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ABSTRACT 

Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable 
strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear 
structures. Although seismic isolation has been deployed in nuclear structures in France and 
South Africa, it has not seen widespread use. This has been attributed to, in part, limited new 
build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for 
the analysis, design and construction of isolation systems specific to nuclear structures.  

The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to 
consider seismic isolation for new large light water and small modular reactors to withstand the 
effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not 
expected to change substantially in design basis shaking. However, under shaking more intense 
than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to 
heating associated with energy dissipation, some bearings in an isolation system may 
experience net tension, and the compression and tension stiffness may be affected by the 
horizontal displacement of the isolation system.  

The effects of variation in mechanical properties of lead-rubber bearing on the response of 
base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical 
model of lead-rubber bearing. The model was verified and validated, and implemented in 
OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to 
characterize the behavior of elastomeric bearings in tension. The test data was used to validate 
a phenomenological model of an elastomeric bearing in tension. The value of three times the 
shear modulus of rubber in the elastomeric bearing was found to be a reasonable estimate of 
the cavitation stress of a bearing. The sequence of loading did not change the behavior of an 
elastomeric bearing under cyclic tension, and there was no significant change in the shear 
modulus, compressive stiffness, and buckling load of a bearing following cavitation. 

Response-history analysis of base-isolated NPP structures was performed using a two-node 
macro model and a lumped-mass stick model. A comparison of responses obtained from 
analysis using simplified and advanced isolator models showed that the variation in buckling 
load due to horizontal displacement and strength degradation due to heating of lead cores affect 
the responses of a base-isolated NPP most significantly. The two-node macro model can be 
used to estimate the horizontal displacement response of a base-isolated NPP, but a three-
dimensional model that explicitly considers all of the bearings in the isolation system will be 
required to estimate demands on individual bearings, and to investigate rocking and torsional 
responses. The use of the simplified LR bearing model underestimated the torsional and rocking 
response of the base-isolated NPP. Vertical spectral response at the top of containment building 
was very sensitive to how damping was defined for the response-history analysis. 
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FOREWORD 

As part of their 2008-2011 Seismic Research Program Plan, the Office of Regulatory Research 
(RES) of the U.S. Nuclear Regulatory Commission (USNRC) initiated an effort to investigate 
seismic base isolation technology. Base isolation is a technology developed to protect a 
structure from the damaging effects of earthquake shaking, by essentially decoupling the 
structure from high frequency, horizontal earthquake shaking. Operating seismically isolated 
nuclear power plants already exist in France and South Africa. Although base isolation has been 
effectively used on bridges, commercial buildings and other structures in the United States, 
there have been no applications to safety-related nuclear facilities in the United States.    

The research studied technical bases that would inform design and review guidance for the 
possible use of seismic base isolation technology in nuclear power plants.  The focus of the 
research was new surface-mounted large light water reactor designs but many of its products 
also are relevant for isolation of structures and components of next generation nuclear power 
plants.  To conduct this research RES sponsored research at the University of Buffalo (UB) and 
Lawrence Berkeley National Laboratory (LBNL) under a contract to LBNL. This report is a 
deliverable for that contract that documents the research done on elastomeric seismic isolation 
bearings and, specifically, on lead-rubber and low-damping rubber bearings.  A companion 
report, NUREG/CR-7254, documents the research done on another type of bearings, sliding 
bearings, namely the single concave Friction Pendulum™ bearing.     

This research developed numerical models of low-damping rubber and lead-rubber elastomeric 
bearings, which permit extensive sensitivity analysis of base-isolated nuclear power plants 
subjected to a wide range of earthquake shaking. The report also documents the results of 
sensitivity analyses conducted with those models that provide data and insights on the 
performance of the two types of isolators studied and relate that performance to the design 
features of the isolators.  The information in this report could help form the basis for regulatory 
guidance on seismic base isolation although such work is not planned at present.  

Specifically, the research documented in this report prepared numerical models following best 
practice standards and implement them in commercial software. Physical experiments also 
were conducted to characterize the behavior of the elastomeric bearings under tensile and 
shear loadings, and to enable validation of the numerical models. The sensitivity analyses used 
two representations of a nuclear power plant isolated with lead-rubber bearings, a two-node 
macro model and a lumped-mass stick model, subjected to design and beyond basis 
earthquake shaking. The results reported inform which representation of an isolated nuclear 
power plant and which features of the isolator model are needed to accurately compute 
responses for a wide range of earthquake shaking.  

The data and results in this report inform the technical basis to ensure readiness of the NRC 
infrastructure for potential applications that would utilize seismic isolation technologies.  A third 
report,  NUREG/CR-7253, “Technical Considerations for Seismic Isolation of Nuclear Facilities,” 
provides technical considerations, as well as performance and design recommendations 
addressing the design, construction, and operational needs for SI systems that consider the 
seismic, risk-informed, performance of structures, systems, and components (SSC). Technical 
considerations and regulatory challenges identified in that report include performance criteria to 
address the full scope of seismic demands, methods appropriate for the seismic soil-structure 
interaction analysis of a seismically isolated plant, defense in depth, reliability of the isolators 
during the operating life of the plant, and inspection and maintenance procedures. 
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EXECUTIVE SUMMARY 

Seismic (base) isolation is a viable strategy to mitigate the damaging effects of extreme 
earthquakes on nuclear power plant (NPP) structures. This report addresses key technical 
challenges associated with the seismic isolation of nuclear power plants (NPPs) using two types 
of elastomeric bearings: 1) low damping rubber (LDR), and 2) lead-rubber (LR). A focus of the 
study is surface-mounted large light water reactors, although many of the research products are 
also directly relevant for isolation of components of next generation nuclear plants, most of 
which will likely be deeply embedded.  

This report can be parsed into four subject areas: 1) development of advanced numerical 
models of LDR and LR bearings, 2) cross-platform implementation of the numerical models to 
three contemporary software programs, namely, OpenSees, ABAQUS, and LS-DYNA, 3) 
comprehensive verification and validation of the numerical models as per the ASME best 
practices, and 4) performance assessment of the base-isolated NPP subject to different 
intensities of earthquake shaking. 

The mechanical properties of LDR and LR bearings are not expected to change substantially in 
design basis shaking. However, under shaking more intense than design basis, the properties of 
the lead cores in lead-rubber bearings may degrade due to heating associated with energy 
dissipation, some bearings in an isolation system may experience net tension, and the 
compression and tension stiffness of a bearing may be affected by the horizontal displacement 
of the isolation system. Mathematical models of low damping rubber (LDR) and lead rubber (LR) 
bearings suitable for analysis of safety-related nuclear structures subjected to design basis and 
beyond design basis earthquake shaking are developed to accommodate the following five 
characteristics or behaviors that may be important for US plants sited in regions of moderate to 
high seismic hazard: 1) strength degradation in shear due to heating of the lead core (LR 
bearings), 2) variation in buckling load due to horizontal displacement, 3) cavitation and post-
cavitation behavior due to tensile loading, 4) variation in axial stiffness due to horizontal 
displacement, and 5) variation in shear stiffness due to axial load. 

The advanced numerical models are now implemented as new User Elements (UELs) in the 
open- source platform OpenSees, and the commercial finite element codes ABAQUS and LS-
DYNA. The user elements ElastomericX for the LDR bearing and LeadRubberX for the LR 
bearing are available in OpenSees and ABAQUS. The mathematical model of the LR bearing is 
implemented in LS-DYNA as a user material (UMAT), providing a third UMAT for isolator 
elements. The performance of the UELs, in terms of their capabilities and computational 
expense is discussed. A mathematical model for high-damping rubber bearings, HDRX, is 
implemented in OpenSees; the model includes many of the features of ElastomericX but 
implements the Grant et al. model in shear. HDRX was written for completeness and not in 
support of application to NPPs in the United States. These user elements and materials are 
publically available to enable and encourage use by researchers and the design professional 
community. 

The models of LDR and LR bearings were verified and validated following ASME best practices. 
Those isolator characteristics crucial to robust estimates of performance are identified, which 
includes heating of the lead core in the LR bearing. Modeling errors due to different sources are 
quantified, and if possible, minimized or eliminated. The discretization errors in the peak 
horizontal and vertical response are less than 2%. The V+V activities helped establish 
confidence in these models and identified possible errors in the response due to use of these 
models, if any. The mathematical models in the shear (horizontal) and axial directions were 
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validated using existing experimental data. A series of validation experiments was conducted at 
the University at Buffalo to characterize behavior of elastomeric bearing under tensile and shear 
loadings. The test data was used to validate a phenomenological model of an elastomeric 
bearing in tension. Sixteen low damping rubber bearings from two manufacturers, with similar 
geometric properties but different shear moduli, were tested under various loading conditions to 
identify those factors that affect cavitation in an elastomeric bearing. The value of three times 
shear modulus (determined by testing bearings at 100% shear strain) is a good estimate of the 
cavitation stress in the rubber of a bearing. The effect of cavitation on the compressive stiffness, 
shear stiffness (under service axial load), and buckling load is negligible.  

A model of a base-isolated nuclear island was analyzed using response-history techniques for 
design and beyond design basis earthquake shaking. Thirty three-component ground motions, 
selected and spectrally matched to be consistent with uniform hazard response spectra (UHRS) 
for design basis earthquake (DBE) shaking at the site of the Diablo Canyon Nuclear Generating 
Station, were used for response-history analysis. The model of the NPP nuclear island was 
derived from an early version of the Westinghouse AP1000 reactor but is considered to be 
representative of large light water reactors currently under construction in the United States. 
Two representations of the base-isolated NPP isolated with LR bearings were analyzed: 1) a 
two-node macro model, and 2) a lumped-mass stick model. The two representations of base-
isolated NPP provided same horizontal displacement response, but the lumped-mass stick 
model provided additional information on torsional and rocking response and the spatial 
distribution of cavitation and buckling in the bearings comprising the isolation system. Simplified 
and advanced representations of LR bearing behavior were considered. The simplified model, 
with equal axial stiffness in compression and tension (and independent of shear displacement), 
represents the state-of-the-practice for response-history analyses of seismically isolated 
structures using contemporary software programs. The advanced isolator model considers the 
five characteristics of LR bearings identified previously. The effect of each of the five 
characteristics on the response of the isolated structure is quantified. 

Heating of the lead core in a LR bearing has a relatively small effect (< 10%) on horizontal DBE 
(shear) displacements but the influence increases at higher intensities of shaking. The buckling 
load of a LR bearing varies substantially during earthquake shaking. The displacement-
dependent model for buckling load predicts failure for many more ground motions than the 
constant buckling load model, and is thus recommended for use in design practice. Isolation 
systems of different combinations of isolation period and strength-to-supported weight were 
analyzed. For a given isolation period, the effect of lead core heating decreases with an 
increase in the ratio of characteristic strength to weight, whereas for a given value of the ratio, 
the effect decreases with an increase in isolation period. Floor response spectra in two 
orthogonal horizontal directions were obtained at different locations in the stick model. Vertical 
accelerations in the superstructure of the base-isolated NPP are very sensitive to the definition 
of damping. A substructuring method is proposed that allows the use of different damping 
values for the isolation system and the superstructure and provides a more realistic estimate of 
vertical acceleration without overdamping the horizontal response. The reported data allows a 
reader to judge which representation of an isolated NPP (macro model or lumped-mass stick) 
and which features, if any, of the advanced isolator model are needed to compute response for 
different intensities of earthquake shaking. 
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ρL  Density of lead 
σ 0YL Effective yield stress of lead at the reference temperature 
τ  Dimensionless time parameter 
ω  Angular frequency 
φ , φmax Cavitation damage index and its maximum value 

γ , β  
Parameters of the Bouc-Wen Model that control the shape of the hysteresis 
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1 INTRODUCTION 

1.1 General 

Seismic (base) isolation is a relatively mature technology for protecting structures from the 
effects of moderate and severe earthquake shaking. Although the technology has been widely 
deployed for buildings, bridges and certain classes of mission-critical infrastructure, it has yet to 
be routinely adopted for the seismic protection of safety-related nuclear structures, including 
nuclear power plants. The limited numbers of applications to nuclear structures to date have 
been in France and South Africa, for which synthetic rubber (neoprene) bearings, including flat 
sliders in one installation, have been used. Limited use of seismic isolation has been attributed 
to a) a significant downturn in nuclear power plant construction in the thirty-year period from 
1980 to 2010, b) construction of nuclear facilities in regions of low to moderate seismic hazard 
for which isolation is not necessarily needed, and c) the lack of consensus standards for the 
analysis and design of seismic isolation systems for nuclear facilities and companion 
requirements for testing of prototype and production bearings. 

Early studies on isolation of nuclear structures showed mixed results, which pointed to the need 
for additional research and development (Buckle, 1985; Eidinger and Kelly, 1985; Gueraud et 
al., 1985; Hadjian and Tseng, 1983; Kelly, 1979; Plichon and Jolivet, 1978; Plichon et al., 1980; 
Skinner et al., 1976b; Wu et al., 1987; Wu et al., 1988). US federal government support for 
research programs supporting isolation of nuclear power plants finished in the 1990s. Related 
research efforts declined accordingly. The nuclear accident at Fukushima Daiichi in March 2011 
rekindled interest in the use of seismic isolation to protect nuclear structures from the effects of 
moderate to severe earthquake shaking. One impediment to the implementation of seismic 
isolation to NPPs was a lack of guidance for the analysis, design, and regulation of seismically 
isolated nuclear structures. Such guidance is now available in Chapter 12 of ASCE/SEI 
Standard 4-16 (ASCE, 2017) and NUREG/CR 7253 entitled “Technical Considerations for 
Seismic Isolation of Nuclear Facilities” (Kammerer et al., 2019). Much of the technical basis in 
these documents can be traced to the research of Huang (Huang et al., 2008; Huang et al., 
2010; Huang et al., 2011a; Huang et al., 2011b; Huang et al., 2011c). Warn and Whittaker 
(2006) conducted experiments and analytical studies to understand the coupling between the 
horizontal and the vertical response of elastomeric bearings. Kalpakidis and Constantinou 
(2008) investigated the heating of the lead core in LR bearing, and proposed an analytical 
model to calculate shear strength as a function of temperature rise in the lead core. 

The study presented in this report builds on the available knowledge and addresses the issues 
that are critical to seismic isolation of NPPs. Much of this is reproduced from Kumar et al. 
(2015), which in turn is based on the PhD dissertation of the first author. 

This NUREG/CR addresses elastomeric seismic isolation bearings. A companion sliding 
isolation NUREG/CR (Kumar et al., 2019) addresses sliding isolation bearings and seismic risk 
assessment of isolated nuclear power plants. 

1.2 Motivation 

Figure 1-1 identifies components of a seismically isolated nuclear structure. The isolators (also 
termed isolator units and bearings) are assumed installed in a near horizontal plane beneath a 
basemat that supports the nuclear construction, which is defined as the superstructure.  
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The isolators are installed atop pedestals and a foundation, which is defined as the 
substructure. The moat is a space in which the isolated superstructure can move without 
restriction in the event of earthquake shaking. Only horizontal isolation is considered because 
there are no viable three-dimensional isolation systems available in the marketplace at the time 
of this writing for large, surface mounted building structures such as nuclear power plants. 

A focus of the study is large light water nuclear reactors: the backbone of the US nuclear fleet at 
the time of this writing. That said, much of the research product discussed in this report is more 
broadly applicable, to large components of light water reactors and advanced reactors, including 
high temperature gas reactors, which will likely be deeply embedded. 

Figure 1-1    Seismically isolated nuclear power plant (Kammerer et al., 2019) 

The nuclear accident at Fukushima Daiichi in March 2011 focused the attention of the nuclear 
energy industry on the effects of extreme earthquakes: shaking more intense than design basis. 
Although the mechanical properties of LDR and LR bearings are not expected to change 
substantially in design basis shaking, under shaking more intense than design basis, the 
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properties of the lead cores in lead-rubber bearings may degrade due to heating associated with 
energy dissipation, some bearings in an isolation system may experience net tension, and the 
compression and tension stiffness may be affected by the horizontal displacement of the 
isolation system. The implementation of seismic isolation in US NPPs will likely only be possible 
if these changes in mechanical properties can be tracked in analysis. 

The key components of the study described in this report are: 

1. Experimental investigation of the behavior of elastomeric bearings in tension
2. Development of verified and validated numerical models of elastomeric bearings for analysis

of seismically isolated NPPs
3. Quantification of the response of base-isolated NPPs subject to design basis and beyond-

design basis earthquake shaking
4. Investigation of the effects of vertical excitation
5. Investigation of rocking and uplift in base-isolated NPP subject to design and beyond-design

basis earthquake shaking

1.3 Scope of Work 

The scope of work for this study is as follows: 

1. Investigate existing application of the seismic isolation to nuclear structures and models
of elastomeric bearings used for analysis of seismically isolated structures.

2. Perform experiments to characterize the behavior of elastomeric seismic isolation
bearings in tension.

3. Develop mathematical models that can be used to analyze base-isolated NPPs subject
to extreme earthquake shaking.

4. Implement the mathematical models in contemporary software programs used for
structural analysis.

5. Verify and validate the numerical models.
6. Analyze base-isolated NPPs subject to design and beyond-design basis earthquake

shaking.
7. Address numerical issues associated with the specification of damping in response-

history analysis of base-isolated nuclear power plants.

1.4 Report Organization 

This report has eleven chapters, the appendices and list of references. Seismic isolation of 
NPPs and experimental studies and numerical models available for analysis of elastomeric 
bearings are reviewed in Chapter 2. Chapter 3 presents mathematical models of LDR and LR 
bearings that can be used to analyze base-isolated NPPs. Implementation of these 
mathematical models in OpenSees and ABAQUS is presented in Chapter 4. The models are 
verified and validated in Chapter 5. The experimental program and the test results to 
characterize the behavior of elastomeric bearings in tension are presented in Chapter 6 and 
Chapter 7, respectively. Chapter 8 and Chapter 9 discuss the results of response-history 
analysis of a base-isolated NPP using a two-node macro model and a lumped-mass stick 
model, respectively. A substructuring approach to specify damping and estimate acceleration 
response in an isolated superstructure is described in Chapter 9. Summary, conclusions, and 
recommendations are provided in Chapter 10. A list of references is presented in Chapter 11. 
Three appendices present the experimental program and results (A), response of the two-node 
macro model of a base-isolated NPP (B), and the response of a base-isolated NPP (C). 
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2 LITERATURE REVIEW 

2.1 Introduction 

Although seismic isolation has been deployed in nuclear structures in France and South Africa, 
it has not been used in the United States. This is attributed to limited new build nuclear 
construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, 
design and construction of isolation systems specific to nuclear structures. 

The behavior of natural rubber-based bearings in horizontal shear and vertical compression is 
well established and robust mathematical models exist that have been validated experimentally. 
However, knowledge of bearing response in tension is rather limited and the mathematical 
models that have been proposed do not capture those behaviors that have been observed 
experimentally.  

This chapter summarizes the application of and research on base-isolated NPPs, and reviews 
experimental work on the behavior of elastomeric bearings under tensile loading and numerical 
models that have been used to analyze behavior in tension. Section 2.2 introduces research 
and application of base-isolated NPPs in different countries around the world. The isolation 
systems for these NPPs are described in Section 2.3. Section 2.4 summarizes experiments on 
behavior of bearings in tension. Only relevant work on seismic isolation bearings is discussed 
and the work on bonded rubber cylinders (e.g., Dorfmann and Burtscher (2000) and Dorfmann 
(2003)) is not considered. Mathematical models of elastomeric bearings that represent the 
state-of-the-art for response-history analysis of seismically isolated structures and their usage in 
contemporary software programs are discussed in Section 2.5 and Section 2.6, respectively. 

2.2 Historical Developments 

2.2.1 Introduction 

The idea of substantially decoupling a structure from the destructive effects of high frequency 
earthquake ground motion has existed for a long time. Early developments are not reported 
here. Applications of isolation to nuclear power plant have been somewhat recent, and followed 
the development of analysis, design and fabrication procedures. An attractive feature of seismic 
isolation is its application to standardized reactor designs that traditionally have been designed 
for a low level of seismic hazard (often a peak ground acceleration of 0.2 or 0.3 g). The isolation 
of such standardized reactors enables their deployment in regions of higher seismic hazard 
because the isolators serve to reduce the horizontal inertial forces that can develop in the 
isolated superstructure. Early studies on isolation of nuclear structures showed mixed results, 
which pointed to the need for additional research and development (Buckle, 1985; Eidinger and 
Kelly, 1985; Gueraud et al., 1985; Hadjian and Tseng, 1983; Kelly, 1979; Plichon and Jolivet, 
1978; Plichon et al., 1980; Skinner et al., 1976b; Wu et al., 1987; Wu et al., 1988). 
Developments in seismic isolation of nuclear power plants and related research in the major 
nuclear power depending countries are summarized in the following sections. 

2.2.2 France 

Seismic isolation of NPPs using rubber bearing pads was studied during late 1970s with a focus 
on applications to reactors in France (Jolivet and Richli, 1977; Plichon, 1975; Plichon and 
Jolivet, 1978). France was the first country to implement seismic isolation in nuclear power 
plants, although their approaches to design and construction vary substantially from practice in 
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the United States, with one utility, one isolator vendor, and one architect/engineer/contractor, 
which allowed France to implement seismic isolation earlier than other countries. Framatome 
(now AREVA NP) had developed a standardized design for a 900 MWe Pressurized Water 
Reactor (PWR) that was suitable for most sites in France where the peak ground acceleration 
for the Safe Shutdown Earthquake (or design-basis earthquake) was less than 0.2g. For sites 
with higher seismicity, the standard plant was seismically isolated to limit the demand on the 
NPP and its structures, systems, and components.  Licensing objections from the Commissariat 
a L’Energie Atomique (CEA, French counterpart of USNRC) were addressed (Delfosse, 1977; 
Derham and Plunkett, 1976). 

Four PWR units were seismically isolated at Cruas in France between 1978 and 1984. 
Construction began in 1978 and the reactors were built in 1983 and 1984. Framatome was the 
Nuclear Steam Supply System (NSSS) vendor and Electricite de France (EdF) was the utility 
owner. The isolation system was developed by Spie-Batignolles Batiment Travaux Publics 
(SBTP) and EdF (Plichon et al., 1980). Each unit was isolated using 1,800 neoprene isolators 
(500× 500× 66.5 mm) that are shown in Figure 2-1. A vertical cross section through an isolator 
and its pedestal is shown in Figure 2-2. The peak ground acceleration for the Safe Shutdown 
Earthquake (SSE) at the site was 0.3g. The four units at Cruas are shown in Figure 2-3. The 
shear modulus of the elastomer was reported as 1.10 MPa in 1978. Periodical testing of 
elastomer kept at site revealed a 37% increase in its shear modulus to 1.51 MPa by 2005 
(Labbe, 2010). 

France has conducted research on standardized NPP design concepts, collaborating with other 
European countries, since its first application of isolation to nuclear power plants. These 
research programs have resulted in the development of the seismically isolated European 
Sodium Fast Reactor (ESFR) and the seismically isolated European Pressurized Reactor 
(EPR).   

A 100 MWe materials-research Jules Horowitz Reactor (RJH), is being built at Cadarache, 
France and is being base isolated. The reactor is being built by an international consortium of 
research institutions from France (CEA and EdF), the Czech Republic (NRI), Spain (CIEMAT), 
Finland (VTT), Belgium (SCKCEN), and European Commission. India (DAE) and Japan (JAEA) 
are participating as associate members. The utility-owner EdF and Vattenfall, and the Nuclear 
Steam Supply System (NSSS) vendor AREVA are the utilities and industrial partners. The 
isolation system is composed of 195 elastomeric bearing pads (900× 900× 181 mm) that were 
manufactured by Freyssinet. Construction began in 2007 and operation is expected to start in 
2021. Technical details of the isolation system proposed for RJH are presented in Section 2.3.7. 

Another nuclear facility, the International Thermonuclear Experimental Reactor (ITER), is also 
under construction at Cadarache. ITER is an international nuclear fusion experimental facility, 
and is being isolated by 493 elastomeric pads of a similar design to that used for the RJH. The 
construction of ITER began in 2008 and it is expected to begin operation in 2019. Technical 
details of isolation system in ITER are presented in Section 2.3.8. 

2.2.3 South Africa 

The isolation of the French standardized plant enabled it to be used at sites where the 
earthquake hazard was more severe than that for which the standardized plant was designed. 
Two seismically isolated reactors were constructed at Koeberg, South Africa. The peak 
horizontal ground acceleration for design basis earthquake shaking (SSE) was 0.3g.  
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Figure 2-1    Cut-away view of seismic isolator used for the Cruas NPP; dimensions in mm 
  (Labbe, 2010) 

Figure 2-2    Vertical cross section through the isolator and pedestal in the Cruas NPP 
  (Labbe, 2010) 

Figure 2-3 Four units of seismically isolated NPP at Cruas, France (Forni and Poggianti, 2011) 
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A modified version of the isolators used for the Cruas NPPs was used for the Koeberg plant to 
limit the shear strain in the neoprene pads (Gueraud et al., 1985). A flat slider was installed 
between the top of the pad and the upper mat. The flat sliders used a lead-bronze alloy lower 
plate and a polished stainless steel upper plate. A total of 2000 neoprene pads (700× 700× 100 
mm) were used to isolate each reactor at Koeberg. Tajirian and Kelly (1989) note that a similar 
type of isolator was proposed for the Karun River plant in Iran. 

The isolators used at Koeberg are considered inappropriate for application to NPPs in the 
United States. Flat sliders cannot provide the minimum lateral restoring force that is required 
from a SI system to limit the residual earthquake displacement. Moreover, sliding bimetallic 
interfaces are prone to load dwell-creep induced increases in the static coefficient of friction 
(Constantinou et al., 1996; Constantinou et al., 2007). Lee (1993) reported on the changes in 
the properties of the flat sliders used in the Koeberg isolators and noted an increase in the static 
coefficient of friction from 0.2 to 0.4 after 14 years of service.  

2.2.4 Italy 

Research on the use of seismic isolation for Italian nuclear power plants started in late 1980s. 
The focus of the Italian research was isolation of fast breeder reactors. The only fast reactor 
under development at that time was PEC (Prova Elementi di Combustile), a fuel element test 
reactor, which was an Italian contribution to European Fast Breeder Reactor (EFR) 
development program.  

The Italian Committee for Nuclear and Alternative Energy Sources (ENEA), in collaboration with 
International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy 
Agency (IAEA), organized the Specialists’ Meeting on “Fast Breeder Reactor-Block Antiseismic 
Design and Verification” in 1987 to discuss the application of seismic isolation to Fast Reactors 
(Martelli, 1988). A framework for research and development of standardized NPP units with 
seismic isolation was prepared. Work on the seismic isolation of fast reactors  began in 1988 by 
ENEA and ISMES (Istituto Sperimentale Modelli e Strutture) and involved proposals for 
development of guidelines for seismically isolated NPPs using high damping rubber (HDR) 
bearings (Martelli et al., 1989), static and dynamic experiments using shake tables, 
determination of  qualification procedures for seismic isolation systems, and development and 
verification of finite element nonlinear models for single bearing and simplified tools for dynamic 
analysis of seismically isolated structures (Martelli et al., 1991). Research conducted between 
1993 and 1996 at the Italian electric utility company ENEL (Ente Nazionale per l'Energia 
eLettrica) and supported by the European Commission (EC) aimed at development of optimized 
design features for HDR bearings. Research focused on improvement of bearing materials, 
analysis and design tools, manufacturing process and quality control. Scragging and recovery in 
HDR bearings were not addressed. Other research programs were conducted in the framework 
of national collaboration among members of the Italian Working Group on Seismic Isolation 
(GLIS, “Grouppo di Lavoro Isolamento Sismico”) and international collaboration between GLIS 
and EU and non-EU members (Martelli et al., 1999). 

Italy had an active role in the development of the International Reactor Innovative and Secure 
(IRIS). IRIS is a smaller version of the pressurized water reactor being developed by 
international team of companies, laboratories, universities and is being coordinated by 
Westinghouse. ENEA proposed seismic isolation of the IRIS reactor building in 2006 and 
developed it in collaboration with the Politecnico di Milano and Pisa University in 2010 (Forni 
and Poggianti, 2011). 



2-5

2.2.5 United Kingdom 

The United Kingdom is characterized by low to moderate seismicity, which is similar to much of 
France. The UK Central Electricity Generating Board (CEGB) collaborated with the CRIEPI-
EPRI seismic isolation program in its second phase of work to develop a standardized design of 
a seismically isolated nuclear power plant (Austin et al., 1991). The proposed seismic isolation 
system consisted of natural rubber bearings and viscous dampers. The goal of this isolation 
system was analyzability, with the bearings being modeled as linear elements and the dampers 
as viscous elements.  

2.2.6 New Zealand 

New Zealand has implemented seismic isolation in their civil structures. Some of very first 
studies on isolation of NPPs were undertaken by researchers in New Zealand although there 
are no nuclear power plants in New Zealand. The main purpose was to develop technologies 
such as the lead-rubber bearing that could be sold abroad. Skinner et al. (1976a), Skinner et al. 
(1976b), and Buckle (1985) reported studies on the application of isolation to nuclear structures. 

2.2.7 Japan 

The application of seismic isolation in Japan grew quickly in the 1980s and 1990s but was 
limited to non-nuclear structures. The application of isolation and standardization of nuclear 
power plants received significant attention from the government and private construction 
companies in the 1980s. Advanced experimental facilities, including the largest shake table in 
the world at the time, facilitated research and development of various types of isolation systems 
in Japan. Initial studies focused on fast breeder reactors, because it was hoped that isolation 
would reduce the capital cost associated with design against the effects of earthquakes, allow 
standardization of fast breeder reactors for all siting conditions in Japan, and make fast breeder 
reactors an economical alternative to pressurized water reactors.  

In 1987, the Central Research Institute of Electric Power Industry (CRIEPI), under contract from 
Ministry of International Trade and Industry (MITI) of Japan, started a seven-year research 
program to develop a technical basis for application of seismic isolation to fast breeder reactors. 
Two dimensional (horizontal) system and 3D isolation systems were studied (Shiojiri, 1991). 
CRIEPI drafted FBR Seismic Isolation System Design Methods in 1990 based on the results 
obtained from the research program (Ishida et al., 1995). The CRIEPI test program finished in 
1996. 

A study was conducted by the Japan Atomic Power Company (JAPC) and a design was 
developed for the 2D seismic isolation of the Demonstration Fast Breeder Reactor (DFBR) 
using different 2D isolation systems (Inagaki et al., 1996).  

CRIEPI coordinated a research program with the Electric Power Research Institute (EPRI) of 
the USA and CEGB of the UK to study the feasibility of selected isolation systems and their 
application to liquid metal reactors. Five isolation systems were considered: 1) elastomeric 
bearings with friction plates (France), 2) lead-rubber bearings (New Zealand), 3) coil springs 
with viscous dampers (Germany), 4) Teflon bearings with elastic restraint (Greece), and 5) 
bearings with hysteretic dampers. A comparison of the performance of these isolation systems 
suggested the lead-rubber bearing was the best of the five considered. CEGB of the UK joined 
this program later. An isolation system consisting of elastomeric bearings (150×150×70 mm) 
and German GERB type viscous dampers was suggested by CEGB for further study. 
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In 2000, and based on prior studies, the Japan Electric Association published JEAG 4614-2000, 
“Technical guideline on seismic base isolated system for structural safety and design of nuclear 
power plants” (JEA, 2000). The Japan Nuclear Energy Safety (JNES) organization, established 
in 2003, coordinated isolation related research in Japan. JNES was reorganized recently as the 
Nuclear Regulatory Authority (NRA).  

2.2.8 United States 

Studies were conducted in the late 1970s and early 1980s to assess the feasibility of available 
seismic isolation systems to nuclear structures (DIS, 1983; Kunar and Maini, 1979; Vaidya and 
Eggenberger, 1984) but the results of these studies were not pursued by the nuclear community 
following the downturn in nuclear power plant construction following the accident at Three Mile 
Island in 1979.  

A number of authors identified issues that had to be resolved before any application of seismic 
isolation was possible in the in nuclear industry in the United States (Eidinger and Kelly, 1985; 
Hadjian and Tseng, 1983). One of the important issues was reliability. At that time there was 
insufficient data on the performance of seismically isolated conventional structures during major 
earthquakes to provide the necessary confidence that isolation would deliver the proposed 
benefits. A cost-benefit analysis was also needed to understand the financial implications of 
using isolation. Hadjian and Tseng (1983) noted that this cost-benefit analysis should not be 
based on initial capital cost only but should also consider the probability of success or failure 
and resulting consequences (Stevenson, 1978). Some of the major concerns regarding the use 
of isolation were (Eidinger and Kelly, 1985; Hadjian and Tseng, 1983; Tajirian and Kelly, 1989):  

1. Long term reliability of isolators 
2. Inability to define beyond design basis earthquake criteria 
3. Deployment of a failsafe mechanism in case of failure of the isolation system 
4. Unavailability of performance data of isolated structures during earthquakes 
5. Lack of understanding of ground motion data with respect to long period components 

and directivity effects 
6. Inspection and replacement requirements of isolators 
7. Unavailability of design codes 

There have been considerable advances in the understanding of these issues and all of these 
concerns have been addressed.  

The US Department of Energy (DoE) and EPRI sponsored projects in the 1980s to study the 
application of seismic isolation to fast breeder reactors. The feasibility of several isolation 
systems were assessed, including the French system employed at Cruas, lead-rubber bearings 
(Freskakis and Sigal, 1985), and the Alexisismon sliding system (Ikonomou, 1985). The DOE 
then sponsored projects to develop three advanced reactors: 1) Power Reactor Inherently Safe 
Module (PRISM), 2) Sodium Advanced Fast Reactor (SAFR), and 3) Modular High Temperature 
Gas Cooled Reactor (MHTGR). All three designs included passive safety features and 
incorporated seismic isolation to the standardize design (Tajirian and Kelly, 1989).  

The Energy Technology Engineering Center (ETEC, 1988) coordinated the Seismic Technology 
Program Plan (STPP) sponsored by Department of Energy. The goal of the research program 
was to reduce the impact of seismic design on the cost of liquid metal reactors. Seismic 
isolation was identified as a key element to meet this goal. The five objectives of the STPP 
were: 1) seismic isolation verification, 2) seismic qualification of standardized plants,  
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3) utilization of inherent strength, 4) validation of core seismic analysis, and 5) validation of
piping design. The ALMR development program was started in 1989 to meet the objectives of
STPP. Experimental and analytical studies were performed to develop standardized nuclear
reactor design concepts that were economically competitive with other domestic energy sources
and have passive safety features (Clark et al., 1995; Gluekler, 1997; Kelly et al., 1990; Snyder
and Tajirian, 1990).

PRISM was chosen in 1989 by DOE for further development as part of ALMR program. The 
development of PRISM was managed by a team lead by General Electric (GE) Nuclear Energy 
and included Argonne National Laboratory (ANL), Energy Technology Engineering Center 
(ETEC), the University of California at Berkeley, and Bechtel National, Inc. (BNI) (Gluekler et al., 
1989). The qualification and testing of the proposed isolation system was performed with full-
scale and reduced-scale bearings. Kelly et al. (1990) noted the high damping rubber bearings 
stiffened at shear strains greater than 200% and bolted connections perform better than 
doweled connections allowing higher horizontal displacement capacity and restoring force. 
However, experiments on high damping rubber bearings identified scragging effects and 
significant nonlinear behavior at high shear strains. The ALMR program was cancelled in 1994. 
The US Nuclear Regulatory Commission, in its pre-application safety evaluation report (SER) in 
1994, concluded that there was no obvious impediments to licensing the PRISM (ALMR) design 
(NRC, 1994). General Electric continued development of PRISM after the ALMR program was 
terminated as the Super-PRISM (S-PRISM) project. A key difference between PRISM and S-
PRISM was that in PRISM, each of the two reactors was placed on separate isolated mat, 
whereas in S-PRISM a single isolated mat supported both reactors. The progress of research 
activities on PRISM is cartooned in Figure 2-4. 

Figure 2-4    Historical development of PRISM 
SAFR was a sodium-cooled reactor designed by Rockwell International Corp. This design 
concept included low shape factor bearings, which provided horizontal and some vertical 
isolation (Aiken et al., 1989; Tajirian et al., 1990). The Nuclear Regulatory Commission issued 
pre-application safety evaluation reports for SAFR and PRISM in 1991 and 1994.  

US federal government support for research programs supporting isolation of nuclear power 
plants finished in the 1990s. Related research efforts declined accordingly. Malushte and 
Whittaker (2005) noted that one impediment to implementation was a lack of guidance for the 
analysis, design and regulation of seismically isolated nuclear structures. Such guidance is now 
available in Chapter 12 of ASCE/SEI Standard 4-16 (ASCE, 2017). Recommendations for NPP 
structures are provided in Kammerer et al. (2019). Much of the technical basis in these 
documents can be traced to the research of Huang (Huang et al., 2008; Huang et al., 2010; 
Huang et al., 2011a; Huang et al., 2011b; Huang et al., 2011c).   
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• DOE
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2.3 Standardized Designs of Seismically Isolated Nuclear Reactors 

2.3.1 Advanced Liquid Metal Reactor 

The Advanced Liquid Metal Reactor (ALMR) project was started in 1984 by the Argonne 
National Laboratory and supported by Department of Energy (DOE). The reactor was isolated in 
the horizontal direction. The isolation system consisted of 66 high damping rubber bearings. 
The fundamental frequencies of the isolated structure were 0.7 Hz in the horizontal direction 
and 20 Hz in the vertical direction. The ALMR was designed for shaking associated with spectra 
anchored to peak ground accelerations in the horizontal and vertical directions of 0.5 g. Figure 
2-5 presents a cut-away view of the isolated reactor. The ALMR program was discontinued in 
1994. 

 
Figure 2-5    ALMR reactor & steam generator facility general arrangement (Forni, 2010) 

2.3.2 Super-Power Reactor Inherently Safe Module (S-PRISM) 

The Super-Power Reactor Inherently Safe Module (S-PRISM) is a compact standardized liquid 
metal reactor, with 622 MWe capacity. It was developed by GE Hitachi Nuclear Energy. S-
PRISM is an advanced version of the PRISM concept developed in the 1980s and 1990s as 
part of the ALMR program. It retains the key design features of ALMR, and its seismic isolation 
system is that of the original PRISM reactor (Tajirian and Kelly, 1989). The design is modular 
with a number of reactor modules per power unit. Each reactor module is isolated in the 
horizontal direction using 20 high damping rubber bearings with a diameter of 1320 mm and a 
total height of 587 mm. Each bearing consists of 30 layers of rubber (30× 12.7 mm) and 29 steel 
shims (29× 3.2 mm). The fundamental frequencies in the horizontal and vertical directions were 
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0.7 Hz and 21 Hz, respectively. The isolation system was design for shaking characterized by 
horizontal peak ground acceleration of up to 0.5 g and vertical peak ground acceleration of up to 
0.3 g. 

Figure 2-6 Cut-away view of the PRISM reactor (GE, 2012) 

2.3.3 Sodium Advanced Fast Reactor 

Rockwell International developed the DOE-sponsored Sodium Advanced Fast Reactor (SAFR) 
in 1988. SAFR featured a pool type liquid metal reactor as its primary module. It was designed 
for shaking characterized by standard-shaped spectra anchored to horizontal and vertical peak 
ground accelerations of 0.3 g. The seismic isolation system used 100 low-shape factor, high 
damping rubber (HDR) bearings to isolate in the horizontal and vertical directions. The bearings 
had diameter of 970 mm and total height of 426 mm, and included four 100-mm thick layers of 
rubber and 3.2-mm thick steel shims. The low shape factor (=2.4) of the rubber layers provided 
flexibility in vertical direction but the vertical load capacity was limited as a result. The estimated 
fundamental frequencies of the isolated structure were 0.5 Hz and 3 Hz in the horizontal and 
vertical directions, respectively. Reduced-scale tests on these low shape factor bearings were 
performed with doweled and fixed connections (Kelly et al., 1990). 

2.3.4 Secure Transportable Autonomous Reactor 

Argonne National Laboratory (ANL) developed the Secure Transportable Autonomous Reactor 
(STAR), a liquid metal reactor. Two types of isolation system were developed for this reactor 
(Yoo and Kulak, 2002). A vertical cross section through the isolated structure is shown in Figure 
2-7. A 2D isolation system provides isolation in horizontal direction with high damping rubber
(HDR) bearings, each 1200 mm in diameter and 500 mm tall. Each bearing consists of 29
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rubber layers and 28 steel shims, with a total height of rubber of 278 mm. The fundamental 
frequencies of the isolated structure in the horizontal and vertical directions are 0.5 Hz and 21 
Hz, respectively.   

Studies on 3D isolation systems were performed for STAR-LM. Vertical isolation was achieved 
by helicoidal springs, as shown in Figure 2-8 (Yoo et al., 1999). The 3D isolated structure had 
fundamental frequencies of 0.5 Hz and 1.1 Hz in the horizontal and vertical directions, 
respectively. Design basis shaking for the STAR-LM reactor was described by a spectrum 
anchored to a peak ground acceleration of 0.3g and a vertical peak ground acceleration of 0.2g. 

Figure 2-7    Vertical cross section through the seismically isolated STAR (Yoo and Kulak, 
2002) 



2-11

Figure 2-8    3D isolation system for the STAR (Yoo et al., 1999) 

2.3.5 DFBR 

A demonstration fast breeder reactor (DFBR) was designed by CRIEPI in Japan. The design 
included 2D (horizontal) and 3D (horizontal and vertical) isolation systems. The 2D isolation 
system consists of 246 elastomeric bearings (diameters up to 1600 mm) with steel dampers for 
supplemental energy dissipation. The fundamental frequencies of the isolated structure were 
0.5 Hz and 20 Hz in the horizontal and vertical directions, respectively.  

The 3D isolation system was realized by using elastomeric bearings for horizontal isolation and 
air springs for vertical isolation, as shown in Figure 2-11. The elastomeric bearings had a 
diameter of 1600 mm and a height of 225 mm. The fundamental frequencies in the horizontal 
and vertical directions were 0.4 Hz and 0.5 Hz, respectively. The air compartment operated at a 
service pressure of 1.6 MPa and resisted a vertical service load of 9800 kN. 
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Figure 2-9    Vertical layout of seismically isolated demonstration FBR (Forni, 2010) 
 

 
Figure 2-10   2D isolation system for the demonstration FBR (Forni, 2010) 
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Figure 2-11   3D isolation system for the demonstration FBR (Forni, 2010) 

2.3.6 Super Safe, Small and Simple (4S) 

The 4S reactor is described as an ultra-compact design and was developed by Toshiba and 
CRIEPI of Japan. This design was proposed for a site in the state of Alaska. The capacity of the 
4S was 10 MWe, with a possible increase up to 50 MWe. The 4S reactor has enhanced passive 
safety features, including seismic isolation. The reactor module is installed in a sealed 
cylindrical vault 30 m below grade level, as shown in Figure 2-12. The analysis and design of 
the seismic isolation system is based on Japanese guidelines JAEG 4614-200 (JEA, 2000), 
which was introduced previously. Lead-rubber bearings of three different geometries were 
proposed and the layout of the isolators was based on the axial capacities listed in in the first 
column of Table 2-1. The geometry of the lead-rubber bearings is presented in Table 2-1. The 
fundamental frequency of the isolated structure in the horizontal direction was 0.5 Hz. The 
isolation system for the 4S reactor was designed for earthquake shaking with a horizontal peak 
ground acceleration of 0.3g (Shimizu, 2009). 

Table 2-1   Properties of the lead-rubber bearings used for the 4S reactor (Shimizu, 2009) 
Axial 

capacity 
(kN) 

Bonded 
diameter 

(mm) 

Isolator 
diameter 

(mm) 

Rubber layer 
thickness (mm) 

Number of 
rubber layers 

Overall 
height (mm) 

3250 1050 1450 220 16 440 
4750 1250 1650 200 13 420 
6250 1450 1850 196 12 416 
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Figure 2-12   Vertical cross section through the seismically isolated 4S reactor, dimensions  

   in mm (Shimizu, 2009) 
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Figure 2-13   Layout of lead-rubber bearings in the 4S reactor (Shimizu, 2009) 

2.3.7 Jules Horowitz Reactor (RJH) 

The Jules Horowitz Reactor is a material testing and research reactor that is being built at 
Cadarache in France. The reactor building is equipped with a horizontal isolation system. One 
hundred and ninety-five synthetic rubber bearings (900× 900× 181 mm), manufactured by 
Freyssinet comprised the now installed isolation system. In each bearing, the total thickness of 
synthetic rubber is 120 mm (6× 20 mm), the total thickness of the shims is 25 mm (5× 5 mm), 
the total thickness of the end plates is 30 mm (2× 15 mm), and 3 mm thickness of cover rubber 
was used to provide environmental protection. The photographs of the rubber bearings and the 
model of the reactor is shown in Figure 2-14 and Figure 2-15, respectively. The dynamic shear 
modulus of the rubber and damping ratio are 1.1 MPa and 5%, respectively (NUVIA, 2011). The 
layout of the isolators are shown in Figure 2-16. The fundamental frequency of the isolated 
structure in the horizontal direction is 0.6 Hz. The design basis earthquake shaking was 
designed by a spectrum anchored to a peak horizontal acceleration of 0.35g.  

Figure 2-14   Elastomeric bearing used for the RJH (NUVIA, 2011) 
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Figure 2-15   Cut-away view of Jules Horowitz Reactor (NUVIA, 2011) 
 

 
Figure 2-16   Layout of the isolators for the RJH (NUVIA, 2011) 
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2.3.8 International Thermonuclear Experimental Reactor (ITER) 

The International Thermonuclear Experimental Reactor (ITER) is a research nuclear fusion 
reactor being constructed at Cadarache, France, and is located 3 km from the site of the RJH. 
The reactor building is isolated using 493 elastomeric bearings of the same design used for the 
RJH. The installation of the bearings was completed in March 2012. 

Figure 2-17   Isolator layout for the seismically isolated ITER (www.iter.org) 

Figure 2-18   Cross-section through the elastomeric bearing used for ITER and RJH 
  (NUVIA, 2011) 
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Figure 2-19   Isolators installed on the site of ITER (http://www.iter.org) 

2.3.9 International Reactor Innovative and Secure (IRIS) 

IRIS is a small-scale Pressurized Water Reactor (PWR) being developed by group of 
companies, laboratories, and universities, and is led by Westinghouse Electric Company. 
Seismic isolation has been considered for the design of this plant (Poggianti, 2011). The seismic 
isolation system is composed of 99 High Damping Rubber (HDR) bearings with two different 
diameters, 1000 mm and 1300 mm, and a height of 100 mm. The shear modulus of rubber is 
reported as 1.4 MPa (Poggianti, 2011). The fundamental frequency of isolated reactor in the 
horizontal direction is 0.7 Hz. It was designed for safe shutdown earthquake shaking (design 
basis) shaking characterized by spectra with horizontal and vertical peak ground accelerations 
of 0.3g and 0.2g, respectively. The proposed layout of the isolators is shown in Figure 2-21. 
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Figure 2-20   Vertical section through IRIS (Forni and Poggianti, 2011) 

Figure 2-21   Layout of isolators for IRIS (Poggianti, 2011) 
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Isolator diameter
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2.4 Review of Experimental Work 

2.4.1 General 

Tensile deformation in elastomeric bearings has traditionally been considered undesirable. 
Design codes and standards that explicitly consider response in axial tension do not allow 
tensile loading or limit the value of allowable tensile stress in elastomeric bearings under 
design-basis loading. The Japanese specifications for design of highway bridges (JRA, 2011) 
limit the tensile stress in G8 and G10 rubber1 to 2 MPa. Eurocode 8 restricts the use of 
elastomeric bearings if axial tensile force is expected during seismic loadings. New Zealand and 
Chinese seismic design codes limit the tensile stress to 3 times the shear modulus G( )  and 1 
MPa, respectively (Mangerig and Mano, 2009; Yang et al., 2010). 

Recent experiments have shown that elastomeric bearings can sustain large tensile strains of 
up to 100%  following cavitation, without rupture of the bearing (Iwabe et al., 2000). The design 
codes for seismic isolation of nuclear facilities in the United States (ASCE, 2017; Kammerer et 
al., 2019) considers the effects of extreme earthquakes. Seismic isolation is being considered 
for new build nuclear power plants and these isolation systems will have to be designed to 
accommodate these extreme loadings, which may include net tensile force in bearings. In order 
to consider tensile loading in seismic isolation design, robust mathematical models are required 
to simulate the load-deformation behavior in tension.  

Much of the initial work on cavitation of elastomers was done by Gent and Lindley (1959b). 
They used bonded rubber cylinders in their experiments to investigate behavior under tensile 
loading. The cavitation stress (or cracking stress as defined in Gent and Lindley (1959b)) is 
defined as the tensile stress at which microcracks form in the volume of rubber. The variation of 
cavitation stress with the thickness of the rubber discs is presented in Figure 2-22. 

As evident from Figure 2-22, the tensile properties of rubber are highly dependent on its 
thickness, or more appropriately the shape factor,S 2, which is defined as the loaded area 
divided by the perimeter area that is free to bulge. Only elastomeric bearings with high shape 
factors, between 5 and 30, are discussed here, because these are used for seismic isolation 
applications. Experimental programs on the tensile behavior of rubber bearings are summarized 
in Table 2-2. Very few experiments have investigated the cyclic load-deformation behavior of 
elastomeric bearings in tension and most have only considered the effect of constant axial load 
on the shear properties of elastomeric bearings. 

1 G8 and G10 denote rubber classes with shear modulus 0.8 and 1 MPa, respectively.  More information 
is presented in Japan Road Association (JRA). (2011). "Bearing support design guide for highway bridges 
(In Japanese)." Japan. 
2 The first shape factor, S , for a circular bearing is equal to the / 4 rD t , where D  is the bonded
diameter and rt  is the thickness of the individual rubber layer.
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Figure 2-22   Variation of cavitation stress with the thickness of rubber discs of different 
  Young’s modulus (Gent and Lindley, 1959b) 

Table 2-2    Experimental work on the tensile properties of elastomeric bearings 
Research 
reference Bearing properties Focus 

Iwabe et al. 
(2000) 

LDR, LR, HDR bearings, diameter 500 
mm and 1000 mm, shape factor ~30 

Tension, shear-tension, post-
cavitation mechanical properties 

Kato et al. (2003) 
LDR, diameter 500 mm and 1000 mm, 
varying bearing plate thickness, shape 
factor~33 

Tension, scale effect, bearing 
plate thickness 

Shoji et al. (2004) LR, 240×240 mm, shape factor~8 Cyclic deterioration under 
tension 

Feng et al. (2004) LR, diameter 100 mm, shape 
factor~15 

Tension, mechanical properties, 
three-dimensional dynamic 
loading 

Warn (2006) 
LDR, LR, outer diameter 152 mm, 
inner diameter 30 mm, shape 
factor~12 

Tension, coupling of horizontal 
and vertical motion 

Constantinou et 
al. (2007) 

LDR,  diameter 250 mm, shape 
factor~9 Single cycle tensile loading 

Iwabe et al. 
(2000) 

LDR, LR, HDR bearings, diameter 500 
mm and 1000 mm, shape factor ~30 

Tension, shear-tension, post-
cavitation mechanical properties 
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2.4.2 Iwabe et al. (2000) 

Iwabe et al. (2000) performed a series of tests that focused on the tensile loading of low-
damping rubber (LDR), lead rubber (LR), and high-damping rubber (HDR) bearings. Bearings 
with high shape factor, = 30S , were subjected to cyclic tensile loading with and without lateral 
displacements. The load-deformation behavior in tension was recorded and changes in the 
mechanical characteristics before and after tensile loading were monitored.  

Bearings experienced cavitation and sustained tensile strains up to 100% under shear strains of 
200% without rupture. Cyclic tensile loading showed a) nonlinear hysteretic behavior following 
cavitation, and b) the cavitation strength decreasing by half following large tensile strains, 
typically greater than 100%. Hysteresis was more pronounced in HDR bearings than LDR and 
LR bearings. The hysteresis in a LDR bearing under tensile loading subjected to 200% shear 
displacement is shown in Figure 2-23. Characteristic tests to monitor mechanical properties 
showed no significant change in shear characteristics following tensile loading.  

 
Figure 2-23   Hysteresis in tension loading with 200 % shear strain (Iwabe et al., 2000) 

2.4.3 Kato et al. (2003) 

Kato et al. (2003) tested LDR bearings of different diameters with shape factors of 
approximately 33 to obtain vertical and horizontal characteristics under cyclic loading, and to 
investigate the effects of end plate thickness and size on the mechanical properties of 
elastomeric bearings. Tensile-compressive tests at constant shear strain and shear testing 
under constant tensile strains were performed. The tensile stiffness was measured including the 
stiffness contributions from the end plates. The experiments showed an increase in tensile 
stiffness with increasing end plate thickness (and hence stiffness); but shear stiffness was not 
dependent on end plate thickness or the tensile state of load or deformation. Figure 2-24 shows 
four load-deformation curves in tension at offset shear strains3 of 0%, 100%, 200% and 300%, 
respectively. The cavitation strength decreased with an increase in offset shear strain, as shown 
by the dashed arrow in Figure 2-24, and the maximum tensile deformation increased at higher 
offset shear strains. The bearing failed at a tensile strain of 50% at an offset shear strain of 
300%. Scale effects on tensile properties were investigated using a 500-mm diameter and a 

                                                
3 The shear strain imposed prior to testing and maintained during testing in tension. 
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1000-mm diameter bearing with almost identical shape factors. Minimal effects of the overall 
shape of the bearing, which is characterized by the second shape factor 2S (= bonded diameter 
divided by total rubber height, ( / rD T .) were observed on the tensile properties of the bearings, 
which is expected as properties of bearings in tension are more appropriately represented as 
functions of the first shape factor.  

Figure 2-24   Effect of offset shear strain on tensile behavior (Kato et al., 2003) 

2.4.4 Shoji et al. (2004) 

Experiments were performed by Shoji et al. (2004) to evaluate effect of axial load on the shear 
behavior of elastomeric bearings. Low-shape factor bearings, ~ 8S , were subjected to cyclic 
shear loading under constant tensile or compressive load. The effect of axial load on the 
response in shear was monitored. An image analysis technique was used for strain 
measurements. Hysteresis in shear, as measured by the area contained within the force-
displacement loop, under constant compressive load was greater than in shear under constant 
tensile load, as shown in Figure 2-25.  

(a) 6 MPa compression (b) 2 MPa tension
Figure 2-25   Lateral force versus lateral displacement under tensile and compressive loading 

  (Shoji et al., 2004) 
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2.4.5 Feng et al. (2004) 

Feng et al. (2004) conducted three-dimensional shaking table tests on a 1/12 scale model of a 
24-story building using 8 LR bearings of 100 mm diameter and a first shape factor of about 15. 
The variation of axial load was monitored and effect of axial load variation on hysteresis in shear 
was investigated. Axial loads were observed to vary, and tension occurred in LR bearings in 14 
of the 55 tests, with a maximum tensile stress in a bearing of 2.2 MPa. A difference in hysteresis 
in shear due to axial load variation (3-D versus 2-D excitation) was seen in the experimental 
results. 

2.4.6 Warn (2006) 

Warn (2006) and Warn and Whittaker (2006) investigated the coupled horizontal-vertical 
response of LDR and LR bearings through a series of static and dynamic tests using a quarter-
scale isolated bridge model. LDR and LR bearings with low shape factors, S~12, were used for 
the tests. The results obtained showed clear dependency of vertical stiffness on shear 
displacement. The experimental results for vertical stiffness were in good agreement with 
analytical and empirical models. The shear hysteresis of the LR bearings was influenced by 
variation of axial load. Large tensile deformation tests, with and without a lateral offset, were 
performed to investigate the tensile load-deformation behavior of LDR and LR bearings. One of 
the obtained tensile load-deformation curves for LDR bearings is presented in Figure 2-26. 

 
Figure 2-26   Load-deformation behavior of LDR bearings under tensile loading with zero  

  lateral  offset (Warn, 2006) 

2.4.7 Constantinou et al. (2007) 

A low shape factor bearing, S ~9, was subjected to single-cycle tensile loading to obtain tensile 
properties. The value of axial stiffness obtained from the experiment was in good agreement 
with the vertical stiffness obtained using the two-spring model (Koh and Kelly, 1987). The 
bearing cavitated at tensile load of 3 GA, where G  is the shear modulus at shear strain of 75%, 
and A  is the bonded rubber area. The force-displacement curve obtained for the tensile loading 
is shown in Figure 2-27. 
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Figure 2-27   Load-displacement behavior in tension (Constantinou et al., 2007) 

2.5 Review of Mathematical Models 

Elastomeric bearings have been conventionally modeled using a linear spring in the vertical 
direction. However, experiments have shown highly nonlinear response associated with 
cavitation, hysteresis, and coupling with horizontal displacement under tensile loading. 
Mathematical models have been proposed to capture the load-deformation behavior of 
elastomeric bearings in tension and these can be divided in two groups: 

1. Continuum hyperelastic models using strain energy density functions
2. Discrete linear and nonlinear models using analytical or empirical formulations

2.5.1 Hyperelastic models 

Hyperelastic models are used for rubber when finite element methods are used to model 
elastomeric bearings. Hyperelastic models make use of a strain energy potential, U , to obtain 
constitutive relationships. The general formulation of hyperelastic models is given by: 

= ( )U U F  (2.1) 

∂
=

∂
( )U FS
F

(2.2) 

where S  is the measure of stress and F  is the measure of strain. The underlying assumption is 
that the material is elastic and isotropic. It is shown later that these models can be modified to 
include energy dissipation characteristics. 

The strain energy potential, U , can be decoupled into a deviatoric (shear) component W , and 
a dilatational (volumetric) component dilatationU : 

= + dilatationU W U (2.3) 

= +1 2 3( , ) ( )dilatationalU W I I U I  (2.4) 



 

2-26 
 

Strain invariants are expressed in terms of three principal stretch ratios (deformed length 
divided by original length), λ1 , λ2  and λ3  as: λ λ λ= + +2 2 2

1 1 2 3I , λ λ λ λ λ λ= + +2 2 2 2 2 2
2 1 2 2 3 3 1I , and 

λ λ λ= 2 2 2
3 1 2 3I . The strain energy potential can be rewritten in terms of principal stretch ratios as: 

 λ λ λ= +1 2 3( , , ) ( )dilatationalU W U J  (2.5) 

where λ λ λ= 1 2 3J  is a measure of volumetric strain.  

Various hyperelastic models have been proposed using different deviatoric and dilatation 
functions that relate strain invariants to strain energy potential using unknown parameters. 
These models make use of experimental data to obtain unknown parameters using curve-fitting 
and are applicable for a certain range and state of strain. Some of the hyperelastic models 
available in the finite element program ABAQUS are identified in Table 2-3. 

Table 2-3 Hyperelastic models used in ABAQUS (Dassault, 2010d) 
 

Physical models Material parameters 
Arruda-Boyce 2 
Van der waals 4 
Phenomenological models  
Polynomial (order N) ≥2N 
      Mooney-Rivlin (1st order) 2 
      Reduced polynomial (independent of 2I ) N 

Neo-Hookean (1st order) 1 
                 Yeoh (3rd order) 3 
Ogden (order N) 2N 
Marlow (independent of 2I ) n.a.1 
1. n.a.: not applicable 

 
One of the earliest proposed hyperelastic models was the Mooney-Rivlin model (Mooney, 1940; 
Rivlin, 1948). The model considered only incompressible materials ( =3 1I , λ λ λ= =1 2 3 1J ) and 
ignored the dilatational component of the strain energy potential. In its simplest form, the 
Mooney-Rivlin model can be expressed as: 

 = − + −1 1 2 2( 3) ( 3)U C I C I  (2.6) 

where 1C  and 2C  are temperature-dependent material parameters related to the initial shear 
modulus of the material by the expression: 

 + =1 22( )C C G  (2.7) 

For small tensile strains, the contribution from second strain invariant, 2I , can be neglected, and 
the Neo-Hookean model (Rivlin, 1948) is formulated as: 

 = −1 1( 3)U C I  (2.8) 
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where =12C G . The New-Hookean model captures the behavior of hyperelastic material for 
moderate tensile strains of 40%. 

