+04	1.133E+09	1.122E+05
G-19-106-C	Closed	Unit 2 Fuel Handling Building	03/26/2019 08:40	1.010E+04	2.594E+08	2.570E+04
G-19-111-B	Completed/Deleted/100.	Unit 2 Mini-Purge	04/03/2019 09:46	6.000E+01	1.530E+05	2.550E+03
G-19-113-B	Closed	Unit 2 Mini-Purge	04/06/2019 03:38	6.000E+01	1.530E+05	2.550E+03
G-19-116-B	Closed	Unit 2 Mini-Purge	04/09/2019 12:36	6.000E+01	1.530E+05	2.550E+03
G-19-117-C	Closed	Unit 2 Fuel Handling Building	04/02/2019 08:55	1.007E+04	2.587E+08	2.570E+04
G-19-118-C	Closed	Unit 2 Plant Vent	04/02/2019 09:25	1.007E+04	1.129E+09	1.122E+05
G-19-125-B	Closed	Unit 2 Mini-Purge	04/15/2019 02:21	5.100E+01	1.300E+05	2 550E+03
G-19+190-C	Closed	Unit 2 Plant Vent	04/09/2019 09:10	1.021E+04	1.145E+09	1.122E+05
G-19-131-C	Ciosed	Unit 2 Fuel Handling Building	04/09/2019 08:40	1.021E+04	2.528E+08	2.476E+04
G-19-1348	Closed	Unit 2 Mini-Purge	04/19/2019 17:01	5.500E+01	1.403E+05	2.550E+03
G-19-136-C	Closed	Unit 2 Fuel Handling Building	04/16/2019 10:50	1.002E+04	2.575E+08	2.5300 + 05 2 570E+04
G-19-139-C	Closed	Unit 2. Plant Vent	04/16/2019 11:20	9.960E+03	1.119E+09	1 123E+05
G-19-143-B	Closed	Unit 2 Mini-Purge	04/26/2019 16:16	6.000E+01	1.530E+05	2 550E+03
G-19-147-C	Closed	Unit 2 Plant Vent	04/23/2019 09:20	1.001E+04	1.122E+09	1 122E+05
G-19-149-C	Closed	Unit 2 Fuel Handling Building	04/23/2019 09:50	9.950E+03	2.557E+08	2.570E+04
G-19-152-B	Closed	Unit 2 Mini-Purge	05/02/2019 15:08	6.000E+01	1.530E+05	2.550E+03
G-19-158-C	Closed	Unit 2 Plant Vent	04/30/2019 08:05	1.022E+04	1.145E+09	1.120E+05
G-19-159-C	Closed	Unit 2 Fuel Handling Building	04/30/2019 07:40	1.022E+04	2.625E+08	2.570E+04
G-19-160-B	Closed	Unit 2 Mini-Purge	05/08/2019 18:05	5.300E+01	1.325E+04	2 500E+02
G-19-167-B	Closed	Unit 2 Mini-Purge	05/13/2019 13:40	5.000E+01	1.275E+05	2.550E+02
G-19-170-C	Closed	Unit 2 Plant Vent	05/07/2019 10:20	1.000E+04	1.120E+09	1 120E+05
G-19-171-C	Closed	Unit 2 Fuel Handling Building	05/07/2019 09:55	9.990E+03	2.567E+08	2570E+04
G-19-172-C	Closed	Unit 2 CHF	05/05/2019 12:00	1.293E+04	2 198E+07	1 700E+03
G-19-176-B	Closed	Unit 2 Mini-Purge	05/16/2019 09:32	4.000E+00	1.020E+04	2 550E+03
G-19-179-B	Closed	Unit 2 Mini-Purge	05/19/2019 11:38	4.700E+01	1.198E+05	2.550E+03
G-19-183-C	Closed	Unit 2 Plant Vent	05/14/2019 09:00	1.018F+04	1.142F+09	1 1225+05
G-19-184-C	Closed	Unit 2 Fuel Handling Building	05/14/2019 08:25	1.024E+04	2.632E + 0.8	$2570E \pm 04$
G-19-185-C	Closed	Unit 2 CHF	05/14/2019 11:30	1.025E+04	1 742F+07	
G-19-187-B	Closed	Unit 2 Mini-Purge	05/22/2019 11:42	3.700E+01	9.435E+04	2.550E+03

User: Admin

Page 3 of 8

Period: Ann, 2019

Site/Unit/Discharge Point: PSL2

				Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-190-B	Closed	Unit 2 Mini-Purge	05/27/2019 13:10	5.600E+01	1.428E+05	2.550E+03
G-19-191-C	Closed	Unit 2 CHF	05/21/2019 14:15	9.735E+03	1.655E+07	1.700E+03
G-19-192-C	Closed	Unit 2 Plant Vent	05/21/2019 10:35	1.001E+04	1.123E+09	1.122E+05
G-19-193-C	Closed	Unit 2 Fuel Handling Building	05/21/2019 11:05	9.950E+03	2.557E+08	2.570E+04
G-19-197-B	Closed	Unit 2 Mini-Purge	06/01/2019 15:06	5.300E+01	1.352E+05	2.550E+03
G-19-200-C	Closed	Unit 2 Plant Vent	05/28/2019 09:25	9.995E+03	1.120E+09	1.120E+05
G-19-201-C	Closed	Unit 2 Fuel Handling Building	05/28/2019 08:55	1.001E+04	2.571E+08	2.570E+04
G-19-202-C	Closed	Unit 2 CHF	05/28/2019 08:30	1.040E+04	1.767E+07	1,700E+03
G-19-203-B	Closed	Unit 2 Mini-Purge	06/05/2019 19:15	5.000E+01	1.275E+05	2.550E+03
G-19-207-C	Closed	Unit 2 Plant Vent	06/04/2019 08:00	1.019E+04	1.141E+09	1.120E+05
G-19-208-C	Closed	Unit 2 Fuel Handling Building	06/04/2019 07:40	1.018E+04	2.615E+08	2.570E+04
G-19-209-C	Closed	Unit 2 CHF	06/04/2019 13:45	9.895E+03	1.682E+07	1.700E+03
G-19-213-B	Closed	Unit 2 Mini-Purge	06/15/2019 03:47	5.700E+01	1.454E+05	2,550E+03
G-19-217-C	Closed	Unit 2 Plant Vent	06/11/2019 09:50	1.007E+04	1.129E+09	1.122E+05
G-19-218-C	Closed	Unit 2 Fuel Handling Building	06/11/2019 09:15	1.014E+04	2.599E+08	2.564E+04
G-19-221-B	Closed	Unit 2 Mini-Purge	06/19/2019 13:54	5.900E+01	1.504E+05	2.550E+03
G-19-224-B	Closed	Unit 2 Mini-Purge	06/25/2019 08:19	5.100E+01	1.300E+05	2.550E+03
G-19-227-C	Closed	Unit 2 Plant Vent	06/18/2019 09:40	1.008E+04	1.131E+09	1.122E+05
G-19-228-C	Closed	Unit 2 Fuel Handling Building	06/18/2019 10:13	1.003E+04	2.577E+08	2.570E+04
G-19-229-C	Closed	Unit 2 CHF	06/11/2019 10:40	1.300E+04	2.210E+07	1.700E+03
G-19-231-B	Closed	Unit 2 Mini-Purge	06/28/2019 16:39	4.600E+01	1.173E+05	2.550E+03
G-19-236-C	Closed	Unit 2 Plant Vent	06/25/2019 09:40	1.008E+04	1.129E+09	1.120E+05
G-19-237-C	Closed	Unit 2 Fuel Handling Building	06/25/2019 09:20	1.007E+04	2.588E+08	2.570E+04
G-19-239-B	Closed	Unit 2 Mini-Purge	07/04/2019 15:48	5.700E+01	1.453E+05	2.550E+03
G-19-243-C	Closed	Unit 2 Plant Vent	07/02/2019 09:40	1.001E+04	1.123E+09	1.122E+05
G-19-244-C	Closed	Unit 2 Fuel Handling Building	07/02/2019 09:10	1.002E+04	2.575E+08	2.570E+04
G-19-247-B	Closed	Unit 2 Mini-Purge	07/13/2019 19:20	5.500E+01	1.375E+04	2.500E+02
G-19-251-C	Closed	Unit 2 Plant Vent	07/09/2019 08:30	1.009E+04	1.131E+09	1.120E+05
G-19-252-C	Closed	Unit 2 Fuel Handling Building	07/09/2019 08:10	1.009E+04	2.593E+08	2.570E+04
G-19-254-B	Closed	Unit 2 Mini-Purge	07/17/2019 16:06	4.000E+01	1.020E+05	2.550E+03
G-19-257-B	Closed	Unit 2 Mini-Purge	07/22/2019 18:59	6.000E+01	1.530E+05	2.550E+03
G-19-260-C	Closed	Unit 2 Plant Vent	07/16/2019 08:40	1.004E+04	1.125E+09	1.120E+05
G-19-261-C	Closed	Unit 2 Fuel Handling Building	07/16/2019 08:20	1.010E+04	2.596E+08	2.570E+04
G-19-264-B	Closed	Unit 2 Mini-Purge	07/27/2019 20:05	3.400E+01	8.670E+04	2.550E+03
G-19-266-B	Closed	Unit 2 Mini-Purge	07/30/2019 03:40	3.500E+01	8.925E+04	2.550E+03
G-19-269-C	Closed	Unit 2 Plant Vent	07/23/2019 08:00	1.002E+04	1.131E+09	1.128E+05
G-19-270-C	Closed	Unit 2 Fuel Handling Building	07/23/2019 08:40	1.002E+04	2.591E+08	2.585E+04
G-19-273-B	Closed	Unit 2 Mini-Purge	08/03/2019 14:44	5.900E+01	1.505E+05	2.550E+03
G-19-277-C	Closed	Unit 2 Plant Vent	07/30/2019 07:00	1.029E+04	1.154E+09	1.122E+05
G-19-278-C	Closed	Unit 2 Fuel Handling Building	07/30/2019 07:40	1.021E+04	2.624E+08	2.570E+04

User: Admin

Site/Unit/Discharge Point: PSL2

-	~			Release Duration	Release Volume	Release Flowrate
Permit Number	Status/Alloc	Release Source	Start Date	(min)	(ft^3)	(cfm)
G-19-280-B	Closed	Unit 2 Mini-Purge	08/08/2019 18:20	2.800E+01	7.140E+04	2.550E+03
G-19-283-B	Closed	Unit 2 Mini-Purge	08/13/2019 13:47	4.300E+01	1.096E+05	2.550E+03
G-19-284-C	Closed	Unit 2 Plant Vent	08/06/2019 10:25	1.007E+04	1.131E+09	1.123E+05
G-19-285-C	Closed	Unit 2 Fuel Handling Building	08/06/2019 09:52	1.008E+04	2.574E+08	2.553E+04
G-19-293-C	Closed	Unit 2 Plant Vent	08/13/2019 10:15	1.017E+04	1.141E+09	1.122E+05
G-19-294-C	Closed	Unit 2 Fuel Handling Building	08/13/2019 09:55	1.017E+04	2.500E+08	2.458E+04
G-19-295-B	Closed	Unit 2 Mini-Purge	08/20/2019 19:12	5.400E+01	1.377E+05	2.550E+03
G-19-298-B	Closed	Unit 2 Mini-Purge	08/24/2019 03:20	6.000E+01	1.530E+05	2.550E+03
G-19-301-C	Closed	Unit 2 Plant Vent	08/20/2019 09:05	1.006E+04	1.128E+09	1.122E+05
G-19-302-C	Closed	Unit 2 Fuel Handling Building	08/20/2019 11:25	9.945E+03	2.556E+08	2.570E+04
G-19-304-B	Closed	2C Gas Decay Tank	08/28/2019 08:17	2.030E+02	1.320E+03	1.000E+01
G-19-306-B	Closed	Unit 2 Mini-Purge	08/28/2019 12:45	5.500E+01	1.403E+05	2.550E+03
G-19-309-B	Closed	Unit 2 Mini-Purge	09/01/2019 19:05	5.500E+01	1.403E+05	2.550E+03
G-19-313-C	Closed	Unit 2 Plant Vent	08/27/2019 08:40	9.940E+03	1.115E+09	1.122E+05
G-19-314-C	Closed	Unit 2 Fuel Handling Building	08/27/2019 09:10	9.940E+03	2.555E+08	2.570E+04
G-19-318-B	Closed	Unit 2 Mini-Purge	09/10/2019 16:01	3.900E+01	9.945E+04	2.550E+03
G-19-321-C	Closed	Unit 2 Plant Vent	09/03/2019 06:20	1.037E+04	1.161E+09	1.120E+05
G-19-322-C	Closed	Unit 2 Fuel Handling Building	09/03/2019 06:50	1.031E+04	2.648E+08	2.570E+04
G-19-324-B	Closed	Unit 2 Mini-Purge	09/14/2019 13:40	6.000E+01	1.530E+05	2.550E+03
G-19-327-C	Closed	Unit 2 Plant Vent	09/10/2019 11:07	9.991E+03	1.119E+09	1.120E+05
G-19-328-C	Closed	Unit 2 Fuel Handling Building	09/10/2019 10:35	9.998E+03	2.569E+08	2.570E+04
G-19-329-B	Closed	Unit 2 Mini-Purge	09/18/2019 18:37	2.600E+01	6.630E+04	2 550E+03
G-19-332-B	Closed	2B Gas Decay Tank	09/21/2019 13:50	3.600E+02	3.203E+02	1.000E+01
G-19-336-C	Closed	Unit 2 Plant Vent	09/17/2019 09:38	1.000E+04	1.122E+09	1 122E+05
G-19-337-C	Closed	Unit 2 Fuel Handling Building	09/17/2019 09:13	1.001E+04	2.573E+08	2 570E+04
G-19-338-B	Closed	Unit 2 Mini-Purge	09/25/2019 02:19	6.000F+01	1 530E+05	2.570E+03
G-19-343-B	Closed	Unit 2 Mini-Purge	09/30/2019 08:19	3.300E+01	8 415E+04	2.550E+03
G-19-347-C	Closed	Unit 2 Plant Vent	09/24/2019 08:20	1.044F+04	1 171E+09	1 122E+05
G-19-348-C	Closed	Unit 2 Fuel Handling Building	09/24/2019 08:05	1.044E+04	2.409E+08	2 308E+04
G-19-350-B	Closed	Unit 2 Mini-Purge	10/02/2019 19:36	5.500E+01	1.403E+05	2.550E+03
G-19-353-B	Closed	Unit 2 Mini-Purge	10/08/2019 03:40	4.000E+01	1.020E+05	2.550E+03
G-19-356-C	Closed	Unit 2 Plant Vent	10/01/2019 14:20	9.690E+03	1.020E+09	1 122E+05
G-19-357-C	Closed	Unit 2 Fuel Handling Building	10/01/2019 14:00	9.680E+03	2 488E+08	2570E + 04
G-19-376-C	Closed	Unit 2 Plant Vent	10/08/2019 07:50	1.018E+04	1 141E+09	1 122E+05
G-19-377-C	Closed	Unit 2 Fuel Handling Building	10/08/2019 07:20	1 019E+04	2 618E+08	2 570E+04
G-19-378-B	Closed	Unit 2 Mini-Purge	10/15/2019 22:22	5.500E+01	1.403E+05	2.570E+04
G-19-379-B	Closed	Unit 2 Mini-Purge	10/19/2019 21.27	6 000E+01	1 530E+05	2.5502+05
G-19-382-C	Closed	Unit 2 Plant Vent	10/15/2019 21:2/	1 003F+04	1 125F±00	2.330ET03
G-19-383-C	Closed	Unit 2 Fuel Handling Building	10/15/2019 09:25	1 003F+04	2 576E±08	2 5705-04
G-19-385-B	Closed	Unit 2 Mini-Purge	10/27/2019 02:40	5.000E+01	1.275E+05	2.550E+03

User: Admin

Site/Unit/Discharge Point: PSL2

Permit Number	Status/Alloc	Release Source	Start Date	Release Duration (min)	Release Volume (ft^3)	Release Flowrate (cfm)
G-19-388-C	Closed	Unit 2 Plant Vent	10/22/2019 08:30	1.040E+04	1.166E+09	1.122E+05
G-19-389-C	Closed	Unit 2 Fuel Handling Building	10/22/2019 08:10	1.040E+04	2.674E+08	2.570E+04
G-19-390-B	Closed	Unit 2 Mini-Purge	11/01/2019 23:48	4.500E+01	1.148E+05	2.550E+03
G-19-395-C	Closed	Unit 2 Plant Vent	10/29/2019 13:50	9.770E+03	1.096E+09	1.122E+05
G-19-396-C	Closed	Unit 2 Fuel Handling Building	10/29/2019 13:33	9.767E+03	1.533E+08	1.570E+04
G-19-398-B	Closed	Unit 2 Mini-Purge	11/07/2019 15:40	5.500E+01	1.402E+05	2.550E+03
G-19-402-C	Closed	Unit 2 Plant Vent	11/05/2019 08:40	1.011E+04	1.131E+09	1.119E+05
G-19-403-C	Closed	Unit 2 Fuel Handling Building	11/05/2019 08:20	1.011E+04	2.539E+08	2.512E+04
G-19-410-B	Closed	Unit 2 Mini-Purge	11/15/2019 15:37	8.500E+01	2.168E+05	2.550E+03
G-19-414-C	Closed	Unit 2 Plant Vent	11/12/2019 09:05	1.006E+04	1.127E+09	1.120E+05
G-19-415-C	Closed	Unit 2 Fuel Handling Building	11/12/2019 08:45	1.006E+04	2.584E+08	2.570E+04
G-19-417-B	Closed	Unit 2 Mini-Purge	11/22/2019 06:51	1.140E+02	2.907E+05	2.550E+03
G-19-419-B	Closed	Unit 2 Mini-Purge	11/25/2019 02:38	6.000E+01	1.530E+05	2.550E+03
G-19-423-C	Closed	Unit 2 Plant Vent	11/19/2019 08:45	1.015E+04	1.138E+09	1.122E+05
G-19-424-C	Closed	Unit 2 Fuel Handling Building	11/19/2019 08:20	1.015E+04	2.607E+08	2.570E+04
G-19-426-B	Closed	Unit 2 Mini-Purge	12/01/2019 13:15	6.000E+01	1.530E+05	2.550E+03
G-19-430-C	Closed	Unit 2 Plant Vent	11/26/2019 09:50	1.006E+04	1.128E+09	1.122E+05
G-19-431-C	Closed	Unit 2 Fuel Handling Building	11/26/2019 09:25	1.006E+04	2.585E+08	2.570E+04
G-19-434-B	Closed	Unit 2 Mini-Purge	12/10/2019 12:57	6.000E+01	1.530E+05	2.550E+03
G-19-437-C	Closed	Unit 2 Piant Vent	12/03/2019 09:27	1.007E+04	1.126E+09	1.119E+05
G-19-438-C	Closed	Unit 2 Fuel Handling Building	12/03/2019 09:05	1.007E+04	2.587E+08	2.570E+04
G-19-442-B	Closed	Unit 2 Mini-Purge	12/14/2019 02:56	5.500E+01	1.403E+05	2.550E+03
G-19-446-C	Closed	Unit 2 Plant Vent	12/10/2019 09:15	1.005E+04	1.125E+09	1.120E+05
G-19-447-C	Closed	Unit 2 Fuel Handling Building	12/10/2019 08:51	1.005E+04	2.583E+08	2.570E+04
G-19-450-B	Closed	Unit 2 Mini-Purge	12/23/2019 00:48	6.000E+01	1.530E+05	2.550E+03
G-19-453-C	Closed	Unit 2 Plant Vent	12/17/2019 08:45	1.006E+04	1.127E+09	1.120E+05
G-19-454-C	Closed	Unit 2 Fuel Handling Building	12/17/2019 08:20	1.007E+04	2.199E+08	2.185E+04
G-19-457-B	Closed	Unit 2 Mini-Purge	12/29/2019 13:04	5.300E+01	1.352E+05	2.550E+03
G-19-461-C	Closed	Unit 2 Plant Vent	12/24/2019 08:25	1.011E+04	1.130E+09	1.121E+05
G-19-462-C	Closed	Unit 2 Fuel Handling Building	12/24/2019 08:05	1.011E+04	2.600E+08	2.570E+04

~

Site/Unit/Discharge Point: PSL2

Nuclide	<u>Type</u>	<u>Activity (uCi)</u>	<u>Avg Conc (uCi/cc)</u>	<u>Avg Conc/10xECL</u>	<u>Avg Rel Rate (uCi/sec)</u>
Xe-135	N	3.579E+03	1.724E-12	2.463E-06	1.135E-04
Kr-85m	Ν	1.288E+02	6.205E-14	6.205E-08	4.085E-06
Xe-133m	Ν	2.228E+02	1.073E-13	1.788E-08	7.063E-06
Ar-41	Ν	7.959E+05	3.834E-10	3.834E-03	2.524E-02
Xe-133	Ν	7.086E+05	3.413E-10	6.827E-05	2.247E-02
Kr-88	Ν	2.331E+02	1.123E-13	1.247E-06	7.391E-06
Nuclide Type	Total	1.509E+06	7.267E-10	3.906E-03	4.784E-02
<u>Nuclide</u>	Туре	Activity (uCi)	Avg Conc (uCi/cc)	Avg Conc/10xECL	<u>Avg Rel Rate (uCi/sec)</u>
C-14	0	1.155E+0/	5.564E-09	1.855E-01	3.663E-01
H-3	0	8.535E+06	4.111E-09	4.111E-03	2.707E-01
G-Alpha	0	1.026E-02	4.943E-18	4.943E-04	3.254E-10
Nuclide Type	Total	2.009E+07	9.676E-09	1.901E-01	6.369E-01
<u>Nuclide</u> _{Co-60}	Type P	Activity (uCi) 1.363E+00	Avg Conc (uCi/cc) 6.564E-16	Avg Conc/10xECL 1.313E-06	Avg Rel Rate (uCi/sec) 4.321E-08
Nuclide Type	Total	1.363E+00	6.564E-16	1.313E-06	4.321E-08
<u>Nuclide</u> I-133	Type R	Activity (uCi) 1.215E+01	Avg Conc (uCi/cc) 5.851E-15	Avg Conc/10xECL 5.851E-07	Avg Rel Rate (uCi/sec) 3.852E-07
I-131	R	9.715E-01	4.680E-16	2.340E-07	3.081E-08
Nuclide Type	Total	1.312E+01	6.319E-15	8.191E-07	4.160E-07
Total		2.159E+07	1.040E-08	1.940E-01	6.848E-01

Page 7 of 8

Period: Ann, 2019 Site/Unit/Discharge Point:

Site Boundary NNG Doserate Summary - Note: All Doses in mRem/yr

Receptor	Agegroup	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-Lli	Skin
NW Site Boundary - In	Infant	2.965E-03	2.706E-03	2.706E-03	2.708E-03	4.395E-04	2.706E-03	2.706E-03	0.000E+00
WNW Site Boundary - I	Infant	1.576E-06 1.576E-06 1.576E-06 1	1.576E-06	1.576E-06	1.576E-06	1.576E-06	0.000E+00		
Maximum Doserate by O	rgan:	2.965E-03	2.706E-03	2.706E-03	2.708E-03	4.395E-04	2.706E-03	2.706E-03	0.000E+00

PSL2

Maximum Organ Doserate (mRem/yr):2.965E-03Maximum Total Body Doserate (mRem/yr):2.706E-03

Site Boundary NG Doserate Summary

Gas Receptor Location	Gamma (mRad/yr)	Beta (mRad/yr)	Total Body (mRem/yr)	Skin (mRem/yr)	
NW Site Boundary		1.707E-04	3.681E-04	5.477E-04	
WNW Site Boundary	3.349E-04	1.471E-04	3.171E-04	4.718E-04	
Maximum NG Dose Rate:	3.888E-04	1.707E-04	3.681E-04	5.477E-04	

٤

Site/Unit/Discharge Point: PSL2

Maximum Individual NNG Dose Summary - Note: All Doses in mRem

Receptor	Agegroup	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-Lli	Skin
NW - Near Milk - Adult	Adult	4.429E-07	4.461E-07	4.424E-07	2.900E-06	4.517E-07	4.736E-07	4.486E-07	0.000E+00
NW Near Milk - Child	Child	4.596E-07	4.619E-07	4.559E-07	7.700E-06	4.517E-07	4.793E-07	4.462E-07	0.000E+00
NW Near Milk - Infant	Infant	4.825E-07	4.950E-07	4.712E-07	1.750E-05	4.505E-07	4.711E-07	4.455E-07	0.000E+00
NW Near Milk - Teenager	Teenager	4.469E-07	4.520E-07	4.460E-07	4.139E-06	4.554E-07	4.892E-07	4.496E-07	0.000E+00
SE Nearest Res - Adult	Adult	2.562E-06	2.564E-06	2.561E-06	3.448E-06	2.567E-06	2.713E-06	2.569E-06	0.000E+00
SE Nearest Res - Child	Child	2.564E-06	2.565E-06	2.562E-06	3.993E-06	2.563E-06	2.737E-06	2.563E-06	0.000E+00
SE Nearest Res - Infant	Infant	2.563E-06	2.565E-06	2.561E-06	3.884E-06	2.561E-06	2.702E-06	2.561E-06	0.000E+00
SE Nearest Res - Teenager	Teenager	2.563E-06	2.565E-06	2.561E-06	3.691E-06	2.567E-06	2.779E-06	2.568E-06	0.000E+00
SE Visitor - Lifeguard 1.0 mi	Adult	1.190E-06	1.191E-06	1.189E-06	1.577E-06	1.192E-06	1.256E-06	1.193E-06	0.000E+00
W Near Garden - Adult	Adult	1.201E-06	1.202E-06	1.201E-06	1.567E-06	1.203E-06	1.264E-06	1.204E-06	0.000E+00
W Near Garden - Child	Child	1.202E-06	1.203E-06	1.201E-06	1.792E-06	1.202E-06	1.274E-06	1.202E-06	0.000E+00
W Near Garden - Teenager	Teenager	1.202E-06	1.203E-06	1.201E-06	1.667E-06	1.203E-06	1.291E-06	1.204E-06	0.000E+00
Maximum Dose by Organ	1:	2.564E-06	2.565E-06	2.562E-06	1.750E-05	2.567E-06	2.779E-06	2.569E-06	0.000E+00

Maximum Organ Dose (mRem):	1.750E-05
Maximum Total Body Dose (mRem):	2.562E-06

Maximum Individual NG Dose Summary

Gas Receptor Location	Gamma (mRad)	Beta (mRad)	Total Body (mRem)	Skin (mRem)
NW Near Milk 4.25 mi	3.402E-05	1.494E-05	3.220E-05	4.792E-05
SE Nearest Res 1.52 mi 142 deg	1.730E-04	7.598E-05	1.638E-04	2.438E-04
SE Visitor @ 1 mi	7.493E-05	3.290E-05	7.093E-05	1.055E-04
W Near Gard 2.0 miles	5.953E-05	2.614E-05	5.636E-05	8.386E-05
Maximum NG Dose:	1.730E-04	7.598E-05	1.638E-04	2.438E-04

TABLE 3.4

VISITOR DOSE (1 PAGE)

3.4 Visitor Dose

Dose to a Member of the Public from Activities Inside the Site Boundary: Assessment of radiation dose from radioactive effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY assumes the VISITOR to be a lifeguard at the Walton Rocks Beach recreation area. The visitor is assumed to be onsite for 6 hours per day for 312 days per year at a distance of 1 mile in the South East Sector. The VISITOR received exposure from each of the two reactors on the site. Actual Met Data was used to calculate Visitor Dose for Calendar Year 2019.

VISITOR DOSE RESULTS FOR CALENDAR YEAR 2019 were:

Noble Gas Dose	mrad
Gamma Air Dose	1.95E-03
Beta Air Dose	8.82E-04

Gas, Particulate, Iodine, Carbon Dose mrem

Bone	3.08E-04			
Liver	1.16E-04			
Thyroid	1.44E-04			
Kidney	1.16E-04			
Lung	1.58E-04			
GI-LLI	1.17E-04			
Total Body	1.28E-04			

ENCLOSURE 2

C-200, OFFSITE DOSE CALCULATION MANUAL REVISION 53 (231 PAGES)

ST. LUCIE PLANT

CHEMISTRY OPERATING PROCEDURE

SAFETY RELATED REFERENCE USE Procedure No.

C-200

Current Revision No.

53

Title:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

Responsible Department: CHEMISTRY

REVISION SUMMARY:

<u>NOTE</u>

All changes to this procedure require an Emergency Preparedness Review.

Revision 53 - Incorporated PCR 2309983 to add clarification to Table 3.3-13 Action 51 for surveillance testing. Changed "Operative" to "In Service" in Table 4.3-9 notation ***. Added a contingency action for the CHF air sample pump. Deleted the word "VENT" after CHF in Table 4.11-2 Notation 8. (Author: K. Toebe) AND

Incorporated PCR 2314153 to correct typo in Table 3.3-13. (Author: N. Davidson)

Revision 52 - Incorporated PCR 2278129 to define a tank release to prevent accounting for the same radioactivity multiple times when performing activities such as maintenance, and to remove the requirement for the SGBTF vent monitor to be operable when no releases are being made through that pathway. (Author: C. Crawford)

Revision 51 - Incorporated PCR 2263650 to replace the word OPERATIONAL with the word FUNCTIONAL and to revise the Environmental Sample Locations map. (Author: T. Bertolini)

Revision 50 - Incorporated PCR 2223046 to remove affected process effluent radiation monitors from the Technical Specifications and incorporate them into the Offsite Dose Calculation Manual. (Author: T. Bertolini)

Revision 49 - Incorporated PCR 2137189 per EC 278372 to update values in Methodology Section. (Author: T. Bertolini)

Revision	Approved By	Approval Date	UNIT #	
			DATE	
0	C.M. Wethy	04/27/82	DOCT	PROCEDURE
			DOCN	C-200
			SYS	
53	B. Beltz	06/06/19	STATUS	COMPLETED
			REV	53
			# OF PGS	

FOR INFORMATION ONLY Before use, verify revision and change documentation (if applicable) with a controlled index or document. DATE VERIFIED INITIAL

REVISIO	NN NO.:	PROCEDURE TITLE:	PAGE:
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	2 of 231
PROCED	OURE NO.:		
	C-200	ST. LUCIE PLANT	
		INDEX	
	<u>SECTION</u>		PAGE
INTRO	DUCTION		9
СОИТ	ROLS SECTI	ON	
<u></u>	<u></u>		<u></u>
		CONTROLS SECTION	
1.1 1 4	ACTION	ΔΙ ΙΒΡΑΤΙΟΝ	
1.5	CHANNEL C	HECK	
1.6	CHANNEL FI	JNCTIONAL TEST	
1.10		/ALENT I-131	
1.17	MEMBER (S)) OF THE PUBLIC	
1.18	OFFSITE DÓ	SE CALCULATION MANUAL	
1.19	OPERABLE -		
1.20	PURGE - PU	RGING	
1.25	RATED THE	RMAL POWER	
1.27	REPORTABL		
1.30	STIE BOUNL	JARY IFCK	
1.33	THERMAL P	OWER	
1.34	UNPLANNED) RELEASE	15
1.35		TED AREA	
1.39	VENTILATIO	N EXHAUST TREATMENT STSTEM	
1.41	WASTE GAS	HOLDUP SYSTEM	
3/4	CONTROLS	AND SURVEILLANCE REQUIREMENTS	18
3/4 0			18
5/4.0		· · · · ·	
INST	<u> XUMENTATIO</u>	N	
RADIO	OACTIVE LIQU	JID EFFLUENT MONITORING INSTRUMENTATION	19
RADIO	OACTIVE GAS	SEOUS EFFLUENT MONITORING INSTRUMENTATIO)N 23

REVISION NO .:		PROCEDURE TITLE:	PAGE:
Ļ	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	3 of 231
PROCEDURE NO.:			0 01 201
<u> </u>	200	ST. LUCIE PLANT	
		INDEX	
	SECTION .	(continued)	PAGE
<u> </u>			
CONTRO	DL AND SU	RVEILLANCE STATEMENTS FOR CONTROLS SECT	ION
<u>3/4.11</u>	RADIOAC	TIVE EFFLUENTS	
3/4.11.1	LIQUI	DEFFLUENTS	
	CO		
	LIC	QUID RADWASTE TREATMENT SYSTEM	
3/4 11 2	GASE		41
5/4.11.2	DC	SE RATE	
	DC	SE - NOBLE GASES	
	DC	MATERIAL IN PARTICULATE FORM	4CTIVE
	GA	SEOUS RADWASTE TREATMENT SYSTEM	
3/4.11.3	(NOT	USED)	
3/4.11.4	ΤΟΤΑΙ	DOSE	
3/4.11.5	MAJO WAST	R CHANGES TO RADIOACTIVE LIQUID, GASEOUS A E TREATMENT SYSTEMS ADMINISTRATIVE CONTF	ND SOLID ROLS 51
3/4.11.6	ANNU COMM	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO IISSION ADMINISTRATIVE CONTROLS) THE 52
3/4.12	RADIOLO	GICAL ENVIRONMENTAL MONITORING	
3/4.12.1	MONI	FORING PROGRAM	56
3/4.12.2	LAND	USE CENSUS	64
3/4.12.3	INTER	LABORATORY COMPARISON PROGRAM	
3/4.12.4	ANNU (AREC	AL RADIOLOGICAL ENVIRONMENTAL OPERATING DR) ADMINISTRATIVE CONTROLS	REPORT 67

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	4 of 231
PROCEDURE NO.:		4 01 201
C-200	ST. LUCIE PLANT	
	INDEX (continued)	
<u>SECTIO</u>	<u>N</u>	<u>PAGE</u>
BASES FOR CO	NTROLS SECTION	
B/ (020 1 01(00		
<u>3/4.11 RADIC</u>	ACTIVE EFFLUENTS	
3.3.3.9 INS	TRUMENTATION	70
3/4.11.1 LIQ	UID EFFLUENTS	71
3/4.11.2 GA	SEOUS EFFLUENTS	73
3/4.11.3 NO	r used	76
3/4.11.4 TO [`]	TAL DOSE	76
<u>3/4.12 RADIC</u>	LOGICAL ENVIRONMENTAL MONITORING	
3/4.12.1 MO	NITORING PROGRAM	78
3/4.12.2 LAN	ID USE CENSUS	78
3/4.12.3 INT	ERLABORATORY COMPARISON PROGRAM	79
<u>FIGURES</u>		
FIGURE 1-1 S	TE AREA MAP & ENVIRONMENTAL SAMPLE LOCATION	NS 226
FIGURE 1-2 E	VVIRONMENTAL SAMPLE LOCATIONS (10 MILES)	227
FIGURE 1-3 R Si (N	ADIOLOGICAL ENVIRONMENTAL SAMPLING LOCATION JPPORT OF THE GROUNDWATER PROTECTION INITI EI-07-07)	NS IN ATIVE 228

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	5 of 221
PROCEDURE NO.:		5 01 25 1
C-200	ST. LUCIE PLANT	
	INDEX (continued)	
<u>SECTION</u>		PAGE
CONTROLS SECTION	ON	
LIST OF TABLES F	OR CONTROLS SECTION	
<u>TABLE</u>		
1-1 FREQU	ENCY NOTATION	17
3.3-12 RADIOA	ACTIVE LIQUID EFFLUENT MONITORING INSTRUME	NTATION 20
3.3-13 RADIOA INSTRU	CTIVE GASEOUS EFFLUENT MONITORING	24
3.3-14 RADIOA	ACTIVE EFFLUENT MONITORING SETPOINT BASIS	
3.12-1 RADIOL	OGICAL ENVIRONMENTAL MONITORING PROGRAM	M 57
3.12-2 REPOR ENVIRC	TING LEVELS FOR RADIOACTIVITY CONCENTRATION	ONS IN 60
4.3-8 RADIOA SURVEI	CTIVE LIQUID EFFLUENT MONITORING INSTRUME	NTATION 22
4.3-9 RADIOA INSTRU	ACTIVE GASEOUS EFFLUENT MONITORING MENTATION SURVEILLANCE REQUIREMENTS	31
4.11-1 RADIOA	ACTIVE LIQUID WASTE SAMPLING AND ANALYSIS P	ROGRAM . 34
4.11-2 RADIOA PROGR	ACTIVE GASEOUS WASTE SAMPLING AND ANALYS	IS 41
4.12-1 DETEC ⁻ ANALYS	TION CAPABILITIES FOR ENVIRONMENTAL SAMPLE SIS LOWER LIMIT OF DETECTION (LLD)	E 61

REVISION	NO.:	l	PROCEDURE TITLE:	PAGE:
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	6 of 231
PROCEDU	IRE NO.:		ST LUCIE PLANT	
	0-200			
			INDEX (continued)	
	SECTIO	<u>N</u>	(continued)	PAGE
	JDOLOG	IT SE		
Glossa	ry for Me	thod	blogy Section	80
1.0	LIQUID	REL	EASES METHODOLOGY	
	1.1	Rac	ioactive Liquid Effluent Model Assumptions	83
	1.2	Det Cor	ermining the Fraction (F) of 10 CFR Part 20 Effluent centration Limits (ECL) for a Liquid Release Source	
	1.3	Det	ermining Setpoints for Radioactive Liquid Effluent Mon	tors 87
	1.4	Det	ermining the Dose for Radioactive Liquid Releases	
	1.5	Proj	ecting Dose for Radioactive Liquid Effluents	
2.0	GASEC	US I	RELEASES METHODOLOGY	
	2.1	Gas	eous Effluent Model Assumptions	91
	2.2	Det Rele	ermining the Total Body and Skin Dose Rates for Noble eases and Establishing Setpoints for Effluent Monitors	e Gas 96
	2.3	Det Org	ermining the Radioiodine and Particulate Dose Rate to an From Gaseous Releases	Any 110
		2.3.	1 Inhalation	112
		2.3.	2 Ground Plane	114
		2.3.	3 Milk	115
		2.3.	4 Tritium	117
		2.3.	5 Total Dose Rate by Release Source	119

REVISION	NO.:	PF	ROCEDURE TITLE:	PAGE:
	53	(OFFSITE DOSE CALCULATION MANUAL (ODCM)	7 of 231
PROCEDU	JRE NO.:			7 01 201
	C-200		ST. LUCIE PLANT	
			INDEX	
			(continued)	
	<u>SECTIC</u>	<u>)N</u>		PAGE
		Y SF(
Glossa	ry for Me	thodol	logy Section (continued)	
2.0	RADIO	ACTIV	/E RELEASES OF GASEOUS EFFLUENTS (continue	ed)
	2.4	Deter Relea	rmining the Gamma Air Dose for Radioactive Noble G ase Source(s)	∋as 119
	2.5	Deter Relea	rmining the Beta Air Dose for Radioactive Noble Gas ases	122
	2.6	Deter Grou	rmining the Radioiodine and Particulate Dose to Any p's Organ From Cumulative Releases	Age 124
		2.6.1	Inhalation	126
		2.6.2	Ground Plane	127
		2.6.3	Milk	128
		2.6.4	Meat	129
		2.6.5	Vegetation	
		2.6.6	Tritium (All pathways)	132
		2.6.7	Total Organ Dose	134
	2.7	Proje	cting Dose for Radioactive Gaseous Effluents	135
3.0	40 CFR	. 190 E	DOSE EVALUATION	135
4.0	ANNUA	L RAE	DIOACTIVE EFFLUENT REPORT	137

REVISION NO .:		PROCEDURE TITLE:	PAGE:
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	0.46.004
PROCEDURE NO.:			8 OF 231
C-200		ST. LUCIE PLANT	
OFOTIO		INDEX (continued)	
<u>SECTIC</u>	<u>JIN</u>		PAGE
METHODOLOG	YS	ECTION	
<u>APPENDIXES</u>			
APPENDIX A	EC	L, Dose Factor and Historical Meteorological Tables	151
APPENDIX B	RA	DIOLOGICAL ENVIRONMENTAL SURVEILLANCE	
APPENDIX B-1	ST	. LUCIE SUPPLEMENTAL REMP SAMPLING	220
APPENDIX B-2	Ra GR	diological Environmental Sampling In Support of the OUNDWATER PROTECTION INITIATIVE	223
APPENDIX C	Ме	teorological Dispersion Formulas	
APPENDIX D	De	scription of the Interlaboratory Comparison Program	229

REVISION NO .:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	0 of 221
PROCEDURE NO.:		901231
C-200	ST LUCIE PLANT	

INTRODUCTION

The ODCM consists of the Controls Section followed by the Methodology Section.

The Controls Section provides the Control Statements, Limits, ACTION Statements, Surveillance Requirements and BASES for ensuring that Radioactive Liquid and Gaseous Effluents released to UNRESTRICTED AREAS and/or the SITE BOUNDARY will be maintained within the requirements of 10 CFR Part 20, 40 CFR Part 190, 10 CFR Part 72, 10 CFR 50.36.a and 10 CFR Part 50 Appendix-I radioactive release criteria. All Control Statements and most Administrative Control Statements in the ODCM are directly tied to and reference the Plant Technical Specification (TS) Administrative Section. The Administrative Control for Major Changes to Radioactive Liquid, Gaseous and Solid Treatment Systems is as per the guidance of NUREG-1301, April 1991, Supplement No. 1 to NRC Generic Letter 89-01. The numbering sequences of Control Statements also follow the guidance of NUREG-1301 as applicable, to minimize differences. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) -Effluent Streams and the Environment, 6.3.1 and 6.3.2, provide the background for the need to maintain Quality Assurance programs for effluent releases and radiological environmental monitoring.

The Methodology Section uses the models suggested by NUREG-0133, November, 1978 and Regulatory Guide 1.109 to provide calculation methods and parameters for determining results in compliance with the Controls Section of the ODCM. Simplifying assumptions have been applied where applicable to provide a more workable document for implementing the Control requirements. Alternate calculation methods may be used from those presented as long as the overall methodology does not change or as long as most up-to-date revisions of the Regulatory Guide 1.109 dose conversion factors and environmental transfer factors are substituted for those currently included and used in this document.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	10 of 221
PROCEDURE NO.:		10 01 231
C-200	ST LUCIE PLANT	

RECORDS AND NOTIFICATIONS

All records of reviews performed for changes to the ODCM shall be maintained in accordance with RM-AA-100-1000, Processing Quality Assurance Records. All ORG approved changes to the ODCM, with required documentation of the changes per TS 6.14, shall be submitted to the NRC in the Annual Effluent Release Report. Procedures that directly implement, administer or supplement the requirements of the ODCM Controls and Surveillances are:

- CY-SL-102-0104, Processing Aerated Liquid Waste
- CY-SL-102-0105, Processing Gaseous Wastes
- 0-CPP-28.20, Met Tower Data Processing
- COP-05.04, Chemistry Department Surveillances and Parameters
- CY-SL-104-0112, Determination of Process Radiation Monitor Setpoints
- The Radiological Environmental Monitoring Program is performed by the State of Florida as per FPL Juno Nuclear Plant Services Corporate Environmental Procedure Number EV-SR-104-1001.
- The licensee also performs environmental monitoring per EV-AA-01, Fleet Groundwater Protection Program, in order to meet the objectives of the Nuclear Energy Institute's Industry Initiative (NEI 07-07).

REVISION NO .:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	11 of 221
PROCEDURE NO.:		1101231
C-200	ST. LUCIE PLANT	
	•	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	12 of 221
PROCEDURE NO ·		12 01 23 1

C-200

ST. LUCIE PLANT

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM

The defined terms of this section appear in capitalized type and are applicable throughout these Controls.

ACTION

1.1 ACTION shall be that part of a Control that prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION

1.4 CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.5 CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST

1.6 A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and / or trip functions.

DOSE EQUIVALENT I-131

1.10 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microCurie/gram) which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134 and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be the thyroid dose conversion factors listed in Federal Guidance Report 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	13 of 231

PROCEDURE NO .: C-200

ST. LUCIE PLANT

DEFINITIONS for CONTROLS SECTION OF ODCM (continued) 1.0

FREQUENCY NOTATION

The FREQUENCY NOTATION specified for the performance of Surveillance 1.13 Requirements shall correspond to the intervals defined in Table 1.1.

INDUSTRY INITIATIVE

1.14 Nuclear Energy Institute Initiative (NEI 07-07) on Managing Situations Involving Inadvertent Radiological Releases into Groundwater (The industry initiative has been adopted through FPL Nuclear Policy EV-AA-01, Fleet Groundwater Protection Program).

MEMBER (S) OF THE PUBLIC

1.17 MEMBER OF THE PUBLIC means an individual in a controlled or unrestricted area. However, an individual is not a member of the public during any period in which the individual receives an occupational dose.

OFFSITE DOSE CALCULATION MANUAL

The OFFSITE DOSE CALCULATION MANUAL (ODCM) shall contain the 1.18 methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints and in the conduct of the Environmental Radiological Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by TS section 6.8.4 and (2) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Annual Radioactive Effluent Release Reports required by TS 6.9.1.7 and 6.9.1.8.

OPERABLE - OPERABILITY

1.19 A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s) and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component or device to perform its function(s) are also capable of performing their related support function(s).

OPERATIONAL MODE - MODE

An OPERATIONAL MODE (i.e., MODE) shall correspond to any one inclusive 1.20 combination of core reactivity condition, power level and average reactor coolant temperature specified in Table 1.2 of the St. Lucie Plant TS.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	14 of 221
		14 01 23 1

PROCEDURE NO.: C-200

ST. LUCIE PLANT

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM (continued)

<u> PURGE - PURGING</u>

1.24 PURGE or PURGING shall be any controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

RATED THERMAL POWER

1.25 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant of 3020 MWt.

REPORTABLE EVENT

1.27 A REPORTABLE EVENT shall be any of those conditions specified in Section 50.73 of 10 CFR Part 50.

SITE BOUNDARY

1.30 SITE BOUNDARY means that line beyond which the land or property is not owned, leased or otherwise controlled by the licensee.

SOURCE CHECK

1.31 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source.

TANK RELEASE

1.32 A tank that has been isolated from any ingress of radioactive materials, sampled, and permitted for release. Once the tank has been permitted and released, it may be purged from a non-radioactive source then re-released under the same permit. A new sample and permit shall be required if any Radioactive Materials have been introduced into the tank or waste stream.

THERMAL POWER

1.33 THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	15 of 221
		15 01 25 1

:OCEDURE NO.: C-200

ST. LUCIE PLANT

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM (continued)

UNPLANNED RELEASE

1.34 **UNPLANNED RELEASE** is the unintended discharge of a volume of liquid or airborne radioactivity to the environment. The following guidance is presented to classify differences between unplanned releases and other releases that are not considered as an **UNPLANNED RELEASE**:

Is an UNPLANNED RELEASE if:

- 1. The wrong waste gas decay tank or liquid radwaste release tank is released off site.
- 2. Failure of process system to automatically divert a process stream to a radioactive treatment system upon radioactivity being present in the process at the detection level or at a certain level of activity, and the result is a discharge off site occurs.
- Large losses from unexpected pipe or valve leaks where the resulting loss of radioactive material to off site such that a 10 CFR Part 50.72 or 10 CFR Part 50.73 report is required.
- 4. For Gas Decay Tank, if a Gas Decay Tank loses greater than 2 psig per 8 hours for 9 consecutive shifts, or 18 psig in 72 hours, AND the losses were determined to be to the Reactor Auxiliary Building Atmosphere, then declare the losses as an UNPLANNED RELEASE (reference CR 00-2039).

Is not an UNPLANNED RELEASE if:

- 1. It cannot be shown that the release went off site, i.e., gas went to another part of the system(s) that contained the loss.
- 2. Normal losses through the Plant Vent due to valve and pipe leakage and purging activities to make the system safe for maintenance activities.

UNRESTRICTED AREA

1.35 UNRESTRICTED AREA means an area, access to which is neither limited nor controlled by the licensee.

PROCEDURE TITLE:

PAGE:

PROCEDURE NO.: C-200

53

REVISION NO.:

ST. LUCIE PLANT

OFFSITE DOSE CALCULATION MANUAL (ODCM)

1.0 DEFINITIONS for CONTROLS SECTION OF ODCM (continued)

VENTILATION EXHAUST TREATMENT SYSTEM

1.39 A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal absorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents. Engineered Safety Features Atmospheric Cleanup Systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTING

1.40 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

WASTE GAS HOLDUP SYSTEM

1.41 A WASTE GAS HOLDUP SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting Reactor Coolant System offgases from the Reactor Coolant System and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

REVISION NO.:	PROCEDURE TITLE: PAGE:					
53	OFFSITE DOSE CALCULATION MANUAL (ODCM) 17 of 231					
PROCEDURE NO.:	ST LUCIE DI ANT					
C-200	ST. LUCIE PLANT					
TABLE 1.1 FREQUENCY NOTATION (Page 1 of 1)						
NOTATION	FREQUENCY					
S	At least once per 12 hours.					
D	At least once per 24 hours.					
W	At least once per 7 days.					
4/M*	At least 4 per month at intervals of no greater than 9 days and minimum of 48 per year.					
М	At least once per 31 days.					
Q	At lease once per 92 days.					
SA	At least once per 184 days.					
R	At least once per 18 months.					
S/U	Prior to each reactor startup.					
N.A.	Not Applicable.					
P**	Completed prior to each release					
1/DSC	Once per Dry Shielded Canister (DSC) loading and unloading operation when DSC is in the Cask Handling Facility (CHF) and DSC is loaded with Spent Fuel.					
 * For Radioactive ** For Radioactive 	e Effluent Sampling e Batch Releases Only					

REVISIC	ON NO.:		PROCEDURE TITLE:	PAGE:					
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	18 of 231					
PROCEDURE NO.:			ST LUCIE DI ANIT						
	0-200		ST. LUCIE FLANT						
<u>3/4</u>	3/4 CONTROLS AND SURVEILLANCE REQUIREMENTS								
3/4.0 APPLICABILITY									
CONTROLS									
3.0.1	3.0.1 Compliance with the Controls contained in the succeeding controls is required during the conditions specified therein; except that upon failure to meet the Control, the associated ACTION requirements shall be met.								
3.0.2	2 Noncompliance with a Control shall exist when the requirements of the Control and associated ACTION requirements are not met within the specified time intervals. If the Control is restored prior to expiration of the specified time intervals, completion of the ACTION requirements is not required.								
SURVEILLANCE REQUIREMENTS 4.0.1 Surveillance Requirements shall be met during the conditions specified for individual Controls unless otherwise stated in an individual Surveillance									
4.0.2	 Each Surveillance Requirement shall be performed within the specified time interval with: 								
	a.	A maxi interva	mum allowable extension not to exceed 25% of the sur I.	veillance					

REVISION NO .:	PROCEDURE TITLE:	PAGE:				
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	10 of 221				
PROCEDURE NO.:		19 01 23 1				
C-200	ST. LUCIE PLANT					
INSTRUMENTATION						
RADIOACTIVE LI	QUID EFFLUENT MONITORING INSTRUMENTATION					
CONTROLS						
3.3.3.9 In accor monitori OPERA Control shall be paramet	dance with St. Lucie Plant TS 6.8.4.f.1), the radioactive light ng instrumentation channels shown in Table 3.3-12 shall BLE with their Alarm/Trip Setpoints set to ensure that the 3.11.1.1 are not exceeded. The Alarm/Trip Setpoints of the determined and adjusted in accordance with the methodo ers in the OFFSITE DOSE CALCULATION MANUAL (OF	quid effluent be limits of hese channels blogy and DCM).				
APPLICABILITY:	At all times.					
ACTION:						
a. With a radio Setpoint les suspend the channel or acceptably	With a radioactive liquid effluent monitoring instrumentation channel Alarm/Trip Setpoint less conservative than required by the above control, immediately suspend the release of radioactive liquid effluents monitored by the affected channel or declare the channel inoperable or change the setpoint so it is acceptably conservative.					
b. With less th instrumenta Restore the unsuccessf this inopera	/ith less than the minimum number of radioactive liquid effluent monitoring strumentation channels OPERABLE, take the ACTION shown in Table 3.3-12. estore the inoperable instrumentation to OPERABLE status within 30 days and, if nsuccessful, explain in the next Annual Radioactive Effluent Release Report why his inoperability was not corrected in a timely manner.					
c. Report all de	viations in the Annual Radioactive Effluent Release Repo	ort.				
SURVEILLANCE REQUIREMENTS						
4.3.3.9 Each rao demons SOURC TEST at	dioactive liquid effluent monitoring instrumentation channe trated OPERABLE by performance of the CHANNEL CHE E CHECK, CHANNEL CALIBRATION and CHANNEL FU the frequencies shown in Table 4.3-8.	el shall be ECK, INCTIONAL				

REVIS	SION NO.	:	PROCEDURE TITLE:	F	PAGE:				
53		3	OFFSITE DOSE CALCULATION MANUAL (ODCM)		20 of 231				
PROC	EDURE	NO.:			20 01 20 1				
C-200 ST. LUCIE PLANT			ST. LUCIE PLA						
	TABLE 3.3-12 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION (Page 1 of 2)								
			INSTRUMENT	MINIMUM CHANNELS OPERABLE	ACTION				
1.	Radio Term								
	a)	Liquid Radv	vaste Effluent Line	1	35				
	b)	Steam Gen	erator Blowdown Effluent Line	1/SG	36, 37				
2.	Flow	Rate Measu	urement Devices						
	a)	Liquid Radv	vaste Effluent Line	N.A	38				
	b)	Discharge (Canal	N.A	38				
	C)	Steam Gen	erator Blowdown Effluent Lines	N.A	38				

SG - Denotes Steam Generator

ACTION STATEMENTS

ACTION 35 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue provided that prior to initiating a release:

a. At least two independent samples are analyzed in accordance with the Surveillance Requirement for concentration limit of Control 4.11.1.1.

AND

b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge line valving.

Otherwise, suspend release of radioactive effluents via this pathway.

ACTION 36 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided grab samples are analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 2.E-07 micro-Curie/ml:

a. At least once per 8 hours⁽¹⁾ when the specific activity of the secondary coolant is greater than 0.01 micro-Curies/gram DOSE EQUIVALENT I-131

OR

b. At least once per 24 hours⁽¹⁾ when the specific activity of the secondary coolant is less than or equal to 0.01 micro-Curies/gram DOSE EQUIVALENT I-131.
REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	21 of 221
PROCEDURE NO.:		2101231

C-200

ST. LUCIE PLANT

TABLE 3.3-12

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

(Page 2 of 2)

ACTION STATEMENTS (continued)

ACTION 37 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, isotopic grab samples shall be obtained and analyzed at a Lower Limit of Detection for I-131, Co-58, Co-60, Cs-134, and Cs-137 to achieve detection sensitivity capable of detecting a primary-to-secondary leak rate of 5 gallons per day, provided that the Reactor Coolant System has sufficient activity present.

The applicable frequency shall be:

In MODES 1, 2, 3, 4

a. At least once per day⁽¹⁾ for isotopic activity on the affected Steam Generator, provided that the Air Ejector Gas Activity Monitor is OPERABLE,

OR

b. At least every 8 hours⁽¹⁾ for isotopic activity on the affected Steam Generator, if the Air Ejector Gas Activity Monitor is INOPERABLE.

This requirement is intended to meet EPRI PWR Primary-to-Secondary Leak Guidelines (TR-104788-R2) per reference PMAI 00-08-109.

ACTION 38 - Minimum system design flow of required running pumps shall be utilized for ECL calculations for discharge canal flow and maximum system design flow be utilized for ECL calculations for effluent line flow.

TABLE 3.3-12 Notation

(1) - The initial sample shall be completed prior to the frequency interval specified. Subsequent samples (of the same INOPERABLE condition) may be performed per ODCM surveillance requirement 4.0.2 (a maximum allowable extension not to exceed 25% of the surveillance interval).

REV	ISION N	NO.:	PROCEDURE TITLE:			F	PAGE:	
53		53	OFFSITE DOSE CALCULATION MANUAL (ODCM)			L (ODCM)	00 (00 (
PROCEDURE NO.:		RE NO.:			χ γ	22 of 231		
	C-200		ST. L	UCIE PLA	NT			
	TABLE 4.3-8 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS (4) (Page 1 of 1)							
	INSTRUMENT CHANNEL SOURCE CHANNEL CHECK CHECK CHECK CHECK CHECK CHECK							
1.	Radi Auto	oactivity Monit matic Termina	ors Providing Alarm and tion of Release					
	a)	Liquid Radwas	ste Effluent Line	D	Р	R (2)	Q (1)	
	b)	Steam Genera Line	ator Blowdown Effluent	D	М	R (2)	Q (1)	
2.	Flow	Rate Measure	ement Devices					
	a)	Liquid Radwas	ste Effluent Line	D (3)	N.A.	R	Q	
	b)	Discharge Ca	nal	D (3)	N.A.	R	Q	
	c)	Steam Genera Line	ator Blowdown Effluent	D (3)	N.A.	R	Q	
			TABLE		<u>IS</u>			
(1)	T p	he CHANNEI athway and c	_ FUNCTIONAL TEST sha ontrol room alarm annunc	all also dem iation occur	onstrate a if any of t	utomatic isola he following c	tion of this onditions exist:	
	1	. Instrum	ent indicates measured le	evels above	the alarm	/trip setpoint o	r	
	2	. Circuit	failure or					
	3	. Instrum	ent indicates a downscale	e failure or				
	4	. Instrum	nent controls not set in ope	erate mode.				
(2)	(2) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards traceable to the National Institute of Standards & Technology (NIST) or using standards that have been calibrated against standards certified by the NIST. These standards should permit calibrating the system over its intended range of energy and rate capabilities that are typical of normal plant operation. For subsequent CHANNEL CALIBRATION, button sources that have been related to the initial calibration may be used.							
(3)	 CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once per 24 hours on days on which continuous, periodic or batch releases are made. 							
(4)	(4) The requirements to perform the surveillances is not applicable, if Table 3.3-12 list the INSTRUMENT MINIMUM CHANNELS OPERABLE as not applicable (N.A.). (Reference CR 99-0361, PMAI 99-04-106).							

