Technical Specification 5.6.2

Palo Verde Nuclear Generating Station PO Box 52034 Phoenix, Arizona 85072-2034 Mail Station 7636

102-07903-MDD/MSC May 10, 2019

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Dear Sirs:

Subject: Palo Verde Nuclear Generating Station Units 1, 2, and 3 Docket Nos. STN 50-528/529/530 Annual Radiological Environmental Operating Report 2018

In accordance with Palo Verde Nuclear Generating Station Technical Specification 5.6.2, enclosed please find the Annual Radiological Environmental Operating Report for 2018.

No new commitments are being made to the NRC by this letter. Should you need further information regarding this submittal, please contact Matthew S. Cox, Licensing Section Leader, at (623) 393-5753.

Sincerely,

Matthew & Cox

for Michael D. Dilorenzo

Michael D. DiLorenzo Department Leader, Regulatory Affairs

MDD/TMJ/mg

Enclosure: Palo Verde Nuclear Generating Station Annual Radiological Environmental Operating Report 2018

cc:	S. A. Morr	s NRC Region	IV Reg	gional Administrator	
-----	------------	--------------	--------	----------------------	--

- S. P. Lingam NRC NRR Project Manager for PVNGS
- C. A. Peabody NRC Senior Resident Inspector for PVNGS
- B. Goretzki Arizona Department of Health Services Bureau of Radiation Controls (ADHS)

Enclosure

Palo Verde Nuclear Generating Station Annual Radiological Environmental Operating Report 2018

PALO VERDE NUCLEAR GENERATING STATION ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT 2018

(Reference: RCTSAI 1643, Legacy Item No. 036843.01)

Prepared by:	Comolli, Michelle (Z09567)	Digitally signed by Comolli, Michelle (Z09567) DN: cn=Comolli, Michelle (Z09567) Reason: I am the author of this document Date: 2019.04.17 12:09:25 -07'00'
	Grusecki, Lori J(Z39643)	Digitally signed by Grusecki, Lori J(Z39643) DN: cn=Grusecki, Lori J(Z39643) Reason: RP Superintendent - Technical Support Date: 2019.04.17 14:23:21 -07'00'
	Hogue, Nathan (Z14113)	Digitally signed by Hogue, Nathan (Z14113) DN: cn=Hogue, Nathan (Z14113) Date: 2019.04.17 15:14:07 -07'00'
	DI	D I I

Director, Radiation Protection

1. TABLE OF CONTENTS

1. Int	roduction
1.1	Overview
1.2	Radiation and Radioactivity
2. De	scription of the Monitoring Program
2.1	Radiological Environmental Monitoring Program
2.2	Radiological Environmental Monitoring Program Changes for 2018
2.3	REMP Deviations/Abnormal Events Summary
2.4	Groundwater Protection
3. Sai	nple Collection Program
3.1	Water
3.2	Vegetation
3.3	Milk
3.4	Air
3.5	Soil, Sludge, and Sediment
4. An	alytical Procedures
4.1	Air Particulate
4.1	.1 Gross Beta
4.1	.2 Gamma Spectroscopy 12
4.2	Airborne Radioiodine
4.2	.1 Gamma Spectroscopy 12
4.3	Milk
4.3	.1 Gamma Spectroscopy 12
4.3	.2 Radiochemical I-131 Separation
4.4	Vegetation
4.4	.1 Gamma Spectroscopy
4.5	Sludge/Sediment
4.5	.1 Gamma Spectroscopy
4.6	Water
4.6	.1 Gamma Spectroscopy
4.6	.2 Tritium
the second s	

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018 Page i

	4.6	.3 Gross Beta
4.7	7	Soil
	4.7	.1 Gamma Spectroscopy
5.	Nu	clear Instrumentation
5.	1	Gamma Spectrometer
5.2	2	Liquid Scintillation Spectrometer
5.3	3	Gas Flow Proportional Counter
6.	Isot	topic Detection Limits and Reporting Criteria
6.	1	Lower Limits of Detection
6.2	2	Data Reporting Criteria
6.	3	LLD and Reporting Criteria Overview
7.	Inte	erlaboratory Comparison Program
7.	1	Quality Control Program
7.2	2	Intercomparison Results
8.	Dat	ta Interpretation and Conclusions
8.	1	Air Particulates
8.2	2	Airborne Radioiodine
8.3	3	Vegetation
8.4	4	Milk
8.	5	Drinking Water
8.0	6	Groundwater
8.	7	Surface Water
8.	8	Sludge and Sediment
	8.8	.1 WR Centrifuge Waste Sludge
	8.8	.2 Cooling Tower Sludge
8.	9	Data Trends
8.	10	Hard-To-Detect Radionuclide Results
9.	The	ermoluminescent Dosimeter (TLD) Results and Data
10.	L	and Use Census
10).1	Introduction
10).2	Census Results
11.	S	ummary and Conclusions
12.	R	eferences

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018 Page ii

LIST OF TABLES

Table 2-1 Sample Collection Locations	. 6
Table 2-2 Sample Collection Schedule	. 7
Table 2-3 Summaries of the REMP Deviations/Abnormal Events	. 8
Table 6-1 ODCM Required Lower Limits of Detection (a priori)	18
Table 6-2 ODCM Required Reporting Levels	19
Table 6-3 Typical MDA Values	
Table 7-1 Interlaboratory Comparison Results	22
Table 8-1 Particulate Gross Beta in Air 1st-2nd Quarter	28
Table 8-2 Particulate Gross Beta in Air 3rd-4th Quarter	29
Table 8-3 Gamma in Air Filter Composites	30
Table 8-4 Radioiodine in Air 1st-2nd Quarter	31
Table 8-5 Radioiodine in Air 3rd-4th Quarter	32
Table 8-6 Vegetation	33
Table 8-7 Milk	34
Table 8-8 Drinking Water	35
Table 8-9 Groundwater	37
Table 8-10 Surface Water	38
Table 8-11 Sludge/Sediment	43
Table 8-12 Hard -To-Detect Radionuclide Results	45
Table 9-1 TLD Site Locations	55
Table 9-2 Environmental TLD Results	56
Table 10-1 Land Use Census	
Table 11-1 Environmental Radiological Monitoring Program Annual Summary	65

TABLE OF FIGURES

Figure 1-1 Sources of Radiation Exposure in the United States Figure 2-1 REMP Sample Sites- Map (0-10 miles)	
Figure 2-2 REMP Sample Sites- Map (0-10 Innes)	
Figure 8-1 Gross Beta in Air, 1st-2nd Quarter	
Figure 8-2 Gross Beta in Air, 3rd-4th Quarter	
Figure 8-3 Historical Gross Beta in Air (Weekly System Average)	8
Figure 8-4 Historical Gross Beta in Air (Annual Site to Site Comparisons) Compared to Pre-Op	
	9
Figure 8-5 Gross Beta in Drinking Water	0
Figure 8-6 Evaporation Pond Tritium Activity (Pre-Op- 2008)	1
Figure 8-7 Evaporation Pond Tritium Activity (2009-2018)	2
Figure 8-8 Sedimentation Basin 2 Cs-137	3
Figure 9-1 Network Environmental TLD Exposure Rates	7
Figure 9-2 Environmental TLD Comparison: Pre-Operational versus 2018	8
Figure 10-1 Historical Comparison of Nearest Resident Dose	1
Figure 10-2 Historical Comparison of Nearest Milk Animal Dose	2
Figure 10-3 Historical Comparison of Nearest Garden Dose	3

TABLE OF APPENDICIES

Appendix A	69
------------	----

ABSTRACT

The Radiological Environmental Monitoring Program (REMP) is an ongoing program conducted by Arizona Public Service Company (APS) for the Palo Verde Nuclear Generating Station (PVNGS). Various types of environmental samples are collected near PVNGS and analyzed for plant-related radionuclide concentrations.

During 2018, the following categories of samples were collected by APS:

- Broadleaf vegetation
- Groundwater
- Drinking water
- Surface water
- Airborne particulate and radioiodine
- Goat milk
- Sludge and sediment

Thermoluminescent dosimeters (TLDs) were used to measure environmental gamma radiation. The Environmental TLD program is also conducted by APS.

The Arizona Department of Health Services, Bureau of Radiation Control (BRC) performs radiochemistry analyses on various duplicate samples provided to them by APS. Samples analyzed by BRC include onsite samples from the Reservoirs, Evaporation Ponds, and two (2) Deep Wells. Offsite samples analyzed by BRC include two (2) local resident wells. BRC also performs air sampling at seven (7) offsite locations identical to APS and maintains approximately fifty (50) environmental TLD monitoring locations, eighteen (18) of which are duplicates of APS locations.

A comparison of pre-operational and operational data indicates no changes to environmental radiation levels.

(NOTE: Reference to APS throughout this report refers to PVNGS personnel)

1. Introduction

This report presents the results of the operational Radiological Environmental Monitoring Program conducted by Arizona Public Service Company (APS). The Radiological Environmental Monitoring Program (REMP) was established for the Palo Verde Nuclear Generating Station (PVNGS) by APS in 1979.

This report contains the measurements and findings for 2018. All references are specifically identified in Section 12.

1.1 Overview

The Radiological Environmental Monitoring Program (REMP) provides representative measurements of radiation and radioactive materials in exposure pathways. REMP measures radionuclides that lead to the highest potential radiation exposures to members of the public resulting from station operation. This monitoring program implements Title 10 of the Code of Federal Regulations (CFR) Part 50, Appendix I, Section IV.B.2., and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the US Nuclear Regulatory Commission (USNRC) in their Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979 (incorporated into NUREG 1301). Results from the REMP help to evaluate sources of elevated levels of radioactivity in the environment (i.e. atmospheric nuclear detonations or abnormal plant releases).

The Land Use Census ensures that changes in the use of areas at, and beyond the site boundary, are identified and that modifications to the REMP are made if required by the results of this census. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50.

The Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of 10 CFR 50, Appendix I, Section IV.B.2.

Results of the PVNGS pre-operational environmental monitoring program are presented in Reference 1.

The initial criticality of Unit 1 occurred May 25, 1985. Initial criticality for Units 2 and 3 were April 18, 1986, and October 25, 1987, respectively. PVNGS operational findings (historical) are presented in Reference 2.

1.2 Radiation and Radioactivity

Atoms are the basic building blocks of matter. Unstable atoms emit radiation and material that spontaneously emits radiation is referred to as radioactive. Radioactive material is frequently categorized as either "Natural" or "Man-made"

Natural sources of radiation exist naturally in the environment and include: radon, thoron, cosmic, terrestrial, and internal. The sun and stars are a source of cosmic radiation. Atmospheric conditions, the Earth's magnetic field, and differences in elevation can affect the amount, or dose, of cosmic radiation an individual receives. The Earth is a source of terrestrial radiation. Uranium, thorium, and radium exist naturally in rock and soil. All organic matter contains carbon and potassium, and water contains small amounts of dissolved uranium and thorium. The largest contributor of dose to Americans from natural sources is attributed to radon which is found in air. All people are a source of internal radiation. Potassium-40 and carbon-14 are radioactive nuclides and inside all people from birth, making people a source of exposure.

Man-made sources of radiation include: consumer products, nuclear medicine, and medical procedures. There are a number of occupational areas which result in exposure to individuals of varying amounts of radiation such as: radiography, radiology, radiation oncology, power generation, and research laboratories. The Nuclear Regulatory Commission (NRC) requires licensees to monitor exposure to workers and limit occupational exposure to 5,000 millirem. Several consumer products contain radioactive material such as: some ceramics, thorium lantern mantles, luminous watches containing tritium, smoke detectors, and tobacco. Other consumer product sources of radiation can come from building and road construction materials, combustible fuels (i.e. gas, coal), and x-ray security systems. The most significant contributor to radiation exposure from man-made sources is medical procedures. Diagnostic x-rays and nuclear medicine procedures, such as those that use iodine-131 or cesium-137, are examples of man-made medical sources.

The average member of the public receives a total annual dose of approximately 620 millirem from ionizing radiation. Figure 1-1 illustrates the contribution of various sources of radiation to radiation exposure in the United States (NCRP Report No.160 (2009)).

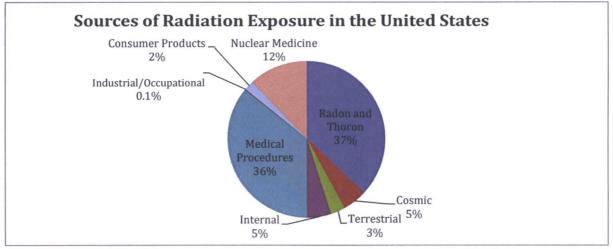


Figure 1-1 Sources of Radiation Exposure in the United States

APS and vendor organizations performed the pre-operational Radiological Environmental Monitoring Program between 1979 and 1985. APS and vendors continued the program into the operational phase.

2.1 Radiological Environmental Monitoring Program

The assessment program consists of routine measurements of environmental gamma radiation and of radionuclide concentrations in media such as air, groundwater, drinking water, surface water, vegetation, milk, sludge, and sediment.

Samples were collected by APS at the monitoring sites shown in Figures 2-1 and 2-2. The specific sample types, sampling locations, and sampling frequencies, as set forth in the PVNGS Offsite Dose Calculation Manual (ODCM), Reference 4, are presented in Tables 2-1, 2-2 and 9-1. Additional onsite sampling (outside the scope of the ODCM) is performed to supplement the REMP. All results are included in this report. Routine sample analyses were performed at the onsite Central Chemistry Laboratory and Operating Unit laboratories. Analyses for hard-to-detect radionuclides were performed by GEL Laboratories LLC.

Environmental gamma radiation measurements were performed by APS using TLDs at fifty (50) locations near PVNGS. The PVNGS Dosimetry Department is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) to process personnel ionizing radiation dosimeters.

In addition to monitoring environmental media, a Land Use Census is performed annually to identify the nearest milk animals, residents, and gardens. This information is used to evaluate the potential dose to members of the public for those exposure pathways that are indicated.

2.2 Radiological Environmental Monitoring Program Changes for 2018

There were no changes to the Radiological Environmental Monitoring Program that impacted the Offsite Dose Calculation Manual (ODCM) Revision 27.

2.3 REMP Deviations/Abnormal Events Summary

During calendar year 2018, there were eight (8) deviations/abnormal events with regards to the monitoring program. Refer to Table 2-3 for more detail and corrective actions taken.

There was one (1) event involving Air Sample data; the event was due to damaged sample media, resulting in an INVALID sample. Palo Verde Nuclear Generating Station has ten (10) Air Sample sites: one (1) control, four (4) ODCM required, and five (5) supplemental sites. Supplemental sampling locations were available and produced valid data for the sampling period involving an invalid sample from a required sample location.

Two (2) events involved deviation from procedural guidance. One (1) event involved the inability to preserve a milk sample according to procedural direction due to difficulty procuring the preservative from the vendor in a timely manner. No sample degradation was identified and

the sample was deemed VALID. The other event was due to the use of sampling cartridges other than those specified in the procedure. The samples were capable of being analyzed in the Unit Labs, to accommodate the change in geometry. The sampling cartridges function in the same manner and the required LLDs were met; therefore, the information was deemed to be valid.

One (1) event was due to the inability to obtain a Drinking Water Sample, resulting from an inoperable well pump. The missed sample did not impact the ability to complete the monthly composite analysis.

There were four (4) events involving environmental dosimetry. One (1) event involved Site 47. Upon 2nd Quarter change-out, it was discovered that the environmental dosimetry and stanchion were missing at Site 47. The stanchion and dosimetry were replaced for the 3rd Quarter 2018 sampling period. Site 47 is a supplemental monitoring location. Two (2) events involved Site 43. Upon the 2nd and 3rd Quarter change-out, the dosimetry and stanchion were missing. The dosimetry and stanchion were replaced for the flowing sampling periods. Due to the repeated apparent tampering of this location, the stanchion was relocated, within several feet of the original monitoring location and labels were placed on the sampling container to identify the purpose and contact information for the dosimetry. These actions appear to have mitigated the apparent tampering of this location. Site 43 is also a supplemental monitoring location. The final event involved Site 10. Upon 4th Quarter change-out, it was discovered that the environmental dosimetry and stanchion were missing at Site 10. The stanchion and dosimetry were replaced for the 1st Quarter 2019 sampling period. Site 10 is a monitoring location for the Outer Ring, which is defined as 4-5 miles from Palo Verde Nuclear Generating Station. Supplemental monitoring locations were available and produced valid data during this sampling period.

2.4 Groundwater Protection

PVNGS has implemented a groundwater protection initiative developed by the Nuclear Energy Institute (NEI). The implementation of this initiative, NEI 07-07 (Industry Ground Water Protection Initiative – Final Guidance Document, August 2007), provides added assurance that groundwater will not be adversely affected by PVNGS operations.

Several monitoring wells have been installed to monitor the subsurface water and shallow aquifer at Units 1, 2, and 3. These wells are sampled monthly and quarterly for chemical and radiological parameters. The State of Arizona Aquifer Protection Permit (Area-Wide) No. P-100388 (APP) provides agreed upon monitoring parameters and reporting thresholds. Sample results for the shallow aquifer wells are reported in the PVNGS Annual Radioactive Effluent Release Report (ARERR). The State of Arizona APP provides specific regulatory criteria for groundwater protection.

Three subsurface samples were obtained, one each from Units 2 and 3 tritium monitoring wells, and one from the shallow aquifer outside of the Unit 1 Radiologically Controlled Area (RCA). These samples were analyzed for hard-to-detect radionuclides (e.g. C-14, Fe-55, Ni-63, Sr-90) as verification that there are no underground leaks from plant systems that may affect groundwater. All results were <MDA. Refer to Table 8-12 for sample results.

SAMPLE SAMPLE TYPE LOCATION (a) LOCATION DESCRIPTION SITE # **APS** Office E16 4 Air 6A* Air SSE13 Old US 80 ESE3 **Arlington School** 7A Air Air NNE2 371st Ave. and Buckeye-Salome Rd. 14A 15 Air NE2 **NE Site Boundary** E3 17A 351st Ave. Air **S**3 S Site Boundary 21 Air 29 W1 W Site Boundary Air 35 NNW8 Tonopah Air Air N2 Transmission Rd 40 Local resident 46 Drinking Water NNW8 Local resident Vegetation N3 47 SW1 Local resident 48 Drinking Water 49 Drinking Water N2 Local resident 51 Milk NNE3 Local resident-goats NNE3 Vegetation Local resident Local resident- goats 53* Milk **NE30** 54 Milk NNE4 Local resident- goats SW3 Local resident 55 Drinking Water (Supplemental) 57 Groundwater Well 27ddc **ONSITE** Groundwater **ONSITE** Well 34abb 58 Surface Water **ONSITE Evaporation Pond 1** 59 Surface Water **ONSITE** 85 Acre Reservoir 60 61 Surface Water **ONSITE** 45 Acre Reservoir **Commercial Farm** 62* Vegetation ENE₂₆ 63 Surface Water **ONSITE Evaporation Pond 2** Surface Water **ONSITE Evaporation Pond 3** 64

Table 2-1 Sample Collection Locations

NOTES:

*Designates a control site

(a) Distances and direction are from the center-line of Unit 2 containment and rounded to the nearest mile

Air sample sites designated with the letter 'A' are sites that have the same site number as a TLD location, but are not in the same location (e.g. site #6 TLD location is different from site #6A air sample location; site #4 TLD location is the same as site #4 air sample location)

SAMPLE	AIRBORNE	Sec. 1	AIRBORNE		GROUND	DRINKING	SURFACE
SITE #	PARTICULATE	MILK	RADIOIODINE	VEGETATION	WATER	WATER	WATER
4	W		W			1	
6A	W		W				
7A	W		W				
14A	W		W				
15	W		W				
17A	W		W				
21	W		W				
29	W		W				
35	W		W				
40	W		W				
46						W	
47				M/AA			
48						W	
49						W	
51			M/AA	M/AA			
53			M/AA				
54			M/AA				
55						W	
57					Q		
58					Q		
59							Q
60							Q
61							Q
62				M/AA			
63							Q
64							Q

Table 2-2 Sample Collection Schedule

W = WEEKLY M/AA = MONTHLY AS AVAILABLE

Q = QUARTERLY

Г	Deviation/Abnormal Event Actions Taken				
	Milk Sample Site 54 was not able to be preserved in accordance with procedural direction for the May sample.	A delay in receiving a broad spectrum preservative from the supplier resulted in the use of 15 tablets, versus the procedurally required 100 tablets for the May Site 54 Milk sample. Ice packs were used to compensate for the lower amount of preservatives. No sample degradation is expected to have occurred. This sample is determined to be VALAD. Event documented through CR 18-08852 (Table 8-7, Note 1).			
2.	Site 47 Environmental Dosimetry missing for 2nd Quarter 2018.	During the Quarterly Environmental Dosimetry change-out, it was discovered that the Site 47 dosimetry and stanchion was missing and could not be located. The stanchion and dosimetry were replaced for the 3rd Quarter 2018 sampling period. Event documented through CR 18-10649.			
3.	Site 43 Environmental Dosimetry missing for 2nd Quarter 2018.	During the Quarterly Environmental Dosimetry change-out, it was discovered that the Site 43 dosimetry and stanchion was missing and could not be located. The stanchion and dosimetry were replaced for the 3rd Quarter 2018 sampling period. Event documented through CR 18-10739.			
4.	Drinking Water Sample Site 55 was not collected, due to power outage at the well pump, for sample period 8/14/2018- 8/20/2018	Drinking Water Sample Site 55 was not collected, due to power outage at the well pump, for sample period 8/14/2018- 8/20/2018. This sampling location is supplemental and not a required ODCM requirement. August had 5 weekly sampling opportunities; this sample did not prevent the monthly composite analysis. Event documented through CR 18-12934.			
5.	Site 43 Environmental Dosimetry missing for 3rd Quarter 2018.	During the Quarterly Environmental Dosimetry change-out, it was discovered that the Site 43 dosimetry and stanchion was missing and could not be located. The stanchion and dosimetry were replaced for the 4th Quarter 2018 sampling period. Event documented through CR 18-15019.			
6.	All Air Sample Sites utilized cartridges different than those that are procedurally directed, during sample period 8/19/18-9/21/2018.	It was identified, during sample media change-out, that CP-100 filter cartridges were used versus the procedurally directed F&J cartridges. Samples were counted in the Unit Labs instead of the Central Lab, to accommodate the differing analytical geometry. LLDs were met and data is reported in Table 8-5. Event documented through CR 18-13499.			
7.	Air Sample Site 14 INVALID due to damaged cartridge for sample period 8/19/18- 9/21/2018.	Damage to the radioiodine cartridge was identified for Air Sample Site 14. The sample was analyzed for information purposes; however the sample is deemed INVALID. Sample results are reported in Table 8-5 as INFO ONLY. Event documented through CR 18-13499 (Table 8-5, Note 2).			
8.	Site 10 Environmental Dosimetry missing for 4th Quarter 2018.	During the Quarterly Environmental Dosimetry change-out, it was discovered that the Site 10 dosimetry and stanchion was missing and could not be located. The stanchion and dosimetry were replaced for the 1st Quarter 2019 sampling period. Event documented through CR 18-20140.			

