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ABSTRACT

Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable
strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear
structures. Although seismic isolation has been deployed in nuclear structures in France and
South Africa, it has not seen widespread use. This has been attributed to, in part, limited new
build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for
the analysis, design and construction of isolation systems specific to nuclear structures.

The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to
consider seismic isolation for new large light water and small modular reactors to withstand the
effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not
expected to change substantially in design basis shaking. However, under shaking more intense
than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to
heating associated with energy dissipation, some bearings in an isolation system may
experience net tension, and the compression and tension stiffness may be affected by the
horizontal displacement of the isolation system.

The effects of variation in mechanical properties of lead-rubber bearing on the response of
base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical
model of lead-rubber bearing. The model was verified and validated, and implemented in
OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to
characterize the behavior of elastomeric bearings in tension. The test data was used to validate
a phenomenological model of an elastomeric bearing in tension. The value of three times the
shear modulus of rubber in the elastomeric bearing was found to be a reasonable estimate of
the cavitation stress of a bearing. The sequence of loading did not change the behavior of an
elastomeric bearing under cyclic tension, and there was no significant change in the shear
modulus, compressive stiffness, and buckling load of a bearing following cavitation.

Response-history analysis of base-isolated NPP structures was performed using a two-node
macro model and a lumped-mass stick model. A comparison of responses obtained from
analysis using simplified and advanced isolator models showed that the variation in buckling
load due to horizontal displacement and strength degradation due to heating of lead cores affect
the responses of a base-isolated NPP most significantly. The two-node macro model can be
used to estimate the horizontal displacement response of a base-isolated NPP, but a three-
dimensional model that explicitly considers all of the bearings in the isolation system will be
required to estimate demands on individual bearings, and to investigate rocking and torsional
responses. The use of the simplified LR bearing model underestimated the torsional and rocking
response of the base-isolated NPP. Vertical spectral response at the top of containment building
was very sensitive to how damping was defined for the response-history analysis.






FOREWORD

As part of their 2008-2011 Seismic Research Program Plan, the Office of Regulatory Research
(RES) of the U.S. Nuclear Regulatory Commission (USNRC) initiated an effort to investigate
seismic base isolation technology. Base isolation is a technology developed to protect a
structure from the damaging effects of earthquake shaking, by essentially decoupling the
structure from high frequency, horizontal earthquake shaking. Operating seismically isolated
nuclear power plants already exist in France and South Africa. Although base isolation has been
effectively used on bridges, commercial buildings and other structures in the United States,
there have been no applications to safety-related nuclear facilities in the United States.

The research studied technical bases that would inform design and review guidance for the
possible use of seismic base isolation technology in nuclear power plants. The focus of the
research was new surface-mounted large light water reactor designs but many of its products
also are relevant for isolation of structures and components of next generation nuclear power
plants. To conduct this research RES sponsored research at the University of Buffalo (UB) and
Lawrence Berkeley National Laboratory (LBNL) under a contract to LBNL. This report is a
deliverable for that contract that documents the research done on elastomeric seismic isolation
bearings and, specifically, on lead-rubber and low-damping rubber bearings. A companion
report, NUREG/CR-7254, documents the research done on another type of bearings, sliding
bearings, namely the single concave Friction Pendulum™ bearing.

This research developed numerical models of low-damping rubber and lead-rubber elastomeric
bearings, which permit extensive sensitivity analysis of base-isolated nuclear power plants
subjected to a wide range of earthquake shaking. The report also documents the results of
sensitivity analyses conducted with those models that provide data and insights on the
performance of the two types of isolators studied and relate that performance to the design
features of the isolators. The information in this report could help form the basis for regulatory
guidance on seismic base isolation although such work is not planned at present.

Specifically, the research documented in this report prepared numerical models following best
practice standards and implement them in commercial software. Physical experiments also
were conducted to characterize the behavior of the elastomeric bearings under tensile and
shear loadings, and to enable validation of the numerical models. The sensitivity analyses used
two representations of a nuclear power plant isolated with lead-rubber bearings, a two-node
macro model and a lumped-mass stick model, subjected to design and beyond basis
earthquake shaking. The results reported inform which representation of an isolated nuclear
power plant and which features of the isolator model are needed to accurately compute
responses for a wide range of earthquake shaking.

The data and results in this report inform the technical basis to ensure readiness of the NRC
infrastructure for potential applications that would utilize seismic isolation technologies. A third
report, NUREG/CR-7253, “Technical Considerations for Seismic Isolation of Nuclear Facilities,”
provides technical considerations, as well as performance and design recommendations
addressing the design, construction, and operational needs for Sl systems that consider the
seismic, risk-informed, performance of structures, systems, and components (SSC). Technical
considerations and regulatory challenges identified in that report include performance criteria to
address the full scope of seismic demands, methods appropriate for the seismic soil-structure
interaction analysis of a seismically isolated plant, defense in depth, reliability of the isolators
during the operating life of the plant, and inspection and maintenance procedures.
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EXECUTIVE SUMMARY

Seismic (base) isolation is a viable strategy to mitigate the damaging effects of extreme
earthquakes on nuclear power plant (NPP) structures. This report addresses key technical
challenges associated with the seismic isolation of nuclear power plants (NPPs) using two types
of elastomeric bearings: 1) low damping rubber (LDR), and 2) lead-rubber (LR). A focus of the
study is surface-mounted large light water reactors, although many of the research products are
also directly relevant for isolation of components of next generation nuclear plants, most of
which will likely be deeply embedded.

This report can be parsed into four subject areas: 1) development of advanced numerical
models of LDR and LR bearings, 2) cross-platform implementation of the numerical models to
three contemporary software programs, namely, OpenSees, ABAQUS, and LS-DYNA, 3)
comprehensive verification and validation of the numerical models as per the ASME best
practices, and 4) performance assessment of the base-isolated NPP subject to different
intensities of earthquake shaking.

The mechanical properties of LDR and LR bearings are not expected to change substantially in
design basis shaking. However, under shaking more intense than design basis, the properties of
the lead cores in lead-rubber bearings may degrade due to heating associated with energy
dissipation, some bearings in an isolation system may experience net tension, and the
compression and tension stiffness of a bearing may be affected by the horizontal displacement
of the isolation system. Mathematical models of low damping rubber (LDR) and lead rubber (LR)
bearings suitable for analysis of safety-related nuclear structures subjected to design basis and
beyond design basis earthquake shaking are developed to accommodate the following five
characteristics or behaviors that may be important for US plants sited in regions of moderate to
high seismic hazard: 1) strength degradation in shear due to heating of the lead core (LR
bearings), 2) variation in buckling load due to horizontal displacement, 3) cavitation and post-
cavitation behavior due to tensile loading, 4) variation in axial stiffness due to horizontal
displacement, and 5) variation in shear stiffness due to axial load.

The advanced numerical models are now implemented as new User Elements (UELS) in the
open- source platform OpenSees, and the commercial finite element codes ABAQUS and LS-
DYNA. The user elements ElastomericX for the LDR bearing and LeadRubberX for the LR
bearing are available in OpenSees and ABAQUS. The mathematical model of the LR bearing is
implemented in LS-DYNA as a user material (UMAT), providing a third UMAT for isolator
elements. The performance of the UELSs, in terms of their capabilities and computational
expense is discussed. A mathematical model for high-damping rubber bearings, HDRX, is
implemented in OpenSees; the model includes many of the features of ElastomericX but
implements the Grant et al. model in shear. HDRX was written for completeness and not in
support of application to NPPs in the United States. These user elements and materials are
publically available to enable and encourage use by researchers and the design professional
community.

The models of LDR and LR bearings were verified and validated following ASME best practices.
Those isolator characteristics crucial to robust estimates of performance are identified, which
includes heating of the lead core in the LR bearing. Modeling errors due to different sources are
quantified, and if possible, minimized or eliminated. The discretization errors in the peak
horizontal and vertical response are less than 2%. The V+V activities helped establish
confidence in these models and identified possible errors in the response due to use of these
models, if any. The mathematical models in the shear (horizontal) and axial directions were
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validated using existing experimental data. A series of validation experiments was conducted at
the University at Buffalo to characterize behavior of elastomeric bearing under tensile and shear
loadings. The test data was used to validate a phenomenological model of an elastomeric
bearing in tension. Sixteen low damping rubber bearings from two manufacturers, with similar
geometric properties but different shear moduli, were tested under various loading conditions to
identify those factors that affect cavitation in an elastomeric bearing. The value of three times
shear modulus (determined by testing bearings at 100% shear strain) is a good estimate of the
cavitation stress in the rubber of a bearing. The effect of cavitation on the compressive stiffness,
shear stiffness (under service axial load), and buckling load is negligible.

A model of a base-isolated nuclear island was analyzed using response-history techniques for
design and beyond design basis earthquake shaking. Thirty three-component ground motions,
selected and spectrally matched to be consistent with uniform hazard response spectra (UHRS)
for design basis earthquake (DBE) shaking at the site of the Diablo Canyon Nuclear Generating
Station, were used for response-history analysis. The model of the NPP nuclear island was
derived from an early version of the Westinghouse AP1000 reactor but is considered to be
representative of large light water reactors currently under construction in the United States.
Two representations of the base-isolated NPP isolated with LR bearings were analyzed: 1) a
two-node macro model, and 2) a lumped-mass stick model. The two representations of base-
isolated NPP provided same horizontal displacement response, but the lumped-mass stick
model provided additional information on torsional and rocking response and the spatial
distribution of cavitation and buckling in the bearings comprising the isolation system. Simplified
and advanced representations of LR bearing behavior were considered. The simplified model,
with equal axial stiffness in compression and tension (and independent of shear displacement),
represents the state-of-the-practice for response-history analyses of seismically isolated
structures using contemporary software programs. The advanced isolator model considers the
five characteristics of LR bearings identified previously. The effect of each of the five
characteristics on the response of the isolated structure is quantified.

Heating of the lead core in a LR bearing has a relatively small effect (< 10%) on horizontal DBE
(shear) displacements but the influence increases at higher intensities of shaking. The buckling
load of a LR bearing varies substantially during earthquake shaking. The displacement-
dependent model for buckling load predicts failure for many more ground motions than the
constant buckling load model, and is thus recommended for use in design practice. Isolation
systems of different combinations of isolation period and strength-to-supported weight were
analyzed. For a given isolation period, the effect of lead core heating decreases with an
increase in the ratio of characteristic strength to weight, whereas for a given value of the ratio,
the effect decreases with an increase in isolation period. Floor response spectra in two
orthogonal horizontal directions were obtained at different locations in the stick model. Vertical
accelerations in the superstructure of the base-isolated NPP are very sensitive to the definition
of damping. A substructuring method is proposed that allows the use of different damping
values for the isolation system and the superstructure and provides a more realistic estimate of
vertical acceleration without overdamping the horizontal response. The reported data allows a
reader to judge which representation of an isolated NPP (macro model or lumped-mass stick)
and which features, if any, of the advanced isolator model are needed to compute response for
different intensities of earthquake shaking.
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1 INTRODUCTION

1.1 General

Seismic (base) isolation is a relatively mature technology for protecting structures from the
effects of moderate and severe earthquake shaking. Although the technology has been widely
deployed for buildings, bridges and certain classes of mission-critical infrastructure, it has yet to
be routinely adopted for the seismic protection of safety-related nuclear structures, including
nuclear power plants. The limited numbers of applications to nuclear structures to date have
been in France and South Africa, for which synthetic rubber (neoprene) bearings, including flat
sliders in one installation, have been used. Limited use of seismic isolation has been attributed
to a) a significant downturn in nuclear power plant construction in the thirty-year period from
1980 to 2010, b) construction of nuclear facilities in regions of low to moderate seismic hazard
for which isolation is not necessarily needed, and c) the lack of consensus standards for the
analysis and design of seismic isolation systems for nuclear facilities and companion
requirements for testing of prototype and production bearings.

Early studies on isolation of nuclear structures showed mixed results, which pointed to the need
for additional research and development (Buckle, 1985; Eidinger and Kelly, 1985; Gueraud et
al., 1985; Hadjian and Tseng, 1983; Kelly, 1979; Plichon and Jolivet, 1978; Plichon et al., 1980;
Skinner et al., 1976b; Wu et al., 1987; Wu et al., 1988). US federal government support for
research programs supporting isolation of nuclear power plants finished in the 1990s. Related
research efforts declined accordingly. The nuclear accident at Fukushima Daiichi in March 2011
rekindled interest in the use of seismic isolation to protect nuclear structures from the effects of
moderate to severe earthquake shaking. One impediment to the implementation of seismic
isolation to NPPs was a lack of guidance for the analysis, design, and regulation of seismically
isolated nuclear structures. Such guidance is now available in Chapter 12 of ASCE/SEI
Standard 4-16 (ASCE, 2017) and NUREG/CR 7253 entitled “Technical Considerations for
Seismic Isolation of Nuclear Facilities” (Kammerer et al., 2019). Much of the technical basis in
these documents can be traced to the research of Huang (Huang et al., 2008; Huang et al.,
2010; Huang et al., 2011a; Huang et al., 2011b; Huang et al., 2011¢). Warn and Whittaker
(2006) conducted experiments and analytical studies to understand the coupling between the
horizontal and the vertical response of elastomeric bearings. Kalpakidis and Constantinou
(2008) investigated the heating of the lead core in LR bearing, and proposed an analytical
model to calculate shear strength as a function of temperature rise in the lead core.

The study presented in this report builds on the available knowledge and addresses the issues
that are critical to seismic isolation of NPPs. Much of this is reproduced from Kumar et al.
(2015), which in turn is based on the PhD dissertation of the first author.

This NUREG/CR addresses elastomeric seismic isolation bearings. A companion sliding

isolation NUREG/CR (Kumar et al., 2019) addresses sliding isolation bearings and seismic risk
assessment of isolated nuclear power plants.

1.2 Motivation
Figure 1-1 identifies components of a seismically isolated nuclear structure. The isolators (also

termed isolator units and bearings) are assumed installed in a near horizontal plane beneath a
basemat that supports the nuclear construction, which is defined as the superstructure.
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The isolators are installed atop pedestals and a foundation, which is defined as the
substructure. The moat is a space in which the isolated superstructure can move without
restriction in the event of earthquake shaking. Only horizontal isolation is considered because
there are no viable three-dimensional isolation systems available in the marketplace at the time
of this writing for large, surface mounted building structures such as nuclear power plants.

A focus of the study is large light water nuclear reactors: the backbone of the US nuclear fleet at
the time of this writing. That said, much of the research product discussed in this report is more
broadly applicable, to large components of light water reactors and advanced reactors, including
high temperature gas reactors, which will likely be deeply embedded.
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Figure 1-1 Seismically isolated nuclear power plant (Kammre'rrefrf‘é-i"al., 2019)

The nuclear accident at Fukushima Daiichi in March 2011 focused the attention of the nuclear
energy industry on the effects of extreme earthquakes: shaking more intense than design basis.
Although the mechanical properties of LDR and LR bearings are not expected to change
substantially in design basis shaking, under shaking more intense than design basis, the
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properties of the lead cores in lead-rubber bearings may degrade due to heating associated with
energy dissipation, some bearings in an isolation system may experience net tension, and the
compression and tension stiffness may be affected by the horizontal displacement of the
isolation system. The implementation of seismic isolation in US NPPs will likely only be possible
if these changes in mechanical properties can be tracked in analysis.

The key components of the study described in this report are:

1. Experimental investigation of the behavior of elastomeric bearings in tension

2. Development of verified and validated numerical models of elastomeric bearings for analysis
of seismically isolated NPPs

3. Quantification of the response of base-isolated NPPs subject to design basis and beyond-

design basis earthquake shaking

Investigation of the effects of vertical excitation

Investigation of rocking and uplift in base-isolated NPP subject to design and beyond-design

basis earthquake shaking

4.
5.

1.3 Scope of Work

The scope of work for this study is as follows:

1. Investigate existing application of the seismic isolation to nuclear structures and models
of elastomeric bearings used for analysis of seismically isolated structures.

2. Perform experiments to characterize the behavior of elastomeric seismic isolation
bearings in tension.

3. Develop mathematical models that can be used to analyze base-isolated NPPs subject
to extreme earthquake shaking.

4. Implement the mathematical models in contemporary software programs used for
structural analysis.

5. Verify and validate the numerical models.

6. Analyze base-isolated NPPs subject to design and beyond-design basis earthquake
shaking.

7. Address numerical issues associated with the specification of damping in response-
history analysis of base-isolated nuclear power plants.

1.4 Report Organization

This report has eleven chapters, the appendices and list of references. Seismic isolation of
NPPs and experimental studies and numerical models available for analysis of elastomeric
bearings are reviewed in Chapter 2. Chapter 3 presents mathematical models of LDR and LR
bearings that can be used to analyze base-isolated NPPs. Implementation of these
mathematical models in OpenSees and ABAQUS is presented in Chapter 4. The models are
verified and validated in Chapter 5. The experimental program and the test results to
characterize the behavior of elastomeric bearings in tension are presented in Chapter 6 and
Chapter 7, respectively. Chapter 8 and Chapter 9 discuss the results of response-history
analysis of a base-isolated NPP using a two-node macro model and a lumped-mass stick
model, respectively. A substructuring approach to specify damping and estimate acceleration
response in an isolated superstructure is described in Chapter 9. Summary, conclusions, and
recommendations are provided in Chapter 10. A list of references is presented in Chapter 11.
Three appendices present the experimental program and results (A), response of the two-node
macro model of a base-isolated NPP (B), and the response of a base-isolated NPP (C).
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2 LITERATURE REVIEW

2.1 Introduction

Although seismic isolation has been deployed in nuclear structures in France and South Africa,
it has not been used in the United States. This is attributed to limited new build nuclear
construction in the past 30 years and a lack of guidelines, codes and standards for the analysis,
design and construction of isolation systems specific to nuclear structures.

The behavior of natural rubber-based bearings in horizontal shear and vertical compression is
well established and robust mathematical models exist that have been validated experimentally.
However, knowledge of bearing response in tension is rather limited and the mathematical
models that have been proposed do not capture those behaviors that have been observed
experimentally.

This chapter summarizes the application of and research on base-isolated NPPs, and reviews
experimental work on the behavior of elastomeric bearings under tensile loading and numerical
models that have been used to analyze behavior in tension. Section 2.2 introduces research
and application of base-isolated NPPs in different countries around the world. The isolation
systems for these NPPs are described in Section 2.3. Section 2.4 summarizes experiments on
behavior of bearings in tension. Only relevant work on seismic isolation bearings is discussed
and the work on bonded rubber cylinders (e.g., Dorfmann and Burtscher (2000) and Dorfmann
(2003)) is not considered. Mathematical models of elastomeric bearings that represent the
state-of-the-art for response-history analysis of seismically isolated structures and their usage in
contemporary software programs are discussed in Section 2.5 and Section 2.6, respectively.

2.2 Historical Developments

2.2.1 Introduction

The idea of substantially decoupling a structure from the destructive effects of high frequency
earthquake ground motion has existed for a long time. Early developments are not reported
here. Applications of isolation to nuclear power plant have been somewhat recent, and followed
the development of analysis, design and fabrication procedures. An attractive feature of seismic
isolation is its application to standardized reactor designs that traditionally have been designed
for a low level of seismic hazard (often a peak ground acceleration of 0.2 or 0.3 g). The isolation
of such standardized reactors enables their deployment in regions of higher seismic hazard
because the isolators serve to reduce the horizontal inertial forces that can develop in the
isolated superstructure. Early studies on isolation of nuclear structures showed mixed results,
which pointed to the need for additional research and development (Buckle, 1985; Eidinger and
Kelly, 1985; Gueraud et al., 1985; Hadjian and Tseng, 1983; Kelly, 1979; Plichon and Jolivet,
1978; Plichon et al., 1980; Skinner et al., 1976b; Wu et al., 1987; Wu et al., 1988).
Developments in seismic isolation of nuclear power plants and related research in the major
nuclear power depending countries are summarized in the following sections.

2.2.2 France

Seismic isolation of NPPs using rubber bearing pads was studied during late 1970s with a focus
on applications to reactors in France (Jolivet and Richli, 1977; Plichon, 1975; Plichon and
Jolivet, 1978). France was the first country to implement seismic isolation in nuclear power
plants, although their approaches to design and construction vary substantially from practice in
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the United States, with one utility, one isolator vendor, and one architect/engineer/contractor,
which allowed France to implement seismic isolation earlier than other countries. Framatome
(now AREVA NP) had developed a standardized design for a 900 MWe Pressurized Water
Reactor (PWR) that was suitable for most sites in France where the peak ground acceleration
for the Safe Shutdown Earthquake (or design-basis earthquake) was less than 0.2g. For sites
with higher seismicity, the standard plant was seismically isolated to limit the demand on the
NPP and its structures, systems, and components. Licensing objections from the Commissariat
a L’Energie Atomique (CEA, French counterpart of USNRC) were addressed (Delfosse, 1977;
Derham and Plunkett, 1976).

Four PWR units were seismically isolated at Cruas in France between 1978 and 1984.
Construction began in 1978 and the reactors were built in 1983 and 1984. Framatome was the
Nuclear Steam Supply System (NSSS) vendor and Electricite de France (EdF) was the utility
owner. The isolation system was developed by Spie-Batignolles Batiment Travaux Publics
(SBTP) and EdF (Plichon et al., 1980). Each unit was isolated using 1,800 neoprene isolators
(500 x 500 x 66.5 mm) that are shown in Figure 2-1. A vertical cross section through an isolator
and its pedestal is shown in Figure 2-2. The peak ground acceleration for the Safe Shutdown
Earthquake (SSE) at the site was 0.3g. The four units at Cruas are shown in Figure 2-3. The
shear modulus of the elastomer was reported as 1.10 MPa in 1978. Periodical testing of
elastomer kept at site revealed a 37% increase in its shear modulus to 1.51 MPa by 2005
(Labbe, 2010).

France has conducted research on standardized NPP design concepts, collaborating with other
European countries, since its first application of isolation to nuclear power plants. These
research programs have resulted in the development of the seismically isolated European
Sodium Fast Reactor (ESFR) and the seismically isolated European Pressurized Reactor
(EPR).

A 100 MWe materials-research Jules Horowitz Reactor (RJH), is being built at Cadarache,
France and is being base isolated. The reactor is being built by an international consortium of
research institutions from France (CEA and EdF), the Czech Republic (NRI), Spain (CIEMAT),
Finland (VTT), Belgium (SCKCEN), and European Commission. India (DAE) and Japan (JAEA)
are participating as associate members. The utility-owner EdF and Vattenfall, and the Nuclear
Steam Supply System (NSSS) vendor AREVA are the utilities and industrial partners. The
isolation system is composed of 195 elastomeric bearing pads (900 X 900 X 181 mm) that were
manufactured by Freyssinet. Construction began in 2007 and operation is expected to start in
2021. Technical details of the isolation system proposed for RJH are presented in Section 2.3.7.

Another nuclear facility, the International Thermonuclear Experimental Reactor (ITER), is also
under construction at Cadarache. ITER is an international nuclear fusion experimental facility,
and is being isolated by 493 elastomeric pads of a similar design to that used for the RJH. The
construction of ITER began in 2008 and it is expected to begin operation in 2019. Technical
details of isolation system in ITER are presented in Section 2.3.8.

2.2.3 South Africa

The isolation of the French standardized plant enabled it to be used at sites where the
earthquake hazard was more severe than that for which the standardized plant was designed.
Two seismically isolated reactors were constructed at Koeberg, South Africa. The peak
horizontal ground acceleration for design basis earthquake shaking (SSE) was 0.3g.
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Figure 2-3 Four units of seismically isolated NPP at Cruas, France (Forni and Poggianti, 2011)
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A modified version of the isolators used for the Cruas NPPs was used for the Koeberg plant to
limit the shear strain in the neoprene pads (Gueraud et al., 1985). A flat slider was installed
between the top of the pad and the upper mat. The flat sliders used a lead-bronze alloy lower
plate and a polished stainless steel upper plate. A total of 2000 neoprene pads (700 x 700 x 100
mm) were used to isolate each reactor at Koeberg. Tajirian and Kelly (1989) note that a similar
type of isolator was proposed for the Karun River plant in Iran.

The isolators used at Koeberg are considered inappropriate for application to NPPs in the
United States. Flat sliders cannot provide the minimum lateral restoring force that is required
from a Sl system to limit the residual earthquake displacement. Moreover, sliding bimetallic
interfaces are prone to load dwell-creep induced increases in the static coefficient of friction
(Constantinou et al., 1996; Constantinou et al., 2007). Lee (1993) reported on the changes in
the properties of the flat sliders used in the Koeberg isolators and noted an increase in the static
coefficient of friction from 0.2 to 0.4 after 14 years of service.

2.2.4 Italy

Research on the use of seismic isolation for Italian nuclear power plants started in late 1980s.
The focus of the Italian research was isolation of fast breeder reactors. The only fast reactor
under development at that time was PEC (Prova Elementi di Combustile), a fuel element test
reactor, which was an Italian contribution to European Fast Breeder Reactor (EFR)
development program.

The Italian Committee for Nuclear and Alternative Energy Sources (ENEA), in collaboration with
International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy
Agency (IAEA), organized the Specialists’ Meeting on “Fast Breeder Reactor-Block Antiseismic
Design and Verification” in 1987 to discuss the application of seismic isolation to Fast Reactors
(Martelli, 1988). A framework for research and development of standardized NPP units with
seismic isolation was prepared. Work on the seismic isolation of fast reactors began in 1988 by
ENEA and ISMES (Istituto Sperimentale Modelli e Strutture) and involved proposals for
development of guidelines for seismically isolated NPPs using high damping rubber (HDR)
bearings (Martelli et al., 1989), static and dynamic experiments using shake tables,
determination of qualification procedures for seismic isolation systems, and development and
verification of finite element nonlinear models for single bearing and simplified tools for dynamic
analysis of seismically isolated structures (Martelli et al., 1991). Research conducted between
1993 and 1996 at the Italian electric utility company ENEL (Ente Nazionale per I'Energia
elLettrica) and supported by the European Commission (EC) aimed at development of optimized
design features for HDR bearings. Research focused on improvement of bearing materials,
analysis and design tools, manufacturing process and quality control. Scragging and recovery in
HDR bearings were not addressed. Other research programs were conducted in the framework
of national collaboration among members of the Italian Working Group on Seismic Isolation
(GLIS, “Grouppo di Lavoro Isolamento Sismico”) and international collaboration between GLIS
and EU and non-EU members (Martelli et al., 1999).

Italy had an active role in the development of the International Reactor Innovative and Secure
(IRIS). IRIS is a smaller version of the pressurized water reactor being developed by
international team of companies, laboratories, universities and is being coordinated by
Westinghouse. ENEA proposed seismic isolation of the IRIS reactor building in 2006 and
developed it in collaboration with the Politecnico di Milano and Pisa University in 2010 (Forni
and Poggianti, 2011).



2.2.5 United Kingdom

The United Kingdom is characterized by low to moderate seismicity, which is similar to much of
France. The UK Central Electricity Generating Board (CEGB) collaborated with the CRIEPI-
EPRI seismic isolation program in its second phase of work to develop a standardized design of
a seismically isolated nuclear power plant (Austin et al., 1991). The proposed seismic isolation
system consisted of natural rubber bearings and viscous dampers. The goal of this isolation
system was analyzability, with the bearings being modeled as linear elements and the dampers
as viscous elements.

2.2.6 New Zealand

New Zealand has implemented seismic isolation in their civil structures. Some of very first
studies on isolation of NPPs were undertaken by researchers in New Zealand although there
are no nuclear power plants in New Zealand. The main purpose was to develop technologies
such as the lead-rubber bearing that could be sold abroad. Skinner et al. (1976a), Skinner et al.
(1976b), and Buckle (1985) reported studies on the application of isolation to nuclear structures.

2.2.7 Japan

The application of seismic isolation in Japan grew quickly in the 1980s and 1990s but was
limited to non-nuclear structures. The application of isolation and standardization of nuclear
power plants received significant attention from the government and private construction
companies in the 1980s. Advanced experimental facilities, including the largest shake table in
the world at the time, facilitated research and development of various types of isolation systems
in Japan. Initial studies focused on fast breeder reactors, because it was hoped that isolation
would reduce the capital cost associated with design against the effects of earthquakes, allow
standardization of fast breeder reactors for all siting conditions in Japan, and make fast breeder
reactors an economical alternative to pressurized water reactors.

In 1987, the Central Research Institute of Electric Power Industry (CRIEPI), under contract from
Ministry of International Trade and Industry (MITI) of Japan, started a seven-year research
program to develop a technical basis for application of seismic isolation to fast breeder reactors.
Two dimensional (horizontal) system and 3D isolation systems were studied (Shiojiri, 1991).
CRIEPI drafted FBR Seismic Isolation System Design Methods in 1990 based on the results
obtained from the research program (Ishida et al., 1995). The CRIEPI test program finished in
1996.

A study was conducted by the Japan Atomic Power Company (JAPC) and a design was
developed for the 2D seismic isolation of the Demonstration Fast Breeder Reactor (DFBR)
using different 2D isolation systems (Inagaki et al., 1996).

CRIEPI coordinated a research program with the Electric Power Research Institute (EPRI) of
the USA and CEGB of the UK to study the feasibility of selected isolation systems and their
application to liquid metal reactors. Five isolation systems were considered: 1) elastomeric
bearings with friction plates (France), 2) lead-rubber bearings (New Zealand), 3) coil springs
with viscous dampers (Germany), 4) Teflon bearings with elastic restraint (Greece), and 5)
bearings with hysteretic dampers. A comparison of the performance of these isolation systems
suggested the lead-rubber bearing was the best of the five considered. CEGB of the UK joined
this program later. An isolation system consisting of elastomeric bearings (150x150x70 mm)
and German GERB type viscous dampers was suggested by CEGB for further study.
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In 2000, and based on prior studies, the Japan Electric Association published JEAG 4614-2000,
“Technical guideline on seismic base isolated system for structural safety and design of nuclear
power plants” (JEA, 2000). The Japan Nuclear Energy Safety (JNES) organization, established
in 2003, coordinated isolation related research in Japan. JNES was reorganized recently as the
Nuclear Regulatory Authority (NRA).

2.2.8 United States

Studies were conducted in the late 1970s and early 1980s to assess the feasibility of available
seismic isolation systems to nuclear structures (DIS, 1983; Kunar and Maini, 1979; Vaidya and
Eggenberger, 1984) but the results of these studies were not pursued by the nuclear community
following the downturn in nuclear power plant construction following the accident at Three Mile
Island in 1979.

A number of authors identified issues that had to be resolved before any application of seismic
isolation was possible in the in nuclear industry in the United States (Eidinger and Kelly, 1985;
Hadjian and Tseng, 1983). One of the important issues was reliability. At that time there was
insufficient data on the performance of seismically isolated conventional structures during major
earthquakes to provide the necessary confidence that isolation would deliver the proposed
benefits. A cost-benefit analysis was also needed to understand the financial implications of
using isolation. Hadjian and Tseng (1983) noted that this cost-benefit analysis should not be
based on initial capital cost only but should also consider the probability of success or failure
and resulting consequences (Stevenson, 1978). Some of the major concerns regarding the use
of isolation were (Eidinger and Kelly, 1985; Hadjian and Tseng, 1983; Tajirian and Kelly, 1989):

Long term reliability of isolators

Inability to define beyond design basis earthquake criteria

Deployment of a failsafe mechanism in case of failure of the isolation system
Unavailability of performance data of isolated structures during earthquakes

Lack of understanding of ground motion data with respect to long period components
and directivity effects

Inspection and replacement requirements of isolators

Unavailability of design codes

oD~

No

There have been considerable advances in the understanding of these issues and all of these
concerns have been addressed.

The US Department of Energy (DoE) and EPRI sponsored projects in the 1980s to study the
application of seismic isolation to fast breeder reactors. The feasibility of several isolation
systems were assessed, including the French system employed at Cruas, lead-rubber bearings
(Freskakis and Sigal, 1985), and the Alexisismon sliding system (lkonomou, 1985). The DOE
then sponsored projects to develop three advanced reactors: 1) Power Reactor Inherently Safe
Module (PRISM), 2) Sodium Advanced Fast Reactor (SAFR), and 3) Modular High Temperature
Gas Cooled Reactor (MHTGR). All three designs included passive safety features and
incorporated seismic isolation to the standardize design (Tajirian and Kelly, 1989).

The Energy Technology Engineering Center (ETEC, 1988) coordinated the Seismic Technology
Program Plan (STPP) sponsored by Department of Energy. The goal of the research program
was to reduce the impact of seismic design on the cost of liquid metal reactors. Seismic
isolation was identified as a key element to meet this goal. The five objectives of the STPP
were: 1) seismic isolation verification, 2) seismic qualification of standardized plants,
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3) utilization of inherent strength, 4) validation of core seismic analysis, and 5) validation of
piping design. The ALMR development program was started in 1989 to meet the objectives of
STPP. Experimental and analytical studies were performed to develop standardized nuclear
reactor design concepts that were economically competitive with other domestic energy sources
and have passive safety features (Clark et al., 1995; Gluekler, 1997; Kelly et al., 1990; Snyder
and Tajirian, 1990).

PRISM was chosen in 1989 by DOE for further development as part of ALMR program. The
development of PRISM was managed by a team lead by General Electric (GE) Nuclear Energy
and included Argonne National Laboratory (ANL), Energy Technology Engineering Center
(ETEC), the University of California at Berkeley, and Bechtel National, Inc. (BNI) (Gluekler et al.,
1989). The qualification and testing of the proposed isolation system was performed with full-
scale and reduced-scale bearings. Kelly et al. (1990) noted the high damping rubber bearings
stiffened at shear strains greater than 200% and bolted connections perform better than
doweled connections allowing higher horizontal displacement capacity and restoring force.
However, experiments on high damping rubber bearings identified scragging effects and
significant nonlinear behavior at high shear strains. The ALMR program was cancelled in 1994.
The US Nuclear Regulatory Commission, in its pre-application safety evaluation report (SER) in
1994, concluded that there was no obvious impediments to licensing the PRISM (ALMR) design
(NRC, 1994). General Electric continued development of PRISM after the ALMR program was
terminated as the Super-PRISM (S-PRISM) project. A key difference between PRISM and S-
PRISM was that in PRISM, each of the two reactors was placed on separate isolated mat,
whereas in S-PRISM a single isolated mat supported both reactors. The progress of research
activities on PRISM is cartooned in Figure 2-4.

e GE e DOE e DOE e GE
Funded Funded Funded Funded
Program PRISM ALMR S-PRISM

Figure 2-4 Historical development of PRISM

SAFR was a sodium-cooled reactor designed by Rockwell International Corp. This design
concept included low shape factor bearings, which provided horizontal and some vertical
isolation (Aiken et al., 1989; Tajirian et al., 1990). The Nuclear Regulatory Commission issued
pre-application safety evaluation reports for SAFR and PRISM in 1991 and 1994.

US federal government support for research programs supporting isolation of nuclear power
plants finished in the 1990s. Related research efforts declined accordingly. Malushte and
Whittaker (2005) noted that one impediment to implementation was a lack of guidance for the
analysis, design and regulation of seismically isolated nuclear structures. Such guidance is now
available in Chapter 12 of ASCE/SEI Standard 4-16 (ASCE, 2017). Recommendations for NPP
structures are provided in Kammerer et al. (2019). Much of the technical basis in these
documents can be traced to the research of Huang (Huang et al., 2008; Huang et al., 2010;
Huang et al., 2011a; Huang et al., 2011b; Huang et al., 2011c).
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2.3 Standardized Designs of Seismically Isolated Nuclear Reactors

2.3.1 Advanced Liquid Metal Reactor

The Advanced Liquid Metal Reactor (ALMR) project was started in 1984 by the Argonne
National Laboratory and supported by Department of Energy (DOE). The reactor was isolated in
the horizontal direction. The isolation system consisted of 66 high damping rubber bearings.
The fundamental frequencies of the isolated structure were 0.7 Hz in the horizontal direction
and 20 Hz in the vertical direction. The ALMR was designed for shaking associated with spectra
anchored to peak ground accelerations in the horizontal and vertical directions of 0.5 g. Figure
2-5 presents a cut-away view of the isolated reactor. The ALMR program was discontinued in
1994.
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Figure 2-5 ALMR reactor & steam generator facility general arrangement (Forni, 2010)
2.3.2 Super-Power Reactor Inherently Safe Module (S-PRISM)

The Super-Power Reactor Inherently Safe Module (S-PRISM) is a compact standardized liquid
metal reactor, with 622 MWe capacity. It was developed by GE Hitachi Nuclear Energy. S-
PRISM is an advanced version of the PRISM concept developed in the 1980s and 1990s as
part of the ALMR program. It retains the key design features of ALMR, and its seismic isolation
system is that of the original PRISM reactor (Tajirian and Kelly, 1989). The design is modular
with a number of reactor modules per power unit. Each reactor module is isolated in the
horizontal direction using 20 high damping rubber bearings with a diameter of 1320 mm and a
total height of 587 mm. Each bearing consists of 30 layers of rubber (30x 12.7 mm) and 29 steel
shims (29x 3.2 mm). The fundamental frequencies in the horizontal and vertical directions were
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0.7 Hz and 21 Hz, respectively. The isolation system was design for shaking characterized by
horizontal peak ground acceleration of up to 0.5 g and vertical peak ground acceleration of up to
0.3g.

Figure 2-6 Cut-away view of the PRISM reactor (GE, 2012)
2.3.3 Sodium Advanced Fast Reactor

Rockwell International developed the DOE-sponsored Sodium Advanced Fast Reactor (SAFR)
in 1988. SAFR featured a pool type liquid metal reactor as its primary module. It was designed
for shaking characterized by standard-shaped spectra anchored to horizontal and vertical peak
ground accelerations of 0.3 g. The seismic isolation system used 100 low-shape factor, high
damping rubber (HDR) bearings to isolate in the horizontal and vertical directions. The bearings
had diameter of 970 mm and total height of 426 mm, and included four 100-mm thick layers of
rubber and 3.2-mm thick steel shims. The low shape factor (=2.4) of the rubber layers provided
flexibility in vertical direction but the vertical load capacity was limited as a result. The estimated
fundamental frequencies of the isolated structure were 0.5 Hz and 3 Hz in the horizontal and
vertical directions, respectively. Reduced-scale tests on these low shape factor bearings were
performed with doweled and fixed connections (Kelly et al., 1990).

2.3.4 Secure Transportable Autonomous Reactor

Argonne National Laboratory (ANL) developed the Secure Transportable Autonomous Reactor
(STAR), a liquid metal reactor. Two types of isolation system were developed for this reactor
(Yoo and Kulak, 2002). A vertical cross section through the isolated structure is shown in Figure
2-7. A 2D isolation system provides isolation in horizontal direction with high damping rubber
(HDR) bearings, each 1200 mm in diameter and 500 mm tall. Each bearing consists of 29



rubber layers and 28 steel shims, with a total height of rubber of 278 mm. The fundamental
frequencies of the isolated structure in the horizontal and vertical directions are 0.5 Hz and 21
Hz, respectively.

Studies on 3D isolation systems were performed for STAR-LM. Vertical isolation was achieved
by helicoidal springs, as shown in Figure 2-8 (Yoo et al., 1999). The 3D isolated structure had
fundamental frequencies of 0.5 Hz and 1.1 Hz in the horizontal and vertical directions,
respectively. Design basis shaking for the STAR-LM reactor was described by a spectrum
anchored to a peak ground acceleration of 0.3g and a vertical peak ground acceleration of 0.2g.
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Figure 2-7 Vertical cross section through the seismically isolated STAR (Yoo and Kulak,
2002)
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2.3.5 DFBR

A demonstration fast breeder reactor (DFBR) was designed by CRIEPI in Japan. The design
included 2D (horizontal) and 3D (horizontal and vertical) isolation systems. The 2D isolation
system consists of 246 elastomeric bearings (diameters up to 1600 mm) with steel dampers for
supplemental energy dissipation. The fundamental frequencies of the isolated structure were
0.5 Hz and 20 Hz in the horizontal and vertical directions, respectively.

The 3D isolation system was realized by using elastomeric bearings for horizontal isolation and
air springs for vertical isolation, as shown in Figure 2-11. The elastomeric bearings had a
diameter of 1600 mm and a height of 225 mm. The fundamental frequencies in the horizontal
and vertical directions were 0.4 Hz and 0.5 Hz, respectively. The air compartment operated at a
service pressure of 1.6 MPa and resisted a vertical service load of 9800 kN.
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Figure 2-11 3D isolation system for the demonstration FBR (Forni, 2010)
2.3.6 Super Safe, Small and Simple (4S)

The 4S reactor is described as an ultra-compact design and was developed by Toshiba and
CRIEPI of Japan. This design was proposed for a site in the state of Alaska. The capacity of the
4S was 10 MWe, with a possible increase up to 50 MWe. The 4S reactor has enhanced passive
safety features, including seismic isolation. The reactor module is installed in a sealed
cylindrical vault 30 m below grade level, as shown in Figure 2-12. The analysis and design of
the seismic isolation system is based on Japanese guidelines JAEG 4614-200 (JEA, 2000),
which was introduced previously. Lead-rubber bearings of three different geometries were
proposed and the layout of the isolators was based on the axial capacities listed in in the first
column of Table 2-1. The geometry of the lead-rubber bearings is presented in Table 2-1. The
fundamental frequency of the isolated structure in the horizontal direction was 0.5 Hz. The
isolation system for the 4S reactor was designed for earthquake shaking with a horizontal peak
ground acceleration of 0.3g (Shimizu, 2009).

Table 2-1 Properties of the lead-rubber bearings used for the 4S reactor (Shimizu, 2009)
AX|a! Bpnded I§olator Rubber layer Number of Overall
capacity diameter diameter thickness (mm) | rubber layers | height (mm)
(kN) (mm) (mm)
3250 1050 1450 220 16 440
4750 1250 1650 200 13 420
6250 1450 1850 196 12 416
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Figure 2-12 Vertical cross section through the seismically isolated 4S reactor, dimensions
in mm (Shimizu, 2009)
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Figure 2-13 Layout of lead-rubber bearings in the 4S reactor (Shimizu, 2009)
2.3.7 Jules Horowitz Reactor (RJH)

The Jules Horowitz Reactor is a material testing and research reactor that is being built at
Cadarache in France. The reactor building is equipped with a horizontal isolation system. One
hundred and ninety-five synthetic rubber bearings (900 x 900 x 181 mm), manufactured by
Freyssinet comprised the now installed isolation system. In each bearing, the total thickness of
synthetic rubber is 120 mm (6 X 20 mm), the total thickness of the shims is 25 mm (5 X 5 mm),
the total thickness of the end plates is 30 mm (2 < 15 mm), and 3 mm thickness of cover rubber
was used to provide environmental protection. The photographs of the rubber bearings and the
model of the reactor is shown in Figure 2-14 and Figure 2-15, respectively. The dynamic shear
modulus of the rubber and damping ratio are 1.1 MPa and 5%, respectively (NUVIA, 2011). The
layout of the isolators are shown in Figure 2-16. The fundamental frequency of the isolated
structure in the horizontal direction is 0.6 Hz. The design basis earthquake shaking was
designed by a spectrum anchored to a peak horizontal acceleration of 0.35g.




Figure 2-15 Cut-away view of Jules Horowitz Reactor (NUVIA, 2011)

i

1 n
O O o o O

O r []
O 0

[l O
O OO oo
OO0 O O o O

- 0
0 O OoO O
o M s M N e
0O O o
O

[ LT L1 [

H O O o o
= ) .
= o Y H g -
00 000 o0ooao
| O~ O

Figure 2-16 Layout of the isolators for the RJH (NUVIA, 2011)
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2.3.8 International Thermonuclear Experimental Reactor (ITER)

The International Thermonuclear Experimental Reactor (ITER) is a research nuclear fusion
reactor being constructed at Cadarache, France, and is located 3 km from the site of the RJH.
The reactor building is isolated using 493 elastomeric bearings of the same design used for the
RJH. The installation of the bearings was completed in March 2012.

% Isolation Bearings

Figure 2-17 Isolator layout for the seismically isolated ITER (www.iter.org)
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Figure 2-18 Cross-section through the elastomeric bearing used for ITER and RJH
(NUVIA, 2011)



Figure 2-19 Isolators installed on the site of ITER (http://www.iter.org)
2.3.9 International Reactor Innovative and Secure (IRIS)

IRIS is a small-scale Pressurized Water Reactor (PWR) being developed by group of
companies, laboratories, and universities, and is led by Westinghouse Electric Company.
Seismic isolation has been considered for the design of this plant (Poggianti, 2011). The seismic
isolation system is composed of 99 High Damping Rubber (HDR) bearings with two different
diameters, 1000 mm and 1300 mm, and a height of 100 mm. The shear modulus of rubber is
reported as 1.4 MPa (Poggianti, 2011). The fundamental frequency of isolated reactor in the
horizontal direction is 0.7 Hz. It was designed for safe shutdown earthquake shaking (design
basis) shaking characterized by spectra with horizontal and vertical peak ground accelerations
of 0.3g and 0.2g, respectively. The proposed layout of the isolators is shown in Figure 2-21.
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Figure 2-20 Vertical section through IRIS (Forni and Poggianti, 2011)
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Figure 2-21 Layout of isolators for IRIS (Poggianti, 2011)



2.4 Review of Experimental Work

2.4.1 General

Tensile deformation in elastomeric bearings has traditionally been considered undesirable.
Design codes and standards that explicitly consider response in axial tension do not allow
tensile loading or limit the value of allowable tensile stress in elastomeric bearings under
design-basis loading. The Japanese specifications for design of highway bridges (JRA, 2011)
limit the tensile stress in G8 and G10 rubber' to 2 MPa. Eurocode 8 restricts the use of
elastomeric bearings if axial tensile force is expected during seismic loadings. New Zealand and

Chinese seismic design codes limit the tensile stress to 3 times the shear modulus (G) and 1
MPa, respectively (Mangerig and Mano, 2009; Yang et al., 2010).

Recent experiments have shown that elastomeric bearings can sustain large tensile strains of
up to 100% following cavitation, without rupture of the bearing (lwabe et al., 2000). The design
codes for seismic isolation of nuclear facilities in the United States (ASCE, 2017; Kammerer et
al., 2019) considers the effects of extreme earthquakes. Seismic isolation is being considered
for new build nuclear power plants and these isolation systems will have to be designed to
accommodate these extreme loadings, which may include net tensile force in bearings. In order
to consider tensile loading in seismic isolation design, robust mathematical models are required
to simulate the load-deformation behavior in tension.