REVISIO	N NO.:	PROCEDURE TITLE:	PAGE:				
	53	OFESITE DOSE CALCULATION MANUAL (ODCM)					
PROCEDURE NO.:			23 of 231				
C-200		ST. LUCIE PLANT					
INSTF	RUMENTATIC	<u>N</u>					
RADIO	DACTIVE GAS	SEOUS EFFLUENT MONITORING INSTRUMENTATIO	<u>N</u>				
СОМТ	ROLS						
3.3.3.′	10 In accord effluent m FUNCTIC Control 3 shall be d paramete	ance with St. Lucie Plant TS 6.8.4.f.1), the radioactive ga nonitoring instrumentation channels shown in Table 3.3- ONAL with their Alarm/Trip Setpoints set to ensure that th 11.2.1.are not exceeded. The Alarm/Trip Setpoints of the etermined and adjusted in accordance with the methodo rs in the ODCM.	aseous 13 shall be ne limits of nese channels blogy and				
APPLI	ICABILITY:	As shown in Table 3.3-13					
ACTIC	<u>DN:</u>						
а.	a. With a radioactive gaseous effluent monitoring instrumentation channel Alarm/Trip Setpoint less conservative than required by the above control, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel or declare the channel inoperable or change the setpoint so it is acceptably conservative.						
b.	b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels FUNCTIONAL, take the ACTION shown in Table 3.3-13. Restore the inoperable instrumentation to FUNCTIONAL status within 30 days and, if unsuccessful, explain in the next Annual Radioactive Effluent Release Report why this inoperability was not corrected in a timely manner.						
C.	Report all de	viations in the Annual Radioactive Effluent Release Rep	ort.				
SURVEILLANCE REQUIREMENTS							
4.3.3.´	10 Each radi demonstr SOURCE TEST at t	oactive gaseous effluent monitoring instrumentation cha ated FUNCTIONAL by performance of the CHANNEL C CHECK, CHANNEL CALIBRATION and CHANNEL FU he frequencies shown in Table 4.3-9.	innel shall be HECK, NCTIONAL				

REVIS									
	50								
		SITE DOSE CALCULATION MANUAL (ODCM)			^{IVI}) 24 of 231				
PROCEDURE NO.:			o 						
	C-200		SI.	LUCIE PLANT					
	TARI E 3 3-13								
	RADIOACTIVE GASEOUS FEELUENT MONITORING INSTRUMENTATION								
	(Page 1 of 4)								
			Υ.	o ,					
	INSTRUMEN ⁻	г	MINIMUM CHANNELS FUNCTIONAL	APPLICABILITY	ACTION	MEASUREMENT RANGE			
1.	Waste Gas Hold System	lup							
	a) Noble Gas Monitor - Providing A and Automa Terminatior Release	Activity larm atic 1 of	1/ Rx	*	45				
2.	Condenser Evacuation Sys	tem							
a)	a) Noble Gas Activity		1/ Rx	**	47				
	Monitor			Modes 1 2 3 4	48				
3.	3. Plant Vent System			11100000 1, 2, 0, 4					
a)	a) Noble Gas Activity Monitor (Low Range)		1/ Rx	***	47	$10^{-7} - 10^5 \text{ uCi/cc}$ (Unit 1) $10^{-7} - 10^{-2} \text{ uCi/cc}$ (Unit 2)			
b)	Noble Gas Activi Monitor (Hig Range)	ty gh	1/ Rx	***	47	10 ⁻² – 10 ⁵ uCi/cc (Unit 2)			
C)	Iodine Sampler		1/ Rx	*	51				
d)	Particulate Samp	oler	1/ Rx	*	51				
e)	Flow Rate Monit	or	N.A. (3)	*	53				
1)	Monitor	ale	1/ Rx	*	46				
4.	Fuel Storage Ar Ventilation Syst	ea tem							
a)	Noble Gas Activi Monitor	ty	1/ Rx	*	47,54	$10^{-7} - 10^{5} \text{ uCi/cc}$ (Unit 1) $10^{-7} - 10^{5} \text{ uCi/cc}$ (Unit 2)			
b)	lodine Sampler		1/ Rx	*	51				
c)	Particulate Samp	oler	1/ Rx	*	51,54	1-10 ^⁵ cpm			
<u>d</u>)	Flow Rate Monit	or oto	N.A. (3)	*	53				
e)	Sampler Flow Ra	ate	1/ Rx	*	46				

REVISION	NO.:

PROCEDURE NO.:

PROCEDURE TITLE:

PAGE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

C-200

53

ST. LUCIE PLANT

TABLE 3.3-13 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION 4)

(Page	2 01	4
-------	------	---

INSTRUMENT	MINIMUM CHANNELS FUNCTIONAL	APPLICABILITY	ACTION	MEASUREMENT RANGE
5. Steam Generator Blowdown Building Vent				
a) Noble Gas Activity Monitor (Low Range)	1	*	47	10 ⁻⁷ – 10 ⁻² uCi/cc
b) Iodine Sampler	1	*	51	
c) Particulate Sampler	1	*	51	
d) Flow Rate Monitor	N.A. (3)	*	53	
e) Sampler Flow Rate Monitor	1	*	46	
6. Steam Safety Valve Discharge #	1/Steam Header	Modes 1,2,3,4	55	10 ⁻¹ – 10 ³ uCi/cc
7. Atmospheric Steam Dump Valve Discharge #	1/Steam Header	Modes 1,2,3,4	55	10 ⁻¹ – 10 ³ uCi/cc
8. ECCS Exhaust	1/Train	Modes 1,2,3,4	55	10 ⁻⁷ – 10⁵ uCi/cc

- At all times while making releases via this pathway

- At all times when air ejector exhaust is not directed to plant vent.
- *** At all times while making releases via this pathway or modes 1-4
- # On Unit 2, The steam safety valve discharge monitor and the atmospheric steam dump valve discharge monitor are the same monitor.
- Rx Denotes reactor

ACTION STATEMENTS

ACTION 45 - With the number of channels FUNCTIONAL less than required by the Minimum Channels FUNCTIONAL requirement, the contents of the tank(s) may be released to the environment provided that prior to initiating a release:

- At least two independent samples of the tank's contents are analyzed and a.
- b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup.

Otherwise, suspend release of radioactive effluents via this pathway.

REVISION NO) ·		PAGE:				
	53	OFESITE DOSE CALCULATION MANUAL (ODCM)	TAGE.				
PROCEDURE	E NO.:		27 of 231				
C-	200	ST. LUCIE PLANT					
<u>R/</u>	TABLE 3.3-13 <u>RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION</u>						
		ACTION STATEMENTS (continued)					
ACTION 4	8 (continue	d)					
The applic	able freque	ncy shall be:					
a. At pro	least once p ovided that <u>e</u>	per 12 hours ^{(1),(2)} for noble gas isotopic activity on the Air Ejece each affected Unit's Steam Generator Blowdown Monitor is F	ctor Exhaust [:] UNCTIONAL,				
		OR					
b. At <u>eit</u> l	least once p <u>her</u> of the af	per 8 hours ^{(1),(2)} for noble gas isotopic activity on the Air Eject fected Unit's Steam Generator Blowdown Monitors is NONF	or Exhaust if UNCTIONAL.				
This requi (TR-10478 Ejector Ex	This requirement is intended to meet EPRI PWR Primary-to-Secondary Leak Guidelines (TR-104788-R2), therefore grab samples shall be taken regardless of the Alignment of the Air Ejector Exhaust while in Modes 1, 2, 3, 4. (Reference PMAI 00-08-109.)						
ACTION 51 - With the number of channels FUNCTIONAL less than required by the Minimum Channels FUNCTIONAL requirement, effluent releases via the affected pathway may commence within 72 hours or samples are collected with auxiliary sampling equipment as required in Table 4 11-2							
ACTION 5 release m	i3 - Maximu onitor alarm	m system flows shall be utilized in the determination of the ir setpoint.	istantaneous				
ACTION 54 - With the number of channels FUNCTIONAL less than required by the Minimum Channels FUNCTIONAL requirement, suspend all operations involving movement of recently irradiated fuel within the spent fuel storage pool or crane operations with loads over recently irradiated fuel assemblies in the spent fuel storage pool.							
ACTIONS 55 - With the number of channels FUNCTIONAL less than required by the Minimum Channels FUNCTIONAL requirement, either restore the inoperable Channel(s) to FUNCTIONAL status within 72 hours, or initiate the preplanned alternate method of monitoring the appropriate parameter(s).							
TABLE 3.3	3-13 NOTA	ΓΙΟΝ					
(1) - Th sai sui the	e initial sam mples (of th rveillance re surveillanc	ple shall be completed prior to the frequency interval specific e same NONFUNCTIONAL condition) may be performed pe equirement 4.0.2 (a maximum allowable extension not to exc e interval).	ed. Subsequent r ODCM eed 25 percent of				
(2) - <u>If</u> t sai re\ esi	here is no s mple may b verified once tablished.	team flow to the air ejector nozzles while the Reactor is in M e omitted, but the steam flow condition (status) to the air ejec e per 8 hours to initiate grab samples if steam flow to the air o	ode 4, <u>Then</u> the ctor shall be ejector nozzles is				
(3) - Th do	e flow rate r cuments an	nonitors are not functional. Vent flow is based on design en d values in the UFSAR. EPIP-14 contains the correct flow va	gineering alues.				

REVISION NO.:

PROCEDURE NO .:

PROCEDURE TITLE:

PAGE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

C-200

53

ST. LUCIE PLANT

TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS

(Page 1 of 4)

	ID	DOCUMENT	ALER I SETPOINT ^e	HIGH SETPOINT [®]
1PV LOW RANGE GAS	RSC26_1L	C-200 ^a	5 x Bkg. ^q	Allotted % Of Site Limit ⁹
1FHB LOW RANGE GAS	RSC26_4L	C-200 ^a	5 x Bkg. ^q	Allotted % Of Site Limit ⁹
2A PV PIG LOW RANGE GAS	423	C-200 ^a	5 x Bkg. ^q	Allotted % Of Site
2B PV PIG LOW RANGE GAS	433	C-200 ^a	5 x Bkg.	Limit ^g For Plant Vent #2
2FHB LOW RANGE GAS	413	C-200 ^a	5 x Bkg.	Allotted % Of Site Limit ^g
SGBDB LOW RANGE GAS	45-6	C-200 ^a	5 x Bkg.	Allotted % Of Site Limit ⁹
1 CONDENSER AIR EJECTOR	35	C-200	2 x Bkg. ^b	3 x Bkg.
2 CONDENSER AIR EJECTOR	403	C-200	2 x Bkg. ^b	3 x Bkg.
1 BATCH GAS EFFLUENT	42	C-200 ^a	As Per CY-SL-102-0105	As Per CY-SL-102-0105 ^{a,h}
2 BATCH GAS EFFLUENT	203	C-200 ^a	As Per CY-SL-102-0105	As Per CY-SL-102-0105 ^{a,h}
2PV WRGMChanLow Range Gas621Mid Range Gas622High Range Gas623	624 ^P	C-200ª	5 x Bkg. ^P uCi/sec	Allotted % Of Site Limit ^P uCi/sec
2A ECCS WRGMChanLow Range Gas601Mid Range Gas602High Range Gas603	604 ^P	C-200 ^ª	0.75 x High ^P uCi/sec	Allotted % Of Site Limit [₽] uCi/sec
2B ECCS WRGMChanLow Range Gas611Mid Range Gas612High Range Gas613	614 ^P	C-200 ^a	0.75 x High ^P uCi/sec	Allotted % Of Site Limit [₽] uCi/sec
ODCM Related Particulate Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT ^e	HIGH SETPOINT ^e
1FHB PARTICULATE	RSC26_4P	FUSAR	5000 CPM	10,000 CPM ^c
2A PV PIG PARTICULATE	421	FUSAR	5000 CPM	10,000 CPM ^c
2B PV PIG PARTICULATE	431	FUSAR	5000 CPM	10,000 CPM ^c
2FHB PARTICULATE	411	FUSAR	5000 CPM	10,000 CPM ^c
SGBDB PARTICULATE	45-4	FUSAR	5000 CPM	10,000 CPM ^c

REVISION NO.:	PROCEDURE TITLE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

29 of 231

C-200

ST. LUCIE PLANT

TABLE 3.3-14 <u>RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS</u> (Page 2 of 4)

ODCM Related Iodine Channels	CHANNEL ID	BASIS DOCUMENT	ALERT SETPOINT ^e	HIGH SETPOINT ^e
2A PV PIG IODINE	422	FUSAR	5000 CPM	10,000 CPM ^c
2B PV PIG IODINE	432	FUSAR	5000 CPM	10,000 CPM ^c
2FHB IODINE	412	FUSAR	5000 CPM	10,000 CPM ^c
SGBDB IODINE	45-5	FUSAR	5000 CPM	10,000 CPM ^c

ODCM Related Liquid Channels	CHANNEL	BASIS		HIGH
•	ID	DOCUMENT	SETPOINT	SETPOINT
1A S/G BLOWDOWN	44	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}
1B S/G BLOWDOWN	45	C-200	2 x Bkg.	2.E-04 uCi/ml ^{f,m}
2A S/G BLOWDOWN	121	C-200	2 x Bkg.	2.E-04 uCi/ml ^m
2B S/G BLOWDOWN	122	C-200	2 x Bkg.	2.E-04 uCi/ml ^m
1 BATCH LIQUID EFFLUENT	R6627	C-200	As Per CY-SL-102- 0104	As Per CY-SL-102- 0104 ⁿ
2 BATCH LIQUID EFFLUENT	301	C-200	As Per CY-SL-102- 0104	As Per CY-SL-102- 0104 ⁿ

Monitor channels not listed are covered per CY-SL-104-0112, Determination of Process Radiation Monitor Setpoints

TABLE NOTATIONS

- a ODCM Control 3.11.2.1a
- b ODCM Table 4.11-1 Note (7)
- c ODCM Control 3.11.2.1.b
- e Setpoints may be rounded for analog and digital display input limitations.
- f The channel setpoint to be in cpm equivalent to this activity
- g per ODCM Methodology Step 2.2.2
- Batch Gaseous Release Rate and Maximum activity limits shall be used such that Plant Vent (PV) Release HIGH setpoints should not be exceeded.
- i, j, k, and I not used in notation for clarity

53 PROCEDURE NO.:

REVISION NO.:								
D3 PROCEDURE NO.:	30 of 231							
C-200	ST. LUCIE PLANT							
TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS (Page 3 of 4)								
TABLE NOTATION	<u>S</u> (continued)							
m - Continuous Liq	uid setpoint methodology per ODCM 1.3.2							
n - Batch liquid set	point methodology per ODCM 1.3.1							
o - Note "oscar" is	not used in this table notation							
p - The individual	Channel 621, 622 and 623 (Plant Vent No. 2)							
	Channel 601, 602 and 603 (ECCS 2A)							
and	Channel 611, 612 and 613 (ECCS 2B)							
Data Base Aler Room Alarm. After the first A locked in if the internal control will not reset ar respective Skic Alarm" and "Hi information onl Channel ID for	t and High Alarm Setpoint Items do not provide activation of a Control Only the Skid's Effluent Channel Setpoint provides an alarm function. Iert and High Effluent Channel Alarms are received they will stay release is increasing to higher activity levels. Transfer of Skid to Effluent Channel input from the Mid or High Range Gas Channels n alarm, nor provide additional alarms. The Effluent Channel on the d has to be reset to new Setpoints by I&C. References to "Alert gh Alarm" settings for the Low Mid and High Channels are for display y. This is why Table 3.3-14 only list Channel 624, 604 and 614 as the Alarm Setpoints. These are the respective Skid's Alarm Channel.							
Channel ID for Alarm Setpoints. These are the respective Skid's Alarm Channel. Channel ID number 604 and 614 are the uCi/sec indication and ALERT/HIGH Alarm channels for ECCS 2A and ECCS 2B respectively. The ECCS exhaust pathways each have a single fan. Their Skid's Monitor Item #059 will be set per the measured ft3/minute exhaust rate. Their Skid's Monitor Item #060 (Accident Flow rate) will be set to zero since there is only one flow rate possible for these ECCS pathways. The uCi/sec value indicated on ECCS skids should be valid regardless of Normal or Accident conditions.								
The Channel ID number 624 (generically called the Plant Vent 2 Skid's Channel 4) is the uCi/sec and Control Room active ALERT/HIGH Alarm that is Common (shared by) to the Low (621), Mid (622), and High (623) Range Gas Channels. The Plant Vent 2's skid Monitor Item #059 will be set for the maximum ft3/minute flow rate that could occur under all circumstances. The Plant Vent 2 Channel 624's actual uCi/sec is dependent what is set in Monitor Item #059 and Monitor Item #060 as follows:								

REVISION NO.:	PROCEDURE IIILE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	04 - 5 00

PROCEDURE NO.:

C-200

ST. LUCIE PLANT

31 of 231

TABLE 3.3-14 RADIOACTIVE EFFLUENT MONITOR SETPOINT BASIS

(Page 4 of 4)

TABLE NOTATIONS (continued)

p - (continued)

The NORMAL value for the Common Channel 624 uCi/sec indication and ALERT/High Alarms should be based on the equivalent uCi/sec of the 5 x Bkg (use CY-SL-104-0112, Determination of Process Radiation Monitor Setpoints) uCi/cc of the Low Range Channel #621 and RIM 26-90 Monitor Item #059 (the MAXIMUM process ft3/minute flow rate that could occur in the Unit 2 Plant Vent.

The ACCIDENT value for the Common Channel 624's uCi/sec is based on the Skid switching (at a preset activity value) input from the Low Range Channel to calculate / display a uCi/sec value based on receiving activity uCi/cc input from either the Mid Range Channel 622 (OR from the High Range Channel 623) and RIM 26-90 Monitor Item #060 6,600 ft3/minute (use CY-SL-104-0112, Determination of Process Radiation Monitor Setpoints) flow rate that is expected during a LOCA Safety Injection sequence.

During an ACCIDENT you have to access the running status of 2-HVE-6A, 2-HVE-6B, 2-HVE-7A, 2-HVE-7B, 2-HVE-8A, 2-HVE-8B, 2-HVE-10A and 2-HVE-10B to determine actual Plant Vent exhaust flow rate ft3/minute. This is the flow rate that should be inserted into Plant Vent #2 Skid's Monitor Item #060 with new Setpoints for Alert and High Alarms in units of uCi/sec calculated by using the actual Plant Vent exhaust flow during the Accident. If fan operating status changes, the Effluent Channel 624 uCi/sec indication and existing Alert and High Alarm Setpoints will not be valid for a new flow rate. This is the reason that EPIP-14 does not utilize Channel 624 indication for calculating off-site dose.

- Q During an outage, the Low Range gas activity ALERT Alarm Setpoint may be set to slightly above outage anticipated activity levels, but shall always be set to a value less than the High Alarm Setpoint. Examples of outage activities are initiating a Containment Main Purge and venting the S/G primary side bowls.
- FUSAR Channel listed FUSAR, but not required by ODCM Control 3.3.10 Table 3.3-13. The setpoints are used to provide alarm well before exceeding ODCM Control 3.11.2.1.b Site Dose Rate Limit. The inoperability of a FUSAR channel above does not involve an ACTION statement unless TS (Technical Specification) is noted.
- 2 x Bkg., 3 x Bkg., 5 x Bkg. etc., denotes the number of times the normal channel reading is the appropriate Alarm Setting. These type of setpoints should be periodically evaluated to insure alarm sensitivity is maintained as per CY-SL-104-0112, Determination of Process Radiation Monitor Setpoints.

EVISION NO .:

PROCEDURE NO.:

PROCEDURE TITLE:

PAGE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

C-200

53

ST. LUCIE PLANT

TABLE 4.3-9 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS (4)

(Page 1 of 2)

	INSTRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	Modes in which surveillance required
1.	Waste Gas Holdup System					
	 a) Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release 	Р	Ρ	R (3)	Q (1)	*
2.	Condenser Evacuation System					
	a) Noble Gas Activity Monitor	D	М	R (3)	Q (2)	**
3.	Plant Vent System					
	a) Noble Gas Activity Monitor	D	М	R (3)	Q (2)	*
	b) Iodine Sampler	W	N.A.	N.A.	N.A.	*
	c) Particulate Sampler	W	N.A.	N.A.	N.A.	*
	e) Sampler Flow Rate	D	N.A.	R	N.A.	*
4.	Fuel Storage Area Ventilation System					
	a) Noble Gas Activity Monitor	D	М	R (3)	Q (2)	*
	b) Iodine Sampler	W	N.A.	N.A.	N.A.	*
	c) Particulate Sampler	W	N.A.	N.A.	N.A.	*
	e) Sampler Flow Rate Monitor	D	N.A.	R	N.A.	*
5.	Steam Generator Blowdown Building Vent					
	a) Noble Gas Activity Monitor	D	М	R (3)	Q (2)	*
	b) Iodine Sampler	W	N.A.	N.A.	N.A.	*
	c) Particulate Sampler	W	N.A.	N.A.	N.A.	*
	e) Sampler Flow Rate Monitor	D	N.A.	R	N.A.	*
6.	Cask Handling Facility (CHF)					
	a) Sampler Flow Rate Monitor	D	N.A.	Annual	N.A	***

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:				
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	33 of 231				
PROCE	PROCEDURE NO.:							
	C-200	J	ST. LUCIE PLANT					
	TABLE 4.3-9 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS (4) (Page 2 of 2)							
			TABLE NOTATIONS					
* -	At all	times w	hen making releases via this pathway.					
** -	At all	times w	hen air ejector exhaust is not directed to plant vent.					
*** -	At all	times w	hen Cask Handling Facility (CHF) ventilation is in se	rvice.				
(1)	The C this p condi	CHANNE athway tions ex	EL FUNCTIONAL TEST shall also demonstrate automa and control room alarm annunciation occurs if any of th ist:	itic isolation of ne following				
	1.	Instrur	nent indicates measured levels above the alarm/trip se	tpoint or				
	2.	Circuit	failure or					
	3.	3. Instrument indicates a downscale failure or						
	4.	Instrur	nent controls not set in operate mode.					
(2)	The C annur	CHANNE	EL FUNCTIONAL TEST shall also demonstrate that cor occurs if any of the following conditions exist:	ntrol room alarm				
	1.	Instrur	nent indicates measured levels above the alarm/trip se	tpoint or				
	2.	Circuit	failure or					
	3.	Instrur	nent indicates a downscale failure or					
	4.	Instrur	nent controls not set in operate mode.					
(3)	The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards traceable to the National Institute of Standards & Technology (NIST) or using standards that have been calibrated against standards certified by the NIST. These standards should permit calibrating the system over its intended range of energy and rate capabilities that are typical of normal plant operation. For subsequent CHANNEL CALIBRATION, button sources that have been related to the initial calibration may be used.							
(4)	initial calibration may be used. The requirements to perform the surveillances is not applicable, if Table 3.3-13 list the INSTRUMENT MINIMUM CHANNELS FUNCTIONAL as not applicable (N.A.). (Reference CR 99-0361, PMAI 99-04-106).							

REVISION NO .:		PROCEDURE TITLE:	PAGE:						
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO.:	:		34 of 231						
C-200 ST. I		ST. LUCIE PLANT							
<u>3/4.11</u>	RADIC	DACTIVE EFFLUENTS							
<u>3/4.11.1 L</u>		<u>EFFLUENTS</u>							
CONCENTR	ATION								
CONTROLS									
3.11.1.1 In a rac (se in ⁻ rac ent mic	3.11.1.1 In accordance with the St. Lucie Plant TS 6.8.4.f.2) and 3), the concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (see TS Figure 5.1-1) shall be limited to ten times the concentrations specified in 10 CFR Part 20.1001-20.2401, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2.E-04 micro-Curie/ml total activity.								
APPLICABIL	<u>ITY:</u>	At all times.							
ACTION:									
a. With th UNRE conce	he conc STRIC ntration	centration of radioactive material released in liquid efflue TED AREAS exceeding the above limits, immediately re to within the above limits.	ents to estore the						
SURVEILLA	NCE RE	EQUIREMENTS							
4.11.1.1.1	Radioa sampli	active liquid wastes shall be sampled and analyzed according and analysis program of Table 4.11-1.	ording to the						
4.11.1.1.2	The re the me concer Contro	sults of the radioactivity analyses shall be used in accore thodology and parameters in the ODCM to assure that ntrations at the point of release are maintained within the I 3.11.1.1.	dance with the e limits of						
4.11.1.1.3	Post-re perforr post-re ODCM mainta	elease analyses of samples composited from batch rele ned in accordance with Table 4.11-1 and results of the elease analyses shall be used with the calculation metho to assure that the concentrations at the point of release ined within the limits of Control 3.11.1.1.	ases shall be previous ods in the e were						

	PROCEDURE				
	FROCEDORE		FAGL.		
53	OFFSITE	E DOSE CAL	35 of 231		
PROCEDURE NO.:					55 01 251
C-200	г				
0 200					
		TAE	BLE 4.11-1		
RADIOA	CTIVE LIQUI	D WASTE S	AMPLING A	ND ANALYSIS P	ROGRAM
		(Pa	ge 1 of 4)		
	-	Sampling	Minimum	Type of Activity	Lower Limit of
Liquid Relea	ase Type	Frequency	Analysis	Analysis	Detection
		- · ·	Frequency		LLD (1) (µCi/mi)
A. Batch Waste Re	elease Tanks (2)	P Fach Datab	Each Batch	P.G.E. (3)	5.E-07
		Each Batch	N.4	I-131 Disselyad and	1.E-06
		P One Datab/M	IVI	Dissolved and	1.E-05
		One Batch/M		Entrained Gases	
		D	N/		1 E 05
		F Each Batch	IVI Composito (4)	⊡-J Gross Alpha	1.E-03
				Sr 80 Sr 00	1.E-07 5 E 08
		F Fach Batch	Composite (4)	C-14 Ep-55 Ni-63	5.E-00 1 E-06
B Continuous Rel	eases(5,6)	Luon Baton		P G F (3)	5 E-07
D. Continuous rei	6, 0)	Daily	Composite	L-131	1 E-06
				Dissolved and	1.2 00
		Daily	4/M	Entrained Gases	1.E-05
		Grab Sample	Composite	(Gamma Emitters)	
		Deile	М	H-3	1.E-05
		Daily	Composite	Gross Alpha	1.E-07
		Daily	Q	Sr-89, Sr-90	5.E-08
		Dally	Composite	C-14, Fe-55, Ni-63	1.E-06
C. East/West Settli	ing Basins (7)	W	\٨/	P.G.E. (3)	5.E-07
		Grab Sample	vv	I-131	1.E-06
D. Settling Basin a	s a Batch			P.G.E. (3)	5.E-07
Release Pathwa	ay. (9)	Р		I-131	1.E-06
(Reference CR	99-1165 PMAI	Each Batch	Each Batch	Dissolved and	
99-08-084 PMA	I-01-04-115	(8)		Entrained Gases	1.E-05
(12) CR 2010-296.				(Gamma Emitters)	
(13) AR 01967018				H-3	1.E-05
		Each Batch	Each Batch	Gross Alpha	1.E-07
				Sr-89, Sr-90	5.E-08
E Croundwater D	owatoring			U-14, FE-33, INI-03	
Batch Palaasos	ewalering	W (11)	W (11)		1⊑-00 5 E.07
	5(10)			Г.Ө.⊑. (3) Ц.З	1E-07
				PGF (3)	5 F-07
		Р	Each Batch	Gross Alpha	0.⊑-07
		Each Batch	Each Balch	Sr-89 Sr-90	5 E-08
		(8)		C-14 Fe-55 Ni-63	1 F-06
L		1		0 11,10 00,11 00	

P.G.E. - Denotes Principal Gamma Emitter

REVISI	ON NO.:	P	PROCEDURE TITLE:	PAGE:				
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	36 of 231				
PROCEDURE NO.:				50 01 251				
C-200 ST. LUCIE PLANT								
	TABLE 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 2 of 4)							
			TABLE NOTATIONS					
(1)	The LLD is defined for purposes of these controls, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.							
	For a partie	cula	r measurement system, which may include radiochem	nical separation:				
			4.66 S _b					
			$\frac{1}{E \bullet V \bullet 2.22E + 06 \bullet Y \bullet \exp(-\lambda \bullet \Delta T)}$					
	Where:							
	LLD	=	the a priori lower limit of detection (micro-Curie per volume),	unit mass or				
	S _b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute),							
	Е	=	the counting efficiency (counts per disintegration),					
	V	=	the sample size (units of mass or volume),					
	2.22E+06	=	the number of disintegrations per minute per micro-	Curie.,				
	Y	=	the fractional radiochemical yield, when applicable,					
	λ	=	the radioactive decay constant for the particular rad	ionuclide (sec ⁻¹)				
	ΔΤ	=	the elapsed time between the midpoint of sample co the time of counting (sec).	llection and				
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.					
	It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.							

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:						
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	27 - 5 - 22 4						
PROCEDURE NO.:			37 01 23 1						
	C-200	ST. LUCIE PLANT							
	TABLE 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 3 of 4)								
		TABLE NOTATIONS (continued)							
(2)	A batch rele sampling for a method de	ease is the discharge of liquid wastes of a discrete volume r analyses, each batch shall be isolated and then thoroug escribed in the ODCM to assure representative sampling	e. Prior to Jhly mixed by						
(3)	The principa following rac Cs-137 and are to be co those of the Radioactive outlined in F	al gamma emitters for which the LLD control applies includionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Ce-141 and Ce-144. This list does not mean that only the nsidered. Other gamma peaks that are identifiable, toge above nuclides, shall also be analyzed and reported in the Effluent Release Report pursuant to Control 3.11.2.6 in Regulatory Guide 1.21, Appendix B, Revision 1, June 197	de the Cs-134, nese nuclides ther with he Annual the format 74.						
(4)	A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.								
(5)	A continuou e.g., from a release.	s release is the discharge of liquid wastes of a nondiscre volume of a system that has an input flow during the con	te volume, tinuous						
(6)	If Compone activity on the less than or analysis in a	nt Cooling Water activity is > 1.E-5 μ Ci/ml, perform a ween the Intake Cooling Water System outlet to ensure the active equal to 2.E-07 μ Ci/ml LLD limit. If ICW is >2.E-07 μ Ci/ml accordance with a Plant Continuous Release on this Table	ekly gross ivity level is ml, perform le.						
(7)	Grab sampl leakage ind background	es to be taken when there is confirmed primary to second icated by the air ejector monitor indicating greater than or	dary system r equal to 2x						
(8)	At least two requirement qualified me calculations	independent samples are analyzed in accordance with the for concentration limit of control 4.11.1.1.1 and at least tembers of the facility staff independently verify the release.	he surveillance wo technically e rate						
(9)	The settling CY-SL-102- absence of basin does pathway). T FL002208) from the Ea	basin(s) may receive low level activity per the guidance 0104, therefore these samples shall be taken regardless a primary-to-secondary leak (note (7) on liquid release ty not apply to liquid release type [D] settling basin as a bat The South Basin (pond) is a permitted outfall (per FDEP F to the intake canal. An authorized "bypass" is required to st or West Basins.	of of the pe [C] settling ch release Permit pump directly						

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:						
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00.1001						
PROCE	DURE NO.:		38 OF 231						
	C-200	ST. LUCIE PLANT							
	TABLE 4.11-1 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM (Page 4 of 4)								
		TABLE NOTATIONS (continued)							
(10)	Applies to gro Protected Are levels. This e samples that in the dewater dewatering p groundwater (e.g., IWW pe for these rele established in shall be reco analysis of th	bundwater dewatering discharges from locations outside ea where radiological contamination is not expected at a expectation may be a judgment based on local and peri indicate radiological contaminant levels below the LLD ering pump's zone of influence. These samples may inclu- ump well samples (taken by small-volume sample pump samples, and upgradient samples taken from surface we ercolation basins) within the zone of influence. The sam ases shall be precautionary in nature. A conservative we in the discharge permit for the effluent activity; however, nciled with actual activity concentrations ascertained from e actual effluent.	e the Plant significant pheral from sources clude os), upgradient vaters ppling protocol value shall be the permit om sample						
(11)	Each outfall shall be sampled at some point in the discharge header at the frequency described herein. Any outfall that includes a well (or well point) that has not yet achieved its steady state flow rate (indicating that it has not yet reached its steady state zone of influence) shall be sampled weekly. After the wells of an outfall reaches steady state, the sampling and analysis frequency may be extended to monthly.								
(12)	CR 2010-296 Basins to the tritium releas releases) rep points and th	; Radiological Impact Evaluation of Effluent Releases fr East Settling Pond (Dec. 2009). It was determined tha es via evaporation from the East Settling Pond alone (i. resents <1.0% of the total activity released via all gased erefore, does not qualify as significant release point.	om Catch t potential e. gaseous ous release						
(13)	Under emerg waive the rec samples prior hour period for where plant f based on pla Pond Releas effectiveness change.	ency conditions, the Shift Manager and Chemistry Man juirement to analyze the gamma spectroscopy, tritium, a r to starting the release. Analyses must be completed v following the initiation of a discharge. An "emergency" is looding, personnel injury, or damage to plant equipmen nt conditions. AR 01967018, Site Evaluation for Exped es (May 2014), provides site documentation and justific of the radioactive effluent control program is not reduce	ager may and alpha within a 24 s a condition t are likely iting South ation that the ed by the						

53 NO [.]	OFFSITE DOSE CALCULATION MANUAL (ODCM)							
NO ·		20 of 221						
		39 01 23 1						
200	ST. LUCIE PLANT							
CTIVE EFF	LUENTS							
OLS								
3.11.1.2 In accordance with St. Lucie Plant TS 6.8.4.f.4) and 6.8.4.f.5), the dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each unit, to UNRESTRICTED AREAS (see TS Figure 5.1-1) shall be limited:								
a. Du whe	ring any calendar quarter to less than or equal to 1.5 mr ole body and to less than or equal to 5 mrems to any or	ems to the gan and						
b. Du boo	ring any calendar year to less than or equal to 3 mrems dy and to less than or equal to 10 mrems to any organ.	to the whole						
BILITY:	At all times.							
a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.								
LANCE RE	EQUIREMENTS							
4.11.1.2 Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.								
	200 CTIVE EFF DLS In accorda commitme liquid efflu Figure 5.1 a. Du wh b. Du boo BILITY: th the calculor ceeding an ys, pursuan ceeding the basequent re- basequent re- cumulative re- the method	200 ST. LUCIE PLANT CTIVE EFFLUENTS DLS In accordance with St. Lucie Plant TS 6.8.4.f.4) and 6.8.4.f.5), the commitment to a MEMBER OF THE PUBLIC from radioactive ma liquid effluents released, from each unit, to UNRESTRICTED ARF Figure 5.1-1) shall be limited: a. During any calendar quarter to less than or equal to 1.5 mr whole body and to less than or equal to 5 mrems to any or b. During any calendar year to less than or equal to 3 mrems body and to less than or equal to 10 mrems to any organ. BILITY: At all times. th the calculated dose from the release of radioactive materials in ceeding any of the above limits, prepare and submit to the Commis ys, pursuant to Plant TS 6.9.2, a Special Report that identifies the ceeding the limit(s) and defines the corrective actions to be taken be duce the releases will be in compliance with the above limits. LANCE REQUIREMENTS Cumulative dose contributions from liquid effluents for the current quarter and the current calendar year shall be determined in accc the methodology and parameters in the ODCM at least once per state of the methodology and parameters in the ODCM at least once per state of the methodology and parameters in the ODCM at least once per state of the observe of the other per state of the other per state once per state of the other per state once per state on the other per state other per state on the other per state other per state on the ot						

EVISION NO	5	OFFEITE DOSE CALCULATION MANUAL (ODCM)	FAGE.
)	OFFSITE DOSE CALCULATION MANUAL (ODCM)	40 of 231
	00.	ST LUCIE DI ANT	
0-200		ST. LUCIE FLANT	
RADIOAC ⁻	TIVE EFF	<u>LUENTS</u>	
<u>LIQUID RA</u>	DWASTE	E TREATMENT SYSTEM	
CONTROL	S		
3.11.1.3 s t F	In accorda Treatment shall be us to the liqui Figure 5.1 organ in a	ance with St. Lucie Plant TS 6.8.4.f.6), the Liquid Radwa System shall be OPERABLE and appropriate portions sed to reduce releases of radioactivity when the project id effluent, from each unit, to UNRESTRICTED AREAS -1) would exceed 0.06 mrem to the whole body or 0.2 r 31-day period.	aste of the system ed doses due (see TS nrem to any
APPLICAB	BILITY:	At all times.	
ACTION:			
a. With the ope TS 6	n radioacti above lim ration, pre 6.9.2, a S _l	ive liquid waste being discharged without treatment and its and any portion of the Liquid Radwaste Treatment S epare and submit to the Commission within 30 days, pu pecial Report that includes the following information:	l in excess of system not in rsuant to Plant
1.	Explan identifi the ino	ation of why liquid radwaste was being discharged with cation of any inoperable equipment or subsystems and perability,	out treatment, the reason for
2.	Action(and	(s) taken to restore the inoperable equipment to OPERA	ABLE status
3.	Summ	ary description of action(s) taken to prevent a recurrence	æ.
SURVEILL	ANCE RE	EQUIREMENTS	
4.11.1.3.1	Doses shall b methoo Treatm	due to liquid releases from each unit to UNRESTRICTE e projected at least once per 31 days in accordance wit dology and parameters in the ODCM when Liquid Radw nent Systems are not being fully utilized.	ED AREAS th the vaste
4.11.1.3.2	The ins OPER/ for at le system previou	stalled Liquid Radwaste Treatment System shall be der ABLE by operating the liquid radwaste treatment syster east 30 minutes at least once per 92 days unless the liq has been utilized to process radioactive liquid effluents us 92 days.	nonstrated n equipment juid radwaste s during the

REVISION NO .:		PROCEDURE TITLE:	PAGE:		
53	1	OFFSITE DOSE CALCULATION MANUAL (ODCM)	41 of 231		
PROCEDURE N	0.:		4101231		
C-20	00	ST. LUCIE PLANT			
RADIOACT	IVE EFF	LUENTS			
3/4.11.2	GASE	OUS EFFLUENTS			
DOSE RAT	<u>E</u>				
CONTROL	S				
3.11.2.1 In accordance with St. Lucie Plant TS 6.8.4.f.3) and 7), the dose rate resulting from radioactive materials released in gaseous effluents to areas at or beyond the SITE BOUNDARY (see TS Figure 5.1-1) shall be limited to the following:					
a	i. For and	noble gases: Less than or equal to 500 mrems/yr to the less than or equal to 3000 mrems/yr to the skin and	ie total body		
b	o. For par 150	lodine-131, for lodine-133, for tritium and for all radion ticulate form with half-lives greater than 8 days: Less tl 00 mrems/yr to any organ	uclides in nan or equal to		
APPLICAB	ILITY:	At all times.			
ACTION:					
a. With rate	the dose to within	e rate(s) exceeding the above limits, immediately restore the above limit(s).	e the release		
SURVEILL	ANCE RE	EQUIREMENTS			
4.11.2.1.1	The do to be w parame	ose rate due to noble gases in gaseous effluents shall b vithin the above limits in accordance with the methodolo eters in the ODCM.	e determined ogy and		
4.11.2.1.2	The do particu be dete methoo sample analys	bese rate due to lodine-131, lodine-133, tritium and all ra late form with half-lives greater than 8 days in gaseous ermined to be within the above limits in accordance with dology and parameters in the ODCM by obtaining repre- es and performing analyses in accordance with the sam is program specified in Table 4.11-2.	dionuclides in effluents shall the sentative pling and		

REVISION NO .:

PROCEDURE TITLE:

PAGE:

42 of 231

OFFSITE DOSE CALCULATION MANUAL (ODCM)

53

ST. LUCIE PLANT

TABLE 4.11-2 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM (Page 1 of 3)

	Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection LLD (1) (μCi/ml)
1.	Waste Gas Storage Tank	P Each Tank Grab Sample	P Each Tank	Noble Gas P.G.E. (2)	1.E-04
2.	Containment Purge (9)	P Each Purge (6) Grab Sample	P Each Purge (6) (7)	Noble Gas P.G.E. (2) H-3	1.E-04 1.E-06
3.	Vents:(9)	4/M Grab Sample	4/M (7)	Noble Gas P.G.E. (2)	1.E-04
	a. Plant b. Fuel Bldg (5) c. S/G Blowdown Bldg.	(8)		H-3	1.E-06
4.	All Release Types as listed in 3. above (9)	Continuous (3) (8)	4/M Charcoal Sample (4)	I-131	1.E-12
			4/M Particulate Sample (4)	P.G.E.	1.E-11
			4/M Particulate Sample	Gross Alpha	1.E-11
			Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11
			Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.E-06
5.	Cask Handling Facility (8)	W Grab Sample	\\/	Noble Gas P.G.E. (2)	1. E-04
		(8)	••	H-3	1.E-06
			W Charcoal Sample	I-131	1.E-12
			W Particulate Sample	P.G.E.	1.E-11
		Continuous (8)	W Particulate Sample	Gross Alpha	1.E-11
			Q Composite Particulate Sample	Sr-89, Sr-90	1.E-11

P.G.E. - Denotes Principal Gamma Emitter

REVISIO	ON NO.:	F	PROCEDURE TITLE:	PAGE:	
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	43 of 231	
PROCEI	DURE NO.:			40 01 201	
	C-200		ST. LUCIE PLANT		
			TABLE 4.11-2 E GASEOUS WASTE SAMPLING AND ANALYSIS P	ROGRAM	
			(Page 2 of 3)		
			TABLE NOTATIONS		
(1)	The LLD is radioactive background falsely con	de ma d, th cluc	fined for purposes of these controls, as the smallest co aterial in a sample that will yield a net count, above sys nat will be detected with 95% probability with only 5% p ding that a blank observation represents a real signal.	oncentration of stem probability of	
	For a partic	cula	r measurement system, which may include radiochem	ical separation:	
			4.66 Sb		
			$\frac{1}{E \bullet V \bullet 2.22E + 06 \bullet Y \bullet exp(-\lambda \bullet \Delta T)}$		
	Where:				
	LLD	=	the a priori lower limit of detection (micro-Curie per ι volume),	init mass or	
	LLD	=	the a priori lower limit of detection (micro-Curie per ι volume),	init mass or	
	S _b	=	the standard deviation of the background counting ra counting rate of a blank sample as appropriate (cour	ate or of the nts per minute),	
	E	=	the counting efficiency (counts per disintegration),		
	V	=	the sample size (units of mass or volume),		
	2.22E+06	=	the number of disintegrations per minute per micro-0	Curie.,	
	Y	=	the fractional radiochemical yield, when applicable,		
	λ	=	the radioactive decay constant for the particular radi and	onuclide (sec ⁻¹)	
	ΔΤ	=	the elapsed time between the midpoint of sample co the time of counting (sec).	llection and	
	Typical val	ues	of E, V, Y and ΔT should be used in the calculation.		
	It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.				

REVIS	ION NO.:	PROCEDURE TITLE:	PAGE:					
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	11 - 5 001					
PROCE	EDURE NO.:	7	44 01 23 1					
	C-200	ST. LUCIE PLANT						
	TABLE 4.11-2 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM							
		(Page 3 of 3) <u>TABLE NOTATIONS</u> (continued)						
(2)	The principa following rad noble gas re Cs-137, Ce- mean that or identifiable, t reported in th Control 3.11 Revision 1, c	I gamma emitters for which the LLD control applies inclu lionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135 and leases and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, 141 and Ce-144 in lodine and particulate releases. This halv these nuclides are to be considered. Other gamma p together with those of the above nuclides, shall also be a he Annual Radioactive Effluent Release Report pursuan .2.6 in the format outlined in Regulatory Guide 1.21, App June 1974.	de the J Xe-138 in I-131, Cs-134, I list does not beaks that are analyzed and t to bendix B,					
(3)	The ratio of t for the time p accordance	the sample flow rate to the sampled stream flow rate shaperiod covered by each dose or dose rate calculation ma with Controls 3.11.2.1, 3.11.2.2 and 3.11.2.3.	all be known ade in					
(4)	Samples sha completed w shall also be each shutdo THERMAL F 48 hours of c correspondir not apply if: in the reacto gas monitor	all be changed at least four times per month and analyse within 48 hours after changing or after removal from same e performed at least once per 24 hours for at least 7 days wn, startup or THERMAL POWER change exceeding 15 POWER within a 1-hour period and analyses shall be con- changing. When samples collected for 24 hours are ana- ng LLDs may be increased by a factor of 10. This requir (1) analysis shows that the DOSE EQUIVALENT I-131 r coolant has not increased more than a factor of 3; and shows that effluent activity has not increased by more tha	es shall be oler. Sampling 5% of RATED mpleted within alyzed, the ement does concentration (2) the noble an a factor of 3.					
(5)	Tritium grab the spent fue	samples shall be taken at least 4/M from the ventilation el pool area, whenever spent fuel is in the spent fuel poo	exhaust from I.					
(6)	Sampling and THERMAL P 1 hour unless the primary c activity monit	d analysis shall also be performed following shutdown, start OWER change exceeding 15% of RATED THERMAL POV s (1) analysis shows that the DOSE EQUIVALENT I-131 co oolant has not increased more than a factor of 3; and (2) the or shows that effluent activity has not increased by more that	up or a VER within ncentration in e noble gas an a factor of 3.					
(7)	Tritium analy new counting	vsis may be delayed for up to 14 days if the LLD is still a g time.	ttainable at the					
(8)	Frequencies that the prim initiated and	applicable only when the ventilation system is operating ary effluent sampling system fails, alternate sampling Si incorporate all parameters listed in Table 4.11-2 Section	ງ. In the event HALL be າ 5.					
(9)	During outage effluent path as per proce	ges, the affected unit's containment equipment hatch is a way. Monitoring of the open containment equipment hat dural guidance. Any calculated release quantity will be r	a potential ch is performed reported in the					

REVISION NO.:		PROCEDURE TITLE:	PAGE:			
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCEDURE N	10.:		45 of 231			
C-20	00	ST. LUCIE PLANT				
ann	ual report	. RADIOACTIVE EFFLUENTS				
DOSE - NO	DBLE GA	SES				
CONTROL	S					
3.11.2.2 r k f	n accorda noble gas beyond th following:	ance with St. Lucie Plant TS 6.8.4.f.5) and 8), the air do es released in gaseous effluents, from each unit, to are e SITE BOUNDARY (see TS Figure 5.1-1) shall be limi	se due to as at and ted to the			
á	a. Dui rad	ring any calendar quarter: Less than or equal to 5 mrac iation and less than or equal to 10 mrads for beta radia	ls for gamma tion and			
t	o. Dui rad	ring any calendar year: Less than or equal to 10 mrads iation and less than or equal to 20 mrads for beta radia	for gamma tion.			
APPLICAB	<u>BILITY:</u>	At all times.				
ACTION:						
a. With exce days exce assu	 With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to assure that subsequent releases will be in compliance with the above limits. 					
SURVEILL	ANCE RE	EQUIREMENTS				
4.11.2.2(c r	Cumulativ calendar y nethodolo	e dose contributions for the current calendar quarter an year for noble gases shall be determined in accordance ogy and parameters in the ODCM at least once per 31 o	nd current with the days.			

REVISION NO.:	PROCEDURE TITLE:	PAGE:						
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	46 of 231						
PROCEDURE NO.:		40 01 201						
C-200	ST. LUCIE PLANT							
RADIOACTIVE E	RADIOACTIVE EFFLUENTS							
DOSE - IODINE-	131, IODINE-133, TRITIUM AND RADIOACTIVE MATERI	IAL IN						
PARTIC	ULATE FORM							
CONTROLS								
3.11.2.3 In acco OF TH particu release TS Fig	ordance with St. Lucie Plant TS 6.8.4.f.5) and 9), the dose E PUBLIC from lodine-131, lodine-133, tritium and all radio late form with half-lives greater than 8 days in gaseous eff ed, from each unit, to areas at and beyond the SITE BOUN ure 5.1-1) shall be limited to the following:	to a MEMBER onuclides in luents IDARY (see						
a.	During any calendar quarter: Less than or equal to 7.5 mr organ and,	ems to any						
b.	During any calendar year: Less than or equal to 15 mrems	s to any organ.						
APPLICABILITY:	At all times.							
<u>ACTION:</u>								
a. With the calculated dose from the release of lodine-131, lodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to assure that subsequent releases will be in compliance with the above limits.								
SURVEILLANCE	REQUIREMENTS							
4.11.2.3 Cumul calend form w the me	ative dose contributions for the current calendar quarter an ar year for lodine-131, lodine-133, tritium and radionuclide ith half-lives greater than 8 days shall be determined in ac thodology and parameters in the ODCM at least once per	nd current s in particulate cordance with 31 days.						

REVISION	NO.:		PROCEDURE TITLE:	PAGE:	
53			OFESITE DOSE CALCULATION MANUAL (ODCM)		
PROCEDU	RE NO.	:		47 of 231	
	C-200)	ST. LUCIE PLANT		
RADIO	ACT	<u>VE EFF</u>	LUENTS		
GASEC	OUS F	RADWA	STE TREATMENT SYSTEM		
CONTF	ROLS				
3.11.2.4	4 In Tro Of rel eff (se	accorda eatment PERABI eases c luent re ee TS F	ance with St. Lucie Plant TS 6.8.4.f.6), the VENTILATIO t System and the WASTE GAS HOLDUP SYSTEM sha LE and appropriate portions of the system shall be used of radioactivity when the projected doses in 31 days due eleases, from each unit, to areas at and beyond the SITE igure 5.1-1) would exceed:	N EXHAUST I be to reduce to gaseous BOUNDARY	
	a.	0.2	mrad to air from gamma radiation or		
	b.	0.4	mrad to air from beta radiation or		
	C.	0.3	mrem to any organ.		
APPLIC	ABIL	<u>.ITY:</u>	At all times.		
	<u>N:</u>				
a. \ c i	With r of the oursu nform	adioact above l ant to P nation:	ive gaseous waste being discharged without treatment a limits, prepare and submit to the Commission within 30 Plant TS 6.9.2, a Special Report that includes the following	and in excess days, ng	
1	Ι.	Identifi the ino	ication of any inoperable equipment or subsystems and operability,	the reason for	
2	2.	Action and	(s) taken to restore the inoperable equipment to OPERA	ABLE status	
3	8.	Summ	ary description of action(s) taken to prevent a recurrenc	e.	

REVISION NO .:		PROCEDURE TITLE:	PAGE:		
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	10 - 6 - 00 1		
PROCEDURE NO.	:		48 OF 231		
C-200)	ST. LUCIE PLANT			
RADIOACTIVE EFFLUENTS					
GASEOUS F	RADWA	STE TREATMENT SYSTEM (continued)			
SURVEILLA	NCE RE	EQUIREMENTS			
4.11.2.4.1	Doses SITE E accord Gaseo	due to gaseous releases from each unit to areas at and SOUNDARY shall be projected at least once per 31 day ance with the methodology and parameters in the ODC us Radwaste Treatment Systems are not being fully uti	d beyond the s in ⊠M when lized.		
4.11.2.4.2	The ins WAST operati VENTI minute utilized days.	stalled VENTILATION EXHAUST TREATMENT SYSTE E GAS HOLDUP SYSTEM* shall be demonstrated OPE ing the WASTE GAS HOLDUP SYSTEM equipment an LATION EXHAUST TREATMENT SYSTEM equipment is, at least once per 92 days unless the appropriate sys to process radioactive gaseous effluents during the pro	M and ERABLE by d for at least 30 tem has been evious 92		
* - If the FUNC perfor once	WASTE CTIONA med (in per 92 c	EGAS HOLDUP SYSTEM is not being fully utilized, an A L TEST on the WASTE GAS HOLDUP SYSTEM shall a addition to the requirements of 4.11.2.4.2's "at least 30 lays, by performing the following:	Administrative also be minutes")		
1)	Place	a Gas Decay Tank (containing less than 30 psi) in servi	ce.		
2)	With a 150 ps	Waste Gas Compressor, charge the Gas Decay Tank t i.	o at least		
3)	Follow Decay Activity	ing appropriate holdup decay time, sample and release Tank with an OPERABLE Waste Gas Holdup System N / Monitor (per TABLE 3.3-13).	the Gas Noble Gas		
4)	lf discr SYSTE comple	epancies exist, repairs shall be made and the WASTE (EM Administrative FUNCTIONAL TEST shall be repeate eted successfully.	GAS HOLDUP ∌d until		

REVISION NO .:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	40 of 221
PROCEDURE NO ·		49 01 23 1

C-200

ST. LUCIE PLANT

RADIOACTIVE EFFLUENTS

<u>3/4.11.4 TOTAL DOSE</u>

CONTROLS

3.11.4 In accordance with St. Lucie Plant TS 6.8.4.f.10), the annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

APPLICABILITY: At all times.

ACTION:

With the calculated doses from the release of radioactive materials in liquid or a. gaseous effluents exceeding twice the limits of Control 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a or 3.11.2.3.b, calculations shall be made including direct radiation contributions from the units (including outside storage tanks etc.) to determine whether the above limits of Control 3.11.4 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in Subpart M of 10 CFR Part 20, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits and if the release condition resulting in violation of 40 Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request and a variance is granted until staff action on the request is complete.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	50 of 221
PROCEDURE NO.:		50 01 25 1

C-200

ST. LUCIE PLANT

RADIOACTIVE EFFLUENTS

<u>3/4.11.4 TOTAL DOSE</u> (continued)

SURVEILLANCE REQUIREMENTS

- 4.11.4.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Controls 4.11.1.2, 4.11.2.2 and 4.11.2.3 and in accordance with the methodology and parameters in the ODCM.
- 4.11.4.2 Cumulative dose contributions from direct radiation from the units (including outside storage tanks etc.) and Independent Spent Fuel Storage Installation (ISFSI) shall be determined in accordance with the methodology and parameters in the ODCM. This requirement is applicable only under conditions set forth in ACTION a. of Control 3.11.4.

REVISION NO	D.:	I	PROCEDURE TITLE:	PAGE:		
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)			
PROCEDURE	E NO.:			51 of 231		
C-200			ST. LUCIE PLANT			
RADIOA	RADIOACTIVE EFFLUENTS					
<u>3/4.11.5</u>	<u>M</u> <u>W</u>	AJOF ASTI	<u>R CHANGES TO RADIOACTIVE LIQUID, GASEOUS A E TREATMENT SYSTEMS*</u>	ND SOLID		
ADMINIS	TRATI	VEC	CONTROLS			
3.11.2.5	Licen: gasec	see i ous a	nitiated major changes to the radioactive waste system nd solid):	s (liquid,		
	1)	Sha Rel the	all be reported to the Commission in the Annual Radioa ease Report for the period in which the evaluation was On-Site Review Group (ORG). The discussion of each	ctive Effluent reviewed by shall contain:		
		a)	A summary of the evaluation that led to the determine change could be made in accordance with 10 CFR	nation that the 50.59.		
		b)	Sufficient detailed information to totally support the change without benefit of additional or supplementa	reason for the I information;		
		c)	A detailed description of the equipment, component processes involved and the interfaces with other pla	s and ant systems;		
		d)	An evaluation of the change which shows the predic of radioactive materials in liquid and gaseous efflue quantity of solid waste that differ from those previou in the license application and amendments thereto;	cted releases nts and/or sly predicted		
		e)	An evaluation of the change which shows the experience exposure to individuals in the UNRESTRICTED AR general population that differ from those previously the license application and amendments thereto;	eted maximum EA and to the estimated in		
		f)	A comparison of the predicted releases of radioactive in liquid and gaseous effluents and in solid waste, to releases for the period when the changes are to be	ve materials, the actual made;		
		g)	An estimate of the exposure to plant operating pers result of the change; and	onnel as a		
		h)	Documentation of the fact that the change was revie found acceptable by the ORG.	ewed and		
	2)	Sha	all become effective upon review and acceptance by the	e ORG.		
* Lic Cc	* Licensees may choose to submit the information called for in this Administrative Control as part of the annual FUSAR update.					