Both of the above models are applicable only for incompressible materials (Poisson’s ratio, υ = 
0.5; Young’s modulus, E  = 3G ). However, rubber exhibits some compressibility. Moreover, an 
infinitely incompressible material presents numerical stability problems in finite element 
calculations. A dilatational term is often added to the strain energy potential to model the 
“almost incompressible” behavior of rubber, taking into account its bulk modulus, K . The 
dilatational component is given by the expression: 

( )= −
21

2dilatational
KU J (2.9) 

The Mooney-Rivlin model and the Neo-Hookean model, modified to account for the 
compressibility of rubber, are given by: 

Mooney-Rivlin: ( )= − + − + −
2

1 1 2 2( 3) ( 3) 1
2
KU C I C I J  (2.10) 

Neo-Hookean: ( )= − + −
2

1 1( 3) 1
2
KU C I J  (2.11) 

If the initial shear modulus of rubber is known, the Neo-Hookean model can be applied directly 
without the need for experimental data, which makes the Neo-Hookean model one of the 
popular hyperelastic models in finite element analysis. 

Most of the hyperelastic models developed after Rivlin (1948) use more generalized 
formulations of the Mooney-Rivlin model with a larger number of parameters. Although these 
models capture the response more accurately for a greater range of strain, having large number 
of parameters (N in Table 2-3) requires more experimental data and calibration. Dorfmann and 
Burtscher (2000) suggested a cavitation-based damage model to simulate the load-deformation 
behavior of elastomeric bearings in tension. They used the modified Mooney-Rivlin equation 
(2.10) for strain energy potential, and pre-cavitation and post-cavitation bulk modulus in the 
dilatational component to allow for the sharp change in stiffness after cavitation.  

Models proposed after Rivlin (1948) have tried to capture the hysteresis under tensile loading 
due to Mullin’s effect (scragging). Although low shape factor bearings might show little energy 
dissipation due to Mullin’s effect, the nature of hysteresis in tensile loading of seismic isolation 
bearing is primarily due to cavitation or internal damage that cannot be captured by any of the 
proposed models. Figure 2-28 shows the contributions of damage and Mullin’s effect 
(scragging) to the total energy dissipation under tensile loading. The area between the loading 
and unloading branches represents the energy dissipated due to damage. Subsequent loading 
follows the prior unloading path elastically until the strain exceeds the prior maximum value, 
below which loading has the effect of only opening and closing existing cavities within the 
rubber, and small energy dissipation due to Mullin’s effect. 

Hyperelastic models can be used to simulate nonlinear tensile behavior of rubber. However, 
limitations in terms of the large number of unknown parameters, dependency on experimental 
data, and inability to reproduce the hysteretic behavior due to damage, restricts their 
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widespread use. Finite element analysis is computationally intensive and is not a popular 
method for analysis of large structures with many structural components. Contemporary 
software programs for structural analysis use simplified models that are discussed in the 
following section. 

 
Figure 2-28   Components of energy dissipation in the tensile loading of elastomeric bearings 

2.5.2 Linear and nonlinear stiffness models 

Elastomeric bearings in the axial direction have been conventionally modeled as a linear spring 
with a constant stiffness, as shown in Figure 2-29.  

The axial stiffness of multilayer elastomeric bearings is given by the expression: 

 
− −

   
= =   
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∑

1 1

1

1n
i

vo
i i

tK
K AE

 (2.12) 

which, for bearings with rubber layers of the same thickness, is simplified to: 

 =vo
r

AEK
T

 (2.13) 

where voK  is the vertical stiffness at zero lateral displacement, A  is the bonded rubber area, rT  
is the total rubber thickness, and E  is the elastic modulus in the vertical direction.  The same 
expression is used for compression and tension but with a different definition of elastic modulus: 
compression modulus cE  and tension modulus tE . 

Scragging 

Damage 
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Figure 2-29 Linear stiffness model of elastomeric bearing in vertical direction 

Analytical expressions for the compression modulus of elastomeric bearings were developed by 
Chalhoub and Kelly (1990) and Constantinou et al. (1992) for different shapes. The 
compression modulus for a circular elastomeric bearing with finite compressibility is given by 
(Constantinou et al., 2007): 

−
 = + 
 

1

2
1 4

36cE
KGS

(2.14) 

where S  is the first shape factor of the bearing and K  is the bulk modulus of the rubber. As 
suggested by experiments, the tension modulus before cavitation is the same as the value in 
compression, namely, =c tE E . Hence, a single value of stiffness in compression and tension, 
given by Equation (2.13), is used in linear-stiffness model. 

Koh and Kelly (1987) and Kelly (1993) proposed two vertical stiffness models for elastomeric 
bearings that take into account the height reduction due to shear deformation. The coupling of 
vertical stiffness with lateral displacement is captured by these models. The first model, known 
as a two-spring model, considers a simplified physical representation of elastomeric bearing. 
The second models a bearing as a continuous beam with equivalent properties and assumes 
that plane sections remain plane but not necessarily perpendicular to the neutral axis. This 
model can also be used to explain the concept of tension buckling and increased tensile 
deformation capacity of bearings in tension with lateral shear offset (Kelly, 2003). The vertical 
stiffness obtained from the two models are: 

Two-spring model: 

π

=
  +  
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Exact model: 
( )π

=
  +  
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(2.16) 

where u  is the lateral displacement of elastomeric bearing, r  is the radius of gyration of 
bonded rubber area, = / crp P P , P  is the axial load, and crP is the critical buckling load 

𝐾𝐾𝑣𝑣0 

Axial force 

Axial deformation 

Tension 

Compression 
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accounting for area reduction. The function ( )πf p  is a trigonometric function with f and 'f  given 
by: 

 ( )
( ) ( )

− − −
= =

− −
2

sin (1 cos ) sin( ) ; '( )
1 cos 1 cos
x x x x xf x f x

x x
 (2.17) 

and ( )π'f p  is a symmetric function that varies between 1/3 to 1 as π p  varies between 0 toπ , 
or P  varies between 0 to buckling load crP . For tensile loading, the axial load P  is much less 
than the critical buckling loading in tension; and a bearing cavitates at loads much less than crP . 
The value of ( )π'f p  is closer to 1/3 than 1 in tensile loading. The two-spring model and the 
continuous beam model are linear with respect to vertical displacement but show nonlinear 
characteristics with increasing lateral displacements. The two-spring model proposed above 
shows good agreement with experimental results (Warn and Whittaker, 2006). In addition, Warn 
and Whittaker (2006) also suggested vertical stiffness expressions based on the overlapping 
area method and a linear approximation of overlapping area method to capture the coupling of 
vertical stiffness and horizontal displacement.  

None of the linear or nonlinear models discussed above considers cavitation. The calculation of 
cavitation stress and post-cavitation stiffness remains an open issue. Gent (1990) suggests that 
cavitation occurs at a negative pressure of about 3G . This value is however a good 
approximation only for certain range of radii of initial voids present in the rubber.  

Constantinou et al. (2007) suggested a bilinear model and included cavitation strength and post-
cavitation stiffness. The model ignores coupling of vertical stiffness and horizontal displacement 
in tensile loading. Tensile stiffness is given by: 

 = t
vt

r

E A
K

T
 (2.18) 

where tE  is the tensile modulus. The modulus tE  before cavitation is same as cE , given by 
Equation (2.14). The modulus, tE , after cavitation takes the value of Young’s modulus, E , of 
rubber, as the state of stress in the rubber after cavitation reduces to that of uniaxial tension. 
Elastomers used in seismic isolation (filled rubber) have Young’s modulus of about E  = 4G  
(Ciesielski, 1999; Gent, 2001). Hence, the ratio of tensile stiffness before and after cavitation is 
given by the expression: 
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with the values in the range of 100 to 200 for typical intermediate and high shape factor 
bearings constructed using low damping natural rubber.  

The vertical stiffness model suggested by Constantinou et al. (2007) is presented in Figure 
2-30. 
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Figure 2-30   Vertical stiffness model for an elastomeric bearing (Constantinou et al., 2007) 

Yamamoto et al. (2009) used a similar backbone curve to Figure 2-30 and included hysteresis in 
compression and tension, as shown in Figure 2-31. The model uses the compression modulus 
proposed by Gent and Lindley (1959a) and an arbitrarily small value of post-cavitation modulus. 
Following unloading in tension (c-d-a), it traces back to a target point (d) defined by the user and 
then follows the compression curve. It defines a yield zone in compression (a-e), and assumes 
the post-buckling modulus as half of the compression modulus. 

The model proposed by Yamamoto et al. (2009) seeks to capture the hysteresis in axial loading 
in addition to other features of the vertical stiffness model. However, the model fails to capture 
the permanent damage and reduction in cavitation strength observed in experiments (Iwabe et 
al., 2000; Warn, 2006). It does not consider effects of loading history on load-deformation 
behavior in tension and does not provide a technical basis for choosing a particular post-
cavitation stiffness. Also, it does not consider coupling of vertical and horizontal motion 
confirmed by experimental studies (e.g., Warn and Whittaker (2006)). Moreover, use of too 
many unknown parameters limits its utility for numerical simulations. 

In addition to the models discussed above, other researchers have proposed empirical formulae 
for stiffness and cavitation strength (Iwabe et al., 2000; Yang et al., 2010). However, these 
formulae are based on limited experimental results and involve a number of unknown 
parameters. A robust mathematical formulation for use in structural analysis cannot be obtained 
from these models. 

𝐾𝐾𝑣𝑣𝑣𝑣 =
𝐴𝐴𝐴𝐴𝑐𝑐
𝑇𝑇𝑟𝑟

�
1

1 + 3
𝜋𝜋2 �

𝑢𝑢
𝑟𝑟�

2� 

3𝐺𝐺𝐺𝐺 

𝐾𝐾𝑣𝑣𝑣𝑣 =
𝐴𝐴𝐴𝐴𝑡𝑡
𝑇𝑇𝑟𝑟

Axial force 

Axial deformation 

Tension 

Compression 

𝑃𝑃𝑐𝑐𝑐𝑐 (variable) 



 

2-32 
 

 
Figure 2-31   Axial stress-strain model (Yamamoto et al., 2009) 

2.6 Modeling in Contemporary Software Programs 

2.6.1 General 

This section describes how elastomeric bearings are modeled in computer codes that are widely 
used in the United States, noting that numerical models of seismic isolation systems should a) 
include all isolators in the seismic isolation system, and b) the account for the spatial distribution 
of the isolators across the footprint of the isolated structure.  

There are two ways to represent the physical model of an isolator: 1) a full three-dimensional 
continuum model, and 2) a three-dimensional discrete model in which two nodes are connected 
by six springs to represent the mechanical behavior in each of the six directions (three 
translation and three rotation).   

General-purpose Finite Element Analysis (FEA) programs such as ABAQUS (Dassault, 2010e), 
LS-DYNA (LSTC, 2012a) and ANSYS (ANSYS, 2011), enable the use of discrete and 
continuum models of seismic isolation bearings. The special-purpose software programs used 
for structural analysis of base-isolated structures such as SAP2000 (Wilson, 1997), OpenSees 
(McKenna et al., 2006), PERFORM-3D (CSI, 2006), and 3D-BASIS (Nagarajaiah et al., 1989), 
model an elastomeric bearing as a two-node discrete element with stiffness in each of the six 
principal directions represented by linear or nonlinear springs between the two nodes. Analytical 
expressions for force and stiffness can be used to define a spring in any direction. 

The modeling techniques for different types of isolator in seven software programs (SAP2000, 
OpenSees, PERFORM-3D, 3D-BASIS, LS-DYNA, ABAQUS, and ANSYS) are discussed in the 
following sections. Two types of rubber-based isolator are considered: 1) Low Damping Rubber 
(LDR) bearing, and 2) Lead Rubber (LR) bearing. The discrete modeling techniques discussed 
for these isolators can be extended for friction-based isolators.  
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2.6.2 SAP2000 

In SAP2000, isolators are modeled using Link/Support element option. Link is a two-node 
element connected by six springs. Each node has six degrees of freedom. A description of the 
Link element is given in Figure 2-32. 

Figure 2-32   Three of the six independent springs in a Link/Support element 

SAP2000 provides the option to use the link element to model any structural element that can 
be represented as 2-node element. The property data form for the link element is shown in 
Figure 2-33. Low damping rubber (LDR), lead rubber (LR), flat sliders, single Friction Pendulum 
(FP), and double FP bearings can be modeled using the link element. The shearing behavior is 
based on the model proposed by Park et al. (1986) and extended for seismic isolation bearings 
by Nagarajaiah et al. (1991). For nonlinear force-deformation response, either a) elastic and 
post-elastic stiffness values, or b) equivalent linear stiffness, is assigned. 

For the elastomeric bearing (rubber isolator) option in the link element, nonlinear (bilinear) 
properties can be assigned to the two horizontal shear directions, but only linear elastic 
behavior is accommodated for the remaining axial and three rotational directions. 
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a) Link/support property data form b) Nonlinear directional properties for U2 

Figure 2-33   Link/Support property data input to SAP2000 (CSI, 2011) 

2.6.3 3D-BASIS 

The computer program 3D-BASIS (also 3D-BASIS-M, 3D-BASIS-TABS, and 3D-BASIS-ME-
MB) is used for the nonlinear dynamic analysis of seismically isolated structures (Nagarajaiah et 
al., 1989; Tsopelas et al., 2005). The analysis model and reference frames of a base-isolated 
structure in 3D-BASIS-ME-MB are shown in Figure 2-34 and Figure 2-35. The software program 
provides the option to use elastomeric (LDR and LR) bearings and friction-based isolators that 
include the single FP bearing, the double FP bearing, and the XY-FP bearing.  

The isolators in 3D-BASIS are modeled using explicit nonlinear force-displacement 
relationships. The isolators are considered rigid in vertical direction and do not offer any 
torsional resistance. The following elements are available in the program 3D-BASIS-ME-MB for 
modeling the behavior of elastomeric bearings (Tsopelas et al., 2005): 

1. Linear elastic element. 
2. Linear and nonlinear viscous elements for fluid viscous dampers or other devices 

displaying viscous behavior. 
3. Hysteretic element for elastomeric bearings and steel dampers. 
4. Stiffening (biaxial) hysteretic element for elastomeric bearings. 

The model proposed by Park et al. (1986) and extended for analysis of seismic isolators by 
Nagarajaiah et al. (1989) is used for the unidirectional and bi-directional hysteretic elements. 
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2.6.4 PERFORM-3D 

PERFORM-3D is a software program used for the nonlinear dynamic analysis of structures. 
PERFORM-3D has powerful capabilities for inelastic analysis. The nonlinear model proposed by 
Park et al. (1986) and extended for analysis of seismic isolators is used in the two horizontal 
(shear) directions. Elastic stiffness is used in the vertical (axial) direction with the option to 
provide different values in compression and tension. The local-axis orientation of the isolators 
must be assigned to seismic isolator elements in PERFORM 3D. Axis 3 is usually defined as the 
vertical (axial) direction of an isolator, and Axes 1 and 2 are the horizontal (shear) directions. 

Figure 2-34   Model that can be analyzed in 3D-BASIS-ME-MB (Tsopelas et al., 2005) 
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Figure 2-35   Degrees of freedom in 3D-BASIS-ME-MB (Tsopelas et al., 2005) 
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2.6.5 ABAQUS, LS-DYNA, and ANSYS 

2.6.5.1 Continuum Modeling 

In the continuum modeling approach, an isolator is modeled as a three-dimensional continuous 
object with appropriate material and geometrical properties assigned to different components of 
the isolator. All three FEA software programs, ABAQUS, LS-DYNA, and ANSYS use a similar 
approach to model an elastomeric seismic isolation bearing. The wide range of capabilities of 
FEA allows a user to model complex phenomena like heating of the lead core in LR bearings. 
The capability of a FEA model of a bearing to simulate the actual behavior depends on how 
detailed a model is constructed. Very detailed models will increase the computational effort. 

An elastomeric bearing is modeled as a multilayer object of alternating rubber and steel. Rubber 
layers are usually meshed using solid elements and the steel layers can be modeled using 
either solid or shell elements. A finite element model of an elastomeric bearing constructed in 
ABAQUS is shown in Figure 2-36. 

Figure 2-36   Finite element model of a low damping rubber bearing 

Steel is modeled as a linear elastic material. Kinematic plastic or any other metal plasticity 
material model can be used if yielding in the internal steel shims is expected. Rubber can be 
modeled either as hyperelastic material or a viscoelastic material. A viscoelastic model can be 
used if experimental data on stress-strain, strain-rate, creep, and stress relaxation are available. 
If only stress-strain data are available from an experiment, a hyperelastic material model is 
recommended. The property data form of rubber defined using a hyperelastic material is shown 
in Figure 2-37.  

Hyperelastic material models require experimental data to determine the unknown parameters 
required to model the rubber. If the initial shear modulus of the rubber is known, the Neo-
Hookean model (Rivlin, 1948) is an appropriate model for tensile shear strains of up to 40%, in 
which case no experimental data are required. A high value is assigned to the bulk modulus of 
rubber to account for its incompressibility. If a viscoelastic material model is used for the rubber, 
LS-DYNA requires the user to input a short-term and long-term shear modulus; in ABAQUS it 
can modeled in the frequency domain using complex modulus or in the time domain by 
constructing a Prony series.  
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a) Selection of mechanical properties b) Definition of a Neo-Hookean material 

Figure 2-37   Properties definition of rubber material in ABAQUS 

The behavior of rubber in high shape factor bearings differs from the experimental behavior 
observed from rubber coupon tests. When an elastomeric bearing is subjected to vertical 
tension, cavities form inside the volume of rubber: cavitation. Cavitation is followed by the 
substantial reduction in the vertical stiffness. Although rubber damage models are available in 
ABAQUS (e.g., Mullins damage model), the cavitation phenomenon in elastomeric bearings is 
different and cannot be captured using these models. Cavitation in elastomeric bearings cannot 
be captured by ABAQUS, LS-DYNA, or ANSYS using a continuum modeling approach. 

Convergence is often an issue with the use of hyperelastic material models due to their highly 
nonlinear characteristics. The single-parameter Neo-Hookean hyperelastic material, although 
easy to use, is not suitable for very large deformation analysis in which strains exceeds 40%. 
Hyperelastic models using a larger number of parameters (e.g., Yeoh (1993), Ogden (1972)) 
provide better numerical stability but require experimental data to determine the parameters. 

2.6.5.2 Discrete Modeling 

2.6.5.2.1 General 

Finite element analysis (FEA) software programs also provide option to create discrete model of 
isolators. Although the continuum approach modeling of isolators among different FEA software 
programs is similar, the modeling options for creating discrete models of isolators vary across 
the platforms. Some of the software programs provide a direct option to model a bearing based 
on its geometrical and material properties, whereas others use different techniques to create a 
two-node, twelve degree-of-freedom element with six principal directions. The discrete modeling 
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techniques in ABAQUS and LS-DYNA are discussed here. ANSYS does not provide a direct 
option for discrete modeling of isolators, but link and spring elements can be used. 

2.6.5.2.2 Discrete Modeling in ABAQUS 

ABAQUS provides the option to use a “connector” element to create discrete models of 
isolators. The connector element in ABAQUS is similar to Link/support element in SAP2000. 
ABAQUS provides a comprehensive list of “connector” elements that can be used to model an 
elastic spring, a dashpot, friction, plasticity, and damage. Different directions between two 
nodes can be coupled, uncoupled or combined. An illustration of connector behaviors in 
ABAQUS is shown in Figure 2-38. 

Figure 2-38   Conceptual illustration of connector behaviors (Dassault, 2010a) 

The first step in developing a connector is to define a connection type that represents the 
physical model of the isolator. There are two ways to create two-node, twelve degree-of-
freedom discrete element that is characterized by six local directions: 1) a basic category 
connection with a translational connection type assigned to Cartesian and rotational connection 
type assigned to Rotation, or 2) an assembled/complex category Bushing connection. Both 
options are shown in Figure 2-39. 

Once the connection type is defined, connection behavior can be defined in each of the six local 
directions for the seismic isolator. ABAQUS provides the option to use an isotropic or a 
kinematic hardening model. A direct option to use the Bouc-Wen model extended by 
Nagarajaiah et al. (1991) for seismic isolators is not available. Figure 2-40 shows the data form 
for a connector. Additional information on use of connector elements in ABAQUS is provided in 
Section 28 of ABAQUS Analysis User’s Manual (Dassault, 2010a) and Section 15.7,  15.8 and 
15.17 of ABAQUS/CAE User’s Manual (Dassault, 2010b). 

The use of a discrete model using connector elements in ABAQUS reduces the computational 
effort drastically from that associated with a continuum model, and most of the nonlinear 
behaviors can still be captured. However, modeling of isolators using connector elements in 
ABAQUS is involved by comparison with the discrete models available in structural analysis 
software programs such as SAP2000 and OpenSees. 

ABAQUS also allows the user to define a model, which is not available in ABAQUS, through 
user subroutine code and then to integrate (link) it to ABAQUS for analysis. The two-node 
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discrete model of elastomeric bearings can be implemented in ABAQUS by creating new 
subroutines called User Elements (UELs). The computational efficiency can be increased 
significantly, and it can capture all of the behaviors of seismic isolators observed experimentally 
that are defined by the user in the subroutine. 

  
a) Basic connection b) Assembled 

Figure 2-39   Type of connectors used for seismic isolators 
 

 
Figure 2-40   Definition of connector's behavior 
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2.6.5.2.3 Discrete Modeling in LS-DYNA 

LS-DYNA provides a direct option to model an elastomeric bearing through a material model 
option *MAT_SEISMIC_ISOLATOR. The corresponding element and section is created using 
options *ELEMENT_BEAM and *SECTION_BEAM, respectively. ELFORM is set to 6 (discrete 
beam), and the local axes of the isolator is defined in *SECTION_BEAM option. This material 
can be used to model elastomeric bearings, flat slider bearings, single FP bearings, double FP 
bearings and XY-FP bearings. Behavior in two horizontal (shear) directions is similar to 
SAP2000 and OpenSees, which is based on the model proposed by Park et al. (1986) and 
extended for seismic isolators by Nagarajaiah et al. (1989). The vertical stiffness for all types of 
isolators is linear elastic, with the option to provide different values in compression and tension. 
The element has no rotational or torsional stiffness and a pinned joint is assumed. However, if 
required, moments can be calculated according to the vertical load times the lateral 
displacement of the isolator by assigning the moment factors in the *MAT definition. Additional 
details on modeling a seismic isolator using *MAT_SEISMIC_ISOLATOR material model is 
provided in *MAT_197 of LS-DYNA Keyword User’s Manual (LSTC, 2012b). 

2.6.6 OpenSees 

OpenSees provides more flexibility to model isolators because of its code-based approach to 
construct the finite element model of the structure. Currently OpenSees has one element to 
model elastomeric bearings (LDR and LR). These OpenSees elements can be used for two-
dimensional or three-dimensional model of isolators. The three-dimensional representation of an 
isolator and associated degrees of freedom are shown in Figure 2-41.  

Figure 2-41   OpenSees isolator model 

All elements use the model proposed by Park et al. (1986), as extended for seismic isolation 
bearings by Nagarajaiah et al. (1991), to capture coupled behavior in the two horizontal shear 
directions. The elastomeric bearing element (Schellenberg, 2006) uses the mechanical 
properties of an elastomeric bearing as input parameters to describe the force-deformation 
relationships. A user can assign any material model available in the OpenSees material library 
in the vertical (axial) direction. A linear elastic material with vertical stiffness calculated from a 
two-spring model (Koh and Kelly, 1988; Warn et al., 2007) or a bilinear model (Constantinou et 
al., 2007) is usually used in the vertical direction. This element cannot capture coupling of 
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horizontal and vertical motion, cavitation in tension, strength reduction in cyclic tensile loading, 
heating of the lead core (in LR bearings) under large cyclic displacements, and variations in the 
critical buckling load of the bearing with horizontal displacement. 

2.6.7 Summary 

All of the available software programs discussed here are capable of modeling seismic isolators 
with varying degrees of sophistication. Although, the effort required also depends on user’s 
familiarity with the particular software program, some programs provide a direct option to model 
an isolator element based on their material, geometrical and mechanical properties, whereas in 
others, several elements need to be combined to produce isolator-like behavior, or a continuum-
based approach needs to be used. The special-purpose software programs used for structural 
analysis (e.g., SAP2000, OpenSees, PERFORM-3D, and 3D-BASIS) enable modeling of simple 
isolator behaviors, but complex behaviors (e.g., cavitation, interaction between axial 
compression and shear stiffness, strength degradation) cannot be captured, except in the open-
source code, OpenSees. The general-purpose software programs (LS-DYNA, ABAQUS, and 
ANSYS) can model complex isolator behaviors using either discrete or continuum approaches. 
Of the three general-purpose FEA programs discussed here, only LS-DYNA provides a direct 
option to model an isolator based on its material and geometrical properties. The continuum 
approach is recommended when the behavior of an individual isolator is to be studied. For 
analysis of large base-isolated structures, the discrete model will generally have to be used.  
Table 2-4 presents the capability of the seven programs summarized in this section to model 
elastomeric bearings. Two new elements have been created by Kumar (2014) for LDR and LR 
bearing to incorporate these features. Moreover, the new elements take only the geometrical 
and material properties of elastomeric bearing as input arguments and the appropriate 
mechanical properties are calculated by the element. 
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3 MATHEMATICAL MODELS OF ELASTOMERIC BEARINGS 

3.1 Introduction 

Analysis of elastomeric bearings for extreme loadings requires robust mathematical models that 
consider all of the properties that are expected to be critical under such loadings. At the same 
time, these models should be sufficiently simple to be implemented in numerical tools for the 
analysis of base-isolated structures. 

This chapter addresses important aspects of the loading of elastomeric bearings that are 
expected to affect the response of the isolated structure under extreme loadings. Mathematical 
formulations to model the considered aspects are presented. These mathematical formulations 
include numerically robust expressions that have been validated experimentally and new 
phenomenological equations to model behavior in axial tension. The mechanical behavior in the 
vertical direction is discussed in Section 3.2, which includes discussion on the behavior of 
elastomeric bearings in tension and formulation of phenomenological models to simulate the 
behavior observed experimentally. A mathematical model for mechanical behavior in the vertical 
direction, applicable to both LDR and LR bearings, is presented at the end of the section. The 
mechanical behavior in the horizontal direction is discussed in Section 0, and mathematical 
models are presented at the end of the section.  

3.2 Mechanical Behavior in Vertical Direction 

3.2.1 General 

LDR and LR bearings show similar behavior in the axial direction assuming no contribution from 
the lead core in either compression or tension. The behavior of elastomeric bearings in pure 
compression is well established and experimentally validated, and available mathematical 
models capture the behavior reasonably accurately for regular loading. These models are 
however not appropriate for extreme loadings where large variations in axial loads and coupling 
of horizontal and vertical responses needs to be considered. Available mathematical models are 
extended here to address extreme loadings.  

Unlike in compression, no robust mathematical model exists for load-deformation behavior in 
tension. Response in tension is characterized by highly nonlinear behavior that need to be 
investigated to formulate an accurate mathematical model. 

3.2.2 Coupling of horizontal and vertical response 

The coupling of horizontal and vertical response is considered by: 1) variation of shear stiffness 
with axial load, and 2) dependence of axial stiffness on lateral displacement.  

Two models are used for the elastic analysis of elastomeric bearings under axial loading. The 
continuous beam model (Kelly, 1993; Stanton and Roeder, 1982) is an extension of work of 
Haringx (1948). The two-spring model (Koh and Kelly, 1987), presented in Figure 3-1, is a 
simplification of continuous beam model.  

The two-spring model provides results that are close to the continuous beam model and is used 
here to obtain expressions for mechanical properties of elastomeric bearings. The two-spring 
model has been validated experimentally by Warn et al. (2007) and used here owing to its 
robust formulation and ease of numerical implementation. 
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Figure 3-1    Model of an elastomeric bearing (Constantinou et al., 2007) 

The vertical stiffness of the elastomeric bearing obtained from the two-spring model is given as: 

 
π π

− −
      
   = + = +               

1 12 2

02 2
3 31 1c h h

v v
r g g

AE u uK K
T r r

   (3.1) 

where A  is the bonded rubber area; cE  is the compression modulus of the bearing calculated 
as average axial stress divided by the average axial strain in a rubber layer; rT  is the total 
rubber thickness; hu  is the lateral displacement of the bearing; gr  is the radius of gyration of the 
bonded rubber area; and 0vK  is the axial compressive stiffness at zero lateral displacement. 
The axial load-deformation curve in compression is shown in Figure 3-2. The instantaneous 
value of the buckling load, crP , is discussed in the following section.  

 
Figure 3-2    Stress softening under compression 

The effect of axial load on the horizontal stiffness of an elastomeric bearing becomes important 
only when the axial load, P , is close to the critical buckling load capacity. Koh and Kelly (1987) 
provided an analytical expression for the horizontal stiffness, HK , as a function of the axial load 
using a two-spring model. 
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An approximation of the analytical expression for the horizontal stiffness that provides very 
accurate result is given as (Kelly, 1993): 

      
   = − = −   
         

2 2

01 1H H
r cr cr

GA P PK K
T P P

 (3.2) 

where 0HK  is the shear stiffness at zero axial load, and other terms have been previously 
defined. 

3.2.3 Buckling in compression 

The critical buckling load in compression is given by the expression derived from the two-spring 
model (Koh and Kelly, 1987): 

=cr S EP P P (3.3) 

where EP  is the Euler buckling load and is given by: 

π
=

2

2
S

E
EI

P
h

(3.4) 

and 

=S SP GA (3.5) 

where SA  and SI  are the shear area and moment of inertia after accounting for the rigidity of 
steel shims, and are given as: 

=S
r

hA A
T

(3.6) 

=S
r

hI I
T

(3.7) 

where A  is the bonded rubber area, I  is the area moment of inertia, rT  is total rubber 
thickness, and h  is the total height including the rubber and steel shims but excluding the end 
plates. The modulus of elasticity here is the rotation modulus: 

= rE E (3.8) 

A list of rotation moduli for different shapes and obtained using different solutions is provided in 
Constantinou et al. (2007). Rotation moduli and compression moduli of an incompressible 
material of circular and square bearings follow the relationship: 

=
3

c
r

E
E (3.9) 
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where cE  is the compression modulus. For circular bearings rotation modulus is = 22rE GS . 

The critical buckling load in Equation (3.3) varies with lateral displacement. The area reduction 
method has been shown to provide conservative results (Buckle and Liu, 1993; Buckle et al., 
2002; Warn and Whittaker, 2006; Weisman and Warn, 2012). The reduced critical buckling load 
is: 

 = 0
r

cr cr
AP P
A

 (3.10) 

For rectangular bearings of bonded area dimension ×1 2B B : 

 ( )= − ∆2 1rA B B  (3.11) 

For circular bearings of bonded area of diameter D : 

 ( )δ δ= −
2

sin
4r

DA  (3.12) 

where  ( )δ −= ∆12cos / D , and ∆  is the lateral displacement of the bearing.  

Figure 3-3 shows the overlap area of an elastomeric bearing.  

Substituting the value of δ  in Equation (3.12), the reduced area can be written as: 

  −
 ∆ ∆ − ∆ = −  

   

2 2 2
1

22cos 2
4r

D DA
D D

  (3.13) 

The area reduction method suggests zero capacity for a bearing at a horizontal displacement 
equal to the diameter of bearing. However, experiments have shown that a bearing does not 
lose all of its capacity at ∆  = D  but rather retains a residual capacity.  The model proposed by 
Warn and Whittaker (2006) is considered here, which uses a linear approximation of area 
reduction method and takes into account the finite buckling capacity of a bearing at zero overlap 
area. The piecewise linear approximation of reduced area model is illustrated in Figure 3-4. The 
mathematical formulation of model is given by set of equations: 

 

 ≥= 
 <


0

0

0.2

0.2 0.2

r r
cr

cr
r

cr

A AP
A AP

AP
A

 (3.14) 

where 0crP  is the buckling load at zero displacement, and crP  is the buckling load at overlapping 
area rA  of a bearing with an initial bonded rubber area of A . 
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(a) Rectangular bearing (b) Circular bearing
Figure 3-3    Reduced area of elastomeric bearings (adapted from Constantinou et al. (2007)) 

Figure 3-4    Bilinear variation of buckling load 

3.2.4 Cavitation in tension 

An elastomeric bearing under tensile loading is characterized by the formation of cavities in the 
volume of rubber. Gent and Lindley (1959b) explained that the fracture inside a rubber layer 
occurs at a critical hydrostatic stress value that is related to critical value of applied tensile 
stress. This critical tensile stress is equal to the hydrostatic stress for high shape factor bearings 
where critical hydrostatic stress is attained uniformly over most of the bonded area, except at 
the boundaries. This is in contrast to low shape factor bearings where the critical hydrostatic 
stress is attained only in the central area and value of the critical tensile stress is about half of 
the critical hydrostatic stress. The critical stress, known as cavitation stress, depends mainly on 
the rubber compound. 

0.2 

𝑃𝑃𝑐𝑐𝑐𝑐
𝑃𝑃𝑐𝑐𝑐𝑐0

0.2 

𝐴𝐴𝑟𝑟 𝐴𝐴⁄  1 
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Cavitation is followed by the substantial reduction of the vertical stiffness indicated by a highly 
discernible transition on the tensile load-deformation curve. The transition becomes smoother 
as the shape factor decreases and it is generally difficult to locate a cavitation point on load-
deformation curve. Gent (1990) suggested that cavitation occurs at a negative pressure of about 
3G , where G  is the shear modulus. The cavitation force is given by the expression:  

 = 3c oF GA  (3.15) 

where oA  is the bonded rubber area and G  is the shear modulus of rubber obtained 
experimentally from the testing of elastomeric bearings at large shear deformation under 
nominal axial loads. The large shear deformation is the region in which the shear modulus G  is 
relatively constant, as is explained in a later section. 

3.2.5 Post-cavitation behavior 

The nonlinear characteristic of natural rubber is influenced by amount of fillers and cross-linking 
of the polymer chains. The reduction in stiffness after cavitation is due to breakage of rubber-
filler bonds. The subsequent increase in stiffness at large strains is due to the limited 
extensibility of polymer chains and strain crystallization. 

Most of the available mathematical models use a very small value of post-cavitation stiffness of 
an arbitrary magnitude. Constantinou et al. (2007) suggested an expression for post-cavitation 
stiffness as: 

 
− =post cavitation

r

EAK
T

 (3.16) 

where E  is the elastic modulus of rubber. Following formation of cracks after cavitation, rubber 
loses its triaxial state of stress and experiences uniaxial tensile stress. Hence, the elastic 
modulus used in Equation (3.16) is the Young’s modulus of rubber. Elastomers used in seismic 
isolation (filled rubber) have Young’s modulus of about = 4E G  (Ciesielski, 1999; Gent, 2001). 
Here, it is assumed that bonded area of rubber remains the same even after the formation of 
cracks due to cavitation.  

Experiments have shown that the post-cavitation stiffness of elastomeric bearings decreases 
with increasing tensile deformation. The assumption of constant post-cavitation stiffness needs 
to be revisited. Assume that area used in Equation (3.16) is the true area of bearing excluding 
the total area of cavities that change with tensile deformation. The true area of a bearing is 
equal to the bonded rubber area at the onset of cavitation and decreases as the number and 
size of the cavities increase with tensile deformation. The reduction in true area can be 
attributed to two factors: 1) number of cavities, and 2) size of cavities. The reduction in area of 
low shape factor bearings is mainly due to the increase in the size of cavities. For high shape 
factor bearings used in seismic isolation applications, it is due to increase in the number of 
cavities. A theory is presented below to simulate the observed post-cavitation behavior in 
elastomeric bearings. 

Consider the rubber area to be made up of infinite number of small area elements. Every time a 
cavity is formed, the area element is eroded. The greater the area, the greater the rate of 
destruction of area elements. So the rate of reduction of total area with respect to tensile 
deformation would be proportional to the instantaneous true area at any moment.  
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Mathematically, the above hypothesis can be expressed as: 

∂
∝ −

∂
A A
u

 (3.17) 

∂
= −

∂ c
A k A
u

(3.18) 

where ck  is defined as cavitation parameter, which is constant for a particular elastomeric 
bearing and describes the post-cavitation variation of tensile stiffness. The true area of the 
bearing is equal to the bonded rubber area oA  at onset of cavitation ( = cu u ) and decreases 
with tensile deformation. Integrating Equation (3.18), the variation of area with tensile 
deformation is obtained as: 

− −= ( )c ck u u
oA A e (3.19) 

Instantaneous post-cavitation stiffness of bearing is given by: 

( )− −
− = = c ck u uo

post cavitation
r r

EAEAK e
T T

(3.20) 

If = o
o

r

EA
K

T
is the initial post-cavitation stiffness just after the cavitation, above equation can be 

rewritten as: 

( )− −
− = c ck u u

post cavitation oK K e  (3.21) 

Equation (3.21) describes the post-cavitation variation of tensile stiffness of an elastomeric 
bearing. It decreases exponentially, and rate of decrease is controlled by the parameter ck . To 
obtain the tensile load variation, post-cavitation stiffness can also be expressed as: 

−

∂
=
∂post cavitation
FK
u

(3.22) 

where F  is the tensile force in the bearing. Substituting the expression for post-cavitation 
stiffness in Equation (3.22): 

( )− −∂
= =

∂
ck u uo

r r

EAF EA e
u T T

(3.23) 

The above equation can be integrated to obtain force, F , at any tensile deformation u . Noting 
that E  =3G  for rubber and the cavitation strength = 3c oF GA , Equation (3.23) can be written as: 

( )− −
− = c ck u uc

post cavitation
r

F
K e

T
(3.24) 
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Equation (3.24) can be integrated with limits ( cF , cu ) to ( F , u ), to obtain tensile force in the 
bearing as: 

 ( )( )− − 
= + − 

 

11 1 c ck u u
c

c r

F F e
k T

 (3.25) 

The relationship in Equation (3.25) can be formulated in terms of stress, σ , and strain, ε . 
Using the expression F  = σA , Equation (3.22) can be rewritten as: 

 ( )σ σ − −∂ ∂
+ =

∂ ∂
c ck u uo

r

EAAA e
u u T

  (3.26) 

Substituting ∂ = −
∂ c
A k A
u

 and = c ru k T , the above equation is simplified to: 

 σ σ
ε

∂
= +

∂ c rE k T  (3.27) 

where σ ε∂ ∂/  is the post-cavitation modulus, postE , of an elastomeric bearing. Solving the 
above differential equation, the expression for post-cavitation stress is obtained as: 

 ( ) ( )( )ε ε ε εσ σ − − 
= + − 

 

1 1c r c c r ck T k T
c

c r

e e
k T

 (3.28) 

where σ = 3c G  is the cavitation stress in the bearing. The same expression for stress is 
obtained if the post-cavitation tensile force, F , in Equation (3.25) is divided by the 
corresponding area, A , in Equation (3.19). The variation of tensile force with tensile 
deformation is shown in Figure 3-5. 

  

 
Figure 3-5    Post-cavitation variation of tensile force in the bearing 
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The constant ck  is obtained by calibration with experimental data and is usually greater than 1. 
As ck  increases, the slope of the post-cavitation tensile force is reduced and for a very large 
value of ck , the bilinear stiffness model discussed in Constantinou et al. (2007) is recovered. 
The proposed model does not capture minor stiffening effects that are observed during tensile 
loading of elastomeric bearing at large tensile strains (>100%) due to limited extensibility of the 
polymer chains in rubber. 

3.2.6 Strength degradation in cyclic loading 

Cavitation in elastomeric bearings is accompanied by the irreversible damage due to the 
formation of micro cracks in the volume of rubber. When bearing is loaded beyond the point of 
cavitation and unloaded, it returns along a new path and its cavitation strength is reduced. The 
area enclosed between the loading and unloading branches is the energy dissipated due to 
damage. Subsequent loading follows the latest unloading path elastically until the tensile 
deformation exceeds the prior maximum value maxu , below which loading has the effect of only 
opening and closing existing cavities within the rubber. Once loading exceeds the past 
maximum value of tensile strain, the formation of new cavities leads to increased damage, and 
follows the post cavitation behavior defined previously by Equation (3.25). Upon load reversal, 
the force-displacement relationship traces a new unloading path and the cavitation strength is 
further reduced. The unloading paths can be approximated by straight lines between the points 
of maximum force and displacement max max( , )F u  and the point of reduced force and 
displacement ( , )cn cnF u . Points max max( , )F u  and ( , )cn cnF u  change with repeated cycling. To 
capture this behavior mathematically, a damage index  is introduced such that the cavitation 
force is: 

φ= −(1 )cn cF F  (3.29) 

The damage index φ  represents the cumulative damage in the bearing φ≤ ≤(0 1) . It is a 
function of the maximum deformation experienced by the bearing under tensile loading. 
Mathematically, it can be expressed as φ = max( )f u , where f  satisfies the following relations: 1)

=( ) 0cf u  (no strength reduction up to cavitation deformation), and 2) φ→max max( )f u (damage 
index converges to a maximum value after large deformations). This implies that function f  is a 
nonlinear and monotonically increasing function that is continuous in its domain. Moreover, the 
damage index converges to a maximum value, φmax , requiring f  to be an asymptotic function. A 
function satisfying these properties is given by: 

φ φ
 −

−   
 

 
 = − max 1

c

c

u u
a

ue (3.30) 

where parameter a  is a strength degradation parameter that defines the rate of damage and 
φmax  is the maximum damage that can be expected in a bearing. The load-deformation 
behavior of elastomeric bearings under cyclic tensile loading is summarized in Figure 3-6. 

The cavitation strength of bearings decreases from cF  to φ− max(1 )cF  following large strains. The 
history of loading plays an important role in the characteristics of the response. If the bearing 
experiences large tensile strains (and hence damage) early in the loading, the subsequent 
response of bearing will be primarily elastic. If the tensile strain increases incrementally during 
cyclic loading, damage and energy dissipation would build up progressively.  

φ
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Figure 3-6    Load-deformation behavior of rubber bearings under tension 

3.2.7 Mathematical model 

A mathematical model of an elastomeric bearing in the axial direction is presented in Figure 3-7. 
The model captures the following characteristics in the axial direction: 

1) Buckling in compression 
2) Coupling of vertical and horizontal motion 
3) Cavitation 
4) Post-cavitation variation 
5) Strength degradation due to cyclic loading 

 
Figure 3-7    Mathematical model of elastomeric bearings in axial direction 

The model uses three unknown parameters: 1) a cavitation parameter, k , 2)  a strength 
degradation parameter, a , and 3) a damage index, φmax . These parameters should be 
determined experimentally. However, if an experimental evaluation of parameters is not 
possible, the user can assign suitable values to the parameters based on previous experimental 
results on bearings of similar properties. 
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3.3 Mechanical Behavior in the Horizontal Direction 

3.3.1 General 

The behavior of elastomeric bearings in shear is well established, and mathematical models 
exist to reasonably capture the response expected for design basis earthquake for regular 
structures. These mathematical models use simplified load-deformation relationships and ignore 
behaviors that might be important under beyond design basis earthquakes during which 
elastomeric bearings may experience large strains and lateral displacements under time-varying 
three-dimensional loadings. These models are modified here to include the effects of heating of 
lead core in LR bearings. The characteristic shear strength of LDR bearing is estimated from an 
assumed value of equivalent viscous damping, which is discussed in the following sections. 

3.3.2 Coupled horizontal response 

A smooth hysteretic model is used for elastomeric bearings in horizontal shear, which is based 
on the model proposed by Park et al. (1986) and extended for the analysis of elastomeric 
bearings under bidirectional motion. The bidirectional smooth bilinear hysteretic model by Park 
et al. (1986) has already been implemented in software programs 3D-BASIS (Nagarajaiah et al., 
1989) and SAP2000 (Wilson, 1997).  

The model used here is shown in Figure 3-8. Parameters used in the model proposed by Park 
et al. (1986) have been expressed here in the form that is typical of seismic isolation design, 
namely, initial elastic stiffness elK , characteristic strength dQ , yield strength YF , yield 
displacement Y , and post-elastic stiffness dK . 

Figure 3-8    Mathematical model of elastomeric bearings in shear 

The isotropic formulation of the model in terms of restoring forces in orthogonal directions, xF   
and yF , is given by the equation: 

( )σ
             = + +       

            




x x xx

d d YL L
y y yy

F U ZU
c K A

F U ZU (3.31) 

where σYL  is the effective yield stress of confined lead; LA  is the cross sectional area of the 
lead core, and dc  is a parameter that accounts for the viscous energy dissipation in rubber; and 
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xZ  and yZ  represent the hysteretic components of the restoring forces. Both xZ  and yZ  
have units of displacement and are function of the histories of xu  and yu . 

The biaxial interaction, or coupling, is given by the following differential equation: 

 [ ]
( )( ) ( )( )
( )( ) ( )( )

γ β γ β

γ β γ β

  + +        = −        + +       

  

  

2

2

x x x x y y y
x x

y yx y x x y y y

Z Sign U Z Z Z Sign U ZZ U
Y A I

Z UZ Z Sign U Z Z Sign U Z
 (3.32) 

Parameters γ  and β  control the shape of the hysteresis loop and A  is the amplitude of the 
restoring force.  

When yielding commences, the solution of Equation (3.32) is given by the following equations, 
provided the parameters satisfy the relationship ( )β γ+ =/ 1A  (Constantinou and Adnane, 
1987): 

 θ θ= =cos , sinx yZ Z  (3.33) 

where θ  represents the direction of the resultant force with respect to the direction of motion, 
and is given by expression: 

 ( )θ −=  1tan /y xU U  (3.34) 

The interaction curve given by Equation (3.33) is circular and xZ  and yZ  are bounded by the 
values of  ±1. 

The first two terms in Equation (3.31) represents the contributions of rubber, and the third term 
represents the contribution of the lead core, to the total resisting force in the elastomeric 
bearing.  

3.3.3 Heating of the lead core  

The effective yield stress of lead used in Equation (3.31) is not constant but decreases with 
number of cycles of loading due to heating of the lead core (Importantly, it also varies as a 
function of its confinement by the rubber and steel shims, and the end plates). The extent of the 
reduction depends on the geometric properties of the bearing and the speed of motion. 
Kalpakidis and Constantinou (2009b) characterized the dependency of the characteristic 
strength of a LR bearing on the instantaneous temperature of its lead core, which itself is a 
function of time.  

The set of equations describing heating of the lead core are: 

 
( )

( )
σ

τ
ρ ρ

−+ +   = − +  
  

 


2 2 2 2
1/31 1.274

.
YL L x y x y s L s

L
L L L L L L

T Z Z U U k T t
T

c h a c h F a
 (3.35) 
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( ) ( ) ( ) ( )

τ τ τ τ τ τ
π π

τ
π τπ τ τ τ

           − − − − <           
             =  

  
 − − + − ≥ 
    

1/2 2 3

1/2 2 3

152 2 , 0.6
4 4 4 4

8 1 1 1 11 , 0.6
3 3 42 . 6 4 12 4

F (3.36) 

α
τ = 2

st
a

(3.37) 

( )σ σ −= 2
0

LE T
YL L YLT e  (3.38) 

where Lh  is the height of lead core, a is the radius of the lead core, st  is the total of the shim 
plates thickness in the bearing, Lc  is the specific heat of lead, ρL  is the density of lead, αs  is the 
thermal diffusivity of steel, sk  is the thermal conductivity of steel, σ 0YL  is the effective yield 
stress of lead at the reference temperature, τ  is a dimensionless time parameter and t  is the 
time since the beginning of motion. Figure 3-9 illustrates some of the variables.  

Figure 3-9    Schematic of a LR bearing (Kalpakidis et al., 2010) 

Equation (3.38) predicts the characteristic strength of a LR bearing, normalized by the area LA , 
as a function of instantaneous temperature obtained from Equation (3.35) through parameter 

2E . Typical values of parameters related to lead and steel are listed in Table 3-1. 

Table 3-1 Typical value of lead and steel related parameters (Kalpakidis et al., 2010) 
Parameter Value 

ρL  11200 kg/m3 

Lc 130 J/(kgoC) 

sk 50 W/(moC) 
αs  1.4×10-5 m2/s 

2E 0.0069/oC 

The term +2 2
x yZ Z  in Equation (3.35) is equal to 1 following yielding under large inelastic 

deformations, but less than 1 under small elastic deformations. To simplify the numerical 
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computations, +2 2
x yZ Z  is taken as 1. This assumption has an effect of overestimating the 

energy dissipation in the lead when displacements are less than the yield displacement, which 
is not significant because lead-rubber bearings are intended to undergo large inelastic 
deformations under design basis earthquake loadings. 

3.3.4 Equivalent damping 

The damping in LR bearings is primarily contributed by energy dissipation in the lead core and 
contribution of viscous damping due to rubber is typically neglected. The force-displacement 
loop of an elastomeric bearing is idealized as in Figure 3-10, and the effective period and 
effective damping of the isolated system are calculated using following equations (AASHTO, 
2010; ASCE, 2010): 

 π= 2eff
eff

WT
K g

 (3.39) 

 = + d
eff d

Q
K K

D
 (3.40) 

 β
π
 

=  
 

2
1

2
D

eff
eff

E
K D

 (3.41) 

where D  is the displacement of the system due to earthquake shaking obtained from smoothed 
response spectra, and DE  is the energy dissipated per cycle at displacement D .   

 
Figure 3-10   Idealized behavior of elastomeric bearings in shear (Warn and Whittaker, 2006) 

For the idealized behavior shown in Figure 3-10, DE  is given as: 

 ( )= −4D dE Q D Y  (3.42) 

where Y  is the yield displacement. 
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The characteristic strength of a LR bearing is determined using the effective yield stress of the 
lead. For LDR bearings, the characteristic strength cannot be obtained directly; an effective 
damping of system is assumed and the characteristic strength is determined as: 

( )
β

π π
 −

= ≤ 
 

2

4 21
2

d d
eff

deff

Q D Y Q
K DK D

(3.43) 

π β≥ × × ×
2d eff dQ K D (3.44) 

If the value of displacement D  due to earthquake shaking is known, the characteristic strength 
of a LDR bearing can be estimated and used in the detailed analysis. A simplified method of 
analysis for isolated structures is discussed in Constantinou et al. (2011). 

If the analysis for the estimation of damping in isolated system is not performed, a nominal 
damping of 2% to 3% can be assumed. 

3.3.5 Variation in shear modulus 

The effective shear modulus of an elastomeric bearing is obtained from experimental data. Low 
damping rubber and lead-rubber bearings show viscoelastic and hysteretic behaviors in shear, 
respectively. The effective stiffness, effK , is calculated using: 

+ −

+ −

+
=

∆ + ∆eff

F F
K (3.45) 

where +∆  and −∆  are the maximum and minimum horizontal displacements obtained from an 
experiment, and +F  and −F  are the corresponding forces. Values +F  and −F  are the 
maximum and minimum force for the hysteresis case, as shown in Figure 3-11. 

The effective shear modulus is subsequently determined using the expression: 

= eff r
eff

K T
G

A
(3.46) 

A typical variation of shear modulus with strain is shown in Figure 3-12 for a LDR bearing 
(bonded diameter = 35.5 inch, shape factor = 26). 

Most of the available mathematical models use a constant shear modulus for an elastomeric 
bearing, although shear modulus varies with strain and axial loads. Increasing the axial 
pressure reduces the shear modulus. However, if the shear modulus, G , is determined from 
testing at large strains and under nominal axial pressure, the value of G  already includes some 
effects of axial load. The shear modulus of natural rubber decreases with increasing strain up to 
100%, remains relatively constant for shear strain between 100 and 200%, and increases again 
at shear strains of 200 to 250%. The shear modulus obtained from testing of elastomeric 
bearings at large strains is used for calculation of shear stiffness of LDR bearings, post-elastic 
stiffness of LR bearings, and buckling load. 
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(a) Viscoelastic behavior (b) Hysteretic behavior 

Figure 3-11   Effective stiffness of elastomeric bearings (Constantinou et al., 2007) 
 

 
Figure 3-12   Stress and strain dependency of LDR bearings (courtesy of DIS Inc.) 
 
3.3.6 Mathematical model 

3.3.6.1 Lead rubber bearings 

A mathematical model of LR bearings in horizontal shear is presented in Figure 3-13. The 
model captures the following characteristics of lead-rubber bearings: 

1) Nonlinear shear force-deformation behavior 
2) Bi-directional interaction in the horizontal plane 
3) Strength degradation due to heating of the lead core 

The parameters used here have been defined in previous sections. For numerical 
implementation, the model is represented as sum of two sub-models: 1) a viscoelastic model of 
rubber, and 2) an elasto-plastic model of lead, shown in Figure 3-14. The contribution of the 
rubber to the total resisting force is given by the first two terms in Equation (3.31) and the third 
terms represents the contribution of the lead core. The sum of all three terms is the restoring 
force in the LR bearing. 
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Figure 3-13   Mathematical model of lead rubber bearings in horizontal direction 

Figure 3-14   Alternative representation of the mathematical model 

The characteristic strength, or yield stress of the lead core, decreases with the number of cycles 
under large shear deformation according to Eqns. (3.35) through (3.38). The yield stress of the 
lead core at the reference temperature (beginning of motion) is obtained experimentally as it 
depends on the degree of confinement of the lead core in the bearing (Kalpakidis and 
Constantinou, 2009a). 

3.3.6.2 Low damping rubber bearings 

The same mathematical model used for the LR bearing is used for the LDR bearing with one 
modification. The hysteretic term in Equation (3.31), ( ){ }σ

T

YL L x yA Z Z , is replaced by the yield
strength of the LDR bearing obtained using the assumed value of effective damping of the 
system, as explained in Section 3.3.4. 

3.3.6.3 High damping rubber bearing 

The strain rate-independent bidirectional model proposed by Grant et al. (2004) is used to 
capture the behavior of HDR bearings in shear. This model can capture stiffness and damping 
degradation in HDR bearings due to short-term (Mullins’) effect and long-term (scragging) 
effects. The model decomposes the resisting force vector into an elastic component parallel to 
displacement vector and a hysteretic component parallel to the velocity vector. The bidirectional 
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behavior is described in terms of shear force vector F , displacement vector U , and a unit 
vector n  given as: 

 
      = = =   
      




x x

y y

F U UF U n
F U U

  (3.47) 

where x  and y  subscript refers to the two perpendicular horizontal directions of a bearing and 
n  is a unit vector in the direction of the velocity. 

The bidirectional force vector is: 

 = +1 2( , , , ) ( , , ) ( , , )S M s M SF U n D D F U D D F U n D   (3.48) 

where 1F  and 2F  are the elastic and plastic parts of the shear force vector, respectively; and SD  
and MD  are the scalar history variables that account for the stiffness and damping degradation.  

The mathematical formulation of the elastic component is developed from generalized Mooney-
Rivlin strain energy function as following: 

  = + + 
2 4

1 ,1 1 2 3S MF K K a a U a U U   (3.49) 

where 1a , 2a , and 3a  are material parameters, and ,1SK  and MK  are reduction factors to account 
for stiffness and damping degradation. 

The plastic component is given as: 

 δµ= −2F Rn   (3.50) 

where R  is the radius of a bounding surface in the force space, δ  is a scaled distance variable, 
and µ  is a unit distance vector along which distance is measured. The radius R  is: 

 = +
2

1 ,2 2SR b K b U   (3.51) 

where 1b  and 2b  are material parameters, and ,2SK  is reduction factor to account for the effect 
of scragging on hysteretic force. 

An image force is defined by projecting the unit vector, n , onto the bounding surface: 

 =F̂ Rn   (3.52) 

The parameters δ  and µ  are defined as the magnitude and the direction, respectively, of the 
vector pointing from the current force to the image force. 

 δ µ
−

= − =
−

2
2

2

ˆˆ
ˆ

F FF F
F F

  (3.53) 
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The rate of change of direction of the hysteretic force in the 2F  space is defined using: 

µ=



2

2

F
F

  (3.54) 

The magnitude of change is defined in terms of the scalar parameter δ  using following: 

δ δ= − 
3b U   (3.55) 

The numerical implementation of the model is presented in Grant et al. (2005). 

3.4 Mechanical Behavior in Rotation and Torsion 

The torsional and rotational behaviors of elastomeric bearing do not significantly affect the 
overall response of a seismically isolated structure. Hence, behavior in rotation and torsion are 
represented by linear elastic springs with stiffnesses calculated as: 

Rotation: = r s
r

r

E I
K

T
(3.56) 

Torsion: = t
t

r

GI
K

T
(3.57) 

where rE  is the rotation modulus of the bearing, sI  is the moment of inertia about an axis of 
rotation in the horizontal plane, and tI  is the moment of inertia about the vertical axis. The 
perpendicular axis theorem implies that for symmetric bearings, = 2t sI I . Constantinou et al.
(2007) provides a list of rotation moduli for different shapes of elastomeric bearings. For circular 
bearings of incompressible rubber, the relationship between compression modulus and rotation 
modulus is = / 3r cE E . 
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4 IMPLEMENTATION OF THE MATHEMATICAL MODELS IN 
OPENSEES AND ABAQUS 

4.1 Introduction 

The implementation of the mathematical models of Low Damping Rubber (LDR) and Lead 
Rubber (LR) bearings presented in Chapter 3 and High Damping Rubber (HDR) bearing 
proposed by Grant et al. (2004) in OpenSees (McKenna et al., 2006) and ABAQUS (Dassault, 
2010a) is discussed in this chapter. ABAQUS is a general purpose Finite Element Analysis 
(FEA) package. New capabilities are added to ABAQUS through user subroutines written in the 
FORTRAN 77 programming language. The mathematical models of LDR and LR bearings are 
implemented through a special type of subroutine called User Elements (UELs). OpenSees is 
an open source platform for computational simulations in earthquake engineering. New 
capabilities to OpenSees are added by implementation of Element classes using the C++ 
programming language. Three Element classes are written for the mathematical models of LDR, 
LR, and HDR bearings. 

This chapter describes the addition of new user elements1 to OpenSees and ABAQUS. The 
physical model of the elastomeric bearings considered in these software programs is discussed 
in Section 4.2. Section 4.3 discusses how the algorithms are implemented. The implementation 
in OpenSees and ABAQUS is discussed in Section 4.4 and 4.5, respectively. 

4.2 Physical Model 

The 3D continuum geometry of an elastomeric bearing is modeled as a 2-node, 12 DOF 
discrete element, as shown in Figure 4-1. The two nodes are connected by six springs, which 
represent the material models in the six basic directions: axial, shear (2), torsional and rotational 
(2) directions. The discrete spring representation of three-dimensional continuum model is
shown in Figure 4-2.

Figure 4-1    Physical model of an elastomeric bearing 

1 The term “user elements” will be used from here on to collectively refer the new elements in OpenSees 
and ABAQUS, unless a specific distinction is made. 
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Figure 4-2    Discrete spring representation of an elastomeric bearing 

The general form of the element stiffness matrix, bK , in the basic coordinate system for the 
element representation considered above is: 
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 (4.1) 

and the element force vector in the basic coordinate system is: 
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As discussed in Chapter 3, the coupling of the two horizontal (shear) directions is considered 
explicitly. The coupling of vertical and horizontal response is accommodated indirectly by using 
expressions for vertical and shear stiffness that depend on the horizontal shearing displacement 
and axial load, respectively. Linear uncoupled springs are considered in the torsion and the two 
rotational springs as they are not expected to significantly affect the response of an elastomeric 
bearing. The off-diagonal terms due to coupling between axial and shear, and axial and rotation, 
are not considered in the two-spring model (Koh and Kelly, 1987) used here. An exact model 
would have non-zero values of these off-diagonal terms. A discussion on the formulation of the 
two-spring model and the exact model is presented in Ryan et al. (2005). 

4.2.1 Reference coordinate systems 

The force vector and the tangent stiffness matrix are formulated at component level in the 
element’s basic coordinate system. The system of equations for the whole model is solved in 
the global coordinate system to obtain the model response. Coordinate transformations are 
used to switch between basic, local, and global coordinates. The quantities in basic, local and 
global coordinates are designated using subscripts b , l , and g , respectively. A matrix that 
transforms any vector from coordinate system a  to coordinate system b  is denoted as abT . 
Hence, the transformation matrices, glT  and lbT  transform any vector from global to local and 
local to basic coordinate systems, respectively2. Figure 4-3 presents the orientation of 
coordinate axes used in OpenSees and ABAQUS. The element (or component) forces, 
displacements, and stiffness matrices are formulated in element’s basic coordinate system and 
transformed from basic to local and then local to global coordinate system. The contribution 
from each element of the model in the global coordinate system is assembled to obtain the 
systems of equations for the whole model and solved to obtain nodal responses (e.g., forces, 
displacements). The nodal response quantities obtained in the global coordinate system are 
transformed back to the element’s basic and local coordinate systems to obtain forces and 
displacements in the components.  

To obtain the transformation matrix, lbT , element deformations in the basic coordinate system 
are expressed as a function of the element’s local displacements. Shear deformations in 
elastomeric bearings can be caused by rotations as well as translations. Figure 4-4 presents the 
definitions of axial, shear and bending deformation. These definitions ensure that all 
deformations will be zero under rigid body motion of the elastomeric bearing. Similar definitions 
have been used in OpenSees (elastomericBearing element (Schellenberg, 2006)) and SAP2000 
(Link/Support element). The shear distance ratio, sDratio , is the ratio of distance from Node 1 
to the height of bearing where the shear deformations ( (2)bu  and (3)bu ) are measured. This 
point is located at the shear center3 of the elastomeric bearing in the 1-2 plane. In most cases, 
elastomeric bearings are fixed against rotation at both nodes and the shear center is located at 
the mid-height of the bearing ( = 0.5sDratio ). 