Much of the initial work on cavitation of elastomers was done by Gent and Lindley (1959b).
They used bonded rubber cylinders in their experiments to investigate behavior under tensile
loading. The cavitation stress (or cracking stress as defined in Gent and Lindley (1959b)) is
defined as the tensile stress at which microcracks form in the volume of rubber. The variation of
cavitation stress with the thickness of the rubber discs is presented in Figure 2-22.

As evident from Figure 2-22, the tensile properties of rubber are highly dependent on its
thickness, or more appropriately the shape factor, S 2, which is defined as the loaded area
divided by the perimeter area that is free to bulge. Only elastomeric bearings with high shape
factors, between 5 and 30, are discussed here, because these are used for seismic isolation
applications. Experimental programs on the tensile behavior of rubber bearings are summarized
in Table 2-2. Very few experiments have investigated the cyclic load-deformation behavior of
elastomeric bearings in tension and most have only considered the effect of constant axial load
on the shear properties of elastomeric bearings.

' G8 and G10 denote rubber classes with shear modulus 0.8 and 1 MPa, respectively. More information
is presented in Japan Road Association (JRA). (2011). "Bearing support design guide for highway bridges
(In Japanese)." Japan.

2 The first shape factor, S, for a circular bearing is equal to the D / 4t , where D is the bonded
diameter and £, is the thickness of the individual rubber layer.
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Figure 2-22 Variation of cavitation stress with the thickness of rubber discs of different
Young’s modulus (Gent and Lindley, 1959b)

Table 2-2 Experimental work on the tensile properties of elastomeric bearings

Research

Bearing properties Focus

reference

Iwabe et al. LDR, LR, HDR bearings, diameter 500 | Tension, shear-tension, post-
(2000) mm and 1000 mm, shape factor ~30 cavitation mechanical properties

Kato et al. (2003)

LDR, diameter 500 mm and 1000 mm,
varying bearing plate thickness, shape
factor~33

Tension, scale effect, bearing
plate thickness

Shoiji et al. (2004)

LR, 240%x240 mm, shape factor~8

Cyclic deterioration under
tension

Feng et al. (2004)

LR, diameter 100 mm, shape
factor~15

Tension, mechanical properties,
three-dimensional dynamic
loading

Warn (2006)

LDR, LR, outer diameter 152 mm,
inner diameter 30 mm, shape
factor~12

Tension, coupling of horizontal
and vertical motion

Constantinou et

LDR, diameter 250 mm, shape

Single cycle tensile loading

al. (2007) factor~9
Iwabe ef al. LDR, LR, HDR bearings, diameter 500 | Tension, shear-tension, post-
(2000) mm and 1000 mm, shape factor ~30 cavitation mechanical properties
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2.4.2 lwabe et al. (2000)

Iwabe et al. (2000) performed a series of tests that focused on the tensile loading of low-
damping rubber (LDR), lead rubber (LR), and high-damping rubber (HDR) bearings. Bearings
with high shape factor, S = 30, were subjected to cyclic tensile loading with and without lateral
displacements. The load-deformation behavior in tension was recorded and changes in the
mechanical characteristics before and after tensile loading were monitored.

Bearings experienced cavitation and sustained tensile strains up to 100% under shear strains of
200% without rupture. Cyclic tensile loading showed a) nonlinear hysteretic behavior following
cavitation, and b) the cavitation strength decreasing by half following large tensile strains,
typically greater than 100%. Hysteresis was more pronounced in HDR bearings than LDR and
LR bearings. The hysteresis in a LDR bearing under tensile loading subjected to 200% shear
displacement is shown in Figure 2-23. Characteristic tests to monitor mechanical properties
showed no significant change in shear characteristics following tensile loading.

10p : : -
. .

Vertical load (ton)

I:|1II-|IIII

Vertical displacement (mm)

Figure 2-23 Hysteresis in tension loading with 200 % shear strain (lwabe et al., 2000)
2.4.3 Kato et al. (2003)

Kato et al. (2003) tested LDR bearings of different diameters with shape factors of
approximately 33 to obtain vertical and horizontal characteristics under cyclic loading, and to
investigate the effects of end plate thickness and size on the mechanical properties of
elastomeric bearings. Tensile-compressive tests at constant shear strain and shear testing
under constant tensile strains were performed. The tensile stiffness was measured including the
stiffness contributions from the end plates. The experiments showed an increase in tensile
stiffness with increasing end plate thickness (and hence stiffness); but shear stiffness was not
dependent on end plate thickness or the tensile state of load or deformation. Figure 2-24 shows
four load-deformation curves in tension at offset shear strains® of 0%, 100%, 200% and 300%,
respectively. The cavitation strength decreased with an increase in offset shear strain, as shown
by the dashed arrow in Figure 2-24, and the maximum tensile deformation increased at higher
offset shear strains. The bearing failed at a tensile strain of 50% at an offset shear strain of
300%. Scale effects on tensile properties were investigated using a 500-mm diameter and a

3 The shear strain imposed prior to testing and maintained during testing in tension.
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1000-mm diameter bearing with almost identical shape factors. Minimal effects of the overall
shape of the bearing, which is characterized by the second shape factor S, (= bonded diameter
divided by total rubber height, (D /T, .) were observed on the tensile properties of the bearings,
which is expected as properties of bearings in tension are more appropriately represented as
functions of the first shape factor.
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Figure 2-24 Effect of offset shear strain on tensile behavior (Kato et al., 2003)
2.4.4 Shoji et al. (2004)

Experiments were performed by Shoji et al. (2004) to evaluate effect of axial load on the shear
behavior of elastomeric bearings. Low-shape factor bearings, S ~ 8 , were subjected to cyclic
shear loading under constant tensile or compressive load. The effect of axial load on the
response in shear was monitored. An image analysis technique was used for strain
measurements. Hysteresis in shear, as measured by the area contained within the force-
displacement loop, under constant compressive load was greater than in shear under constant
tensile load, as shown in Figure 2-25.

Global shear strain ¥ (%) Global shear strain ¥ (%)
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Figure 2-25 Lateral force versus lateral displacement under tensile and compressive loading
(Shoji et al., 2004)
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2.4.5Feng et al. (2004)

Feng et al. (2004) conducted three-dimensional shaking table tests on a 1/12 scale model of a
24-story building using 8 LR bearings of 100 mm diameter and a first shape factor of about 15.
The variation of axial load was monitored and effect of axial load variation on hysteresis in shear
was investigated. Axial loads were observed to vary, and tension occurred in LR bearings in 14
of the 55 tests, with a maximum tensile stress in a bearing of 2.2 MPa. A difference in hysteresis
in shear due to axial load variation (3-D versus 2-D excitation) was seen in the experimental
results.

2.4.6 Warn (2006)

Warn (2006) and Warn and Whittaker (2006) investigated the coupled horizontal-vertical
response of LDR and LR bearings through a series of static and dynamic tests using a quarter-
scale isolated bridge model. LDR and LR bearings with low shape factors, S~12, were used for
the tests. The results obtained showed clear dependency of vertical stiffness on shear
displacement. The experimental results for vertical stiffness were in good agreement with
analytical and empirical models. The shear hysteresis of the LR bearings was influenced by
variation of axial load. Large tensile deformation tests, with and without a lateral offset, were
performed to investigate the tensile load-deformation behavior of LDR and LR bearings. One of
the obtained tensile load-deformation curves for LDR bearings is presented in Figure 2-26.
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Figure 2-26 Load-deformation behavior of LDR bearings under tensile loading with zero
lateral offset (Warn, 2006)

2.4.7 Constantinou et al. (2007)

A low shape factor bearing, S ~9, was subjected to single-cycle tensile loading to obtain tensile
properties. The value of axial stiffness obtained from the experiment was in good agreement
with the vertical stiffness obtained using the two-spring model (Koh and Kelly, 1987). The
bearing cavitated at tensile load of 3 GA, where G is the shear modulus at shear strain of 75%,
and A is the bonded rubber area. The force-displacement curve obtained for the tensile loading
is shown in Figure 2-27.
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Figure 2-27 Load-displacement behavior in tension (Constantinou et al., 2007)

2.5 Review of Mathematical Models

Elastomeric bearings have been conventionally modeled using a linear spring in the vertical
direction. However, experiments have shown highly nonlinear response associated with
cavitation, hysteresis, and coupling with horizontal displacement under tensile loading.
Mathematical models have been proposed to capture the load-deformation behavior of
elastomeric bearings in tension and these can be divided in two groups:

1. Continuum hyperelastic models using strain energy density functions
2. Discrete linear and nonlinear models using analytical or empirical formulations

2.5.1 Hyperelastic models

Hyperelastic models are used for rubber when finite element methods are used to model
elastomeric bearings. Hyperelastic models make use of a strain energy potential, U, to obtain
constitutive relationships. The general formulation of hyperelastic models is given by:

U=U(F) (2.1)
s-UF) (2.2)
oF

where S is the measure of stress and F is the measure of strain. The underlying assumption is
that the material is elastic and isotropic. It is shown later that these models can be modified to
include energy dissipation characteristics.

The strain energy potential, U, can be decoupled into a deviatoric (shear) component W , and
a dilatational (volumetric) component U,

dilatation :

Uu=w-+ Udilatation (2.3)
U=W(l,,1,)+Uguasiona (1) (2.4)
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Strain invariants are expressed in terms of three principal stretch ratios (deformed length

divided by original length), 4,, 4, and 4, as: I, = A% + 1,7 + 4,%, I, = A24° + 1,242 + A,°A7, and
I, = A22,22% . The strain energy potential can be rewritten in terms of principal stretch ratios as:

U = W(ﬂ‘ﬂﬂ?’ﬂ“& ) + Udilatational (J) (25)

where J = 44,4, is a measure of volumetric strain.

Various hyperelastic models have been proposed using different deviatoric and dilatation
functions that relate strain invariants to strain energy potential using unknown parameters.
These models make use of experimental data to obtain unknown parameters using curve-fitting
and are applicable for a certain range and state of strain. Some of the hyperelastic models
available in the finite element program ABAQUS are identified in Table 2-3.

Table 2-3 Hyperelastic models used in ABAQUS (Dassault, 2010d)

Physical models Material parameters
Arruda-Boyce 2
Van der waals 4
Phenomenological models
Polynomial (order N) >2N
Mooney-Rivlin (1% order) 2
Reduced polynomial (independent of /,) N
Neo-Hookean (1%t order) 1
Yeoh (3" order) 3
Ogden (order N) 2N
Marlow (independent of /) n.a.'

1. n.a.: not applicable

One of the earliest proposed hyperelastic models was the Mooney-Rivlin model (Mooney, 1940;
Rivlin, 1948). The model considered only incompressible materials (/, =1, J = 44,4, =1) and
ignored the dilatational component of the strain energy potential. In its simplest form, the
Mooney-Rivlin model can be expressed as:

U=C,(l,-3)+C,(l,-3) (2.6)

where C, and C, are temperature-dependent material parameters related to the initial shear
modulus of the material by the expression:

2(C,+C,)=G 2.7)

For small tensile strains, the contribution from second strain invariant, 12 , can be neglected, and
the Neo-Hookean model (Rivlin, 1948) is formulated as:

U=C,(l,-3) (2.8)
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where 2C, =G . The New-Hookean model captures the behavior of hyperelastic material for
moderate tensile strains of 40%.

Both of the above models are applicable only for incompressible materials (Poisson’s ratio, v =
0.5; Young’s modulus, E = 3G ). However, rubber exhibits some compressibility. Moreover, an
infinitely incompressible material presents numerical stability problems in finite element
calculations. A dilatational term is often added to the strain energy potential to model the
“almost incompressible” behavior of rubber, taking into account its bulk modulus, K . The
dilatational component is given by the expression:

K

dilatational — E

u (J-1)° (2.9)

The Mooney-Rivlin model and the Neo-Hookean model, modified to account for the
compressibility of rubber, are given by:

Mooney-Rivlin: U=C,l,-3)+C,(l, —3)+§(J—1)2 (2.10)

Neo-Hookean: U=Cy(l, —3)+§(J—1)2 (2.11)

If the initial shear modulus of rubber is known, the Neo-Hookean model can be applied directly
without the need for experimental data, which makes the Neo-Hookean model one of the
popular hyperelastic models in finite element analysis.

Most of the hyperelastic models developed after Rivlin (1948) use more generalized
formulations of the Mooney-Rivlin model with a larger number of parameters. Although these
models capture the response more accurately for a greater range of strain, having large number
of parameters (N in Table 2-3) requires more experimental data and calibration. Dorfmann and
Burtscher (2000) suggested a cavitation-based damage model to simulate the load-deformation
behavior of elastomeric bearings in tension. They used the modified Mooney-Rivlin equation
(2.10) for strain energy potential, and pre-cavitation and post-cavitation bulk modulus in the
dilatational component to allow for the sharp change in stiffness after cavitation.

Models proposed after Rivlin (1948) have tried to capture the hysteresis under tensile loading
due to Mullin’s effect (scragging). Although low shape factor bearings might show little energy
dissipation due to Mullin’s effect, the nature of hysteresis in tensile loading of seismic isolation
bearing is primarily due to cavitation or internal damage that cannot be captured by any of the
proposed models. Figure 2-28 shows the contributions of damage and Mullin’s effect
(scragging) to the total energy dissipation under tensile loading. The area between the loading
and unloading branches represents the energy dissipated due to damage. Subsequent loading
follows the prior unloading path elastically until the strain exceeds the prior maximum value,
below which loading has the effect of only opening and closing existing cavities within the
rubber, and small energy dissipation due to Mullin’s effect.

Hyperelastic models can be used to simulate nonlinear tensile behavior of rubber. However,

limitations in terms of the large number of unknown parameters, dependency on experimental
data, and inability to reproduce the hysteretic behavior due to damage, restricts their
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widespread use. Finite element analysis is computationally intensive and is not a popular
method for analysis of large structures with many structural components. Contemporary

software programs for structural analysis use simplified models that are discussed in the
following section.
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Figure 2-28 Components of energy dissipation in the tensile loading of elastomeric bearings
2.5.2 Linear and nonlinear stiffness models

Elastomeric bearings in the axial direction have been conventionally modeled as a linear spring
with a constant stiffness, as shown in Figure 2-29.

The axial stiffness of multilayer elastomeric bearings is given by the expression:

n 1 -1 t,- -1
Kvo=[Z1}?) =[A—E’_] (2.12)

which, for bearings with rubber layers of the same thickness, is simplified to:

_AE
vo T

r

(2.13)

where Kv0 is the vertical stiffness at zero lateral displacement, A is the bonded rubber area, T,
is the total rubber thickness, and E is the elastic modulus in the vertical direction. The same
expression is used for compression and tension but with a different definition of elastic modulus:
compression modulus E_ and tension modulus E,.
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Figure 2-29 Linear stiffness model of elastomeric bearing in vertical direction

Analytical expressions for the compression modulus of elastomeric bearings were developed by
Chalhoub and Kelly (1990) and Constantinou et al. (1992) for different shapes. The
compression modulus for a circular elastomeric bearing with finite compressibility is given by

(Constantinou et al., 2007):
1 4
E, = (2.14)

—+_
6GS* 3K

where S is the first shape factor of the bearing and K is the bulk modulus of the rubber. As

suggested by experiments, the tension modulus before cavitation is the same as the value in
compression, namely, E, = E,. Hence, a single value of stiffness in compression and tension,
given by Equation (2.13), is used in linear-stiffness model.

Koh and Kelly (1987) and Kelly (1993) proposed two vertical stiffness models for elastomeric
bearings that take into account the height reduction due to shear deformation. The coupling of
vertical stiffness with lateral displacement is captured by these models. The first model, known
as a two-spring model, considers a simplified physical representation of elastomeric bearing.
The second models a bearing as a continuous beam with equivalent properties and assumes
that plane sections remain plane but not necessarily perpendicular to the neutral axis. This
model can also be used to explain the concept of tension buckling and increased tensile
deformation capacity of bearings in tension with lateral shear offset (Kelly, 2003). The vertical
stiffness obtained from the two models are:

Two-spring model: K, =— (2.15)

Exact model: K, =—= 5 (2.16)
T, 1 3 £ u
+7 J—

where U is the lateral displacement of elastomeric bearing, r is the radius of gyration of
bonded rubber area, p=P /P, , P is the axial load, and P, is the critical buckling load

cr’
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accounting for area reduction. The function f(;rp) is a trigonometric function with fand f' given
by:

(x—sinx)_

oy (1—=cosx)—xsinx
(1—cosx)’f(x)_

f(x) (2.17)

(1—-cos x)2

and f'(;zp) is a symmetric function that varies between 1/3 to 1 as zp varies between Oto 7,
or P varies between 0 to buckling load P,, . For tensile loading, the axial load P is much less
than the critical buckling loading in tension; and a bearing cavitates at loads much less than P, .
The value of f'(;rp) is closer to 1/3 than 1 in tensile loading. The two-spring model and the
continuous beam model are linear with respect to vertical displacement but show nonlinear
characteristics with increasing lateral displacements. The two-spring model proposed above
shows good agreement with experimental results (Warn and Whittaker, 2006). In addition, Warn
and Whittaker (2006) also suggested vertical stiffness expressions based on the overlapping
area method and a linear approximation of overlapping area method to capture the coupling of
vertical stiffness and horizontal displacement.

None of the linear or nonlinear models discussed above considers cavitation. The calculation of
cavitation stress and post-cavitation stiffness remains an open issue. Gent (1990) suggests that
cavitation occurs at a negative pressure of about 3G . This value is however a good
approximation only for certain range of radii of initial voids present in the rubber.

Constantinou et al. (2007) suggested a bilinear model and included cavitation strength and post-
cavitation stiffness. The model ignores coupling of vertical stiffness and horizontal displacement
in tensile loading. Tensile stiffness is given by:

K, = (2.18)

where E, is the tensile modulus. The modulus E, before cavitation is same as E_, given by
Equation (2.14). The modulus, E,, after cavitation takes the value of Young’s modulus, E, of
rubber, as the state of stress in the rubber after cavitation reduces to that of uniaxial tension.
Elastomers used in seismic isolation (filled rubber) have Young’s modulus of about E = 4G
(Ciesielski, 1999; Gent, 2001). Hence, the ratio of tensile stiffness before and after cavitation is
given by the expression:

K

vt,pre—cavitation EC 1
__vipre-cavitation _ —¢ _ 516G (2.19)

72 +
3S§° 3K

vt,post—cavitation

with the values in the range of 100 to 200 for typical intermediate and high shape factor
bearings constructed using low damping natural rubber.

The vertical stiffness model suggested by Constantinou et al. (2007) is presented in Figure
2-30.
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Figure 2-30 Vertical stiffness model for an elastomeric bearing (Constantinou et al., 2007)

Yamamoto et al. (2009) used a similar backbone curve to Figure 2-30 and included hysteresis in
compression and tension, as shown in Figure 2-31. The model uses the compression modulus
proposed by Gent and Lindley (1959a) and an arbitrarily small value of post-cavitation modulus.
Following unloading in tension (c-d-a), it traces back to a target point (d) defined by the user and
then follows the compression curve. It defines a yield zone in compression (a-e), and assumes
the post-buckling modulus as half of the compression modulus.

The model proposed by Yamamoto et al. (2009) seeks to capture the hysteresis in axial loading
in addition to other features of the vertical stiffness model. However, the model fails to capture
the permanent damage and reduction in cavitation strength observed in experiments (lwabe et
al., 2000; Warn, 2006). It does not consider effects of loading history on load-deformation
behavior in tension and does not provide a technical basis for choosing a particular post-
cavitation stiffness. Also, it does not consider coupling of vertical and horizontal motion
confirmed by experimental studies (e.g., Warn and Whittaker (2006)). Moreover, use of too
many unknown parameters limits its utility for numerical simulations.

In addition to the models discussed above, other researchers have proposed empirical formulae
for stiffness and cavitation strength (lwabe et al., 2000; Yang et al., 2010). However, these
formulae are based on limited experimental results and involve a number of unknown
parameters. A robust mathematical formulation for use in structural analysis cannot be obtained
from these models.
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Figure 2-31 Axial stress-strain model (Yamamoto et al., 2009)

2.6 Modeling in Contemporary Software Programs

2.6.1 General

This section describes how elastomeric bearings are modeled in computer codes that are widely
used in the United States, noting that numerical models of seismic isolation systems should a)
include all isolators in the seismic isolation system, and b) the account for the spatial distribution
of the isolators across the footprint of the isolated structure.

There are two ways to represent the physical model of an isolator: 1) a full three-dimensional
continuum model, and 2) a three-dimensional discrete model in which two nodes are connected
by six springs to represent the mechanical behavior in each of the six directions (three
translation and three rotation).

General-purpose Finite Element Analysis (FEA) programs such as ABAQUS (Dassault, 2010e),
LS-DYNA (LSTC, 2012a) and ANSYS (ANSYS, 2011), enable the use of discrete and
continuum models of seismic isolation bearings. The special-purpose software programs used
for structural analysis of base-isolated structures such as SAP2000 (Wilson, 1997), OpenSees
(McKenna et al., 2006), PERFORM-3D (CSI, 2006), and 3D-BASIS (Nagarajaiah et al., 1989),
model an elastomeric bearing as a two-node discrete element with stiffness in each of the six
principal directions represented by linear or nonlinear springs between the two nodes. Analytical
expressions for force and stiffness can be used to define a spring in any direction.

The modeling techniques for different types of isolator in seven software programs (SAP2000,
OpenSees, PERFORM-3D, 3D-BASIS, LS-DYNA, ABAQUS, and ANSYS) are discussed in the
following sections. Two types of rubber-based isolator are considered: 1) Low Damping Rubber
(LDR) bearing, and 2) Lead Rubber (LR) bearing. The discrete modeling techniques discussed
for these isolators can be extended for friction-based isolators.
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2.6.2 SAP2000

In SAP2000, isolators are modeled using Link/Support element option. Link is a two-node
element connected by six springs. Each node has six degrees of freedom. A description of the
Link element is given in Figure 2-32.

Joint j

a2
dj2L
= @
Axial Shear Pure
1 Bending
2 <—I ]
Joint i
or ground

Figure 2-32 Three of the six independent springs in a Link/Support element

SAP2000 provides the option to use the link element to model any structural element that can
be represented as 2-node element. The property data form for the link element is shown in
Figure 2-33. Low damping rubber (LDR), lead rubber (LR), flat sliders, single Friction Pendulum
(FP), and double FP bearings can be modeled using the link element. The shearing behavior is
based on the model proposed by Park et al. (1986) and extended for seismic isolation bearings
by Nagarajaiah et al. (1991). For nonlinear force-deformation response, either a) elastic and
post-elastic stiffness values, or b) equivalent linear stiffness, is assigned.

For the elastomeric bearing (rubber isolator) option in the link element, nonlinear (bilinear)

properties can be assigned to the two horizontal shear directions, but only linear elastic
behavior is accommodated for the remaining axial and three rotational directions.
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Figure 2-33 Link/Support property data input to SAP2000 (CSlI, 2011)
2.6.3 3D-BASIS

The computer program 3D-BASIS (also 3D-BASIS-M, 3D-BASIS-TABS, and 3D-BASIS-ME-
MB) is used for the nonlinear dynamic analysis of seismically isolated structures (Nagarajaiah et
al., 1989; Tsopelas et al., 2005). The analysis model and reference frames of a base-isolated
structure in 3D-BASIS-ME-MB are shown in Figure 2-34 and Figure 2-35. The software program
provides the option to use elastomeric (LDR and LR) bearings and friction-based isolators that
include the single FP bearing, the double FP bearing, and the XY-FP bearing.

The isolators in 3D-BASIS are modeled using explicit nonlinear force-displacement
relationships. The isolators are considered rigid in vertical direction and do not offer any
torsional resistance. The following elements are available in the program 3D-BASIS-ME-MB for
modeling the behavior of elastomeric bearings (Tsopelas et al., 2005):

1. Linear elastic element.

2. Linear and nonlinear viscous elements for fluid viscous dampers or other devices
displaying viscous behavior.

3. Hysteretic element for elastomeric bearings and steel dampers.

4. Stiffening (biaxial) hysteretic element for elastomeric bearings.

The model proposed by Park et al. (1986) and extended for analysis of seismic isolators by
Nagarajaiah et al. (1989) is used for the unidirectional and bi-directional hysteretic elements.
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2.6.4 PERFORM-3D

PERFORM-3D is a software program used for the nonlinear dynamic analysis of structures.
PERFORM-3D has powerful capabilities for inelastic analysis. The nonlinear model proposed by
Park et al. (1986) and extended for analysis of seismic isolators is used in the two horizontal
(shear) directions. Elastic stiffness is used in the vertical (axial) direction with the option to
provide different values in compression and tension. The local-axis orientation of the isolators
must be assigned to seismic isolator elements in PERFORM 3D. Axis 3 is usually defined as the
vertical (axial) direction of an isolator, and Axes 1 and 2 are the horizontal (shear) directions.
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Figure 2-34 Model that can be analyzed in 3D-BASIS-ME-MB (Tsopelas et al., 2005)
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2.6.5 ABAQUS, LS-DYNA, and ANSYS
2.6.5.1 Continuum Modeling

In the continuum modeling approach, an isolator is modeled as a three-dimensional continuous
object with appropriate material and geometrical properties assigned to different components of
the isolator. All three FEA software programs, ABAQUS, LS-DYNA, and ANSYS use a similar
approach to model an elastomeric seismic isolation bearing. The wide range of capabilities of
FEA allows a user to model complex phenomena like heating of the lead core in LR bearings.
The capability of a FEA model of a bearing to simulate the actual behavior depends on how
detailed a model is constructed. Very detailed models will increase the computational effort.

An elastomeric bearing is modeled as a multilayer object of alternating rubber and steel. Rubber
layers are usually meshed using solid elements and the steel layers can be modeled using
either solid or shell elements. A finite element model of an elastomeric bearing constructed in
ABAQUS is shown in Figure 2-36.
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b |
o]
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1Tl

Figure 2-36 Finite element model of a low damping rubber bearing

Steel is modeled as a linear elastic material. Kinematic plastic or any other metal plasticity
material model can be used if yielding in the internal steel shims is expected. Rubber can be
modeled either as hyperelastic material or a viscoelastic material. A viscoelastic model can be
used if experimental data on stress-strain, strain-rate, creep, and stress relaxation are available.
If only stress-strain data are available from an experiment, a hyperelastic material model is
recommended. The property data form of rubber defined using a hyperelastic material is shown
in Figure 2-37.

Hyperelastic material models require experimental data to determine the unknown parameters
required to model the rubber. If the initial shear modulus of the rubber is known, the Neo-
Hookean model (Rivlin, 1948) is an appropriate model for tensile shear strains of up to 40%, in
which case no experimental data are required. A high value is assigned to the bulk modulus of
rubber to account for its incompressibility. If a viscoelastic material model is used for the rubber,
LS-DYNA requires the user to input a short-term and long-term shear modulus; in ABAQUS it
can modeled in the frequency domain using complex modulus or in the time domain by
constructing a Prony series.
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Figure 2-37 Properties definition of rubber material in ABAQUS

The behavior of rubber in high shape factor bearings differs from the experimental behavior
observed from rubber coupon tests. When an elastomeric bearing is subjected to vertical
tension, cavities form inside the volume of rubber: cavitation. Cavitation is followed by the
substantial reduction in the vertical stiffness. Although rubber damage models are available in
ABAQUS (e.g., Mullins damage model), the cavitation phenomenon in elastomeric bearings is
different and cannot be captured using these models. Cavitation in elastomeric bearings cannot
be captured by ABAQUS, LS-DYNA, or ANSYS using a continuum modeling approach.

Convergence is often an issue with the use of hyperelastic material models due to their highly
nonlinear characteristics. The single-parameter Neo-Hookean hyperelastic material, although
easy to use, is not suitable for very large deformation analysis in which strains exceeds 40%.
Hyperelastic models using a larger number of parameters (e.g., Yeoh (1993), Ogden (1972))
provide better numerical stability but require experimental data to determine the parameters.

2.6.5.2 Discrete Modeling
2.6.5.2.1 General

Finite element analysis (FEA) software programs also provide option to create discrete model of
isolators. Although the continuum approach modeling of isolators among different FEA software
programs is similar, the modeling options for creating discrete models of isolators vary across
the platforms. Some of the software programs provide a direct option to model a bearing based
on its geometrical and material properties, whereas others use different techniques to create a
two-node, twelve degree-of-freedom element with six principal directions. The discrete modeling

2-38



techniques in ABAQUS and LS-DYNA are discussed here. ANSYS does not provide a direct
option for discrete modeling of isolators, but link and spring elements can be used.

2.6.5.2.2 Discrete Modeling in ABAQUS

ABAQUS provides the option to use a “connector” element to create discrete models of
isolators. The connector element in ABAQUS is similar to Link/support element in SAP2000.
ABAQUS provides a comprehensive list of “connector” elements that can be used to model an
elastic spring, a dashpot, friction, plasticity, and damage. Different directions between two
nodes can be coupled, uncoupled or combined. An illustration of connector behaviors in
ABAQUS is shown in Figure 2-38.

) damage
elastic/rigid plastic elastic/rigid plastic

AN ==
] damage failure

| —
first damping I second
connector #— Hal connector
node node

| |I stoplock

friction
.
Figure 2-38 Conceptual illustration of connector behaviors (Dassault, 2010a)

The first step in developing a connector is to define a connection type that represents the
physical model of the isolator. There are two ways to create two-node, twelve degree-of-
freedom discrete element that is characterized by six local directions: 1) a basic category
connection with a translational connection type assigned to Cartesian and rotational connection
type assigned to Rotation, or 2) an assembled/complex category Bushing connection. Both
options are shown in Figure 2-39.

Once the connection type is defined, connection behavior can be defined in each of the six local
directions for the seismic isolator. ABAQUS provides the option to use an isotropic or a
kinematic hardening model. A direct option to use the Bouc-Wen model extended by
Nagarajaiah et al. (1991) for seismic isolators is not available. Figure 2-40 shows the data form
for a connector. Additional information on use of connector elements in ABAQUS is provided in
Section 28 of ABAQUS Analysis User's Manual (Dassault, 2010a) and Section 15.7, 15.8 and
15.17 of ABAQUS/CAE User’'s Manual (Dassault, 2010b).

The use of a discrete model using connector elements in ABAQUS reduces the computational
effort drastically from that associated with a continuum model, and most of the nonlinear
behaviors can still be captured. However, modeling of isolators using connector elements in
ABAQUS is involved by comparison with the discrete models available in structural analysis
software programs such as SAP2000 and OpenSees.

ABAQUS also allows the user to define a model, which is not available in ABAQUS, through
user subroutine code and then to integrate (link) it to ABAQUS for analysis. The two-node
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discrete model of elastomeric bearings can be implemented in ABAQUS by creating new
subroutines called User Elements (UELs). The computational efficiency can be increased
significantly, and it can capture all of the behaviors of seismic isolators observed experimentally
that are defined by the user in the subroutine.
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Figure 2-39 Type of connectors used for seismic isolators
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Figure 2-40 Definition of connector's behavior
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2.6.5.2.3 Discrete Modeling in LS-DYNA

LS-DYNA provides a direct option to model an elastomeric bearing through a material model
option *MAT_SEISMIC_ISOLATOR. The corresponding element and section is created using
options *ELEMENT_BEAM and *SECTION_BEAM, respectively. ELFORM is set to 6 (discrete
beam), and the local axes of the isolator is defined in *“SECTION_BEAM option. This material
can be used to model elastomeric bearings, flat slider bearings, single FP bearings, double FP
bearings and XY-FP bearings. Behavior in two horizontal (shear) directions is similar to
SAP2000 and OpenSees, which is based on the model proposed by Park et al. (1986) and
extended for seismic isolators by Nagarajaiah et al. (1989). The vertical stiffness for all types of
isolators is linear elastic, with the option to provide different values in compression and tension.
The element has no rotational or torsional stiffness and a pinned joint is assumed. However, if
required, moments can be calculated according to the vertical load times the lateral
displacement of the isolator by assigning the moment factors in the *MAT definition. Additional
details on modeling a seismic isolator using *MAT_SEISMIC_ISOLATOR material model is
provided in *MAT_197 of LS-DYNA Keyword User’'s Manual (LSTC, 2012b).

2.6.6 OpenSees

OpenSees provides more flexibility to model isolators because of its code-based approach to
construct the finite element model of the structure. Currently OpenSees has one element to
model elastomeric bearings (LDR and LR). These OpenSees elements can be used for two-
dimensional or three-dimensional model of isolators. The three-dimensional representation of an
isolator and associated degrees of freedom are shown in Figure 2-41.

—r u

Figure 2-41 OpenSees isolator model

All elements use the model proposed by Park et al. (1986), as extended for seismic isolation
bearings by Nagarajaiah et al. (1991), to capture coupled behavior in the two horizontal shear
directions. The elastomeric bearing element (Schellenberg, 2006) uses the mechanical
properties of an elastomeric bearing as input parameters to describe the force-deformation
relationships. A user can assign any material model available in the OpenSees material library
in the vertical (axial) direction. A linear elastic material with vertical stiffness calculated from a
two-spring model (Koh and Kelly, 1988; Warn et al., 2007) or a bilinear model (Constantinou et
al., 2007) is usually used in the vertical direction. This element cannot capture coupling of
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horizontal and vertical motion, cavitation in tension, strength reduction in cyclic tensile loading,
heating of the lead core (in LR bearings) under large cyclic displacements, and variations in the
critical buckling load of the bearing with horizontal displacement.

2.6.7 Summary

All of the available software programs discussed here are capable of modeling seismic isolators
with varying degrees of sophistication. Although, the effort required also depends on user’s
familiarity with the particular software program, some programs provide a direct option to model
an isolator element based on their material, geometrical and mechanical properties, whereas in
others, several elements need to be combined to produce isolator-like behavior, or a continuum-
based approach needs to be used. The special-purpose software programs used for structural
analysis (e.g., SAP2000, OpenSees, PERFORM-3D, and 3D-BASIS) enable modeling of simple
isolator behaviors, but complex behaviors (e.g., cavitation, interaction between axial
compression and shear stiffness, strength degradation) cannot be captured, except in the open-
source code, OpenSees. The general-purpose software programs (LS-DYNA, ABAQUS, and
ANSYS) can model complex isolator behaviors using either discrete or continuum approaches.
Of the three general-purpose FEA programs discussed here, only LS-DYNA provides a direct
option to model an isolator based on its material and geometrical properties. The continuum
approach is recommended when the behavior of an individual isolator is to be studied. For
analysis of large base-isolated structures, the discrete model will generally have to be used.
Table 2-4 presents the capability of the seven programs summarized in this section to model
elastomeric bearings. Two new elements have been created by Kumar (2014) for LDR and LR
bearing to incorporate these features. Moreover, the new elements take only the geometrical
and material properties of elastomeric bearing as input arguments and the appropriate
mechanical properties are calculated by the element.
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3 MATHEMATICAL MODELS OF ELASTOMERIC BEARINGS

3.1 Introduction

Analysis of elastomeric bearings for extreme loadings requires robust mathematical models that
consider all of the properties that are expected to be critical under such loadings. At the same
time, these models should be sufficiently simple to be implemented in numerical tools for the
analysis of base-isolated structures.

This chapter addresses important aspects of the loading of elastomeric bearings that are
expected to affect the response of the isolated structure under extreme loadings. Mathematical
formulations to model the considered aspects are presented. These mathematical formulations
include numerically robust expressions that have been validated experimentally and new
phenomenological equations to model behavior in axial tension. The mechanical behavior in the
vertical direction is discussed in Section 3.2, which includes discussion on the behavior of
elastomeric bearings in tension and formulation of phenomenological models to simulate the
behavior observed experimentally. A mathematical model for mechanical behavior in the vertical
direction, applicable to both LDR and LR bearings, is presented at the end of the section. The
mechanical behavior in the horizontal direction is discussed in Section 0, and mathematical
models are presented at the end of the section.

3.2 Mechanical Behavior in Vertical Direction

3.2.1 General

LDR and LR bearings show similar behavior in the axial direction assuming no contribution from
the lead core in either compression or tension. The behavior of elastomeric bearings in pure
compression is well established and experimentally validated, and available mathematical
models capture the behavior reasonably accurately for regular loading. These models are
however not appropriate for extreme loadings where large variations in axial loads and coupling
of horizontal and vertical responses needs to be considered. Available mathematical models are
extended here to address extreme loadings.

Unlike in compression, no robust mathematical model exists for load-deformation behavior in
tension. Response in tension is characterized by highly nonlinear behavior that need to be
investigated to formulate an accurate mathematical model.

3.2.2 Coupling of horizontal and vertical response

The coupling of horizontal and vertical response is considered by: 1) variation of shear stiffness
with axial load, and 2) dependence of axial stiffness on lateral displacement.

Two models are used for the elastic analysis of elastomeric bearings under axial loading. The
continuous beam model (Kelly, 1993; Stanton and Roeder, 1982) is an extension of work of
Haringx (1948). The two-spring model (Koh and Kelly, 1987), presented in Figure 3-1, is a
simplification of continuous beam model.

The two-spring model provides results that are close to the continuous beam model and is used
here to obtain expressions for mechanical properties of elastomeric bearings. The two-spring
model has been validated experimentally by Warn et al. (2007) and used here owing to its
robust formulation and ease of numerical implementation.
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Figure 3-1 Model of an elastomeric bearing (Constantinou et al., 2007)

The vertical stiffness of the elastomeric bearing obtained from the two-spring model is given as:

27! 27"
K AL 1+%£“—hJ K, 1+%(“—”] (3.1)

T 7o\ 1, o\ 1,

where A is the bonded rubber area; E, is the compression modulus of the bearing calculated
as average axial stress divided by the average axial strain in a rubber layer; T, is the total
rubber thickness; U, is the lateral displacement of the bearing; r; is the radius of gyration of the
bonded rubber area; and K, is the axial compressive stiffness at zero lateral displacement.
The axial load-deformation curve in compression is shown in Figure 3-2. The instantaneous
value of the buckling load, P,, , is discussed in the following section.

cr?
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; ‘\\Increasmg Uy
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Axial deformation =

Figure 3-2 Stress softening under compression

The effect of axial load on the horizontal stiffness of an elastomeric bearing becomes important
only when the axial load, P, is close to the critical buckling load capacity. Koh and Kelly (1987)
provided an analytical expression for the horizontal stiffness, KH , as a function of the axial load
using a two-spring model.
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An approximation of the analytical expression for the horizontal stiffness that provides very
accurate result is given as (Kelly, 1993):

2 2
GA P P
K,=—|1-|=—| |=Ky|1-| =— 3.2
g 7-I’ [ (,DCIJ :l HO{ [PCI’J ] ( )
where K, is the shear stiffness at zero axial load, and other terms have been previously
defined.

3.2.3 Buckling in compression

The critical buckling load in compression is given by the expression derived from the two-spring
model (Koh and Kelly, 1987):

P, =\ PsP: (3.3)

cr

where P: is the Euler buckling load and is given by:

7°El
P. = P S (3.4)
and
P = GA (3.5)

where Ag and /g are the shear area and moment of inertia after accounting for the rigidity of
steel shims, and are given as:

A=Al (3.6)

h
Iy =1— 3.7
- (3.7)

where A is the bonded rubber area, | is the area moment of inertia, T, is total rubber
thickness, and h is the total height including the rubber and steel shims but excluding the end
plates. The modulus of elasticity here is the rotation modulus:

E=E, (3.8)
A list of rotation moduli for different shapes and obtained using different solutions is provided in

Constantinou et al. (2007). Rotation moduli and compression moduli of an incompressible
material of circular and square bearings follow the relationship:

E =—= (3.9)
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where E_ is the compression modulus. For circular bearings rotation modulus is E, = 2GS?.

The critical buckling load in Equation (3.3) varies with lateral displacement. The area reduction
method has been shown to provide conservative results (Buckle and Liu, 1993; Buckle et al.,
2002; Warn and Whittaker, 2006; Weisman and Warn, 2012). The reduced critical buckling load
is:

P =P (3.10)
For rectangular bearings of bonded area dimension B, x B, :
A =B,(B -A) (3.11)
For circular bearings of bonded area of diameter D:
D?
A =T(5—sin5) (3.12)
where §=2cos™ (A / D), and A is the lateral displacement of the bearing.
Figure 3-3 shows the overlap area of an elastomeric bearing.
Substituting the value of & in Equation (3.12), the reduced area can be written as:
2 2 r2
A Z%[2008_1 (%}—ZADT_A] (3.13)

The area reduction method suggests zero capacity for a bearing at a horizontal displacement
equal to the diameter of bearing. However, experiments have shown that a bearing does not
lose all of its capacity at A = D but rather retains a residual capacity. The model proposed by
Warn and Whittaker (2006) is considered here, which uses a linear approximation of area
reduction method and takes into account the finite buckling capacity of a bearing at zero overlap
area. The piecewise linear approximation of reduced area model is illustrated in Figure 3-4. The
mathematical formulation of model is given by set of equations:

p A A 502
p=1 A Af‘ (3.14)
0.2P,, 2 <02
A

where P, is the buckling load at zero displacement, and P, is the buckling load at overlapping

cr

area A of a bearing with an initial bonded rubber area of A.
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Figure 3-3 Reduced area of elastomeric bearings (adapted from Constantinou et al. (2007))
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Figure 3-4 Bilinear variation of buckling load
3.2.4 Cavitation in tension

An elastomeric bearing under tensile loading is characterized by the formation of cavities in the
volume of rubber. Gent and Lindley (1959b) explained that the fracture inside a rubber layer
occurs at a critical hydrostatic stress value that is related to critical value of applied tensile
stress. This critical tensile stress is equal to the hydrostatic stress for high shape factor bearings
where critical hydrostatic stress is attained uniformly over most of the bonded area, except at
the boundaries. This is in contrast to low shape factor bearings where the critical hydrostatic
stress is attained only in the central area and value of the critical tensile stress is about half of
the critical hydrostatic stress. The critical stress, known as cavitation stress, depends mainly on
the rubber compound.
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Cavitation is followed by the substantial reduction of the vertical stiffness indicated by a highly
discernible transition on the tensile load-deformation curve. The transition becomes smoother
as the shape factor decreases and it is generally difficult to locate a cavitation point on load-
deformation curve. Gent (1990) suggested that cavitation occurs at a negative pressure of about
3G, where G is the shear modulus. The cavitation force is given by the expression:

F. =3GA, (3.15)

where A, is the bonded rubber area and G is the shear modulus of rubber obtained
experimentally from the testing of elastomeric bearings at large shear deformation under
nominal axial loads. The large shear deformation is the region in which the shear modulus G is
relatively constant, as is explained in a later section.

3.2.5 Post-cavitation behavior

The nonlinear characteristic of natural rubber is influenced by amount of fillers and cross-linking
of the polymer chains. The reduction in stiffness after cavitation is due to breakage of rubber-
filler bonds. The subsequent increase in stiffness at large strains is due to the limited
extensibility of polymer chains and strain crystallization.

Most of the available mathematical models use a very small value of post-cavitation stiffness of
an arbitrary magnitude. Constantinou et al. (2007) suggested an expression for post-cavitation
stiffness as:

K _EA (3.16)

post—cavitation T
r

where E is the elastic modulus of rubber. Following formation of cracks after cavitation, rubber
loses its triaxial state of stress and experiences uniaxial tensile stress. Hence, the elastic
modulus used in Equation (3.16) is the Young’s modulus of rubber. Elastomers used in seismic
isolation (filled rubber) have Young’'s modulus of about E = 4G (Ciesielski, 1999; Gent, 2001).
Here, it is assumed that bonded area of rubber remains the same even after the formation of
cracks due to cavitation.

Experiments have shown that the post-cavitation stiffness of elastomeric bearings decreases
with increasing tensile deformation. The assumption of constant post-cavitation stiffness needs
to be revisited. Assume that area used in Equation (3.16) is the frue area of bearing excluding
the total area of cavities that change with tensile deformation. The true area of a bearing is
equal to the bonded rubber area at the onset of cavitation and decreases as the number and
size of the cavities increase with tensile deformation. The reduction in true area can be
attributed to two factors: 1) number of cavities, and 2) size of cavities. The reduction in area of
low shape factor bearings is mainly due to the increase in the size of cavities. For high shape
factor bearings used in seismic isolation applications, it is due to increase in the number of
cavities. A theory is presented below to simulate the observed post-cavitation behavior in
elastomeric bearings.

Consider the rubber area to be made up of infinite number of small area elements. Every time a
cavity is formed, the area element is eroded. The greater the area, the greater the rate of
destruction of area elements. So the rate of reduction of total area with respect to tensile
deformation would be proportional to the instantaneous true area at any moment.
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Mathematically, the above hypothesis can be expressed as:

A A (3.17)
ou

A_ kA (3.18)
ou

where K, is defined as cavitation parameter, which is constant for a particular elastomeric
bearing and describes the post-cavitation variation of tensile stiffness. The true area of the
bearing is equal to the bonded rubber area A, at onset of cavitation (U = u, ) and decreases
with tensile deformation. Integrating Equation (3.18), the variation of area with tensile
deformation is obtained as:

A=Al (3.19)

Instantaneous post-cavitation stiffness of bearing is given by:

K — E — EAo e*kc(“*“c)

post—cavitation T, 7-,

(3.20)

If K = % is the initial post-cavitation stiffness just after the cavitation, above equation can be

r

rewritten as:

K

7kc e
post—cavitation = Koe (“ ’ ) (321)
Equation (3.21) describes the post-cavitation variation of tensile stiffness of an elastomeric
bearing. It decreases exponentially, and rate of decrease is controlled by the parameter k.. To
obtain the tensile load variation, post-cavitation stiffness can also be expressed as:

oF
post—cavitation — E (322)
where F is the tensile force in the bearing. Substituting the expression for post-cavitation
stiffness in Equation (3.22):
oF _EA _EA, u-u) (3.23)

u T T

r

The above equation can be integrated to obtain force, F, at any tensile deformation u . Noting
that E =3G for rubber and the cavitation strength F, =3GA,, Equation (3.23) can be written as:

_E gktvu (3.24)

post—cavitation
Tr
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Equation (3.24) can be integrated with limits (F,, u,) to (F, u ), to obtain tensile force in the
bearing as:

FoF {1+ki(1 ] e""”(“"“c))} (3.25)

cr

The relationship in Equation (3.25) can be formulated in terms of stress, ¢, and strain, ¢ .
Using the expression F = A, Equation (3.22) can be rewritten as:

299, JOA _EA k() (3.26)
ou ou T

r

cr

Substituting Z—A =-k,A and u =k_T,, the above equation is simplified to:
u

% _EvkTo (3.27)
o€

where oo / d¢ is the post-cavitation modulus, E, , of an elastomeric bearing. Solving the
above differential equation, the expression for post-cavitation stress is obtained as:

kT

c=o0, {em’(‘g_gc) + A (ekCT’(‘g_SC) - 1)} (3.28)
where o, = 3G is the cavitation stress in the bearing. The same expression for stress is
obtained if the post-cavitation tensile force, F, in Equation (3.25) is divided by the
corresponding area, A, in Equation (3.19). The variation of tensile force with tensile
deformation is shown in Figure 3-5.