REVISION NO .:		PROCEDURE TITLE:	PAGE:			
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	50 (00 (
PROCEDURE NO.:		, í	52 of 231			
C-	-200	ST. LUCIE PLANT				
RADIOA	CTIVE EFF	LUENTS				
<u>3/4.11.6</u>	ANNL COM	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO <u>/IISSION*</u>	<u>D THE</u>			
ADMINIS	STRATIVE	CONTROLS				
3.11.2.6	As per Te Report co operation report sha gaseous provided through f) conforma Part 50.	s per Technical Specification 6.9.1.7, a Annual Radioactive Effluent Release eport covering the operation of each unit during the previous 12 months of peration shall be submitted within 60 days after January 1 of each year. The eport shall include a summary of the quantities of radioactive liquid and aseous effluents and solid waste released from each unit. The material rovided shall be (1) consistent with the objectives outlined in by items a) prough f) below, using the example report format in the ODCM and (2) be in ponformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR art 50.				
	a. Th the rel Ev Ra Co su the	e Radioactive Effluent Release Reports shall include a e quantities of radioactive liquid and gaseous effluents a eased from the unit as outlined in Regulatory Guide 1.2 aluating and Reporting Radioactivity in Solid Wastes an dioactive Materials in Liquid and Gaseous Effluents from oled Nuclear Power Plants, Revision 1, June 1974, with mmarized on a quarterly basis following the format of Appereof.	summary of nd solid waste 1, Measuring, d Releases of n Light-Water- n data opendix B			
	b. Th aft su su ma of rep rate du	e Radioactive Effluent Release Report to be submitted er January 1 of each year shall include an annual summ eteorological data collected over the previous year. This mmary may be either in the form of an hour-by-hour listin agnetic tape of wind speed, wind direction, atmospheric ecipitation (if measured) or in the form of joint frequency wind speed, wind direction and atmospheric stability.** port shall include an assessment of the radiation doses dioactive liquid and gaseous effluents released from the ring the previous calendar year.	within 60 days hary of hourly s annual ng on stability and distributions This same due to the unit or station			
* - / (A single su combine th units with s radioactive	bmittal may be made for a multiple unit station. The sul ose sections that are common to all units at the station; eparate radwaste systems, the submittal shall specify th material from each unit.	omittal should however, for ne releases of			
** - 	In lieu of su has the opt in a file tha	Ibmission with the Radioactive Effluent Release Report, ion of retaining this summary of required meteorologica t shall be provided to the NRC upon request.	the licensee I data on site			

REVISION NO.:			PROCEDURE TITLE:	PAGE:				
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	52 of 221				
PROCEDURE NO.:				55 01 251				
C-	200		ST. LUCIE PLANT					
RADIOA	RADIOACTIVE EFFLUENTS							
3/4.11.6	AN	NU.	AL RADIOACTIVE EFFLUENT RELEASE REPORT TO	<u>) THE</u>				
	<u>CC</u>	MM	<u>IISSION*</u> (continued)					
ADMINIS	TRATI	VE (CONTROLS					
3.11.2.6	3.11.2.6 (continued)							
	b.	(co	ntinued)					
		Thi fror PU Fig the sha cor effl be and me in a	s same report shall also include an assessment of the r m radioactive liquid and gaseous effluents to MEMBER BLIC due to their activities inside the SITE BOUNDARY ure 5.1-1) during the report period. All assumptions use se assessments, i.e., specific activity, exposure time ar all be included in these reports. The meteorological con- neurrent with the time of release of radioactive materials uents, as determined by sampling frequency and meas used for determining the gaseous pathway doses, or and conservative method used in lieu of actual meteorological asurements. The assessment of radiation doses shall accordance with the methodology and parameters in the	radiation doses S OF THE (see TS ed in making nd location, nditions in gaseous urement, shall n approximate gical be performed e ODCM.				
	C.	Eve det usii out gro OD sub	ery 2 years using the previous 6 months release history ermine the controlling age group for liquid pathways. E ng the previous 1 year or longer interval (to include a re age) and historical meteorological data determine the c up for gaseous pathways. If changed from current sub CM to reflect new tables for these groups and use the osequent dose calculations.	for isotopes, ivery 2 years fueling controlling age mit change to new groups in				
	d.	The Jar dos rea cale give	e Radioactive Effluent Release Report to be submitted on nuary 1 of each year shall also include an assessment of ses to the likely most exposed MEMBER OF THE PUBL ctor releases for the previous calendar year. Acceptab culating the dose contribution from liquid and gaseous of en in Regulatory Guide 1.109 March 1976.	50 days after of radiation _IC from le methods for effluents are				

REVISION NO .:			PROCEDURE TITLE:	PAGE:
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:				54 of 231
C-200			ST LUCIE PLANT	
RADIOA	CTIVE	<u>EFF</u>	<u>LUENTS</u>	
<u>3/4.11.6</u>			AL RADIOACTIVE EFFLUENT RELEASE REPORT TO	<u>) THE</u>
ADMINIS	TRATI	VEO	CONTROLS	
3.11.2.6	(conti	nuec	1)	
	e.	The info ship	e Radioactive Effluent Release Reports shall include the ormation for each class of solid waste (as defined by 10 oped offsite during the report period:	e following CFR Part 61)
		1.	Volume	
		2.	Total Curie quantity (specify whether determined by measurement or estimate)	,
		3.	Principal radionuclides (specify whether determined measurement or estimate)	l by
		4.	Type of waste (e.g., dewatered spent resin, compace evaporator bottoms)	ted dry waste,
		5.	Type of container (e.g., LSA, Type A, Type B, Large and	e Quantity)
		6.	Solidification agent or absorbent (e.g., cement, urea formaldehyde).	3
	f.	The des AR dur	e Radioactive Effluent Release Reports shall include a l scription of unplanned releases from the site to UNRES EAS of radioactive materials in gaseous and liquid efflu ing the reporting period.	ist and TRICTED ents made
	g.	The mac PR MA calo Cer	e Radioactive Effluent Release Reports shall include an de during the reporting period to the PROCESS CONTI OGRAM (PCP) and to the OFFSITE DOSE CALCULAT NUAL (ODCM), as well as a listing of new locations for culations and/or environmental monitoring identified by nsus of ODCM Control 3.12.2.	y changes ROL ION dose the Land Use
	h.	The pro in a sinc me Cor	e format for an Annual Radioactive Effluent Release Revided in ODCM Methodology Section 4.0. The information annual report shall not apply to any ODCM Control Dice the methodology for the annual report is based on action teorological data, instead of historical conditions that the throls and Control required calculations are based on.	port is tion contained ose Limit(s) ctual e ODCM

REVISION NO.:		Р	PROCEDURE TITLE:	PAGE:		
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	EE of 021		
PROCEDURE NO.:				55 01 23 1		
C-	200		ST. LUCIE PLANT			
RADIOA		-FL	<u>UENTS</u>			
3/4.11.6 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT TO THE						
	CON	/MI	<u>SSION*</u> (continued)			
ADMINIS	TRATIV	ΞC	ONTROLS			
3 11 2 6	(continu	(ha				
5.11.2.0	(contine	eu)				
	i. E F ii	Beginning with the report due within 60 days after January 1, 2007, the Radioactive Effluent Release Report shall include the following nformation for the previous year:				
	đ	l .	A listing with descriptions of any leaks or spills that have been communicated to State and Local officials in accordance with th Groundwater Protection INITIATIVE (NEI 07-07).			
	Ł).	Groundwater sample results that have been taken in support of the Groundwater Protection INITIATIVE (NEI 07-07), unless they are from locations that are described in the Radiological Environmental Monitoring Program and will therefore be reported in the Annual Radiological Environmental Operating Report (AREOR).			

OFFSITE DOSE CALCULATION MANUAL (ODCM)

56 of 231

PROCEDURE NO.: C-200

53

REVISION NO.:

ST. LUCIE PLANT

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.1 MONITORING PROGRAM

CONTROLS

3.12.1 In accordance with St. Lucie Plant TS 6.8.4.g.1), the Radiological Environmental Monitoring Program shall be conducted as specified in Table 3.12-1.

APPLICABILITY: At all times.

ACTION:

- a. With the Radiological Environmental Monitoring Program not being conducted as specified in Table 3.12-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report required by Control 3.12.4, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With the confirmed* level of radioactivity as the result of plant effluents in an environmental sampling medium at a location specified in Appendix B-1 exceeding the reporting levels of Table 3.12-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Plant TS 6.9.2, a Special Report*** that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose** to a MEMBER OF THE PUBLIC is less than the calendar year limit of Controls 3.11.1.2, 3.11.2.2 or 3.11.2.3. When more than one of the radionuclides in Table 3.12-2 are detected in the sampling medium, this report shall be submitted if:

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + > \text{ or } = 1.01$

*** A copy of the 30-day Special Report shall be provided to the Radiation Protection Manager (or designee) so that it can be sent to State and Local Officials in TABLE-1 of HPP-101 concurrent with its submittal to the commission.

^{*} A confirmatory reanalysis of the original, a duplicate or a new sample may be desirable, as appropriate. The results of the confirmatory analysis shall be completed at the earliest time consistent with the analysis but in any case within 30 days.

^{**} The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.
-			
REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	57 of 231
PROCEI	DURE NO.:		57 01 251
	C-200	ST. LUCIE PLANT	
RADI	OLOGICAL EN	IVIRONMENTAL MONITORING	
<u>3/4.12</u>	2.1 MONI	FORING PROGRAM	
Contr	ols (continued)		
ACTI	<u>SN:</u>		
b.	(continued)		
	When radion result of plan to a MEMBE	uclides other than those in Table 3.12-2 are detected ar effluents, this report shall be submitted if the potential R OF THE PUBLIC from all radionuclides is equal to or wear limits of Control 3.11.1.2, 3.11.2.2 or 3.11.2.3 Thi	nd are the annual dose, greater than s report is not

- required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report required by Control 3.12.4.
- C. With milk or broad leaf vegetation samples unavailable from one or more of the sample locations required by Table 3.12-1, identify specific locations for obtaining replacement samples and add them within 30 days to the Radiological Environmental Monitoring Program given in the ODCM. The specific locations from which samples were unavailable may then be deleted from the monitoring program. Pursuant to Control 3.11.2.6, submit in the next Annual Radioactive Effluent Release Report documentation for a change in the ODCM including a revised figure(s) and table for the ODCM reflecting the new location(s) with supporting information identifying the cause of the unavailability of samples and justifying the selection of the new location(s) for obtaining samples.

SURVEILLANCE REQUIREMENTS

The radiological environmental monitoring samples shall be collected pursuant 4.12.1 to Table 3.12-1 from the specific locations given in the table and figure(s) in the ODCM and shall be analyzed pursuant to the requirements of Table 3.12-1 and the detection capabilities required by Table 4.12-1.

2014								
REVI	SION NO.:			PAGE:				
53 O		OFFSITE DOSE CALCU	JLATION MANUAL (OL	DCM) 58 of 231				
PROC	EDURE NO.:							
	C-200 ST. LUCIE PLANT							
	TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ^{a)} (Page 1 of 3)							
EX	(POSURE PATHWA and/or SAMPLE	NUMBER OF Y REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ^{b) c)}	SAMPLING AND COLLECTION FREQUENCY ^{d)}	TYPE AND FREQUENCY ^{d)} OF ANALYSIS				
1.	Direct Radiation ^{e)}	27 Monitoring Locations	Continuous monitoring with sample collection quarterly ^{f)}	Gamma exposure rate - quarterly				
2.	Airborne Radioiodir and Particulates	ie 5 Locations	Continuous sampler operation with sample collection weekly or more frequently if required by dust loading	Radioiodine filter: I-131 analysis weekly Particulate Filter: Gross beta radioactivity analysis ≥24 hours following a filter change ⁹⁾ Gamma isotopic ^{h)} analysis of composite ⁹⁾ (by location) quarterly				
3.	Waterborne							
	a. Surface ^{k)}	1 Location ^{m)}	Weekly	Gamma isotopic ^{h)} & tritium analyses weekly				
		1 Location ⁿ⁾	Monthly	Gamma isotopic ^{h)} & tritium analyses monthly				
	b. Sediment from shoreline	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannually				
4.	Ingestion							
	a. Fish and Invertebrates							
	1. Crustacea	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannually				
	2. Fish	2 Locations	Semiannually	Gamma isotopic ^{h)} analyses semiannually				
	b. Food Products							
	1. Broad leaf vegetation	3 Locations ^{p)}	Monthly when available	Gamma isotopic ^{h)} and I-131 analyses monthly				

REVIS	SION NO.:	PRO	CEDURE TITLE:	PAGE:					
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)		59 of 231					
PROC	PROCEDURE NO.:			39 01 23 1					
	C-200		ST. LUCIE PLANT						
	TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ^{a)} (Page 2 of 3)								
			TABLE NOTATIONS						
a.	Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment or other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, corrective action shall be taken prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.								
b.	Specific parameters of distance and direction sector from the centerline of one reactor and additional description where pertinent, shall be provided for each sample location required by Table 3.12-1, in Appendix-B and applicable figures.								
C.	At times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the radiological environmental monitoring program.								
d.	The following	def	finition of frequencies shall apply to Table 3.12-1 on	ly:					
	Weekly	-	Not less than once per calendar week. A maximur 11 days is allowed between the collection of any two consecutive samples.	n interval of vo					
	Semi-Monthly	-	Not less than 2 times per calendar month with an in not less than 7 days between sample collections. interval of 24 days is allowed between collection of consecutive samples.	nterval of A maximum f any two					
	Monthly	-	Not less than once per calendar month with an inteless than 10 days between sample collections.	rval of not					
	Quarterly	-	Not less than once per calendar quarter.						
	Semiannually	-	One sample each between calendar dates (Januar and (July 1 - December 31). An interval of not less will be provided between sample collections.	y 1 - June 30) s than 30 days					
	The frequency of analyses is to be consistent with the sample collection frequency.								

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:					
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	60 of 231					
PROCE	DURE NO.:		00 01 201					
	C-200	ST. LUCIE PLANT						
	TABLE 3.12-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ^{a)} (Page 3 of 3)							
		TABLE NOTATIONS (continued)						
e.	One or more recording dos integrating do (TLD) is cons considered as	instruments, such as a pressurized ion chamber, for mose rate continuously may be used in place of or in additionsimeters. For purposes of this table, a thermolumines didered to be one phosphor; two or more phosphors in a s two or more dosimeters.	easuring and ion to, cent dosimeter a packet are					
f.	Refers to nor when condition	mal collection frequency. More frequent sample collect ons warrant.	ion is permitted					
g.	Airborne particulate sample filters are analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. In addition to the requirement for a gamma isotopic on a composite sample a gamma isotopic is also required for each sample having a gross beta radioactivity which is >1.0 pCi per cubic meters and which is also >10 times that of the most recent control sample.							
h.	Gamma isoto emitting radio	ppic analysis means the identification and quantification onuclides that may be attributable to the effluents from t	of gamma- he facility.					
k.	Discharges fr pathways.	om the St. Lucie Plant do not influence drinking water o	or ground water					
m.	Atlantic Ocea Hutchinson Is	in, in the vicinity of the public beaches along the eastern sland near the St. Lucie Plant (grab sample)	n shore of					
n.	Atlantic Ocea	n, at a location beyond influence from plant effluents (g	ırab sample).					
р.	Samples of b locations of h similar broad least prevale	road leaf vegetation grown nearest each of two differen ighest predicted annual average ground level D/Q and leaf vegetation at an available location 15-30 kilometer nt wind direction based upon historical data in the ODC	it offsite one sample of s distant in the M.					
[i, j, l	(lower case) ar	nd o are not used on notation for clarity reasons]						

EVISION NO.:	PROCEDURE	E TITLE:			PAGE:		
53	OFFSIT	OFFSITE DOSE CALCULATION MANUAL (ODCM)					
ROCEDURE NO.:					0101201		
C-200		ST. LUC	CIE PLANT				
TABLE 3.12-2							
		N ENVIRONMEN	ITAL SAMPLE	S			
	_	(Page	1 of 1)				
		REPORTIN	<u>G LEVELS</u>				
Γ							
ANALYSIS	WATER pCi/l	PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet		
H-3	30,000*						
Mn-54	1,000		30,000				
Fe-59	400		10,000				
Co-58	1,000		30,000				
Co-60	300		10,000				
Zn-65	300		20,000				
Zr- Nb-95***	400						
I-131	2**	0.9		3	100		
Cs-134	30	10	1,000	60	1,000		
Cs-137	50	20	2,000	70	2,000		
Ba- La-140***	200			300			

 Since no drinking water pathway exists, a value of 30,000 pCi/l is used. For drinking water samples, a value of 20,000 pCi/l is used; this is 40 CFR Part 141 value.

** - Applies to drinking water pathway exists, 2 pCi/l is the limit for drinking water.

*** - An equilibrium mixture of the parent daughter isotopes which corresponds to the reporting value of the parent isotope.

REVISION NO .:		PROCEDURE TITLE:			PAC	GE:		
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:						02 01 23 1		
C-200 ST. LUCIE PLANT								
TABLE 4.12-1 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS (Page 1 of 2)								
		LOWER LIMIT	OF DETEC	TION (LLD)	(3)			
ANALYSIS	WAT pC	AIRBORNE FER PARTICULATE OR GASES pCi/m ³	FISH pCi/kg, wet	MILK pCi/l	FOOD PRODUCTS pCi/kg, wet	SEDIMENT pCi/kg, dry		
Gross Beta	4	· 0.01						
H-3	300	00*						
Mn-54	15	5	130					
Fe-59	30	D	260					
Co-58, Co-60	15	5	130					
Zn-65	30	0	260					
Zr-95, Nb-95 ⁽⁴⁾	15	5						
I-131	1*	* 0.07		1	60			
Cs-134	15	5 0.05	130	15	60	150		
Cs-137	18	8 0.06	150	18	80	180		
Ba-140, La-140 ⁽⁴⁾	15	5		15				

 ** LLD for drinking water samples. If no drinking water pathway exists, a value of 15 pCi/l may be used.

TABLE NOTATIONS

- (1) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.
- (2) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.

REV	ISION NO.:		PROCEDURE TITLE:	PAGE:				
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	63 of 231				
PRO	PROCEDURE NO.:			00 01 201				
	C-20	0	ST. LUCIE PLANT					
			TABLE 4.12-1					
	DETEC	CTIC	N CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANA	ALYSIS ⁽¹⁾⁽²⁾				
			(Fage 2 01 2)					
			TABLE NOTATIONS (continued)					
(3)	The L radio backo falsel	LD activ grou y co	is defined for purposes of these controls, as the smallest co re material in a sample that will yield a net count, above sys nd, that will be detected with 95% probability with only 5% proceeding that a blank observation represents a real signal.	oncentration of stem probability of				
	For a	par	ticular measurement system, which may include radiochem	ical separation:				
			4.66 S _b					
			$ELD = \frac{1}{E \cdot V \cdot 2.22 \cdot Y \cdot exp(-\lambda \cdot \Delta T)}$					
	Where:							
	LLD	=	the a priori lower limit of detection (pico-Curie per unit mas	ss or volume),				
	S _b = the standard deviation of the background counting rate or of the countir rate of a blank sample as appropriate (counts per minute),							
	Е	=	the counting efficiency (counts per disintegration),					
	V	=	the sample size (units of mass or volume),					
	2.22	=	the number of disintegrations per minute per pico-Curie,					
	Y	=	the fractional radiochemical yield, when applicable,					
	λ	=	the radioactive decay constant for the particular radionucli	de (sec ⁻¹) and				
	ΔΤ	=	the elapsed time between the midpoint of sample collectio of counting (sec).	n and the time				
	Typical	valu	es of E, V, Y and ΔT should be used in the calculation.					
	It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.							
(4)	An eo 15 pC	quilit Ci/Lit	prium mixture of the parent and daughter isotopes which co ter of the parent isotope.	rresponds to				

PAGE:

64 of 231

53 PROCEDURE NO.:

C-200

REVISION NO.:

ST. LUCIE PLANT

OFFSITE DOSE CALCULATION MANUAL (ODCM)

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.2 LAND USE CENSUS

CONTROLS

3.12.2 In accordance with St. Lucie Plant TS 6.8.4.g.2), a Land Use Census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden* of greater than 50 square meters (500 square feet) producing broad leaf vegetation.

APPLICABILITY: At all times.

ACTION:

- With a Land Use Census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Control 4.11.2.3, pursuant to Control 3.11.2.6, identify the new location(s) in the next Annual Radioactive Effluent Release Report.
- b. With a Land Use Census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Control 3.12.1, add the new location(s) within 30 days to the Radiological Environmental Monitoring Program given in the ODCM. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may be deleted from this monitoring program after October 31 of the year in which this Land Use Census was conducted. Pursuant to TS 6.14, submit in the next Annual Radioactive Effluent Release Report documentation for a change in the ODCM including a revised figure(s) and table(s) for the ODCM reflecting the new location(s) with information supporting the change in sampling locations.

^{*} Broad leaf vegetation sampling may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Controls for broad leaf vegetation sampling in Table 3.12-1, Part 4.b., shall be followed, including analysis of control samples.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	65 of 221
PROCEDURE NO.:		05 01 25 1
C-200	ST. LUCIE PLANT	

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.2 LAND USE CENSUS (continued)

SURVEILLANCE REQUIREMENTS

4.12.2 The Land Use Census shall be conducted during the growing season at least once per 12 months using that information that will provide the best results, such as by a door-to-door survey, aerial survey or by consulting local agriculture authorities. The results of the Land Use Census shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

OFFSITE DOSE CALCULATION MANUAL (ODCM)

53

REVISION NO.:

ST. LUCIE PLANT

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

CONTROLS

3.12.3 In accordance with St. Lucie Plant TS 6.8.4.g.3), analyses shall be performed on all radioactive materials, supplied as part of an Interlaboratory Comparison Program that correspond to samples required by Table 3.12-1.

APPLICABILITY: At all times.

ACTION:

a. With analyses not being performed as required above, report the corrective action taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4.

SURVEILLANCE REQUIREMENTS

4.12.3 A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 3.12.4. If the Interlaboratory Comparison Program is other than the program conducted by the DOE Mixed Analyte Performance Evaluation Program (MAPEP), then the Interlaboratory Comparison Program shall be described in the ODCM.

REVISION N	10.:	PROCEDURE TITLE:	PAGE:				
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	67 of 001				
PROCEDUR	RE NO.:		07 01 23 1				
С	-200	ST. LUCIE PLANT					
RADIOL	OGICAL EN	IVIRONMENTAL MONITORING					
<u>3/4.12.4</u>	3/4.12.4 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (AREOR)*						
ADMINIS	STRATIVE	CONTROLS					
3.12.4	In accorda Environmo previous o shall inclu of the resu reporting	ance with St. Lucie Plant TS 6.9.1.8, an Annual Radiologental Operating Report covering the operation of the unicalendar year shall be submitted before May 1 of each y de summaries, interpretations and information based or ults of the Radiological Environmental Monitoring Prographeriod. The material provided in the AREOR shall be co	gical It during the rear. The report n trend analysis am for the onsistent with				

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations and information based on trend analysis of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls and with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use census required by Control 3.12.2.

the objectives outlined below and with Sections IV.B.2, IV.B.3 and IV.C of

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The Annual Radiological Environmental Operating Report shall also include the results of the analyses for all samples that have been added to the Radiological Environmental Monitoring Program in support of the Groundwater Protection INITIATIVE (NEI 07-07) - Appendix B-2.

* - A single submittal may be made for multiple unit station.

Appendix I to 10 CFR Part 50.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00.0004
PROCEDURE NO.:		68 of 231
C-200	ST. LUCIE PLANT	
RADIOLOGICAL EI	VIRONMENTAL MONITORING	
<u>(AREC) (AREC</u>	<u>DR)*</u> (continued)	<u>KEPOKI</u>
ADMINISTRATIVE	CONTROLS	
The reports shall als environmental moni locations keyed to a the results of the Int discussion of all dev all analyses in which	so include the following: a summary description of the re- toring program; at least two legible maps** covering all a table giving distances and directions from the centerlin erlaboratory Comparison Program, required by Control viations from the sampling schedule of Table 3.12-1; and in the LLD required by Table 4.12-1 was not achievable.	adiological sampling e of one reactor; 3.12.3; d discussion of
* - A single subr** One map sha	nittal may be made for multiple unit station. all cover stations near the SITE BOUNDARY; a second	shall include the

more distant stations.

REVISION NO .:	PROCEDURE TITLE: PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)
PROCEDURE NO .:	69 OF 23 I
C-200	ST. LUCIE PLANT
	BASES
	BASES
	FOR THE
	CONTROLS
	AND
	SURVEILLANCE REQUIREMENTS
Ĭ	
The BASE	NOTE S contained in succeeding pages summarize the reasons for the
Controls in	Section 3.0 and 4.0, but are not part of these Controls.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	70 (00)

PROCEDURE NO.: C-200

ST. LUCIE PLANT

INSTRUMENTATION

BASES

3.3.3.9 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluent during actual or potential releases of liquid effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

3.3.3.10 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases of gaseous effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50.

REVISION NO .:	PROCEDURE TITLE:	PAGE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

53 PROCEDURE NO.:

C-200

ST. LUCIE PLANT

3/4.11 RADIOACTIVE EFFLUENTS

BASES

3/4.11.1 LIQUID EFFLUENTS

3/4.11.1.1 CONCENTRATION

This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table 2, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within: (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR Part 20. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its ECL in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

This control applies to the release of radioactive materials in liquid effluents from all units at the site.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L.A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

<u>3/4.11.1.2 DOSE</u>

This control is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	72 of 221
		1201231

PROCEDURE NO.:

C-200

ST. LUCIE PLANT

<u>3/4.11 RADIOACTIVE EFFLUENTS</u> (Continued)

BASES

<u>3/4.11.1 LIQUID EFFLUENTS</u> (Continued)

<u>3/4.11.1.2 DOSE</u> (Continued)

The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.113, Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I, April 1977.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.1.3 LIQUID RADWASTE TREATMENT SYSTEM

The OPERABILITY of the Liquid Radwaste Treatment System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the Liquid Radwaste Treatment System were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50 for liquid effluents.

This control applies to the release of radioactive materials in liquid effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.

REVISION NO.:

PROCEDURE TITLE:

PAGE:

73 of 231

PROCEDURE NO.: C-200

53

ST. LUCIE PLANT

OFFSITE DOSE CALCULATION MANUAL (ODCM)

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2 GASEOUS EFFLUENTS

3/4.11.2.1 DOSE RATE

This control is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. The annual dose limits are the doses associated with the concentration of 10 CFR Part 20, Appendix B, Table 2, Column I. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either within or outside the SITE BOUNDARY, to an annual average concentration exceeding the limits specified in Appendix B, Table 2 of 10 CFR Part 20 (Subpart D of 10 CFR Part 20). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/vear.

This control applies to the release of radioactive materials in gaseous effluents from all units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, <u>HASL-300</u>.

REVISION NO.:

PROCEDURE TITLE:

PAGE:

74 of 231

PROCEDURE NO.: C-200

53

ST. LUCIE PLANT

OFFSITE DOSE CALCULATION MANUAL (ODCM)

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.1 DOSE - NOBLE GASES

This control is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The control implements the guides set forth in Section I.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are to be proportioned among the units sharing that system.

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM

This control is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable. The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I to that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

REVISION NO.:	PROCEDURE TITLE:	PAGE:

PROCEDURE NO .:

75 of 231

C-200

53

ST. LUCIE PLANT

OFFSITE DOSE CALCULATION MANUAL (ODCM)

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.1 DOSE - NOBLE GASES (Continued)

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM AND RADIOACTIVE MATERIAL IN PARTICULATE FORM (Continued)

The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject material are consistent with the methodology provided in Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50. Appendix I. Revision 1. October 1977 and Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors, Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for lodine-131, lodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of the calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man and (4) deposition on the ground with subsequent exposure of man.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

OFFSITE DOSE CALCULATION MANUAL (ODCM)

76 of 231

PROCEDURE NO.: C-200

53

REVISION NO.:

ST. LUCIE PLANT

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.4 GASEOUS RADWASTE TREATMENT SYSTEM

The OPERABILITY of the WASTE GAS HOLDUP SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensure that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept as low as is reasonably achievable. This control implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Section II.B and II.C of Appendix I, 10 CFR Part 50 for gaseous effluents.

This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. For units with shared Radwaste Treatment Systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

3/4.11.2.5 NOT USED

3/4.11.2.6 NOT USED

3/4.11.3 NOT USED

3/4.11.4 TOTAL DOSE

This control is provided to meet the dose limitations of 10 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The control requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units (including outside storage tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits.

PAGE: OFFSITE DOSE CALCULATION MANUAL (ODCM)

77 of 231

PROCEDURE NO.:

53

C-200

REVISION NO.:

ST. LUCIE PLANT

RADIOACTIVE EFFLUENTS

BASES

3/4.11.4 TOTAL DOSE (Continued)

For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 kilometers must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and Subpart M of 10 CFR Part 20, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190 and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

REVISION NO .:	PROCEDURE TITLE:	PAGE:	
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	70.5	004

53 PROCEDURE NO.:

C-200

ST. LUCIE PLANT

3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING

BASES

3/4.12.1 MONITORING PROGRAM

The Radiological Environmental Monitoring Program required by this control provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from the plant operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979. The initially specified monitoring program will be effective for at least the first three years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 4.12-1 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007 (September 1984) and in the HASL Procedures Manual, HASL-300.

3/4.12.2 LAND USE CENSUS

This control is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used.

REVISION NO.:

PROCEDURE TITLE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

53

C-200

ST. LUCIE PLANT

RADIOLOGICAL ENVIRONMENTAL MONITORING

BASES

3/4.12.2 LAND USE CENSUS (Continued)

This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 square meters provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kilograms/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage) and (2) a vegetation yield of 2 kilograms per square meter.

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

This requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive materials in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

REVISION NO .:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00 - 5 00 1
PROCEDURE NO .:		80 OF 23 I
C-200	ST. LUCIE PLANT	
	METHODOLOGY SECTION	
	METHODOLOGY	
	for the	
	CONTROLS	
	AND	
	SURVEILLANCE REQUIREMENTS	

REVISION NO.:		PROCEDURE TITLE:	PAGE:			
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	81 of 231			
PROCEDURE NO.:			0101231			
C-200		ST. LUCIE PLANT				
<u>GLOSSA</u>	METHODOLOGY SECTION GLOSSARY OF COMMONLY USED TERMS IN METHODOLOGY SECTION (Page 1 of 3)					
D _B	-	Dose from Beta Radiation				
CC or cc	-	Cubic centimeter				
Ci	-	Curies - a unit of radioactivity see μ Ci				
Ci	-	Activity or concentration of a nuclide in the release sou of μ Ci, μ Ci/cc or μ Ci/ml	rce. Units			
CFR	-	Code of Federal Regulations				
Control(s)	-	Regulations for operating, controlling, monitoring and re radioactive effluent related activity as indicated by the 0 Section of the ODCM.	eporting Controls			
Dose	-	The exposure, in mrem or mrad, the organ or the indivi from radioactive effluents	dual receives			
Dose Factor	-	Normally, a factor that converts the effect of ingesting r material into the body, to dose to a specific organ. Boc radioactive decay and organ uptake are some of the fa determine a dose factor for a given nuclide	adioactive ly elimination, ctors that			
Dose Pathway	-	A specific path that radioactive material physically trave prior to exposing an individual to radiation. The Grass- Infant is a dose pathway	els through Cow-Milk-			
Dose Rate	-	The dose received per unit time				
(D/Q)	-	A long term D over Q - a factor with units of $1/m^2$ which deposition of particulate matter from a plume at a point from the source. It can be thought of as what part of th going to fallout and deposit over one square meter of g (See Appendix C).	describes the downrange e cloud is round.			
ECL	-	Effluent Concentration Limit				
FUSAR	-	Final Updated Safety Analysis Report.				
Y	-	A gamma photon - The dose from Gammas in air, etc.				

REVISION NO .:		PROCEDURE TITLE:	PAGE:
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	92 of 221
PROCEDURE NO.:		1	82 01 23 1
C-200		ST. LUCIE PLANT	
		METHODOLOGY SECTION	
<u>GLOSS/</u>	<u>ARY</u>	OF COMMONLY USED TERMS IN METHODOLOGY	SECTION
		(Page 2 of 3)	
Ground Plane	-	Radioactive material deposited uniformly over the grou radiation that produces an exposure pathway when an standing, sitting, etc., in the area. It is assumed that ar receives the same exposure as an infant, regardless of height differences. Only the whole body is considered	nd emits individual is adult the physical for the ODCM.
H-3	-	Hydrogen-3 or Tritium, a weak Beta emitter	
I&8DP	-	Radioiodines and particulates with half-lives greater that	an 8 days
m³	-	Cubic Meters	
m²	-	Square Meters	
nuclide	-	For the purposes of this manual, a radioactive isotope. signifies a specific nuclide, the 1st, 2nd, 3rd one under If nuclide (i) is I-131, then the Mi (dose factor) under co should be M_{I-131} for example.	Nuclide (i) consideration. nsideration
Organ	-	For the ODCM either the bone, liver, thyroid, kidney, lu the Whole Body. Whole Body is considered an organ f writing the methodology in the ODCM.	ng, GI-LLI or or ease of
pCi	-	1 pico-Curie = 1.E-12 Curies.	
(Q Dot) _i	-	(Q Dot)_i - Denotes a release rate in $\mu\text{Ci/sec}$ for nuclide	(i).
Qi	-	Denotes μ Ci of nuclide (i) released over a specified tim	e interval.
Radioiodines	-	lodine-131 and lodine I-133 for gaseous release pathw	ays.
Receptor	-	The individual receiving the exposure in a given locatio ingests food products from an animal for example. A receive dose from one or more pathways.	n or who eceptor can
Release Source	∋(s)	- A subsystem, tank or vent where radioactive materia released independently of other radioactive release	al can be points.
тs		- The St. Lucie Plant Standard Technical Specificatio	ns
Total Body		- Same as Whole Body in Control Statements	
μCi		- micro Curies. 1 μ Ci = 10 ⁻⁶ Curies. The μ Ci is the stradioactivity for all dose calculations in the ODCM.	tandard unit of

REVISION NO.:	PROCEDURE TITLE: PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM) 83 of 231
PROCEDURE NO.:	
C-200	ST. LUCIE PLANT
GLOSSAR	METHODOLOGY SECTION <u>(OF COMMONLY USED TERMS IN METHODOLOGY SECTION</u> (Page 3 of 3)
(X/Q)	 A long term Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of noble gases as the cloud traverses downrange from the release point. Since Noble Gases are inert, they do not tend to settle out on the ground. (See Appendix C).
(X/Q) _D	 A long term Depleted Chi over Q. It describes the physical dispersion characteristics of a semi-infinite cloud of radioactive iodines and particulates as the cloud travels downrange. Since lodines and particulates tend to settle out (fallout of the cloud) on the ground, the (X/Q)_D represents what physically remains of the cloud and its dispersion qualities at a given location downrange from the release point. (See Appendix C).
dt, ∆t or delta t	 A specific delta time interval that corresponds with the release interval data etc.

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	04 - 5 004
PROCE	DURE NO.:		84 01 23 1
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
1.0	LIQUID RELE	EASES METHODOLOGY	
1.1	Radioactive L	iquid Effluent Model Assumptions	
	The FUSAR of description the	contains the official description of the site characteristic at follows is a brief summary for dose calculation purpo	s. The oses:
	The Sf Atlanti Norma Circula approx for sub of radi wind a are su and no	t. Lucie Plant is located on an island surrounded on two c Ocean and the Indian River, an estuary of the Atlantic ally, all radioactive liquid releases enter the Atlantic Oce ating Water Discharge Pipe terminates on the ocean flow kimately 1200 feet offshore (Figure 1-1 Point "L"). No close quent mixing of the discharge flume with the ocean. oactive material into the ocean is dependent on the con- nd some eddy currents caused by the Gulf Stream. Th fficiently random enough to distribute the discharges ov o concentrating effects are assumed.	sides by the Ocean. an where the or at a point redit is taken The diffusion iditions of tide, e conditions rer a wide area
	There or sour Indian to prov Water No rac the Int discha source constru second that we descrij	are no direct discharge paths for liquid effluents to eithe th private property boundary lines. The Big Mud Creek River) does connect to a normally locked shut dam, that vide an emergency supply of circulating water to the Inta Canal in the event a Hurricane causes blockage of the lioactive water from plant systems could be discharged ake Cooling Water Canal because all plant piping is rou- rge canal and no back flow can occur. However, dilute es from such outfalls as the industrial wastewater syster uction dewatering may be pumped to the Intake Canal. dary sources would be secured under the extraordinary buld precede opening the dam. Consult the FUSAR for obtion of characteristics of the water bodies surrounding mose nuclides that appear in the Liquid Dose Factor Tate ered for dose calculation.	er of the north (part of the at is intended ake Cooling Intake Canal. directly into ited to the secondary n and These conditions a detailed the plant site.

				2105	
REVISIO	ON NO.:			PAGE:	
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	85 of 231	
PROCE	C-200		ST. LUCIE PLANT		
			METHODOLOGY SECTION		
1.2 <u>Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Rel</u> Source					
	Discussion - Control 3.11.1.1 requires that the sampling and analysis results of liquid waste (prior to discharge) be used with calculation methods in the in-plant procedures to assure that the concentration of liquid radioactive material in the unrestricted areas will not exceed ten times the concentrations specified in 10 CF Part 20, Appendix B, Table 2. CY-SL-102-0104, Processing Aerated Liquid Wast provides instruction for ensuring batch release tanks will be sampled after adequate mixing. This section presents the calculation method to be used for this determination. This method only addresses the calculation for a specific release source. The in-plant procedures will provide instructions for determining that the summation of each release source's F values do not exceed the site's 10 CFR Pa 20 ECL. The values for release rate, dilution rate, etc., will also have to be				
			$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)_{i}}$		
	Where:				
	FL	= ti s	he fraction of 10 CFR Part 20 ECL that would result if th source was discharged under the conditions specified.	e release	
	R	= T L S L	The undiluted release rate in gpm of the release source. Liquid Rad Waste = 170 gpm for Waste Monitor Tank Steam Generator = 125 gpm/Steam Generator Liquid Rad Waste = 60 gpm for AWST #2 Liquid Rad Waste = 60 gpm for Laundry Drain Pumps 2A	√2B	
	D	= T F II C	The dilution flow in gpm of Intake Cooling Water or Circu Pumps ntake Cooling flow is 14,500 gpm/pump Circulating Water flow is 121,000 gpm/pump	lating Water	
	Ci	= T	The undiluted concentration of nuclide (i) in μ Ci/ml from s	sample assay	
	(ECL) _i	= T F fi	The Effluent Concentration Limit of nuclide (i) in μ Ci/ml fr For dissolved or entrained noble gases the ECL value is or the sum of all gases.	^r om Table L-1. 2 X 10 ⁻⁴ μCi/ml	

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:			
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	86 of 231			
PROCEDURE NO.:		.:		00 01 201			
	C-200)	ST. LUCIE PLANT				
	METHODOLOGY SECTION						
1.2	<u>Determining the Fraction F of 10 CFR Part 20 ECLs Limits for A Liquid Release</u> <u>Source</u> (continued)						
	The fr nuclid cumu 3 X 10 cumu gross conce calcul The fo fractio	raction of le-by-nu lative ac 0 ⁻⁸ µCi/r lative co concer entration lation is ollowing on.	of the 10 CFR Part 20 ECL limit may be determined by uclide evaluation or for purposes of simplifying the calcu- ctivity evaluation. If the simplified method is used, the v ml (unidentified ECL value) should be substituted for (E oncentration (sum of all identified radionuclide concentr intration should be substituted for C _i . As long as the dilu n (C _{total} R/D) is less than 3 X 10 ⁻⁸ μ Ci/ml, the nuclide-by- not required to demonstrate compliance with the 10 CF section provides a step-by-step procedure for determin	a Ilation by a value of CL) _i and the ations) or the ted -nuclide FR Part 20 ECL. hing the ECL			
	1.	Calcul	ation Process for Solids				
		Α.	Obtain from the in-plant procedures, the release rate v gpm for the release source.	alue (R) in			
		В.	Obtain from the in-plant procedures, the dilution rate (I credit is taken for any dilution beyond the discharge ca	D) in gpm. No Inal flow.			
		C.	Obtain (C_i), the undiluted assay value of nuclide (i), in simplified method is used, the cumulative concentration used.	μCi/ml. If the n (C _{total}) is			
		D.	From Table L-1, obtain the corresponding (ECL) for nu μ Ci/ml. The value of 3 X 10 ⁻⁸ μ Ci/ml should be used for method.	clide (i) in or the simplified			
		E.	Divide C_i by (ECL) _i and write down the quotient				
		F.	If the simplified method is used, proceed to the next state determining the ECL fraction by the nuclide-by-nuclide repeat steps 1.2.1.C through 1.2.1.E for each nuclide r assay, for H_3 from previous month composite and for S Fe55 from previous quarter composite with known resu	ep. If evaluation, eported in the \$R89/90 and ults.			

REVISION NO.:			PROCEDURE TITLE:	PAGE:
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	87 of 231
PROCE	DURE NO	.:		
	C-200		ST. LUCIE PLANT	
			METHODOLOGY SECTION	
1.2	<u>Deter</u> Sourc	<u>mining t</u> <u>:e</u> (conti	<u>the Fraction F of 10 CFR Part 20 ECLs Limits for A Liqu</u> inued)	<u>iid Release</u>
	1.	Calcul	ation Process for Solids (continued)	
		G.	Add each $C_i/(ECL)$ quotient from step 1.2.1.E and solve follows:	e for F_L as
			$F_{L} = \frac{R}{D} \sum_{i=1}^{n} \frac{C_{i}}{(ECL)i}$	
			F_L = a unit-less value where:	
			the value of F_L could be \leq or >1. The purpose of the cardetermine what the initial value of F_L is for a given set conditions.	alculation is to of release
		H.	The F_L value just obtained is for one release pathway. ODCM control 3.11.1.1 allow for a site limit of F_L less th 10. Chemistry Procedure CY-SL-102-0104 administrate each pathway's allocation. Compare your F_L result with administrative control for the release pathway in CY-SL	The TS and nan or equal to tively controls h the 102-0104.
	2.	Calcul	ation Process for Gases in Liquid	
		A.	Sum the $\mu\text{Ci}/\text{ml}$ of each noble gas activity reported in the	he release.
		В.	The values of R and D from 1.2.1 above shall be used calculations below:	in the
			$F_g = \frac{(\text{sum of } 1.2.2.A) \mu\text{Ci/ml}}{1} X \frac{R}{D}$	
		C.	F_g shall be less than 2 X 10 ⁻⁴ µCi/ml for the site for all r progress. Each release point will be administratively co Consult CY-SL-102-0104 procedure for instructions.	eleases in ontrolled.

	REVISION NO.: PROCEDURE TITLE: PAGE:							
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCE	DURE NO.:		88 of 231					
C-200		ST. LUCIE PLANT						
	METHODOLOGY SECTION							
1.3	 1.3 <u>Determining Setpoints for Radioactive Liquid Effluent Monitors</u> 1.3.1 Setpoints for Batch Liquid Release Monitors channel numbers R6627 ar 301 on Table 3.3-14, Radioactive Effluent Monitor Setpoint Basis, are th Batch Liquid Effluent Monitors. 							
<u>Discussion</u> - Control 3.3.3.9 requires that the liquid effluent monitoring instrumentation alarm / trip setpoints be set to initiate an alarm or trip so that th radioactivity concentration in water in the unrestricted area does not exceed the concentration of 10 CFR Part 20, Appendix B, Table 2 as a result of radioactivit liquid effluents (Control 3.11.1.1).								
	Gross cpm v Monitors bas gross cpm ar in the discha reports was o These conce discharge ca 121,000 gpm nuclide's res on the table t	s. total liquid activity curves are available for Batch Liqui ed on a composite of real release data. A direct correla nd the concentrations that would achieve 10 CFR Part 2 rge canal can be estimated. The 1978 liquid release da used to determine the average undiluted release concern ntrations were then projected to a diluted concentration nal assuming a 1 gpm release rate and a constant dilution from 1 circ. water pump. This diluted activity was divid bective 10 CFR Part 20 ECL value (Table L-1) to obtain that follows:	d Effluent tion between 0 ECL levels ta from annual tration. in the on flow of ed by the the Mi column					

REVISION NO .:		PROCEDURE TITLE:			PAGE:	
53		OFFSITE	DOSE CALCULATION MAN	JAL (ODCM)		
PROCE	EDURE NO.:			- ()	89 of 231	
C-200			ST. LUCIE PLANT			
			METHODOLOGY SECTION	•		
1.3	Determining Setpoints for Radioactive Liquid Effluent Monitors (continued)					
					unita)	
			4.43 E-5			
	I-132		2.23 E-7	1.84 E-8		
	I-135		1 31 E 6	3./4 E-0		
	Na 24		1.31 E-0	2.84 E	/ = 8	
	Cr 51	•	251 E 5	2.04 L	-0	
	CI-51		5.64 E-6	4.15 E-7		
	Mp.56		1 11 F-9	1.30 E	0	
	Co-57	,	3.69 E-7	5.08 E-8		
	Co.58		1 51 F-4	6 24 F		
	Ee-59		2.92 E-6	2 41 F-6		
	Co-60 Zn-65 Ni-65		3.66 E-5	1 01 F	- <u>0</u>	
			4 55 E-7	7.52 F	52 E-7 8 F-8	
			8 23 F-7	68 F		
	Ag-11(้า	1.96 E-6	2 70 F		
	Sn-113		5.75 E-7	1.58 E-7		
	Sb-122	2	2.15 E-6	1.78 E	6	
	Sb-124	4	8.40 E-6	9.92	E-6	
	W-187		3.51 E-6	9.67 E	-7	
	Np-239		1.57 E-7	6.49 E-8		
	Br-82		3.64 E-7	7.52 E-8		
	Zr-95		2.82 E-5	1.17 E-5		
	Zr-97		4.05 E-6	4.05 E-6 3.72 E-		
Mo)	3.24 E-6	1.34 E	E-6	
	Ru-103		3.84 E-8 1.06 E		E-8	
	Sb-125		2.26 E-6 6.23		E-7	
	Cs-134		2.14 E-5 1.9		E-4	
	Cs-136		7.82 E-7	1.08 E	1.08 E-6	
	Cs-137		4.85 E-5	4.01 E-4		
	Ba-140		6.44 E-7	6.65 E-7		
	Ce-141		3.04 E-8	-8 8.38 E-9		
	Ce-144		2.37 E-6	2.37 E-6 6.53 E-6		
	A _{tot} =		4.01 E-4			
	M _{Total} =	•		1.18 E	E-3	

(1) 1978 Undiluted Release Volume = 7 E 9 ml.

(2)
$$M_{i} = \frac{1978 \text{ Undil. Act Nuclide (i)}}{\text{ECL}_{i} \text{ (from Table L - 1)}} \times \frac{1 \text{ gpm (release rate)}}{121000 \text{ gpm (dil rate)}}$$

REVISION NO.:	PROCEDURE TITLE:	PAGE:	
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	00 of 221	
PROCEDURE NO.:		90 01 23 1	
C-200	ST. LUCIE PLANT		

METHODOLOGY SECTION

1.3 <u>Determining Setpoints for Radioactive Liquid Effluent Monitors</u> (continued)

 A_{Tot} is the total average μ Ci/ml concentration of the reference mixture and M_{Tot} is the fraction of the MPC of all nuclides for the release conditions specified. Dividing A_{Tot} by M_{Tot} yields A_{Max} , which is the maximum total activity concentration equivalent to the ECL limit for the nuclide distribution typical of radwaste discharges. The Technical Specifications allow 10 times the ECL limit where the Site Limit is 10 times A_{Max} as follows:

 $A_{Max} = \frac{A_{Tot}}{M_{Tot}} = \frac{4.01 \text{ E} - 4}{1.18 \text{ E} - 3} = 0.34 \,\mu\text{Ci/ml} = \text{ECL Limit}$

Site Limit = $10 \times A_{Max} = 10 \times 0.34 = 3.4 \mu Ci/ml$

To provide conservative administrative control, A_{Max} of 0.34 $\mu\text{Ci/ml}$ should be used as follows:

1. If the effluent monitor requires counts per minute units, a (C_{max}) value in cpm should be obtained for the A_{max} (0.34 µCi/ml) from the release sources radioactive liquid effluent monitor curve of cpm vs. µCi/ml.

NOTE This setpoint is for a specified release of 1 gpm into 121000 gpm dilution flow.

 For establishing the setpoint prior to liquid radwaste discharges, the A_{max} (or C_{max}) will be adjusted as needed to account for actual release conditions (i.e., actual design maximum discharge flow rate, dilution flow rate and the contribution of dissolved and entrained Nobles Gas Activity to the Monitor Activity Level).

REVISION NO.:			PROCEDURE TITLE:	PAGE:			
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	91 of 231			
PROCEDURE NO.:		:		51 61 201			
C-200)	ST. LUCIE PLANT				
	METHODOLOGY SECTION						
1.3	.3 Determining Setpoints for Radioactive Liquid Effluent Monitors (continued)						
	1.3.2 Setpoints for Continuous Liquid Release Monitors						
		Discuss Monito Genera Reacto exist a Site Lie be bas with 1 ODCW fraction control remain for soli therefo admini	sion - The activity mixture described in 1.3.1 for Liquid ors cannot be used for Continuous Liquid Pathways sind ator (S/G) Blowdown Secondary Side is subject to what or Coolant System (RCS) activity and primary-to-second t any time. Although S/G blowdown is not normally alig quid Radwaste Release Point (Figure 1-1), the monitor sed on the ODCM maximum design S/G blowdown rate Circulating Water Pump (CWP) 121,000 gpm in operation and CY-SL-102-0104, Processing Liquid Waste assument of solids entering the Discharge Canal to the site release led less than or equal to 1.0, with batch release using 8 and 20% allocated to continuous sources on site. The active ore a conservation factor of 10 is already included in the strative site limit.	ixture described in 1.3.1 for Liquid Batch Release or Continuous Liquid Pathways since the Steam Secondary Side is subject to what the current RCS) activity and primary-to-secondary leakage S/G blowdown is not normally aligned to the ase Point (Figure 1-1), the monitor setpoints will aximum design S/G blowdown rate of 125 gpm ump (CWP) 121,000 gpm in operation. The D4, Processing Liquid Waste assume that the ne Discharge Canal to the site release point are al to 1.0, with batch release using 80% and the o continuous sources on site. The actual site limit oncentration specified in 10 CFR Part 20, ctor of 10 is already included in the			
		Since source in-leakage to a S/G cannot be controlled, a High alar monitor setpoint is calculated based on one S/G releasing to the d canal at design blowdown rate while attaining the 20 percent of the (F _L) assuming all the gross solid activity is I-131. The contribution Dissolved and Entrained Gases is assumed to be zero with all of t gaseous activity going to the Steam Condenser and Air Ejector pa					
		F _L at 2	0% = <u>0.2</u> = <u>Design blowdown rate</u> x <u>I-131 uCi/ml</u> 1 1 CWP Dilution rate I-131 uCi/ml (Tabl	<u>(S/G)</u> e L-1ECL)			
F _L at			0% = <u>0.2</u> = <u>125 gal/min</u> x <u>I-131 uCi/ml (S/0</u> 1 121,000 gal/min 1.E-06 uCi/ml (I-131 Tabl	<u>3)</u> e L-1ECL)			
		Solving	g for the S/G High Alarm Setpoint I-131 Activity ,				
	I-131 uCi/ml (S/G) = ~2E-04 uCi/ml I-131 is the maximum S that could be allowed such that 20 percent of the administra discharge canal limit would not be exceeded.						
This S using			/G Monitor High Alarm Setpoint activity may be convert ₋iquid Monitor uC/ml to cpm conversion constants.	ed to cpm			
		This S factor purpos that it i 20 gall	etpoint is conservative given that the actual Liquid Site of ten times higher than the administrative limit used for ses, that I-131's ECL is conservative vs other isotope m s unlikely that more than one S/G would be allowed to on per day primary-to-secondary leak rate.	Limit is a [•] calculation ixtures, and operate with a			

REVISION NO .:		PROCEDURE TITLE:		PAGE:			
53			OFF	SITE DOSE CALCULATION MANUAL (ODCM)	92 of 231		
PROCEDURE NO.:					02 01 201		
	C-200			ST. LUCIE PLANT			
				METHODOLOGY SECTION			
1.4	Determining the Dose for Radioactive Liquid Releases						
	<u>Discussion</u> - Control 3.11.1.2 requires calculations be performed at least once per 31 days to verify that cumulative radioactive liquid effluents do not cause a dose in excess of 1.5 mrem to the whole body and 5 mrem to any organ during any calendar quarter and not in excess of 3 mrem to the whole body and 10 mrem to any organ during any calendar year. This section presents calculational method to be used for this verification.						
	This method is based on the methodology suggested by sections 4.3 and 4.3.1 of NUREG-0133 Revision 1, November, 1978. The dose factors are a composite of both the fish and shellfish pathways so that the fish-shellfish pathway is the only pathway for which dose will be calculated. The dose for adult, child and teenager can also be calculated by this method provided that their appropriate dose factors are used for the organ of interest. An infant is excluded from Liquid Dose Pathwa at St. Lucie since they do not eat fish-shellfish. The effluent supervisor will track which age group is the controlling (most restrictive) age group (see control 3.11.2.6.c). Only those nuclides that appear in the Tables of this manual will be considered.						
	 This method provides for a dose calculation to the whole body or any organ for a given age group based on real release conditions during a specified time interval for radioactive liquid release sources. The equation is: 				/ or any organ a specified tion is:		
	V	Vhere	:				
	D _{1T}			$D_{1T} = \frac{A_{iT} dt_1 Q_{i1}}{(DF)_1}$			
			=	dose commitment in mrem received by organ T of (to be specified) during the release time interval of	of age group dt₁.		
	Д	ίT	=	the composite dose factor for the fish-shellfish panuclide (i) for organ T of age group (to be specific values listed in the Tables in this manual are indeany site specific information and have the units	athway for ed). The A _{iT} ependent of		
	mrem - ml µCi - hr						
	d	lt ₁	=	the number of hours that the release occurs.			
	G	Q _{il}	=	The total quantity of nuclide (i) release during dt1	(μCi)		
	(DF) ₁	=	The total volume of dilution that occurred during time period dt_1 (i.e., the circulating water flow tim	the release es time)		
REVISION NO .:			PROCEDURE TITLE: PAGE:				
----------------	--------------	-----------------------------	--	---	---	--	--
53			OFFSITE DOSE CAL	02 of 221			
PROCEI	DURE NO).:			95 01 25 1		
	C-20	0	ST. L	UCIE PLANT			
			METHODO	LOGY SECTION			
1.4	<u>Deter</u>	mining t	he Dose for Radioactive	e Liquid Releases (continued)			
	1.	(contir	ued)				
		The do the cu release	oses associated with ea mulative dose over a de e during a 31 day perioo	ch release may then be summe esired time period (e.g., sum all o d, calendar quarter or a year).	d to provide doses for		
			D _{total}	$_{T} = \Sigma D_{1T}$			
		Where	:				
		D_{T_T}	the total dose co during the desired	mmitment to organ _⊤ due to all r d time interval (mrem)	eleases		
			Ν	OTE			
		Tab	e 1.4 may be used for a	compiling the dose accounting.			
		A.	Determine the time inte For once per 31 day do month's hours.	erval dt _i in hours that the release ose calculations dt _i would be for	took place. the entire		
			For quarterly dose calc and for annual dose ca required, dt _l may be ho a batch release.	ulations dt _I would be the hours in Iculations dt _I would be the hours urs of duration of a single releas	n the quarter, in the year. If se to evaluate		
		В.	Obtain (DF) _l for the time Records for the release	e period dt _l from Liquid Waste M e source(s) of interest.	lanagement		
		C.	Obtain Q _i for nuclide (i) Management Records	for the time period dt_1 from the	Liquid Waste		
		D.	Obtain A_{iT} from the app	propriate Liquid Dose Factor Tab	ble		
		Γ	Age Group	Dose Factor Table			
		F	Infant	N/A			
			Child	L-4			
			Teen	L-3			
			Adult	L-2			
		L					

REVISION NO.:	PROCEDURE TITLE:			PAGE:								
53	OFFSITE DOSE C	ALCULATION MAN	UAL (ODCM)	04 of 221								
PROCEDURE NO.:		540										
C-200	ST. LUCIE PLANT											
METHODOLOGY SECTION												
1.4 <u>Determining</u>	.4 Determining the Dose for Radioactive Liquid Releases (continued)											
1. (conti	nued)											
	FISH AND S	TABLE 1.4 SHELLFISH PATHW	AY									
TIME/DATE START:	://	_ TIME/DATE STOP	::	/HOURS								
TOTAL DILUTION V AGE GROUP:	OLUME: ORGAN:	_mls DO	SE FACTOR TA	BLE #:								
NUCLIDE (i)	C _i (µCi)	A _{iT}	DOSE (i) mr	em								
		TOTAL DOSE _T =		mrem								
E.	Solve for Dose (i)											
	Dose (i)	$=\frac{Q_{i1} dt_1 A_{iT}}{(DF)_1}$										
F.	For the age group(s for each nuclide rep) of interest, repeat s orted and each orga	steps 1.4.1.C th n required.	rough 1.4.1.E								
G.	For the age group(s total dose to organ) of interest, sum the Γ from the fish-shellf	e Dose (i) value ish pathway.	s to obtain the								