Table 2-3 Summaries of the REMP Deviations/Abnormal Events

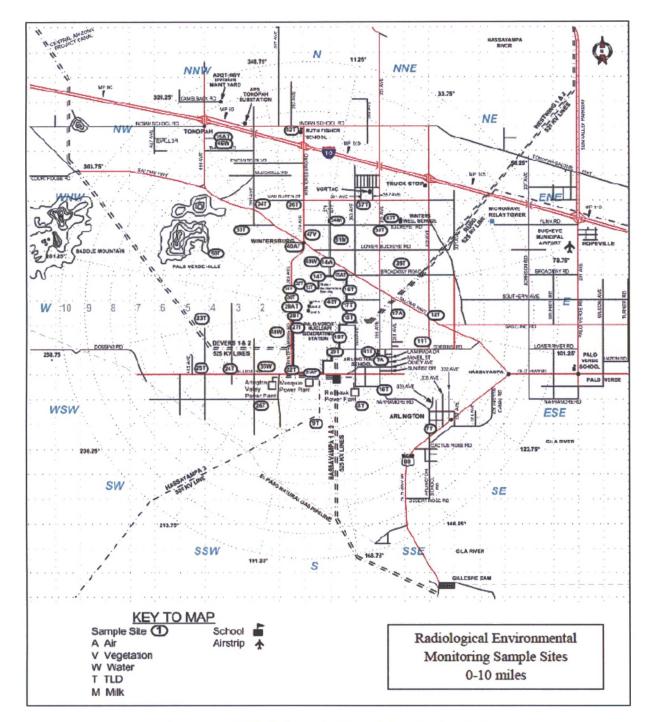


Figure 2-1 REMP Sample Sites- Map (0-10 miles)

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018 Page 10

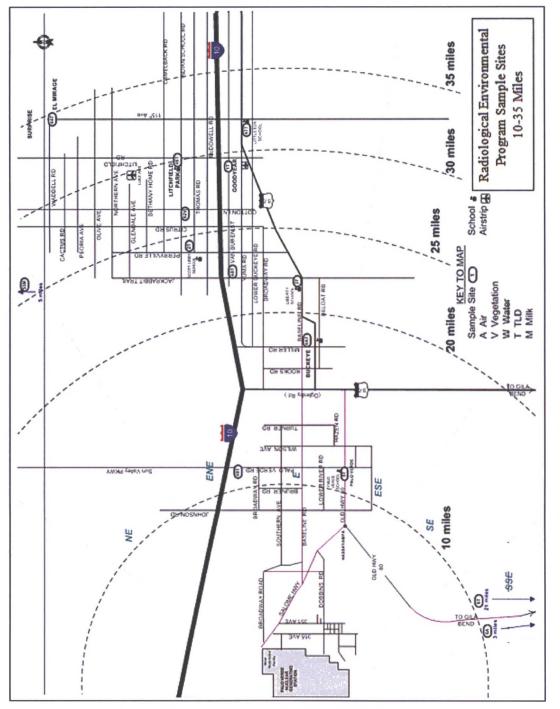


Figure 2-2 REMP Sample Sites- Map (10-35 Miles)

3. Sample Collection Program

APS Personnel, using PVNGS procedures, collected all samples.

3.1 Water

Weekly samples were collected from four (4) residence wells for monthly and quarterly composites. Samples were collected in one-gallon containers (plastic cubitainers) and 500 mL glass bottles. The samples were analyzed for gross beta, gamma-emitting radionuclides, and tritium.

Quarterly grab samples were collected from the 45 and 85 acre Reservoirs, active Evaporation Ponds 1A/B/C, 2A/B, and 3A/B, and onsite wells 34abb, 27ddc, 34aab, and 27dcb. Samples were collected in one-gallon containers (plastic cubitainers) and 500 mL glass bottles. Samples were analyzed for gamma-emitting radionuclides and tritium.

Treated sewage effluent from the City of Phoenix was sampled as a weekly composite at the onsite Water Resources (WR), and analyzed for gamma-emitting radionuclides. A monthly composite was analyzed for tritium.

3.2 Vegetation

Vegetation samples were collected monthly, as available, and were analyzed for gammaemitting radionuclides.

3.3 Milk

Goat milk samples were collected monthly, as available, and were analyzed for gammaemitting radionuclides, including low level I-131.

3.4 Air

Air particulate filters and charcoal cartridges were collected at ten (10) sites on a weekly basis. Particulate filters were analyzed for gross beta. Charcoal cartridges were analyzed for Iodine-131. Particulate filters were composited quarterly, by location, and analyzed for gamma-emitting radionuclides.

3.5 Soil, Sludge, and Sediment

Sludge samples were obtained weekly from the WR waste centrifuge (during operational periods) and analyzed for gamma-emitting radionuclides. Cooling tower sludge was analyzed for gamma-emitting radionuclides prior to disposal in the WR sludge landfill.

4. Analytical Procedures

The procedures described in this report are those used by APS to routinely analyze samples

4.1 Air Particulate

4.1.1 Gross Beta

A glass fiber filter sample is placed in a stainless steel planchet and counted for gross beta activity utilizing a low background gas flow proportional counter.

4.1.2 Gamma Spectroscopy

The glass fiber filters are counted on a multichannel analyzer equipped with a Highpurity Germanium (HPGe) detector. The resulting spectrum is analyzed by a computer for specific radionuclides and verified by trained technicians.

4.2 Airborne Radioiodine

4.2.1 Gamma Spectroscopy

The charcoal cartridge is counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for Iodine-131.

4.3 Milk

4.3.1 Gamma Spectroscopy

The sample is placed in a plastic marinelli beaker and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides and verified by trained technicians.

4.3.2 Radiochemical I-131 Separation

Iodine in milk sample is reduced with sodium bisulfite and iodine is absorbed by the anion exchange resin. The iodine is eluted with NaOCl. Iodine is extracted from the sample with carbon tetrachloride. The iodine is back extracted from the organic with water containing sodium bisulfate and then precipitated as CuI. The precipitate is mounted in a planchet and counted for gross beta.

4.4 Vegetation

4.4.1 Gamma Spectroscopy

The sample is pureed in a food processor, placed in a one liter plastic marinelli beaker, weighed, and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides and verified by trained technicians.

4.5 Sludge/Sediment

4.5.1 Gamma Spectroscopy

The wet/dry sample is placed in a one-liter plastic marinelli beaker, weighed, and counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides and verified by trained technicians.

4.6 Water

4.6.1 Gamma Spectroscopy

The sample is placed in a one-liter plastic marinelli beaker and counted on a multichannel analyzer equipped with a HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides and verified by trained technicians.

4.6.2 Tritium

The sample is evaluated to determine the appropriate method of preparation prior to counting. If the sample contains suspended solids or is turbid, it may be filtered, distilled, and/or de-ionized, as appropriate. Eight (8) milliliters of sample are mixed with fifteen (15) milliliters of liquid scintillation cocktail. The mixture is dark adapted and counted for tritium activity using a liquid scintillation counting system.

4.6.3 Gross Beta

A 200-250 milliliter sample is placed in a beaker. Five (5) milliliters of concentrated nitric (HNO_3) acid is added and the sample is evaporated down to about twenty (20) milliliters. The remaining sample is transferred to a stainless steel planchet. The sample is heated to dryness and counted for gross beta in a gas flow proportional counter.

4.7 Soil

4.7.1 Gamma Spectroscopy

The samples are sieved, placed in a one-liter plastic marinelli beaker, and weighed. The samples are then counted on a multichannel analyzer equipped with an HPGe detector. The resulting spectrum is analyzed by a computer for specific radionuclides and verified by trained technicians.

5.1 Gamma Spectrometer

The Canberra Gamma Spectrometer consists of a Canberra System equipped with HPGe detectors, having resolutions of 1.73 keV and 1.88 keV (as determined by full width half max with an energy of 0.5 keV per channel) and respective efficiencies of 21.5% and 38.4% (as determined by the manufacturer with Co-60). The Canberra System is used for all gamma counting. The system uses Canberra developed software to search, identify, and quantify the peaks of interest.

5.2 Liquid Scintillation Spectrometer

A Beckman LS-6500 Liquid Scintillation Counter is used for tritium determinations. The system background averages approximately 12-16 cpm with a counting efficiency of approximately 40% using a quenched standard.

5.3 Gas Flow Proportional Counter

The Tennelec S5E is a low background gas flow proportional counter for gross beta analysis. The system contains an automatic sample changer capable of counting 50 samples in succession. Average beta background count rate is about 1-2 cpm with a beta efficiency of approximately 30% for Cs-137.

6. Isotopic Detection Limits and Reporting Criteria

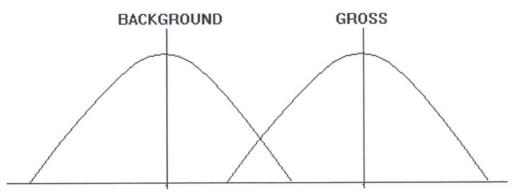
6.1 Lower Limits of Detection

The lower limits of detection (LLD) and the method for calculation are specified in the PVNGS ODCM, Reference 4. The ODCM required *a priori* LLDs are presented in Table 6-1.

6.2 Data Reporting Criteria

All results that are greater than the Minimum Detectable Activity (MDA) (*a posteriori* LLD) are reported as positive activity with its associated 2σ counting error. All results that are less than the MDA are reported as less than values at the associated MDA. For example, if the MDA is 12 pCi/liter, the value is reported as <12.

Typical MDA values are presented in Table 6-3.


Occasionally, the PVNGS ODCM a priori LLDs may not be achieved as a result of:

- Background fluctuations
- Unavoidably small sample sizes
- The presence of interfering radionuclides
- Self-absorption corrections
- Decay corrections for short half-life radionuclides
- Other uncontrollable circumstances

In these instances, the contributing factors will be noted in the table where the data are presented. A summary of deviations/abnormal events is presented in Table 2-3 Summaries of the REMP Deviations/Abnormal Events and includes a description of any sample results that did not meet *a priori* LLD requirements.

6.3 LLD and Reporting Criteria Overview

Making a reasonable estimate of the limits of detection for a counting procedure or a radiochemical method is usually complicated by the presence of significant background. It must be considered that the background or blank is not a fixed value but that a series of replicates would be normally distributed. The desired net activity is the difference between the gross and background activity distributions. The interpretation of this difference between becomes a problem if the two distributions intersect as indicated in the diagram.

If a sufficient number of replicate analyses are run, it is expected that the results would fall in a normal Gaussian distribution. Standard statistics allow an estimate of the probability of any particular deviation from the mean value. It is common practice to report the mean \pm one or two standard deviations as the result. In routine analysis, such replication is not carried out, and it is not possible to report a Gaussian standard deviation. With counting procedures, however, it is possible to estimate a Poisson standard deviation directly from the count. Data are commonly reported as the measured value \pm one or two Poisson standard deviations. The reported values are then considered to give some indication of the range in which the true value might be expected to occur.

LLD is the smallest amount of sample activity that will yield a net count for which there is confidence at a predetermined level that activity is present. LLDs are calculated values for individual radionuclides based on a number of different factors including sample size, counting efficiency and background count rate of the instrument, the background and sample counting time, the decay time, and the chemical recovery of the analytical procedures. A minimum detectable activity value (MDA) is the smallest amount of activity that can be detected in an actual sample and uses the values obtained from the instrument and outcome of the analytical process. Therefore, the MDA values may differ from the calculated LLD values if the sample size and chemical recovery, decay values, or the instrument efficiency, background, or count time differed from those used in the LLD calculation.

The factors governing the calculation of the LLD and MDA values are discussed below:

- 1. Sample Size: The number of observations included in a statistical analysis. Sample size dictates the amount of information available about a studied subject to make accurate inferences.
- 2. Counting Efficiency: The fundamental quantity in the measurement of a radioactive substance is the number of disintegrations per unit time. As with most physical measurements in analytical chemistry, an absolute measurement of the disintegration rate is seldom possible, rather it is necessary to compare the sample with one or more standards. The standards determine the counter efficiency that may then be used to convert sample counts per minute (cpm) to disintegrations per minute (dpm).

- 3. Background Count Rate: Any counter will show a certain counting rate without a sample in position. This background counting rate comes from several sources: 1) natural environmental radiation from the surrounding materials, 2) cosmic radiation, and 3) the natural radioactivity in the counter material itself. The background counting rate will depend on the amounts of these types of radiation and the sensitivity of the counter to the radiation.
- 4. Background and Sample Counting Time: The amount of time devoted to the counting of the background depends on the level of activity being measured. In general, with low level samples, this time should be about equal to that devoted to counting a sample.
- 5. Time Interval between Sample Collection and Counting: Decay measurements are useful in identifying certain short-lived nuclides. The disintegration constant is one of the basic characteristics of a specific radionuclide and is readily determined, if the half-life is sufficiently short. To ensure the required LLDs are achieved, appropriate decay correction values are used to account for radioactive decay during transit time and sample processing.

Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCl/m ³)	Fresh Milk (pCi/l)	Food Products (pCl/kg, wet)
Gross Beta	4	0.01		
H-3	2000*			
Mn-54	15			
Fe-59	30			
Co-58, -60	15			
Zn-65	30			
Zr-95	30			
Nb-95	15			
I-131	1**	0.07	1	60
Cs-134	15	0.05	15	60
Cs-137	18	0.06	18	80
Ba-140	60		60	
La-140	15	1	15	

Table 6-1 ODCM Required Lower Limits of Detection (a priori)

* If no drinking water pathway exists, a value of 3000 pCi/liter may be used

** If no drinking water pathway exists, a value of 15 pCi/liter may be used

NOTES:

This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCi/m ³)	Fresh Milk (pCi/l)	Food Products (pCi/kg, wet)
H-3	20,000 *			
Mn-54	1,000			
Fe-59	400]		
Co-58	1,000]		
Co-60	300]		
Zn-65	300	1		
Zr-Nb-95	400	1		
I-131	2 **	0.9	3	100
Cs-134	30	10	60	1,000
Cs-137	50	20	70	2,000
Ba-La-140	200		300	

Table 6-2 ODCM Required Reporting Levels

* For drinking water samples. This is a 40 CFR 141 value. If no drinking water pathway exists, a value of 30,000 pCi/L may be used.

** If no drinking water pathway exists, a reporting level of 20 pCi/L may be used.

Analysis/Nuclide	Water (pCi/liter)	Milk (pCi/liter)	Airborne Particulate or Gas (pCi/m ³)	Vegetation (pCi/kg, wet)
Gross Beta	2.08		0.004	
H-3	326			
Mn-54	10			
Fe-59	20			
Co-58	9			
Co-60	11			
Zn-65	22			
Zr-95	16			
Nb-95	10			
I-131	10 ^a	1	0.04 ^b	49
Cs-134	9	1	0.003 ^b	47
Cs-137	10	1	0.003 ^b	61
Ba-140	33	3		
La-140	13	1		

Table 6-3 Typical MDA Values

NOTES:

a - low level I-131 is not required since there is no drinking water pathway b - Based on 433 m^3 , the normal weekly sample volume

7. Interlaboratory Comparison Program

7.1 Quality Control Program

APS maintains an extensive QA/QC Program to provide assurance that samples are collected, handled, tracked, and analyzed to specified requirements. This program includes appropriate elements of USNRC Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment, Revision 1. Included in the program are procedures for sample collection, preparation and tracking, sample analysis, equipment calibration and checks, and ongoing participation in an interlaboratory comparison program. Duplicate/replicate samples are analyzed to verify analytical precision and sample methodology. Comprehensive data reviews are performed including trending of data where appropriate.

During 2018, APS analyzed the following sample types under the interlaboratory comparison program:

- Beta/Gamma/ in Air Filter
- I-131 in Air
- Beta in Water
- Gamma in Water
- Tritium in Water
- Gamma in Milk

7.2 Intercomparison Results

APS participates in a crosscheck program using vendor supplied blind radionuclide samples. Results for the interlaboratory comparison program are presented in Table 7-1.