Tensile Increasing k
force 9
F, |----- & N
i F=F [1 + 1 (1- e—kc(u—uc))]
! i %

u . .
¢ Tensile deformation

Figure 3-5 Post-cavitation variation of tensile force in the bearing
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The constant k_ is obtained by calibration with experimental data and is usually greater than 1.
As k, increases, the slope of the post-cavitation tensile force is reduced and for a very large
value of k_, the bilinear stiffness model discussed in Constantinou et al. (2007) is recovered.
The proposed model does not capture minor stiffening effects that are observed during tensile
loading of elastomeric bearing at large tensile strains (>100%) due to limited extensibility of the
polymer chains in rubber.

3.2.6 Strength degradation in cyclic loading

Cavitation in elastomeric bearings is accompanied by the irreversible damage due to the
formation of micro cracks in the volume of rubber. When bearing is loaded beyond the point of
cavitation and unloaded, it returns along a new path and its cavitation strength is reduced. The
area enclosed between the loading and unloading branches is the energy dissipated due to
damage. Subsequent loading follows the latest unloading path elastically until the tensile
deformation exceeds the prior maximum value u,, , below which loading has the effect of only
opening and closing existing cavities within the rubber. Once loading exceeds the past
maximum value of tensile strain, the formation of new cavities leads to increased damage, and
follows the post cavitation behavior defined previously by Equation (3.25). Upon load reversal,
the force-displacement relationship traces a new unloading path and the cavitation strength is
further reduced. The unloading paths can be approximated by straight lines between the points
of maximum force and displacement (F__,u__ ) and the point of reduced force and

max?’ ~'max

displacement (F,,,u,,). Points (F, ., u...) and (F,, u,) change with repeated cycling. To

capture this behavior mathematically, a damage index ¢ is introduced such that the cavitation
force is:

Fcn = Fc(1_¢) (329)

The damage index @ represents the cumulative damage in the bearing (0<@#<1) . Itis a
function of the maximum deformation experienced by the bearing under tensile loading.
Mathematically, it can be expressed as ¢ =f(u,,,, ), wheref satisfies the following relations: 1)
f(u,)=0 (no strength reduction up to cavitation deformation), and 2)f(u,,, ) = #,., (damage
index converges to a maximum value after large deformations). This implies that function f is a
nonlinear and monotonically increasing function that is continuous in its domain. Moreover, the
damage index converges to a maximum value, ¢ __ , requiring f to be an asymptotic function. A
function satisfying these properties is given by:

ax ?

u-u,

b=b.., [1—;{ ﬂ (3.30)

where parameter a is a strength degradation parameter that defines the rate of damage and
?..ax 1S the maximum damage that can be expected in a bearing. The load-deformation
behavior of elastomeric bearings under cyclic tensile loading is summarized in Figure 3-6.

The cavitation strength of bearings decreases from F, to F,(1-¢,.,) following large strains. The
history of loading plays an important role in the characteristics of the response. If the bearing
experiences large tensile strains (and hence damage) early in the loading, the subsequent
response of bearing will be primarily elastic. If the tensile strain increases incrementally during
cyclic loading, damage and energy dissipation would build up progressively.
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Figure 3-6 Load-deformation behavior of rubber bearings under tension

3.2.7 Mathematical model

A mathematical model of an elastomeric bearing in the axial direction is presented in Figure 3-7.
The model captures the following characteristics in the axial direction:

1) Buckling in compression

2) Coupling of vertical and horizontal motion
3) Cauvitation

4) Post-cavitation variation

5) Strength degradation due to cyclic loading

Axial force, F

Compression

E
. Fp = E:(l - Q))
Tension
Fc(l - Q)max) E ! : K
| ' v T, 3 (uy 2
Ucr Lo 1+
1 g
i Uen U, Axial deformation, u

Figure 3-7 Mathematical model of elastomeric bearings in axial direction

The model uses three unknown parameters: 1) a cavitation parameter, k, 2) a strength
degradation parameter, a, and 3) a damage index, ¢, ., . These parameters should be
determined experimentally. However, if an experimental evaluation of parameters is not

possible, the user can assign suitable values to the parameters based on previous experimental

results on bearings of similar properties.
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3.3 Mechanical Behavior in the Horizontal Direction

3.3.1 General

The behavior of elastomeric bearings in shear is well established, and mathematical models
exist to reasonably capture the response expected for design basis earthquake for regular
structures. These mathematical models use simplified load-deformation relationships and ignore
behaviors that might be important under beyond design basis earthquakes during which
elastomeric bearings may experience large strains and lateral displacements under time-varying
three-dimensional loadings. These models are modified here to include the effects of heating of
lead core in LR bearings. The characteristic shear strength of LDR bearing is estimated from an
assumed value of equivalent viscous damping, which is discussed in the following sections.

3.3.2 Coupled horizontal response

A smooth hysteretic model is used for elastomeric bearings in horizontal shear, which is based
on the model proposed by Park et al. (1986) and extended for the analysis of elastomeric
bearings under bidirectional motion. The bidirectional smooth bilinear hysteretic model by Park
et al. (1986) has already been implemented in software programs 3D-BASIS (Nagarajaiah et al.,
1989) and SAP2000 (Wilson, 1997).

The model used here is shown in Figure 3-8. Parameters used in the model proposed by Park
et al. (1986) have been expressed here in the form that is typical of seismic isolation design,

namely, initial elastic stiffness K_,, characteristic strength Q,, yield strength F,, yield
displacement Y , and post-elastic stiffness K, .

Shear force
Fy|-- Ka

Qd ‘el
/ Shear
displacement

Figure 3-8 Mathematical model of elastomeric bearings in shear

The isotropic formulation of the model in terms of restoring forces in orthogonal directions, F,
and F,, is given by the equation:

Fx U X K Ux ( A ) Zx
Fy d Uy d Uy YL Zy ( )

where oy, is the effective yield stress of confined lead; A, is the cross sectional area of the
lead core, and ¢, is a parameter that accounts for the viscous energy dissipation in rubber; and
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Z, and Z, represent the hysteretic components of the restoring forces. Both Z, and Z,
have units of displacement and are function of the histories of U, and u, .

The biaxial interaction, or coupling, is given by the following differential equation:

y{z}: Al Zf(;/Sign(UXIZX)Jrﬂ) ZXZy(VS"g”(.UyZyFﬂ) {U} (3.32)
4 ZXZy(;/Sign(UXZX)+,3) Zf(VSig”(UyZY)Jrﬂ) v

y y

Parameters » and f control the shape of the hysteresis loop and A is the amplitude of the
restoring force.

When yielding commences, the solution of Equation (3.32) is given by the following equations,
provided the parameters satisfy the relationship A/ (ﬂ + 7/) =1 (Constantinou and Adnane,
1987):

Z =cos6, Z, =sing (3.33)

where @ represents the direction of the resultant force with respect to the direction of motion,
and is given by expression:

o=tan”(U, 1U,) (3.34)

The interaction curve given by Equation (3.33) is circular and Z, and Z, are bounded by the
values of +1.

The first two terms in Equation (3.31) represents the contributions of rubber, and the third term
represents the contribution of the lead core, to the total resisting force in the elastomeric
bearing.

3.3.3 Heating of the lead core

The effective yield stress of lead used in Equation (3.31) is not constant but decreases with
number of cycles of loading due to heating of the lead core (Importantly, it also varies as a
function of its confinement by the rubber and steel shims, and the end plates). The extent of the
reduction depends on the geometric properties of the bearing and the speed of motion.
Kalpakidis and Constantinou (2009b) characterized the dependency of the characteristic
strength of a LR bearing on the instantaneous temperature of its lead core, which itself is a
function of time.

The set of equations describing heating of the lead core are:

=2 (TNZ 202 0) kT, 1 .274(%(0_“3
pich, a.p.ch \F a

(3.35)
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37 2(nz)” { 3(4r) 6(4c) 12(47)3}

t
r=2 (3.37)
a
oy, (TL) =0y, " (3.38)

where hL is the height of lead core, a is the radius of the lead core, {; is the total of the shim
plates thickness in the bearing, C, is the specific heat of lead, p, is the density of lead, «; is the
thermal diffusivity of steel, k, is the thermal conductivity of steel, o, is the effective yield
stress of lead at the reference temperature, 7 is a dimensionless time parameter and ¢ is the
time since the beginning of motion. Figure 3-9 illustrates some of the variables.

h| 1 <

RUBBER LEAD
STEEL
LAYERS CORE SHIMS

Figure 3-9 Schematic of a LR bearing (Kalpakidis et al., 2010)
Equation (3.38) predicts the characteristic strength of a LR bearing, normalized by the area A, ,

as a function of instantaneous temperature obtained from Equation (3.35) through parameter
E, . Typical values of parameters related to lead and steel are listed in Table 3-1.

Table 3-1 Typical value of lead and steel related parameters (Kalpakidis et al., 2010)

Parameter Value
oL 11200 kg/m3
c, 130 J/(kg°C)
K 50 W/(m°C)
a, 1.4%x10° m?/s
E, 0.0069/°C

The term ,/Z? +Z§ in Equation (3.35) is equal to 1 following yielding under large inelastic
deformations, but less than 1 under small elastic deformations. To simplify the numerical
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computations, JZf + Zj is taken as 1. This assumption has an effect of overestimating the
energy dissipation in the lead when displacements are less than the yield displacement, which
is not significant because lead-rubber bearings are intended to undergo large inelastic
deformations under design basis earthquake loadings.

3.3.4 Equivalent damping

The damping in LR bearings is primarily contributed by energy dissipation in the lead core and
contribution of viscous damping due to rubber is typically neglected. The force-displacement
loop of an elastomeric bearing is idealized as in Figure 3-10, and the effective period and
effective damping of the isolated system are calculated using following equations (AASHTO,

2010; ASCE, 2010):

T =27 v (3.39)
Keffg
Q
K,.=K, +—2 3.40
eff d D ( )
1 E,
L 3.41
Pen 2H{Keﬁ02} (3.41)

where D is the displacement of the system due to earthquake shaking obtained from smoothed
response spectra, and E, is the energy dissipated per cycle at displacement D .

Oq

r

p Force

-
Frnax il
P

-

_IKd' _’#’

| K, . ’_JJ' K. _
T Displacement

-
= | B

Figure 3-10 Idealized behavior of elastomeric bearings in shear (Warn and Whittaker, 2006)

For the idealized behavior shown in Figure 3-10, E, is given as:

where Y is the yield displacement.

ED

=4Q,(D-Y) (3.42)
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The characteristic strength of a LR bearing is determined using the effective yield stress of the
lead. For LDR bearings, the characteristic strength cannot be obtained directly; an effective
damping of system is assumed and the characteristic strength is determined as:

A, _1 4Q, (D—ZY) < 2Q, (3.43)
2r KD 7K,D
Q"Z%X ¢ x Ky xD (3.44)

If the value of displacement D due to earthquake shaking is known, the characteristic strength
of a LDR bearing can be estimated and used in the detailed analysis. A simplified method of
analysis for isolated structures is discussed in Constantinou et al. (2011).

If the analysis for the estimation of damping in isolated system is not performed, a nominal
damping of 2% to 3% can be assumed.

3.3.5 Variation in shear modulus

The effective shear modulus of an elastomeric bearing is obtained from experimental data. Low
damping rubber and lead-rubber bearings show viscoelastic and hysteretic behaviors in shear,

respectively. The effective stiffness, K, , is calculated using:

_FIHIF ‘F‘ (3.45)
A" +‘A" '

eff

where A* and A~ are the maximum and minimum horizontal displacements obtained from an
experiment, and F* and F- are the corresponding forces. Values F* and F- are the
maximum and minimum force for the hysteresis case, as shown in Figure 3-11.

The effective shear modulus is subsequently determined using the expression:

_ KeffTr

G
eff A

(3.46)

A typical variation of shear modulus with strain is shown in Figure 3-12 for a LDR bearing
(bonded diameter = 35.5 inch, shape factor = 26).

Most of the available mathematical models use a constant shear modulus for an elastomeric
bearing, although shear modulus varies with strain and axial loads. Increasing the axial
pressure reduces the shear modulus. However, if the shear modulus, G, is determined from
testing at large strains and under nominal axial pressure, the value of G already includes some
effects of axial load. The shear modulus of natural rubber decreases with increasing strain up to
100%, remains relatively constant for shear strain between 100 and 200%, and increases again
at shear strains of 200 to 250%. The shear modulus obtained from testing of elastomeric
bearings at large strains is used for calculation of shear stiffness of LDR bearings, post-elastic
stiffness of LR bearings, and buckling load.
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Figure 3-11 Effective stiffness of elastomeric bearings (Constantinou et al., 2007)
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Figure 3-12 Stress and strain dependency of LDR bearings (courtesy of DIS Inc.)

3.3.6 Mathematical model
3.3.6.1 Lead rubber bearings

A mathematical model of LR bearings in horizontal shear is presented in Figure 3-13. The
model captures the following characteristics of lead-rubber bearings:

1) Nonlinear shear force-deformation behavior
2) Bi-directional interaction in the horizontal plane
3) Strength degradation due to heating of the lead core

The parameters used here have been defined in previous sections. For numerical
implementation, the model is represented as sum of two sub-models: 1) a viscoelastic model of
rubber, and 2) an elasto-plastic model of lead, shown in Figure 3-14. The contribution of the
rubber to the total resisting force is given by the first two terms in Equation (3.31) and the third
terms represents the contribution of the lead core. The sum of all three terms is the restoring

force in the LR bearing.
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Figure 3-13 Mathematical model of lead rubber bearings in horizontal direction
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Figure 3-14 Alternative representation of the mathematical model

The characteristic strength, or yield stress of the lead core, decreases with the number of cycles
under large shear deformation according to Eqns. (3.35) through (3.38). The yield stress of the
lead core at the reference temperature (beginning of motion) is obtained experimentally as it
depends on the degree of confinement of the lead core in the bearing (Kalpakidis and
Constantinou, 2009a).

3.3.6.2 Low damping rubber bearings

The same mathematical model used for the LR bearing is used for the LDR bearing with one
modification. The hysteretic term in Equation (3.31), (GVLAL){ZX Zy} , is replaced by the yield
strength of the LDR bearing obtained using the assumed value of effective damping of the
system, as explained in Section 3.3.4.

3.3.6.3 High damping rubber bearing

The strain rate-independent bidirectional model proposed by Grant et al. (2004) is used to
capture the behavior of HDR bearings in shear. This model can capture stiffness and damping
degradation in HDR bearings due to short-term (Mullins’) effect and long-term (scragging)
effects. The model decomposes the resisting force vector into an elastic component parallel to
displacement vector and a hysteretic component parallel to the velocity vector. The bidirectional
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behavior is described in terms of shear force vector F, displacement vector U, and a unit

vector N given as:
FX _ UX _ U
F:{Fy} U_{Uy} "I 247

where X and y subscript refers to the two perpendicular horizontal directions of a bearing and
N is a unit vector in the direction of the velocity.

The bidirectional force vector is:

F(U,n,Dg,D,)=F,(U,D,,D, )+ F,(U,n,D) (3.48)

where F, and F, are the elastic and plastic parts of the shear force vector, respectively; and Dg
and D,, are the scalar history variables that account for the stiffness and damping degradation.

The mathematical formulation of the elastic component is developed from generalized Mooney-
Rivlin strain energy function as following:

Fi=KsiKy| @+ a, JU[ +a, U |u (3.49)

where a,, a,, and a, are material parameters, and K, and K, are reduction factors to account
for stiffness and damping degradation.

The plastic component is given as:
F,=Rn-du (3.50)

where R is the radius of a bounding surface in the force space, & is a scaled distance variable,
and u is a unit distance vector along which distance is measured. The radius R is:

R = b, + Kb, ||U[* (3.51)

where b, and b, are material parameters, and Kj, is reduction factor to account for the effect
of scragging on hysteretic force.

An image force is defined by projecting the unit vector, 1, onto the bounding surface:

F=Rn (3.52)

The parameters & and u are defined as the magnitude and the direction, respectively, of the
vector pointing from the current force to the image force.

B
|

5=HF“—F2H L= (3.53)

B
|
ol [T
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The rate of change of direction of the hysteretic force in the F, space is defined using:
F,
|F:|

—u (3.54)

The magnitude of change is defined in terms of the scalar parameter s using following:
5= —b35HUH (3.55)

The numerical implementation of the model is presented in Grant et al. (2005).

3.4 Mechanical Behavior in Rotation and Torsion

The torsional and rotational behaviors of elastomeric bearing do not significantly affect the
overall response of a seismically isolated structure. Hence, behavior in rotation and torsion are
represented by linear elastic springs with stiffnesses calculated as:

Rotation: K = % (3.56)
Torsion: K, = (_j_lf (3.57)

where E, is the rotation modulus of the bearing, /; is the moment of inertia about an axis of
rotation in the horizontal plane, and /, is the moment of inertia about the vertical axis. The
perpendicular axis theorem implies that for symmetric bearings, /, = 2/_. Constantinou et al.
(2007) provides a list of rotation moduli for different shapes of elastomeric bearings. For circular
bearings of incompressible rubber, the relationship between compression modulus and rotation
modulusis E, =E_ /3.
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4 IMPLEMENTATION OF THE MATHEMATICAL MODELS IN
OPENSEES AND ABAQUS

4.1 Introduction

The implementation of the mathematical models of Low Damping Rubber (LDR) and Lead
Rubber (LR) bearings presented in Chapter 3 and High Damping Rubber (HDR) bearing
proposed by Grant et al. (2004) in OpenSees (McKenna et al., 2006) and ABAQUS (Dassault,
2010a) is discussed in this chapter. ABAQUS is a general purpose Finite Element Analysis
(FEA) package. New capabilities are added to ABAQUS through user subroutines written in the
FORTRAN 77 programming language. The mathematical models of LDR and LR bearings are
implemented through a special type of subroutine called User Elements (UELs). OpenSees is
an open source platform for computational simulations in earthquake engineering. New
capabilities to OpenSees are added by implementation of Element classes using the C++
programming language. Three Element classes are written for the mathematical models of LDR,
LR, and HDR bearings.

This chapter describes the addition of new user elements’ to OpenSees and ABAQUS. The
physical model of the elastomeric bearings considered in these software programs is discussed
in Section 4.2. Section 4.3 discusses how the algorithms are implemented. The implementation
in OpenSees and ABAQUS is discussed in Section 4.4 and 4.5, respectively.

4.2 Physical Model

The 3D continuum geometry of an elastomeric bearing is modeled as a 2-node, 12 DOF
discrete element, as shown in Figure 4-1. The two nodes are connected by six springs, which
represent the material models in the six basic directions: axial, shear (2), torsional and rotational
(2) directions. The discrete spring representation of three-dimensional continuum model is
shown in Figure 4-2.

—= uy

Figure 4-1 Physical model of an elastomeric bearing

" The term “user elements” will be used from here on to collectively refer the new elements in OpenSees
and ABAQUS, unless a specific distinction is made.
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Figure 4-2 Discrete spring representation of an elastomeric bearing

The general form of the element stiffness matrix, K, , in the basic coordinate system for the
element representation considered above is:

" Axial 0 0 0 0 0 ]
0 Shear1 Shear12 0 0 0
K _ 0 Shear21 Shear?2 0 0 0
10 0 0 Torsion 0 0
0 0 0 0 Rotation1 0

. 0 0 0 0 0 Rotation?2 |

and the element force vector in the basic coordinate system is:

Axial
Shear1
Shear?2
Torsion

Rotation1
| Rotation?2 |
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As discussed in Chapter 3, the coupling of the two horizontal (shear) directions is considered
explicitly. The coupling of vertical and horizontal response is accommodated indirectly by using
expressions for vertical and shear stiffness that depend on the horizontal shearing displacement
and axial load, respectively. Linear uncoupled springs are considered in the torsion and the two
rotational springs as they are not expected to significantly affect the response of an elastomeric
bearing. The off-diagonal terms due to coupling between axial and shear, and axial and rotation,
are not considered in the two-spring model (Koh and Kelly, 1987) used here. An exact model
would have non-zero values of these off-diagonal terms. A discussion on the formulation of the
two-spring model and the exact model is presented in Ryan et al. (2005).

4.2.1 Reference coordinate systems

The force vector and the tangent stiffness matrix are formulated at component level in the
element’s basic coordinate system. The system of equations for the whole model is solved in
the global coordinate system to obtain the model response. Coordinate transformations are
used to switch between basic, local, and global coordinates. The quantities in basic, local and
global coordinates are designated using subscripts b, I/, and g, respectively. A matrix that
transforms any vector from coordinate system a to coordinate system b is denotedas T, .
Hence, the transformation matrices, Tg, and T, transform any vector from global to local and
local to basic coordinate systems, respectively?. Figure 4-3 presents the orientation of
coordinate axes used in OpenSees and ABAQUS. The element (or component) forces,
displacements, and stiffness matrices are formulated in element’s basic coordinate system and
transformed from basic to local and then local to global coordinate system. The contribution
from each element of the model in the global coordinate system is assembled to obtain the
systems of equations for the whole model and solved to obtain nodal responses (e.g., forces,
displacements). The nodal response quantities obtained in the global coordinate system are
transformed back to the element’s basic and local coordinate systems to obtain forces and
displacements in the components.

To obtain the transformation matrix, T,, element deformations in the basic coordinate system
are expressed as a function of the element’s local displacements. Shear deformations in
elastomeric bearings can be caused by rotations as well as translations. Figure 4-4 presents the
definitions of axial, shear and bending deformation. These definitions ensure that all
deformations will be zero under rigid body motion of the elastomeric bearing. Similar definitions
have been used in OpenSees (elastomericBearing element (Schellenberg, 2006)) and SAP2000
(Link/Support element). The shear distance ratio, sDratio , is the ratio of distance from Node 1
to the height of bearing where the shear deformations (u,(2) and u,(3)) are measured. This
point is located at the shear center® of the elastomeric bearing in the 1-2 plane. In most cases,
elastomeric bearings are fixed against rotation at both nodes and the shear center is located at
the mid-height of the bearing (sDratio = 0.5).

2 Transformation matrices T and T are referred to as element compatibility matrix, b, and T7 is referred to
as force compatibility matrix, a, in conventional matrix structural analysis. These two matrices satisfy the
contragradience relationship a = b'.

3 The shear center of a cross section is defined as the point about which transverse forces do not produce
any rotation. The location of the shear center of a column is the inflection point along the height.

4-3



Rl
-~ U—Ilrg
Figure 4-3 Coordinate systems used in OpenSees and ABAQUS
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Figure 4-4 Three of the six basic deformations in the 1-2 plane (adapted from CSI (2007))



The relationships between basic and local deformations are given by:

u,(1)=u,(7)-u,(1)
u,(2)=u,(8)—u,(2)-sDratio - L - u,(6) - (1- sDratio)L - u,(12)

(
(
u,(3)=u,(9)—-u,(3)+sDratio - L - u,(5) + (1-sDratio)L - u,(11) 4.3)
u,(4)=u,(10)-u,(4) '
u,(5)=u,(11)—-u,(5)
u,(6)=u,(12)-u,(6)
which can be written in a matrix format as:
u, =Ty, (4.4)
where T, is the local-to-basic coordinate transformation matrix that is given by:
-1 0 0 o0 0 0 1.0 0 0 0 0 ]
0 -1 0 O 0 -sDratio-L 0 1 0 O 0 —(1- sDratio)L
0 0 -1 0 sDratio-L 0 0 0 1 0 (1-sDratio)L 0
Ty = (4.5)
0o 0 0 - 0 0 0 0 0 1 0 0
0 0 0 O -1 0 0 0 0O 1 0
|0 0 0 O 0 -1 0 00O 0 1 |
Similarly the relationships between basic and local forces are given by:
(1) =—1,(1)
£(2)=-1,(2)
£,(3)=—1,(3)
fi(4)=—1,(4)
f,(5) = sDratio - L -f,(3)—1,(5)
f,(6) = —sDratio - L -f,(2) - f,(6) (4.6)
£(7)=1,(1)
£,(8)=1,(2)
£(9)=1,(3)
£,(10)=1,(4)
f,(11)=(1-sDratio)-L -f,(3) +1,(5)
f,(12)=—(1-sDratio)-L -f,(2) + f,(6)
which can be written as:
fi=T.f, (4.7)

where f, and f, are 6x1 and 12x1 force vectors in local and global coordinates, respectively.
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For the transformation between local and global coordinates, consider the two coordinate axis
systems and angles between their axes, as presented in Figure 4-5.

U1l
ug —> X

u3g

Z / U3l
2
Figure 4-5 Orientation of local and global coordinate axis systems

The global coordinate axes are represented as X, Y, and Z. The local coordinate axes are
represented as X', Y', and Z . The direction cosines of the angles between axes are
presented in Table 4-1.

Table 4-1 Direction cosines of axes (adapted from Cook (2001))

X Y Z
l, m, n,
Y' I, m, 2
Z I3 my Ny

If T, isa 3x3 direction cosines matrix consisting of the direction cosines presented in Table
4-1, and Tg, is the global-to-local coordinate transformation matrix, the relationship between the
local and global deformations is:

u=T,u, (4.8)
where T is 12x12 matrix given as:
T, 0 0 O
T - o 7, 0 O (4.9)
g o o T, O
0O 0 0 T,

The X -axis in the local coordinate system (element’s principal axis), which is a vector joining
the two nodes of an elastomeric bearing, is obtained as the difference of the nodal coordinates:

X=(X, = X)) +(Y, = Y)j+(Z, -Z)k = (X, - X,,Y, - Y, Z, - Z,) (4.10)
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In order to obtain the orientation of other two local coordinate axes (y and Z ), one of the two
coordinate axis vectors needs to be assumed in the beginning, and the other coordinate axis
can be obtained as a cross-product of the two known coordinate axis vectors. Finally, the
correct orientation of the assumed coordinate axis vector can be obtained as the cross-product
of other two coordinate axis vectors.

If the y -axis vector is assumed for the element, the Z -axis vector is obtained as:

z(1) = x(2)y(3) - x(3)y(2)
z(2) = x@)y(1) - x(1)y(3) (4.11)
Z(3) = x(My(2) - x(2)y(1)

The correct orientation of the y -axis vector is finally obtained as the cross product of the Z
and X axis vectors:

y(1) = 2(2)x(3) — z(3)x(2)
¥(2) = z(3)x(1) — z(1)x(3) (4.12)
y@) = z()x(2) - z(2)x(1)

The three local coordinate axis vectors are divided by their respective norms to obtain the unit
vectors representing the orientation of three coordinate local axes. The components of unit
vectors represent the direction cosines with respect to global coordinate system, and the

direction cosines matrix, T, , and transformation matrix, T, , can be obtained:

x(M/x, x(2)/x, x3)/x,

T =YWy, y@)ly, y@3)ly, (4.13)
zN)/z, z(2)/z, z(3)/z,

(4.14)

osl o o
1 oo o

3}

where X,, ¥,, and Z, are the norm of vectors X, y,and Z, respectively.

In OpenSees, same global coordinate system is used for most of the problems (although this is
not necessary), which provides an opportunity to assume local y -axis vector to be global X -
axis as the default option in the user elements. It also means that orientation of a bearing (local
X -axis) cannot be along global X -axis using the default arguments. The user must override

default option with their own set of X and y axis vectors to use an arbitrary orientation of
bearing in an analysis.

The user elements created in ABAQUS do not allow an arbitrary orientation of elastomeric

bearings. The principal axis of a bearing must be along one of the global coordinate axes, X,
Y , or Z, which accommodates virtually all cases for seismic isolation in structural analysis.
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The direction cosines matrix, T, , for each of the global coordinate axis are:

100 0 10 0 0 1
T,=/0 1 0; T,=|-1 0 O; T,={-1 0 Of; (4.15)
0 0 1 0 01 0 10

If the principal axis (local X -axis) of a bearing is along global Y -axis (vertical direction), the T,
matrix can be used to obtain T, using Equation (4.14). Once the transformation matrices are
obtained, system of equations can be set up in global coordinates.
The relationship between the local and global forces is given by:

f,=T,f (4.16)

The load-deformation relationship for the user elements in basic coordinate is:
f, = K,u, (4.17)
Multiplying both sides of equations by T,) and using u,= T,u,:
T.f =T.K,T,u, (4.18)
Again multiplying both sides of equations by Tgf , and noting that T,)f, =f and u, = T,u,:

Tyf =TT Ky TyTgl, (4.19)

In Equation (4.19), the expression T f, is the force vector in the global coordinate system, f, .
The equation can be written as:

f,=K,u (4.20)
where K, is the global stiffness matrix of the elastomeric bearing and obtained as:
Ky, =T T KT, T, (4.21)
The relationship between global nodal force vector and element’s basic forces is:
f, =TaTif, (4.22)

The stiffness matrix in the global coordinate system, K_, can be obtained using the element’s
stiffness matrix, K, in the basic coordinate system and transformation matrices using Equation
(4.21). Equation (4.20) is solved to obtained nodal forces and displacements in the global
coordinate system, which can be transferred back to local and basic coordinates using
transformation matrices.
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4.3 Numerical Model and Code Implementation

4.3.1 General

The numerical model is constructed from the mathematical model and an algorithm is devised to
code the numerical model in OpenSees and ABAQUS using the C++ and FORTRAN
programming languages, respectively. The code of a user element includes three main
components:

1. Material models definition
2. Geometry definition
3. Mechanical formulation

The primary task of a UEL is to provide the force vector and the stiffness matrix in the global
coordinate system. The material models for an elastomeric bearing represented by springs, in
the six basic directions, as presented in Chapter 3. The material and geometric properties are
used to obtain a mechanical formulation represented by the load-deformation relationship in the
global coordinate system. The implementation of the mathematical models for the load-
deformation relationships in each direction are presented below.

4.3.2 Material models
4.3.2.1 General

The mechanical behaviors of elastomeric bearings in six directions are represented by linear
and nonlinear springs, also referred to as material models. The mathematical models are
discretized into numerical models and the algorithms for implementation of the numerical
models in software programs are discussed.

Force vectors and stiffness matrices in C++ (OpenSees) and FORTRAN 77 (ABAQUS) are
represented by one and two dimensional arrays, respectively. In C++, array elements start with
index 0, and in FORTRAN 77 with 1. The indices of array elements correspond to the each of
six basic directions. Table 4-2 presents the array indices used to represent the six basic
directions in OpenSees and ABAQUS.

The numerical implementation presented in following sections use the array index convention
discussed in Section 4.2, which is also the index convention used in ABAQUS (FORTRAN 77).

Table 4-2 Array indices

Direction OpenSees (C++) ABAQUS (FORTRAN 77)
Vertical (Axial)
Horizontal (Shear) 1
Horizontal (Shear) 2
Rotation about vertical (Torsion)
Rotation about horizontal 1
Rotation about horizontal 2

AP WINI~|O
DN WIN|—
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4.3.2.2 Vertical (axial) direction

The material behavior of an elastomeric bearing is linear elastic (for zero horizontal
displacement) in compression up to buckling. The critical buckling load for an elastomeric
bearing depends on the overlap area, which is a function of horizontal displacement. The critical
buckling load must be updated after each analysis step. The bilinear approximation to the linear

area reduction method (Buckle and Liu, 1993), suggested by Warn and Whittaker (2006), is
used.

The horizontal displacement, U,, in the bearing is calculated as:

Uy = Uy (2)° +,(3)° (4.23)
The angle subtended by the chord of the overlap area at the center of the bearing is:

5=2cos ' dn (4.24)
D.

2

where D2 is the outer diameter of the bearing. The reduced overlap area, Ar, is calculated as:

r

2
A = (Dj) (6-sins) (4.25)

The critical load, P, , at lateral displacement, U,, is obtained as:

cr

Prot As02
P = A 2‘ (4.26)
0.2P,, 202
A

where P, is the buckling load at zero displacement, and P, is the buckling load at overlapping

cr

area A of a bearing with an initial bonded rubber area of A.

The vertical stiffness, KV , depends on the lateral displacement, and is updated at each time-

step:
AE 3(u V| 3 (u,) ’
K, = T{”?(Thn =K,, 1+?[Th] (4.27)

g

where E_ is the compression modulus (Constantinou et al., 2007), U, is the horizontal
displacement, r, is the radius of gyration of the bonded rubber area, and K,, is the axial
compressive stiffness at zero lateral displacement. When the compressive load exceeds the
buckling load, the bearing is assumed to have failed and offer no resistance. A very small value
of post-buckling axial stiffness (e.g., K,, /1000 ) is assumed to avoid numerical problems.
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Table 4-3 Axial force and stiffness as a function of displacement

Initialization

F.=F,F,..=F

cmn cr? ' crmin cr

=F, /K, u

v0? crn_ucr
F, = 3GA, F =F;F_=F

¢’ max
u, —F/Kvo,ucn—u Upax = U

¢’ “'max c

State variables

update :
D,+t ) -D
5=2cos'dn; A =( : ) 1 (5 Sin5)
D2
Fcr% IF %20.2
Fcrn = A u
0.2F, IF —-<0.20r—->1.0
A 2
Fcrmin F
IF Fcrmln < FCI'H FC”]
qun
KV
Fmax - FC T+ (1 - eXp(_(umax —u, ))
ucn = Fcn /KV
) < K,(11)=K,, /1000
Force and stiffness up\1) = U, ~
update fb(1) Fcrmln +K (1 1)(ub(1) ucm)
K,(11)=K
Uy <Uy(1) < U,
f;)(1):Kb(111)xub(1)
KOAN=(F._. -F )/ (u. —u
<0, )5 Uy | 0D ) e )
f,(1) =K, (1) (u,(1)-u,,)
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Ky (11) = 2= exp(—k, (U, (1) - 1,)

r

u()>u
b (1)> Uy F=F 1+%(1—exp(—kc(ub(1)—uc))

cr

The material behavior is linear elastic (for zero horizontal displacement) in tension up to
cavitation followed by linear or nonlinear post-elastic behavior depending on the history of
tensile loading. The two transition points in tensile loading are the cavitation (u,,, F,,) and the
point of prior maximum tensile displacement (U, , F,., )- The transition points are updated
every time the tensile displacement exceeds the prior maximum value, u,,, . The cavitation
point (u,,, F,,) starts with initial values of (u,, F,), the initial cavitation point, and then changes
under cyclic loading. Table 4-3 presents the entries in the stiffness matrix, K,, and nodal force
vector, f,, corresponding to axial direction as a function of axial displacement.

4.3.2.3 Horizontal Direction
4.3.2.3.1 General

The horizontal shear behavior of LDR and LR bearings is modeled using an extension of the
Bouc-Wen model (Park et al., 1986; Wen, 1976). The model proposed by Grant et al. (2004) is
used for HDR bearings. The numerical formulations start with the construction of a stiffness
matrix, and force and displacements vectors in the basic coordinate system. The stiffness matrix
and nodal response quantities are converted from the basic to the global coordinate system
through transformation matrices described previously. The formulation of these models are
presented in the following sections.

4.3.2.3.2 Low damping and lead rubber bearings

Two numerical models and their implementation algorithms are presented here. The
bidirectional formulation of the Bouc-Wen model and the plasticity model are used. Both models
are represented as the sum of a viscoelastic model of rubber and a hysteretic model of the lead
core, as shown in Figure 4-6. The key difference between the two models is the smooth
transition from elastic to plastic force-displacement behavior in Bouc-Wen model. Figure 4-6
shows the sharp transition in the plasticity formulation.

/ qYield

Viscoelastic Hysteretic Visco-plasticity
Figure 4-6 Components of the numerical model of elastomeric bearing

The viscoelastic component has the elastic stiffness, k,, and the hysteretic component has an
initial elastic stiffness k. The sum of these two models (the mathematical model of elastomeric

4-12



bearing in shear) has initial stiffness k, + k, and post-yield stiffness k,. A parameter « is often
assumed in an analysis, which is the ratio of the post-yield stiffness to the initial stiffness of an
elastomeric bearing:

oo ke (4.28)

Kk =CA (4.29)

For given value of «, the initial stiffness of hysteretic component can be calculated using:

K, = (l - 1} K, (4.30)

a

The yield strength of hysteretic component (or characteristic strength of elastomeric bearing),
qYield | is calculated as product of yield stress of lead and the area A, of the lead core for LR
bearing, while for LDR bearing it is calculated by assuming a nominal value of damping
(described in Chapter 3). If gYield is known, the yield strength, f, , of elastomeric bearing can

be obtained using:

F qYield

y

(4.31)

1-«

The formulations the Bouc-Wen model and the plasticity model using the parameters obtained
from Equation (4.28) through (4.31) are discussed in the following sections.

4.3.2.3.3 Bouc-Wen formulation

A smooth hysteretic model is used for elastomeric bearings in horizontal shear, which is based
on the model proposed by Park et al. (1986) and extended for the analysis of elastomeric
bearings under bidirectional motion (Nagarajaiah et al., 1989). The bidirectional smooth
hysteretic model by Park et al. (1986) has already been implemented in software programs 3D-
BASIS (Nagarajaiah et al., 1989) and SAP2000 (Wilson, 1997). A detailed discussion on this
mathematical model was presented in Chapter 3. The numerical implementation is presented
here.

The isotropic formulation of the model in terms of restoring forces in two horizontal orthogonal
directions, represented by indices 2 and 3, is given by the equation:

f(2 u,(2 u,(2 1
{b( )}=cd{,b( )}+ke{ ol )}Jr(ineld){z( )} (4.32)
f,(3) u,(3) u,(3) z(2)
where f,, u, and u, are the force, displacement and velocity in the basic coordinate system, k,

is the elastic stiffness of rubber (also the post-elastic stiffness of the bearing), ¢, is a parameter
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that accounts for the viscous energy dissipation in the rubber, and qYield is the yield strength
of hysteretic part (also the characteristic shear strength of the bearing).

The first two terms in Equation (4.32) represent the resisting force in the rubber and the third
term represents the resisting force in the hysteretic componen7t (the lead core in the LR
bearing). The hysteretic evolution parameter, Z = [2(1) Z(Z)] , is used to calculate the
resisting force in the bearing due to the hysteretic component using the following equation:

()| _ u,(2)
u, {2_(2)} =(A[1]- [Q]){ub(B)} (4.33)
where matrix Q is given by:

5 :[ (1) (Sign (u,(2)z(1)+ B)  z()z(2)(»Sign (i, (3)z(2)) + ﬁ)} (4.34)

2(1)2(2)(»Sign(u,(2)z(1)) + B)  2(2)* (Sign(u,(3)2(2)) + B)
The above equations are solved numerically using the Newton-Raphson method, which

provides a single expression for Z and allows for a smooth transition from the elastic to the
plastic region.

Noting that x -sgn(x)=|x|, and |x|= i—)t( = |i)t(| = Ax SEP(AX) , the incremental form of Equation
(4.33) describing the evolution of hysteretic parameter Z is:
Az(1 Au, (2
0 =i(A[/]—[AQ]) +(2) (4.35)
Az(1)) u, Au,(3)

where matrix AQ is given by:

z(17 (ySign(Au(2)z(1)+ B)  z(1)z(2)(ySign(Au(3)z(2)) + B)

AQ = _ _ (4.36)
L(1)z(2)(ySIgn(Au(2)z(1))+ B)  z(2)*(rSign(Au(3)z(2))+ B) ]

where A is the increment from step 11 to n+1 givenas A( )=A( ) ,—A( ) . Hence, for

variable Z, Azg1):zn+1 (1)-z,(1) and Az(2)=2,,(2)-2,(2) = 2,,,(2)- 2 (2) where Z

represents the (N +1)th step and z, the nth step (also referred to as committed or converged

step in OpenSees).

Define three temporary variables as:

tmp1 = ySign(Au, (2)z(1)) + B (4.37)
tmp2 = ySign(Au,(3)z(2)) + S (4.38)
tmp3 = z(1)Au, (2)tmp1+ z(2)Au, (3)tmp2 (4.39)
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Using the Newton-Raphson method, a solution of equation f =0 is sought, where f is:

C[Az()] 1 Au,(2)
f= {Az(Z)} - U—(A [1]- [AQ]){A%(?))} (4.40)

y

which can be written in terms of temporary variables as:

2(1) - 2, (1)~ —(AAU(2) - z(tmp3)
or, f= v (4.41)

2(2)- zC(2)—%(AAu(3)— 2(2)tmp3)

The gradient Df is then calculated as:

(1) af(1)

oz(1) 0z(2)

Df = (4.42)
of(2) of(2)
0z(1) 0z(2)
where,
of(1) 1
Df(1,1) = 200 =1+ u—(22(1)Aub(2)tmp1 +2(2)Au, (3)tmp2) (4.43)
y
_of(1) _ tmp2
Df(1,2) = o22)” u, z(1)Au,(3) (4.44)
_O0f(2) tm_p‘l
Df(2,1)= o) u, 2(2)Au,(2) (4.45)
Df(2,2) = or2) _, +i(22(1)Au (2)tmp1+ 2(2)Au, (3)tmp2) (4.46)
" 6z(2) u, g b '
The first estimate of the solution Z of equation f = 0, is obtained using:
Az = L (4.47)
© Df '
The solution of above equation is:
AZ(0) = f(1)Df (2,2) - f(2)Df(1,2) (4.48)

~ Df(1,1)Df(2,2) — Df(1,2)DFf(2,1)
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f(1)DF(2,1) - £(2)DF(1,1)

Az(1) = (4.49)
Df(1,2)Df(2,1) — Df(1,1)Df (2,2)
The above steps are repeated and the value of Z after a number of iteration is:
f
Z=7Z-—— (4.50)
Df

The number of iterations is dictated by accuracy desired for the solution Z . When Az becomes
smaller than a defined tolerance, the solution is assumed to have converged.

Once the value of the hysteretic parameter is obtained, its derivatives with respect to horizontal
displacements ( dzdu matrix) are obtained using following sets of equations:

ouy(2) _ Au,(2)  2u,(3) _ Au,(3) 4.51)
u,(3) Au,(3)  au,(2) Au,(2)
_oz(1) _i B ou,(3)
dzdu(1,1) = n2) 0, [A z(1)[z(1)tmp1 + z(2)tmp2 an(z)D (4.52)
_oz(1) [ ,0u,(2) ou,(2)
dzdu(1,2) = u3) m (A—Gub(3) z(1)(z(1)tmp1 30, (3) + z(2)tmp2n (4.53)
_02(2) _ 1 ,0u,(3) ou,(3)
dzdu(2,1) = u2) 0, (A—éub(2) z(2)[z(1)tmp1 + z(2)tmp2—an(2)jJ (4.54)
_oz2) 1, ou,(2)
dzdu(2,2) = u3) 0, (A z(2)(z(1)tmp1 30, (3) + z(2)tmp2D (4.55)
The shear force in two the horizontal directions are:
f,(2)=c,-u,(2)+qYield - z(1)+ k, - u,(2) (4.56)
f,(3)=c,-u,(3)+qYield - z(2)+ k, - u,(3) (4.57)



The coupled tangent stiffness terms of the basic stiffness matrix in the two horizontal directions
are:

oz(1)
K,(2 2)_ + qYield aub(2)+ke
K,(2,3) = qYield 62((2)
(4.58)
o 0z(2)
K,(3,2) = qYield @)
0z(2)

K, (3,3)= < 4 qY /d +k
( ) At (3) ¢
4.3.2.3.4 Plasticity formulation

For the plasticity model, the displacements of the hysteretic component, U, in the two
horizontal directions are used as state variables. The 2x1 vector Trial of trial shear forces of
the hysteretic component in two horizontal directions is calculated as:

CITrla/(1) = ko (Ub(2) - ubPIastic(1))

(4.59)
qTrial(2) = Ky (U,(3) = Uppae (2))
The resultant of trial shear forces is:
qTrialNorm = \/ qTrial(1Y + qTrial(2)° (4.60)
A dummy parameter Y is defined to determine transition from elastic to plastic behavior.
Y =qTrialNorm - qYield (4.61)

where Y <0 represents the elastic region and Y >0 represents the plastic region. For the
elastic region, the nodal forces in basic coordinate system are:

f,(2)=ku,(2)+qTrial(1)

k
f.(3)=k.u,(3)+qTrial(2) (4.62)



and shear stiffnesses in two horizontal directions are:

(4.63)

For the plastic region (Y 20), the hysteretic components of the forces in each direction are
distributed in the ratios of their trial shear forces. The nodal forces in each direction are given
as:
. qYield x qTrial(1)

qTrialNorm
qYield x qTrial(2)

qTrialNorm

£,(2) = 6,0,(2) + k,u, (2)

(4.64)
f,(3) = c,u,(3) + k,u,(3)+

The shear stiffnesses in two directions are given as:

K 22-L0@) (@) 0(6@) o(h@) ¢
T 0(uy(2)) 9(uy(2)) a(uy(2)) o(u,(2)) At

(4.65)

 qYield x qTrial(2)
qTrialNorm®

_0(f,(3)) oa(u,3))  o(f() ¢, ><in(-)ldqurial(1)2

K. (3,3 + =2 +k +Kk
»(3:3) * e 0 qTrialNorm®

= = 4.66
2(6,3) " 3(6,3)  3(u,3) At (4.66)

qYield x qTrial(1)x qTrial(2)
qTrialNorm®

o(f,(2))

4 .67
0(u,(3)) @61

K,(2,3)=

:—ko X

o(f,(3)) kx qYield x qTrial(1)x qTrial (2)
- 0

ANV 4.68
9 (u,(2)) qTrialNorm® (4.68)

K,(3,2)=
Note that d(u,(2))/ 0(u,(2))=1/ At is the stiffness contribution from the viscous component of

the rubber.

The resultant plastic displacement is calculated by dividing the parameter Y by the initial elastic
stiffness of hysteretic component, k,. The parameter Y is the excess force above the yield
strength in the elastomeric bearing and dividing it by k, gives the equivalent plastic
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displacement, dGamma , which is another dummy parameter (known as the return-mapping
parameter). This plastic displacement is then distributed between the two horizontal directions in
the ratio of their trial hysteretic forces. The plastic displacements are updated after every step
as:

qTrial(1)
Uop.. N=U,. . (1)+dGamma—————
bPIastlc( ) bPlastlcC( ) qTriaINorm (4 69)
qTrial(2) '
U,p.. (2)=U,,.. ~(2)+dGamma ————
bPlast/c( ) bP/ast/cC( ) qTria/Norm

where U,p...c 1S the plastic displacement from the last time step.