REVISION NO .:			PROCEDURE TITLE:	PAGE:				
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	05 -6 004				
PROCE	PROCEDURE NO .:			95 01 23 1				
	C-200)	ST. LUCIE PLANT					
			METHODOLOGY SECTION					
1.5	<u>Projec</u>	cting Do	se for Radioactive Liquid Effluents					
	<u>Discussion</u> - Control 3.11.1.3 requires that appropriate subsystems of the liqu radwaste treatment system be used to reduce radioactive material in liquid effluents when the projected doses due to the liquid effluent, from each unit, to UNRESTRICTED AREAS (see TS Figure 5.1-1) would exceed 0.06 mrem to whole body or 0.2 mrem to any organ in a 31 day period. The following calcu method is provided for performing this dose projection. The method is based dose as calculated in section 1.4 with the adult as the bases for projecting.							
	1.	For the calcula doses	e controlling age group obtain the latest result of the mo ation of the whole body dose and the highest organ dos can be obtained from the in-plant records.	nthly e. These				
	2.	Divide during	each dose by the number of days the reactor plant was the month.	operational				
	3.	Multipl project project neede operat	y the quotient of each dose by the number of days the r red to be operational during the next month. The produ red dose for the next month. These values should be a d to account for any changes in failed fuel or other iden ing conditions that could significantly alter the actual rel	reactor plant is cts are the djusted as tifiable eases.				
	4.	If the p than 0 system	projected dose is greater than 0.06 mrem to the whole b 2 mrem to the adults highest exposed organ, the liquid a shall be used.	ody or greater radwaste				

REVISI	ON NO.:	PROCEDURE TITLE:	PAGE:									
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	96 of 231									
PROCE	EDURE NO.:		30 01 231									
	C-200	ST. LUCIE PLANT										
	METHODOLOGY SECTION											
2.0	.0 GASEOUS RELEASES METHODOLOGY											
2.1	Gaseous Effl	uent Model Assumptions										
	Description of characteristic purposes only sides by the A Private proper meteorologica are 16 sector tower is calib A bearing of a and 11.25° de private proper calculation, th Unrestricted A over water ar O.W. (over w sector is O.W calculations u	<u>f Site</u> - (The FUSAR contains the official description of the s. The description that follows is a brief summary for de (). The St. Lucie Plant is located on an island surround Atlantic Ocean and the Indian River, an estuary of the A rty adjoins the plant site in the north and south direction al tower is located north of the plant near the site propers, for dose calculation purposes, divided into 22.5° each rated such that a zero degree bearing coincides with TF zero degrees dissects the north sector such that bearing effine the boundaries of the north sector. The nearest d rty occurs in the north sector at approximately 0.97 mile nois 0.97 mile radius is assumed in all directions, althoug Area Boundary is defined in Figure 5.1-1 of the TS. Dose as do not apply to Controls or the annual report and m ater) in lieu of performing calculations. The 0.97 mile radius is assumed to the annual report and m ater) in lieu of performing calculations.	the site ose calculation ed on two tlantic Ocean. ns. A rty line. There n. The MET RUE NORTH. gs of 348.75° istance to es. For ease of h the real ses calculated hay be listed as ange in the NW e dose									
	<u>Historical ME</u> from the St. L D.C. The me suggested by were also cal MET tables (determined th	<u>T Data</u> - MET data, between September 1, 1976 and A ucie MET Tower was analyzed by Dames & Moore of V thodology used by Dames & Moore was consistent with Regulatory Guide 1.111, Revision 1. Recirculation cor culated for the St. Lucie Site and are incorporated into t Tables M5, M6 and M7) in Appendix A of this manual.	ugust 31, 1978, Vashington, methods rection factors the historical t was le.									
	Dose Calcula calculated us doses no low MET data fac annual report actual meteor	tions - Dose calculations for Control dose limits are nor ing historical MET data and receptor location(s) which y er than the real location(s) experiencing the most exposi tors are calculated and are normally used in dose calcu s. Approximate and conservative methods may be use rological measurements.	mally vield calculated sure. Actual Ilations for the d in lieu of									
	Live MET dat manual. Hist used for ease limits may be dose calculat the annual re with Regulato Correction Fa	a and hour-by-hour dose calculations are beyond the se orical information and conservative receptor locations, e of Control dose limit calculations. Dose calculations for performed using actual MET data and real receptor loc ions performed with actual data should note the source port. Actual MET data reduction should be performed i ory Guide 1.111, Revision 1 and should incorporate Rec actors from Table M-4 of this manual.	cope of this etc., are only or Control dose ations. Any of the data in n accordance circulation									

REVISIO	ON NO.:	PROCEDURE TITLE:	PAGE:									
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	97 of 231									
PROCEI	DURE NO.:											
	C-200	ST. LUCIE PLANT										
	METHODOLOGY SECTION											
2.1	Gaseous Effluent Model Assumptions (continued)											
	Dose Calculations - (continued)											
	The St. Lucie site uses the long term ground release model for all gaseous effluents. Only those radionuclides that appear in the gaseous effluent dose factor tables will be considered in any dose calculations. Radioiodines are defined as lodine-131 and I-133 for application to Controls. Other nuclides of lodine may be included in dose calculations for ease of performing calculations, but their dose contribution does not have to be included in the Control requirements. Land Census information will apply to the calendar year following the year that the census was taken in to avoid splitting quarters, etc.											
2.2	Determining t	he Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors	eases And									
	<u>Discussion</u> - Control 3.11.2.1 limits the dose rate from noble gases in airborne releases to <500 mrem/yr - total body and <3000 mrem/yr - skin. Control 3.3.3.11 requires that the gaseous radioactive effluent monitoring instrumentation be operable with alarm/trip setpoints set to ensure that these dose rate limits are not exceeded. The results of the sampling and analysis program of Control Table 4 11-2 are used to demonstrate compliance with these limits											
	The following total body and are based on releases on the release point. The calculation November 19	calculation method is provided for determining the dose d skin from noble gases in airborne releases. The alarr the dose rate calculations. The Controls apply to all ai he site but all releases may be treated as if discharged . Only those noble gases appearing in Table G-2 will be on methods are based on Sections 5.1 and 5.2 of NURE 978. The equations are:	e rates to the n/trip setpoints rborne from a single e considered. EG-0133,									
	For TOTAL B	ODY Dose Rate:										
		$DR_{TB} = \Sigma K_i (X/Q) (Q DOT)_i$ i										
	For TOTAL S	KIN Dose Rate:										
	D	n R _{skin} = Σ[L _i + 1.1 _{Mi}] (X/Q)(QDOT) _i i										

REVISION NO .:			PROCEDURE TITLE:	PAGE:			
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)				
PROCEDURE NO.:				98 01 23 1			
	C-200		ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.2	<u>Determini</u> Establishi	ng t ng S	<u>he Total Body and Skin Dose Rates for Noble Gas Rel</u> Setpoints for Effluent Monitors (continued)	eases And			
	Where:						
	DR_{TB}	=	total body dose rate from noble gases in airborne rele	eases (mrem/yr)			
	DR _{skin}	=	skin dose rate from noble gases in airborne releases	(mrem/yr)			
	ľΣ	=	a mathematical symbol to signify the operations to the right of the symbol are to be performed for each noble gas nuclide (i) through (n) and the individual nuclide doses are summed to arrive at the total dose rate for the release source.				
	K _i	=	the total body dose factor due to gamma emissions f gas nuclide reported in the release source. (mrem-m	or each noble ۱ ³ /µCi-yr)			
	Li	=	the skin dose factor due to beta emissions for each r (i) reported in the assay of the release source. (mren	loble gas nuclide ι-m³/μCi-yr)			
	Mi	 the air dose factor due to gamma emissions for each noble gas nuclide (i) reported in the assay of the release source. The contact 1.1 converts mrad to mrem since the units of M_i are in (mrad-m³/μCi-yr) 					
	(X/Q)	=	for ground level, the highest calculated annual long to relative concentration for any of the 16 sectors, at or exclusion area boundary (sec/m ³)	erm historic beyond the			
	(Q DOT) _i	=	The release rate of noble gas nuclide (i) in $\mu\text{Ci/sec}$ fr source of interest	om the release			
	(X/Q) (Q DOT) _i	=	for ground level, the highest calculated annual long to relative concentration for any of the 16 sectors, at or exclusion area boundary (sec/m ³) The release rate of noble gas nuclide (i) in μ Ci/sec fr source of interest	erm historic beyond the om the releas			

REVISION NO .:			PROCEDURE TITLE:	PAGE:	
	53		OFFSITE DOSE CALC	JLATION MANUAL (ODCM)	
PROCE	DURE NO	D.:			99 of 231
	C-20	0	ST. LU	CIE PLANT	
			METHODOLO	DGY SECTION	
2.2	<u>Dete</u> Estal	rmining t	the Total Body and Skin D Setpoints for Effluent Mor	<u>)ose Rates for Noble Gas Rel</u> <u>nitors</u> (continued)	eases And
	1.	Setpoi	nt Determination		
A.			To comply with Control 3 established to ensure that exceed the ODCM Control the site. Using pre-ODC determined to be more line therefore the site release mrem/yr has been determ being released from the se equivalent of 100 percent may be allotted a portion release point portions allopercent. The release point percent. The release point account the physical relevely and point since uCi/sec is pro- release points and an ex-	.3.3.10, the alarm/trip setpoin at all noble gas releases in pro- ol 3.11.2.1 noble gas release M Revision 0 data, the total b- miting than the calculated skin rate limit of total body dose r nined to be equivalent to 3.5E site. Using 3.5E+05 uCi/sec a t of the site limit, each release of the 100 percent, such that otted shall be less than or equint's actual monitor setpoint shall ase characteristics of maximu- its percent allotment for a sin- portional to volume rate. The ample of percent allotments is	ts are ogress do not rate limit for ody dose was a dose, ate of 500 E+05 uCi/sec as the e point on site the sum of all ual to 100 nall take into um expected gle release e ODCM actual s provided:
			Site Limit in $UCi/sec = 3!$		
			(Exa	mple)	
		ODCI Unit 1 ECCS ECCS Unit 2 ECCS ECCS Blowe Total	<u>M Release Point</u> Plant Vent Fuel Bldg. Vent A 1A 2 Plant Vent 2 Fuel Bldg. Vent A 2 A 3 2B down Bldg. Vent Percent Allocated =	Percent <u>Allotment</u> 40 5 1 1 40 5 1 40 5 1 1 + 5 99 or 1 percent below the Site Limit	<u></u>

REVISION NO .:		PROCED	DURE TITLE:	PAGE:						
53		OFFS	SITE DOSE CALCULATION MANUAL (ODCM)	100 of 221						
PROCEDURE NO.:) .:			100 01 23 1					
	C-20	0		ST. LUCIE PLANT						
				METHODOLOGY SECTION						
2.2	<u>Deter</u> Estat	rmining t	the Total Body and Skin Dose Rates for Noble Gas Releases And Setpoints for Effluent Monitors (continued)							
	1.	(contin	ued)							
		Α.	(contin	nued)						
			More o sum of never Auxilia points, short p Chemi Radiat require Monito Releas below. release equiva	or less percentage may be used for a release point of the total percent allocated to the above Release be allowed to exceed 100 percent. The ECCS R ary Building Exhaust are not ODCM required more but a small percentage should be allotted to eac periodic fan surveillance runs. This allocation is d astry Procedure CY-SL-104-0112, Determination tion Monitor Setpoints where Chemistry Supervise ed. CY-SL-104-0112, Determination of Process I for Setpoints provides calculation steps to calculate se Rate Setpoint based on the methodology step . A release point's percent allotment will be conv e point's indicating engineering unit of uCi/cc that alent to the allocated portion of the site limit.	nt, but the Points shall teactor itored release th to cover controlled per of Process or approval is Radiation te a Noble Gas s described erted into the t will be					
			1.	Obtain the release point's <u>maximum expected</u> per release rate (V) in Cubic Feet per Minute (cfm) f Effluent Supervisor.	rocess flow rom the					
			2.	Obtain the release point's percent of site limit all from the Chemistry Supervisor.	otment (PA)					
			3.	Substitute the release point's V and PA values in equation(s) to obtain the Release Point's Setpoint desired engineering unit (uCi/cc or uCi/sec).	nto the below nt (SP) in the					
			SP = uCi/cc	<u>3.5E+05 uCi x 60 sec x min x ft3 x F</u> sec min V ft3 28317 cc 10	<u>'A</u> [fpl1] 00%					
			SP = uCi/cc	uCi/cc which is the TABLE 3.3-14 SETPOINT for ODCM Efflu Channels that have a "Allo Limit" declared as their HIC	HIGH Jent Gas Ited % of Site GH SETPOINT.					
			SP = uCi/cc	<u>3.5E+05 uCi x PA [FPL2]</u> sec 100%						
			SP = uCi/cc	uCi/cc						

REVISIO	ON NO.:		PROCE	OURE TIT	LE:				PAGE:		
	53		OFF	SITE D	OSE CA		ON MANU	AL (ODCM)			
PROCEI	DURE NO	.:						, , , , , , , , , , , , , , , , , , ,	101 of 231		
	C-200)			ST	. LUCIE P	LANT				
METHODOLOGY SECTION											
2.2	<u>Deter</u> Estab	mining t lishing (<u>he Tot</u> Setpoi	al Bod	<u>y and SI</u> Effluent	<u>kin Dose F</u> Monitors (Rates for N continued)	oble Gas Rele	eases And		
	1.	(contin	ued)								
		Α.	(contin	ued)							
			In the Monito uCi/se RANG at the same allotted	case of ring the c is equ E GAS maximu release d % of t	Unit 2 Pl Plant Ve ivalent to channel im expec point (i.e he Site L	ant Vent th ent. The wi o 2A PV PIC 624 uses th ted process e., each of th imit).	ere are 3 O ide range cl G LOW RAI ne equivale s flow rate. hese chann	DCM Effluent (nannel 624 HIC NGE GAS and nt uCi/sec base Since they are els does not re	Gas Channels H SETPOINT in 2B PIG LOW d on the uCi/cc monitoring the ceive their own		
			4. The significance of an ODCM Effluent Gas Channel that has a "Allotted % of Site Limit" HIGH Setpoint requires further discussion (Mid and High Noble Gas Accident Channels are not part of this discussion):								
				a.	For Plar "Allotted Batch R Venting Process adminis radioact to excee	nt Vent Rele d % of Site I deleases fro Operations sing Gaseou tratively con- tratively con- trative concen- ted the site I	ease Points Limit" needs on Gas Dec s, and at the us Waste sl ntrolling Ba tration and imit at any t	on each react s to be high en- ay Tank and C same time CY nall provide ins tch Releases s release rate wi ime.	or unit, the ough to allow for ontainment '-SL-102-0105, truction for uch that the Il not be allowed		
				b.	The reca the ODO approxin mean th concent Limit".	eipt of a val CM Low Ra mately equa ne site limit ration that i	lid HIGH Al nge Gas Cl al to the HIC has been e is equivaler	arm on a releas nannel's radioa GH Alarm setpo xceeded, rathe it to the "Allotte	se point where ctivity is pint does not r it is at a d % of Site		
			setpoir	nt in <u>uC</u>	i/cc	√ or Vmax f	ft3/minute <u>v</u>	ent flow			
			SP =			<u>uCi</u> x <u>2</u>	<u>8317 cc</u> x <u>\</u>	/max ft3 x mini	ute		
		uCi/sec	c (equiv	alent)		СС	ft3	minute 60 s	econd		
			SP =			<u>uCi</u>	equivalen	t to a channel i	ndicating a		
			(uCi/se	ec)		sec	uCi/cc cor release ra	ncentration ass te of V or Vma	uming a volume x.		
			SP =	-		<u>uCi</u> x	100	=	%		
		(% of S	lite Lim	it) (ab	ove) s	ec 350,00	00 uCi/sec	of Site Limit			

REVISION NO .:			PROCE	DURE TIT	LE:					PAGE:
53			OFF	SITE D	OS	E CAL	CULATION MA	ANUAL (OI	OCM)	102 of 221
PROCEDURE NO.:										102 01 23 1
	C-20	0				ST. L	UCIE PLANT			
				N	IETI	HODOI		<u>NC</u>		
2.2	<u>Dete</u> Estat	rmining t	<u>the To</u> Setpoi	<u>tal Bod</u> nts for	<u>ly ar</u> Efflu	nd Skin uent Mo	Dose Rates for Dose Rates for Donitors (continue	<u>or Noble G</u> ued)	as Rele	eases And
	1.	(contin	ued)							
		Α.	(conti	nued)						
			4.	(conti	nue	d)				
				C.	The wh rac ma	e recei ere the lioactiv ly quick	pt of a valid HI ODCM Low F ity is greater th dy be <u>estimate</u>	IGH Alarm Range Gas han the HIC ed based of	on a re Chanr GH Ala n:	lease point lel's rm setpoint
			F _{SL} =	RP _{SL} +	· (Sı	ım of <u>a</u>	<u>ll other</u> Releas	se Point's F	RP _{SL} on	site)
			RP _{SL}	= Rel Cha uCi/	Pt's nnel cc	's x	Rel Pt's v Release x o Rate (V) o	volume conv. x const.	time conv. const.	x 1/(site limit)
			RP _{SL}	= <u>uCi</u> cc	x _	<u>V ft³</u> min	x <u>28317 cc</u> ft ₃	x <u>min</u> 60 sec	x 3.5	<u>sec</u> =+05 uCi
				Wher	e:					
				F_{SL}	=	Fract	ion of the Site	Limit		
				RP _{SL}	=	Fracti limit (is nor condi	ion of a Releas Sum of <u>all oth</u> m ally less tha tions.	se Point's c <u>er</u> Release an 0.10 unc	contribu Point's Ier norr	ution to the site ≩ RP _{SL} on site) mal operating
				V	=	in ft ³ /i Volur	min, the Relea ne flow release	ise Point's e rate	actual	process
L										

REVISION NO .:		PROCE	DURE TIT	LE:	PAGE:				
	53		OFF	SITE D	OSE CALCULATION MANUAL (ODCM)	102 - £ 021			
PROCE	DURE NO	D.:				103 01 231			
	C-200 ST. LUCIE PLANT								
				M	IETHODOLOGY SECTION				
2.2	<u>Dete</u> Esta	eases And							
	1.	(contir							
		A.	(conti	nued)					
			4.	(contii	nued)				
				C.	(continued)				
				A valu Site L Proce Point This n	value of $RP_{SL} > 1.0$ or a $F_{SL} > 1.0$ would be exceeding the Limit Based on the above <u>estimate</u> . Off Normal Procedure allow 1 hour to obtain a grab sample of the Point so that the actual site limit situation may be evaluated in the following step.				
			5.	To qu the fo	antify the Release Point's <u>actual Noble Ga</u> llowing would need to be performed:	as Dose Rate,			
				а.	A Noble Gas Activity Grab Sample would and analyzed to determine each Noble G concentration.	d be obtained Gas Isotopic			
				b.	The results would be used to perform cal ODCM Step 2.2.2 for Noble Gas Total Bo and Skin Dose Rate.	culations per ody Dose Rate			
				C.	If the Release Point's HIGH Alarms were the Table 3.3-14 ODCM Related Particula lodine Channel, then ODCM Step 2.3 cal should be performed as soon as possible continuous collection medium(s) and a T can be pulled and analyzed to evaluate of ODCM Control 3.11.2.1.b.	received on ate and/or culations after the ritium Sample ompliance with			

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	104 of 231
PROCEDURE NO.:		104 01 231
C-200	ST. LUCIE PLANT	
	METHODOLOGY SECTION	
2.2 <u>Determining t</u> Establishing S	he Total Body and Skin Dose Rates for Noble Gas Rele Setpoints for Effluent Monitors (continued)	eases And
1. (contin	ued)	
B.	No Particulate or lodine Radioactivity Channels are record ODCM. Table 3.3-13 requires lodine and Particulate S The ODCM requires a Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint on the Fuel Building Vent Particulate C bases for the setpoint C hannels. These Particulate and Iodine Radioactivity Channels. These Provided. The intent of providing these setpoints is to pwarning that the effluent pathway conditions have increated a grab sample should be obtained if a HIGH Alarm reached or exceeded. The Particulate and Iodine HIGI Setpoint bases is that the collection mediums are fixed continuing deposition of radioactivity would cause a increatened or exceeded. The Particulate and Iodine HIGI Setpoint bases is that the collection mediums are fixed continuing deposition of radioactivity would cause a increatened count rate up to the setpoint level(s), the result can be shown to be less than 1 percent of the site limit Control 3.11.2.1.b for Iodine-131, Iodine-133, and all reparticulate from with half-lives greater than 8 days, is the channel detectors are gross activity monitors of the sci where the count rate is not dependent (above threshold energy of the isotope entrained on the collection medium these channels are qualitative trend indicators since the count rate cannot be corrected for the accrued sample volume. Plant historical trends have shown that Noble may contribute to the count rate of the Reactor Auxiliar (Plant) Vent Particulate and Iodine Channel(s). In this Noble Gas contribution may be added to the Table 3.3 High Setpoints for Unit 2 Plant Vents only. The sam	juired by the samplers only. hannel (the late Channel ribe Channels are stpoints are provide early ased such a Setpoint is H Alarm filter where crease in the ting dose rate for ODCM adionuclides in nat these ntillation type d) on the im, and that e channel collection Gas Activity y Building event the -14 Alert and and lodine quirements of lysis are used to dioactivity Noble Gas on

REVISION NO.:			PROCEDURE TITLE:	PAGE:
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	105 -1001
PROCED	OURE NO			105 01 231
	C-200)	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.2	<u>Deter</u> Estab	mining t	the Total Body and Skin Dose Rates for Noble Gas Released Setpoints for Effluent Monitors (continued)	eases And
	1.	(contin	iued)	
		В.	(continued)	
			If an alarm occurs, Channel Check(s) should be perform channel(s), an ALERT Alarm should be investigated an Alarm shall require isotopic analysis of particulate and/o channel medium of the affected channel(s). The Isotop the medium shall be used to evaluate particulate and/o rate levels per the methodology of ODCM 2.3.	ned on these d a HIGH or iodine oic analysis of r iodine dose
	C.		To comply with the ODCM, Alarm/Trip Setpoints detern in accordance with the requirements of the Offsite Dose Manual, the following is the BASES for Fuel Building Pa Channel High Alarm Setpoints for Unit 1 and Unit 2:	nined and set e Calculation articulate
			Unit 1 Fuel Building:	
			The 10,000 cpm High Setpoint is based on an Infant's I Exposed Organ Dose Rate (Liver) from Inhalation of Cs Site Boundary. The value of 10,000 cpm is very conse to the site dose rate limit of 1500 mrem/yr. The method based on measured particulate channel count rates wh detector was calibrated with a known source activity of on default assumptions as follows:	Vaximum 3-137 at the rvative relative Jology is en the Cs-137, and
			 The particulate channel read 32,385 ccpm when 7.67 uCi source of Cs-137. 	exposed to a
			2. Assuming that 7.67 uCi of Cs-137 were collected 1 hour of skid sample collection (fixed filter), the volume would yield ~3.3E+06 cc's. Greater than filter efficiency is assumed.	່ງ during typical sample າ 99% sample
			3. The maximum building process flow exhaust is ~	~24,576 cfm.
			4. Q(dot) for Cs-137 uCi/sec release rate is approx uCi/sec as follows:	imately 27
		<u>7.67 uC</u> hour	<u>i</u> x <u>hour</u> x <u>28317 cc's</u> x <u>24576 ft3</u> x <u>min</u> 3.3E+06cc.s ft3 min 60 sec	= <u>27 uCi</u> sec

REVISION NO .:	PROCEDURE TITLE: PAGE:								
53	OFESITE DOSE CALCULATION MANUAL (ODCM)								
PROCEDURE NO.:			(====)	106 of 231					
C-200		ST.		ANT					
	METHODOLOGY SECTION								
2.2 <u>Determining t</u> Establishing S	<u>the Total</u> Setpoints	Total Body and Skin Dose Rates for Noble Gas Releases And points for Effluent Monitors (continued)							
1. (contin	nued)								
C.	(continue	ed)							
	5. TI si	he default his te boundary	storical (X/Q is 1.3E-06 n)d for the wo neters/sec.	orst sector ((NW) at the			
	6. TI O re	he dose rate DCM Section esulting dose	(equivalent n 2.3 Inhalat rates yield.	to 10,000 cp ion Dose Ra	m) is calcu te to an Inf	llated per fant. The			
Bone L mrem/yr mr 7.4E+00 7.9	iver em/yr 9E+00	Thyroid mrem/yr 0.0E+00	Kidney mrem/yr 4.2E-01	Lung mrem/yr 1.0E+00	GI-LLI mrem/yr 1.5E-02	W.Body mrem/yr 4.8E-01			
	7. TI 1t Li si	he ODCM 3. 500 mrem/yr iver is the ma ite dose rate	11.2.1.b dos From the p aximum expo limit.	e rate limit to preceding ca psed organ a	o any organ Iculation th It 0.52 perc	n is e Infant's cent of the			
	8. A co ao pr sa ao W C	particulate conservative s ctivity on a fix roduct preser ample collect dequate warr rere being rel s-137 activity	hannel setp etpoint give ked filter, Cs nt at all time ion intervals ning respons eased, i.e., i of ~2.3E-0	oint of 10,00 n that this ch -137 is a typ s with spent s shorter thar se if significa the above as 6 uCi/cc.	0 cpm prov annel anal ical long-liv fuel in the n 1 hour wo nt particula sumptions	vides a lyzes gross ved fission pool, and that puld provide ate activity assume a			
	9. Ti pr ra ch cc pe w pe	he setpoint o rovide early o ate calculation hannel is cap ompliance wi erformed to a rith real high a erforming dos valuation)	f 10,000 cpr detection/ala ns are provid able of dete th the ODCI accurately ca alarm events se rate calcu	m was admin arm of a prob ded to docun oction sensitiv M site limit. (alculate actua s as per the ulations. (End	istratively lem. The a nent that th vities to ins Grab samp al releases ODCM me d of Unit 1	chosen to above dose he particulate sure les should be associated thodology for Fuel Building			

REVISION NO .:			PROCED	DCEDURE TITLE: PAGE:							
53 OFF			OFFS	-SITE DOSE CALCULATION MANUAL (ODCM)							
PROCE	DURE NO	.:					· /	107 of 231			
	C-200)		S	ST. LUCIE PI	LANT					
				METHO	DOLOGY S	<u>ECTION</u>					
2.2	<u>Deter</u> Estab	<u>minir</u> lishir	ng the Tot ng Setpoir	the Total Body and Skin Dose Rates for Noble Gas Releases And Setpoints for Effluent Monitors (continued)							
	1.	(co	ntinued)								
		C.	(contir	nued)							
			<u>Unit 2</u>	Fuel Building	<u>g:</u>						
			The 10 Expos Site Bo to the based detect on def	0,000 cpm H ed Organ Do oundary. Th site dose rat on measure or was calibr ault assumpt	igh Setpoint ose Rate (Liv e value of 10 e limit of 150 d particulate ated with a k tions as follo	is based on a er) from Inha),000 cpm is 00 mrem/yr. channel cou known source ws:	an Infant's M lation of Cs very consei The method nt rates whe activity of	Maximum -137 at the vative relative lology is en the Cs-137, and			
			1.	The particulate channel read 39,782 ccpm when exposed to a 7.59 uCi source of Cs-137 (decayed to June 19, 1996 data).							
			2.	Assuming th hour of skid volume wou filter efficien	at 7.59 uCi sample colle ld yield 4.08 cy is assume	of Cs-137 we ection (fixed f E+06 cc's. G ed.	re collected ilter), the ty creater than	l during 1 pical sample 99% sample			
			3.	The maximum building process flow exhaust is ~31,584 cfm.							
			4.	Q(dot) for C 21 uCi/sec a	s-137 uCi/se as follows:	c release rat	e is approxi	mately			
		<u>7.59</u> ho	<u>uCi</u> x ur 4.08	<u>hour</u> x 3E+06cc.s	<u>28317 cc's</u> ft3	x <u>31584 ft3</u> min	x <u>min</u> 60 sec	= <u>27.72 uCi</u> sec			
			5.	The default site boundar	historical (X/ ry is 1.3E-06	Q)d for the w meters/sec.	orst sector	(NW) at the			
			6.	The dose ra ODCM Sect resulting do	te (equivaler ion 2.3 Inhal se rates yield	nt to 10,000 c ation Dose R d.	pm) is calc ate to an Ir	ulated per fant. The			
6	Bone mrem/y 5.21E+0	'r)0 (Liver mrem/yr 5.62E+00	Thyroid mrem/yr 0E+00	Kidney mrem/yr 3.52E+00	Lung mrem/yr 8.56E+00	GI-LLI mrem/yr 1.2E+00	W.Body mrem/yr 3.99E+00			

REVISION NO.:		PROCE	DURE TITLE:	PAGE:					
	53		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	109 of 221				
PROCEDURE NO.:					106 01 23 1				
	C-20	0		ST. LUCIE PLANT					
				METHODOLOGY SECTION					
2.2	<u>Deter</u> Estat	mining t	<u>he Total Body and Skin Dose Rates for Noble Gas Releases And</u> Setpoints for Effluent Monitors (continued)						
	1.	(contin	ued)						
		C.	(contii	nued)					
			7.	The ODCM 3.11.2.1.b dose rate limit to any orgamem/yr. From the preceding calculation the Int the maximum exposed organ at 0.34 percent of rate limit.	an is 1500 fant's Liver is the site dose				
			8.	A particulate channel setpoint of 10,000 cpm pro conservative setpoint given that this channel and activity on a fixed filter, Cs-137 is a typical long- product present at all times with spent fuel in the sample collection intervals shorter than 1 hour w adequate warning response if significant particul were being released, i.e., the above assumption Cs-137 activity of ~1.4E-06 uCi/cc.	ovides a alyzes gross lived fission e pool, and that yould provide late activity is assume a				
			9.	The setpoint of 10,000 cpm was administratively provide early detection/alarm of a problem. The rate calculations are provided to document that channel is capable of detection sensitivities to in compliance with the ODCM site limit. Grab sam performed to accurately calculate actual release with real high alarm events as per the ODCM m performing dose rate calculations.	y chosen to above dose the particulate sure ples should be as associated ethodology for				

REVISION NO .:			PROCEDURE TITLE:	PAGE:			
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	100 of 221			
PROCE	DURE NO.	:		109 01 23 1			
	C-200)	ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.2	<u>Deteri</u> Estab	mining t lishing \$	he Total Body and Skin Dose Rates for Noble Gas Releases And Setpoints for Effluent Monitors (continued)				
	2.	Total E	Body and Skin Nuclide Specific Dose Rate Calculations				
		The fo body d compli release	llowing outline provides a step-by-step explanation of he lose rate is calculated on a nuclide-by-nuclide basis to e ance with Control 3.11.2.1. This method is only used if es exceed the value of 3.5 X $10^5 \mu$ Ci/sec.	ow the total evaluate the actual			
		A.	The (X/Q) value =sec/m ³ andi limiting sector at the exclusion area. (See Table M-1 for sector.)	s the most or value and			
		В.	Enter the release rate in ft ³ /min of the release source a to:	nd convert it			
			$= \frac{()\text{ft}^3}{\text{min}}\text{X}\frac{2.8317\text{X}10^4\text{cc}}{\text{ft}^3}\text{X}\frac{\text{min}}{60\text{sec}}$				
			= cc/sec volume release rate				
		C.	Solve for(Q DOT) _i for nuclide (i) by obtaining the μ Ci/co of the release source and multiplying it by the product o above.	assay value of 2.2.2.B			
			(Q DOT) _i = (nuclide [i])				
			(assay) µCi cc X (2.2.2.B value)cc sec				
			$(Q DOT)_i = \mu Ci/sec \text{ for nuclide (i)}$				
		D.	To evaluate the total body dose rate obtain the K_i value from Table G-2.	e for nuclide (i)			
		E.	Solve for DR _{TBi}				
			$DR_{TBi} = K_i (X/Q) (Q DOT)_i = \frac{mrem - m^3}{\mu Ci - yr} X \frac{sec}{m^3} X \frac{\mu Ci}{sec}$				
			$DR_{TBi} = \frac{mrem}{yr}$ total body dose from nuclide (i) for the release source	specified			

REVISION NO .:			PROCEDURE TITLE:	PAGE:				
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	110 - 5001				
PROCEDURE NO.:				110 of 231				
	C-20	0	ST. LUCIE PLANT					
			METHODOLOGY SECTION					
2.2	<u>Dete</u> Estal	rmining (blishing (he Total Body and Skin Dose Rates for Noble Gas Releases And Setpoints for Effluent Monitors (continued)					
	2.	(contir	nued)					
		F.	To evaluate the skin dose rate, obtain the L_i and M_i valuable G-2 for nuclide (i).	ues from				
		G.	Solve for DR _{skin i}					
			$DR_{skin i} = [L_i + 1.1 M_i] (X/Q)(Q DOT)_i$					
			$DR_{skin i} = \frac{mrem}{yr}$ skin dose from nuclide (i) for the specific source	ied release				
		H.	Repeat steps 2.2.2.D through 2.2.2.G for each noble gareported in the assay of the release source.	as nuclide (i)				
		I.	The Dose Rate to the Total Body from radioactive noble radiation from the specified release source is:	e gas gamma				
			n					
			$DR_{TB} = \Sigma DR_{TBi}$					
			i					
		J.	The Dose Rate to the skin from noble gas radiation from release source is:	n the specified				
			п					
			$DR_{skin} = \Sigma DR_{skin i}$					
			i					
			The dose rate contribution of this release source shall be other gaseous release sources that are in progress at to interest. Refer to in-plant procedures and logs to deter Dose Rate to the Total Body and Skin from noble gas e	be added to all he time of mine the Total effluents.				

REVISION NO:
 PROCEDURE TITLE:
 OFFSITE DOSE CALCULATION MANUAL (ODCM)
 PAGE:
 111 of 231

 PROCEDURE NO:
 C-200
 ST. LUCIE PLANT
 111 of 231

 2.3
 Determining the Radioiodine & Particulate Dose Rate to Any Organ From
Gaseous Releases
 METHODOLOGY SECTION

 2.3
 Determining the Radioiodine & Particulate Dose Rate to Any Organ From
Gaseous Releases
 Discussion - Control 3.11.2.1 limits the dose rate from I-131, I-133, tritium and all
radionuclides in particulate form with half lives >eight days to <1500 mrem/yr to
any organ. The following calculation method is provided for determining the dose
rate from radioiodines (see 2.1) and particulates and is based on Section 5.2.1 and
5.2.1.1 through 5.2.1.3 in NUREG-0133, November 1978. The Infant is the
controlling age group in the inhalation, ground plane and cow/goat milk pathways,
which are the only pathways considered for releases. The long term (XIQ)₀
(depleted) and (D/Q) values are based on historical MET data prior to
implementing Appendix I. Only those nuclides that appear on their respective table
will be considered. The equations are:

 For Inhalation Pathway (excluding H-3):

 T
 For Ground Plane:
 DR_{4880Pr} =
$$\sum_{i=1}^{P} \frac{R}{i} (D/Q)(Q DOT)_i$$

 $\frac{R}{i}$
 T
 Eor Tritium Releases (Inhalation & Grass-Cow/Goat-Milk):

 DR_{480Pr} = $R_{H-3_{r}}^{*} (X/Q)_{b} (Q DOT)_{h_{3}}$

 Normally should be Pi_T, but Ri_T values are the same, thus use Ri_T tables in
Appendix A.

REVISION NO .:		PROCE	EDURE TITLE:	PAGE:			
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)		112 of 231			
PROCE	DURE NO.:			112 01 201			
	C-200		ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.3	Determining	the Ra	adioiodine & Particulate Dose Rate to Any Organ	From Gaseous			
	<u>Releases</u> (co	ontinue	ed)				
	For Total Do	se Rat	te from I & 8DP and H-3 To An Infant Organ T:				
	DR⊤ = Σ Z[DF	RI&8DPT	+ DR _{H-3T}]				
	Where:						
	Т	=	The organ of interest for the infant age group				
	z	=	The applicable pathways				
	DR _{I&8DPT}	=	Dose Rate in mrem/yr to the organ T from iodines and 8 day particulates				
	DR _{H-3} T	=	Dose Rate in mrem/yr to organ T from Tritium				
	DR_{T}	=	Total Dose Rate in mrem/yr to organ T from all p under consideration	oathways			
	īΣ	=	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide dose rates are summe the total dose rate from the pathway.	to the right of (i) through (n) ed to arrive at			
	Σ Z	=	A mathematical symbol to indicate that the total to organ T is the sum of each of the pathways d	dose rate D_T ose rates			
	R _i	=	The dose factor for nuclide (i) for organ T for the specified (units vary by pathway)	e pathway			
	Pi	=	The dose factor for instantaneous ground plane units of <u>mrem-m² sec</u> μCi-yr	pathway in			

REVISION NO .:		PROCEDURE TITLE:	PAGE:						
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	112 - 5 0 2 1						
PROCE	DURE NO.:	1	113 01 231						
	C-200	ST. LUCIE PLANT							
	METHODOLOGY SECTION								
2.3	<u>Determining</u> <u>Releases</u> (co	the Radioiodine & Particulate Dose Rate to Any Organ I ontinued)	From Gaseous						
From an evaluation of the radioactive releases and environmental pathways, the grass-cow/goat-milk pathway has been identified as the most limiting pathway the infant's thyroid being the critical organ. This pathway typically contributes >90% of the total dose received by the infant's thyroid and the radioiodine contribute essentially all of this dose. Therefore, it is possible to demonstrate compliance with the release rate limit of Control 3.11.2.1 for radioiodines and particulates by only evaluating the infant's thyroid dose for the release of radioiodines via the grass-cow/goat-milk pathway. The calculation method of Section 2.3.3 is used for this determination. If this limited analysis approach is used, the dose calculations for other radioactive particulate matter and other pathways need not be performed. Only the calculations of Section 2.3.3 for the radioiodines need be performed to demonstrate compliance with the Control of rate limit.									
	and are to be used only for evaluating unusual circumstances where releases of particulate materials other than radioiodines in airborne releases are abnormally high. The calculations of Sections 2.3.1, 2.3.2, 2.3.4 and 2.3.5 will typically be used to demonstrate compliance with the dose rate limit of Control 3.11.2.1 for radioiodines and particulates when the measured releases of particulate material (other than radioiodines and with half lives >8 days) are >10 times the measured releases of radioiodines.								
	1. <u>The Ir</u>	halation Dose Rate Method:							
		NOTE The H-3 dose is calculated as per 2.3.4.							
	A.	The controlling location is assumed to be an Infant local sector at the mile $X/Q)_D$ for this location is sec/m ³ . The common to all nuclides. (See Table M-2 for value, sector)	ated in the le range. The his value is tor and range.)						
	В.	Enter the release rate in ft ³ /min of the release source a cc/sec.	nd convert to						
		$= \frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{\text{ft}^{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$							

REVISI	ON NO.:		PROCEDURE TITLE: PAGE:
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)
PROCE	DURE NO.:		114 01 231
	C-200		ST. LUCIE PLANT
			METHODOLOGY SECTION
2.3	<u>Detern</u> Releas	<u>nining t</u> ses (co	the Radioiodine & Particulate Dose Rate to Any Organ From Gaseous ntinued)
	1.	(contin	nued)
		C.	Solve for $(Q DOT)_i$ for nuclide (i) by obtaining the μ Ci/cc assay value of the release source activity and multiplying it by the product of 2.3.1.B above.
			$(QDOT)_i = \frac{(nuclide[i]assay) \mu Ci}{cc} X \frac{(Value 2.3.1.B)cc}{sec}$
			$(Q DOT)_i = \mu Ci/sec$ for nuclide (i)
		D.	Obtain the R _i value from Table G-5 for the organ T.
		E.	Solve for DR _i
			$DR_{iT} = R_{iT} (X/Q)_{D} (Q DOT)_{i} = \frac{mrem - m^{3}}{\mu Ci - yr} X \frac{sec}{m^{3}} X \frac{\mu Ci}{sec}$
			$DR_{iT} = \underline{mrem}_{yr}$ The Dose Rate to organ T from nuclide (i)
		F.	Repeat steps 2.3.1.C through 2.3.1.E for each nuclide (i) reported in the assay of the release source.
		G.	The Dose Rate to the Infants organ T from the Inhalation Pathway is:
			$DR_{Inhalation_T} = DR_1 + DR_2 + \underline{\qquad} + DR_n$
			for all nuclides except H-3. This dose rate shall be added to the other pathways as per 2.3.5 - Total Organ Dose.
	Steps Infant.	2.3.1.0	<u>NOTE</u> C through 2.3.1.G need to be completed for each organ T of the

REVISION NO .:		PROCEDURE TITLE:	PAGE:
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	115 of 221
PROCE	DURE NO.:		115 01 231
	C-200	ST. LUCIE PLANT	
		METHODOLOGY SECTION	
2.3	<u>Determining t</u> <u>Releases</u> (co	he Radioiodine & Particulate Dose Rate to Any Organ Intinued)	From Gaseous
	2. <u>The G</u>	round Plane Dose Rate Method:	
		<u>NOTE</u> Tritium dose via the ground plane is zero.	
	A.	The controlling location is assumed to be an Infant local sector at the mile range. The location is 1/m ² . This value is common to (See Table M-2 for sector, range and value.)	ited in the e (D/Q) for this all nuclides.
	В.	Enter the release rate in ft ³ /min of the release source a cc/sec.	nd convert to
	=f min	$\frac{t^3}{12} \times \frac{2.8317 \times 10^4 \text{ cc}}{\text{ft}^3} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$	
	C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c from the release source activity and multiplying it by the 2.3.2.B above.	c assay value e product of
	(QDOT	$(nuclide[i]assay)\mu Ci}{cc} \times \frac{(Value 2.3.2.B)cc}{sec}$	
	(Q DOT) _i = $\mu Ci/sec$ for nuclide (i)	
	D.	Obtain the P _i value from Table G-3	
	E.	Solve for DR _i	
	$DR_i = P_i$	$T(D/Q)(QDOT)_{i} = \frac{mrem - m^{2} - sec}{\mu Ci - yr} X \frac{1}{m^{2}} X \frac{\mu Ci}{sec}$	
	DR _i =	<u>mrem</u> The Dose Rate to organ T from nuclide (i) yr	
	F.	Repeat steps 2.3.2.C through 2.3.2.E for each nuclide the assay of the release source.	(i) reported in

REVISION NO .:			PROCEDURE TITLE:	PAGE:
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO .:		.:		116 of 231
	C-200		ST. LUCIE PLANT	
<u> </u>				
			METHODOLOGY SECTION	
2.3	<u>Deter</u> Relea	<u>mining t</u> ases (co	<u>the Radioiodine & Particulate Dose Rate to Any Organ I</u> ntinued)	From Gaseous
	2.	(contir	nued)	
		G.	The Dose Rate to the Infant's Whole Body from the Gro Pathway is:	ound Plane
			$DR_{GrPl} = DR_1 + DR_2 + \underline{\qquad} + DR_n$	
			for all nuclides. This dose rate shall be added to the ot as per 2.3.5.	her pathways
	3.	<u>The G</u>	rass-Cow/Goat-Milk Dose Rate Method:	
			NOTE	
			H-3 dose is calculated as per 2.3.4.	
		A.	The controlling animal was established as a the sector at miles. The (D/C location is 1/m ² . This value is common to (See Table M-3 for sector, range and value.)	located in Q) for this all nuclides.
		В.	Enter the anticipated release rate in ft ³ /min of the release convert to cc/sec.	se source and
			$= -\frac{\text{ft}^{3}}{\text{min}} \times \frac{2.8317 \times 10^{4} \text{ cc}}{\text{ft}_{3}} \times \frac{\text{min}}{60 \text{ sec.}} = \text{cc/sec}$	
		C.	Solve for (Q DOT) _i for nuclide (i) by obtaining the μ Ci/c of the release source activity and multiplying it by the p 2.3.3.B above.	c assay value roduct of
			$(QDOT)_i = \frac{(nuclide[i]assay) \mu Ci}{cc} X \frac{(value 2.3.3.B)cc}{sec}$	
			$(Q DOT)_i = \mu Ci/sec$ for nuclide (i)	
		D.	Obtain the R _i value from Table G-6(7) (whichever is the animal, cow/goat, for infant).	e controlling
			If the limited analysis approach is being used, limit the the infant thyroid.	calculation to

REVISION NO .:			PROCEDURE TITLE:	PAGE:			
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	117 of 221			
PROCE	DURE NO.	:		117 01 231			
	C-200)	ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.3	<u>Deter</u> Relea	<u>mining t</u> I <u>ses</u> (co	<u>he Radioiodine & Particulate Dose Rate to Any Organ F</u> ntinued)	From Gaseous			
	3.	(contin	ued)				
		E.	Solve for DR _{iT}				
			$DR_{iT} = R_{iT} (D/Q) (Q DOT)_{i} = \frac{mrem - m^{2} - sec}{\mu Ci - yr} X \frac{1}{m^{2}} X \frac{\mu Ci}{sec}$				
			DR _{iT} = <u>mrem</u> the Dose Rate to organ T from nuc yr	lide (i)			
		F.	Repeat steps 2.3.3.C through 2.3.3.E for each nuclide (i) reported in the assay of the release source.				
			Only the radioiodines need to be included if the limited approach is being used.	analysis			
		G.	The Dose Rate to the Infant's organ T from Grass pathway is:	Milk			
			$DR_{grass}-\Milk_{T} = DR_{1} + DR_{2} + \+ DR_{n}$				
			for all nuclides. This dose rate shall be added to the ot as per 2.3.5 - Total Organ Dose.	her pathways			
	<u> </u>		NOTE				
	Steps Infant appro	2.3.3.0 . Limit ach is b	C through 2.3.3.G need to be completed for each organ the calculation to the infant thyroid if the limited analysis being used.	of the			

REVISION NO .:			PROCEDURE TITLE: PAGE:					
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)		110 - 5001			
PROCEDURE NO.:		:		· · · · · ·	118 of 231			
	C-200		ST. LUC	IE PLANT				
			METHODOLO	GY SECTION				
2.3	<u>Deterr</u> Relea	<u>mining t</u> ses (co	the Radioiodine & Particulate Dose Rate to Any Organ From Gaseous ontinued)					
	4. <u>The H-3 Dose Rate Method</u> :							
		A.	The controlling locations a are:	nd their $(X/Q)_D$ values for each	ch pathway			
			Inhalation - Infant at	range in the	sector.			
			$(X/Q)_D = sec/m^3$ (S	ee Table M-2 for range, sect	or and value)			
			Ground Plane - Does not a	apply to H-3				
			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	located in the nt at the exclusion area in the 'he $(X/Q)_D$ for the 'm ³ . (From Table M-6 at the e location of the Milk Animal	sector e location is range and above.)			
		В.	Enter the anticipated relea convert it to cc/sec.	se rate in ft ³ /min of the relea	se source and			
			$= -\frac{ft^{3}}{min} \times \frac{2.8317 \times 10^{4} c}{ft^{3}}$	$\frac{2c}{1} \times \frac{\min}{60 \text{ sec.}}$				
			= cc/sec volume r	elease rate				
		C.	Solve for (Q DOT) _{H-3} for Tr of the release source and above.	ritium, by obtaining the μCi/c multiplying it by the product o	c assay value of 2.3.4.B			
			$(QDOT)_{H-3} = \frac{(H-3) \ \mu Ci}{cc} X$	(2.3.4.B value)cc sec				
			$(Q DOT)_{H-3} = \mu Ci/sec$	activity release rate				
		D.	Obtain the Tritium dose fac	ctor (R _i) for Infant organ T fro	om:			
			PATH	TABLE #				
			Inhalation	G-5				
		(Grass-Cow/Goat-Milk	G-6(7)				

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:				
			OFFSITE DOSE CALCULATION MANUAL (ODCM)	119 of 231				
I NOOL	C-200)	ST. LUCIE PLANT					
	METHODOLOGY SECTION							
2.3	<u>Deter</u> Relea	<u>mining t</u> I <u>ses</u> (co	he Radioiodine & Particulate Dose Rate to Any Organ I ntinued)	<u>From Gaseous</u>				
	4.	(contin	ued)					
		E.	Solve for D_{H-3} (Inhalation) using the $(X/Q)_D$ for inhalation from 2.3.4.A and R_{H-3} (Inhalation) from 2.3.4.D.					
			$DR_{H_{-3}_{Inh_{T}}} = R_{H_{-3}} (X/Q)_{D} (Q DOT)_{H_{-3}}$					
			$DR_{H_{-3_{\text{lnh}}}} = \text{mrem/yr} \text{ from H - 3 Infant Inhalation for organ T}$					
		F.	Solve for D _{H-3} (GrassMilk) using the (X/Q GrassMilk from 2.3.4.A and R _{H-3} (GrassMilk) from 2.3.4.D) _D for				
			$DR_{H_{-3}G_{-}-M_{T}} = R_{H_{-3}G_{-}-M_{T}} (X/Q)_{D} (Q DOT)_{H_{-3}}$					
			$DR_{H-3}G-MT}$ = mrem/yr from H - 3 Infant					
		G.	Repeat steps 2.3.4.D through 2.3.4.F for each Infant or interest.	gan T of				
		H.	The individual organ dose rates from H-3 shall be adde organ pathway dose rates as per 2.3.5.	d to the other				

REVISION NO .:			PROCEDURE TITLE: PAGE:							
53			OFESITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO.:		.:			120 of 231					
	C-200)	ST.							
METHODOLOGY SECTION										
23	2.3 Determining the Radioiodine & Particulate Dose Rate to Any Organ From Gaseous									
2.0	Releases (continued)									
	 <u>Determining the Total Organ Dose Rate from Iodines, 8D-Particulates, and H-3 from Release Source(s)</u> 									
		A.	The following table de to arrive at the total do	scribes all the pathways ose rate to an organ T:	that mus	t be summed				
			PATHWAY	DOSE RATE	STE	EP # REF.				
			nhalation (I&8DP)		2	2.3.1.G				
		Gr	ound Plane (I&8DP)	(Whole Body only)	2	2.3.2.G				
		Gr-	Milk (I&8DP)		2	2.3.3.G				
			Inhalation (H-3)		2	2.3.4.E				
		Gr-	Milk (H-3)		2	2.3.4.F				
			DR _T =	(sum of above)						
		В.	Repeat the above sun	nmation for each Infant o	organ T.					
		C.	The DR _T above shall the site that will be in progradures and logs to	be added to all other releases at any instant. Re o determine the Total D	ease sour fer to in-p R⊤ to eacl	rces on the lant h organ.				
2.4	<u>Deter</u>	mining t	the Gamma Air Dose fo	or Radioactive Noble Ga	as Releas	e Source(s)				
	<u>Discussion</u> - Control 3.11.2.2 limits the air dose due to noble gases in gaseous effluents for gamma radiation to <5 mrads for the quarter and to <10 mrads in any calendar year. The following calculation method is provided for determining the noble gas gamma air dose and is based on section 5.3.1 of NUREG-0133, November 1978. The dose calculation is independent of any age group. The equation may be used for Control dose calculation, the dose calculation for the annual report or for projecting dose, provided that the appropriate value of (X/Q) is used as outlined in the detailed explanation that follows. The equation for gamma air dose is:									
	D ^v -a	n ir = Σ3. i	.17 X 10 ⁻⁸ M _i (X/Q) Q _i							

REVISIO	ON NO.:	PR	PROCEDURE TITLE: PAGE:			
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	121 of 231		
PROCE	C-200		ST. LUCIE PLANT			
			METHODOLOGY SECTION			
2.4	Determining (continued)	<u>the</u>	Gamma Air Dose for Radioactive Noble Gas Releas	<u>e Source(s)</u>		
	Where:					
	D _Y -air	=	gamma air dose in mrad from radioactive noble gas	es.		
	Σ	=	A mathematical symbol to signify the operations to a of the symbol are to be performed for each nuclide and summed to arrive at the total dose, from all nuc during the interval. No units apply.	the right side (i) through (n) lides reported		
	3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	units of		
	Mi	=	the gamma air dose factor for radioactive noble gas units of $\frac{mrad-m^3}{\mu}$ Ci-yr	nuclide (i) in		
	(X/Q)	=	the long term atmospheric dispersion factor for group releases in units of sec/m ³ . The value of (X/Q) is the nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control is etc.	Ind level le same for all (X/Q) does s based on,		
	Qi	=	the number of micro-curies of nuclide (i) released (or during the dose calculation exposure period. (e.g., r or year)	or projected) nonth, quarter		

REVISION NO .:			PROCEDURE TITLE:	PAGE:
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	122 of 231
PROCE	DURE NO	.:		
	C-200)	ST. LUCIE PLANT	
			METHODOLOGY SECTION	
2.4	<u>Deter</u> (conti	<u>mining (</u> nued)	the Gamma Air Dose for Radioactive Noble Gas Releas	e Source(s)
	The for dose	ollowing is calcu	steps provide a detailed explanation of how the radion lated.	uclide specific
	1.	To det the typ Dose I nuclide	ermine the applicable (X/Q) refer to Table M-1 to obtain be of dose calculation being performed. (i.e., Quarterly Projection for examples). This value of (X/Q) applies to e (i).	the value for Control or each
	2.	Detern	nine (M _i) the gamma air dose factor for nuclide (i) from ⁻	Table G-2.
	3.	Obtain waste interva	the micro-Curies of nuclide (i) from the in-plant radioac management logs for the sources under consideration on al.	tive gaseous during the time
	4.	Solve	for D _i as follows:	
		$D_i = \frac{3}{2}$	$\frac{17 \text{ X} \text{ 10}^{-8} \text{ yr}}{\text{sec}} X \frac{\text{M}_{\text{i}} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} X \frac{(\text{X}/\text{Q}) \text{ sec}}{\text{m}^{3}} X \frac{\text{Q}_{\text{i}} \ \mu \text{Ci}}{1}$	
		D _i = r	mrad = the dose from nuclide (i)	
	5.	Perfor time in	m steps 2.4.2 through 2.4.4 for each nuclide (i) reported iterval in the source.	I during the
	6.	The to dose c	tal gamma air dose for the pathway is determined by su of each nuclide (i) to obtain D _Y -air dose.	imming the D _i
		D _{Y-air} =	$D_1 + D_2 + _\ + D_n = mrad$	
	7.	Refer applica	to in-plant procedures for comparing the calculated dose able limits that might apply.	e to any

REVISIO	ON NO.:	PRO	DCEDURE TITLE:	PAGE:			
	53	0	FFSITE DOSE CALCULATION MANUAL (ODCM)	100 - 5 001			
PROCEDURE NO.:				123 0f 231			
	C-200		ST. LUCIE PLANT				
			METHODOLOGY SECTION				
2.5	Determining	the	Beta Air Dose for Radioactive Noble Gas Releases				
	<u>Discussion</u> - Control 3.11.2.2 limits the quarterly air dose due to beta r noble gases in gaseous effluents to <10 mrads in any calendar quarte mrads in any calendar year. The following calculation method is provi determining the beta air dose and is based on Section 5.3.1 of NUREC November 1978. The dose calculation is independent of any age grou equation may be used for Control dose calculation, dose calculation for reports or for projecting dose, provided that the appropriate value of () as outlined in the detailed explanation that follows.						
	The equation for beta air dose is:						
			n D _{B-air} $\Sigma = 3.17 \times 10^{-8} N_i (X/Q) Q_i$ i				
	Where:						
	D _{B-air}	=	beta air dose in mrad from radioactive noble gases	5.			
	ľΣ	=	a mathematical symbol to signify the operations to of the symbol are to be performed for each nuclide (n) and summed to arrive at the total dose, from all reported during the interval. No units apply.	the right side (i) through nuclides			
	3.17 X 10 ⁻⁸	=	the inverse of the number of seconds per year with year/sec.	units of			
	Ni	=	the beta air dose factor for radioactive noble gas n units of $\frac{mrad-m^3}{\mu Ci-yr}$	uclide (i) in			
	(X/Q)	=	the long term atmospheric dispersion factor for gro releases in units of sec/m ³ . The value of (X/Q) is t nuclides (i) in the dose calculation, but the value of vary depending on the Limiting Sector the Control etc.	und level he same for all i (X/Q) does is based on,			
	Qi	=	the number of micro-Curies of nuclide (i) released during the dose calculation exposure period	(or projected)			