Sample	Analysis	Nuclide	Units	Known	PVNGS	1 sigma	Resolution*	Ratio	N		Results	
ID	Туре			Value	Value	Error				nge		
E12104	Beta Filter	G. Beta	pCi/ea	1.24E+02	1.26E+02	2.60E+00	48	1.02	0.75	- 1	.33	Acceptab
	CL Det 1											
E12105	I-131 Cartridge	I-131	pCi/ea	9.57E+01	8.94E+01	1.42E+01	6	0.93	0.50	- 2	2.00	Acceptab
	CL Det 2											
E12105	I-131 Cartridge	I-131	pCi/ea	9.57E+01	9.39E+01	8.22E+00	11	0.98	0.60	- 1	.66	Acceptab
	CL Det 3											
E12105	I-131 Cartridge	I-131	pCi/ea	9.57E+01	9.89E+01	6.69E+00	15	1.03	0.60		.66	Acceptat
E12106	Gamma Filter	Ce-141	pCi/ea	8.23E+01	8.05E+01		10	0.98	0.60		.66	Acceptat
	CL Det 1	Co-58	pCi/ea	1.22E+02	1.29E+02	1.31E+01	10	1.06	0.60		.66	Acceptat
		Co-60	pCi/ea	2.00E+02			17	1.01	0.75		.33	Acceptat
		Cr-51	pCi/ea		3.64E+02		8	1.05		_	.66	Acceptat
		Cs-134	pCi/ea	1.92E+02	1.71E+02		19	0.89	0.75		.33	Acceptat
		Cs-137	pCi/ea	1.84E+02	1.94E+02		9	1.05	0.60		.66	Acceptat
		Fe-59	pCi/ea	1.48E+02	1.65E+02	1.26E+01	13	1.11	0.60		.66	Acceptat
		Mn-54	pCi/ea	1.40E+02	1.51E+02	1.45E+01	10	1.08	0.60	- 1	.66	Acceptat
		Zn-65	pCi/ea	2.61E+02	2.87E+02	2.60E+01	11	1.10	0.60	_	.66	Acceptal
E12106	Gamma Filter	Ce-141	pCi/ea	8.23E+01	8.47E+01	7.53E+00	11	1.03	0.60	- 1	.66	Acceptal
	CL Det 3	Co-58	pCi/ea	1.22E+02	1.33E+02	1.45E+01	9	1.09	0.60	- 1	.66	Acceptal
		Co-60	pCi/ea	2.00E+02	2.07E+02	1.23E+01	17	1.04	0.75	- 1	.33	Acceptal
		Cr-51	pCi/ea	3.48E+02	3.40E+02	3.72E+01	9	0.98	0.60	- 1	.66	Acceptal
		Cs-134	pCi/ea	1.92E+02	1.49E+02	8.50E+00	18	0.78	0.75	- 1	.33	Acceptal
		Cs-137	pCi/ea	1.84E+02	2.01E+02	2.51E+01	8	1.09	0.60	- 1	.66	Acceptal
		Fe-59	pCi/ea	1.48E+02	1.76E+02	1.26E+01	14	1.19	0.60	- 1	.66	Acceptat
		Mn-54	pCi/ea	1.40E+02	1.62E+02	1.67E+01	10	1.16	0.60	- 1	.66	Acceptat
		Zn-65	pCi/ea	2.61E+02	3.12E+02	2.80E+01	11	1.20	0.60	- 1	.66	Acceptal
E12108	Gamma Milk	Ce-141	pCi/L	2.04E+01	1.29E+01	2.33E+00	6	0.63	0.50	- 2	2.00	Acceptal
	CL Det 2	Co-58	pCi/L	3.02E+01	2.60E+01	2.56E+00	10	0.86	0.60	- 1	.66	Acceptal
		Co-60	pCi/L	4.95E+01	4.26E+01	2.60E+00	16	0.86	0.75	- 1	.33	Acceptal
		Cr-51	pCi/L	8.61E+01	8.41E+01	9.00E+00	9	0.98	0.60		.66	Acceptal
		Cs-134	pCi/L	4.75E+01	4.49E+01	2.10E+00	21	0.95	0.75	- 1	.33	Acceptal
		Cs-137	pCi/L	4.55E+01	4.70E+01		11	1.03	0.60	_	.66	Accepta
		Fe-59	pCi/L	3.67E+01	3.56E+01		12	0.97	0.60		.66	Acceptal
		I-131	pCi/L	1.55E+01	1.69E+01	4.38E+00	4	1.09	0.50		2.00	Acceptal
		Mn-54	pCi/L	3.47E+01	2.60E+01		10	0.75	0.60		.66	Acceptal
		Zn-65	pCi/L	6.46E+01	4.63E+01	4.07E+00	11	0.72	0.60		.66	Acceptal
E12108	Gamma Milk	Ce-141	pCi/L	2.04E+01		3.11E+00	7	1.03	0.50		2.00	Acceptal
	CL Det 3	Co-58	pCi/L	3.02E+01	3.16E+01		9	1.05	0.60		.66	Acceptal
	0.0000	Co-60	pCi/L	4.95E+01	5.19E+01	3.39E+00	15	1.05	0.60		.66	Acceptal
		Cr-51	pCi/L	8.61E+01	8.89E+01		5	1.03	0.50		2.00	Acceptal
		Cs-134	pCi/L	4.75E+01		3.18E+00	14	0.95	0.60		.66	Acceptal
		Cs-134 Cs-137	pCI/L	4.75E+01		4.51E+00	14	1.04	0.60	_	.66	Acceptal
		Fe-59	pCi/L	3.67E+01		3.74E+00	10	1.04	0.60		.66	Acceptal
		I-131	pCI/L	1.55E+01		3.12E+00	5	1.07	0.50		2.00	Acceptal
		Mn-54	pCi/L	3.47E+01	3.55E+01		8	1.03	0.60		.66	Acceptat
		Zn-65	pCi/L	6.46E+01	6.55E+01	4.30E+00 7.69E+00	9	1.02	0.60		.66	Acceptal
E12109	H-3 Water	И-3	pCi/L	1.37E+04		3.60E+02	34	0.88	0.00		.33	Acceptal

Table 7-1 Interlaboratory Comparison Results

* calculated from PVNGS value/1 sigma error value

** Eckert & Ziegler Analytics, Inc. NIST-traceable known value

NRC Acceptance Criteria¹ Resolutior Ratio

esolutior	Ratio
4-7	0.5-2.0
8-15	0.6-1.66
16-50	0.75-1.33
51-200	0.80-1.25
>200	0.85-1.18

¹ From NRC Inspection Manual, procedure #84750, "Radioactive Waste Treatment, and Effluent and Environmental Monitoring"

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018

Page 22

T	able 7-1	Inter	labo	rator	y Con	npari	son Re	sult	s (Continu	ed)
Sample ID	Analysis Type	Nuclide	Units	Known Value	PVNGS Value	l sigma Error	Resolution*	Ratio	NRC Range	Results
E12295	Gamma Water	Ce-141	pCi/L	1.33E+02	1.31E+02	1.16E+01	11	0.98	0.60 - 1.66	Acceptable
	CL Det 2	Co-58	pCi/L	1.50E+02	1.45E+02		11	0.97	0.60 - 1.66	Acceptable
		Co-60	pCi/L		1.99E+02		16	1.01	0.75 - 1.33	Acceptable
		Cr-51	pCi/L		2.88E+02		7	1.05	0.50 - 2.00	Acceptable
		Cs-134	pCi/L	1.28E+02			15	0.89	0.60 - 1.66	Acceptable
		Cs-137	pCi/L	1.54E+02	1.50E+02		11	0.97	0.60 - 1.66	Acceptable
		Fe-59	pCi/L	1.24E+02			12	1.06	0.60 - 1.66	Acceptable
		I-131	pCi/L	6.25E+01	6.08E+01		9	0.97	0.60 - 1.66	Acceptable
							11	1.05	0.60 - 1.66	Acceptable
		Mn-54	pCi/L		1.83E+02			1.03	0.60 - 1.66	
-	a	Zn-65	pCi/L		2.18E+02		11			Acceptable
E12295	Gamma Water	Ce-141	pCi/L		1.36E+02		15	1.02	0.60 - 1.66	Acceptable
	CL Det 3	Co-58	pCi/L		1.49E+02		14	0.99	0.60 - 1.66	Acceptable
		Co-60	pCi/L		2.01E+02		23	1.02	0.75 - 1.33	Acceptable
		Cr-51	pCi/L		2.98E+02		9	1.08	0.60 - 1.66	Acceptable
		Cs-134	pCi/L		1.19E+02	5.77E+00	21	0.93	0.75 - 1.33	Acceptable
		Cs-137	pCi/L	1.54E+02	1.50E+02	1.01E+02	1	0.97	0.50 - 2.00	Acceptable
		Fe-59	pCi/L	1.24E+02	1.35E+02	9.25E+00	15	1.09	0.60 - 1.66	Acceptable
		I-131	pCi/L	6.25E+01	6.22E+01	6.12E+00	10	1.00	0.60 - 1.66	Acceptable
		Mn-54	pCi/L	1.74E+02	1.85E+02		14	1.06	0.60 - 1.66	Acceptable
		Zn-65	pCi/L		2.28E+02		15	1.09	0.60 - 1.66	Acceptable
		En os	perz	2.07.2 02	2.202 02					
E12296	Beta Filter ²	G. Beta	pCi/ea	1.96E+02	1.27E+02	2.60E+00	49	0.65	0.75 - 1.33	Not Acceptable
E12297	CL Det 1 I-131 Cartridge	I-131	pCi/ea	8.20E+01	7.71E+01	7.50E+00	10	0.94	0.60 - 1.66	Acceptable
	CL Det 2									
E12297	I-131 Cartridge	I-131	pCi/ea	8.20E+01	8.39E+01	7.12E+00	12	1.02	0.60 - 1.66	Acceptable
	CL Det 3									
E12297	I-131 Cartridge	I-131	pCi/ea	8.20E+01	8.23E+01	6.25E+00	13	1.00	0.60 - 1.66	Acceptable
E12298	Gamma Filter	Ce-141	pCi/ea	9.78E+01	1.00E+02		12	1.02	0.60 - 1.66	Acceptable
LIMBIO	CL Det 1	Co-58	pCi/ea	1.10E+02			10	1.05	0.60 - 1.66	Acceptable
	CEDet I	Co-60	pCi/ea		1.51E+02			1.04	0.75 - 1.33	Acceptable
		Cr-51	pCi/ea		2.16E+02		8	1.07	0.60 - 1.66	Acceptable
					8.40E+01			0.90		
		Cs-134	pCi/ea							Acceptable
		Cs-137	pCi/ea	and a second second	1.20E+02		9	1.06	0.60 - 1.66	Acceptable
		Fe-59	pCi/ea	9.11E+01	1.03E+02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	1.13	0.60 - 1.66	Acceptable
		Mn-54	pCi/ea	1.28E+02			11	1.10	0.60 - 1.66	Acceptable
		Zn-65	pCi/ea	1.53E+02			11	1.12	0.60 - 1.66	Acceptable
E12298	Gamma Filter	Ce-141	pCi/ea	9.78E+01	9.80E+01	7.91E+00		1.00	0.60 - 1.66	Acceptable
	CL Det 2	Co-58	pCi/ea	1.10E+02	1.16E+02	1.36E+01	9	1.05	0.60 - 1.66	Acceptable
		Co-60	pCi/ea	1.45E+02	1.48E+02	8.56E+00	17	1.02	0.75 - 1.33	Acceptable
		Cr-51	pCi/ea	2.02E+02	1.96E+02	2.15E+01	9	0.97	0.60 - 1.66	Acceptable
		Cs-134	pCi/ea	9.36E+01	7.25E+01	4.71E+00	15	0.77	0.60 - 1.66	Acceptable
		Cs-137	pCi/ea	1.13E+02			7	1.07	0.50 - 2.00	Acceptable
		Fe-59	pCi/ea	9.11E+01	1.06E+02			1.16	0.60 - 1.66	Acceptable
		Mn-54	pCi/ea	1.28E+02			9	1.14	0.60 - 1.66	Acceptable
		Zn-65	pCi/ea	1.53E+02			11	1.15	0.60 - 1.66	Acceptable
E12200	Gamma Filter							1.05	0.60 - 1.66	Acceptable
E12298		Ce-141	pCi/ea	9.78E+01	1.03E+02					
	CL Det 3	Co-58	pCi/ea	1.10E+02			9	1.07	0.60 - 1.66	Acceptable
		Co-60	pCi/ea	1.45E+02				1.06	0.75 - 1.33	Acceptable
		Cr-51	pCi/ea	2.02E+02	2.06E+02		8	1.02	0.60 - 1.66	Acceptable
		Cs-134	pCi/ea	9.36E+01	7.81E+01	4.68E+00	17	0.83	0.75 - 1.33	Acceptable
		Cs-137	pCi/ea	1.13E+02	1.26E+02	1.58E+01	8	1.12	0.60 - 1.66	Acceptable
		Fe-59	pCi/ea	9.11E+01	1.09E+02			1.20	0.60 - 1.66	Acceptable
		Mn-54	pCi/ea	1.28E+02	1.47E+02	1.51E+01	10	1.15	0.60 - 1.66	Acceptable
		Zn-65	pCi/ea	1.53E+02	1.81E+02	1.67E+01	11	1.18	0.60 - 1.66	Acceptable
E12299	Beta Water	H-3	pCi/L	2.16E+02	2.47E+02	5.30E+00	47	1.14	0.75 - 1.33	Acceptable
E12300	Tech A H-3 Water	H-3	pCi/L	1 205+04	1.25E+04	3 57E+02	35	0.97	0.75 - 1.33	Acceptable
E12300		11-5	POL	1.270104	1.250104	5.5712102	35	0.97	0.75 = 1.35	Acceptable
E12200	Tech B	LL 2	PC://	1.202104	1.25E+04	2565.000	25	0.07	0.75 1.22	Acceptable
E12300	H-3 Water	H-3	pCi/L	1.29E+04	1.25E+04	3.50E+02	35	0.97	0.75 - 1.33	Acceptable
Fimor	Tech C	II a	-0.4	1.007.001	1.015.04	2 557100	24	0.04	0.75 1.22	Association
E12300	H-3 Water	H-3	pCi/L	1.2912+04	1.21E+04	3.55E+02	34	0.94	0.75 - 1.33	Acceptable
E12300	Tech D H-3 Water	H-3	pCi/L	1.29E+04	1.23E+04	3.60E+02	34	0.95	0.75 - 1.33	Acceptable
	ad from PVNGS				1.00.01	1.000.00			1.00	, see ep tao

Table 7-1 Interlaboratory Comparison Results (Continued)

* calculated from PVNGS value/1 sigma error value

NRC Acceptance Criteria¹

Resolutior Ratio 4-7 0.5-2.0

8-15 0.6-1.66

16-50 0.75-1.33

51-200 0.80-1.25 >200 0.85-1.18

¹ From NRC Inspection Manual, procedure #84750, "Radioactive Waste Systems; Water Chemistry; Confirmatory Measurements"

 2 CR 19-00619 documents the failure and proposed corrective action.

Sample	Analysis	ERA PT	Nuclide	Units	PVNGS	Assigned Value 1	Acceptance Limit ²	Results
Type	Туре	Study			Value			
Water	Gross Beta	RAD-114	Gross Beta	pCi/L	54	49	33.2-56.1	Acceptable
Water	Gamma	RAD-114	Ba-133	pCi/L	24.5	25.6	19.9-29.4	Acceptable
			Cs-134	pCi/L	15.2	15.7	11.4-18.2	Acceptable
			Cs-137	pCi/L	189	192	173-213	Acceptable
			Co-60	pCi/L	118	119	107-133	Acceptable
			Zn-65	pCi/L	178	177	159-208	Acceptable

Table 7-1 Interlaboratory Comparison Results (Continued)

¹ The ERA assigned values are established per the guidelines contained in the National Environmental Laboratory Accreditation Conference (NELAC) program criteria as applicable.

² "Acceptance Limits" have been calculated per ERA's Standard Operating Procedure for the Generation of Performance Acceptance Limits.

Associated with the analytical process are potential random and systematic errors. Systematic errors can be caused by instrument malfunctions, incomplete precipitation, back scattering, and self-absorption.

Efforts are made to minimize both systematic and random errors in the data reported. Systematic errors are minimized by performing reviews throughout the analysis. For example, instruments are checked routinely with radioactive sources, and recovery and self-absorption factors based on individual sample analyses are incorporated into the calculation equations where necessary. Random errors are reduced by comparing all data to historical data for the same site and performing comparisons between analytical results when available. In addition, when data do not appear to match historical results, analyses may be rerun on a separate aliquot of the sample to verify the presence of the activity. The acceptance of data is dependent upon the results of quality control samples and is part of the data review process for all analytical results.

The "plus or minus value" reported with each analytical result represents the counting error associated with the result and gives the 95% confidence (2σ) interval around the data.

Most samples contain radioactivity associated with natural background/cosmic radioactivity (e.g. K-40, Th-234, Be-7). Gross beta results for drinking water and air are due to natural background. Gammaemitting radionuclides, which can be attributed to natural background sources, are not indicated in this report.

Results and interpretation of the data for all of the samples analyzed during 2018 are presented in the following sections.

8.1 Air Particulates

Weekly gross beta results, in quarterly format, are presented in Table 8-1 and Table 8-2. Gross beta activity at indicator locations ranged from 0.011 to 0.078 pCi/m³. Mean quarterly activity is normally calculated using weekly activity over a thirteen (13) week period. Also presented in the tables are the weekly mean values of all the sites as well as the percent relative standard deviation (RSD %) for the data.

Table 8-3 displays the results of gamma spectroscopy on the quarterly composites of the weekly samples. No plant-related activity was identified

8.2 Airborne Radioiodine

Table 8-4 and Table 8-5 present the quarterly radioiodine results. Radioiodine was not observed in any samples.

8.3 Vegetation

Table 8-6 presents gamma isotopic data for the vegetation samples. No gamma-emitting radionuclides were observed in any of the samples.

8.4 Milk

Table 8-7 presents gamma isotopic data for the goat milk samples. No gamma-emitting radionuclides were observed in any of the samples.

8.5 Drinking Water

Samples were analyzed for gross beta, tritium, and gamma-emitting radionuclides. Results of these analyses are presented in Table 8-8. No tritium or gamma-emitting radionuclides were detected in any samples. Gross beta activity ranged from less than detectable to a high of 5.32 pCi/liter. The gross beta activity is attributable to natural (background) radioactive materials.

8.6 Groundwater

Groundwater samples were analyzed from two onsite wells (regional aquifer) for tritium and gammaemitting radionuclides. Results obtained from the analysis of the samples are presented in Table 8-9.

No tritium or gamma-emitting radionuclides were observed in any of the samples.

8.7 Surface Water

Surface water samples from the Reservoirs and Evaporation Ponds were analyzed for tritium and gammaemitting radionuclides. The two Reservoirs contain processed sewage water from the City of Phoenix and are approximately 45 and 85 acres in size. The three Evaporation Ponds receive mostly circulating water from main turbine condenser cooling and are about 200-250 acres each.

Sample results are presented in Table 8-10. I-131 was observed in both reservoirs and Evaporation Pond 1A. The I-131 levels ranged from 8 pCi/L – 13 pCi/L. I-131 in these surface water locations is a result of radiopharmaceutical I-131 in the Phoenix sewage effluent and is not attributable to plant effluents.

Tritium was routinely observed in the Evaporation Ponds. The highest concentration was 1146 pCi/liter. Tritium was not detected in the Reservoirs. The tritium identified in the Evaporation Ponds has been attributed to permitted plant gaseous effluent releases and secondary plant liquid discharges (e.g. condensate overboard discharge, secondary side steam generator drains, secondary plant sumps, demineralizer regeneration waste). The tritium concentrations were compared to historical values and are considered typical for the Evaporation Ponds.

8.8 Sludge and Sediment

8.8.1 WR Centrifuge Waste Sludge

Sludge samples were obtained from the WR centrifuge and analyzed by gamma spectroscopy. I-131 activity in the sludge is consistent with historical values and, as previously discussed, is due to radiopharmaceuticals in the WR Influent. The concentration of I-131 ranged from "no detectable" to 759 pCi/kg.

Results for WR centrifuge waste sludge can be found in Table 8-11.

8.8.2 Cooling Tower Sludge

Sludge/sediment originating from the Unit 2 and Unit 3 Cooling Towers and Circulating Water canals was disposed of in the WR sludge landfill during 2018. Sample results can be found in Table 8-11.

8.9 Data Trends

Figure 8-1 through Figure 8-8 present data in graphical format. Historical data are displayed for comparison where practical.

8.10 Hard-To-Detect Radionuclide Results

Table 8-12 shows the results of the three subsurface samples obtained from 3 tritium monitoring points. These samples were analyzed for hard-to-detect radionuclides (e.g. C-14, Fe-55, Ni-63, Sr-90) and all results were <MDA. These results indicate that no leaks from plant systems have affected groundwater.