4.3.2.4 Rotational and torsional directions

The other three directions of the physical model of an elastomeric bearing are torsion about the
axial direction and rotations about the two horizontal directions. The torsional and rotational
behaviors of elastomeric bearings do not significantly affect the overall response of a seismically
isolated structure. Accordingly, the three directions are represented by springs with linear elastic
stiffnesses as:

2GI,

Torsional direction: K,(4,4)= (4.70)

r

Rotational directions K,(5,5)=K,(6,6) = E7’_I’

r

4.71)

where parameters are defined in Chapter 3.

The nodal forces in the basic coordinate system are:

f,(5)=K,(5,5)x u,(5) (4.72)

4.3.2.5 High damping rubber bearings

The model of HDR bearings in shear proposed by Grant et al. (2004) is used. A detailed
discussion on the numerical implementation of the model is provided in Grant et al. (2005) and
is not repeated here.

4.3.3 Nonlinear geometric effects

For analysis of structures assuming linear geometry, the element equilibrium equations are
satisfied in the undeformed configuration and the compatibility relationship between element
deformations (in the basic coordinate system) and end displacements in the global coordinate
system does not depend on the displacements. Elastomeric bearings may experience large
displacements under beyond design earthquake shaking, and the effects of the geometric
nonlinearity should be considered by satisfying the element equilibrium equations in the
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deformed configuration and using nonlinear compatibility relationship between element
deformations and end displacements in the global coordinate system.

There are two ways to consider geometric nonlinearity in the analysis of elastomeric bearings:
1) considering P — A effects to satisfy the element equilibrium equations in the deformed
condition, or, 2) using analytical expressions for the mechanical properties of elastomeric
bearings that have been derived considering geometrical nonlinearity.

For applications in earthquake engineering, considering P — A effects is an approximate
method to account for geometric nonlinearity. The axial load, P, at a lateral displacement, A,
results ina P — A moment. This moment can be replaced by an equivalent force couple. Figure
4-7 shows the inclusion of P — A in the analysis of a multistory building. The lateral force-
displacement relationship that should be included in the formulation to account for P — A effects

IS:
f1 wl10 -1.0](y,
LW % (4.73)
£, h =10 10 |lu,

fo = Kot (4.74)

where K; is P — A geometric stiffness matrix.

The lateral forces due to P — A moments are evaluated for all the stories of the building and are
added to the overall lateral equilibrium of building to solve for the nodal displacements.

F=(K+K,)u (4.75)

When internal forces in the members are obtained from these displacements using linear
theory, equilibrium equations are found to be satisfied in the deformed configuration. Hence,
including P — A effects allows one to satisfy equilibrium in the deformed configuration without
any explicit consideration of geometric nonlinearity in the element equilibrium and compatibility
equations.
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Level
1 —_ —_
2 —_ —_
wili 1 1 wiu/ h
i —.—60 P —
h
i+ 1 i+ 1 <—
= Wili/ h;
N 4 4
(a) Displaced position ( b ) Additional overturning
of story weights moments or lateral loads

Figure 4-7 Overturning loads due to translation of story weights (Wilson, 2002)

Analytical expressions for mechanical properties are obtained using explicit considerations of
geometric nonlinearity in the second approach. These analytical expressions are used to define
the six springs that connect the two nodes of an elastomeric bearing. The element equilibrium
and compatibility equations are satisfied in the deformed configuration to obtain expressions for
mechanical properties.

The axial stiffness and two shear stiffnesses of an elastomeric bearing are obtained here
including the effects of geometric nonlinearity (Koh and Kelly, 1987). These three stiffness
expressions depend on axial load and lateral displacements of a bearing. The critical buckling
capacity of a bearing also depends on the lateral displacement. The bilinear approximation to
the linear area reduction method suggested by Warn et al. (2007) is used to calculate the critical
buckling capacity of a bearing. The moment due to the axial load of the superstructure at a
horizontal displacement is equally divided between the two ends of the bearing.

The horizontal elastic stiffness of a bearing, k., at an axial load P is given by:

2
k, =%(1-%} (4.76)

r

where P, is the critical buckling load capacity of the bearing at zero lateral displacement. This
expression is a simplified approximation of the exact expression derived by Koh and Kelly

(1987) and has been shown produce to accurate results.
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The vertical stiffness of a bearing at a lateral displacement U, is given by:

2—1
szﬁch+i%(%ﬁj} (4.77)

; p/a

where U, =4JU,(2)* +U,(3)’ is the resultant horizontal displacement of the bearing.

The critical buckling load capacity of a bearing is given by expression:

P, A for A >0.2
P = A AA (4.78)
02P. .02
A

- cr0

where P, is the buckling load at zero displacement, and P,, is the buckling load at overlapping

area A of a bearing with an initial bonded rubber area of A . Additional information on the
calculation of the reduced area is provided in Chapter 3.

The torsional and two rotational stiffnesses are not expected to significantly affect the response
of elastomeric bearings. Linear expressions are used for these three stiffnesses.

4.4 Implementation in OpenSees

4.4.1 General

The Open System for Earthquake Engineering Simulation (OpenSees) is an object-oriented,
open-source software framework for simulations in earthquake engineering using finite element
methods. OpenSees is not a code. OpenSees has a modular architecture that allows users to
add additional functionalities without much dependence on other components of the program.
The user can focus on the changes and improvements in the program relevant to them without
needing to know the whole framework (e.g., changing stress-strain relationship in a material
model without knowing about equations solvers and integration methods).

The Tcl/Tk programming language is used to support the OpenSees commands. The
OpenSees interpreter (OpenSees.exe) is an extension of the Tcl/Tk programming language that
adds commands to Tcl for finite element analysis. Each of these commands is a one-line
statement associated with a C++ procedure, which is used to define the problem geometry,
loading, formulation and solution. The procedure is called upon by the OpenSees interpreter
(OpenSees.exe) to parse the command. Additional functionalities are added to OpenSees
through these C++ procedures. The most basic example of these procedures is an element in
finite element analysis. In OpenSees, the Element is a procedure that maintains the state of the
finite element model of a component and computes its contribution of resisting force, and
tangent matrix to the structure.

Three elements are created for LDR, LR, and HDR bearings. Section 4.4.2 describes the
general framework of OpenSees and presents the theoretical background of the formulation of
user elements in OpenSees. The presentation is based on the discussion presented in Mazzoni
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et al. (2006) and Fenves et al. (2004). The wiki version of the user documentation of OpenSees
is available on the website http://opensees.berkeley.edu/wiki.

4.4.2 OpenSees framework

In OpenSees the analysis model is created through set of modules that construct the finite
element model, specify the analysis procedure, and select the quantities to be monitored during
an analysis procedure and the output of results. The four types of high-level objects created in
OpenSees during each finite element analysis are presented in Figure 4-8.

The Domain object holds the state of the finite element model at time £, and {; + dt and stores
the objects created by the ModelBuilder object when the Analysis object advances the state
from t;, and t, +dt. The information from the Domain object is accessed by the Analysis and
Recorder objects. The ModelBuilder object is used to construct the objects in the model and
adds them to the domain. Different ModelBuilders may be used to construct and add a model to
the Domain, such as a text based model building language (Tcl/Tk) or a graphical user interface
(OpenSees Navigator). A simulation may use one of many solution procedures available in the
Analysis object to invoke solvers to solve the systems of equations, which moves the model
from state at time ; and {, + dt. The user-defined parameters are monitored during the
analysis using the Recorder object for post-processing and visualization of simulation results.

ModelBuilder e Domain —

Recorder

Figure 4-8 High-level OpenSees objects in the software framework (Mazzoni et al. (2006))

The high-level objects discussed above are constructed using many small objects. The Domain
object contains all the information on the finite element model, such as nodes, boundary
conditions, loads, and single and multi-point constrains, as shown in Figure 4-9. The
components of the Analysis object are shown in Figure 4-10.

Domain
[ Q | | I | |
Element | Nade | ‘MF‘_Eonstraint‘ ‘SP_Cnnstrainl| ‘ LoadPattern | | TimeSeries
| | |
Material Elementalload NodallLoad | SP_Constraint

Figure 4-9 The components of the Domain object (Mazzoni et al., 2006)
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CHandler || Numberer | |AnalysisModel | | SelnAlgorithm Integrator System OfEqn

Saolver

Figure 4-10 The components of the Analysis object (Mazzoni et al., 2006)

The Element object is created here using C++ procedures. As discussed before, the main
function of the Element is to provide the nodal force vector and stiffness matrix. Trial
displacements are made available to the element at each step by OpenSees. The Element uses
these trial displacements to advance the state of the model from £; to t, + df and assembles the
force vector and stiffness matrix at ; + dt . Iterations are performed at each time-step to achieve
convergence. The converged state is also referred to as the committed step. The nodal force
vector and stiffness matrix provided by the Element correspond to the committed step.

Procedures (or Class) used to write an Element in C++ follow an object-oriented approach,
which means that each class in C++ has specific tasks (functions) and certain properties (data).
In this way, the object-oriented approach tries to simulate a physical object. For example, a
class Person created in C++ will have certain properties (e.g., name, height, weight, and
ethnicity) and specific tasks (e.g., teaching) represented by data and functions. The data and
functions of the Person class might be available to other classes depending upon whether they
are declared public (available to all), private (only available inside the class), or protected
(available for obtaining information but properties cannot be modified). The data and functions
are declared and initialized through a header file (.h file), which is also responsible for calling
pre-compiled libraries that are used in the procedure. A header file can be thought of declaration
of intent of a class. The actual tasks of a class are described in cplusplus (.cpp) file through
functions and data.

4.4.3 Variables and functions in OpenSees elements

The modular architecture of OpenSees means that the Element has very few generalized
variables that should be defined for each element. Each element can define its own variables
and user input arguments. The primary task of element is to provide a nodal force vector and a
stiffness matrix. The variables that must always be defined for an element are: 1) an element
tag and 2) tags of the nodes that define the element. All of these tags must be unique in the
finite element model created in OpenSees. For the elastomeric bearing element created here,
two node tags must be defined.

All the elements have a similar set of functions that are called to perform a task or obtain
parameter values. For example, the function getTangentStiff() is called to get the tangent
stiffness matrix in the global coordinate system. The list of functions used in an Element in
OpenSees is shown presented in Table 4-4.
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Table 4-4 Functions used in an OpenSees Element

Function

Task

getNumExternalNodes

returns number of nodes in the element

getExternalNodes

returns an array containing the node ids

getNodePtrs returns pointers to the node ids
getNumDOF returns number of DOF of the element
setDomain adds the element object to the domain

commitState

commits state variables, the converged state variables are
copied to new trial variables

revertToLastCommit

if step is not converged, model state is returned back to last
committed state

revertToStart resets the state of the model to the beginning of the analysis
takes the state of the model from [ tot + dt, nodal force vector
update . .
and stiffness matrix are calculated
getTangentStiff returns the stiffness matrix in global coordinates
getlnitial Stiff returns the initial tangent stiffness matrix
getMass returns the mass matrix for the element
zeroLoad sets the nodal force vector to zero
addLoad checks if the compatible loads have been assigned to the

element

addlnertiaLoadToUnbalance

adds inertial load to the nodal force vector

getResistingForce

returns the nodal force vector in the global coordinates
excluding inertial loads

getResistingForcelnclnertia

returns the nodal force vector in the global coordinates
including inertial loads

sends element parameters to a data array, required for a

sendSelf X .
parallel processing option
recvSelf receives elemeqt parar_neters from a data array, required for a
parallel processing option
displaySelf displays the deformed shape of the bearing
print prints the output on the command line of OpenSees interpreter
(OpenSees.exe)
setResponse prints the response invoked by recorders to ASCII files
ctResponse prints the response on the command line of OpenSees
9 P interpreter (OpenSees.exe)
setUp assemble the transformation matrices
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Table 4-5 Description of the user input arguments for the elements

Argument Data Input arguments o
A . Definition
priority type ElastomericX | LeadRubberX
Required int tag tag Element tag
Required int Nd1 Nd1 First node tag of the element
Required int Nd2 Nd2 Second node tag of the
element
Required double fy fy Yield stress of bearing
Required double alpha alpha Yield displacement of bearing
Required double G G Shear modulus of rubber
Required double Kbulk Kbulk Bulk modulus of rubber
Required double D1 D1 Lead (or internal) diameter
Required double D2 D2 Outer diameter
Required double ts ts Single shim layer thickness
Required double tr tr Single rubber layer thickness
Required int n n Number of rubber layers
Optional double X X Local x direction
Optional double y y Local y direction
Optional double kc kc Cavitation parameter
Optional double PhiM PhiM Damage parameter
Optional double ac ac Strength reduction parameter
Optional double sDratio sDratio Shear distance ratio
Optional double m m Mass of the bearing
Optional double cd cd Viscous damping parameter
Optional double tc tc Cover thickness
Optional double qL Density of lead
Optional double cL Specific heat of lead
Optional double kS Thermal conductivity of steel
Optional double asS Thermal diffusivity of steel
Optional int tag1 tag1 Cavitation
Optional int tag2 tag2 Buckling load variation
Optional int tag3 tag3 Shear stiffness variation
Optional int tag4 tag4 Axial stiffness variation
Optional int tag5 Shear strength degradation
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4.4.4 User elements

Two elements, ElastomericX and LeadRubberX, were created for LDR and LR bearings,
respectively. Both element classes use similar structure and input arguments, except
LeadRubberX has additional parameters and functions to capture the heating of the lead core
under large cyclic displacements. These elements can only be used with three-dimensional
finite element models in OpenSees. The input arguments of the two elements are summarized
in Table 4-5. The elements take basic geometric and material parameters of elastomeric
bearings as input arguments. Input arguments include mandatory and optional parameters. The
default values of the option argument are provided in the element. The elements can be used in
three type of analysis with OpenSees, namely: 1) eigenvalue analysis, 2) static analysis, and 3)
transient (dynamic) analysis.

The geometric details of an elastomeric bearing is presented in Figure 4-11.

External bearing plat:
Internal bearing plate

Element length L height h

Figure 4-11 Internal construction of an elastomeric bearing

The length of the element, L , is calculated using the coordinates of its two nodes, Nd1 and
Nd2. This length is used in the calculation of geometric stiffness and to consider P — A effects.
The height of the bearing used in the calculations of mechanical properties is given by:

h=nt +(n-1), (4.79)

where t, is the thickness of single rubber layer, ts is the thickness of steel shim, and 11 is the
number of rubber layers. The length of the element (distance between Nd1 and Nd2) includes
two internal and two external bearing plates at each ends, and is given by:

L=nt +(n-1)t,+2t +2t,, (4.80)

where tint and text are the thicknesses of the internal and external bearing plate, respectively.

The default orientations of the local X and y axes are shown in Figure 4-12. The vector
defining the local X axis is obtained from the coordinates of the two nodes of the bearing. The
local y axis is aligned to global X axis and a vector along this direction is assumed to be an
unit vector (-1, 0, 0). The vector defining the Z axis is then obtained as cross product of X
and Y . Finally, the vector defining y is obtained as the cross product of Z and X .

An arbitrary orientation of an elastomeric bearing can be modeled by providing vectors that
define the local X and y directions, which overrides the default orientation of the local
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coordinate axes. The shear distance ratio is the distance of the shear center from node 1 of the
elastomeric bearing as a fraction of the element length. For symmetrical circular and square
bearings, this ratio is 0.5, which is the default value. The bearing is assumed to be massless
and a default value of 0 is assigned to the parameter M, .

X

NN
Global
X

zZ

Figure 4-12 Local and global coordinates used in OpenSees for the elements

For LeadRubberX, additional heating parameters are used. The default values of these
parameters used in the elements are from Kalpakidis et al. (2010). The default values of heating
parameters are in the Sl system of units, and should be overridden if the Imperial/US units are
used.

Four and five tags are used in ElastomericX and LeadRubberX, respectively, to include the
following characteristics of an elastomeric bearing under extreme loading:

Cavitation and post-cavitation behavior due to tensile loading

Variation in buckling load due to horizontal displacement

Variation in shear stiffness due to axial load

Variation in axial stiffness due to horizontal displacement

Strength degradation in shear due to heating of the lead core (LR bearings)

aOrON~

The tag value is set 1 or 0 to include or exclude a characteristic. Default values of the optional
parameters are summarized in Table 4-6.

The user input interface of ElastomericX and LeadRubberX to be used in a Tcl/Tk input file are:

element ElastomericX $tag $Nd1 $Nd2 $fy $alpha $Gr $Kbulk $D1 $D2 $tr $ts $n <$x1 $x2
$x3 $y1 $y2 $y3> <$kc> <$PhiM> <$ac> <$sDratio> <$m> <$cd> <$tc> <$tag1> <$tag2>
<$tag3> <$tag4>

element LeadRubberX $tag $Nd1 $Nd2 $fy $alpha $Gr $Kb $D1 $D2 $tr $ts $n <§x1 $x2 $x3

Sy1 $y2 $y3> <$kc> <§PhiM> <$ac> <$sDratio> <§m> <$cd> <$alphaS $kS $qL $cL>
<$tag1> <$tag2> <$tag3> <$tag4> <$tag5>
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where the parameters are defined in Table 4-5. The $ sign refers to the value of the parameter
followed by it. The input parameters enclosed in < > are optional parameters, whose default
values are presented in Table 4-6.

Table 4-6 Default values of optional parameters

Parameter Value
kc 10
PhiM 0.75
ac 1.0
sDratio 0.5
m 0.0
tc 0.0
cd 128000 N-s/m
gL 11200 kg/m?®
cL 130 J/(kg°C)
kS 50 W/(m°C)
aS 1.4x10° m?/s
tag1 0
tag2 0
tag3 0
tag4 0
tag5 0

4.5 Implementation in ABAQUS

4.5.1 General

ABAQUS provides the user with the capability to define special purpose subroutines or
elements. Capabilities are added to ABAQUS through the creation of subroutines written in the
FORTRAN 77 programming language. A subroutine is a FORTRAN procedure that can be
compiled and tested separately from its host program. Subroutines can be added to the
ABAQUS for various tasks such as defining material models, load distributions, frictional
properties, and contact interface behavior. However, the focus here is a special type of user
subroutine called User Elements (UEL). A UEL can be a finite element that represents the
geometry (e.g., beam, truss, solid) of the model, or can be feedback links, which provide
response at certain points as a function of displacements, velocities, accelerations at some
other points in the model.

The user elements considered here represents a geometric model of the elastomeric bearing
and hence the discussion is focused on the geometry based user elements. Section 4.5.2
describes the general framework of ABAQUS and presents the theoretical background of the
formulation of user elements in ABAQUS. The presentation is based on the discussion
presented in Section 29.16.1 of the ABAQUS Analysis User’s Manual (Dassault, 2010a), and
Section 1.1.23 of the ABAQUS User Subroutines Reference Manual (Dassault, 2010c).

4.5.2 ABAQUS framework
The response of a system modeled in ABAQUS is obtained by solution of equilibrium equations
in incremental steps. User elements are coded to define the element’s contribution to the whole

model. The user element is called every time element calculations are required and it must
perform all the calculations appropriate for the current step in the analysis. Information about the
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model, which includes model definition, nodes and joint connectivity, geometrical and material
parameters, loads definition and analysis requirements are defined through an ABAQUS input
(.inp) file. This input file can be written by the user, or the ABAQUS pre-processor can be used
to generate this input file interactively through a graphical user interface. The input file is then
passed through the ABAQUS solver, which generates a set of equilibrium equations to be
solved. The solver calls the user element every time information is required from user-defined
elements. When user elements are called, ABAQUS provides these subroutines with the values
of nodal coordinates, all solution-dependent nodal variables (e.g., displacements, velocities,
accelerations, incremental displacements), solution dependent state variables at the start of the
increment, and the user-defined properties in input file for this element. ABAQUS also passes
an array of control flags to the element that indicates what tasks the element need to perform.
Depending upon the flags, the element defines its contribution to the nodal force vector and the
Jacobian (stiffness)* matrix of the whole model and also updates the solution dependent state
variables. A typical process flow of an analysis step and role of user element in ABAQUS is
shown in Figure 4-13.

The element during the analysis %tep p,govides nodal forces F" and the element’s contriBution
to the total Jacobian matrix, — U . Both of these depend on the nodal variables U and
solution dependent state variables H“ . The nodal forces are given by:

F" =F" (u"”,H“, geometry, attributes, predefined field variables, distributed Ioads) (4.81)

If a finite element is in equilibriunhsuwject to StIJVrfa(I:Ve tractions f and body forces f with stress
O , and with interpolation ou=N"ou , 06 ="0U" | the nodal forces are given by:

FN=jNMmS+jNMm3—jﬁW:adv (4.82)
S v v

To solve the equilibrium equations using the Newton-Raphson method:

KNMCM — RM
N - (4.83)
u" =u" +c
where R" is the residual force at degree of freedom N and
N
sz_i; (4.84)

is the Jacobian matrix. The indices N and M are the degrees of freedom of the element.

N M
During each iteration in the Newton-Raphson method, F" and -dF" [ du mustW defined by
the element, which are element’s contribution to the residual R" and Jacobian K ,
respectively.

4 Stiffness matrix is for displacement-based formulations. However, a more generalized term “Jacobian” is
used when multi-physics problems are solved in which additional independent variables are considered
(e.g., a thermo-mechanical problem using temperature as an independent variable).
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Beginning of analysis

Define initial conditions

Start of step S
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Start of iteration Sty

i Define K€! < User Element UEL '
i Define loads R* i !
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i Write output i
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Figure 4-13 Outline of a general analysis step in ABAQUS (adapted from Dassault (2012))

N M
The element’s contribution -dF" 1 to the Jacobian matrix must consider all the direct and
mcMect de,pend%pmes of FY on U . If the solution dependent state variables H“ depend on
U" is given as:

dF" OF" oH*
K, =— =— 4.85
e qu™  oH® auM (4.85)
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In the case of direct-integration dynamic analysis, F" depends on the velocity, UM , and
acceleration, U . Hence nodal velocity and acceleration histories must be stored by the
element in addition to the displacement history. Where implicit integration is used for integration
of the dynamic equations, the element’s contribution to the Jacobian is given as:

K __dF" _ﬂ(duj dF" (d_uj (4.86)
dU t+At duM dU t+At .

The Hilber-Hughes-Taylor (HHT) implicit integration scheme is used in ABAQUS for integration
of the dynamic equations of motion. For this scheme:

(d_uj _r
dU t+At ﬂAt
I
dU t+At ﬂAt2
B i i ~dF" | du
where » and are Newmarj integration parameters. The term U" represents the
damping matrix and — U" represents the mass matrix of the element. The HHT scheme
is unconditionally stable and there is no limit on the size of the time step for stability. The size of

the time step is governed by accuracy. The overall dynamic equilibrium equation in HHT
scheme is written as:

(4.87)

-M"™i, . +(1+a)G..,, —aG =0 (4.88)

where & is a parameter to control numerical damping in the model, and GN is the total force
at degree of freedom N, excluding inertia forces, and is termed the static residual. Equation
(4.88) requires static residuals at the current and previous time step. ABAQUS provides
information only at the current time step and static residual values from previous time steps
need to be stored as the solution dependent state variables, H“ , which can be accessed at the
current time step for the required calculations.

4.5.3 Variables in ABAQUS subroutines

ABAQUS defines a general set of variables and depending on the model and analysis
requirements, some, or all of these variables, are used. These variables can be categorized in
different groups based on their functions as presented in Table 4-7.

The variables RHS, AMANT nd SVARS must be defined in the user element, which
correspond to FV |, — /dU ,and H“ defined earlier, respectively. Variable ENERGY can
be defined depending upon the S|gnificance of the element energy in the overall model. If the
user defines an integration scheme that requires a different time step for stability and accuracy,
the user can suggest a new time step within the element using the variable PNEWDT. The set
of variables passed to the user element for obtaining information about the analysis model in
ABAQUS must not be modified by the user element.

The variables RHS, AMATRX, and SVARS are populated based on the entries in the LFLAGS

array, which defines the analysis type. A description of general analysis cases based on
LFLAGS array is presented in Table 4-8.
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Table 4-7 Overview of variables used in ABAQUS user subroutine!

Category Name Description
An array containing contributions of the element to the right
RHS : .
hand side vector of the overall system of equations.
An array containing contribution of the element to the Jacobian
Must be (stiffness) of the overall system of equations. The particular
) AMATRX . . . L
defined matrix required at any instant depends on the entries in
LFLAGS array.
An array containing values of NSVARS number of solution-
SVARS :
dependent state variables.
Can be An array containing values of energy quantities associated with
! ENERGY
defined the element
Can be PNEWDT Ratio of time increment required by user to the time increment
updated (DTIME) currently being used by ABAQUS.
A floating point array containing NPROPS values of
PROPS geometrical and material properties defined by user for the
element.
An integer array containing NJPROP of integer values of
JPROPS geometrical and material properties defined by user for the
element.
An array containing original coordinates of the nodes of the
COORDS | element. COORDS(K1, K2) represents the K1th coordinate of
the K2th node of the element
Arrays containing the current estimate of the basic solution
U, DU, V, | variables (displacements, incremental displacements,
A velocities, accelerations) at the nodes of the element at the end
of current increment.
JDLTYPE An array containing the integers used to define distributed load
types for the element.
An array containing increments in the magnitudes of the
DDLMAG L .
Passed in for distributed loads currently active on the element.
information PREDEF An array containing values of predefined field variables at the
nodes of the element.
An array containing the parameters associated with the solution
PARAMS | procedure defined by entries in the LFLAGS array. PARAMS(1)
= o« , PARAMS(2) = B, PARAMS(3) =7
An array containing the flags that define the current solution
LFLAGS . :
procedure and requirements for element calculations.
TIME(1) Current value of step time
TIME (2) Current value of total time
DTIME Time increment
PERIOD Time period of the current step
NDOFEL | Number of degrees of freedom in the element
MLVARX E')lmen3|on|n.g parameter used when several displacement or
right-hand-side vectors are used.
NRHS Number of load vectors (1 in most nonlinear problems)
NSVARS User defined number of solution dependent state variables in

the element
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Table 4-7 Overview of variables used in ABAQUS user subroutines (contd.)

Number of user-defined real property values constituting the

NPROPS array PROPS

NJPROPS Number of user-defined integer property values constituting the
array PROPS
Greater of the user-defined maximum number of coordinates

MCRD needed at any node point and the value of the largest active
degree of freedom of the user element that is less than or equal
to 3

NNODE User-defined number of nodes on the element

JTYPE Integer defining the element type

KSTEP Current step number

KINC Current increment number

JELEM User-assigned element number

NDLOAD Ideptification number of the distributed load or flux currently
active on the element

MDLOAD | Total number of distributed loads and/or fluxes on the element

NPREDF | Number of predefined field variables

Table 4-8 Analysis cases used in ABAQUS

LFLAGS(3) = 1

Normal implicit time incrementation procedure. User subroutine UEL
must define the residual vector in RHS and the Jacobian matrix in
AMATRX

LFLAGS(1) = 1, 2

Static analysis
RHs = F"(u",H*, other variables)

AMATRX = —dF" / du"

LFLAGS(1) = 11, 12

Direct-integration dynamic analysis

RHS = -M™ij . +(1+ )G, - oG/’
AMATRX = M™dii [ du + (1+ 2)C™du | du +
(14 a)K™

LFLAGS(3) = 2

Define the current
stiffness matrix only

amaTRx=K™ = —oF" [ ou

LFLAGS(3) = 3

Define the current

AmaTRx=C"™ = oF" [ o0

damping matrix only

LFLAGS(3) = 4

Velocity jump
calculation

Define the current mass matrix
AMATRX = M™

LFLAGS(3) =5

Half increment
calculation

Define the current half-step residual or load
vector

RHS = F)y, =—-M"ij
ol 2(GN +GV)

N
t+At + (1 + a)GHAt -

LFLAGS(3) = 6

Initial acceleration
calculation

Define current mass matrix and the residual
vector

AMATRX = M""

Rus = G"
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For the default time increment option provided in the ABAQUS input file, the element must
define the half-increment residual load vector, F1,2 . ABAQUS adjusts the time increment so that
residual load vector at the half time step is within the tolerance defined for convergence
maax‘lijvz‘ < tolerance). The solution-dependent state variables are calculated at the half step,
12, to calculate F1,2 , but these values are not saved. The DTIME variable contains At , and
not At/ 2. The values containedin U, V', A, and DU are half-increment values.

4.5.4 User input interface of the elements

The user needs to define the element in the input (.inp) file through the *USER ELEMENT
option. The ABAQUS preprocessor does not allow user element definition through the graphical
user interface and the user must enter the element definition directly into the input file. The
*USER ELEMENT option must be defined before the user element is invoked with the
*ELEMENT option. The syntax for interfacing UEL is:

*USER ELEMENT, TYPE=Un, NODES=, COORDINATES=, PROPERTIES=, | PROPERTIES=,
VARIABLES=, UNSYMM

Data line(s)

*ELEMENT,TYPE=Un, ELSET=UEL

Data line(s)

“*UEL PROPERTY, ELSET=UEL

Data line(s)

*USER SUBROUTINES, (INPUT=file_name)

The parameters used in above interface are defined in Table 4-9. A detailed discussion on the

user input interface for user elements is presented in Section 29.16.1 of the ABAQUS Analysis
User’s Manual (Dassault, 2010a).

Table 4-9 Parameter definitions used for UEL interface

Parameter Definition
TYPE (User-defined) element type of the form Un, where n is a number
NODES Number of nodes in the element
COORDINATES Maximum number of coordinates at any node
PROPERTIES Number of floating point properties
| PROPERTIES Number of integer properties
VARIABLES Number of solution dependent variables
UNSYMM Flag to indicate that the Jacobian is unsymmetric

4.5.5 User elements

Two ABAQUS user subroutines, UELs, were created for elastomeric bearings: ElastomericX for
Low Damping Rubber (LDR) bearing, and LeadRubberX for Lead Rubber (LR) bearing. The
LeadRubberX element builds on the formulation of ElastomericX and adds thermo-mechanical
properties to capture strength degradation due to heating of the lead core.

The primary task of user elements is to provide the RHS and AMATRX arrays during the
analysis step and to update SVARS array. The user elements can be used for:

1) Static analysis
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2) Direct integration dynamic analysis
3) Eigenfrequency extraction analysis

The user can specify any arbitrary length of the element, however a length representative of the
actual height of the elastomeric bearing is recommended. If the ABAQUS preprocessor is used
to generate the input file, the user can start by defining a dummy element in place of the
elastomeric bearing, and after the user input file has been generated by the preprocessor, the
dummy element can be deleted by manually editing the input file and replacing it with the
definition of ElastomericX or LeadRubberX, as discussed in Section 4.5.4.

The mechanical properties of the material (or material definitions) are defined in both user
elements. Twelve and eighteen real property values (NPROPS=12, 18) and one integer
property value (NJPROP=1) must be defined for the ElastomericX and LeadRubberX,
respectively. The entries of PROPS array for both elements are presented in Table 4-10.

Table 4-10 Properties of UELs that need to be defined as PROPS array

PROPS(i) ElastomericX | LeadRubberX Definition
1 gRubber qYield Yield strength of bearing
2 Uy Uy Yield displacement of bearing
3 G G Shear modulus of rubber
4 Kbulk Kbulk Bulk modulus of rubber
5 D1 D1 Lead (or internal) diameter
6 D2 D2 Outer diameter
7 t t Single rubber layer thickness
8 ts ts Single shim layer thickness
9 ac ac Cavitation parameter
10 phi phi Damage parameter
11 sDratio sDratio Shear distance ratio®
12 m m Mass of the bearing
13 cd cd Rubber damping parameter
14 alphaS Thermal diffusivity of steel
15 kS Thermal conductivity of steel
16 qL Density of lead
17 cL Specific heat of lead
18 TL1 Initial reference temperature of lead
JPROPS(i)
1 n n Number of shim layers

ABAQUS does not store a history of internal parameters between step increments. Solution-
dependent state variables must be defined to store parameter values that are required for
calculations at the next step. This is done through storing solution-dependent state variables in
SVARS and updating them at the end of each step. Twenty-seven and twenty-eight state
variables are defined in ElastomericX and LeadRubberX, respectively, with LeadRubberX
containing an extra variable to store the temperature of the lead core. The variable SRESID in
ABAQUS stores the static residual of total nodal forces at time  + dt . The first 12 elements of
SVARS contains the static residual at timet . Entries of SRESID are copied to SVARS(1-12)

5t is the distance of shear center from node 1 of the elastomeric bearing as a fraction of the total element
length. For symmetrical circular and square bearings, this ratio is 0.5.
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after the dynamic residual has been calculated in the user element. In the case of half-
increment residual calculations, entries from 13-24 of SVARS contain the static residual at the
beginning of the previous increment. SVARS(1-12) is copied into SVARS(13-24) after the
dynamic residual has been calculated. SVARS(25) contains the variable U, , which is the
maximum past axial deformation of the bearing under tensile loading. SVARS(26-27) contains
the plastic horizontal shear displacements in the bearing. The temperature of lead core is stored
in SVARS(28) for LeadRubberX.

The user elements must define its contribution to the right hand side vector (RHS), and to the
Jacobian of overall model (AMATRX) (see Section 4.5.2). For the user elements considered
here, the RHS variable is the nodal force vector, fb , calculated using Equation (4.2), and
AMATRX is the stiffness matrix, Kb , Obtained using Equation (4.1) for the most calculation
steps except in half step residual calculations and initial acceleration calculation where mass
matrix is passed for AMATRX and the static residual is passed for RHS. RHS and AMATRX are
needed in global coordinates. The element nodal force and stiffness arrays are first formulated
below in basic coordinates and then transformed to global coordinates using transformation
matrices. Individual entries of the Kb and fb are calculated per Section 4.3. Once, Kb and
fb are obtained, their contribution in the global coordinate system are £, =TITf and

K, =TJTIK,T,T, respectively.

The programming structure of the UEL subroutine is shown in Figure 4-13. The main body of
executable statements, which consists of set of tasks that need to be performed for each
analysis case, is supplemented by two internal user subroutines: 1) ForceStiffness — to calculate
the nodal force and stiffness matrix of the element in global coordinates, and 2) Transformation
— to transform the quantities from one coordinate system to other.

Define variables

Start of step Start of increment

A Vi N

i Initialize variables i

i . '] Internal subroutines:
| Exec':AL\Jrﬁ:)I:i Sstséigsnts- : 1. ForceStiffness

| y : 2. Transformation

i Yes No i

it Endofstep |- -

Figure 4-14 Programming structure of user elements (adapted from Dassault (2012))
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5 VERIFICATION AND VALIDATION

5.1 Introduction

The models developed for the analysis of engineered systems are always approximations of the
physical reality, and are limited by knowledge of physical processes, available data,
mathematical formulations and numerical tools of analysis. The degree of accuracy to which
these models predict the response of a system is addressed by the process of Verification and
Validation (V&V). The prediction of response of a physical event through engineering models
consists of many steps, and each step is accompanied by sources of error. The magnitude of
the error depends on the assumptions, tools and techniques used for the analysis and an
acceptance criterion is established with an acceptable level of error.

The credibility, reliability and consistency of models used for solving complex systems should be
established to identify the confidence in their implementation. For low-consequence events
there is additional room for accommodating higher error due to the low risk involved, and most
times V&V activities are not performed because the resources cannot be justified. Given that
actual high-consequence events may never be studied in a controlled environment, it becomes
important that high confidence is established in the models that are used to study and predict
the outcomes of such events. The design basis and beyond design basis earthquake shaking of
Nuclear Power Plants (NPPs) are examples of high-consequence events. The models used to
predict the outcome of these events need to be verified and validated to establish a high level of
confidence. The system of interest here is an isolation system for a NPP that includes models of
low damping rubber (LDR) and lead-rubber (LR) bearings.

The behavior of elastomeric bearings under extreme loadings is modeled using mathematical
models and numerical formulations presented in Chapter 3 and Chapter 4, respectively. Chapter
3 discusses the theoretical background (conceptual models) of LDR and LR bearings based on
available knowledge and the formulation of mathematical models in the horizontal and vertical
directions. Mathematical models express physical behavior with mathematical equations using a
set of assumptions. Each assumption introduces a source of error in the mathematical model.
All sources of error in the mathematical need to be quantified, and if possible, should be
minimized or removed. The accuracy of a mathematical model is assessed through validation
procedures to determine if the mathematical model is a sufficiently good representation of
behavior of the system.

Chapter 4 discusses the computational model, which include formulation of numerical models
from the mathematical models and the implementation of the numerical models in the software
programs OpenSees (McKenna et al., 2006) and ABAQUS (Dassault, 2010e). The degree of
accuracy with which the computational model represents the mathematical models is assessed
through verification procedures. Verification and validation (V&V) is a cyclic process that
quantifies the error in a model due to different sources. Quantification of the error helps prioritize
V&YV activities, and enables the assessment of the effect of a particular feature of the model on
the behavior of the system.

Verification and validation is introduced in Section 5.2, which includes definitions of standard
terms and describes the approach used for the development of a V&V plan. Section 5.3
provides a brief description of the model of an elastomeric bearing. Section 5.4 through Section
5.6 describe the step-by-step application of V&V methods to the elastomeric bearing models.
The general background of V&V procedures presented in this chapter builds on the information
presented in Oberkampf and Roy (2010), Oberkampf et al. (2004), Thacker et al. (2004) and
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Roache (1998). The definitions of the standard terms presented in the ASME Guide for
Verification and Validation in Computational Solid Mechanics (ASME, 2006) have been used
here.

5.2 Background

The development of computer methods to simulate physical events prompted researchers to
question the reliability, credibility and consistency of mathematical models and numerical tools
and techniques. The computational physics and engineering community faced two major
challenges: 1) development of guidelines to verify and validate simulations used for predication
of outcomes of a physical event, and 2) standardization of terminologies and methodologies
used in V&V across various disciplines. The interdisciplinary nature of V&V procedures
demands that those involved communicate using terminologies that are consistent across the
disciplines to minimize confusion in the decision-making process.

The Institute of Electrical and Electronics Engineers (IEEE) was one of the first institutions to
define verification and validation methods (IEEE, 1984; IEEE, 1991). The definitions, however,
considered only computer-implementation aspects of a broad range of V&V procedures that
evolved later, and were intended for developers involved in Software Quality Assurance (SQA).
The Defense Modeling and Simulation Office (DMSO) of the US Department of Defense (DoD)
published their definitions of V&V activities in 1994 (DMSO, 1994). The DoD guidelines were
more suitable for large-scale models, and were not appropriate for applications to more basic
computational physics and engineering simulations (Oberkampf and Roy, 2010). The
Computational Fluid Dynamics (CFD) community of the American Institute of Aeronautics and
Astronautics (AIAA) coordinated a project in 1992 for the development and standardization of
basic terminologies and methodologies used in V&V of computational fluid dynamics
simulations. Their guide was published in 1998 (AIAA, 1998) and it used the DMSO (1994)
definition of validation methods but modified the definition of verification to reflect the
importance of accuracy of the numerical solution of the mathematical model.

The V&V committee of American Society of Mechanical Engineering (ASME) was formed in
2001 to draft guidelines on V&V in computational solid mechanics. The ASME Guide for
Verification and Validation in Computational Solid Mechanics was published in 2006. It used the
same definition of validation as AIAA (1998) but slightly modified the definition of verification.
The ASME guide is used here to define terms, to the degree possible. It defines verification and
validation as:

Verification: The process of determining that a computational model accurately
represents the underlying mathematical model and its solution.

Validation: The process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model.

Verification is concerned with the accurate representation of the mathematical model through
software implementation of a numerical model, and a relationship to the physical reality is not of
concern. Validation considers the degree of accuracy to which the mathematical model
represents the physical reality, which is represented by experimental data.
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ASME (2006) provides a list of standard terms used in V&V, some of which are reproduced
below:

Prediction: The output from a model that calculates the response of a physical system
before experimental data are available to the user.

Model: The conceptual, mathematical, and numerical representations of the physical
phenomena needed to represent specific real-world conditions and scenarios. Thus, the
model includes the geometrical representation, governing equations, boundary and initial
conditions, loadings, constitutive models and related material parameters, spatial and
temporal approximations, and numerical solution algorithms.

Conceptual Model: The collection of assumptions and descriptions of physical
processes representing the solid mechanics behavior of the reality of interest from which
the mathematical model and validation experiments can be constructed.

Computational model: The numerical implementation of the mathematical model,
usually in the form of numerical discretization, solution algorithm, and convergence
criteria.

Mathematical model: The mathematical equations, boundary values, initial conditions,
and modeling data needed to describe the conceptual model.

Calibration: The process of adjusting physical modeling parameters in the
computational model to improve agreement with experimental data.

The process of model development and V&V procedures is summarized in Figure 5-1.

The V&V process starts with the definition of the domain of interest, which is the physical
system and associated environment for which the model is to be created. This helps to define
the scope of various activities and the formulation of suitable assumptions. For high-
consequence events, it is advisable to define a domain of interest that is precise and detailed.
Although this action limits the applicability of the model to a small range of problems, it reduces
the uncertainty associated with a wide range of working environments and thus increases
confidence in the model. Moreover, simplifying a model by excluding minor details, which are
not expected to have a major influence on the behavior of the system, increases robustness and
decreases sources of error in the computational model. The ASME Guide realizes the
limitations of contemporary modeling techniques used in computational solid mechanics, and
limits the scope of V&V activities to the model’s intended use for the response quantities of
interest.

Once the domain of interest is defined, a conceptual model of the physical problem is
formulated through a set of features that are expected to play a role in the physical event for
which the model is to be used. A mechanics-based representation of the physical problem that
is amenable to mathematical and computational modeling is created, which includes: 1)
geometrical details of the model, 2) material definition, 3) initial and boundary conditions, 4)
external loads, and 5) modeling and analysis approach. Conceptual models are developed
through engineering expertise and judgment, and it is important that the rationale for each
decision and the basis of each assumption are properly documented.
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Figure 5-1 Model development, verification and validation (Thacker et al., 2004)

The development of a conceptual model sets the stage for the creation of a mathematical
model. A mathematical description of the conceptual model is formulated through a set of
equations and statements that describes the physical problem. The mathematical model uses
parameters that are one of the major sources of uncertainly that affects its accuracy. These
parameters can be divided in three categories based on the method used for their
determination, and are presented in Table 5-1.

Table 5-1 Description of model input parameters (Roy and Oberkampf, 2011)

Parameter i Level of
Description Y
type confidence
Measured Measurable properties of the system or surroundings that High

can be independently measured

Physical modeling parameters that cannot be
Estimated | independently measured separate from the model of the Medium
system

Ad-hoc parameters that have little or no physical

justification outside of the model of the system Low

Calibrated
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A computational model is developed using the mathematical model to predict the system’s
response through computer programs. The process involves spatial and temporal discretization
of the mathematical model to a numerical model, and implementation of the numerical model in
a computer program using a numerical algorithm that solves the model through direct or
iterative solution techniques. Domain discretization and solution techniques are the major
sources of the error in the computational model in addition to computer round-off error and
coding bugs.

Verification activities are performed to improve the accuracy of the computational results. The
system response obtained from analysis of verified models is compared with data obtained from
validation experiments. The test data must be processed to remove measurement errors. If the
computational results are within acceptable error per an established accuracy criteria, the model
is deemed validated. If not, the model needs to be revised. The revision can be made by: 1)
updating the model parameters that are determined using calibration with experimental results,
and 2) improving the mathematical or conceptual model to better represent the underlying
mechanics of the system that will result in better agreement with the experimental results.

5.3 Elastomeric Bearing Model Development

5.3.1 General

A V&V plan for the elastomeric bearing models discussed in Chapter 3 and 4 is presented here.
The hierarchy of the model of an elastomeric bearing and its components are shown in Figure
5-2. The mechanical behavior in moment and torsion do not significantly affect the response
quantities of interest in the shear and axial directions. The V&V tasks are performed only for the
mechanical behavior of the LDR and LR bearings in the horizontal (shear) and the vertical
(axial) directions, as identified by the shading. The conceptual and mathematical models are
presented in Chapter 3 and the computational model is discussed in Chapter 4.

Elastomeric
Bearings

Discrete
Stiffness
Model

Continuum
FE Model

Mechanical
model

Horizontal Vertical Moment Torsion
Shear Axial

Compression

Tension

Figure 5-2 Hierarchy of the model for an elastomeric bearing
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5.3.2 Model development

The physical model of an elastomeric bearing is formulated as a two node, twelve-degree of
freedom system. The two nodes are connected by six springs, which represent the material
models in the six basic directions. The six material models capture the behavior in the axial,
shear (2), torsional and rotational (2) directions. The mathematical models and computational
models of elastomeric bearings are discussed in detail in Chapter 3 and Chapter 4, respectively.
The mathematical model of the elastomeric bearing is implemented in OpenSees and ABAQUS
as user elements. A user element is the implementation of a numerical model in a computer
program using a programming language. Two elements are created in each program for LDR
and LR bearings. A user element for high damping rubber (HDR) bearings was also created in
OpenSees. The HDR user element has the same axial formulation as LDR and LR bearings, but
uses the model proposed by Grant et al. (2004) in shear. The V&V of the HDR user element is
not discussed here.

The scope of the model and its intended use must be defined for V&V activities, which helps in

prioritizing tasks and allocating resources for each activity. Table 5-2 presents the information
required on the model to begin the V&V process.

Table 5-2 Scope of the V&V for the elastomeric bearing models

Feature Description

Domain of interest Seismic isolation of NPPs

Intended use of the Response-history analysis of a NPP under design and beyond
model design basis earthquake loadings

1) Acceleration, velocity, displacement

a) of the structure

b) of secondary systems

Response features of |« 2) displacement in the isolators
interest

e 3) energy dissipation (damping) in the isolators

e a) due to heating in the lead core of LR bearings

e b) due to cavitation under tension

Accuracy requirements | To be developed after consultations with stakeholders

One of the important steps in the development of the model of an elastomeric bearing is to
identify the processes that are expected to have significant effects on the response of the base-
isolated NPP. This is achieved by constructing a Phenomena Identification and Ranking Table
(PIRT). The PIRT for the models of elastomeric bearings is presented in Table 5-3. The
confidence and importance levels assigned to the different components of the mathematical
model in Table 5-3 are based on preliminary information available on the mathematical models
of elastomeric bearings.

The PIRT helps to prioritize those physical processes that should be investigated experimentally
for validation. Heating of the lead core and coupling effects are assigned a low priority for
validation as they are based on robust mechanical formulations and have already been
validated under similar conditions (Kalpakidis and Constantinou, 2009a; Warn et al., 2007). The
two-spring model by Koh and Kelly (1987) describes the elastic behavior of elastomeric bearing
in the vertical direction and can be modeled with high confidence. The model for the variation in
the buckling load capacity with lateral displacement is expected to be of high importance.
Buckling is modeled using the linear approximation of the area-reduction method, which is
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numerically robust and has been validated experimentally (Warn and Whittaker, 2006). A new
phenomenological model is used for cavitation, post-cavitation and strength reduction in cyclic
tension. The parameters of the phenomenological model are obtained from calibration with test
data. The uncertainty associated with these parameters is high, and so a low confidence of
modeling is assigned in Table 5-3. The effect of cavitation and post-cavitation behavior on the
system’s response is not yet known but is expected to be of medium importance to the
response quantities of interest. Phenomena with medium or high importance to response
quantities of interest and low level of confidence in modeling are given high priority for the
experimental validation activities. The phenomenological model that describes the behavior of
an elastomeric bearing in cyclic tension is validated experimentally. The parameters associated
with cavitation, post-cavitation, strength reduction in cyclic tension are estimated.