2 Transformation matrices T and TT are referred to as element compatibility matrix, b, and TT is referred to 
as force compatibility matrix, a, in conventional matrix structural analysis. These two matrices satisfy the 
contragradience relationship a = bT.   
3 The shear center of a cross section is defined as the point about which transverse forces do not produce 
any rotation. The location of the shear center of a column is the inflection point along the height. 
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Figure 4-3    Coordinate systems used in OpenSees and ABAQUS 
 

 
Figure 4-4    Three of the six basic deformations in the 1-2 plane (adapted from CSI (2007)) 
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The relationships between basic and local deformations are given by: 

= −

= − − ⋅ ⋅ − − ⋅

= − + ⋅ ⋅ + − ⋅

= −

= −

= −

(1) (7) (1)
(2) (8) (2) (6) (1 ) (12)
(3) (9) (3) (5) (1 ) (11)
(4) (10) (4)
(5) (11) (5)
(6) (12) (6)

b l l

b l l l l

b l l l l

b l l

b l l

b l l

u u u
u u u sDratio L u sDratio L u
u u u sDratio L u sDratio L u
u u u
u u u
u u u

(4.3) 

which can be written in a matrix format as: 

=b lb lu T u (4.4) 

where lbT  is the local-to-basic coordinate transformation matrix that is given by: 

−

− − ⋅ − −

− ⋅ −

−

−

−

 
 
 
 

=  
 
 
 
  

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 (1 )

0 0 1 0 0 0 0 1 0 (1 ) 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

lb

sDratio L sDratio L

sDratio L sDratio L
T (4.5) 

Similarly the relationships between basic and local forces are given by: 

= −

= −

= −

= −

= ⋅ ⋅ −

= − ⋅ ⋅ −

=

=

=

=

= − ⋅ ⋅ +

= − − ⋅

(1) (1)
(2) (2)
(3) (3)
(4) (4)
(5) (3) (5)
(6) (2) (6)
(7) (1)
(8) (2)
(9) (3)
(10) (4)
(11) (1 ) (3) (5)
(12) (1 )

l b

l b

l b

l b

l b b

l b b

l b

l b

l b

l b

l b b

l

f f
f f
f f
f f
f sDratio L f f
f sDratio L f f
f f
f f
f f
f f
f sDratio L f f
f sDratio ⋅ +(2) (6)b bL f f

(4.6) 

which can be written as: 

= T
l lb bf T f (4.7) 

where lf  and bf  are 6×1 and 12×1 force vectors in local and global coordinates, respectively. 
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For the transformation between local and global coordinates, consider the two coordinate axis 
systems and angles between their axes, as presented in Figure 4-5.  

 
Figure 4-5    Orientation of local and global coordinate axis systems 

The global coordinate axes are represented as X , Y , and Z . The local coordinate axes are 
represented as 'X , 'Y , and 'Z . The direction cosines of the angles between axes are 
presented in Table 4-1. 

Table 4-1    Direction cosines of axes (adapted from Cook (2001)) 

   X    Y    Z      
  'X  1l  1m   1n     
  'Y  2l   2m   2n     
  'Z  3l   3m   3n     

 
If dcT  is a ×3 3  direction cosines matrix consisting of the direction cosines presented in Table 
4-1, and glT  is the global-to-local coordinate transformation matrix, the relationship between the 
local and global deformations is: 

 =l gl gu T u   (4.8) 

where  glT  is  12×12 matrix given as: 

 

 
 
 =
 
 
 

0 0 0
0 0 0
0 0 0
0 0 0

dc

dc
gl

dc

dc

T
T

T
T

T

 (4.9) 

The x -axis in the local coordinate system (element’s principal axis), which is a vector joining 
the two nodes of an elastomeric bearing, is obtained as the difference of the nodal coordinates: 

 = − + − + − = − − −2 1 2 1 2 1 2 1 2 2 1
ˆ ˆ ˆ( ) ( ) ( ) ( , , )x X X i Y Y j Z Z k X X Y Y Z Z   (4.10) 

u1g X 

X’ 

Y 

u1g 

Y’ 

u3g 
Z 

Z’ 
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In order to obtain the orientation of other two local coordinate axes ( y  and z ), one of the two 
coordinate axis vectors needs to be assumed in the beginning, and the other coordinate axis 
can be obtained as a cross-product of the two known coordinate axis vectors. Finally, the 
correct orientation of the assumed coordinate axis vector can be obtained as the cross-product 
of other two coordinate axis vectors.  

If the y -axis vector is assumed for the element, the z -axis vector is obtained as: 

= −
= −
= −

(1)  (2) (3)  (3) (2)
(2)  (3) (1)  (1) (3)
(3)  (1) (2)  (2) (1)

z x y x y
z x y x y
z x y x y

(4.11) 

The correct orientation of the y -axis vector is finally obtained as the cross product of the z
and x  axis vectors: 

= −
= −
= −

(1)  (2) (3)  (3) (2)
(2)  (3) (1)  (1) (3)
(3)  (1) (2)  (2) (1)

y z x z x
y z x z x
y z x z x

(4.12) 

The three local coordinate axis vectors are divided by their respective norms to obtain the unit 
vectors representing the orientation of three coordinate local axes. The components of unit 
vectors represent the direction cosines with respect to global coordinate system, and the 
direction cosines matrix, dcT , and transformation matrix, glT , can be obtained:  

 
 =  
  

(1) / (2) / (3) /
(1) / (2) / (3) /
(1) / (2) / (3) /

n n n

dc n n n

n n n

x x x x x x
T y y y y y y

z z z z z z
(4.13) 

 
 
 =
 
 
 

0 0 0
0 0 0
0 0 0
0 0 0

dc

dc
gl

dc

dc

T
T

T
T

T

(4.14) 

where nx , ny , and nz  are the norm of vectors x , y , and z ,  respectively. 

In OpenSees, same global coordinate system is used for most of the problems (although this is 
not necessary), which provides an opportunity to assume local y -axis vector to be global X -
axis as the default option in the user elements. It also means that orientation of a bearing (local 
x -axis) cannot be along global X -axis using the default arguments. The user must override 
default option with their own set of x and y axis vectors to use an arbitrary orientation of 
bearing in an analysis. 

The user elements created in ABAQUS do not allow an arbitrary orientation of elastomeric 
bearings. The principal axis of a bearing must be along one of the global coordinate axes, X , 
Y , or Z , which accommodates virtually all cases for seismic isolation in structural analysis.  
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     
     = = − = −     
     −     

1 0 0 0 1 0 0 0 1
0 1 0 ; 1 0 0 ; 1 0 0 ;
0 0 1 0 0 1 0 1 0

X Y ZT T T  (4.15) 

If the principal axis (local x -axis) of a bearing is along global Y -axis (vertical direction), the YT
matrix can be used to obtain glT  using Equation (4.14). Once the transformation matrices are 
obtained, system of equations can be set up in global coordinates. 

The relationship between the local and global forces is given by: 

= T
g gl lf T f (4.16) 

The load-deformation relationship for the user elements in basic coordinate is: 

=b b bf K u (4.17) 

Multiplying both sides of equations by T
lbT  and using bu = lb lT u : 

=T T
lb b lb b lb lT f T K T u (4.18) 

Again multiplying both sides of equations by T
glT ,  and noting that =T

lb b lT f f  and =l gl gu T u : 

=T T T
gl l gl lb b lb gl gT f T T K T T u   (4.19) 

In Equation (4.19), the expression T
gl lT f  is the force vector in the global coordinate system, gf . 

The equation can be written as: 

=g g gf K u (4.20) 

where gK  is the global stiffness matrix of the elastomeric bearing and obtained as: 

= T T
g gl lb b lb glK T T K T T (4.21) 

The relationship between global nodal force vector and element’s basic forces is: 

= T T
g gl lb bf T T f (4.22) 

The stiffness matrix in the global coordinate system, gK , can be obtained using the element’s 
stiffness matrix, bK , in the basic coordinate system and transformation matrices using Equation 
(4.21). Equation (4.20) is solved to obtained nodal forces and displacements in the global 
coordinate system, which can be transferred back to local and basic coordinates using 
transformation matrices.  

The direction cosines matrix, dcT , for each of the global coordinate axis are: 
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4.3 Numerical Model and Code Implementation 

4.3.1 General 

The numerical model is constructed from the mathematical model and an algorithm is devised to 
code the numerical model in OpenSees and ABAQUS using the C++ and FORTRAN 
programming languages, respectively. The code of a user element includes three main 
components: 

1. Material models definition
2. Geometry definition
3. Mechanical formulation

The primary task of a UEL is to provide the force vector and the stiffness matrix in the global 
coordinate system. The material models for an elastomeric bearing represented by springs, in 
the six basic directions, as presented in Chapter 3. The material and geometric properties are 
used to obtain a mechanical formulation represented by the load-deformation relationship in the 
global coordinate system. The implementation of the mathematical models for the load-
deformation relationships in each direction are presented below. 

4.3.2 Material models 

4.3.2.1 General 

The mechanical behaviors of elastomeric bearings in six directions are represented by linear 
and nonlinear springs, also referred to as material models. The mathematical models are 
discretized into numerical models and the algorithms for implementation of the numerical 
models in software programs are discussed. 

Force vectors and stiffness matrices in C++ (OpenSees) and FORTRAN 77 (ABAQUS) are 
represented by one and two dimensional arrays, respectively. In C++, array elements start with 
index 0, and in FORTRAN 77 with 1.  The indices of array elements correspond to the each of 
six basic directions. Table 4-2 presents the array indices used to represent the six basic 
directions in OpenSees and ABAQUS. 

The numerical implementation presented in following sections use the array index convention 
discussed in Section 4.2, which is also the index convention used in ABAQUS (FORTRAN 77). 

Table 4-2    Array indices 
Direction OpenSees (C++) ABAQUS (FORTRAN 77) 

Vertical (Axial) 0 1 
Horizontal (Shear) 1 1 2 
Horizontal (Shear) 2 2 3 

Rotation about vertical (Torsion) 3 4 
Rotation about horizontal 1 4 5 
Rotation about horizontal 2 5 6 
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4.3.2.2 Vertical (axial) direction 

The material behavior of an elastomeric bearing is linear elastic (for zero horizontal 
displacement) in compression up to buckling. The critical buckling load for an elastomeric 
bearing depends on the overlap area, which is a function of horizontal displacement. The critical 
buckling load must be updated after each analysis step. The bilinear approximation to the linear 
area reduction method (Buckle and Liu, 1993), suggested by Warn and Whittaker (2006), is 
used.  

The horizontal displacement, hu , in the bearing is calculated as: 

 = +2 2(2) (3)h b bu u u   (4.23) 

The angle subtended by the chord of the overlap area at the center of the bearing is: 

 δ −= 1

2

2cos hu
D

  (4.24) 

where 2D  is the outer diameter of the bearing. The reduced overlap area, rA , is calculated as: 

 
( ) ( )δ δ= −

2
2 sin
4r

D
A   (4.25) 

The critical load, crP , at lateral displacement, hu , is obtained as: 

 

 ≥= 
 <


0

0

0.2

0.2 0.2

r r
cr

cr
r

cr

A AP
A AP

AP
A

  (4.26) 

where 0crP  is the buckling load at zero displacement, and crP  is the buckling load at overlapping 
area rA  of a bearing with an initial bonded rubber area of A . 

The vertical stiffness, vK , depends on the lateral displacement, and is updated at each time-
step: 

 
π π

−−        = + = +              

11 22

02 2
3 31 1c h h

v v
r g

AE u uK K
T r r

  (4.27) 

where cE  is the compression modulus (Constantinou et al., 2007), hu  is the horizontal 
displacement, gr  is the radius of gyration of the bonded rubber area, and 0vK  is the axial 
compressive stiffness at zero lateral displacement. When the compressive load exceeds the 
buckling load, the bearing is assumed to have failed and offer no resistance. A very small value 
of post-buckling axial stiffness (e.g., 0 / 1000vK ) is assumed to avoid numerical problems.  
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Table 4-3    Axial force and stiffness as a function of displacement 

Initialization 

= =min;crn cr cr crF F F F
= =0/ ;cr cr v crn cru F K u u

= = =max3 ; ;c cn c cF GA F F F F
= = =0 max/ ; ;c c v cn c cu F K u u u u

State variables 
update  

= +2 2(2) (3)h b bu u u

π

−
  
 = +      

12

0 2
31 h

v v
g

uK K
r

= /c c vu F K

 IF ≥ max(1)bu u

=


   − = − − −         

max (1)

( (0) )1 1 exp

b

b c
cn c c

c

u u

u u
F F a

u

δ −= 1

2

2cos hu
D

; 
( ) ( )δ δ

+ −
= −

2 2
2 1 sin

4
c

r

D t D
A  

 ≥= 
 < ≥
 2

IF 0.2

0.2 IF 0.2 1.0

r r
cr

crn
r h

cr

A AF
A AF A uF or

A D

IF <mincr crnF F
=


 =


mincr crn

crn
crn

v

F F
F

u
K

Force and stiffness 
update 

( ) 
= + − − − 

 
max max

11 1 exp( ( )c c
c r

F F u u
k T

 

= /cn cn vu F K

(1)bu  ≤ crnu
= 0(1,1) / 1000b vK K

= + −min(1) (1,1)( (1) )b cr b b crnf F K u u  

crnu < (1)bu ≤ cnu
=(1,1)b vK K

= ×(1) (1,1) (1)b b bf K u

cnu < (1)bu ≤ maxu
= − −max max(1,1) ( ) / ( )b cn cnK F F u u
= −(1) (1,1)( (1) )b b b cnf K u u
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(1)bu > maxu

= − −(1,1) exp( ( (1) ))c
b c b c

r

F
K k u u

T

( ) 
= + − − − 

 

11 1 exp( ( (1) )c c b c
c r

F F k u u
k T

The material behavior is linear elastic (for zero horizontal displacement) in tension up to 
cavitation followed by linear or nonlinear post-elastic behavior depending on the history of 
tensile loading. The two transition points in tensile loading are the cavitation ( cnu , cnF ) and the 
point of prior maximum tensile displacement ( maxu , maxF ). The transition points are updated 
every time the tensile displacement exceeds the prior maximum value, maxu . The cavitation 
point ( cnu , cnF ) starts with initial values of ( cu , cF ), the initial cavitation point, and then changes 
under cyclic loading. Table 4-3 presents the entries in the stiffness matrix, bK , and nodal force 
vector, bf , corresponding to axial direction as a function of axial displacement. 

4.3.2.3 Horizontal Direction 

4.3.2.3.1 General 

The horizontal shear behavior of LDR and LR bearings is modeled using an extension of the 
Bouc-Wen model (Park et al., 1986; Wen, 1976). The model proposed by Grant et al. (2004) is 
used for HDR bearings. The numerical formulations start with the construction of a stiffness 
matrix, and force and displacements vectors in the basic coordinate system. The stiffness matrix 
and nodal response quantities are converted from the basic to the global coordinate system 
through transformation matrices described previously. The formulation of these models are 
presented in the following sections. 

4.3.2.3.2 Low damping and lead rubber bearings 

Two numerical models and their implementation algorithms are presented here. The 
bidirectional formulation of the Bouc-Wen model and the plasticity model are used. Both models 
are represented as the sum of a viscoelastic model of rubber and a hysteretic model of the lead 
core, as shown in Figure 4-6. The key difference between the two models is the smooth 
transition from elastic to plastic force-displacement behavior in Bouc-Wen model. Figure 4-6 
shows the sharp transition in the plasticity formulation. 

Figure 4-6    Components of the numerical model of elastomeric bearing 

The viscoelastic component has the elastic stiffness, ek , and the hysteretic component has an 
initial elastic stiffness 0k . The sum of these two models (the mathematical model of elastomeric 

Viscoelastic Visco-plasticity Hysteretic 

ke k0 

qYield 
qYield 

fy 

ke 
ke+k0 



4-13

bearing in shear) has initial stiffness ek  + 0k  and post-yield stiffness ek . A parameter α  is often 
assumed in an analysis, which is the ratio of the post-yield stiffness to the initial stiffness of an 
elastomeric bearing: 

α =
+ 0

e

e

k
k k

(4.28) 

 The post-yield stiffness, ek , of an elastomeric bearing is: 

=e
r

GAk
T

(4.29) 

For given value of α , the initial stiffness of hysteretic component can be calculated using: 

α
 = − 
 

0
1 1 ek k (4.30) 

The yield strength of hysteretic component (or characteristic strength of elastomeric bearing), 
qYield , is calculated as product of yield stress of lead and the area LA  of the lead core for LR 
bearing, while for LDR bearing it is calculated by assuming a nominal value of damping 
(described in Chapter 3). If qYield  is known, the yield strength, yf , of elastomeric bearing can
be obtained using: 

α
=

−1y
qYieldf (4.31) 

The formulations the Bouc-Wen model and the plasticity model using the parameters obtained 
from Equation (4.28) through (4.31) are discussed in the following sections. 

4.3.2.3.3 Bouc-Wen formulation 

A smooth hysteretic model is used for elastomeric bearings in horizontal shear, which is based 
on the model proposed by Park et al. (1986) and extended for the analysis of elastomeric 
bearings under bidirectional motion (Nagarajaiah et al., 1989). The bidirectional smooth 
hysteretic model by Park et al. (1986) has already been implemented in software programs 3D-
BASIS (Nagarajaiah et al., 1989) and SAP2000 (Wilson, 1997). A detailed discussion on this 
mathematical model was presented in Chapter 3. The numerical implementation is presented 
here. 

The isotropic formulation of the model in terms of restoring forces in two horizontal orthogonal 
directions, represented by indices 2 and 3, is given by the equation: 

( )       
= + +       

      





(2) (2) (2) (1)
(3) (3) (3) (2)

b b b
d e

b b b

f u u z
c k qYield

f u u z
 (4.32) 

where bf , bu  and bu  are the force, displacement and velocity in the basic coordinate system, ek
is the elastic stiffness of rubber (also the post-elastic stiffness of the bearing), dc  is a parameter 
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that accounts for the viscous energy dissipation in the rubber, and qYield  is the yield strength 
of hysteretic part (also the characteristic shear strength of the bearing).  

The first two terms in Equation (4.32) represent the resisting force in the rubber and the third 
term represents the resisting force in the hysteretic component (the lead core in the LR 
bearing). The hysteretic evolution parameter, z  = [ ](1) (2) Tz z , is used to calculate the 
resisting force in the bearing due to the hysteretic component using the following equation: 

 [ ] [ ]( )   
= − Ω   

   





(2)(1)
(3)(2)

b
y

b

uz
u A I

uz
  (4.33) 

where matrix Ω  is given by: 

 
( )( ) ( )( )
( )( ) ( )( )

γ β γ β

γ β γ β

 + +
Ω =  

+ +  

 

 

2

2

(1) (2) (1) (1) (2) (3) (2)

(1) (2) (2) (1) (2) (3) (2)
b b

b b

z Sign u z z z Sign u z

z z Sign u z z Sign u z
  (4.34) 

The above equations are solved numerically using the Newton-Raphson method, which 
provides a single expression for z  and allows for a smooth transition from the elastic to the 
plastic region.  

Noting that ⋅ =sgn( )x x x , and x = ∆
∆
x
t

= ∆

∆

x
t

= ∆ ⋅ ∆
∆

sgn( )x x
t

, the incremental form of Equation 

(4.33) describing the evolution of hysteretic parameter z  is: 

 [ ] [ ]( ) ∆∆   
= − ∆Ω   ∆∆   

(2)(1) 1
(3)(1)

b

by

uz
A I

uz u
  (4.35) 

where matrix ∆Ω  is given by: 

 
( )( ) ( )( )
( )( ) ( )( )

γ β γ β

γ β γ β

 ∆ + ∆ +
∆Ω =  

∆ + ∆ +  

2

2

(1) (2) (1) (1) (2) (3) (2)

(1) (2) (2) (1) (2) (3) (2)

z Sign u z z z Sign u z

z z Sign u z z Sign u z
  (4.36) 

where ∆  is the increment from step n  to +1n  given as ( ) ( ) ( )+
∆ = ∆ − ∆

1n n
. Hence, for 

variable z , ( ) ( ) ( )+∆ = −11 1 1n nz z z  and ( ) ( ) ( )+∆ = −12 2 2n nz z z  = ( ) ( )+ −1 2 2n Cz z , where z  
represents the +( 1)n th  step and Cz  the nth  step (also referred to as committed or converged 
step in OpenSees). 

Define three temporary variables as: 

 γ β= ∆ +1 ( (2) (1))btmp Sign u z   (4.37) 

 γ β= ∆ +2 ( (3) (2))btmp Sign u z   (4.38) 

 = ∆ + ∆3 (1) (2) 1 (2) (3) 2b btmp z u tmp z u tmp   (4.39) 
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Using the Newton-Raphson method, a solution of equation = 0f  is sought, where f  is: 

[ ] [ ]( ) ∆∆   
= − − ∆Ω   ∆∆   

(2)(1) 1
(3)(2)

b

by

uz
f A I

uz u
 (4.40) 

which can be written in terms of temporary variables as: 

or, 
( )

( )

 − − ∆ −  =  
 − − ∆ −
  

1(1) (1) (2) (1) 3

1(2) (2) (3) (2) 3

C

C

z z A u z tmp
uy

f
z z A u z tmp

uy

(4.41) 

The gradient Df  is then calculated as: 

∂ ∂ 
 ∂ ∂ =
∂ ∂ 
 ∂ ∂ 

(1) (1)
(1) (2)
(2) (2)
(1) (2)

f f
z z

Df
f f
z z

(4.42) 

where, 

( )∂
= = + ∆ + ∆
∂

(1) 1(1,1) 1 2 (1) (2) 1 (2) (3) 2
(1) b b

y

fDf z u tmp z u tmp
z u

(4.43) 

∂
= = ∆
∂

(1) 2(1,2) (1) (3)
(2) b

y

f tmpDf z u
z u

(4.44) 

∂
= = ∆
∂

(2) 1(2,1) (2) (2)
(1) b

y

f tmpDf z u
z u

(4.45) 

( )∂
= = + ∆ + ∆
∂

(2) 1(2,2) 1 2 (1) (2) 1 (2) (3) 2
(2) b b

y

fDf z u tmp z u tmp
z u

(4.46) 

The first estimate of the solution z  of equation f  = 0, is obtained using: 

∆ =
fz

Df
(4.47) 

The solution of above equation is: 

−
∆ =

−
(1) (2,2) (2) (1,2)(0)

(1,1) (2,2) (1,2) (2,1)
f Df f Dfz

Df Df Df Df
(4.48) 
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 −
∆ =

−
(1) (2,1) (2) (1,1)(1)

(1,2) (2,1) (1,1) (2,2)
f Df f Dfz

Df Df Df Df
  (4.49) 

 

The above steps are repeated and the value of z  after a number of iteration is: 

 = −
fz z

Df
  (4.50) 

The number of iterations is dictated by accuracy desired for the solution z . When ∆z  becomes 
smaller than a defined tolerance, the solution is assumed to have converged.  

Once the value of the hysteretic parameter is obtained, its derivatives with respect to horizontal 
displacements ( dzdu matrix) are obtained using following sets of equations: 

 ∂ ∆ ∂ ∆
= =

∂ ∆ ∂ ∆
(2) (2) (3) (3);
(3) (3) (2) (2)

b b b b

b b b b

u u u u
u u u u

  (4.51) 

 
  ∂∂

= = − +   ∂ ∂  

(3)(1) 1(1,1) (1) (1) 1 (2) 2
(2) (2)

b

y b

uzdzdu A z z tmp z tmp
u u u

  (4.52) 

 
  ∂ ∂∂

= = − +   ∂ ∂ ∂  

(2) (2)(1) 1(1,2) (1) (1) 1 (2) 2
(3) (3) (3)

b b

y b b

u uzdzdu A z z tmp z tmp
u u u u

  (4.53) 

 
  ∂ ∂∂

= = − +   ∂ ∂ ∂  
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(2) (2) (2)

b b
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  (4.54) 

 
  ∂∂

= = − +   ∂ ∂  

(2)(2) 1(2,2) (2) (1) 1 (2) 2
(3) (3)

b

y b

uzdzdu A z z tmp z tmp
u u u

  (4.55) 

The shear force in two the horizontal directions are: 

 = ⋅ + ⋅ + ⋅(2) (2) (1) (2)b d b e bf c u qYield z k u   (4.56) 

 = ⋅ + ⋅ + ⋅(3) (3) (2) (3)b d b e bf c u qYield z k u   (4.57) 
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The coupled tangent stiffness terms of the basic stiffness matrix in the two horizontal directions 
are: 

∂
= + +
∆ ∂

∂
=

∂

∂
=

∂

∂
= + +
∆ ∂

(1)(2,2)
(2)

(1)(2,3)
(3)
(2)(3,2)
(2)

(2)(3,3)
(3)

d
b e

b

b
b

b
b

d
b e

b

c zK qYield k
t u

zK qYield
u
zK qYield
u

c zK qYield k
t u

(4.58) 

4.3.2.3.4 Plasticity formulation 

For the plasticity model, the displacements of the hysteretic component, bPlasticu  in the two 
horizontal directions are used as state variables. The ×2 1 vector qTrial  of trial shear forces of 
the hysteretic component in two horizontal directions is calculated as: 

( )
( )

= −

= −
0

0

(1) (2) (1)

(2) (3) (2)
b bPlastic

b bPlastic

qTrial k u u

qTrial k u u
 (4.59) 

The resultant of trial shear forces is: 

= +2 2(1) (2)qTrialNorm qTrial qTrial (4.60) 

A dummy parameter Y  is defined to determine transition from elastic to plastic behavior. 

= −Y qTrialNorm qYield (4.61) 

where ≤ 0Y  represents the elastic region and ≥ 0Y  represents the plastic region. For the 
elastic region, the nodal forces in basic coordinate system are: 

= +

= +

(2) (2) (1)
(3) (3) (2)

b e b

b e b

f k u qTrial
f k u qTrial

(4.62) 
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and shear stiffnesses in two horizontal directions are: 
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 (4.63) 

For the plastic region ≥( 0)Y , the hysteretic components of the forces in each direction are 
distributed in the ratios of their trial shear forces. The nodal forces in each direction are given 
as: 

 

×
= + +

×
= + +





(1)(2) (2) (2)

(2)(3) (3) (3)

b d b e b

b d b e b

qYield qTrialf c u k u
qTrialNorm

qYield qTrialf c u k u
qTrialNorm

  (4.64) 

 

The shear stiffnesses in two directions are given as: 

 
( )
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( )
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( )
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 (4.65) 
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  (4.66) 
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∂ 0 3
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  (4.67) 

 
( )
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∂ × ×

= = − ×
∂ 0 3

(3) (1) (2)(3,2)
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b
b

b

f qYield qTrial qTrialK k
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  (4.68) 

Note that ∂ ∂ = ∆( (2)) / ( (2)) 1/b bu u t  is the stiffness contribution from the viscous component of 
the rubber. 

The resultant plastic displacement is calculated by dividing the parameter Y  by the initial elastic 
stiffness of hysteretic component, 0k . The parameter Y  is the excess force above the yield 
strength in the elastomeric bearing and dividing it by 0k  gives the equivalent plastic 
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displacement, , which is another dummy parameter (known as the return-mapping 
parameter). This plastic displacement is then distributed between the two horizontal directions in 
the ratio of their trial hysteretic forces. The plastic displacements are updated after every step 
as: 

= +

= +

(1)(1) (1)

(2)(2) (2)

bPlastic bPlasticC

bPlastic bPlasticC

qTrialu u dGamma
qTrialNorm

qTrialu u dGamma
qTrialNorm

(4.69) 

where bPlasticCu  is the plastic displacement from the last time step. 

4.3.2.4 Rotational and torsional directions 

The other three directions of the physical model of an elastomeric bearing are torsion about the 
axial direction and rotations about the two horizontal directions. The torsional and rotational 
behaviors of elastomeric bearings do not significantly affect the overall response of a seismically 
isolated structure. Accordingly, the three directions are represented by springs with linear elastic 
stiffnesses as: 

Torsional direction: =
2(4,4) r

b
r

GIK
T

(4.70) 

Rotational directions = =(5,5) (6,6) r r
b b

r

E IK K
T

(4.71) 

where parameters are defined in Chapter 3. 

The nodal forces in the basic coordinate system are: 

= ×

= ×

= ×

(4) (4,4) (4)
(5) (5,5) (5)
(6) (6,6) (6)

b b b

b b b

b b b

f K u
f K u
f K u

(4.72) 

4.3.2.5 High damping rubber bearings 

The model of HDR bearings in shear proposed by Grant et al. (2004) is used. A detailed 
discussion on the numerical implementation of the model is provided in Grant et al. (2005) and 
is not repeated here. 

4.3.3 Nonlinear geometric effects 

For analysis of structures assuming linear geometry, the element equilibrium equations are 
satisfied in the undeformed configuration and the compatibility relationship between element 
deformations (in the basic coordinate system) and end displacements in the global coordinate 
system does not depend on the displacements. Elastomeric bearings may experience large 
displacements under beyond design earthquake shaking, and the effects of the geometric 
nonlinearity should be considered by satisfying the element equilibrium equations in the 

dGamma
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deformed configuration and using nonlinear compatibility relationship between element 
deformations and end displacements in the global coordinate system. 

There are two ways to consider geometric nonlinearity in the analysis of elastomeric bearings: 
1) considering − ∆P  effects to satisfy the element equilibrium equations in the deformed 
condition, or, 2) using analytical expressions for the mechanical properties of elastomeric 
bearings that have been derived considering geometrical nonlinearity. 

For applications in earthquake engineering, considering − ∆P  effects is an approximate 
method to account for geometric nonlinearity. The axial load, P ,  at a lateral displacement,  ∆ , 
results in a − ∆P  moment. This moment can be replaced by an equivalent force couple. Figure 
4-7 shows the inclusion of − ∆P  in the analysis of a multistory building. The lateral force-
displacement relationship that should be included in the formulation to account for − ∆P effects 
is: 

 
+ +

−    
=    −    ! !

1.0 1.0
1.0 1.0

i ii

i ii

f uW
f uh

  (4.73) 

 ∆ =P Gf K u   (4.74) 

where GK  is − ∆P  geometric stiffness matrix.  

The lateral forces due to − ∆P  moments are evaluated for all the stories of the building and are 
added to the overall lateral equilibrium of building to solve for the nodal displacements.  

 ( )= + GF K K u   (4.75) 

When internal forces in the members are obtained from these displacements using linear 
theory, equilibrium equations are found to be satisfied in the deformed configuration. Hence, 
including − ∆P  effects allows one to satisfy equilibrium in the deformed configuration without 
any explicit consideration of geometric nonlinearity in the element equilibrium and compatibility 
equations. 
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Figure 4-7    Overturning loads due to translation of story weights (Wilson, 2002) 

Analytical expressions for mechanical properties are obtained using explicit considerations of 
geometric nonlinearity in the second approach. These analytical expressions are used to define 
the six springs that connect the two nodes of an elastomeric bearing. The element equilibrium 
and compatibility equations are satisfied in the deformed configuration to obtain expressions for 
mechanical properties.  

The axial stiffness and two shear stiffnesses of an elastomeric bearing are obtained here 
including the effects of geometric nonlinearity (Koh and Kelly, 1987). These three stiffness 
expressions depend on axial load and lateral displacements of a bearing. The critical buckling 
capacity of a bearing also depends on the lateral displacement. The bilinear approximation to 
the linear area reduction method suggested by Warn et al. (2007) is used to calculate the critical 
buckling capacity of a bearing. The moment due to the axial load of the superstructure at a 
horizontal displacement is equally divided between the two ends of the bearing. 

The horizontal elastic stiffness of a bearing, ek , at an axial load P  is given by: 

 
= − 

 

2

21e
r cr

GA Pk
T P

(4.76) 

where crP  is the critical buckling load capacity of the bearing at zero lateral displacement. This 
expression is a simplified approximation of the exact expression derived by Koh and Kelly 
(1987) and has been shown produce to accurate results. 
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The vertical stiffness of a bearing at a lateral displacement hu  is given by: 
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  (4.77) 

where = +2 2(2) (3)h b bu u u  is the resultant horizontal displacement of the bearing.  

The critical buckling load capacity of a bearing is given by expression: 
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  (4.78) 

where 0crP  is the buckling load at zero displacement, and crP  is the buckling load at overlapping 
area rA  of a bearing with an initial bonded rubber area of A . Additional information on the 
calculation of the reduced area is provided in Chapter 3. 

The torsional and two rotational stiffnesses are not expected to significantly affect the response 
of elastomeric bearings. Linear expressions are used for these three stiffnesses. 

4.4 Implementation in OpenSees 

4.4.1 General 

The Open System for Earthquake Engineering Simulation (OpenSees) is an object-oriented, 
open-source software framework for simulations in earthquake engineering using finite element 
methods. OpenSees is not a code. OpenSees has a modular architecture that allows users to 
add additional functionalities without much dependence on other components of the program.  
The user can focus on the changes and improvements in the program relevant to them without 
needing to know the whole framework (e.g., changing stress-strain relationship in a material 
model without knowing about equations solvers and integration methods). 

The Tcl/Tk programming language is used to support the OpenSees commands. The 
OpenSees interpreter (OpenSees.exe) is an extension of the Tcl/Tk programming language that 
adds commands to Tcl for finite element analysis. Each of these commands is a one-line 
statement associated with a C++ procedure, which is used to define the problem geometry, 
loading, formulation and solution. The procedure is called upon by the OpenSees interpreter 
(OpenSees.exe) to parse the command. Additional functionalities are added to OpenSees 
through these C++ procedures. The most basic example of these procedures is an element in 
finite element analysis. In OpenSees, the Element is a procedure that maintains the state of the 
finite element model of a component and computes its contribution of resisting force, and 
tangent matrix to the structure.  
Three elements are created for LDR, LR, and HDR bearings. Section 4.4.2 describes the 
general framework of OpenSees and presents the theoretical background of the formulation of 
user elements in OpenSees. The presentation is based on the discussion presented in Mazzoni 
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et al. (2006) and Fenves et al. (2004). The wiki version of the user documentation of OpenSees 
is available on the website http://opensees.berkeley.edu/wiki. 

4.4.2 OpenSees framework 

 In OpenSees the analysis model is created through set of modules that construct the finite 
element model, specify the analysis procedure, and select the quantities to be monitored during 
an analysis procedure and the output of results. The four types of high-level objects created in 
OpenSees during each finite element analysis are presented in Figure 4-8. 

The Domain object holds the state of the finite element model at time it  and +it dt and stores 
the objects created by the ModelBuilder object when the Analysis object advances the state 
from it  and +it dt . The information from the Domain object is accessed by the Analysis and 
Recorder objects. The ModelBuilder object is used to construct the objects in the model and 
adds them to the domain. Different ModelBuilders may be used to construct and add a model to 
the Domain, such as a text based model building language (Tcl/Tk) or a graphical user interface 
(OpenSees Navigator). A simulation may use one of many solution procedures available in the 
Analysis object to invoke solvers to solve the systems of equations, which moves the model 
from state at time it  and +it dt . The user-defined parameters are monitored during the 
analysis using the Recorder object for post-processing and visualization of simulation results. 

Figure 4-8    High-level OpenSees objects in the software framework (Mazzoni et al. (2006)) 

The high-level objects discussed above are constructed using many small objects. The Domain 
object contains all the information on the finite element model, such as nodes, boundary 
conditions, loads, and single and multi-point constrains, as shown in Figure 4-9. The 
components of the Analysis object are shown in Figure 4-10.  

Figure 4-9    The components of the Domain object (Mazzoni et al., 2006) 

Domain

Recorder

AnalysisModelBuilder

http://opensees.berkeley.edu/wiki
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Figure 4-10   The components of the Analysis object (Mazzoni et al., 2006) 

The Element object is created here using C++ procedures. As discussed before, the main 
function of the Element is to provide the nodal force vector and stiffness matrix. Trial 
displacements are made available to the element at each step by OpenSees. The Element uses 
these trial displacements to advance the state of the model from it  to +it dt  and assembles the 
force vector and stiffness matrix at +it dt . Iterations are performed at each time-step to achieve 
convergence. The converged state is also referred to as the committed step. The nodal force 
vector and stiffness matrix provided by the Element correspond to the committed step. 

Procedures (or Class) used to write an Element in C++ follow an object-oriented approach, 
which means that each class in C++ has specific tasks (functions) and certain properties (data). 
In this way, the object-oriented approach tries to simulate a physical object. For example, a 
class Person created in C++ will have certain properties (e.g., name, height, weight, and 
ethnicity) and specific tasks (e.g., teaching) represented by data and functions. The data and 
functions of the Person class might be available to other classes depending upon whether they 
are declared public (available to all), private (only available inside the class), or protected 
(available for obtaining information but properties cannot be modified). The data and functions 
are declared and initialized through a header file (.h file), which is also responsible for calling 
pre-compiled libraries that are used in the procedure. A header file can be thought of declaration 
of intent of a class. The actual tasks of a class are described in cplusplus (.cpp) file through 
functions and data.  

4.4.3 Variables and functions in OpenSees elements 

The modular architecture of OpenSees means that the Element has very few generalized 
variables that should be defined for each element. Each element can define its own variables 
and user input arguments. The primary task of element is to provide a nodal force vector and a 
stiffness matrix. The variables that must always be defined for an element are: 1) an element 
tag and 2) tags of the nodes that define the element. All of these tags must be unique in the 
finite element model created in OpenSees. For the elastomeric bearing element created here, 
two node tags must be defined.  

All the elements have a similar set of functions that are called to perform a task or obtain 
parameter values. For example, the function getTangentStiff() is called to get the tangent 
stiffness matrix in the global coordinate system. The list of functions used in an Element in 
OpenSees is shown presented in Table 4-4. 
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Table 4-4    Functions used in an OpenSees Element 
Function Task 

getNumExternalNodes returns number of nodes in the element 
getExternalNodes returns an array containing the node ids 

getNodePtrs returns pointers to the node ids 
getNumDOF returns number of DOF of the element 
setDomain adds the element object to the domain 

commitState commits state variables, the converged state variables are 
copied to new trial variables 

revertToLastCommit if step is not converged, model state is returned back to last 
committed state 

revertToStart resets the state of the model to the beginning of the analysis 

update takes the state of the model from  to , nodal force vector 
and stiffness matrix are calculated 

getTangentStiff returns the stiffness matrix in global coordinates 
getInitialStiff returns the initial tangent stiffness matrix 

getMass returns the mass matrix for the element 
zeroLoad sets the nodal force vector to zero 

addLoad checks if the compatible loads have been assigned to the 
element 

addInertiaLoadToUnbalance adds inertial load to the nodal force vector 

getResistingForce returns the nodal force vector in the global coordinates 
excluding inertial loads 

getResistingForceIncInertia returns the nodal force vector in the global coordinates 
including inertial loads 

sendSelf sends element parameters to a data array, required for a 
parallel processing option 

recvSelf receives element parameters from a data array, required for a 
parallel processing option 

displaySelf displays the deformed shape of the bearing 

print prints the output on the command line of OpenSees interpreter 
(OpenSees.exe) 

setResponse prints the response invoked by recorders to ASCII files 

getResponse prints the response on the command line of OpenSees 
interpreter (OpenSees.exe) 

setUp assemble the transformation matrices 

t t dt+
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Table 4-5    Description of the user input arguments for the elements 

Argument 
priority 

Data 
type 

Input arguments 
Definition ElastomericX LeadRubberX 

Required int tag tag Element tag 
Required int Nd1 Nd1 First node tag of the element 

Required int Nd2 Nd2 Second node tag of the 
element 

Required double fy fy Yield stress of bearing 
Required double alpha alpha Yield displacement of bearing 
Required double G G Shear modulus of rubber 
Required double Kbulk Kbulk Bulk modulus of rubber 
Required double D1 D1 Lead (or internal) diameter 
Required double D2 D2 Outer diameter 
Required double ts ts Single shim layer thickness  
Required double tr tr Single rubber layer thickness 
Required int n n Number of rubber layers 
Optional double x x Local x direction 
Optional double y y Local y direction 
Optional double kc kc Cavitation parameter 
Optional double PhiM PhiM Damage parameter 
Optional double ac ac Strength reduction parameter 
Optional double sDratio sDratio Shear distance ratio 
Optional double m m Mass of the bearing 
Optional double cd cd Viscous damping parameter 
Optional double tc tc Cover thickness 
Optional double  qL Density of lead 
Optional double  cL Specific heat of lead 
Optional double  kS  Thermal conductivity of steel  
Optional double  aS Thermal diffusivity of steel 
Optional int tag1 tag1 Cavitation 
Optional int tag2 tag2 Buckling load variation 
Optional int tag3 tag3 Shear stiffness variation 
Optional int tag4 tag4 Axial stiffness variation 
Optional int  tag5 Shear strength degradation 
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4.4.4 User elements 

Two elements, ElastomericX and LeadRubberX, were created for LDR and LR bearings, 
respectively. Both element classes use similar structure and input arguments, except 
LeadRubberX has additional parameters and functions to capture the heating of the lead core 
under large cyclic displacements. These elements can only be used with three-dimensional 
finite element models in OpenSees. The input arguments of the two elements are summarized 
in Table 4-5. The elements take basic geometric and material parameters of elastomeric 
bearings as input arguments. Input arguments include mandatory and optional parameters. The 
default values of the option argument are provided in the element. The elements can be used in 
three type of analysis with OpenSees, namely: 1) eigenvalue analysis, 2) static analysis, and 3) 
transient (dynamic) analysis. 

The geometric details of an elastomeric bearing is presented in Figure 4-11. 

Figure 4-11   Internal construction of an elastomeric bearing 

The length of the element, L ,  is calculated using the coordinates of its two nodes, Nd1 and 
Nd2. This length is used in the calculation of geometric stiffness and to consider − ∆P  effects. 
The height of the bearing used in the calculations of mechanical properties is given by: 

= + −( 1)r sh nt n t (4.79) 

where rt  is the thickness of single rubber layer, st  is the thickness of steel shim, and n  is the
number of rubber layers. The length of the element (distance between Nd1 and Nd2) includes 
two internal and two external bearing plates at each ends, and is given by: 

= + − + +int( 1) 2 2r s extL nt n t t t (4.80) 

where intt  and extt  are the thicknesses of the internal and external bearing plate, respectively.

The default orientations of the local x  and y  axes are shown in Figure 4-12. The vector
defining the local x  axis is obtained from the coordinates of the two nodes of the bearing. The
local y  axis is aligned to global X  axis and a vector along this direction is assumed to be an 
unit vector (-1, 0, 0). The vector defining the z  axis is then obtained as cross product of x
and y . Finally, the vector defining y  is obtained as the cross product of z  and x .

An arbitrary orientation of an elastomeric bearing can be modeled by providing vectors that 
define the local x  and y  directions, which overrides the default orientation of the local
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coordinate axes. The shear distance ratio is the distance of the shear center from node 1 of the 
elastomeric bearing as a fraction of the element length. For symmetrical circular and square 
bearings, this ratio is 0.5, which is the default value. The bearing is assumed to be massless 
and a default value of 0 is assigned to the parameter bm .

Figure 4-12   Local and global coordinates used in OpenSees for the elements 

For LeadRubberX, additional heating parameters are used. The default values of these 
parameters used in the elements are from Kalpakidis et al. (2010). The default values of heating 
parameters are in the SI system of units, and should be overridden if the Imperial/US units are 
used.  

Four and five tags are used in ElastomericX and LeadRubberX, respectively, to include the 
following characteristics of an elastomeric bearing under extreme loading: 

1. Cavitation and post-cavitation behavior due to tensile loading
2. Variation in buckling load due to horizontal displacement
3. Variation in shear stiffness due to axial load
4. Variation in axial stiffness due to horizontal displacement
5. Strength degradation in shear due to heating of the lead core (LR bearings)

The tag value is set 1 or 0 to include or exclude a characteristic. Default values of the optional 
parameters are summarized in Table 4-6. 

The user input interface of ElastomericX and LeadRubberX to be used in a Tcl/Tk input file are: 

element ElastomericX $tag $Nd1 $Nd2 $fy $alpha $Gr $Kbulk $D1 $D2 $tr $ts $n <$x1 $x2 
$x3 $y1 $y2 $y3> <$kc> <$PhiM> <$ac> <$sDratio> <$m> <$cd> <$tc> <$tag1> <$tag2> 
<$tag3> <$tag4> 

element LeadRubberX $tag $Nd1 $Nd2 $fy $alpha $Gr $Kb $D1 $D2 $tr $ts $n <$x1 $x2 $x3 
$y1 $y2 $y3> <$kc> <$PhiM> <$ac> <$sDratio> <$m>  <$cd> <$alphaS $kS $qL $cL> 
<$tag1> <$tag2> <$tag3> <$tag4> <$tag5> 
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values are presented in Table 4-6. 

Table 4-6    Default values of optional parameters 
Parameter Value 

kc 10 
PhiM 0.75 

ac 1.0 
sDratio 0.5 

m 0.0 
tc 0.0 
cd 128000 N-s/m 
qL 11200 kg/m3 

cL 130 J/(kgoC) 
kS 50 W/(moC) 
aS 1.4×10-5 m2/s 

tag1 0 
tag2 0 
tag3 0 
tag4 0 
tag5 0 

4.5 Implementation in ABAQUS 

4.5.1 General 

ABAQUS provides the user with the capability to define special purpose subroutines or 
elements. Capabilities are added to ABAQUS through the creation of subroutines written in the 
FORTRAN 77 programming language. A subroutine is a FORTRAN procedure that can be 
compiled and tested separately from its host program. Subroutines can be added to the 
ABAQUS for various tasks such as defining material models, load distributions, frictional 
properties, and contact interface behavior. However, the focus here is a special type of user 
subroutine called User Elements (UEL). A UEL can be a finite element that represents the 
geometry (e.g., beam, truss, solid) of the model, or can be feedback links, which provide 
response at certain points as a function of displacements, velocities, accelerations at some 
other points in the model.  

The user elements considered here represents a geometric model of the elastomeric bearing 
and hence the discussion is focused on the geometry based user elements. Section 4.5.2 
describes the general framework of ABAQUS and presents the theoretical background of the 
formulation of user elements in ABAQUS. The presentation is based on the discussion 
presented in Section 29.16.1 of the ABAQUS Analysis User’s Manual (Dassault, 2010a), and 
Section 1.1.23 of the ABAQUS User Subroutines Reference Manual (Dassault, 2010c).  

4.5.2 ABAQUS framework 

The response of a system modeled in ABAQUS is obtained by solution of equilibrium equations 
in incremental steps. User elements are coded to define the element’s contribution to the whole 
model. The user element is called every time element calculations are required and it must 
perform all the calculations appropriate for the current step in the analysis. Information about the 

where the parameters are defined in Table 4-5. The $ sign refers to the value of the parameter 
followed by it. The input parameters enclosed in < > are optional parameters, whose default 
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model, which includes model definition, nodes and joint connectivity, geometrical and material 
parameters, loads definition and analysis requirements are defined through an ABAQUS input 
(.inp) file. This input file can be written by the user, or the ABAQUS pre-processor can be used 
to generate this input file interactively through a graphical user interface. The input file is then 
passed through the ABAQUS solver, which generates a set of equilibrium equations to be 
solved. The solver calls the user element every time information is required from user-defined 
elements. When user elements are called, ABAQUS provides these subroutines with the values 
of nodal coordinates, all solution-dependent nodal variables (e.g., displacements, velocities, 
accelerations, incremental displacements), solution dependent state variables at the start of the 
increment, and the user-defined properties in input file for this element. ABAQUS also passes 
an array of control flags to the element that indicates what tasks the element need to perform. 
Depending upon the flags, the element defines its contribution to the nodal force vector and the 
Jacobian (stiffness)4 matrix of the whole model and also updates the solution dependent state 
variables. A typical process flow of an analysis step and role of user element in ABAQUS is 
shown in Figure 4-13.   

The element during the analysis step provides nodal forces NF  and the element’s contribution 
to the total Jacobian matrix, − /N NdF du . Both of these depend on the nodal variables 

Mu  and 
solution dependent state variables αH . The nodal forces are given by: 

 ( )α= , , geometry, attributes, predefined field variables, distributed loadsN N MF F u H  (4.81) 

If a finite element is in equilibrium subject to surface tractions t  and body forces f  with stress 
σ , and with interpolation δ δ=u NN Nu , δε β δ= N Nu , the nodal forces are given by: 

 β σ= + −∫ ∫ ∫. . :N N N N

S V V

F tdS fdS dVN N  (4.82) 

To solve the equilibrium equations using the Newton-Raphson method: 

 
=

= +

 NM M M

N N N

K c R
u u c

 (4.83) 

where NR  is the residual force at degree of freedom N  and 

 = −
N

NM
M

dRK
du

  (4.84) 

is the Jacobian matrix. The indices N  and M  are the degrees of freedom of the element. 

During each iteration in the Newton-Raphson method, NF  and − /N MdF du  must be defined by 
the element, which are element’s contribution to the residual NR  and Jacobian  NMK , 
respectively. 

                                                
4 Stiffness matrix is for displacement-based formulations. However, a more generalized term “Jacobian” is 
used when multi-physics problems are solved in which additional independent variables are considered 
(e.g., a thermo-mechanical problem using temperature as an independent variable). 
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Figure 4-13   Outline of a general analysis step in ABAQUS (adapted from Dassault (2012)) 

The element’s contribution − /N MdF du to the Jacobian matrix must consider all the direct and
indirect dependencies of NF  on 

Mu . If the solution dependent state variables αH  depend on Mu , − /N MdF du  is given as:

α

α

∂ ∂
= − = −

∂ ∂

N N

ele M M

dF F HK
du H u

(4.85) 
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In the case of direct-integration dynamic analysis, NF  depends on the velocity, 
Mu , and

acceleration, 
Mu . Hence nodal velocity and acceleration histories must be stored by the

element in addition to the displacement history. Where implicit integration is used for integration 
of the dynamic equations, the element’s contribution to the Jacobian is given as: 

+∆ +∆

   = − − −   
   

 

 

N N N

ele M M M
t t t t

dF dF du dF duK
du dudu du du

(4.86) 

The Hilber-Hughes-Taylor (HHT) implicit integration scheme is used in ABAQUS for integration 
of the dynamic equations of motion. For this scheme: 

γ
β

β

+∆

+∆

  =  ∆ 

  =  ∆ 




2

1
t t

t t

du
du t
du
du t

(4.87) 

where γ  and β  are Newmark integration parameters. The term − /N MdF du  represents the 
damping matrix and − /N MdF du  represents the mass matrix of the element. The HHT scheme
is unconditionally stable and there is no limit on the size of the time step for stability. The size of 
the time step is governed by accuracy. The overall dynamic equilibrium equation in HHT 
scheme is written as: 

α α+∆ +∆− + + − = (1 ) 0NM N N
t t t t tM u G G   (4.88) 

where α  is a parameter to control numerical damping in the model, and 
NG  is the total force

at degree of freedom N , excluding inertia forces, and is termed the static residual. Equation 
(4.88)  requires static residuals at the current and previous time step. ABAQUS provides 
information only at the current time step and static residual values from previous time steps 
need to be stored as the solution dependent state variables, αH , which can be accessed at the 
current time step for the required calculations. 

4.5.3 Variables in ABAQUS subroutines 

ABAQUS defines a general set of variables and depending on the model and analysis 
requirements, some, or all of these variables, are used. These variables can be categorized in 
different groups based on their functions as presented in Table 4-7. 

The variables RHS, AMATRX, and SVARS must be defined in the user element, which
correspond to NF , − /N MdF du , and αH  defined earlier, respectively. Variable ENERGY can
be defined depending upon the significance of the element energy in the overall model. If the 
user defines an integration scheme that requires a different time step for stability and accuracy, 
the user can suggest a new time step within the element using the variable PNEWDT. The set 
of variables passed to the user element for obtaining information about the analysis model in 
ABAQUS must not be modified by the user element.  

The variables RHS, AMATRX, and SVARS are populated based on the entries in the LFLAGS 
array, which defines the analysis type. A description of general analysis cases based on 
LFLAGS array is presented in Table 4-8. 
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Table 4-7   Overview of variables used in ABAQUS user subroutines (contd.) 
Category Name Description 

Must be 
defined 

RHS An array containing contributions of the element to the right 
hand side vector of the overall system of equations. 

AMATRX 

An array containing contribution of the element to the Jacobian 
(stiffness) of the overall system of equations. The particular 
matrix required at any instant depends on the entries in 
LFLAGS array. 

SVARS An array containing values of NSVARS number of solution-
dependent state variables. 

Can be 
defined ENERGY An array containing values of energy quantities associated with 

the element 
Can be 
updated PNEWDT Ratio of time increment required by user to the time increment 

(DTIME) currently being used by ABAQUS.  

Passed in for 
information 

PROPS 
A floating point array containing NPROPS values of 
geometrical and material properties defined by user for the 
element. 

JPROPS 
An integer array containing NJPROP of integer values of 
geometrical and material properties defined by user for the 
element. 

COORDS 
An array containing original coordinates of the nodes of the 
element. COORDS(K1, K2) represents the K1th coordinate of 
the K2th node of the element 

U, DU, V, 
A 

Arrays containing the current estimate of the basic solution 
variables (displacements, incremental displacements, 
velocities, accelerations) at the nodes of the element at the end 
of current increment. 

JDLTYPE An array containing the integers used to define distributed load 
types for the element. 

DDLMAG An array containing increments in the magnitudes of the 
distributed loads currently active on the element. 

PREDEF An array containing values of predefined field variables at the 
nodes of the element.  

PARAMS 
An array containing the parameters associated with the solution 
procedure defined by entries in the LFLAGS array. PARAMS(1) 
= , PARAMS(2) = , PARAMS(3) =   

LFLAGS An array containing the flags that define the current solution 
procedure and requirements for element calculations. 

TIME(1) Current value of step time 
TIME (2) Current value of total time 
DTIME Time increment 
PERIOD Time period of the current step 
NDOFEL Number of degrees of freedom in the element 

MLVARX Dimensioning parameter used when several displacement or 
right-hand-side vectors are used. 

NRHS Number of load vectors (1 in most nonlinear problems) 

NSVARS User defined number of solution dependent state variables in 
the element 

α β γ
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Table 4-7   Overview of variables used in ABAQUS user subroutines (contd.) 

NPROPS Number of user-defined real property values constituting the 
array PROPS 

NJPROPS Number of user-defined integer property values constituting the 
array PROPS 

MCRD 

Greater of the user-defined maximum number of coordinates 
needed at any node point and the value of the largest active 
degree of freedom of the user element that is less than or equal 
to 3 

NNODE User-defined number of nodes on the element 
JTYPE Integer defining the element type 
KSTEP Current step number 
KINC Current increment number 
JELEM User-assigned element number 

NDLOAD Identification number of the distributed load or flux currently 
active on the element 

MDLOAD Total number of distributed loads and/or fluxes on the element 
NPREDF Number of predefined field variables 

Table 4-8    Analysis cases used in ABAQUS 

LFLAGS(3) = 1 

Normal implicit time incrementation procedure. User subroutine UEL 
must define the residual vector in RHS and the Jacobian matrix in 
AMATRX 

LFLAGS(1) = 1, 2 

Static analysis 

RHS = α( , , other variables)N MF u H

AMATRX = − /N MdF du

LFLAGS(1) = 11, 12 

Direct-integration dynamic analysis 
RHS = α α+∆ +∆− + + − (1 )NM N N

t t t t tM u G G  

AMATRX =  /NMM du du + α+ (1 ) /NMC du du +

α+(1 ) NMK

LFLAGS(3) = 2 Define the current 
stiffness matrix only AMATRX= = −∂ ∂/NM N MK F u

LFLAGS(3) = 3 Define the current 
damping matrix only AMATRX= = −∂ ∂ /NM N MC F u

LFLAGS(3) = 4 Velocity jump 
calculation 

Define the current mass matrix 
AMATRX = NMM   

LFLAGS(3) = 5 Half increment 
calculation 

Define the current half-step residual or load 
vector 

RHS = 1/2
NF  = +∆− NM

t tM u + α +∆+(1 ) N
t tG -

α −+/ 2( )N N
t t

G G

LFLAGS(3) = 6 Initial acceleration 
calculation 

Define current mass matrix and the residual 
vector 
AMATRX = NMM

RHS = GN
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For the default time increment option provided in the ABAQUS input file, the element must 
define the half-increment residual load vector, 1/2

NF . ABAQUS adjusts the time increment so that
residual load vector at the half time step is within the tolerance defined for convergence 

≤1/2(max )NF tolerance . The solution-dependent state variables are calculated at the half step, 
α
1/2H , to calculate 1/2

NF , but these values are not saved. The DTIME variable contains ∆t , and
not ∆ / 2t . The values contained in U , V , A , and DU  are half-increment values. 

4.5.4 User input interface of the elements 

The user needs to define the element in the input (.inp) file through the *USER ELEMENT 
option. The ABAQUS preprocessor does not allow user element definition through the graphical 
user interface and the user must enter the element definition directly into the input file. The 
*USER ELEMENT option must be defined before the user element is invoked with the
*ELEMENT option. The syntax for interfacing UEL is:

*USER ELEMENT, TYPE=Un, NODES=, COORDINATES=, PROPERTIES=, I PROPERTIES=,
VARIABLES=, UNSYMM
Data line(s)
*ELEMENT,TYPE=Un, ELSET=UEL
Data line(s)
*UEL PROPERTY, ELSET=UEL
Data line(s)
*USER SUBROUTINES, (INPUT=file_name)

The parameters used in above interface are defined in Table 4-9. A detailed discussion on the 
user input interface for user elements is presented in Section 29.16.1 of the ABAQUS Analysis 
User’s Manual (Dassault, 2010a). 

Table 4-9    Parameter definitions used for UEL interface 
Parameter Definition 

TYPE (User-defined) element type of the form Un, where n is a number 
NODES Number of nodes in the element 

COORDINATES Maximum number of coordinates at any node 
PROPERTIES Number of floating point properties 
I PROPERTIES Number of integer properties 

VARIABLES Number of solution dependent variables 
UNSYMM Flag to indicate that the Jacobian is unsymmetric 

4.5.5 User elements 

Two ABAQUS user subroutines, UELs, were created for elastomeric bearings: ElastomericX for 
Low Damping Rubber (LDR) bearing, and LeadRubberX for Lead Rubber (LR) bearing. The 
LeadRubberX element builds on the formulation of ElastomericX and adds thermo-mechanical 
properties to capture strength degradation due to heating of the lead core. 

The primary task of user elements is to provide the RHS and AMATRX arrays during the 
analysis step and to update SVARS array. The user elements can be used for: 

1) Static analysis
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2) Direct integration dynamic analysis
3) Eigenfrequency extraction analysis

The user can specify any arbitrary length of the element, however a length representative of the 
actual height of the elastomeric bearing is recommended. If the ABAQUS preprocessor is used 
to generate the input file, the user can start by defining a dummy element in place of the 
elastomeric bearing, and after the user input file has been generated by the preprocessor, the 
dummy element can be deleted by manually editing the input file and replacing it with the 
definition of ElastomericX or LeadRubberX, as discussed in Section 4.5.4.  

The mechanical properties of the material (or material definitions) are defined in both user 
elements. Twelve and eighteen real property values (NPROPS=12, 18) and one integer 
property value (NJPROP=1) must be defined for the ElastomericX and LeadRubberX, 
respectively. The entries of PROPS array for both elements are presented in Table 4-10. 