			Site KSD	40* Mean (0.053 0.056 0.053 10.3	0.043 0.058	0.027 0.028 0.029 5.9	0.041 0.039	0.021 0.022	0.046 0.055	0.025 0.028	0.019 0.022	0.020 0.021 0.021 6.9	0.018 0.019	0.026 0.025 0.026 5.4	0.012 0.014	0.019 0.020 0.021 7.5	0.030 0.029 0.031 7.1							Site Site RSD	35 40* Mean (%) ⊥Note	0.025 0.022 0.025 9.8	0.033 0.032	0.019 0.023	0.029 0.030	0.036	0.025 0.026	0.019 0.024	0.029 0.028	0.023 0.027	0.037 0.033	0.023 0.030	0.027 0.028	0.037 0.029 0.033 10.0
RTER			Site	29*	0.052	0.046	0.031	0.040	0.021	0.054	0.027	0.022	0.019	0.019	0.024	0.013	0.020	0.030		DTED					Site	29* *	0.026	0.031	0.020	0.030	0.034	0.027	0.024	0.029	0.028	0.035	0.031	0.030	0.031
K IST UUA	a by "		, Site	21	0.049	0.055	0.027	0.041	0.022	0.057	0.024	0.021	0.021	0.021	0.027	0.013	0.021	0.031		DADTICHT ATE CDOSS BETA IN AID 3-4 OUADTED		d by *			Site	21	0.024	0.032	0.022	0.029	0.038	0.026	0.022	0.029	0.027	0.025	0.031	0.024	0.028
IIV VI V	Ci/m ³			17A	0.050	0.078	0.030	0.041	0.023	0.062	0.029	0.023	0.022	0.021	0.026	0.017	0.023	0.034	18			les denote	Ci/m ³		Site	17A	0.029	0.032	0.025	0.030	0.037	0.024	0.024	0.028	0.027	0.031	0.030	0.024	0.037
ISS BET	units are pCi/m ³		Site	15*	0.052	0.053	0.029	0.042	0.023	0.049	0.027	0.019	0.021	0.017	0.027	0.014	0.021	0.030	d on 2/14/201	CC DET		uired samp	units are pCi/m ³		Site	15*	0.025	0.036	0.021	0.031	0.031	0.026	0.024	0.029	0.027	0.034	0.031	0.026	0.035
PARTICULATE GROSS BETA IN AIR 1st QUARTER	UDUM required samples denoted by " units are pCi/m ³		Site	14A*	0.047	0.061	0.030	0.036	0.020	0.044	0.025	0.024	0.020	0.017	0.026	0.014	0.024	0.030	Note 1: Site 4 blocked by road construction on 2/13/2018. Site 4 Sample collected on 2/14/2018	LE CDO		ODCM required samples denoted by *	1		Site	14A*	0.027	0.034	0.021	0.031	0.037	0.026	0.027	0.028	0.028	0.035	0.029	0.028	0.036
FICULA	D		Site	A7	0.051	0.054	0.029	0.039	0.022	0.054	0.028	0.024	0.023	0.020	0.026	0.016	0.023	0.031	018. Site 4 St		VIDO II	0			Site	A7	0.025	0.032	0.023	0.027	0.035	0.024	0.026	0.026	0.024	0.031	0.033	0.026	0.032
PAR		(control)	Site	*Y9	0.057	0.065	0.031	0.035	0.021	0.064	0.028	0.021	0.020	0.019	0.023	0.013	0.021	0.032	tion on 2/13/2	Lava				(control)	Site	6A*	0.021	0.030	0.025	0:030	0.040	0.024	0.027	0.024	0.025	0.033	0.031	0.029	0.032
		ł	> Site	4	0.067	0.072	0.032	0.041	0.024	0.070	0.036		0.023	0.019	0.026	0.015	\$ 0.023	0.036	oad construs						Site	4	0.027	0.032			0.037		3 0.024		3 0.026	0.035	0.031	0.031	0.035
			STOP	DATE	2-Jan-18	9-Jan-18	16-Jan-18	23-Jan-18	30-Jan-18	6-Feb-18	13-Feb-18	20-Feb-18	27-Feb-18	6-Mar-18	13-Mar-18	20-Mar-18	27-Mar-18		blocked by ru						STOP	DATE	3-Apr-18	10-Apr-18	17-Apr-18	24-Apr-18	1-May-18	8-May-18	15-May-18	22-May-18	29-May-18	5-Jun-18	12-Jun-18	19-Jun-18	26-Jun-18
			STAKI	DATE	26-Dec-17	2-Jan-18	9-Jan-18	16-Jan-18	23-Jan-18	30-Jan-18	6-Feb-18	13-Feb-18	20-Feb-18	27-Feb-18	6-Mar-18	13-Mar-18	20-Mar-18	Mean	Note 1: Site 4						START	DATE	27-Mar-18	3-Apr-18	10-Apr-18	17-Apr-18	24-Apr-18	1-May-18	8-May-18	15-May-18	22-May-18	29-May-18	5-Jun-18	12-Jun-18	19-Jun-18
				Week #	1	2	3	4	S	9	7	8	6	10	11	12	13									Week #	14	15	16	17	18	19	20	21	22	23	24	25	26

Table 8-1 Particulate Gross Beta in Air 1st-2nd Quarter

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018 Page 28

				RSD	an (%) ±Note	30 12.8		0.028 7.0 0.030 5.9			17.5		24 10.4 23 10.8				29 5.8	Note 2: CR 18-13499: Site 14 INVALID due to damage to lodine sample cartridge. Data for Site 15 for INFO use only. All sample locations anaysized in Unit lab due to the use of CP 100 cartridges. Remaining					RSD		0.028 8.3			0.044 8.1		0.037 6.2					0.042 8.8		0.034 3.6
				Site	40* Mean	0.023 0.030		0.025 0.0					0.023 0.023				0.027 0.029	b due to the use of CF					Site	40* Mean	0.027 0.0			0.040 0.0							0.043 0.0		0.033 0.0
				Site	35	0.034	0.029	0.028	0.040	0.043	0.027	0.032	0.024	0.027	0.036	0.029	0.031	sized in Unit la					Site	35	0.032	0.016	120.0	0.043	0.031	0.036	0.036	0.054	0.024	0.029	0.037	0.038	0.034
Quarter	JARTER			Site	29*	0:030	0.027	0.030	0.032	0.032	0.025	0.029	0.021	0.028	0.034	0.029	0.028	e locations anay	ARTER				Site	29*	0.027	0.014	/10.0	0.043	0.030	0.035	0.037	0.052	0.024	0.029	0.039	0.038	0.033
Srd-4th	PARTICULATE GROSS BETA IN AIR 3rd QUARTER ODCM required samples denoted by *			Site	21	0.026	0.027	0.028	0.035	0.027	0.021	0.028	120.0	0.027	0.035	0.028	0.027	only. All sampl	PARTICULATE CROSS RETA IN AIR 4th OUARTER	ed by *	•		Site	21	0.027	0.014	0.018	0.039	0.035	0.041	0.040	0.054	0.027	0.034	0.044	0.036	0.035
eta in All	A IN AI ples denote	oCi/m [*] rte r		Site	17A	0.031	0.028	0.029	0.037	0.042	0.029	0.034	C20.0	0.030	0.036	0.030	0.032	for INFO use c	LA IN AI	ples denote	Ci/m ³		Site	17A	0.031	0.013	0.022	0.048	0.033	0.041	0.038	0.057	0.027	0.026	0.039	0.038	0.034
Table 8-2 Particulate Gross Beta in Air 3rd-4th Quarter	ATE GROSS BETA IN AIR 3rd ODCM required samples denoted by *	units are pCi/m 3rd Quarter		Site	* 15*	0.033		0.027					CCU U			0.029	0.030	ata for Site 15	OSS RF1	ODCM required samples denoted by *	units are pCi/m ³		Site		0:030			0.046								0.029	0.033
irticulate	ATE GR			Site	$14A^*$	0.033		0.029				,	070.0				0.029	ple cartridge. D	ATF CP	ODCM re			Site	-	0.024			0.028								0.036	
01e 8-2 P2	RTICUL			e Site	* 7A	9 0.037		1 0.030					220.0 0 027				9 0.030	e to Iodine sam	DIJU			U	e Site		6 0.029			CZUUU 1:							0.041		6 0.035
131	PA		(cc	te Site	6A*	31 0.029		27 0.024 37 0.031					29 0.025 0.019				31 0.029	O due to damag	DA			(control)			29 0.026			46 0.046								39 0.038 0.038	
				STOP Site	DATE 4	2-Jul-18 0.03		17-Jul-18 0.027		7-Aug-18 0.046			28-Aug-18 0.029 4-Sen-18 0.024			25-Sep-18 0.031	0.031	Site 14 INVALI					STOP Site	•	2-Oct-18 0.029			23-Oct-18 0.022 30-Oct-18 0.046		~	19-Nov-18 0.042	27-Nov-18 0.055			18-Dec-18 0.048	31-Dec-18 0.039	0.036
				START ST	DATE DA	26-Jun-18 2-Jı		10-Jul-18 17-J					2/-Aug-18 28-A 4-Sen-18 4-Se			18-Sep-18 25-S	Mean	Note 2: CR 18-13499:	authics are APPTID.				START ST		25-Sep-18 2-O			16-Oct-18 23-C 73-Oct-18 30-C			13-Nov-18 19-N	19-Nov-18 27-N	~			24-Dec-18 24-D	
					Week #	27	28	29 30	31	32	33	34	55 36	37	38	39		Z	ŏ					Week #	40	41	42	43 44	45	46	47	48	49	50	51	53	l

40 4th O. 2 wel A :---. à ć 4 É • à Table 0 3

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018 Page 29

⊥Note <0.005 <0.002 <0.003 <0.002 <0.002 <0.001 <0.001 Site 40*<0.004 <0.003 <0.001 <0.001 <0.002 <0.003 <0.001 Site 35 . <0.0006 <0.003 <0.001 <0.001 <0.001 <0.001 <0.001 Site 29* GAMMA IN AIR FILTER COMPOSITES <0.002 <0.002 <0.002 <0.002 <0.001 <0.004 <0.001 Site 21 **ODCM** required samples denoted by * . <0.002 <0.002 <0.001 <0.001 <0.005 <0.005 <0.002 Site 17A units are pCi/m³ <0.002 <0.003 <0.002 <0.004 <0.003 <0.004 <0.001 Site 15* <0.002 <0.002 <0.003 <0.002 <0.003 <0.004 <0.001 14A* Site <0.0007 <0.004 <0.002 <0.003 <0.001 <0.004 <0.001 Site A7 <0.003 <0.003 <0.002 <0.001 <0.002 <0.001 <0.002 Site 6A* (control) <0.002 <0.002 <0.003 <0.002 <0.002 <0.003 <0.001 Site 4 ENDPOINT NUCLIDE Cs-134 Cs-134 Cs-137 Cs-137 Cs-134 Cs-137 Cs-134 QUARTER 27-Mar-18 26-Jun-18 25-Sep-18

<0.003

<0.002

<0.003

<0.003

<0.003

<0.0008

<0.003

<0.002

<0.003

<0.0008

Cs-137

31-Dec-18

Table 8-3 Gamma in Air Filter Composites

PVNGS ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT- 2018

Page 30

			Site Site 35 40* _Note	<0.0593 <0.0070	<0.0316	2 <0.0330 <0.0247	<0.0216	<0.0461	<0.0273	0 <0.0302 <0.0384 1	<0.0225	<0.0331	9 <0.0363 <0.0293	0 <0.0293 <0.0253	3 <0.0430 <0.0329			35 40* ⊥Note	<0.0253	<0.0241	a 20.0175 <0.0285	<0.0515	<0.0279	<0.0282	<0.0243	<0.0298	2 <0.0251 <0.0275	<0.0188	
			Site Site	[4] <(<0.0296 <0.0192	<0.0317 <0.0295			<0.0496 <0.0320			<0.0239 <0.0319	<0.0327 <0.0200	<0.0224 <0.0283			21 29*	<0.0281 <0.0134		<0.0331 <0.0361	<0.0000 <0.0186 <0.0186					<0.0278 <0.0232		
RADIOIODINE IN AIR 1st QUARTER ODCM required samples denoted by *			Site 17A	<0.0293	<0.0534	<0.0194	<0.0276	<0.0202	<0.0125	<0.0270	<0.0221	<0.0307	<0.0307	<0.0200	<0.0228	ted by *	.070	17A	<0.0212	<0.0421	<0.0326	<0.0359	<0.0189	<0.0273	<0.0362	<0.0280	<0.0225	<0.0308	
ples denot	oCi/m ³	required LLD <0.070	Site	<0.0480	<0.0296	<0.0402	<0.0463	<0.0582	<0.0185	<0.0415	<0.0369	<0.0323	<0.0261	<0.0382	<0.0363	ples denoi pCi/m ³	required LLD <0.070	15*	<0.0312	<0.0369	<0.0397	×0.070 05	<0.0122	<0.0069	<0.0570	<0.0360	<0.0238	<0.0359	
united sam	units are pCi/m ³		Site 14A*	<0.0318	<0.0524	<0.0345	<0.0284	<0.0071	<0.0421	<0.0490	<0.0260	<0.0353	<0.0282	<0.0200	<0.0363	quired samples de units are pCi/m ³	re	14A*	<0.0261	<0.0238	<0.0254	<0.0500>	<0.0179	<0.0342	< 0.0314	<0.0358	<0.0282	<0.0173	
ADIOIODINE IN AIK 1St QUAKIE ODCM required samples denoted by *			Site	<0.0605	<0.0530	<0.0391	<0.0407	<0.0134	<0.0302	<0.0257	<0.0237	<0.0121	<0.0224	<0.0291	<0.0280	ODCM required samples denoted by * units are pCi/m ³		7A	<0.0286	<0.0391	<0.0406	1600.0>	<0.0307	<0.0260	<0.0348	<0.0074	<0.0224	<0.0312	
R		(control)	Site	<0.0361	<0.0520	<0.0336	<0.0248	<0.0520	<0.0415	<0.0393	6520.0>	<0.0470	<0.0236	<0.0440	<0.0323		(control)	•¥9	<0.0466	<0.0187	<0.0064	<0.0415	<0.0383	<0.0218	<0.0306	<0.0285	<0.0324	<0.0357	
			Site	<0.0764	<0.0527	<0.0349	<0.0359	<0.0072	<0.0336	<0.0298	<0.0070	<0.0381	<0.0067	<0.0509	<0.0431			4	<0.0346	<0.0273	<0.0235	2100.0>	<0.0289	<0.0333	<0.0261	<0.0335	<0.0329	<0.0295	
			STOP	2-Ian-18	9-Jan-18	16-Jan-18	23-Jan-18	30-Jan-18	6-Feb-18	13-Feb-18	27-Feh-18	6-Mar-18	13-Mar-18	20-Mar-18	27-Mar-18			DATE	3-Apr-18	10-Apr-18	17-Apr-18	24-Apr-18 1-Mav-18	8-Mav-18	15-May-18	22-May-18	29-May-18	5-Jun-18	12-Jun-18 19-Jun-18	
			START	26-Dec-17	2-Jan-18	9-Jan-18	16-Jan-18	23-Jan-18	30-Jan-18	6-Feb-18	20-Feh-18	27-Feb-18	6-Mar-18	13-Mar-18	20-Mar-18			DATE	27-Mar-18	3-Apr-18	10-Apr-18	1/-Apr-18 24-Apr-18	1-Mav-18	8-May-18	15-May-18	22-May-18	29-May-18	81-nu1-c	01 1100 71
			Waab #	1	5 7	3	4	5	9	7	0 0	10	11	12	13			Week #	14	15	16	18	19	20	21	22	23	75	24