REVISI	ON NO.:		PROCEDURE TITLE:	PAGE:					
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	104 - 5004					
PROCE	PROCEDURE NO .:			124 of 231					
	C-200	C	ST. LUCIE PLANT						
2.5	Deter	mining t	he Beta Air Dose for Radioactive Noble Gas Releases (continued)						
	The f	ollowing	ng steps provide a detailed explanation of how the dose is calculated.						
	1.	To det the typ project	etermine the applicable (X/Q) refer to Table M-1 to obtain the value for pe of dose calculation being performed (i.e., quarterly Control or Dose ction for examples). This value of (X/Q) applies to each nuclide (i).						
	2.	Detern	nine (N_i) the beta air dose factor for nuclide (i) from Tab	le G-2.					
	3.	Obtain waste interva	in the micro-curies of nuclide (i) from the in-plant radioactive gaseous e management logs for the source under consideration during the time al.						
	4.	Solve	for D _i as follows:						
		$D_{i} = \frac{3.17 \times 10^{-8} \text{ yr}}{\text{sec}} \times \frac{N_{i} \text{ mrad} - \text{m}^{3}}{\mu \text{Ci} - \text{yr}} \times \frac{(X/Q) \text{sec}}{M^{3}} \times \frac{Q_{i} \mu \text{Ci}}{1}$							
		D _i = m	rad = the dose from nuclide (i)						
	5.	Perfori time in	n steps 2.5.2 through 2.5.4 for each nuclide (i) reported during the terval in the release source.						
	6.	The to dose o	tal beta air dose for the pathway is determined by sumr f each nuclide (i) to obtain D _{B-air} dose.	a air dose for the pathway is determined by summing the D_{i} nuclide (i) to obtain $D_{\text{B-air}}$ dose.					
		D _{B-air} =	$D_1 + D_2$ + D_n = mrad						
	7.	Refer t applica	to in-plant procedures for comparing the calculated dostable limits that might apply.	e to any					

REVISION NO.:		PROCEDURE TITLE:	PAGE:						
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	125 of 231						
PROCE	EDURE NO.:								
	C-200	ST. LUCIE PLANT							
	METHODOLOGY SECTION								
2.6 <u>Determining the Radioiodine and Particulate Dose To Any Age Group's Organ</u> <u>From Cumulative Releases</u>									
Discussion - Control 3.11.2.3 limits the dose to the whole body or any organ resulting from the release of I-131, I-133, tritium and particulates with half-lives days to ≤7.5 mrem during any calendar quarter and ≤15 mrem during any calendar year. The following calculation method is provided for determining the critical organ dose due to releases of radioiodines and particulates and is based on Section 5.3.1 of NUREG-0133, November 1978. The equations can be used for any age group provided that the appropriate dose factors are used and the tota dose reflects only those pathways that are applicable to the age group. The Effluent Supervisor will track which age group is the controlling (most restrictive age group (see control 3.11.2.6.c). The (X/Q) _D symbol represents a DEPLETEI (X/Q) which is different from the Noble Gas (X/Q) in that (X/Q) _D takes into accound the loss of I&8DP and H-3 from the plume as the semi-infinite cloud travels ove given distance. The (D/Q) dispersion factor represents the rate of fallout from the cloud that affects a square meter of ground at various distances from the site. I&8DP and H-3 notations refer to I-131, I-133 Particulates having half-lives >8 cloud that affects a square meter of ground at various distances from the site. Is to calculate the I&8DP and H-3 dose for each pathway that applies to a given age group. The total dose to an organ can then be determined by summing the pathways that apply to the receptor in the sector. The infant age group does not apply to Grass-Cow-Meat or Vegetation pathway dose since they are assumed eat only milk									
		Sale.							
	For innalation	r Pathway (excluding H-3).							
	D _{I&8DPT} = Σ3. i	17 X 10 ⁻⁸ R _i (X/Q) _D Q _i							
	For Ground F	Plane, Grass-Cow/Goat-Milk, Grass-Cow/Goat-Milk, or V	/egetation						
	n D _{I&8DPT} = Σ3. i	$D_{I\&BDP_{T}} = \sum 3.17 \times 10^{-8} R_{i} (D/Q) Q_{i}$ i							
	For each path	nway above (excluding Ground Plane) For Tritium:							
	D _{H-3T} = 3.	17 X 10 ⁻⁸ R _{H-3T} (X/Q) _D Q _i							

REVISIC	ON NO.:	PROCE	DURE TITLE:	PAGE:				
	53	OFF	SITE DOSE CALCULATION MANUAL (ODCM)	126 of 231				
PROCEDURE NO.:				120 01 231				
	C-200		ST. LUCIE PLANT					
			METHODOLOGY SECTION					
2.6	Determining t From Cumula	ndioiodine and Particulate Dose To Any Age Grou Releases (continued)	<u>p's Organ</u>					
	For Total Dos group:	cified age						
	$D_{T} = \frac{\Sigma}{Z} [D_{I\&BDP}]$]						
	Where:							
	Т	=	the organ of interest of a specified age group					
	Z	=	the applicable pathways for the age group of inte	erest				
	D _{I&8DP}	=	 Dose in mrem to the organ T of a specified age group from radioiodines and 8D Particulates 					
	D _{H-3}	=	 Dose in mrem to the organ T of a specified age group from Tritium 					
	D _T	=	Total Dose in mrem to the organ T of a specified from Gaseous particulate Effluents	I age group				
	ľΣ	=	A mathematical symbol to signify the operations the symbol are to be performed for each nuclide and the individual nuclide doses are summed to total dose from the pathway of interest to organ	to the right of (i) through (n) arrive at the T.				
	Σ Z	=	A mathematical symbol to indicate that the total organ T is the sum of each of the pathway doses and H-3 from gaseous particulate effluents.	dose D⊤ to s of I&8DP				
	3.17 X 10 ⁻⁸	=	The inverse of the number of seconds per year year year/sec.	with units of				
	R _i	=	The dose factor for nuclide (i) (or H-3) for pathward T of the specified age group. The units are either	ay Z to organ er				
		mrem yr -	$\frac{1-m^3}{\mu Ci}$ for pathways OR $\frac{mrem - m^2 - sec}{yr - \mu Ci}$ for pathways using (X/Q) _D OR $\frac{mrem - m^2 - sec}{yr - \mu Ci}$ using (E	ways D/Q)				

REVISION NO .:		PROCE	PROCEDURE TITLE: PAGE:						
	53		OFFSITE DOS		E CALCULATION MANUAL (ODCM)	407 - 5004			
PROCE	PROCEDURE NO.:					127 07 231			
	C-200		ST. LUCIE PLANT		ST. LUCIE PLANT				
				MET	HODOLOGY SECTION				
2.6	<u>Deter</u> From	rmining t Cumula	<u>he Radioiodine and Particulate Dose To Any Age Group's Organ</u> ative Releases (continued)						
	(X/Q)	D	=	The depleted-(X/Q) value for a specific location where the receptor is located (see discussion). The units are sec/m^3					
	(D/Q))	=	 the deposition value for a specific location where the receptor is located (see discussion). The units are 1/m² where m=meters. 					
	Qi		=	The numb projected	per of micro-Curies of nuclide (i) releas) during the dose calculation exposure	ed (or period.			
	Q _{H-3}	}	=	the number of micro-Curies of H-3 released (or projected) during the dose calculation exposure period.					
	1.	<u>The Inh</u>	alation Dose Pathway Method:						
				NOTE					
			The H-3 dose should be calculated as per 2.6.4.						
		A.	Determine the applicable $(X/Q)_D$ from Table M-2 for the location where the receptor is located. This value is common to each nuclide (i)						
		В.	For the age group(s) of interest, determine the R_i factor of nuclide (i) for the organ T and age group from the appropriate table number.						
		A	ge Gr	oup	Inhalation Dose Factor Table Numb	er			
			Infan	it	G-5				
			Chilo	ł	G-8				
			Teer	า	G-13				
			Adul	t	G-18				
		C.	Obtain the micro-Curies (Q _i) of nuclide (i) from the radioactive gas waste management logs for the release source(s) under consideration during the time interval.						
		D.	Solve	for D _I					
			D _i = 3	.17 X 10 ⁻⁸ F	Ri(X/Q) _D Q _I				
			D _i =	n	nrem from nuclide (i)				

REVISION NO .:			PROCEDURE TITLE:	PAGE:					
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	100 - 6001					
PROCE	DURE N	0.:		128 of 231					
	C-200		ST. LUCIE PLANT						
	METHODOLOGY SECTION								
2.6	<u>Dete</u> From	ermining f n Cumula	the Radioiodine and Particulate Dose To Any Age Group's Organ ative Releases (continued)						
	1. (continued)								
		E.	Perform steps 2.6.1.B through 2.6.1.D for each nuclide during the time interval for each organ.	(i) reported					
		F.	The Inhalation dose to organ T of the specified age group is determined by summing the D_i Dose of each nuclide (i)						
			$\frac{D_{\text{Inhalation}}}{(\text{Age Group})} = D_1 + D_2 + \underline{\qquad} + D_n = \text{mrem}$						
	Refer to 2.6.5 to determine the total dose to organ T from radioiodines & 8D Particulates								
	2.	The Gro	ound Plane Dose Pathway Method:						
	Tritit orga	ım dose n consid	NOTE via the ground plane is zero. The Whole Body is the or ered for the Ground Plane pathway dose.	ıly					
		A.	Determine the applicable (D/Q) from Table M-2 for the the receptor is located. This (D/Q) value is common to (i)	location where each nuclide					
	 B. Determine the Ri factor of nuclide (i) for the whole body fr Table G-4. The ground plane pathway dose is the same groups. 								
	C. Obtain the micro-Curies (Q _i) of nuclide (i) from the radioactive gas waste management logs for the source under consideration.								
	D. Solve for D ₁								
			$D_i = 3.17 \times 10^{-8} R_i (D/Q) Q_i$						
			D _i = mrem for nuclide (i)						
		E.	Perform steps 2.6.2.B through 2.6.2.D for each nuclide during the time interval.	(i) reported					
REVISION NO .:		:	PROCEDURE TITLE: PAG			PAGE:			
----------------	---------------------	------------------------	---	---	--	--	--	--	
53		3	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:		NO.:			129 of 231				
	C-200			ST. LUCIE PLANT					
	METHODOLOGY SECTION								
2.6	<u>Det</u> Fro	ermining t m Cumula	<u>the Radioiodine</u> ative Releases (and Particulate Dose	To Any Age Grou	p's Organ			
	2.	(contir	nued)						
		F.	The Ground Plathe Di Dose of	ane dose to the whole each nuclide (i)	body is determine	ed by summing			
			D _{Gr.PlWBody} = D	$D_1 + D_2 + ___ + D_n =$	mrem				
			Refer to step 2	.6.5 to calculate total d	ose to the Whole	Body.			
	3.	The Gra	ass-Cow/Goat-N	<u>/lilk Dose Pathway Met</u>	<u>hod</u> :				
			Tritium do	NOTE ose is calculated as per	2.6.4.				
		A.	A cow or a goa the sum of eac milk from only t determine whic	t, will be the controlling h animal), as the huma the most restrictive anir ch animal is controlling) animal; (i.e., dos in receptor is ass mal. Refer to Tat based on its (D/C	se will not be umed to drink ble M-3 to Q).			
		B.	For the age group(s) of interest, determine the dose factor R_i for nuclide (i), for organ T, from the appropriate table number for the applicable milk animal.						
		Ag	je Group	Cow Milk Dose Factor Table Number	Goat Milk Do Factor Table Nu	se mber			
			Infant	G-6	G-7				
			Child	G-9	G-10				
			Teen	G-14	G-15				
			Adult	G-19	G-20				
		C.	Obtain the mic waste manage during the time	ro-Curies (Q _i) of nuclide ment logs for the releas interval.	e (i) from the radio se source under o	oactive gas consideration			
		D.	Solve for D _i						
			$D_i = 3.17 \times 10^{-8} R_i (D/Q) Q_i$						

 D_i = mrem from nuclide (i)

REVISION NO .:			PROCEDURE TITLE:	PAGE:				
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)					
PROCEDURE NO.:		D.:		130 of 231				
C-200			ST. LUCIE PLANT					
			METHODOLOGY SECTION					
2.6	<u>Dete</u> From	rmining t n Cumula	the Radioiodine and Particulate Dose To Any Age Grou <u> ative Releases</u> (continued)	<u>p's Organ</u>				
	3.	(contin	ued)					
		E.	Perform steps 2.6.3.B through 2.6.3.D for each nuclide (i) reported during the time interval. Only the radioiodines need to be included if the limited analysis approach is used.					
		F.	The Grass-Cow-Milk (or Grass-Goat-Milk) pathway dos is determined by summing the Di dose of each nuclide(e to organ T (i).				
			D_{G-C-M} (or D_{G-G-M}) = $D_1 + D_2 + ___ + D_n$ = mrem	1				
	The dose to each organ should be calculated in the same mann with steps 2.6.3.B through 2.6.3.F. Refer to step 2.6.5 to detern the total dose to organ T from radioiodines &8D Particulates. If limited analysis approach is being used the infant thyroid dose v grass-cow(goat)-milk pathway is the only dose that needs to be determined. Section 2.6.5 can be omitted.							
	4.	The Gra	ass-Cow/Goat-Meat Dose Pathway method:					
			NOTE Tritium dose is calculated as per 2.6.6.					
		A.	Determine the controlling herd location by:					
			1. For dose calculations (other than the annual rep historical herd was determined to be located in S at miles. This herd shall be used for Control required dose calculations.	ort) the Sector all ODCM				
			2. For annual report dose calculations the herd from Use Census having the highest (D/Q) at its local reporting herd. The Land Use Census for 1978 shall apply to the calendar year 1979 (for examp locate the nearest herd in each sector over land (D/Q) will be determined from actual met data the during the reporting period.	n the Land ion will be the (for example) ble) and will . The real at occurred				
		В.	Determine the applicable (D/Q) from Table M-3 for the location(s) of the herd as determined in 2.6.4.A above.					

REVISION NO .:			PROCEDURE TITLE:		PAGE:			
53		OFESITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:				131 of 231				
C-200				ST. LUCIE PLANT				
			MET	HODOLOGY SECTION				
2.6	Deter	mining	the Radioiodine a	and Particulate Dose To Any Age Grou	p's Organ			
	From	Cumula	<u>ative Releases</u> (c	ontinued)				
	4.	(contir	nued)					
		C.	Determine the de Table specified I	Determine the dose factor Ri for nuclide (i) for organ tau from the Table specified below:				
		Γ	Age	Meat Dose Factor Table No.				
			Infant	N/A *				
			Child	G-11				
			Teen	G-16				
			Adult	G-21				
			* The infant of this path	does not eat meat and therefore dose oway.	does not apply			
		D.	Obtain the micro-Curies (Qi) of nuclide (i) from the radioactive gas waste management logs (for projected doses - the micro-Curies o nuclide (i) to be projected) for the release source(s) under consideration during the time interval. The dose can be calculated from a single release source, but the total dose for ODCM Control Limits or annual reports shall be from all gaseous release sources					
		E.	Solve for Di					
			Di = 3.17 X 10 Ri (D/Q) Qi					
			Di =	mrem from nuclide (i)				
		F.	Perform Steps 2.6.4.C through 2.8.4.E for each nuclide (i) reported during the time interval.					
		G.	The Grass-Cow- summing the Di	Meat pathway dose to organ tau is de dose of each nuclide (i).	termined by			
			Dose	= D1 + D2 + D3 + + Dn =	mrem			
			Grass-Cow-Mea Excluding Tritiur (Child, Teen, or	t n Adult)				

REVISION NO.:		PROCEDURE TITLE:	PAGE:				
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)		100 - 5 004			
PROCE	EDURE NO.:			132 of 231			
C-200			ST. LUCIE PLANT				
		MET	HODOLOGY SECTION				
2.6	Determining From Cumul	<u>the Radioiodine a ative Releases</u> (c	and Particulate Dose To Any Age Grou continued)	<u>p's Organ</u>			
	5. The Ve	getation (Garden) Dose Pathway method:				
	A.	Determine the co	ontrolling garden location by:				
		1. For dose garden wa	calculations (other than annual reports as determined to be located in Sector _ miles. This garden shall be used fo ose calculations.) the historical at or all ODCM			
		2. For annual having the reporting example) and will lo (D/Q) will during the	2. For annual report dose calculations the Land Census Garden having the highest real (D/Q) at its location will be the reporting garden. The Land Use Census for 1978 (for example) shall apply to the calendar year 1979 (for example) and will locate the nearest garden in each sector. The real (D/Q) will be determined from actual met data that occurred during the reporting period.				
	В.	Determine the a the garden(s) as	pplicable (D/Q) from Table M-3 for the determined above.	location(s) of			
	C.	Determine the de Table specified b	ose factor Ri for nuclide (i) for organ ta below:	u from the			
	Γ	Age	Vegetation Dose Factor Table No.				
		Infant	N/A *				
		Child	G-12				
		Teen	G-17				
		Adult	G-22				
	-	* denotes the not apply to	e infant does not eat vegetation and the this pathway.	erefore does			
	 D. Obtain the micro-Curies (Qi) of nuclide (i) from the radioac waste management logs (for projected doses - the micro-Curies (Qi) for the release source(s) under nuclide (i) to be projected) for the release source(s) under consideration during the time interval. The dose can be can from a single release source, but the total dose for ODCM limits or appual reports aboli he from all second release 						

REVISION NO .:			PROCEDURE TITLE:	PAGE:			
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	133 of 231			
PROCE	DURE NO C-20(.:)	ST. LUCIE PLANT				
	METHODOLOGY SECTION						
2.6	<u>Deter</u> From	mining t Cumula	the Radioiodine and Particulate Dose To Any Age Grou	<u>p's Organ</u>			
	5.	(contin	ued)				
		E.	Solve for Di				
			Di = 3.17 X 10 ⁻⁸ Ri (D/Q) Qi				
			Di = mrem from nuclide (i)				
		F.	Perform Steps 2.6.5.C through 2.6.5.E for each nuclide during the time interval.	(i) reported			
		G.	The Vegetation pathway dose to organ tau is determined by summing the Di dose of each nuclide (i).				
			Dose = D1 + D2 + D3 + + Dn =	mrem			
			Vegetation (Excluding Tritium) (Child, Teen, or Adult)				
	6.	The G	Saseous Tritium Dose (Each Pathway) Method:				
		Α.	The controlling locations for the pathway(s) has already determined by:	/ been			
			Inhalation-as per 2.6.1.AGround Plane-not applicable for H-3Grass-Cow/Goat-Milk-as per 2.6.3.AGrass-Cow/Goat-Milk-as per 2.6.4.AVegetation (Garden)-as per 2.6.5.A				
		В.	Tritium dose calculations use the depleted $(X/Q)_D$ inste Table M-2 describes where the $(X/Q)_D$ value should be from.	ad of (D/Q). obtained			

REVISION NO.:			PROCEDURE TITLE: PAGE:					
	53		OFFSITE	DOSE CALCULA	TION MANUAL (C	DCM)	101 - 5 001	
PROCE	PROCEDURE NO.:				· ·	,	134 of 231	
	C-200)		ST. LUCIE	PLANT			
				METHODOLOGY	SECTION			
2.6	2.6 <u>Determining the Radioiodine and Particulate Dose To Any Age Group's Organ</u> From Cumulative Releases (continued)							
	6.	(contir	nued)					
		C.	For the age group(s) of interest, determine the Pathway Tritium dose factor (R_{H-3}) for the organ T of interest from the Table specified below:					
					MILK			
			AGE	INHALATION	COW	GC	DAT	
			Infant	G-5	G-6	G	-7	
			Child	G-8	G-9	G-	·10	
			Teen	G-13	G-14	G-	15	
			Adult	G-18	G-19	G-	-20	
D.		D.	Obtain the micro-Curies (Q) of Tritium from the radioactive gas waste management logs (for projected doses - the micro-Curies of nuclide (i) to be projected) for the release source(s) under consideration during the time interval. The dose can be calculated from a single release source, but the total dose for Control limits or quarterly reports shall be from all gaseous release sources.					
		E.	Solve for D _{H-3}					
			$D_{H-3} = 3.17 \times 10^{-8} R_{H-3}(X/Q)_D Q$					
			D _{H-3} =	mrem from Tritiun the specified age	m in the specified group	pathway	for organ T of	

REVISION NO.:	PROCEDURE [*]	TITLE:		PAGE:					
53	OFFSITE	DOSE CALCULAT	OSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:									
C-200		ST. LUCIE F	PLANT						
		METHODOLOGY	SECTION						
2.6 <u>Determining t</u> <u>From Cumula</u>	2.6 <u>Determining the Radioiodine and Particulate Dose To Any Age Group's Organ</u> <u>From Cumulative Releases</u> (continued)								
7. <u>Detern</u> From (nining the T Cumulative	Total Organ Dose Fi Gaseous Releases	rom Iodines, 8D-Parti	culates and H-3					
Control dose from the reac	limits for I& tor unit of i	NOTE &8DP shall consider nterest.	dose from all release	e sources					
A. Aae Group: INFAN	The follow organ T fro release so	ing pathways shall to om a release source urces:	oe summed to arrive a or if applicable to Co	at the total dose to ontrol, from all					
Organ: BONE LI	VER TH	YROID KIDNEY	LUNG GI-LLI V	VHOLE BODY					
PATHWAY	/	DOSE	Reference to STEP No.	Remark					
Inhalation (I&8	BDP)		2.6.1.F						
Inhalation (Trit	ium)		2.6.6.E						
Ground Plane (Ia	&8DP)		2.6.2.F						
GrassMi	lk (I&8DP)		2.6.3.F						
GrassMil	k (Tritium)		2.6.6.E						
GrassMe	at (I&8DP)		2.6.4.G	N/A for INFANT					
GrassMe	at (Tritium)		2.6.6.E	N/A for INFANT					
Vegetable Garden	(I&8DP)		2.6.5.G	N/A for INFANT					
Vegetable Garden	(Tritium)		2.6.6.E	N/A for INFANT					
Dose⊤ =	. /	(sum of above)							
B The dose to each of the applicable ago group's OPGANS shall be									

3. The dose to each of the applicable age group's ORGANS shall be calculated:

BONE, LIVER, THYROID, KIDNEY, LUNG, WHOLE BODY, & GI-LLI

The age group organ receiving the highest exposure relative to its Control Limit is the most critical organ for that age group resulting from the radioiodine & 8D Particulates gaseous effluents.

REVISION NO.:			PROCEDURE TITLE:	PAGE:				
	53		OFFSITE DOSE CALCULATION MANUAL (ODCM)	136 of 231				
PROCE	DURE NO.	:		100 01 201				
	C-200)	ST. LUCIE PLANT					
			METHODOLOGY SECTION					
2.7	<u>Projec</u>	cting Do	ese for Radioactive Gaseous Effluents					
	<u>Discussion</u> - Control 3.11.2.4 requires that the waste gas holdup system be use to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases, from each unit, to areas at and beyond the SITE BOUNDARY (see TS Figure 5-1-1) would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The following calculation method is provided for determining the projected doses. This method is based on using the results of calculations performed in Sections 2.4 and 2.5.							
	1.	Obtain (Sectio can be	the latest results of the monthly calculations of the gamma air dose 1 2.4) and the beta air dose if performed (Section 2.5). These doses obtained from the in-plant records.					
	2.	Divide the mo	these doses by the number of days the plant was operational during onth.					
	3. Multiply the quotient by the number of days the plant is projected to be operational during the next month. The product is the projected dose for the next month. The value should be adjusted as needed to account for any changes in failed-fuel or other identifiable operating conditions that could significantly alter the actual releases.							
	4.	lf the p air dos be use	projected doses are >0.2 mrads gamma air dose or > 0. se, the appropriate subsystems of the waste gas holdup ed.	4 mrads beta system shall				
3.0	<u>40 CF</u>	R 190 [Dose Evaluation					
	<u>Discu</u> cycle thyroid The fo dose	<u>ssion</u> - I sources d, which ollowing limits. 1	Dose or dose commitment to a real individual from all us be limited to \leq 25 mrem to the whole body or any organ is limited to \leq 75 mrem) over a period of 12 consecutive approach should be used to demonstrate compliance v This approach is based on NUREG-0133, Section 3.8.	ranium fuel ı (except e months. vith these				
3.1	<u>Evalu</u>	ation Ba	ases					
	Dose be pe twice 3.11.2 whole gamm from r evalua	Dose evaluations to demonstrate compliance with the above dose limits need only be performed if the quarterly doses calculated in Sections 1.4, 2.4 and 2.6 exceed twice the dose limits of Controls 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2a, 3.1.2.2b, 3.11.2.3a and 3.11.2.3b respectively; i.e., quarterly doses exceeding 3 mrem to the whole body (liquid releases), 10 mrem to any organ (liquid releases), 10 mrads gamma air dose, 20 mrads beta air dose or 15 mrem to the thyroid or any organ from radioiodines and particulates (atmospheric releases). Otherwise, no evaluations are required and the remainder of this section can be omitted.						

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	127 of 221
PROCEDURE NO.:		137 01 231

ST. LUCIE PLANT

METHODOLOGY SECTION

3.2 Doses From Liquid Releases

C-200

For the evaluation of doses to real individuals from liquid releases, the same calculation method as employed in Section 1.4 will be used. However, more realistic assumptions will be made concerning the dilution and ingestion of fish and shellfish by individuals who live and fish in the area. Also, the results of the Radiological Environmental Monitoring program will be included in determining more realistic dose to these real people by providing data on actual measured levels of plant related radionuclides in the environment.

3.3 <u>Doses From Atmospheric Releases</u>

For the evaluation of doses to real individuals from the atmospheric releases, the same calculation methods as employed in Section 2.4 and 2.6 will be used. In Section 2.4, the total body dose factor (K_i) should be substituted for the gamma air dose factor (M_i) to determine the total body dose. Otherwise the same calculation sequence applies. However, more realistic assumptions will be made concerning the actual location of real individuals, the meteorological conditions and the consumption of food (e.g., milk). Data obtained from the latest land use census (Control 3.12.2) should be used to determine locations for evaluating doses. Also, the results of the Radiological Environmental Monitoring program will be included in determining more realistic doses to these real people by providing data on actual measured levels of radioactivity and radiation at locations of interest.

REVIS	ION NO.:		PROCE	EDURE TITLE:	PAGE:		
53		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	138 of 231			
PROCEDURE NO.:				138 01 23 1			
	C-200			ST. LUCIE PLANT			
				METHODOLOGY SECTION			
4.0	Ann	ual Radio	oactive	e Effluent Report			
	Discussion - The information contained in a annual report shall not apply to any Control. The reported values are based on actual release conditions instead of historical conditions that the Control dose calculations are based on. The Control dose limits are therefore included in item 1 of the report, for information only. The ECLs in item 2 of the report shall be those listed in Tables L-1 and G-1 of this manual. The average energy in item 3 of the report is not applicable to the St. Lucie Plant. The format, order of nuclides and any values shown as an example in Tables 3.3 through 3.8 are samples only. Other formats are acceptal if they contain equivalent information. A table of contents should also accompant the report. The following format should be used:						
		RADIO	ACTI	VE EFFLUENTS - SUPPLEMENTAL INFORMAT	ION		
	1.	Regula	atory	Limits:			
		1.1	For F	Radioactive liquid waste effluents:			
			а.	The concentration of radioactive material releas site (see TS Figure 5.1-1) shall be limited to ten concentrations specified in 10 CFR Part 20.100 Appendix B, Table 2, Column 2 for radionuclides dissolved or entrained noble gases. For dissolv entrained noble gases, the concentration shall b $2 \times 10^{-4} \mu$ Ci/ml total activity.	ed from the times the 1-20.2401, s other than ed or e limited to		
			b.	The dose or dose commitment to a MEMBER O from radioactive materials in liquid effluents rele reactor unit to unrestricted areas (See TS Fig. 5 limited during any calendar quarter to \leq 1.5 mren body and to \leq 5 mrem to any organ and \leq 3 mren body and \leq 10 mrem to any organ during any ca	F THE PUBLIC ased from each .1-1) shall be n to the whole n to the whole lendar year.		
		1.2	For F	Radioactive Gaseous Waste Effluents:			
			a.	The dose rate resulting from radioactive materia gaseous effluents to areas at or beyond the SIT (See TS Figure 5.1-1) shall be limited to the follo	ls released in E BOUNDARY owing values:		
				The dose rate limit for noble gases shall be \leq 50 the total body and \leq 3000 mrem/yr to the skin an	0 mrem/yr to d		
				The dose rate limit from I-131, I-133, Tritium and with half-lives >8 days shall be <u><</u> 1500 mrem/yr t	d particulates o any organ.		

REVISION NO .:		PROCE	EDURE TITLE:	PAGE:				
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)		120 of 221				
PROCEDURE NO.:					139 01 23 1			
	C-20	0		ST. LUCIE PLANT				
				METHODOLOGY SECTION				
4.0	<u>Annu</u>	al Radio	active	e Effluent Report (continued)				
	1.	(contin	ued)					
		1.2	(cont	inued)				
			b.	The air dose (see TS Figure 5.1-1) due to noble gases released in gaseous effluents, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:				
		During any calendar quarter, to \leq 5 mrad for gamma radiati and \leq 10 mrad for beta radiation and during any calendar y to \leq 10 mrad for gamma radiation and \leq 20 mrad for beta radiation						
			C.	The dose to a MEMBER OF THE PUBLIC from Tritium and all radionuclide in particulate form, v >8 days in gaseous effluents released from eac to areas at and beyond the SITE BOUNDARY (s 1 in the TS-A) shall be limited to the following:	I-131, I-133, vith half-lives h reactor unit see Figure 5.1-			
				During any calendar quarter to \leq 7.5 mrem to an during any calendar year to \leq 15 mrem to any or	y organ and gan.			
	2.	Effluer	uent Limiting Concentrations:					
	Air - as per attached T			attached Table G-1	ed Table G-1			
		Water	- as p	per attached Table L-1				
	3.	Averaç applica	fluents is not					
1								

REVISI	ON NO.:	PROCEDURE TITLE:				PAGE:
		OFFSITE DOSE C	CM) 140 of 231			
	C-200	ST	. LUCIE	E PLANT		
		METHOD	OLOG	Y SECTION		
4.0	Annual Radio	active Effluent Repo	<u>rt (</u> contii	nued)		
	4. Measu	rements and Approx	imation	s of Total Ra	adioactivit	y:
	A sum	mary of liquid effluen	it accoui	nting metho	ds is desc	ribed in Table 3.1.
	A sum Table 3	mary of gaseous effl 3.2.	uent acc	counting me	thods is d	escribed in
	Estima	te of Errors:				
			LIC	QUID	EOUS	
	Erro	r Topic	Avg. % Max. %		Avg. %	Max. %
	Release P	oint Mixing	2	5	NA	NA
	Sampling		1	5	2	5
	Sample Pi	reparation	1	5	1	5
	Sample A	nalysis	3	10	3	10
	Release V	olume	2	5	4	15
		Total %	9	30	10	35
			(abov	e values ar	e example	es only)
	The pr nuclide near ba could e	edictability of error for es that are predomina ackground relative to easily have errors gre	or radioa ant in sa o the pre eater tha	active releas ample spect dominant n an the above	es can on rums. Nu uclides in e listed ma	ly be applied to clides that are a given sample aximums.

REVISION NO.:	PROCEDURE TITLE:		PAGE:					
53	OFFSITE DOSE CALC	OFFSITE DOSE CALCULATION MANUAL (ODCM)						
PROCEDURE NO.:								
C-200	ST. L	UCIE PLANT						
METHODOLOGY SECTION								
4.0 <u>Annual Radioactive Effluent Report</u> (continued)								
4. (co	ntinued)							
TABLE 3.1 RADIOACTIVE LIQUID EFFLUENT SAMPLING AND ANALYSIS								
LIQUID SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	METHOD OF ANALYSIS					
	EACH BATCH	PRINCIPAL GAMMA EMITTERS	p.h.a.					
MONITOR		TRITIUM	L.S.					
RELEASES	MONTHLY COMPOSITE	GROSS ALPHA	A.I.C.					
	QUARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.					
STEAM	FOUR PER MONTH	PRINCIPAL GAMMA EMITTERS AND DISSOLVED GASES	p.h.a.					
GENERATOR		TRITIUM	L.S.					
RELEASES	MONTHLY COMPOSITE	GROSS ALPHA	A.I.C.					
	QUARTERLY COMPOSITE	Sr-89, Sr-90, Fe-55	C.S.					
TABLE NOTATION: p.h.a gamma spectrum pulse height analysis using High Purity Germanium (HPGE) detectors. All peaks are identified and quantified.								

- L.S. Liquid Scintillation counting
- C.S. Chemical Separation
- A.I.C. Air Ion Chamber

R	EVISION NO.:	PROCEDURE TITLE:		PAGE:						
	53	OFFSITE DOSE CAL	A) 142 of 231							
PF	ROCEDURE NO.:									
	C-200									
	METHODOLOGY SECTION									
4	4.0 <u>Annual Radioactive Effluent Report</u> (continued)									
	4. (continued)									
	TABLE 3.2 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS									
	GASEOUS SOURCE	SAMPLING FREQUENCY	TYPE OF ANALYSIS	METHOD OF ANALYSIS						
	Waste Gas Decay Tank Releases	Each Tank	Principal Gamma Emitters	G, p.h.a.						
	Containment	Each Purge	Principal Gamma Emitters	G, p.h.a.						
	Purge Releases		H-3							
	_	Four per Month	Principal Gamma Emitters	(G, C, P) - p.h.a.						
		N (1) 0 1	H-3	L.S.						
	Plant Vent	Monthly Composite (Particulates)	Gross Alpha	P - A.I.C.						
		Quarterly Composite (Particulates)	Sr-90 Sr-89	C.S.						
		Maakhy	Principal Gamma Emitters	(G, C, P) - p.h.a.						
		VVEEKIY	H-3	L.S.						
	Cask Handling Facility Vent (1)	Monthly Composite (Particulate)	Gross Alpha	P - A.I.C.						
		Quarterly Composite (Particulate)	Sr-90 Sr-89	C.S.						
Т	ABLE NOTATION	:								
G	- Gaseous (Grab Sample								
С	- Charcoal I	-ilter Sample								
Р	- Particulate	e Filter Sample								
L	.S Liquid Scir	ntillation Counting								
С	.S Chemical	Separation								
р	.h.a Gamma sj Germaniu	pectrum pulse height an m(HPGE)detectors. All	nalysis using High Purity peaks are identified and qua	ntified.						
A	.I.C Air Ion Ch	amber								
A	.I.C Air Ion Chamber									

(1)—Only required when operating.

REVISION NO .:		PROCE	DURE TITLE:	PAGE:	
53		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	143 of 231	
PROCE	EDURE NO	.:			143 01 231
	C-200)		ST. LUCIE PLANT	
				METHODOLOGY SECTION	
4.0	<u>Annua</u>	al Radio	active	Effluent Report (continued)	
	5.	5. Batch Releases			
		Α.	Liquid		
			1.	Number of batch releases:	
			2.	Total time period of batch releases:	minutes
			3.	Maximum time period for a batch release:	minutes
			4.	Average time period for a batch release:	minutes
			5.	Minimum time period for a batch release:	minutes
			6.	Average dilution stream flow during the period (see Note 1 on Table 3.3):	GPM
			Al	l liquid releases are summarized in tables	
		В.	Gase	ous	
			1.	Number of batch releases:	
			2.	Total time period for batch releases:	minutes
			3.	Maximum time period for a batch release:	minutes
			4.	Average time period for batch releases:	minutes
			5.	Minimum time period for a batch release:	minutes
		A	All gas	eous waste releases are summarized in tables	

REVISI	ON NO.:		PROCE	DURE TITLE:	PAGE:	
	53		OFF	SITE DOSE CALCULATION MANUAL (ODCM)	144 of 231	
PROCE	DURE NO	.:			144 01 231	
	C-200)		ST. LUCIE PLANT		
				METHODOLOGY SECTION		
4.0	<u>Annua</u>	al Radic	active	e Effluent Report (continued)		
	6.	Unplar	nned F	Releases		
		A.	Liquid	1		
			1.	Number of releases:		
			2.	Total activity releases:	Curies	
		В.	Gase	ous		
			1.	Number of releases:		
			2.	Total activity released:	Curies	
		C.	See a	attachments (if applicable) for:		
			1.	A description of the event and equipment involv	ed.	
			2.	Cause(s) for the unplanned release.		
			3.	Actions taken to prevent a recurrence		
			4.	Consequences of the unplanned release		
	7.	Descri to the Janua	ption o genera ry ann	ctive effluents eported on the		
	8.	Offsite period	dose . See	calculation manual revisions initiated during this Control 3.11.2.6 for required attachments to the	reporting Annual Report.	
	9.	Solid v Contro	vaste a ol 3.11	and irradiated fuel shipments as per requirements .2.6.	s of	
	10.	Proces	ss Cor	ntrol Program (PCP) revisions as per requirement	s of TS 6.13.	
	11.	Major Syster	changes to Radioactive Liquid, Gaseous and Solid Waste Tre ms as per requirements of Control 3.11.2.5.			
	12.	Result INITIA been i	s of w TIVE ncorpo	ater samples taken in support of the Groundwate (NEI 07-07) during the previous calendar year the prated into the Radiological Environmental Monito	r Protection at have not pring Program.	

REVIS	SION NO.:	PROCEDURE TITLE:			PAGE:					
	53	OFFSITE DOSE CALCULATIC	145 of 231							
PROC	EDURE NO.:				140 01 201					
	C-200									
		METHODOLOGY SE								
	FLORIDA POWER & LIGHT COMPANY									
		ST. LUCIE UNIT #								
	ANNU	AL REPORT/ T	HROUGH	//						
	TABLE 3	.3: LIQUID EFFLUENTS - SUMM	ΛΑΤΙΟΝ Ο	F ALL RELE	ASES					
			<u>UNIT</u>	<u>QUARTER</u>	<u>#</u> QUARTER #					
А.	Fission and	Activation Products								
	1. Total Gase	Release - (Not including Tritium, s, Alpha)	Ci	E	EE					
	2. Avera Perio	ige Diluted Concentration During d	μCi/ml	E	EE					
В.	Tritium									
	1. Total	Release	Ci	E	ЕЕ					
	2. Avera Perio	ige Diluted Concentration During d	μCi/ml	E	EE					
C.	Dissolved ar	nd Entrained Gases								
	1. Total	Release	Ci	E	E					
	2. Avera Perio	ige Diluted Concentration During d	μCi/ml	E	EE					
D.	Gross Alpha	Radioactivity								
	1. Total	Release	Ci	E	E					
E.	Volume of W (Prior to Dilu	/aste Released ition)	LITERS	EE	EE					
F.	Volume of D Used During	ilution Water I Period ¹	LITERS	EE	EE					
1 -	The volume re during release dilution strean	ported should be for the entire in intervals. This volume should al flow during the period.	erval of th so be used	le reporting p d to calculate	eriod, not just average					

REVISION NO ·	PROCEDUR				PA	NGE-			
EVISION NO						IGL.			
	E DOSE	CALCULATIO	JN MANUAL		146 of 231				
C-200	C-200 ST. LUCIE PLANT								
	METHODOLOGY SECTION								
	FL(ORIDA PC	WER & LIGH	HT COMPAN	Y				
		ST. L	UCIE UNIT #	¢					
ANNUA		२ Τ -	/ / -	THROUGH	/ /				
ТА	RI F 3 4.	י חונוסיני	<u>-''</u> FFFLLIENTS		' ΓΩΡΜΔΤ)				
173	DLL J. 1 .								
	.volux		CONTINUC	OUS MODE	BATCH	IMODE			
NUCLIDES KELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #			
I-131		CI	E	E	E	E			
I-133		CI	E	E	E	E			
I-135		CI	E	E	E	E			
NA-24		CI	E	E	E	E			
CR-51		CI	E	E	E	E			
MN-54		CI	E	E	E	E			
CO-57		CI	E	E	E	E			
CO-58		CI	E	E	E	E			
FE-59		CI	E	E	E	E			
CO-60		CI	E	E	E	E			
ZN-65		CI	E	E	E	E			
NI-65		CI	E	E	E	E			
AG-110		CI	E	E	E	E			
SN-113		CI	E	E	E	E			
SB-122		CI	E	E	E	E			
SB-124		CI	E	E	E	E			
W-187		CI	E	E	E	E			
NP-239		CI	E	E	E	E			
ZR-95		CI	E	E	E	E			
MO-99		CI	E	E	E	E			
RU-103		CI	E	E	E	E			
CS-134		CI	E	E	E	E			
CS-136		CI	E	E	E	E			
CS-137		CI	E	E	E	E			
BA-140		CI	E	E	E	E			
CE-141		CI	E	E	E	E			
BR-82		CI	E	E	E	E			
ZR-97		CI	E	E	E	E			
SB-125		CI	E	E	E	E			

* All nuclides that were detected should be added to the partial list of the example format.

PF						DA	CE:	
I'NE	E 2						IUL.	
-	53 OFFSITE DOSE CALCULATION MANUAL (ODCM) 147						147 of 231	
PF	ROCEDURE NO.:							
	C-200			ST. LUCIE PI	_ANT	1		
	METHODOLOGY SECTION							
	TABLE 3.4: LIQUID EFFLUENTS (EXAMPLE FORMAT) (continued)							
				CONTINUC	OUS MODE	BATCH MODE		
	NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #	
	CE-144		CI	E	E	E	E	
	SR-89		CI	E	E	E	E	
	SR-90		CI	E	E	Е	E	
	UNIDENTIFIE	ED	CI	E	Е	Е	E	
	TOTAL FOR PERIOD (ABOVE)		CI	E	E	E	E	
				CONTINUOUS MODE		BATCH MODE		
	NUCLIDES RELE	ASED	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #	
	AR-41		CI	E	Е	E	E	
	KR-85		CI	E	Е	Е	E	
	XE-131M		CI	E	Е	Е	E	
-	XE-133		CI	Е	Е	Е	E	
	XE-133M		CI	E	Е	Е	E	
	XE-135		CI	E	Е	Е	E	

REVISION NO .:		PROCEDURE TITLE:		PAGE:	
53		OFFSITE DOSE CALCUL	ATION MANUAL (ODCM)	149 of 221	
PROCEDURE NO.:				148 01 23 1	
C-200		ST. LUCI	E PLANT		
		METHODOLOG	BY SECTION		
		FLORIDA POWER &	LIGHT COMPANY		
		ST. LUCIE UN	NIT #		
	ΤA	BLE 3.5: LIQUID EFFLUE	NTS - DOSE SUMMATION		
	Ag	e Group: Lo	ocation:		
Exposu	ure li	nterval: From	Through		
Fis	sh &	Shellfish Pathway to Organ	CALENDAR YEAR DOSE (m	nrem)	
		BONE			
		LIVER			
THYROID					
		KIDNEY			
		LUNG			
		GI-LLI			
		WHOLE BODY			

REVIS	ION NO.:		PROCEDURE TITLE:			PAGE:			
	53		OFFSITE DOSE CALCUL	149 of 231					
PROCE		D.: N	ST LUCI						
	31. LUCIE FLAINT								
			METHODOLOG	SY SECTION					
			FLORIDA POWER &	LIGHT COMPA	NY				
			ST. LUCIE UN	NIT #					
		ANNU	JAL REPORT//	THROUGI	H/	/			
	Т	ABLE 3.	6: GASEOUS EFFLUENTS	S - SUMMATION	N OF ALL RE	ELEASES			
A.	Fissi	on and A	Activation Gases						
	1	Total F	Release	Ci	F	F			
	1.	i otar i			L	L			
	2.	Averaç	ge Release Rate For Period	μCI/SEC	E	E			
В.	lodin	es							
	1.	Total I	odine-131	Ci	E	E			
	2.	Averaç	ge Release Rate for Period	μCi/SEC	E	E			
C.	Parti	culates							
	1.	Particu	ulates T-1/2 > 8 Days	Ci	E	E			
	2.	Averag	ge Release Rate for Period	μCi/SEC	E	E			
	3.	Gross	Alpha Radioactivity	Ci	E	E			
D.	Tritiu	m							
	1.	Total F	Release	Ci	E	E			
	2.	Averaç	ge Release Rate for Period	μCi/SEC	E	E			

REVISION NO.:	PROCEDUR	E TITLE:			P/	AGE:			
53 OFFSITE DOSE CALCULATION MANUAL (ODCM) 150 of 23									
C-200 ST. LUCIE PLANT									
C-200	C-200 ST. LUCIE PLANT								
	METHODOLOGY SECTION								
		SI.L	UCIE UNIT #						
ANNU	JAL REP	ORT	//	THROUGH	//_				
TABLE 3.	7: GASE	EOUS EF (EX	FLUENTS - G AMPLE FOR	BROUND LEY MAT)	VEL RELEAS	SES			
			CONTINUC	OUS MODE	BATCH	I MODE			
NUCLIDES RELE	ASED*	UNIT	QUARTER #	QUARTER #	QUARTER #	QUARTER #			
1. Fission Gases									
AR-41		CI	E	E	E	E			
KR-85		CI	E	E	E	E			
KR-85M		CI	E	E	E	E			
KR-87		CI	E	E	E	E			
KR-88		CI	E	E	E	E			
XE-131M		CI	E	E	E	E			
XE-133		CI	E	E	E	E			
XE-133M		CI	E	E	E	E			
XE-135		CI	E	E	Е	E			
XE-135M		CI	E	E	Е	E			
XE-138		CI	E	E	Е	E			
UNIDENTIFIE	ED	CI	E	E	Е	E			
TOTAL FOR PE (ABOVE)	RIOD	CI	E	E	E	E			
2. Iodines									
I-131		CI	E	E	E	E			
I-133		CI	E	E	E	E			
I-135		CI	E	E	E	E			
TOTAL FOR PE (ABOVE)	RIOD	CI	E	E	E	E			
3. Particulates		Γ			Γ				
CO-58		CI	E	E	E	E			
SR-89		CI	E	E	Е	E			
SR-90		CI	E	E	E	E			

* All nuclides that were detected should be added to the partial list of the example format.

53 OFFSITE DOSE CALCULATION MANUAL (ODCM) PROCEDURE NO.: ST. LUCIE PLANT C-200 ST. LUCIE PLANT METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT_ EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY	1 of 231
PROCEDURE NO.: C-200 ST. LUCIE PLANT METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT_ EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem) (mrem) (mrem) (mrem)	
C-200 ST. LUCIE PLANT METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT EXPOSURE INTERVAL: FROM THROUGH MONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem)	
METHODOLOGY SECTION FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem) (mrem) (mrem) (mrem) (mrem)	
FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT # TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem)	
ST. LUCIE UNIT # TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem) (mrem) (mrem) (mrem) (mrem) (mrem)	
TABLE 3.8: GASEOUS EFFLUENTS - DOSE SUMMATION - CALENDAR YEAR AGE GROUP: INFANT EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem)	
AGE GROUP: INFANT EXPOSURE INTERVAL: FROM THROUGH PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem) (mrem) (mrem) (mrem) (mrem) (mrem) (mrem)	
PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY (mrem) (mrem) (mrem) (mrem) (mrem)	
PATHWAY BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE BODY	
	,
Ground Plane (A)	-
GrassMilk (B)	_
Inhalation (A)	_
A) SECTOR: RANGE: miles (B) COW / GOAT SECTOR: RANGE: miles	3
	-
NOBLE GASES CALENDAR YEAR (mrad)	
Beta Air Dose	
Sector: Range: 0.97 miles	
<u>NOTE</u>	
I he dose values above were calculated using actual meteorological data during the specified time interval with MET data reduced as per Reg. Guide 1 111 March 1976	
time interval with MET data reduced as per Reg. Guide 1.111, March 1970.	

REVISION NO .:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	150 - 6004
PROCEDURE NO.:		152 01 231
C-200	ST. LUCIE PLANT	
C-200	APPENDIX A ECL, DOSE FACTOR AND HISTORICAL METEOROLOGICAL TABLES	

REVISION NO.:

PROCEDURE NO.:

PROCEDURE TITLE:

OFFSITE DOSE CALCULATION MANUAL (ODCM)

153 of 231

C-200

53

ST. LUCIE PLANT

TABLE L-1 EFFLUENT CONCENTRATION LIMITS IN WATER IN UNRESTRICTED AREAS

NOTE

If a nuclide is not listed below, refer to 10 CFR Part 20, Appendix B, Table 2 Effluent Concentrations Column 2 and use the most conservative ECL listed for the nuclide.

Nuclide	ECL (μCi/ml)	Nuclide	ECL (μCi/ml)	Nuclide	ECL (μCi/ml)
H-3	1 E-3	Sr-92	4 E-5	Te-129	4 E-4
C-14	3 E-5	Y-90	7 E-6	Te-131m	8 E-6
Na-24	5 E-5	Y-91m	2 E-3	Te-131	8 E-5
P-32	9 E-6	Y-91	8 E-6	Te-132	9 E-6
Cr-51	5 E-4	Y-92	4 E-5	I-130	2 E-5
Mn-54	3 E-5	Y-93	2 E-5	I-131	1 E-6
Mn-56	7 E-5	Zr-95	2 E-5	I-132	1 E-4
Fe-55	1 E-4	Zr-97	9 E-6	I-133	7 E-6
Fe-59	1 E-5	Nb-95	3 E-5	I-134	4 E-4
Co-57	6 E-5	Nb-97	3 E-4	I-135	3 E-5
Co-58	2 E-5	Mo-99	2 E-5	Cs-134	9 E-7
Co-60	3 E-6	Tc-99m	1 E-3	Cs-136	6 E-6
Ni-63	1 E-4	Tc-101	2 E-3	Cs-137	1 E-6
Ni-65	1 E-4	Ru-103	3 E-5	Cs-138	4 E-4
Cu-64	2 E-4	Ru-105	7 E-5	Ba-139	2 E-4
Zn-65	5 E-6	Ru-106	3 E-6	Ba-140	8 E-6
Zn-69	8 E-4	Ag-110	6 E-6	Ba-141	3 E-4
Br-82	4 E-5	Sn-113	3 E-5	Ba-142	7 E-4
Br-83	9 E-4	In-113m	7 E-4	La-140	9 E-6
Br-84	4 E-4	Sb-122	1 E-5	La-142	1 E-4
Rb-86	7 E-6	Sb-124	7 E-6	Ce-141	3 E-5
Rb-88	4 E-4	Sb-125	3 E-5	Ce-143	2 E-5
Rb-89	9 E-4	Te-125m	2 E-5	Ce-144	3 E-6
Sr-89	8 E-6	Te-127m	9 E-6	Pr-144	6 E-4
Sr-90	5 E-7	Te-127	1 E-4	W-187	3 E-5
Sr-91	2 E-5	Te-129m	7 E-6	Np-239	2 E-5

REVISION NO.:	PROCEDURE TITLE:						PAGE:
53	_	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		154 of 231
PROCEDURE NO.:							
C-200			ST. LU	CIE PLANT			
	ENVIRONMEN		TABI	LE L-2 RSION FACTO	RS FOR LIQUID	DISCHARGES	
	PATHW	AY - SALT WAT ORGAN D	ER FISH AND S OSE FACTOR	SHELLFISH (MREM/HR PI	AGE GROUP ER μCi/ML)	- ADULT	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	3.60E-01	3.60E-01	3.60E-01	3.60E-01	3.60E-01	3.60E-01
C-14	1.45E+04	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03	2.91E+03
NA-24	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01	6.08E-01
P-32	1.67E+07	1.05E+06	0.	0.	0.	1.88E+06	6.47E+05
CR-51	0.	0.	3.34E+00	1.23E+00	7.42E+00	1.41E+03	5.59E+00
MN-54	0.	7.07E+03	0.	2.10E+03	0.	2.17E+04	1.35E+03
MN-56	0.	1.78E+02	0.	2.26E+02	0.	5.68E+03	3.17E+01
FE-55	1.15E+05	5.19E+05	0.	0.	6.01E+05	2.03E+05	1.36E+05
FE-59	8.08E+04	1.92E+05	0.	0.	5.32E+04	6.33E+05	7.29E+04
CO-57	0.	1.42E+02	0.	0.	0.	3.60E+03	2.36E+02
CO-58	0.	6.05E+02	0.	0.	0.	1.22E+04	1.35E+03
CO-60	0.	1.74E+03	0.	0.	0.	3.26E+04	3.83E+03
Ni-63	4.97E+04	3.45E+03	0.	0.	0.	7.19E+02	1.67E+03
NI-65	2.02E+02	2.63E+01	0.	0.	0.	6.65E+02	1.20E+01
CU-64	0.	2.15E+02	0.	5.41E+02	0.	1.83E+04	1.01E+02
ZN-65	1.62E+05	5.13E+05	0.	3.43E+05	0.	3.23E+05	2.32E+05
ZN-69	3.43E+02	6.60E+02	0.	4.27E+02	0.	9.87E+01	4.57E+01

REVISION NO.:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MAN	UAL (ODCM)		155 of 231
PROCEDURE NO .:							155 01 251
C-200			ST. LU	ICIE PLANT			
			TAB	LE L-2			
	<u>ENVIRONMEN</u> PATHW	ITAL PATHWA AY - SALT WA ORGAN [Y-DOSE CONVE FER FISH AND S DOSE FACTOR	ERSION FACTO SHELLFISH (MREM/HR F	DRS FOR LIQUII AGE GROUP PER μCi/ML)	<u>D DISCHARGES</u> P - ADULT	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
BR-82	0.	0.	0.	0.	0.	4.68E+00	4.08E+00
BR-83	0.	0.	0.	0.	0.	1.05E-01	7.26E-02
BR-84	0.	0.	0.	0.	0.	7.38E-07	9.42E-02
BR-85	0.	0.	0.	0.	0.	0.	3.86E-03
RB-86	0.	6.25E+02	0.	0.	0.	1.23E+02	2.91E+02
RB-88	0.	1.79E+00	0.	0.	0.	0.	9.50E-01
RB-89	0.	1.19E+00	0.	0.	0.	0.	8.38E-01
SR-89	5.01E+03	0.	0.	0.	0.	8.01E+02	1.44E+02
SR-90	1.23E+05	0.	0.	0.	0.	1.65E+03	3.02E+04
SR-91	9.43E+01	0.	0.	0.	0.	4.75E+02	4.15E+00
SR-92	3.50E+01	0.	0.	0.	0.	6.91E+02	1.51E+00
Y-90	6.07E+00	0.	0.	0.	0.	6.43E+04	1.63E-01
Y-91M	5.74E-02	0.	0.	0.	0.	1.68E-01	2.23E-03
Y-91	8.89E+01	0.	0.	0.	0.	4.89E+04	2.38E+00
Y-92	5.34E-01	0.	0.	0.	0.	9.33E+03	1.56E-02

REVISION NO .:	PROCEDURE TITLE						PAGE:			
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		156 of 231			
PROCEDURE NO.:							100 01 201			
C-200			ST. LU	ICIE PLANT						
		TABLE L-2								
	PATHW	NVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGES PATHWAY - SALT WATER FISH AND SHELLFISH AGE GROUP - ADULT								
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY			
Y-93	1.69E+00	0.	0.	0.	0.	5.36E+04	4.67E-02			
ZR-95	1.60E+01	5.13E+00	0.	8.09E+00	0.	1.59E+04	3.47E+00			
ZR-97	8.82E-01	1.78E-01	0.	2.69E-01	0.	5.51E+04	8.19E-02			
NB-95	4.48E+02	2.49E+02	0.	2.47E+02	0.	1.51E+06	9.79E+01			
NB-97	3.76E+00	9.50E-01	0.	1.11E+00	0.	3.51E+03	3.47E-01			
MO-99	0.	1.28E+02	0.	2.90E+02	0.	2.97E+02	2.43E+01			
TC-99M	1.30E-02	3.67E-02	0.	5.57E-01	1.80E-02	2.17E+01	4.67E-01			
TC-101	1.33E-02	1.93E-02	0.	3.47E-01	9.82E-03	0.	1.89E-01			
RU-103	1.07E+02	0.	0.	4.09E+02	0.	1.25E+04	4.61E+01			
RU-105	8.90E+00	0.	0.	1.15E+02	0.	5.44E+03	3.51E+00			
RU-106	1.59E+03	0.	0.	3.08E+03	0.	1.03E+05	2.01E+02			
AG-110	1.57E+03	1.45E+03	0.	2.85E+03	0.	5.92E+05	8.62E+02			
SB-124	2.78E+02	5.23E+00	6.71E-01	0.	2.15E+02	7.85E+03	1.10E+02			
SB-125	2.20E+02	2.37E+00	1.96E-01	0.	2.30E+04	1.95E+03	4.42E+01			
TE-125M	2.17E+02	7.89E+01	6.54E+01	8.83E+02	0.	8.67E+02	2.91E+01			