Table 4-10   Properties of UELs that need to be defined as PROPS array 
PROPS(i) ElastomericX LeadRubberX Definition 

1 qRubber qYield Yield strength of bearing 
2 Uy Uy Yield displacement of bearing 
3 G G Shear modulus of rubber 
4 Kbulk Kbulk Bulk modulus of rubber 
5 D1 D1 Lead (or internal) diameter 
6 D2 D2 Outer diameter 
7 t t Single rubber layer thickness 
8 ts ts Single shim layer thickness 
9 ac ac Cavitation parameter 

10 phi phi Damage parameter 
11 sDratio sDratio Shear distance ratio5 
12 m m Mass of the bearing 
13 cd cd Rubber damping parameter 
14 alphaS Thermal diffusivity of steel 
15 kS Thermal conductivity of steel 
16 qL Density of lead 
17 cL Specific heat of lead 
18 TL1 Initial reference temperature of lead 

JPROPS(i) 
1 n n Number of shim layers 

ABAQUS does not store a history of internal parameters between step increments. Solution-
dependent state variables must be defined to store parameter values that are required for 
calculations at the next step. This is done through storing solution-dependent state variables in 
SVARS and updating them at the end of each step. Twenty-seven and twenty-eight state 
variables are defined in ElastomericX and LeadRubberX, respectively, with LeadRubberX 
containing an extra variable to store the temperature of the lead core. The variable SRESID in 
ABAQUS stores the static residual of total nodal forces at time +t dt . The first 12 elements of 
SVARS contains the static residual at time t . Entries of SRESID are copied to SVARS(1-12)  

5 It is the distance of shear center from node 1 of the elastomeric bearing as a fraction of the total element 
length. For symmetrical circular and square bearings, this ratio is 0.5. 
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after the dynamic residual has been calculated in the user element. In the case of half-
increment residual calculations, entries from 13-24 of SVARS contain the static residual at the 
beginning of the previous increment. SVARS(1-12) is copied into SVARS(13-24) after the 
dynamic residual has been calculated. SVARS(25) contains the variable maxu , which is the
maximum past axial deformation of the bearing under tensile loading. SVARS(26-27) contains 
the plastic horizontal shear displacements in the bearing. The temperature of lead core is stored 
in SVARS(28) for LeadRubberX. 

The user elements must define its contribution to the right hand side vector (RHS), and to the 
Jacobian of overall model (AMATRX) (see Section 4.5.2). For the user elements considered 
here, the RHS variable is the nodal force vector, bf , calculated using Equation (4.2), and
AMATRX is the stiffness matrix, bK , obtained using Equation (4.1) for the most calculation
steps except in half step residual calculations and initial acceleration calculation where mass 
matrix is passed for AMATRX and the static residual is passed for RHS. RHS and AMATRX are 
needed in global coordinates. The element nodal force and stiffness arrays are first formulated 
below in basic coordinates and then transformed to global coordinates using transformation 
matrices. Individual entries of the bK  and bf  are calculated per Section 4.3. Once, bK  and

bf  are obtained, their contribution in the global coordinate system are = T T
g gl lb bf T T f , and 

= T T
g gl lb b lb glK T T K T T , respectively. 

The programming structure of the UEL subroutine is shown in Figure 4-13. The main body of 
executable statements, which consists of set of tasks that need to be performed for each 
analysis case, is supplemented by two internal user subroutines: 1) ForceStiffness – to calculate 
the nodal force and stiffness matrix of the element in global coordinates, and 2) Transformation 
– to transform the quantities from one coordinate system to other.

Figure 4-14   Programming structure of user elements (adapted from Dassault (2012)) 
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5 VERIFICATION AND VALIDATION 

5.1 Introduction 

The models developed for the analysis of engineered systems are always approximations of the 
physical reality, and are limited by knowledge of physical processes, available data, 
mathematical formulations and numerical tools of analysis. The degree of accuracy to which 
these models predict the response of a system is addressed by the process of Verification and 
Validation (V&V). The prediction of response of a physical event through engineering models 
consists of many steps, and each step is accompanied by sources of error. The magnitude of 
the error depends on the assumptions, tools and techniques used for the analysis and an 
acceptance criterion is established with an acceptable level of error. 

The credibility, reliability and consistency of models used for solving complex systems should be 
established to identify the confidence in their implementation. For low-consequence events 
there is additional room for accommodating higher error due to the low risk involved, and most 
times V&V activities are not performed because the resources cannot be justified. Given that 
actual high-consequence events may never be studied in a controlled environment, it becomes 
important that high confidence is established in the models that are used to study and predict 
the outcomes of such events. The design basis and beyond design basis earthquake shaking of 
Nuclear Power Plants (NPPs) are examples of high-consequence events. The models used to 
predict the outcome of these events need to be verified and validated to establish a high level of 
confidence. The system of interest here is an isolation system for a NPP that includes models of 
low damping rubber (LDR) and lead-rubber (LR) bearings.  

The behavior of elastomeric bearings under extreme loadings is modeled using mathematical 
models and numerical formulations presented in Chapter 3 and Chapter 4, respectively. Chapter 
3 discusses the theoretical background (conceptual models) of LDR and LR bearings based on 
available knowledge and the formulation of mathematical models in the horizontal and vertical 
directions. Mathematical models express physical behavior with mathematical equations using a 
set of assumptions. Each assumption introduces a source of error in the mathematical model. 
All sources of error in the mathematical need to be quantified, and if possible, should be 
minimized or removed.  The accuracy of a mathematical model is assessed through validation 
procedures to determine if the mathematical model is a sufficiently good representation of 
behavior of the system.  

Chapter 4 discusses the computational model, which include formulation of numerical models 
from the mathematical models and the implementation of the numerical models in the software 
programs OpenSees (McKenna et al., 2006) and ABAQUS (Dassault, 2010e). The degree of 
accuracy with which the computational model represents the mathematical models is assessed 
through verification procedures. Verification and validation (V&V) is a cyclic process that 
quantifies the error in a model due to different sources. Quantification of the error helps prioritize 
V&V activities, and enables the assessment of the effect of a particular feature of the model on 
the behavior of the system.  

Verification and validation is introduced in Section 5.2, which includes definitions of standard 
terms and describes the approach used for the development of a V&V plan. Section 5.3 
provides a brief description of the model of an elastomeric bearing. Section 5.4 through Section 
5.6 describe the step-by-step application of V&V methods to the elastomeric bearing models. 
The general background of V&V procedures presented in this chapter builds on the information 
presented in Oberkampf and Roy (2010), Oberkampf et al. (2004), Thacker et al. (2004) and 
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Roache (1998). The definitions of the standard terms presented in the ASME Guide for 
Verification and Validation in Computational Solid Mechanics (ASME, 2006) have been used 
here. 

5.2 Background  

The development of computer methods to simulate physical events prompted researchers to 
question the reliability, credibility and consistency of mathematical models and numerical tools 
and techniques. The computational physics and engineering community faced two major 
challenges: 1) development of guidelines to verify and validate simulations used for predication 
of outcomes of a physical event, and 2) standardization of terminologies and methodologies 
used in V&V across various disciplines. The interdisciplinary nature of V&V procedures 
demands that those involved communicate using terminologies that are consistent across the 
disciplines to minimize confusion in the decision-making process. 

The Institute of Electrical and Electronics Engineers (IEEE) was one of the first institutions to 
define verification and validation methods (IEEE, 1984; IEEE, 1991). The definitions, however, 
considered only computer-implementation aspects of a broad range of V&V procedures that 
evolved later, and were intended for developers involved in Software Quality Assurance (SQA). 
The Defense Modeling and Simulation Office (DMSO) of the US Department of Defense (DoD) 
published their definitions of V&V activities in 1994 (DMSO, 1994). The DoD guidelines were 
more suitable for large-scale models, and were not appropriate for applications to more basic 
computational physics and engineering simulations (Oberkampf and Roy, 2010). The 
Computational Fluid Dynamics (CFD) community of the American Institute of Aeronautics and 
Astronautics (AIAA) coordinated a project in 1992 for the development and standardization of 
basic terminologies and methodologies used in V&V of computational fluid dynamics 
simulations. Their guide was published in 1998 (AIAA, 1998) and it used the DMSO (1994) 
definition of validation methods but modified the definition of verification to reflect the 
importance of accuracy of the numerical solution of the mathematical model. 

The V&V committee of American Society of Mechanical Engineering (ASME) was formed in 
2001 to draft guidelines on V&V in computational solid mechanics. The ASME Guide for 
Verification and Validation in Computational Solid Mechanics was published in 2006. It used the 
same definition of validation as AIAA (1998) but slightly modified the definition of verification. 
The ASME guide is used here to define terms, to the degree possible. It defines verification and 
validation as: 

Verification: The process of determining that a computational model accurately 
represents the underlying mathematical model and its solution. 

Validation: The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model. 

Verification is concerned with the accurate representation of the mathematical model through 
software implementation of a numerical model, and a relationship to the physical reality is not of 
concern. Validation considers the degree of accuracy to which the mathematical model 
represents the physical reality, which is represented by experimental data. 
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ASME (2006) provides a list of standard terms used in V&V, some of which are reproduced 
below:  

Prediction: The output from a model that calculates the response of a physical system 
before experimental data are available to the user. 

Model: The conceptual, mathematical, and numerical representations of the physical 
phenomena needed to represent specific real-world conditions and scenarios. Thus, the 
model includes the geometrical representation, governing equations, boundary and initial 
conditions, loadings, constitutive models and related material parameters, spatial and 
temporal approximations, and numerical solution algorithms.  

Conceptual Model: The collection of assumptions and descriptions of physical 
processes representing the solid mechanics behavior of the reality of interest from which 
the mathematical model and validation experiments can be constructed. 

Computational model: The numerical implementation of the mathematical model, 
usually in the form of numerical discretization, solution algorithm, and convergence 
criteria. 

Mathematical model: The mathematical equations, boundary values, initial conditions, 
and modeling data needed to describe the conceptual model.  

Calibration: The process of adjusting physical modeling parameters in the 
computational model to improve agreement with experimental data. 

The process of model development and V&V procedures is summarized in Figure 5-1. 

The V&V process starts with the definition of the domain of interest, which is the physical 
system and associated environment for which the model is to be created. This helps to define 
the scope of various activities and the formulation of suitable assumptions. For high-
consequence events, it is advisable to define a domain of interest that is precise and detailed. 
Although this action limits the applicability of the model to a small range of problems, it reduces 
the uncertainty associated with a wide range of working environments and thus increases 
confidence in the model. Moreover, simplifying a model by excluding minor details, which are 
not expected to have a major influence on the behavior of the system, increases robustness and 
decreases sources of error in the computational model. The ASME Guide realizes the 
limitations of contemporary modeling techniques used in computational solid mechanics, and 
limits the scope of V&V activities to the model’s intended use for the response quantities of 
interest.  

Once the domain of interest is defined, a conceptual model of the physical problem is 
formulated through a set of features that are expected to play a role in the physical event for 
which the model is to be used. A mechanics-based representation of the physical problem that 
is amenable to mathematical and computational modeling is created, which includes: 1) 
geometrical details of the model, 2) material definition, 3) initial and boundary conditions, 4) 
external loads, and 5) modeling and analysis approach. Conceptual models are developed 
through engineering expertise and judgment, and it is important that the rationale for each 
decision and the basis of each assumption are properly documented. 
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Figure 5-1    Model development, verification and validation (Thacker et al., 2004) 

The development of a conceptual model sets the stage for the creation of a mathematical 
model. A mathematical description of the conceptual model is formulated through a set of 
equations and statements that describes the physical problem. The mathematical model uses 
parameters that are one of the major sources of uncertainly that affects its accuracy. These 
parameters can be divided in three categories based on the method used for their 
determination, and are presented in Table 5-1.  

Table 5-1    Description of model input parameters (Roy and Oberkampf, 2011) 

Parameter 
type Description Level of 

confidence 
Measured Measurable properties of the system or surroundings that 

can be independently measured High 

Estimated 
Physical modeling parameters that cannot be 
independently measured separate from the model of the 
system 

Medium 

Calibrated Ad-hoc parameters that have little or no physical 
justification outside of the model of the system Low 
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A computational model is developed using the mathematical model to predict the system’s 
response through computer programs. The process involves spatial and temporal discretization 
of the mathematical model to a numerical model, and implementation of the numerical model in 
a computer program using a numerical algorithm that solves the model through direct or 
iterative solution techniques. Domain discretization and solution techniques are the major 
sources of the error in the computational model in addition to computer round-off error and 
coding bugs. 

Verification activities are performed to improve the accuracy of the computational results. The 
system response obtained from analysis of verified models is compared with data obtained from 
validation experiments. The test data must be processed to remove measurement errors. If the 
computational results are within acceptable error per an established accuracy criteria, the model 
is deemed validated. If not, the model needs to be revised. The revision can be made by: 1) 
updating the model parameters that are determined using calibration with experimental results, 
and 2) improving the mathematical or conceptual model to better represent the underlying 
mechanics of the system that will result in better agreement with the experimental results. 

5.3 Elastomeric Bearing Model Development 

5.3.1 General 

A V&V plan for the elastomeric bearing models discussed in Chapter 3 and 4 is presented here. 
The hierarchy of the model of an elastomeric bearing and its components are shown in Figure 
5-2. The mechanical behavior in moment and torsion do not significantly affect the response
quantities of interest in the shear and axial directions. The V&V tasks are performed only for the
mechanical behavior of the LDR and LR bearings in the horizontal (shear) and the vertical
(axial) directions, as identified by the shading. The conceptual and mathematical models are
presented in Chapter 3 and the computational model is discussed in Chapter 4.

Figure 5-2    Hierarchy of the model for an elastomeric bearing 
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5.3.2 Model development 

The physical model of an elastomeric bearing is formulated as a two node, twelve-degree of 
freedom system. The two nodes are connected by six springs, which represent the material 
models in the six basic directions. The six material models capture the behavior in the axial, 
shear (2), torsional and rotational (2) directions. The mathematical models and computational 
models of elastomeric bearings are discussed in detail in Chapter 3 and Chapter 4, respectively. 
The mathematical model of the elastomeric bearing is implemented in OpenSees and ABAQUS 
as user elements. A user element is the implementation of a numerical model in a computer 
program using a programming language. Two elements are created in each program for LDR 
and LR bearings. A user element for high damping rubber (HDR) bearings was also created in 
OpenSees. The HDR user element has the same axial formulation as LDR and LR bearings, but 
uses the model proposed by Grant et al. (2004) in shear. The V&V of the HDR user element is 
not discussed here. 

The scope of the model and its intended use must be defined for V&V activities, which helps in 
prioritizing tasks and allocating resources for each activity. Table 5-2 presents the information 
required on the model to begin the V&V process.  

Table 5-2    Scope of the V&V for the elastomeric bearing models 
Feature Description 

Domain of interest Seismic isolation of NPPs 
Intended use of the 

model 
Response-history analysis of a NPP under design and beyond 
design basis earthquake loadings 

Response features of 
interest 

1) Acceleration, velocity, displacement 
a) of the structure 
b) of secondary systems 
• 2) displacement in the isolators 
• 3) energy dissipation (damping) in the isolators 
• a) due to heating in the lead core of LR bearings 
• b) due to cavitation under tension 

Accuracy requirements To be developed after consultations with stakeholders 

One of the important steps in the development of the model of an elastomeric bearing is to 
identify the processes that are expected to have significant effects on the response of the base-
isolated NPP. This is achieved by constructing a Phenomena Identification and Ranking Table 
(PIRT). The PIRT for the models of elastomeric bearings is presented in Table 5-3. The 
confidence and importance levels assigned to the different components of the mathematical 
model in Table 5-3 are based on preliminary information available on the mathematical models 
of elastomeric bearings. 

The PIRT helps to prioritize those physical processes that should be investigated experimentally 
for validation. Heating of the lead core and coupling effects are assigned a low priority for 
validation as they are based on robust mechanical formulations and have already been 
validated under similar conditions (Kalpakidis and Constantinou, 2009a; Warn et al., 2007). The 
two-spring model by Koh and Kelly (1987) describes the elastic behavior of elastomeric bearing 
in the vertical direction and can be modeled with high confidence. The model for the variation in 
the buckling load capacity with lateral displacement is expected to be of high importance. 
Buckling is modeled using the linear approximation of the area-reduction method, which is 
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numerically robust and has been validated experimentally (Warn and Whittaker, 2006). A new 
phenomenological model is used for cavitation, post-cavitation and strength reduction in cyclic 
tension. The parameters of the phenomenological model are obtained from calibration with test 
data. The uncertainty associated with these parameters is high, and so a low confidence of 
modeling is assigned in Table 5-3. The effect of cavitation and post-cavitation behavior on the 
system’s response is not yet known but is expected to be of medium importance to the 
response quantities of interest. Phenomena with medium or high importance to response 
quantities of interest and low level of confidence in modeling are given high priority for the 
experimental validation activities. The phenomenological model that describes the behavior of 
an elastomeric bearing in cyclic tension is validated experimentally. The parameters associated 
with cavitation, post-cavitation, strength reduction in cyclic tension are estimated.   

Table 5-3    Phenomenon ranking and identification table for models of elastomeric bearings 

Phenomenon Importance to 
response of interest 

Level of confidence 
in model 

Coupled horizontal directions High High 
Heating of lead core in LR bearing High High 

Varying buckling capacity High Medium 
Coupled horizontal and vertical directions Medium Medium 

Nonlinear tensile behavior Medium Low 
Cavitation and post-cavitation High Low 

Nonlinear compressive behavior Low Low 
Post-buckling behavior Low Low 

The model development and V&V plan for the model of elastomeric bearings is presented in 
Figure 5-3. 

Figure 5-3    Verification, validation and model calibration plan for elastomeric bearings 

5.4 Verification and Validation Criteria 

A criterion needs to be established to obtain a quantitative measure of accuracy in verification 
and validation activities. The criterion can be defined in terms of an objective norm function that 
includes all the values of a response quantity of interest over the domain and provides a 
cumulative difference. A computational solution is compared against a reference solution, 
which, in the case of verification, can be an exact or a high order estimate of the exact solution, 
and in validation, must be the test data.  
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The 1L  difference norm over a discretized domain provides an average value of absolute 
difference, and is given as: 

 ξ
=

= −∑1 2 1
1

1 N

i i
i

f f
N

  (5.1) 

where 1if  and 2if  are the reference solution and the solution for the response quantity of 
interest, respectively, at the ith  sample point, and N  is the total number of sample points. The 

1L  norm is appropriate when the response quantities contain several discontinuities and 
singularities in their domain (Oberkampf and Roy, 2010). 

The 2L  (Euclidean) norm provides the root mean square of difference over the domain: 

 ( )ξ
=

= −∑ 2
2 2 1

1

1 N

i i
i

f f
N

  (5.2) 

A third approach is to plot a statistical distribution of the difference and obtain a mean, median 
and standard deviation. 

5.5 Verification of the Model 

Verification of the model is performed to assess the degree of accuracy with which the 
computational model represents the mathematical model. A model must be verified before it can 
be used for any validation activity. The errors associated with the computational model should 
be separated from the errors arising from use of an inadequate mathematical model formulation 
based on a set of assumptions. The phenomenological model in tension has three parameters 
that are determined by calibration with experimental data. If an unverified computational model 
is used to compare numerical results with experimental outcomes, the errors associated with 
the unverified computational model are absorbed in the value of unknown parameters during 
model calibration. A bias in response is obtained when these parameters are used to predict the 
response of a system.  

Verification can be categorized as: 1) code verification and 2) solution verification. Code 
verification deals with the programming aspects of the computational model and checks whether 
the discretized numerical model is implemented correctly in the computer program. Solution 
verification checks for the discretization (temporal and spatial), iterative convergence, and 
round-off error. The computational model of an elastomeric bearing is implemented in 
OpenSees and ABAQUS. Although OpenSees allows greater control of an analysis with the 
ability to control many aspects of the computational process, the absence of a user-interface 
also means that there is a greater possibility of coding errors. ABAQUS, on the other hand, has 
an interactive user-interface that reduces the possibility of coding errors but it also provides less 
flexibility to the user to control the modeling and analysis process.  

5.5.1 Verification model 

The verification activities are performed using a two-node macro model shown in Figure 5-4. All 
six degrees of freedom of the bottom node (node 1) are fixed to the ground, as are the three 
rotational degrees of freedom at the top node. The two nodes are joined by the user element 
(ElastomericX or LeadRubberX).  
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Figure 5-4    Two-node macro model of a base-isolated NPP 

The LDR5 in Warn (2006) and larger size LR bearing in Kalpakidis et al. (2010) are used for 
ElastomericX and LeadRubberX, respectively. The properties of the two bearings are presented 
in Table 5-4. A static (gravity load) pressure on the bearing of 3 MPa is used for all analyses. 
The total gravity weight W  on the bearing is calculated by multiplying the static pressure by 
the bonded rubber area. The total weight W  is divided by g  to obtain the equivalent mass 
M , which is lumped in the three translational directions at node 2 for static and dynamic 
analyses. 

Table 5-4    Geometrical and mechanical properties of elastomeric bearings 

Property Notations (units) Value 
LDR LR 

Single rubber layer thickness rt  (mm) 3 9.53 
Number of rubber layers n 20 16 
Total rubber thickness rT  (mm) 60 152.4 

Steel shim thickness st  (mm) 3 4.76 

Outer diameter oD   (mm) 152 508 

Inner/lead core diameter iD   (mm) 30 139.7 

Rubber cover thickness ct   (mm) 12 12.7 

Yield stress of lead σL  (MPa) n.a.1 13 

Static pressure due to gravity loads staticp   (MPa) 3.0 3.0 
Shear modulus G   (MPa) 0.80 0.87 

1. not applicable
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5.5.2 Code verification 

Code verification assesses the mathematical correctness and implementation of the numerical 
algorithms in a source code using a programming language. Code verification can further be 
divided into: 1) numerical code verification, and 2) software quality assurance (SQA).  

5.5.2.1 Numerical code verification 

Numerical code verification ensures that the solution algorithms are implemented correctly in 
the source code and are working as intended. Three techniques are employed here for 
numerical code verification: 1) symmetry test, 2) code-to-code comparison, and 3) order of 
accuracy test. 

5.5.2.1.1 Symmetry test  

If a code is provided with symmetric geometry, initial conditions and boundary conditions, it 
should produce symmetric response. The elastomeric bearing model is circular in shape and 
has radial symmetry. The models in OpenSees and ABAQUS are subjected to two symmetry 
conditions: 1) the bearing is fixed at its base and ground motion is applied to the free node at its 
top in the x-direction, and 2) the bearing fixed at its top and ground motion applied to the free 
node at its bottom in the negative x-direction. The two analysis cases are shown in Figure 5-5.  

Sinusoidal loading is applied at the free node of a LDR (LDR5 in Warn (2006)) and a LR bearing 
(large size bearing in Kalpakidis et al. (2010)) for the two analysis cases. The responses at the 
free node in the two cases are presented in Figure 5-6 for the LDR and LR bearing, 
respectively. The L1 and L2 norm of the percentage difference is 0% for the ElastomericX and 
the LeadRubberX elements. 

 
Figure 5-5    Analyses cases used for the symmetry test 
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a) LDR bearing b) LR bearing
Figure 5-6    Force-displacement response in shear at the free node

5.5.2.1.2 Code-to-code comparison 

Code-to-code comparison is the most widely used verification method to establish confidence in 
the codes implementing a mathematical model. The two prerequisites for code-to-code 
comparison are (Trucano et al., 2003): 1) the two codes should implement the same 
mathematical model, and 2) one of the codes should have undergone rigorous code verification 
activities. The mathematical model of an elastomeric bearing is implemented in OpenSees and 
ABAQUS (refer to Chapter 4). ABAQUS is a commercial product that has well-documented 
software quality assurance through a verification manual (Dassault, 2010f) and a benchmarks 
manual (Dassault, 2010g), which provide a high confidence in the software. Good agreement 
between the results obtained from the models of elastomeric bearings implemented in 
OpenSees and ABAQUS increases confidence in the codes. A summary of the components of 
the mathematical model verified using code-to-code comparison is presented in Table 5-5, and 
plots of comparisons are shown in Figure 5-7 through Figure 5-12. 

The code-to-code comparison shows good agreement for the components of the mathematical 
models of elastomeric bearing listed in Table 5-5. The percentage difference between the 
responses obtained using OpenSees and ABAQUS are less than 10% for all components of the 
mathematical model except in the strength degradation of LR bearing in shear due to heating of 
the lead core. The L1 and L2 norm of the difference between OpenSees and ABAQUS is 10% 
and 21%, respectively, for the strength degradation model of LR bearing under harmonic 
loading. A comparison of the plots of shear response obtained using OpenSees and ABAQUS 
in Figure 5-7 and Figure 5-8 show that the difference is primarily due to the reversal of motion. 
Although the magnitude of absolute difference are small, the percentage difference becomes 
large when responses values are close to zero during the reversal of motion. The percentage 
difference accumulates over 25 cycles of loading. Warn and Whittaker (2004) report that actual 
energy demand imposed on isolators in maximum earthquake excitation are far less than that 
imposed by codes (e.g., ASCE (2010)) in prototype testing, and recommend only four fully 
reversed cycles to the total design displacement at a frequency equal to the inverse of the 
effective period of isolated structures. Decreasing the number of cycles from 25 to 4 for the LR 
bearing reduces the L1 and L2 norms of the percentage difference to 3% and 12%, 
respectively. 
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Investigated 
property 

Bearing used 
in the 

analysis 

Loading protocol Time 
step 
(sec) 

L1 
difference 
norm (%) 

L2 
difference 
norm (%) Horizontal Vertical 

Heating 

Large  size 
bearing in 

Kalpakidis et 
al. (2010) 

Harmonic 
loading 

Constant 
compression 

0.01 9.75 21.28 

Cavitation LDR 5 in 
Warn (2006) Zero offset Increasing 

triangular 0.01 0.43 6.57 

Cavitation KN2 in Iwabe 
et al. (2000) 

Constant 
offset 

(200%) 

Increasing 
sinusoidal 0.01 0.01 0.12 

Buckling LDR 5 in 
Warn (2006) 

Linearly 
increasing 

Increasing 
triangular 0.01 0.00 0.13 

Buckling LDR 5 in 
Warn (2006) 

Linear 
increasing Sinusoidal 0.01 0.53 7.07 

Figure 5-7    Shear strength degradation due to heating of the lead core (large size bearing 
  in Kalpakidis et al. (2010)) 

Table 5-5    Code-to-code verification for different component of the mathematical models 
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Figure 5-8    Shear force history (large size bearing in Kalpakidis et al. (2010)) 
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Figure 5-9    Cavitation and post-cavitation behavior (LDR5 in Warn (2006)) 
 

 

 
Figure 5-10   Cavitation and post-cavitation behavior (KN2 in Iwabe et al. (2000)) 
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Figure 5-11   Axial behavior under increasing amplitude triangular loading and linearly 
 increasing lateral loading (∆t  = 0.01 sec, LDR5 in Warn (2006)) 

Figure 5-12   Axial behavior under increasing amplitude triangular loading and linearly 
 increasing lateral loading (∆t = 0.005 sec, LDR5 in Warn (2006)) 
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5.5.2.1.3 Order of accuracy test 

The order of accuracy test is the most rigorous code verification activity. The results of the order 
of accuracy test is very sensitive to small mistakes in the code or deficiencies in the numerical 
algorithm. It examines the rate at which discrete numerical solution approaches the exact 
solution of the mathematical model as mesh discretization parameters (spatial and temporal) 
are refined. The order of the spatial and temporal convergence rates are determined to assess 
the accuracy of the code.  

The order of accuracy can be determined as a formal order of accuracy and observed order of 
accuracy. The formal order of accuracy is the theoretical order of convergence of the discrete 
solution to the exact solution of the mathematical model. The observed order of accuracy is the 
rate at which computational solution converges to the exact solution of the mathematical model 
as the mesh size is refined. The formal order of accuracy of a numerical algorithm can be 
obtained through power series expansion, and is not necessarily the same as the observed 
order of accuracy due to errors associated with the code implementation of the discrete 
numerical solution. For the purpose of calculations here, the exact solution can be obtained 
from either a closed-form analytical solution or a high-confidence numerical solution with a fine 
discretization. An alternative to these two methods of obtaining an exact solution is to obtain a 
higher order estimate of the exact solution of the mathematical model through the Richardson 
Exploration method, which is discussed later in this chapter. Roy and Oberkampf (2011) 
provides a detailed discussion on calculation of formal and observed order-of-accuracies. The 
flowchart of the order of accuracy test is shown in Figure 5-13. 

Elastomeric bearings are modeled as two-node, twelve degree-of-freedom, discrete elements. 
Hence no spatial discretization is involved, and only temporal discretization is used for the static 
and dynamic analysis. The dynamic equilibrium of a system is given by the following differential 
equation: 

 + =
2

2 ( , ) ( )S
d um f u u p t
dt

  (5.3) 

where ( , )Sf u u  is the resisting force that depends on the displacement and the velocity, and 
( )p t  is the external load applied to the system. For a linear system the resisting force is a sum 

of a spring force, ku , and a damping force, cu . The discretized numerical form of the Equation 
(5.3) can be solved exactly for linear system, but requires iterative techniques for nonlinear 
systems.  

A Central Difference solution scheme is used here to illustrate the procedure for determination 
of formal order of accuracy. A similar but more involved approach can be followed for other 
integrators (e.g., Newmark, HHT). The discretized form of Equation (5.3) is: 

 + − + −− + −
+ + =

∆∆
1 1 1 1

2

2
2

i i i i i
i i

u u u u um c ku p
tt

  (5.4) 

where subscript i  represents the time step. 
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Figure 5-13   Order of accuracy test (Roy and Oberkampf, 2011) 
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The Taylor series expansion of +1iu  and −1iu  around iu  are: 
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  (5.6) 

Substituting the values of +1iu  and −1iu  into Equation (5.4): 
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 (5.8) 

or, = +( ) ( ) ( )h hL u L u TE u  (5.9) 

where ( )hL u  represents the discretized model, ( )L u  is the mathematical model and ( )hTE u  is 
the truncation error. The parameter h  defines the systematic mesh refinement over space and 
time. For the discretization considered here, h  is the time step ∆t  used in the static and 
dynamic analysis. The formal order of accuracy is defined as the smallest exponent of the 
discretization parameter, ∆t , in the truncation error, ( )hTE u . Hence the discretized numerical 
model described by Equation (5.4) is second-order accurate, or has a formal order of accuracy 
p  = 2.  

If hu  is the exact solution to the discrete expression ( )hL u , then =( ) 0h hL u , and if u  is the exact 
solution to the mathematical model, then =( ) 0L u .  

Substituting = hu u  in Equation (5.9) and subtracting =( ) 0L u  from it: 

 − + =( ) ( ) ( ) 0h h hL u L u TE u  (5.10) 
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The discretization error, εh , is the difference between the solution to the discretized equations 
and the exact solution of the mathematical model: 

ε = − 
h hu u (5.11) 

If the operator L  is linear, then ε− = − = ( ) ( ) ( ) ( )h h hL u L u L u u L . Substituting into Equation (5.10) 
gives: 

ε = −( ) ( )h h hL TE u (5.12) 

The above equation implies that discretization error is propagated in same manner as the 
original solution hu .  
To obtain the observed order of accuracy, consider a Taylor series expansion of the solution hu  
to the discretized equations: 

( ) ( ) ( )=
= = =

∂ ∂ ∂
= + + + +
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2 32 3
4

0 2 3
0 0 02! 3!h h

h h h

h hu u uu u h O h
h h h

(5.13) 

where = ∆h t  is the discretization parameter and = = 0hu u  is the exact solution to the 
mathematical model. For a formal thp -order accurate solution scheme, by definition 
∂ ∂ =/ 0k ku h  for <k p  since the order of terms less than p  does not contribute to the 
truncation error. Equation (5.13) is reduced to: 

ε +
== − = + 1

0 ( )p p
h h h pu u g h O h  (5.14) 

where pg  is a function of the spatial and temporal variables, and εh  is the discretization error. If 
+1( )pO h  is neglected, the logarithmic form of Equation (5.14) can be written as: 

ε = +log( ) log( ) log( )h pp h g  (5.15) 

which is the equation of a straight line in log-space. The slope of the straight line provides the 
order of accuracy, p .  
Equation (5.14) is used to calculate the observed order of accuracy by replacing the formal 
order of accuracy p  with the observed order of accuracy p̂ . The asymptotic zone of the 
solution of a discretized equation is defined where the discretization parameter h  approaches 
to zero. If two different time steps = ∆h t  and = ∆h r t  are used in the asymptotic solution zone, 
where terms of order +1p  vanish, two equations are obtained: 

( )ε∆ = ∆
p̂

t pg t (5.16) 

( )ε ∆ = ∆
p̂

r t pg r t (5.17) 
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The observed order of accuracy p̂  is obtained by eliminating pg  from Equation (5.17) and 
Equation (5.16) as: 

 ( )

ε
ε

∆

∆

 
 
 =

ln
ˆ

ln

r t

tp
r

 (5.18) 

If an exact solution to the mathematical model is available, the observed order of accuracy can 
be obtained by obtaining response values for only two values of mesh discretization parameters 
using Equation (5.18). However, if an exact solution to a mathematical model is not available, 
which is usually the case with most of the mathematical models used for the nonlinear analysis 
of structures, three values of the response parameter can be evaluated for time discretization of 
∆t , ∆r t  and ∆2r t , respectively:  

 ( )

( )

∆ ∆ =

∆ ∆ =

∆ =∆

= = + ∆

= = + ∆

= = + ∆2

ˆ
1 0

ˆ
2 0
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t t p

p
r t t p
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t pr t

u u u g t

u u u g r t

u u u g r t
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where u  is a response quantity (e.g, displacement, velocity, acceleration, temperature), and
+1( )pO h  is zero in the asymptotic zone of the solution. Solving the above equations, the 

observed order of accuracy is obtained as: 

 
( )

 −
  − =

3 2

2 1
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ˆ
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u u
u u

p
r
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If the observed order of accuracy is found equal to the formal order of accuracy, then the code 
is considered to be verified. The process described in flowchart of Figure 5-13 is followed. 

For response-history analysis the observed order of accuracy is evaluated locally on a point-by-
point basis in the domain. The observed order of accuracy cannot be evaluated at crossover 
points where the difference between responses obtained at different mesh discretization 
changes its sign, as shown in Figure 5-14. The observed order determined locally might 
produce unrealistic values. The global norm of the discretization error should be used for order 
verification tests.  
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Figure 5-14   Observed order of accuracy at a crossover point (Oberkampf and Roy, 2010) 

The procedure above describes calculation of formal and observed order of accuracies for a 
linear system using the Central Difference integration scheme. The formal order of accuracy 
cannot easily be calculated for nonlinear systems.  

The observed order of accuracy of the computational models in the axial and shear directions 
are determined in the following sections. Loads are applied such that the response is linear. The 
formal order of accuracy for the linear system was obtained as two; it could not be determined 
for nonlinear problems. The observed order of accuracy is obtained for nonlinear problems to 
illustrate the difficulty associated with order verification tests of nonlinear problems. 

A two-node bearing element, fixed at its base, is subjected to uniform sinusoidal excitation in 
axial and shear directions. The shear displacement response is obtained for several time 
discretization values. Response-history analyses were performed to obtain the variation of the 
order of accuracy with time discretization. Equation (5.20) is used to calculate the order of 
accuracy. A value of ∆t  and r  are chosen and then response quantities are obtained at ten 
time discretization values ∆jr t  ≤ ≤(1 11)j . Using the response quantity available at six time 
steps, eight orders ≤ ≤(1 9)j  of accuracy are obtained to demonstrate that the observed order 
of accuracy is converging to a value as the mesh discretization parameter, ∆t , approaches 
zero. The observed order of accuracy is calculated as:  

−

− −

 ∆ − ∆
 
 ∆ − ∆ =

1

1 2

( ) ( )
log

( ) ( )

log( )

j j

j j

u r t u r t

u r t u r t
Order

r
(5.21) 

The 1L  and 2L  norms of the difference in response on point-by-point basis were obtained over 
the history of response and the orders of accuracy were calculated.  

A series of analyses were performed on LDR  and LR bearings to obtain the variations of orders 
of accuracy with time discretization in the shear direction. The Newmark average acceleration 
method was used for integration scheme. Results are presented in Figure 5-15 and Figure 5-16 
for the axial and shear directions, respectively.  The observed orders of accuracy converge to 
two for numerical models of LDR and LR bearings in the axial and shear directions. As the 
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observed order of accuracy matches the formal order of accuracy, the code correctness can be 
confirmed for the numerical models when the response is linear. 

The observed order of accuracy was also determined for nonlinear response. It was found that 
as the magnitude of the applied loads is increased, such that the response changes from linear 
to nonlinear, the order of accuracy is decreased from two to one in the shear direction. 
However, the order of accuracy for the numerical model in the axial direction did not converge to 
a fixed value.  Results are presented in Figure 5-17.  
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a) Axial response b) L1 norm c) L2 norm
Figure 5-15   Order of accuracy in the vertical direction ( π= sin( )ga g t ) 

a) Shear response b) L1 norm c) L2 norm
Figure 5-16   Order of accuracy in the horizontal direction ( ga = 0.001gsin(πt) ) 

a) Shear response b) L1 Norm c) L2 Norm
Figure 5-17   Order of accuracy in horizontal direction (ag = 0.1gsin(πt) for LDR and ag = 

  0.5gsin(πt) for LR bearing) 
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Heating of the lead core 

The temperature increase in the lead core of the LR bearing was calculated at different values 
of ∆t  to estimate the observed orders of accuracy of the numerical model of the LR bearing for 
the linear and nonlinear response discussed above. Results are presented in Figure 5-18.  

  
a) Linear b) Nonlinear 

Figure 5-18   Observed order of accuracy of the heating model 

5.5.2.2 Software Quality Assurance 

The software program ABAQUS and the software framework OpenSees provide a modular 
framework for implementation of new mathematical models through user subroutines. The user 
subroutines (user elements for LDR and LR bearings) are written using one of the programming 
languages, and form a part of the software program that can be used to perform an analysis 
(e.g., response-history analysis of a NPP). The code verification of user subroutines was 
discussed in the previous sections. However, errors might be present due to the global 
framework of OpenSees and ABAQUS. The Software Quality Assurance (SQA) check, identify, 
and remove errors associated with the global framework and ensure that the user subroutines 
are free from programming errors.  

Errors are most likely due to the source code of a software program, but can also be introduced 
due to the compiler (e.g., limited precision, undeclared variables). For example, C++ and 
FORTRAN77 treat uninitialized variables differently when used in an executable statement. The 
adequacy of a software program to produce reliable results with a specified set of libraries using 
a specific compiler is assessed. Software quality assurance must always be performed during 
development of the software product and before it is used for the verification of a computational 
model that has been created using the framework of the software program. Most of the 
commercial software programs publish their verification or benchmark manuals as part of their 
SQA. ABAQUS has a verification manual (Dassault, 2010f) and a benchmark manual (Dassault, 
2010g). The verification manual evaluates the accuracy of numerical algorithm implementation, 
and the benchmark manual assesses the performance of the software program.  
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The scope of work for addressing programming errors is limited to user subroutines. It is 
assumed that OpenSees and ABAQUS have been checked for programming errors by their 
developers. Some of the commonly encountered sources of programming errors are: 

1. Default parameters values
2. Units of measurements
3. Uninitialized variables
4. Division by zero
5. Values of constants
6. Incompatible divisions

The user elements in OpenSees and ABAQUS were checked for errors arising from such 
sources and all identified issues were addressed.     

5.5.3 Solution verification 

Solution verification (also called calculation verification) assesses the accuracy of the 
approximate discretized numerical solution of a mathematical model that is implemented for 
computational predictions. Solution verification activities commence only after code verification 
is completed. The error associated with the numerical model are discussed in the following 
sections. 

5.5.3.1 Round-off error 

Round-off error is contributed by the finite arithmetic used by a computer program. For example, 
the value of ×2.0 (1.0 / 2.0)  should ideally be 1.0  if infinite precision is used, however, it is often 
calculated less than 1.0  (say 0.999 999 ) in a single-precision computation. Most programming 
languages require the user to initialize the type of variable (text, number, boolean etc). The 
C/C++ source code in OpenSees needs the user to define the numeric type of variable as int, 
float, double or long. Each variable type uses a different precision in the computations. 
Specifying the largest precision type for each variable is not desirable as it slows down the 
execution of the program. If appropriate variable precision is used in a source code, errors due 
to round off are usually very small when compared to those associated with discretization. 
Round-off error is not investigated here because it is not expected to have any significant effect 
on the results obtained using the mathematical models of elastomeric bearings. 

5.5.3.2 Iterative convergence error 

Iterative methods are employed to solve the system of equations obtained after discretization of 
the mathematical model. The system of equations takes the form =Ax b , where A  is the co-
efficient matrix, b  is the column vector and x  is the desired solution. The iterative error is the 
difference between the solution obtained using iterative methods and the exact solution (

−= 1x A b ) of the system of equations. The iterative method is employed because exact solution 
obtained using direct methods is computationally expansive. The solution process in iterative 
methods begins with an initial estimate of the value of x  and iterations are then performed until 
the iterative residual, = −k kR b Ax , becomes acceptably small. The Newton-Raphson method 
is one of iterative techniques that is used in OpenSees to solve a system of equation. The 
iterative error is usually much smaller than the discretization error. OpenSees provides the 
option to specify the iterative step convergence criteria. The user can always control the 
iterative error by specifying a very small iterative residual for convergence.  
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5.5.3.3 Discretization error 

Discretization error is often one of the largest source of numerical errors, which is the most 
difficult to estimate. An appropriate temporal discretization needs to be assumed for an 
OpenSees analysis. Most of the ground motions available through PEER ground motion 
database are sampled at intervals of either 0.005 or 0.01 sec. If a smaller analysis time step is 
used, OpenSees linearly interpolates the ground motion data to provide values at intermediate 
points. Providing a smaller time step often increases the stability of a computational solution. 
The increased resolution of response data due to smaller analysis time step helps to capture 
response in a region of very high stiffness (in axial direction), which might be missed if a larger 
time step is used. The most notable effect of discretization in dynamic analysis is numerical 
damping due to use of implicit transient integrators (e.g., Newmark, Hilber-Hughes-Taylor 
methods), which will be discussed later. In response-history analysis, transient integrators 
provide an additional source of damping that is undesirable.  

There are numerous methods to estimate discretization error. The Generalized Richardson 
Exploration (GRE) is used here because of its ease of application.  This method is useful when 
an exact solution to the mathematical model is either unavailable or difficult to evaluate. The five 
conditions that need to be satisfied for application of this method are (Oberkampf and Roy, 
2010): 

1. The formal order of accuracy should match the observed order of accuracy. 
2. Uniform mesh spacing should be used in the numerical model. 
3. Discretization should be refined systematically.  
4. The obtained solution should be smooth in nature. 
5. Other numerical error sources should be small compared to the discretization error. 

The GRE uses a systematic discretization refinement to obtain a higher order estimate (order of 
accuracy > p ) of the exact solution to the mathematical model, which can be used in place of 
the exact solution to obtain error estimates. The information presented below extends the 
discussion presented in Section 5.5.2.1. The discretization error of an thp -order accurate 
response quantity u  is given by: 

 ε + +
+= − = + + 1 2
1 ( )p p p

h h p pu u g h g h O h  (5.22) 

where hu  is the exact solution to the discretized differential equation (numerical model) and u  
is the exact solution to the differential equation (mathematical model). The errors are estimated 
for two discretization values = ∆h t  and = ∆h r t  as: 

 ( ) + +
∆ += + ∆ + ∆ + ∆ 1 2

1 ( )pp p
t p pu u g t g r t O t  (5.23) 

 ( ) ( ) + +
∆ += + ∆ + ∆ + ∆ 1 2

1 ( )p p p
r t p pu u g r t g r t O t  (5.24) 

The term pg is eliminated from the two equations to obtain: 
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Combining the higher order terms with the exact solution gives a higher order estimate of the 
exact solution: 

+ +
+
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p p

p p

r ru u g t O t
r
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where u  is the higher order estimate ( +1p  order accurate) of the exact solution to the 
mathematical model and is given by the expression: 

∆ ∆
∆

−
= +

−1
t r t

t p

u u
u u

r
(5.27) 

Hence, u  is a higher order accurate solution of the exact solution u  than u . In most cases, 
the exact solution u  of a mathematical model is not available. If the five conditions for the 
application of Richardson exploration method are satisfied, then u calculated in the asymptotic 
zone of the discretized numerical solution can replace u . The discretization error is calculated 
using ε∆ ∆= −t tu u  to give: 

ε ∆ ∆
∆

−
= −

−1
t r t

t p

u u
r

(5.28) 

To confirm the reliability of the discretization error, calculations should be performed for different 
discretization values to obtain at least three estimates of the discretization error.  

Ten estimates of discretization error are obtained here. The response quantities of interest, iu , 
are calculated at several time discretization values, ∆ir t  . The higher order estimate of exact 
solution, u , are determined using response quantities iu  and +1iu  available at the analysis time 
step of ∆ir t and ∆ir t , respectively. The percentage discretization error is given as: 

ε∆
−

= ×% 100%i
t

u u
u

 (5.29) 

where u  is calculated using iu  and +1iu  as: 
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Substituting the value of u in Equation (5.29), the discretization error is obtained as: 
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 (5.31) 

The index, i , is varied from 1 to 10 to obtain error estimates for the ten values of time 
discretization. The observed orders of accuracy of the mathematical models of the elastomeric 
bearing were calculated and reported in Figure 5-16. Ensuring that the observed order of 
accuracy is equal to the formal order of accuracy is one of the criteria for applying the 
Richardson exploration method to obtain the discretization error. The formal order of accuracy 
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of the numerical models in the axial shear direction was obtained as two for linear response of 
LDR and LR bearings, while it could not be calculated for nonlinear response. Oberkampf and 
Roy (2010) suggest that if the solutions at the three time discretization values used for the 
calculation of the observed order of accuracy are in the asymptotic range, the observed order of 
accuracy can replace the formal order of accuracy to calculate the discretization error. The 
observed orders of accuracy of two and one are used to calculate the discretization errors for 
linear and nonlinear response, respectively. The value of refinement ratio r  is 2. The 1L  norm 
of the discretization errors calculated on point-by-point basis over the history of response are 
obtained. Only the first two cycles of the response is used to calculate the discretization error in 
the axial direction because unrealistic values of discretization error might be obtained due to 
period lengthening in the numerical response: an issue with implicit integrators and finite time 
discretization that is discussed in a later section.  

The discretization error in the displacements for the analyses cases presented in Section 
5.5.2.1 are reported in Table 5-6 and Table 5-7 for the axial and shear directions, respectively. 
The plots are presented here only for nonlinear response, noting that linear response in shear is 
seldom observed in elastomeric bearings during earthquake shaking. The plot of the variation of 
the discretization error in shear displacement with time step is presented in Figure 5-19 and 
Figure 5-20. The plot of the shear force-displacement loops of the LDR and LR bearings 
obtained using different time steps are presented in Figure 5-21 and Figure 5-22, respectively. 
The variation of the temperature rise in the lead core of a LR bearing obtained using different 
analysis time steps are presented in Figure 5-23. 

The discretization error in the response quantities decreases as the analysis time step is 
reduced. The reduction in the discretization error with the time step suggests a monotonic 
convergence of the solution to the numerical model. Reliable estimates of the discretization 
error can only be obtained in the asymptotic zone of the solution. The asymptotic zone of 
solution for shear displacement and temperature was obtained in Section 5.5.2.1.3 for time 
discretization values smaller than 0.01 sec. A time step of 0.01 sec provides discretization error 
in the response quantities (e.g., displacement, force, temperature) less than 5%, except in the 
nonlinear axial response. A larger discretization error in nonlinear axial response is observed 
due to local instability in the numerical response around cavitation, although it does not affect 
the maximum value of axial force or displacements.   
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Table 5-6    Discretization errors for numerical model in the axial direction 

∆t  (sec) LDR LR 
Linear Nonlinear Linear Nonlinear 

0.125 4.93 -- 5.60 125.58 
0.0625 4.04 60.55 4.51 46.79 
0.03125 19.53 34.22 4.71 34.32 

0.015625 4.27 79.61 4.86 89.99 
0.007813 5.20 85.70 5.60 34.57 
0.003906 5.01 111.15 5.16 40.24 
0.001953 4.95 6.14 8.92 11.60 
0.000977 2.91 4.62 1.04 130.11 
0.000488 0.57 0.79 0.43 2.08 
0.000244 0.14 0.04 0.19 0.23 

Table 5-7    Discretization errors for numerical model in the shear direction 

∆t  (sec) LDR LR Temperature 
Linear Nonlinear Linear Nonlinear Linear Nonlinear 

0.125 10.99 25.48 130.27 80.80 3.88 14.30 
0.0625 13.40 8.38 21.58 16.43 1.38 7.91 
0.03125 53.36 2.60 9.62 4.54 0.53 2.63 

0.015625 7.13 2.61 4.76 2.21 0.19 1.22 
0.007813 2.87 1.24 0.77 0.98 0.08 0.56 
0.003906 0.43 0.40 0.17 0.48 0.04 0.27 
0.001953 0.11 0.18 0.04 0.24 0.02 0.13 
0.000977 0.03 0.09 0.01 0.12 0.01 0.07 
0.000488 0.01 0.04 0.00 0.06 0.01 0.03 
0.000244 0.00 0.02 0.00 0.03 0.00 0.02 
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a) Linear b) Nonlinear 

Figure 5-19   Discretization error in the shear displacement 
 

 

 

 
Figure 5-20   Discretization error in the temperature rise of the lead core 
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a) Displacement history b) Force-displacement response
Figure 5-21   Horizontal shear response of a LDR bearing 

a) Displacement history b) Force-displacement response
Figure 5-22   Force-displacement loops for a LR bearing 
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Figure 5-23   Temperature increase in the lead core 

An observed order of accuracy of 1 was assumed in the absence of a formal order of accuracy 
for the calculation of the discretization error in the numerical models of the nonlinear axial and 
shear behavior. If the observed order of accuracy is higher than the formal order of accuracy, 
the discretization error obtained using the observed order of accuracy provides an 
unconservative estimate.  

The discretization error in shear displacement at each time step for different values of the 
temporal discretization is shown in Figure 5-24 for LDR and LR bearings. Local spikes in the 
discretization error might contribute substantially to the global norm of the discretization error, 
but do not affect the maximum value of a response quantity. The maximum horizontal 
displacement for the three analysis time step of Figure 5-24a are 31.4 mm, 31.5 mm, and 31.6 
mm, respectively, whereas for Figure 5-24b they are 249  mm, 257 mm, and 257 mm, 
respectively. Hence, discretization error in a numerical model should always be interpreted 
carefully and the contributions of local discretization error must be checked.  

 

  
a) LDR bearing b) LR bearing 

Figure 5-24   Discretization error in shear displacement 
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5.5.3.4 Damping in OpenSees 

OpenSees provides option to use three types of damping: 1) Rayleigh damping, 2) mass 
proportional damping, and 3) stiffness proportional damping. There is no option to use modal 
damping unlike other structural analysis software programs (e.g., SAP2000). Analyses are 
performed to verify damping calculations performed by OpenSees. The LDR5 bearing of Warn 
(2006) is assigned 2% damping in the horizontal direction using the three damping definitions 
listed above. An initial displacement of 0.01 mm is imposed and the bearing is then allowed to 
go into free vibration response. The same analyses are performed in axial direction. A small 
initial displacement is used to ensure linear elastic behavior to avoid any contribution of viscous 
damping. The free-vibration displacement response of a single-degree-of-freedom system is: 

ξω ξω
ω ω

ω
−  +

= + 
 

(0) (0)( ) (0)cos sinnt n
D D

D

u uu t e u t t   (5.32) 

where ξ  is the damping ratio; (0)u  and (0)u  are the initial displacement and velocity, 
respectively; ωn  is the natural frequency, and ωD  = ω ξ− 21n .  The response of the bearing
for the three damping options and the analytical response is presented in Figure 5-25 and 
Figure 5-26 for horizontal and vertical directions, respectively. Numerical damping values are 
calculated from the free vibration response using (Chopra, 2007): 

ξ
π +

=
1 ln

2
i

i j

u
j u

(5.33) 

where iu  and +i ju  are the ith  and +( )i j th  peak displacement response. The damping values
calculated from numerical response are summarized in Table 5-8. No difference is observed 
between the assigned damping and the damping calculated from the numerical response. 

Table 5-8    Damping ratios (%) calculated from numerical response 

Direction 
Damping definition 

Rayleigh Mass proportional Stiffness proportional 

Horizontal 1.997 1.997 1.997 

Vertical 1.994 1.994 1.994 

5.5.3.5 Geometric nonlinearity in OpenSees 

The elements for elastomeric bearings (ElastomericX and LeadRubberX) include the second 
order effects of geometric nonlinearity on stiffness by using analytical expressions for 
mechanical properties derived using explicit consideration for geometric nonlinearity (details are 
in Chapter 3). The − ∆P  moments are divided equally among the two nodes of the bearing.  

To verify the − ∆P  calculations, the two-node macro model was analyzed with different user 
elements for the elastomeric bearing: 1) ElastomericX, 2) elastomericBoucWen, and 3) 
TwoNodeLink. The results obtained using ElastomericX (and LeadRubberX) are compared with 
existing bearing elements, elastomericBoucWen and TwoNodeLink, in OpenSees, and against 
theoretical calculations. The properties of LDR5 bearing in Warn (2006) are used for the user 
elements.  
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a) Force-displacement response b) Displacement history 

Figure 5-25   Free vibration response of a LDR bearing in the horizontal direction  
  (uo = 0.01 mm, ζ= 2%) 

 

 

  
a) Force-displacement response b) Displacement history 

Figure 5-26   Free vibration response of a LDR bearing in the vertical direction (uo = 0.01 mm,  
  ζ = 2%)    
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A horizontal strain of 100% and an axial load of 10% of critical buckling load are applied to the 
top node (Node 2) of the macro model. The distribution of the bending moment at the two nodes 
of the element is shown in Figure 5-27. 

The values of the parameters F , P , ∆ , and h  are 16846 N, 38491 N, 0.06 m, and 0.117 m, 
respectively. The theoretical value of the end moments is obtained as: 

∆
= +

2 2
Fh PM (5.34) 

The force and the moments at the two nodes of the elastomeric bearing are compared in Table 
5-9. No difference is observed between the results.

Figure 5-27   Bending moments in a two node element 

Table 5-9    Bending moments at the two nodes of the element (N-m) 

Calculation source Node 1 Node 2 
Theoretical 2140 2140 

ElastomericX 2140 2140 

elastomericBearingBoucWen 2140 2140 

twoNodeLink 2140 2140 

5.5.3.6 Integrators in OpenSees 

OpenSees provides the option to use different integrators for static and dynamic analysis. The 
integrators used in static and dynamic analysis are referred to as static and transient 
integrators, respectively. Transient integrators are further divided into implicit and explicit 
integrators. The integrators available in OpenSees are summarized in Figure 5-28. 

F 

P 

∆ 

h 

Fh/2 P∆/2 
Two-node Moment at the base 

-Fh/2-P∆/2 
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Figure 5-28   Integrators in OpenSees 

Integrators are the time stepping procedures that advance the state of analysis from time t  to t
+∆t . An integrator determines the meaning of the terms in the system of equations =Ax B . 
The integrators discussed here are either based on finite difference of velocity and acceleration 
(e.g., Central Difference method) or on assumed variations of acceleration (e.g., Newmark, 
HHT).  

The Newmark family of integrations are most widely used for earthquake engineering 
applications, and are given by the following equations (Chopra, 2007): 

 γ γ+ += + − ∆ + ∆   1 1[(1 ) ] ( )i i i iu u t u t u   (5.35) 

 β β+ += + ∆ + − ∆ + ∆  2 2
1 1( ) [(0.5 )( ) ] [ ( ) ]i i i i iu u t u t u t u   (5.36) 

where u  is displacement and γ  and β  are the Newmark integration parameters. The stability 
and accuracy of response depends on parameters γ  and β . Two special cases of Newmark 
integrators are: 1) Newmark Average Acceleration, and 2) Newmark Linear Acceleration. The 
Newmark Average Acceleration (γ = 0.5 , β = 0.25 )  and the Newmark Linear Acceleration  
( γ = 0.5 , β = 0.167 )  integrator assumes a constant average acceleration and linearly varying 
acceleration, respectively,  between steps i  and +1i .  The stability of the solution obtained 
using these integrators depends on the time step ∆t  used for dynamic analysis. An 
unconditionally stable integrator provides a stable solution for all values of ∆t . Integrators and 
their conditions of stability are presented in Table 5-10. The stability conditions are applicable 
only for linear problems. The stability of these methods over a wide range of nonlinear problems 
is not always guaranteed. 

Integrators

Static

Load Control

Displacement Control

Minimum Unbalanced 
Displacement Norm

Arc-Length Control

Transient

Implicit

Newmark 
Method

Hilber-Hughes-Taylor Method

Generalized Alpha Method

TRBDF2

Explicit

Central Difference
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Table 5-10   Stability requirements for the response obtained using different integrators 

Integrator Parameters Condition of stability 

Newmark (general) β γ≥ ≥/ 2 1/ 4 Unconditionally stable 

Newmark Average Acceleration γ =1/ 2 , β =1/ 4  Unconditionally stable 

Newmark Linear Acceleration γ =1/ 2 , β =1/ 6  ∆ ≤ 0.55 nt T

Hilber-Hughes-Taylor (HHT) α≤ ≤2 / 3 1 Unconditionally stable 

Central Difference --- ∆ ≤ 0.318 nt T

The integrators used in a dynamic analysis have the tendency to provide numerical energy 
dissipation depending on the values of integrator’s parameters and the analysis time step. The 
numerical energy dissipation due to integrators introduces numerical damping in the system1. 
An integrator can also shorten or elongate the period of a structure obtained from the numerical 
response. The numerical damping and the period elongation introduce errors in the numerical 
response, which need to be quantified and removed. The effects of using different transient 
integrators, associated parameters, and time discretization values on the numerical response of 
elastomeric bearings are discussed below. 

The selection of an integrator for a response-history analysis is dictated by stability and 
accuracy of the numerical solution. An integration scheme that is stable for a linear system 
might not be stable for nonlinear system. Moreover, the numerical damping is difficult to quantify 
in a nonlinear system due to contribution of hysteretic damping. The performance of different 
integrators is benchmarked against a linear elastic SDOF system in the following sections. It 
provides insight into the use of elastomeric bearing elements with different integration schemes, 
and sets a stage for a discussion on performance of integration schemes using different values 
of integrator’s parameters and time step.  

The two-node macro model is used for analyses. Properties of the LDR 5 bearing of Warn 
(2006) is used for the element connecting the two nodes. The mass is calculated from the given 
value of the period of oscillation in the horizontal direction. The node 2 of the macro model is 
subjected to an initial displacement of 1 mm and then allowed to undergo free vibration. The 
yield shear displacement for the bearing is assumed to be 7 mm to ensure a linear elastic 
response. The exact solution for the free vibration of a SDOF system is: 

π =  
 

0
2cosexactu u t
T

(5.37) 

where 0u  is the initial displacement and T  is the fundamental period of the SDOF system. 

The user elements for LDR and LR bearings adopt the same mathematical model in the 
horizontal direction except for the mathematical model for heating of the lead core in the LR 

1 In some cases (e.g., impact, contact problems) numerical damping is provided deliberately in the 
analysis of a MDOF system to reduce response from the high frequency modes, also called zero-energy 
spurious modes. 
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bearing. Results of analyses using the LDR bearing are presented here. For small (elastic) 
response, the conclusions obtained using ElastomericX are also applicable to LeadRubberX. 
 
5.5.3.6.1 Effect of integrator 

The Newmark family of integrators are the most widely used for response-history analysis 
involving earthquake shaking. However, if a problem involves impact, or if high frequency 
modes are of interest, other integrators may have to be used. The effect of using different 
integrators on the accuracy and the stability of a response quantity is investigated here. Four 
integrators are considered: 1) Newmark Average, 2) Newmark Linear, 3) Central Difference, 
and 4) Hilber-Hughes-Taylor (HHT). 

Figure 5-29 presents the shear displacement history obtained using different integrators with an 
analysis time step of ∆ / nt T = 0.1 (∆t  = 0.2 sec, nT  = 2 sec).  The central difference integrator 
shortens the period, while the implicit integrators elongates the period of the numerical response 
when compared to exact response obtained from analytical solutions. The difference between 
theoretical period and the numerical periods using different integrators vanishes for small values 
of ∆ / nt T . For example, no difference in numerical periods is observed for ∆ / nt T =0.01. 

 
Figure 5-29   Shear displacement response of a LDR bearing (∆t/Tn = 0.1) 

The numerical energy dissipation in the response due to integrators is shown in Figure 5-30. 
The numerical energy dissipation amounts to an equivalent numerical damping in the response, 
which can be calculated by obtaining the ratios of successive amplitudes in the displacement 
history and using Equation (5.33). The variation of numerical damping with time step ∆t  is 
presented in Figure 5-31. For a given value of the period of oscillation, no significant change in 
numerical damping is observed with time discretization for the Newmark Average, Newmark 
Linear, and Central Difference integrators. Numerical damping of response obtained using HHT 
integrator increases with increasing time discretization. Analyses were also performed for a 
range of natural period, nT , of the model (1 to 4 sec), and similar results were observed.  
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Instability in the solution is observed when using Central Difference method with an analysis 
time step ∆ ≥ 0.318 nt T  and Newmark Linear Acceleration method with ∆ ≥ 0.55 nt T , where nT  
is the smallest period of a mode of interest (Chopra, 2007). Figure 5-32 and Figure 5-33 present 
shear displacement responses obtained using the Central Difference and Newmark Linear 
Acceleration integrator at a very small time step and a time step value slightly greater than the 
stability limit for each integrator. The instability in responses obtained at time steps greater than 
the stability limits can be observed. The Newmark Average Acceleration method is 
unconditionally stable. Conditionally stable integrators might need to be used when an accurate 
solution cannot be obtained or convergence is not achieved by using unconditionally stable 
integrators. 