| Site Site
35 40* ⊥Note
35 40* ⊥Note
<pre></pre> <pre></pre> <pre>Site Site <pre></pre> <pre>Site Site <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre>Site Site <pre></pre> <pre></pre></pre></pre></pre> | Site 29* 29* 29* 29* 29* 29* 29* 29* 29* 29* | Site Site S
21 2
21 2
21 2
(0.0362 <0.
(0.0188 <0.
(0.0241 <0.
(0.0285 <0.
(0.0585 <0.
(0.0386 <0.
(0.0438 <0.
(0.0336 <0.
(0.0438 <0. | Si
Si
Si
Si
Si
Si
Si
Si
Si
Si | 070
Site
17A
<0.0448
<0.0219
<0.0219
<0.02324
<0.0391
<0.0391
<0.0348
<0.0348
<0.0348
<0.0348
<0.0348
<0.0568
<0.0187
<0.0568
<0.0187
<0.0187
<0.0488
<0.0187
<0.0488
<0.0448
sr INFO use
sed by * | pCi/m ³ required LLD <0.070 Site 15* 15* 0 <0.0284 5 <0.0261 6 <0.0184 6 <0.0429 7 <0.079 8 <0.0131 6 <0.0253 7 <0.0563 8 <0.0131 9 <0.0261 9 <0.0263 9 <0.0131 9 <0.0261 9 <0.0131 9 <0.0261 9 <0.0261 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 9 <0.0561 </th <th>Imits are pCi/m³ required LLD <0.070</th> Site Site Site Site 7A 14A* 15* 17A 7A 14A* 15* 0.0219 7A 14A* 15* 17A 7A 14A* 15* 0.0219 7D 0.02245 0.01244 0.02203 7D 0.02245 0.01244 0.02324 7D 0.02336 0.03324 0.03324 7D 0.0233 0.03553 0.03543 7D 0.0233 0.03543 0.03341 7D 0.0333 0.03543 0.03543 7D 0.03353 0.03353 0.03543 100353 0.03350 0.03341 0.03413 1000354 0.03350 0.033563 <th>Site 5.4 Site 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4</th> <th>Site
5(A*
6A*
6A*
6A*
6A*
60.0313
60.0313
60.0313
60.0313
60.0313
60.0313
60.0313
60.0313
60.0323
60.0432
60.0432
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0047
60.0447
60.0047
60.0447
60.0047
60.0047
60.0447
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0</th> <th><u> </u></th> <th>)
Site 4
4
4
<0.0368
<0.0368
<0.0182
<0.0259
<0.0390
<0.0390
<0.0396
<0.0396
<0.0319
<0.0319
<0.0316
<0.0316
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0359
<0.0359
<0.0356
<0.0356
<0.0356
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0344
<0.0336
<0.0344
<0.0344
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0344
<0.0316
<0.0344
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.</th> <th>()
STOP Site
DATE 4
2-Jul-18 <0.0368
10-Jul-18 <0.0368
17-Jul-18 <0.0368
17-Jul-18 <0.0359
31-Jul-18 <0.0329
7-Aug-18 <0.0396
14-Aug-18 <0.0396
21-Aug-18 <0.0396
4-Sep-18 <0.0396
4-Sep-18 <0.0396
11-Sep-18 <0.0319
11-Sep-18 <0.0319
11-Sep-18 <0.0319
13-Sep-18 <0.0310
13-Sep-18 <0.</th> <th>()STARTSTOPSiteDATEA26-Jun-18$2-Jul-18$<</th> | Imits are pCi/m ³ required LLD <0.070 | Site 5.4 Site 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 | Site
5(A*
6A*
6A*
6A*
6A*
60.0313
60.0313
60.0313
60.0313
60.0313
60.0313
60.0313
60.0313
60.0323
60.0432
60.0432
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0447
60.0047
60.0447
60.0047
60.0447
60.0047
60.0047
60.0447
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0047
60.0 | <u> </u> |)
Site 4
4
4
<0.0368
<0.0368
<0.0182
<0.0259
<0.0390
<0.0390
<0.0396
<0.0396
<0.0319
<0.0319
<0.0316
<0.0316
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0359
<0.0359
<0.0356
<0.0356
<0.0356
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0336
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0344
<0.0336
<0.0344
<0.0344
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0336
<0.0344
<0.0344
<0.0316
<0.0344
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0.0316
<0. | ()
STOP Site
DATE 4
2-Jul-18 <0.0368
10-Jul-18 <0.0368
17-Jul-18 <0.0368
17-Jul-18 <0.0359
31-Jul-18 <0.0329
7-Aug-18 <0.0396
14-Aug-18 <0.0396
21-Aug-18 <0.0396
4-Sep-18 <0.0396
4-Sep-18 <0.0396
11-Sep-18 <0.0319
11-Sep-18 <0.0319
11-Sep-18 <0.0319
13-Sep-18 <0.0310
13-Sep-18 <0. | ()STARTSTOPSiteDATEA26-Jun-18 $2-Jul-18$ < |
|--|---|---
--|--
--
---	--
--	---
---	--
Site Site 35 40* ⊥Note 0.0324 <0.0393 0.0226 0.0226 <0.0318 0.0221 0.0223 <0.0318 0.0220 0.0245 <0.0336 0.0336 0.0316 <0.0276 0.0336 0.0341 <0.0336 2 0.0341 <0.0336 2 0.0343 <0.0336 2 0.0341 <0.0336 2 0.03536 <0.03536 2 0.0554 <0.0559 2 0.0555 <0.0559 2 0.03535 <0.0443 3 0.03535 <0.0559 3 0.03535 <0.03551 3 0.03535 <0.04551 3 0.03535 <0.03551 3 0.03535 <0.03551 3 0.03535 <0.04571 3	ite 9* 0259 < 0055 < 0174 < 0543 < 00543 < 00642 < 00642 < 00522 < 00514 < 00514 < 00514 < 00513 < 00513 < 00513 < 00513 < 00513 < 00513 < 00513 < 00513 < 00513 < 00551 < 00552 < 00552 < 00552 < 00552 < 005551 < 00552 < 00
Site Site 35 40* ⊥Note 35 40* ⊥Note 0.0324 <0.0393 0.02563 <0.0318 0.0216 <0.0318 0.0253 <0.0324 0.0316 <0.0276 0.0315 <0.0336 0.0316 <0.0336 0.0316 <0.0336 0.0316 <0.0336 2 0.0341 <0.0336 2 0.03536 <0.03536 2 0.0440 <0.0585 2 0.0536 <0.0252 2 0.0535 <0.0353 <0.0559 0.05333 <0.0559 3 0.05333 <0.0353 <0.03539 0.03333 <0.04457 0.03333 <0.04457	ite 9* 0259 < 00055 < 0174 < 0174 < 00124 < 00233 < 00422 < 00422 < 00523 < 00514 < 00514 < 00514 < 00513 < 00514 < 00514 < 00514 < 00514 < 00551 < 00551 < 00551 < 00651 < 00521 < 00522 < 00552 < 00
35 40* ⊥Note 0.0324 <0.0393 0.0226 0.0225 <0.0318 0.0220 0.0323 <0.0340 0.0316 0.0316 <0.0340 0.0336 0.0317 <0.0336 0.0336 0.0341 <0.0336 0.0340 0.0341 <0.0336 0.0340 0.0341 <0.0352 2 0.0341 <0.0356 2 0.0536 <0.0585 2 0.0555 <0.0177 <0.0552 0.0177 <0.0552 <0.0351 0.0585 <0.0351 0.0585 <0.0351 0.0333 <0.0447 0.0333 <0.0457	9* 0259 < 0065 < 0065 0543 < 0174 < 0174 < 0383 < 0383 < 042 < 0124 < 0293 < 0478 < 0124 < 0293 < 0514 < 00514 < 00514 < 00513 < 00513 < 00514 < 00513 < 00514 < 00513 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514 < 00514
0.0324 <0.0393 0.0226 <0.0318 0.0263 <0.0318 0.0323 <0.0340 0.0316 <0.0276 0.0341 <0.0336 0.0341 <0.0336 0.0341 <0.0336 0.0345 <0.0320 0.0440 <0.0585 2 0.0585 <0.0352 0.0585 <0.0351 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0351 0.0177 <0.0351 0.0177 <0.0351 0.0177 <0.0351 0.0333 <0.0467 0.0331 <0.0351 0.0331 <0.0351 0.0351 <0.0351 <0.0351 0.0351 <0.0351 <0.0351 <0.0351 0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <0.0351 <	0259 <<0065 <0065 <0065 <00174 <0065 <00174 <0053 <0543 <00543 <00124 <00124 <00124 <00124 <00124 <00124 <00124 <00124 <00124 <00124 <001252 <001252 <00178 <001252 <00178 <001252 <00178 <001514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010514 <0010551 <0010514 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <0010551 <00105551 <00105551 <00105551 <00105551 <001055551 <0010555551 <0010555551 <00105555551 <00105555555555
0.0226 <0.0318 0.0263 <0.0318 0.0323 <0.0220 0.0316 <0.0340 0.0341 <0.0336 0.0345 <0.0336 0.0440 <0.0320 0.0440 <0.0385 2 0.0536 <0.0352 0.0564 <0.0143 0.0177 <0.0589 0.0147 <0.0599 0.0177 <0.0599 0.0585 <0.0351 0.0585 <0.0351 0.0589 d in Unit lab due to the use of CP 100	0065 <<0174 <0174 <0174 <0174 <0174 <0174 <0174 <0124 <0124 <0124 <0124 <0124 <0124 <0124 <0124 <01263 <01252 <01478 <010478 <010478 <010514 <010514 <010514 <010513 <010514 <010514 <010514 <010513 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010514 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <010551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <0105551 <01055551 <0105555551 <01055555551 <010555555551 <0105555555555
0.0263 <0.0220 0.0316 <0.0340 0.0316 <0.0336 0.0341 <0.0336 0.0245 <0.0336 0.0440 <0.0385 2 0.0440 <0.0585 2 0.0536 <0.0585 2 0.0544 <0.0143 0.0177 <0.0589 0.0147 <0.0599 0.0177 <0.0599 0.0351 <0.0351 0.0333 <0.0457 d in Unit lab due to the use of CP 100	0174 < 0543 < 0543 < 0383 < 0124 < 0124 < 0293 < 00642 < 0078 < 0078 < 0078 < 00514 < 00514 < 00523 < 010523 < 010514 < 010523 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010514 < 010523 < 010523 < 010514 < 010523 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 < 010552 <
0.0323 <0.0340 0.0316 <0.0276 0.0341 <0.0336 0.0245 <0.0320 0.0440 <0.0585 2 0.0536 <0.0585 2 0.0544 <0.0143 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0585 <0.0351 0.0585 <0.0351 0.0585 <0.0351 0.0585 <0.0351 0.0589 0.0171 <0.0457	0543 <
0.0316 <0.0276 0.0341 <0.0336 0.0245 <0.0336 0.0440 <0.0585 2 0.0536 <0.0585 2 0.0554 <0.0143 0.0177 <0.0599 0.0177 <0.0599 0.0177 <0.0599 0.0351 <0.0351 0.0585 <0.0351 0.0583 <0.0457 d in Unit lab due to the use of CP 100	0.383 <
0.0341 <0.0336 0.0245 <0.0320 0.0440 <0.0585 2 0.0536 <0.0585 2 0.0264 <0.0143 0.0177 <0.0599 0.0177 <0.0599 0.0585 <0.0351 0.0583 <0.0457 d in Unit lab due to the use of CP 100	0124 < 0293 < 0642 < 0642 < 0382 < 0382 < 0514 < 0514 < 0523 < 0514 < 0523 < 0514 < 0523 < 0514 < 0523 < 0514 < 0523 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 0514 < 05
0.0245 < 0.0320 0.0440 < 0.0585 2 0.0536 < 0.0585 2 0.0264 < 0.0143 0.0177 < 0.0599 0.0585 < 0.0351 0.0583 < 0.0457 d in Unit lab due to the use of CP 100	0293 << 0642 << 01252 << 0178 << 0514 << 0523 << 0523 <
 | <0.0358 <0.0563 <0.0563 <0.0563 <0.0563 <0.01311 <0.0218 <0.0414 <0.0414 <0.0414 <0.0509 <0.0509
 | <0.0244 <0.0243 <0.0332 <0.0336 <0.0306 <0.0306 <0.0439 <0.0439 <0.0449 <0.0449
 | <0.0686 <0.0357 <0.0357 <0.0359 <0.0358 <0.0358 <0.0435 In e sample ca DIOIODI | | <0.0275 <0.0432 <0.0436 <0.0486 <0.0447 <0.0447 <0.0630 damage to lodi Oldioned and an angle to lodi
 | | |
 |

Table 8-5 Radioiodine in Air 3rd-4th Quarter

Page 32

	ODCM ma	uired samples de	noted by	*		
		its are pCi/kg, we	-			
	un	its are perkg, we	i.			
		DATE				
LOCATION	TYPE	COLLECTED	I-131	Cs-134	Cs-137	Note
LOCATION		18-Jan-18	<46	<53	<39	11010
LOCAL	Lettuce				-39	
LOCAL	T	No Sample Avai 14-Mar-18	<48	<55	<74	
RESIDENCE	Lettuce		<35	<28	<44	
(Site #47)*	Lettuce	19-Apr-18 24-May-18	<46	<28 <46	<78	
	Lettuce				-10	
		No Sample Av				
		No Sample Av				
		No Sample Ava				
		No Sample Availa		-		
	Lettuce/vine leaf		<58	<47	<55	
	-	No Sample Availa				
	Lettuce	20-Dec-18	<57	<51	<45	
	Spinach	18-Jan-18	<40	<31	<38	
	Lettuce	18-Jan-18	<45	<46	<44	
	Lettuce	16-Feb-18	<48	<30	<54	
	Spinach	16-Feb-18	<40	<45	<43	
	Lettuce	16-Mar-18	<46	<60	<69	
	Spinach	16-Mar-18	<52	<53	<66	
COMMERCIAL		19-Apr-18	<44	<31	<11	
FARM	Green Chard	19-Apr-18	<37	<35	<40	
(Site #62)*	Red Chard	19-Apr-18	<24	<25	<44	
	Basil	24-May-18	<49	<58	<75	
		No Sample Av				
		No Sample A				
		No Sample Ava				
		No Sample Avail		-	-(7	
	Lettuce	19-Oct-19	<46	<50	<67	
	Kale	19-Oct-19	<33	<36	<62	
	Tatsoi Romaine	19-Oct-19 15-Nov-18	<38	<59	<56	
		15-Nov-18	<33	<39	<33	
	Spinach Kale	15-Nov-18	<56	<44	<54	
		20-Dec-18	<38	<49	<52	
	Spinach	No Sample Ava			-\Z	
		No Sample Avai				
		No Sample Ava				
		No Sample Av	vailable for	r April		
LOCAL		No Sample Av	vailable fo	r May		
LOCAL		No Sample A	vailable fo	r June		
RESIDENCE		No Sample A	vailable fo	or July		
(Site #51)		No Sample Ava	ailable for	August		
		No Sample Avail	able for S	eptember		
	Broccoli Bush Greens	18-Oct-19	<39	<39	<78	
		No Sample Avail				
		No Sample Avail	able for D	ecember		

Table 8-6 Vegetation

Table 8-7 Milk

	ODCM requ		-	oted by *			
	u	nits are p	oCi/liter				
SAMPLE	DATE	T 121	C- 124	C= 127	Do 140	L = 140	Note
LOCATION	COLLECTED	I-131	Sample A	Cs-137	Ba-140	La-140	⊥Note
Level Decident							
Local Resident Goats			Sample Av				
	19-Apr-18	<1	Sample A			<1	
(Site #51)*	24-May-18	<1	<1	<1	\triangleleft	<1	
	24-May-18	<1	<1	<1	\triangleleft	<1	
	20-Jul-18	<1	<1	<1	\triangleleft	<1	
	23-Aug-18	<1	<1	<1	\triangleleft	<2	2
	20-Sep-18	<1	<1	<1	\triangleleft	\sim	2
	18-Oct-18	<1	<1	<1	\triangleleft	<1	2
	16-Nov-18	<1	<1	<1	\triangleleft	<1	
	20-Dec-18	<1	<1	<1	\triangleleft	<1	
	20 200 10		Sample A		-	-1	
			Sample Av				
	22-Mar-18	<1	<1	<1	S	<1	
Local Resident	26-Apr-18	<1	<1	<1	<3	<1	
Goats	31-May-18	<1	<1	<1	\triangleleft	<1	
(Site #53)*	28-Jun-18	<1	<1	<1	\triangleleft	<1	
(0000 000)	26-Jul-18	<1	<1	<1	\triangleleft	<1	
	30-Aug-18	<1	<1	<1	<3	<1	
	27-Sep-18	<1	<1	<1	<3	<1	
		No	Sample for	r October	Available		
	29-Nov-18	<1	<1	<1	<3	<1	
	27-Dec-18	<1	<1	<1	\triangleleft	<1	
	11-Jan-18	<1	<1	<1	<3	<1	
Local Resident	09-Feb-18	<1	<1	<1	\triangleleft	<1	
Goats	08-Mar-18	<1	<1	<1	<3	<1	
(Site #54)*	12-Apr-18	<1	<1	<1	<3	<1	
	17-May-18	<1	<1	<1	<3	<1	1
	14-Jun-18	<1	<1	<1	\triangleleft	<1	
	12-Jul-18	<1	<1	<1	\triangleleft	<1	
	16-Aug-18	<1	<1	<1	\triangleleft	<1	
	13-Sep-18	<1	<1	<1	<3	<1	
	11-Oct-18	<1	<1	<1	\triangleleft	<1	
	09-Nov-18	<1	<1	<1	\triangleleft	<1	
	13-Dec-18	<1	<1	<1	<3	<1	
	Note 1:CR 18-08852 during analysis per					-	eserve milk
	Note 2: Sample vol						t contacted-
	pet destroyed prov						
	containers for futur			-			

					0	ODCM required samples denoted by * units are pCi/liter	puired s nits ar	quired samples de units are pCi/liter	denote	d by *						
SAMPLE	MONTH	Mn-54	Cn-58	Fe-59	Co-60	Zn-65 Nb-95	Nb-95	Zr-95	-131 (Zr-95 1-131 Cs-134 Cs-137	Cs-137	Ba-140	La-140	Qtrly Tritium	Gross Beta	Note
	30-Jan-18	<13	<10	<20	~	<26	411	<18	6	6	<10	33	<13		<3.49	-
	27-Feb-18	9	\bigtriangledown	<10	\Im	<13	99	<]]	9	\diamond	9>	<20	<10		<3.05	1
	27-Mar-18	4	\heartsuit	\bigtriangledown	\heartsuit	\bigtriangledown	4	∇	$\stackrel{\wedge}{\rightarrow}$	\heartsuit	4>	<13	<11	<330	<3.85	1
	24-Apr-18	6	Ŷ	<15	<11	25	<10	<18	\bigtriangledown	<10	∾	<29	<14		2.92	
LOCAL	29-May-18	<12	<11	<24	6>	30	≤11	23	6	<11	<13	34	<10		⊲3.10	
RESIDENCE	26-Jun-18	6	<11	<19	~	22	8	<19	6	∾	<]]	~28	<10	⊲314	<3.01	
(Site #48) *	31-Jul-18	<10	<12	~20	~	23	<12	<16	<10	6	<10	-32	<13		<2.84	
	28-Aug-18	<10	6	22	6>	$\triangleleft 0$	6	<18	6	6	<11	31	<12		<2.81	
	25-Sep-18	6	<10	Δ_1	8	<19	%	<15	∞	∾	<10	$\underline{\Im}^1$	<15	<328	3.17±1.68	
	30-Oct-18	<14	<13	27	<12	30	<15	23	<]1	<13	<12	<42	<14		3.92±1.78	
	27-Nov-18	<]1	<12	<24	<10	27	<13	Δ^1	<]]	<13	<12	<29	<14		3.15±1.73	
	2-Jan-19	<13	<10	<22	<13	~26	<14	<18	<10	<11	<12	<32	<12	<329	4.08±1.76	
	30-Jan-18	6	%	<16	%	<19	~	<15	6	99	<10	<28	<14		⊲.31	1
	27-Feb-18	\bigtriangledown	99	<15	~	<13	%	<11	\bigtriangledown	\bigtriangledown	8	23	<14		<2.96	1
	27-Mar-18	\heartsuit	\heartsuit	9	\heartsuit	\bigtriangledown	\heartsuit	9	4	\heartsuit	\heartsuit	<13	<14	<325	<3.60	1
	24-Apr-18	8	Ŷ	<15	<10	<19	6	<16	∞	6	6	<28	<15		2.86±1.73	
LOCAL	29-May-18	%	6	~20	\smile	\mathcal{Q}_1	6	<19	~	~	<11	25	<12		<3.09	
RESIDENCE	26-Jun-18	<10	6	<19	~	22	<10	<14	∞	\bigtriangledown	6>	\Im_1	6>	316	~2.86	
(Site #55)	31-Jul-18	<]]	6	<13	9>	⊴26	<10	<15	6	%	\bigtriangledown	34	<12		3.09±1.66	
	28-Aug-18	<13	<13	23	<11	25	<12	22	<10	<11	<14	34	<15		<2.67	
	25-Sep-18	<10	6	<15	6>	Δ 1	6	<18	<10	Ŷ	<10	~ 26	<15	<328	2.52	
	30-Oct-18	∽	6	<17	<10	<17	<11	<18	6	6	<11	32	<11		3.07±1.63	
	27-Nov-18	<]]	6	<14	<10	<20	<10	<16	∞		<12	28	6>		5.31±1.73	
	2-Jan-19	<10	<10	<19	<10	<20	<10	<16	6>	8	6>	~25	\sim	<332	5.32±1.73	
	Note 1: Background higher than usual but within acceptable range.	ground h	igher that	n usual b	ut within	acceptat	le rang		oss Bei	ta analy	sis result	Gross Beta analysis results <mda< th=""><th></th><th></th><th></th><th></th></mda<>				

Table 8-8 Drinking Water

				-	Ladie o-o Drinking Water (Continueu)		KIIIg	wau		OILUID	(nan					
					0	ODCM required samples denoted by * units are pCi/liter	uired s nits ar	quired samples de units are pCi/liter	denote ter	d by *						
SAMPLE	MONTH ENDPOINT	Mn-54	C0-58	Fe-59	C0-60	Zn-65 Nb-95	Vb-95	Zr-95 I-131		Cs-134 Cs-137	Cs-137	Ba-140	La-140	Qtrly Tritium	Gross Beta	Note
	30-Jan-18	ø	41	20	<12	<17	41	<18	<10	<]1	41	≪39	<14		3.19	-
	27-Feb-18	99	\bigtriangledown	<16	\bigtriangledown	<14	∞	<12	9	9	\bigtriangledown	<25	<14		<2.81	1
	27-Mar-18	4>	4>	\bigtriangledown	\heartsuit	8	\Im	∇	42	\heartsuit	4>	<14	<14	<325	⊲.51	1
	24-Apr-18	6	\bigtriangledown	<19	<10	<19	<10	<18	6	Ŷ	<11	<30	<12		2.68	
	29-May-18	6	6>	<17	<11	20	6	<18	\$	\bigtriangledown	<10	~28	<10		<2.90	
LOCAL	26-Jun-18	Ŷ	<10	<11	<11	<14	6	<16	\bigtriangledown	6	6	<34	%	⊲314	2.76	
RESIDENCE	31-Jul-18	<11	<11	25	<14	26	<10	<17	<10	6	<14	<41	<14		2.63	
(Site #46) *	28-Aug-18	6	8	<16	6	<19	<11	<18	<10	Ŷ	8	<28	<13		2.63	
	25-Sep-15	$\overset{\wedge}{4}$	\diamond	6>	4	<10	\Diamond	<10	4	\Diamond	\Diamond	<16	<13	<328	3.37±1.58	
	30-Oct-18	<12	<15	<18	<12	28	<12	~20	6	<12	<13	⊲32	<12		3.50±1.65	
	27-Nov-18	<]]	<]]	<19	<]]	24	<11	<17	<]]	6	<12	⊲5	<14		2.65 ± 1.60	
	2-Jan-19	6	6>	<17	6	<17	<10	<16	8	%	<]]	<30	6>	<334	3.20±1.60	
	30-Jan-18	6	6>	<19	\bigtriangledown	<16	<10	<16	~	6	6	<26	<15		<3.16	1
	27-Feb-18	\Im	\Im	<12	9	<12	9	<]]	\bigtriangledown	4	9>	<18	<15		2.77	1
	27-Mar-18	\heartsuit	\heartsuit	\Im	\heartsuit	9	\heartsuit	\Diamond	\heartsuit	\Diamond	\heartsuit	6	<13	<328	3.47	1
	24-Apr-18	6	∞	\mathcal{A}_1	<10	20	<13	\mathcal{A}_{1}	6	∾	\bigtriangledown	~28	<13		2.64	
	29-May-18	6	6∕	<18	6	25	<10	<17	6	Ŷ	6	<29	<15		2.85	
LOCAL	26-Jun-18	99	9>	<12	9	<12	9	<10	9	\Im	9	<19	<12	312	2.72	
RESIDENCE	31-Jul-18	6	6	<16	%	<17	<10	<18	∽	\bigtriangledown	6>	\Im	<14		2.56	
(Site #49) *	28-Aug-18	6	\bigtriangledown	<17	%	<19	<]]	<19	∽	Ŷ	<11	30	<11		2.58	
	25-Sep-18	∇	Ş	<13	9>	<16	\bigtriangledown	<11	99	\Diamond	\bigtriangledown	23	<14	<322	<2.40	
	30-Oct-18	<10	≤ 11	$\Diamond 1$	<11	~ 29	6	<17	6	<11	<10	33	<14		2.52	
	27-Nov-18	<12	<10	<16	<10	22	6	<17	6	6	6	<40	<14		2.51	
	2-Jan-19	<13	<10	<23	2	~28	<12	\bigcirc 1	<12	<14	<12	<43	<4	<331	<2.48	
	Note 1: Background higher than usual but within acceptable range.	ground h	igher that	n usual bu	at within a	acceptab	le rang		oss Be	ta analy	vsis resul	Gross Beta analysis results <mda< th=""><th></th><th></th><th></th><th></th></mda<>				