Table 5-3 Phenomenon ranking and identification table for models of elastomeric bearings

Ph Importance to Level of confidence
enomenon - .
response of interest in model
Coupled horizontal directions High High
Heating of lead core in LR bearing High High
Varying buckling capacity High Medium
Coupled horizontal and vertical directions Medium Medium
Nonlinear tensile behavior Medium Low
Cavitation and post-cavitation High Low
Nonlinear compressive behavior Low Low
Post-buckling behavior Low Low

The model development and V&V plan for the model of elastomeric bearings is presented in
Figure 5-3.

Theoretcal
solution

Upddate
prarameter

Verification

Reality Mathematical Computational Computational Verified and
’ mdel el solution validated solution
Update | Vealidats
— i ) falidation
conceptual » Experimental data
model |

Figure 5-3 Verification, validation and model calibration plan for elastomeric bearings

5.4 Verification and Validation Criteria

A criterion needs to be established to obtain a quantitative measure of accuracy in verification
and validation activities. The criterion can be defined in terms of an objective norm function that
includes all the values of a response quantity of interest over the domain and provides a
cumulative difference. A computational solution is compared against a reference solution,
which, in the case of verification, can be an exact or a high order estimate of the exact solution,
and in validation, must be the test data.
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The L1 difference norm over a discretized domain provides an average value of absolute
difference, and is given as:

1 N
&= 130 4 .1

where f1,- and fz,- are the reference solution and the solution for the response quantity of
interest, respectively, at the ith sample point, and N is the total number of sample points. The

4 norm is appropriate when the response quantities contain several discontinuities and
singularities in their domain (Oberkampf and Roy, 2010).

The L2 (Euclidean) norm provides the root mean square of difference over the domain:

:@f%;(fm _f1i)2 (5.2)

A third approach is to plot a statistical distribution of the difference and obtain a mean, median
and standard deviation.

5.5 Verification of the Model

Verification of the model is performed to assess the degree of accuracy with which the
computational model represents the mathematical model. A model must be verified before it can
be used for any validation activity. The errors associated with the computational model should
be separated from the errors arising from use of an inadequate mathematical model formulation
based on a set of assumptions. The phenomenological model in tension has three parameters
that are determined by calibration with experimental data. If an unverified computational model
is used to compare numerical results with experimental outcomes, the errors associated with
the unverified computational model are absorbed in the value of unknown parameters during
model calibration. A bias in response is obtained when these parameters are used to predict the
response of a system.

Verification can be categorized as: 1) code verification and 2) solution verification. Code
verification deals with the programming aspects of the computational model and checks whether
the discretized numerical model is implemented correctly in the computer program. Solution
verification checks for the discretization (temporal and spatial), iterative convergence, and
round-off error. The computational model of an elastomeric bearing is implemented in
OpenSees and ABAQUS. Although OpenSees allows greater control of an analysis with the
ability to control many aspects of the computational process, the absence of a user-interface
also means that there is a greater possibility of coding errors. ABAQUS, on the other hand, has
an interactive user-interface that reduces the possibility of coding errors but it also provides less
flexibility to the user to control the modeling and analysis process.

5.5.1 Verification model
The verification activities are performed using a two-node macro model shown in Figure 5-4. All
six degrees of freedom of the bottom node (node 1) are fixed to the ground, as are the three

rotational degrees of freedom at the top node. The two nodes are joined by the user element
(ElastomericX or LeadRubberX).

5-8



Figure 5-4 Two-node macro model of a base-isolated NPP

The LDRS in Warn (2006) and larger size LR bearing in Kalpakidis et al. (2010) are used for
ElastomericX and LeadRubberX, respectively. The properties of the two bearings are presented
in Table 5-4. A static (gravity load) pressure on the bearing of 3 MPa is used for all analyses.
The total gravity weight W on the bearing is calculated by multiplying the static pressure by
the bonded rubber area. The total weight W is divided by g to obtain the equivalent mass

M , which is lumped in the three translational directions at node 2 for static and dynamic
analyses.

Table 5-4 Geometrical and mechanical properties of elastomeric bearings

Property Notations (units) LDRVaIue R
Single rubber layer thickness l‘r (mm) 3 9.53
Number of rubber layers n 20 16
Total rubber thickness T. (mm) 60 152.4
Steel shim thickness ty (mm) 3 4.76
Outer diameter D, (mm) 152 508
Inner/lead core diameter D,. (mm) 30 139.7
Rubber cover thickness t, (mm) 12 12.7
Yield stress of lead O, (MPa) n.a.' 13
Static pressure due to gravity loads Pyarc (MPa) 3.0 3.0
Shear modulus G (MPa) 0.80 0.87

1. not applicable



5.5.2 Code verification

Code verification assesses the mathematical correctness and implementation of the numerical
algorithms in a source code using a programming language. Code verification can further be
divided into: 1) numerical code verification, and 2) software quality assurance (SQA).

5.5.2.1 Numerical code verification

Numerical code verification ensures that the solution algorithms are implemented correctly in
the source code and are working as intended. Three techniques are employed here for
numerical code verification: 1) symmetry test, 2) code-to-code comparison, and 3) order of
accuracy test.

5.5.2.1.1 Symmetry test

If a code is provided with symmetric geometry, initial conditions and boundary conditions, it
should produce symmetric response. The elastomeric bearing model is circular in shape and
has radial symmetry. The models in OpenSees and ABAQUS are subjected to two symmetry
conditions: 1) the bearing is fixed at its base and ground motion is applied to the free node at its
top in the x-direction, and 2) the bearing fixed at its top and ground motion applied to the free
node at its bottom in the negative x-direction. The two analysis cases are shown in Figure 5-5.

Sinusoidal loading is applied at the free node of a LDR (LDRS in Warn (2006)) and a LR bearing
(large size bearing in Kalpakidis et al. (2010)) for the two analysis cases. The responses at the
free node in the two cases are presented in Figure 5-6 for the LDR and LR bearing,
respectively. The L1 and L2 norm of the percentage difference is 0% for the ElastomericX and
the LeadRubberX elements.

P=Mg
WA AN Mode 2 Mode 2
ode 1 R A TAYRY.
P=Mg
Load case 1 Load case 2

Figure 5-5 Analyses cases used for the symmetry test
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Figure 5-6 Force-displacement response in shear at the free node

5.5.2.1.2 Code-to-code comparison

Code-to-code comparison is the most widely used verification method to establish confidence in
the codes implementing a mathematical model. The two prerequisites for code-to-code
comparison are (Trucano et al., 2003): 1) the two codes should implement the same
mathematical model, and 2) one of the codes should have undergone rigorous code verification
activities. The mathematical model of an elastomeric bearing is implemented in OpenSees and
ABAQUS (refer to Chapter 4). ABAQUS is a commercial product that has well-documented
software quality assurance through a verification manual (Dassault, 2010f) and a benchmarks
manual (Dassault, 2010g), which provide a high confidence in the software. Good agreement
between the results obtained from the models of elastomeric bearings implemented in
OpenSees and ABAQUS increases confidence in the codes. A summary of the components of
the mathematical model verified using code-to-code comparison is presented in Table 5-5, and
plots of comparisons are shown in Figure 5-7 through Figure 5-12.

The code-to-code comparison shows good agreement for the components of the mathematical
models of elastomeric bearing listed in Table 5-5. The percentage difference between the
responses obtained using OpenSees and ABAQUS are less than 10% for all components of the
mathematical model except in the strength degradation of LR bearing in shear due to heating of
the lead core. The L1 and L2 norm of the difference between OpenSees and ABAQUS is 10%
and 21%, respectively, for the strength degradation model of LR bearing under harmonic
loading. A comparison of the plots of shear response obtained using OpenSees and ABAQUS
in Figure 5-7 and Figure 5-8 show that the difference is primarily due to the reversal of motion.
Although the magnitude of absolute difference are small, the percentage difference becomes
large when responses values are close to zero during the reversal of motion. The percentage
difference accumulates over 25 cycles of loading. Warn and Whittaker (2004) report that actual
energy demand imposed on isolators in maximum earthquake excitation are far less than that
imposed by codes (e.g., ASCE (2010)) in prototype testing, and recommend only four fully
reversed cycles to the total design displacement at a frequency equal to the inverse of the
effective period of isolated structures. Decreasing the number of cycles from 25 to 4 for the LR
bearing reduces the L1 and L2 norms of the percentage difference to 3% and 12%,
respectively.
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Table 5-5 Code-to-code verification for different component of the mathematical models

. Bearing used Loading protocol Time L1 L2
Invc:gtlgftted in the step | difference | difference
property analysis Horizontal Vertical (sec) | norm (%) norm (%)
Large size
Heating bearlr)g_ in Harmpnlc Constaqt 0.01 9.75 2128
Kalpakidis et loading compression
al. (2010)
i LDR 5 in Increasing
Cavitation Warn (2006) Zero offset triangular 0.01 0.43 6.57
: Constant .
Cavitation | /'”(2"388)6 offset | NOreASM9 | g1 | 0,01 0.12
' (200%)
. LDR 5 in Linearly Increasing
Buckling Warn (2006) | increasing triangular 0.01 0.00 0.13
. LDR 5in Linear . .
Buckling Warn (2006) | increasing Sinusoidal 0.01 0.53 7.07
400 I T T T T T T
2 ABAQUS .
_200H OpenSees _
z | _
[0
5 0 7
[
—
S - _
=
n
-200 — -
_400 | | | | 1 | | | | | !
-150 -100 -50 0 50 100 150
Shear displacement (mm)
Figure 5-7 Shear strength degradation due to heating of the lead core (large size bearing

in Kalpakidis et al. (2010))
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Figure 5-8 Shear force history (large size bearing in Kalpakidis et al. (2010))
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Figure 5-9 Cavitation and post-cavitation behavior (LDR5 in Warn (2006))
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Figure 5-10 Cavitation and post-cavitation behavior (KN2 in Iwabe et al. (2000))
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5.5.2.1.3 Order of accuracy test

The order of accuracy test is the most rigorous code verification activity. The results of the order
of accuracy test is very sensitive to small mistakes in the code or deficiencies in the numerical
algorithm. It examines the rate at which discrete numerical solution approaches the exact
solution of the mathematical model as mesh discretization parameters (spatial and temporal)
are refined. The order of the spatial and temporal convergence rates are determined to assess
the accuracy of the code.

The order of accuracy can be determined as a formal order of accuracy and observed order of
accuracy. The formal order of accuracy is the theoretical order of convergence of the discrete
solution to the exact solution of the mathematical model. The observed order of accuracy is the
rate at which computational solution converges to the exact solution of the mathematical model
as the mesh size is refined. The formal order of accuracy of a numerical algorithm can be
obtained through power series expansion, and is not necessarily the same as the observed
order of accuracy due to errors associated with the code implementation of the discrete
numerical solution. For the purpose of calculations here, the exact solution can be obtained
from either a closed-form analytical solution or a high-confidence numerical solution with a fine
discretization. An alternative to these two methods of obtaining an exact solution is to obtain a
higher order estimate of the exact solution of the mathematical model through the Richardson
Exploration method, which is discussed later in this chapter. Roy and Oberkampf (2011)
provides a detailed discussion on calculation of formal and observed order-of-accuracies. The
flowchart of the order of accuracy test is shown in Figure 5-13.

Elastomeric bearings are modeled as two-node, twelve degree-of-freedom, discrete elements.
Hence no spatial discretization is involved, and only temporal discretization is used for the static
and dynamic analysis. The dynamic equilibrium of a system is given by the following differential
equation:

2

du .
mFJrfS(u,u):p(t) (5.3)

where f5(u,u) is the resisting force that depends on the displacement and the velocity, and

p(t) is the external load applied to the system. For a linear system the resisting force is a sum
of a spring force, ku , and a damping force, cu . The discretized numerical form of the Equation
(5.3) can be solved exactly for linear system, but requires iterative techniques for nonlinear
systems.

A Central Difference solution scheme is used here to illustrate the procedure for determination
of formal order of accuracy. A similar but more involved approach can be followed for other
integrators (e.g., Newmark, HHT). The discretized form of Equation (5.3) is:

U, —2u,+U_, U, —U.,
I+ L ycn2 = +ku =p, 54

where subscript i represents the time step.
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Figure 5-13 Order of accuracy test (Roy and Oberkampf, 2011)
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The Taylor series expansion of U,,, and U, , around U; are:

ou, (At) %u, (At Ju, (At)
Uy =U; +— o+ — +—
ot 1 ot 2 ot 6

+O(At*) (5.5)

_ 2, (_AFV 3, (_AFY
u_, =u, +%( Af)+ 9 Lzl’ (=A) + 0 le’ (=A7) +0O(At*) (5.6)
ot 1 ot 2 ot 6

Substituting the values of u,,, and u,_, into Equation (5.4):

u,.,—2u, +u, u,.,—u
i+1 i i—1 +cC i+1 i—1 + kUI- _ pi —

At? 2At
Ly(w) (5.7)
du . m o*u, ¢ &y, .
m-—-+cl+ku—p(t)+| —— + ——L |At* + O(AL®
e Pl (12 o 6ot .
L(u) truncation error: TE, (u)
UH.] — 2U,- + u,',1 ui+1 — ui*1
3 +C + kul - pi =
At 2At
Ly(w) (5.8)
2, . m o*u, ¢ d’u. .
m +cu+ku—p(t)+| ——+=—L |At* + O(AFP
e PO+ 2% "6 ar a0
L(u) truncation error: TE, (u)
or, Ly(u)=L(u)+TE,(u) (5:9)

where L, (U) represents the discretized model, L(U) is the mathematical model and TE, (u) is
the truncation error. The parameter h defines the systematic mesh refinement over space and
time. For the discretization considered here, h is the time step At used in the static and
dynamic analysis. The formal order of accuracy is defined as the smallest exponent of the
discretization parameter, At , in the truncation error, TE, (U). Hence the discretized numerical
model described by Equation (5.4) is second-order accurate, or has a formal order of accuracy
p =2

If u, is the exact solution to the discrete expression L,(u), then L,(u,)=0, and if & is the exact
solution to the mathematical model, then L(t)=0.

Substituting U =u, in Equation (5.9) and subtracting L(0)=0 from it:

L(u,)-L(u)+TE,(u,)=0 (5.10)

5-18



The discretization error, ¢, , is the difference between the solution to the discretized equations
and the exact solution of the mathematical model:

&, =u,—-u (5.11)

If the operator L is linear, then L(u,)—L(u)=L(u, —U)=L(e,). Substituting into Equation (5.10)
gives:

L(e,)=-TE,(u,) (5.12)

The above equation implies that discretization error is propagated in same manner as the
original solution U, .

To obtain the observed order of accuracy, consider a Taylor series expansion of the solution U,
to the discretized equations:

2 2 3 3
uhzuh:0+a—u h+ag| (h) +a"31| (h) +0(h*) (5.13)
onl, " Tam| 21 Tame| 3l

|h:0 |h:0

where h= At is the discretization parameter and u,_, = U is the exact solution to the
mathematical model. For a formal p” -order accurate solution scheme, by definition
o“uloh* =0 for k< P since the order of terms less than p does not contribute to the
truncation error. Equation (5.13) is reduced to:

&, =U, —U,_o =g,h" + O(h*") (5.14)

where g, is a function of the spatial and temporal variables, and ¢, is the discretization error. If
O(h*") is neglected, the logarithmic form of Equation (5.14) can be written as:

log(e,,) = plog(h) +log(g,) (5.15)

which is the equation of a straight line in log-space. The slope of the straight line provides the
order of accuracy, p.

Equation (5.14) is used to calculate the observed order of accuracy by replacing the formal
order of accuracy p with the observed order of accuracy [) . The asymptotic zone of the
solution of a discretized equation is defined where the discretization parameter h approaches
to zero. If two different time steps h = At and h =rAt are used in the asymptotic solution zone,
where terms of order p +1 vanish, two equations are obtained:

£y =, (At) (5.16)

6 =0, (rAt) (5.17)
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The observed order of accuracy p is obtained by eliminating g, from Equation (5.17) and

Equation (5.16) as:
|n(8mt ]
- E

= A/ 5.18
P In(r) (5.18)

If an exact solution to the mathematical model is available, the observed order of accuracy can
be obtained by obtaining response values for only two values of mesh discretization parameters
using Equation (5.18). However, if an exact solution to a mathematical model is not available,
which is usually the case with most of the mathematical models used for the nonlinear analysis
of structures, three values of the response parameter can be evaluated for time discretization of
At , rat and r°At, respectively:

Up=Uy =U, o, +9g,At?
Uy =U, =Uyo+9,(rat) (5.19)
p
Uy =U, =Uyo+0, (rzAt)
where U is a response quantity (e.g, displacement, velocity, acceleration, temperature), and

O(h"") is zero in the asymptotic zone of the solution. Solving the above equations, the
observed order of accuracy is obtained as:

In(”% “2”}
p :M (5.20)

If the observed order of accuracy is found equal to the formal order of accuracy, then the code
is considered to be verified. The process described in flowchart of Figure 5-13 is followed.

For response-history analysis the observed order of accuracy is evaluated locally on a point-by-
point basis in the domain. The observed order of accuracy cannot be evaluated at crossover
points where the difference between responses obtained at different mesh discretization
changes its sign, as shown in Figure 5-14. The observed order determined locally might
produce unrealistic values. The global norm of the discretization error should be used for order
verification tests.
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Figure 5-14 Observed order of accuracy at a crossover point (Oberkampf and Roy, 2010)

The procedure above describes calculation of formal and observed order of accuracies for a
linear system using the Central Difference integration scheme. The formal order of accuracy
cannot easily be calculated for nonlinear systems.

The observed order of accuracy of the computational models in the axial and shear directions
are determined in the following sections. Loads are applied such that the response is linear. The
formal order of accuracy for the linear system was obtained as two; it could not be determined
for nonlinear problems. The observed order of accuracy is obtained for nonlinear problems to
illustrate the difficulty associated with order verification tests of nonlinear problems.

A two-node bearing element, fixed at its base, is subjected to uniform sinusoidal excitation in
axial and shear directions. The shear displacement response is obtained for several time
discretization values. Response-history analyses were performed to obtain the variation of the
order of accuracy with time discretization. Equation (5.20) is used to calculate the order of
accuracy. A value of At and I are chosen and then response quantities are obtained at ten
time discretization values r’At (1< j<11). Using the response quantity available at six time
steps, eight orders (1 <j< 9) of accuracy are obtained to demonstrate that the observed order
of accuracy is converging to a value as the mesh discretization parameter, At , approaches
zero. The observed order of accuracy is calculated as:

|utr/at)-u(r~at)|
|utrat) - u(r2at)|

log(r)

Order = [ (5.21)

The L, and L, norms of the difference in response on point-by-point basis were obtained over
the history of response and the orders of accuracy were calculated.

A series of analyses were performed on LDR and LR bearings to obtain the variations of orders
of accuracy with time discretization in the shear direction. The Newmark average acceleration
method was used for integration scheme. Results are presented in Figure 5-15 and Figure 5-16
for the axial and shear directions, respectively. The observed orders of accuracy converge to
two for numerical models of LDR and LR bearings in the axial and shear directions. As the
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observed order of accuracy matches the formal order of accuracy, the code correctness can be
confirmed for the numerical models when the response is linear.

The observed order of accuracy was also determined for nonlinear response. It was found that
as the magnitude of the applied loads is increased, such that the response changes from linear
to nonlinear, the order of accuracy is decreased from two to one in the shear direction.

However, the order of accuracy for the numerical model in the axial direction did not converge to
a fixed value. Results are presented in Figure 5-17.
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Heating of the lead core

The temperature increase in the lead core of the LR bearing was calculated at different values
of At to estimate the observed orders of accuracy of the numerical model of the LR bearing for
the linear and nonlinear response discussed above. Results are presented in Figure 5-18.
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Figure 5-18 Observed order of accuracy of the heating model
5.5.2.2 Software Quality Assurance

The software program ABAQUS and the software framework OpenSees provide a modular
framework for implementation of new mathematical models through user subroutines. The user
subroutines (user elements for LDR and LR bearings) are written using one of the programming
languages, and form a part of the software program that can be used to perform an analysis
(e.g., response-history analysis of a NPP). The code verification of user subroutines was
discussed in the previous sections. However, errors might be present due to the global
framework of OpenSees and ABAQUS. The Software Quality Assurance (SQA) check, identify,
and remove errors associated with the global framework and ensure that the user subroutines
are free from programming errors.

Errors are most likely due to the source code of a software program, but can also be introduced
due to the compiler (e.g., limited precision, undeclared variables). For example, C++ and
FORTRANT7Y7 treat uninitialized variables differently when used in an executable statement. The
adequacy of a software program to produce reliable results with a specified set of libraries using
a specific compiler is assessed. Software quality assurance must always be performed during
development of the software product and before it is used for the verification of a computational
model that has been created using the framework of the software program. Most of the
commercial software programs publish their verification or benchmark manuals as part of their
SQA. ABAQUS has a verification manual (Dassault, 2010f) and a benchmark manual (Dassault,
2010g). The verification manual evaluates the accuracy of numerical algorithm implementation,
and the benchmark manual assesses the performance of the software program.
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The scope of work for addressing programming errors is limited to user subroutines. It is
assumed that OpenSees and ABAQUS have been checked for programming errors by their
developers. Some of the commonly encountered sources of programming errors are:

Default parameters values
Units of measurements
Uninitialized variables
Division by zero

Values of constants
Incompatible divisions

ook wN =

The user elements in OpenSees and ABAQUS were checked for errors arising from such
sources and all identified issues were addressed.

5.5.3 Solution verification

Solution verification (also called calculation verification) assesses the accuracy of the
approximate discretized numerical solution of a mathematical model that is implemented for
computational predictions. Solution verification activities commence only after code verification
is completed. The error associated with the numerical model are discussed in the following
sections.

5.5.3.1 Round-off error

Round-off error is contributed by the finite arithmetic used by a computer program. For example,
the value of 2.0x(1.0/2.0) should ideally be 1.0 if infinite precision is used, however, it is often

calculated less than 1.0 (say 0.999 999) in a single-precision computation. Most programming

languages require the user to initialize the type of variable (text, number, boolean etc). The
C/C++ source code in OpenSees needs the user to define the numeric type of variable as int,
float, double or long. Each variable type uses a different precision in the computations.
Specifying the largest precision type for each variable is not desirable as it slows down the
execution of the program. If appropriate variable precision is used in a source code, errors due
to round off are usually very small when compared to those associated with discretization.
Round-off error is not investigated here because it is not expected to have any significant effect
on the results obtained using the mathematical models of elastomeric bearings.

5.5.3.2 Iterative convergence error

Iterative methods are employed to solve the system of equations obtained after discretization of
the mathematical model. The system of equations takes the form Ax = b, where A is the co-
efficient matrix, b is the column vector and X is the desired solution. The iterative error is the
dlfference between the solution obtained using iterative methods and the exact solution (

xX=A b) of the system of equations. The iterative method is employed because exact solution
obtained using direct methods is computationally expansive. The solution process in iterative
methods begins with an initial estlmate of the value of X and iterations are then performed until
the iterative residual, R* =b - Ax* , becomes acceptably small. The Newton-Raphson method
is one of iterative techniques that i |s used in OpenSees to solve a system of equation. The
iterative error is usually much smaller than the discretization error. OpenSees provides the
option to specify the iterative step convergence criteria. The user can always control the
iterative error by specifying a very small iterative residual for convergence.
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5.5.3.3 Discretization error

Discretization error is often one of the largest source of numerical errors, which is the most
difficult to estimate. An appropriate temporal discretization needs to be assumed for an
OpenSees analysis. Most of the ground motions available through PEER ground motion
database are sampled at intervals of either 0.005 or 0.01 sec. If a smaller analysis time step is
used, OpenSees linearly interpolates the ground motion data to provide values at intermediate
points. Providing a smaller time step often increases the stability of a computational solution.
The increased resolution of response data due to smaller analysis time step helps to capture
response in a region of very high stiffness (in axial direction), which might be missed if a larger
time step is used. The most notable effect of discretization in dynamic analysis is numerical
damping due to use of implicit transient integrators (e.g., Newmark, Hilber-Hughes-Taylor
methods), which will be discussed later. In response-history analysis, transient integrators
provide an additional source of damping that is undesirable.

There are numerous methods to estimate discretization error. The Generalized Richardson
Exploration (GRE) is used here because of its ease of application. This method is useful when
an exact solution to the mathematical model is either unavailable or difficult to evaluate. The five
conditions that need to be satisfied for application of this method are (Oberkampf and Roy,
2010):

The formal order of accuracy should match the observed order of accuracy.
Uniform mesh spacing should be used in the numerical model.

Discretization should be refined systematically.

The obtained solution should be smooth in nature.

Other numerical error sources should be small compared to the discretization error.

arwN=

The GRE uses a systematic discretization refinement to obtain a higher order estimate (order of
accuracy > p ) of the exact solution to the mathematical model, which can be used in place of
the exact solution to obtain error estimates. The information presented below extends the
discussion presented in Section 5.5.2.1. The discretization error of an p" -order accurate
response quantity U is given by:

&, =U,—l0=g,h" +g, h*" +O(h**?) (56.22)

where U, is the exact solution to the discretized differential equation (numerical model) and &
is the exact solution to the differential equation (mathematical model). The errors are estimated
for two discretization values h=At and h=rAt as:

Uy =U0+g,At" +g,., (rAz‘)p+1 + O(AtP?) (5.23)
Uy =U+9,(rat) +g,., (rAt)p+1 +O(At"*?) (5.24)
The term g, is eliminated from the two equations to obtain:

Uy —u, +1 rp(r_1) +2
A;p_1At +gp+1Atp ﬁ-i-O(Atp ) (525)
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Combining the higher order terms with the exact solution gives a higher order estimate of the
exact solution:

P(r—
T=0-g, A" % _O(At"*2) (5.26)

where & is the higher order estimate (P +1 order accurate) of the exact solution to the
mathematical model and is given by the expression:

i e 72 (5.27)

Hence, u is a higher order accurate solution of the exact solution & than u . In most cases,
the exact solution g of a mathematical model is not available. If the five conditions for the
application of Richardson exploration method are satisfied, then o calculated in the asymptotic
zone of the discretized numerical solution can replace . The discretization error is calculated
using &, =u,, —U to give:

u,—u,
A = ——Ar’,, - 1“ (5.28)

)
|

To confirm the reliability of the discretization error, calculations should be performed for different
discretization values to obtain at least three estimates of the discretization error.

Ten estimates of discretization error are obtained here. The response quantities of interest, U,
are calculated at several time discretization values, r'Af . The higher order estimate of exact
solution, &, are determined using response quantities U; and U,,, available at the analysis time
step of r'At and r'At, respectively. The percentage discretization error is given as:

u —u

%e,, =———x100% (5.29)
where u is calculated using U; and U, , as:
— u. —u.,
u=u, + ——— 5.30
orP -1 (5.30)

Substituting the value of & in Equation (5.29), the discretization error is obtained as:

%e,, :%MOO%:%MOO% (5.31)

Ui r™ —u;
The index, i, is varied from 1 to 10 to obtain error estimates for the ten values of time
discretization. The observed orders of accuracy of the mathematical models of the elastomeric
bearing were calculated and reported in Figure 5-16. Ensuring that the observed order of
accuracy is equal to the formal order of accuracy is one of the criteria for applying the
Richardson exploration method to obtain the discretization error. The formal order of accuracy
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of the numerical models in the axial shear direction was obtained as two for linear response of
LDR and LR bearings, while it could not be calculated for nonlinear response. Oberkampf and
Roy (2010) suggest that if the solutions at the three time discretization values used for the
calculation of the observed order of accuracy are in the asymptotic range, the observed order of
accuracy can replace the formal order of accuracy to calculate the discretization error. The
observed orders of accuracy of two and one are used to calculate the discretization errors for
linear and nonlinear response, respectively. The value of refinement ratio r is 2. The L, norm
of the discretization errors calculated on point-by-point basis over the history of response are
obtained. Only the first two cycles of the response is used to calculate the discretization error in
the axial direction because unrealistic values of discretization error might be obtained due to
period lengthening in the numerical response: an issue with implicit integrators and finite time
discretization that is discussed in a later section.

The discretization error in the displacements for the analyses cases presented in Section
5.5.2.1 are reported in Table 5-6 and Table 5-7 for the axial and shear directions, respectively.
The plots are presented here only for nonlinear response, noting that linear response in shear is
seldom observed in elastomeric bearings during earthquake shaking. The plot of the variation of
the discretization error in shear displacement with time step is presented in Figure 5-19 and
Figure 5-20. The plot of the shear force-displacement loops of the LDR and LR bearings
obtained using different time steps are presented in Figure 5-21 and Figure 5-22, respectively.
The variation of the temperature rise in the lead core of a LR bearing obtained using different
analysis time steps are presented in Figure 5-23.

The discretization error in the response quantities decreases as the analysis time step is
reduced. The reduction in the discretization error with the time step suggests a monotonic
convergence of the solution to the numerical model. Reliable estimates of the discretization
error can only be obtained in the asymptotic zone of the solution. The asymptotic zone of
solution for shear displacement and temperature was obtained in Section 5.5.2.1.3 for time
discretization values smaller than 0.01 sec. A time step of 0.01 sec provides discretization error
in the response quantities (e.g., displacement, force, temperature) less than 5%, except in the
nonlinear axial response. A larger discretization error in nonlinear axial response is observed
due to local instability in the numerical response around cavitation, although it does not affect
the maximum value of axial force or displacements.
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Table 5-6 Discretization errors for numerical model in the axial direction

At (sec) - LDR - - LR -
Linear Nonlinear Linear Nonlinear
0.125 4.93 -- 5.60 125.58
0.0625 4.04 60.55 4.51 46.79
0.03125 19.53 34.22 4.71 34.32
0.015625 4.27 79.61 4.86 89.99
0.007813 5.20 85.70 5.60 34.57
0.003906 5.01 111.15 5.16 40.24
0.001953 4.95 6.14 8.92 11.60
0.000977 2.91 4.62 1.04 130.11
0.000488 0.57 0.79 0.43 2.08
0.000244 0.14 0.04 0.19 0.23
Table 5-7 Discretization errors for numerical model in the shear direction
At (sec) LDR LR Temperature
Linear Nonlinear Linear Nonlinear Linear Nonlinear
0.125 10.99 25.48 130.27 80.80 3.88 14.30
0.0625 13.40 8.38 21.58 16.43 1.38 7.91
0.03125 53.36 2.60 9.62 4.54 0.53 2.63
0.015625 7.13 2.61 4.76 2.21 0.19 1.22
0.007813 2.87 1.24 0.77 0.98 0.08 0.56
0.003906 0.43 0.40 0.17 0.48 0.04 0.27
0.001953 0.1 0.18 0.04 0.24 0.02 0.13
0.000977 0.03 0.09 0.01 0.12 0.01 0.07
0.000488 0.01 0.04 0.00 0.06 0.01 0.03
0.000244 0.00 0.02 0.00 0.03 0.00 0.02
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Figure 5-20 Discretization error in the temperature rise of the lead core
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Figure 5-21 Horizontal shear response of a LDR bearing
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Figure 5-22 Force-displacement loops for a LR bearing
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An observed order of accuracy of 1 was assumed in the absence of a formal order of accuracy
for the calculation of the discretization error in the numerical models of the nonlinear axial and
shear behavior. If the observed order of accuracy is higher than the formal order of accuracy,
the discretization error obtained using the observed order of accuracy provides an
unconservative estimate.

The discretization error in shear displacement at each time step for different values of the
temporal discretization is shown in Figure 5-24 for LDR and LR bearings. Local spikes in the
discretization error might contribute substantially to the global norm of the discretization error,
but do not affect the maximum value of a response quantity. The maximum horizontal
displacement for the three analysis time step of Figure 5-24a are 31.4 mm, 31.5 mm, and 31.6
mm, respectively, whereas for Figure 5-24b they are 249 mm, 257 mm, and 257 mm,
respectively. Hence, discretization error in a numerical model should always be interpreted
carefully and the contributions of local discretization error must be checked.
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Figure 5-24 Discretization error in shear displacement
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5.5.3.4 Damping in OpenSees

OpenSees provides option to use three types of damping: 1) Rayleigh damping, 2) mass
proportional damping, and 3) stiffness proportional damping. There is no option to use modal
damping unlike other structural analysis software programs (e.g., SAP2000). Analyses are
performed to verify damping calculations performed by OpenSees. The LDR5 bearing of Warn
(2006) is assigned 2% damping in the horizontal direction using the three damping definitions
listed above. An initial displacement of 0.01 mm is imposed and the bearing is then allowed to
go into free vibration response. The same analyses are performed in axial direction. A small
initial displacement is used to ensure linear elastic behavior to avoid any contribution of viscous
damping. The free-vibration displacement response of a single-degree-of-freedom system is:

u(t) = e~ {U(O)cos oyt + O+ e t0) g th} (5.32)
wp
where & is the damping ratio; U(0) and t(0) are the initial-displacement and velocity,

respectively; @, is the natural frequency, and @, = @, 1—52 . The response of the bearing
for the three damping options and the analytical response is presented in Figure 5-25 and
Figure 5-26 for horizontal and vertical directions, respectively. Numerical damping values are
calculated from the free vibration response using (Chopra, 2007):

E=—In— (5.33)

where U; and u,,; are the jth and (i + j)th peak displacement response. The damping values
calculated from numerical response are summarized in Table 5-8. No difference is observed
between the assigned damping and the damping calculated from the numerical response.

Table 5-8 Damping ratios (%) calculated from numerical response

Damping definition
Direction
Rayleigh Mass proportional Stiffness proportional
Horizontal 1.997 1.997 1.997
Vertical 1.994 1.994 1.994

5.5.3.5 Geometric nonlinearity in OpenSees

The elements for elastomeric bearings (ElastomericX and LeadRubberX) include the second
order effects of geometric nonlinearity on stiffness by using analytical expressions for
mechanical properties derived using explicit consideration for geometric nonlinearity (details are
in Chapter 3). The P — A moments are divided equally among the two nodes of the bearing.

To verify the P — A calculations, the two-node macro model was analyzed with different user
elements for the elastomeric bearing: 1) ElastomericX, 2) elastomericBoucWen, and 3)
TwoNodeLink. The results obtained using ElastomericX (and LeadRubberX) are compared with
existing bearing elements, elastomericBoucWen and TwoNodeLink, in OpenSees, and against
theoretical calculations. The properties of LDR5 bearing in Warn (2006) are used for the user
elements.
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A horizontal strain of 100% and an axial load of 10% of critical buckling load are applied to the
top node (Node 2) of the macro model. The distribution of the bending moment at the two nodes
of the element is shown in Figure 5-27.

The values of the parameters F, P, A, and h are 16846 N, 38491 N, 0.06 m, and 0.117 m,
respectively. The theoretical value of the end moments is obtained as:

Fh PA
=— 4+ —
2 2

M (5.34)

The force and the moments at the two nodes of the elastomeric bearing are compared in Table
5-9. No difference is observed between the results.

P
A -PA/2 -Fh/2
F—Y-
h
STTTILLS Fh/2 PA/2
Two-node Moment at the base

Figure 5-27 Bending moments in a two node element

Table 5-9 Bending moments at the two nodes of the element (N-m)

Calculation source Node 1 Node 2
Theoretical 2140 2140
ElastomericX 2140 2140
elastomericBearingBoucWen 2140 2140
twoNodeLink 2140 2140

5.5.3.6 Integrators in OpenSees

OpenSees provides the option to use different integrators for static and dynamic analysis. The
integrators used in static and dynamic analysis are referred to as static and transient
integrators, respectively. Transient integrators are further divided into implicit and explicit
integrators. The integrators available in OpenSees are summarized in Figure 5-28.
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Figure 5-28 Integrators in OpenSees

Integrators are the time stepping procedures that advance the state of analysis from time t to ¢
+ At . An integrator determines the meaning of the terms in the system of equations Ax=8B.
The integrators discussed here are either based on finite difference of velocity and acceleration
(e.g., Central Difference method) or on assumed variations of acceleration (e.g., Newmark,
HHT).

The Newmark family of integrations are most widely used for earthquake engineering
applications, and are given by the following equations (Chopra, 2007):

Uy = U, +[(1= )AL, + (yAL )i (5.35)

i+1

U, =U; + (A, +[(0.5— B)(ALY 1, + [B(AtY i (5.36)

i+1
where U is displacement and » and B are the Newmark integration parameters. The stability
and accuracy of response depends on parameters 5 and B . Two special cases of Newmark
integrators are: 1) Newmark Average Acceleration, and 2) Newmark Linear Acceleration. The
Newmark Average Acceleration () = 05, f= 0.25) and the Newmark Linear Acceleration
(7=0.5, f#=0.167) integrator assumes a constant average acceleration and linearly varying
acceleration, respectively, between steps i and i +1. The stability of the solution obtained
using these integrators depends on the time step At used for dynamic analysis. An
unconditionally stable integrator provides a stable solution for all values of At . Integrators and
their conditions of stability are presented in Table 5-10. The stability conditions are applicable
only for linear problems. The stability of these methods over a wide range of nonlinear problems
is not always guaranteed.
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Table 5-10 Stability requirements for the response obtained using different integrators

Integrator Parameters Condition of stability

Newmark (general) p2yl12>114 Unconditionally stable

Newmark Average Acceleration y=112, p=1/4 Unconditionally stable
Newmark Linear Acceleration y=112, p=1/6 At <0.55T

Hilber-Hughes-Taylor (HHT) 2/3<a<1 Unconditionally stable
Central Difference --- At<0.318T7,

The integrators used in a dynamic analysis have the tendency to provide numerical energy
dissipation depending on the values of integrator’'s parameters and the analysis time step. The
numerical energy dissipation due to integrators introduces numerical damping in the system’.
An integrator can also shorten or elongate the period of a structure obtained from the numerical
response. The numerical damping and the period elongation introduce errors in the numerical
response, which need to be quantified and removed. The effects of using different transient
integrators, associated parameters, and time discretization values on the numerical response of
elastomeric bearings are discussed below.

The selection of an integrator for a response-history analysis is dictated by stability and
accuracy of the numerical solution. An integration scheme that is stable for a linear system
might not be stable for nonlinear system. Moreover, the numerical damping is difficult to quantify
in a nonlinear system due to contribution of hysteretic damping. The performance of different
integrators is benchmarked against a linear elastic SDOF system in the following sections. It
provides insight into the use of elastomeric bearing elements with different integration schemes,
and sets a stage for a discussion on performance of integration schemes using different values
of integrator’s parameters and time step.

The two-node macro model is used for analyses. Properties of the LDR 5 bearing of Warn
(2006) is used for the element connecting the two nodes. The mass is calculated from the given
value of the period of oscillation in the horizontal direction. The node 2 of the macro model is
subjected to an initial displacement of 1 mm and then allowed to undergo free vibration. The
yield shear displacement for the bearing is assumed to be 7 mm to ensure a linear elastic
response. The exact solution for the free vibration of a SDOF system is:

uexact = uO cos (2?72-1.) (537)

where U, is the initial displacement and T is the fundamental period of the SDOF system.

The user elements for LDR and LR bearings adopt the same mathematical model in the
horizontal direction except for the mathematical model for heating of the lead core in the LR

"In some cases (e.g., impact, contact problems) numerical damping is provided deliberately in the
analysis of a MDOF system to reduce response from the high frequency modes, also called zero-energy
spurious modes.
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bearing. Results of analyses using the LDR bearing are presented here. For small (elastic)
response, the conclusions obtained using ElastomericX are also applicable to LeadRubberX.

5.5.3.6.1 Effect of integrator

The Newmark family of integrators are the most widely used for response-history analysis
involving earthquake shaking. However, if a problem involves impact, or if high frequency
modes are of interest, other integrators may have to be used. The effect of using different
integrators on the accuracy and the stability of a response quantity is investigated here. Four
integrators are considered: 1) Newmark Average, 2) Newmark Linear, 3) Central Difference,
and 4) Hilber-Hughes-Taylor (HHT).

Figure 5-29 presents the shear displacement history obtained using different integrators with an
analysis time step of At/T = 0.1 (At =0.2 sec, T, =2 sec). The central difference integrator
shortens the period, while the implicit integrators elongates the period of the numerical response
when compared to exact response obtained from analytical solutions. The difference between
theoretical period and the numerical periods using different integrators vanishes for small values
of At/T,. For example, no difference in numerical periods is observed for At/ T =0.01.

Intcgrator
— Exact
N Newmark Average
Newmark Linear
— --— Central Difference
i — - HHT
_2 1 | I 1 | I T T
0 1 2 3 4 5
Time (sec)

Figure 5-29 Shear displacement response of a LDR bearing (At/T, = 0.1)

|

Shear displacement (mm)

The numerical energy dissipation in the response due to integrators is shown in Figure 5-30.
The numerical energy dissipation amounts to an equivalent numerical damping in the response,
which can be calculated by obtaining the ratios of successive amplitudes in the displacement
history and using Equation (5.33). The variation of numerical damping with time step At is
presented in Figure 5-31. For a given value of the period of oscillation, no significant change in
numerical damping is observed with time discretization for the Newmark Average, Newmark
Linear, and Central Difference integrators. Numerical damping of response obtained using HHT
integrator increases with increasing time discretization. Analyses were also performed for a
range of natural period, T, of the model (1 to 4 sec), and similar results were observed.
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Instability in the solution is observed when using Central Difference method with an analysis
time step At >0.3187, and Newmark Linear Acceleration method with At >0.55T, where T,
is the smallest period of a mode of interest (Chopra, 2007). Figure 5-32 and Figure 5-33 present
shear displacement responses obtained using the Central Difference and Newmark Linear
Acceleration integrator at a very small time step and a time step value slightly greater than the
stability limit for each integrator. The instability in responses obtained at time steps greater than
the stability limits can be observed. The Newmark Average Acceleration method is
unconditionally stable. Conditionally stable integrators might need to be used when an accurate

solution cannot be obtained or convergence is not achieved by using unconditionally stable
integrators.
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Figure 5-30 Shear displacement response of a LDR bearing (At/T,= 0.01)
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Figure 5-31 Variation of numerical damping with time-discretization (T, = 2 sec)

5.5.3.6.2 Newmark Average Acceleration integrator

The Newmark Average Acceleration integrator (7 =0.5, f=0.25) is further investigated here.
The numerical damping provided by an integrator depends on the ratio At/ T , where At is the
time step used in the analysis and T, is time period. A value of At/ T, that provides accurate
response in the lower modes of oscillations might not be able to accurately capture response in
higher modes. If higher modes are of interest, the values of At and T, should be selected such
that response of higher modes can be captured. The period of an isolation system typically
varies between 1.0 to 4.0 sec in the horizontal direction and 0.01 to 0.2 sec in the vertical
direction. As discussed in the previous section, the numerical damping provided by the
Newmark Average Acceleration integrator is insensitive to At/ T, for a wide range of values
when compared to other integrators (refer to Figure 5-31). A very small numerical damping was
obtained for At/T, less than 0.1. For an isolation system with a horizontal time period of 2 sec
and a vertical time period of 0.1 sec, a time step smaller than 0.01 sec should minimize the
numerical damping in the response. The contribution of numerical damping becomes significant
when damping provided by other sources are small. For example, viscous damping provided by
LR and LDR bearings in the vertical direction, and LDR bearings in the horizontal direction is
typically between 2 to 4%. If analysis is performed using Newmark Average Acceleration
integrator with At = 0.01 sec, the additional numerical damping in the axial response for a very
stiff isolation system can be as much as 1%.

5.5.3.6.3 Effect of Newmark parameters

For the general Newmark integrator, the values of parameters 5 and B are provided by the
user. The effect of Newmark’s parameters » and S on the response of an elastomeric bearing
is investigated here. The shear displacement history of the macro model is obtained using
different values of 5 and S using two values of Af/T  (0.05 and 0.005). Results are presented
in Figure 5-34 through Figure 5-37. The numerical damping in the response for each value of
the parameter using two different time steps is presented in Table 5-11.
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As the parameter 5 is increased, the numerical energy dissipation (damping) in the response
increases. The effect of increased damping due to a higher value of » is more pronounced with
coarser time discretization. Analysis with » = 0.9 and At = 0.1 sec produce numerical
damping as high as 5.97%. The Newmark parameter S does not significantly affect the shear
displacement history even for a coarse time discretization. A minor increase in numerical
damping due to B is observed with increasing time step.

Table 5-11 Numerical damping in shear displacement response of a LDR bearing using
different Newmark parameters (%)

Time step (At ) y (f=0.25) B (y=0.5)
(sec) 0.5 0.7 0.9 0.25 0.50 0.75
0.1 0.15 3.06 5.97 0.15 0.13 0.10
0.01 0.14 0.44 0.73 0.14 0.14 0.14

A special case of general Newmark integrator is the Newmark Average Acceleration integrator
(» = 0.5, B =0.25), which is expected to provide the least numerical energy dissipation in the
response.
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Figure 5-32 Shear displacement response obtained using Central Difference integrator
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Figure 5-35 Effect of Newmark parameter, y, on the shear displacement history of a
LDR bearing (8 = 0.25, At = 0.01 sec, T, = 2 sec)
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Figure 5-36 Effect of Newmark parameter, 3, on the shear displacement history of a
LDR bearing (y = 0.5, At = 0.1 sec, T, = 2 sec)

5-43



)

B M
0.5

e 07
—-— 09

S
m.

S
B~

<
e

Shear displacement (mm)
o
o

o
o0

0 2 4 6 8 10
Time (sec)

Figure 5-37 Effect of Newmark parameter, 8, on the shear displacement history of a LDR

bearing (y = 0.5, At = 0.01 sec, T, = 2 sec)

5.5.4 Conclusions on verification

A verification plan was prepared for the computational model of elastomeric bearings. The
computational model is represented here by user elements of LR and LDR bearings
implemented in the software framework OpenSees. Several sets of analyses were performed
using these user elements to identify error sources and quantify them. Where possible, errors
were minimized by removing error sources (e.g., programming bugs), or by sensitivity analyses
to arrive at a set of parameters that minimize the associated error.

Some of the important conclusions from these verification activities are:

1.

2.