Figure 5-30   Shear displacement response of a LDR bearing (∆t/Tn = 0.01) 
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Figure 5-31   Variation of numerical damping with time-discretization (Tn = 2 sec) 

 
5.5.3.6.2 Newmark Average Acceleration integrator 

The Newmark Average Acceleration integrator (γ = 0.5 , β = 0.25 ) is further investigated here. 
The numerical damping provided by an integrator depends on the ratio ∆ / nt T , where ∆t  is the 
time step used in the analysis and nT  is time period. A value of ∆ / nt T  that provides accurate 
response in the lower modes of oscillations might not be able to accurately capture response in 
higher modes. If higher modes are of interest, the values of ∆t  and nT  should be selected such 
that response of higher modes can be captured. The period of an isolation system typically 
varies between 1.0 to 4.0 sec in the horizontal direction and 0.01 to 0.2 sec in the vertical 
direction. As discussed in the previous section, the numerical damping provided by the 
Newmark Average Acceleration integrator is insensitive to ∆ / nt T  for a wide range of values 
when compared to other integrators (refer to Figure 5-31). A very small numerical damping was 
obtained for ∆ / nt T  less than 0.1. For an isolation system with a horizontal time period of 2 sec 
and a vertical time period of 0.1 sec, a time step smaller than 0.01 sec should minimize the 
numerical damping in the response. The contribution of numerical damping becomes significant 
when damping provided by other sources are small. For example, viscous damping provided by 
LR and LDR bearings in the vertical direction, and LDR bearings in the horizontal direction is 
typically between 2 to 4%. If analysis is performed using Newmark Average Acceleration 
integrator with ∆t = 0.01 sec, the additional numerical damping in the axial response for a very 
stiff isolation system can be as much as 1%.   

5.5.3.6.3 Effect of Newmark parameters 

For the general Newmark integrator, the values of parameters γ  and β  are provided by the 
user. The effect of Newmark’s parameters γ  and β  on the response of an elastomeric bearing 
is investigated here. The shear displacement history of the macro model is obtained using 
different values of γ  and β  using two values of ∆ / nt T  (0.05 and 0.005). Results are presented 
in Figure 5-34 through Figure 5-37. The numerical damping in the response for each value of 
the parameter using two different time steps is presented in Table 5-11.  
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As the parameter γ  is increased, the numerical energy dissipation (damping) in the response 
increases. The effect of increased damping due to a higher value of γ  is more pronounced with 
coarser time discretization. Analysis with γ  = 0.9 and ∆t  = 0.1 sec produce numerical 
damping as high as 5.97%. The Newmark parameter β  does not significantly affect the shear 
displacement history even for a coarse time discretization. A minor increase in numerical 
damping due to β  is observed with increasing time step.  

Table 5-11   Numerical damping in shear displacement response of a LDR bearing using 
different Newmark parameters (%) 

Time step (∆t ) 
(sec) 

γ  ( β = 0.25 ) β ( γ = 0.5 ) 
0.5 0.7 0.9 0.25 0.50 0.75 

0.1 0.15 3.06 5.97 0.15 0.13 0.10 
0.01 0.14 0.44 0.73 0.14 0.14 0.14 

A special case of general Newmark integrator is the Newmark Average Acceleration integrator  
( γ  = 0.5 , β  = 0.25), which is expected to provide the least numerical energy dissipation in the 
response. 

Figure 5-32   Shear displacement response obtained using Central Difference integrator 
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Figure 5-33   Shear displacement obtained using Newmark Linear Acceleration integrator 

 
Figure 5-34   Effect of Newmark parameter, γ, on the shear displacement history of a  

  LDR bearing ((∆t = 0.1 sec, Tn = 2 sec) 
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Figure 5-35   Effect of Newmark parameter, γ, on the shear displacement history of a 
  LDR bearing (β = 0.25, ∆t = 0.01 sec, Tn = 2 sec) 

Figure 5-36   Effect of Newmark parameter, β, on the shear displacement history of a 
  LDR bearing (γ = 0.5, ∆t = 0.1 sec, Tn = 2 sec) 
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Figure 5-37 Effect of Newmark parameter, β, on the shear displacement history of a LDR 

bearing (γ = 0.5, ∆t = 0.01 sec, Tn = 2 sec) 
 

5.5.4 Conclusions on verification 

A verification plan was prepared for the computational model of elastomeric bearings. The 
computational model is represented here by user elements of LR and LDR bearings 
implemented in the software framework OpenSees. Several sets of analyses were performed 
using these user elements to identify error sources and quantify them. Where possible, errors 
were minimized by removing error sources (e.g., programming bugs), or by sensitivity analyses 
to arrive at a set of parameters that minimize the associated error. 

Some of the important conclusions from these verification activities are: 

1. The component of the mathematical model that contributes most to the error was 
heating of the lead core in the LR bearing. 

2. Code-to-code verification shows good agreement between OpenSees and ABAQUS 
using an analysis time step of 0.01 sec.  

3. The discretization errors in the shear force, including heating effects (LR bearing), are 
1% (L1 norm) and 15% (L2 norm) using an analysis time step of 0.01 sec. 

4. The discretization error in the shear force excluding heating effects (LDR bearing) is 
less than 0.2% (L1 and L2 norm) using an analysis time step of 0.01 sec. 

5. For values of the ratio ∆ / nt T  (analysis time step/time period) less than 0.1, insignificant 
numerical energy dissipation is observed.  

6. Numerical damping provided by the Newmark Average Acceleration integrator was the 
least sensitive to the time step.   

7. Instability in the numerical response of a MDOF system might be encountered with 
conditionally stable integration schemes (e.g., Central Difference, Newmark Linear 
Acceleration method) if the analysis time step is not within the stability limit for that 
particular scheme.  
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8. The Newmark Average Acceleration method is an appropriate choice of integrator for
seismic analysis of isolated structures. However, if higher modes are of interest, or if the
problem involves sudden change in the stiffness matrix (e.g. impact), other integrators
(e.g., Central Difference) should be evaluated.

9. For an isolation system of horizontal and vertical period greater than 1 sec and 0.05
sec, respectively, a time step of 0.005 sec or smaller is recommended for response-
history analysis.

5.6 Validation of the Model 

5.6.1 General 

The validation process assesses the accuracy with which a mathematical model represents the 
physical reality for its intended use. Experiments are considered the best available 
representation of the reality of interest for which the model is constructed. Preexisting 
experimental data cannot be used if it inadequately represents the intended use of a model. 
Experiments are performed simulating the initial conditions, boundary conditions, material 
properties and applied loads as close as possible to model’s intended use, while also 
characterizing the anomalies where present and quantifying the uncertainties in measurements. 
The outcomes of these specifically designed experiments are compared with the predictions of 
the verified computational models to assess the accuracy of a mathematical model. These are 
termed as validation experiments. The primary goal of a validation experiment is to assess the 
predictive capability of the computational model by comparing computational results to the 
experimental outcomes for the response quantities of interest. For validation activities, three 
conditions must be satisfied: 

1. A clear definition of the model that includes the reality of interest, its intended use and
the response quantities of interest

2. A verified computational model
3. Quantification of uncertainties in the experimental outcomes

The scope and intended use of the mathematical models of elastomeric bearing were defined in 
Table 5-3. The computational models were verified in the previous section. A plan for 
experimental validation is developed here based on the PIRT presented in Table 5-3 and 
sensitivity analyses. The sources of error (e.g., unknown parameters) in the mathematical 
model are identified. The goal of validation experiment is to investigate the behavior of the 
mathematical model that are expected to significantly affect the response quantities of interest. 

The cavitation parameters are expected to have high uncertainty. The unknown cavitation 
parameters in the mathematical model of elastomeric bearing were estimated by calibration with 
the experimental data of Warn (2006), Warn and Whittaker (2006), Constantinou et al. (2007) 
and Iwabe et al. (2000). A validation experiment is required to assess the predictive capability of 
the computational model with these cavitation parameters. If the model shows good agreement 
with the results obtained from the validation experiments, the elastomeric bearing model would 
be considered verified and validated. However, if the numerical response prediction differs from 
the experimental results by an amount greater than the accuracy criteria, one of two options can 
be considered:  

1. Refine the model using new data obtained from validation experiments, which involves
calibration to update cavitation parameters and change any underlying assumption that
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is not found appropriate based on information obtained from validation experiment, and 
then repeat the validation activities with a new set of experiments and the updated 
model of elastomeric bearings. 

2. Restrict the use of model only for the conditions under which it satisfies the accuracy 
criteria.  

The choice of option will depend on the available resources and on the risk associated with the 
use of a model to predict the outcome of an event (e.g.. beyond design-basis shaking of base-
isolated NPPs). The calibration results using available experimental data are presented here. 
An experimental program to investigate behavior of elastomeric bearing under tensile loading is 
prepared based on the criteria and considerations presented in the following sections.  

5.6.2 Sensitivity analysis 

A sensitivity analysis of the model is performed to identify parameters or phenomena which 
significantly affect the response quantities of interest. It also assists in deciding on behaviors of 
elastomeric bearing that should be investigated through the validation experiments.  

The effect of cavitation, lateral displacement and axial force on the load-deformation behavior of 
an elastomeric bearing (LDR 5 in Warn (2006)) is shown in Figure 5-38. The effect of strength 
degradation parameter on load-deformation behavior in cyclic tension is shown in Figure 5-39. 

The bilinear stiffness model of Constantinou et al. (2007) ( → 0k ) overestimates the tensile load, 
and a very small value of the post-cavitation stiffness ( →∞k ) underestimates the tensile load 
at large tensile displacements. The value of = 20k  in Figure 5-38a was determined using 
experimental data of Warn (2006). The damage index φ  converges to its maximum value φmax . 
The maximum damage index, φmax , directly affects the energy dissipation capacity and 
determines the final cavitation strength. Experiments suggest that the value of maximum 
damage index varies between 0.5 and 0.9 (e.g., Iwabe et al. (2000), Warn (2006)). If the energy 
dissipation capacity due to cavitation is to be neglected in the analysis of elastomeric bearings, 
a very small value of the maximum damage index can be used. The vertical stiffness of the 
bearing decreases with lateral displacement, but the magnitude remains very high, and changes 
are not expected to significantly affect the tensile response, as shown in Figure 5-38c. The 
buckling load capacity of the bearing is affected substantially by the lateral displacement. 

  
a) Effect of cavitation parameter b) Effect of damage index 
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c) Effect of lateral displacement d) Effect of lateral displacement
Figure 5-38   Effect of various parameters on axial behavior of a LDR bearing 

The strength degradation parameter, ca , determines the rate at which the damage index 
converges to its maximum value, φmax , which directly affects the cavitation strength in 
subsequent cycles in tension. A value of =1ca  provides a close match with experimental 
observations, as shown in Figure 5-39. 

Figure 5-39   Effect of the strength degradation parameter on the tensile behavior 

As discussed in Chapter 4, the yield strength of a LDR bearing is determined using an assumed 
value of damping and maximum displacement. The effect of the damping ratio ( βeff ) and the 
displacement (D ) used in the calculation of yield strength on the shear hysteresis loop  of the 
LDR 5 bearing in Warn (2006) is shown in Figure 5-40. Warn (2006) reports damping ratios of 
LDR bearings in the range of 2 to 4%. The energy dissipation capacity of a LDR bearing in this 
damping range, as evident from Figure 5-40(a), is insignificant, and is not expected to 
significantly affect the shear response. Hence, the response of a LDR bearing is not sensitive to 
the damping ratio used for the calculation of yield strength. The other effect of damping ratio on 
shear behavior of a LDR bearing is the increase in effective stiffness with damping. However, 
calculation of effective shear modulus of a LDR bearing using test data already accounts for the 
effect of damping on shear stiffness. For an assumed value of damping ratio, the energy 
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dissipation capacity of a LDR bearing increases with displacement ( )D  used in the calculation of 
the yield strength. However, at small value of damping ratio (3%), the response of LDR bearing 
is not expected to be sensitive to D . 

  

a) Varying damping, = rD T  b) Varying D , damping = 3% 

Figure 5-40   Effect of different parameters on yield strength of a LDR bearing 
The effect of axial load on LR5 bearing of Warn (2006) and the large size bearing in Kalpakidis 
et al. (2010) is shown in Figure 5-41 and Figure 5-42, respectively. The shear stiffness 
decreases with axial load, but the effect only becomes apparent when the axial load is close to 
the critical buckling load. The energy dissipation capacity of LR bearing is primarily due to the 
lead core and the contribution of viscous damping can be neglected. The effect of the viscous 
damping term ( dc U ) on the load-deformation behavior of a LR bearing is minor at small 
displacements. 

  
a)  Axial load b) Viscous damping 

Figure 5-41   Effect of parameters on the shear behavior (LR5 bearing in Warn (2006)) 
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a) Axial load b) Viscous damping
Figure 5-42   Effect of parameters on the shear behavior (large size LR bearing of Kalpakidis 

  et al. (2010)) 

5.6.3 Available test data 

5.6.3.1 Calibration 

The three unknown parameters of the phenomenological model of an elastomeric bearing in 
tension are determined through calibration with test data. The computational model was verified 
before calibration to quantify and remove errors associated with the implementation of the 
mathematical model. Four sets of available test data in the literature are used for calibration: 1) 
Constantinou et al. (2007), 2) Iwabe et al. (2000), 3) Warn (2006), and 4) Clark (1996). The 
calibration plots are presented in Figure 5-44 and Figure 5-45.  

a) Constantinou et al. (2007) b) Iwabe et al. (2000) c) Warn (2006)
Figure 5-43   Calibration of the mathematical model in tension with test data 
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Figure 5-44   Calibration of the mathematical model in tension with test data of Clark (1996) 
The details of the bearings and the values of parameters estimated by calibration against 
experimental data are presented in Table 5-12. 

 
5.6.3.2 Experimental comparison 

The ability of the verified computational model to predict the response of an elastomeric bearing 
in shear is investigated through a comparison with available test data. The heating parameters 
of LR bearings are known, and do not require calibration with experimental data. The available 
test data can be used for validation of the mathematical model used to describe the shear 
behavior of an elastomeric bearing. Comparisons of computational results with experimental 
data for the LR bearing in the horizontal (shear) direction are presented in Figure 5-45  through 
Figure 5-48.  

Table 5-12   Properties of the bearings used for experimental comparison 

 Constantinou et 
al. (2007) 

Iwabe et al. 
(2000)   

Warn 
(2006) 

Clark 
(1996) 

Diameter (mm) 250 500 164 176 

Shape factor (S ) 9.8 33 10.2 20 

Cavitation parameter ( k ) 60 15 20 30 

Maximum damage index (φmax ) 0.75 0.75 0.75 -- 

Strength degradation parameter ( ca ) 1.0 1.0 1.0 -- 

Error (%)1,2, L1, L2 Norm 9.02, 14.64 -- 18.2, 24.6 7.29, 7.99 
1. Experimental data was not available for Iwabe et al. (2000).  
2. Error norms were evaluated for Clark (1996) for response only up to 200% tensile strain. 
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The errors in the computational results with respect to the experimental data are presented in 
Table 5-13. 

Table 5-13   Error associated with computational model 

Experiment Type of 
loading 

L1 error 
(%) 

L2 error 
(%) 

Kalpakidis et al. (2010) harmonic 14.60 25.94 

Kalpakidis et al. (2010) random 31.05 39.82 

Figure 5-45   Shear force-displacement behavior of a LR bearing under harmonic loading 

Figure 5-46   Shear force history of a LR bearing under harmonic loading 
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Figure 5-47   Shear force-displacement behavior of a LR bearing under random loading 
 

 
Figure 5-48   Shear force history of a LR bearing under random loading 
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5.6.4 Validation plan 

Experiments are considered the best available representation of the physical reality subject to 
the limitations of experimental error. It is not always possible and feasible to include all the 
details of physical reality into the mathematical model. Engineering judgment is often used to 
decide which features will have a significant effect on the response quantities of interest for the 
intended use. A mathematical model is formulated based on a set of assumptions to reduce a 
physical reality to a mathematical construct and preliminary values are assigned to unknown 
parameters based on available experimental data. The validity of these assumptions is 
investigated through validation experiments. If results are found to be unsatisfactory, these 
assumptions must be revisited.  

The preliminary step in in the design of an experiment is to determine which features of the 
model need to be investigated. One way of deciding the importance and reliability of a feature is 
to construct the PIRT, as shown in Table 5-1. However, the information required to construct a 
PIRT is not always available. A more common approach is to perform sensitivity analyses of the 
computational model, which was presented in Section 5.6.2. The mathematical model of the 
heating of  the lead core in a LR bearing has been validated by Kalpakidis and Constantinou 
(2009a). The good agreement between the mathematical model and the experimental results 
established confidence in the model to a sufficient degree. Moreover, the mathematical model of 
the behavior in horizontal direction is a physics-based model and does not involve any unknown 
parameters. The mathematical model of the mechanical behavior in compression is also 
physics-based, and has been validated experimentally (Warn and Whittaker, 2006; Warn et al., 
2007). Hence, the validation experiment of Chapter 6 does not focus on the mechanical 
behaviors in shear and compression.   

The mathematical model of the mechanical behavior of elastomeric bearings in tension is based 
on the observations from experiments. A phenomenological formulation was proposed in 
Chapter 3 to capture this behavior. The model uses three parameters to capture the behavior in 
tension under cyclic loading. The three cavitation parameters are determined through calibration 
process, as discussed in the previous section. The key assumptions that are expected to affect 
the response are: 

• Exponential post-cavitation variation
• Exponential cyclic strength degradation
• Linear unloading path
• No strain hardening

The five features of the model to be investigated in the validation experiments are: 

1. Cavitation and post-cavitation behavior under tensile loading
2. Effect of loading history on tensile properties
3. Dependence of load-deformation behavior on the shape factor
4. Change in shear and compression properties following tensile loading
5. Influence of shear displacement on tensile force response

The selection of these features is based on the available knowledge about the behavior of 
elastomeric bearings in tension and the associated uncertainly in its modeling. The response 
quantities to be measured during the experiments are summarized in Table 5-14.  
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Table 5-14   Response quantities to be measured during the experiments 

Response quantity Location Method of 
measurement 

Shear displacement At top and bottom of the bearing Direct 
Axial displacement At top and bottom of the bearing Direct 

Rotation angle Through relative displacements along the 
circumference of the bearing Derived 

Axial load At the bottom of the bearing through load cell Direct  

Shear force At the bottom of the bearing through load cell 
and at the top bearing by horizontal actuator Direct 

Moment At the bottom of the bearing through load cell Direct 
 
It is highly recommended that the response quantities be measured directly rather than derived 
from other measurements. For example, the center of an elastomeric bearing is not available for 
measurements in an experimental setup. Hence, axial displacement at the center is determined 
by interpolation of the axial displacements measured at other locations around the bearing. The 
consistency of the output data can be established by corroborating different measurements 
such as measuring accelerations of displacements to corroborate velocity, or measuring axial 
loads at different locations to corroborate moments. 

Sources of error in the experimental setup need to be identified. Some common sources of error 
in the testing of elastomeric bearing are: 

• Calibration of measurement devices 
• Inertia of components in the test setup 
• High frequency noise in response 
• Rigidity of supports  
• Load application 

Sources of error should either be removed of accounted for in the experimental results. If a 
source of error is discovered after the experiment, the test data should be processed to remove 
bias. 

Redundant measurements are often required to verify accuracy of the response data. It helps to 
quantify uncertainly in experimental measurements. Redundant measurements can be obtained 
by: 

1. Repeating the same test using different specimens 
2. Repeating the test using the same specimen 
3. Using different measurement techniques for the same response 
4. Placing similar transducers at symmetrical locations 

The first strategy cannot be used for elastomeric bearing because the properties of elastomeric 
bearings are expected to degrade following cyclic loading. The second strategy is not 
considered here due to limited resources. The third and fourth strategies are employed here. 

The steps discussed above help to design a meaningful validation procedure. However, the 
experimental results will still contain errors and uncertainties, which need to be quantified. 
Errors in the experimental outcomes can be classified as random errors (precision) or 
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systematic errors (accuracy). Random errors are due to the measurement error, design 
tolerances, construction uncertainly, variability in material properties, and other sources specific 
to an experiment. Random errors cannot be removed from the system; however, the uncertainly 
in the results due to random errors can be quantified. Systematic errors can be present due to 
calibration error, data acquisition error and testing technique. Systematic errors produce bias in 
the results that is difficult to detect and estimate. Wherever possible, uncertainties in 
experimental results should be represented though a distribution of test data at each point with 
a mean value and a standard deviation.  

A detailed experimental program is prepared based on the considerations presented above, and 
is presented in Chapter 6. Results of the validation experiments are discussed in Chapter 7. 

5.7 Accuracy Criteria 

Verification and validation is performed with respect to a specific series of tests and tolerances 
that have been deemed to provide sufficient accuracy. The accuracy criteria for the results 
obtained using the mathematical models of elastomeric bearings are developed based on the 
intended use of the model and the reality of interest. The intended use of these models of 
elastomeric bearings is the response-history analysis of seismically isolated nuclear power 
plants. The reality of interest here is the seismic isolation of nuclear power plants. Although 
application to nuclear power plants demands that stringent accuracy criteria be adopted, it has 
been found that uncertainties associated with model of elastomeric bearings is overwhelmed by 
the uncertainties in the definition of the seismic hazard and the input ground motion (Huang et 
al., 2009). Hence, practical rather than an ambitious accuracy criterion should be formulated. 

The following steps can be used to estimate acceptable error in a response quantity: 

1. Identify response quantities of interest
2. Identify the error sources and quantify the errors associated with the model that

significantly affect each response quantity
3. Quantify the sensitivity of the response quantity with respect to parameters associated

with error sources identified in step 2
4. Establish the acceptable error for response quantity with respect to each source of error
5. Combine the errors from various sources in a probabilistic or deterministic framework to

establish an acceptable level of error for each response quantity
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6 SPECIMEN SELECTION AND EXPERIMENTAL PROGRAM 

6.1 Introduction 

Scaled models of elastomeric bearings were designed for testing to validate the proposed 
mathematical model for load-deformation behavior in the vertical direction proposed in Chapter 
3 and to estimate cavitation and damage parameters. The selection of the model bearings was 
primarily based on typical bearing properties that have been used, or are expected to be used, 
in the nuclear industry, but was limited by the capacity of the Single Bearing Testing Machine 
(SBTM) at the University at Buffalo.  

Details of the model bearings that were selected for the experiment are presented in Section 
6.2. The test program, presented in Section 6.3, describes the goals and the sequence of tests. 
Section 6.4 presents the details of the instrumentation and the data acquisition system used for 
the experiments.  

6.2 Model Bearing Properties 

6.2.1 Target and reported properties, and predicted capacities 

The seismic isolation systems of the Cruas Nuclear Power Plant (NPP) in France and the 
Koeberg NPP in South Africa have used synthetic rubber bearings with a shape factor of around 
10. Two of the reactors under construction in France, the International Thermonuclear
Experimental Reactor and the Jules Horowitz Reactor, use bearings of a similar design.
However, most of the seismic isolation design concepts developed for NPPs in the US and
Japan (discussed in Chapter 1) use circular natural rubber bearings with shape factors greater
than 20 (refer to Chapter 1). The selection of the model bearings for this testing program were
based on typical designs that have been used for seismic isolation designs developed for
nuclear power plants in the US and Japan. A goal of these experiments is to characterize the
behavior of rubber bearings under tensile loading. Low damping rubber (LDR) bearing and lead-
rubber (LR) bearing are expected to show similar load-deformation behavior under tensile
loading so only LDR bearings were tested. The target properties of the model bearings, the
reported properties of the model bearings, and the predicted capacities of the model bearings,
based on the reported properties are presented below.

Two manufacturers, Dynamic Isolation Systems, Inc. (DIS) and Mageba, each provided eight 
bearings for the experiments. The maximum diameter of the bearings was limited by the 
capacity of the load cell used to measure forces in the vertical direction. Details of LDR bearings 
manufactured by DIS and Mageba are provided in Table 6-2 and Table 6-3, respectively. The 
bearings from the two manufacturers had differences in their bonded diameters, shear moduli, 
and cover thickness. The DIS bearings had a central hole; the Mageba bearings did not. The 
effect of the central hole is discussed in Appendix A.5.  

Each set of eight bearings had the same diameter but were further divided into two groups of 
four bearings according to their shape factor. The two groups of four bearings with rubber layer 
thicknesses of 7 mm and 4 mm were identified by the letters A and B, respectively. The LDR 
bearings were named DA1, DB1, MA1, MB1, DA2, etc., where the first letter refers to the 
manufacturer (D for DIS and M for Mageba), the second letter identifies the rubber layer 
thickness (or shape factor), and the number identifies a specific bearing. Accordingly, DA1 
refers to a bearing manufactured by DIS from the group of bearings with a rubber layer 
thickness 7 mm. 
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A summary of the target properties for the model bearings is presented in Table 6-1. The 
properties of the model bearings supplied by DIS are presented in Table 6-2. The schematic 
drawings provided by DIS are presented in Figure 6-3 and Figure 6-4. The properties of the 
Mageba model bearings are presented in Table 6-3, and the schematic drawings provided by 
Mageba are shown in Figure 6-5 and Figure 6-6. 

 

 

 

Table 6-1    Target model bearing properties 

Parameter Bearing type 
Description Notation Unit LDR A LDR B 

Number of bearings N.A. N.A. 4 4 

Outer diameter oD  mm 300 300 

Inner diameter1 iD  mm N.A. N.A. 

Individual rubber layer thickness rt  mm 6 3 

Number of rubber layers n  - 20 20 

Individual steel shim thickness st  mm 3 3 

Number of steel layers n  - 19 19 

Shape factor S  - 12.5 25.0 

Cover rubber thickness ct  mm 3 3 

Target shear modulus G  MPa 0.55 0.55 

Internal plate thickness2 
intt  mm 25 25 

1. A central hole is not required for testing but may be needed for manufacture. The presence of a central hole 
does not affect the goals of the experiment, because tensile properties of a bearing depend only on the bonded 
rubber area. 

2. See Figure 6.1 

 

  



6-3

Table 6-2    DIS model bearing properties 

Parameter Bearing type 

Description Notation Unit LDR A LDR B 

Number of bearings N.A. N.A. 4 4 

Outer diameter oD mm 296.8±4 296.8±4 

Inner diameter iD mm 19.05±2 19.05±2 

Individual rubber layer thickness rt mm 7 4 

Number of rubber layers n - 20 20 

Individual steel shim thickness st mm 3.04 3.04 

Number of steel layers n - 19 19 

Shape factor S - 9.92 17.36 

Cover rubber thickness ct mm 4 4 

Reported shear modulus G MPa 0.45 0.45 

Internal plate thickness1 intt mm 25.4±1.6 25.4±1.6 

Estimated mass m  kg 72 67 
1. See Figure 6.1
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Table 6-3    Mageba model bearing properties 

Parameter Bearing type 
Description Notation Unit LDR A LDR B 

Number of bearings N.A. N.A. 4 4 

Outer diameter oD  mm 299 299 

Inner diameter iD  mm n.a. n.a. 

Individual rubber layer thickness rt  mm 7 4 

Number of rubber layers n  - 20 20 

Individual steel shim thickness st  mm 3 3 

Number of steel layers n  - 19 19 

Shape factor S  - 10.7 18.7 

Cover rubber thickness ct  mm 5 5 

Reported shear modulus G  MPa 0.55 0.55 

Internal plate thickness1 
intt  mm 25 25 

Estimated mass m   kg 74 68 
1. See Figure 6.1 
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Figure 6-1    Geometric details of bearing type A 
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Figure 6-2    Geometric details of bearing type B 
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Figure 6-3    DIS bearing type A, DA (courtesy of DIS, Inc.) 
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Figure 6-4    DIS bearing type B, DB (courtesy of DIS, Inc.) 
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Figure 6-5    Mageba bearing type A, MA (courtesy of Mageba) 
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Figure 6-6    Mageba bearing type B, MB (courtesy of Mageba) 
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The theoretical mechanical properties of elastomeric bearings are presented in Table 6-4 and 
Table 6-5 in SI and US customary systems of units, respectively. The shear modulus of the 
rubber, G , bearings is required to estimate mechanical properties. The shear modulus reported 
by the manufacturer is not used here. The effective shear modulus of each type of bearing 
obtained at 100% shear strain is used to calculate the mechanical properties, as described in 
Chapter 3. The shape factor, S , of the bearings with a central hole (DA and DB) is obtained 
using: 

−
=

4
o i

r

D D
S

t
(6.1) 

where oD  is the outer diameter excluding the cover thickness, iD  is the internal diameter, and 
rt  is the thickness of single rubber layer. 

The shape factor of the bearings without a central hole (MA and MB) are obtained using: 

−
=

2 2

4
o i

o r

D D
S

D t
(6.2) 

The moment of inertia, I , is calculated as: 

( )π  = + − 
4 4

64 o c iI D t D (6.3) 

where ct  is added to the outer diameter to include a contribution from half of the cover rubber 
thickness to the moment of inertia.  

The compression modulus, cE , is obtained as: 

−
 = + 
 

1

2
1 4

36cE
KFGS

(6.4) 

where F  is a factor to account for the central hole in a circular bearing, K  is the bulk modulus 
of rubber, and G  is the effective shear modulus of rubber. The value of F  is 1 for bearings 
without a central hole, and for bearings with a central hole is (Constantinou et al., 2007): 

 
+ + 

 = +
     −−     
    

2

2

1 1

1 ln1

o o

i i

o oo

i ii

D D
D DF

D DD
D DD

(6.5) 

The vertical stiffness, 0vK , and the horizontal stiffness, 0HK , are given by: 

= 0
0

c
v

r

A E
K

T
(6.6) 
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 = 0
0H

r

GA
K

T
  (6.7) 

where 0A  is the bonded rubber area of a bearing, and rT  is the total thickness of rubber layers 
in a bearing.  

The critical buckling load, crP , and critical displacement, cru , in compression are: 

 
π

= = 0r
cr E S

r

E GIA
P P GA

T
  (6.8) 

 =
0

cr
cr

v

P
u

K
  (6.9) 

where SA  is the shear area and rE  is the rotational modulus of a bearing.  

The cavitation force, cF , and cavitation displacement, cu , in tension are: 

 = 03cF GA   (6.10) 

 =
0

c
c

v

F
u

K
  (6.11) 
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Table 6-4    Geometrical and mechanical properties of elastomeric bearings (SI units) 

Property Notation (units) DA DB MA MB 

Single rubber layer thickness rt  (mm) 7 4 7 4 

  Number of rubber layers n 20 20 20 20 

Total rubber layer thickness rT  (mm) 140 80 140 80 

Steel shim thickness st  (mm) 3 3 3 3 

Outer diameter oD (mm) 296.8 296.8 299 299 

Inner diameter iD (mm) 19 19 0 0 

Cover thickness ct (mm) 4 4 5 5 

Internal plate thickness (mm) intt (mm) 25.4 25.4 25 25 

External plate thickness (mm) extt (mm) 38.1 38.1 38.1 38.1 

Total height (rubber+shim) h  (mm) 198 138 197 137 

Total height  
(including int. plate) intL (mm) 249 189 247 187 

Total height  
(including ext. plate) extL (mm) 325 265 323 263 

Bonded area (including cover) oA (mm2) 70778 70778 72583 72583 

Shear modulus G  (MPa) 0.41 0.45 0.79 0.77 

Shape factor (without cover) S 9.9 17.4 10.7 18.7 

Moment of inertia I  (mm4) 4.0E+08 4.0E+08 4.2E+08 4.2E+08 

Bulk modulus K  (MPa) 2000 2000 2000 2000 

Compression modulus cE  (MPa) 159 427 397 777 

Vertical stiffness voK  (kN/m) 80161 377341 205999 705255 

Horizontal stiffness 0HK  (kN/m) 207 398 410 699 

Critical buckling load crP  (kN) 557 1675 1266 3060 

Critical buckling displacement cru (mm) 6.9 4.4 6.1 4.3 

Cavitation force cF  (kN) 87 96 172 168 

Cavitation displacement cu (mm) 1.1 0.3 0.8 0.2 
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Table 6-5    Geometrical and mechanical properties of elastomeric bearings (US units) 

Property Notation (units) DA DB MA MB 

Single rubber layer thickness rt  (in) 0.276 0.157 0.276 0.157 

Number of rubber layers n  20 20 20 20 

Total rubber layer thickness rT  (in) 5.512 3.150 5.512 3.150 

Steel shim thickness st  (in) 0.120 0.120 0.118 0.118 

Outer diameter oD  (in) 11.685 11.685 11.772 11.772 

Inner diameter iD (in) 0.750 0.750 0.000 0.000 

Cover thickness ct  (in) 0.157 0.157 0.197 0.197 

Internal plate thickness (mm) intt (in) 1.000 1.000 0.984 0.984 

External plate thickness (mm) extt (in) 1.500 1.500 1.500 1.500 

Total height (rubber+shim) h  (in) 7.786 5.424 7.756 5.394 

Total height (including int. plate) intL  (in) 9.786 7.424 9.724 7.362 

Total height (including ext. plate) extL  (in) 12.786 10.424 12.724 10.362 

Bonded area (including cover) oA (in2) 110 110 113 113 

Shear modulus G  (psi) 68 71 123 117 

Shape factor (without cover) S  9.9 17.4 10.7 18.7 

Moment of inertia I   (in4) 915 915 943 943 

Bulk modulus K  (psi) 290000 290000 290000 290000 

Compression modulus cE  (psi) 25954 65680 60767 115458 

Vertical stiffness voK  (kips/in) 517 2288 1241 4125 

Horizontal stiffness 0HK  (kips/in) 1.36 2.47 2.52 4.20 

Critical buckling load crP  (kips) 139 394 293 691 

Critical buckling displacement cru (inch) 0.268 0.172 0.236 0.167 

Cavitation force cF  (kips) 22 23 42 40 

Cavitation displacement cu (inch) 0.043 0.010 0.034 0.010 
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6.3  Test Program 

6.3.1 General 

The goal of the experimental program was to characterize the behavior of LDR bearings under 
pure tension and shear-tension loading, and to observe the effects of material parameters, 
geometrical parameters, and loading conditions. The six objectives of the test program were to 
understand and characterize: 

1. Cavitation and post-cavitation behavior of rubber bearings under tensile loading
2. Effect of loading history on tensile properties
3. Change in shear and compression properties following tensile loading
4. Influence of shear displacement on tensile-force response
5. Effect of cavitation on buckling load capacity

6.3.2 Description 

The test program consisted of a series of tensile and shear-tension loading tests. Lateral and 
vertical benchmark tests were conducted before and after each series of tensile loadings to 
monitor any change in the mechanical properties of the bearings. A benchmark unidirectional 
shear test at a 100% shear strain under a constant axial pressure of 1 MPa, and a benchmark 
compressive test with an axial load amplitude of 100 kN and zero lateral offset were conducted 
in the horizontal and vertical directions, respectively.  

Past experimental observations (Iwabe et al., 2000; Warn, 2006) have shown that the shear 
properties of elastomeric bearings determined under nominal axial compressive pressure do not 
change substantially following cavitation. A possible explanation for this observation is that post-
cavitation shear strength and stiffness are provided by the friction in the volume of damaged 
rubber under service axial loads. Tests by Iwabe et al. (2000) and Warn (2006) used a nominal 
value of axial pressure to determine the shear properties of elastomeric bearings. Friction 
depends strongly on axial pressure. The shear properties of two of the model bearings were 
calculated at different axial pressures, before and after cavitation, to investigate the effect of 
axial pressure on the change in shear properties following cavitation. 

The effective shear modulus of seismic isolation bearings obtained using experimental data 
depends on the value of axial pressure and shear strain at which it is calculated. Experiments 
were conducted at different values of axial pressure subjected to varying shear strain 
amplitudes to obtain the variation of the effective shear modulus with axial pressure and shear 
strain.  These tests were performed before and after cavitation to investigate if the variation of 
shear modulus with axial pressure and shear strain amplitude changes due to cavitation.  

Illustrations of the input signals to the actuators are presented in Figure 6-7. The amplitude and 
frequency of the signals vary for the different tests. Tensile tests that involved cavitation and 
shear tests were conducted under displacement control. Compression tests were conducted 
under force control. Most of the experiments were quasi-static tests conducted at an excitation 
frequency of 0.01 Hz.  Some characterization tests were also conducted at frequencies of 0.1 
and 1 Hz to investigate the effects of loading rate on mechanical properties.  
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The five types of test that were conducted are described below:   

1. Characterization tests: The mechanical properties of all the model bearings were 
determined from benchmark characterization tests in shear and compression. The shear 
characterization tests were conducted at 100% shear strain under nominal axial load. An 
axial load representative of service load conditions is often used for shear 
characterization tests. Typical service design loads for elastomeric bearings used for 
seismic isolation of structures vary in the range of 3 MPa to 7 MPa. However, a nominal 
axial load of 70 kN corresponding to axial pressure of 1 MPa was used for the shear 
characterization tests because the moment capacity of the load cell was limited. This 
value of axial load allowed the bearings to undergo shear strains greater than 100% 
without exceeding the moment capacity of the load cell. Force-controlled compression 
characterization tests were conducted at amplitude of 300 kN, which corresponds to 
axial stress of approximately 4.3 MPa. 
  

2. Effect of lateral offset on behavior in tension: Tests were conducted to understand 
the effects of lateral offset on the pre-cavitation and post-cavitation behavior of 
elastomeric bearings in tension. Force-controlled tests were conducted at an amplitude 
equal to the half of the estimated cavitation strength to obtain the variation of tensile 
stiffness with lateral offset. Tests involving cavitation were also conducted at different 
lateral offsets under displacement control to investigate the effect of lateral offset on 
cavitation properties, namely, cavitation strength, post-cavitation stiffness, and strength 
degradation. Elastomeric bearings with different rubber layer thicknesses and shear 
modulus were tested to understand the effects of shape factor and shear modulus on 
cavitation properties. 
 

3. Effect of shear loading history on cavitation: The loading history in the shear 
direction might affect the cavitation behavior of an elastomeric bearing. Two model 
bearings were subjected to shear displacement histories of a varying number of cycles 
and amplitudes followed by cyclic tensile loading. 
  

4. Effect of tensile loading history on cavitation: The effect of tensile loading history on 
cavitation was investigated using two triangular excitation signals: 1) increasing 
displacement amplitude after every three cycles (IT), and 2) decreasing amplitude after 
every three cycles (DT).  
 

5. Effect of cavitation on critical buckling load capacity: All model bearings were 
subjected to linearly increasing compressive loads up to failure to assess the effect of 
cavitation on the critical buckling load capacity of a bearing at zero lateral displacement.  

The summary of the testing program is presented in Table 6-6. The detailed sequence is 
presented in Appendix A.1.
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a) Sinusoidal signal (S)

b) Triangular (T)

c) Increasing triangular (IT)

d) Decreasing triangular (DT)

e) Linear (L)
Figure 6-7    Signals used for the experiments 
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6.4 Instrumentation and Data Acquisition 

6.4.1 General 

A Single Bearing Testing Machine (SBTM) was used to perform tensile tests and shear and 
compression characterization tests. The compression failure tests were performed using a 
Concrete Strength Tester (CST).  

For tests performed using the SBTM, twelve data channels were used to record the 
performance of the actuators and the response of the seismic isolation bearing during testing. 
Nine of these data collection channels were stationary instruments, and one data channel 
recorded time. Although, ten data channels are sufficient to operate the SBTM, two additional 
data channels, both assigned to string potentiometers, were used to measure relative vertical 
displacement across the bearing. The deformations in the bearings were also measured using a 
Krypton camera that tracked the locations of seven LEDs installed on bearings. Five video 
cameras were used to capture the behavior of elastomeric bearings from different locations.  

Six data channels were used for compression failure tests of elastomeric bearings using the 
CST. Five of these channels were stationary instruments, and one data channel recorded time. 
The stationary instruments included four linear potentiometers and one load cell to measure 
axial displacement and axial force, respectively. The instrumentation and the data acquisition 
systems are described in the following sections. 

6.4.2 Single Bearing Testing Machine 

The SBTM is used to test single elastomeric bearing under unidirectional shear and axial 
loading. A schematic of the SBTM showing its dimensions and using standard U.S. section 
sizes is presented in Figure 6-8. Figure 6-9 is a photograph of the SBTM during testing. Figure 
6-10 presents its spatial orientation. All tests discussed in Section 6.3, except the compression 
failure tests, were performed in the SBTM. The SBTM consists of a pedestal frame, a reaction 
frame, a loading beam, a horizontal (dynamic) MTSTM actuator, two vertical Parker actuators 
and a 5-channel reaction load cell.  

The SBTM can impose shearing and axial loads and displacements, and combinations thereof. 
The capacity of the load cell, in terms of first yield, to simultaneously resist shear, axial and 
bending moment is presented as a nomogram in Figure 6-11. The actuators’ capacities in terms 
of maximum stroke, velocity, and force are presented in Table 6-8. The maximum velocity of the 
vertical Parker actuators was not known. The maximum velocity of vertical actuators in the 
SBTM is expected to be different from the rated capacity of individual actuators. Triangular 
signals of different frequencies in increments were applied to the vertical actuators, and the 
amplitude of the command signal and response of the actuators were compared. The response 
of the actuators increase proportional to the command signal before reaching its maximum 
value. The frequency (and hence velocity) at which the difference between the actuator 
response and the command signal started to increase abruptly, was accepted as the maximum 
velocity that could safely be applied to the vertical actuators. This maximum velocity was 
determined as 50 mm/s for the vertical actuators. The capacity of the SBTM is generally limited 
by the capacity of the reaction load cell. Warn (2006) reported the elastic capacity of the 5-
channel reaction load cell subjected to simultaneous actions as, 89 kN shearing force, 22.5 kN-
m bending moment, and 222 kN axial force.  
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Figure 6-8    Schematic of Single Bearing Testing Machine (Warn, 2006) 

Figure 6-9    Photograph of Single Bearing Testing Machine 
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Figure 6-10   Layout of experimental setup (top-view) 
 

 
Figure 6-11   Capacity nomogram for load cell cross-section (SEESL, 2010) 
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Table 6-8    Single bearing testing machine actuator capabilities 

Actuator1 Stroke (mm) Velocity (mm/s) Force (kN) 
Horizontal (MTS) ±152  635 245 

North vertical (Parker) ±50  50 
317 Compression 

300 Tension 

South vertical (Parker) ±50  50 
317 Compression 

300 Tension 
1. Actuator orientation is shown in Figure 6-8

6.4.3 Five channel load cell 

The five channel load cell shown in Figure 6-12 was used to measure reactions during the tests. 
The load cell was built at the University at Buffalo by the Structural Engineering and Earthquake 
Simulation Laboratory (SEESL), and was calibrated against a National Institute of Standards 
and Technology (NIST) traceable reference load cell (Calibration Certificate: UB-2005-03-02). 
The original design sheet of the load cell is presented in Appendix A6.1. A detailed discussion 
on calibration process used for the load cell can be found in the appendix of Warn (2006). The 
load cell measures shear in two horizontal directions ( xS   and yS ), moment about two 
horizontal axes ( xM and yM ), and the axial force. 

Figure 6-12   Five channel load cell 
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6.4.4 Potentiometers 

String potentiometers manufactured by Celesco (model no: SP1-12), with stroke ±300 mm, 
were used to measure axial deformations on the east and the west side of bearings. The data 
sheet for the string potentiometer, obtained from the manufacture’s website, is presented in 
Appendix A6.2. The location of a string potentiometer on one side of the bearing and a close up 
view are shown in Figure 6-13. 

  
a) Location (west-side) b) Close up view 

Figure 6-13   String potentiometer used for the measurement of axial displacement 

6.4.5 Krypton tracking system 

A portable coordinate tracking machine, known as Krypton Tracking System (KTS), was used to 
measure the deformation of a bearing in the shear and axial directions (SEESL, 2014). The 
components of the KTS is shown in Figure 6-14. The Krypton camera tracks the coordinates of 
the LEDs attached to the bearing. Seven locations were tracked during the experiments, as 
shown in Figure 6-15, three on each of the lower and upper bearing plates, and a location on 
the opposite face of the bearing during testing. The ( , , )x y z  coordinates of each location were 
monitored. 
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a) Camera b) Controller
Figure 6-14   Components of the Krypton tracking system 
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Figure 6-15   Locations monitored by the Krypton camera during testing 

6.4.6 Video monitoring system 

A video monitoring system was assembled to capture the behavior of the elastomeric bearings 
during the experiments. Details and close-up views of the cameras are presented in Table 6-9 
and Figure 6-16, respectively. Cameras were installed at five locations. Four cameras, that 
included three CCD camera and one Hi-Definition GoPro camera, were installed on each 
column of the SBTM supporting the loading beam, as shown in Figure 6-17. One camera was 
installed on the west side of SBTM on a tripod. For the first few tests, a Canon camcorder was 
used, which was replaced by a Sony PTZ camera for subsequent experiments. 

 

 

Table 6-9    Details of the camera used for video monitoring system 
Camera Model Quantity Resolution (pixels) 

CCD V-806b 3 510×492 
PTZ Sony EVID90 1 720x480 

GoPro Hero3 Black Edition 1 1920×1080 
Camcorder Canon Vixia HF G30 1 1920×1080 
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a) CCD Camera b) PTZ camera c) GoPro
Figure 6-16   Cameras used for the video monitoring system 

Figure 6-17   Location of the four cameras on the columns of the SBTM 
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6.4.7 Concrete strength tester 

As a final step in the experiments, all the bearings were subjected to gradually increasing 
compression load using a Concrete Strength Tester (CST) manufactured by FORNEY. The 
maximum applied compressive load was limited by the capacity of the CST, which was 400 kips 
in compression. The CST is shown in Figure 6-18. Four linear potentiometers manufactured by 
ETI systems (model no: LCP12A-50) were installed at four uniformly spaced locations around 
the perimeter of the circular bearings to capture the spatial distribution of the axial deformation. 
The locations of the four potentiometers and close-up view of a potentiometer is shown in 
Figure 6-19. The stroke of each linear potentiometer was ± 25 mm. The data sheet for the 
potentiometer is presented in Appendix A6.2. 

 

 

 
Figure 6-18   Compression Strength Tester at SEESL, University at Buffalo 

  



6-31

a) Linear potentiometer b) Location of four linear potentiometers
Figure 6-19   Potentiometers 
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7 EXPERIMENTAL RESULTS 

7.1 Introduction 

The results of testing of elastomeric bearings are presented in this chapter. The experimental 
plan and the test set-up were presented in Chapter 6. The primary goals of the experimental 
program were to characterize the behavior of elastomeric bearings in tension and to study the 
effects of different loading protocols on response in tension. A mathematical model of an 
elastomeric bearing in cyclic tension was developed in Chapter 3. The validity of the 
mathematical model is investigated and recommendations are made based on the experimental 
data presented in this chapter. 

Data processing is discussed in Section 7.2. The results of the characterization tests are 
presented in Section 0. The effect of lateral offset on tensile properties and the effect of tensile 
loading history on cavitation are presented in Section 7.4 and Section 7.5, respectively. Section 
7.5 discusses the effect of cavitation on the mechanical properties of elastomeric bearings. 
Section 0 provides details on failure of elastomeric bearings in tension. Section 0 presents the 
conclusions of the experimental study. 

7.2 Data Processing 

7.2.1 General 

A MATLAB code is used to post-process the test data. Filtering techniques are employed to 
remove noise from the data. Redundant measurements of response quantities obtained from 
different channels are compared.  

7.2.2 Filtering 

A fifth-order low-pass Butterworth filter is used in conjunction with filtfilt, a zero-phase filter 
function in MATLAB, to remove high frequency noise.  

The filtering procedures involves two types of frequencies: 1) the forcing frequency of the 
applied signal, and 2) the sampling frequency (number of recorded data points per second). 
Most of the tests were quasi-static (slow) tests, conducted at a forcing frequency of 0.01 Hz (10 
sec time period). A few tests were conducted at 0.1 Hz and 1 Hz. The shear tests performed at 
1 Hz could not be completed as the Single Bearing Testing Machine (SBTM) could not maintain 
the axial loads at corresponding high velocities. The sampling frequency for the tests is adjusted 
according to the forcing frequency so that 1000 data points are obtained in each cycle. 
Sampling frequencies of 10 Hz, 100 Hz, 1000 Hz are used for forcing frequencies of 0.01 Hz, 
0.1 Hz, and 1 Hz, respectively.  

A normalized cutoff frequency of 0.5 Hz is used to filter the response in shear. This choice of 
cutoff frequency for tensile response presents a unique challenge due to the rapid change in 
tensile stiffness following cavitation. The effect of cutoff frequency on the response of 
elastomeric bearing DA3 in shear and tension is shown in Figure 7-1 and Figure 7-2, 
respectively. A high cutoff frequency (e.g., 5 Hz) captures the change in stiffness adequately but 
fails to remove occasional spikes in the response, whereas a low cutoff frequency (e.g., 0.25 
Hz) leads to excessive smoothening and cannot capture the sudden change in the tensile 
response around cavitation. Cutoff frequencies between 1 to 5 Hz are selected by trial and error 
to filter axial response for each test. 
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a) Shear response b) Close-up view 

Figure 7-1    Effect of cutoff frequency on the shear response (bearing DA3, test 1) 

 

  
a) Axial response b) Close-up view 

Figure 7-2    Effect of cutoff frequency on the tensile response (bearing DA3, test 6) 
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7.2.3 Axial displacement 

The axial displacement of a bearing is measured using: 1) LVDTs inside the two vertical Parker 
actuators located to its north and south, 2) string potentiometers located to its east and west 
sides, and 3) a Krypton camera tracking three LEDs on each of the top and bottom bearing 
plates on its west sides, and a LED located on the north corner of its east side. The location of 
the Parker actuators and string potentiometers are shown in a top view of the SBTM in Figure 
7-3; the locations of the LEDs for the Krypton tracking system are shown in Figure 7-4.

The axial deformation at the center of a bearing cannot be measured directly. Past experiments 
using the SBTM have reported bearing rotation about the two horizontal axes (e.g., Kasalanati 
(1998), Warn (2006)). Rotation across the two ends of the loading beam axis (X-direction) is 
caused by a time-delay in the signals between the master and slave vertical actuators. The 
inclination of the horizontal actuators also contributes to the rotation of loading beam. Rotation 
across the two sides of the loading beam (Y-direction) is due to rotation of loading beam about 
its axis. Axial displacements measured across a bearing using string potentiometers and 
Krypton camera are interpolated to obtain the axial deformation at the center of the bearing.  

Figure 7-3    Top view of the instrumentation setup of SBTM 

Figure 7-4    Locations of LEDs for Krypton tracking system 
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The vertical Parker actuators measure displacement that is different from the axial deformation 
of the bearing due to the inclination of the actuators with respect to the vertical plane. The 
rotation of the loading beam across its two ends also contributes to the difference in 
measurements between the two actuators. For lateral offset testing, the vertical actuators report 
the inclined components of the axial deformation in the bearing. 

The displacements obtained from the string potentiometers on the two sides of a bearing are 
interpolated to obtain the axial deformation at the center of the bearing. A comparison of the 
axial deformation obtained using two string potentiometers ( 1P  and 2P  shown in Figure 7-3) and 
their average value ( avgP ) are enabled by Figure 7-5 and Figure 7-6, for compressive and 
tensile tests, respectively. A significant difference is observed between the values obtained from 
two potentiometers, 1P  and 2P . Although the transverse rotation across the east and west side 
of a bearing was less than 1o, this small rotation resulted in a large difference between the 
displacements measured by the string potentiometers 1P  and 2P  due to the length of the bearing 
plates. The difference in displacement on the east and west sides of a bearing depend only on 
the rotation of the loading beam. For compressive tests, where the magnitude of the axial 
deformation is small, the percent difference between the axial displacements measured on the 
east and west of a bearing is much greater than in the tensile tests for which the magnitude of 
the axial deformation is larger.  

The loading beam rotates if the cavitation pattern is not symmetric, which also contributes to the 
difference in the tensile displacements measured using the string potentiometers.  

The Krypton camera tracked the coordinates of the seven LEDs installed on the bearing plates. 
The rotations of the bearing along two horizontal axes are calculated at each time step from the 
coordinates of the LEDs. The vertical displacement cannot be measured at the center of the 
bearing. The coordinates of the center of the top bearing plate are obtained by interpolating the 
coordinates of the LEDs, which allows the calculation of the axial deformation at the center of 
the bearing. 

The axial deformations of a bearing obtained using potentiometers and the Krypton camera are 
presented in Figure 7-7 and Figure 7-8 for compressive and tensile tests, respectively. Small 
differences are observed. The average of two potentiometer measurements accounts for the 
rotation of the bearing across the sides of the loading beam but does not account for the 
rotation along the length of the loading beam. Moreover, potentiometer measurements also 
include minor slippage at the connection of the upper and lower bearing plates to the SBTM. 
When the measurements of the Krypton camera are used to calculated the axial deformation as 
the difference of coordinates at the top and bottom nodes of the bearing, they exclude any 
contribution of slippage at the bearing plate and SBTM connections. Accordingly, the Krypton 
camera measurements are used for the calculation of deformations in bearings.  



7-5

Figure 7-5    Axial deformation obtained using string potentiometers (bearing DA3, test 2) 

Figure 7-6    Axial deformation obtained using string potentiometers (bearing MA3, test 3) 
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Figure 7-7    Axial deformation obtained using potentiometers and Krypton camera 
  (bearing DA3, test 2) 

Figure 7-8    Axial deformation obtained using potentiometers and Krypton camera 
  (bearing DA3, test 3) 
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7.2.4 Actuator comparison 

The results of a test in which a substantial difference is observed between the values of shear 
force obtained using the horizontal actuator and the five channel load cell, are presented in 
Figure 7-9 and Figure 7-10. The shear modulus calculated using the measurements from the 
five channel load cell is smaller than the value calculated using the measurements from the 
horizontal actuator. The accuracy of measurements obtained using load cells depends on the 
procedure used to calibrate the load cell. A detailed discussion of the calibration of this load cell 
is presented in Warn (2006), which points out errors associated with the shear force calibration 
procedure. Forces measured by the load cell, especially in shear, contain calibration errors and 
errors due to cross talk between channels of the load cell. The cross talk between channels was 
expected to be greater in the shear and lateral offset tests than in the axial tests. 

The horizontal MTS actuator has two data channels. There is no cross talk between these 
channels. For shear force, the measurement obtained from the horizontal actuator load cell is 
used. For axial force, the measurement from the five channel load cell is used. 

In addition to measurements obtained using the Krypton camera, the shear displacement is also 
measured using the LVDT in the horizontal MTS actuator. A small difference is observed in the 
two measurements, as shown in Figure 7-11 and Figure 7-12. 

Redundant measurements were not available for axial loads. The cross talk between the 
channels in the load cell during unidirectional axial loading only was expected to be small. The 
measurement of axial load using the five channel load cell is expected to be accurate.  
In summary, the shear and axial force acting on a bearing are obtained from the horizontal MTS 
actuator and the five channel load cell, respectively. The Krypton camera is used to measure 
displacements. 
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Figure 7-9    Shear force obtained using the MTS actuator and five channel load cell  

  (bearing DB4, test 4a) 
 

 
Figure 7-10   Shear force-displacement response obtained using the MTS actuator and the  

  five channel load cell (bearing DB4, test 4a) 
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Figure 7-11   Shear displacement obtained using the MTS actuator and the Krypton camera 
(bearing DB4, test 4a) 

Figure 7-12   Shear force-displacement loops obtained using the MTS actuator and the Krypton 
camera (bearing DB4, test 4a) 
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7.3 Characterization Testing 

7.3.1 General 

Characterization tests were conducted to determine the mechanical properties of the 
elastomeric bearings in shear, compression, and tension. Benchmark shear and compression 
tests were performed on all sixteen bearings. Additional shear tests were conducted on selected 
bearings under varying conditions of stress and strain to obtain the variation of shear modulus 
with stress and strain. Tensile characterization tests were performed on two bearings. The 
results of the characterization tests are presented in the following sections. 

7.3.2 Shear properties 

The benchmark shear tests were conducted at 100% shear strain under an axial load of 70 kN, 
which corresponds to an approximate axial pressure of 1 MPa. Although the service axial 
pressure on elastomeric bearings used for seismic isolation of nuclear power plants is expected 
to be greater than 1 MPa, the maximum axial load that could be applied was limited by the 
moment capacity (due to shearing forces) of the five channel load cell. Most of the benchmark 
shear tests were conducted at excitation frequency of 0.01 Hz. A few shear benchmark tests 
were conducted at 0.1 and 1.0 Hz to investigate the effect of excitation frequency on shear 
modulus. 

An idealized force-displacement curve for an elastomeric bearing in shear is presented in Figure 
7-13.   

 
Figure 7-13   Idealized force-displacement behavior of an elastomeric bearing in shear (Warn 

and Whittaker, 2006)  

The effective shear stiffness is calculated as: 

 
+

=
+

max min

max min
eff

F F
K

u u
  (7.1) 

where maxu and minu  are the maximum and the minimum shear displacements, and maxF and minF
are the corresponding forces, as shown in Figure 7-13. 
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The effective shear modulus is determined as: 

= eff r
eff

b

K T
G

A
(7.2) 

where rT  is the total thickness of rubber, and bA  is the bonded rubber area that includes one 
half of the cover rubber. 

The characteristic strength, dQ , is estimated as: 

+ −= + =
=

( 0) ( 0)
2d

F u F u
Q (7.3) 

where + =( 0)F u  and − =( 0)F u  are the positive and negative zero displacement force 
intercepts, respectively, on the shear force-displacement hysteresis curve. The equivalent 
viscous damping is obtained by equating the energy dissipated in a cycle of loading to the 
energy dissipated in an equivalent viscous system. The equivalent damping ratio, ζ eq , of a 
hysteretic system presented in Figure 7-14 is given as (Chopra, 2007): 

β
π

=
1

4
D

eff
so

E
E

(7.4) 

The energy dissipated per cycle, DE , is determined by numerically integrating the shear force-
displacement response using a trapezoidal algorithm. The term = 2

0 / 2so effE K u  is the strain 
energy enclosed by the maximum displacements in each cycle, as shown in Figure 7-14. The 
deformation amplitude 0u   is taken as the average of the absolute values of maxu  and minu  to 
account for any difference in the positive and negative amplitudes, and effK  is the effective 
stiffness obtained at displacement amplitude 0u . 

Figure 7-14   A general hysteretic system (Chopra, 2007) 
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The effective damping in shear is calculated as: 

 
( )

β
π

 
 =
 + 

2
max min

2 D
eff

eff

E

K u u
  (7.5) 

The shear properties of each bearing obtained from benchmark shear characterization tests are 
summarized in Table 7-1.  

The target shear strain of 100% was applied using the horizontal actuator. The shear strain 
between the top and bottom nodes of the bearings obtained using the Krypton system are 
slightly different than 100% because of the inclination of the horizontal actuator to the horizontal 
plane. The shear strains reported in Table 7-1, which are calculated from Krypton 
measurements, are slightly different from the targets values identified in Chapter 6. For the 
Mageba type A bearings (MA), characterization shear tests could not be performed at 100% 
shear strain because the vertical actuators were unable to maintain the axial load during testing 
at strains greater than 75%. For bearings DB1, DB2, DB3, MB2, and MB4, characterization 
tests were not performed before cavitation and only the post-cavitation values are reported. 
Although, cavitation was not expected to affect the shear properties substantially, in few cases, 
misleading values of shear modulus are obtained because of slippage across the two parts of a 
ruptured bearing. Shear modulus is obtained from the displacement-controlled shear tests. The 
low shear modulus and high damping of MB2 is due to slippage and bearing damage. 

A summary of the shear properties for each type of bearing, calculated by averaging the values 
in Table 7-1, is presented in Table 7-2. The averaged properties presented in Table 7-2 do not 
include values from the post-cavitation tests. 

For a LDR bearing, the characteristic shear strength is estimated per Chapter 3 as: 

 π β= × × ×
2d eff effQ K D   (7.6) 

where D  is the displacement at which βeff  and effK  are calculated. The theoretical values of the 
characteristic strength of all bearings are calculated using the information presented in Table 
7-1. The experimental and theoretical values of characteristic strength are presented in Table 
7-3. The differences are small. 