REVISION NO .:	PROCEDURE TITLE:	:					PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		157 of 231
PROCEDURE NO.:							107 01 201
C-200			ST. LU	CIE PLANT			
	-		ТАВ	LE L-2			
	ENVIRONMEN	NTAL PATHWA	Y-DOSE CONVE		RS FOR LIQUID	DISCHARGES	
	PATHW	AY - SALT WAT	FER FISH AND	SHELLFISH	AGE GROUP	- ADULT	
		ORGAN E	DOSE FACTOR	(MREM/HR PI	ER μCi/ML)		
	1	1	1	1	1	11	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
TE-127M	5.50E+02	1.92E+02	1.40E+02	2.23E+03	0.	1.84E+03	6.70E+01
TE-127	8.92E+00	3.20E+00	6.61E+00	3.63E+01	0.	7.04E+02	1.93E+00
TE-129M	9.32E+02	3.49E+02	3.20E+02	3.89E+03	0.	4.69E+03	1.48E+02
TE-129	2.55E+00	9.65E-01	1.95E+00	1.07E+01	0.	1.92E+00	6.21E-01
TE-131M	1.41E+02	6.87E+01	1.09E+02	6.95E+02	0.	6.81E+03	5.72E+01
TE-131	1.60E+00	6.68E-01	1.31E+00	7.00E+00	0.	2.39E-01	5.04E-01
TE-132	2.05E+03	1.33E+02	1.46E+02	1.28E+03	0.	6.25E+03	1.24E+02
I-130	3.98E+01	1.18E+02	1.50E+04	1.83E+02	0.	1.01E+02	4.63E+01
I-131	2.18E+02	3.13E+02	1.02E+05	5.36E+02	0.	8.24E+01	1.79E+02
I-132	1.07E+01	2.85E+01	3.76E+03	4.55E+01	0.	5.36E+00	1.01E+01
I-133	7.51E+01	1.30E+02	2.51E+04	2.27E+02	0.	1.15E+02	3.98E+01
I-134	5.57E+00	1.51E+01	1.96E+03	2.41E+01	0.	1.32E-02	5.41E+00
I-135	2.33E+01	6.14E+01	8.03E+03	9.77E+01	0.	6.88E+01	2.25E+01
CS-134	6.85E+03	1.63E+04	0.	5.29E+03	1.75E+03	2.85E+02	1.33E+04
CS-136	7.17E+02	2.83E+03	0.	1.58E+03	2.16E+02	3.22E+02	2.04E+03

REVISION NO .:		PROCEDURE TITLE:						PAGE:			
53			OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		158 of 231			
PROCEDURE N	0.:							100 01 201			
C-20	00			ST. LU	CIE PLANT						
				ТАВІ	LE L-2						
		ENVIRONMEN	/IRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGE								
		PATHW	AY - SALT WAT	FER FISH AND S	SHELLFISH	AGE GROUP	- ADULT				
			ORGAN E	DOSE FACTOR	(MREM/HR P	ER μCi/ML)					
		DONE									
NUCL	IDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY			
CS-1	37	8.79E+03	1.20E+04	0.	4.09E+03	1.36E+03	2.31E+02	7.88E+03			
CS-1	38	6.08E+00	1.20E+01	0.	8.84E+00	8.73E-01	5.12E-05	5.96E+00			
BA-1	39	7.87E+00	5.61E-03	0.	5.24E-03	3.18E-03	1.39E+01	2.30E-01			
BA-1	40	1.65E+03	2.07E+00	0.	7.04E-01	1.18E+00	3.39E+03	1.09E+02			
BA-1	41	0.	2.89E-03	0.	2.68E-03	1.64E-03	1.80E-09	1.29E-01			
BA-1	42	1.73E+00	1.78E-03	0.	1.50E-03	1.01E-03	0.	1.09E-01			
LA-14	40	1.58E+00	7.95E-01	0.	0.	0.	5.83E+04	2.11E-01			
LA-14	42	8.07E-02	3.67E-02	0.	0.	0.	2.68E+02	9.15E-03			
CE-1	41	3.43E+00	2.32E+00	0.	1.08E+00	0.	8.87E+03	2.63E-01			
CE-1	43	6.05E-01	4.47E+02	0.	1.97E-01	0.	1.67E+04	4.95E-02			
CE-1	44	1.79E+02	7.48E+01	0.	4.43E+01	0.	6.05E+04	9.60E+00			
PR-1	44	1.91E-02	7.88E-03	0.	4.45E-03	0.	2.73E-09	9.65E-04			
W-18	57	9.17E+00	7.68E+00	0.	0.	0.	2.51E+03	2.69E+00			
NP-2	39	3.56E-02	3.50E-03	0.	1.08E-02	0.	7.12E+02	1.92E-03			

REVISION NO .:	PROCEDURE TITLE:						PAGE:				
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		150 of 221				
PROCEDURE NO.:							159 01 251				
C-200		ST. LUCIE PLANT									
			ταρι	EI-3							
	ENVIRONMEN	NTAL PATHWA	-DOSE CONVE		RS FOR LIQUID	DISCHARGES					
	PATHWAY	- SALT WATE	R FISH AND SH	ELLFISH	AGE GROUP -	TEENAGER					
		ORGAN E	OSE FACTOR	(MREM/HR P	ER μCi/ML)						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
H3	0.	2.17E-01	2.17E-01	2.74E-01	2.17E-01	2.17E-01	2.17E-01				
C-14	2.94E+03	2.94E+03	2.94E+03	2.22E+03	2.94E+03	2.94E+03	2.94E+03				
NA24	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01	4.63E-01				
P32	1.27E+07	7.98E+05	0.	0.	0.	1.43E+06	4.93E+05				
CR51	0.	0.	2.54E+00	9.38E-01	5.64E+00	1.07E+03	4.25E+00				
MN54	0.	5.38E+03	0.	1.60E+03	0.	1.65E+04	1.03E+03				
MN56	0.	1.36E+02	0.	1.72E+02	0.	4.32E+03	2.42E+01				
FE55	8.78E+04	3.95E+05	0.	0.	4.57E+05	1.54E+05	1.04E+05				
FE59	6.14E+04	1.46E+05	0.	0.	4.05E+04	4.81E+05	5.55E+04				
CO57	0.	1.08E+02	0.	0.	0.	2.74E+03	1.79E+02				
CO58	0.	6.12E+02	0.	0.	0.	8.26E+03	1.39E+03				
CO60	0.	1.70E+03	0.	0.	0.	2.04E+04	3.88E+03				
Ni-63	3.78E+04	2.63E+03	0.	0.	0.	5.47E+02	1.27E+03				
NI65	1.54E+02	2.00E+01	0.	0.	0.	5.07E+02	9.11E+00				
CU64	0.	1.64E+02	0.	4.12E+02	0.	1.39E+04	7.69E+01				
ZN65	1.23E+05	3.90E+05	0.	2.61E+05	0.	2.46E+05	1.77E+05				
ZN69	2.61E+02	5.02E+02	0.	3.24E+02	0.	7.50E+01	3.47E+01				
BR82	0.	0.	0.	0.	0.	3.55E+00	3.10E+00				
BR83	0.	0.	0.	0.	0.	7.95E-02	5.52E-02				
BR84	0.	0.	0.	0.	0.	5.61E-07	7.16E-02				
BR85	0.	0.	0.	0.	0.	0.	2.94E-03				

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		160 of 221
PROCEDURE NO .:							100 01 231
C-200			ST. LU	ICIE PLANT			
		ΙΤΔΙ ΡΔΤΗΜΑΊ		LE L-3 ERSION FACTO			
	PATHWAY	- SALT WATE ORGAN [R FISH AND SH DOSE FACTOR	ELLFISH (MREM/HR P	AGE GROUP - ER μCi/ML)	TEENAGER	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
RB86	0.	4.76E+02	0.	0.	0.	9.37E+01	2.22E+02
RB88	0.	1.37E+00	0.	0.	0.	0.	7.23E-01
RB89	0.	9.04E-01	0.	0.	0.	0.	6.38E-01
SR89	5.67E+03	0.	0.	0.	0.	6.15E+02	1.63E+02
SR90	1.28E+05	0.	0.	0.	0.	2.71E+03	3.17E+04
SR91	7.18E+01	0.	0.	0.	0.	3.61E+02	3.16E+00
SR92	2.66E+01	0.	0.	0.	0.	5.25E+02	1.15E+00
Y90	1.58E+01	0.	0.	0.	1.80E+04	5.23E+04	4.25E-01
Y91M	4.36E-02	0.	0.	0.	0.	1.28E-01	1.69E-03
Y91	9.40E+01	0.	0.	0.	0.	3.61E+04	2.51E+00
Y92	4.06E-01	0.	0.	0.	0.	7.10E+03	1.18E-02
Y93	1.29E+00	0.	0.	0.	0.	4.08E+04	3.55E-02
ZR95	1.49E+01	4.96E+00	0.	6.16E+00	0.	1.07E+04	3.46E+00
ZR97	6.72E-01	1.36E-01	0.	2.05E-01	0.	4.20E+04	6.24E-02
NB95	3.97E+02	2.39E+02	0.	1.88E+02	0.	9.76E+05	1.35E+02
NB97	2.87E+00	7.24E-01	0.	8.45E-01	0.	2.67E+03	2.64E-01
MO99	0.	9.74E+01	0.	2.21E+02	0.	2.26E+02	1.85+01
TC-99M	9.87E-03	2.79E-02	0.	4.24E-01	1.37E-02	1.65E+01	3.56E-01
TC-101	1.02E-02	1.47E-02	0.	2.64E-01	7.47E-03	0.	1.44E-01

REVISION NO .:	PROCEDURE TITLE:	:					PAGE:				
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		161 of 221				
PROCEDURE NO.:							101 01 231				
C-200			ST. LU	ICIE PLANT							
			TAB	LE1-3							
	ENVIRONMEN	NVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGES									
	PATHWAY	(- SALT WATE	R FISH AND SH	ELLFISH	AGE GROUP -	TEENAGER					
		ORGAN E	DOSE FACTOR	(MREM/HR P	ER μCi/ML)						
	PONE			KIDNEY		CLUL					
RU-103	1.04E+02	0.	0.	3.11E+02	0.	8.13E+03	4.00E+01				
RU-105	6.77E+00	0.	0.	8.74E+01	0.	4.14E+03	2.67E+00				
RU-106	1.76E+03	0.	0.	2.34E+03	0.	7.95E+04	2.21E+02				
AG110	1.19E+03	1.10E+03	0.	2.17E+03	0.	4.51E+05	6.56E+02				
SB-124	2.11E+02	3.99E+00	5.11E-01	0.	1.64E+02	5.98E+03	8.35E+01				
SB-125	1.68E+02	1.81E+00	1.49E-01	0.	1.75E+04	1.48E+03	3.37E+01				
TE 125M	2.36E+02	8.45E+01	6.66E+01	6.72E+02	0.	6.60E+02	3.13E+01				
TE 127M	4.18E+02	1.46E+02	1.07E+02	1.70E+03	0.	1.40E+03	5.09E+01				
TE-127	9.31E+00	3.28E+00	6.35E+00	2.76E+01	0.	7.52E+02	1.99E+00				
TE 129M	1.02E+03	3.79E+02	3.27E+02	2.96E+03	0.	3.58E+03	1.61E+02				
TE-129	1.94E+00	7.34E-01	1.49E+00	8.14E+00	0.	1.46E+00	4.72E-01				
TE 131M	1.07E+02	5.22E+01	8.26E+01	5.29E+02	0.	5.18E+03	4.35E+01				
TE-131	1.21E+00	5.08E-01	9.99E-01	5.33E+00	0.	1.82E-01	3.83E-01				
TE-132	2.19E+02	1.37E+02	1.46E+02	9.74E+02	0.	4.93E+03	1.30E+02				
I130	3.03E+01	8.95E+01	1.14E+04	1.39E+02	0.	7.67E+01	3.52E+01				
I131	2.23E+02	3.14E+02	9.07E+04	4.08E+02	0.	5.95E+01	1.87E+02				
I132	8.11E+00	2.17E+01	2.86E+03	3.46E+01	0.	4.08E+00	7.71E+00				
I133	8.11E+01	1.37E+02	2.50E+04	1.73E+02	0.	9.99E+01	4.24E+01				
I134	4.24E+00	1.15E+01	1.49E+03	1.83E+01	0.	1.00E-02	4.12E+00				

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53 PROCEDURE NO.:	-	OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		162 of 231
C-200			ST. LU	CIE PLANT			
	ENVIRONMEN	ITAL PATHWA	TAB -DOSE CONVE	LE L-3 ERSION FACTO		DISCHARGES	
	PATHWAY	ORGAN E	R FISH AND SH DOSE FACTOR	ELLFISH (MREM/HR P	AGE GROUP - PER μCi/ML)	TEENAGER	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
I135	1.77E+01	4.68E+01	6.11E+03	7.43E+01	0.	5.23E+01	1.71E+01
CS-134	6.75E+03	1.63E+04	0.	4.03E+03	1.97E+03	1.88E+02	7.60E+03
CS-136	5.46E+02	2.16E+03	0.	1.20E+03	1.65E+02	2.45E+02	1.55E+03
CS-137	8.98E+03	1.21E+04	0.	3.11E+03	1.60E+03	1.61E+02	4.24E+03
CS-138	4.63E+00	9.15E+00	0.	6.73E+00	6.65E-01	3.90E-05	4.54E+00
BA-139	5.99E+00	4.27E-03	0.	3.99E-03	2.42E-03	1.06E+01	1.75E-01
BA-140	1.75E+03	2.15E+00	0.	5.35E-01	1.44E+00	2.55E+02	1.12E+02
BA-141	0.	2.20E-03	0.	2.04E-03	1.25E-03	1.37E-09	9.80E-02
BA-142	1.31E+00	1.35E-03	0.	1.14E-03	7.64E-04	0.	8.26E-02
LA-140	1.67E+00	8.25E-01	0.	0.	0.	4.55E+04	2.18E-01
LA-142	6.14E-02	2.79E-02	0.	0.	0.	2.04E+02	6.95E-03
CE-141	3.51E+00	2.36E+00	0.	8.19E-01	0.	6.38E+03	2.70E-01
CE-143	4.60E-01	3.40E+02	0.	1.50E-01	0.	1.27E+04	3.76E-02
CE-144	2.01E+02	8.25E+01	0.	3.37E+01	0.	4.74E+04	1.07E+01
PR-144	1.45E-02	5.99E-03	0.	3.39E-03	0.	2.08E-09	7.34E-04
W187	6.98E+00	5.85E+00	0.	0.	0.	1.91E+03	2.05E+00
NP-239	2.71E-02	2.67E-03	0.	8.25E-03	0.	5.43E+02	1.46E-03

REVISION	N NO.:	PROCEDURE TITLE	:					PAGE:				
	53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		162 of 221				
PROCED	URE NO.:											
	C-200		ST. LUCIE PLANT									
				TAB	FI-4							
		ENVIRONMEN		-DOSE CONVE		RS FOR LIQUID	DISCHARGES					
		PATHW	AY - SALT WA	TER FISH AND	SHELLFISH	AGE GROUP	- CHILD					
			ORGAN [OOSE FACTOR	(MREM/HR P	ER μCi/ML)						
1	NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
1	H3	0.	1.81E-01	1.81E-01	1.19E-01	1.81E-01	1.81E-01	1.81E-01				
1	C-14	3.82E+03	3.82E+03	3.82E+03	9.61E+02	3.82E+03	3.82E+03	3.82E+03				
	NA24	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01	2.03E-01				
ļ	P32	5.53E+06	3.47E+05	0.	0.	0.	6.22E+05	2.14E+05				
(CR51	0.	0.	1.12E+00	4.13E-01	2.48E+00	4.70E+02	1.87E+00				
ſ	MN54	0.	2.34E+03	0.	6.95E+02	0.	7.15E+03	4.46E+02				
, I	MN56	0.	5.88E+01	0.	7.46E+01	0.	1.88E+03	1.05E+01				
!	FE55	3.87E+04	1.74E+05	0.	0.	2.02E+05	6.81E+04	4.58E+04				
ſ	FE59	2.71E+04	6.43E+04	0.	0.	1.79E+04	2.12E+05	2.45E+04				
(CO57	0.	4.78E+01	0.	0.	0.	1.21E+03	7.94E+01				
(CO58	0.	5.05E+02	0.	0.	0.	3.00E+03	1.52E+03				
(CO60	0.	1.41E+03	0.	0.	0.	7.80E+03	4.23E+03				
	Ni-63	1.66E+04	1.15E+03	0.	0.	0.	2.39E+02	5.55E+02				
	NI65	6.73E+01	8.74E+00	0.	0.	0.	2.22E+02	3.98E+00				
(CU64	0.	7.15E+01	0.	1.80E+02	0.	6.09E+03	3.36E+01				
	ZN65	5.47E+04	1.74E+05	0.	1.16E+05	0.	1.09E+05	7.86E+04				
	ZN69	1.16E+02	2.23E+02	0.	1.44E+02	0.	3.34E+01	1.55E+01				
	BR82	0.	0.	0.	0.	0.	1.59E+00	1.39E+00				
	BR83	0.	0.	0.	0.	0.	3.55E-02	2.47E-02				
-	BR84	0.	0.	0.	0.	0.	2.51E-07	3.20E-02				
	BR85	0.	0.	0.	0.	0.	0.	1.31E-03				

REVISION NO .:	PROCEDURE TITLE	:					PAGE:	
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		164 of 231	
PROCEDURE NO.:							104 01 201	
C-200			ST. LL	JCIE PLANT				
	ENVIRONMEN PATHW	NTAL PATHWA I AY - SALT WA ORGAN E	TAB <u>Y-DOSE CONVI</u> TER FISH AND DOSE FACTOR	LE L-4 ERSION FACTO SHELLFISH (MREM/HR PI	<mark>RS FOR LIQUIE</mark> AGE GROUI ER μCi/ML)	<u>) DISCHARGES</u> P - CHILD		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY	
RB86	0.	2.08E+02	0.	0.	0.	4.09E+01	9.68E+01	
RB88	0.	5.96E-01	0.	0.	0.	0.	3.16E-01	
RB89	0.	3.95E-01	0.	0.	0.	0.	2.78E-01	
SR89	7.53E+03	0.	0.	0.	0.	2.81E+02	2.16E+02	
SR90	9.39E+04	0.	0.	0.	0.	1.25E+03	2.38E+04	
SR91	3.18E+01	0.	0.	0.	0.	1.60E+02	1.40E+00	
SR92	1.18E+01	0.	0.	0.	0.	2.33E+02	5.08E-01	
Y90	9.00E+00	0.	0.	0.	0.	2.57E+04	2.42E-01	
Y91M	1.95E-02	0.	0.	0.	0.	5.71E-02	7.55E-04	
Y91	1.25E+02	0.	0.	0.	0.	1.66E+04	3.34E+00	
Y92	1.81E-01	0.	0.	0.	0.	3.16E+03	5.28E-03	
Y93	5.73E-01	0.	0.	0.	0.	1.82E+04	1.58E-02	
ZR95	1.80E+01	4.19E+00	0.	2.67E+00	0.	4.33E+03	3.81E+00	
ZR97	2.91E-01	5.87E-02	0.	8.86E-02	0.	1.82E+04	2.70E-02	
NB95	4.61E+02	1.97E+02	0.	8.11E+01	0.	3.41E+05	1.45E+02	
NB97	1.24E+00	3.12E-01	0.	3.64E-01	0.	1.15E+03	1.14E-01	
MO99	0.	4.23E+01	0.	9.59E+01	0.	9.81E+01	8.05E+00	
TC-99M	4.34E-03	1.23E-02	0.	1.86E-01	6.01E-03	7.26E+00	1.57E-01	
TC-101	4.47E-03	6.45E-03	0.	1.16E-01	3.29E-03	0.	6.33E-02	
REVISION NO.:	PROCEDURE TITLE:	:					PAGE:	
----------------	---	--------------	--------------	--------------	------------	-----------	-------------	--
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		165 of 231	
PROCEDURE NO.:							103 01 23 1	
C-200			ST. LU	CIE PLANT				
	TABLE L-4							
	ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGES							
	PATHW	AY - SALT WA	TER FISH AND	SHELLFISH	AGE GROUP	P - CHILD		
		ORGAN E	OSE FACTOR	(MREM/HR P	ER μCi/ML)			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY	
RU-103	1.33E+02	0.	0.	1.39E+02	0.	3.50E+03	5.38E+01	
RU-105	3.03E+00	0.	0.	3.91E+01	0.	1.85E+03	1.19E+00	
RU-106	2.34E+03	0.	0.	1.05E+03	0.	3.63E+04	2.91E+02	
AG110	5.18E+02	4.80E+02	0.	9.43E+02	0.	1.96E+05	2.85E+02	
SB-124	9.13E+01	1.72E+00	2.21E-01	0.	7.08E+01	2.58E+03	3.61E+01	
SB-125	7.24E+01	7.80E-01	6.43E-02	0.	7.57E+03	6.40E+02	1.46E+01	
TE 125M	3.11E+02	8.43E+01	8.73E+01	2.97E+02	0.	3.00E+02	4.15E+01	
TE 127M	1.85E+02	6.47E+01	4.72E+01	7.50E+02	0.	6.19E+02	2.25E+01	
TE-127	1.23E+01	3.27E+00	8.46E+00	1.22E+01	0.	5.24E+02	2.63E+00	
TE129M	1.35E+03	3.77E+02	4.31E+02	1.31E+03	0.	1.63E+03	2.09E+02	
TE-129	8.59E-01	3.25E-01	6.58E-01	3.60E+00	0.	6.47E-01	2.09E-01	
TE131M	4.75E+01	2.31E+01	3.66E+01	2.34E+02	0.	2.29E+03	1.93E+01	
TE-131	5.38E-01	2.25E-01	4.42E-01	2.36E+00	0.	8.05E-02	1.70E-01	
TE-132	2.78E+02	1.23E+02	1.81E+02	4.31E+02	0.	2.15E+03	1.48E+02	
I130	1.33E+01	3.94E+01	5.01E+03	6.12E+01	0.	3.38E+01	1.55E+01	
I131	2.87E+02	2.94E+02	9.55E+04	1.79E+02	0.	2.51E+01	2.22E+02	
I132	3.57E+00	9.55E+00	1.26E+03	1.52E+01	0.	1.79E+00	3.39E+00	
I133	1.05E+02	1.30E+02	3.13E+04	7.61E+01	0.	5.26E+01	5.10E+01	
I134	1.86E+00	5.06E+00	6.58E+02	8.07E+00	0.	4.41E-03	1.81E+00	

Based on 1 μ Ci/sec release rate of each isotope in discharge flow of 1 cc/sec with no additional dilution

REVISION NO .:	PROCEDURE TITLE:						PAGE:		
53		OFFSITE DOSE CALCULATION MANUAL (ODCM)							
PROCEDURE NO .:									
C-200		ST. LUCIE PLANT							
	-		TAB	LE L-4					
	ENVIRONMEN	ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS FOR LIQUID DISCHARGES							
	PATHW								
		ORGAN [DOSE FACTOR	(MREM/HR P	ER μCi/ML)				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY		
I135	7.79E+00	2.06E+01	2.69E+03	3.27E+01	0.	2.30E+01	7.54E+00		
CS-134	8.14E+03	1.37E+04	0.	1.75E+03	1.52E+03	7.42E+01	2.92E+03		
CS-136	2.37E+02	9.34E+02	0.	5.20E+02	7.13E+01	1.06E+02	6.73E+02		
CS-137	1.13E+04	1.10E+04	0.	1.35E+03	1.29E+03	6.69E+01	1.64E+03		
CS-138	2.01E+00	3.96E+00	0.	2.92E+00	2.88E-01	1.69E-05	1.97E+00		
BA-139	2.65E+00	1.89E-03	0.	1.77E-03	1.07E-03	4.69E+00	7.75E-02		
BA-140	2.25E+03	1.98E+00	0.	2.37E-01	1.18E+00	1.15E+02	1.32E+02		
BA-141	0.	9.71E-04	0.	9.03E-04	5.51E-04	6.06E-10	4.34E-02		
BA-142	5.81E-01	5.98E-04	0.	5.05E-04	3.38E-04	0.	3.66E-02		
LA-140	2.16E+00	7.52E-01	0.	0.	0.	2.14E+04	2.54E-01		
LA-142	2.74E-02	1.24E-02	0.	0.	0.	9.09E+01	3.10E-03		
CE-141	4.67E+00	2.34E+00	0.	3.66E-01	0.	2.93E+03	3.48E-01		
CE-143	2.05E-01	1.52E+02	0.	6.69E-02	0.	5.67E+03	1.68E-02		
CE-144	2.66E+02	8.33E+01	0.	1.50E+01	0.	2.16E+04	1.42E+01		
PR-144	6.46E-03	2.67E-03	0.	1.51E-03	0.	9.26E-10	3.27E-04		
W187	3.03E+00	2.54E+00	0.	0.	0.	8.31E+02	8.90E-01		
NP-239	1.18E-02	1.16E-03	0.	3.58E-03	0.	2.36E+02	6.34E-04		

Based on 1 $\mu\text{Ci/sec}$ release rate of each isotope in discharge flow of 1 cc/sec with no additional dilution

REVISION NO .:

PROCEDURE TITLE:

PAGE:

53 PROCEDURE NO.: OFFSITE DOSE CALCULATION MANUAL (ODCM)

C-200

ST. LUCIE PLANT

TABLE G-1 EFFLUENT CONCENTRATION LIMITS IN AIR IN UNRESTRICTED AREAS

NOTE

If a nuclide is not listed below, refer to 10 CFR Part 20, Appendix B, Table 2 Effluent Concentrations Column 1 and use the most conservative ECL listed for the nuclide.

Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/ml)	Nuclide	ECL (µCi/mI)
Ar-41	1 E-8	Co-57	9 E-10	Sb-124	3 E-10
Kr-83m	5 E-5	Co-58	1 E-9	Sb-125	7 E-10
Kr-85m	1 E-7	Fe-59	5 E-10	Te-125m	1 E-9
Kr-85	7 E-7	Co-60	5 E-11	Te-127m	4 E-10
Kr-87	2 E-8	Zn-65	4 E-10	Te-129m	3 E-10
Kr-88	9 E-9	Rb-86	1 E-9	I-130	3 E-9
Kr-89	None	Rb-88	9 E-8	I-131	2 E-10
Kr-90	None	Sr-89	2 E-10	I-132	2 E-8
Xe-131m	2 E-6	Sr-90	6 E-12	I-133	1 E-9
Xe-133m	6 E-7	Y-91	2 E-10	I-134	6 E-8
Xe-133	5 E-7	Zr-95	4 E-10	I-135	6 E-9
Xe-135m	4 E-8	Nb-95	2 E-9	Cs-134	2 E-10
Xe-135	7 E-8	Ru-103	9 E-10	Cs-136	9 E-10
Xe-137	None	Ru-106	2 E-11	Cs-137	2 E-10
Xe-138	2 E-8	Ag-110	1 E-10	Ba-140	2 E-9
H-3	1 E-7	Sn-113	8 E-10	La-140	2 E-9
P-32	1 E-9	In-113m	2 E-7	Ce-141	8 E-10
Cr-51	3 E-8	Sn-123	2 E-10	Ce-144	2 E-11
Mn-54	1 E-9	Sn-126	8 E-11		

REVISION NO.: 53	PROCEDU	RE TITLE: OFFSITE D	OSE CALCULATION MA	NUAL (ODCM)	PAGE:			
PROCEDURE NO.: C-200	C-200 ST. LUCIE PLANT							
		DOSE I	TABLE G-2 FACTORS FOR NOBLE (SASES*				
RADIO	ONUCLIDE	TOTAL BODY DOSE FACTOR K _i (mrem/yr per μCi/m ³)	SKIN DOSE FACTOR L _i (mrem/yr per μCi/m ³)	GAMMA AIR DOSE FACTOR M _i (mrad/yr per μCi/m ³)	BETA AIR DOSE FACTOR N _I (mrad/yr per μCi/m ³)			
Kı	r-83m	7.56E-02**		1.93E+01	2.88E+02			
Kı	r-85m	1.17E+03	1.46E+03	1.23E+03	1.97E+03			
Kı	r-85	1.61E+01	1.34E+03	1.72E+01	1.95E+03			
Kı	r-87	5.92E+03	9.73E+03	6.17E+03	1.03E+04			
Kı	r-88	1.47E+04	2.37E+03	1.52E+04	2.93E+03			
Kı	r-89	1.66E+04	1.01E+04	1.73E+04	1.06E+04			
Kı	r-90	1.56E+04	7.29E+03	1.63E+04	7.83E+03			
X	e-131m	9.15E+01	4.76E+02	1.56E+02	1.11E+03			
Xt	e-133m	2.51E+02	9.94E+02	3.27E+02	1.48E+03			
Xt	e-133	2.94E+02	3.06E+02	3.53E+02	1.05E+03			
X	e-135m	3.12E+03	7.11E+02	3.36E+03	7.39E+02			
X	e-135	1.81E+03	1.86E+03	1.92E+03	2.46E+03			
X	e-137	1.42E+03	1.22E+04	1.51E+03	1.27E+04			
X	e-138	8.83E+03	4.13E+03	9.21E+03	4.75E+03			
A	r-41	8.84E+03	2.69E+03	9.30E+03	3.28E+03			

* The listed dose factors are for radionuclides that may be detected in gaseous effluents.

** 7.56E-02 = 7.56 X 10⁻²

REVISION NO .:	PROCEDURE TITLE:			PAGE:						
53	OFFSITE DOSE CALC	ULATION MANUAL (ODCM)							
PROCEDURE NO.:			· - · ·)	169 of 231						
C-200	C-200 ST. LUCIE PLANT									
	TAD	EC 2								
FN	VIRONMENTAL PATHWAY-DOSE CONVERS	IE G-3	FOR GASEOUS DISCHARGES							
<u></u>	PATHWAY - GROUND PLANE DEPO	DSITION AGE	GROUP - INFANT	2						
	ORGAN DOSE FACTOR (SQ.	METER - MREM/YR	PER μCi/Sec)							
			·							
			1							
	NUCLIDE	WHOLE BODY	-							
	H-3	0.								
	CR-51	6.68E+06								
	MN-54	1.10E+09								
	FE-59	3.92E+08								
	CO-57	1.64E+08								
	CO-58	5.27E+08								
	CO-60	4.40E+09								
	ZN-65	6.87E+08								
	RB-86	1.29E+07								
	SR-89	3.07E+04								
	SR-90	5.94E+05								
	Y-91	1.53E+06								
	ZR-95	6.94E+08	-							
	NB-95	1.95E+08	1							
	RU-103	1.57E+08	1							
	RU-106	2.99E+08	1							
	AG-110	3.18E+09	1							

REVISION NO .:	PROCEDURE TITLE:				PAGE:						
53	OF	FSITE DOSE CALC	ULATION MANUAL	(ODCM)	470 (004						
PROCEDURE NO.:											
C-200	C-200 ST. LUCIE PLANT										
		ТАР									
F			LE G-3 ION FACTORS P (I)		HARGES						
-	PATHWAY - GR			GROUP - INFANT	HANOLO						
	ORGAN DO	SE FACTOR (SQ.	METER - MREM/YR	PER uCi/Sec)							
		NUCLIDE	WHOLE BODY								
		SN-126	4.80E+09								
		SB-124	8.42E+08								
		SB-125	7.56E+08								
		TE-125M	2.19E+06								
		TE-127M	1.15E+06								
		TE-129M	5.49E+07								
		I-130	7.90E+06								
		I-131	2.46E+07								
		I-132	1.78E+06								
		I-133	3.54E+06								
		I-134	6.43E+05								
		I-135	3.66E+06								
		CS-134	2.82E+09								
		CS-136	2.13E+08								
		CS-137	1.15E+09								
		BA-140	2.39E+08								
		CE-141	1.95E+07								
		CE-144	9.52E+07								

REVISION NO .:	PROCEDURE TITLE:			PAGE:						
53	OFFSITE DOSE CAL	CULATION MANUAL (ODCM)							
PROCEDURE NO.:		171 of 231								
C-200	ST. I	ST. LUCIE PLANT								
_		BLE G-4								
			FOR GASEOUS DISCHARG							
•	ORGAN DOSE FACTOR (SC) METER - MREM/YR								
			ΓΕΙζμοιίουο							
	NUCLIDE	WHOLE BODY								
	H-3	0.								
	C-14	0								
	CR-51	4.68E+06								
	MN-54	1.38E+09								
	FE-59	2.75E+08								
	CO-57	1.89E+08								
	CO-58	3.80E+08								
	CO-60	2.15E+10								
	ZN-65	7.43E+08								
	RB-86	9.01E+06								
	SR-89	2.17E+04								
	SR-90	5.35E+06								
	Y-91	1.08E+06								
	ZR-95	5.01E+08								
	NB-95	1.36E+08								
	RU-103	1.10E+08								
	RU-106	4.19E+08								
	AG-110	3.58E+09								

REVISION NO .:	F	PROCEDURE TITLE:		PA	GE:
53		OFFSITE DOSE CALC	ULATION MANUAL (O	DCM)	
PROCEDURE NO.:				- /	172 of 231
C-200		ST. LL	JCIE PLANT		
		TAB	LE G-4		
<u>'</u>		RONMENTAL PATHWAY-DOSE CONVERS	ION FACTORS R (I) FO	DR GASEOUS DISCHARGES	
	PAI	HWAY - GROUND PLANE DEPOSITION			
		ORGAN DUSE FACTOR (SQ.	IVIETER - IVIREIVI/TRP	ER µCI/Sec)	
		NUCLIDE	WHOLE BODY		
		SN-126	5.16E+10		
		SB-124	5.98E+08		
		SB-125	2.30E+09		
		TE-125M	1.55E+06		
		TE-127M	8.79E+05		
		TE-129M	3.85E+07		
		I-130	5.53E+06		
		I-131	1.72E+07		
		I-132	1.25E+06		
		I-133	2.48E+06		
		I-134	4.50E+05		
		I-135	2.56E+06		
		CS-134	6.99E+09		
		CS-136	1.49E+08		
		CS-137	1.03E+10		
		BA-140	1.68E+08		
		CE-141	1.37E+07		
1		CE-144	1.13E+08		

REVISION NO .:	PROCEDURE TITLE						PAGE:				
53		OFFSITE DOSE CALCULATION MANUAL (ODCM) 173 of 23									
PROCEDURE NO.:											
C-200		ST. LUCIE PLANT									
			ТАВ	LE G-5							
EN	VIRONMENTAL	PATHWAY-DOS	SE CONVERSIO	N FACTORS R(I)/P(I) FOR GAS	EOUS DISCHA	RGES				
		PATHWAY	- INHALATION	AGE GRO	UP - INFANT						
		ORGAN DOS	SE FACTOR (MREM/YR PER	μCi/Cu Meter)						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
H-3	0.	4.30E+02	4.30E+02	1.88E+02	4.30E+02	4.30E+02	4.30E+02				
C-14	5.04E+03	4.28E+03	4.28E+03	5.98E+02	4.28E+03	4.28E+03	4.28E+03				
P-32	2.31E+05	1.35E+04	0.	0.	0.	1.51E+04	8.78E+03				
CR-51	0.	0.	1.40E+01	3.99E+00	2.52E+03	5.81E+02	1.75E+01				
MN-54	0.	6.93E+03	0.	1.72E+03	2.45E+05	1.35E+04	1.10E+03				
FE-59	2.06E+03	4.86E+06	0.	0.	1.78E+05	3.29E+04	1.85E+03				
CO-57	0.	1.21E+02	0.	0.	6.47E+04	5.50E+03	1.18E+02				
CO-58	0.	1.18E+02	0.	0.	8.79E+05	1.21E+04	1.68E+02				
CO-60	0.	8.40E+02	0.	0.	5.57E+06	3.28E+04	1.17E+03				
ZN-65	5.67E+03	1.81E+04	0.	1.21E+04	1.53E+05	9.35E+03	8.15E+03				
RB-86	0.	2.37E+04	0.	0.	0.	2.91E+03	1.03E+04				
SR-89	4.31E+04	0.	0.	0.	2.31E+06	6.80E+04	1.24E+03				
SR-90	1.32E+07	0.	0.	0.	1.53E+07	1.39E+05	8.06E+05				
Y-91	5.98E+04	0.	0.	0.	2.63E+06	7.17E+04	1.60E+03				
ZR-95	1.08E+04	2.73E+03	0.	9.48E+03	1.81E+06	1.41E+04	1.95E+03				
NB-95	1.28E+03	5.75E+02	0.	1.35E+03	4.77E+05	1.21E+04	3.37E+02				
RU-103	1.69E+02	0.	0.	1.02E+03	5.66E+05	1.58E+04	5.85E+01				
RU-106	9.31E+03	0.	0.	2.34E+04	1.50E+07	1.76E+05	1.14E+03				
AG-110	1.89E+03	1.75E+03	0.	3.44E+03	8.12E+05	5.29E+04	1.04E+03				

53 OFFSITE DOSE CALCULATION MANUAL (ODCM) 17 PROCEDURE NO.: C-200 ST. LUCIE PLANT TABLE G-5 FURIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I)/P(I) FOR GASEOUS DISCHARGES PATHWAY - INHALATION AGE GROUP - INFANT ORGAN DOSE FACTOR (MREM/YR PER μCi/Cu Meter) 17 NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 5.80E+02 5.08E+02 6.40E+03 1.33E+04 2.05E I-130 8.02E+02 2.35E+03	4 of 231
PROCEDURE NO.: C-200 ST. LUCIE PLANT TABLE G-5 ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I)/P(I) FOR GASEOUS DISCHARGES PATHWAY - INHALATION AGE GROUP - INFANT ORGAN DOSE FACTOR (MREM/YR PER μCi/Cu Meter) NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.36E+04 6.46E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+04 5.08E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04	
C-200 ST. LUCIE PLANT TABLE G-5 ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I)/P(I) FOR GASEOUS DISCHARGES PATHWAY - INHALATION AGE GROUP - INFANT ORGAN DOSE FACTOR (MREM/YR PER μCi/Cu Meter) NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.36E+04 6.45E TE-125M 4.54E+02 1.95E+02 1.03E+01 0. 3.85E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-130 8.02E+02	
TABLE G-5 ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I)/P(I) FOR GASEOUS DISCHARGES PATHWAY - INHALATION AGE GROUP - INFANT ORGAN DOSE FACTOR (MREM/YR PER μCi/Cu Meter) NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.166E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.33E+06 7.32E+04 2.06E I-130	
NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+03 0. 1.35E+03 9.25E 1-130 8.02E+02 2.35E+03 3.05E+05	
PATHWAY - INHALATION AGE GROUP - INFANT ORGAN DOSE FACTOR (MREM/YR PER μCi/Cu Meter) NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03	
NUCLIDEBONELIVERTHYROIDKIDNEYLUNGGI-LLIWHOLESN-1233.11E+046.45E+026.45E+020.3.61E+065.99E+041.02ESN-1262.21E+055.85E+031.72E+030.1.64E+062.23E+048.40ESB-1245.46E+031.03E+021.32E+010.4.34E+057.11E+042.17ESB-1251.16E+041.25E+021.03E+010.3.85E+051.76E+042.32ETE-125M4.54E+021.95E+021.53E+022.17E+034.96E+051.36E+046.16ETE-127M2.21E+039.83E+025.75E+028.01E+031.68E+052.62E+042.74ETE-129M1.32E+035.80E+025.08E+026.40E+031.83E+067.32E+042.06EI-1308.02E+022.35E+033.05E+053.65E+030.1.35E+039.25EI-1313.63E+044.27E+041.41E+071.07E+040.1.07E+032.51EI-1322.03E+025.70E+027.67E+049.09E+020.7.11E+012.03E	
NUCLIDEBONELIVERTHYROIDKIDNEYLUNGGI-LLIWHOLESN-1233.11E+046.45E+026.45E+020.3.61E+065.99E+041.02ESN-1262.21E+055.85E+031.72E+030.1.64E+062.23E+048.40ESB-1245.46E+031.03E+021.32E+010.4.34E+057.11E+042.17ESB-1251.16E+041.25E+021.03E+010.3.85E+051.76E+042.32ETE-125M4.54E+021.95E+021.53E+022.17E+034.96E+051.36E+046.16ETE-127M2.21E+039.83E+025.75E+028.01E+031.68E+052.62E+042.74ETE-129M1.32E+035.80E+025.08E+026.40E+031.83E+067.32E+042.06EI-1308.02E+022.35E+033.05E+053.65E+030.1.35E+039.25EI-1313.63E+044.27E+041.41E+071.07E+040.1.07E+032.51EI-1322.03E+025.70E+027.67E+049.09E+020.7.11E+012.03E	
NUCLIDE BONE LIVER THYROID KIDNEY LUNG GI-LLI WHOLE SN-123 3.11E+04 6.45E+02 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04	
SN-123 3.11E+04 6.45E+02 0. 3.61E+06 5.99E+04 1.02E SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 <td>BODY</td>	BODY
SN-126 2.21E+05 5.85E+03 1.72E+03 0. 1.64E+06 2.23E+04 8.40E SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+03
SB-124 5.46E+03 1.03E+02 1.32E+01 0. 4.34E+05 7.11E+04 2.17E SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+03
SB-125 1.16E+04 1.25E+02 1.03E+01 0. 3.85E+05 1.76E+04 2.32E TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+03
TE-125M 4.54E+02 1.95E+02 1.53E+02 2.17E+03 4.96E+05 1.36E+04 6.16E TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+03
TE-127M 2.21E+03 9.83E+02 5.75E+02 8.01E+03 1.68E+05 2.62E+04 2.74E TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+01
TE-129M 1.32E+03 5.80E+02 5.08E+02 6.40E+03 1.83E+06 7.32E+04 2.06E I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+02
I-130 8.02E+02 2.35E+03 3.05E+05 3.65E+03 0. 1.35E+03 9.25E I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+02
I-131 3.63E+04 4.27E+04 1.41E+07 1.07E+04 0. 1.07E+03 2.51E I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+02
I-132 2.03E+02 5.70E+02 7.67E+04 9.09E+02 0. 7.11E+01 2.03E	+04
	+02
I-133 1.34E+04 1.93E+04 4.66E+06 4.55E+03 0. 2.28E+03 5.87E	+03
I-134 1.13E+02 3.02E+02 4.02E+04 4.82E+02 0. 1.76E-01 1.08E	+02
I-135 4.70E+02 1.22E+03 1.64E+05 1.95E+03 0. 9.18E+02 4.51E	+02
CS-134 4.80E+05 8.25E+05 0. 5.04E+04 1.01E+05 1.37E+03 7.32E	+04
CS-136 6.85E+03 2.56E+04 0. 1.50E+04 2.10E+03 2.04E+03 1.95E	+04
CS-137 6.86E+05 7.31E+05 0. 3.89E+04 9.45E+04 1.32E+03 4.41E	+04
BA-140 5.70E+03 4.27E+00 0. 2.93E+00 1.64E+06 3.88E+03 2.95E	+02
CE-141 2.52E+03 1.55E+03 0. 1.10E+03 5.24E+05 2.06E+04 1.81E	+02
CE-144 4.68E+05 1.82E+05 0. 1.48E+05 1.27E+07 1.61E+05 2.49E	1

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		175 of 231
PROCEDURE NO.:							175 01 251
C-200			ST. LU	ICIE PLANT			
			TAB	LE G-6			
EN\	/IRONMENTAL I	PATHWAY-DOS	E CONVERSIO	N FACTORS R()/P(I) FOR GAS	EOUS DISCHA	RGES
	PATHWAY	- COWS MILK	(CONTAMINAT	ED FORAGE)	AGE GROU	IP - INFANT	
	(ORGAN DOSE F	ACTOR (SQ.	METER - MREM	//YR PER μi/Se	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H-3	0.	2.37E+03	2.37E+03	1.04E+03	2.37E+03	2.37E+03	2.37E+03
C-14	6.55E+05	6.55E+05	6.55E+05	7.55E+04	6.55E+05	6.55E+05	6.55E+05
P-32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR-51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN-54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE-59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO-57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO-58	0.	2.55E+07	0.	0.	0.	6.60E+07	6.24E+07
CO-60	0.	8.73E+07	0.	0.	0.	2.16E+08	2.09E+08
ZN-65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB-86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR-89	1.47E+10	0.	0.	0.	0.	2.75E+08	4.22E+08
SR-90	1.65E+11	0.	0.	0.	0.	1.61E+09	4.21E+10
Y-91	8.12E+04	0.	0.	0.	0.	5.37E+06	2.16E+03
ZR-95	2.12E+05	9.41E+04	0.	1.86E+04	0.	7.47E+07	5.56E+04
NB-95	5.49E+05	2.47E+05	0.	4.84E+04	0.	1.98E+08	1.45E+05
RU-103	8.30E+03	0.	0.	4.16E+03	0.	1.04E+05	2.86E+03
RU-106	2.01E+05	0.	0.	4.20E+04	0.	1.56E+06	2.46E+04
AG-110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

Note: The units for C-14 and H-3 are (MREM/YR Per μ Ci/Cu. Meter)

REVISION NO .:	PROCEDURE TITLE						PAGE:			
53		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		176 of 231			
PROCEDURE NO.:		176 Of 23								
C-200			ST. LU	CIE PLANT						
	TABLE G-6									
ENV	IRONMENTAL	PATHWAY-DOS	E CONVERSIO	N FACTORS R(I)/P(I) FOR GAS	EOUS DISCHA	RGES			
	PATHWAY	- COWS MILK	(CONTAMINAT	ED FORAGE)	AGE GROU	P - INFANT				
	C	ORGAN DOSE F	ACTOR (SQ.	METER - MREM	I/YR PER μCi/Se	ec)				
	DONE					0				
NUCLIDE	BONE		THYROID	KIDNEY		GI-LLI	WHOLE BODY			
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07			
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07			
SB-125	3.59E+07	3.27E+06	2.93E+06	3.96E+06	2.83E+09	2.43E+08	6.62E+06			
TE-125M	1.57E+08	5.30E+07	5.18E+07	7.05E+07	0.	7.57E+07	2.10E+07			
TE-127M	5.54E+07	1.93E+07	1.79E+07	2.00E+08	0.	3.24E+08	7.38E+06			
TE-129M	5.87E+08	2.02E+08	2.21E+08	2.70E+08	0.	3.54E+08	8.95E+07			
I-130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05			
I-131	2.59E+09	3.09E+09	9.94E+11	7.24E+08	0.	1.16E+08	1.81E+09			
I-132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01			
I-133	3.75E+07	5.48E+07	1.30E+10	1.29E+07	0.	9.74E+06	1.66E+07			
I-134	0.	0.	1.06E-09	0.	0.	0.	0.			
I-135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04			
CS-134	4.43E+10	7.97E+10	0.	4.65E+09	9.12E+09	1.90E+08	6.75E+09			
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08			
CS-137	6.44E+10	7.21E+10	0.	3.66E+09	8.69E+09	1.86E+08	4.14E+09			
BA-140	2.45E+08	2.47E+05	0.	1.22E+04	1.51E+05	8.13E+06	1.27E+07			
CE-141	2.65E+05	1.62E+05	0.	9.72E+03	0.	7.87E+07	1.90E+04			
CE-144	2.10E+07	8.29E+06	0.	5.67E+05	0.	8.66E+08	1.13E+06			

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci}/\text{Cu}.$ Meter)

REVISION NO .:	PROCEDURE TITLE:						PAGE:					
53		OFFSI	E DOSE CALC	ULATION MANU	IAL (ODCM)		177 of 001					
PROCEDURE NO .:							177 01 231					
C-200		ST. LUCIE PLANT										
			ТАРІ	E C 7								
ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I)/P(I) FOR GASEOUS DISCHARGES												
	PATHWAY	- GOATS MILK	(CONTAMINAT	ED FORAGE)	AGE GRO	UP - INFANT						
	0	RGAN DOSE F	ACTOR (SQ.	METER - MRÉM	I/YR PER μCi/Se	ec)						
	-											
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
H-3	0.	4.84E+03	4.84E+03	2.11E+03	4.84E+03	4.84E+03	4.84E+03					
C-14	6.55E+05	6.55E+05	6.55E+05	7.75E+04	6.55E+05	6.55E+05	6.55E+05					
P-32	2.19E+10	1.37E+09	0.	0.	0.	2.46E+09	8.46E+08					
CR-51	0.	0.	2.19E+03	8.07E+02	4.85E+03	9.19E+05	3.66E+03					
MN-54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05					
FE-59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05					
CO-57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05					
CO-58	0.	3.06E+06	0.	0.	0.	7.92E+06	7.49E+06					
CO-60	0.	1.05E+07	0.	0.	0.	2.59E+07	2.51E+07					
ZN-65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08					
RB-86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08					
SR-89	3.09E+10	0.	0.	0.	0.	5.77E+08	8.87E+08					
SR-90	3.46E+11	0.	0.	0.	0.	3.35E+09	8.83E+10					
Y-91	9.74E+03	0.	0.	0.	0.	6.45E+05	2.60E+02					
ZR-95	2.54E+04	1.13E+04	0.	2.23E+03	0.	8.95E+06	6.67E+03					
NB-95	6.59E+04	2.97E+04	0.	5.81E+03	0.	2.37E+07	1.75E+04					
RU-103	9.96E+02	0.	0.	4.99E+02	0.	1.24E+04	3.43E+02					
RU-106	2.41E+04	0.	0.	5.04E+03	0.	1.87E+05	2.96E+03					
AG-110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06					

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu Ci/Cu.$ Meter)

REVISION NO .:	PROCEDURE TITLE:	-					PAGE:			
53		OFFSI	E DOSE CALC	ULATION MANU	JAL (ODCM)		179 of 221			
PROCEDURE NO .:							170 01 231			
C-200		ST. LUCIE PLANT								
			ταβι	E G-7						
ENVI	RONMENTAL I	PATHWAY-DOS		N FACTORS R(I)/P(I) FOR GAS	EOUS DISCHA	RGES			
	PATHWAY	- GOATS MILK	(CONTAMINAT	ED FORAGE)	AGE GROL	JP - INFANT				
	C	ORGAN DOSE F.	ACTOR (SQ.	METER - MREM	I/YR PER μCi/Se	ec)				
		·		· · · · · · · · · · · · · · · · · · ·						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY			
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06			
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06			
SB-125	4.31E+06	3.92E+05	3.52E+05	4.76E+05	3.40E+08	2.92E+07	7.94E+05			
TE-125M	1.89E+07	6.36E+06	6.21E+06	8.46E+06	0.	9.09E+06	2.52E+06			
TE-127M	6.64E+06	2.31E+06	2.15E+06	2.40E+07	0.	3.88E+07	8.85E+05			
TE-129M	7.05E+07	2.42E+07	2.66E+07	3.23E+07	0.	4.25E+07	1.07E+07			
I-130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05			
I-131	3.11E+09	3.70E+09	1.19E+12	9.28E+08	0.	1.39E+08	2.17E+09			
I-132	2.13E-01	5.71E-01	7.51E+01	9.10E-01	0.	1.07E-01	2.03E-01			
I-133	4.50E+07	6.57E+07	1.55E+10	1.55E+07	0.	1.17E+07	1.99E+07			
I-134	0.	0.	1.27E-09	0.	0.	0.	0.			
I-135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04			
CS-134	1.33E+11	2.39E+11	0.	1.39E+10	2.74E+10	5.69E+08	2.02E+10			
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09			
CS-137	1.93E+11	2.16E+11	0.	1.10E+10	2.61E+10	5.59E+08	1.24E+10			
BA-140	2.95E+07	2.96E+04	0.	1.47E+03	1.81E+04	9.76E+05	1.52E+06			
CE-141	3.17E+04	1.95E+04	0.	1.17E+03	0.	9.44+06	2.28E+03			
CE-144	2.52E+06	9.95E+05	0.	6.80E+04	0.	1.04E+08	1.36E+05			

Note: The units for C-14 and H-3 are (MREM/YR Per $\mu \text{Ci}/\text{Cu}.$ Meter)

REVISION NO .:	PROCEDURE TITLE	:					PAGE:						
53 PROCEDURE NO.:	-	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		179 of 231						
C-200		ST. LUCIE PLANT											
<u>E1</u>	TABLE G-8 <u>ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I) FOR GASEOUS DISCHARGES</u> PATHWAY - INHAL ATION												
		ORGAN DOSE	E FACTOR (M	AGE GR IREM/YR PER μ(Ci/CU. METER)								
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY						
H3	0.	7.51E+02	7.51E+02	4.96E+02	7.51E+02	7.51E+02	7.51E+02						
C-14	6.25E+03	6.25E+03	6.25E+03	1.58E+03	6.25E+03	6.25E+03	6.25E+03						
P32	6.11E+05	3.57E+04	0.	0.	0.	4.00E+04	2.32E+04						
CR51	0.	0.	2.75E+01	1.06E+01	6.66E+03	1.54E+03	4.63E+01						
MN54	0.	1.83E+04	0.	4.55E+03	6.48E+05	3.58E+04	2.91E+03						
FE59	5.44E+03	1.28E+07	0.	0.	4.70E+05	8.70E+04	4.88E+03						
CO57	0.	3.20E+02	0.	0.	1.71E+05	1.45E+04	3.10E+02						
CO58	0.	1.52E+02	0.	0.	1.13E+06	3.62E+04	2.68E+02						
CO60	0.	1.07E+03	0.	0.	6.92E+06	9.36E+04	1.88E+03						
ZN65	1.50E+04	4.77E+04	0.	3.19E+04	4.03E+05	2.47E+04	2.15E+04						
RB86	0.	6.25E+04	0.	0.	0.	7.70E+03	2.73E+04						
SR89	5.37E+04	0.	0.	0.	2.24E+06	1.69E+05	1.54E+03						
SR90	1.64E+07	0.	0.	0.	1.48E+07	3.45E+05	9.99E+05						
Y91	7.44E+04	0.	0.	0.	2.55E+06	1.78E+05	1.98E+03						
ZR95	1.41E+04	3.28E+03	0.	2.51E+04	2.12E+06	5.74E+04	2.98E+03						
NB95	1.70E+03	7.25E+02	0.	3.58E+03	5.85E+05	3.32E+04	5.33E+02						
RU-103	2.16E+02	0.	0.	2.70E+03	6.33E+05	4.22E+04	8.73E+01						
RU-106	1.15E+04	0.	0.	6.18E+04	1.45E+07	4.37E+05	1.44E+03						
AG110	5.00E+03	4.63E+03	0.	9.10E+03	2.15E+06	1.40E+05	2.75E+03						

REVISION NO .:	PROCEDURE TITLE						PAGE:					
53		OFFSI	TE DOSE CALC	JLATION MANU	AL (ODCM)		180 of 231					
PROCEDURE NO.:							100 01 201					
C-200			ST. LU	CIE PLANT								
			TABI	F G-8								
EN EN	ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R/I) FOR GASFOUS DISCHARGES											
		PATHWAY -	INHALATION	AGE GR	OUP - CHILD							
		ORGAN DOSE	EFACTOR (M	REM/YR PER μ0	Ci/CU. METER)							
		[]					· · · · · · · · · · · · · · · · · · ·					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
SN-123	3.85E+04	6.44E+02	6.81E+02	0.	3.50E+06	1.49E+05	1.27E+03					
SN-126	5.85E+05	1.55E+04	4.55E+03	0.	4.33E+06	5.88E+04	2.22E+04					
SB-124	1.44E+04	2.72E+02	3.49E+01	0.	1.15E+06	1.88E+05	5.74E+03					
SB-125	3.06E+04	3.30E+02	2.72E+01	0.	1.02E+06	4.66E+04	6.14E+03					
TE 125M	5.62E+02	1.94E+02	1.61E+02	5.74E+03	4.81E+05	3.38E+04	7.62E+01					
TE 127M	5.85E+03	2.60E+03	1.52E+03	2.12E+04	4.44E+05	6.92E+04	7.25E+02					
TE 129M	1.64E+03	5.85E+02	5.40E+02	1.69E+04	1.80E+06	1.82E+05	2.60E+02					
I130	2.12E+03	6.22E+03	8.07E+05	9.66E+03	0.	3.56E+03	2.45E+03					
I131	4.55E+04	4.63E+04	1.54E+07	2.84E+04	0.	2.65E+03	3.50E+04					
I132	5.37E+02	1.51E+03	2.03E+05	2.40E+03	0.	1.88E+02	5.37E+02					
I133	1.68E+04	2.05E+04	5.03E+06	1.20E+04	0.	5.55E+03	8.03E+03					
I134	2.98E+02	7.99E+02	1.06E+05	1.27E+03	0.	4.66E-01	2.85E+02					
I135	1.24E+03	3.23E+03	4.33E+05	5.14E+03	0.	2.43E+03	1.19E+03					
CS-134	6.22E+05	9.95E+05	0.	1.33E+05	1.19E+05	3.77E+03	2.23E+05					
CS-136	1.81E+04	6.77E+04	0.	3.96E+04	5.55E+03	5.40E+03	5.14E+04					
CS-137	8.66E+05	7.99E+05	0.	1.03E+05	1.00E+05	3.41E+03	1.25E+05					
BA-140	7.14E+03	4.66E+00	0.	7.73E+00	1.74E+06	9.92E+03	4.22E+02					
CE-141	3.13E+03	1.57E+03	0.	2.90E+03	5.14E+05	5.44E+04	2.33E+02					
CE-144	5.81E+05	1.82E+05	0.	3.92E+05	1.23E+07	4.00E+05	3.10E+04					