Table 8-8 Drinking Water (Continued)

				ODCM required samples denoted by * units are pCi/liter	un un	quired samples de units are pCi/liter	pCi/li	deno	ted by	*					
SAMPLE	DATE														
LOCATION	COLLECTED	Mn-54	C0-58	Fe-59	Co-60	Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140 La-140 Tritium	La-140	Tritium	Notes
	30-Jan-18	<13	<12	<19	<13	<u>~</u> 24	<13	<19	<10	<10	<11	38	<13	<353	
WELL 27ddc	24-Apr-18	<11	<10	23	~11	~26	<12	\mathcal{A}^1	~11	<11	<13	32	<12	<324	
(Site #57)*	31-Jul-18	<10	<10	<17	∇	<18	6	<17	<10	8	<11	~ 29	<15	<324	
	30-Oct-18	<11	<10	$\triangleleft 1$	6>	~ 1	<12	<19	<10	6>	<12	<33	<15	<335	
	30-Jan-18	<10	~	<17	Ŷ	<20	< <u>-</u> 11	<15	%	6>	%	\mathfrak{S}^1	<14	<352	
WELL 34abb	24-Apr-18	<11	<10	~20	≤ 11	\mathcal{Q}_1	<10	<17	<10	<10	<11	<27	<15	<324	
(Site #58)*					\ **	Not in C	peratic	on. No	Samp	**Not in Operation. No Sample Required**	red**				
					\ **	Vot in C	peratic	on. No	Samp	**Not in Operation. No Sample Required**	red**				
	30-Jan-18	<10	<11	<20	<13	~28	<13	<15	<10	6>	<12	<37	8	<352	
Wall 34aab	24-Apr-18	<10	<12	<18	<12	25	<13	<19	<10	<12	<13	⊲36	<13	<324	
11011 J 4440	31-Jul-18	<10	6>	<17	<10	\mathcal{A}_1	<10	<18	6>	6>	<10	30	<14	<325	
	30-Oct-18	8	<10	<19	6>	<17	6>	<19	6>	6>	6>	<25	<14	<331	
	30-Jan-18	<12	<11	23	<12	~28	<14	<19	<11	6>	6>	-34	<13	<352	
Ashre II ala	24-Apr-18	6	6	20	<10	22	<11	<18	6>	∾	<10	$\tilde{\mathbb{Q}}_1$	<15	<324	
Mell 7/uch	31-Jul-18	<12	<13	26	8	25	<13	23	6>	<]1	<13	<46	<15	<323	
	30-Oct-18	<11	<10	<17	<10	~ 26	<11	<14	%	8	<11	31	<11	<335	

Table 8-9 Groundwater

	,			10	ODCM required samples denoted by * units are pCi/liter	quired samples de units are pCi/liter	pCi/lit	denotec er	l by *						
SAMPLE	DATE	Mn-54	Co-58	Co-58 Fe-59	Co-60	Zn-65	Nh-95	Zr-95	1-131	Cs-134	Cs-134 Cs-137	Ba-140 La-140	La-140	Tritium	Notes
	2-Jan-18		99	<15	~	<19		<15	17±9	\bigtriangledown	\bigtriangledown		<14		
	9-Jan-18	6>	6>	<16	∾	25	6	<17	<12	6>	6	30	<10		
	16-Jan-18	6>	<10	20	<10	23	<12	<17	18±9	\bigtriangledown	<11	33	<11		
	23-Jan-18	9	~	<15	6>	<19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15.0	16±9	\bigtriangledown	\bigtriangledown	<25	8		
	30-Jan-18	<10	<11	20	6>	-24	<10	<17	31±11	<11	<11	32	6>	<368	
	6-Feb-18	<10	≤ 11	\bigcirc	<12	$\Diamond 1$	6>	<19	<13	<10	6	<98	6>		
	13-Feb-18	6>	<]]	<16	<12	23	<12	<20	17±10	<11	<12	<27	<14		
	20-Feb-18	~	%	<19	<10	<17	<12	<16	25±10	<10	6>	$\triangleleft 0$	<13		
	27-Feb-18	<13	<12	<18	<12	27	<11	\bigcirc 1	31 ± 10	<10	<11	$\triangleleft 33$	<15	<341	
	7-Mar-18	<10	6	<15	<11	22	<10	<16	32±9	80	6	<25	∾		
	13-Mar-18	<10	<12	22	6>	<29	8	<16	17±9	6>	<12	35	<11		
	20-Mar-18	6>	6>	<13	6>	<17	6>	<14	16±9	8	8	<29	<14		
	27-Mar-18	<10	<10	<19	\bigtriangledown	~20	<]]	<17	32±10	\smile	<11	33	<10	<343	
WRF	3-Apr-18	<10	6	<18	\bigtriangledown	53	6>	<15	<10	6>	<11	<28	<13		
INFLUENT	10-Apr-18	6	6	<17	<12	\bigcirc 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<10	19±9	6>	\bigtriangledown	<29	<13		
	17-Apr-18					No	Sample-	Water	No Sample- Water Recourses	s Outage					
	24-Apr-18	6	≤ 11	<19	<12	~20	<12	<17	34±10	%	6	36	<10	<338	
	1-May-18	*	8	<]4	\Im	<18	8	<16	29±9	\bigtriangledown	∾	~26	<11		
	8-May-18	<11	<10	\mathcal{Q}_1	<10	<15	<13	\bigcirc 1	<13	<11	<12	34	<12		
	15-May-18	6	<11	<18	∾	<25	<11	<17	947	%	6	~28	<12		
	22-May-18	∇	6>	<18	<10	<19	6	<16	17±8	8	<10	28	<13		
	29-May-18	6	<10	<15	<11	26	<11	<17	<12	9⊳	\bigtriangledown	~26	80	<342	
	5-Jun-18	6	<12	<18	<11	\bigcirc	<10	<16	19±10	8	8	30	<10		
	12-Jun-18	<10	\bigtriangledown	<15	6>	<18	<11	<15	16±9	\bigtriangledown	<10	<27	<12		
	19-Jun-18	8	8	<13	\bigtriangledown	22	6	<13	10±4	<10	<10	~26	<11		
	26-Jun-18	6>	<10	<17	6>	<19	<10	<14	<10	\checkmark	<11	32	<11	<324	
	3-Jul-18	Ŷ	%	<13	<11	⊲24	<10	<16	8±9	%	6	34	<11		
	10-Jul-18	<10	6>	20	<10	<17	<10	<16	<10	6>	8	27	∾		
	17-Jul-18	6	6>	<18	<11	<24	<10	<14	<12	2	\checkmark	27	<12		

					S	SURFACE WATER	E WAT	ER							
				00	ODCM required samples denoted by * units are nCi/liter	quired samples de	amples nCi/lit	denoted	d by *						
SAMPLE	DATE	<15	<15	30	<15	30	<15	30	<15	<15	<18	09>	<15	<3000	
LOCATION	COLLECTED	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137		Ba-140 La-140	Tritium	Note
	24-Jul-18	<10	6>	21	\smile	<20	*	<16	<10	*	6>	31	<11		
	31-Jul-18	6>	<10	<18	6>	<22	6	<18	16±9	\bigtriangledown	6>	<28	~	<334	
	7-Aug-18	<10	6>	<15	<10	<19	<10	<15	<11	6>	<10	$\Im 1$	<11		
	14-Aug-18	\bigtriangledown	<11	<16	6>	<23	<11	<18	23±9	8	8	<26	<12		
	21-Aug-18	6>	\bigtriangledown	<19	<10	<24	6>	<16	<12	9>	6>	<26	<11		
	28-Aug-18	<12	<11	<15	<14	<24	<]]	20	10±9	<12	<14	34	<13	⊲349	
	4-Sep-18	<10	8	<17	\smile	<20	6>	<16	<10	8	6>	⊲30	<13		
	11-Sep-18	<11	6>	<17	6>	$\triangleleft 20$	<10	<14	6±6	6>	<10	\$33	<12		
	18-Sep-18	6>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<20	6>	<18	<10	<19	13±9	%	<11	$\Im 1$	<10		
	25-Sep-18	6>	6>	Δ_1	6>	<19	<10	<16	<11	8℃	<10	<27	6>	<335	
	2-Oct-18	Ş	80	<23	80	<22	<11	<13	<10	8	6>	35	<12		
	9-Oct-18					No	Sample	- Water	No Sample- Water Recourses Outage	s Outage					
WRF	16-Oct-18					No	Sample	- Water	No Sample- Water Recourses Outage	s Outage					
INFLUENT	23-Oct-18	<10	<10	<18	<10	<24	<10	<20	<10	\bigtriangledown	<11	⊴30	\bigtriangledown		
	30-Oct-18	<10	<10	<12	6>	<23	<11	<17	6>	6>	6>	<29	<10	345	
	6-Nov-18	6>	<11	<19	<11	23	6	<16	16±9	∾	9⊳	35	<13		
	13-Nov-18	<11	<10	<19	<10	<18	6	<15	<12	80	<10	⊴33	%		
	20-Nov-18	\bigtriangledown	~	<15	6>	<20	<11	<14	<12	6>	6	<29	<]1		
	27-Nov-18	<10	6>	<19	8	<20	6	<16	<10	8	6>	\Im	<14	<351	
	4-Dec-18	6>	6>	<15	6>	<19	~	<15	<]]	\bigtriangledown	<10	~28	<10		
	11-Dec-18	8	80	<17	6>	<17	6	<16	25±10	6>	6>	<27	<]1		
	18-Dec-18	<11	<11	<20	<10	22	<10	≤ 0	<13	6>	<]1	34	<14		
	24-Dec-18	<10	<11	<19	\smile	<19	<10	<20	<14	6	<10	35	<13	344	
	31-Dec-18	<5	<4	8	\$	<10	S	%	5±5	<4	<4	<14	<12		

Table 8-10 Surface Water (Continued)

SAMPLE LOCATION DATE DATE ODCM requure un LOCATION DATE DATE LOCATION COLLECTED Mn-54 Co-60 2 2-Jan-18 9-Jan-18 9-Jan-18 9-Jan-18 9 30-Jan-18 16-Jan-18 23-Jan-18 6-Feb-18 23-Jan-18 13-Feb-18 23-Jan-18 30-Jan-18 6-Feb-18 20-Feb-18 13-Feb-18 13-Feb-18	DCM required sampl units are pCi Co-60 Zn-65 Nb-9
DATE DATE COLLECTED Mn-54 Co-58 Fe-59 2-Jan-18 2-Jan-18 9-Jan-18 9-Jan-18 9 9-Jan-18 16-Jan-18 16-Jan-18 16-Jan-18 13-Jan-18 13-Jan-18 13-Jan-18 13-Feb-18 13-Feb-18 13-Feb-18 13-Feb-18 13-Feb-18 13-Feb-18 13-Feb-18 13-Feb-18 13-Mar-18 13-Mar-18 13-Mar-18 13-Mar-18 13-Mar-18 13-Apr-18 13-Apr-18 13-Apr-18 117-Apr-18 117-Apr-18	Co-60Zn-65Nb-95Zr-95I-131Cs-134Cs-137Ba-140I ritiumEMPTY- NoEMPTY- NoSampleEMPTY- NoEMPTY- NoEMPTY- NoSampleEMPTY- NoEMPTY- NoEMPTY- NoEMPTY- NoEMPTY- NoEMPTY- NoEMPTY- NoEMPTY
2-Jan-18 9-Jan-18 16-Jan-18 23-Jan-18 6-Feb-18 13-Feb-18 20-Feb-18 20-Feb-18 20-Feb-18 6-Mar-18 13-Mar-18 13-Mar-18 13-Mar-18 13-Apr-18 10-Apr-18 17-Apr-18 17-Apr-18 17-Apr-18 17-Apr-18	EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample EMPTY- No Sample
	EMPTY- No Sample
	EMPTY- No Sample
10-Apr-18 17-Apr-18 24-Apr-18 1-May-18	EMPTY- No Sample
17-Apr-18 24-Apr-18 1-May-18	EMPTY- No Sample
24-Apr-18 1-May-18	EMPTY- No Sample
1-May-18	EMPTY - No Sample
	EMPTY - No Sample
8-May-18	EMPTY - No Sample
15-May-18	EMPTY - No Sample
22-May-18	EMPTY - No Sample
29-May-18	EMPTY - No Sample
5-Jun-18	EMPTY - No Sample
12-Jun-18	EMPTY - No Sample
19-Jun-18	EMPTY- No Sample
26-Jun-18	EMPTY- No Sample

Table 8-10 Surface Water (Continued)

ODCM required samples denoted by *	units are pCi/liter	ED Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134 Cs-137 Ba-140 La-140 Tritium Note	EMPTY- No Sample	8 EMPTY- No Sample	8 EMPTY- No Sample	8 EMPTY- No Sample	EMPTY- No Sample	8 EMPTY- No Sample	8 EMPTY- No Sample	8 EMPTY - No Sample	3 3 3 3 40 45 45±320		8 <10 <12 <25 <10 <25 <12 <23 <10 <16 <16 <15 <32 <15 <34	8 EMPTY- No Sample	8 EMPTY- No Sample	EMPTY- No Sample	8 EMPTY- No Sample	8 EMPTY- No Sample	8 EMPTY- No Sample	EMPTY- No Sample	8 EMPTY- No Sample								
	DATE		3-Jul-18	10-Jul-18	17-Jul-18	24-Jul-18	31-Jul-18	7-Aug-18	14-Aug-18	21-Aug-18	28-Aug-18	4-Sep-18	11-Sep-18	18-Sep-18	25-Sep-18				23-Oct-18	30-Oct-18	6-Nov-18	13-Nov-18	20-Nov-18	27-Nov-18	4-Dec-18	11-Dec-18	18-Dec-18	24-Dec-18	31-Dec-18
	SAMPLE	LOCATION														DASIN #7	DAULUT 1												

Table 8-10 Surface Water (Continued)

	SLUD	GE/SEDIMENT				
	ODCM	required samples de	noted by *			
	02 0112	units are pCi/kg, we	-			
SAMPLE	DATE		<150	<180		
LOCATION	COLLECTED	I-131	Cs-134	Cs-137	In-111	Notes
	2-Jan-18	101±96	<128	<115		
	9-Jan-18	153 ± 92	<64	<100		
	16-Jan-18		<92	<143		
	23-Jan-18	507±149	<67	<120		
	30-Jan-18	397 ± 152	<26	<126		
	6-Feb-18	546±155	<110	<121		
	13-Feb-18	421±139	<75	<34		
	20-Feb-18	426±155	<102	<140		
	27-Feb-18	537 ± 143	<37	<32		
	6-Mar-18	759±180	<106	<130		
	13-Mar-18	648 ± 170	<113	<150		
WDE	20-Mar-18	602±168	<92	<29		
WRF CENTRIFUGE	27-Mar-18	592±169	<95	<155		
WASTE SLUDGE	3-Apr-18	452 ± 143	<138	<174		
WASTESLODGE	10-Apr-18	323±118	<113	<124		
	17-Apr-18	No Sample W	ater Resour	ces Outage		
	24-Apr-18		<111	<158		
	1-May-18	276 ± 84	<29	<97		
	8-May-18	629±157	<24	<99		
	15-May-18	476 ± 142	<122	<99		
	22-May-18		<96	<101		
	29-May-18	401±167	<139	<132		
	5-Jun-18	347±111	<64	<151		
	12-Jun-18	169 ± 85	<98	<120		
	19-Jun-18	355±139	<103	<178		
	26-Jun-18		<84	<133		

Table 8-11 Sludge/Sediment

	ODCM 1	required samples de	noted by *			
		units are pCi/kg, we	t			
SAMPLE	DATE					
LOCATION	COLLECTED	I-131	Cs-134	Cs-137	In-111	Notes
	3-Jul-18	344±124	<90	<99		
	10-Jul-18		<124	<100		
	17-Jul-18	257±114	<37	<169		
	24-Jul-18	217±154	<150	<166		
	31-Jul-18	121 ± 89	<65	<29		
	7-Aug-18	248±106	<33	<129		
	14-Aug-18	382±136	<134	<143		
	21-Aug-18	200±100	<90	<75		
	28-Aug-18	305±112	<108	<169		
	4-Sep-18	399±119	<25	<122		
	11-Sep-18		<23	<137		
WRF	18-Sep-18	363±115	<134	<120		
CENTRIFUGE	25-Sep-18	329±183	<61	<143		
WASTE SLUDGE	2-Oct-18	338±136	<131	<164		
	9-Oct-18	402±141	<92	<147		
	16-Oct-18		<69	<139		
	23-Oct-18		<109	<39		
	30-Oct-18		<97	<85		
	6-Nov-18	443±131	<71	<150		
	13-Nov-18		<124	<56		
	20-Nov-18	730±186	<116	<143		
	27-Nov-18	103 ± 89	<88	<140		
	4-Dec-18	375±128	<107	<156		
	11-Dec-18		<139	<120		
	18-Dec-18	261±131	<24	<116		
	24-Dec-18	509±137	<99	<136		
	31-Dec-18		<63	<146		

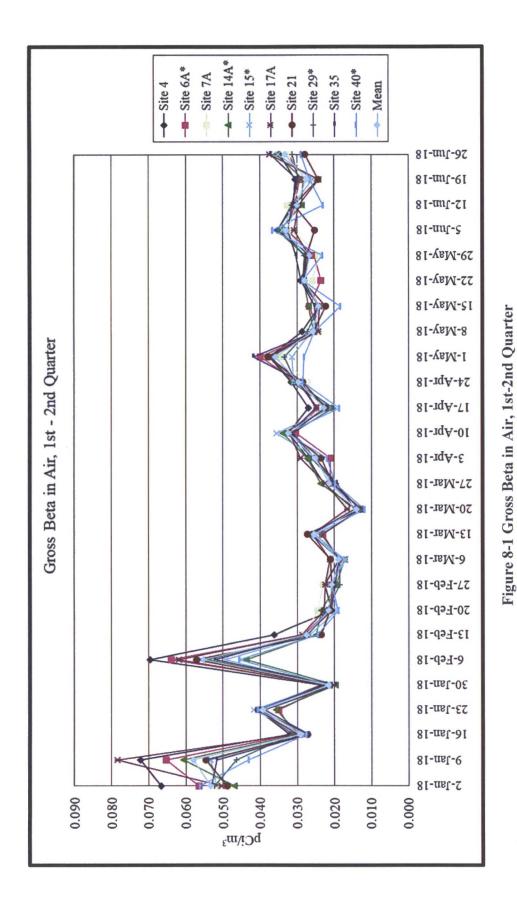

Table 8-11 Sludge/Sediment (Continued)