The statistical distributions of effective shear modulus and damping ratios for the DIS and 
Mageba bearings are presented in Figure 7-15 and Figure 7-16, respectively. Unlike Table 7-2, 
where data consisted of only pre-cavitation values, the statistical distributions presented in 
Figure 7-15 and  Figure 7-16 include values from pre- and post-cavitation tests. A small 
dispersion is observed in the shear modulus of the DIS bearings and the mean and median 
shear moduli are close to the shear modulus reported by DIS (=0.45 MPa). A greater dispersion 
is observed in the shear moduli of the Mageba bearings. The magnitude and dispersion of the 
damping ratio for the Mageba bearings are greater than those for the DIS bearings.  
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Table 7-1    Shear properties obtained from shear characterization tests (contd.) 

Bearing Test Cycle f  (Hz) p  (MPa) γ  (%) effK  (kN/mm) effG  (MPa) dQ  (kN) DE  (J) βeff

(%) 

DA1 6a 

1 0.01 1 97 0.203 0.4 2.06 975 4.1 
2 0.01 1 97 0.201 0.4 2.02 957 4.1 
3 0.01 1 97 0.2 0.4 1.99 948 4.1 
4 0.01 1 97 0.2 0.4 1.74 928 4 

DA2 1 

1 0.01 1 97 0.219 0.43 1.86 981 3.9 
2 0.01 1 97 0.215 0.42 1.75 862 3.5 
3 0.01 1 97 0.215 0.42 1.72 853 3.4 
4 0.01 1 97 0.214 0.42 1.43 836 3.4 

DA3 1 

1 0.01 1 97 0.214 0.42 2.61 1276 5.1 
2 0.01 1 97 0.211 0.42 2.5 1157 4.7 
3 0.01 1 97 0.21 0.41 2.46 1140 4.7 
4 0.01 1 97 0.209 0.41 2.08 1118 4.6 

DA4 1 

1 0.01 1 97 0.195 0.39 2.06 986 4.3 
2 0.01 1 97 0.193 0.38 2 939 4.2 
3 0.01 1 97 0.193 0.38 1.98 932 4.2 
4 0.01 1 97 0.192 0.38 1.74 923 4.1 

DB11 2 

1 0.01 1 95 0.389 0.44 1.98 492 3.5 
2 0.01 1 96 0.389 0.44 1.77 481 3.4 
3 0.01 1 96 0.388 0.44 1.74 472 3.3 
4 0.01 1 96 0.387 0.44 1.28 468 3.3 

DB21 2 

1 0.01 1 96 0.338 0.38 2.47 620 5 
2 0.01 1 96 0.336 0.38 2.28 595 4.8 
3 0.01 1 96 0.336 0.38 2.23 579 4.7 
4 0.01 1 96 0.336 0.38 1.87 576 4.6 

DB31 2a 

1 0.01 1 96 0.365 0.41 3.09 754 5.6 
2 0.01 1 96 0.363 0.41 2.96 759 5.7 
3 0.01 1 96 0.362 0.41 2.97 751 5.6 
4 0.01 1 96 0.361 0.41 2.41 741 5.6 

DB4 1 

1 0.01 1 96 0.403 0.45 1.71 496 3.4 
2 0.01 1 96 0.397 0.45 1.64 446 3.1 
3 0.01 1 96 0.397 0.45 1.58 433 3 
4 0.01 1 96 0.396 0.45 1.3 426 2.9 

MA1 5c 

1 0.01 1 73 0.413 0.8 4.55 1464 5.4 
2 0.01 1 73 0.412 0.8 4.25 1381 5.1 
3 0.01 1 73 0.412 0.79 4.21 1357 5 
4 0.01 1 73 0.411 0.79 3.74 1330 5 

MA2 1a 

1 0.01 1 70 0.383 0.74 2.84 949 4.2 
2 0.01 1 70 0.381 0.73 2.73 888 3.9 
3 0.01 1 70 0.38 0.73 2.69 868 3.8 
4 0.01 1 70 0.379 0.73 2.45 847 3.8 

MA3 1 

1 0.01 1 69 0.425 0.82 2.74 1142 4.6 
2 0.01 1 69 0.411 0.79 2.48 855 3.5 
3 0.01 1 69 0.407 0.78 2.39 807 3.3 
4 0.01 1 69 0.405 0.78 2.11 778 3.2 

MA4 1 1 0.01 1 69 0.44 0.85 3.99 1460 5.6 
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Table 7-1    Shear properties obtained from shear characterization tests (contd.) 

Bearing Test Cycle f  (Hz) p  (MPa) γ  (%) effK  (kN/mm) effG  (MPa) dQ  (kN) DE  (J) βeff  
(%) 

2 0.01 1 69 0.425 0.82 3.59 1187 4.7 
3 0.01 1 69 0.421 0.81 3.48 1138 4.6 
4 0.01 1 69 0.418 0.81 2.87 1111 4.5 

MB1 3 

1 0.01 1 94 0.714 0.79 3.88 1218 4.8 
2 0.01 1 94 0.69 0.76 3.72 1035 4.2 
3 0.01 1 94 0.683 0.75 3.64 988 4.1 
4 0.01 1 94 0.678 0.75 3.38 963 4 

MB21 3 

1 0.01 1 94 0.65 0.72 10.38 2107 9.1 
2 0.01 1 94 0.636 0.7 11.45 1621 7.1 
3 0.01 1 94 0.628 0.69 12.11 1588 7.1 
4 0.01 1 94 0.624 0.69 11.07 1577 7.1 

MB3 1 

1 0.01 1 94 0.735 0.81 2.99 1102 4.2 
2 0.01 1 94 0.707 0.78 2.79 816 3.3 
3 0.01 1 94 0.698 0.77 2.69 765 3.1 
4 0.01 1 94 0.693 0.76 2.25 732 3 

MB41 3 

1 0.01 1 95 0.591 0.65 4.37 1097 5.2 
2 0.01 1 95 0.589 0.65 4.19 1044 4.9 
3 0.01 1 95 0.587 0.65 4.14 1023 4.8 
4 0.01 1 95 0.586 0.65 3.96 1009 4.8 

1. Post-cavitation properties 

  

Table 7-2    Averaged shear properties of bearings 
 

Bearing effK  
(kN/mm) effG  (MPa) dQ  (kN) βeff  (%) 

DA 0.205 0.41 2.0 4.2 
DB 0.398 0.45 1.6 3.1 
MA 0.408 0.79 3.2 3.5 
MB 0.700 0.77 3.2 3.8 

 

Table 7-3    Summary of averaged shear properties 
 

Bearing Qd_Experimental 
(kN) 

Qd_ 
Theoretical 

(kN) 

Difference 
(%) 

DA 2.0 1.9 6 
DB 1.6 1.6 3 
MA 3.2 3.1 2 
MB 3.2 3.4 6 
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a) DIS bearings b) Mageba bearings
Figure 7-15   Statistical distributions of shear moduli 

a) DIS bearings b) Mageba bearings
Figure 7-16   Statistical distributions of damping ratios 
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The effect of the forcing frequency on shear modulus was investigated by performing shear 
characterization tests on bearing MA1 at 0.01 Hz and 0.1 Hz. Results are presented in Table 
7-4 and Figure 7-17. No variation in shear modulus is observed with frequency. Shear 
characterization tests could not be performed at frequency of 1 Hz because the vertical 
actuators were unable to maintain the axial loads at the high velocities.  

 
Figure 7-17   Variation of effective shear modulus of MA1 with frequency and strain 
 
Table 7-4    Effect of frequency on effective shear modulus 
 

Strain (%) 
Effective shear modulus (MPa) 

= 0.01 Hz = 0.1 Hz 
25 1.24 1.23 
50 1.03 1.04 

72.3 0.85 0.87 
 
The variation of shear modulus with shear strain for the DIS and the Mageba bearings are 
presented in Figure 7-18 and Figure 7-19, respectively. The suffixes in the legend entries refer 
to pre- and post-cavitation values. 

Shear modulus decreases with increasing shear strain, which is consistent with observations 
from past experiments. It has been observed that the shear modulus of the rubber in 
elastomeric bearings decreases up to a moderate shear strain, remains constant, and then 
increases at high values of shear strain (e.g, Clark et al. (1997); Constantinou et al. (2007), 
(Kelly, 1993)). The variation of shear modulus with shear strain could only be obtained up to a 
shear strain of 120%, limited by the moment capacity of the five channel load cell. A shear strain 
of 100% is chosen for all of the benchmark shear characterization tests. The variations of shear 
modulus with axial pressure are presented in Figure 7-20 and Figure 7-21 for the DIS and 
Mageba bearings, respectively.   

f f
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Figure 7-18   Variation of shear modulus of DIS bearings with shear strain 

Figure 7-19   Variation of effective shear modulus of Mageba bearings with shear strain 
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Figure 7-20   Variation of effective shear modulus of DIS bearings with axial pressure 
 

 
Figure 7-21   Variation of effective shear modulus of Mageba bearings with axial pressure 
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7.3.3 Compression properties 

Compressive stiffness is determined using benchmark compression tests in which the bearing is 
subjected to force-controlled triangular cyclic loading of amplitude 300 kN that corresponds 
approximately to an axial pressure of 4.3 MPa. The vertical stiffness, 0vK , is calculated as:  

δ δ

+ −

+ −

−
=

−0v
P PK (7.7) 

where +P  is an axial compressive load corresponding to a target pressure ( p ) plus an offset 
∆p , and −P  is an axial compressive load corresponding to − ∆p p , and δ +  and δ − are the 
vertical deformations corresponding to +P  and −P , respectively, on the ascending branch of 
the hysteresis loop. The values of p   and ∆p   are chosen to be 2 MPa and 1.5 MPa, 
respectively. Axial stiffness is calculated using the ascending branch of the force-deformation 
curve for each cycle. The effective damping in the vertical direction, βv , is estimated using: 

(7.8) 

where δmax  and δmin  are the maximum and minimum vertical deformations, and maxP  and minP   
are the corresponding axial loads, respectively; the energy dissipated per cycle, DE , is defined 
in Section 7.3.2. The pre- and post-cavitation cyclic response in compression and the secant 
stiffness line used to calculate the compression stiffness are shown in Figure 7-22 for bearings 
DA1, DB4, MA3, and MB1. The shear properties of all bearings are summarized in Table 7-5. 

Pre-cavitation characterization tests were not performed for bearings DB1, DB2, MB2, and MB4, 
and the data reported in Table 7-5 are from post-cavitation tests. The compression 
characterization test was not performed on bearing DB3.  

. 

max min max min2 ( )( )
D

v
E

P P
β

π δ δ
=

− −
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a) DA1 b) DB4 

  
c) MA3 d) MB1 

Figure 7-22   Compression characterization tests of bearings 
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Table 7-5 Compression properties obtained from characterization tests (contd.) 

Bearing Test Cycle 0vK  (kN/mm) DE  (J) βv  (%) 

DA1 7 

1 79 82 1.2 
2 83 65 0.9 
3 82 63 0.9 
4 81 61 0.9 

DA2 2 

1 71 114 1.4 
2 72 95 1.2 
3 71 92 1.2 
4 72 91 1.1 

DA3 2 

1 70 110 1.4 
2 71 87 1.1 
3 70 84 1.1 
4 70 81 1 

DA4 6 

1 74 90 1.2 
2 76 73 1 
3 76 67 0.9 
4 76 67 0.9 

DB11 13 

1 248 22 0.9 
2 254 17 0.7 
3 259 16 0.7 
4 265 17 0.7 

DB21 13 

1 284 23 1.1 
2 285 17 0.9 
3 286 15 0.8 
4 291 16 0.9 

DB4 10 

1 402 19 1.2 
2 399 15 1.1 
3 400 15 1 
4 425 15 1 

MA1 7 

1 194 36 1 
2 204 25 0.8 
3 200 25 0.8 
4 205 24 0.7 

MA2 2 

1 223 51 1.8 
2 211 39 1.4 
3 215 39 1.4 
4 215 38 1.5 

MA3 2 

1 209 47 1.7 
2 205 37 1.4 
3 214 34 1.3 
4 212 35 1.4 

MA4 2 

1 194 55 1.9 
2 198 43 1.5 
3 196 42 1.4 
4 197 41 1.4 

MB1 11 1 657 19 2.3 
2 699 18 2.3 
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Table 7-5 Compression properties obtained from characterization tests (contd.) 

Bearing Test Cycle 0vK  (kN/mm) DE  (J) βv  (%) 
3 702 16 2.1 
4 712 16 2.3 

MB21 6 

1 575 10 0.9 
2 626 5 0.5 
3 604 4 0.4 
4 617 5 0.5 

MB3 2 

1 792 18 2.6 
2 853 14 2.3 
3 881 13 2.3 
4 886 14 2.4 

MB41 6 

1 504 18 1.4 
2 538 13 1.2 
3 514 12 1.1 
4 547 12 1 

1. Post-cavitation properties 

 
The averaged compression properties of all four types of bearing are summarized in Table 7-6. 
The averaged properties do not include post-cavitation values.  

Table 7-6    Summary of averaged compression properties of bearings 
 

Bearing 0vK  (kN/mm) DE  (J) βV  (%) 
DA 75 83 1.1 
DB 355 20 1.0 
MA 235 37 1.4 
MB 727 15 2.0 

 
Others (e.g. Warn (2006)) have concluded that the vertical stiffness of an elastomeric bearing 
calculated using the expression that considers limited compressibility of rubber layers matches 
reasonably with experimentally obtained values. This conclusion is revisited using the 
experimental data obtained here. The theoretical values of compression stiffness are calculated 
using Equation (6.6) for each bearing type and are compared with experimental values in Table 
7-7. The average shear moduli from Table 7-2 are used for calculations of compression 
stiffness. The theoretical predictions are similar to the experimental results with differences less 
than 10%, except for type DA. 

Table 7-7    Theoretical and experimentally obtained compressive stiffness 
 

Bearing 0vK  (kN/mm) 
Experimental Theoretical % difference 

DA 75 80 7 
DB 355 377 6 
MA 235 206 12 
MB 727 705 3 
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7.3.4 Tensile properties 

The benchmark tensile characterization tests were performed on two bearings. The bearings 
were subjected to a force-controlled triangular loading of amplitude 25 kN. The amplitude was 
chosen as approximately one quarter of the estimated cavitation strength to ensure that no 
cavitation occured. The tensile properties of the remaining bearings are obtained from tensile 
tests other than benchmark tensile characterizations tests. The tensile stiffness and damping 
ratio were obtained using Equations (7.7) and (7.8). The values of  p  and ∆p  are 0.3 MPa and 
0.25 MPa, respectively. The tensile properties of the bearings are summarized in Table 7-8. The 
mechanical properties associated with the first tensile load-deformation cycle are presented. 

Table 7-8   Summary of tensile properties obtained from tensile tests 

Bearing Test Cycle ∆
(%) 

ε t  
(%) 

cF
(kN) 

cu
(mm) 

vK
(kN/mm) 

DW
(J) 

βv  (%) 

DA11 9 1 0 1 50 1.2 75 22 5.4 
DA2 3a 1 0 5 95 4.4 88 198 6.8 
DA3 3 1 0 25 86 2.9 76 890 26 
DA41 14 1 0 5 65 2.0 51 71 2.5 
DB11 14 1 0 4 85 4 96 45 3.1 
DB21 1 1 187 4 85 1.2 160 81 4.8 
DB3 1a 1 0 4 85 1.0 231 136 11 
DB4 11a 1 0 4 110 2.5 236 52 2.7 
MA1 8 1 0 failure 19 n.a. 25 n.a. n.a.
MA2 3 1 0 4 136 6.0 180 198 4 
MA3 3 1 0 24 192 2.5 378 3143 8.8 
MA41 3 1 0 1 42 4 173 103 n.a.
MB1 12 1 0 4 120 3.0 377 105 4.8 
MB2 1 1 0 3 202 1.0 945 215 8 
MB3 3 1 0 3 170 2.0 429 110 4.2 
MB4 1 1 0 failure 200 2.5 930 n.a. n.a.

1. Bearings that either failed prematurely or for which tensile properties are not available at zero lateral offset

The experimental value of tensile stiffness varies significantly for given type of bearing. The 
value of secant tensile stiffness is sensitive to the length and location of the chord chosen on 
the tensile load-deformation curve. The variations in tensile properties, including tensile stiffness 
and cavitation force, can be attributed to the manufacturing quality control. Better quality control 
would ensure that bearings of the same material and geometric construction would have similar 
mechanical properties. A summary of averaged tensile properties is presented in Table 7-9. The 
average properties in Table 7-9 do not include values of the bearings marked with the 
superscript 1 in Table 7-8. 

Table 7-9    Average tensile properties of bearings 

Bearing cF  (kN) cu  (mm) 0vK  (kN/mm) 
DA 91 3.7 82 
DB 98 1.8 234 
MA 164 4.3 279 
MB 173 2.1 670 
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The load-deformation behavior of an elastomeric bearing in tension is generally assumed to be 
elastic up to cavitation with pre-cavitation tensile stiffness equal to the compressive stiffness. 
The validity of this assumption is investigated here. The average tensile stiffness of each 
bearing type is compared with its compressive stiffness in Table 7-10. 

Table 7-10    Compressive and tensile stiffness of bearings  

Bearing 0vK  (kN/mm) 
Compression Tension % difference 

DA 75 82 9 
DB 355 234 34 
MA 235 279 19 
MB 727 670 8 

 
There are differences between the values of tensile and compressive stiffness. However, the 
assumption of equal axial stiffness in tension and compression allows the use of a linear model 
up to cavitation without much loss of accuracy.  

The cavitation strength of each bearing is determined from the tension tests. Significant scatter 
is observed in the experimentally recorded value. Ideally, the cavitation strength should be 
obtained by applying a tensile load to a virgin bearing at zero lateral offset. However, this was 
not possible for all of the bearings because the experimental program had multiple objectives, 
each requiring a different protocol. Some bearings were likely to have suffered cavitation 
damage due to tests performed before the tensile tests, and in a few cases, the cavitation 
strength could only be obtained at lateral offsets. Importantly, the cavitation strength is obtained 
by visual inspection of the tensile load-deformation curve: identifying the point at which a 
substantial reduction in tensile stiffness occurs. Visual determination introduces significant 
scatter in the cavitation strength, but there is no more reliable a strategy.  

Table 7-11 summarizes experimentally and theoretically determined cavitation strengths. The 
response of four of the sixteen bearings (DA1, DA3, MA1, and MA4) suggest premature failure. 
If the outliers in the values of cavitation force are not considered, the experimental values show 
good agreement with the theoretical predictions (=3GA). 

7.4 Effect of Lateral Offset on Tensile Properties 

The coupling of the horizontal and vertical response of an elastomeric bearing in compression is 
well established and empirical relationships have been validated by Warn et al. (2007). Coupling 
of horizontal and vertical motion in tension was investigated here by subjecting bearings to 
tensile loading at different offset shear strains. The effect of lateral offset is assessed by three 
tensile characteristics: 1) pre- and post-cavitation tensile stiffness, 2) cavitation strength, and 3) 
hysteretic behavior in tension.  

To determine the effect of lateral offset on pre-cavitation stiffness, four bearings were subjected 
to force-controlled cyclic tensile loading at different lateral offsets. The amplitude of the loading 
was approximately half of the estimated cavitation strength. The load-deformation behavior of 
the two bearings in cyclic tension at different lateral offsets is presented in Figure 7-23, where 
∆  is the lateral offset and R  is the radius of the bearing. The variation of tensile stiffness of 
bearings DA1 and DA4 with lateral offset is shown in Figure 7-24. Although it is difficult to define 
and locate the exact point on the tensile force-deformation curve that corresponds to cavitation, 
the cavitation strength characterized by a sharp reduction in tensile stiffness, in Figure 7-23a 
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and Figure 7-23b can be seen to be decreasing with lateral offset. This trend is consistent with 
the findings of Iwabe et al. (2000) and Kato et al. (2003). 

Table 7-11   Experimental and theoretical cavitation strengths 

Bearing _ experimentalcF  (kN) effG  (MPa) Area (mm2) _analyticalcF  (kN) _ experimental _analytical/c cF F

DA11 50 0.40 68900 83 0.60 
DA2 95 0.42 68900 87 1.09 
DA31 86 0.42 68900 86 1.00 
DA4 65 0.38 68900 79 0.82 
DB1 85 0.44 68900 91 0.93 
DB22 85 0.39 68900 81 1.05 
DB3 85 0.41 68900 85 1.00 
DB4 110 0.45 68900 93 1.18 
MA11 19 0.80 70215 168 0.11 
MA2 136 0.73 70215 154 0.88 
MA3 192 0.80 70215 168 1.15 
MA41 42 0.83 70215 174 0.24 
MB1 120 0.77 70215 161 0.74 
MB2 202 0.70 70215 148 1.36 
MB3 170 0.79 70215 166 1.03 
MB4 200 0.65 70215 137 1.46 

1. Premature failure
2. Cavitation force obtained at lateral offset ∆=R

The tensile stiffness decreases with an increasing number of loading cycles. The reduction in 
stiffness depends on the change in tensile strain amplitude between consecutive cycles. If the 
tensile strain amplitude does not change significantly, the reduction in tensile stiffness is 
insignificant. Figure 7-25 shows the variation in tensile stiffness with number of cycles at 
different lateral offsets for bearing DA1. The bearing is subjected to force-controlled cyclic tests 
of an amplitude that was approximately one half of the cavitation strength. The tensile stiffness 
in Figure 7-25 does not change significantly because of small increments in the tensile strain 
amplitude of consecutive cycles. This can be contrasted against a case where the tensile 
stiffness decreases substantially if the tensile strain amplitude between consecutive cycles 
increases significantly. Figure 7-26 shows the variation of tensile stiffness with number of cycles 
for bearing DB4, which was subjected to displacement-controlled cyclic tensile tests with strain 
amplitude increasing after every three cycles. 

The effect of lateral offset on the hysteretic behavior of an elastomeric bearing in tension is 
difficult to assess because a tensile test with any substantial hysteresis involves irreversible 
damage due to cavitation. The hysteretic behaviors of an elastomeric bearing with different 
lateral offsets will inevitably be different and it is not possible to isolate on the load-deformation 
curve the effect of lateral offset from cavitation damage. If a force-controlled test does not 
involve cavitation, increasing lateral offset increases hysteretic energy dissipation, as observed 
in Figure 7-23a and Figure 7-23b. 
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a) DA1 b) DA4 

Figure 7-23   Load-deformation behavior in cyclic tensile loading at different lateral offsets 
 

 
Figure 7-24   Variation of tensile stiffness with lateral offset strain 
  



7-27

Figure 7-25   Variation of tensile stiffness with number of cycles for bearing DA1 

Figure 7-26   Variation of tensile stiffness with number of cycles for bearing DB4 (∆/R = 0) 
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To isolate the effect of lateral offset from tensile damage on hysteresis behavior of an 
elastomeric bearing, damage was induced in bearing DB1 by subjecting it to a tensile strain of 
50%. It is known that if the strain amplitudes of the subsequent tensile tests are less than the 
maximum prior value of tensile strain, no additional damage is induced. Two cyclic tensile tests 
are performed on the same bearing with and without a lateral offset with tensile strain amplitude 
of 50%, so that any difference in hysteresis would only be because of lateral offset and not 
cavitation. Results are presented in Figure 7-27. The hysteretic behaviors are very similar 
despite the significant difference in lateral offset.  

 
Figure 7-27   Effect of lateral offset on tensile hysteresis 

7.5 Effect of Tensile Loading History on Cavitation 

Past experiments have shown that damage in an elastomeric bearing accumulates with tensile 
deformation. Chapter 3 describes the mechanism of damage initiation and propagation, and 
proposes a mathematical model that predicts the behavior of an elastomeric bearing under 
cyclic tensile loading. Tests were performed to validate this mathematical model. The following 
assumptions are investigated: 

1. Cavitation strength decreases (damage increases) with increasing values of tensile 
strain in each loading cycle 

2. No additional damage is observed if the tensile strain is less than its prior maximum 
value 

3. If the maximum prior value of tensile strain is exceeded, the formation of new cavities 
leads to additional damage, and cavitation strength is further decreased 

4. Cavitation strength converges to a certain minimum value 

Two test sequences, increasing triangular (IT) and decreasing triangular (DT), were used in 
which the tensile deformation amplitude was increased and decreased, respectively, after every 
three cycles. According to the mathematical model developed in Chapter 3, tensile properties 
such as the reduced cavitation strength, the post-cavitation stiffness and the minimum value of 
cavitation strength, should only depend on the prior maximum value of tensile strain and not on 
the sequence of loading. The behavior of elastomeric bearings under cyclic tensile loading is 
presented in Figure 7-28 through Figure 7-30. 
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Differences are observed between the behaviors shown in Figure 7-28 through Figure 7-30 and 
behaviors observed in past experiments (e.g. Iwabe et al. (2000), Kato et al. (2003), Warn 
(2006)). It was observed in previous experimental studies that if the tensile strain exceeds the 
prior maximum value, the prior maximum value of the tensile force is recovered, and 
subsequently, tensile force increases with tensile strain. However, a substantial reduction in 
force is observed between consecutive cycles for the bearings tested here, and the tensile force 
is not recovered after tensile strain exceeds the prior maximum value. The reason for this 
different behavior is not known. 

The same tensile tests were conducted at the beginning of the experiment on a trial bearing 
(bearing in Figure 7.7 of Constantinou et al. (2007)) to ensure proper functioning of 
instrumentation, data acquisition, and actuator feedback control mechanism. The trial bearing 
was subjected to multiple IT and DT sequences of loading as described in Section 6.4. Results 
are presented in Figure 7-31. 

a) DA2 b) DA3
Figure 7-28   Behavior of DIS bearings under cyclic tensile loading 
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a) MA2 b) MA3 

Figure 7-29   Behavior of Mageba bearings under cyclic tensile loading 
 

  
a) DB3 b) MB3 

Figure 7-30   Behavior of DIS and Mageba bearings under cyclic tensile loading 
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The trial bearing follows an expected behavior that is consistent with past experimental studies 
and the model proposed in Chapter 3. This strongly suggests that the inconsistent tensile 
behavior is related to the properties of the bearing and not the experimental program. A variety 
of factors, including inadequate quality control, high damping, and insufficient curing, could lead 
to the observed tensile behavior. 

Figure 7-31   Behavior of the trial bearing under cyclic tensile loading 

The residual strength observed in the tensile load-deformation curves of Figure 7-28 through 
Figure 7-30 is due to the resistance of the 4 mm cover rubber around the perimeter of the 
circular bearings. 

Some bearings ruptured into two pieces following cavitation. The distances from the rupture 
planes from the bottom of the bearing are presented in Table 7-12. The total height of the 
bearing includes rubber layers, shim plates, and the two internal bearing plates (see Figure 
4-11)

Table 7-12   Location of rupture plane in bearings failed due to cavitation 

Bearing 
Failure 
height 

(inches) 
Bearing 

Failure 
height 

(inches) 
Bearing 

Failure 
height 

(inches) 
Bearing 

Failure 
height 

(inches) 
DA1 1.75 DB1 n.a.1 MA1 4.75 MB1 2 
DA2 4.75 DB2 3.5 MA2 3 MB2 3.75 
DA3 4 DB3 n.a. MA3 4 MB3 3.25 
DA4 4.5 DB4 n.a. MA4 3.5 MB4 3.5 

1. not available for bearings that did not rupture in two pieces
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7.6 Effect of Cavitation on Mechanical Properties 

7.6.1 General 

The mechanical properties (e.g., shear modulus, axial stiffness) of all sixteen bearings were 
monitored during the experiments. The effects of cavitation on mechanical properties were 
investigated through characterization tests before and after cavitation, including shear and 
compression tests. Results are presented in the following sections.  

7.6.2 Shear properties 

The shear modulus and damping ratio of the bearings were monitored using shear 
characterization tests performed at 100% shear strain under an axial compressive pressure of 1 
MPa. Additional shear tests were conducted at other shear strain amplitudes and axial loads to 
investigate if the change in shear modulus following cavitation was sensitive to the shear strain 
and axial load. The changes in the shear properties of the bearings are summarized in Table 
7-13. 

Table 7-13   Pre- and post-cavitation shear properties of elastomeric bearings 

Bearing effG  (MPa) βeff  (MPa) 
Pre Post Ratio % change Pre Post 

DA1 0.40 0.37 0.93 8 4 5.1 
DA2 0.42 0.40 0.95 5 4 4.4 
DA3 0.42 0.40 0.96 4 5 3.8 
DA4 0.38 0.36 0.94 6 4 4.9 
DB1 n.a.1 0.44 n.a. n.a. n.a. 3.5 
DB2 n.a. 0.39 n.a. n.a. n.a. 4.2 
DB3 n.a. 0.41 n.a. n.a. n.a. 5.6 
DB4 0.45 0.43 0.96 4 3 3.8 
MA1 0.80 n.a. n.a. n.a. 5 n.a. 
MA2 0.73 0.68 0.93 7 4 5.3 
MA3 0.80 0.74 0.92 8 4 4.2 
MA4 0.83 0.77 0.93 7 5 5.6 
MB1 0.77 0.67 0.88 12 4 5.0 
MB2 n.a. 0.70 n.a. n.a. n.a. 7.8 
MB3 0.79 0.71 0.90 10 4 5.6 
MB4 n.a. 0.65 n.a. n.a. n.a. 5.0 

1. not available for bearings on which pre-cavitation characterization tests were not performed 

 
Others (e.g., Iwabe et al. (2000)) have concluded that cavitation has no substantial effect on the 
shear modulus of a bearing because friction between the rubber layers provide adequate 
resistance to shear under nominal axial compressive loads. The frictional resistance depends 
on normal pressure and the contact area between the adjoining surfaces. The effect of 
cavitation on shear modulus may change with the magnitude of the axial compressive load 
maintained during the shear tests and the shear strain at which effective shear modulus is  
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calculated. To investigate this, cyclic shear tests were conducted before and after cavitation at 
various shear strain amplitudes and axial pressures. Results are presented in Figure 7-32 
through Figure 7-35. 

Figure 7-32   Variation of effective shear modulus with shear strain for bearing DB4 

Figure 7-33   Variation of effective shear modulus with axial pressure for bearing DA4 
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Figure 7-34   Variation of effective shear modulus with axial pressure for bearing DB4 
 

 
Figure 7-35   Variation of effective shear modulus with axial pressure for bearing MB1 
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The effect of cavitation on the shear modulus of a bearing is consistent over the range of shear 
strain and axial pressure considered. At very low values of axial pressure (< 0.5 MPa), 
differences between the pre- and post-cavitation shear modulus are seen because of the 
relative movement across the failure surface after cavitation, as seen in Figure 7-36. Slip is 
unlikely under a service axial pressure (≥3 MPa). Cavitation has no significant effect on the 
effective shear modulus of a bearing for shear strain less than 150% and axial compressive 
pressure greater than 1 MPa. 

Figure 7-36   Slippage across the damaged interface of bearing MA4 in a shear test (axial 
pressure = 0.5 MPa) 

A coefficient of friction between the two layers of rubber across a failure surface can be 
estimated from the data. When the bearing is in motion under constant velocity, the friction force 
is equal to the applied shear force. The coefficient of friction, µK , is obtained as: 

µ = s
K

F
N

(7.9) 

where sF  is the applied shear force and N  is constant axial load maintained during the shear 
test. 

Slip across the failure surface surface is indicated by a plateau on the shear force-displacement 
curve in Figure 7-37 and this force is used to estimate µK : see Table 7-14. 
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a) MA4 b) DA4 

Figure 7-37   Shear response of bearing MA4 at different axial loads 
 
Table 7-14   Coefficient of kinetic friction between rubber layers 
 

Test no.1 Axial load (kN) Shear force (kN) Coefficient of friction 
MA4_6 11 4 0.36 
MA4_7 22 8 0.36 
DA4_19 11 5 0.45 

1. See Appendix A.1 

 
7.6.3 Axial properties 

Force-controlled compression characterization tests were performed to calculate compressive 
stiffness and damping ratio before and after cavitation. The changes in axial properties in 
compression are summarized in Table 7-15. A very small reduction in compressive stiffness is 
observed after cavitation. The pre- and post-cavitation values of the damping ratio in 
compression vary between 1 and 2% of critical. 

7.6.4 Critical buckling load capacity 

A series of monotonic compression tests were performed at the end of the testing program to 
investigate the effect of cavitation on the buckling load capacity of bearings. The critical buckling 
load of all bearings are estimated from load-deformation curves of the bearings as described in 
Section 6.4.7. The rated compressive load capacity of the testing machine is 1780 kN and its 
displacement capacity is 1.5 inches. Only eight of the sixteen bearings could be loaded in  
compression to failure. The buckling load for the remaining eight bearings exceeded 1780 kN. 
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The ruptured halves of the bearings that failed during cavitation were re-assembled and a 
compressive load was applied. 

Table 7-15   Pre- and post-cavitation axial properties of elastomeric bearings 

Bearing 0vK  (MPa) βv  (MPa) 
Pre Post Ratio % change Pre Post 

DA1 81 76 0.94 6 1.0 1.1 
DA2 71 68 0.96 4 1.3 1.3 
DA3 71 69 0.97 3 1.2 1.3 
DA4 75 74 0.99 1 1.0 1.1 
DB1 n.a.1 254 n.a. n.a. n.a. 0.8 
DB2 n.a. 285 n.a. n.a. n.a. 0.9 
DB3 n.a. n.a. n.a. n.a. n.a. n.a.
DB4 400 273 0.68 32 1.1 0.9 
MA1 199 n.a. n.a. n.a. 0.9 n.a.
MA2 216 161 0.74 26 1.5 1.1 
MA3 209 191 0.91 9 1.5 1.5 
MA4 196 180 0.92 8 1.6 1.4 
MB1 686 605 0.88 12 2.2 1.0 
MB2 n.a. 602 n.a. n.a. n.a. 0.6 
MB3 842 765 0.91 9 2.4 0.9 
MB4 n.a. 519 n.a. n.a. n.a. 1.2 

1. not available

Compressive load-deformation plots for the four types of bearing are presented in Figure 7-38 
through Figure 7-41. The initial plateau in the plots is due to a gap that the loading head of the 
testing machine had to overcome to engage the bearing. The axial displacement was measured 
using four linear potentiometers located symmetrically around the bearing. The potentiometers 
record displacement of the same sign up to buckling. However, after buckling begins, the signs 
might reverse due to rotation of the bearing. Axial deformation is taken as the average of the 
four potentiometer readings. The apparent hardening in the load-deformation curves results 
from the bearing being restrained laterally by the side walls of the testing machine following 
buckling.  

The point on a load-deformation curve that corresponds to the beginning of buckling is shown 
with a solid black circle in Figure 7-38 and Figure 7-40. For the DB and MB bearings, the critical 
buckling loads were greater than the capacity of the testing machine (= 1780 kN) and they could 
not be failed in compression.  

The theoretical values of critical buckling load obtained using the pre-cavitation and post-
cavitation values of the effective shear modulus are presented in Table 7-16. No significant 
change in the buckling capacities of bearing types DA and MA due to cavitation is observed. 
Although failure could not be obtained for bearing type DB, they sustained a compressive load 
of 1700 kN, which is close to their theoretical buckling load, suggesting that there was no 
significant effect of cavitation on bearing type DB.  
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Figure 7-38   Compression failure tests of DA bearings 
 

 
Figure 7-39   Compression failure tests of DB bearings 
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Figure 7-40   Compression failure tests of MA bearings 

Figure 7-41   Compression failure tests of MB bearings 
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Table 7-16   Theoretical and experimental values of critical buckling load 

Bearing effG  (MPa) crP  theoretical (kN) 
crP  experimental (kN) 

Before After Before After 
DA1 0.40 0.37 621 596 525 
DA2 0.42 0.40 659 634 580 
DA3 0.42 0.40 646 634 480 
DA4 0.38 0.36 596 583 460 
DB1 n.a. 0.44 n.a. 1770 >1780 
DB2 n.a. 0.39 n.a. 1579 >1780 
DB3 n.a. 0.41 n.a. 1675 >1780 
DB4 0.45 0.43 1801 1739 >1780 
MA1 0.80 n.a. 1349 n.a. 1250 
MA2 0.73 0.68 1280 1196 1160 
MA3 0.80 0.74 1363 1308 1050 
MA4 0.83 0.77 1403 1321 1500 
MB1 0.77 0.67 3147 2880 >1780 
MB2 n.a. 0.70 n.a. 2971 >1780 
MB3 0.79 0.71 3205 3060 >1780 
MB4 n.a. 0.65 n.a. 2819 >1780 

 

7.7 Failure mode in tension 

The failure mode of a bearing is defined here as the loading conditions under which the bearing 
fails (e.g., pure tension, tension with lateral offset). The failure mechanism describes how the 
failure begins. The description of failure for each bearing in tension is presented in Appendix 
A.6. 

The most common failure type in the DIS bearings was the formation of cavities in the rubber 
layer, whereas the Mageba bearings failed due to debonding at the interface of a rubber layer 
and a steel shim. Failure through formation of cavities in the volume of the rubber is the much 
preferred mechanism. These two failure mechanisms are shown in Figure 7-42.  

Four of the sixteen bearings, DA1 (0.53), DA4 (0.55), MA1 (0.09), and MA4 (0.23), failed 
prematurely (failure occurred below theoretical cavitation force), where the value in parentheses 
is the ratio of the experimental to theoretical cavitation strengths. Although most of the 
experimental work (e.g., Iwabe et al. (2000), Kato et al. (2003), Warn (2006)) on cyclic loading 
of elastomeric bearings report a tensile deformation capacity of more than 100%, few bearings 
here achieved this. The hysteretic behavior was also different than what has been observed in 
past experimental studies, which might be related to manufacturing quality control. For example, 
three of the sixteen bearings tested here had misaligned tapped-holes at the bottom and top of 
the internal bearing plates, which led to initial torsional deformation after installation in SBTM. 
Bearing MA4, which had the greatest misalignment, is shown in Figure 7-43. 
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a) Cavities in the rubber volume (DA2) b) Debonding at rubber-shim interface (MA4)
Figure 7-42   Failure mechanism in rubber bearings under tension 

Figure 7-43   Misaligned groves in top and bottom bearing plates of the bearing MA4 

7.8 Validation of Mathematical Model 

The mechanism of damage initiation and propagation due to cavitation in an elastomeric 
bearing was described in Section 3.2.4 through 3.2.6 and a mathematical model was proposed 
that predicts the behavior of an elastomeric bearing under cyclic tensile loading. The following 
assumptions are investigated: 

1. Cavitation strength decreases (damage increases) with increasing values of tensile
strain amplitude of each cycle

2. No additional damage is observed if the tensile strain is less than its prior maximum
value

3. If the prior maximum value of tensile strain is exceeded, the formation of new cavities
leads to additional damage, and cavitation strength is further decreased

4. Cavitation strength converges to a minimum value
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A comparison of the experimental behavior and numerical results obtained using the 
phenomenological model described in Section 3.2.7 is presented in Figure 7-44 for all sixteen 
bearings, where / cF F  is the tensile force normalized by the cavitation strength. The values of 
the parameters used for the tensile model are: cavitation parameter, k  = 20, 2) strength 
degradation parameter, a  = 1.0, and 3) damage index, φmax = 0.9. 

The numerical results are in reasonable agreement with the experimental behavior in most 
cases. Differences are observed in a few cases between the behaviors shown in Figure 7-44 
and those observed from past experiments (e.g. Iwabe et al. (2000), Warn (2006), Kato et al. 
(2003)). It has been observed in previous experimental studies that if the tensile strain exceeds 
the prior maximum value, the prior maximum value of the tensile force is recovered, and 
subsequently, tensile force increases with tensile strain. However, a reduction in force is 
observed between consecutive cycles for a few of the bearings tested here, and the tensile 
force is not recovered after tensile strain exceeds the prior maximum value. The reduction might 
be due to initiation of tensile failure. It is difficult to locate the precise point of failure on the load-
deformation curve up to which the phenomenological model can applied. A consistent failure 
strain in tension is not observed among all the bearings. The tensile strain capacities of the 
bearings are smaller than those reported by others (e.g., Iwabe et al. (2000), Warn (2006), Kato 
et al. (2003)). 

7.9 Conclusions and Recommendations 

The key conclusions of the experiments are: 

1. The value of 3GA  is a reasonable estimate of the cavitation strength of a bearing.  
2. The pre-cavitation tensile stiffness of a bearing decreases with an increasing number of 

loading cycles. The magnitude of the reduction depends on the prior maximum value of the 
tensile strain. 

3. The pre-cavitation tensile stiffness decreases with an increase in coexisting shear strain. 
4. Cavitation strength decreases with co-existing shear strain. 
5. The sequence of loading does not change the behavior of elastomeric bearing under cyclic 

tension. 
6. There is an insignificant change from a practical perspective in the compressive stiffness of 

a bearing following cavitation. 
7. Cavitation has no significant effect on the effective shear modulus of a bearing for shear 

strain less than 150% under axial compressive pressure greater than 1 MPa. 
8. No significant reduction in the buckling load of a bearing is observed due to prior cavitation. 

Good quality assurance (QA) and quality control (QC) is key to the use of elastomeric bearings 
to seismically isolate nuclear power plants. Mathematical models are formulated based on 
physics and behaviors observed in experiments. These mathematical models are developed 
using a set of generalized assumptions about the expected behavior of elastomeric bearings. 
The desirable behavior of an elastomeric bearing in tension includes: 

1. Cavitation at a well-defined force that is reproducible across similar bearings 
2. Sufficient tensile deformation capacity 
3. Ability to recover strength if tensile deformation exceeds the prior maximum value 
4. Final failure through formation of cavities in the volume of the rubber and not through de-

bonding at the interface of a rubber layer and a steel shim. 
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The bearings tested for the study described in this report showed different characteristics from 
those tested previously, including a) smaller tensile strain capacity, b) reduction in peak tensile 
force in consecutive cycles to a specified tensile displacement, and c) reduction in tensile 
resistance for loading to tensile strain that exceed a prior maximum value. These differences 
might have arisen because bearing manufacturers very rarely fabricate isolators of the relatively 
small size tested here. The infrequent manufacture of small runs of bearings with geometries 
most different from commercial product make it extremely difficult to achieve the high quality 
expected of isolators for nuclear power plant applications. 

a) DA1 b) DA2 c) DA3 d) DA4

e) DB1 f) DB2 g) DB3 h) DB4

i) MA1 j) MA2 k) MA3 l) MA4

m) MB1 n) MB2 o) MB3 p) MB4
Figure 7-44   Validation of the mathematical model in tension, normalized force versus 

displacement 
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8 RESPONSE OF THE TWO-NODE MACRO MODEL OF BASE-
ISOLATED NUCLEAR POWER PLANT 

8.1 Introduction 

The effects of changes in the mechanical properties of elastomeric bearings on the response of 
base-isolated nuclear power plant (NPP) structures are investigated here using the advanced 
numerical model of elastomeric bearings presented in Chapter 3. A macro model is used for 
response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be 
consistent with response spectra for design basis and beyond design basis earthquake shaking 
at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two 
periods and five characteristic strengths are analyzed. The responses obtained using simplified 
and advanced isolator models are compared. Individual and cumulative effects of including each 
characteristic of elastomeric bearing on the response of base-isolated NPP under extreme 
loading are assessed.  

8.2 Numerical Model 

A two-node macro model of a NPP structure, shown in Figure 8-1, is created in OpenSees for 
response-history analysis. The lumped mass at the top node (node 2) represents the 
superstructure assigned to one isolator; the superstructure is assumed to be rigid for the 
purpose of these analyses. A LR1 isolator joins the two nodes: LeadRubberX. All six degrees of 
freedom of the bottom node (node 1) are fixed to the ground, as are the three rotational degrees 
of freedom at the top node. Although this model cannot capture the effects of rocking and local 
axial force effects on isolators that are expected in an isolated system, its analysis does allow 
recommendations to be made about the importance of the characteristics of LR bearings.  

Figure 8-1    Two-node macro model of a base-isolated NPP 

1 Lead-rubber and low damping rubber elastomeric bearings are considered appropriate for use in safety-
related nuclear structures in the United States at the time of this writing. Lead-rubber bearings are 
considered here because the seismic displacements at the Diablo Canyon site were anticipated to be 
large for design basis shaking. 
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Ten macro models of base-isolated NPPs are created: two isolation time periods (T  = 2, 3 
seconds) and five ratios of characteristic strength to supported weight ( /dQ W  = 0.03, 0.06, 
0.09, 0.12, and 0.15). The models are denoted by TxQy , where x  identifies the value of T  
and y  identifies the percentage of  /dQ W . Table 8-1 summarizes the isolator properties 
assumed for analysis. 

Table 8-1    Geometrical and mechanical properties of elastomeric bearings 
Property Notation (units) Value 

Single rubber layer thickness rt  (mm) 10 
Number of rubber layers n  31 
Total rubber thickness rT  (mm) 310 
Steel shim thickness st  (mm) 4.75 

Outer diameter oD   (mm) 1219 
Lead core diameter iD   (mm) Varies1 

Cover thickness ct   (mm) 19 
Yield stress of lead σL  (MPa) 8.5 

Static pressure due to gravity loads staticp   (MPa) 3.0 
Shear modulus G   (MPa) Varies2 

1, 2: Calculated for each model 
 

A static (gravity load) pressure on the bearing of 3 MPa is used for all analyses. The total gravity 
weight W  on the bearing is calculated by multiplying the static pressure by the bonded rubber 
area. The total weight W  is divided by g  to obtain the equivalent mass M , which is lumped in 
the three translational directions at node 2 for response-history analyses. The diameter of the 
lead core is back calculated from /dQ W , assuming an initial yield stress of 8.5 MPa. The 
effective shear modulus is calculated from the isolation time period T  of the model. The 
geometric and mechanical properties of LR bearing are computed from the given values of  

/dQ W  and T  as: 
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  (8.1) 

where LA  is the area of the lead core, and all other variables are defined above. The geometric 
and material properties of the ten LR bearings are summarized in Table 8-2. 

The parameters of the tensile model, k , a , and φmax  are set equal to 20, 1.0, and 0.75, 
respectively, for all models. A sensitivity analyses performed in Section 5.6.2 showed that the 
tensile response of an elastomeric bearing is not sensitive to either a  or φmax , and the values 
a  = 1.0 and φmax  = 0.75 recover the results of experiments. For the large diameter bearings 
considered here, a very sharp reduction in the tensile stiffness following cavitation is expected, 
which is captured by k  = 20. 
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Table 8-2    Geometric and material properties of LR bearing models 

Property Notations 
(units) T2Q3 T2Q6 T2Q9 T2Q12 T2Q15 T3Q3 T3Q6 T3Q9 T3Q12 T3Q15 

Lead core 
diameter iD  (mm) 125 168 195 216 231 100 136 161 180 195 

Shear 
modulus G   (MPa) 0.92 0.92 0.93 0.94 0.94 0.41 0.41 0.41 0.41 0.41 

Horizontal 
stiffness 0HK  (MN/m) 3.52 3.52 3.52 3.52 3.52 1.57 1.57 1.57 1.57 1.57 

Vertical 
stiffness 0vK  (MN/m) 4061 4002 3959 3926 3899 3004 2956 2923 2897 2875 

Buckling load 0crP  (MN) 67.5 67.3 67.1 67.0 66.9 38.6 38.4 38.3 38.2 38.1 
Cavitation 

force cF  (MN) 3.28 3.28 3.28 3.28 3.28 1.46 1.46 1.46 1.46 1.46 

The mechanical behaviors of LR bearings that are investigated here are: 

1. Strength degradation in shear due to heating of the lead core (LR bearings)
2. Variation in buckling load due to horizontal displacement
3. Cavitation and post-cavitation behavior due to tensile loading
4. Variation in axial stiffness due to horizontal displacement
5. Variation in shear stiffness due to axial load

The LeadRubberX element permits the user to include each of these behaviors, or a 
combination thereof, in an analysis through a set of tags. 

OpenSees does not provide option to specify modal damping. The Rayleigh damping, instead, 
is used, and the multipliers to the mass and stiffness matrices are calculated by assigning 2% 
damping to the 1st (torsion) and 6th (axial) modes. This ensures that effective damping 
corresponding to frequencies between these two modes would have an effective damping ratio 
smaller than 2%. The effect of Rayleigh damping is expected to be insignificant on the shear 
response where substantial damping is provided by energy dissipation in the lead core. The 
response in the axial direction, which is modeled as nonlinear elastic behavior, is expected to be 
more sensitive to the choice of Rayleigh damping coefficients. The coefficients, αM  and βK , 
are calculated as: 

ξωω ξα β
ω ω ω ω

= =
+ +

2 2;i j
M K

i j i j

  (8.2) 

where ωi  and ω j  are the  angular  frequencies of the vibration modes in which damping of ξ  = 
2% is assigned, which correspond to the axial and torsional mode of vibration here. The 
effective damping ratio in the thn  mode of vibration is calculated as: 

α β
ξ ω

ω
= +

2 2
M K

n n
n

  (8.3) 
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where ωn  is the angular frequency of the thn  mode. Rayleigh damping depends on the 
instantaneous stiffness and changes at each step of a nonlinear analysis. A summary of the 
estimates of the Rayleigh damping based on the initial and post-yield (or post-cavitation) 
stiffness are obtained in different modes of oscillation of isolation system for isolation periods of 
2 and 3 seconds, and are presented in Table 8-3. 

Table 8-3    Rayleigh damping ratios in the six directions of motion of the isolation system 

Number Direction 

T  = 2 sec T  = 3 sec 
Angular 

frequency ω  
(rad/sec) 

Damping ratio
ξ  (%) 

Angular 
frequency ω  

(rad/sec) 

Damping ratio
ξ  (%) 

Elastic Post-
elastic Elastic Post-

elastic Elastic Post-
elastic Elastic Post-

elastic 
1 Axial 106.7 5.4 2.0 0.6 91.1 3.6 2.0 0.6 
2 Shear1 9.9 3.1 0.5 0.9 6.6 2.1 0.4 0.9 
3 Shear2 9.9 3.1 0.5 0.9 6.6 2.1 0.4 0.9 
4 Torsion 1.4 1.4 2.0 2.0 0.9 0.9 2.0 2.0 
5 Rotation1 19.1 19.1 0.5 0.5 16.4 16.4 0.5 0.5 
6 Rotation2 19.1 19.1 0.5 0.5 16.4 16.4 0.5 0.5 

 
The set of 30 three-component ground motions selected and spectrally matched by Kumar 
(2015) to be consistent with uniform hazard response spectra (UHRS) for design-basis 
earthquake (DBE) shaking at the site of the Diablo Canyon Nuclear Generating Station are used 
for  response-history analysis (Figure 8-2). The UHRS are calculated for a return period of 
10,000 years and 5% damping. Response-history analysis is performed using these 30 sets of 
ground motions for each of the ten models at intensities of 100% DBE, 150% DBE, 167% DBE, 
and 200% DBE shaking. The intensities of 150% DBE and 167% DBE correspond to beyond 
design basis earthquake in Department of Energy (DOE) and United States Nuclear Regulatory 
Commission (USNRC) space, respectively; see Huang et al. (2009) and Huang et al. (2013). 
The mean 2% damped vertical spectrum is provided to aid later interpretation of the vertical 
response of the isolation systems. 

The results of the response-history analyses are presented in the following sections. The peak 
responses for each ground motion set are assumed to distribute lognormally with arithmetic 
mean µ , median θ , and logarithmic standard deviation σ , which are computed as: 

 ( )µ θ σ θ
= = =

 
= = = −  − 
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  (8.4) 

where n  is the total number of ground motion sets (=30), and iy  is the peak response for ith 
ground motion set. The pth percentile (e.g., 50, 90, 99) value, py , is calculated as the inverse of 
the lognormal cumulative distribution function F  per Mathworks (2014): 

 { }θ σ θ σ−= = =1( | ln , ) : ( | ln , )p p py F p y F y p   (8.5) 
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These percentiles can be calculated with the aid of normal probability table. MATLAB provides a 
command logninv to compute pth percentile values of a lognormal distribution. 

a) X-direction b) Y-direction c) Z-direction
Figure 8-2    Acceleration response spectra of ground motions 

8.3 Results of Analysis using the Simplified Isolator Model 

The simplified model of LR bearing shown in Figure 8-3, with equal axial stiffness in 
compression and tension (and independent of shear displacement), represents the state-of-the-
practice for response-history analysis of seismically isolated structures using contemporary 
software.  

a) Shear b) Axial
Figure 8-3    Simplified model of LR bearing 

The simplified model does not consider any of the five characteristics identified in Section 8.2. 
For analysis using the simplified model as implemented in LeadRubberX, all tags are set to 0. 
The results of the response-history analyses are presented in Table 8-4 through Table 8-9. The 
results of the response-history analyses of the base-isolated NPP using the advanced isolator 
model are benchmarked against those using the simplified isolator model. 

Mean and 50th, 90th and 99th percentile responses are presented in these tables, noting that the 
90th and 99th percentile responses, for beyond design basis and design basis shaking, 
respectively, are important thresholds for seismically isolated nuclear structures (Huang et al., 
2009; Huang et al., 2013). Vector sums of the shear displacements and forces are calculated at 

Force

Displacement 
 

   

 

 

 

 Fy

Qd 
Kel

Y 

Kd

𝐾𝐾𝑣𝑣0 

Axial 
force 

Axial deformation 

Tension 

Compression 



 

8-6 
 

each time step in an analysis and the peak values for a given ground motion are used to form 
the distributions of response. The forces are normalized by the total weight W on the bearing, 
which is approximately equal to 3500 kN for all of the models. 
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8.4 Results of Analysis using the Advanced Isolator Model 

The advanced isolator model considers the five characteristics of LR bearings identified in 
Section 8.2. The effect of each characteristic on the response of the isolated NPP is 
investigated. The responses distribute lognormally and the percentiles are calculated from the 
estimated distribution.  

8.4.1 Strength degradation in shear due to heating of the lead core 

The percentiles of peak horizontal displacement and shear force, with and without consideration 
of heating, are presented in Figure 8-4 and Figure 8-5, respectively. The responses of models 
T2Q3 and T3Q3 are not presented because the 90th percentile horizontal displacement at 167% 
DBE shaking is greater than 1000 mm, and larger diameter lead cores would be used to reduce 
these displacements. Percentile responses for models T2Q15 and T3Q15 are summarized in 
Appendix B.1 and not presented here. 

a) T2Q6 b) T2Q9 c) T2Q12

d) T3Q6 e) T3Q9 f) T3Q12
Figure 8-4    Percentiles of horizontal displacement for LR bearing models 
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a) T2Q6 b) T2Q9 c) T2Q12

d) T3Q6 e) T3Q9 f) T3Q12
Figure 8-5    Percentiles of horizontal shear force for LR bearing models 
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The effect of heating of the lead core on median peak horizontal displacements and shear 
forces for 100% DBE shaking is negligible at the mean, and 50th, 90th and 99th percentiles. The 
effect of heating increases with the intensity of earthquake shaking. For a given /dQ W , the 
effect of heating decreases with an increase in the isolation period T . For the same period, the 
effect of heating decreases with increasing /dQ W . For those isolation systems with the highest 

/dQ W (e.g., T2Q15, T3Q15), the shear forces decrease as a result of heating of the lead core. 

The characteristic shear strength of a LR bearing varies substantially over the duration of 
earthquake shaking due to heating of the lead core. Of the ten isolation systems, T2Q6 and 
T3Q6 show the greatest reduction in characteristic shear strength. Plots of the ratio of the 
minimum characteristic shear strength to the initial strength, for each ground motion, and three 
intensities of shaking, are presented in Figure 8-6. A substantial reduction is observed in the 
characteristic shear strength with the average minimum value for the thirty ground motions 
falling below 50% of the initial value at 150% DBE shaking for isolation system T2Q6. Figure 8-7 
plots the maximum temperature rise for each ground motion at three intensities of shaking. The 
maximum change in characteristic strength is observed for ground motions 5 and 30, for 
isolation systems T2Q6 and T3Q6, respectively. The temperature-rise time series for these two 
ground motions are presented in Figure 8-8 noting that the strong motion duration for the 
horizontal components of ground motions 5 and 30 are 50 seconds. 

 

  

a) T2Q6 b) T3Q6 
Figure 8-6    Ratio of minimum characteristic shear strength to initial strength 
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a) T2Q6 b) T3Q6
Figure 8-7    Maximum temperature rise in the lead core 

a) T2Q6, ground motion 5 b) T3Q6, ground motion 30
Figure 8-8    Histories of temperature increase in the lead cores 
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8.4.2 Variation in buckling load due to horizontal displacement 

The numerical models of elastomeric bearings in contemporary software programs include a 
linear spring in the vertical direction. Buckling is not modeled. Three models of elastomeric 
bearings in compression can be modeled in LeadRubberX: 1) linear, 2) bilinear with a constant 
buckling load 0crP , and 3) bilinear with a buckling load that is dependent on the co-existing 
horizontal displacement, crP . These three models are used for response-history analysis to 
identify the number of ground motions that would trigger buckling at the four intensities of 
shaking. For the third model, the buckling load calculation suggested by Warn et al. (2007) is: 

 

 ≥= 
 <


0

0

0.2

0.2 0.2

r r
cr

cr
r

cr

A AP
A AP

AP
A

  (8.6) 

where 0crP  is the buckling load at zero displacement, and crP  is the buckling load at overlapping 
area rA  of a bearing with an initial bonded rubber area of A .  

Plots of the axial load ratio, which is the ratio of the minimum critical buckling load of a bearing 
over the duration of a ground motion, mincrP , as predicted by Equation (8.6) to the buckling load 
at zero displacement, 0crP , are presented in Figure 8-9. The buckling load varies substantially 
over the duration of some of the earthquake ground motions. A bearing will never achieve its 
critical buckling load at zero horizontal displacement under three components of input as it will 
fail at a lower axial load at a nonzero horizontal displacement. For the constant buckling load 
model, the ratio is 1.0 for the duration of a ground motion. The use of a buckling load calculated 
at zero horizontal displacement might provide misleading expectations of the performance of 
isolators and an isolation system in design basis and more intense earthquake shaking.  

The ratio of the instantaneous axial load to the instantaneous buckling load is computed at each 
time step in each response-history analysis, and the maximum value is recorded. If the ratio 
exceeds unity, the isolator has buckled. Plots of the maximum value of the ratio for each ground 
motion, at three intensities of shaking, are presented in Figure 8-10 and Figure 8-11 for the 
constant and displacement-dependent buckling load models, respectively, for T2Q6 and T3Q6. 

The numbers of ground motions for which buckling is predicted using the constant and the 
displacement-dependent buckling load models are summarized in Table 8-10 and Table 8-11, 
respectively. The use of a buckling load calculated at zero displacement (i.e., 0crP ) may lead to 
substantially non-conservative judgments regarding performance of isolation systems, noting 
however that buckling of individual isolators in extreme shaking may not compromise the 
performance of an isolation system composed of 100s of isolators. 
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a) T2Q6 b) T3Q6
Figure 8-9    Normalized axial load ratios 

a) T2Q6 b) T3Q6

Figure 8-10   Demand-capacity ratios for the constant buckling load model, 0crP
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a) T2Q6 b) T3Q6 
Figure 8-11   Demand-capacity ratios for the displacement-dependent buckling load model, crP  

 
Table 8-10   Number of ground motions (of 30) triggering buckling failures; using 0crP  

Intensity  
(% DBE) 

Isolation system 
T2Q3 T2Q6 T2Q9 T2Q12 T2Q15 T3Q3 T3Q6 T3Q9 T3Q12 T3Q15 

100 0 0 0 0 0 0 0 0 0 0 
150 0 0 0 0 0 0 0 0 0 0 
167 0 0 0 0 0 0 0 0 0 0 
200 0 0 0 0 0 0 0 0 0 0 

 

Table 8-11   Number of ground motions (of 30) triggering buckling failures; using crP  

Intensity 
(% DBE) 

Isolation system 
T2Q3 T2Q6 T2Q9 T2Q12 T2Q15 T3Q3 T3Q6 T3Q9 T3Q12 T3Q15 

100 0 0 0 0 0 7 0 0 0 0 
150 0 0 0 0 0 24 2 1 0 0 
167 0 0 0 0 0 30 12 3 1 1 
200 5 1 0 0 0 30 20 17 10 4 

 
8.4.3 Cavitation and post-cavitation behavior 

A nonlinear elastic model is used to capture the behavior of elastomeric bearings in cyclic 
tension. The number of ground motions that produce cavitation damage at each intensity level 
are identified in Table 8-12. Nearly 50% of the ground motions result in cavitation at 100% DBE 
shaking for the 2 sec isolation systems, and all or nearly all of the ground motions result in 
cavitation at 150% DBE shaking for the 2 and 3 sec isolation systems. These high fractions are 
due to the intense vertical shaking at the Diablo Canyon site. The period of vibration in the axial 
direction for the 2 and 3 sec isolation systems are 0.06 and 0.07 sec, respectively, and the 2% 
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damped vertical spectral acceleration at these periods exceed 2.2g at 100% DBE shaking (see 
Figure 9-6c). (Note that the vertical DBE spectrum is for the surface free field and not a 
foundation input response spectrum: accounting for input at depth and incoherence should 
substantially reduce the vertical shaking effects.) 