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	JLATION MANU	AL (ODCM)		191 of 221
PROCEDURE NO.:							101 01 231
C-200			ST. LU	CIE PLANT			
	-		TARI	E G-9			
	VIRONMENTAL	PATHWAY-DO	DSE CONVERSI	ON FACTORS R	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY -	COWS MILK (CONTAMINATE	D FORAGE)	AGE GRO	OUP - CHILD	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.57E+03	1.57E+03	1.04E+03	1.57E+03	1.57E+03	1.57E+03
C-14	3.08E+05	3.08E+05	3.08E+05	7.75E+04	3.08E+05	3.08E+05	3.08E+05
P32	1.82E+10	1.14E+09	0.	0.	0.	2.05E+09	7.05E+08
CR51	0.	0.	1.82E+04	6.72E+03	4.04E+04	7.66E+06	3.05E+04
MN54	0.	8.96E+06	0.	2.67E+06	0.	2.74E+07	1.71E+06
FE59	3.17E+07	7.52E+07	0.	0.	2.09E+07	2.48E+08	2.86E+07
CO57	0.	1.36E+06	0.	0.	0.	3.46E+07	2.27E+06
CO58	0.	1.25E+07	0.	0.	0.	7.41E+07	3.76E+07
CO60	0.	4.22E+07	0.	0.	0.	2.33E+08	1.27E+08
ZN65	1.46E+09	4.65E+09	0.	3.11E+09	0.	2.93E+09	2.10E+09
RB86	0.	2.77E+09	0.	0.	0.	5.45E+08	1.29E+09
SR89	6.92E+09	0.	0.	0.	0.	2.58E+08	1.98E+08
SR90	1.13E+11	0.	0.	0.	0.	1.52E+09	2.87E+10
Y91	3.80E+04	0.	0.	0.	0.	5.05E+06	1.01E+03
ZR95	1.06E+05	4.47E+04	0.	1.86E+04	0.	7.68E+07	3.29E+04
NB95	2.75E+05	1.18E+05	0.	4.84E+04	0.	2.03E+08	8.63E+04
RU-103	3.99E+03	0.	0.	4.16E+03	0.	1.05E+05	1.61E+03
RU-106	9.39E+04	0.	0.	4.20E+04	0.	1.46E+06	1.17E+04
AG110	6.21E+07	5.75E+07	0.	1.13E+08	0.	2.35E+10	3.42E+07

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		182 of 231
PROCEDURE NO.:							102 01 201
C-200			ST. LU	CIE PLANT			
<u>E</u> 1	NVIRONMENTAL PATHWAY C	<u>- PATHWAY-DO</u> - Cows Milk (DRGAN DOSE F.	TABI DSE CONVERSI CONTAMINATE ACTOR (SQ.	_E G-9 I <mark>ON FACTORS F</mark> ID FORAGE) METER-MREM/ [\]	R(I) FOR GASEC AGE GRC YR PER μCI/SEC	DUS DISCHARG DUP - CHILD C)	ES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.75E+09	3.48E+07	1.01E+07	0.	4.97E+06	1.16E+09	5.25E+07
SB-124	2.75E+07	5.19E+05	6.64E+04	0.	2.13E+07	7.78E+08	1.09E+07
SB-125	3.13E+07	1.41E+06	1.18E+06	3.96E+06	2.83E+09	2.43E+08	5.99E+06
TE 125M	7.38E+07	2.00E+07	2.07E+07	7.05E+07	0.	7.12E+07	9.84E+06
TE 127M	5.18E+07	1.78E+07	1.46E+07	2.00E+08	0.	2.99E+08	6.60E+06
TE 129M	2.77E+08	7.73E+07	8.85E+07	2.70E+08	0.	3.33E+08	4.28E+07
I130	4.54E+05	1.35E+06	1.71E+08	2.09E+06	0.	1.15E+06	5.29E+05
I131	1.24E+09	1.27E+09	4.12E+11	7.74E+08	0.	1.09E+08	9.56E+08
I132	1.78E-01	4.76E-01	6.26E+01	7.58E-01	0.	8.93E-02	1.69E-01
I133	1.78E+07	2.20E+07	5.30E+09	1.29E+07	0.	8.90E+06	8.63E+06
I134	0.	0.	1.06E-09	0.	0.	0.	0.
I135	1.49E+04	3.94E+04	5.15E+06	6.26E+04	8.07E-02	4.41E+04	1.44E+04
CS-134	2.17E+10	3.65E+10	0.	4.65E+09	4.06E+09	1.97E+08	7.76E+09
CS-136	2.78E+08	1.10E+09	0.	6.11E+08	8.37E+07	1.25E+08	7.90E+08
CS-137	3.08E+10	2.98E+10	0.	3.66E+09	3.49E+09	1.81E+08	4.44E+09
BA-140	1.17E+08	1.02E+05	0.	1.22E+04	6.09E+04	7.75E+06	6.84E+06
CE-141	1.24E+05	6.22E+04	0.	9.72E+03	0.	7.80E+07	9.26E+03
CE-144	1.00E+07	3.14E+06	0.	5.67E+05	0.	8.15E+08	5.34E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:			
53		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		183 of 231			
PROCEDURE NO.:							103 01 23 1			
C-200		ST. LUCIE PLANT								
<u>E</u> I	NVIRONMENTAI PATHWAY -	<u>- PATHWAY-DO</u> GOATS MILK (DRGAN DOSE F	TABL DSE CONVERSI (CONTAMINATE ACTOR (SQ.	E G-10 I <mark>ON FACTORS F</mark> ED FORAGE) METER-MREM/ [\]	R(I) FOR GASE(AGE GR YR PER μCI/SE	DUS DISCHAR OUP - CHILD C)	GES			
	BONE			KIDNEY	LUNG	GLU				
H3	0	3 20E+03	3 20E+03	2 11E+03	3 20E+03	3 20E+03	3 20E+03			
C-14	3.08E+05	3.08E+05	3.08E+05	7 75E+04	3.08E+05	3.08E+05	3.08E+05			
P32	2 19E+10	1.37E+09	0.002.00	0	0	2 46E+09	8 46E+08			
CR51	0	0	2 19F+03	8.07E+02	4 85E+03	9 19E+05	3 66E+03			
MN54	0.	1.08E+06	0.	3.20E+05	0.	3.29E+06	2.05E+05			
FE59	4.12E+05	9.78E+05	0.	0.	2.72E+05	3.23E+06	3.72E+05			
CO57	0.	1.64E+05	0.	0.	0.	4.15E+06	2.72E+05			
CO58	0.	1.50E+06	0.	0.	0.	8.90E+06	4.51E+06			
CO60	0.	5.06E+06	0.	0.	0.	2.80E+07	1.52E+07			
ZN65	1.76E+08	5.57E+08	0.	3.73E+08	0.	3.51E+08	2.52E+08			
RB86	0.	3.32E+08	0.	0.	0.	6.54E+07	1.55E+08			
SR89	1.45E+10	0.	0.	0.	0.	5.43E+08	4.16E+08			
SR90	2.37E+11	0.	0.	0.	0.	3.16E+09	6.02E+10			
Y91	4.56E+03	0.	0.	0.	0.	6.06E+05	1.22E+02			
ZR95	1.27E+04	5.37E+03	0.	2.23E+03	0.	9.22E+06	3.96E+03			
NB95	3.30E+04	1.41E+04	0.	5.81E+03	0.	2.44E+07	1.04E+04			
RU-103	4.79E+02	0.	0.	4.99E+02	0.	1.26E+04	1.94E+02			
RU-106	1.13E+04	0.	0.	5.04E+03	0.	1.75E+05	1.40E+03			
AG110	7.45E+06	6.90E+06	0.	1.36E+07	0.	2.81E+09	4.10E+06			

REVISION NO .:	PROCEDURE TITLE:						PAGE:				
53	_	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		184 of 231				
PROCEDURE NO.:							101 01 201				
C-200		ST. LUCIE PLANT									
			ταρι	E G-10							
E	NVIRONMENTA	L PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASE	OUS DISCHAR	GES				
	PATHWAY ·	- GOATS MILK	(CONTAMINATE	ED FORAGE)	AGE GR	OUP - CHILD					
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
SN-123	0.	0.	0.	0.	0.	0.	0.				
SN-126	2.10E+08	4.17E+06	1.22E+06	0.	5.97E+05	1.40E+08	6.30E+06				
SB-124	3.30E+06	6.22E+04	7.97E+03	0.	2.56E+06	9.33E+07	1.30E+06				
SB-125	3.75E+06	1.70E+05	1.43E+05	4.76E+05	3.40E+08	2.92E+07	7.19E+05				
TE 125M	8.85E+06	2.40E+06	2.49E+06	8.46E+06	0.	8.54E+06	1.18E+06				
TE 127M	6.21E+06	2.14E+06	1.75E+06	2.40E+07	0.	3.58E+07	7.92E+05				
TE 129M	3.32E+07	9.27E+06	1.06E+07	3.23E+07	0.	4.00E+07	5.15E+06				
I130	5.45E+05	1.61E+06	2.05E+08	2.51E+06	0.	1.38E+06	6.35E+05				
I131	1.48E+09	1.52E+09	4.94E+11	9.28E+08	0.	1.30E+08	1.15E+09				
I132	2.13E-01	5.71E-01	7.51E+01	9.10E-01	0.	1.07E-01	2.03E-01				
I133	2.14E+07	2.64E+07	6.36E+09	1.55E+07	0.	1.07E+07	1.04E+07				
I134	0.	0.	1.27E-09	0.	0.	0.	0.				
I135	1.79E+04	4.72E+04	6.18E+06	7.51E+04	2.42E-01	5.29E+04	1.73E+04				
CS-134	6.50E+10	1.10E+11	0.	1.39E+10	1.22E+10	5.92E+08	2.33E+10				
CS-136	8.34E+08	3.29E+09	0.	1.83E+09	2.51E+08	3.74E+08	2.37E+09				
CS-137	9.23E+10	8.93E+10	0.	1.10E+10	1.05E+10	5.44E+08	1.33E+10				
BA-140	1.40E+07	1.23E+04	0.	1.47E+03	7.31E+03	9.30E+05	8.21E+05				
CE-141	1.49E+04	7.46E+03	0.	1.17E+03	0.	9.36E+06	1.11E+03				
CE-144	1.20E+06	3.76E+05	0.	6.80E+04	0.	9.78E+07	6.41E+04				

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		185 of 231
PROCEDURE NO .:							105 01 251
C-200			ST. LU	CIE PLANT			
E	INVIRONMENTAL PATHW/ C	<u>- PATHWAY-DO</u> AY - MEAT (CO PRGAN DOSE F.	TABL DSE CONVERSI NTAMINATED F ACTOR (SQ.	E G-11 <u>ON FACTORS F</u> ORAGE) METER-MREM/	R(I) FOR GASEC AGE GROUF YR PER μCI/SE	DUS DISCHARG ? - CHILD C)	<u>ES</u>
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.33E+02	2.33E+02	1.54E+02	2.33E+02	2.33E+02	2.33E+02
C-14	9.87E+04	9.87E+04	9.87E+04	2.49E+04	9.87E+04	9.87E+04	9.87E+04
P32	1.74E+09	1.09E+08	0.	0.	0.	1.96E+08	6.73E+07
CR51	0.	0.	1.58E+03	5.82E+02	3.50E+03	6.63E+05	2.64E+03
MN54	0.	3.42E+06	0.	1.02E+06	0.	1.05E+07	6.54E+05
FE59	9.95E+07	2.36E+08	0.	0.	6.55E+07	7.79E+08	8.98E+07
CO57	0.	2.10E+06	0.	0.	0.	5.33E+07	3.50E+06
CO58	0.	1.69E+07	0.	0.	0.	1.00E+08	5.10E+07
CO60	0.	6.77E+07	0.	0.	0.	3.75E+08	2.03E+08
ZN65	1.33E+08	4.22E+08	0.	2.82E+08	0.	2.66E+08	1.91E+08
RB86	0.	1.82E+08	0.	0.	0.	3.59E+07	8.50E+07
SR89	5.04E+08	0.	0.	0.	0.	1.88E+07	1.44E+07
SR90	1.05E+10	0.	0.	0.	0.	7.02E+08	2.67E+09
Y91	1.76E+06	0.	0.	0.	0.	2.33E+08	4.69E+04
ZR95	4.62E+06	1.51E+06	0.	7.47E+05	0.	2.22E+09	1.20E+06
NB95	2.68E+06	1.15E+06	0.	4.72E+05	0.	1.98E+09	8.41E+05
RU-103	1.45E+08	0.	0.	1.51E+08	0.	3.81E+09	5.87E+07
RU-106	4.51E+09	0.	0.	2.02E+09	0.	7.01E+10	5.61E+08
AG110	2.50E+06	2.31E+06	0.	4.55E+06	0.	9.44E+08	1.38E+06

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSIT	E DOSE CALC	ULATION MANU	AL (ODCM)		186 of 231
PROCEDURE NO.:							100 01 201
C-200			ST. LU	CIE PLANT			
<u>E</u>	NVIRONMENTAL PATHW/ C	<u>- PATHWAY-DO</u> AY - MEAT (CO PRGAN DOSE F.	TABL DSE CONVERSI NTAMINATED F ACTOR (SQ.	E G-11 I <mark>ON FACTORS F</mark> FORAGE) METER-MREM/	R(I) FOR GASEC AGE GROUF YR PER μCI/SE	DUS DISCHARG - CHILD C)	ES
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	6.92E+09	1.37E+08	4.02E+07	0.	2.41E+06	2.31E+09	1.98E+08
SB-124	7.40E+06	1.40E+05	1.79E+04	0.	5.74E+06	2.10E+08	2.93E+06
SB-125	7.66E+07	1.84E+07	1.90E+07	6.47E+07	9.26E+08	1.44E+08	1.08E+07
TE 125M	5.69E+08	1.54E+08	1.60E+08	5.44E+08	0.	5.49E+08	7.59E+07
TE 127M	4.40E+08	1.51E+08	1.24E+08	1.70E+09	0.	2.54E+09	5.61E+07
TE 129M	1.84E+09	5.12E+08	5.87E+08	1.78E+09	0.	2.21E+09	2.84E+08
I130	8.87E-07	2.63E-06	3.34E-04	4.08E-06	0.	2.25E-06	1.03E-06
I131	1.58E+07	1.62E+07	5.25E+09	9.86E+06	0.	1.38E+06	1.22E+07
I132	0.	0.	0.	0.	0.	0.	0.
I133	6.86E-01	8.47E-01	2.04E+02	4.97E-01	0.	3.43E-01	3.33E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	3.21E-02	2.96E-02	0.	1.12E-02	3.37E-03	6.92E-04	1.32E-02
CS-134	8.83E+08	1.49E+09	0.	1.89E+08	1.65E+08	8.04E+06	3.16E+08
CS-136	4.41E+06	1.74E+07	0.	9.69E+06	1.33E+06	1.98E+06	1.25E+07
CS-137	1.27E+09	1.23E+09	0.	1.51E+08	1.44E+08	7.50E+06	1.84E+08
BA-140	4.37E+07	3.84E+04	0.	4.59E+03	2.29E+04	6.03E+06	2.57E+06
CE-141	2.10E+04	1.05E+04	0.	1.65E+03	0.	1.32E+07	1.57E+03
CE-144	2.38E+06	7.46E+05	0.	1.35E+05	0.	1.94E+08	1.27E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	E DOSE CALCU	JLATION MANU	AL (ODCM)		197 of 221
PROCEDURE NO.:							167 01 231
C-200			ST. LU	CIE PLANT			
	-		TARI	E G_12			
EN	IVIRONMENTAL	_ PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES
	PATHWA	Y - FRESH FR	JITS AND VEGE	TABLES	AGE GROUI	P - CHILD	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
	BONE			KIDNEY		GLU	
H3		2 47E+02	2 47E+02	1.63E+02	2 47E+02	2 47E+02	2 47E+02
C-14	0. 4.04E+04	2.47E+02	2.47C+02 4.04E+04	1.03E+02	2.47C+02	2.47E+02 4.04E+04	2.47E+02
P32	4.04E+04	2.64E+07	0	0	0	4 74E+07	1.63E+07
CR51	0	0	4 68E+03	1 73E+03	0. 1.04F+04	1.97E+06	7.83E+03
MN54	0.	1.98E+07	0.	5.89E+06	0.	6.07E+07	3.78E+06
FE59	1.48E+07	3.51E+07	0.	0.	9.75E+06	1.16E+08	1.34E+07
CO57	0.	7.53E+05	0.	0.	0.	1.91E+07	1.25E+06
CO58	0.	6.94E+06	0.	0.	0.	4.13E+07	2.09E+07
CO60	0.	2.33E+07	0.	0.	0.	1.29E+08	6.98E+07
ZN65	2.08E+07	6.59E+07	0.	4.41E+07	0.	4.15E+07	2.98E+07
RB86	0.	5.28E+07	0.	0.	0.	1.04E+07	2.46E+07
SR89	4.84E+09	0.	0.	0.	0.	1.81E+08	1.39E+08
SR90	7.79E+10	0.	0.	0.	0.	1.52E+09	1.98E+10
Y91	2.12E+06	0.	0.	0.	0.	2.82E+08	5.65E+04
ZR95	4.06E+05	9.87E+04	0.	6.07E+04	0.	1.08E+08	8.81E+04
NB95	6.20E+04	2.64E+04	0.	1.09E+04	0.	4.58E+07	1.94E+04
RU-103	2.24E+06	0.	0.	2.34E+06	0.	5.88E+07	9.05E+05
RU-106	5.19E+07	0.	0.	2.32E+07	0.	8.07E+08	6.46E+06
AG110	6.87E+05	6.36E+05	0.	1.25E+06	0.	2.59E+08	3.78E+05

REVISION NO.:	PROCEDURE TITLE:						PAGE:		
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		100 of 221		
PROCEDURE NO.:							100 01 23 1		
C-200			ST. LU	CIE PLANT					
	-		ТАРІ	E C 12					
EN EN		PATHWAY-DO		ION FACTORS	R(I) FOR GASEC	US DISCHAR	GES		
	PATHWA	Y - FRESH FR	UITS AND VEGI	ETABLES	AGE GROU	P - CHILD			
ORGAN DOSE FACTOR (SQ. METER-MREM/YR PER µCI/SEC)									
			-	1	-				
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY		
SN-123	1.71E-05	2.14E-07	2.26E-07	0.	0.	8.50E-06	4.21E-07		
SN-126	3.87E+08	7.68E+06	2.25E+06	0.	1.75E+06	3.44E+08	1.19E+07		
SB-124	1.02E+07	1.93E+05	2.47E+04	0.	7.93E+06	2.89E+08	4.04E+06		
SB-125	1.22E+07	6.99E+05	6.22E+05	2.09E+06	1.04E+09	9.02E+07	2.29E+06		
TE 125M	4.12E+07	1.12E+07	1.16E+07	3.94E+07	0.	3.97E+07	5.49E+06		
TE 127M	2.88E+07	9.90E+06	8.09E+06	1.11E+08	0.	1.65E+08	3.67E+06		
TE 129M	1.56E+08	4.35E+07	4.99E+07	1.51E+08	0.	1.88E+08	2.41E+07		
I130	1.60E+05	4.73E+05	6.02E+07	7.35E+05	0.	4.05E+05	1.86E+05		
I131	1.24E+08	1.27E+08	4.13E+10	7.75E+07	0.	1.09E+07	9.58E+07		
I132	2.26E+01	6.05E+01	7.97E+03	9.65E+01	0.	1.14E+01	2.15E+01		
I133	3.61E+06	4.46E+06	1.08E+09	2.62E+06	0.	1.81E+06	1.75E+06		
I134	4.18E-05	1.14E-04	1.47E-02	1.81E-04	0.	9.89E-08	4.06E-05		
I135	1.64E+04	4.33E+04	5.67E+06	6.89E+04	3.51E-03	4.85E+04	1.59E+04		
CS-134	9.97E+08	1.68E+09	0.	2.14E+08	1.87E+08	9.08E+06	3.57E+08		
CS-136	1.35E+07	5.32E+07	0.	2.96E+07	4.06E+06	6.05E+06	3.83E+07		
CS-137	1.41E+09	1.37E+09	0.	1.68E+08	1.60E+08	8.34E+06	2.04E+08		
BA-140	1.70E+08	1.56E+05	0.	1.78E+04	8.87E+04	2.08E+08	9.96E+06		
CE-141	1.17E+05	5.84E+04	0.	9.13E+03	0.	7.33E+07	8.69E+03		
CE-144	9.23E+06	2.89E+06	0.	5.22E+05	0.	7.51E+08	4.92E+05		

REVISION NO .:	PROCEDURE TITLE						PAGE:				
53		OFFSI	TE DOSE CALC	ULATION MANL	IAL (ODCM)		180 of 231				
PROCEDURE NO.:							109 01 231				
C-200		ST. LUCIE PLANT									
			TABI	F G-13							
EN EN	VIRONMENTA	L PATHWAY-DO	OSE CONVERS	ION FACTORS I	R(I) FOR GASE	OUS DISCHAR	GES				
		PATHWAY - IN	HALATION	AGE GRO	UP - TEENAGER	र					
		ORGAN DOSE	EFACTOR (M	IREM/YR PER μ	CI/CU. METER)						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY				
H3	0.	8.48E+02	8.48E+02	1.07E+03	8.48E+02	8.48E+02	8.48E+02				
C-14	4.58E+03	4.53E+03	4.53E+03	3.42E+03	4.53E+03	4.58E+03	4.53E+03				
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04				
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02				
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03				
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04				
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02				
CO58	0.	1.76E+02	0.	0.	1.37E+06	9.52E+04	2.34E+02				
CO60	0.	1.24E+03	0.	0.	8.56E+06	2.35E+05	1.65E+03				
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04				
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04				
SR89	3.87E+04	0.	0.	0.	2.50E+06	3.54E+05	1.11E+03				
SR90	1.18E+07	0.	0.	0.	1.66E+07	7.24E+05	7.23E+05				
Y91	5.38E+04	0.	0.	0.	2.86E+06	3.74E+05	1.44E+03				
ZR95	1.09E+04	3.63E+03	0.	5.42E+04	2.56E+06	1.33E+05	2.54E+03				
NB95	1.36E+03	8.24E+02	0.	7.74E+03	7.17E+05	8.80E+04	4.62E+02				
RU-103	1.63E+02	0.	0.	5.83E+03	7.51E+05	9.44E+04	7.32E+01				
RU-106	8.40E+03	0.	0.	1.34E+05	1.64E+07	9.28E+05	1.06E+03				
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03				

REVISION NO .:	PROCEDURE TITLE:						PAGE:					
53		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		100 - 5 001					
PROCEDURE NO.:	1						190 01 23 1					
C-200		ST. LUCIE PLANT										
			TARI	E C-13								
ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I) FOR GASEOUS DISCHARGES												
PATHWAY - INHALATION AGE GROUP - TEENAGER												
		ORGAN DOSE	EFACTOR (M	IREM/YR PER μ0	CI/CU. METER)							
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
SN-123	2.79E+04	6.14E+02	4.92E+02	0.	3.91E+06	3.13E+05	9.20E+02					
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04					
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04					
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04					
TE 125M	4.07E+02	1.86E+02	1.17E+02	1.24E+04	5.36E+05	7.08E+04	5.53E+01					
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03					
TE 129M	1.19E+03	5.64E+02	3.90E+02	3.66E+04	2.03E+06	3.84E+05	1.92E+02					
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03					
I131	3.37E+04	4.72E+04	1.39E+07	6.14E+04	0.	5.96E+03	2.82E+04					
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03					
I133	1.23E+04	2.06E+04	3.83E+06	2.60E+04	0.	1.00E+04	6.34E+03					
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02					
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03					
CS-134	4.83E+05	1.10E+06	0.	2.88E+05	1.44E+05	8.96E+03	5.44E+05					
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05					
CS-137	6.42E+05	8.24E+05	0.	2.22E+05	1.18E+05	7.68E+03	3.03E+05					
BA-140	5.30E+03	4.85E+00	0.	1.67E+01	2.02E+06	2.12E+04	3.42E+02					
CE-141	2.27E+03	1.52E+03	0.	6.26E+03	5.83E+05	1.14E+05	1.74E+02					
CE-144	4.19E+05	1.74E+05	0.	8.48E+05	1.38E+07	8.40E+05	2.24E+04					

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	E DOSE CALCU	JLATION MANU	IAL (ODCM)		101 of 231
PROCEDURE NO.:							191 01 231
C-200			ST. LU	CIE PLANT			
			TABI	F G-14			
E	NVIRONMENTAI	L PATHWAY-DO		ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES
	PATHWAY - C	OWS MILK (CO	NTAMINATED I	ORAGE)	AGE GROU	P - TEENAGER	- <u></u>
	C	ORGAN DOSE F.	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
							· · · · · · · · · · · · · · · · · · ·
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	9.93E+02	9.93E+02	1.26E+03	9.93E+02	9.93E+02	9.93E+02
C-14	1.25E+05	1.25E+05	1.25E+05	9.39E+04	1.25E+05	1.25E+05	1.25E+05
P32	2.21E+10	1.38E+09	0.	0.	0.	2.48E+09	8.54E+08
CR51	0.	0.	2.21E+04	8.15E+03	4.90E+04	9.29E+06	3.69E+04
MN54	0.	1.09E+07	0.	3.23E+06	0.	3.33E+07	2.07E+06
FE59	3.84E+07	9.12E+07	0.	0.	2.53E+07	3.01E+08	3.47E+07
CO57	0.	1.65E+06	0.	0.	0.	4.19E+07	2.75E+06
CO58	0.	8.10E+06	0.	0.	0.	1.10E+08	1.85E+07
CO60	0.	2.73E+07	0.	0.	0.	3.27E+08	6.23E+07
ZN65	1.77E+09	5.63E+09	0.	3.77E+09	0.	3.55E+09	2.55E+09
RB86	0.	3.35E+09	0.	0.	0.	6.61E+08	1.56E+09
SR89	2.80E+09	0.	0.	0.	0.	3.03E+08	8.03E+07
SR90	8.29E+10	0.	0.	0.	3.38E+06	1.76E+09	2.05E+10
Y91	1.54E+04	0.	0.	0.	0.	5.93E+06	4.12E+02
ZR95	4.78E+04	2.84E+04	0.	2.25E+04	0.	1.15E+08	1.60E+04
NB95	1.24E+05	7.46E+04	0.	5.87E+04	0.	3.05E+08	4.21E+04
RU-103	1.69E+03	0.	0.	5.04E+03	0.	1.32E+05	7.56E+02
RU-106	3.83E+04	0.	0.	5.09E+04	0.	1.73E+06	4.81E+03
AG-110	7.53E+07	6.97E+07	0.	1.37E+08	0.	2.84E+10	4.14E+07

REVISION NO .:	PROCEDURE TITLE						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		102 of 231
PROCEDURE NO.:							192 01 231
C-200			ST. LU	CIE PLANT			
			ТАРІ	E C 14			
EM		L PATHWAY-DO		ION FACTORS I	R(I) FOR GASE	OUS DISCHAR	GES
<u>—-</u>	PATHWAY - C	OWS MILK (CC	NTAMINATED	FORAGE)	AGE GROU	P - TEENAGER	
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
	DONE		TUNDOID				
NUCLIDE	BONE	LIVER	IHYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.12E+09	4.21E+07	1.24E+07	0.	6.03E+06	1.41E+09	6.37E+07
SB-124	3.33E+07	6.29E+05	8.05E+04	0.	2.59E+07	9.43E+08	1.32E+07
SB-125	3.45E+07	9.58E+05	5.05E+05	4.80E+06	3.43E+09	2.95E+08	6.82E+06
TE 125M	3.00E+07	1.08E+07	8.47E+06	8.55E+07	0.	8.39E+07	3.98E+06
TE 127M	6.02E+07	2.11E+07	1.59E+07	2.43E+08	0.	3.02E+08	7.45E+06
TE 129M	1.13E+08	4.18E+07	3.61E+07	3.27E+08	0.	3.93E+08	1.78E+07
I130	5.51E+05	1.63E+06	2.07E+08	2.53E+06	0.	1.40E+06	6.41E+05
I131	5.12E+08	7.24E+08	2.09E+11	9.38E+08	0.	1.37E+08	4.31E+08
I132	2.16E-01	5.76E-01	7.59E+01	9.19E-01	0.	1.08E-01	2.05E-01
I133	7.33E+06	1.24E+07	2.26E+09	1.56E+07	0.	9.02E+06	3.83E+06
I134	0.	0.	1.29E-09	0.	0.	0.	0.
I135	1.81E+04	4.77E+04	6.24E+06	7.58E+04	9.79E-02	5.34E+04	1.75E+04
CS-134	9.44E+09	2.28E+10	0.	5.63E+09	2.76E+09	2.63E+08	1.06E+10
CS-136	3.37E+08	1.33E+09	0.	7.41E+08	1.02E+08	1.51E+08	9.58E+08
CS-137	1.28E+10	1.72E+10	0.	4.43E+09	2.28E+09	2.29E+08	6.04E+09
BA-140	4.84E+07	5.95E+04	0.	1.48E+04	3.98E+04	9.16E+06	3.11E+06
CE-141	5.05E+04	3.39E+04	0.	1.18E+04	0.	9.18E+07	3.89E+03
CE-144	4.10E+06	1.68E+06	0.	6.87E+05	0.	9.65E+08	2.17E+05

REVISION NO .:	PROCEDURE TITLE						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		102 of 221
PROCEDURE NO.:							195 01 251
C-200			ST. LU	CIE PLANT			
			TABI	F G-15			
E E		L PATHWAY-DO	OSE CONVERS		R(I) FOR GASE		GES
-	PATHWAY - G	OATS MILK (CO	ONTAMINATED	FORAGE)	AGE GROU	IP - TEENAGE	र
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.03E+03	2.03E+03	2.56E+03	2.03E+03	2.03E+03	2.03E+03
C-14	1.25E+05	1.25E+05	1.25E+05	9.39E+04	1.25E+05	1.25E+05	1.25E+05
P32	2.65E+10	1.66E+09	0.	0.	0.	2.98E+09	1.03E+09
CR51	0.	0.	2.65E+03	9.78E+02	5.88E+03	1.11E+06	4.43E+03
MN54	0.	1.30E+06	0.	3.88E+05	0.	3.99E+06	2.49E+05
FE59	4.99E+05	1.19E+06	0.	0.	3.29E+05	3.91E+06	4.51E+05
CO57	0.	1.98E+05	0.	0.	0.	5.03E+06	3.30E+05
CO58	0.	9.72E+05	0.	0.	0.	1.31E+07	2.22E+06
CO60	0.	3.28E+06	0.	0.	0.	3.93E+07	7.48E+06
ZN65	2.13E+08	6.76E+08	0.	4.52E+08	0.	4.26E+08	3.06E+08
RB86	0.	4.02E+08	0.	0.	0.	7.93E+07	1.88E+08
SR89	5.87E+09	0.	0.	0.	0.	6.37E+08	1.69E+08
SR90	1.74E+11	0.	0.	0.	4.05E+05	3.68E+09	4.30E+10
Y91	1.85E+03	0.	0.	0.	0.	7.11E+05	4.94E+01
ZR95	5.74E+03	3.41E+03	0.	2.70E+03	0.	1.38E+07	1.93E+03
NB95	1.49E+04	8.96E+03	0.	7.05E+03	0.	3.66E+07	5.05E+03
RU-103	2.03E+02	0.	0.	6.05E+02	0.	1.58E+04	9.08E+01
RU-106	4.59E+03	0.	0.	6.11E+03	0.	2.08E+05	5.78E+02
AG110	9.04E+06	8.36E+06	0.	1.64E+07	0.	3.41E+09	4.97E+06

REVISION NO .:	PROCEDURE TITLE						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MAN	JAL (ODCM)		104 of 221
PROCEDURE NO.:							194 01 231
C-200			ST. LU	ICIE PLANT			
			ТАРІ	E C 15			
F		L PATHWAY-DO		ION FACTORS	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY - G	OATS MILK (CO		FORAGE)	AGE GROL	JP - TEENAGE	<u>0_0</u> R
	(ORGAN DOSÈ F	ACTOR (SQ.	METER-MREM	/YR PER µCI/SE	EC)	
		· · · ·					
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	2.54E+08	5.05E+06	1.48E+06	0.	7.23E+05	1.69E+08	7.64E+06
SB-124	4.00E+06	7.54E+04	9.66E+03	0.	3.10E+06	1.13E+08	1.58E+06
SB-125	4.14E+06	1.15E+05	6.06E+04	5.77E+05	4.12E+08	3.54E+07	8.19E+05
TE 125M	3.61E+06	1.29E+06	1.02E+06	1.03E+07	0.	1.01E+07	4.78E+05
TE 127M	7.23E+06	2.52E+06	1.91E+06	2.92E+07	0.	3.63E+07	8.94E+05
TE 129M	1.35E+07	5.02E+06	4.34E+06	3.92E+07	0.	4.72E+07	2.13E+06
I130	6.61E+05	1.96E+06	2.49E+08	3.04E+06	0.	1.68E+06	7.69E+05
I131	6.15E+08	8.68E+08	2.50E+11	1.13E+09	0.	1.64E+08	5.17E+08
I132	2.59E-01	6.92E-01	9.11E+01	1.10E+00	0.	1.30E-01	2.46E-01
I133	8.79E+06	1.49E+07	2.71E+09	1.88E+07	0.	1.08E+07	4.59E+06
I134	0.	0.	1.55E-09	0.	0.	0.	0.
I135	2.17E+04	5.73E+04	7.49E+06	9.10E+04	2.94E-01	6.41E+04	2.10E+04
CS-134	2.83E+10	6.83E+10	0.	1.69E+10	8.27E+09	7.88E+08	3.19E+10
CS-136	1.01E+09	3.99E+09	0.	2.22E+09	3.05E+08	4.54E+08	2.87E+09
CS-137	3.84E+10	5.16E+10	0.	1.33E+10	6.85E+09	6.88E+08	1.81E+10
BA-140	5.81E+06	7.14E+03	0.	1.78E+03	4.78E+03	1.10E+06	3.73E+05
CE-141	6.06E+03	4.07E+03	0.	1.41E+03	0.	1.10E+07	4.66E+02
CE-144	4.92E+05	2.02E+05	0.	8.24E+04	0.	1.16E+08	2.61E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		105 of 221
PROCEDURE NO.:							195 01 25 1
C-200			ST. LU	CIE PLANT			
	-		TARI	E G_16			
EN EN	VIRONMENTAI	L PATHWAY-DO		ION FACTORS I	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY	- MEAT (CONT	AMINATED FO	RAGE)	AGE GROUP -	TEENAGER	
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
					Γ	Γ	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.93E+02	1.93E+02	2.44E+02	1.93E+02	1.93E+02	1.93E+02
C-14	5.23E+04	5.23E+04	5.23E+04	3.94E+04	5.23E+04	5.23E+04	5.23E+04
P32	2.76E+09	1.73E+08	0.	0.	0.	3.10E+08	1.07E+08
CR51	0.	0.	2.50E+03	9.22E+02	5.55E+03	1.05E+06	4.18E+03
MN54	0.	5.42E+06	0.	1.61E+06	0.	1.66E+07	1.04E+06
FE59	1.58E+08	3.74E+08	0.	0.	1.04E+08	1.24E+09	1.42E+08
CO57	0.	3.33E+06	0.	0.	0.	8.45E+07	5.54E+06
CO58	0.	1.44E+07	0.	0.	0.	1.94E+08	3.27E+07
CO60	0.	5.73E+07	0.	0.	0.	6.87E+08	1.31E+08
ZN65	2.11E+08	6.69E+08	0.	4.47E+08	0.	4.21E+08	3.03E+08
RB86	0.	2.89E+08	0.	0.	0.	5.69E+07	1.35E+08
SR89	2.66E+08	0.	0.	0.	0.	2.89E+07	7.64E+06
SR90	1.01E+10	0.	0.	0.	2.79E+08	1.02E+09	2.49E+09
Y91	9.34E+05	0.	0.	0.	0.	3.59E+08	2.49E+04
ZR95	2.67E+06	1.24E+06	0.	1.18E+06	0.	4.20E+09	7.61E+05
NB95	1.58E+06	9.51E+05	0.	7.48E+05	0.	3.88E+09	5.37E+05
RU-103	8.05E+07	0.	0.	2.40E+08	0.	6.28E+09	3.60E+07
RU-106	2.40E+09	0.	0.	3.20E+09	0.	1.09E+11	3.02E+08
AG110	3.97E+06	3.67E+06	0.	7.21E+06	0.	1.50E+09	2.18E+06

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	E DOSE CALC	ULATION MANU	IAL (ODCM)		106 of 221
PROCEDURE NO.:							190 01 231
C-200			ST. LU	CIE PLANT			
			TARI	E G-16			
EN	VIRONMENTAI	_ PATHWAY-DO	DSE CONVERS	ION FACTORS	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY	- MEAT (CONT	AMINATED FO	RAGE)	AGE GROUP -	TEENAGER	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.10E+10	2.18E+08	6.38E+07	0.	3.82E+06	3.66E+09	3.14E+08
SB-124	1.17E+07	2.21E+05	2.84E+04	0.	9.11E+06	3.32E+08	4.64E+06
SB-125	5.01E+07	1.31E+07	1.02E+07	1.03E+08	1.47E+09	2.25E+08	7.60E+06
TE 125M	3.03E+08	1.08E+08	8.55E+07	8.63E+08	0.	8.47E+08	4.02E+07
TE 127M	6.68E+08	2.34E+08	1.77E+08	2.69E+09	0.	3.35E+09	8.28E+07
TE 129M	9.78E+08	3.63E+08	3.13E+08	2.83E+09	0.	3.41E+09	1.53E+08
I130	1.41E-06	4.16E-06	5.30E-04	6.47E-06	0.	3.57E-06	1.64E-06
I131	8.54E+06	1.21E+07	3.48E+09	1.56E+07	0.	2.28E+06	7.19E+06
I132	0.	0.	0.	0.	0.	0.	0.
I133	3.69E-01	6.26E-01	1.14E+02	7.88E-01	0.	4.55E-01	1.93E-01
I134	0.	0.	0.	0.	0.	0.	0.
I135	5.08E-02	4.69E-02	0.	1.78E-02	5.34E-03	1.10E-03	2.08E-02
CS-134	5.03E+08	1.21E+09	0.	3.00E+08	1.47E+08	1.40E+07	5.66E+08
CS-136	6.99E+06	2.76E+07	0.	1.54E+07	2.11E+06	3.14E+06	1.99E+07
CS-137	6.92E+08	9.31E+08	0.	2.40E+08	1.24E+08	1.24E+07	3.27E+08
BA-140	2.37E+07	2.93E+04	0.	7.28E+03	1.95E+04	9.19E+06	1.53E+06
CE-141	1.12E+04	7.51E+03	0.	2.61E+03	0.	2.03E+07	8.61E+02
CE-144	1.28E+06	5.23E+05	0.	2.14E+05	0.	3.00E+08	6.76E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		107 of 231
PROCEDURE NO.:							197 01 231
C-200			ST. LU	CIE PLANT			
			TABI	F G-17			
EI	NVIRONMENTAI	L PATHWAY-DO		ON FACTORS F	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY	- FRESH FRUIT	S AND VEGET	ABLES	AGE GROUP -	TEENAGER	
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCl/SE	C)	
	DONE						
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	2.09E+02	2.09E+02	2.64E+02	2.09E+02	2.09E+02	2.09E+02
C-14	2.18E+04	2.18E+04	2.18E+04	1.64E+04	2.18E+04	2.18E+04	2.18E+04
P32	6.81E+08	4.27E+07	0.	0.	0.	7.66E+07	2.64E+07
CR51	0.	0.	7.56E+03	2.79E+03	1.68E+04	3.18E+06	1.27E+04
MN54	0.	3.20E+07	0.	9.52E+06	0.	9.80E+07	6.11E+06
FE59	2.39E+07	5.67E+07	0.	0.	1.57E+07	1.87E+08	2.16E+07
CO57	0.	1.22E+06	0.	0.	0.	3.09E+07	2.02E+06
CO58	0.	6.01E+06	0.	0.	0.	8.12E+07	1.37E+07
CO60	0.	2.01E+07	0.	0.	0.	2.41E+08	4.58E+07
ZN65	3.35E+07	1.06E+08	0.	7.12E+07	0.	6.70E+07	4.82E+07
RB86	0.	8.52E+07	0.	0.	0.	1.68E+07	3.97E+07
SR89	2.61E+09	0.	0.	0.	0.	2.83E+08	7.48E+07
SR90	7.61E+10	0.	0.	0.	2.41E+08	2.31E+09	1.88E+10
Y91	1.15E+06	0.	0.	0.	0.	4.41E+08	3.06E+04
ZR95	2.35E+05	8.19E+04	0.	9.81E+04	0.	1.92E+08	5.61E+04
NB95	3.72E+04	2.24E+04	0.	1.76E+04	0.	9.14E+07	1.26E+04
RU-103	1.27E+06	0.	0.	3.77E+06	0.	9.87E+07	5.66E+05
RU-106	2.82E+07	0.	0.	3.75E+07	0.	1.28E+09	3.54E+06
AG110	1.11E+06	1.03E+06	0.	2.02E+06	0.	4.19E+08	6.10E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:						
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		109 of 221						
PROCEDURE NO.:							190 01 231						
C-200			ST. LU	CIE PLANT									
			TARI	E G-17									
EN	ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I) FOR GASEOUS DISCHARGES												
	PATHWAY	- FRESH FRUIT	S AND VEGET	ABLES	AGE GROUP -	TEENAGER							
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM	YR PER μCI/SE	C)							
			Γ		Γ								
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY						
SN-123	9.25E-06	1.53E-07	1.22E-07	0.	0.	1.33E-05	2.28E-07						
SN-126	6.25E+08	1.24E+07	3.64E+06	0.	2.83E+06	5.55E+08	1.94E+07						
SB-124	1.65E+07	3.12E+05	3.99E+04	0.	1.28E+07	4.67E+08	6.53E+06						
SB-125	1.73E+07	5.97E+05	3.48E+05	3.38E+06	1.68E+09	1.45E+08	3.40E+06						
TE 125M	2.23E+07	7.99E+06	6.30E+06	6.36E+07	0.	6.24E+07	2.96E+06						
TE 127M	4.46E+07	1.55E+07	1.18E+07	1.80E+08	0.	2.23E+08	5.51E+06						
TE 129M	8.46E+07	3.14E+07	2.71E+07	2.45E+08	0.	2.95E+08	1.33E+07						
I130	2.58E+05	7.64E+05	9.72E+07	1.19E+06	0.	6.55E+05	3.00E+05						
I131	6.84E+07	9.66E+07	2.79E+10	1.25E+08	0.	1.83E+07	5.76E+07						
I132	3.65E+01	9.77E+01	1.29E+04	1.56E+02	0.	1.84E+01	3.47E+01						
I133	1.98E+06	3.36E+06	6.10E+08	4.23E+06	0.	2.44E+06	1.04E+06						
I134	6.75E-05	1.83E-04	2.38E-02	2.92E-04	0.	1.60E-07	6.56E-05						
I135	2.65E+04	7.00E+04	9.15E+06	1.11E+05	5.67E-03	7.84E+04	2.57E+04						
CS-134	5.79E+08	1.40E+09	0.	3.45E+08	1.69E+08	1.61E+07	6.52E+08						
CS-136	2.18E+07	8.60E+07	0.	4.78E+07	6.56E+06	9.77E+06	6.19E+07						
CS-137	7.83E+08	1.05E+09	0.	2.72E+08	1.40E+08	1.41E+07	3.70E+08						
BA-140	9.38E+07	1.21E+05	0.	2.88E+04	7.73E+04	3.19E+08	6.04E+06						
CE-141	6.32E+04	4.24E+04	0.	1.47E+04	0.	1.15E+08	4.86E+03						
CE-144	5.03E+06	2.06E+06	0.	8.43E+05	0.	1.19E+09	2.67E+05						

REVISION NO .:	PROCEDURE TITLE						PAGE:					
53	_	OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		199 of 231					
PROCEDURE NO .:												
C-200			ST. LU	ICIE PLANT								
			TABL	.E G-18								
ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I) FOR GASEOUS DISCHARGES												
		PATHWAY -	INHALATION	AGE GR	OUP - ADULT							
		ORGAN DOSE	EFACTOR (M	IREM/YR PER μ0	CI/CU. METER)							
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
H3	0.	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03	1.07E+03					
C-14	1.82E+04	3.42E+04	3.42E+03	3.42E+03	3.42E+03	3.42E+03	3.42E+03					
P32	1.32E+06	7.72E+04	0.	0.	0.	8.64E+04	5.02E+04					
CR51	0.	0.	5.95E+01	2.28E+01	1.44E+04	3.32E+03	1.00E+02					
MN54	0.	3.96E+04	0.	9.84E+03	1.40E+06	7.74E+04	6.30E+03					
FE59	1.18E+04	2.78E+07	0.	0.	1.02E+06	1.88E+05	1.06E+04					
CO57	0.	6.92E+02	0.	0.	3.70E+05	3.14E+04	6.71E+02					
CO58	0.	1.58E+03	0.	0.	9.28E+05	1.06E+05	2.07E+03					
CO60	0.	1.15E+04	0.	0.	5.98E+06	2.85E+05	1.48E+04					
ZN65	3.24E+04	1.03E+05	0.	6.90E+04	8.72E+05	5.34E+04	4.66E+04					
RB86	0.	1.35E+05	0.	0.	0.	1.66E+04	5.90E+04					
SR89	3.04E+05	0.	0.	0.	1.40E+06	3.50E+05	8.72E+03					
SR90	9.92E+07	0.	0.	0.	9.60E+06	7.22E+05	6.10E+06					
Y91	4.62E+05	0.	0.	0.	1.70E+06	3.85E+05	1.24E+04					
ZR95	1.07E+05	3.44E+04	0.	5.42E+04	1.78E+06	1.50E+05	2.33E+04					
NB95	1.41E+04	7.82E+03	0.	7.74E+03	5.06E+05	1.04E+05	4.21E+03					
RU-103	1.53E+03	0.	0.	5.83E+03	5.06E+05	1.10E+05	6.58E+02					
RU-106	6.91E+04	0.	0.	1.34E+05	9.44E+06	9.12E+05	8.72E+03					
AG110	1.08E+04	1.00E+04	0.	1.97E+04	4.64E+06	3.02E+05	5.94E+03					

REVISION NO .:	PROCEDURE TITLE:	:					PAGE:					
53		OFFSI	TE DOSE CALC	ULATION MANU	AL (ODCM)		200 - 5 224					
PROCEDURE NO.:							200 01 23 1					
C-200			ST. LU	CIE PLANT								
	•		TARI	E G_18								
ENVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I) FOR GASEOUS DISCHARGES												
PATHWAY - INHALATION AGE GROUP - ADULT												
		ORGAN DOSE	EFACTOR (M	IREM/YR PER μ0	CI/CU. METER)							
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY					
SN-123	2.42E+05	5.33E+03	4.53E+03	0.	2.30E+06	3.14E+05	7.86E+03					
SN-126	1.26E+06	3.34E+04	9.84E+03	0.	9.36E+06	1.27E+05	4.80E+04					
SB-124	3.12E+04	5.89E+02	7.55E+01	0.	2.48E+06	4.06E+05	1.24E+04					
SB-125	6.61E+04	7.13E+02	5.87E+01	0.	2.20E+06	1.01E+05	1.33E+04					
TE 125M	3.42E+03	1.58E+03	1.05E+03	1.24E+04	3.14E+05	7.06E+04	4.67E+02					
TE 127M	1.26E+04	5.62E+03	3.29E+03	4.58E+04	9.60E+05	1.50E+05	1.57E+03					
TE 129M	9.76E+03	4.67E+03	3.44E+03	3.66E+04	1.16E+06	3.83E+05	1.58E+03					
I130	4.58E+03	1.34E+04	1.74E+06	2.09E+04	0.	7.69E+03	5.29E+03					
I131	2.52E+04	3.58E+04	1.19E+07	6.14E+04	0.	6.28E+03	2.05E+04					
I132	1.16E+03	3.26E+03	4.38E+05	5.19E+03	0.	4.06E+02	1.16E+03					
I133	8.64E+03	1.49E+04	2.93E+06	2.60E+04	0.	8.72E+03	4.54E+03					
I134	6.45E+02	1.73E+03	2.30E+05	2.75E+03	0.	1.01E+00	6.16E+02					
I135	2.69E+03	6.99E+03	9.36E+05	1.11E+04	0.	5.25E+03	2.58E+03					
CS-134	3.74E+05	8.48E+05	0.	2.88E+05	9.76E+04	1.04E+04	7.29E+05					
CS-136	3.91E+04	1.46E+05	0.	8.56E+04	1.20E+04	1.17E+04	1.11E+05					
CS-137	4.78E+05	6.22E+05	0.	2.22E+05	7.53E+04	8.40E+03	4.29E+05					
BA-140	3.90E+04	4.90E+01	0.	1.67E+01	1.27E+06	2.18E+05	2.57E+03					
CE-141	1.99E+04	1.35E+04	0.	6.26E+03	3.62E+05	1.20E+05	1.53E+03					
CE-144	3.43E+06	1.43E+06	0.	8.48E+05	7.78E+06	8.16E+05	1.84E+05					
REVISION NO .:	PROCEDURE TITLE:						PAGE:					
----------------	------------------	-----------------	---------------	--------------	----------------	-------------	------------					
53		OFFSI	TE DOSE CALCU	JLATION MANU	AL (ODCM)		201 of 221					
PROCEDURE NO.:												
C-200		ST. LUCIE PLANT										
	•		TARI	E C-10								
EN EN	VIRONMENTAL	_ PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES					
	PATHWAY -	COWS MILK (CONTAMINATE	D FORAGE)	AGE GRC	UP - ADULT						
	C	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)						
						01111						
NUCLIDE	BONE			KIDNEY		GI-LLI	WHOLE BODY					
H3	0.	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02	9.73E+02					
C-14	3.63E+05	7.28E+04	7.28E+04	7.28E+04	7.28E+04	7.28E+04	7.28E+04					
P32	1.71E+10	1.07E+09	0.	0.	0.	1.92E+09	6.62E+08					
CR51	0.	0.	1.71E+04	6.32E+03	3.80E+04	7.20E+06	2.86E+04					
MN54	0.	8.41E+06	0.	2.50E+06	0.	2.58E+07	1.61E+06					
FE59	2.98E+07	7.06E+07	0.	0.	1.96E+07	2.33E+08	2.69E+07					
CO57	0.	1.28E+06	0.	0.	0.	3.25E+07	2.13E+06					
CO58	0.	4.72E+06	0.	0.	0.	9.56E+07	1.06E+07					
CO60	0.	1.65E+07	0.	0.	0.	3.08E+08	3.62E+07					
ZN65	1.37E+09	4.36E+09	0.	2.92E+09	0.	2.75E+09	1.98E+09					
RB86	0.	2.60E+09	0.	0.	0.	5.12E+08	1.21E+09					
SR89	1.46E+09	0.	0.	0.	0.	2.33E+08	4.17E+07					
SR90	4.70E+10	0.	0.	0.	0.	6.37E+08	1.15E+10					
Y91	8.60E+03	0.	0.	0.	0.	4.73E+06	2.31E+02					
ZR95	3.18E+04	1.75E+04	0.	1.75E+04	0.	1.05E+08	6.95E+03					
NB95	8.26E+04	4.59E+04	0.	4.55E+04	0.	2.79E+08	1.80E+04					
RU-103	1.02E+03	0.	0.	3.91E+03	0.	1.19E+05	4.41E+02					
RU-106	2.04E+04	0.	0.	3.95E+04	0.	1.32E+06	2.58E+03					
AG110	5.84E+07	5.40E+07	0.	1.06E+08	0.	2.20E+10	3.21E+07					

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		202 of 231
PROCEDURE NO.:							
C-200		ST. LUCIE PLANT					
			TARI	F G-19			
EN	VIRONMENTAL	PATHWAY-DO	OSE CONVERS		R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY -	COWS MILK (CONTAMINATE	D FORAGE)	AGE GRO	OUP - ADULT	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-I I I	
SN-123	0.	0.	0.	0.	0.	0.	0.
SN-126	1.65E+09	3.27E+07	9.56E+06	0.	4.67E+06	1.09E+09	4.94E+07
SB-124	2.58E+07	4.87E+05	6.24E+04	0.	2.00E+07	7.31E+08	1.02E+07
SB-125	2.64E+07	6.06E+05	2.99E+05	3.72E+06	2.66E+09	2.29E+08	5.23E+06
TE 125M	1.63E+07	5.91E+06	4.91E+06	6.63E+07	0.	6.50E+07	2.18E+06
TE 127M	4.63E+07	1.63E+07	1.21E+07	1.88E+08	0.	2.11E+08	5.72E+06
TE 129M	6.06E+07	2.27E+07	2.09E+07	2.53E+08	0.	3.04E+08	9.61E+06
I130	4.27E+05	1.26E+06	1.61E+08	1.96E+06	0.	1.08E+06	4.97E+05
I131	2.96E+08	4.25E+08	1.39E+11	7.27E+08	0.	1.12E+08	2.43E+08
I132	1.67E-01	4.47E-01	5.88E+01	7.12E-01	0.	8.39E-02	1.59E-01
I133	4.00E+06	6.94E+06	1.33E+09	1.21E+07	0.	6.10E+06	2.12E+06
I134	0.	0.	9.98E-10	0.	0.	0.	0.
I135	1.40E+04	3.70E+04	4.84E+06	5.88E+04	7.58E-02	4.14E+04	1.36E+04
CS-134	5.66E+09	1.35E+10	0.	4.36E+09	1.45E+09	2.36E+08	1.10E+10
CS-136	2.61E+08	1.03E+09	0.	5.74E+08	7.87E+07	1.17E+08	7.43E+08
CS-137	7.39E+09	1.01E+10	0.	3.44E+09	1.14E+09	1.95E+08	6.62E+09
BA-140	2.69E+07	3.38E+04	0.	1.15E+04	1.93E+04	5.70E+07	1.78E+06
CE-141	2.91E+04	1.97E+04	0.	9.13E+03	0.	7.52E+07	2.23E+03
CE-144	2.15E+06	8.97E+05	0.	5.32E+05	0.	7.26E+08	1.15E+05

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	E DOSE CALCU	JLATION MANU	AL (ODCM)		202 of 221
PROCEDURE NO.:							
C-200		ST. LUCIE PLANT					
	•		тарі	E C 20			
EN'	VIRONMENTAL	_ PATHWAY-DO	DSE CONVERSI	ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES
	PATHWAY -	GOATS MILK (CONTAMINATE	D FORAGE)	AGE GRO	DUP - ADULT	
	C	RGAN DOSE F	ACTOR (SQ.	METER-MRÉM/	YR PER µCI/SE	C)	
	I				Ι		1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03	1.99E+03
C-14	3.63E+05	7.28E+04	7.28E+04	7.28E+04	7.28E+04	7.28E+04	7.28E+04
P32	2.05E+10	1.29E+09	0.	0.	0.	2.31E+09	7.94E+08
CR51	0.	0.	2.05E+03	7.58E+02	4.56E+03	8.64E+05	3.43E+03
MN54	0.	1.01E+06	0.	3.00E+05	0.	3.09E+06	1.93E+05
FE59	3.87E+05	9.18E+05	0.	0.	2.55E+05	3.03E+06	3.50E+05
CO57	0.	1.54E+05	0.	0.	0.	3.90E+06	2.55E+05
CO58	0.	5.67E+05	0.	0.	0.	1.15E+07	1.27E+06
CO60	0.	1.98E+06	0.	0.	0.	3.70E+07	4.34E+06
ZN65	1.65E+08	5.24E+08	0.	3.50E+08	0.	3.30E+08	2.37E+08
RB86	0.	3.12E+08	0.	0.	0.	6.15E+07	1.45E+08
SR89	3.06E+09	0.	0.	0.	0.	4.89E+08	8.76E+07
SR90	9.87E+10	0.	0.	0.	0.	1.32E+09	2.41E+10
Y91	1.03E+03	0.	0.	0.	0.	5.68E+05	2.77E+01
ZR95	3.82E+03	2.10E+03	0.	2.10E+03	0.	1.26E+07	8.34E+02
NB95	9.92E+03	5.51E+03	0.	5.46E+03	0.	3.34E+07	2.17E+03
RU-103	1.23E+02	0.	0.	4.69E+02	0.	1.43E+04	5.30E+01
RU-106	2.45E+03	0.	0.	4.73E+03	0.	1.58E+05	3.10E+02
AG110	7.00E+06	6.48E+06	0.	1.27E+07	0.	2.64E+09	3.85E+06

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		204 of 231
PROCEDURE NO.:							
C-200		ST. LUCIE PLANT					
			TARI	E G-20			
El	NVIRONMENTAL	PATHWAY-DO	OSE CONVERS	ION FACTORS I	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWAY -	GOATS MILK (CONTAMINATE	ED FORAGE)	AGE GR	OUP - ADULT	
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER μCI/SE	C)	
	BONE		THYROID	KIDNEY	LUNG	GLU	
SN-123			0		0	0	
SN-126	1 97E+08	3 92E+06	1 15E+06	0	5.61E+05	1.31E+08	5.92E+06
SB-124	3 10E+06	5 85E+04	7 49E+03	0	2 40E+06	8 77E+07	1 22E+06
SB-125	3.16E+06	7.28E+04	3.58E+04	4.47E+05	3.19E+08	2.74E+07	6.29E+05
TE 125M	1.96E+06	7.10E+05	5.89E+05	7.95E+06	0.	7.81E+06	2.62E+05
TE 127M	5.57E+06	1.94E+06	1.47E+06	2.26E+07	0.	2.52E+07	6.86E+05
TE 129M	7.27E+06	2.72E+06	2.51E+06	3.04E+07	0.	3.65E+07	1.15E+06
I130	5.12E+05	1.52E+06	1.93E+08	2.36E+06	0.	1.30E+06	5.96E+05
I131	3.56E+08	5.10E+08	1.67E+11	8.72E+08	0.	1.34E+08	2.92E+08
I132	2.00E-01	5.36E-01	7.06E+01	8.55E-01	0.	1.01E-01	1.91E-01
I133	4.80E+06	8.32E+06	1.60E+09	1.45E+07	0.	7.32E+06	2.54E+06
I134	0.	0.	1.20E-09	0.	0.	0.	0.
I135	1.68E+04	4.44E+04	5.80E+06	7.05E+04	2.28E-01	4.97E+04	1.63E+04
CS-134	1.70E+10	4.04E+10	0.	1.31E+10	4.34E+09	7.06E+08	3.30E+10
CS-136	7.84E+08	3.09E+09	0.	1.72E+09	2.36E+08	3.52E+08	2.23E+09
CS-137	2.22E+10	3.03E+10	0.	1.03E+10	3.42E+09	5.83E+08	1.99E+10
BA-140	3.23E+06	4.05E+03	0.	1.38E+03	2.32E+03	6.84E+06	2.13E+05
CE-141	3.49E+03	2.36E+03	0.	1.10E+03	0.	9.02E+06	2.68E+02
CE-144	2.58E+05	1.08E+05	0.	6.39E+04	0.	8.71E+07	1.38E+04