Table 8-11 Sludge/Sediment (Continued) Cooling Tower Sludge

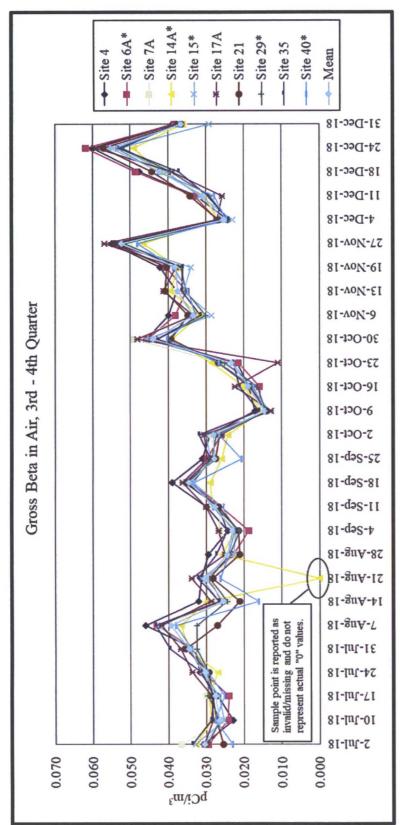
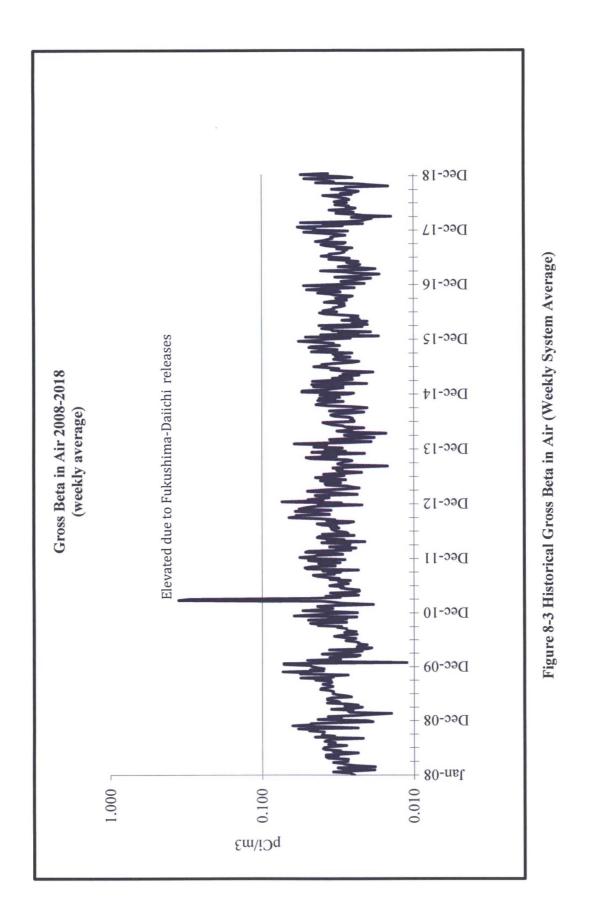
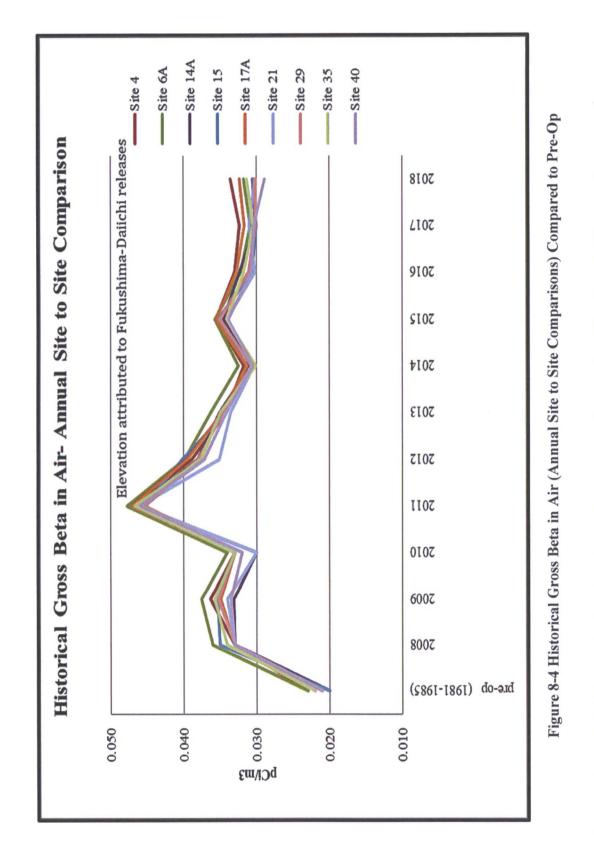
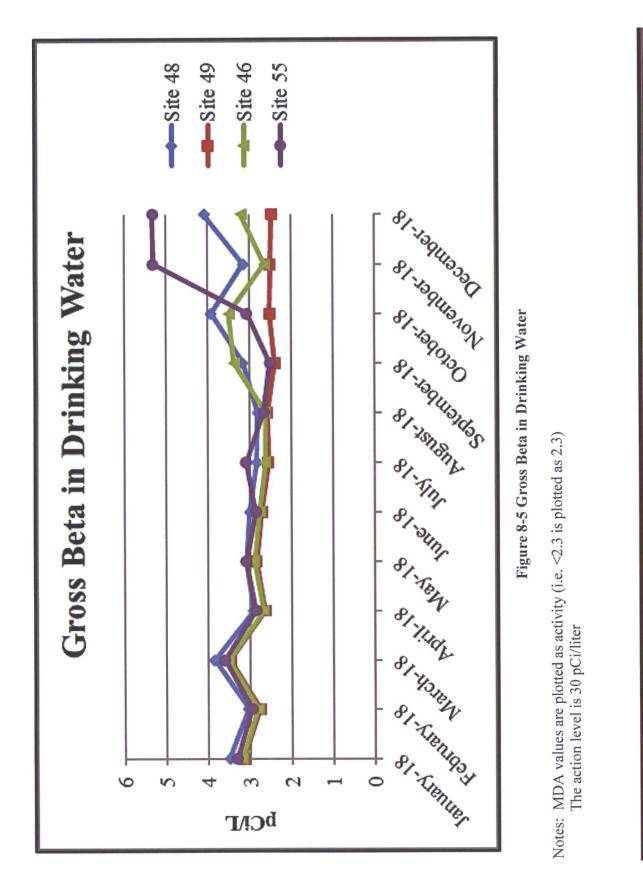
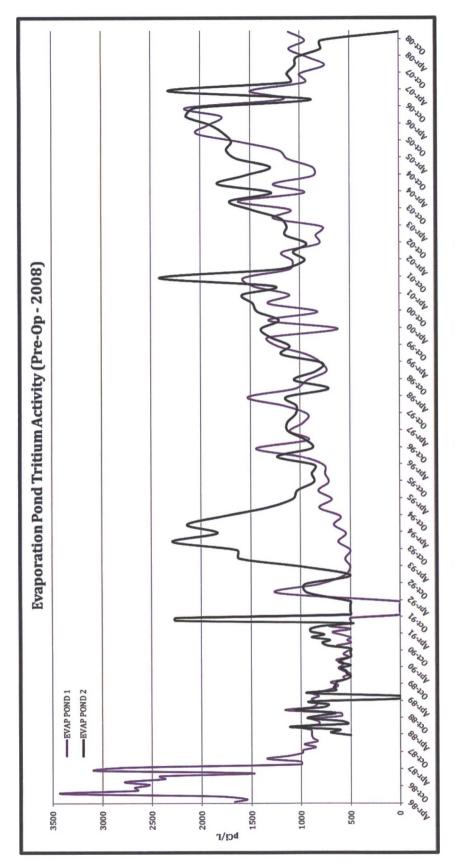

Sample Type	Towers/Canal Sludge	Towers/Canal Sludge
Activity Range (pCi/g)	<mda< th=""><th><mda< th=""></mda<></th></mda<>	<mda< th=""></mda<>
Isotope	All principal gamma- emitters	All principal gamma- emitters
Approximate Volume (yd ³)	293	364
Unit Cycle	U3R20	U2R21

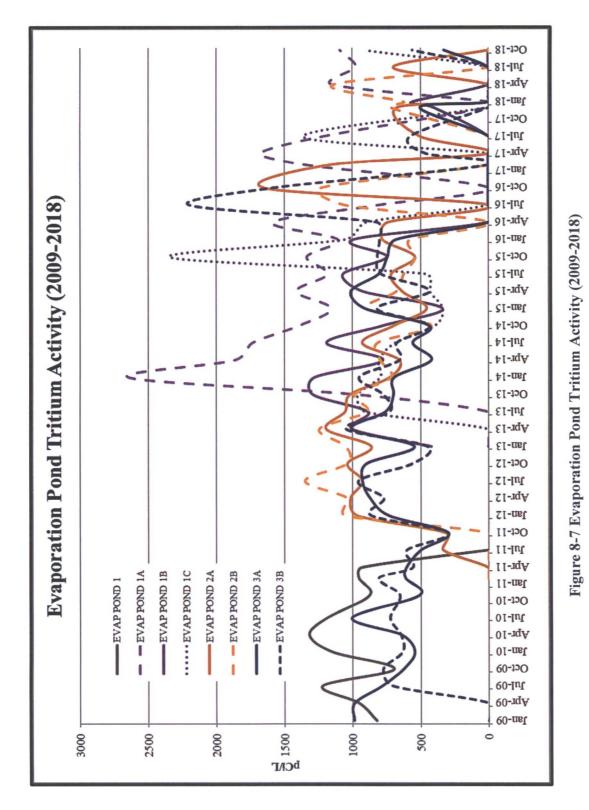
Table 8-12 Hard - To-Detect Radionuclide Results

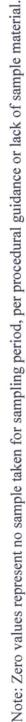

H	Hard-To-Detect Radionuclide (pCi/Liter)	Radionuclide	e (pCi/I	Liter)		
Sample Location	Well number	Well number Sample Date C-14 Fe-55	C-14	Fe-55	Ni-63	Sr-90
Unit 1 (outside RCA)	APP-12	11/14/2018 <46.0	<46.0	<23.6	<3.75	<1.27
Unit 2 (inside RCA)	H0A	11/12/2018	<46.4	<26.1	<3.35	<1.71
Unit 3 (inside RCA)	H11	11/11/2018	<46.0 <24.9	<24.9	<3.44	<1.77

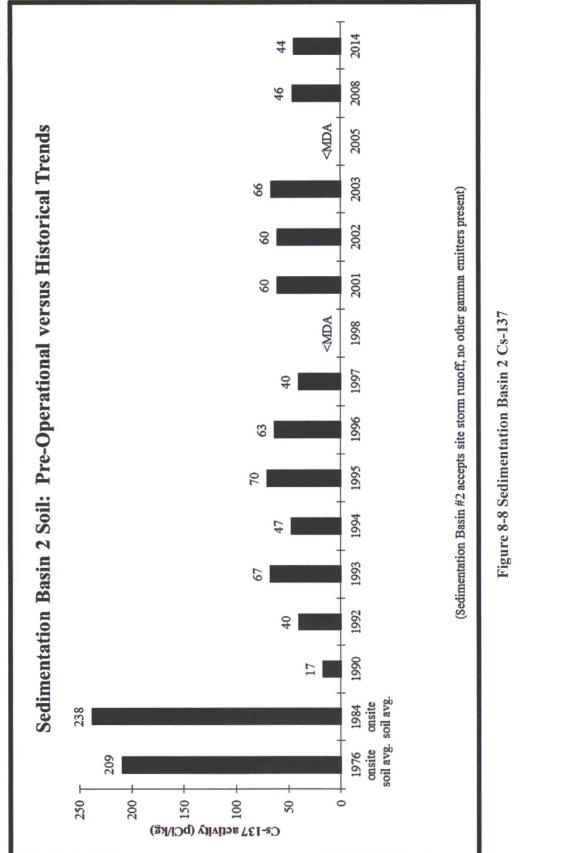









Note: 7A is not included due to the location change since pre-operational period. The elevated 2011 annual average values are attributed to the Fukushima-Daiichi release.



9. Thermoluminescent Dosimeter (TLD) Results and Data

The environmental TLD used at PVNGS is the Panasonic Model 812 Dosimeter. The Model 812 is a multi-element dosimeter combining two elements of lithium borate and two elements of calcium sulfate under various filters.

TLDs were placed in fifty locations from one to thirty-five miles from the PVNGS. TLD locations are shown in Figure 2-1 and Figure 2-2 and are described in Table 9-1. TLD results for 2018 are presented in Table 9-2. Definitions for Table 9-2 are as follows:

- MDD_Q: Minimum differential dose, quarterly, 3 times 90th percentile sQ determined from analysis (mRem).
- MDD_A: Minimum differential dose, annual, 3 times 90th percentile sA determined from analysis (mRem).
- Bq: Quarterly baseline (mRem) (average of previous 5 years)
- M_Q: Locations 91 day standard quarter normalized dose (mRem per standard quarter)
- Lq: Quarterly investigation level dose (mRem)
- BA: Baseline background dose (mRem) (annual)
- MA: Annual monitoring data MA determined by normalizing available quarterly data to 4 full quarters
- LA: Annual investigation level dose (mRem)
- ND: Non Detectable

The baseline is calculated as the average of the previous 5 year measurements. The minimum differential dose (MDD) is calculated as 3times the 90th percentile standard deviation of the data from the previous 5 years; quarterly MDD is calculated using the quarterly data and annual MDD is calculated using the annual summation of the quarterly data. Investigation level is calculated by the difference of the data measurement and the baseline; results less than, or equal to the MDD are Non Detectable (ND) and any result exceeding the MDD meets the threshold for the investigation level. Locations exceeding the investigation level will be evaluated for cause and impact to the public and environment.

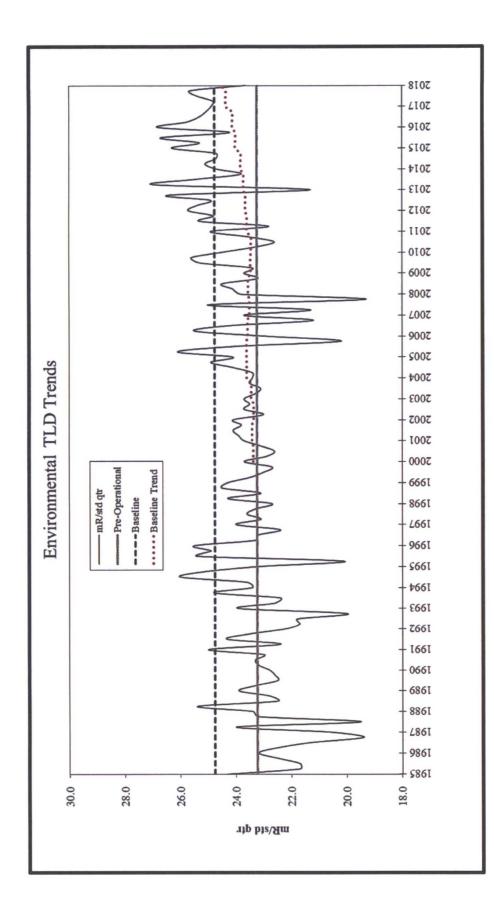
Historical environmental gamma radiation results for 1985 through 2018 are presented in graphical form on Figure 9-1 (excluding transit control TLD #45). Figure 9-2 depicts the environmental TLD results from 2018 as compared to the pre-operational TLD results (excluding sites #41 and #43, as they were deleted and later assigned to a new location, and #46-50, as they had no pre-op TLD at the location for comparison). The site to site comparisons indicate a direct correlation with respect to pre-operational results. It is indicated that the offsite dose, as measured by TLDs, has not changed since Palo Verde became operational.

Table 9-1 TLD Site Locations

TLD #	Location	Distance from Unit 2	TLD #	Location	Distance from Unit 2	TLD #	Location	Distance from Unit 2
1	E30	29.13	18	ESE2	1.48	35	NNW8	7.86
2	ENE24	24.18	19	SE2	1.35	36	N5	4.32
3	E21	21.87	20	SSE2	2.04	37	NNE5	4.69
4	E16	16.05	21	S 3	2.68	38	NE5	4.21
5	ESE11	11.14	22	SSW3	2.74	39	ENE5	4.71
6	SSE31	31.47	23	W5	4.17	40	N2	2.37
7	SE7	6.87	24	SW4	3.75	41	ESE3	3.39
8	SSE4	4.33	25	WSW5	4.88	42	N8	7.24
9	S 5	4.63	26	SSW4	4.13	43	NE5	4.60
10	SE5	3.91	27	SW1	0.93	44	ENE35	35.00
11	ESE5	5.14	28	WSW1	0.66	45	Onsite	0.18
12	E5	4.85	29	W1	0.64	46	ENE30	7.23
13	N1	0.85	30	WNW1	0.74	47	E35	32.35
14	NNE2	155	31	NW1	1.03	48	E24	22.76
15	NE2	1.63	32	NNW1	0.90	49	ENE11	11.32
16	ENE2	1.59	33	NW4	4.05	50	WNW5	4.24
17	E2	1.39	34	NNW5	4.84			

(Distance and direction are relative to Unit 2 in miles)

*Site #6 and site #44 are the control locations.


**Site #45 is the transit control TLD (stored in lead pig).

	Palo	Verde	2018	MDD	2:5 m	rem	Pa	lo Ver	de 201	8 MDD	A: 10 r	nrem	
e				Quart	terly (m	rem)				Ann	ual (mrei	n)	Note
Site	BQ	M _Q Q1	M _Q Q2	M _Q Q3	M _Q Q4	L _Q Q1	L _Q Q2	L _Q Q3	L_QQ4	B _A	MA	LA	Nc
1	25.2	23.0	23.9	25.2	22.5	ND	ND	ND	ND	100.9	94.7	ND	
2	22.5	18.8	22.0	22.2	20.8	ND	ND	ND	ND	90.0	83.9	ND	
3	24.3	20.7	23.4	23.0	23.7	ND	ND	ND	ND	97.1	90.8	ND	
4	25.0	20.9	24.2	23.0	23.9	ND	ND	ND	ND	100.0	91.9	ND	
5	21.8	16.8	18.9	19.4	19.8	ND	ND	ND	ND	87.2	74.9	ND	
6	27.2	22.9	24.8	24.9	26.4	ND	ND	ND	ND	108.8	99.0	ND	
7	26.0	22.3	24.3	26.6	24.8	ND	ND	ND	ND	104.1	98.0	ND	
8	24.3	22.1	23.3	24.8	23.5	ND	ND	ND	ND	97.2	93.8	ND	
9	28.8	25.4	27.3	27.3	26.9	ND	ND	ND	ND	115.2	106.8	ND	
10	24.4	22.0	23.1	23.7	*	ND	ND	ND	*	73.1	68.9	ND	1
11	25.4	23.3	24.0	24.6	23.8	ND	ND	ND	ND	101.8	95.7	ND	
12	23.9	22.0	23.0	23.0	22.8	ND	ND	ND	ND	95.6	90.8	ND	
13	26.0	23.1	23.8	24.7	24.3	ND	ND	ND	ND	104.0	95.8	ND	
14	25.4	23.9	25.0	26.2	25.2	ND	ND	ND	ND	101.7	100.2	ND	
15	24.0	20.7	21.3	24.5	23.2	ND	ND	ND	ND	96.1	89.8	ND	
16	22.9	20.4	22.1	23.9	23.4	ND	ND	ND	ND	91.7	89.9	ND	
17	25.1	23.5	22.5	25.5	23.9	ND	ND	ND	ND	100.5	95.5	ND	
18	23.7	20.9	22.2	23.8	21.8	ND	ND	ND	ND	94.7	88.6	ND	
19	25.7	22.6	24.8	24.7	25.3	ND	ND	ND	ND	102.9	97.3	ND	
20	24.7	22.4	23.8	23.1	23.8	ND	ND	ND	ND	98.9	93.0	ND	
21	26.1	24.5	24.2	25.3	24.8	ND	ND	ND	ND	104.5	98.8	ND	
22	26.5	24.3	24.9	24.2	25.0	ND	ND	ND	ND	106.0	98.4	ND	
23	23.5	19.8	22.4	22.0	22.0	ND	ND	ND	ND	94.1	86.2	ND	
24	23.1	20.3	22.5	20.3	21.6	ND	ND	ND	ND	92.5	84.7	ND	
25	23.7	20.8	22.5	23.0	23.2	ND	ND	ND	ND	95.0	89.5	ND	
26	28.0	26.7	26.0	26.2	26.6	ND	ND	ND	ND	112.1	105.5	ND	
27	27.3	25.4	27.0	25.4	25.8	ND	ND	ND	ND	109.3	103.6	ND	
28	26.2	23.3	25.2	24.9	25.5	ND	ND	ND	ND	104.9	98.8	ND	
29	24.7	22.9	22.4	23.7	24.3	ND	ND	ND	ND	98.8	93.2	ND	
30	26.4	24.5	25.2	24.5	24.4	ND	ND	ND	ND	105.6	98.6	ND	
31	23.6	21.9	22.2	22.3	23.4	ND	ND	ND	ND	94.5	89.8	ND	
32	25.8	23.2	24.9	24.8	25.4	ND	ND	ND	ND	103.0	98.4	ND	
33	26.4	24.1	25.4	26.5	26.2	ND	ND	ND	ND	105.5	102.3	ND	
34	28.4	26.5	27.9	27.8	27.3	ND	ND	ND	ND	113.5	102.5	ND	
35	31.7	28.1	31.1	31.8	30.6	ND	ND	ND	ND	126.6	121.6	ND	
36	26.6	21.8	25.3	24.8	25.9	ND	ND	ND	ND	106.3	97.8	ND	
37	24.4	20.8	23.3	24.3	24.1	ND	ND	ND	ND	97.4	92.5	ND	
38	27.9	24.9	27.0	26.7	28.0	ND	ND	ND	ND	111.8	106.6	ND	
39	24.7	19.8	23.5	22.2	24.1	ND	ND	ND	ND	98.9	89.6	ND	
40	25.5	21.1	24.8	25.0	25.1	ND	ND	ND	ND	102.0	96.0	ND	
41	26.9	22.7	26.0	27.3	27.7	ND	ND	ND	ND	107.7	103.8	ND	
42	27.7	23.8	25.4	25.9	27.7	ND	ND	ND	ND	110.9	102.9	ND	
42	28.1	23.8	*	*	26.9	ND	*	*	ND	56.2	51.1	ND	1
43	24.4	19.1	22.8	22.7	23.9	ND	ND	ND	ND	97.7	88.6	ND	1
44	5.9	2.3	5.0	5.7	3.2	ND	ND	ND	ND	23.6	16.2	ND	
45	24.1	2.3	23.4	22.1	24.4	ND	ND	ND	ND	23.0 96.4	90.4	ND	
40	24.1		23.4 *	22.1	24.4	ND	*	ND	ND	72.2	67.1	ND	1
		20.5											1
48	24.7	20.7	24.3	23.3	22.8	ND	ND	ND	ND	98.7	91.1	ND	
49	23.1	19.1	22.0	20.1	22.4	ND	ND	ND	ND	92.5	83.6	ND	
50	20.0	17.2	18.1	19.2	19.3	ND	ND	ND	ND	79.9 the sum o	73.7	ND	P

Table 9-2 Environmental TLD Results

Note 1: Some data unavailable due to missing dosimetry. M_A equal to the sum of data collected. B_A equal to current year average of data collected. Normalization of data indicates no notable change in sampling location results.