Table 8-12   Number of ground motions (of 30) that cavitate isolators 
Intensity 
(% DBE) 

Isolation system 
T2Q3 T2Q6 T2Q9 T2Q12 T2Q15 T3Q3 T3Q6 T3Q9 T3Q12 T3Q15 

100 12 14 14 16 16 27 27 27 27 27 
150 27 27 27 27 28 30 30 30 30 30 
167 28 28 28 28 28 30 30 30 30 30 
200 30 30 30 29 29 30 30 30 30 30 

8.4.4 Variation in axial stiffness due to horizontal displacement 

The horizontal and vertical responses of an elastomeric bearing are coupled through the axial 
stiffness that in turn depends on the co-existing horizontal displacement. The expression for the 
elastic shear stiffness of a LR bearing is: 

π π

−−        = + = +              

11 22

02 2
3 31 1c h h

v v
r g

AE u uK K
T r r

  (8.7) 

where cE  is the compression modulus (Constantinou et al., 2007); hu  is the horizontal 
displacement; gr  is the radius of gyration of the bonded rubber area; and 0vK  is the axial 
compressive stiffness at zero lateral displacement. 

Axial stiffness (and buckling load) decreases with increasing horizontal displacement. Figure 
8-12 shows the response of a LR bearing (LR5 in Warn (2006)) subject to a vertical acceleration
history (in m2/s) of π2.6sin(20 )t  in the vertical direction. Two models for axial stiffness are
considered here: 1) axial stiffness per Equation (8.7), and 2) axial stiffness per Equation (8.7)
but capped by buckling and cavitation. Results are presented in Figure 8-12a and Figure 8-12b,
respectively, for the three values of horizontal displacement, normalized by the outer diameter
of the bearing, oD , equal to 152 mm. The axial response of this bearing is substantially
impacted by considerations of co-existing horizontal displacement, noting that the simplified
model would predict response given by the red ( /h ou D  = 0) line in Figure 8-12a.

To understand the influence of co-existing horizontal displacement on the vertical response of 
an isolation system, analyses are performed for two representations of axial stiffness: 1) equal 
stiffness in compression and tension, calculated at zero horizontal displacement: 0vK  in 
Equation (8.7), and 2) equal axial stiffness in compression and tension, but varying as a function 
of horizontal displacement: vK  in Equation (8.7). Cavitation and buckling are not considered. 
Results for a sample isolation system, T3Q6, are presented in Figure 8-13. The influence is 
negligible for 100% DBE shaking but considerable for beyond design basis shaking, with 
changes in axial displacement being greater than those in axial force. Results for the other 
isolation systems follow a similar trend. 
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a) Axial stiffness variation per
Equation (8.7) 

b) Axial stiffness + buckling + cavitation per
Figure 3-7 

Figure 8-12   Axial response of bearing LR5 in Warn (2006) subject to harmonic vertical 
excitation 

The variation in the stiffness ratio, which is the ratio of the minimum axial stiffness over the 
duration of a ground motion to the axial compressive stiffness at zero displacement, is shown in 
Figure 8-14a. The history of the ratio of the instantaneous axial compressive stiffness to the 
initial axial compressive stiffness for T3Q6 and ground motion 30 is shown in Figure 8-14b. The 
minimum axial compressive stiffness drops below 40% of the initial stiffness at 150+% DBE 
shaking. Although the variation in axial compressive stiffness has a notable effect on axial 
response, its effect on horizontal response is negligible here because the axial force varies at a 
much higher frequency than the isolation-system response in the horizontal direction2.  

8.4.5 Variation in shear stiffness due to axial load 

The shear stiffness of an elastomeric bearing depends on the instantaneous axial load per: 

      
   = − = −   
         

2 2

01 1H H
r cr cr

GA P PK K
T P P

 (8.8) 

where P  is the instantaneous axial load;  crP  is the buckling load, and  0HK  is the horizontal 
stiffness at zero axial load, and other variables were defined previously. 

Two values for the buckling load can be used in Equation (8.8): 1) buckling load at zero lateral 
displacement, 0crP , and 2) buckling load, crP , per Equation (8.6). Three models of the LR 
bearing are used to investigate the choice of shear stiffness model: 1) shear stiffness 
independent of axial load, 2) axial load dependence of shear stiffness using crP = 0crP , and 3) 
axial load dependence of shear stiffness using the instantaneous buckling load, crP . 

2 The effect of changing axial compressive stiffness on shear response may be important if rocking-
induced axial forces are significant because the rocking frequency may be of the order of the isolation-
system frequency 
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a) Tensile displacement b) Compressive displacement

c) Tensile force d) Compressive force
Figure 8-13   Influence of axial stiffness model on the vertical response of T3Q6 

a) Minimum axial stiffness b) Instantaneous axial stiffness for GM30
Figure 8-14   Effect of the variation of axial compressive stiffness on T3Q6 
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 Figure 8-15a and Figure 8-15b present the results of response-history analysis of model T2Q6 
using one ground motion from the set of 30, scaled to 167% DBE shaking. Models 1, 2, and 3 in 
the legend are: 1) shear stiffness 0HK  independent of axial load, 2) shear stiffness  dependent 
on axial load using HK  for the buckling load in Equation (8.6), and 3) shear stiffness HK  
dependent on axial load using crP  for the buckling load in Equation (8.6). The peak horizontal 
displacement is not affected by the choice of the model. The fluctuations in the hysteresis loops 
of models 2 and 3 occur at time instants near peak displacement but do not increase the 
shearing forces transmitted to the superstructure. Figure 8-15b presents fluctuations in the 
shear stiffness, calculated as the shear stiffness of models 2 and 3 normalized by the shear 
stiffness of model 1, which is 3.52 MN/m. 

The outcomes of the response-history analysis of the ten base-isolated NPP models for the 
other ground motion sets, at all four intensities of shaking, are virtually identical to those seen in 
Figure 8-15, namely, that ignoring the effect of axial load on horizontal stiffness does not 
compromise the calculation of peak horizontal displacements or transmitted shear force to the 
superstructure. 
 

 

  
a) Shear response b) Variation in normalized shear stiffness 

Figure 8-15   Response of T2Q6 to ground motion 1 at 167% DBE 
 
8.4.6 Cumulative effects 

The responses of the ten models considering all five characteristics listed in Section 8.2 are 
considered next.  The ratios of the percentiles of the peak shear displacement for the simplified 
and advanced base-isolated NPP models, considered separately, at different intensities of 
shaking, are presented in Figure 8-16, where D  is the displacement and its subscript denotes 
the intensity and the percentile of the peak shear displacement. Figure 8-17 presents horizontal 
displacements obtained using the advanced models normalized by the median DBE horizontal 
displacement calculated using the simplified model. The plots in the figures can be used to 
estimate horizontal displacements at 150+% DBE shaking for a range of isolation systems by 
calculating the median DBE horizontal displacement using the simplified isolator model. For 
example, the DBE median horizontal displacement obtained using the simplified model can be 
increased by the ratios presented in Figure 8-17 to address the five intra-earthquake changes in 
the mechanical properties of LR bearings enumerated in Section 8.2. 
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Figure 8-16   Ratios of percentiles of peak horizontal displacement to the median DBE 
displacement; simplified and advanced models 

Figure 8-17   Ratios of the percentiles of peak horizontal displacement calculated using the 
advanced model to the median DBE displacement calculated using the simplified 
model 
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The numbers of ground motions for which cavitation and buckling are predicted are identified in 
Table 8-13 and Table 8-14, respectively, noting that simplified model of Section 8.3 cannot 
account for either behavior. The use of a displacement-dependent model for the calculation of 
buckling load predicts instabilities in many cases for intensities greater than DBE. Flexible 
(longer period) isolation systems with low strength (e.g., T3Q3) are more vulnerable to buckling. 
The results of response-history analyses for which buckling is predicted are not included in the 
calculation of the percentiles presented in Table 8-15 through Table 8-17. Only mean values are 
reported in shaded cells for these shaking intensities at which 15 or more (of 30) ground 
motions result in isolator buckling.  

Table 8-13   Number of ground motion sets (of 30) for which cavitation is predicted; advanced 
model 

Intensity  
(% DBE) 

Isolation system 
T2Q3 T2Q6 T2Q9 T2Q12 T2Q15 T3Q3 T3Q6 T3Q9 T3Q12 T3Q15 

100 15 15 15 16 14 29 28 29 29 29 
150 29 29 28 28 28 30 30 30 30 30 
167 29 29 29 28 28 30 30 30 30 30 
200 30 30 30 30 30 30 30 30 30 30 

 
Table 8-14   Number of ground motion sets (of 30) for which buckling is predicted; advanced 

model 
Intensity  
(% DBE) 

Isolation system 
T2Q3 T2Q6 T2Q9 T2Q12 T2Q15 T3Q3 T3Q6 T3Q9 T3Q12 T3Q15 

100 0 0 0 0 0 0 0 0 0 0 
150 0 0 0 0 0 15 7 2 1 0 
167 3 0 0 0 0 24 19 10 8 8 
200 12 8 2 2 0 29 27 22 24 19 

 
Peak horizontal displacements are summarized in Table 8-15. The 90th percentile horizontal 
strain in the LR bearings at 167% DBE shaking are smaller than 300% for all isolation systems 
except those with low strength. The peak shearing and compressive forces normalized by the 
gravity load are presented in Table 8-16 and Table 8-17, respectively. Stiff (shorter period) 
isolation system transmits greater shear forces to the superstructure, with the mean values for 
T2Q3 and T2Q6 exceeding 100% at 200% DBE shaking. For the normalized compressive 
forces in Table 8-17, the increment above 100 represents the effect of the vertical ground 
motion. The high intensity of the vertical shaking at the site of the Diablo Canyon Nuclear 
Generating Station is reflected in these compressive forces, with mean values at 200% DBE 
above 600% for all models. This value is greater than that calculated by summing gravity and 
earthquake forces calculated using the peak spectral ordinate of the 2% damped vertical 
spectrum of  Figure 9-6c (5.4W  = W  + 2*2.2W ) because the vertical damping ratio falls 
below 2%. (The Rayleigh damping coefficients were selected by assigning 2% damping to the 
vertical frequency calculated using axial stiffness at zero horizontal displacement: the decrease 
in the vertical frequency due to a reduction in axial stiffness associated with horizontal 
displacement results in a smaller damping ratio than 2%.)  

Peak tensile forces normalized by the initial cavitation force, cF , are presented in Table 8-18. 
Mean values are reported because the data did not fit a lognormal distribution. The mean peak 
tensile forces exceed the cavitation force at 150%DBE shaking due to the intense vertical 
shaking at the Diablo Canyon site.   
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8.5 Summary and Conclusions 

Ten models of a base-isolated NPP are analyzed using thirty sets of ground motions that are 
selected and scaled to be consistent with uniform hazard response spectra for a return period of 
10,000 years (or DBE shaking) at the site of the Diablo Canyon Nuclear Generating Station.  A 
two-node macro model is used for response- history analysis. Two types of LR bearing models 
are analyzed. The first is the simplified model that is widely used and implemented in 
contemporary software programs, whereas the second is an advanced model that addresses 
five mechanical characteristics of elastomeric bearings under extreme loading:  

1. Strength degradation in shear due to heating of the lead core (LR bearings only)
2. Variation in buckling load due to horizontal displacement
3. Cavitation and post-cavitation behavior due to tensile loading
4. Variation in axial stiffness due to horizontal displacement
5. Variation in shear stiffness due to axial load

The advanced model, which was verified and validated per ASME best practices, is 
implemented as user element LeadRubberX in OpenSees. The influence of each characteristic 
and of the combination of the five characteristics are investigated and results are compared with 
those obtained using the simplified model. The main conclusions of the study, which are specific 
to a region of moderate to high seismic hazard, are: 

1. Heating of the lead core has a relatively small effect (< 10%) on horizontal DBE shear
displacements but the influence increases at higher intensities of shaking.

2. Peak horizontal displacement is more sensitive to the heating of lead cores than peak
shear force.

3. For a given isolation period, the effect of lead core heating decreases with an increase in
the ratio of characteristic strength to weight, whereas for a given value of the ratio, the
effect decreases with an increase in isolation period.

4. The characteristic strength of a LR bearing may degrade substantially during extreme
earthquake shaking, with values falling below half the initial value for 150+% DBE
shaking.

5. The temperature in a lead core may rise by 100+ °C for 150+% DBE shaking.
6. The axial response of a NPP base-isolated with LR bearings is not affected by changes

in the mechanical properties of the lead core due to heating.
7. The buckling load of a LR bearing varies substantially during earthquake shaking. The

displacement-dependent model for buckling load predicts failure for many more ground
motions than the constant buckling load model, and is recommended for use in practice.

8. No effect of the variation in axial compression stiffness with lateral displacement is
observed on the axial response at DBE shaking. A moderate effect is observed at higher
intensities of shaking.

9. The horizontal (shear) force response of a base-isolated NPP is not affected by
variations in axial compressive stiffness due to lateral displacements.

10. Of the five characteristics of LR bearings discussed in Section 8.2, 1) strength
degradation due to heating of the lead core, 2) variation in buckling load due to
horizontal displacement, and 3) variation in axial stiffness due to horizontal
displacement, affect the responses of a base-isolated NPP most significantly.
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9 RESPONSE OF A LUMPED-MASS MODEL OF A BASE-ISOLATED 
NUCLEAR POWER PLANT 

9.1 Introduction 

The response of a base-isolated nuclear power plant (NPP) structure, calculated using a two-
node macro model for the isolation system, was discussed in Chapter 8. A detailed stick model 
of a NPP nuclear island is presented in this chapter. The superstructure is represented by an 
equivalent lumped-mass model, supported by a rigid basemat. The entire nuclear island (NPP 
and basemat) is isolated using lead rubber (LR) bearings. Seismic isolation systems of two 
periods and three values of /dQ W   (supported weight to strength ratios) are prepared, for a 
total of six models. Response-history analysis of the six models is performed. Ground motions 
are selected and scaled to be consistent with response spectra for design basis and beyond 
design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. 
Two mathematical models of LR bearings are used: 1) simplified, and 2) advanced. The 
simplified model represents the current state of modeling of LR bearings in contemporary 
structural analysis programs, whereas the advanced model includes those five characteristics of 
LR bearings that are expected to influence the response of a base-isolated NPP at higher 
intensities of earthquake shaking. 

The stick model of the NPP presented in EPRI (2007) is described. Numerical models of the 
NPP are developed in OpenSees and SAP2000 based on the information presented in EPRI 
(2007). The OpenSees model is verified using results of modal analysis of the SAP2000 model 
presented in EPRI (2007). 

9.2 Fixed-base Model of a Nuclear Power Plant 

The details of the stick model of the sample Nuclear Power Plant (NPP) is reproduced here from 
EPRI (2007). The three-dimensional model of NPP was simplified to three concentric lumped-
mass stick models of the Coupled Auxiliary and Shield Building (ASB), the Steel Containment 
Vessel (SCV), and the Containment Internal Structure (CIS). EPRI (2007) provides the 
equivalent nodal and element properties of the stick models created in SAP2000 (CSI, 2007). A 
schematic of the stick models is presented in Figure 9-1. The model presented in EPRI (2007) is 
a modified version of the original model in Orr (2003). 

The layout of the reactor model is presented in Appendix C.1. The geometric and material 
properties of the stick models are reproduced in Appendix C.1. EPRI (2007) provides results of 
modal analysis of the fixed-based stick models performed in SAP2000 as ASB, SCV, and CIS. 

The properties of the stick models presented in EPRI (2007) were used to create and verify the 
stick models in OpenSees and SAP2000. The properties of the stick model presented in EPRI 
(2007) uses the following convention: 

1. The nodal properties are specified in global coordinates
2. The element and sectional properties are specified in local coordinates
3. The North-South and East-West directions are the X and Y directions, respectively
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Figure 9-1    Stick model of the nuclear power plant (EPRI, 2007) 
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The stick models in SAP2000 created here adopt the same axes convention as EPRI (2007). 
However, the models in OpenSees use a different sign convention, as shown in Figure 9-2, 
which is the default axes convention used by OpenSees. The development of the SAP2000 and 
the OpenSees models are described in the following sections. 

Figure 9-2 Orientation of the coordinate axes 

9.2.1 Modal analysis 

9.2.1.1 SAP2000 model 

The fixed-base models of the ASB, CIS, and SCV were created in SAP2000. Modal analyses of 
the fixed-base models of ASB, SCV, and CIS were performed and the results are presented in 
Appendix C.3. 

9.2.1.2 OpenSees model 

The OpenSees model uses a different coordinate system than the SAP2000 model. The +Y and 
+Z axes in OpenSees correspond to the +Z and -Y axes in SAP2000, respectively, as shown in
Figure 9-2. The material and geometric properties of the stick model provided in EPRI (2007)
were transferred to the coordinate axes used for the OpenSees model. A linear geometric
transformation is used in OpenSees, which is shown in Figure 9-3. This geometric
transformation ensures the same orientation of local coordinate axes for an element’s section in
OpenSees and SAP2000. OpenSees provides an option to orient local axes in an element
through the vector Vecxz . The local x  axis is always defined by the two element nodes. A
user must specify the Vecxz  such that it not parallel to the local x  axis. The local y  axis is
obtained as the cross product of x  and Vecxz . The local z  axis is obtained as the cross
product of y  and Vecxz  per the right-hand rule. A linear geometric transformation is assigned
in OpenSees by specifying


X , 


Y , and 


Z  of Vecxz . The orientation of the local axes in 

OpenSees for horizontal and vertical elements is shown in Figure 9-3. The vector Vecxz (0, 0, -
1) for the horizontal and vertical elements were chosen such that local axes in OpenSees have
the same orientation as the default orientation of the local axes in SAP2000.

The forceBeamColumn element in OpenSees was used to model the elements connecting two 
nodes of the stick model. The element rigidLink was used for rigid components. Eigen analysis 
was performed to obtain modal periods and frequencies. The frequencies and periods of the 
first twenty modes of the stick models in OpenSees are presented in Table 9-1. 
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Figure 9-3    Orientation of local axes in OpenSees 
 
Table 9-1    Modal properties of the stick models in OpenSees 

Mode ASB SCV CIS 
Period (sec) Freq. (Hz) Period (sec) Freq. (Hz) Period (sec) Freq. (Hz) 

1 0.356 2.808 0.274 3.654 0.081 12.340 
2 0.330 3.032 0.180 5.548 0.078 12.860 
3 0.203 4.923 0.158 6.323 0.066 15.172 
4 0.159 6.291 0.157 6.371 0.062 16.083 
5 0.159 6.308 0.104 9.628 0.058 17.334 
6 0.142 7.043 0.083 12.048 0.050 19.865 
7 0.118 8.459 0.062 16.216 0.049 20.509 
8 0.117 8.531 0.053 18.910 0.037 26.898 
9 0.104 9.610 0.053 18.974 0.035 28.586 
10 0.080 12.542 0.038 26.652 0.032 31.157 
11 0.074 13.531 0.032 31.381 0.031 31.890 
12 0.072 13.918 0.031 31.979 0.031 32.277 
13 0.067 14.824 0.028 35.821 0.029 34.664 
14 0.057 17.515 0.027 36.515 0.028 36.198 
15 0.052 19.365 0.027 36.560 0.027 36.422 
16 0.051 19.420 0.023 44.318 0.027 37.560 
17 0.051 19.633 0.019 52.361 0.025 39.606 
18 0.045 22.389 0.019 53.014 0.025 40.063 
19 0.043 23.210 0.017 60.243 0.022 44.713 
20 0.039 25.508 0.016 61.638 0.019 53.071 
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9.2.1.3 Verification 

The results of the modal analyses of the stick models created in OpenSees and SAP2000, and 
the SAP2000 results of EPRI (2007) are presented in Table 9-2, Table 9-3, and Table 9-4. A 
very good agreement between modal periods and frequencies is achieved. 

Table 9-2    Modal properties of Auxiliary Shield Building (ASB) 

Mode Axis Direction Period (sec) Frequency (Hz) 
OpenSees SAP2000 OpenSees SAP2000 EPRI OpenSees SAP2000 EPRI 

2 X X Horizontal 0.330 0.323 0.312 3.032 3.097 3.2 
5 X X Horizontal 0.159 0.136 - 6.308 7.336 - 
10 X X Horizontal 0.080 0.070 - 12.542 14.197 - 
1 Z Y Horizontal 0.356 0.362 0.333 2.808 2.762 3.0 
4 Z Y Horizontal 0.159 0.142 - 6.291 7.026 - 
9 Z Y Horizontal 0.104 0.072 - 9.610 13.938 - 
6 Y Z Vertical 0.142 0.093 0.101 7.043 10.704 9.9 
16 Y Z Vertical 0.051 0.043 - 19.420 23.251 - 

Table 9-3    Modal properties of Steel Containment Vessel (SCV) 

Mode Axis Direction Period (sec) Frequency (Hz) 
OpenSees SAP2000 OpenSees SAP2000 EPRI OpenSees SAP2000 EPRI 

2 X X Horizontal 0.180 0.180 0.181 5.548 5.548 5.5 
5 X X Horizontal 0.104 0.104 0.105 9.628 9.628 9.5 
9 X X Horizontal 0.053 0.053 0.101 18.973 18.973 9.9 
3 Z Y Horizontal 0.158 0.158 0.164 6.322 6.325 6.10 
1 Z Y Horizontal 0.274 0.275 - 3.654 3.632 - 
8 Z Y Horizontal 0.053 0.053 - 18.910 18.910 - 
7 Y Z Vertical 0.062 0.062 0.063 16.216 16.216 16.0 
10 Y Z Vertical 0.038 0.038 - 26.652 26.652 - 

Table 9-4 Modal properties of Containment Internal Structure (CIS) 

Mode Axis Direction Period (sec) Frequency (Hz) 
OpenSees SAP2000 OpenSees SAP2000 EPRI OpenSees SAP2000 EPRI 

2 X X Horizontal 0.078 0.079 0.075 12.860 12.608 13.3 
6 X X Horizontal 0.050 0.048 0.050 19.865 20.648 20.1 
9 X X Horizontal 0.035 0.036 0.035 28.586 27.866 28.9 
1 Z Y Horizontal 0.081 0.086 0.083 12.340 11.682 12.0 
4 Z Y Horizontal 0.062 0.060 0.067 16.083 16.538 14.9 
8 Z Y Horizontal 0.037 0.039 0.057 26.898 25.879 17.5 
11 Y Z Vertical 0.031 0.025 0.024 31.890 40.062 41.4 
14 Y Z Vertical 0.028 0.015 - 36.198 65.950 - 
18 Y Z Vertical 0.025 0.008 - 40.063 129.955 -
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9.3 Base-isolated Model of the Nuclear Power Plant 

The stick model of the NPP is isolated through a common basemat slab on LR bearings, as 
shown in Figure 9-4. The dimensions of the concrete basemat slab are assumed to be 
100m×60m×2.5m and the mat is assumed to be rigid in its plane. A symmetric layout of 
isolators is used beneath the basemat with the distance between the centers of adjacent 
bearings equal to 5 m, which requires a total of  bN  = 273 isolators, as shown in Figure 9-5. 
The spacing between the bearings is in part dictated by the requirement to provide adequate 
space for maneouvering of fork lifts to perform maintenace and replacement of bearings. 

Six models of base-isolated NPPs are created: two isolation time periods (T  = 2, 3 seconds) 
and five ratios of characteristic strength to supported weight ( /dQ W  = 0.06, 0.12, and 0.18). 
The models are denoted by TxQy , where x  identifies the value of T  and y  identifies the 
percentage of /dQ W . Table 9-5 summarizes the isolator properties assumed for analysis. 

 

 
Figure 9-4    Stick model of a base-isolated NPP in OpenSees 
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Figure 9-5    Plan view of the layout of isolated basemat showing (node, bearing) pairs 

Table 9-5    Geometrical and mechanical properties of elastomeric bearings 
Property Notation (units) Value 

Mass of the superstructure sM  (kg) 146284555 
Number of LR bearings bN 273 

Single rubber layer thickness rt  (mm) 10 
Number of rubber layers n 31 
Total rubber thickness rT  (mm) 310 
Steel shim thickness st  (mm) 4.75 

Outer diameter oD   (mm) Varies1 
Lead core diameter iD   (mm) Varies1 

Cover thickness ct   (mm) 19 
Yield stress of lead σL  (MPa) 8.5 

Static pressure due to gravity loads staticp   (MPa) 3.0 
Shear modulus G   (MPa) Varies2 

1, 2: Calculated for each model 

A static (gravity) pressure on the bearing of 3 MPa is used for all analyses. The gravity weight 
W  on a bearing is calculated by dividing the total weight of the superstructure ( ×sM g ) by the 
number of bearings, bN , in the isolation system. The weight W  is divided by g  to obtain the 
equivalent mass M  in the three translational directions at the top node (node 2) of the bearings. 
The diameter of the lead core is back calculated from /dQ W , assuming an initial yield stress of 

(2021, 4021) (2001, 4001) (2011, 4011) 

(2127, 4137) (2137, 4137) 

(2253, 4253) (2263, 4263) 

(2147, 4147) 

(2273, 4273) 
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8.5 MPa. The bonded rubber area (and hence the outer diamter) is calculated by dividing the 
gravity weight W  on the bearing by the static pressure staticp . The effective shear modulus is 
calculated from the isolation time period T  of the model. The geometric and mechanical 
properties of the LR bearings are computed from the given values of  /dQ W  and T  as:   

 
σ π

×
= = =

( / ); ; 4 ;s d L
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AT

  (9.3) 

where LA  is the area of the lead core; bA  is the bonded rubber area, ct  is the rubber cover 
thickness; and all other variables are defined previously. The geometric and material properties 
of the six LR bearings are summarized in Table 9-6. 

Table 9-6    Geometric and material properties of LR bearing isolation system models 
Property Notation (units) T2Q6 T2Q12 T2Q18 T3Q6 T3Q12 T3Q18 

Lead core diameter iD  (mm) 217 277 310 172 228 262 
Outer diameter oD  (mm) 1494 1494 1494 1494 1494 1494 
Shear modulus G   (MPa) 0.93 0.94 0.95 0.41 0.41 0.42 

Horizontal stiffness 0HK  (MN/m) 5.29 5.29 5.29 2.35 2.35 2.35 
Vertical stiffness 0vK  (MN/m) 6623 6506 6431 5272 5175 5109 

Buckling load 0crP  (MN) 130 130 130 77 77 77 
Cavitation force cF  (MN) 4.92 4.92 4.92 2.19 2.19 2.19 

 
The parameters of the tensile model (see Chapter 3), k , a , and φmax  are set equal to 20, 1.0, 
and 0.75, respectively, for all models. A sensitivity analyses was performed in Section 5.6.2, 
which showed that the tensile response of an elastomeric bearing is not sensitive to either a  or 
φmax , and the values a  = 1.0 and φmax  = 0.75 recover the results of experiments. For the large 
diameter bearings considered here, a very sharp reduction in the tensile stiffness following 
cavitation is expected, which is captured by k  = 20. 

9.4 Response-history Analysis 

The effect of five characteristics of LR bearings on the response of base-isolated NPP are 
investigated: 

1. Strength degradation in shear due to heating of the lead core (LR bearings) 
2. Variation in buckling load due to horizontal displacement 
3. Cavitation and post-cavitation behavior due to tensile loading 
4. Variation in axial stiffness due to horizontal displacement 
5. Variation in shear stiffness due to axial load 
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The LeadRubberX element permits the user to include each of these behaviors, or a 
combination thereof, in an analysis through a set of tags. OpenSees does not provide an option 
for modal damping; Rayleigh damping is used instead, and the multipliers to the mass and 
stiffness matrices are calculated by assigning 2% damping to the 1st (torsion) and 6th (axial) 
modes.  

The set of 30 three-component ground motions selected and spectrally matched by Kumar 
(2015) to be consistent with uniform hazard response spectra (UHRS) for design basis 
earthquake (DBE) shaking at the site of the Diablo Canyon Nuclear Generating Station are used 
for  response-history analysis (Figure 9-6). The UHRS are calculated for a return period of 
10,000 years and 5% damping.  

a) X-direction b) Y-direction c) Z-direction
Figure 9-6    Acceleration response spectra of ground motions 

Response-history analysis is performed using these 30 sets of ground motions for each of the 
ten models at intensities of 50% DBE, 100% DBE, 150% DBE, and 200% DBE shaking. The 
intensity of 150% DBE corresponds to beyond design basis earthquake in Department of 
Energy (DOE) space (see Huang et al. (2009) and Huang et al. (2013)). The intensity of 50% 
DBE is representative of low and moderate seismic hazard at Central and East United States 
(CEUS) sites. The mean 2% damped vertical spectrum is provided to aid later interpretation of 
the vertical response of the isolation systems. 

The results of the response-history analyses are presented in the following sections. The force 
and displacement responses of LR bearings are monitored at the center and the four corners of 
the basemat. The acceleration, velocity and displacement response of the nodes shown with 
solid circles in Figure 9-4 are monitored. 

The peak responses for each ground motion set are assumed to distribute lognormally with 
arithmetic mean µ , median θ , and logarithmic standard deviation σ , which are computed as: 

( )µ θ σ θ
= = =

 
= = = −  − 

∑ ∑ ∑ 2

1 1 1

1 1 1exp ln ln ln
1

n n n

i i i
i i i

y y y
n n n

  (9.4) 

where n  is the total number of ground motion sets (=30), and iy  is the peak response for ith 
ground motion set.  
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The pth percentile (e.g., 50, 90, 99) value, py , is calculated as the inverse of the lognormal 
cumulative distribution function F  per Mathworks (2014): 

 { }θ σ θ σ−= = =1( | ln , ) : ( | ln , )p p py F p y F y p   (9.5) 

These percentiles can be calculated with the aid of normal probability table. MATLAB provides a 
command logninv to compute pth percentile values of a lognormal distribution. 

9.5 Results of Analysis using the Simplified Isolator Model 

The simplified model does not consider any of the five characteristics identified in Section 9.4. 
For analysis using the simplified model, all tags are set to 0 in LeadRubberX. The peak 
horizontal, compressive and tensile displacements of the bearings at the center (4137) and 
below the four corners (4001, 4021, 4253, and 4273) of the isolated basemat are presented in 
Table 9-7 for model T2Q6. In this table, cu  and tu  are the compressive and tensile 
deformations, hu  and εh  are the vector sum of deformations and strains, respectively, along the 
two orthogonal horizontal axes, and oD  is the bonded rubber diameter of the LR bearing. The 
rigid diaphragm constraint assigned to the basemat ensures that the top node of each bearing 
connected to the basemat move as if in a rigid plane along the horizontal direction. The peak 
tensile and compressive deformations in the outer bearings are greater than those near the 
center of the isolation system due to the rocking motion of the superstructure. The compressive 
deformation in the bearings due to gravity load is approximately 0.8 mm.  

The rotations of the superstructure at the basemat level are summarized in Table 9-8, where 
θmax

z  is the mean peak torsion about the vertical z  axis, and φmax
x  and φmax

y are the mean 
rotations about horizontal x  and y , respectively, for the 30 ground motion sets. Angles are 
calculated by the inverse sine of the peak differential displacements between nodes at the 
opposite corners of the basemat divided by the distance between them. Although these values 
are small, they result in finite relative horizontal and vertical displacements over the plan 
dimension of the basemat.  

The mean peak zero-period and spectral accelerations in the three orthogonal directions, at the 
center of basemat, for the 30 ground motion sets are presented in Table 9-9 and Table 9-10, 
respectively. The zero-period spectral accelerations are consistent with the values obtained 
from the response spectra in Figure 9-6. Spectral acceleration in the vertical direction is 
sensitive to how damping is defined for the response-history analysis. The effect of damping on 
the response of lumped-mass stick model is discussed in a later section.  

Mean and 50th, 90th and 99th percentile responses are presented in Appendix C.5, noting that 
the 90th and 99th percentile responses, for beyond design basis and design basis shaking, 
respectively, are important thresholds for seismically isolated nuclear structures (Huang et al., 
2009; Huang et al., 2013). The horizontal response of isolation system is assumed to be 
represented by the bearing at the center of the basemat. Vector sums of the shear 
displacements and forces are calculated at each time step in an analysis and the peak values 
for a given ground motion are used to form the distributions of response.  
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Table 9-7   Mean peak displacements (mm) for the 30 ground motion sets at the center and 
four corners of the basemat (model T2Q6); simplified model 

Bearing 
100% DBE 200% DBE 

max
cu max

tu max
hu εmax

h
max /h ou D max

cu max
tu max

hu εmax
h

max /h ou D
4137 1.9 0.3 340 110 0.23 3.0 0.8 851 275 0.57 
4001 2.0 0.4 340 110 0.23 3.2 1.6 853 275 0.57 
4021 2.0 0.4 335 108 0.22 3.3 1.6 830 268 0.56 
4253 2.0 0.4 347 112 0.23 3.2 1.6 875 282 0.59 
4273 2.0 0.4 341 110 0.23 3.2 1.6 855 276 0.57 

Table 9-8   Mean peak rotations (degrees) for the 30 ground motion sets; simplified model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

θmax
z φmax

x φmax
y θmax

z φmax
x φmax

y θmax
z φmax

x φmax
y θmax

z φmax
x φmax

y

T2Q6 0.004 0.0003 0.0002 0.016 0.0005 0.0003 0.031 0.0007 0.0004 0.047 0.0010 0.0006 
T2Q12 0.003 0.0004 0.0002 0.009 0.0005 0.0003 0.018 0.0007 0.0004 0.031 0.0009 0.0006 
T2Q18 0.003 0.0004 0.0003 0.007 0.0006 0.0004 0.013 0.0008 0.0005 0.022 0.0010 0.0006 
T3Q6 0.005 0.0002 0.0001 0.013 0.0004 0.0002 0.025 0.0005 0.0003 0.041 0.0007 0.0004 

T3Q12 0.005 0.0003 0.0002 0.009 0.0005 0.0003 0.016 0.0006 0.0004 0.026 0.0008 0.0005 
T3Q18 0.005 0.0004 0.0003 0.009 0.0006 0.0004 0.014 0.0007 0.0004 0.021 0.0009 0.0005 

1. An angle of 0.01 degrees correspond to 17 mm of horizontal displacement over a basemat length of 100 m.
2. An angle of 0.0005 degrees correspond to 1 mm of vertical displacement over a basemat length of 100 m.

Table 9-9    Mean peak zero-period accelerations (g) for the 30 ground motion sets at center of 
basemat (node 2137); simplified model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.16 0.17 0.56 0.33 0.35 1.11 0.52 0.55 1.66 0.76 0.78 2.23 
T2Q12 0.2 0.22 0.56 0.31 0.34 1.12 0.46 0.5 1.65 0.65 0.69 2.23 
T2Q18 0.25 0.27 0.56 0.34 0.39 1.12 0.47 0.52 1.68 0.63 1.21 2.25 
T3Q6 0.12 0.12 0.6 0.2 0.21 1.19 0.3 0.31 1.79 0.39 0.42 2.34 
T3Q12 0.17 0.18 0.6 0.23 0.24 1.2 0.3 0.33 1.8 0.4 0.42 2.4 
T3Q18 0.22 0.23 0.6 0.27 0.3 1.21 0.35 0.36 1.81 0.41 0.44 2.41 

Table 9-10   Mean peak spectral accelerations (g) for the 30 ground motion sets at center of 
basemat (node 2137); simplified model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.54 0.55 2.14 1.17 1.15 4.28 2.15 2.11 6.35 3.46 3.33 8.56 
T2Q12 0.8 0.91 2.14 1.08 1.1 4.28 1.48 1.49 6.37 2.3 2.26 8.56 
T2Q18 1.07 1.14 2.14 1.35 1.48 4.28 1.61 1.65 6.42 1.99 3.29 8.71 
T3Q6 0.43 0.42 2.06 0.56 0.59 4.13 0.88 0.93 6.19 1.36 1.42 8.08 
T3Q12 0.76 0.69 2.06 0.86 0.84 4.11 0.96 1 6.17 1.12 1.16 8.22 
T3Q18 1.06 0.92 2.05 1.19 1.1 4.11 1.3 1.26 6.16 1.39 1.41 8.22 
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9.6 Results of Analysis using the Advanced Isolator Model 

The advanced isolator model considers the five characteristics of LR bearings identified in 
Section 9.4. The response of base-isolated NPP considering all five characteristics is 
considered next.  

The peak horizontal, compressive and tensile displacements of the bearings are summarized in 
Table 9-11. All of the bearings undergo approximately the same shear deformation. Rocking of 
the superstructure induces additional tensile and compressive deformation in the outer 
bearings.  

The rotations of the superstructure at the basemat level are summarized in Table 9-12. A 
substantial increase in rotation about the horizontal axes is observed with respect to the 
simplified isolator model of Table 9-9, which is due to cavitation and buckling producing larger 
axial deformations in the bearings at the higher intensities of ground motion. 

The mean peak zero-period and spectral accelerations in the three orthogonal directions, at the 
center of the basemat, for the 30 ground motion sets, are presented in Table 9-13 and Table 
9-14, respectively. The advanced isolator models result in higher accelerations than the 
simplified isolator models (Table 9-9 and Table 9-10). A substantial increase in the vertical 
acceleration is observed at higher intensities of ground motion. Spectral acceleration in the 
vertical direction is sensitive to how damping is defined for the response-history analysis. The 
effect of damping on the response of lumped-mass stick model is discussed in a later section. 

The stick model, unlike the two-node macro model, provides information on cavitation and 
buckling of individual bearings in an isolation system. The isolation system consists a total of 
273 bearings. The outer bearings are more vulnerable to cavitation and buckling than those 
bearings near the center of the basemat. The number of bearings (of 273) that underwent 
cavitation and buckling were recorded for each ground motion set. The median numbers for the 
30 ground motion sets, at each intensity, are presented in Table 9-15 and Table 9-16 for 
buckling and cavitation, respectively. All six isolation systems provide adequate safety against 
buckling even at the higher intensities of shaking, except for T3Q6 at 200%DBE. The flexible 
(longer period) isolation systems with low strength (e.g., T3Q6) are more vulnerable to buckling. 
Bearings in the isolation system cavitate at intensities of 100+% DBE shaking due to the intense 
vertical shaking at the Diablo Canyon site. The period of vibration in the axial direction for the 2 
and 3 sec isolation systems are 0.06 and 0.07 sec, respectively, and the 2% damped vertical 
spectral acceleration at these periods exceed 2.2g at 100% DBE shaking (see Figure 9-6c). 
(Note that the vertical DBE spectrum is for the surface free field and not a foundation input 
response spectrum: accounting for input at depth and incoherence should substantially reduce 
the vertical shaking effects.) Cavitation in bearings can be reduced by increasing the shear 
modulus, but this option is limited by a manufacturer’s ability to produce natural rubber bearings 
of high shear modulus that do not exhibit scragging or age-related stiffening. 
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Table 9-11   Mean peak displacements (mm) for 30 ground motion sets at the center and four 
corners of the basemat (model T2Q6); advanced model 

Bearing 
100% DBE 200% DBE 

max
cu max

tu max
hu εmax

h
max /h ou D max

cu max
tu max

hu εmax
h

max /h ou D
4137 2.0 0.3 359 116 0.24 6.3 6.1 981 316 0.66 
4001 2.3 0.5 359 116 0.24 8.4 10.0 979 316 0.66 
4021 2.2 0.5 352 114 0.24 7.7 10.3 958 309 0.64 
4253 2.2 0.4 366 118 0.24 8.1 9.8 1008 325 0.67 
4273 2.2 0.4 360 116 0.24 8.0 9.5 988 319 0.66 

Table 9-12   Mean peak rotations (degrees) for 30 ground motion sets; advanced model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

θmax
z φmax

x φmax
y θmax

z φmax
x φmax

y θmax
z φmax

x φmax
y θmax

z φmax
x φmax

y

T2Q6 0.005 0.0003 0.0002 0.018 0.0006 0.0003 0.036 0.0017 0.0013 0.06 0.0056 0.0052 
T2Q12 0.003 0.0003 0.0002 0.01 0.0006 0.0003 0.022 0.0014 0.001 0.04 0.0047 0.0042 
T2Q18 0.003 0.0004 0.0002 0.007 0.0006 0.0004 0.015 0.0014 0.001 0.028 0.0042 0.0035 
T3Q6 0.005 0.0002 0.0001 0.015 0.0006 0.0004 0.033 0.0032 0.003 0.07 0.0072 0.0086 

T3Q12 0.005 0.0003 0.0002 0.01 0.0006 0.0004 0.019 0.0032 0.0025 0.034 0.0064 0.0068 
T3Q18 0.005 0.0004 0.0002 0.009 0.0008 0.0005 0.015 0.0035 0.0027 0.025 0.0066 0.0062 
1. An angle of 0.01 degrees correspond to 17 mm of horizontal displacement over a basemat length of 100 m.
2. An angle of 0.0005 degrees correspond to 1 mm of vertical displacement over a basemat length of 100 m.

Table 9-13   Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of 
the basemat (node 2137); advanced model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.16 0.18 0.56 0.34 0.36 1.13 0.62 0.67 1.89 1.08 1.2 3.54 

T2Q12 0.19 0.22 0.56 0.31 0.34 1.12 0.53 0.6 1.87 0.98 1.1 3.4 
T2Q18 0.25 0.26 0.56 0.33 0.38 1.12 0.5 0.6 1.88 0.89 1.03 3.28 
T3Q6 0.11 0.12 0.6 0.21 0.23 1.27 0.49 0.59 2.56 0.98 1.13 4.81 

T3Q12 0.17 0.18 0.6 0.23 0.26 1.24 0.5 0.64 2.58 0.92 1.04 4.38 
T3Q18 0.21 0.22 0.6 0.27 0.31 1.26 0.54 0.7 2.55 0.91 1.1 4.27 

Table 9-14   Mean peak spectral accelerations (g) for 30 ground motion sets at center of 
basemat (node 2137); advanced model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.52 0.54 2.14 1.33 1.29 4.35 3.01 2.72 6.77 4.97 4.62 12.97 
T2Q12 0.78 0.88 2.14 1.02 1.06 4.31 1.72 1.82 6.7 3.3 3.38 11.64 
T2Q18 1.03 1.11 2.14 1.28 1.38 4.3 1.51 1.78 6.79 2.38 2.85 11.16 
T3Q6 0.41 0.4 2.06 0.57 0.66 4.17 1.32 1.81 8.91 2.51 3.22 14.43 
T3Q12 0.72 0.65 2.05 0.78 0.8 4.07 1.17 1.99 8.62 2.25 2.99 13.81 
T3Q18 1.00 0.88 2.05 1.07 1.04 4.1 1.38 2.24 8.2 2.18 3.27 13.71 
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Table 9-15   Median number of bearings (of 273) for 30 ground motion sets for which buckling 
is predicted; advanced model 

Intensity (% DBE) Isolation system 
T2Q6 T2Q12 T3Q18 T3Q6 T3Q12 T3Q18 

50 0 0 0 0 0 0 
100 0 0 0 0 0 0 
150 0 0 0 0 0 0 
200 0 0 0 43 0 0 

 

Table 9-16   Median number of bearings (of 273) for 30 ground motion sets for which cavitation 
is predicted; advanced model 

Intensity (% DBE) Isolation system 
T2Q6 T2Q12 T2Q18 T3Q6 T3Q12 T3Q18 

50 0 0 0 0 0 0 
100 0 0 0 250 243 240 
150 273 261 266 273 273 273 
200 273 273 273 273 273 273 

 
The ratios of the percentiles of peak shear displacement for the simplified and advanced base-
isolated NPP models, considered separately, at different intensities of shaking, are presented in 
Figure 9-7, where D  is the displacement and its subscript denotes the intensity and the 
percentile of the peak shear displacement. Figure 9-8 presents horizontal displacements 
obtained using the advanced models normalized by the median DBE horizontal displacement 
calculated using the simplified model. The plots in the figures can be used to estimate horizontal 
displacements at 150+% DBE shaking for a range of isolation systems by calculating the 
median DBE horizontal displacement. For example, the DBE median horizontal displacement 
obtained using a simplified model can be increased by the ratios presented in Figure 9-8 to 
address the five intra-earthquake changes in the mechanical properties of LR bearings 
enumerated in Section 9.4. Note that the ground motions used for these analyses were 
spectrally matched and do not consider differences in the intensity of shaking along the 
perpendicular horizontal axes that is observed in recorded ground motions (Huang et al., 2009).  
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Figure 9-7    Ratios of percentiles of peak horizontal displacement to the median DBE 
displacement; simplified and advanced models 

Figure 9-8    Ratios of the percentiles of peak horizontal displacement calculated using the 
advanced model to the median DBE displacement calculated using the simplified 
model 
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9.7 Comparison with Macro-model Analysis 

The ratios of the percentiles of the peak horizontal displacement of the two-node macro model 
to those of the stick model using the simplified and advanced models of LR bearings, at different 
intensities of shaking, are presented in Figure 9-9 and Figure 9-10, respectively. The differences 
are small for all three intensities of shaking for the simplified model. Larger differences are 
observed at 200% DBE shaking using the advanced isolator model due to buckling in the two-
node macro model. Differences are most pronounced for models T3Q6 and T3Q12, which are 
more prone to buckling due to their lower compressive load capacity and higher displacement 
demands. The shear stiffness (and hence shear displacement) of an elastomeric bearing 
depends on the axial load. The post-buckling1 shear response of the two-node macro model, 
which consists of a single LR bearing, is not reliable in terms of system behavior, whereas the 
isolation system of the stick model of the base-isolated NPP comprises many bearings, so when 
one bearing fails, the load is redistributed amongst other bearings in the isolation system. The 
post-buckling shear response of the stick model will be more reliable than that of the two-node 
macro model. Results of analysis using the two-node macro model are in better agreement with 
the stick model for stiffer (smaller period) isolation systems with higher strength (e.g., T2Q12). 
The stick model of a base-isolated NPP provides additional information on torsional and rocking 
response and the spatial distribution of cavitation and buckling in the bearings.   

                                                
1 The post-buckling capacity of an isolator is assumed to be a small fraction of the buckling load at zero 
horizontal displacement and a small compressive stiffness is assigned to avoid convergence issues. 
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a) 100% DBE b) 150% DBE c) 200% DBE
Figure 9-9    Ratios of the percentiles of peak horizontal displacement calculated using the stick 

model to the two-node macro model; simplified model 

a) 100% DBE b) 150% DBE c) 200% DBE
Figure 9-10   Ratios of the percentiles of peak horizontal displacement calculated using the 

stick model to the two-node macro model; advanced model 
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9.8 Vertical Accelerations in the Superstructure 

The base isolation of a nuclear power plant significantly reduces seismic demand in the 
horizontal plane but may amplify demand in the vertical direction depending on a) the frequency 
content of the ground motion, and b) the mechanical properties of the isolation system. Table 
9-17 and Table 9-18 present the mean peak ground accelerations and the mean peak zero-
period accelerations at the center of the basemat of the base-isolated NPPs, respectively, from 
response-history analysis of the lumped-mass stick model for the 30 ground motion sets at the 
site of the Diablo Canyon Nuclear Generating Station (see Section 9.4). The variations of these 
accelerations along the height of the fixed-base and base-isolated superstructure (T2Q6) are 
plotted in Figure 9-11. The addition of an isolation system substantially increases response in 
the Z (vertical) direction. Ground motion 1 (GM1) and the acceleration response at the center of 
the basemat of the base-isolated NPP (T2Q6) subjected to GM1 are plotted in Figure 9-12. The 
corresponding response spectra are plotted in Figure 9-13. 

The vertical accelerations at locations high in the superstructure (e.g., node 310, 417 in Figure 
9-1) are much greater than the peak vertical ground acceleration. This is attributed to 1) the 
modal properties of this superstructure, and 2) how damping is modeled, both of which are 
described in the following sections.  

 

 

Table 9-17   Mean peak ground acceleration (g) for 30 ground motion sets 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
0.52 0.52 0.41 1.03 1.04 0.82 1.55 1.56 1.23 2.06 2.08 1.64 

 

 

Table 9-18   Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of 
the basemat; base-isolated NPP 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.16 0.17 0.56 0.33 0.35 1.11 0.52 0.55 1.66 0.76 0.78 2.23 
T2Q12 0.2 0.22 0.56 0.31 0.34 1.12 0.46 0.5 1.65 0.65 0.69 2.23 
T2Q18 0.25 0.27 0.56 0.34 0.39 1.12 0.47 0.52 1.68 0.63 1.21 2.25 
T3Q6 0.12 0.12 0.6 0.2 0.21 1.19 0.3 0.31 1.79 0.39 0.42 2.34 
T3Q12 0.17 0.18 0.6 0.23 0.24 1.2 0.3 0.33 1.8 0.4 0.42 2.4 
T3Q18 0.22 0.23 0.6 0.27 0.3 1.21 0.35 0.36 1.81 0.41 0.44 2.41 
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a) ASB, X-direction b) ASB, Y-direction c) ASB, Z-direction

d) SCV, X-direction e) SCV, Y-direction f) SCV, Z-direction

g) CIS, X-direction h) CIS, Y-direction i) CIS, Z-direction
Figure 9-11   Mean peak zero-period accelerations (g) for 30 ground motion sets in the 

superstructure along the height for the model T2Q6; 100% DBE shaking 
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a) X-direction (horizontal 1) 

 
b) Y-direction (horizontal 2) 

 
c) Z-direction (vertical) 

Figure 9-12   Acceleration histories at node 2137 of model T2Q6 subject to GM1; 100% DBE 
shaking 
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a) X-direction b) Y-direction c) Z-direction
Figure 9-13   Acceleration response spectra at node 2137 of model T2Q6 subject to GM1; 

100% DBE shaking 

9.8.1 Modal properties 

The power spectral densities of the ground acceleration (GM1) and the isolated basemat 
acceleration (model T2Q6) are shown in Figure 9-14. The vertical frequency of the isolation 
system at zero lateral displacement is 16 Hz. The predominant frequency2 of the vertical 
accelerations of the ground motion and isolated basemat are 7 Hz and 16 Hz, respectively. The 
superstructure experiences the vertical acceleration of the isolated basemat. The first vertical 
frequency of the fixed-base SCV and the CIS, and the second vertical frequency of the ASB are 
16, 32, and 19 Hz, respectively (Table 9-2 through Table 9-4). An input excitation frequency 
close to these natural frequencies will result in a significant amplification of motion, which is why 
the vertical accelerations of the SCV and ASB are high, but that of the CIS is (relatively) low, as 
shown in Figure 9-11. 

Figure 9-14   Power spectral density of vertical acceleration for model T2Q6 subject to GM1; 
100% DBE shaking 

2 Frequency corresponding to the peak value of the Fourier amplitude spectrum. 



 

9-22 
 

9.8.2 Damping 

Damping of the horizontal response of a LR-isolated NPP is provided by hysteretic energy 
dissipation in the lead cores of the bearings. Damping will be in the range of 10% to 30% of 
critical. A bidirectional hysteretic model is used in the horizontal direction for response-history 
analysis to capture energy dissipation (damping) explicitly.  

Damping in the LR isolators in the vertical direction will be of the order of 2% to 4% of critical, 
and this can be considered viscous. OpenSees provides three options for including viscous 
damping in dynamic analysis: 1) mass-proportional, 2) stiffness-proportional, and 3) Rayleigh. 
The general formulation of the damping matrix C  is: 

 α β= +C M K   (9.6) 

where M  and K  are the global mass and stiffness matrices, respectively, and α  and β  are 
proportionality coefficients, which are calculated by assigning damping ratios to selected modes. 
The coefficients α  and β  are zero for stiffness and mass proportional damping, respectively.  

The effects of these three damping models on the response of the lumped-mass stick model of 
base-isolated NPP are investigated here. The responses of the base-isolated NPP in the 
horizontal and vertical directions are mostly due to shear and axial deformations in the LR 
bearings. The multipliers to the mass and stiffness matrices, α  and β , were calculated using 
Equation (8.2) by assigning 2% damping to the modes (frequencies) corresponding to the 
vertical ( f  = 17.7 Hz) and torsional excitation ( f  = 0.27 Hz) of the single LR bearing (i.e., two-
node macro model3). This ensured that the contribution of Rayleigh damping to the modes 
corresponding to response of base-isolated NPP in the shearing and torsional directions were 
bounded and small. The variation of modal damping ratio with frequency is presented in Figure 
9-15 for the three damping models. The mass and stiffness proportional damping models 
overdamps the lower and higher modes of vibration, respectively, of the structure.  

 
Figure 9-15   Variation of modal damping ratios with frequency 

                                                
3 The two-node macro model is a simplified representation of the lumped-mass stick model of a base-
isolated NPP and both models have the same isolation frequencies in the horizontal and vertical 
directions. 
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The damping ratios corresponding to the vertical and horizontal isolation frequencies of the 
lumped-mass stick model are presented in Table 9-19. The isolation systems 2T Qy and 3T Qy  
have horizontal isolation periods of 2 sec and 3 sec, respectively. The damping ratios 
corresponding to the horizontal and vertical frequencies of the superstructure (i.e., ASB, SCV, 
CIS) are presented in Table 9-20 through Table 9-22. The damping ratio corresponding to the 
horizontal isolation frequency of the isolation sytem is excessive for mass proportional damping, 
but small and tiny for Rayleigh and stiffness proportional damping, respectively. Similarly, the 
damping ratios corresponding to horizontal and vertical frequencies of the reinforced concrete 
superstructure, where an expected value is between 4% and 7%, generally fall well outside this 
range. 

Response-history analysis of the the lumped-mass stick model of the base-isolated NPP was 
performed using the three viscous damping models described above. The mean peak zero-
period accelerations and the percentiles of the peak horizontal displacements at the center of 
the basemat are presented in Table 9-23 through Table 9-25 and Table 9-26 through Table 
9-28, respectively. No effect of the choice of damping model is observed on basemat
acceleration, but much smaller horizontal displacements of the basemat are obtained when
mass proportional damping is used. There is no meaningful difference between the horizontal
displacements obtained using the Rayleigh and stiffness proportional damping.

The variations of mean peak zero-period acceleration along the height of the superstructure are 
plotted in Figure 9-16. All three damping models provide similar accelerations along the height 
of the superstructure. This counterintuitive observation can be explained using mean floor 
spectra at the center of the isolated basemat. Figure 9-17 presents such spectra for the 30 
ground motion sets for the three damping models, for the ASB, SCV and CIS, in the X-, Y- and 
Z-directions. The fundamental frequency for the substructure (e.g., CIS) in the direction
considered (e.g., Z-direction, CIS, in Figure 9-17i) is identified: see Table 9-20 through Table
9-22 for details. The floor spectra are generated for the damping calculated for each model at
the fundamental frequency. The damping ratios in the legends of Figure 9.17 are those reported
in Table 9-20 through Table 9-22. The first mode responses are similar in each direction for
each substructure, except for the ASB and CIS in the Z-direction. The relative spectral
amplitudes of Figure 9-17c and Figure 9-17i are consistent with the zero-period accelerations
plotted in Figure 9-16c and Figure 9-16i, respectively. It is highly unlikely this outcome would be
observed for substructures in other NPPs.

Although Rayleigh and stiffness proportional damping are suitable for the calculation of isolation 
level response as both provide similar estimate of acceleration and displacement response (see 
Table 9-23 through Table 9-28), none of the three formulations discussed here adequately 
damp the superstructure response. An alternate method to assign damping is discussed in the 
following subsection to address this issue. 
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Table 9-19   Damping ratios corresponding to isolation frequency 

Direction Frequenc
y (Hz) 

Damping (%) 

Rayleigh 
(α = 0.067, β = 3.5×10-4) 

Mass 
proportional 
(α = 4.45) 

Stiffness 
proportional 

( β = 3.6×10-4) 
Vertical 17.7 2.0 2.0 2.0 

Horizontal 
( 2T Qy ) 0.5 1.12 70.8 0.06 

Horizontal 
( 3T Qy ) 0.33 1.65 107.3 0.04 

 

Table 9-20   Damping ratios corresponding to the frequencies of the ASB 

Direction Frequency (Hz) 
Damping (%) 

Rayleigh Mass Stiffness 
Horizontal 1 3.0 0.5 11.8 0.3 
Horizontal 2 2.8 0.5 12.6 0.3 

Vertical 7.0 0.9 5.1 0.8 
 

Table 9-21   Damping ratios corresponding to the frequencies of the SCV 

Direction Frequency (Hz) 
Damping (%) 

Rayleigh Mass Stiffness 
Horizontal 1 5.5 0.7 6.4 0.6 
Horizontal 2 3.6 0.5 9.8 0.4 

Vertical 16.2 1.8 2.2 1.8 
 

Table 9-22   Damping ratios corresponding to the frequencies of the CIS 

Direction Frequency (Hz) 
Damping (%) 

Rayleigh Mass Stiffness 
Horizontal 1 12.9 1.5 2.7 1.5 
Horizontal 2 12.3 1.4 2.9 1.4 

Vertical 31.9 3.6 1.1 3.6 
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Table 9-23   Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of 
the basemat (node 2137); Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.16 0.17 0.56 0.33 0.35 1.11 0.52 0.55 1.66 0.76 0.78 2.23 
T2Q12 0.2 0.22 0.56 0.31 0.34 1.12 0.46 0.5 1.65 0.65 0.69 2.23 
T2Q18 0.25 0.27 0.56 0.34 0.39 1.12 0.47 0.52 1.68 0.63 1.21 2.25 
T3Q6 0.12 0.12 0.6 0.2 0.21 1.19 0.3 0.31 1.79 0.39 0.42 2.34 
T3Q12 0.17 0.18 0.6 0.23 0.24 1.2 0.3 0.33 1.8 0.4 0.42 2.4 
T3Q18 0.22 0.23 0.6 0.27 0.3 1.21 0.35 0.36 1.81 0.41 0.44 2.41 

Table 9-24   Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of 
the basemat (node 2137); mass proportional damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.19 0.2 0.56 0.35 0.35 1.12 0.51 0.51 1.68 0.67 0.67 2.24 
T2Q12 0.23 0.24 0.56 0.38 0.39 1.12 0.53 0.54 1.69 0.69 0.7 2.25 
T2Q18 0.27 0.27 0.56 0.42 0.43 1.13 0.57 0.59 1.69 0.72 0.74 2.25 
T3Q6 0.17 0.18 0.61 0.31 0.31 1.22 0.44 0.44 1.84 0.58 0.57 2.45 
T3Q12 0.2 0.21 0.61 0.34 0.35 1.23 0.48 0.48 1.84 0.61 0.61 2.46 
T3Q18 0.22 0.23 0.61 0.38 0.39 1.23 0.51 0.53 1.84 0.64 0.66 2.46 

Table 9-25   Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of 
the basemat (node 2137); stiffness proportional damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.16 0.17 0.56 0.34 0.36 1.12 0.56 0.59 1.67 0.82 0.84 2.23 
T2Q12 0.2 0.22 0.56 0.32 0.35 1.12 0.49 0.53 1.68 0.69 0.73 2.24 
T2Q18 0.26 0.27 0.56 0.34 0.39 1.12 0.48 0.52 1.68 0.62 0.68 2.24 
T3Q6 0.12 0.12 0.6 0.2 0.21 1.19 0.3 0.32 1.79 0.41 0.45 2.39 
T3Q12 0.17 0.18 0.6 0.23 0.24 1.19 0.31 0.33 1.8 0.39 0.42 2.4 
T3Q18 0.22 0.23 0.6 0.28 0.3 1.21 0.34 0.36 1.81 0.42 0.45 2.41 
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a) ASB, X-direction b) ASB, Y-direction c) ASB, Z-direction

d) SCV, X-direction e) SCV, Y-direction f) SCV, Z-direction

g) CIS, X-direction h) CIS, Y-direction i) CIS, Z-direction
Figure 9-16   Mean peak zero-period accelerations (g) for 30 ground motion sets in the 

superstructure along the height of the base-isolated NPP model T2Q6; 100% DBE 
shaking 
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a) ASB, X-direction b) ASB, Y-direction c) ASB, Z-direction 

   
d) SCV, X-direction e) SCV, Y-direction f) SCV, Z-direction 

   
g) CIS, X-direction h) CIS, Y-direction i) CIS, Z-direction 

Figure 9-17   Mean floor response spectra for 30 ground motion sets at the center of the 
isolated basemat (node 2137) for three damping models and corresponding modal 
damping ratios in the superstructure; T2Q6, 100% DBE shaking 
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9.8.3 Substructuring 

An alternative approach is explored here to capture the vertical acceleration response at higher 
locations in the superstructure, where the increases in acceleration response of Figure 9-11c), f) 
and i) might result from an inadequate treatment of damping. This analysis approach uses a 
substructuring technique in which the six components of acceleration response are obtained at 
the center of the isolated basemat (node 2137) and used as input excitations for the response-
history analysis of the three fixed-base components of the superstructure (i.e., ASB, CIS, and 
SCV). The response-history analyses of the three superstructure components are performed in 
OpenSees and SAP2000. These models are designated as the equivalent fixed-base (EFB) 
models in OpenSees (EFB_OpenSees) and SAP2000 (EFB_SAP2000). The results of the 
response-history analysis of these models are benchmarked against the response of the 
lumped-mass stick model of base-isolated NPP (Stick_model_OpenSees) presented in Section 
9.5. The simplified isolator model is used for all analyses because the focus here is on utility of 
the substructuring approach.  