The component of the mathematical model that contributes most to the error was
heating of the lead core in the LR bearing.

Code-to-code verification shows good agreement between OpenSees and ABAQUS
using an analysis time step of 0.01 sec.

The discretization errors in the shear force, including heating effects (LR bearing), are
1% (L1 norm) and 15% (L2 norm) using an analysis time step of 0.01 sec.

The discretization error in the shear force excluding heating effects (LDR bearing) is
less than 0.2% (L1 and L2 norm) using an analysis time step of 0.01 sec.

For values of the ratio At/ T, (analysis time step/time period) less than 0.1, insignificant

numerical energy dissipation is observed.

Numerical damping provided by the Newmark Average Acceleration integrator was the
least sensitive to the time step.

Instability in the numerical response of a MDOF system might be encountered with
conditionally stable integration schemes (e.g., Central Difference, Newmark Linear
Acceleration method) if the analysis time step is not within the stability limit for that
particular scheme.
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8. The Newmark Average Acceleration method is an appropriate choice of integrator for
seismic analysis of isolated structures. However, if higher modes are of interest, or if the
problem involves sudden change in the stiffness matrix (e.g. impact), other integrators
(e.g., Central Difference) should be evaluated.

9. For an isolation system of horizontal and vertical period greater than 1 sec and 0.05
sec, respectively, a time step of 0.005 sec or smaller is recommended for response-
history analysis.

5.6 Validation of the Model

5.6.1 General

The validation process assesses the accuracy with which a mathematical model represents the
physical reality for its intended use. Experiments are considered the best available
representation of the reality of interest for which the model is constructed. Preexisting
experimental data cannot be used if it inadequately represents the intended use of a model.
Experiments are performed simulating the initial conditions, boundary conditions, material
properties and applied loads as close as possible to model’'s intended use, while also
characterizing the anomalies where present and quantifying the uncertainties in measurements.
The outcomes of these specifically designed experiments are compared with the predictions of
the verified computational models to assess the accuracy of a mathematical model. These are
termed as validation experiments. The primary goal of a validation experiment is to assess the
predictive capability of the computational model by comparing computational results to the
experimental outcomes for the response quantities of interest. For validation activities, three
conditions must be satisfied:

1. A clear definition of the model that includes the reality of interest, its intended use and
the response quantities of interest

2. A verified computational model

3. Quantification of uncertainties in the experimental outcomes

The scope and intended use of the mathematical models of elastomeric bearing were defined in
Table 5-3. The computational models were verified in the previous section. A plan for
experimental validation is developed here based on the PIRT presented in Table 5-3 and
sensitivity analyses. The sources of error (e.g., unknown parameters) in the mathematical
model are identified. The goal of validation experiment is to investigate the behavior of the
mathematical model that are expected to significantly affect the response quantities of interest.

The cavitation parameters are expected to have high uncertainty. The unknown cavitation
parameters in the mathematical model of elastomeric bearing were estimated by calibration with
the experimental data of Warn (2006), Warn and Whittaker (2006), Constantinou et al. (2007)
and lwabe et al. (2000). A validation experiment is required to assess the predictive capability of
the computational model with these cavitation parameters. If the model shows good agreement
with the results obtained from the validation experiments, the elastomeric bearing model would
be considered verified and validated. However, if the numerical response prediction differs from
the experimental results by an amount greater than the accuracy criteria, one of two options can
be considered:

1. Refine the model using new data obtained from validation experiments, which involves
calibration to update cavitation parameters and change any underlying assumption that
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is not found appropriate based on information obtained from validation experiment, and
then repeat the validation activities with a new set of experiments and the updated

model of elastomeric bearings.
2. Restrict the use of model only for the conditions under which it satisfies the accuracy

criteria.

The choice of option will depend on the available resources and on the risk associated with the
use of a model to predict the outcome of an event (e.g.. beyond design-basis shaking of base-
isolated NPPs). The calibration results using available experimental data are presented here.
An experimental program to investigate behavior of elastomeric bearing under tensile loading is
prepared based on the criteria and considerations presented in the following sections.

5.6.2 Sensitivity analysis

A sensitivity analysis of the model is performed to identify parameters or phenomena which
significantly affect the response quantities of interest. It also assists in deciding on behaviors of
elastomeric bearing that should be investigated through the validation experiments.

The effect of cavitation, lateral displacement and axial force on the load-deformation behavior of
an elastomeric bearing (LDR 5 in Warn (2006)) is shown in Figure 5-38. The effect of strength
degradation parameter on load-deformation behavior in cyclic tension is shown in Figure 5-39.

The bilinear stiffness model of Constantinou et al. (2007) (k — 0) overestimates the tensile load,
and a very small value of the post-cavitation stiffness ( k — oo ) underestimates the tensile load
at large tensile displacements. The value of k =20 in Figure 5-38a was determined using
experimental data of Warn (2006). The damage index ¢ converges to its maximum value B -
The maximum damage index, ¢, , directly affects the energy dissipation capacity and
determines the final cavitation strength. Experiments suggest that the value of maximum
damage index varies between 0.5 and 0.9 (e.g., lwabe et al. (2000), Warn (2006)). If the energy
dissipation capacity due to cavitation is to be neglected in the analysis of elastomeric bearings,
a very small value of the maximum damage index can be used. The vertical stiffness of the
bearing decreases with lateral displacement, but the magnitude remains very high, and changes
are not expected to significantly affect the tensile response, as shown in Figure 5-38c. The
buckling load capacity of the bearing is affected substantially by the lateral displacement.
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Figure 5-38 Effect of various parameters on axial behavior of a LDR bearing

The strength degradation parameter, a,, determines the rate at which the damage index
converges to its maximum value, 4, ., , which directly affects the cavitation strength in
subsequent cycles in tension. A value of a, =1 provides a close match with experimental
observations, as shown in Figure 5-39.
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Figure 5-39 Effect of the strength degradation parameter on the tensile behavior

As discussed in Chapter 4, the yield strength of a LDR bearing is determined using an assumed
value of damping and maximum displacement. The effect of the damping ratio ( 5, ) and the
displacement (D) used in the calculation of yield strength on the shear hysteresis loop of the
LDR 5 bearing in Warn (2006) is shown in Figure 5-40. Warn (2006) reports damping ratios of
LDR bearings in the range of 2 to 4%. The energy dissipation capacity of a LDR bearing in this
damping range, as evident from Figure 5-40(a), is insignificant, and is not expected to
significantly affect the shear response. Hence, the response of a LDR bearing is not sensitive to
the damping ratio used for the calculation of yield strength. The other effect of damping ratio on
shear behavior of a LDR bearing is the increase in effective stiffness with damping. However,
calculation of effective shear modulus of a LDR bearing using test data already accounts for the
effect of damping on shear stiffness. For an assumed value of damping ratio, the energy
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dissipation capacity of a LDR bearing increases with displacement (D) used in the calculation of
the yield strength. However, at small value of damping ratio (3%), the response of LDR bearing
is not expected to be sensitive to D .
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Figure 5-40 Effect of different parameters on yield strength of a LDR bearing

The effect of axial load on LR5 bearing of Warn (2006) and the large size bearing in Kalpakidis
et al. (2010) is shown in Figure 5-41 and Figure 5-42, respectively. The shear stiffness
decreases with axial load, but the effect only becomes apparent when the axial load is close to
the critical buckling load. The energy dissipation capacity of LR bearing is primarily due to the
lead core and the contribution of viscous damping can be neglected. The effect of the viscous
damping term (c,U ) on the load-deformation behavior of a LR bearing is minor at small

displacements.
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Figure 5-41 Effect of parameters on the shear behavior (LR5 bearing in Warn (2006))
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Figure 5-42 Effect of parameters on the shear behavior (large size LR bearing of Kalpakidis
et al. (2010))

5.6.3 Available test data
5.6.3.1 Calibration

The three unknown parameters of the phenomenological model of an elastomeric bearing in
tension are determined through calibration with test data. The computational model was verified
before calibration to quantify and remove errors associated with the implementation of the
mathematical model. Four sets of available test data in the literature are used for calibration: 1)
Constantinou et al. (2007), 2) lwabe et al. (2000), 3) Warn (2006), and 4) Clark (1996). The
calibration plots are presented in Figure 5-44 and Figure 5-45.
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Figure 5-43 Calibration of the mathematical model in tension with test data
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The details of the bearings and the values of parameters estimated by calibration against
experimental data are presented in Table 5-12.

Table 5-12 Properties of the bearings used for experimental comparison

Constantinou et | lwabe et al. Warn Clark
al. (2007) (2000) (2006) (1996)
Diameter (mm) 250 500 164 176
Shape factor (S) 9.8 33 10.2 20
Cavitation parameter (k) 60 15 20 30
Maximum damage index (4, .., ) 0.75 0.75 0.75 -
Strength degradation parameter (a,) 1.0 1.0 1.0 --
Error (%)"2, L1, L2 Norm 9.02, 14.64 - 18.2,24.6 | 7.29, 7.99

1. Experimental data was not available for lwabe et al. (2000).
2. Error norms were evaluated for Clark (1996) for response only up to 200% tensile strain.

5.6.3.2 Experimental comparison

The ability of the verified computational model to predict the response of an elastomeric bearing
in shear is investigated through a comparison with available test data. The heating parameters
of LR bearings are known, and do not require calibration with experimental data. The available
test data can be used for validation of the mathematical model used to describe the shear
behavior of an elastomeric bearing. Comparisons of computational results with experimental
data for the LR bearing in the horizontal (shear) direction are presented in Figure 5-45 through
Figure 5-48.
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The errors in the computational results with respect to the experimental data are presented in

Table 5-13.

Table 5-13 Error associated with computational model

Experiment Type of L1 error L2 error
P loading (%) (%)
Kalpakidis et al. (2010) | harmonic 14.60 25.94
Kalpakidis et al. (2010) | random 31.05 39.82

400 T | T | T | T | T | T

200

Shear force (kN)
=
I

-200 — ]
i — Experimental
OpenSees
_ 1 | 1 | | | - | 1
40-01 50 -100 -50 0 50 100 150

Horizontal displacement (mm)

Figure 5-45 Shear force-displacement behavior of a LR bearing under harmonic loading

400 T | T I T I T

200 [t -

Shear force (kN)
O
|
l

-200 -

— Experimental
OpenSees

0 20 40 60 80
Time (sec)

-400

Figure 5-46 Shear force history of a LR bearing under harmonic loading
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5.6.4 Validation plan

Experiments are considered the best available representation of the physical reality subject to
the limitations of experimental error. It is not always possible and feasible to include all the
details of physical reality into the mathematical model. Engineering judgment is often used to
decide which features will have a significant effect on the response quantities of interest for the
intended use. A mathematical model is formulated based on a set of assumptions to reduce a
physical reality to a mathematical construct and preliminary values are assigned to unknown
parameters based on available experimental data. The validity of these assumptions is
investigated through validation experiments. If results are found to be unsatisfactory, these
assumptions must be revisited.

The preliminary step in in the design of an experiment is to determine which features of the
model need to be investigated. One way of deciding the importance and reliability of a feature is
to construct the PIRT, as shown in Table 5-1. However, the information required to construct a
PIRT is not always available. A more common approach is to perform sensitivity analyses of the
computational model, which was presented in Section 5.6.2. The mathematical model of the
heating of the lead core in a LR bearing has been validated by Kalpakidis and Constantinou
(2009a). The good agreement between the mathematical model and the experimental results
established confidence in the model to a sufficient degree. Moreover, the mathematical model of
the behavior in horizontal direction is a physics-based model and does not involve any unknown
parameters. The mathematical model of the mechanical behavior in compression is also
physics-based, and has been validated experimentally (Warn and Whittaker, 2006; Warn et al.,
2007). Hence, the validation experiment of Chapter 6 does not focus on the mechanical
behaviors in shear and compression.

The mathematical model of the mechanical behavior of elastomeric bearings in tension is based
on the observations from experiments. A phenomenological formulation was proposed in
Chapter 3 to capture this behavior. The model uses three parameters to capture the behavior in
tension under cyclic loading. The three cavitation parameters are determined through calibration
process, as discussed in the previous section. The key assumptions that are expected to affect
the response are:

Exponential post-cavitation variation
Exponential cyclic strength degradation
Linear unloading path

No strain hardening

The five features of the model to be investigated in the validation experiments are:

Cavitation and post-cavitation behavior under tensile loading

Effect of loading history on tensile properties

Dependence of load-deformation behavior on the shape factor
Change in shear and compression properties following tensile loading
Influence of shear displacement on tensile force response

aglrwnN=

The selection of these features is based on the available knowledge about the behavior of
elastomeric bearings in tension and the associated uncertainly in its modeling. The response
quantities to be measured during the experiments are summarized in Table 5-14.
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Table 5-14 Response quantities to be measured during the experiments

. . Method of
Response quantity Location
measurement
Shear displacement At top and bottom of the bearing Direct
Axial displacement At top and bottom of the bearing Direct
Rotation angle Through relative displacements along the Derived

circumference of the bearing
Axial load At the bottom of the bearing through load cell Direct
At the bottom of the bearing through load cell
and at the top bearing by horizontal actuator
Moment At the bottom of the bearing through load cell Direct

Shear force Direct

It is highly recommended that the response quantities be measured directly rather than derived
from other measurements. For example, the center of an elastomeric bearing is not available for
measurements in an experimental setup. Hence, axial displacement at the center is determined
by interpolation of the axial displacements measured at other locations around the bearing. The
consistency of the output data can be established by corroborating different measurements
such as measuring accelerations of displacements to corroborate velocity, or measuring axial
loads at different locations to corroborate moments.

Sources of error in the experimental setup need to be identified. Some common sources of error
in the testing of elastomeric bearing are:

Calibration of measurement devices
Inertia of components in the test setup
High frequency noise in response
Rigidity of supports

Load application

Sources of error should either be removed of accounted for in the experimental results. If a
source of error is discovered after the experiment, the test data should be processed to remove
bias.

Redundant measurements are often required to verify accuracy of the response data. It helps to
quantify uncertainly in experimental measurements. Redundant measurements can be obtained
by:

Repeating the same test using different specimens

Repeating the test using the same specimen

Using different measurement techniques for the same response
Placing similar transducers at symmetrical locations

PO~

The first strategy cannot be used for elastomeric bearing because the properties of elastomeric
bearings are expected to degrade following cyclic loading. The second strategy is not
considered here due to limited resources. The third and fourth strategies are employed here.

The steps discussed above help to design a meaningful validation procedure. However, the

experimental results will still contain errors and uncertainties, which need to be quantified.
Errors in the experimental outcomes can be classified as random errors (precision) or
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systematic errors (accuracy). Random errors are due to the measurement error, design
tolerances, construction uncertainly, variability in material properties, and other sources specific
to an experiment. Random errors cannot be removed from the system; however, the uncertainly
in the results due to random errors can be quantified. Systematic errors can be present due to
calibration error, data acquisition error and testing technique. Systematic errors produce bias in
the results that is difficult to detect and estimate. Wherever possible, uncertainties in
experimental results should be represented though a distribution of test data at each point with
a mean value and a standard deviation.

A detailed experimental program is prepared based on the considerations presented above, and
is presented in Chapter 6. Results of the validation experiments are discussed in Chapter 7.

5.7 Accuracy Criteria

Verification and validation is performed with respect to a specific series of tests and tolerances
that have been deemed to provide sufficient accuracy. The accuracy criteria for the results
obtained using the mathematical models of elastomeric bearings are developed based on the
intended use of the model and the reality of interest. The intended use of these models of
elastomeric bearings is the response-history analysis of seismically isolated nuclear power
plants. The reality of interest here is the seismic isolation of nuclear power plants. Although
application to nuclear power plants demands that stringent accuracy criteria be adopted, it has
been found that uncertainties associated with model of elastomeric bearings is overwhelmed by
the uncertainties in the definition of the seismic hazard and the input ground motion (Huang et
al., 2009). Hence, practical rather than an ambitious accuracy criterion should be formulated.

The following steps can be used to estimate acceptable error in a response quantity:

1. Identify response quantities of interest
Identify the error sources and quantify the errors associated with the model that
significantly affect each response quantity

3. Quantify the sensitivity of the response quantity with respect to parameters associated
with error sources identified in step 2

4. Establish the acceptable error for response quantity with respect to each source of error

5. Combine the errors from various sources in a probabilistic or deterministic framework to
establish an acceptable level of error for each response quantity
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6 SPECIMEN SELECTION AND EXPERIMENTAL PROGRAM

6.1 Introduction

Scaled models of elastomeric bearings were designed for testing to validate the proposed
mathematical model for load-deformation behavior in the vertical direction proposed in Chapter
3 and to estimate cavitation and damage parameters. The selection of the model bearings was
primarily based on typical bearing properties that have been used, or are expected to be used,
in the nuclear industry, but was limited by the capacity of the Single Bearing Testing Machine
(SBTM) at the University at Buffalo.

Details of the model bearings that were selected for the experiment are presented in Section
6.2. The test program, presented in Section 6.3, describes the goals and the sequence of tests.
Section 6.4 presents the details of the instrumentation and the data acquisition system used for
the experiments.

6.2 Model Bearing Properties

6.2.1 Target and reported properties, and predicted capacities

The seismic isolation systems of the Cruas Nuclear Power Plant (NPP) in France and the
Koeberg NPP in South Africa have used synthetic rubber bearings with a shape factor of around
10. Two of the reactors under construction in France, the International Thermonuclear
Experimental Reactor and the Jules Horowitz Reactor, use bearings of a similar design.
However, most of the seismic isolation design concepts developed for NPPs in the US and
Japan (discussed in Chapter 1) use circular natural rubber bearings with shape factors greater
than 20 (refer to Chapter 1). The selection of the model bearings for this testing program were
based on typical designs that have been used for seismic isolation designs developed for
nuclear power plants in the US and Japan. A goal of these experiments is to characterize the
behavior of rubber bearings under tensile loading. Low damping rubber (LDR) bearing and lead-
rubber (LR) bearing are expected to show similar load-deformation behavior under tensile
loading so only LDR bearings were tested. The target properties of the model bearings, the
reported properties of the model bearings, and the predicted capacities of the model bearings,
based on the reported properties are presented below.

Two manufacturers, Dynamic Isolation Systems, Inc. (DIS) and Mageba, each provided eight
bearings for the experiments. The maximum diameter of the bearings was limited by the
capacity of the load cell used to measure forces in the vertical direction. Details of LDR bearings
manufactured by DIS and Mageba are provided in Table 6-2 and Table 6-3, respectively. The
bearings from the two manufacturers had differences in their bonded diameters, shear moduli,
and cover thickness. The DIS bearings had a central hole; the Mageba bearings did not. The
effect of the central hole is discussed in Appendix A.5.

Each set of eight bearings had the same diameter but were further divided into two groups of
four bearings according to their shape factor. The two groups of four bearings with rubber layer
thicknesses of 7 mm and 4 mm were identified by the letters A and B, respectively. The LDR
bearings were named DA1, DB1, MA1, MB1, DA2, etc., where the first letter refers to the
manufacturer (D for DIS and M for Mageba), the second letter identifies the rubber layer
thickness (or shape factor), and the number identifies a specific bearing. Accordingly, DA1
refers to a bearing manufactured by DIS from the group of bearings with a rubber layer
thickness 7 mm.

6-1



A summary of the target properties for the model bearings is presented in Table 6-1. The
properties of the model bearings supplied by DIS are presented in Table 6-2. The schematic
drawings provided by DIS are presented in Figure 6-3 and Figure 6-4. The properties of the
Mageba model bearings are presented in Table 6-3, and the schematic drawings provided by
Mageba are shown in Figure 6-5 and Figure 6-6.

Table 6-1 Target model bearing properties

Parameter Bearing type
Description Notation Unit LDR A LDR B
Number of bearings N.A. N.A. 4 4
Outer diameter D, mm 300 300
Inner diameter® D. mm N.A. N.A.
Individual rubber layer thickness t mm 6 3
Number of rubber layers n - 20 20
Individual steel shim thickness t mm 3 3
Number of steel layers n - 19 19
Shape factor S - 12.5 25.0
Cover rubber thickness t, mm 3 3
Target shear modulus G MPa 0.55 0.55
Internal plate thickness? t mm 25 25

1. A central hole is not required for testing but may be needed for manufacture. The presence of a central hole
does not affect the goals of the experiment, because tensile properties of a bearing depend only on the bonded

rubber area.

2. See Figure 6.1
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Table 6-2 DIS model bearing properties

Parameter Bearing type
Description Notation | Unit LDR A LDR B
Number of bearings N.A. N.A. 4 4
Outer diameter D, mm 296.8+4 296.8+4
Inner diameter D, mm 19.05+2 19.05+2
Individual rubber layer thickness t mm 7 4
Number of rubber layers n - 20 20
Individual steel shim thickness t mm 3.04 3.04
Number of steel layers n - 19 19
Shape factor S - 9.92 17.36
Cover rubber thickness £, mm 4 4
Reported shear modulus G MPa 0.45 0.45
Internal plate thickness' b mm 25.4+1.6 25.4+1.6
Estimated mass m kg 72 67

1. See Figure 6.1




Table 6-3 Mageba model bearing properties

Parameter Bearing type
Description Notation Unit LDR A LDR B
Number of bearings N.A. N.A. 4 4
Outer diameter D, mm 299 299
Inner diameter D, mm n.a. n.a.
Individual rubber layer thickness t mm 7 4
Number of rubber layers n - 20 20
Individual steel shim thickness t mm 3 3
Number of steel layers n - 19 19
Shape factor S - 10.7 18.7
Cover rubber thickness £, mm 5 5
Reported shear modulus G MPa 0.55 0.55
Internal plate thickness' to mm 25 25
Estimated mass m kg 74 68

1. See Figure 6.1
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The theoretical mechanical properties of elastomeric bearings are presented in Table 6-4 and
Table 6-5 in Sl and US customary systems of units, respectively. The shear modulus of the
rubber, G, bearings is required to estimate mechanical properties. The shear modulus reported
by the manufacturer is not used here. The effective shear modulus of each type of bearing
obtained at 100% shear strain is used to calculate the mechanical properties, as described in
Chapter 3. The shape factor, s, of the bearings with a central hole (DA and DB) is obtained
using:

s=2 5 (6.1)

where Do is the outer diameter excluding the cover thickness, D,. is the internal diameter, and
t. is the thickness of single rubber layer.

The shape factor of the bearings without a central hole (MA and MB) are obtained using:

D? -D?
S=—_"1 6.2
4Dt 6-2)
The moment of inertia, /, is calculated as:
_T 4 P
=2 [(Do +t) -D ] (6.3)

where t_ is added to the outer diameter to include a contribution from half of the cover rubber
thickness to the moment of inertia.

The compression modulus, E_, is obtained as:

E —[ L +ij_1 (6.4)
° | 6GS*F 3K '

where F is a factor to account for the central hole in a circular bearing, K is the bulk modulus
of rubber, and G is the effective shear modulus of rubber. The value of F is 1 for bearings
without a central hole, and for bearings with a central hole is (Constantinou et al., 2007):

2
HENRE
Foil 7o (6.5)
b, 1- =2 |In| =2
D,- D/ Di

The vertical stiffness, K,,, and the horizontal stiffness, K, , are given by:

_AE.
Ko =208 (6.6)

r
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Kyo = 6.7)

where A, is the bonded rubber area of a bearing, and T, is the total thickness of rubber layers
in a bearing.

The critical buckling load, P, , and critical displacement, u

cr?

in compression are:

cr’

p - (BGA - NECSA (6.8)

T

u, =—< (6.9)

where Ag is the shear area and E, is the rotational modulus of a bearing.

The cavitation force, F,, and cavitation displacement, u,, in tension are:

F. =3GA, (6.10)
F

_F 6.11

U, = (6.11)
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Table 6-4 Geometrical and mechanical properties of elastomeric bearings (Sl units)

Property Notation (units) DA DB MA MB
Single rubber layer thickness t. (mm) 7 4 7 4
Number of rubber layers n 20 20 20 20
Total rubber layer thickness T. (mm) 140 80 140 80
Steel shim thickness t, (mm) 3 3 3 3
Outer diameter D, (mm) 296.8 296.8 299 299
Inner diameter D.(mm) 19 19 0 0
Cover thickness t. (mm) 4 4 5 5
Internal plate thickness (mm) t (mm) 25.4 25.4 25 25
External plate thickness (mm) t.,. (mm) 38.1 38.1 38.1 38.1
Total height (rubber+shim) h (mm) 198 138 197 137
(inclzggﬁlgr}ﬁltgg:ate) Ly (mm) 249 189 247 187
e T em | s | we | m | o
Bonded area (including cover) A, (mm?) 70778 70778 72583 72583
Shear modulus G (MPa) 0.41 0.45 0.79 0.77
Shape factor (without cover) S 9.9 17.4 10.7 18.7
Moment of inertia I (mm?) 4.0E+08 | 4.0E+08 | 4.2E+08 | 4.2E+08
Bulk modulus K (MPa) 2000 | 2000 | 2000 | 2000
Compression modulus E. (MPa) 159 427 397 777
Vertical stiffness K,, (KN/m) 80161 377341 | 205999 | 705255
Horizontal stiffness K., (kKN/m) 207 398 410 699
Critical buckling load P.. (kN) 557 1675 1266 3060
Critical buckling displacement u, (mm) 6.9 4.4 6.1 4.3
Cavitation force F, (kN) 87 96 172 168
Cavitation displacement u,(mm) 1.1 0.3 0.8 0.2




Table 6-5 Geometrical and mechanical properties of elastomeric bearings (US units)

Property Notation (units) DA DB MA MB
Single rubber layer thickness t. (in) 0.276 0.157 0.276 0.157
Number of rubber layers n 20 20 20 20
Total rubber layer thickness T. (in) 5.512 3.150 5.512 3.150
Steel shim thickness t, (in) 0.120 0.120 0.118 0.118
Outer diameter D, (in) 11.685 | 11.685 | 11.772 | 11.772
Inner diameter D, (in) 0.750 0.750 0.000 0.000
Cover thickness t. (in) 0.157 | 0.157 | 0.197 | 0.197
Internal plate thickness (mm) t (in) 1.000 1.000 | 0.984 | 0.984
External plate thickness (mm) t,. (in) 1.500 1.500 1.500 1.500
Total height (rubber+shim) h (in) 7.786 5.424 7.756 5.394
Total height (including int. plate) L. (in) 9.786 7.424 9.724 7.362
Total height (including ext. plate) L., (in) 12.786 | 10.424 | 12.724 | 10.362
Bonded area (including cover) A, (in?) 110 110 113 113
Shear modulus G (psi) 68 71 123 117
Shape factor (without cover) S 9.9 17.4 10.7 18.7
Moment of inertia I (in%) 915 915 943 943
Bulk modulus K (psi) 290000 | 290000 | 290000 | 290000
Compression modulus E, (psi) 25954 | 65680 | 60767 | 115458
Vertical stiffness K., (kips/in) 517 2288 | 1241 | 4125
Horizontal stiffness Ko (Kips/in) 1.36 2.47 2.52 4.20
Critical buckling load P, (kips) 139 394 293 691
Critical buckling displacement u,, (inch) 0.268 0.172 0.236 0.167
Cavitation force F. (kips) 22 23 42 40
Cavitation displacement u, (inch) 0.043 0.010 0.034 0.010




6.3 Test Program

6.3.1 General

The goal of the experimental program was to characterize the behavior of LDR bearings under
pure tension and shear-tension loading, and to observe the effects of material parameters,
geometrical parameters, and loading conditions. The six objectives of the test program were to
understand and characterize:

Cavitation and post-cavitation behavior of rubber bearings under tensile loading
Effect of loading history on tensile properties

Change in shear and compression properties following tensile loading
Influence of shear displacement on tensile-force response

Effect of cavitation on buckling load capacity

abron=

6.3.2 Description

The test program consisted of a series of tensile and shear-tension loading tests. Lateral and
vertical benchmark tests were conducted before and after each series of tensile loadings to
monitor any change in the mechanical properties of the bearings. A benchmark unidirectional
shear test at a 100% shear strain under a constant axial pressure of 1 MPa, and a benchmark
compressive test with an axial load amplitude of 100 kN and zero lateral offset were conducted
in the horizontal and vertical directions, respectively.

Past experimental observations (lwabe et al., 2000; Warn, 2006) have shown that the shear
properties of elastomeric bearings determined under nominal axial compressive pressure do not
change substantially following cavitation. A possible explanation for this observation is that post-
cavitation shear strength and stiffness are provided by the friction in the volume of damaged
rubber under service axial loads. Tests by Iwabe et al. (2000) and Warn (2006) used a nominal
value of axial pressure to determine the shear properties of elastomeric bearings. Friction
depends strongly on axial pressure. The shear properties of two of the model bearings were
calculated at different axial pressures, before and after cavitation, to investigate the effect of
axial pressure on the change in shear properties following cavitation.

The effective shear modulus of seismic isolation bearings obtained using experimental data
depends on the value of axial pressure and shear strain at which it is calculated. Experiments
were conducted at different values of axial pressure subjected to varying shear strain
amplitudes to obtain the variation of the effective shear modulus with axial pressure and shear
strain. These tests were performed before and after cavitation to investigate if the variation of
shear modulus with axial pressure and shear strain amplitude changes due to cavitation.

lllustrations of the input signals to the actuators are presented in Figure 6-7. The amplitude and
frequency of the signals vary for the different tests. Tensile tests that involved cavitation and
shear tests were conducted under displacement control. Compression tests were conducted
under force control. Most of the experiments were quasi-static tests conducted at an excitation
frequency of 0.01 Hz. Some characterization tests were also conducted at frequencies of 0.1
and 1 Hz to investigate the effects of loading rate on mechanical properties.
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The five types of test that were conducted are described below:

1.

Characterization tests: The mechanical properties of all the model bearings were
determined from benchmark characterization tests in shear and compression. The shear
characterization tests were conducted at 100% shear strain under nominal axial load. An
axial load representative of service load conditions is often used for shear
characterization tests. Typical service design loads for elastomeric bearings used for
seismic isolation of structures vary in the range of 3 MPa to 7 MPa. However, a nominal
axial load of 70 kN corresponding to axial pressure of 1 MPa was used for the shear
characterization tests because the moment capacity of the load cell was limited. This
value of axial load allowed the bearings to undergo shear strains greater than 100%
without exceeding the moment capacity of the load cell. Force-controlled compression
characterization tests were conducted at amplitude of 300 kN, which corresponds to
axial stress of approximately 4.3 MPa.

Effect of lateral offset on behavior in tension: Tests were conducted to understand
the effects of lateral offset on the pre-cavitation and post-cavitation behavior of
elastomeric bearings in tension. Force-controlled tests were conducted at an amplitude
equal to the half of the estimated cavitation strength to obtain the variation of tensile
stiffness with lateral offset. Tests involving cavitation were also conducted at different
lateral offsets under displacement control to investigate the effect of lateral offset on
cavitation properties, namely, cavitation strength, post-cavitation stiffness, and strength
degradation. Elastomeric bearings with different rubber layer thicknesses and shear
modulus were tested to understand the effects of shape factor and shear modulus on
cavitation properties.

Effect of shear loading history on cavitation: The loading history in the shear
direction might affect the cavitation behavior of an elastomeric bearing. Two model
bearings were subjected to shear displacement histories of a varying number of cycles
and amplitudes followed by cyclic tensile loading.

Effect of tensile loading history on cavitation: The effect of tensile loading history on
cavitation was investigated using two triangular excitation signals: 1) increasing
displacement amplitude after every three cycles (IT), and 2) decreasing amplitude after
every three cycles (DT).

Effect of cavitation on critical buckling load capacity: All model bearings were
subjected to linearly increasing compressive loads up to failure to assess the effect of
cavitation on the critical buckling load capacity of a bearing at zero lateral displacement.

The summary of the testing program is presented in Table 6-6. The detailed sequence is
presented in Appendix A.1.
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6.4 Instrumentation and Data Acquisition

6.4.1 General

A Single Bearing Testing Machine (SBTM) was used to perform tensile tests and shear and
compression characterization tests. The compression failure tests were performed using a
Concrete Strength Tester (CST).

For tests performed using the SBTM, twelve data channels were used to record the
performance of the actuators and the response of the seismic isolation bearing during testing.
Nine of these data collection channels were stationary instruments, and one data channel
recorded time. Although, ten data channels are sufficient to operate the SBTM, two additional
data channels, both assigned to string potentiometers, were used to measure relative vertical
displacement across the bearing. The deformations in the bearings were also measured using a
Krypton camera that tracked the locations of seven LEDs installed on bearings. Five video
cameras were used to capture the behavior of elastomeric bearings from different locations.

Six data channels were used for compression failure tests of elastomeric bearings using the
CST. Five of these channels were stationary instruments, and one data channel recorded time.
The stationary instruments included four linear potentiometers and one load cell to measure
axial displacement and axial force, respectively. The instrumentation and the data acquisition
systems are described in the following sections.

6.4.2 Single Bearing Testing Machine

The SBTM is used to test single elastomeric bearing under unidirectional shear and axial
loading. A schematic of the SBTM showing its dimensions and using standard U.S. section
sizes is presented in Figure 6-8. Figure 6-9 is a photograph of the SBTM during testing. Figure
6-10 presents its spatial orientation. All tests discussed in Section 6.3, except the compression
failure tests, were performed in the SBTM. The SBTM consists of a pedestal frame, a reaction
frame, a loading beam, a horizontal (dynamic) MTS™ actuator, two vertical Parker actuators
and a 5-channel reaction load cell.

The SBTM can impose shearing and axial loads and displacements, and combinations thereof.
The capacity of the load cell, in terms of first yield, to simultaneously resist shear, axial and
bending moment is presented as a nomogram in Figure 6-11. The actuators’ capacities in terms
of maximum stroke, velocity, and force are presented in Table 6-8. The maximum velocity of the
vertical Parker actuators was not known. The maximum velocity of vertical actuators in the
SBTM is expected to be different from the rated capacity of individual actuators. Triangular
signals of different frequencies in increments were applied to the vertical actuators, and the
amplitude of the command signal and response of the actuators were compared. The response
of the actuators increase proportional to the command signal before reaching its maximum
value. The frequency (and hence velocity) at which the difference between the actuator
response and the command signal started to increase abruptly, was accepted as the maximum
velocity that could safely be applied to the vertical actuators. This maximum velocity was
determined as 50 mm/s for the vertical actuators. The capacity of the SBTM is generally limited
by the capacity of the reaction load cell. Warn (2006) reported the elastic capacity of the 5-
channel reaction load cell subjected to simultaneous actions as, 89 kN shearing force, 22.5 kN-
m bending moment, and 222 kN axial force.
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Table 6-8 Single bearing testing machine actuator capabilities

Actuator’ Stroke (mm) Velocity (mm/s) Force (kN)
Horizontal (MTS) +152 635 245
, 317 Compression
+50
North vertical (Parker) 50 300 Tension
, 317 Compression
+50
South vertical (Parker) 50 300 Tension

1. Actuator orientation is shown in Figure 6-8

6.4.3 Five channel load cell

The five channel load cell shown in Figure 6-12 was used to measure reactions during the tests.
The load cell was built at the University at Buffalo by the Structural Engineering and Earthquake
Simulation Laboratory (SEESL), and was calibrated against a National Institute of Standards
and Technology (NIST) traceable reference load cell (Calibration Certificate: UB-2005-03-02).
The original design sheet of the load cell is presented in Appendix A6.1. A detailed discussion
on calibration process used for the load cell can be found in the appendix of Warn (2006). The
load cell measures shear in two horizontal directions (S, and S, ), moment about two
horizontal axes (M, and M, ), and the axial force.

Figure 6-12 Five channel load cell
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6.4.4 Potentiometers

String potentiometers manufactured by Celesco (model no: SP1-12), with stroke +300 mm,
were used to measure axial deformations on the east and the west side of bearings. The data
sheet for the string potentiometer, obtained from the manufacture’s website, is presented in
Appendix A6.2. The location of a string potentiometer on one side of the bearing and a close up
view are shown in Figure 6-13.

a) Location (west-side) b) Close up view

Figure 6-13 String potentiometer used for the measurement of axial displacement
6.4.5 Krypton tracking system

A portable coordinate tracking machine, known as Krypton Tracking System (KTS), was used to
measure the deformation of a bearing in the shear and axial directions (SEESL, 2014). The
components of the KTS is shown in Figure 6-14. The Krypton camera tracks the coordinates of
the LEDs attached to the bearing. Seven locations were tracked during the experiments, as
shown in Figure 6-15, three on each of the lower and upper bearing plates, and a location on
the opposite face of the bearing during testing. The (X,¥,Z) coordinates of each location were

monitored.
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a) Camera b) Controller

Figure 6-14 Components of the Krypton tracking system
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Figure 6-15 Locations monitored by the Krypton camera during testing

6.4.6 Video monitoring system

A video monitoring system was assembled to capture the behavior of the elastomeric bearings
during the experiments. Details and close-up views of the cameras are presented in Table 6-9
and Figure 6-16, respectively. Cameras were installed at five locations. Four cameras, that
included three CCD camera and one Hi-Definition GoPro camera, were installed on each
column of the SBTM supporting the loading beam, as shown in Figure 6-17. One camera was
installed on the west side of SBTM on a tripod. For the first few tests, a Canon camcorder was
used, which was replaced by a Sony PTZ camera for subsequent experiments.

Table 6-9 Details of the camera used for video monitoring system

Camera Model Quantity Resolution (pixels)
CCD V-806b 3 510%492
PTZ Sony EVID90 1 720x480
GoPro Hero3 Black Edition 1 1920%1080
Camcorder Canon Vixia HF G30 1 1920x1080
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a) CCD Camera b) PTZ camera
Figure 6-16 Cameras used for the video monitoring system
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Figure 6-17 Location of the four cameras on the columns of the SBTM

6-29



6.4.7 Concrete strength tester

As a final step in the experiments, all the bearings were subjected to gradually increasing
compression load using a Concrete Strength Tester (CST) manufactured by FORNEY. The
maximum applied compressive load was limited by the capacity of the CST, which was 400 kips
in compression. The CST is shown in Figure 6-18. Four linear potentiometers manufactured by
ETI systems (model no: LCP12A-50) were installed at four uniformly spaced locations around
the perimeter of the circular bearings to capture the spatial distribution of the axial deformation.
The locations of the four potentiometers and close-up view of a potentiometer is shown in
Figure 6-19. The stroke of each linear potentiometer was + 25 mm. The data sheet for the
potentiometer is presented in Appendix A6.2.

— u i N

—

Figure 6-18 Compression Strength Tester at SEESL, University at Buffalo
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a) Linear potentiometer b) Location of four linear potentiometers
Figure 6-19 Potentiometers
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7 EXPERIMENTAL RESULTS

7.1 Introduction

The results of testing of elastomeric bearings are presented in this chapter. The experimental
plan and the test set-up were presented in Chapter 6. The primary goals of the experimental
program were to characterize the behavior of elastomeric bearings in tension and to study the
effects of different loading protocols on response in tension. A mathematical model of an
elastomeric bearing in cyclic tension was developed in Chapter 3. The validity of the
mathematical model is investigated and recommendations are made based on the experimental
data presented in this chapter.

Data processing is discussed in Section 7.2. The results of the characterization tests are
presented in Section 0. The effect of lateral offset on tensile properties and the effect of tensile
loading history on cavitation are presented in Section 7.4 and Section 7.5, respectively. Section
7.5 discusses the effect of cavitation on the mechanical properties of elastomeric bearings.
Section 0 provides details on failure of elastomeric bearings in tension. Section 0 presents the
conclusions of the experimental study.

7.2 Data Processing

7.2.1 General

A MATLAB code is used to post-process the test data. Filtering techniques are employed to
remove noise from the data. Redundant measurements of response quantities obtained from
different channels are compared.

7.2.2 Filtering

A fifth-order low-pass Butterworth filter is used in conjunction with filtfilt, a zero-phase filter
function in MATLAB, to remove high frequency noise.

The filtering procedures involves two types of frequencies: 1) the forcing frequency of the
applied signal, and 2) the sampling frequency (number of recorded data points per second).
Most of the tests were quasi-static (slow) tests, conducted at a forcing frequency of 0.01 Hz (10
sec time period). A few tests were conducted at 0.1 Hz and 1 Hz. The shear tests performed at
1 Hz could not be completed as the Single Bearing Testing Machine (SBTM) could not maintain
the axial loads at corresponding high velocities. The sampling frequency for the tests is adjusted
according to the forcing frequency so that 1000 data points are obtained in each cycle.
Sampling frequencies of 10 Hz, 100 Hz, 1000 Hz are used for forcing frequencies of 0.01 Hz,
0.1 Hz, and 1 Hz, respectively.

A normalized cutoff frequency of 0.5 Hz is used to filter the response in shear. This choice of
cutoff frequency for tensile response presents a unique challenge due to the rapid change in
tensile stiffness following cavitation. The effect of cutoff frequency on the response of
elastomeric bearing DA3 in shear and tension is shown in Figure 7-1 and Figure 7-2,
respectively. A high cutoff frequency (e.g., 5 Hz) captures the change in stiffness adequately but
fails to remove occasional spikes in the response, whereas a low cutoff frequency (e.g., 0.25
Hz) leads to excessive smoothening and cannot capture the sudden change in the tensile
response around cavitation. Cutoff frequencies between 1 to 5 Hz are selected by trial and error
to filter axial response for each test.
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7.2.3 Axial displacement

The axial displacement of a bearing is measured using: 1) LVDTs inside the two vertical Parker
actuators located to its north and south, 2) string potentiometers located to its east and west
sides, and 3) a Krypton camera tracking three LEDs on each of the top and bottom bearing
plates on its west sides, and a LED located on the north corner of its east side. The location of
the Parker actuators and string potentiometers are shown in a top view of the SBTM in Figure
7-3; the locations of the LEDs for the Krypton tracking system are shown in Figure 7-4.

The axial deformation at the center of a bearing cannot be measured directly. Past experiments
using the SBTM have reported bearing rotation about the two horizontal axes (e.g., Kasalanati
(1998), Warn (2006)). Rotation across the two ends of the loading beam axis (X-direction) is
caused by a time-delay in the signals between the master and slave vertical actuators. The
inclination of the horizontal actuators also contributes to the rotation of loading beam. Rotation
across the two sides of the loading beam (Y-direction) is due to rotation of loading beam about
its axis. Axial displacements measured across a bearing using string potentiometers and
Krypton camera are interpolated to obtain the axial deformation at the center of the bearing.

East
— String potentiometer P1
|

Parker north — |' — Parker south
¥ | !
\ [ 1/
North \'n : Bearing | South
- Z:::I_Z:::E_:::_Q,QZZZZ —

i
L— String potentiometer P2

West

Figure 7-3 Top view of the instrumentation setup of SBTM

/ o
- - g ~——

S——

Figure 7-4 Locations of LEDs for Krypton tracking system
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The vertical Parker actuators measure displacement that is different from the axial deformation
of the bearing due to the inclination of the actuators with respect to the vertical plane. The
rotation of the loading beam across its two ends also contributes to the difference in
measurements between the two actuators. For lateral offset testing, the vertical actuators report
the inclined components of the axial deformation in the bearing.

The displacements obtained from the string potentiometers on the two sides of a bearing are
interpolated to obtain the axial deformation at the center of the bearing. A comparison of the
axial deformation obtained using two string potentiometers (P, and P, shown in Figure 7-3) and
their average value (F,,, ) are enabled by Figure 7-5 and Figure 7-6, for compressive and
tensile tests, respectively. A significant difference is observed between the values obtained from
two potentiometers, P, and P,. Although the transverse rotation across the east and west side
of a bearing was less than 1°, this small rotation resulted in a large difference between the
displacements measured by the string potentiometers P, and P, due to the length of the bearing
plates. The difference in displacement on the east and west sides of a bearing depend only on
the rotation of the loading beam. For compressive tests, where the magnitude of the axial
deformation is small, the percent difference between the axial displacements measured on the
east and west of a bearing is much greater than in the tensile tests for which the magnitude of
the axial deformation is larger.

The loading beam rotates if the cavitation pattern is not symmetric, which also contributes to the
difference in the tensile displacements measured using the string potentiometers.

The Krypton camera tracked the coordinates of the seven LEDs installed on the bearing plates.
The rotations of the bearing along two horizontal axes are calculated at each time step from the
coordinates of the LEDs. The vertical displacement cannot be measured at the center of the
bearing. The coordinates of the center of the top bearing plate are obtained by interpolating the
coordinates of the LEDs, which allows the calculation of the axial deformation at the center of
the bearing.

The axial deformations of a bearing obtained using potentiometers and the Krypton camera are
presented in Figure 7-7 and Figure 7-8 for compressive and tensile tests, respectively. Small
differences are observed. The average of two potentiometer measurements accounts for the
rotation of the bearing across the sides of the loading beam but does not account for the
rotation along the length of the loading beam. Moreover, potentiometer measurements also
include minor slippage at the connection of the upper and lower bearing plates to the SBTM.
When the measurements of the Krypton camera are used to calculated the axial deformation as
the difference of coordinates at the top and bottom nodes of the bearing, they exclude any
contribution of slippage at the bearing plate and SBTM connections. Accordingly, the Krypton
camera measurements are used for the calculation of deformations in bearings.
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7.2.4 Actuator comparison

The results of a test in which a substantial difference is observed between the values of shear
force obtained using the horizontal actuator and the five channel load cell, are presented in
Figure 7-9 and Figure 7-10. The shear modulus calculated using the measurements from the
five channel load cell is smaller than the value calculated using the measurements from the
horizontal actuator. The accuracy of measurements obtained using load cells depends on the
procedure used to calibrate the load cell. A detailed discussion of the calibration of this load cell
is presented in Warn (2006), which points out errors associated with the shear force calibration
procedure. Forces measured by the load cell, especially in shear, contain calibration errors and
errors due to cross talk between channels of the load cell. The cross talk between channels was
expected to be greater in the shear and lateral offset tests than in the axial tests.

The horizontal MTS actuator has two data channels. There is no cross talk between these
channels. For shear force, the measurement obtained from the horizontal actuator load cell is
used. For axial force, the measurement from the five channel load cell is used.

In addition to measurements obtained using the Krypton camera, the shear displacement is also
measured using the LVDT in the horizontal MTS actuator. A small difference is observed in the
two measurements, as shown in Figure 7-11 and Figure 7-12.

Redundant measurements were not available for axial loads. The cross talk between the
channels in the load cell during unidirectional axial loading only was expected to be small. The
measurement of axial load using the five channel load cell is expected to be accurate.