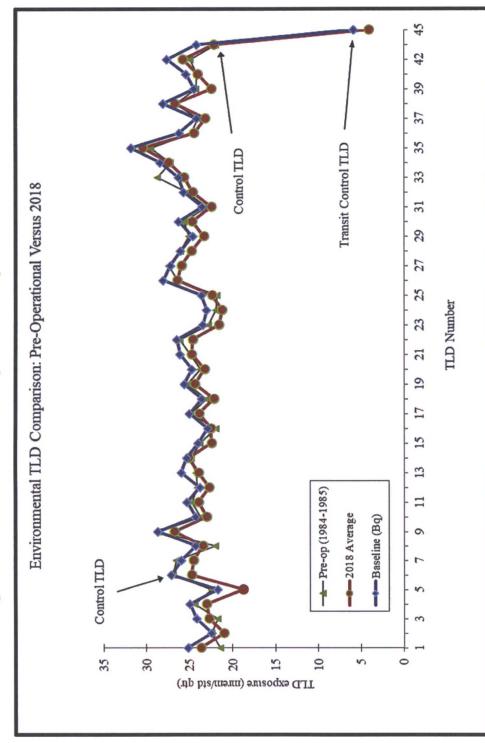


Figure 9-2 Environmental TLD Comparison: Pre-Operational versus 2018

The following TLDs are not included on this graph:

TLD #41 monitoring location was deleted in June, 2000 due to school closing (this TLD was replaced at a new school in 2004) TLD #43 monitoring location was deleted in 1994 due to school closing (this TLD was placed at a new school in 2007) TLDs #46-50 are not included since they were not included in the pre-op monitoring program.

10.1 Introduction

In accordance with the PVNGS ODCM, Section 6.2, the field portion of the annual Land Use Census was performed by June 2018.

Observations were made in each of the 16 meteorological sectors to determine the nearest milking animals, residences, and gardens of greater than 500 square feet. This census was completed by driving the roads and speaking with residents.

The results of the Land Use Census are presented in Table 10-1 and discussed below. The directions and distances listed are in sectors and miles from the Unit 2 containment.

10.2 Census Results

The 2018 Land Use Census results identified new potential Radiological Effluent Release Report dose receptor location. Each location was evaluated. Below describes the changes identified and the evaluation results.

Nearest Resident

There were two (2) changes in nearest resident status from the previous year. Dose calculations indicated the highest dose to be 0.169 mrem.

Milk Animal

There were seven (7) changes in milk animal status from the previous year. Four (4) of the locations had the potential for having a dose greater than 20% that of our current sampling location with the lowest dose potential. The locations were visited by the REMP manager to evaluate program participation potential. As of December 2018, two (2) of the locations no longer had goats, and two (2) of the locations had only male goats. Dose calculations indicated the highest dose to be 0.479 mrem.

Vegetable Gardens

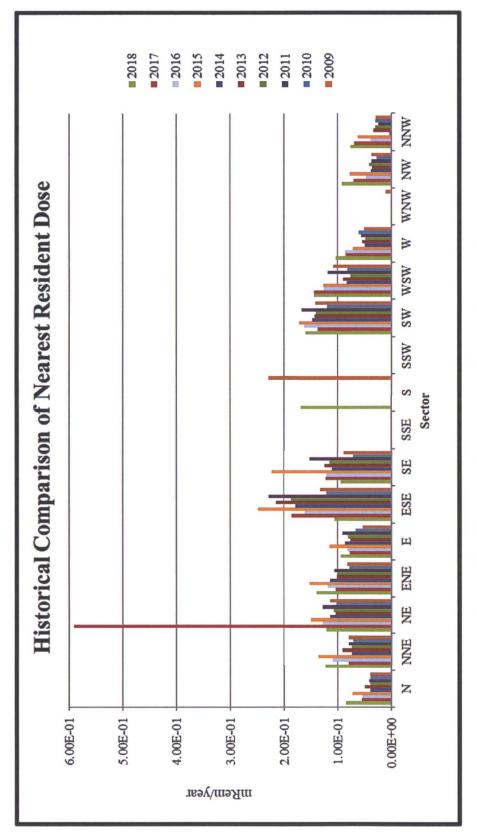
There were two (2) changes in nearest garden status from the previous year. Both gardens had a calculated dose lower than gardens currently in REMP. Dose calculations indicated the highest dose to be 0.296 mrem.

See Table 10-1 for a summary of the specific results and Table 2-1 for current sample locations. Figure 10-1through Figure 10-3 provide graphs depicting historical calculated doses for nearest residents, nearest milk receptor, and nearest garden receptor locations in each sector.

Differences in calculated doses are the result of many variables, including;

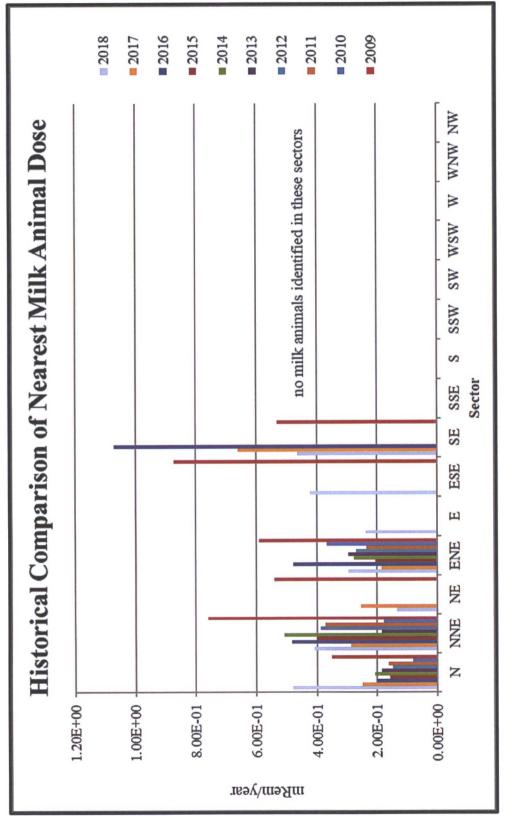
- Changes in receptor locations from year to year (proximity to the power plant)
- Changes in local meteorology (wind direction, wind speed, precipitation, and temperature)
- Concurrent meteorology at the time of effluent releases

• Exposure pathways


Table 10-1 Land Use Census

(Distance and	direction	are relative	to	Unit 2	in miles)
---------------	-----------	--------------	----	--------	-----------

Sector	Nearest Resident	Nearest Garden	Nearest Milk Animal (Cow/Goat)	Calculat (mre		Change from 2018
N	1.55	3.10	1.73	Resident Garden Milk	8.52E-2 2.12E-1 4.79E-1	Garden Milk
NNE	1.52	NONE	2.82	Resident Milk	1.23E-1 4.09E-1	Milk
NE	2.16	NONE	4.52	Resident Milk	1.20E-1 1.35E-1	Garden Milk
ENE	2.05	4.84	4.84	Resident Garden Milk	1.39E-1 2.96E-1 2.96E-1	
Е	2.81	NONE	4.28	Resident Milk	9.35E-2 2.39E-1	Milk
ESE	3.06	NONE	3.15	Resident Milk	1.06E-1 4.22E-1	Resident Milk
SE	3.40	NONE	4.19	Resident Milk	9.40E-2 4.65E-1	Milk
SSE	NONE	NONE	NONE	NA		
S	4.67	NONE	NONE	Resident	1.69E-1	Resident
SSW	NONE	NONE	NONE	NA		
SW	1.39	NONE	NONE	Resident	1.60E-1	
WSW	0.75	NONE	NONE	Resident	1.44E-1	
W	0.70	NONE	NONE	Resident	1.03E-1	
WNW	NONE	NONE	NONE	NA		
NW	0.93	NONE	NONE	Resident	9.14E-2	
NNW	1.30	4.34	1.59	Resident Garden Milk	7.53E-2 1.32E-1 4.10E-1	Milk


Comments:

Dose calculations were performed using GASPAR code and 2017 meteorological data and source term. Dose reported for each location is the total for all three PVNGS Units and is the highest individual critical organ dose identified.

doses assigned to residents in the S sector. The 2018 Land Use Census identified potential garden pathway for the nearest resident in Historical annual average most prevalent wind direction is from the SW; the next highest is from the N. This attributes to the higher the NE Sector; dose is reflective of the assumption of direct radiation and ingestion pathway. Historical annual average least prevalent wind direction is from the SE; the second least prevalent is from the ESE. This attributes to the lower doses assigned to the residents in the WNW, NW, and NNW sectors.

Milk animals include goats and/or cows. Several new milk animals were identified in 2009 that were closer to the power plant than in the past, resulting in generally higher calculated doses in that calendar year.

No milk samples have indicated any plant-related radionuclides. Additionally, milk animals in the desert environment are normally fed stored feed and are not on pasture. The calculated does are conservative due to the inclusion of pastured feed as part of the calculation.

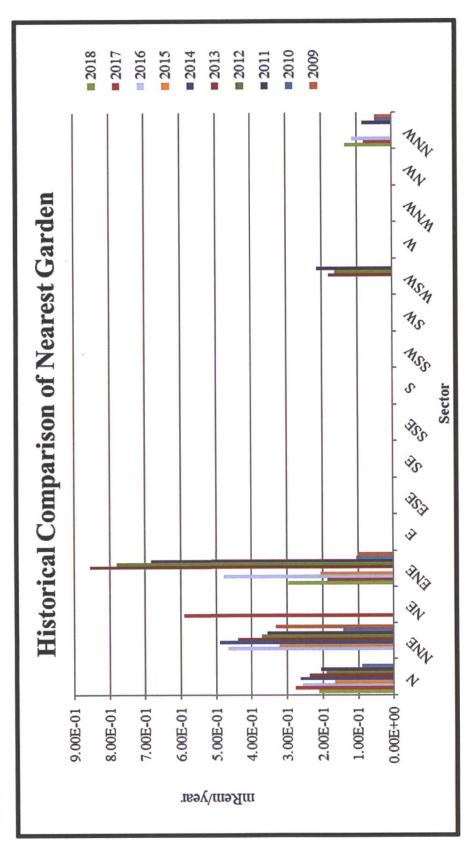


Figure 10-3 Historical Comparison of Nearest Garden Dose

Gardens have been sporadically identified from year to year. Gardening is not prevalent in the desert environment.

Summary

The conclusions are based on a review of the radioassay results and environmental gamma radiation measurements for the 2018 calendar year. Where possible, the data were compared to pre-operational sample data.

All sample results for 2018 are presented in Table 8-1 through Table 8-12 and <u>do not include</u> <u>observations of naturally occurring radionuclides</u>, with the exception of gross beta in air and gross beta in <u>drinking water</u>. Table 11-1 summarizes the ODCM required samples and is in the format required by the NRC BTP on Environmental Monitoring.

I-131 identified in the evaporation ponds, Water Resources influent, Water Resources centrifuge sludge, and reservoirs is the result of offsite sources and appears in the effluent sewage from Phoenix. The levels of I-131 detected in these locations are consistent with levels identified in previous years.

Cs-137 was detected in one Evaporation Pond 3A sample. Two samples were collected and the average of the results was reported in Table 8-10. The first sample was 15 pCi/L +/- 10 pCi/L; the second sample was 21 pCi/L +/- 10 pCi/L. The required lower limit of detection for Cs-137 in water is 18 pCi/L; the action level for Cs-137 in water is 50 pCi/L. Evaporation Pond 3A has not received any influent during 2018 and is being drained to another evaporation pond to make repairs to the top liner. The water level in Evaporation Pond 3A is low, such that sediment that has collected in the pond was unavoidably collected in the sample. Cs-137 is known to bind to sediment, and the levels detected is consistent with what was found in the preoperational soils in the surrounding area as a result of atmospheric bomb testing. Additionally, one of the samples was below the required lower limit of detection and both samples, were well below the action level for Cs-137 in water.

Tritium concentrations identified in surface water onsite have been attributed to PVNGS permitted gaseous effluent releases and secondary plant releases. These concentrations are consistent with historical values.

Environmental radiation levels are consistent with measurements reported in previous Pre-operational and Operational Radiological Environmental annual reports, References 1 and 2.

Conclusion

There was no measurable radiological impact on the environment in 2018 resulting from the operation of PVNGS.

			<u> </u>	GICAL M	ONITORING		
Palo Verde Nuc Maricopa Coun	clear Generating S aty, Arizona		Docket Nos. S Calendar Year	TN 50-528/5	529/530		
Medium or Pathway Sampled (Unit of	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD) (from Table 6.1)	All Indicator Locations	Location w Annual Me	vith Highest ean	Control Locations	Number of Nonroutine Reported Measurements
Measurement)	Tenomica	14010 0.1)	Mean (f) ^a Range	Name Distance a Direction	Mean (f) ^a nd Range	^a Mean (f) ^a Range	
Direct Radiation (mrem/std.	TLD - 199	NA	24.9 (184/188)	Site #35	30.4 (4/4)	23.4 (8/8)	4
qtr.)			16.8 - 31.8	8 miles 330°	28.1 - 31.8	19.1 – 26.4	
Air Particulates (pCi/m ³)	Gross Beta - 530	0.01	0.031 (467/468) 0.011 -	Site # 4 16 miles	0.034 (53/53) 0.015 -	0.032 (53/53) 0.013 - 0.065	1
(r)	Gamma Spec Composite - 40 Cs-134	0.05	0.078	92°	0.072	<lld< td=""><td>0</td></lld<>	0
	(quarterly)	0.05	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137 (quarterly)	0.06	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
			<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
Air Radioiodine (pCi/m ³)	Gamma Spec 530 I-131	0.07	<lld <lld< td=""><td>NA NA</td><td><lld <lld< td=""><td><lld <lld< td=""><td>1</td></lld<></lld </td></lld<></lld </td></lld<></lld 	NA NA	<lld <lld< td=""><td><lld <lld< td=""><td>1</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>1</td></lld<></lld 	1
Broadleaf Vegetation	Gamma Spec 24						
(pCi/Kg-wet)	I-131 Cs-134 Cs-137	60 60 80	<lld <lld <lld< td=""><td>NA NA NA</td><td><lld <lld <lld< td=""><td><lld <lld <lld< td=""><td>0 0 0</td></lld<></lld </lld </td></lld<></lld </lld </td></lld<></lld </lld 	NA NA NA	<lld <lld <lld< td=""><td><lld <lld <lld< td=""><td>0 0 0</td></lld<></lld </lld </td></lld<></lld </lld 	<lld <lld <lld< td=""><td>0 0 0</td></lld<></lld </lld 	0 0 0

Table 11-1 Environmental Radiological Monitoring Program Annual Summary

Groundwater (pCi/liter)	H-3 – 12	2000	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gamma Spec 14						
	Mn-54	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Fe-59	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-58	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-60	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zn-65	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zr-95	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	I-131	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gross Beta – 48	4	3.09 (48/48) 2.40 - 5.32	Site #55 3 miles	3.39 (12/12) 2.52 -5.32	NA	
	H-3 – 16	2000	<lld< td=""><td>214° NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	214° NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Gamma Spec. – 48						
Drinking	Mn-54	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
Water	Fe-59	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
(pCi/liter)	Co-58	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-60	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zn-65	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zr-95	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zr-95 Nb-95	30 15	<lld <lld< td=""><td>NA NA</td><td><lld <lld< td=""><td>NA NA</td><td>0</td></lld<></lld </td></lld<></lld 	NA NA	<lld <lld< td=""><td>NA NA</td><td>0</td></lld<></lld 	NA NA	0
	Nb-95						
	Nb-95 I-131	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Nb-95 I-131 Cs-134	15 15	<lld <lld <lld< td=""><td>NA NA NA</td><td><lld <lld <lld< td=""><td>NA NA</td><td>0 3</td></lld<></lld </lld </td></lld<></lld </lld 	NA NA NA	<lld <lld <lld< td=""><td>NA NA</td><td>0 3</td></lld<></lld </lld 	NA NA	0 3
	Nb-95 I-131	15 15 15	<lld <lld< td=""><td>NA NA</td><td><lld <lld< td=""><td>NA NA NA</td><td>0 3 0</td></lld<></lld </td></lld<></lld 	NA NA	<lld <lld< td=""><td>NA NA NA</td><td>0 3 0</td></lld<></lld 	NA NA NA	0 3 0

	Commo Snoo 20					146	
Milk	Gamma Spec. – 30 I-131	1	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
(pCi/liter)	1-131	1	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
(permer)			LLD	INA			
	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
			<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
	Cs-137	18	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
			<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	NA	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Gamma Spec 18						
	Mn-54	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Fe-59	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-58	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Co-60	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zn-65	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Zr-95	30	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Nb-95	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
Surface Water (pCi/liter)	I-131	15	11 (1/18)	Site #63	11 (1/3)	NA	0
			11-11	Onsite 180°	11-11		
	Cs-134	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	Cs-137	18	<lld< td=""><td>Site #64</td><td>18 (1/3)</td><td>NA</td><td>0</td></lld<>	Site #64	18 (1/3)	NA	0
				Onsite 190°	15-21		
	Ba-140	60	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	La-140	15	<lld< td=""><td>NA</td><td><lld< td=""><td>NA</td><td>0</td></lld<></td></lld<>	NA	<lld< td=""><td>NA</td><td>0</td></lld<>	NA	0
	H-3 - 25	3000	597 (10/18)	Site #59	937 (5/5)	NA	0
	11-5 - 25	5000	323-1146	Onsite 180°	559-1146		0

(a) Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

NOTE: Miscellaneous samples that are not listed on Tables 2.1 and 9.1 (not ODCM required) are not included on this table.

- 1. Pre-Operational Radiological Monitoring Program, Summary Report 1979-1985
- 2. 1985-2016 Annual Radiological Environmental Operating Reports, Palo Verde Nuclear Generating Station
- 3. Palo Verde Nuclear Generating Station Technical Specifications and Technical Reference Manual
- 4. Offsite Dose Calculation Manual, Revision 27, PVNGS Units 1, 2, and 3
- 5. Regulatory Guide 4.1, Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants
- 6. Regulatory Guide 4.8, Environmental Technical Specifications for Nuclear Power Plants
- 7. NRC Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979 (Incorporated into NUREG-1301)
- 8. NEI 07-07, Nuclear Energy Institute, Industry Ground Water Protection Initiative Final Guidance Document, August 2007
- 9. "Sources of Radiation." *NRC: Sources of Radiation*. Nuclear Regulatory Commission, 2 Oct. 2017. Web. 18 Feb. 2019.
- 10. "NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States." Journal of Radiological Protection J. Radiol. Prot. 29.3 (2009): 465. Web.

One abnormal event was omitted from the 2017 Annual Radiological Environmental Operating Report (AREOR), Table 2-3: Summaries of the REMP Deviation/Abnormal Events. Condition Report (CR) 17-07102 was generated to document the inability to collect a resident well sample from Site #46 due to the closure of the main water valve to the home. Samples for the sampling periods 25 April to 2 May, 2017 and 2 May to 9 May, 2017, were missed. May 2017 had five (5) sampling opportunities. Three (3) samples were collected, and as such, the monthly composite analysis for Site #46 was still performed. The results of that analysis were reported in Table 8-8: Drinking Water, of the 2017 AREOR.