The Rayleigh damping formulation is used in OpenSees and the proportionality coefficients are 
calculated for EFB_OpenSees by assigning 5% damping (i.e., between 4% and 7%) to the first 
horizontal and vertical translational modes of vibration of each superstructure. This ensures that 
the contribution of Rayleigh damping to other modes in the horizontal and vertical directions are 
bounded and small. Table 9-29 presents the damping ratios in the first mode of vibration along 
the three orthogonal directions of the ASB, SCV, and CIS. 

Table 9-29   Rayleigh damping in the horizontal and vertical modes of the fixed-base 
superstructures in OpenSees 

Direction 
ASB SCV CIS 

Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

Frequency 
(Hz) 

Damping 
(%) 

Horizontal 1 3.0 4.9 5.5 4.1 12.9 4.9 
Horizontal 2 2.8 5.0 3.6 5.0 12.3 5.0 

Vertical 7.0 5.0 16.2 5.0 31.9 5.0 

The results of the response-history analysis obtained using OpenSees (EFB_OpenSees) and 
base-isolated NPP in Section 9.5 and their differences are presented in Table 9-30, Table 9-31, 
and Table 9-32 respectively, for node 417, which is located at the uppermost point of the SCV. 
A substantial reduction of the order of 30% is observed in the vertical acceleration across all 
shaking intensities when the equivalent fixed-based model approach is used. The reductions in 
the horizontal accelerations are small, except at smaller shaking intensities. 

SAP2000 provides the option to assign modal damping in response-history analysis of a MDOF 
system. Damping of 5% is used for all modes in the SAP2000 model. Acceleration histories at 
node 417 in the SCV obtained using EFB_OpenSees, EFB_SAP2000 and the base-isolated 
OpenSees model, for isolation system T2Q6 subject to ground motion 1, are plotted in Figure 
9-18. The difference in responses obtained using 5% modal damping in SAP2000 and 5%
Rayleigh damping in OpenSees are negligible in all three directions, which suggests that the
Rayleigh damping in OpenSees and modal damping in SAP2000 provides similar results for the
EFB models. Moreover, it suggests that Rayleigh damping based on vertical frequency does not
overdamp response in the horizontal directions though this is dependent on the vertical and
horizontal frequencies of the ASB, SCV, and CIS. Results of analysis of the EFB_OpenSees
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model are presented in Table 9-33 through Table 9-35 and Figure 9-19 for the uppermost point 
in the ASB (node 310), and Table 9-36 through Table 9-38 and Figure 9-20 for the uppermost 
point in the CIS (node 538). A reduction of the order of 30% is observed in the ASB when the 
substructuring approach is used. The reductions in the horizontal accelerations are small. Unlike 
the SCV and ASB, the accelerations in the three orthogonal directions at node 538 in the CIS 
obtained using the substructuring approach are similar to that obtained from the lumped-mass 
stick model of base-isolated NPP.  

Table 9-30   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417; 
lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.29 0.32 7.6 0.47 0.5 15.2 0.68 0.7 22.46 0.91 0.94 30.4 

T2Q12 0.36 0.39 7.6 0.57 0.63 15.21 0.75 0.78 22.57 0.94 0.98 30.41 
T2Q18 0.42 0.45 7.61 0.63 0.73 15.21 0.85 0.95 22.82 1.05 1.62 30.4 
T3Q6 0.17 0.19 6.71 0.27 0.3 13.42 0.38 0.41 20.13 0.5 0.53 26.36 

T3Q12 0.23 0.24 6.61 0.34 0.38 13.22 0.45 0.48 19.84 0.53 0.59 26.45 
T3Q18 0.27 0.29 6.53 0.4 0.43 13.05 0.5 0.56 19.58 0.61 0.65 26.11 

 

Table 9-31   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417; 
equivalent fixed-base model in OpenSees (EFB_OpenSees) 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.22 0.28 4.94 0.38 0.47 9.88 0.58 0.67 14.57 0.82 0.93 19.76 

T2Q12 0.28 0.34 4.95 0.44 0.56 9.9 0.59 0.74 14.85 0.76 0.94 19.8 
T2Q18 0.35 0.39 4.96 0.5 0.63 9.91 0.65 0.85 14.87 0.81 1.03 19.83 
T3Q6 0.14 0.18 4.88 0.23 0.28 9.77 0.33 0.4 14.65 0.44 0.55 19.53 

T3Q12 0.2 0.24 4.84 0.29 0.36 9.68 0.37 0.47 14.51 0.46 0.58 19.35 
T3Q18 0.25 0.29 4.8 0.34 0.42 9.6 0.43 0.53 14.4 0.52 0.64 19.19 

 

Table 9-32   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 417 obtained using the lumped-mass stick model and the 
equivalent fixed-base model in OpenSees (EFB_OpenSees) 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 24 13 35 19 6 35 15 4 35 10 1 35 
T2Q12 22 13 35 23 11 35 21 5 34 19 4 35 
T2Q18 17 13 35 21 14 35 24 11 35 23 36 35 
T3Q6 18 5 27 15 7 27 13 2 27 12 4 26 
T3Q12 13 0 27 15 5 27 18 2 27 13 2 27 
T3Q18 7 0 26 15 2 26 14 5 26 15 2 27 
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a) X-direction (horizontal 1)

b) Y-direction (horizontal 2)

c) Z-direction (vertical)
Figure 9-18   Acceleration histories at node 417 of model T2Q6 subject to GM1; 100% DBE 

shaking 
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Table 9-33   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; 
lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.6 0.62 3.33 0.79 0.83 6.65 0.97 1.05 9.84 1.22 1.32 13.31 
T2Q12 0.83 0.92 3.33 1.2 1.24 6.65 1.35 1.43 9.72 1.55 1.63 13.1 
T2Q18 0.95 1.09 3.32 1.5 1.58 6.65 1.8 1.87 9.97 2 2.42 13.33 
T3Q6 0.39 0.41 3.31 0.57 0.59 6.61 0.7 0.71 9.92 0.79 0.82 12.9 
T3Q12 0.51 0.57 3.31 0.79 0.82 6.62 0.97 1.03 9.92 1.14 1.17 13.23 
T3Q18 0.58 0.65 3.31 0.9 0.99 6.62 1.18 1.23 9.93 1.35 1.42 13.14 

 

Table 9-34   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; 
equivalent fixed-base model in OpenSees (EFB_OpenSees) 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.53 0.59 2.25 0.7 0.8 4.5 0.89 1.03 6.71 1.14 1.31 9 
T2Q12 0.73 0.86 2.25 1.06 1.18 4.51 1.21 1.39 6.76 1.4 1.61 9.01 
T2Q18 0.85 1.02 2.25 1.3 1.48 4.51 1.59 1.76 6.76 1.75 2 9.02 
T3Q6 0.37 0.4 2.44 0.52 0.59 4.88 0.65 0.72 7.32 0.75 0.86 9.76 
T3Q12 0.48 0.57 2.46 0.73 0.81 4.92 0.89 1.02 7.37 1.05 1.19 9.83 
T3Q18 0.55 0.64 2.47 0.85 0.97 4.94 1.09 1.22 7.42 1.26 1.43 9.88 

 

Table 9-35   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 310 obtained using the lumped-mass stick model and the 
equivalent fixed-base model in OpenSees (EFB_OpenSees) 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 12 5 32 11 4 32 8 2 32 7 1 32 
T2Q12 12 7 32 12 5 32 10 3 30 10 1 31 
T2Q18 11 6 32 13 6 32 12 6 32 13 17 32 
T3Q6 5 2 26 9 0 26 7 1 26 5 5 24 
T3Q12 6 0 26 8 1 26 8 1 26 8 2 26 
T3Q18 5 2 25 6 2 25 8 1 25 7 1 25 
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a) X-direction (horizontal 1)

b) Y-direction (horizontal 2)

c) Z-direction (vertical)
Figure 9-19   Acceleration histories at node 310 of model T2Q6 subject to GM1; 100% DBE 

shaking 
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Table 9-36   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538; 
lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.19 0.23 0.78 0.39 0.43 1.57 0.61 0.67 2.34 0.87 0.95 3.14 
T2Q12 0.25 0.28 0.78 0.39 0.44 1.57 0.57 0.61 2.32 0.78 0.88 3.13 
T2Q18 0.3 0.33 0.78 0.43 0.49 1.57 0.58 0.66 2.35 0.77 1.34 3.07 
T3Q6 0.13 0.14 0.77 0.23 0.25 1.53 0.36 0.44 2.3 0.51 0.68 3 
T3Q12 0.18 0.2 0.77 0.26 0.28 1.54 0.36 0.4 2.31 0.5 0.58 3.08 
T3Q18 0.23 0.25 0.77 0.31 0.33 1.54 0.39 0.44 2.32 0.5 0.56 3.09 

 

Table 9-37   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538; 
equivalent fixed-base model in OpenSees (EFB_OpenSees) 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.19 0.21 0.78 0.37 0.41 1.56 0.58 0.62 2.33 0.84 0.88 3.12 
T2Q12 0.24 0.27 0.78 0.38 0.42 1.56 0.56 0.6 2.34 0.75 0.82 3.12 
T2Q18 0.3 0.33 0.78 0.42 0.48 1.56 0.56 0.64 2.34 0.75 0.82 3.12 
T3Q6 0.13 0.14 0.77 0.22 0.24 1.53 0.33 0.36 2.3 0.46 0.51 3.06 
T3Q12 0.18 0.2 0.77 0.25 0.28 1.54 0.34 0.37 2.3 0.46 0.48 3.07 
T3Q18 0.23 0.25 0.77 0.32 0.35 1.54 0.38 0.42 2.31 0.52 0.54 3.08 

 

Table 9-38   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 538 obtained using the lumped-mass stick model and the 
equivalent fixed-base model in OpenSees (EFB_OpenSees) 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0 9 0 5 5 1 5 7 0 3 7 1 
T2Q12 4 4 0 3 5 1 2 2 1 4 7 0 
T2Q18 0 0 0 2 2 1 3 3 0 3 39 2 
T3Q6 0 0 0 4 4 0 8 18 0 10 25 2 
T3Q12 0 0 0 4 0 0 6 8 0 8 17 0 
T3Q18 0 0 0 3 6 0 3 5 0 4 4 0 
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a) X-direction (horizontal 1)

b) Y-direction (horizontal 2)

c) Z-direction (vertical)
Figure 9-20   Acceleration histories at node 538 of model T2Q6 subject to GM1; 100% DBE 

shaking 
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The substructuring technique provides a rational basis to model damping in a nonlinear 
response-history analysis of a base-isolated NPP by allowing the use of different damping 
values for the isolation system and the superstructure. For the model of the base-isolated NPP 
considered here, the nonlinearities are present only in the isolation bearings, and the 
superstructure is modeled as elastic. The response-history analysis of the superstructure using 
the basemat level input excitation is linear and the use of a classical damping matrix does not 
numerically damp the response.  

The substructuring techqniue results in vertical acceleration response in the ASB and CIS that is 
substantially smaller than that of lumped-mass stick model in Section 9.5. One could argue that 
the vertical acceleration response is still too demanding on structures, systems and 
components. One solution would be to modify the design of the bearings in the isolation system 
so that the vertical frequency of the isolation system is removed from the vertical frequency of 
the superstructure. Another solution is to add damping in the vertical direction using 
supplemental devices. To investigate the latter, response-history analysis of the lumped-mass 
stick model of the base-isolated NPP was performed with the Rayleigh damping of 2% and 10% 
of critical. The acceleration response at the node 2137 (isolated basemat), 310 (ASB), 417 
(SCV), and 538 (CIS) for these two damping values and the respective percentage difference 
are presented in Table 9-39 through Table 9-50. Increasing the damping from 2% to 10% of 
critical reduces the acceleration demands by between 25% and 75% in the three orthogonal 
directions. The percentage reduction is greater in the SCV and ASB in the vertical direction, 
which is expected because the relative reduction in the acceleration response due to damping is 
greater for systems whose frequencies are close to the excitation frequency. 

  



9-37

Table 9-39   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 2137 
(isolated basemat); lumped-mass stick model, 2% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.16 0.17 0.56 0.33 0.35 1.11 0.52 0.55 1.66 0.76 0.78 2.23 
T2Q12 0.2 0.22 0.56 0.31 0.34 1.12 0.46 0.5 1.65 0.65 0.69 2.23 
T2Q18 0.25 0.27 0.56 0.34 0.39 1.12 0.47 0.52 1.68 0.63 1.21 2.25 
T3Q6 0.12 0.12 0.6 0.2 0.21 1.19 0.3 0.31 1.79 0.39 0.42 2.34 
T3Q12 0.17 0.18 0.6 0.23 0.24 1.2 0.3 0.33 1.8 0.4 0.42 2.4 
T3Q18 0.22 0.23 0.6 0.27 0.3 1.21 0.35 0.36 1.81 0.41 0.44 2.41 

Table 9-40   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 2137 
(isolated basemat); lumped-mass stick model, 10% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.14 0.16 0.45 0.29 0.3 0.89 0.45 0.47 1.33 0.64 0.67 1.8 
T2Q12 0.18 0.21 0.43 0.29 0.33 0.9 0.43 0.45 1.31 0.58 0.6 1.74 
T2Q18 0.22 0.24 0.44 0.3 0.33 0.85 0.4 0.43 1.26 0.55 0.56 1.68 
T3Q6 0.11 0.11 0.46 0.18 0.2 0.93 0.27 0.28 1.39 0.36 0.38 1.85 
T3Q12 0.16 0.17 0.46 0.22 0.22 0.91 0.26 0.28 1.28 0.34 0.36 1.75 
T3Q18 0.2 0.21 0.46 0.25 0.28 0.9 0.32 0.34 1.39 0.38 0.43 1.79 

Table 9-41   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 2137 (isolated basemat) obtained using 2% and 10% Rayleigh 
damping, lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 13 6 20 12 14 20 13 15 20 16 14 19 
T2Q12 10 5 23 6 3 20 7 10 21 11 13 22 
T2Q18 12 11 21 12 15 24 15 17 25 13 54 25 
T3Q6 8 8 23 10 5 22 10 10 22 8 10 21 
T3Q12 6 6 23 4 8 24 13 15 29 15 14 27 
T3Q18 9 9 23 7 7 26 9 6 23 7 2 26 
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Table 9-42   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; 
lumped-mass stick model (ASB), 2% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.6 0.62 3.33 0.79 0.83 6.65 0.97 1.05 9.84 1.22 1.32 13.31 

T2Q12 0.83 0.92 3.33 1.2 1.24 6.65 1.35 1.43 9.72 1.55 1.63 13.1 
T2Q18 0.95 1.09 3.32 1.5 1.58 6.65 1.8 1.87 9.97 2 2.42 13.33 
T3Q6 0.39 0.41 3.31 0.57 0.59 6.61 0.7 0.71 9.92 0.79 0.82 12.9 

T3Q12 0.51 0.57 3.31 0.79 0.82 6.62 0.97 1.03 9.92 1.14 1.17 13.23 
T3Q18 0.58 0.65 3.31 0.9 0.99 6.62 1.18 1.23 9.93 1.35 1.42 13.14 

 

 

Table 9-43   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; 
lumped-mass stick model (ASB), 10% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.43 0.46 1.82 0.55 0.6 3.55 0.69 0.77 5.38 0.88 0.97 7.29 
T2Q12 0.6 0.68 1.75 0.87 0.93 3.64 1.02 1.07 5.33 1.11 1.18 7.07 
T2Q18 0.66 0.8 1.8 1.04 1.08 3.43 1.17 1.27 5.01 1.36 1.4 6.83 
T3Q6 0.28 0.3 1.82 0.4 0.43 3.64 0.5 0.52 5.46 0.57 0.61 7.28 
T3Q12 0.36 0.42 1.82 0.54 0.58 3.58 0.64 0.67 5.11 0.76 0.81 6.81 
T3Q18 0.41 0.47 1.82 0.61 0.69 3.56 0.82 0.87 5.42 0.94 1 7.02 

 

 

Table 9-44   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 310 (ASB) obtained using 2% and 10% Rayleigh damping, 
lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 28 26 45 30 28 47 29 27 45 28 27 45 
T2Q12 28 26 47 28 25 45 24 25 45 28 28 46 
T2Q18 31 27 46 31 32 48 35 32 50 32 42 49 
T3Q6 28 27 45 30 27 45 29 27 45 28 26 44 
T3Q12 29 26 45 32 29 46 34 35 48 33 31 49 
T3Q18 29 28 45 32 30 46 31 29 45 30 30 47 
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Table 9-45   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417 
(SCV); lumped-mass stick model, 2% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.29 0.32 7.6 0.47 0.5 15.2 0.68 0.7 22.46 0.91 0.94 30.4 
T2Q12 0.36 0.39 7.6 0.57 0.63 15.21 0.75 0.78 22.57 0.94 0.98 30.41 
T2Q18 0.42 0.45 7.61 0.63 0.73 15.21 0.85 0.95 22.82 1.05 1.62 30.4 
T3Q6 0.17 0.19 6.71 0.27 0.3 13.42 0.38 0.41 20.13 0.5 0.53 26.36 
T3Q12 0.23 0.24 6.61 0.34 0.38 13.22 0.45 0.48 19.84 0.53 0.59 26.45 
T3Q18 0.27 0.29 6.53 0.4 0.43 13.05 0.5 0.56 19.58 0.61 0.65 26.11 

Table 9-46   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417 
(SCV); lumped-mass stick model, 10% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 0.2 0.21 1.97 0.34 0.36 3.9 0.5 0.52 5.82 0.69 0.72 7.96 
T2Q12 0.27 0.27 1.94 0.41 0.43 3.97 0.54 0.57 5.82 0.68 0.71 7.76 
T2Q18 0.31 0.31 1.92 0.45 0.45 3.75 0.56 0.6 5.52 0.73 0.72 7.25 
T3Q6 0.13 0.14 1.8 0.21 0.22 3.6 0.3 0.32 5.4 0.4 0.42 7.2 
T3Q12 0.18 0.19 1.79 0.26 0.27 3.57 0.32 0.33 4.94 0.4 0.42 6.74 
T3Q18 0.23 0.23 1.77 0.3 0.32 3.48 0.39 0.4 5.22 0.46 0.48 6.89 

Table 9-47   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 417 (SCV) obtained using 2% and 10% Rayleigh damping, 
lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa max

ya max
za max

xa max
ya max

za max
xa max

ya max
za max

xa max
ya max

za
T2Q6 31 34 74 28 28 74 26 26 74 24 23 74 
T2Q12 25 31 74 28 32 74 28 27 74 28 28 74 
T2Q18 26 31 75 29 38 75 34 37 76 30 56 76 
T3Q6 24 26 73 22 27 73 21 22 73 20 21 73 
T3Q12 22 21 73 24 29 73 29 31 75 25 29 75 
T3Q18 15 21 73 25 26 73 22 29 73 25 26 74 
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Table 9-48   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538 
(CIS); lumped-mass stick model, 2% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.19 0.23 0.78 0.39 0.43 1.57 0.61 0.67 2.34 0.87 0.95 3.14 

T2Q12 0.25 0.28 0.78 0.39 0.44 1.57 0.57 0.61 2.32 0.78 0.88 3.13 
T2Q18 0.3 0.33 0.78 0.43 0.49 1.57 0.58 0.66 2.35 0.77 1.34 3.07 
T3Q6 0.13 0.14 0.77 0.23 0.25 1.53 0.36 0.44 2.3 0.51 0.68 3 

T3Q12 0.18 0.2 0.77 0.26 0.28 1.54 0.36 0.4 2.31 0.5 0.58 3.08 
T3Q18 0.23 0.25 0.77 0.31 0.33 1.54 0.39 0.44 2.32 0.5 0.56 3.09 

 

 

Table 9-49   Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538 
(CIS); lumped-mass stick model, 10% Rayleigh damping 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 0.15 0.17 0.55 0.3 0.32 1.1 0.47 0.51 1.63 0.67 0.72 2.23 

T2Q12 0.2 0.23 0.54 0.31 0.36 1.11 0.46 0.48 1.62 0.6 0.64 2.16 
T2Q18 0.24 0.26 0.55 0.33 0.37 1.04 0.43 0.47 1.55 0.59 0.61 2.07 
T3Q6 0.11 0.12 0.55 0.19 0.21 1.09 0.28 0.3 1.64 0.39 0.42 2.18 

T3Q12 0.16 0.18 0.55 0.23 0.23 1.07 0.28 0.29 1.5 0.36 0.39 2.07 
T3Q18 0.21 0.21 0.54 0.26 0.29 1.07 0.33 0.36 1.63 0.4 0.42 2.12 

 

 

Table 9-50   Percentage reduction in means of peak zero-period accelerations (g) for 30 ground 
motion sets at node 538 (CIS) obtained using 2% and 10% Rayleigh damping, 
lumped-mass stick model 

Model 
50% DBE 100% DBE 150% DBE 200% DBE 

max
xa  max

ya  max
za  max

xa  max
ya  max

za  max
xa  max

ya  max
za  max

xa  max
ya  max

za  
T2Q6 21 26 29 23 26 30 23 24 30 23 24 29 

T2Q12 20 18 31 21 18 29 19 21 30 23 27 31 
T2Q18 20 21 29 23 24 34 26 29 34 23 54 33 
T3Q6 15 14 29 17 16 29 22 32 29 24 38 27 

T3Q12 11 10 29 12 18 31 22 28 35 28 33 33 
T3Q18 9 16 30 16 12 31 15 18 30 20 25 31 
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9.9 Conclusions 

Most of the conclusions related to the horizontal displacement response of the base-isolated 
NPP calculated using the two-node macro model are valid for the stick model. The conclusions 
listed below add to those presented in Chapter 8 and are somewhat specific to the Diablo 
Canyon site and the NPP studied: 

1. All of the isolation systems considered here provide an adequate margin of safety
against buckling at 200% DBE shaking, except for T3Q6.

2. Bearings cavitate at 150% and 100% DBE shaking for isolation systems of periods 2 and
3 sec, respectively. Bearings around the perimeter of the isolation system are more
prone to cavitation due to rocking of the superstructure.

3. The peak horizontal displacements obtained using the two-node macro NPP model are
in good agreement with those for the lumped-mass stick NPP model for the simplified
and advanced isolator representations for 150% DBE shaking and smaller if the
horizontal displacement of lumped-mass stick model is represented by the center of the
basemat.

4. The base-isolated NPP undergoes appreciable torsional motion at shaking intensities
greater than 150% DBE. For example, the contribution of torsion to the horizontal
displacement in the bearings around the perimeter of T3Q6 exceeds 10% at 200% DBE
shaking.

5. Although the two-node macro model can be used to estimate the horizontal
displacement response of a base-isolated NPP, a three-dimensional model that explicitly
considers all of the bearings in the isolation system is required to estimate demands on
individual bearings, and to investigate rocking and torsional responses.

6. The torsional response increases with increasing shear displacement in the bearings
and eccentricity in the structure. Isolations systems with higher strengths (e.g., T2Q18,
T3Q18) exhibit a smaller torsional response.

7. The use of the simplified LR bearing model will underestimate the torsional and rocking
response of a base-isolated NPP.

8. Rayleigh and stiffness proportional damping are suitable for the calculation of isolation
level response as both provide similar estimates of basemat acceleration and isolator
displacement response.

9. The vertical acceleration response in the superstructure is sensitive to the definition of
damping in the structural model. Rayleigh, mass proportional and stiffness proportional
damping models anchored to the isolation frequencies do not appropriately damp the
superstructure.

10. The substructuring technique provides a rational basis to model damping for the
nonlinear response-history analysis of a base-isolated NPP by allowing the use of
different damping values for the isolation system and the superstructure.
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10 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

10.1 Summary 

Mission-critical infrastructure in the form of buildings and bridges has been seismically isolated 
in the United States. Isolation tools and technology developed in the United States have been 
used to protect infrastructure abroad, including LNG tanks and offshore oil and gas platforms. 
Safety-related nuclear facilities have been seismically isolated in France and South Africa at 
sites of low to moderate seismic hazard. The bearings used in those plants were synthetic 
rubber isolators and would not be used for seismic isolation of structures in the United States. 
This because of the reported and documented long-term changes in the mechanical properties 
of the elastomers, specifically the synthetic rubber, which is a neoprene and has stiffened 
significantly (37%) over time, changing the properties of the isolation system. 

Issues related to the application of elastomeric seismic isolation bearings to Nuclear Power 
Plants (NPPs) in the United States were investigated. Sites in regions of high seismic hazard 
were emphasized because they pose the greatest challenges in terms of demands on isolators 
for design basis and beyond design basis earthquake shaking. Mathematical models of low 
damping rubber (LDR) and lead rubber (LR) bearings suitable for analysis of safety-related 
nuclear structures subjected to design basis and beyond design basis earthquake shaking were 
developed to accommodate the following five characteristics or behaviors that may be important 
for US plants sited in regions of high seismic hazard: 

1. Strength degradation in shear due to heating of the lead core (LR bearings)
2. Variation in buckling load due to horizontal displacement
3. Cavitation and post-cavitation behavior due to tensile loading
4. Variation in axial stiffness due to horizontal displacement
5. Variation in shear stiffness due to axial load

These advanced mathematical models, ElastomericX and LeadRubberX, extended the available 
robust formulation in shear and compression and implemented a new phenomenological model 
for behavior in tension. LeadRubberX includes an algorithm to address heating of the lead core 
in a LR bearing. The mathematical models were implemented in OpenSees (McKenna et al., 
2006) and ABAQUS (Dassault, 2010e) as user elements, and are being implemented in LS-
DYNA (LSTC, 2012a) at the time of this writing, to enable use by researchers, regulators and 
the design professional community. The models were verified and validated following ASME 
best practices (ASME, 2006). A mathematical model for high-damping rubber bearings, HDRX, 
was implemented in OpenSees; the model includes many of the features of ElastomericX but 
implements the Grant et al. (2004) model in shear. HDRX was written for completeness and not 
in support of application to nuclear facilities in the United States. 

The mathematical models in the shear (horizontal) and axial directions were validated using 
existing experimental data. A series of experiments were conducted at the University at Buffalo 
to characterize behavior of elastomeric bearings in tension and tension/shear. Sixteen low 
damping rubber bearings from two manufacturers, with similar geometric properties but different 
shear moduli, were tested under various loading conditions to identify those factors that affect 
cavitation in an elastomeric bearing. The effect of cavitation on the shear and axial properties of 
elastomeric bearings was investigated by performing post-cavitation tests. The test data was 
used to validate a phenomenological model of an elastomeric bearing in tension.  
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A model of a base-isolated nuclear island was analyzed using response-history techniques. The 
NPP nuclear island model was derived from an early version of the Westinghouse AP1000 
reactor (Orr, 2003) but is considered to be representative of large light water reactors currently 
under construction at Vogtle and Summer in the United States. The set of 30 three-component 
ground motions selected and spectrally matched by Kumar (2015) to be consistent with uniform 
hazard response spectra (UHRS) for design basis earthquake (DBE) shaking at the site of the 
Diablo Canyon Nuclear Generating Station were used for response-history analysis. The ground 
motions were amplitude scaled by 1.0, 1.5, 1.67 and 2.0 to represent DBE shaking (1.0) and 
three representations of beyond design basis earthquake (BDBE, 1.5, 1.67 and 2.0) shaking at 
Diablo Canyon. The return period of DBE shaking at Diablo Canyon is 10,000 years. Two times 
DBE shaking at Diablo Canyon is associated with a return period of approximately 100,000 
years.  

Two representations of the base-isolated NPP were considered: 1) a two-node macro model, 
involving a macro seismic isolator and a supported mass equal to that of the model NPP, and 2) 
a lumped-mass stick model, involving 273 isolators distributed across the footprint of the 
basemat and lumped mass stick models representing the auxiliary building containment vessel 
and containment internal structure. The isolators were LR bearings modeled using both the 
simplified and the advanced representations of behavior. The simplified model, with equal axial 
stiffness in compression and tension (and independent of shear displacement), represents the 
state-of-the-art for response-history analyses of seismically isolated structures using 
contemporary software programs. The advanced isolator model considers the five 
characteristics of LR bearings identified above. Isolation systems of different combinations of 
isolated time-period (T ) and supported weight to strength ratios ( /dQ W ) were analyzed. The 
effect of each of the five characteristics on the response of the isolated structure was quantified. 
Results calculated using the simplified and advanced models were compared and contrasted. 
The lumped-mass stick models of the base-isolated NPP provided additional information on 
torsional and rocking response and the spatial distribution of cavitation and buckling in the 
bearings comprising the isolation system. Floor response spectra in two orthogonal horizontal 
directions were obtained at different locations in the stick model. Vertical accelerations in the 
superstructure of the base-isolated NPP were sensitive to the definition of damping. A 
substructuring method was proposed that allowed the use of different damping values for the 
isolation system and the superstructure and provided a more realistic estimate of vertical 
acceleration without overdamping the horizontal response. The reported data allow a reader to 
judge which representation of an isolated NPP (macro model or lumped-mass stick) and which 
features, if any, of the advanced isolator model are needed to compute response for different 
intensities of earthquake shaking.  

10.2 Conclusions 

The key conclusions of the research presented in this report are: 

1. The value of 3GA  is a reasonable estimate of the cavitation strength of an elastomeric 
bearing, where G is the shear modulus and A is the bonded area. 

2. There is no significant change in the shear modulus, compressive stiffness, and buckling 
load of a bearing after cavitation. 

3. Of the five characteristics of LR bearings discussed, 1) strength degradation due to 
heating of the lead core, 2) variation in buckling load due to horizontal displacement, and 
3) variation in axial stiffness due to horizontal displacement, affect most significantly the 
responses of base-isolated NPPs.   
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4. Heating of the lead core in a LR bearing has a relatively small effect (< 10%) on
horizontal DBE (shear) displacements but the influence increases at higher intensities of
shaking.

5. For a given isolation period, the effect of lead core heating decreases with an increase in
the ratio of characteristic strength to weight, whereas for a given value of the ratio, the
effect decreases with an increase in isolation period.

6. The characteristic strength of a LR bearing may degrade substantially during extreme
earthquake shaking, with values falling below half the initial value for 150+% DBE
shaking. The temperature in a lead core may rise by 100+ °C for 150+% DBE shaking.

7. The influence of the variation in axial stiffness with horizontal displacement on the axial
response is negligible for DBE shaking but considerable for beyond design basis
shaking, with percentage changes in axial displacement being greater than those in axial
force.

8. The two-node macro model can be used to estimate the horizontal displacement
response of a base-isolated NPP, but a three-dimensional model that explicitly considers
all of the bearings in the isolation system is required to estimate demands on individual
bearings, and to investigate rocking and torsional response.

9. The buckling load of a LR bearing varies substantially during earthquake shaking. The
displacement-dependent model for buckling load predicts failure for many more ground
motions than the constant buckling load model, and is thus recommended for use in
practice.

10. The torsional response of a base-isolated NPP nuclear island structure may be
significant at high intensities of shaking due to high shear displacement demand and
eccentricity in the structure. For example, the contribution of torsion to the horizontal
displacement in the bearings around perimeter of T3Q6 exceeds 10% at 200% DBE
shaking.

11. The use of the simplified LR bearing model will underestimate the torsional and rocking
response of a base-isolated NPP nuclear island structure, with the differences becoming
significant at the higher intensities of ground shaking.

12. The superstructure response of the lumped-mass stick model representation of a base-
isolated NPP nuclear island structure is sensitive to the definition of damping (e.g.,
Rayeligh, mass proportional, stiffness proportional). A substructuring approach that
allows the analyst to specify reasonable level of damping to all modes of interest in the
superstructure should be used in response-history analysis.

10.3 Recommendations for Future Research 

The following recommendations are made for future studies: 

1. Experiments were performed on bearings with very thin rubber layers (4 mm and 7 mm),
which likely affected their response under cyclic tensile loading. Full-size bearings
representative of those to be used for base-isolated NPPs should be tested using
protocols similar to those described in this report.

2. Response-history analysis was performed for the site of the Diablo Canyon Nuclear
Generating Station: a site of high seismic hazard. These analysis results could inform
preliminary decisions regarding required model complexity at sites of lower hazard.
However, similar response-history analyses should be performed for representative sites
of low and moderate seismic hazard in the Central and East United States (CEUS) to
better inform decision making.

3. The lumped-mass stick model appears to provide adequate information on the response
of the isolation system and loads and displacements on individual isolators. Response-
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history analysis of a detailed finite element model of base-isolated NPP should be 
performed to investigate the accuracy of the superstructure responses calculated 
obtained using the stick model. 
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APPENDIX A    EXPERIMENTAL PROGRAM AND RESULTS 

A.1 Experimental Program
The detailed sequence proposed for the testing program is presented here. The characterization 
tests before and after cavitation are shaded grey. Some bearings failed prematurely and the 
entire number of planned experiments could not be completed for those bearings. Experiments 
that were planned but could not be performed are shaded orange. 
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A.2 Original Load Cell Design Sheet (source: nees.buffalo.edu)
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A.3 String Potentiometer Data Sheet (source: www.celesco.com) 
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A.4 Linear Potentiometer Data Sheet (source: www.etisystems.com)
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A.5 Effect on tensile behavior of a central hole in a bearing 
Large diameter elastomeric bearings are generally fabricated using a central mandrel that 1) 
enables the stacking of the alternate layers of rubber and steel shims prior to vulcanization, and 
2) facilitates efficient heating of the bearing for vulcanization. Upon removal, the resulting hole 
can be filled with a lead plug to form a LR bearing. 

The behaviors of LR and LDR bearings in tension have been assumed to be identical because 
the lead plug is not actively engaged. The effect of the central hole on tensile behavior has been 
assumed to be negligible but is studied here because excessive values of tensile stress and/or 
shear strain could trigger premature failure due to cavitation or debonding of the rubber from a 
shim plate. 

Axisymmetric finite element analysis was performed to investigate the effect of the central hole 
on distributions of tensile stress and shear strain. Analysis of one 7-mm thick constrained rubber 
layers from the DIS bearing type DA (see Table 6-2) was performed using ABAQUS (Dassault, 
2010e). The elastomer was modeled as an elastic material with Young’s modulus = 1.35 MPa 
and Poisson’s ratio = 0.49. The model is shown in Figure A.1. The central hole, when modeled, 
was 20 mm in diameter. The X-Y coordinate system is shown; the origin (0, 0) is identified by 
the solid circle. 

 
Figure A-1 Tension in a single constrained rubber layer  
Consider the distribution of normal stress and shear strain at the rubber-shim interface of a 
constrained rubber layer that is shown in Figure A.2b and Figure A.2c; this layer has no central 
hole. The applied axial displacement, tu  = 1 mm. The horizontal axis is distance x  normalized 
by one half of the outside diameter, oD , of the rubber layer. 

The following boundary conditions are imposed: 

a) Zero displacements in the two horizontal directions ( 1U = 0 and 2U = 0) at Y  = 0. 
b) Zero displacement in the X  direction ( 1U = 0) atY  = rt . 
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For this example, the distribution of normal stress is approximately parabolic, with a maximum 
value at the center of the bearing. The shear strain is small and approximately constant near the 
center of the bearing, and has a maximum value at the free edge.  

Consider now the distribution of normal stress and shear strain at the rubber-shim interface of a 
constrained rubber layer with a central hole of radius 10 mm that is shown in Figure A.3. The 
elastomer and the boundary conditions are those reported above. The introduction of a central 
hole does not change the shear strain at the outer radius ( X = 150 mm). The inclusion of a 
central hole leads to a significant (50%) increase in the maximum shear strain, with the peak 
value observed at the inner radius ( X = 10 mm). The distributions of shear and normal stress in 
a constrained rubber layer with and without a central hole are presented together in Figure A.4. 

There are two mode of failures of elastomeric bearings in tension: 1) formation of cavities in the 
rubber volume, and 2) debonding at the rubber-shim interface. The first mode of failure depends 
on the hydrostatic stress. As the inclusion of a central hole does not change the maximum value 
of normal stress in the three orthogonal direction, the cavitation strength of an elastomeric 
bearing will not be significantly affected by the hole. Bearings with a central hole will have a 
lower tensile strength if failure occurs due to debonding (prior to cavitation) because the hole 
increases the maximum shear strain. The probable location of the debonding is rubber-shim 
interface at the inner perimeter.   

The lead core in a LR bearing does not contribute to the compressive and tensile capacity. The 
results of tensile tests on elastomeric bearings with a central hole are likely better correlated to 
the behavior of LR bearing in tension than tests on bearings without a hole. 
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a) Model of the rubber layer 

 
b) Shear strain at rubber-shim interface 

 
c) Tensile stress at rubber shim interface 

Figure A-2 Shear strain and tensile stress in a constrained solid rubber layer in tension 
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a) Model of the annular rubber layer

b) Shear strain at rubber-shim interface

c) Tensile stress at rubber shim interface
Figure A-3 Shear strain and tensile stress in a constrained annular rubber layer in tension 
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a) Shear strain b) Tensile stress 

Figure A-4 Distribution of shear strain in the radial direction 
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A.6 Failure Mode in Tension
The description of the failure of each bearing in tension is presented here. The mode is defined 
here as the loading conditions under which the bearing failed (e.g., pure tension, tension with 
lateral offset). The mechanism describes how failure began.  
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Table A-2 Failure states of bearings under tensile load (contd.) 

Failure description Image of failure 

Bearing: DA1 
Test no: DA1_13 
 
Failure mode: tension with lateral offset 
Failure mechanism: cavities in rubber layer 
 
Image note: 214% lateral offset, 25% tensile 
strain 
 

 

Bearing: DA2 
Test no: DA2_3a 
 
Failure mode: tension 
Failure mechanism: cavities in rubber layer 
 
Image note: 50% tensile strain 
 

 

Bearing: DA3 
Test no: DA3_06 
 
Failure mode: tension 
Failure mechanism: unknown 
 
Image note: 65% tensile strain 
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Table A-2 Failure states of bearings under tensile load (contd.) 

Failure description Image of failure 

Bearing: DA4 
Test no: DA4_14 

Failure mode: tension 
Failure mechanism: unknown 

Image note: 25% tensile strain 

Bearing: DB1 
Test no: DB1_1a 

Failure mode: no failure 

Image note: 187% lateral offset 
 10% tensile strain 

Bearing: DB1 
Test no: DB1_14 

Failure mode: no failure 

Image note: 93% tensile strain 

Bearing: DB2 
Test no: DB2_01 

Failure mode: tension with lateral offset 
Failure mechanism: cavities in rubber layer 

Image note: 187% lateral offset 
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Table A-2 Failure states of bearings under tensile load (contd.) 

Failure description Image of failure 
Bearing: DB3 
Test no: DB3_1a 
 
Failure mode: tension 
Failure mechanism: unknown  
 
 

No rupture 

Bearing: DB4 
Test no: DB4_11a 
 
Failure mode: no failure 
 
Image note: 100% tensile strain  

 

Bearing: DB4 
Test no: DB4_21 
 
Failure mode: no failure 
 
Image note: 187% lateral offset and 50% 
                    tensile strain 
 

 

Bearing: DB4 
Test no: DB4_21 
 
Failure mode: no failure 
 
Image note: 187% lateral offset and 100% 
                     tensile strain 
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Table A-2 Failure states of bearings under tensile load (contd.) 

Failure description Image of failure 

Bearing: MA1 
Test no: MA1_08 

Failure mode: tension 
Failure mechanism: debonding 

Image note: 25% tensile strain 

Bearing: MA2 
Test no: MA2_03 

Failure mode: tension 
Failure mechanism: debonding 

Image note: 65% tensile strain 

Bearing: MA3 
Test no: MA3_06 

Failure mode: tension 
Failure mechanism: unknown 

Image note: 50% tensile strain 
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Table A-2 Failure states of bearings under tensile load (contd.) 

Failure description Image of failure 

Bearing: MA4 
Test no: MA4_03 
 
Failure mode: tension 
Failure mechanism: debonding  
 
Image note: 50% tensile strain 
 

 
Bearing: MB1 
Test no: MB1_12 
 
Failure mode: tension 
Failure mechanism: unknown  
 

Image not available 

Bearing: MB2 
Test no: MB2_01 
 
Failure mode: tension 
Failure mechanism: debonding  
 
Image note: 100% tensile strain 
 

 

Bearing: MB3 
Test no: MB3_06 
 
Failure mode: tension 
Failure mechanism: debonding  
 
Image note: 50% tensile strain 
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Table A-2 Failure states of bearings under tensile load (contd.) 

Failure description Image of failure 

Bearing: MB4 
Test no: MB4_01 

Failure mode: tension 
Failure mechanism: debonding 

Image note: 100% tensile strain 
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APPENDIX B    RESPONSE OF THE TWO-NODE MACRO MODEL OF 
BASE-ISOLATED NUCLEAR POWER PLANT 

B.1 Strength Degradation in Shear due to Heating of the Lead Core
The percentiles of peak horizontal displacement and shear force with consideration of heating 
are presented here. The peak responses for each ground motion set are assumed to distribute 
lognormally with arithmetic mean µ , median θ , and logarithmic standard deviation σ , which 
are computed as: 

( )µ θ σ θ
= = =

 
= = = −  − 

∑ ∑ ∑ 2

1 1 1

1 1 1exp ln ln ln
1

n n n

i i i
i i i

y y y
n n n

  

where n  is the total number of ground motion sets (=30), and iy  is the peak response for ith 
ground motion set. If a data set Y  distributes lognormally then logY  follows a normal 
(Gaussian) distribution, and is referred to associated normal distribution of Y . The mean and 
standard deviation of associated normal distribution are θlog  and σ , respectively. The 
Standardized normal distribution1 table can be used to calculate the standard normal variable 

pu  that corresponds to pth percentile. The pth percentile response of Y  is calculated as: 

{ }θ σ θ σ−= = =1( | ln , ) : ( | ln , )p p py F p y F y p

The value of pu  for 50th (median), 90th, and 99th percentiles can be obtained as 0, 1.29, and 2.33 
respectively, from standard normal distribution table. For model T2Q3 in Table B.1 at 100% 
DBE, median θ  = 471 and σ  = 0.12, which gives the 90th and 99th percentile response as: 

= + × =90 exp(ln471 1.29 0.22) 550y mm  

= + × =99 exp(ln471 2.33 0.22) 623y mm  

1 If Y is a normal random variable with distribution N(μ, σ), then U = (Y- μ)/ σ is the standardized normal 
random vairbale with distribution N(0,1). The cumulative distribution probability of U can be obtained from 
standard normal distribution table. 
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APPENDIX C    RESPONSE OF THE LUMPED-MASS STICK MODEL OF 
BASE-ISOLATED NUCLEAR POWER PLANT 

C.1 Model of Nuclear Power Plant
The finite element model provided by Roche-Rivera (2013) provides dimensions of the sample 
nuclear power plant that is studied in this report. Figure C.1 and C.2 reproduce information from 
Roche-Rivera (2013). 
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Figure C-1 The plan view of the representative reactor model (Roche-Rivera, 2013) 
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Figure C-2 The plan view of the representative reactor model 
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C.2 Geometric and Material Properties of the Stick Model 
The geometric and material properties of the three lumped-mass stick models of the Auxiliary 
Shield Building (ASB), Containment Internal Structure (CIS), and Steel Containment Vessel 
(SCV) are reproduced from EPRI (2007) in this appendix in Tables C.1 and C.2. 
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Table C-1 Nodes and mass properties for structural model (units: kip, feet, seconds) 
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Table C.1 Nodes and mass properties for structural model (contd.) 
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Table C-2 Element properties for structural model (units: kip, feet, seconds) 



 

C-8 
 

Table C.2 Element properties for structural model (contd.) 
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Table C.2 Element properties for structural model (contd.) 
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C.3 Modal Analysis of Lumped-Mass Stick Model 
The fixed-base models of the ASB, CIS, and SCV are created in SAP2000. Modal analyses of 
the fixed-base models of ASB, SCV, and CIS are performed and results are presented below. 

 

 

Table C-3 Modal properties of the Auxiliary Shield Building (ASB) 

Mode Period (sec) Freq. (Hz) UX UY UZ SumUX SumUY SumUZ 
1 0.362 2.762 0.000 0.405 0.000 0.000 0.405 0.000 
2 0.323 3.097 0.447 0.000 0.000 0.447 0.405 0.000 
3 0.158 6.345 0.008 0.000 0.000 0.455 0.405 0.000 
4 0.142 7.026 0.001 0.177 0.000 0.456 0.583 0.000 
5 0.136 7.336 0.369 0.000 0.000 0.825 0.583 0.000 
6 0.093 10.704 0.000 0.000 0.573 0.825 0.583 0.573 
7 0.082 12.239 0.000 0.000 0.000 0.825 0.584 0.573 
8 0.076 13.090 0.014 0.000 0.000 0.839 0.584 0.573 
9 0.072 13.938 0.000 0.181 0.000 0.839 0.765 0.573 

10 0.070 14.197 0.038 0.000 0.000 0.877 0.765 0.573 
11 0.064 15.624 0.000 0.105 0.000 0.877 0.870 0.573 
12 0.051 19.656 0.027 0.000 0.000 0.904 0.870 0.573 
13 0.049 20.275 0.000 0.005 0.000 0.904 0.875 0.573 
14 0.045 22.124 0.000 0.000 0.000 0.904 0.875 0.573 
15 0.043 23.064 0.003 0.000 0.000 0.907 0.875 0.573 
16 0.043 23.251 0.000 0.000 0.282 0.907 0.875 0.855 
17 0.040 24.998 0.015 0.000 0.000 0.923 0.875 0.855 
18 0.039 25.757 0.000 0.000 0.000 0.923 0.875 0.855 
19 0.039 25.871 0.000 0.022 0.000 0.923 0.897 0.855 
20 0.033 30.346 0.000 0.001 0.000 0.923 0.898 0.855 
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Table C-4 Modal properties of the Steel Containment Vessel (SCV) 

Mode Period (sec) Freq. (Hz) UX UY UZ SumUX SumUY SumUZ 
1 0.275 3.632 0.000 0.157 0.000 0.000 0.157 0.000 
2 0.180 5.548 0.716 0.000 0.000 0.716 0.157 0.000 
3 0.158 6.325 0.000 0.603 0.000 0.716 0.760 0.000 
4 0.157 6.371 0.000 0.000 0.092 0.716 0.760 0.092 
5 0.104 9.628 0.043 0.000 0.000 0.759 0.760 0.092 
6 0.083 12.048 0.000 0.000 0.000 0.759 0.760 0.092 
7 0.062 16.216 0.000 0.000 0.674 0.759 0.760 0.766 
8 0.053 18.910 0.000 0.148 0.000 0.759 0.908 0.766 
9 0.053 18.973 0.152 0.000 0.000 0.911 0.908 0.766 

10 0.038 26.652 0.000 0.000 0.135 0.911 0.908 0.901 
11 0.032 31.388 0.000 0.020 0.000 0.911 0.929 0.901 
12 0.031 31.976 0.015 0.000 0.000 0.926 0.929 0.901 
13 0.028 35.829 0.000 0.011 0.000 0.926 0.939 0.901 
14 0.027 36.515 0.000 0.000 0.000 0.926 0.939 0.901 
15 0.027 36.559 0.015 0.000 0.000 0.941 0.939 0.901 
16 0.023 44.318 0.000 0.000 0.014 0.941 0.939 0.914 
17 0.019 52.367 0.000 0.024 0.000 0.941 0.964 0.914 
18 0.019 53.011 0.024 0.000 0.000 0.964 0.964 0.914 
19 0.017 60.245 0.000 0.000 0.000 0.964 0.964 0.914 
20 0.016 61.637 0.000 0.000 0.048 0.964 0.964 0.963 
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Table C-5 Modal properties of the Containment Internal Structure (CIS) 

Mode Period (sec) Freq. (Hz) UX UY UZ SumUX SumUY SumUZ 
1 0.086 11.682 0.002 0.212 0.000 0.002 0.212 0.000 
2 0.079 12.608 0.227 0.002 0.000 0.229 0.214 0.000 
3 0.061 16.423 0.005 0.014 0.000 0.235 0.227 0.000 
4 0.060 16.538 0.003 0.048 0.000 0.238 0.275 0.000 
5 0.054 18.566 0.026 0.011 0.000 0.264 0.286 0.000 
6 0.048 20.648 0.129 0.002 0.000 0.393 0.289 0.000 
7 0.045 22.350 0.001 0.041 0.000 0.394 0.330 0.000 
8 0.039 25.879 0.010 0.241 0.000 0.404 0.571 0.000 
9 0.036 27.866 0.148 0.107 0.000 0.552 0.678 0.000 

10 0.034 29.032 0.145 0.041 0.000 0.698 0.718 0.000 
11 0.025 40.062 0.000 0.000 0.504 0.698 0.718 0.504 
12 0.020 51.211 0.039 0.083 0.000 0.736 0.802 0.504 
13 0.018 54.918 0.107 0.053 0.000 0.843 0.855 0.504 
14 0.015 65.950 0.000 0.000 0.264 0.843 0.855 0.768 
15 0.012 83.236 0.076 0.062 0.000 0.918 0.916 0.768 
16 0.011 91.693 0.000 0.000 0.007 0.918 0.916 0.775 
17 0.010 99.850 0.051 0.057 0.000 0.969 0.973 0.775 
18 0.008 129.955 0.000 0.000 0.127 0.969 0.973 0.902 
19 0.007 138.466 0.000 0.000 0.005 0.969 0.973 0.907 
20 0.004 284.819 0.000 0.000 0.093 0.969 0.973 1.000 
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C.4 Simplified Calculation of Modal Frequencies
A simplified model of the base-isolated nuclear power plant is presented in Figure C.3 to 
estimate the horizontal, vertical, torsional and rocking frequencies. 

Figure C-3 A two-dimensional representation of base-isolated NPP 

The basemat and superstructure is considered rigid and their masses are lumped at their 
respective center of gravities. The center of gravities of the different component of the base-
isolated NPP are calculated using nodal properties presented in Table C.2, and are presented in 
Table C.6. The dimensions of the concrete basemat slab is 100m×60m×2.5m and the mat is 
assumed to be rigid in its plane. A symmetric layout of isolators is used beneath the basemat 
with the distance between the centers of adjacent bearings equal to 5 m, which requires a total 
of = 273bN  isolators. This results in 13 and 21 rows of LR bearings in the two orthogonal 
horizontal directions. The layout of isolators is shown in Figure 9-5. 

The modal frequencies are obtained using the properties of LR bearings presented in Table 9-5 
and Table 9-6 for the isolation system T2Q6. The horizontal and vertical stiffnesses, 0HK  and 

0vK , of LR bearings are 5.29 MN/m and 6623 MN/m, respectively. The rocking frequency is 
obtained for the rotational motion of the superstructure along the shorter dimension (60 m) of 
the basemat, which gives smaller frequency than the rotation about the larger dimension (100 
m).  



 

C-14 
 

The modal frequencies are calculated as: 
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+
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K X
f Hz
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where 1h  and 2h  are the distances of the center of gravities of basemat and superstructure from 
the center of gravity of whole superstructure. 

Table C-6 Location of the center of gravities 
Structure Total mass (kg) C.G. Total height (m) 

Superstructure (ss) 

ASB 65571108 28.3 83.1 
SCV 3733776 40.9 67.5 
CIS 40979671 9.5 33.1 

Total 110284555 21.8 83.1 
Basemat (bm) 36000000 1.25 2.5 

Base-isolated NPP 
(Superstructure+basemat) 146284555 17.41 85.6 

1. Distance from the C.G. of the basemat 
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C.5 Responses of the Base-isolated Nuclear Power Plant
The responses of the base-isolated NPP using the simplified and advanced LR bearing models 
are presented in this appendix. Mean ( µ ), median θ  (50th), and 90th and 99th percentiles 
response are tabulated together with σ , which logarithmic standard deviation. The calculation 
of percentile responses are described in Appendix B.1 and Section 9.4. 

The simplified isolator model uses a linear elastic model in the axial direction, and results in 
same σ  in displacement and force response in Table C.8 through C.11. A large dispersion (σ ) 
in the tensile response (Table C.8 and C.9) of the base-isolated NPP models for 30 ground 
motion sets is due to fact that some ground motions produce tensile response that is negligible 
or very close to zero. Cavitation is observed in the bearings of base-isolated NPP using 
advanced isolator model at 200% DBE shaking, hence the maximum tensile force response is 
close to the cavitation force in LR bearings for all ground motions. This results in a very small 
dispersion in tensile force response at 200% DBE shaking in Table C.20. 
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C.6 Basemat Response
Displacement profiles for mean peak tensile (positive) and compressive (negative) displacement 
of bearings for 30 ground motion sets are presented here at a shaking intensity of 200% DBE. 
The outer bearings experience higher axial displacements than the inner bearings due to 
rocking and torsion of superstructure. 
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a) T2Q6 b) T2Q12 

  
c) T2Q18 d) T3Q6 

  
e) T3Q12 f) T3Q18 

Figure C-4 Spatial profile for mean of peak axial displacements (mm) for sets of 30 ground 
motion sets, 200% DBE 
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C.7 Superstructure Response
Figures C.4 and C.5 present the variations of zero-period acceleration along the height of the 
superstructure for the ASB, CIS, and SCV, and isolation systems T2Q6 and T2Q12. 
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a) 50% DBE, ASB b) 100% DBE, ASB c) 150% DBE, ASB d) 200% DBE, ASB 

    
e) 50% DBE, CIS f) 100% DBE, CIS g) 150% DBE, CIS h) 200% DBE, CIS 

    
i) 50% DBE, SCV j) 100% DBE, SCV k) 150% DBE, SCV l) 200% DBE, SCV 

Figure C-5 Mean peak zero-period accelerations (g) for the 30 ground motion sets, T2Q6 
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a) 50% DBE, ASB b) 100% DBE, ASB c) 150% DBE, ASB d) 200% DBE, ASB

e) 50% DBE, CIS f) 100% DBE, CIS g) 150% DBE, CIS h) 200% DBE, CIS

i) 50% DBE, SCV j) 100% DBE, SCV k) 150% DBE, SCV l) 200% DBE, SCV

Figure C-6 Mean peak zero-period accelerations (g) for the 30 ground motion sets, T2Q12 
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C.8 Floor Response Spectra 

C.8.1 Simplified isolator model 
Floor response spectra (damping = 5%) at the center of the basemat (node 2137) is presented 
in Figure C.6 through C.8 for simplified isolator model. 
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a) T2Q6, 50% DBE b) T2Q6, 100% DBE c) T2Q6, 150% DBE d) T2Q6, 200% DBE

e) T2Q12, 50% DBE f) T2Q12, 100% DBE g) T2Q12, 150% DBE h) T2Q12, 200% DBE

i) T2Q18, 50% DBE j) T2Q18, 100% DBE k) T2Q18, 150% DBE l) T2Q18, 200% DBE

m) T3Q6, 50% DBE n) T3Q6, 100% DBE o) T3Q6, 150% DBE p) T3Q6, 200% DBE

q) T3Q12, 50% DBE r) T3Q12, 100% DBE s) T3Q12, 150% DBE t) T3Q12, 200% DBE

u) T3Q18, 50% DBE v) T3Q18, 100% DBE w) T3Q18, 150% DBE x) T3Q18, 200% DBE

Figure C-7 Floor response spectra, simplified model, node 2137, X direction 
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a) T2Q6, 50% DBE b) T2Q6, 100% DBE c) T2Q6, 150% DBE d) T2Q6, 200% DBE 

    
e) T2Q12, 50% DBE f) T2Q12, 100% DBE g) T2Q12, 150% DBE h) T2Q12, 200% DBE 

    
i) T2Q18, 50% DBE j) T2Q18, 100% DBE k) T2Q18, 150% DBE l) T2Q18, 200% DBE 

    
m) T3Q6, 50% DBE n) T3Q6, 100% DBE o) T3Q6, 150% DBE p) T3Q6, 200% DBE 

    
q) T3Q12, 50% DBE r) T3Q12, 100% DBE s) T3Q12, 150% DBE t) T3Q12, 200% DBE 

    
u) T3Q18, 50% DBE v) T3Q18, 100% DBE w) T3Q18, 150% DBE x) T3Q18, 200% DBE 

Figure C-8 Floor response spectra, simplified model, node 2137, Y direction 
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a) T2Q6, 50% DBE b) T2Q6, 100% DBE c) T2Q6, 150% DBE d) T2Q6, 200% DBE

e) T2Q12, 50% DBE f) T2Q12, 100% DBE g) T2Q12, 150% DBE h) T2Q12, 200% DBE

i) T2Q18, 50% DBE j) T2Q18, 100% DBE k) T2Q18, 150% DBE l) T2Q18, 200% DBE

m) T3Q6, 50% DBE n) T3Q6, 100% DBE o) T3Q6, 150% DBE p) T3Q6, 200% DBE

q) T3Q12, 50% DBE r) T3Q12, 100% DBE s) T3Q12, 150% DBE t) T3Q12, 200% DBE

u) T3Q18, 50% DBE v) T3Q18, 100% DBE w) T3Q18, 150% DBE x) T3Q18, 200% DBE

Figure C-9 Floor response spectra, simplified model, node 2137,  Z direction 
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C.8.2 Advanced isolator model 

Floor response spectra (damping = 5%) at the center of the basemat (node 2137) is presented 
in Figure C.9 through C.11 for advanced isolator model. Greater amplitude and record-to-record 
variability in the response spectra is observed with respect to results calculated using the 
simplified model. The effects of the five characteristics of LR bearings discussed in Section 9.4 
become significant at the higher intensities of earthquake shaking.  
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a) T2Q6, 50% DBE b) T2Q6, 100% DBE c) T2Q6, 150% DBE d) T2Q6, 200% DBE

e) T2Q12, 50% DBE f) T2Q12, 100% DBE g) T2Q12, 150% DBE h) T2Q12, 200% DBE

i) T2Q18, 50% DBE j) T2Q18, 100% DBE k) T2Q18, 150% DBE l) T2Q18, 200% DBE

m) T3Q6, 50% DBE n) T3Q6, 100% DBE o) T3Q6, 150% DBE p) T3Q6, 200% DBE

q) T3Q12, 50% DBE r) T3Q12, 100% DBE s) T3Q12, 150% DBE t) T3Q12, 200% DBE

u) T3Q18, 50% DBE v) T3Q18, 100% DBE w) T3Q18, 150% DBE x) T3Q18, 200% DBE

Figure C-10 Floor response spectra, advanced model, node 2137, X direction 
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a) T2Q6, 50% DBE b) T2Q6, 100% DBE c) T2Q6, 150% DBE d) T2Q6, 200% DBE 

    
e) T2Q12, 50% DBE f) T2Q12, 100% DBE g) T2Q12, 150% DBE h) T2Q12, 200% DBE 

    
i) T2Q18, 50% DBE j) T2Q18, 100% DBE k) T2Q18, 150% DBE l) T2Q18, 200% DBE 

    
m) T3Q6, 50% DBE n) T3Q6, 100% DBE o) T3Q6, 150% DBE p) T3Q6, 200% DBE 

    
q) T3Q12, 50% DBE r) T3Q12, 100% DBE s) T3Q12, 150% DBE t) T3Q12, 200% DBE 

    
u) T3Q18, 50% DBE v) T3Q18, 100% DBE w) T3Q18, 150% DBE x) T3Q18, 200% DBE 

Figure C-11 Floor response spectra, advanced model, node 2137, Y direction 
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a) T2Q6, 50% DBE b) T2Q6, 100% DBE c) T2Q6, 150% DBE d) T2Q6, 200% DBE

e) T2Q12, 50% DBE f) T2Q12, 100% DBE g) T2Q12, 150% DBE h) T2Q12, 200% DBE

i) T2Q18, 50% DBE j) T2Q18, 100% DBE k) T2Q18, 150% DBE l) T2Q18, 200% DBE

m) T3Q6, 50% DBE n) T3Q6, 100% DBE o) T3Q6, 150% DBE p) T3Q6, 200% DBE

q) T3Q12, 50% DBE r) T3Q12, 100% DBE s) T3Q12, 150% DBE t) T3Q12, 200% DBE

u) T3Q18, 50% DBE v) T3Q18, 100% DBE w) T3Q18, 150% DBE x) T3Q18, 200% DBE

Figure C-12 Floor response spectra, advanced model, node 2137, Z direction 
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