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		205 of 221
PROCEDURE NO.:							
C-200		ST. LUCIE PLANT					
			ΤΔΒΙ	F G-21			
<u>E</u>	NVIRONMENTA	L PATHWAY-DO	DSE CONVERSI	ON FACTORS	R(I) FOR GASE	OUS DISCHAR	GES
_	PATHW	AY - MEAT (CO	NTAMINATED F	ORAGE)	AGE GROUP	P - ADULT	
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
		Γ		Γ			1 1
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02	4.13E+02
C-14	3.33E+05	6.67E+04	6.67E+04	6.67E+04	6.67E+04	6.67E+04	6.67E+04
P32	4.67E+09	2.93E+08	0.	0.	0.	5.25E+08	1.81E+08
CR51	0.	0.	4.23E+03	1.56E+03	9.38E+03	1.78E+06	7.07E+03
MN54	0.	9.18E+06	0.	2.73E+06	0.	2.81E+07	1.75E+06
FE59	2.67E+08	6.33E+08	0.	0.	1.76E+08	2.09E+09	2.41E+08
CO57	0.	5.64E+06	0.	0.	0.	1.43E+08	9.38E+06
CO58	0.	1.83E+07	0.	0.	0.	3.70E+08	4.09E+07
CO60	0.	7.55E+07	0.	0.	0.	1.41E+09	1.66E+08
ZN65	3.56E+08	1.13E+09	0.	7.57E+08	0.	7.13E+08	5.12E+08
RB86	0.	4.89E+08	0.	0.	0.	9.64E+07	2.28E+08
SR89	3.03E+08	0.	0.	0.	0.	4.84E+07	8.67E+06
SR90	1.25E+10	0.	0.	0.	0.	1.45E+09	3.05E+09
Y91	1.14E+06	0.	0.	0.	0.	6.26E+08	3.05E+04
ZR95	3.78E+06	1.67E+06	0.	2.01E+06	0.	8.30E+09	8.26E+05
NB95	2.30E+06	1.28E+06	0.	1.27E+06	0.	7.75E+09	5.02E+05
RU-103	1.06E+08	0.	0.	4.06E+08	0.	1.24E+10	4.59E+07
RU-106	2.80E+09	0.	0.	5.41E+09	0.	1.81E+11	3.54E+08
AG110	6.71E+06	6.21E+06	0.	1.22E+07	0.	2.53E+09	3.69E+06

REVISION NO .:	PROCEDURE TITLE:						PAGE:		
53		OFFSI	TE DOSE CALC	ULATION MANU	IAL (ODCM)		206 of 221		
PROCEDURE NO.:									
C-200		ST. LUCIE PLANT							
	TABLE G-21								
EN	VIRONMENTA	L PATHWAY-DO	DSE CONVERS	ON FACTORS F	R(I) FOR GASEC	OUS DISCHAR	GES		
	PATHW	AY - MEAT (CO	NTAMINATED F	ORAGE)	AGE GROUP	- ADULT			
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)			
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY		
SN-123	0.	0.	0.	0.	0.	0.	0.		
SN-126	1.86E+10	3.69E+08	1.08E+08	0.	6.46E+06	6.19E+09	5.33E+08		
SB-124	1.99E+07	3.75E+05	4.80E+04	0.	1.54E+07	5.62E+08	7.85E+06		
SB-125	6.65E+07	1.58E+07	1.29E+07	1.74E+08	2.49E+09	3.80E+08	1.05E+07		
TE 125M	3.59E+08	1.30E+08	1.08E+08	1.46E+09	0.	1.43E+09	4.81E+07		
TE 127M	1.13E+09	3.93E+08	2.96E+08	4.56E+09	0.	5.11E+09	1.39E+08		
TE 129M	1.14E+09	4.29E+08	3.95E+08	4.79E+09	0.	5.76E+09	1.82E+08		
I130	2.38E-06	7.05E-06	8.96E-04	1.10E-05	0.	6.04E-06	2.77E-06		
I131	1.08E+07	1.55E+07	5.06E+09	2.65E+07	0.	4.07E+06	8.85E+06		
I132	0.	0.	0.	0.	0.	0.	0.		
I133	4.40E-01	7.63E-01	1.47E+02	1.33E+00	0.	6.71E-01	2.33E-01		
I134	0.	0.	0.	0.	0.	0.	0.		
I135	8.60E-02	7.94E-02	0.	3.01E-02	9.04E-03	1.86E-03	3.53E-02		
CS-134	6.58E+08	1.57E+09	0.	5.08E+08	1.68E+08	2.74E+07	1.28E+09		
CS-136	1.18E+07	4.67E+07	0.	2.60E+07	3.56E+06	5.31E+06	3.36E+07		
CS-137	8.73E+08	1.19E+09	0.	4.06E+08	1.35E+08	2.30E+07	7.82E+08		
BA-140	2.88E+07	3.63E+04	0.	1.23E+04	2.07E+04	6.87E+07	1.90E+06		
CE-141	1.41E+04	9.52E+03	0.	4.41E+03	0.	3.63E+07	1.08E+03		
CE-144	1.46E+06	6.10E+05	0.	3.62E+05	0.	4.93E+08	7.83E+04		

REVISION NO .:	PROCEDURE TITLE:						PAGE:
53		OFFSI	TE DOSE CALC	ULATION MANU	JAL (ODCM)		207 of 231
PROCEDURE NO.:							
C-200		ST. LUCIE PLANT					
			TABL	E G-22			
<u>E</u>	NVIRONMENTA	<u>L PATHWAY-DO</u>	DSE CONVERS	ON FACTORS	R(I) FOR GASE	OUS DISCHAR	GES
	PATHWA	Y - FRESH FRU	JITS AND VEGE	ETABLES	AGE GROU	P - ADULT	
	C	ORGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)	
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY
H3	0.	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02	4.02E+02
C-14	1.25E+05	2.50E+04	2.50E+04	2.50E+04	2.50E+04	2.50E+04	2.50E+04
P32	1.04E+09	6.51E+07	0.	0.	0.	1.17E+08	4.02E+07
CR51	0.	0.	1.15E+04	4.25E+03	2.56E+04	4.85E+06	1.93E+04
MN54	0.	4.87E+07	0.	1.45E+07	0.	1.49E+08	9.31E+06
FE59	3.64E+07	8.64E+07	0.	0.	2.40E+07	2.85E+08	3.29E+07
CO57	0.	1.85E+06	0.	0.	0.	4.70E+07	3.08E+06
CO58	0.	6.89E+06	0.	0.	0.	1.40E+08	1.54E+07
CO60	0.	2.38E+07	0.	0.	0.	4.46E+08	5.23E+07
ZN65	5.11E+07	1.62E+08	0.	1.09E+08	0.	1.02E+08	7.34E+07
RB86	0.	1.30E+08	0.	0.	0.	2.56E+07	6.06E+07
SR89	2.67E+09	0.	0.	0.	0.	4.26E+08	7.64E+07
SR90	8.49E+10	0.	0.	0.	0.	2.14E+09	2.07E+10
Y91	1.26E+06	0.	0.	0.	0.	6.92E+08	3.37E+04
ZR95	2.93E+05	9.82E+04	0.	1.49E+05	0.	3.34E+08	6.38E+04
NB95	4.87E+04	2.71E+04	0.	2.68E+04	0.	1.64E+08	1.06E+04
RU-103	1.50E+06	0.	0.	5.75E+06	0.	1.76E+08	6.49E+05
RU-106	2.95E+07	0.	0.	5.71E+07	0.	1.91E+09	3.74E+06
AG110	1.69E+06	1.56E+06	0.	3.08E+06	0.	6.38E+08	9.30E+05

Based on 1 μ Ci/sec release rate of each isotope in and a value of 1. for X/Q, depleted X/Q and relative deposition

REVISION NO .:	PROCEDURE TITLE:						PAGE:		
53		OFFSI	E DOSE CALCU	JLATION MANU	JAL (ODCM)		209 of 221		
PROCEDURE NO.:									
C-200		ST. LUCIE PLANT							
FNVIRONMENTAL PATHWAY-DOSE CONVERSION FACTORS R(I) FOR GASEOUS DISCHARGES									
	PATHWA	Y - FRESH FRU	JITS AND VEGE	TABLES	AGE GROUP	P - ADULT			
	0	RGAN DOSE F	ACTOR (SQ.	METER-MREM/	YR PER µCI/SE	C)			
							11		
NUCLIDE	BONE	LIVER	THYROID	KIDNEY	LUNG	GI-LLI	WHOLE BODY		
SN-123	1.00E-05	1.66E-07	1.41E-07	0.	0.	2.04E-05	2.45E-07		
SN-126	9.52E+08	1.89E+07	5.54E+06	0.	4.31E+06	8.46E+08	2.94E+07		
SB-124	2.52E+07	4.75E+05	6.08E+04	0.	1.95E+07	7.12E+08	9.94E+06		
SB-125	2.58E+07	7.23E+05	4.03E+05	5.14E+06	2.56E+09	2.22E+08	5.10E+06		
TE 125M	2.38E+07	8.65E+06	7.17E+06	9.69E+07	0.	9.51E+07	3.19E+06		
TE 127M	6.75E+07	2.36E+07	1.77E+07	2.73E+08	0.	3.06E+08	8.32E+06		
TE 129M	8.93E+07	3.34E+07	3.08E+07	3.73E+08	0.	4.49E+08	1.42E+07		
I130	3.93E+05	1.16E+06	1.48E+08	1.81E+06	0.	9.98E+05	4.58E+05		
I131	7.78E+07	1.12E+08	3.65E+10	1.91E+08	0.	2.94E+07	6.38E+07		
I132	5.57E+01	1.49E+02	1.96E+04	2.38E+02	0.	2.80E+01	5.29E+01		
I133	2.13E+06	3.69E+06	7.10E+08	6.44E+06	0.	3.24E+06	1.13E+06		
I134	1.03E-04	2.79E-04	3.63E-02	4.45E-04	0.	2.43E-07	9.99E-05		
I135	4.04E+04	1.07E+05	1.40E+07	1.70E+05	8.65E-03	1.19E+05	3.91E+04		
CS-134	6.82E+08	1.62E+09	0.	5.26E+08	1.74E+08	2.84E+07	1.33E+09		
CS-136	3.32E+07	1.31E+08	0.	7.29E+07	9.99E+06	1.49E+07	9.43E+07		
CS-137	8.90E+08	1.22E+09	0.	4.14E+08	1.37E+08	2.34E+07	7.98E+08		
BA-140	1.03E+08	1.35E+05	0.	4.39E+04	7.38E+04	6.65E+08	6.77E+06		
CE-141	7.16E+04	4.85E+04	0.	2.25E+04	0.	1.85E+08	5.49E+03		
CE-144	5.19E+06	2.17E+06	0.	1.29E+06	0.	1.75E+09	2.78E+05		

Based on 1 μ Ci/sec release rate of each isotope in and a value of 1. for X/Q, depleted X/Q and relative deposition

EVISION NO .:	PROCEDURE TITLE:		PAGE:				
53	OFFSITE DOSE CALCU	LATION MANUAL (ODCM) 209 of 231				
ROCEDURE NO.:							
C-200	ST. LUC	CIE PLANT					
	TABLI	E M-1					
electing the Approper:	oriate Long Term (X/Q) for	Dose Calculations I	nvolving Noble Gases				
(1) Total Body of	lose from instantaneous re	eleases					
(2) Skin dose fr	om instantaneous releases	S					
(3) Gamma air(4) Beta air dos	dose (cumulative) e (cumulative)						
TYPE OF DOS CALCULATION	TYPE OF DOSELIMITING RANGELIMITING(X/CCALCULATION(miles)Sectors						
Instantaneous	0.97	NW	1.6 X 10 ⁻⁶				
1/31 days	0.97		- 1 C X 10 ⁻⁶ / ³				
Quarterly Yearly	0.97	 Normally (X/Q) = May use option 	of actual meteorological				
12 Consecutive months	e 0.97	data for time of o	concern.				
Annual Report	0.97	N/A	Note-1				
The (X/Q) ha occurred duri the limiting (X and may occu 9.97 miles Corresp and 0.9 the ave	NOTE s to be calculated based o ng the period of interest. (/Q) will be determined from ur in any sector. bonds to the minimum site 7 miles was chosen for all raging is done for quarterly	<u>1</u> n actual meteorolog The sector of interes m the actual meteoro boundary distance i other sectors for ea y reports.	ical data that it is N/A because ological data n the north direction ise of calculations wher				

REVISION NO .:	PROCEDURE TITLE:			PAGE:				
53	OFFSITE DOSE	E CALCULATION MAN	NUAL (ODCM)	040 - 5004				
PROCEDURE NO.:		· · · · ·	210 of 231					
C-200		ST. LUCIE PLANT						
Selecting the Approp	oriate Long Term	(X/Q) _D or (D/Q) for Do	se					
Calculations Involvir	ng Radioiodines &	8 D Particulates for:						
(1) Inhalation	(1) Inhalation							
(2) Tritium (All g	gas pathways)							
(3) Ground Plar	ne							
TYPE OF DOSE CALCULATION	LIMITING RANGE (miles)	LIMITING SECTOR (OL)	(X/Q) _D sec/m ³	(D/Q) 1/m ²				
Instantaneous	0.97	NW	В 1.3 X 10 ⁻⁶					
		WNW		8.2 X 10 ⁻⁹				
Annual Danart	0.97	А	A, B					
Annual Report	0.97	A						
1/31 days, Qtr. yearly,	0.97	NW	В 1.3 X 10 ⁻⁶					
Annual Total Dose	0.97	WNW		8.2 X 10 ⁻⁹				

(OL) Over land areas only

(A) To be determined by reduction of actual met data occurring during each quarter

(B) For Tritium in the Milk Animal Pathway, the $(X/Q)_D$ value should be that of the respective controlling sector and range where the Milk Animal is located as per Table M-3. Example: If a cow was located at 4.25 miles in NW sector, use the $(X/Q)_D$ for 4.25 miles NW.

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	211 of 221
PROCEDURE NO.:		21101231

C-200

ST. LUCIE PLANT

TABLE M-3

Selecting the Appropriate Long Term (D/Q) for Dose Calculations Involving Radioiodines and 8D Particulates for Grass-Cow-Milk or Grass-Goat-Milk:

TYPE OF DOSE CALCULATION	LIMITING RANGE	LIMITING SECTOR	(D/Q) Value 1/m ²
Release Rate	А	А	А
1/31 Days	В	В	В
Quarterly - Yearly	В	В	В
Annual (Calendar Year)	В	В	В
Annual Report	С	С	С

A. The worst cow or goat as per locations from land census. If no milk animal in any sector, assume a cow at 4.25 miles in the highest (D/Q) sector over land.

- B. The historical (D/Q) of all land sectors with the worst cow or goat from each sector as reported in the Land Census. A 4.25 mile cow should be assumed in the worst sector over land when no milk animal is reported.
- C. The highest (D/Q) at a milk animal location of all milk animals reported in the Land Census Report. (If no milk animals within 5 miles a 4.25 mile cow should be assumed in the sector having the highest (D/Q) at 4.25 miles over land). Actual Met Data should be used for the selection of the worst case milk animal and for the dose calculations. If both goat and milk animals are reported inside 5 miles, dose calculations should be performed on each animal and the higher dose animal contribution should be used.

The historical wind frequency fractions for each sector are listed in Table M-8.

VISION NO.:	PRC	CEDURE TITLE:										PAGE:
53			C)FFSITE /	DOSE C/	ALULATI(ΟΝ ΜΑΝΙ	JAL (ODC	CM)			212 of (
OCEDURE NO.:												212 01 2
C-200					ST.	LUCIE P	LANT					
	¥				T/	ABLE M-	4					
				<u>TERF</u>	<u>AIN COF</u>	RECTIO	N FACTO	<u> DRS</u>				
Florida F	ower &	Light Compa	ny									
St. Lucie	Unit 1					Terrai	in Correct	tion Facto	ors (PUFF	·/ STRAI	GHT LINF	Ξ)
Hutchins	on Islan	d, Florida				Perior	d of Reco	rd: 8/29/	77 to 8/31	1/78		
Dames a	and Moor	re Job No: 4/	598 - 112			Base	Distance	in Miles/ł	Kilometer	S		
			_						· · · · · · · · · · · · · · · · · · ·		<u>.</u>	
		DESIGN		1		'						
SEC	TOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
		MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NN	1E	0.	1.906	1.576	1.465	1.404	1.338	1.318	1.334	1.386	1.346	1.338
NF	Ē	0.	1.887	1.581	1.461	1.391	1.310	1.259	1.164	1.128	1.101	1.116
EN	1E	0.	1.452	1.230	1.122	1.081	1.047	1.033	.941	.941	.906	.902
E	-	0.	1.662	1.425	1.277	1.193	1.151	1.123	1.097	1.121	1.123	1.122
ES	E	0.	1.690	1.483	1.328	1.260	1.246	1.190	1.134	1.094	1.032	.968
SF	Ē	0.	1.818	1.691	1.470	1.427	1.435	1.361	1.366	1.331	1.279	1.239
SS	E	0.	1.812	1.586	1.370	1.302	1.270	1.263	1.229	1.193	1.171	1.151
S	ذ	0.	1.398	1.321	1.125	1.083	1.108	1.127	1.073	1.063	1.047	1.024
SS	W	0.	1.534	1.411	1.296	1.192	1.205	1.132	1.135	1.116	1.077	1.060
SV	N	0.	1.685	1.492	1.294	1.233	1.200	1.222	1.160	1.160	1.198	1.196
WS	Wذ	0.	1.620	1.333	1.210	1.173	1.082	1.091	1.099	1.056	1.034	1.004
V	V	0.	1.651	1.415	1.290	1.218	1.154	1.099	1.081	1.067	1.093	1.083
WN	1M	0.	1.720	1.430	1.267	1.185	1.150	1.133	1.125	1.085	1.033	1.045
NI	N	0.	1.681	1.407	1.257	1.173	1.119	1.078	1.063	.995	.998	.978
111			1 730	1.488	1.316	1.212	1.172	1.122	1.135	1.080	1.099	1.091
NN	'W	0.	1.755				1	1	1	1		

Note 1: Any interpolations between stated mileages will be done by log-log

EVISION NO.:	PROCEDURE T	ITLE:								PAG	GE:
53	_		OFFSI	TE DOSE	CALULAT	ION MAN	JAL (ODC	M)			213 of 23
ROCEDURE NO .:											
C-200		ST. LUCIE PLANT									
		ше				-5)) (Eroque		veted)			
	Te	errain / Red		Adjusted	Prog	$ram \Delta NNX$	(009 Ver	sion - 11/1	8/76		
			Silculation	Aujusicu	riog			3011 - 11/1	0/10		
Florida Pov St. Lucie U Hutchinson Dames and	wer & Light Co Init 1 I Island, Floric I Moore Job N	ompany la lo: 1.4598	3 - 112		Aver Perio Base	rage Annu od of Recc e Distance	al Relative ord: 9/1/76 in Miles/k	Concentr to 8/31/7 (ilometers	ation (sec/ 8	/cubic met	er)
AFFECTED SECTOR	DESIGN DISTANCE MILES	.25 .40	.75 1.21	1.25 2.01	1.75 2.82	2.25 3.62	2.75 4.42	3.25 5.23	3.75 6.03	4.25 6.84	4.75 7.64
NNE	0.	1.1E-05	1.7E-06	7.8E-07	4.5E-07	3.1E-07	2.2E-07	1.7E-07	1.5E-07	1.2E-07	1.0E-07
NE	0.	1.3E-05	2.1E-06	8.9E-07	5.1E-07	3.4E-07	2.4E-07	1.7E-07	1.4E-07	1.1E-07	9.8E-08
ENE	0.	9.3E-06	1.4E-06	6.2E-07	3.7E-07	2.5E-07	1.9E-07	1.3E-07	1.1E-07	8.8E-08	7.5E-08
E	0.	9.8E-06	1.6E-06	6.5E-07	3.7E-07	2.5E-07	1.8E-07	1.4E-07	1.2E-07	9.9E-08	8.4E-08
ESE	0.	1.2E-05	1.9E-06	8.1E-07	4.8E-07	3.2E-07	2.4E-07	1.8E-07	1.4E-07	1.1E-07	9.0E-08
SE	0.	1.4E-05	2.4E-06	9.7E-07	5.7E-07	4.0E-07	2.9E-07	2.3E-07	1.9E-07	1.4E-07	1.2E-07
SSE	0.	1.1E-05	1.7E-06	7.3E-07	4.3E-07	2.9E-07	2.1E-07	1.6E-07	1.3E-07	1.1E-07	9.1E-08
S	0.	6.2E-06	1.0E-06	4.2E-07	2.5E-07	1.8E-07	1.4E-07	1.0E-07	8.0E-08	6.6E-08	5.5E-08
SSW	0.	5.7E-06	9.0E-07	4.0E-07	2.3E-07	1.6E-07	1.1E-07	8.9E-08	7.0E-08	5.7E-08	4.8E-08
SW	0.	6.1E-06	9.4E-07	3.9E-07	2.2E-07	1.6E-07	1.1E-07	8.6E-08	7.0E-08	6.0E-08	5.1E-08
WSW	0.	7.3E-06	1.1E-06	4.6E-07	2.7E-07	1.7E-07	1.3E-07	1.0E-07	8.0E-08	6.5E-08	5.4E-08
W	0.	7.6E-06	1.2E-06	5.2E-07	2.9E-07	2.0E-07	1.3E-07	1.0E-07	8.4E-08	7.2E-08	6.1E-08
WNW	0.	1.4E-05	2.1E-06	9.1E-07	5.2E-07	3.4E-07	2.6E-07	2.0E-07	1.5E-07	1.2E-07	1.0E-07
N I) A /	0.	1.6E-05	2.4E-06	1.0E-06	5.9E-07	3.9E-07	2.8E-07	2.1E-07	1.7E-07	1.4E-07	1.2E-07
NVV						2 65 07	2 6E 07	2 0E-07	1 6E-07	1 3E_07	1 2E_07
NVV	0.	1.5E-05	2.2E-06	9.6E-07	5.5E-07	3.00-07	2.00-07	2.00-07	1.00 07	1.56-07	1.201

Number of Valid Observations = 17135 Number of Calms Lower Level = 95 Number of Invalid Observations = 385 Number of Calms Upper Level = 0 Note 1 - Any interpolations between stated mileages will be done by log-log

REVISION NO .:	PROCEDURE T	ITLE:								PAG	E:
53		OFFSITE DOSE CALULATION MANUAL (ODCM) 214 of 231									
PROCEDURE NO.:		214 of									214 of 231
C-200		ST. LUCIE PLANT									
					TABLE M	-6					
		<u>HISTORIC</u>	AL LONG	TERM D	EPLETED	- <u>(X/Q)</u> _D (I	Frequency	<u>correcte</u>	<u>d)</u>		
	Τe	errain / Rec	circulation	Adiusted	Prog	ram ANNX	(OQ9 Vers	sion - 11/1	8/76		
Elorida Dov	vor 8 Light Cr	mony		· · · j · · · ·	5						
FIULIUA POV	Nel & Light CC	mpany		^	worogo Ar	nual Dala	tivo Conoc	ntration D	oplated (a	ooloubio m	notor)
St. Lucie U	ulle i Jeland Elorid			F	Average Ar			1/79	epieleu (s		leter)
	d Mooro Joh N	la: 1509	110		2000 Dicto	ecoru. 9/ neo in Mile	r/Kilomot	1/70			
Dames and		10. 4090 -	112	Ľ	Dase Dista			515			
	DESIGN										
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE	0.	1.1E-05	1.6E-06	6.6E-07	3.8E-07	2.4E-07	1.7E-07	1.3E-07	1.1E-07	9.2E-08	7.6E-08
NE	0.	1.2E-05	1.7E-06	7.6E-07	4.3E-07	2.8E-07	1.9E-07	1.4E-07	1.1E-07	8.6E-08	7.4E-08
ENE	0.	8.9E-06	1.2E-06	5.3E-07	3.0E-07	2.0E-07	1.4E-07	1.0E-07	8.4E-08	6.6E-08	5.6E-08
E	0.	9.1E-06	1.3E-06	5.6E-07	3.1E-07	2.1E-07	1.5E-07	1.1E-07	9.1E-08	7.5E-08	6.3E-08
ESE	0.	1.2E-05	1.6E-06	6.9E-07	3.9E-07	2.6E-07	1.9E-07	1.4E-07	1.1E-07	8.5E-08	6.7E-08
SE	0.	1.3E-05	2.0E-06	8.2E-07	4.7E-07	3.3E-07	2.3E-07	1.8E-07	1.3E-07	1.1E-07	9.0E-08
SSE	0.	1.1E-05	1.6E-06	6.3E-07	3.5E-07	2.4E-07	1.8E-07	1.4E-07	1.0E-07	8.2E-08	6.8E-08
S	0.	5.9E-06	9.1E-07	3.6E-07	2.1E-07	1.4E-07	1.1E-07	7.7E-08	6.2E-08	5.0E-08	4.1E-08
SSW	0.	5.4E-06	8.0E-07	3.4E-07	1.9E-07	1.3E-07	8.9E-08	6.9E-08	5.5E-08	4.3E-08	3.6E-08
SW	0.	5.7E-06	8.4E-07	3.4E-07	1.8E-07	1.2E-07	9.2E-08	6.7E-08	5.3E-08	4.6E-08	3.8E-08
WSW	0.	7.0E-06	9.6E-07	4.0E-07	2.2E-07	1.4E-07	1.0E-07	8.0E-08	6.1E-08	5.0E-08	4.0E-08
W	0.	7.3E-06	1.1E-06	4.4E-07	2.4E-07	1.6E-07	1.1E-07	8.2E-08	6.4E-08	5.5E-08	4.4E-08
WNW	0.	1.3E-05	1.9E-06	7.9E-07	4.4E-07	2.9E-07	2.0E-07	1.6E-07	1.2E-07	9.3E-08	7.8E-08
NW	0.	1.5E-05	2.1E-06	8.9E-07	4.9E-07	3.1E-07	2.3E-07	1.7E-07	1.3E-07	1.0E-07	8.5E-08
NNW	0.	1.4E-05	2.1E-06	8.3E-07	4.5E-07	2.9E-07	2.0E-07	1.6E-07	1.2E-07	1.0E-07	8.6E-08
Ν	0.	8.7E-06	1.3E-06	5.4E-07	3.0E-07	2.0E-07	1.4E-07	1.1E-07	8.9E-08	7.0E-08	5.8E-08
		- 11	7405		1			05			

Number of Valid Observations Number of Calms Lower Level = 95 17135 Number of Invalid Observations = 385 Number of Calms Upper Level = 0 Note 1 - Any interpolations between stated mileages will be done by log-log

EVISION NO.:	PROCEDURE T	ITLE:								PAC	€:
53			OFFSI	TE DOSE	CALULAT	ION MANL	JAL (ODC	M)			215 of 221
ROCEDURE NO.:	7										21501251
C-200				S	T. LUCIE	PLANT					
					TABLE M	-7					
		<u>HIS</u>	TORICAL	LONG TE	<u>ERM - (D/C</u>	<u>) (Freque</u>	ncy corre	cted)			
	TERRAIN	/ RECIRC	ULATION	ADJUSTE	D PF	ROGRAM	ANNXOQ	VERSIC)N - 11/18/	/76	
Florida Pov	ver & Liaht Co	ompany									
St Lucie U	nit 1	Jinpan,			Aver	age Annua	al Relative	Depositio	n Rate (sc	ware mete	r - 1)
Hutchinson	Island Florid	la			Perio	nd of Reco	ord: 9/1/76	to 8/31/78	8	44.0	,, ,,
Dames and	Moore Job N	Jo [.] 4598 -	112		Base	- Distance	in Miles/K	liometers	<i>,</i>		
Dunico and		10. 1000	1.12		Butt	/ Diotarios					
	DESIGN										
SECTOR	DISTANCE	.25	.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75
	MILES	.40	1.21	2.01	2.82	3.62	4.42	5.23	6.03	6.84	7.64
NNE	0.	6.5E-08	9.3E-09	3.7E-09	2.1E-09	1.3E-09	9.0E-10	6.8E-10	5.5E-10	4.3E-10	3.5E-10
NE	0.	6.0E-08	8.9E-09	3.5E-09	1.9E-09	1.2E-09	8.1E-10	5.6E-10	4.3E-10	3.3E-10	2.8E-10
ENE	0.	3.2E-08	4.8E-09	1.9E-09	1.0E-09	6.6E-10	4.6E-10	3.2E-10	2.4E-10	1.9E-10	1.5E-10
E	0.	3.0E-08	4.6E-09	1.8E-09	9.5E-10	6.0E-10	4.2E-10	3.1E-10	2.5E-10	2.0E-10	1.6E-10
ESE	0.	3.7E-08	5.8E-09	2.3E-09	1.2E-09	8.0E-10	5.4E-10	3.9E-10	3.0E-10	2.2E-10	1.7E-10
SE	0.	6.4E-08	1.0E-08	4.0E-09	2.1E-09	1.4E-09	9.7E-10	7.2E-10	5.6E-10	4.3E-10	3.5E-10
SSE	0.	6.2E-08	9.5E-09	3.6E-09	2.0E-09	1.2E-09	8.7E-10	6.4E-10	4.9E-10	3.9E-10	3.1E-10
S	0.	4.2E-08	7.0E-09	2.6E-09	1.4E-09	9.5E-10	6.9E-10	4.9E-10	3.8E-10	3.0E-10	2.5E-10
SSW	0.	3.4E-08	5.4E-09	2.2E-09	1.1E-09	7.5E-10	5.0E-10	3.7E-10	2.9E-10	2.3E-10	1.8E-10
SW	0.	4.5E-08	7.0E-09	2.6E-09	1.5E-09	9.0E-10	6.6E-10	4.6E-10	3.6E-10	3.0E-10	2.5E-10
WSW	0.	5.3E-08	7.7E-09	3.0E-09	1.6E-09	1.0E-09	7.3E-10	5.5E-10	4.1E-10	3.3E-10	2.6E-10
W	0.	5.0E-08	7.5E-09	3.0E-09	1.6E-09	9.8E-10	6.7E-10	5.0E-10	3.8E-10	3.2E-10	2.6E-10
WNW	0.	8.8E-08	1.3E-08	4.9E-09	2.6E-09	1.7E-09	1.1E-09	8.7E-10	6.6E-10	5.1E-10	4.2E-10
NW	0.	8.2E-08	1.2E-08	4.7E-09	2.5E-09	1.6E-09	1.1E-09	7.9E-10	5.8E-10	4.7E-10	3.8E-10
NNW	0.	8.2E-08	1.2E-08	4.6E-09	2.4E-09	1.5E-09	1.1E-09	8.1E-10	5.9E-10	4.8E-10	4.0E-10
N	0.	5.1E-08	7.3E-09	2.9E-09	1.5E-09	9.8E-10	7.1E-10	5.4E-10	4.2E-10	3.2E-10	2.7E-10

Number of Invalid Observations = 385Number of Calms UppNote 1 - Any interpolations between stated mileages will be done by log-log

REVISION NO .:		PROCEDURE	CEDURE TITLE: PAGE:							
53	I	OFFSIT	F DOSE C	ALCULAT			CM)			
PROCEDURE NC) ·					0,12,022	21	6 of 231		
C 20	<u></u>		C.		דוא א וס					
0-200	0		3							
				TABLE M	-8					
Joint Wind Fr	reauency	Distributio	n [Data Period	: Septemb	er 1. 1976 -	- Auaust 31	. 1978		
All Winds	• • • • • • • • •	B		St /	Lucie Unit 2)		,		
Data Source:	: On-Site	;		Hut	chinson Isla	- and. Florida	3			
Wind Sensor	Height	10.00 Mete	rs	Flor	ida Power	& Light Co.	•			
Table Genera	ated: 12/	05/78.07.4	1 2.18.	Dar	nes and Mc	oore Job No	o: 4598 - 1	12 - 27		
		Wind	Speed Caf	tegories (M	eters per S	econd)				
WIND	0.0-	1.5-	3.0-	5.0-	7.5-	>10.0	TOTAL ¹	MEAN		
SECTOR	1.5	3.0	5.0	7.5	10.0	>10.0	TUTAL	SPEED		
NNE	71	206	318	71	3	0	669	3.32		
, ┣────┩	.43	1.25	1.92	.43	.02	0.00	4.05			
NE	.38	292 1.77	2.33	.77	0.00	0.00	5.25	3.43		
	60	334	505	158	0	0	1057	0.54		
ENE	.36	2.02	3.06	.96	0.00	0.00	6.40	3.51		
E	69	355	510	76	0	0	1010	3.25		
	.42	2.15	3.09	.46	0.00	0.00	6.11	0.20		
ESE	115 70	684 1 11	/44 4.50	12 14	1 01		1616 0.78	3.04		
	183	660	749	28	.01	0.00	1620			
SE	1.11	3.99	4.53	.17	0.00	0.00	9.81	2.88		
SSE	129	579	656	93	1	0	1458	2 10		
SSE	.78	3.50	3.97	.56	.01	0.00	8.82	3.10		
S	72	310	407	99	8	1	897	3.36		
	.44	1.88 272	2.40	.60	.05	.01	5.43			
SSW	04 51	2 25	440 2 70	64	33 20	4 02	6.32	3.48		
	129	440	336	106	14	0	1025	2.42		
SW	.78	2.66	2.03	.64	.08	0.00	6.20	3.10		
WSW	155	320	186	29	5	0	695	2 59		
	.94	1.94	1.13	.18	.03	0.00	4.21	2.00		
W	174	267 1.62	119 72	31	2 01		599	2.43		
	203	304	172	17	.01	0.00	696			
WNW	1.23	1.84	1.04	.10	0.00	0.00	4.21	2.34		
ΝΙΔ	143	518	424	50	0	0	1135	2 95		
	.87	3.14	2.57	.30	0.00	0.00	6.87	2.00		
NNW	85	379	535	70	1	0	1070	3.22		
	.51	2.29	3.24	.42	.01	0.00	0.40			
N	.55	1.17	3.21	.90	.03	0.00	5.86	3.69		
	95	1.17	0.2 1			0.00	95			
CALIM	.57						.57	CALIVI		
ΤΟΤΑΙ	1920	6214	7023	1287	73	5	16522	3 10		
TOTAL	11.62	37.61	42.51	7.79	.44	.03	100.00	0.10		
NUMBER OF	VALID OE	BSERVATIO	NS 1652	2 94.30 F	°CT. Ke [.]	v XXX N	umber of Oc	currences		

NUMBER OF VALID OBSERVATIONS16522NUMBER OF INVALID OBSERVATIONS988TOTAL NUMBER OF OBSERVATIONS17520

94.30 PCT. 5.70 PCT. 100.00 PCT. XXX Number of Occurrences XXX Percent Occurrences

¹ - Totals below are given in <u>hours</u> & percent for wind frequency by sectors

END OF APPENDIX A

REVIS	ION NO.:	PROCEDURE TITLE: F								
	53	OFFSITE DOSE CALCULATION MANUAL (ODCM)								
PROC	EDURE NO.:									
	C-200		ST. LUCIE PL	ANT						
	APPENDIX B <u>RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE</u> (Page 1 of 4)									
			ST. LUCIE PLA Key to Sample Loc	NT cations						
	PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR			
	Direct Radiation	N-1	North of Blind Creek	TLD	Quarterly	1	Ν			
	Direct Radiation	NNW-5	Frederick Douglas Beach Entrance	TLD	Quarterly	4.8	NNW			
	Direct Radiation	NNW-10	Coast Guard Station	TLD	Quarterly	8.7	NNW			
	Direct Radiation	NW-5	Indian River Drive at Rio Vista Drive	TLD	Quarterly	5.4	NW			
	Direct Radiation	NW-10	Intersection of SR 68 and 33rd St	TLD	Quarterly	9.6	NW			
	Direct Radiation	WNW-2	Cemetery South of 7107 Indian River Drive	TLD	Quarterly	2.3	WNW			
	Direct Radiation	WNW-5	US-1 at SR 712	TLD	Quarterly	5.1	WNW			
	Direct Radiation	WNW-10	SR 70, Just West of I-95	TLD	Quarterly	10	WNW			
	Direct Radiation	W-2	Power Line - 77609 Indian River Drive	TLD	Quarterly	2	W			
	Direct Radiation	W-5	Oleander and Sager Streets	TLD	Quarterly	5.4	W			
	Direct Radiation	W-10	I-95 and SR 709	TLD	Quarterly	10.3	W			
	Direct Radiation	WSW-2	WSW-2 8503 Indian River Drive TLD Quarterly 1.8							
	Direct Radiation	WSW-5	Prima Vista Blvd. at Yacht Club	TLD	Quarterly	5.6	WSW			
	Direct Radiation	WSW-10 Del Rio and Davis Streets		TLD	Quarterly	10	WSW			
	Direct Radiation	SW-2	9205 Indian River Drive	TLD	Quarterly	2	SW			
	Direct Radiation	SW-5	FPL Walton Svc Ctr	TLD	Quarterly	4.5	SW			
	Direct Radiation	SW-10	Port St. Lucie Blvd. and Cairo Road	TLD	Quarterly	10.2	SW			
	Direct Radiation	SSW-2	10307 Indian River Drive	TLD	Quarterly	2.6	SSW			

/ISION NO.: F	PROCEDURE TITL	.E:				PAGE:
53 DCEDURE NO.:		OFFSITE DOSE CALCULATION	ON MANUAL	(ODCM)		218 of 23
C-200		ST. LUCIE PI	LANT			
		APPENDIX I RADIOLOGICAL ENVIRONMEN (Page 2 of 4	B TAL SURVEII)	LANCE		
		ST. LUCIE PLA Key to Sample Lo	ANT cations			
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Direct Radiation	SSW-5	Port St. Lucie Blvd. and US 1	TLD	Quarterly	6	SSW
Direct Radiation	Radiation SSW-10 Pine Valley and Westmoreland		TLD	Quarterly	8	SSW
Direct Radiation	S-5	13189 Indian River Drive	TLD	Quarterly	5.2	S
Direct Radiation	S-10	US 1 and Palm City Ave	TLD	Quarterly	10.8	S
Direct Radiation	S/SSE-10	Indian River Drive and Quail Run Lane	TLD	Quarterly	9.9	SSE
Direct Radiation	SSE-5	North of Entrance to Miramar	TLD	Quarterly	5.1	SSE
Direct Radiation	SSE-10	Elliot Museum	TLD	Quarterly	10.2	SSE
Direct Radiation	SE-1	South of Cooling Canal	TLD	Quarterly	1	SE
Direct Radiation	*H-32	U. of Florida - 1FAS Entomology Lab Vero Beach	TLD	Quarterly	18.1	NNW
Airborne	H08	FPL Substation - Weatherbee Road	Radioiodine & Particulates	Weekly	6	WNW
Airborne	*H12	FPL Substation - SR 76, Stuart	Radioiodine & Particulates	Weekly	12	S
Airborne	H14	Onsite - near south property line	Radioiodine & Particulates	Weekly	1	SE
Airborne	H30	Power Line - 7609 Indian River Drive	Radioiodine & Particulates	Weekly	2	W

* Denotes Control Sample

REVISION NO.:	PROCEDURE	TITLE:			PA	GE:
53	_	OFFSITE DOSE CALCULATIO	ON MANUAL (C	DCM)		219 of 231
C-200		ST. LUCIE PL	ANT			
		APPENDIX E RADIOLOGICAL ENVIRONMENT (Page 3 of 4)	AL SURVEILL	ANCE		
		ST. LUCIE PLA Key to Sample Loc	NT ations			
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR
Airborne	H34	Onsite - At Meteorological Tower	Radioiodine & Particulates	Weekly	0.5	Ν
Waterborne	H15	Atlantic Ocean vicinity of public beaches east side of Route A1A	Surface Water (ocean) Sediment from shoreline	Weekly Semi-Annually	< 1	ENE/E/ESE
Waterborne	*H59	Near south end of Hutchinson Island	Surface Water (ocean) Sediment from shoreline	Monthly Semi-Annually	10-20	S/SSE
Food Products	H15	Ocean side vicinity of St. Lucie Plant (NOTE 1)	Crustacea Fish	Semi-Annually Semi-Annually	<1	ENE/E/ESE
Food Products	H51	Offsite near north property line	Broad Leaf vegetation	Monthly (when available)	1	N/NNW

* Denotes Control Sample

REVISION NO.:	PROCEDUR	E TITLE:			PA	AGE:				
53	_	OFFSITE DOSE CALCULATION MANUAL (ODCM)								
C-200		ST. LUCIE PLANT								
	1	APPENDIX RADIOLOGICAL ENVIRONMEN (Page 4 of 4 ST. LUCIE PL/ Key to Sample Lo	B TAL SURVEILL I) ANT cations	<u>ANCE</u>						
PATHWAY	LOCATION	DESCRIPTION	SAMPLES COLLECTED	SAMPLE COLLECTION FREQUENCY	APPROXIMATE DISTANCE (miles)	DIRECTION SECTOR				
Food Products	H52	Offsite near south property line	Broad leaf vegetation	Monthly (when available)	1	S/SSE				
Food Products	*H59	Near south end of Hutchinson Island	Crustacea Fish Broad leaf vegetation	Semi-Annually Semi-Annually Monthly	10-20	S/SSE				

* Denotes control sample

It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Bureau of Radiation Control (BRC), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Environmental Monitoring Programs are between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Environmental Monitoring Programs Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Environmental Monitoring Programs Envind Programs E

<u>NOTE 1</u>

These samples may be collected from or supplemented by samples collected from the plant intake canal if the required analyses are unable to be performed due to unavailability or inadequate quantity of sample from the ocean side location.

END OF APPENDIX B

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	221 of 221
PROCEDURE NO .:		22101231
C-200	ST. LUCIE PLANT	

ST. LUCIE PLANT

APPENDIX B-1 ST. LUCIE SUPPLEMENTAL REMP SAMPLING

(Page 1 of 3)

The sampling and analysis program outlined in this appendix is performed in addition to the St. Lucie REMP sample and analysis program required by Control 3.12.1. These samples are not required to satisfy the REMP Program nor required to be reported in the Annual Radiological Environmental Operating Report. Supplemental samples are performed to provide a broader data base for the Radiological Environmental Monitoring Program.

NOTE

Approximate Distance from plant in miles

Pathway: Direct Exposure via TLD

Sampling and Collection Frequency: Quarterly Collection

Name	Sector	Distance *	Description
H-08	WNW	6	FPL Substation (White City Sub), Weatherbee Rd
H-09	SSW	7	FPL Substation (Jensen Sub), US-1 South of St. Lucie County Line
H-12	S	12	FPL Substation (Stuart Sub), SR-76, West of Stuart by High School
H-14	SE	1	South Site Property Line
H-33	ESE	<1	On-site, North of Intake Canal, West of Dunes
H-34	N	0.5	On-site, Meteorology Tower
H-60	NE	<1	Utility Pole, A1A, East of TAB
H-61 & H-62	SW	<1	Canal Dredging Spoils Mound

Pathway: Airborne Radioiodines and Particulates

Sampling and Collection Frequency: Samples Collected Weekly;

1. Iodine - Gamma-Spec Analysis

2. Particulate - Gross Beta and Composite Gamma-Spec Analysis

Name	Sector	Distance *	Description
H-09	SSW	7	FPL Substation (Jensen Sub), US-1 South of St.
			Lucie County Line
H-32	NNW	19	HRS Entomology Lab., East of US-1, Vero Beach
H-33	ESE	<1	On-site, North of Intake Canal, West of Dunes

	· F	RUCEDURE IIILE.	PAGE.	
53 OFFSITE DOS		OFFSITE DO	SE CALCULATION MANUAL (ODCM)	
OCEDURE	NO.:		222 01 231	
C-200			ST. LUCIE PLANT	
	:	<u>ST. LUCIE SU</u>	APPENDIX B-1 PPLEMENTAL REMP SAMPLING (Page 2 of 3)	
*	Approxima	te Distance fro	<u>NOTE</u> m plant in miles.	
athway:	Waterborn	e, Surface Wa	ter	
nalysis		cuon rrequer		
Name	Sector	Distance *	Description	
H-13	NNW/N	<1	On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower	
H-36	NE/ENE	<1	On-site, Discharge Canal, West Side A1A 5/6/96 On-site, Discharge Canal, Near Bridge	
athway: ampling	Waterborn and Colle	e, Sediment ction Frequer	On-site, Discharge Canal, Near Bridge	
athway: ampling Name	Waterborn and Colle Sector	e, Sediment ction Frequer	Con-site, Discharge Canal, Near Bridge	
athway: ampling <u>Name</u> H-13	Waterborn and Colle Sector NNW/N	e, Sediment ction Frequer Distance ³	Con-site, Discharge Canal, Near Bridge cy: Semi-Annual Collection and Gamma-Spec Analys <u>Description</u> On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower	
athway: ampling <u>Name</u> H-13 H-16	Waterborn and Colle Sector NNW/N N	e, Sediment ction Frequer Distance 3 <1 1	On-site, Discharge Canal, Near Bridge ory: Semi-Annual Collection and Gamma-Spec Analys • Description * Description On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Canal	
athway: ampling Name H-13 H-16 H-19	Waterborn and Colle Sector NNW/N N SE	e, Sediment ction Frequer Distance	Con-site, Discharge Canal, Near Bridge Acy: Semi-Annual Collection and Gamma-Spec Analys Description On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Canal Ocean Covered Sand, Beach South of Intake Canal	
athway: ampling Name H-13 H-16 H-19 H-36	Waterborn and Colle Sector NNW/N N SE NE/ENE	e, Sediment ction Frequer Distance * <pre></pre>	On-site, Discharge Canal, Near Bridge ory: Semi-Annual Collection and Gamma-Spec Analys Description On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Canal Ocean Covered Sand, Beach South of Intake Canal On-site, Discharge Canal, West Side A1A	
athway: ampling <u>Name</u> H-13 H-16 H-19 H-36 Athway: ampling	Waterborn and Colle Sector NNW/N N SE NE/ENE Waterborn and Colle	e, Sediment ction Frequer Distance 1 1 1 1 4 1 4 1 5 6, Beach Sand ction Frequer	Ch-site, Discharge Canal, Near Bridge Acy: Semi-Annual Collection and Gamma-Spec Analys	
athway: ampling Name H-13 H-16 H-19 H-36 Athway: ampling Name	Waterborn and Colle Sector NNW/N N SE NE/ENE Waterborn and Colle Sector	e, Sediment ction Frequer Distance 1 1 1 1 4 1 5 6, Beach Sand ction Frequer Distance	Ch-site, Discharge Canal, Near Bridge Acy: Semi-Annual Collection and Gamma-Spec Analys Con-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Canal Ocean Covered Sand, Beach South of Intake Canal On-site, Discharge Canal, West Side A1A Acy: Semi-Annual Collection and Gamma-Spec Analys Description	
athway: ampling Name H-13 H-16 H-19 H-36 Athway: ampling Name H-15	Waterborn and Colle Sector NNW/N N SE NE/ENE Waterborn and Colle Sector NE/ENE/	e, Sediment ction Frequer Distance 1 1 1 1 4 1 5 6, Beach Sand ction Frequer Distance 5 6 7	Ch-site, Discharge Canal, Near Bridge Acy: Semi-Annual Collection and Gamma-Spec Analys On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Canal Ocean Covered Sand, Beach South of Intake Canal On-site, Discharge Canal, West Side A1A Acy: Semi-Annual Collection and Gamma-Spec Analys On-site, Beach Near Discharge Structure On-site, Beach Near Discharge Structure	
athway: ampling Name H-13 H-16 H-19 H-36 H-36 athway: ampling Name H-15 H-16	Waterborn and Colle Sector NNW/N N SE NE/ENE Waterborn and Colle Sector NE/ENE/ N	e, Sediment ction Frequer Distance 7 1 1 1 1 6, Beach Sand ction Frequer Distance 7 E < 1 1	Con-site, Discharge Canal, Near Bridge Con-site, Discharge Canal, Near Bridge Description On-site, North Bank of Big Mud Creek, Between Pump Station and Meteorology Tower Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Canal Ocean Covered Sand, Beach South of Intake Canal On-site, Discharge Canal, West Side A1A Description On-site, Beach Near Discharge Structure Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Structure Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Structure Ocean Covered Sand, Beach Opposite Blind Creek, North of Discharge Structure	

		PROCEDURE IIILE:		PAGE:		
53	3	OFFSITE DOSE	E CALCULATION MANUAL (ODCM)	223 of 231		
PROCEDURE N	IO.:			220 01 201		
C-20	00		ST. LUCIE PLANT			
		<u>ST. LUCIE SUP</u>	APPENDIX B-1 PLEMENTAL REMP SAMPLING (Page 3 of 3)			
* 4	NOTE * Approximate Distance from plant in miles.					
# / s	Although t sample av	he Name remain ailability.	s the same, the locations can vary wi	th		
Pathway: I Sampling	Ingestion, and Colle	Garden Crop ection Frequenc	y: Annual Collection and Gamma-Sp	ec Analysis		
Name #	Secto	r Distance *	Description			
H-41	W	2	Private Residence, Indian River Dr.			
Pathway: I	Ingestion,	Citrus				
Pathway: Sampling Name #	Ingestion, and Colle Secto	Citrus ection Frequenc	y: Annual Collection and Gamma-Sp	ec Analysis		
Pathway: Sampling = Name # H-23	Ingestion, and Colle Secto W	Citrus ection Frequenc r Distance * 5	y: Annual Collection and Gamma-Sp Description Vicinity of US-1 and Easy St.	ec Analysis		
Pathway: Sampling Name # H-23	Ingestion, and Colle Secto W	Citrus ection Frequenc r Distance * 5 ENI	ey: Annual Collection and Gamma-Sp Description Vicinity of US-1 and Easy St. D OF APPENDIX B-1	ec Analysis		

REVISION NO .:	PRO	PROCEDURE TITLE: PAGE:			
53	OFFSITE DOSE CALCULATION N			ULATION MANUAL (ODCM)	
PROCEDURE N	IO.:				
C-20	00	ST. LUCIE PLANT			
RA	APPENDIX B-2 RADIOLOGICAL ENVIRONMENTAL SAMPLING IN SUPPORT OF THE GROUNDWATER PROTECTION INITIATIVE (Page 1 of 2) ST. LUCIE PLANT				
	Rey to Sample Locations				
STATE	PSL ID	SAMPLES	SAMPLE	LOCATION DESCRIPTION	
ID		COLLECTED	FREQUENCY		
H70	GIS-MW-E	S Tritium / Gamma	Quarterly	West of A1A; between the discharge canal and Gate "B"	
H71	GIS-MW-I	El Tritium / Gamma	Quarterly	West of A1A; between the discharge canal and Gate "B"	
H72	GIS-MW-	SI Tritium / Gamma	Quarterly	South of Intake canal and the adjacent access road	
H73	GIS-MW-S	NS Tritium / Gamma	Quarterly	S/W corner of Intake canal and the adjacent access road	
H74	GIS-MW-S	WI Tritium / Gamma	Quarterly	S/W corner of Intake canal and the adjacent access road	
H75	GIS-MW-\	VI Tritium / Gamma	Quarterly	West of plant site and intake canal; South of switchyard	
H76	H76	Tritium / Gamma	Quarterly	North of Simulator; South of Big Mud Creek	
H77	H77	Tritium / Gamma	Quarterly	East of Barge Slip; By LU bldg	
H78	H78	Tritium / Gamma	Quarterly	South of North Warehouse	
H79	H79	Tritium / Gamma	Quarterly	West of A1A and East of Parking Lot	

It is the policy of Florida Power & Light Company (FPL) that the St. Lucie 1 & 2 Radiological Environmental Monitoring Programs are conducted by the State of Florida Department of Health (DOH) and Bureau of Radiation Control (BRC), pursuant to an Agreement between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Environmental Monitoring Programs are between FPL and DOH and; that coordination of the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Environmental Monitoring Programs between the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and compliance with the Radiological Environmental Monitoring Programs with DOH and Compliance with the Radiological Environmental Monitoring Programs with DOH and Compliance With the Radiological Environmental Monitoring Programs with DOH and Compliance With the Radiological Environmental Monitoring Programs with DOH and Compliance With the Radiological Environmental Monitoring Programs with DOH and Compliance With the Radiological Environmental Monitoring Programs with DOH and Compliance With the Radiological Environmental Monitoring Programs with the Radiological Environmental Monitoring Programs with Pro

REVISION NO .:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	225 of 221
PROCEDURE NO.:		225 01 23 1
C-200	ST. LUCIE PLANT	

ST. LUCIE PLANT

APPENDIX B-2 RADIOLOGICAL ENVIRONMENTAL SAMPLING IN SUPPORT OF THE GROUNDWATER PROTECTION INITIATIVE

(Page 2 of 2)

Until further notice, sample collection points, sampling periodicity, and analyses to be performed in support of the Groundwater Protection INITIATIVE (NEI 07-07) shall be at the discretion of the Chemistry Manager.

END OF APPENDIX B-2

REVISIO	N NO.:		PROCEDURE TITLE:	PAGE:
53			OFFSITE DOSE CALCULATION MANUAL (ODCM)	
PROCEDURE NO.:		:		230 of 231
	C-200		ST. LUCIE PLANT	
DE	SCRIP		APPENDIX D OF THE INTERLABORATORY COMPARISON PROGE	
			(Page 1 of 2)	<u></u>
The S [:] shall p	tate of articipa	Florida ate in a	, Department of Health-Bureau of Radiation Control (BF n INTERLABORATORY COMPARISON PROGRAM.	RC) Laboratory
1.	The sa	ample n	natrices and analytical methods shall be:	
	A.	Gamm particu	a isotopic on a filter sample simulating airborne radioio	dine and
	В.	Gamm	a isotopic on a water sample simulating a surface wate	r grab sample.
	C.	Gamm	a isotopic on either sediment (or soil) or broad leaf veg	etation.
			NOTE	
		Step	s D, E and F reference NRC IR 99-04, PMAI 99-0716.	
	D.	Gross	Beta on an Air Filter matrix.	
	E.	Tritium	n in water, using method employed in REMP.	
	F.	Gamm sample within	a isotopic on a water sample (above) is used for milk m es are being obtained per land use census identified mi 5 miles of the plant site.	atrix if milk k animals
2.	The so	ource o	f samples for this program:	
	A.	A Fede Drinkir	eral Government Laboratory Program (e.g., DOE-MAPE ng Water Program)	P, EPA Safe
	В.	A State NIST t meet t	e, Federal, or private (commercial) laboratory capable c raceable samples. To be eligible, a Commercial Labora he FPL Quality Assurance criteria of "Quality Related".	f providing atory shall
	C.	For Ga sample provide vendor FPL pe quantit	amma Analysis only, a FPL Nuclear Site Laboratory mage matrices using known quantities of radioactivity from is ed by a FPL Contract Laboratory currently approved as r. These prepared matrices may be prepared by the ve ersonnel, but shall not exceed the participant(s) form an ties for allowed radioactivity.	y prepare sotopes PC-1 Level ndor, or by d/or license
3.	Analys prescr	sis of M ibed LL	atrix samples shall be capable of achieving ODCM Tab .Ds on a blank sample.	le 4.12-1

REVISION NO.:	PROCEDURE TITLE:	PAGE:
53	OFFSITE DOSE CALCULATION MANUAL (ODCM)	221 of 221
PROCEDURE NO.:		23101231
C-200	ST. LUCIE PLANT	

ST. LUCIE PLANT

APPENDIX D **DESCRIPTION OF THE INTERLABORATORY COMPARISON PROGRAM (ICP)**

(Page 2 of 2)

- Results within 20% of expected shall be considered acceptable. Results 4. exceeding 20% but within 35% require a description of probable cause and actions performed to bring the analysis into conformance. Results exceeding 35% are considered Not Acceptable; the Matrix shall be replaced and reanalyzed.
- 5. The frequency for performing the interlaboratory comparison program shall be annually with a maximum of 15 months between comparisons of similar matrices.