In summary, the shear and axial force acting on a bearing are obtained from the horizontal MTS
actuator and the five channel load cell, respectively. The Krypton camera is used to measure
displacements.
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7.3 Characterization Testing

7.3.1 General

Characterization tests were conducted to determine the mechanical properties of the
elastomeric bearings in shear, compression, and tension. Benchmark shear and compression
tests were performed on all sixteen bearings. Additional shear tests were conducted on selected
bearings under varying conditions of stress and strain to obtain the variation of shear modulus
with stress and strain. Tensile characterization tests were performed on two bearings. The
results of the characterization tests are presented in the following sections.

7.3.2 Shear properties

The benchmark shear tests were conducted at 100% shear strain under an axial load of 70 kN,
which corresponds to an approximate axial pressure of 1 MPa. Although the service axial
pressure on elastomeric bearings used for seismic isolation of nuclear power plants is expected
to be greater than 1 MPa, the maximum axial load that could be applied was limited by the
moment capacity (due to shearing forces) of the five channel load cell. Most of the benchmark
shear tests were conducted at excitation frequency of 0.01 Hz. A few shear benchmark tests
were conducted at 0.1 and 1.0 Hz to investigate the effect of excitation frequency on shear
modulus.

An idealized force-displacement curve for an elastomeric bearing in shear is presented in Figure
7-13.

4 Force

szx__
_I_Kd' ’,"

Ky K _
e Displacement

-

= ] B

Figure 7-13 Idealized force-displacement behavior of an elastomeric bearing in shear (Warn
and Whittaker, 2006)

The effective shear stiffness is calculated as:

. max min (71)

where U, and U, are the maximum and the minimum shear displacements, and F, and F,
are the corresponding forces, as shown in Figure 7-13.
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The effective shear modulus is determined as:

G,y =t (7.2)

where T, is the total thickness of rubber, and Ab is the bonded rubber area that includes one
half of the cover rubber.

The characteristic strength, Q,, is estimated as:

F*(u=0)+|F (u=0)
2

(7.3)

where F*(u=0) and F (u=0) are the positive and negative zero displacement force
intercepts, respectively, on the shear force-displacement hysteresis curve. The equivalent
viscous damping is obtained by equating the energy dissipated in a cycle of loading to the
energy dissipated in an equivalent viscous system. The equivalent damping ratio, ¢, of a
hysteretic system presented in Figure 7-14 is given as (Chopra, 2007):

1 E,
By = EE_SO (7.4)
The energy dissipated per cycle, E,, is determined by numerically integrating the shear force-
displacement response using a trapezoidal algorithm. The term E_ = K_.u? / 2 is the strain
energy enclosed by the maximum displacements in each cycle, as shown in Figure 7-14. The
deformation amplitude u, is taken as the average of the absolute values of u,,, and U, to
account for any difference in the positive and negative amplitudes, and K, is the effective
stiffness obtained at displacement amplitude u,.

Resisting force

P
-

§
I
|
|
Ho

Deformation

Figure 7-14 A general hysteretic system (Chopra, 2007)
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The effective damping in shear is calculated as:

B =2 Ep } (7.5)

) 4 |:Keff (|umax + |umin|)2

The shear properties of each bearing obtained from benchmark shear characterization tests are
summarized in Table 7-1.

The target shear strain of 100% was applied using the horizontal actuator. The shear strain
between the top and bottom nodes of the bearings obtained using the Krypton system are
slightly different than 100% because of the inclination of the horizontal actuator to the horizontal
plane. The shear strains reported in Table 7-1, which are calculated from Krypton
measurements, are slightly different from the targets values identified in Chapter 6. For the
Mageba type A bearings (MA), characterization shear tests could not be performed at 100%
shear strain because the vertical actuators were unable to maintain the axial load during testing
at strains greater than 75%. For bearings DB1, DB2, DB3, MB2, and MB4, characterization
tests were not performed before cavitation and only the post-cavitation values are reported.
Although, cavitation was not expected to affect the shear properties substantially, in few cases,
misleading values of shear modulus are obtained because of slippage across the two parts of a
ruptured bearing. Shear modulus is obtained from the displacement-controlled shear tests. The
low shear modulus and high damping of MB2 is due to slippage and bearing damage.

A summary of the shear properties for each type of bearing, calculated by averaging the values
in Table 7-1, is presented in Table 7-2. The averaged properties presented in Table 7-2 do not
include values from the post-cavitation tests.

For a LDR bearing, the characteristic shear strength is estimated per Chapter 3 as:

Qd :%X eff XKeff XD (76)

where D is the displacement at which ., and K, are calculated. The theoretical values of the
characteristic strength of all bearings are calculated using the information presented in Table
7-1. The experimental and theoretical values of characteristic strength are presented in Table
7-3. The differences are small.

The statistical distributions of effective shear modulus and damping ratios for the DIS and
Mageba bearings are presented in Figure 7-15 and Figure 7-16, respectively. Unlike Table 7-2,
where data consisted of only pre-cavitation values, the statistical distributions presented in
Figure 7-15 and Figure 7-16 include values from pre- and post-cavitation tests. A small
dispersion is observed in the shear modulus of the DIS bearings and the mean and median
shear moduli are close to the shear modulus reported by DIS (=0.45 MPa). A greater dispersion
is observed in the shear moduli of the Mageba bearings. The magnitude and dispersion of the
damping ratio for the Mageba bearings are greater than those for the DIS bearings.
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Table 7-1 Shear properties obtained from shear characterization tests (contd.)

Bearing|Test|Cycle|f (Hz)| p (MPa)| » (%)|K,; (kN/mm)|G,; (MPa)| Q, (kN) E, (J) (lf/eff)
0

1 10.01 1 97 0.203 0.4 206 | 975 | 4.1

DA1 | 63 2 |0.01 1 97 0.201 0.4 202 | 957 | 441
3 10.01 1 97 0.2 0.4 1.99 948 41

4 10.01 1 97 0.2 0.4 1.74 928 4

1 10.01 1 97 0.219 0.43 1.86 | 981 3.9

DA2 1 2 |0.01 1 97 0.215 0.42 1.75 | 862 | 3.5
3 |0.01 1 97 0.215 0.42 1.72 | 853 | 34

4 10.01 1 97 0.214 0.42 1.43 836 3.4

1 0.01 1 97 0.214 0.42 2.61 1276 | 5.1

DA3 1 2 |0.01 1 97 0.211 0.42 25 | 1157 | 47
3 |0.01 1 97 0.21 0.41 246 | 1140 | 47

4 |0.01 1 97 0.209 0.41 2.08 | 1118 | 4.6

1 10.01 1 97 0.195 0.39 206 | 986 | 4.3

DA4 1 2 10.01 1 97 0.193 0.38 2 939 4.2
3 |0.01 1 97 0.193 0.38 1.98 | 932 | 4.2

4 |0.01 1 97 0.192 0.38 1.74 | 923 | 41

1 10.01 1 95 0.389 0.44 1.98 | 492 | 35

DB1 2 2 10.01 1 96 0.389 0.44 1.77 481 3.4
3 10.01 1 96 0.388 0.44 1.74 472 3.3

4 |0.01 1 96 0.387 0.44 1.28 | 468 | 3.3

1 10.01 1 96 0.338 0.38 247 | 620 5

DB | 2 2 |0.01 1 96 0.336 0.38 228 | 595 | 4.8
3 [0.01 1 96 0.336 0.38 223 | 579 | 47

4 10.01 1 96 0.336 0.38 1.87 | 576 | 4.6

1 10.01 1 96 0.365 0.41 3.09 | 754 | 56

DB3' | 25 L2 [ 0.01 1 96 0.363 0.41 296 | 759 | 57
3 10.01 1 96 0.362 0.41 2.97 751 5.6

4 10.01 1 96 0.361 0.41 2.41 741 5.6

1 10.01 1 96 0.403 0.45 1.71 | 496 | 34

DB4 1 2 |0.01 1 96 0.397 0.45 1.64 | 446 | 3.1
3 |0.01 1 96 0.397 0.45 1.58 | 433 3

4 10.01 1 96 0.396 0.45 1.3 426 | 2.9

1 0.01 1 73 0.413 0.8 455 | 1464 | 54

MA1 | 5c 2 |0.01 1 73 0.412 0.8 425 | 1381 | 5.1
3 |0.01 1 73 0.412 0.79 421 | 1357 5

4 1001 1 73 0.411 0.79 3.74 | 1330 5

1 0.01 1 70 0.383 0.74 2.84 949 4.2

MA2 | 1a L2 1 0.01 1 70 0.381 0.73 2.73 | 888 | 3.9
3 |0.01 1 70 0.38 0.73 269 | 868 | 3.8

4 |0.01 1 70 0.379 0.73 245 | 847 | 3.8

1 0.01 1 69 0.425 0.82 274 | 1142 | 46

MA3 | 1 2 10.01 1 69 0.411 0.79 248 | 855 | 3.5
3 |0.01 1 69 0.407 0.78 239 | 807 | 3.3

4 |0.01 1 69 0.405 0.78 2.1 778 | 3.2

MA4 | 1 1 10.01 1 69 0.44 0.85 3.99 | 1460 | 5.6

7-13



Table 7-1 Shear properties obtained from shear characterization tests (contd.)

Bearing|Test|Cycle|f (Hz)| p (MPa)|  (%)|K,; (kN/mm)|G,; (MPa)| Q, (kN) E, (J) (lf/eff)
0

2 |0.01 1 69 0.425 0.82 3.59 | 1187 | 4.7

3 |0.01 1 69 0.421 0.81 3.48 | 1138 | 4.6

4 10.01 1 69 0.418 0.81 287 | 1111 4.5

1 0.01 1 94 0.714 0.79 3.88 | 1218 | 4.8

MB1 3 2 10.01 1 94 0.69 0.76 3.72 | 1035 | 4.2
3 |0.01 1 94 0.683 0.75 3.64 | 988 | 4.1

4 |0.01 1 94 0.678 0.75 3.38 | 963 4

1 0.01 1 94 0.65 0.72 10.38 | 2107 | 9.1

MB2' 3 2 10.01 1 94 0.636 0.7 11.45 | 1621 7.1
3 |0.01 1 94 0.628 0.69 12.11 | 1588 | 7.1

4 |0.01 1 94 0.624 0.69 11.07 | 1577 | 7.1

1 10.01 1 94 0.735 0.81 299 | 1102 | 4.2

MB3 1 2 10.01 1 94 0.707 0.78 2.79 816 3.3
3 [0.01 1 94 0.698 0.77 269 | 765 | 3.1

4 |0.01 1 94 0.693 0.76 225 | 732 3

1 10.01 1 95 0.591 0.65 437 1097 | 5.2

vMB4' | 3 2 |0.01 1 95 0.589 0.65 419 | 1044 | 4.9
3 10.01 1 95 0.587 0.65 4.14 | 1023 | 4.8

4 10.01 1 95 0.586 0.65 3.96 | 1009 | 4.8

1. Post-cavitation properties

Table 7-2 Averaged shear properties of bearings

. Ko 0
Bearing (<Nfmn) G, (MPa) | Q, (kN) | By (%)
DA 0.205 0.41 2.0 4.2
DB 0.398 0.45 1.6 3.1
MA 0.408 0.79 3.2 3.5
MB 0.700 0.77 3.2 3.8

Table 7-3 Summary of averaged shear properties

Bearing Qd_Expkelgimental Thegrc'lgtica / Diffeo;ence
( ) (kN) ( 0)
DA 2.0 1.9 6
DB 1.6 1.6 3
MA 3.2 3.1 2
MB 3.2 3.4 6
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The effect of the forcing frequency on shear modulus was investigated by performing shear
characterization tests on bearing MA1 at 0.01 Hz and 0.1 Hz. Results are presented in Table
7-4 and Figure 7-17. No variation in shear modulus is observed with frequency. Shear
characterization tests could not be performed at frequency of 1 Hz because the vertical
actuators were unable to maintain the axial loads at the high velocities.

].6 I | ) I I I I I | I
*--¢0.1Hz |
e— 0.01 Hz

0 l | L | L l l L
20 30 40 50 60 70 80
Strain (%)
Figure 7-17 Variation of effective shear modulus of MA1 with frequency and strain

Table 7-4 Effect of frequency on effective shear modulus

Effective shear modulus (MPa)

Strain (%) ™ =001 Hz f =0.1Hz
25 1.24 1.23
50 1.03 1.04
723 0.85 0.87

The variation of shear modulus with shear strain for the DIS and the Mageba bearings are
presented in Figure 7-18 and Figure 7-19, respectively. The suffixes in the legend entries refer
to pre- and post-cavitation values.

Shear modulus decreases with increasing shear strain, which is consistent with observations
from past experiments. It has been observed that the shear modulus of the rubber in
elastomeric bearings decreases up to a moderate shear strain, remains constant, and then
increases at high values of shear strain (e.g, Clark et al. (1997); Constantinou et al. (2007),
(Kelly, 1993)). The variation of shear modulus with shear strain could only be obtained up to a
shear strain of 120%, limited by the moment capacity of the five channel load cell. A shear strain
of 100% is chosen for all of the benchmark shear characterization tests. The variations of shear
modulus with axial pressure are presented in Figure 7-20 and Figure 7-21 for the DIS and
Mageba bearings, respectively.
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7.3.3 Compression properties

Compressive stiffness is determined using benchmark compression tests in which the bearing is
subjected to force-controlled triangular cyclic loading of amplitude 300 kN that corresponds
approximately to an axial pressure of 4.3 MPa. The vertical stiffness, K, is calculated as:

P _P-
K, = 7.7
v0 §+ _5— ( )

where P is an axial compressive load corresponding to a target pressure ( p) plus an offset
AP, and P~ is an axial compressive load corresponding to P —ApP, and ¢ and ¢ are the
vertical deformations corresponding to P+ and P, respectively, on the ascending branch of
the hysteresis loop. The values of p and AP are chosen to be 2 MPa and 1.5 MPa,
respectively. Axial stiffness is calculated using the ascending branch of the force-deformation
curve for each cycle. The effective damping in the vertical direction, f,, is estimated using:

Ep (7.8)
_Pmin )(|5max - 5m )

b= 27(P,

ax in

where &, and 6., are the maximum and minimum vertical deformations, and P, and P,
are the corresponding axial loads, respectively; the energy dissipated per cycle, £, is defined
in Section 7.3.2. The pre- and post-cavitation cyclic response in compression and the secant

stiffness line used to calculate the compression stiffness are shown in Figure 7-22 for bearings

DA1, DB4, MA3, and MB1. The shear properties of all bearings are summarized in Table 7-5.
Pre-cavitation characterization tests were not performed for bearings DB1, DB2, MB2, and MB4,

and the data reported in Table 7-5 are from post-cavitation tests. The compression
characterization test was not performed on bearing DB3.
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Table 7-5 Compression properties obtained from characterization tests

Bearing Test Cycle K,o (kN/mm) E, (J) B, (%)
1 79 82 1.2
2 83 65 0.9
DA1 7 3 82 63 0.9
4 81 61 0.9
1 71 114 14
2 72 95 12
DA2 2 3 71 92 1.2
4 72 91 1.1
1 70 110 1.4
2 71 87 1.1
DA3 2 3 70 84 1.1
4 70 81 1
1 74 90 1.2
2 76 73 1
DA4 6 3 76 67 0.9
4 76 67 0.9
1 248 22 0.9
2 254 17 0.7
1
DB1 13 3 259 16 0.7
4 265 17 0.7
1 284 23 1.1
2 285 17 0.9
1
DB2 13 3 286 15 0.8
4 291 16 0.9
1 402 19 1.2
2 399 15 1.1
DB4 10 3 400 15 1
4 425 15 1
1 194 36 1
2 204 25 0.8
MA1 7 3 200 25 08
4 205 24 0.7
1 223 51 1.8
2 211 39 14
MA2 2 3 215 39 14
4 215 38 15
1 209 47 17
2 205 37 14
MA3 2 3 214 34 13
4 212 35 1.4
1 194 55 1.9
2 198 43 15
MA4 2 3 196 42 14
4 197 41 14
1 657 19 23
MB1 11 2 699 18 23

7-21




Table 7-5 Compression properties obtained from characterization tests (contd.)

Bearing Test Cycle K,o (kN/mm) E, (J) B, (%)
3 702 16 2.1
4 712 16 23
1 575 10 0.9
2 626 5 05
1
MB2 6 3 604 4 0.4
4 617 5 05
1 792 18 2.6
2 853 14 23
MB3 2 3 881 13 23
4 886 14 2.4
1 504 18 14
2 538 13 12
1
MB4 6 3 514 12 1.1
4 547 12 1

1. Post-cavitation properties

The averaged compression properties of all four types of bearing are summarized in Table 7-6.

The averaged properties do not include post-cavitation values.

Table 7-6 Summary of averaged compression properties of bearings

Bearing | Ko (kN'mm) | E;, (J) | B, (%)
DA 75 83 1.1
DB 355 20 1.0
MA 235 37 1.4
MB 727 15 2.0

Others (e.g. Warn (2006)) have concluded that the vertical stiffness of an elastomeric bearing
calculated using the expression that considers limited compressibility of rubber layers matches
reasonably with experimentally obtained values. This conclusion is revisited using the
experimental data obtained here. The theoretical values of compression stiffness are calculated
using Equation (6.6) for each bearing type and are compared with experimental values in Table
7-7. The average shear moduli from Table 7-2 are used for calculations of compression
stiffness. The theoretical predictions are similar to the experimental results with differences less
than 10%, except for type DA.

Table 7-7 Theoretical and experimentally obtained compressive stiffness

. K,, (kN/mm)
Bearing : . :
Experimental | Theoretical | % difference
DA 75 80 7
DB 355 377 6
MA 235 206 12
MB 727 705 3
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7.3.4 Tensile properties

The benchmark tensile characterization tests were performed on two bearings. The bearings
were subjected to a force-controlled triangular loading of amplitude 25 kN. The amplitude was
chosen as approximately one quarter of the estimated cavitation strength to ensure that no
cavitation occured. The tensile properties of the remaining bearings are obtained from tensile
tests other than benchmark tensile characterizations tests. The tensile stiffness and damping
ratio were obtained using Equations (7.7) and (7.8). The values of p and AP are 0.3 MPa and
0.25 MPa, respectively. The tensile properties of the bearings are summarized in Table 7-8. The
mechanical properties associated with the first tensile load-deformation cycle are presented.

Table 7-8 Summary of tensile properties obtained from tensile tests

Bearing | Test | Cycle OA é . Ye K, Wy B, (%)
(%) | (%) (kN) (mm) (kN/mm) (J)
DA1' 9 1 0 1 50 1.2 75 22 5.4
DA2 3a 1 0 5 95 4.4 88 198 6.8
DA3 3 1 0 25 86 2.9 76 890 26
DA4' 14 1 0 5 65 2.0 51 71 2.5
DB1' 14 1 0 4 85 4 96 45 3.1
DB2' 1 1 187 4 85 1.2 160 81 4.8
DB3 1a 1 0 4 85 1.0 231 136 11
DB4 11a 1 0 4 110 2.5 236 52 2.7
MA1 8 1 0 failure 19 n.a. 25 n.a. n.a.
MA2 3 1 0 4 136 6.0 180 198 4
MA3 3 1 0 24 192 2.5 378 3143 8.8
MA4' 3 1 0 1 42 4 173 103 n.a.
MB1 12 1 0 4 120 3.0 377 105 4.8
MB2 1 1 0 3 202 1.0 945 215 8
MB3 3 1 0 3 170 2.0 429 110 4.2
MB4 1 1 0 failure 200 2.5 930 n.a. n.a.

1. Bearings that either failed prematurely or for which tensile properties are not available at zero lateral offset

The experimental value of tensile stiffness varies significantly for given type of bearing. The
value of secant tensile stiffness is sensitive to the length and location of the chord chosen on
the tensile load-deformation curve. The variations in tensile properties, including tensile stiffness
and cavitation force, can be attributed to the manufacturing quality control. Better quality control
would ensure that bearings of the same material and geometric construction would have similar
mechanical properties. A summary of averaged tensile properties is presented in Table 7-9. The
average properties in Table 7-9 do not include values of the bearings marked with the
superscript 1 in Table 7-8.

Table 7-9 Average tensile properties of bearings

Bearing | F, (kN) | u, (mm) | K,; (KN/mm)
DA 91 3.7 82
DB 98 1.8 234
MA 164 4.3 279
MB 173 2.1 670
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The load-deformation behavior of an elastomeric bearing in tension is generally assumed to be
elastic up to cavitation with pre-cavitation tensile stiffness equal to the compressive stiffness.
The validity of this assumption is investigated here. The average tensile stiffness of each
bearing type is compared with its compressive stiffness in Table 7-10.

Table 7-10 Compressive and tensile stiffness of bearings
K,, (kN/mm)

Bearing . i :
Compression | Tension | % difference
DA 75 82 9
DB 355 234 34
MA 235 279 19
MB 727 670 8

There are differences between the values of tensile and compressive stiffness. However, the
assumption of equal axial stiffness in tension and compression allows the use of a linear model
up to cavitation without much loss of accuracy.

The cavitation strength of each bearing is determined from the tension tests. Significant scatter
is observed in the experimentally recorded value. Ideally, the cavitation strength should be
obtained by applying a tensile load to a virgin bearing at zero lateral offset. However, this was
not possible for all of the bearings because the experimental program had multiple objectives,
each requiring a different protocol. Some bearings were likely to have suffered cavitation
damage due to tests performed before the tensile tests, and in a few cases, the cavitation
strength could only be obtained at lateral offsets. Importantly, the cavitation strength is obtained
by visual inspection of the tensile load-deformation curve: identifying the point at which a
substantial reduction in tensile stiffness occurs. Visual determination introduces significant
scatter in the cavitation strength, but there is no more reliable a strategy.

Table 7-11 summarizes experimentally and theoretically determined cavitation strengths. The
response of four of the sixteen bearings (DA1, DA3, MA1, and MA4) suggest premature failure.
If the outliers in the values of cavitation force are not considered, the experimental values show
good agreement with the theoretical predictions (=3GA).

7.4 Effect of Lateral Offset on Tensile Properties

The coupling of the horizontal and vertical response of an elastomeric bearing in compression is
well established and empirical relationships have been validated by Warn et al. (2007). Coupling
of horizontal and vertical motion in tension was investigated here by subjecting bearings to
tensile loading at different offset shear strains. The effect of lateral offset is assessed by three
tensile characteristics: 1) pre- and post-cavitation tensile stiffness, 2) cavitation strength, and 3)
hysteretic behavior in tension.

To determine the effect of lateral offset on pre-cavitation stiffness, four bearings were subjected
to force-controlled cyclic tensile loading at different lateral offsets. The amplitude of the loading
was approximately half of the estimated cavitation strength. The load-deformation behavior of
the two bearings in cyclic tension at different lateral offsets is presented in Figure 7-23, where

A is the lateral offset and R is the radius of the bearing. The variation of tensile stiffness of
bearings DA1 and DA4 with lateral offset is shown in Figure 7-24. Although it is difficult to define
and locate the exact point on the tensile force-deformation curve that corresponds to cavitation,
the cavitation strength characterized by a sharp reduction in tensile stiffness, in Figure 7-23a
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and Figure 7-23b can be seen to be decreasing with lateral offset. This trend is consistent with
the findings of Iwabe et al. (2000) and Kato et al. (2003).

Table 7-11 Experimental and theoretical cavitation strengths

Bearing Fc_experimental (kN) Geff (MPa) Area (mmZ) Fc_analytical (kN) Fc_experimental /Fc_analytical
DA1! 50 0.40 68900 83 0.60
DA2 95 0.42 68900 87 1.09
DA3' 86 0.42 68900 86 1.00
DA4 65 0.38 68900 79 0.82
DB1 85 0.44 68900 91 0.93
DB22 85 0.39 68900 81 1.05
DB3 85 0.41 68900 85 1.00
DB4 110 0.45 68900 93 1.18
MA1' 19 0.80 70215 168 0.11
MA2 136 0.73 70215 154 0.88
MA3 192 0.80 70215 168 1.15
MA4! 42 0.83 70215 174 0.24
MB1 120 0.77 70215 161 0.74
MB2 202 0.70 70215 148 1.36
MB3 170 0.79 70215 166 1.03
MB4 200 0.65 70215 137 1.46

1. Premature failure
2. Cavitation force obtained at lateral offset A=R

The tensile stiffness decreases with an increasing number of loading cycles. The reduction in
stiffness depends on the change in tensile strain amplitude between consecutive cycles. If the
tensile strain amplitude does not change significantly, the reduction in tensile stiffness is
insignificant. Figure 7-25 shows the variation in tensile stiffness with number of cycles at
different lateral offsets for bearing DA1. The bearing is subjected to force-controlled cyclic tests
of an amplitude that was approximately one half of the cavitation strength. The tensile stiffness
in Figure 7-25 does not change significantly because of small increments in the tensile strain
amplitude of consecutive cycles. This can be contrasted against a case where the tensile
stiffness decreases substantially if the tensile strain amplitude between consecutive cycles
increases significantly. Figure 7-26 shows the variation of tensile stiffness with number of cycles
for bearing DB4, which was subjected to displacement-controlled cyclic tensile tests with strain
amplitude increasing after every three cycles.

The effect of lateral offset on the hysteretic behavior of an elastomeric bearing in tension is
difficult to assess because a tensile test with any substantial hysteresis involves irreversible
damage due to cavitation. The hysteretic behaviors of an elastomeric bearing with different
lateral offsets will inevitably be different and it is not possible to isolate on the load-deformation
curve the effect of lateral offset from cavitation damage. If a force-controlled test does not
involve cavitation, increasing lateral offset increases hysteretic energy dissipation, as observed
in Figure 7-23a and Figure 7-23b.

7-25



I I 60 I I l I I 1
Wi T
) 2 4 Z 4
[ /4/ o
2 Py 2
LOQ ‘/ /” " Qg
= AR 2
5 0 S 20
S £ 0.5 =
—-—- 1.5 |
—--—= 2.0
| I T T 0
10 20 30 0 1 2 3 4
Tensile strain (%) Tensile strain (%)
a) DA1 b) DA4
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To isolate the effect of lateral offset from tensile damage on hysteresis behavior of an
elastomeric bearing, damage was induced in bearing DB1 by subjecting it to a tensile strain of
50%. It is known that if the strain amplitudes of the subsequent tensile tests are less than the
maximum prior value of tensile strain, no additional damage is induced. Two cyclic tensile tests
are performed on the same bearing with and without a lateral offset with tensile strain amplitude
of 50%, so that any difference in hysteresis would only be because of lateral offset and not
cavitation. Results are presented in Figure 7-27. The hysteretic behaviors are very similar
despite the significant difference in lateral offset.
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Figure 7-27 Effect of lateral offset on tensile hysteresis

7.5 Effect of Tensile Loading History on Cavitation

Past experiments have shown that damage in an elastomeric bearing accumulates with tensile
deformation. Chapter 3 describes the mechanism of damage initiation and propagation, and
proposes a mathematical model that predicts the behavior of an elastomeric bearing under
cyclic tensile loading. Tests were performed to validate this mathematical model. The following
assumptions are investigated:

1. Cavitation strength decreases (damage increases) with increasing values of tensile
strain in each loading cycle

2. No additional damage is observed if the tensile strain is less than its prior maximum
value

3. If the maximum prior value of tensile strain is exceeded, the formation of new cavities
leads to additional damage, and cavitation strength is further decreased

4. Cavitation strength converges to a certain minimum value

Two test sequences, increasing triangular (IT) and decreasing triangular (DT), were used in
which the tensile deformation amplitude was increased and decreased, respectively, after every
three cycles. According to the mathematical model developed in Chapter 3, tensile properties
such as the reduced cavitation strength, the post-cavitation stiffness and the minimum value of
cavitation strength, should only depend on the prior maximum value of tensile strain and not on
the sequence of loading. The behavior of elastomeric bearings under cyclic tensile loading is
presented in Figure 7-28 through Figure 7-30.
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Differences are observed between the behaviors shown in Figure 7-28 through Figure 7-30 and
behaviors observed in past experiments (e.g. lwabe et al. (2000), Kato et al. (2003), Warn
(2006)). It was observed in previous experimental studies that if the tensile strain exceeds the
prior maximum value, the prior maximum value of the tensile force is recovered, and
subsequently, tensile force increases with tensile strain. However, a substantial reduction in
force is observed between consecutive cycles for the bearings tested here, and the tensile force
is not recovered after tensile strain exceeds the prior maximum value. The reason for this
different behavior is not known.

The same tensile tests were conducted at the beginning of the experiment on a trial bearing
(bearing in Figure 7.7 of Constantinou et al. (2007)) to ensure proper functioning of
instrumentation, data acquisition, and actuator feedback control mechanism. The trial bearing
was subjected to multiple IT and DT sequences of loading as described in Section 6.4. Results
are presented in Figure 7-31.
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Figure 7-28 Behavior of DIS bearings under cyclic tensile loading
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100 T T — T ————— 200

80 160
2 2

o 60 o 120
o o
i i

=40 = 80
= =
(] (]
= =

20 40

0 0

0 5 10 15 20 25 (L 10 20 30 40 50
Tensile strain (%) Tensile strain (%)
a) DB3 b) MB3

Figure 7-30 Behavior of DIS and Mageba bearings under cyclic tensile loading
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The trial bearing follows an expected behavior that is consistent with past experimental studies
and the model proposed in Chapter 3. This strongly suggests that the inconsistent tensile
behavior is related to the properties of the bearing and not the experimental program. A variety
of factors, including inadequate quality control, high damping, and insufficient curing, could lead
to the observed tensile behavior.
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Figure 7-31 Behavior of the trial bearing under cyclic tensile loading

The residual strength observed in the tensile load-deformation curves of Figure 7-28 through
Figure 7-30 is due to the resistance of the 4 mm cover rubber around the perimeter of the
circular bearings.

Some bearings ruptured into two pieces following cavitation. The distances from the rupture
planes from the bottom of the bearing are presented in Table 7-12. The total height of the
bearing includes rubber layers, shim plates, and the two internal bearing plates (see Figure
4-11)

Table 7-12 Location of rupture plane in bearings failed due to cavitation

Failure Failure Failure Failure
Bearing height Bearing height Bearing height Bearing height
(inches) (inches) (inches) (inches)
DA1 1.75 DB1 n.a.’ MA1 4.75 MB1 2
DA2 4.75 DB2 3.5 MA2 3 MB2 3.75
DA3 4 DB3 n.a. MA3 4 MB3 3.25
DA4 4.5 DB4 n.a. MA4 3.5 MB4 3.5

1. not available for bearings that did not rupture in two pieces

7-31




7.6 Effect of Cavitation on Mechanical Properties

7.6.1 General

The mechanical properties (e.g., shear modulus, axial stiffness) of all sixteen bearings were
monitored during the experiments. The effects of cavitation on mechanical properties were
investigated through characterization tests before and after cavitation, including shear and
compression tests. Results are presented in the following sections.

7.6.2 Shear properties

The shear modulus and damping ratio of the bearings were monitored using shear
characterization tests performed at 100% shear strain under an axial compressive pressure of 1
MPa. Additional shear tests were conducted at other shear strain amplitudes and axial loads to
investigate if the change in shear modulus following cavitation was sensitive to the shear strain
and axial load. The changes in the shear properties of the bearings are summarized in Table
7-13.

Table 7-13 Pre- and post-cavitation shear properties of elastomeric bearings

. G.s (MPa) By (MPa)
Bearing -

Pre Post Ratio % change Pre Post
DA1 0.40 0.37 0.93 8 4 5.1
DA2 0.42 0.40 0.95 5 4 4.4
DA3 0.42 0.40 0.96 4 5 3.8
DA4 0.38 0.36 0.94 6 4 4.9
DB1 n.a.’ 0.44 n.a. n.a. n.a. 3.5
DB2 n.a. 0.39 n.a. n.a. n.a. 4.2
DB3 n.a. 0.41 n.a. n.a. n.a. 5.6
DB4 0.45 0.43 0.96 4 3 3.8
MA1 0.80 n.a. n.a. n.a. 5 n.a.
MA2 0.73 0.68 0.93 7 4 5.3
MA3 0.80 0.74 0.92 8 4 4.2
MA4 0.83 0.77 0.93 7 5 5.6
MB1 0.77 0.67 0.88 12 4 5.0
MB2 n.a. 0.70 n.a. n.a. n.a. 7.8
MB3 0.79 0.71 0.90 10 4 5.6
MB4 n.a. 0.65 n.a. n.a. n.a. 5.0

1. not available for bearings on which pre-cavitation characterization tests were not performed

Others (e.g., lwabe et al. (2000)) have concluded that cavitation has no substantial effect on the
shear modulus of a bearing because friction between the rubber layers provide adequate
resistance to shear under nominal axial compressive loads. The frictional resistance depends
on normal pressure and the contact area between the adjoining surfaces. The effect of
cavitation on shear modulus may change with the magnitude of the axial compressive load
maintained during the shear tests and the shear strain at which effective shear modulus is
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calculated. To investigate this, cyclic shear tests were conducted before and after cavitation at
various shear strain amplitudes and axial pressures. Results are presented in Figure 7-32
through Figure 7-35.
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Figure 7-32 Variation of effective shear modulus with shear strain for bearing DB4
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Figure 7-33 Variation of effective shear modulus with axial pressure for bearing DA4
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The effect of cavitation on the shear modulus of a bearing is consistent over the range of shear
strain and axial pressure considered. At very low values of axial pressure (< 0.5 MPa),
differences between the pre- and post-cavitation shear modulus are seen because of the
relative movement across the failure surface after cavitation, as seen in Figure 7-36. Slip is
unlikely under a service axial pressure (=3 MPa). Cavitation has no significant effect on the
effective shear modulus of a bearing for shear strain less than 150% and axial compressive
pressure greater than 1 MPa.

Figure 7-36 Slippage across the damaged interface of bearing MA4 in a shear test (axial
pressure = 0.5 MPa)

A coefficient of friction between the two layers of rubber across a failure surface can be
estimated from the data. When the bearing is in motion under constant velocity, the friction force

is equal to the applied shear force. The coefficient of friction, 1 , is obtained as:

F

—_s 7.9
Hy N (7.9)

where F, is the applied shear force and N is constant axial load maintained during the shear
test.

Slip across the failure surface surface is indicated by a plateau on the shear force-displacement
curve in Figure 7-37 and this force is used to estimate u, : see Table 7-14.
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Figure 7-37 Shear response of bearing MA4 at different axial loads

Table 7-14 Coefficient of kinetic friction between rubber layers

Test no.' | Axial load (kN) | Shear force (kN) | Coefficient of friction
MA4 6 11 4 0.36
MA4 7 22 8 0.36
DA4 19 11 5 0.45

1. See Appendix A.1

7.6.3 Axial properties

Force-controlled compression characterization tests were performed to calculate compressive
stiffness and damping ratio before and after cavitation. The changes in axial properties in
compression are summarized in Table 7-15. A very small reduction in compressive stiffness is
observed after cavitation. The pre- and post-cavitation values of the damping ratio in
compression vary between 1 and 2% of critical.

7.6.4 Critical buckling load capacity

A series of monotonic compression tests were performed at the end of the testing program to
investigate the effect of cavitation on the buckling load capacity of bearings. The critical buckling
load of all bearings are estimated from load-deformation curves of the bearings as described in
Section 6.4.7. The rated compressive load capacity of the testing machine is 1780 kN and its
displacement capacity is 1.5 inches. Only eight of the sixteen bearings could be loaded in
compression to failure. The buckling load for the remaining eight bearings exceeded 1780 kN.
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The ruptured halves of the bearings that failed during cavitation were re-assembled and a
compressive load was applied.

Table 7-15 Pre- and post-cavitation axial properties of elastomeric bearings

. K., (MPa) P, (MPa)
Bearing

Pre Post Ratio % change Pre Post
DA1 81 76 0.94 6 1.0 1.1
DA2 71 68 0.96 4 1.3 1.3
DA3 71 69 0.97 3 1.2 1.3
DA4 75 74 0.99 1 1.0 1.1
DB1 n.a.! 254 n.a. n.a. n.a. 0.8
DB2 n.a. 285 n.a. n.a. n.a. 0.9
DB3 n.a. n.a. n.a. n.a. n.a. n.a.
DB4 400 273 0.68 32 1.1 0.9
MA1 199 n.a. n.a. n.a. 0.9 n.a.
MA2 216 161 0.74 26 1.5 1.1
MA3 209 191 0.91 9 1.5 1.5
MA4 196 180 0.92 8 1.6 1.4
MB1 686 605 0.88 12 2.2 1.0
MB2 n.a. 602 n.a. n.a. n.a. 0.6
MB3 842 765 0.91 9 2.4 0.9
MB4 n.a. 519 n.a. n.a. n.a. 1.2

1. not available

Compressive load-deformation plots for the four types of bearing are presented in Figure 7-38
through Figure 7-41. The initial plateau in the plots is due to a gap that the loading head of the
testing machine had to overcome to engage the bearing. The axial displacement was measured
using four linear potentiometers located symmetrically around the bearing. The potentiometers
record displacement of the same sign up to buckling. However, after buckling begins, the signs
might reverse due to rotation of the bearing. Axial deformation is taken as the average of the
four potentiometer readings. The apparent hardening in the load-deformation curves results
from the bearing being restrained laterally by the side walls of the testing machine following
buckling.

The point on a load-deformation curve that corresponds to the beginning of buckling is shown
with a solid black circle in Figure 7-38 and Figure 7-40. For the DB and MB bearings, the critical
buckling loads were greater than the capacity of the testing machine (= 1780 kN) and they could
not be failed in compression.

The theoretical values of critical buckling load obtained using the pre-cavitation and post-
cavitation values of the effective shear modulus are presented in Table 7-16. No significant
change in the buckling capacities of bearing types DA and MA due to cavitation is observed.
Although failure could not be obtained for bearing type DB, they sustained a compressive load
of 1700 kN, which is close to their theoretical buckling load, suggesting that there was no
significant effect of cavitation on bearing type DB.
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Figure 7-38 Compression failure tests of DA bearings
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Figure 7-39 Compression failure tests of DB bearings
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Figure 7-40 Compression failure tests of MA bearings
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Figure 7-41 Compression failure tests of MB bearings

7-39



Table 7-16 Theoretical and experimental values of critical buckling load

Bearing Ger (MP2) R, theoretical (kN) P, experimental (kN)
Before After Before After

DA1 0.40 0.37 621 596 525

DA2 0.42 0.40 659 634 580

DA3 0.42 0.40 646 634 480

DA4 0.38 0.36 596 583 460

DB1 n.a. 0.44 n.a. 1770 >1780
DB2 n.a. 0.39 n.a. 1579 >1780
DB3 n.a. 0.41 n.a. 1675 >1780
DB4 0.45 0.43 1801 1739 >1780
MA1 0.80 n.a. 1349 n.a. 1250
MA2 0.73 0.68 1280 1196 1160
MA3 0.80 0.74 1363 1308 1050
MA4 0.83 0.77 1403 1321 1500
MB1 0.77 0.67 3147 2880 >1780
MB2 n.a. 0.70 n.a. 2971 >1780
MB3 0.79 0.71 3205 3060 >1780
MB4 n.a. 0.65 n.a. 2819 >1780

7.7 Failure mode in tension

The failure mode of a bearing is defined here as the loading conditions under which the bearing
fails (e.g., pure tension, tension with lateral offset). The failure mechanism describes how the
failure begins. The description of failure for each bearing in tension is presented in Appendix
A.6.

The most common failure type in the DIS bearings was the formation of cavities in the rubber
layer, whereas the Mageba bearings failed due to debonding at the interface of a rubber layer
and a steel shim. Failure through formation of cavities in the volume of the rubber is the much
preferred mechanism. These two failure mechanisms are shown in Figure 7-42.

Four of the sixteen bearings, DA1 (0.53), DA4 (0.55), MA1 (0.09), and MA4 (0.23), failed
prematurely (failure occurred below theoretical cavitation force), where the value in parentheses
is the ratio of the experimental to theoretical cavitation strengths. Although most of the
experimental work (e.g., lwabe et al. (2000), Kato et al. (2003), Warn (2006)) on cyclic loading
of elastomeric bearings report a tensile deformation capacity of more than 100%, few bearings
here achieved this. The hysteretic behavior was also different than what has been observed in
past experimental studies, which might be related to manufacturing quality control. For example,
three of the sixteen bearings tested here had misaligned tapped-holes at the bottom and top of
the internal bearing plates, which led to initial torsional deformation after installation in SBTM.
Bearing MA4, which had the greatest misalignment, is shown in Figure 7-43.
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a) Cavities in the rubber volume (DA2) b) Debonding at rubber-shim interface (MA4)
Figure 7-42 Failure mechanism in rubber bearings under tension

A L

Figure 7-43 Misaligned groves in top and bottom bearing plates of the bearing MA4

7.8 Validation of Mathematical Model

The mechanism of damage initiation and propagation due to cavitation in an elastomeric
bearing was described in Section 3.2.4 through 3.2.6 and a mathematical model was proposed
that predicts the behavior of an elastomeric bearing under cyclic tensile loading. The following
assumptions are investigated:

1. Cavitation strength decreases (damage increases) with increasing values of tensile
strain amplitude of each cycle

2. No additional damage is observed if the tensile strain is less than its prior maximum
value

3. If the prior maximum value of tensile strain is exceeded, the formation of new cavities
leads to additional damage, and cavitation strength is further decreased

4. Cavitation strength converges to a minimum value
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A comparison of the experimental behavior and numerical results obtained using the
phenomenological model described in Section 3.2.7 is presented in Figure 7-44 for all sixteen
bearings, where F / F, is the tensile force normalized by the cavitation strength. The values of

the parameters used for the tensile model are: cavitation parameter, k = 20, 2) strength
degradation parameter, a = 1.0, and 3) damage index, 4,,,, = 0.9.

The numerical results are in reasonable agreement with the experimental behavior in most
cases. Differences are observed in a few cases between the behaviors shown in Figure 7-44
and those observed from past experiments (e.g. lwabe et al. (2000), Warn (2006), Kato et al.
(2003)). It has been observed in previous experimental studies that if the tensile strain exceeds
the prior maximum value, the prior maximum value of the tensile force is recovered, and
subsequently, tensile force increases with tensile strain. However, a reduction in force is
observed between consecutive cycles for a few of the bearings tested here, and the tensile
force is not recovered after tensile strain exceeds the prior maximum value. The reduction might
be due to initiation of tensile failure. It is difficult to locate the precise point of failure on the load-
deformation curve up to which the phenomenological model can applied. A consistent failure
strain in tension is not observed among all the bearings. The tensile strain capacities of the
bearings are smaller than those reported by others (e.g., lwabe et al. (2000), Warn (2006), Kato
et al. (2003)).

7.9 Conclusions and Recommendations

The key conclusions of the experiments are:

1. The value of 3GA is a reasonable estimate of the cavitation strength of a bearing.
The pre-cavitation tensile stiffness of a bearing decreases with an increasing number of
loading cycles. The magnitude of the reduction depends on the prior maximum value of the
tensile strain.

3. The pre-cavitation tensile stiffness decreases with an increase in coexisting shear strain.

4. Cavitation strength decreases with co-existing shear strain.

5. The sequence of loading does not change the behavior of elastomeric bearing under cyclic
tension.

6. There is an insignificant change from a practical perspective in the compressive stiffness of
a bearing following cavitation.

7. Cavitation has no significant effect on the effective shear modulus of a bearing for shear
strain less than 150% under axial compressive pressure greater than 1 MPa.

8. No significant reduction in the buckling load of a bearing is observed due to prior cavitation.

Good quality assurance (QA) and quality control (QC) is key to the use of elastomeric bearings
to seismically isolate nuclear power plants. Mathematical models are formulated based on
physics and behaviors observed in experiments. These mathematical models are developed
using a set of generalized assumptions about the expected behavior of elastomeric bearings.
The desirable behavior of an elastomeric bearing in tension includes:

Cavitation at a well-defined force that is reproducible across similar bearings

Sufficient tensile deformation capacity

Ability to recover strength if tensile deformation exceeds the prior maximum value

Final failure through formation of cavities in the volume of the rubber and not through de-
bonding at the interface of a rubber layer and a steel shim.

PO~
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The bearings tested for the study described in this report showed different characteristics from
those tested previously, including a) smaller tensile strain capacity, b) reduction in peak tensile
force in consecutive cycles to a specified tensile displacement, and c) reduction in tensile
resistance for loading to tensile strain that exceed a prior maximum value. These differences
might have arisen because bearing manufacturers very rarely fabricate isolators of the relatively
small size tested here. The infrequent manufacture of small runs of bearings with geometries
most different from commercial product make it extremely difficult to achieve the high quality
expected of isolators for nuclear power plant applications.
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Figure 7-44 Validation of the mathematical model in tension, normalized force versus
displacement
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8 RESPONSE OF THE TWO-NODE MACRO MODEL OF BASE-
ISOLATED NUCLEAR POWER PLANT

8.1 Introduction

The effects of changes in the mechanical properties of elastomeric bearings on the response of
base-isolated nuclear power plant (NPP) structures are investigated here using the advanced
numerical model of elastomeric bearings presented in Chapter 3. A macro model is used for
response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be
consistent with response spectra for design basis and beyond design basis earthquake shaking
at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two
periods and five characteristic strengths are analyzed. The responses obtained using simplified
and advanced isolator models are compared. Individual and cumulative effects of including each
characteristic of elastomeric bearing on the response of base-isolated NPP under extreme
loading are assessed.

8.2 Numerical Model

A two-node macro model of a NPP structure, shown in Figure 8-1, is created in OpenSees for
response-history analysis. The lumped mass at the top node (node 2) represents the
superstructure assigned to one isolator; the superstructure is assumed to be rigid for the
purpose of these analyses. A LR" isolator joins the two nodes: LeadRubberX. All six degrees of
freedom of the bottom node (node 1) are fixed to the ground, as are the three rotational degrees
of freedom at the top node. Although this model cannot capture the effects of rocking and local
axial force effects on isolators that are expected in an isolated system, its analysis does allow
recommendations to be made about the importance of the characteristics of LR bearings.

Figure 8-1 Two-node macro model of a base-isolated NPP

T Lead-rubber and low damping rubber elastomeric bearings are considered appropriate for use in safety-
related nuclear structures in the United States at the time of this writing. Lead-rubber bearings are
considered here because the seismic displacements at the Diablo Canyon site were anticipated to be
large for design basis shaking.
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Ten macro models of base-isolated NPPs are created: two isolation time periods (T =2, 3
seconds) and five ratios of characteristic strength to supported weight (Q, / W =0.03, 0.06,
0.09, 0.12, and 0.15). The models are denoted by TxQy , where X identifies the value of T
and y identifies the percentage of Q, /W . Table 8-1 summarizes the isolator properties

assumed for analysis.

Table 8-1 Geometrical and mechanical properties of elastomeric bearings
Property Notation (units) Value
Single rubber layer thickness t. (mm) 10
Number of rubber layers n 31
Total rubber thickness T. (mm) 310
Steel shim thickness t, (mm) 475
Outer diameter D, (mm) 1219
Lead core diameter D, (mm) Varies'
Cover thickness t. (mm) 19
Yield stress of lead o, (MPa) 8.5
Static pressure due to gravity loads Pyaic (MPa) 3.0
Shear modulus G (MPa) Varies?

1, 2: Calculated for each model

A static (gravity load) pressure on the bearing of 3 MPa is used for all analyses. The total gravity
weight W on the bearing is calculated by multiplying the static pressure by the bonded rubber
area. The total weight W is divided by g to obtain the equivalent mass M, which is lumped in
the three translational directions at node 2 for response-history analyses. The diameter of the
lead core is back calculated from Q, /W, assuming an initial yield stress of 8.5 MPa. The
effective shear modulus is calculated from the isolation time period T of the model. The
geometric and mechanical properties of LR bearing are computed from the given values of
Q,/W and T as:

W=pstatic£D§;AL =W;Di =\,4i;A=%|:(Do+tc)2 _D/2:|
T

4 o 2 (8.1)
TonTim=Yik, =42M. _Kul:
g

T? A

where AL is the area of the lead core, and all other variables are defined above. The geometric
and material properties of the ten LR bearings are summarized in Table 8-2.

The parameters of the tensile model, k, a, and 4, ,, are set equal to 20, 1.0, and 0.75,
respectively, for all models. A sensitivity analyses performed in Section 5.6.2 showed that the
tensile response of an elastomeric bearing is not sensitive to either a or ¢, ., , and the values
a =1.0and ¢, =0.75 recover the results of experiments. For the large diameter bearings
considered here, a very sharp reduction in the tensile stiffness following cavitation is expected,
which is captured by k = 20.
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Table 8-2 Geometric and material properties of LR bearing models

Property N‘(’:ﬁtl't‘;;‘s T2Q3|T2Q6|T2Q9|T2Q12|T2Q15|T3Q3|T3Q6|T3Q9|T3Q12/T3Q15
Lde.adcore D, (mm) | 125|168 | 195 | 216 | 231 | 100 | 136 | 161 | 180 | 195
iameter
Shear G (MPa) |0.92|0.92(0.93| 0.94 | 0.94 [0.41[0.41|0.41| 0.41 | 0.41
modulus

"'Sct’i?fznfg‘stsa' Ko (MN/m)| 352 (352 |3.52| 3.52 | 3.52 | 1.57|1.57 | 1.57 | 1.57 | 1.57

;{%"rt]'g:é K,, (MN/m) |4061|4002|3959| 3926 | 3899 |3004|2956 |2923| 2897 | 2875

Buckling load| F,, (MN) |67.5|67.3|67.1| 67.0 | 66.9 | 38.6|38.4|38.3| 38.2 | 38.1

Cavitation F. (MN)
force

3.28(3.283.28| 3.28 | 3.28 |1.46|1.46|1.46| 1.46 | 1.46

The mechanical behaviors of LR bearings that are investigated here are:

Strength degradation in shear due to heating of the lead core (LR bearings)
Variation in buckling load due to horizontal displacement

Cavitation and post-cavitation behavior due to tensile loading

Variation in axial stiffness due to horizontal displacement

Variation in shear stiffness due to axial load

aobron=

The LeadRubberX element permits the user to include each of these behaviors, or a
combination thereof, in an analysis through a set of tags.

OpenSees does not provide option to specify modal damping. The Rayleigh damping, instead,
is used, and the multipliers to the mass and stiffness matrices are calculated by assigning 2%
damping to the 1st (torsion) and 6th (axial) modes. This ensures that effective damping
corresponding to frequencies between these two modes would have an effective damping ratio
smaller than 2%. The effect of Rayleigh damping is expected to be insignificant on the shear
response where substantial damping is provided by energy dissipation in the lead core. The
response in the axial direction, which is modeled as nonlinear elastic behavior, is expected to be
more sensitive to the choice of Rayleigh damping coefficients. The coefficients, ¢, and Sy,
are calculated as:

2lo.0, 2
= L By = 3 (8.2)
W, + ; w; + 0,

Oy

where o, and o, are the angular frequencies of the vibration modes in which damping of ¢ =
2% is assigned, which correspond to the axial and torsional mode of vibration here. The
effective damping ratio in the n” mode of vibration is calculated as:

_ou | Pr 8.3
on 20, 2 (8:3)



where @, is the angular frequency of the n” mode. Rayleigh damping depends on the
instantaneous stiffness and changes at each step of a nonlinear analysis. A summary of the
estimates of the Rayleigh damping based on the initial and post-yield (or post-cavitation)
stiffness are obtained in different modes of oscillation of isolation system for isolation periods of
2 and 3 seconds, and are presented in Table 8-3.

Table 8-3 Rayleigh damping ratios in the six directions of motion of the isolation system

T =2sec T =3sec
. Angular Damping ratio . Angular Damping ratio
N requency @ S requency @ S
Number | Direction (rad/sec) & (%) (rad/sec) & (%)
Elastic Post- Elastic Post- Elastic Post- Elastic Post-
elastic elastic elastic elastic

Axial 106.7 5.4 2.0 0.6 91.1 3.6 2.0 0.6
Shear1 9.9 3.1 0.5 0.9 6.6 2.1 0.4 0.9
Shear2 9.9 3.1 0.5 0.9 6.6 2.1 0.4 0.9
Torsion 1.4 1.4 2.0 2.0 0.9 0.9 2.0 2.0

Rotation1 | 19.1 19.1 0.5 0.5 16.4 16.4 0.5 0.5
Rotation2 | 19.1 19.1 0.5 0.5 16.4 16.4 0.5 0.5

DA WIN(=

The set of 30 three-component ground motions selected and spectrally matched by Kumar
(2015) to be consistent with uniform hazard response spectra (UHRS) for design-basis
earthquake (DBE) shaking at the site of the Diablo Canyon Nuclear Generating Station are used
for response-history analysis (Figure 8-2). The UHRS are calculated for a return period of
10,000 years and 5% damping. Response-history analysis is performed using these 30 sets of
ground motions for each of the ten models at intensities of 100% DBE, 150% DBE, 167% DBE,
and 200% DBE shaking. The intensities of 150% DBE and 167% DBE correspond to beyond
design basis earthquake in Department of Energy (DOE) and United States Nuclear Regulatory
Commission (USNRC) space, respectively; see Huang et al. (2009) and Huang et al. (2013).
The mean 2% damped vertical spectrum is provided to aid later interpretation of the vertical
response of the isolation systems.

The results of the response-history analyses are presented in the following sections. The peak
responses for each ground motion set are assumed to distribute lognormally with arithmetic
mean u, median @, and logarithmic standard deviation o, which are computed as:

1

—i H:exp(lilny,) \/ i Iny, - In6' (8.4)
nis n-13

3

where N is the total number of ground motion sets (=30), and J; is the peak response for ith
ground motion set. The pth percentile (e.g., 50, 90, 99) value, y,, is calculated as the inverse of
the lognormal cumulative distribution function F per Mathworks (2014):

¥, =F(pln6,0)={y, :F(y,|In6,0)=p| (8.5)




These percentiles can be calculated with the aid of normal probability table. MATLAB provides a
command logninv to compute pth percentile values of a lognormal distribution.
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Figure 8-2 Acceleration response spectra of ground motions

8.3 Results of Analysis using the Simplified Isolator Model

The simplified model of LR bearing shown in Figure 8-3, with equal axial stiffness in
compression and tension (and independent of shear displacement), represents the state-of-the-
practice for response-history analysis of seismically isolated structures using contemporary

software.

N .
Force Tension fAX|aI
E . K, orce
Yy
1) K K
, v0
Qd :el
: Axial deformation
V /MDisplacement
Compression
a) Shear b) Axial

Figure 8-3 Simplified model of LR bearing

The simplified model does not consider any of the five characteristics identified in Section 8.2.
For analysis using the simplified model as implemented in LeadRubberX, all tags are set to 0.
The results of the response-history analyses are presented in Table 8-4 through Table 8-9. The
results of the response-history analyses of the base-isolated NPP using the advanced isolator
model are benchmarked against those using the simplified isolator model.

Mean and 50™, 90" and 99" percentile responses are presented in these tables, noting that the
90" and 99" percentile responses, for beyond design basis and design basis shaking,
respectively, are important thresholds for seismically isolated nuclear structures (Huang et al.,
2009; Huang et al., 2013). Vector sums of the shear displacements and forces are calculated at
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each time step in an analysis and the peak values for a given ground motion are used to form
the distributions of response. The forces are normalized by the total weight W on the bearing,
which is approximately equal to 3500 kN for all of the models.
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8.4 Results of Analysis using the Advanced Isolator Model

The advanced isolator model considers the five characteristics of LR bearings identified in
Section 8.2. The effect of each characteristic on the response of the isolated NPP is
investigated. The responses distribute lognormally and the percentiles are calculated from the
estimated distribution.

8.4.1 Strength degradation in shear due to heating of the lead core

The percentiles of peak horizontal displacement and shear force, with and without consideration
of heating, are presented in Figure 8-4 and Figure 8-5, respectively. The responses of models
T2Q3 and T3Q3 are not presented because the 90" percentile horizontal displacement at 167%
DBE shaking is greater than 1000 mm, and larger diameter lead cores would be used to reduce
these displacements. Percentile responses for models T2Q15 and T3Q15 are summarized in
Appendix B.1 and not presented here.

® No heating (100% DBE) €  No heating (150% DBE) *  No heating (200% DBE)

A Heating (100% DBE) + Heating (150% DBE) % Heating (200% DBE)
E 1600 E 1600 E 1600
E { £ E
£ 1200 * | E 1200 f £ 1200
E #* * E * E Y
* * ¥ N
S 00| ° + 4 8 so0| I 4 2 800| s *
= T = $ t = i +
S 400| ¢« 9 T 400, « 9 B 400 .
3 3 3 T
R &m0 R
40 60 80 100 40 60 80 100 40 60 80 100
Percentile (%) Percentile (%) Percentile (%)
a) T2Q6 b) T2Q9 c) T2Q12
E 1600 'E 1600 E 1600
) 1 £ )
— ¥y -~ E: | ~—
£ 1200| ! £ 1200 o £ 1200 |
=) i + g % * = f b
igf 800| 4 I E;g 800| * s 9 ig 800| |
& { & $ & " 1
«— L] «— - - -
S 400| S 400| . S 400 .
] = =
Q [P Q
» 0 » 0 » 0
40 60 80 100 40 60 80 100 40 60 80 100
Percentile (%) Percentile (%) Percentile (%)
d) T3Q6 e) T3Q9 f) T3Q12

Figure 8-4 Percentiles of horizontal displacement for LR bearing models
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Figure 8-5 Percentiles of horizontal shear force for LR bearing models



The effect of heating of the lead core on median peak horizontal displacements and shear
forces for 100% DBE shaking is negligible at the mean, and 50™, 90" and 99" percentiles. The
effect of heating increases with the intensity of earthquake shaking. For a given Q, /W, the
effect of heating decreases with an increase in the isolation period T . For the same period, the
effect of heating decreases with increasing Q, / W . For those isolation systems with the highest
Q, /W (e.g., T2Q15, T3Q15), the shear forces decrease as a result of heating of the lead core.

The characteristic shear strength of a LR bearing varies substantially over the duration of
earthquake shaking due to heating of the lead core. Of the ten isolation systems, T2Q6 and
T3Q6 show the greatest reduction in characteristic shear strength. Plots of the ratio of the
minimum characteristic shear strength to the initial strength, for each ground motion, and three
intensities of shaking, are presented in Figure 8-6. A substantial reduction is observed in the
characteristic shear strength with the average minimum value for the thirty ground motions
falling below 50% of the initial value at 150% DBE shaking for isolation system T2Q6. Figure 8-7
plots the maximum temperature rise for each ground motion at three intensities of shaking. The
maximum change in characteristic strength is observed for ground motions 5 and 30, for
isolation systems T2Q6 and T3Q6, respectively. The temperature-rise time series for these two
ground motions are presented in Figure 8-8 noting that the strong motion duration for the
horizontal components of ground motions 5 and 30 are 50 seconds.

1 1
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150% DBE . . 150% DBE
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= =
En En v 7
= = " . !
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Figure 8-6 Ratio of minimum characteristic shear strength to initial strength
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Figure 8-7 Maximum temperature rise in the lead core
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Figure 8-8 Histories of temperature increase in the lead cores
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8.4.2 Variation in buckling load due to horizontal displacement

The numerical models of elastomeric bearings in contemporary software programs include a
linear spring in the vertical direction. Buckling is not modeled. Three models of elastomeric
bearings in compression can be modeled in LeadRubberX: 1) linear, 2) bilinear with a constant
buckling load P, , and 3) bilinear with a buckling load that is dependent on the co-existing
horizontal displacement, P... These three models are used for response-history analysis to
identify the number of ground motions that would trigger buckling at the four intensities of

shaking. For the third model, the buckling load calculation suggested by Warn et al. (2007) is:

P
cr0 A

0.2P,

. cr0

\Y
o
(V)

(8.6)

>[> > [>
A\
S
N

where P, is the buckling load at zero displacement, and P, is the buckling load at overlapping

cr

area A of a bearing with an initial bonded rubber area of A.

Plots of the axial load ratio, which is the ratio of the minimum critical buckling load of a bearing
over the duration of a ground motion, P, .., as predicted by Equation (8.6) to the buckling load
at zero displacement, P, ,, are presented in Figure 8-9. The buckling load varies substantially
over the duration of some of the earthquake ground motions. A bearing will never achieve its
critical buckling load at zero horizontal displacement under three components of input as it will
fail at a lower axial load at a nonzero horizontal displacement. For the constant buckling load
model, the ratio is 1.0 for the duration of a ground motion. The use of a buckling load calculated
at zero horizontal displacement might provide misleading expectations of the performance of
isolators and an isolation system in design basis and more intense earthquake shaking.

The ratio of the instantaneous axial load to the instantaneous buckling load is computed at each
time step in each response-history analysis, and the maximum value is recorded. If the ratio
exceeds unity, the isolator has buckled. Plots of the maximum value of the ratio for each ground
motion, at three intensities of shaking, are presented in Figure 8-10 and Figure 8-11 for the
constant and displacement-dependent buckling load models, respectively, for T2Q6 and T3Q6.

The numbers of ground motions for which buckling is predicted using the constant and the
displacement-dependent buckling load models are summarized in Table 8-10 and Table 8-11,
respectively. The use of a buckling load calculated at zero displacement (i.e., P,,) may lead to
substantially non-conservative judgments regarding performance of isolation systems, noting
however that buckling of individual isolators in extreme shaking may not compromise the
performance of an isolation system composed of 100s of isolators.
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Figure 8-11 Demand-capacity ratios for the displacement-dependent buckling load model, P,

Table 8-10 Number of ground motions (of 30) triggering buckling failures; using P,

Intensity Isolation system

(% DBE) | T2Q3 | T2Q6 | T2Q9 | T2Q12 | T2Q15 | T3Q3 | T3Q6 | T3Q9 | T3Q12 | T3Q15
100 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
167 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

Table 8-11 Number of ground motions (of 30) triggering buckling failures; using P,,

Intensity Isolation system

(% DBE) | T2Q3 | T2Q6 | T2Q9 | T2Q12 | T2Q15 | T3Q3 | T3Q6 | T3Q9 | T3Q12 | T3Q15
100 0 0 0 0 0 7 0 0 0 0
150 0 0 0 0 0 24 2 1 0 0
167 0 0 0 0 0 30 12 3 1 1
200 5 1 0 0 0 30 20 17 10 4

8.4.3 Cavitation and post-cavitation behavior

A nonlinear elastic model is used to capture the behavior of elastomeric bearings in cyclic
tension. The number of ground motions that produce cavitation damage at each intensity level
are identified in Table 8-12. Nearly 50% of the ground motions result in cavitation at 100% DBE
shaking for the 2 sec isolation systems, and all or nearly all of the ground motions result in
cavitation at 150% DBE shaking for the 2 and 3 sec isolation systems. These high fractions are
due to the intense vertical shaking at the Diablo Canyon site. The period of vibration in the axial
direction for the 2 and 3 sec isolation systems are 0.06 and 0.07 sec, respectively, and the 2%
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damped vertical spectral acceleration at these periods exceed 2.2g at 100% DBE shaking (see
Figure 9-6¢). (Note that the vertical DBE spectrum is for the surface free field and not a
foundation input response spectrum: accounting for input at depth and incoherence should
substantially reduce the vertical shaking effects.)

Table 8-12 Number of ground motions (of 30) that cavitate isolators

Intensity Isolation system

(% DBE) | T2Q3 | T2Q6 | T2Q9 | T2Q12 | T2Q15 | T3Q3 | T3Q6 | T3Q9 | T3Q12 | T3Q15
100 12 14 14 16 16 27 27 27 27 27
150 27 27 27 27 28 30 30 30 30 30
167 28 28 28 28 28 30 30 30 30 30
200 30 30 30 29 29 30 30 30 30 30

8.4.4 Variation in axial stiffness due to horizontal displacement

The horizontal and vertical responses of an elastomeric bearing are coupled through the axial
stiffness that in turn depends on the co-existing horizontal displacement. The expression for the
elastic shear stiffness of a LR bearing is:

-1

-1 2
AE.|. 3(u,Y 3(u
Kv: T l:1+?(7hj } :KVO 1+?{r_hj (87)

r 9

where E_ is the compression modulus (Constantinou et al., 2007); u, is the horizontal
displacement; r, is the radius of gyration of the bonded rubber area; and K, is the axial
compressive stiffness at zero lateral displacement.

Axial stiffness (and buckling load) decreases with increasing horizontal displacement. Figure
8-12 shows the response of a LR bearing (LR5 in Warn (2006)) subject to a vertical acceleration
history (in m?%s) of 2.6sin(207t) in the vertical direction. Two models for axial stiffness are
considered here: 1) axial stiffness per Equation (8.7), and 2) axial stiffness per Equation (8.7)
but capped by buckling and cavitation. Results are presented in Figure 8-12a and Figure 8-12b,
respectively, for the three values of horizontal displacement, normalized by the outer diameter
of the bearing, D, , equal to 152 mm. The axial response of this bearing is substantially
impacted by considerations of co-existing horizontal displacement, noting that the simplified
model would predict response given by the red (u, / D, = 0) line in Figure 8-12a.

To understand the influence of co-existing horizontal displacement on the vertical response of
an isolation system, analyses are performed for two representations of axial stiffness: 1) equal
stiffness in compression and tension, calculated at zero horizontal displacement: K, in
Equation (8.7), and 2) equal axial stiffness in compression and tension, but varying as a function
of horizontal displacement: K, in Equation (8.7). Cavitation and buckling are not considered.
Results for a sample isolation system, T3Q6, are presented in Figure 8-13. The influence is
negligible for 100% DBE shaking but considerable for beyond design basis shaking, with
changes in axial displacement being greater than those in axial force. Results for the other
isolation systems follow a similar trend.
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The variation in the stiffness ratio, which is the ratio of the minimum axial stiffness over the
duration of a ground motion to the axial compressive stiffness at zero displacement, is shown in
Figure 8-14a. The history of the ratio of the instantaneous axial compressive stiffness to the
initial axial compressive stiffness for T3Q6 and ground motion 30 is shown in Figure 8-14b. The
minimum axial compressive stiffness drops below 40% of the initial stiffness at 150+% DBE
shaking. Although the variation in axial compressive stiffness has a notable effect on axial
response, its effect on horizontal response is negligible here because the axial force varies at a
much higher frequency than the isolation-system response in the horizontal direction?.

8.4.5 Variation in shear stiffness due to axial load

The shear stiffness of an elastomeric bearing depends on the instantaneous axial load per:

2 2
GA P P
KH :Tr[1_(P_w] :l:KHO |:1—[P—wJ ] (88)
where P is the instantaneous axial load; P.

. is the buckling load, and K, is the horizontal
stiffness at zero axial load, and other variables were defined previously.

Two values for the buckling load can be used in Equation (8.8): 1) buckling load at zero lateral
displacement, P, ,, and 2) buckling load, P, , per Equation (8.6). Three models of the LR

cr0? cr?

bearing are used to investigate the choice of shear stiffness model: 1) shear stiffness
independent of axial load, 2) axial load dependence of shear stiffness using P, = P.

cr0

axial load dependence of shear stiffness using the instantaneous buckling load, P, .

and 3)

2 The effect of changing axial compressive stiffness on shear response may be important if rocking-
induced axial forces are significant because the rocking frequency may be of the order of the isolation-

system frequency
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Figure 8-15a and Figure 8-15b present the results of response-history analysis of model T2Q6
using one ground motion from the set of 30, scaled to 167% DBE shaking. Models 1, 2, and 3 in
the legend are: 1) shear stiffness K, independent of axial load, 2) shear stiffness dependent
on axial load using K|, for the buckling load in Equation (8.6), and 3) shear stiffness K
dependent on axial load using P, for the buckling load in Equation (8.6). The peak horizontal
displacement is not affected by the choice of the model. The fluctuations in the hysteresis loops
of models 2 and 3 occur at time instants near peak displacement but do not increase the
shearing forces transmitted to the superstructure. Figure 8-15b presents fluctuations in the
shear stiffness, calculated as the shear stiffness of models 2 and 3 normalized by the shear
stiffness of model 1, which is 3.52 MN/m.

The outcomes of the response-history analysis of the ten base-isolated NPP models for the
other ground motion sets, at all four intensities of shaking, are virtually identical to those seen in
Figure 8-15, namely, that ignoring the effect of axial load on horizontal stiffness does not
compromise the calculation of peak horizontal displacements or transmitted shear force to the
superstructure.

— Model 1 Model 2 —-— Model 3
3000 — T T 1.2 — T T 1
L 4 /s L
2000 r g § 1 g
Z | \m | Vil v o
< 1000 [ . o 081 3 .
Q + ~ L
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-2000 . = 02r y
L 4 m -
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Horizontal displacement (mm) Time (sec)
a) Shear response b) Variation in normalized shear stiffness

Figure 8-15 Response of T2Q6 to ground motion 1 at 167% DBE

8.4.6 Cumulative effects

The responses of the ten models considering all five characteristics listed in Section 8.2 are
considered next. The ratios of the percentiles of the peak shear displacement for the simplified
and advanced base-isolated NPP models, considered separately, at different intensities of
shaking, are presented in Figure 8-16, where D is the displacement and its subscript denotes
the intensity and the percentile of the peak shear displacement. Figure 8-17 presents horizontal
displacements obtained using the advanced models normalized by the median DBE horizontal
displacement calculated using the simplified model. The plots in the figures can be used to
estimate horizontal displacements at 150+% DBE shaking for a range of isolation systems by
calculating the median DBE horizontal displacement using the simplified isolator model. For
example, the DBE median horizontal displacement obtained using the simplified model can be
increased by the ratios presented in Figure 8-17 to address the five intra-earthquake changes in
the mechanical properties of LR bearings enumerated in Section 8.2.
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The numbers of ground motions for which cavitation and buckling are predicted are identified in
Table 8-13 and Table 8-14, respectively, noting that simplified model of Section 8.3 cannot
account for either behavior. The use of a displacement-dependent model for the calculation of
buckling load predicts instabilities in many cases for intensities greater than DBE. Flexible
(longer period) isolation systems with low strength (e.g., T3Q3) are more vulnerable to buckling.
The results of response-history analyses for which buckling is predicted are not included in the
calculation of the percentiles presented in Table 8-15 through Table 8-17. Only mean values are
reported in shaded cells for these shaking intensities at which 15 or more (of 30) ground
motions result in isolator buckling.

Table 8-13 Number of ground motion sets (of 30) for which cavitation is predicted; advanced

model
Intensity Isolation system
(% DBE) | T2Q3 | T2Q6 | T2Q9 | T2Q12 | T2Q15 | T3Q3 | T3Q6 | T3Q9 | T3Q12 | T3Q15
100 15 15 15 16 14 29 28 29 29 29
150 29 29 28 28 28 30 30 30 30 30
167 29 29 29 28 28 30 30 30 30 30
200 30 30 30 30 30 30 30 30 30 30
Table 8-14 Number of ground motion sets (of 30) for which buckling is predicted; advanced
model
Intensity Isolation system
(% DBE) | T2Q3 | T2Q6 | T2Q9 | T2Q12 | T2Q15 | T3Q3 | T3Q6 | T3Q9 | T3Q12 | T3Q15
100 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 15 7 2 1 0
167 3 0 0 0 0 24 19 10 8 8
200 12 8 2 2 0 29 27 22 24 19

Peak horizontal displacements are summarized in Table 8-15. The 90" percentile horizontal
strain in the LR bearings at 167% DBE shaking are smaller than 300% for all isolation systems
except those with low strength. The peak shearing and compressive forces normalized by the
gravity load are presented in Table 8-16 and Table 8-17, respectively. Stiff (shorter period)
isolation system transmits greater shear forces to the superstructure, with the mean values for
T2Q3 and T2Q6 exceeding 100% at 200% DBE shaking. For the normalized compressive
forces in Table 8-17, the increment above 100 represents the effect of the vertical ground
motion. The high intensity of the vertical shaking at the site of the Diablo Canyon Nuclear
Generating Station is reflected in these compressive forces, with mean values at 200% DBE
above 600% for all models. This value is greater than that calculated by summing gravity and
earthquake forces calculated using the peak spectral ordinate of the 2% damped vertical
spectrum of Figure 9-6¢ (5.4W = W + 2*2.2W ) because the vertical damping ratio falls
below 2%. (The Rayleigh damping coefficients were selected by assigning 2% damping to the
vertical frequency calculated using axial stiffness at zero horizontal displacement: the decrease
in the vertical frequency due to a reduction in axial stiffness associated with horizontal
displacement results in a smaller damping ratio than 2%.)

Peak tensile forces normalized by the initial cavitation force, F,, are presented in Table 8-18.
Mean values are reported because the data did not fit a lognormal distribution. The mean peak
tensile forces exceed the cavitation force at 150%DBE shaking due to the intense vertical
shaking at the Diablo Canyon site.
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8.5 Summary and Conclusions

Ten models of a base-isolated NPP are analyzed using thirty sets of ground motions that are
selected and scaled to be consistent with uniform hazard response spectra for a return period of
10,000 years (or DBE shaking) at the site of the Diablo Canyon Nuclear Generating Station. A
two-node macro model is used for response- history analysis. Two types of LR bearing models
are analyzed. The first is the simplified model that is widely used and implemented in
contemporary software programs, whereas the second is an advanced model that addresses
five mechanical characteristics of elastomeric bearings under extreme loading:

Strength degradation in shear due to heating of the lead core (LR bearings only)
Variation in buckling load due to horizontal displacement

Cavitation and post-cavitation behavior due to tensile loading

Variation in axial stiffness due to horizontal displacement

Variation in shear stiffness due to axial load

o=

The advanced model, which was verified and validated per ASME best practices, is
implemented as user element LeadRubberX in OpenSees. The influence of each characteristic
and of the combination of the five characteristics are investigated and results are compared with
those obtained using the simplified model. The main conclusions of the study, which are specific
to a region of moderate to high seismic hazard, are:

1. Heating of the lead core has a relatively small effect (< 10%) on horizontal DBE shear
displacements but the influence increases at higher intensities of shaking.

2. Peak horizontal displacement is more sensitive to the heating of lead cores than peak
shear force.

3. For a given isolation period, the effect of lead core heating decreases with an increase in
the ratio of characteristic strength to weight, whereas for a given value of the ratio, the
effect decreases with an increase in isolation period.

4. The characteristic strength of a LR bearing may degrade substantially during extreme

earthquake shaking, with values falling below half the initial value for 150+% DBE

shaking.

The temperature in a lead core may rise by 100+ °C for 150+% DBE shaking.

The axial response of a NPP base-isolated with LR bearings is not affected by changes

in the mechanical properties of the lead core due to heating.

7. The buckling load of a LR bearing varies substantially during earthquake shaking. The
displacement-dependent model for buckling load predicts failure for many more ground
motions than the constant buckling load model, and is recommended for use in practice.

8. No effect of the variation in axial compression stiffness with lateral displacement is
observed on the axial response at DBE shaking. A moderate effect is observed at higher
intensities of shaking.

9. The horizontal (shear) force response of a base-isolated NPP is not affected by
variations in axial compressive stiffness due to lateral displacements.

10. Of the five characteristics of LR bearings discussed in Section 8.2, 1) strength
degradation due to heating of the lead core, 2) variation in buckling load due to
horizontal displacement, and 3) variation in axial stiffness due to horizontal
displacement, affect the responses of a base-isolated NPP most significantly.

o o
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9 RESPONSE OF A LUMPED-MASS MODEL OF A BASE-ISOLATED
NUCLEAR POWER PLANT

9.1 Introduction

The response of a base-isolated nuclear power plant (NPP) structure, calculated using a two-
node macro model for the isolation system, was discussed in Chapter 8. A detailed stick model
of a NPP nuclear island is presented in this chapter. The superstructure is represented by an
equivalent lumped-mass model, supported by a rigid basemat. The entire nuclear island (NPP
and basemat) is isolated using lead rubber (LR) bearings. Seismic isolation systems of two
periods and three values of Q, /W (supported weight to strength ratios) are prepared, for a
total of six models. Response-history analysis of the six models is performed. Ground motions
are selected and scaled to be consistent with response spectra for design basis and beyond
design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station.
Two mathematical models of LR bearings are used: 1) simplified, and 2) advanced. The
simplified model represents the current state of modeling of LR bearings in contemporary
structural analysis programs, whereas the advanced model includes those five characteristics of
LR bearings that are expected to influence the response of a base-isolated NPP at higher
intensities of earthquake shaking.

The stick model of the NPP presented in EPRI (2007) is described. Numerical models of the
NPP are developed in OpenSees and SAP2000 based on the information presented in EPRI
(2007). The OpenSees model is verified using results of modal analysis of the SAP2000 model
presented in EPRI (2007).

9.2 Fixed-base Model of a Nuclear Power Plant

The details of the stick model of the sample Nuclear Power Plant (NPP) is reproduced here from
EPRI (2007). The three-dimensional model of NPP was simplified to three concentric lumped-
mass stick models of the Coupled Auxiliary and Shield Building (ASB), the Steel Containment
Vessel (SCV), and the Containment Internal Structure (CIS). EPRI (2007) provides the
equivalent nodal and element properties of the stick models created in SAP2000 (CSI, 2007). A
schematic of the stick models is presented in Figure 9-1. The model presented in EPRI (2007) is
a modified version of the original model in Orr (2003).

The layout of the reactor model is presented in Appendix C.1. The geometric and material
properties of the stick models are reproduced in Appendix C.1. EPRI (2007) provides results of
modal analysis of the fixed-based stick models performed in SAP2000 as ASB, SCV, and CIS.

The properties of the stick models presented in EPRI (2007) were used to create and verify the
stick models in OpenSees and SAP2000. The properties of the stick model presented in EPRI
(2007) uses the following convention:

1. The nodal properties are specified in global coordinates

2. The element and sectional properties are specified in local coordinates
3. The North-South and East-West directions are the X and Y directions, respectively
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ASB 80 Low on Auxiliary Shield Building
B0mc Low on Auxiliary Shield Building Mass Center
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30 Top of Shield Building
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150" 5 Base of Containment Internal Structure
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(‘ 150 .r"( 538out  Top of Containment Internal $tructure CQutrigger

538mc Top of Containment Internal Structure Mass Center

Figure 9-1 Stick model of the nuclear power plant (EPRI, 2007)
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The stick models in SAP2000 created here adopt the same axes convention as EPRI (2007).
However, the models in OpenSees use a different sign convention, as shown in Figure 9-2,
which is the default axes convention used by OpenSees. The development of the SAP2000 and
the OpenSees models are described in the following sections.

Y

N . » 5
OpenSees SAFP2000 EPRI(2007)

Z W

Figure 9-2 Orientation of the coordinate axes
9.2.1 Modal analysis
9.2.1.1 SAP2000 model

The fixed-base models of the ASB, CIS, and SCV were created in SAP2000. Modal analyses of
the fixed-base models of ASB, SCV, and CIS were performed and the results are presented in
Appendix C.3.

9.2.1.2 OpenSees model

The OpenSees model uses a different coordinate system than the SAP2000 model. The +Y and
+Z axes in OpenSees correspond to the +Z and -Y axes in SAP2000, respectively, as shown in
Figure 9-2. The material and geometric properties of the stick model provided in EPRI (2007)
were transferred to the coordinate axes used for the OpenSees model. A linear geometric
transformation is used in OpenSees, which is shown in Figure 9-3. This geometric
transformation ensures the same orientation of local coordinate axes for an element’s section in
OpenSees and SAP2000. OpenSees provides an option to orient local axes in an element
through the vector Vecxz . The local X axis is always defined by the two element nodes. A
user must specify the Vecxz such that it not parallel to the local X axis. The local y axis is
obtained as the cross product of X and Vecxz. The local Z axis is obtained as the cross
product of y and Vecxz per the right-hand rule. A linear geometric transformation is assigned
in OpenSees by specifying X, Y, and Z of Vecxz . The orientation of the local axes in
OpenSees for horizontal and vertical elements is shown in Figure 9-3. The vector Vecxz (0, O, -
1) for the horizontal and vertical elements were chosen such that local axes in OpenSees have
the same orientation as the default orientation of the local axes in SAP2000.

The forceBeamColumn element in OpenSees was used to model the elements connecting two
nodes of the stick model. The element rigidLink was used for rigid components. Eigen analysis
was performed to obtain modal periods and frequencies. The frequencies and periods of the
first twenty modes of the stick models in OpenSees are presented in Table 9-1.
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Figure 9-3 Orientation of local axes in OpenSees
Table 9-1 Modal properties of the stick models in OpenSees
Mode ASB SCv CIS
Period (sec) | Freq. (Hz) | Period (sec) | Freq. (Hz) | Period (sec) | Freq. (Hz)

1 0.356 2.808 0.274 3.654 0.081 12.340
2 0.330 3.032 0.180 5.548 0.078 12.860
3 0.203 4.923 0.158 6.323 0.066 15.172
4 0.159 6.291 0.157 6.371 0.062 16.083
5 0.159 6.308 0.104 9.628 0.058 17.334
6 0.142 7.043 0.083 12.048 0.050 19.865
7 0.118 8.459 0.062 16.216 0.049 20.509
8 0.117 8.531 0.053 18.910 0.037 26.898
9 0.104 9.610 0.053 18.974 0.035 28.586
10 0.080 12.542 0.038 26.652 0.032 31.157
11 0.074 13.531 0.032 31.381 0.031 31.890
12 0.072 13.918 0.031 31.979 0.031 32.277
13 0.067 14.824 0.028 35.821 0.029 34.664
14 0.057 17.515 0.027 36.515 0.028 36.198
15 0.052 19.365 0.027 36.560 0.027 36.422
16 0.051 19.420 0.023 44.318 0.027 37.560
17 0.051 19.633 0.019 52.361 0.025 39.606
18 0.045 22.389 0.019 53.014 0.025 40.063
19 0.043 23.210 0.017 60.243 0.022 44.713
20 0.039 25.508 0.016 61.638 0.019 53.071




9.2.1.3 Verification

The results of the modal analyses of the stick models created in OpenSees and SAP2000, and
the SAP2000 results of EPRI (2007) are presented in Table 9-2, Table 9-3, and Table 9-4. A
very good agreement between modal periods and frequencies is achieved.

Table 9-2 Modal properties of Auxiliary Shield Building (ASB)

Mode Axis Direction Period (sec) Frequency (Hz)
OpenSees|SAP2000 OpenSees|SAP2000| EPRI|OpenSees|SAP2000 |EPRI
2 X X Horizontal| 0.330 0.323 ]0.312] 3.032 3.097 | 3.2
5 X X Horizontal| 0.159 0.136 - 6.308 7.336 -
10 X X Horizontal| 0.080 0.070 - 12.542 | 14.197 -
1 Z Y Horizontal| 0.356 0.362 |0.333] 2.808 2762 | 3.0
4 Z Y Horizontal| 0.159 0.142 - 6.291 7.026 -
9 Z Y Horizontal| 0.104 0.072 - 9.610 13.938 -
6 Y Z Vertical 0.142 0.093 |0.101] 7.043 10.704 | 9.9
16 Y Z Vertical 0.051 0.043 - 19.420 | 23.251 -
Table 9-3 Modal properties of Steel Containment Vessel (SCV)
Axis . . Period (sec) Frequency (Hz)
Mode| 5 nSees[SAP2000| PreCtON (5pensSees[SAP2000] EPRI|OpenSees| SAP2000|EPRI
2 X X Horizontal| 0.180 0.180 |0.181] 5.548 5548 | 55
5 X X Horizontal| 0.104 0.104 |0.105] 9.628 9.628 | 9.5
9 X X Horizontal| 0.053 0.053 ]0.101] 18.973 | 18.973 | 9.9
3 Z Y Horizontal| 0.158 0.158 |0.164| 6.322 6.325 [6.10
1 Z Y Horizontal| 0.274 0.275 - 3.654 3.632 -
8 Z Y Horizontal| 0.053 0.053 - 18.910 18.910 -
7 Y Z Vertical 0.062 0.062 |0.063| 16.216 | 16.216 |16.0
10 Y Z Vertical 0.038 0.038 - 26.652 | 26.652 -
Table 9-4 Modal properties of Containment Internal Structure (CIS)
Axis . . Period (sec) Frequency (Hz)
Mode| 5 - nSees[SAP2000| PIretON (5pensSees|SAP2000] EPRI|OpenSees| SAP2000[EPRI
2 X X Horizontal| 0.078 0.079 |0.075| 12.860 | 12.608 |13.3
6 X X Horizontal| 0.050 0.048 |0.050| 19.865 | 20.648 |20.1
9 X X Horizontal| 0.035 0.036 [0.035| 28.586 | 27.866 |28.9
1 Z Y Horizontal| 0.081 0.086 |0.083] 12.340 | 11.682 |12.0
4 Z Y Horizontal| 0.062 0.060 |0.067| 16.083 | 16.538 |14.9
8 Z Y Horizontal| 0.037 0.039 |0.057| 26.898 | 25.879 |17.5
11 Y Z Vertical 0.031 0.025 ]0.024| 31.890 | 40.062 |41.4
14 Y Z Vertical 0.028 0.015 - 36.198 | 65.950 -
18 Y Z Vertical 0.025 0.008 - 40.063 | 129.955 | -




9.3 Base-isolated Model of the Nuclear Power Plant

The stick model of the NPP is isolated through a common basemat slab on LR bearings, as
shown in Figure 9-4. The dimensions of the concrete basemat slab are assumed to be
100mx60mx2.5m and the mat is assumed to be rigid in its plane. A symmetric layout of
isolators is used beneath the basemat with the distance between the centers of adjacent
bearings equal to 5 m, which requires a total of N, = 273 isolators, as shown in Figure 9-5.
The spacing between the bearings is in part dictated by the requirement to provide adequate
space for maneouvering of fork lifts to perform maintenace and replacement of bearings.

Six models of base-isolated NPPs are created: two isolation time periods (T = 2, 3 seconds)
and five ratios of characteristic strength to supported weight (Q, / W = 0.06, 0.12, and 0.18).
The models are denoted by TXQy , where X identifies the value of T and y identifies the
percentage of Q, /W . Table 9-5 summarizes the isolator properties assumed for analysis.

e °©

-

Figure 9-4 Stick model of a base-isolated NPP in OpenSees
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Figure 9-5 Plan view of the layout of isolated basemat showing (node, bearing) pairs

Table 9-5 Geometrical and mechanical properties of elastomeric bearings

Property Notation (units) Value
Mass of the superstructure M, (kg) 146284555
Number of LR bearings N, 273
Single rubber layer thickness t. (mm) 10
Number of rubber layers n 31
Total rubber thickness T. (mm) 310
Steel shim thickness t, (mm) 4.75
Outer diameter D, (mm) Varies'
Lead core diameter D, (mm) Varies'
Cover thickness t. (mm) 19
Yield stress of lead o, (MPa) 8.5
Static pressure due to gravity loads Pyaic (MPa) 3.0
Shear modulus G (MPa) Varies?

1, 2: Calculated for each model

A static (gravity) pressure on the bearing of 3 MPa is used for all analyses. The gravity weight
W on a bearing is calculated by dividing the total weight of the superstructure (M, x g ) by the
number of bearings, N, , in the isolation system. The weight W is divided by g to obtain the
equivalent mass M in the three translational directions at the top node (node 2) of the bearings.

The diameter of the lead core is back calculated from Q, / W, assuming an initial yield stress of
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8.5 MPa. The bonded rubber area (and hence the outer diamter) is calculated by dividing the
gravity weight W on the bearing by the static pressure p,,,.. The effective shear modulus is
calculated from the isolation time period T of the model. The geometric and mechanical
properties of the LR bearings are computed from the given values of Q, /W and T as:

W=Msg; AL=(Qd/W)XW;D,= 4i; (9.1)
N, o, z
MWVop W p_ % gy (9.2)
g pstatic 4
2 K. T,
T =nT; KHO=47;2M;G= Z\Of (9.3)

where A, is the area of the lead core; A, is the bonded rubber area, f, is the rubber cover
thickness; and all other variables are defined previously. The geometric and material properties
of the six LR bearings are summarized in Table 9-6.

Table 9-6 Geometric and material properties of LR bearing isolation system models

Property Notation (units) | T2Q6 | T2Q12 | T2Q18 | T3Q6 | T3Q12 | T3Q18
Lead core diameter D; (mm) 217 277 310 172 228 262
Outer diameter D, (mm) 1494 | 1494 1494 | 1494 | 1494 1494
Shear modulus G (MPa) 0.93 0.94 0.95 0.41 0.41 0.42
Horizontal stiffness Ko (MN/m) 5.29 5.29 529 | 235 | 2.35 2.35
Vertical stiffness K,, (MN/m) 6623 | 6506 6431 | 5272 | 5175 5109
Buckling load P., (MN) 130 130 130 77 77 77
Cavitation force F, (MN) 4.92 4.92 4.92 2.19 219 219

The parameters of the tensile model (see Chapter 3), k, a, and 4,,,, are set equal to 20, 1.0,
and 0.75, respectively, for all models. A sensitivity analyses was performed in Section 5.6.2,
which showed that the tensile response of an elastomeric bearing is not sensitive to either a or
@.ax » @nd the values @ = 1.0and ¢, = 0.75 recover the results of experiments. For the large
diameter bearings considered here, a very sharp reduction in the tensile stiffness following
cavitation is expected, which is captured by k = 20.

9.4 Response-history Analysis

The effect of five characteristics of LR bearings on the response of base-isolated NPP are
investigated:

Strength degradation in shear due to heating of the lead core (LR bearings)
Variation in buckling load due to horizontal displacement

Cavitation and post-cavitation behavior due to tensile loading

Variation in axial stiffness due to horizontal displacement

Variation in shear stiffness due to axial load

abron=
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The LeadRubberX element permits the user to include each of these behaviors, or a
combination thereof, in an analysis through a set of tags. OpenSees does not provide an option
for modal damping; Rayleigh damping is used instead, and the multipliers to the mass and
stiffness matrices are calculated by assigning 2% damping to the 1st (torsion) and 6th (axial)
modes.

The set of 30 three-component ground motions selected and spectrally matched by Kumar
(2015) to be consistent with uniform hazard response spectra (UHRS) for design basis
earthquake (DBE) shaking at the site of the Diablo Canyon Nuclear Generating Station are used
for response-history analysis (Figure 9-6). The UHRS are calculated for a return period of
10,000 years and 5% damping.

3.5 3.5 3.5
S - Target (£ = 5%) S 2 Target (§=5%) f§ 5 A Target (§=5%)  §
- 3 F|—— Achieved (§=5%)f ¢ 3 F | Achieved (£=5%)] ¢ 3 F|—— Achieved (£ =5%) ]
225 | 1 825¢ 1 2 2.5 E|=-— Achieved (§=2%)}
© ; © : © f‘\ ;
S 24 o 24 L 2 F ]
8 ' 3 ' 8 i
o 1.5 o 1.5 o 1.5
T o1 T o1 T
305 f 3 0.5 F 305 f
() 3 w b (2] 3
0°t (N 0°t
o 1 2 3 4 5 0o 1 2 3 4 5 0o 1 2 3 4 5
Period (sec) Period (sec) Period (sec)
a) X-direction b) Y-direction c) Z-direction

Figure 9-6 Acceleration response spectra of ground motions

Response-history analysis is performed using these 30 sets of ground motions for each of the
ten models at intensities of 50% DBE, 100% DBE, 150% DBE, and 200% DBE shaking. The
intensity of 150% DBE corresponds to beyond design basis earthquake in Department of
Energy (DOE) space (see Huang et al. (2009) and Huang et al. (2013)). The intensity of 50%
DBE is representative of low and moderate seismic hazard at Central and East United States
(CEUS) sites. The mean 2% damped vertical spectrum is provided to aid later interpretation of
the vertical response of the isolation systems.

The results of the response-history analyses are presented in the following sections. The force
and displacement responses of LR bearings are monitored at the center and the four corners of
the basemat. The acceleration, velocity and displacement response of the nodes shown with
solid circles in Figure 9-4 are monitored.

The peak responses for each ground motion set are assumed to distribute lognormally with
arithmetic mean x, median @, and logarithmic standard deviation ¢, which are computed as:

yzlzn:y’, 9=exp(lilny,j a:\/LZn:(Iny,—lnG)z (9.4)
ni3 ni3 n-1

— i

where N is the total number of ground motion sets (=30), and y; is the peak response for ith
ground motion set.
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The pth percentile (e.g., 50, 90, 99) value, y,, is calculated as the inverse of the lognormal
cumulative distribution function F per Mathworks (2014):

yp=F*1(p|ln6,a)={yp:F(yp|ln0,a)=p} (9.5)

These percentiles can be calculated with the aid of normal probability table. MATLAB provides a
command logninv to compute pth percentile values of a lognormal distribution.

9.5 Results of Analysis using the Simplified Isolator Model

The simplified model does not consider any of the five characteristics identified in Section 9.4.
For analysis using the simplified model, all tags are set to 0 in LeadRubberX. The peak
horizontal, compressive and tensile displacements of the bearings at the center (4137) and
below the four corners (4001, 4021, 4253, and 4273) of the isolated basemat are presented in
Table 9-7 for model T2Q6. In this table, u, and u, are the compressive and tensile
deformations, u, and &, are the vector sum of deformations and strains, respectively, along the
two orthogonal horizontal axes, and D, is the bonded rubber diameter of the LR bearing. The
rigid diaphragm constraint assigned to the basemat ensures that the top node of each bearing
connected to the basemat move as if in a rigid plane along the horizontal direction. The peak
tensile and compressive deformations in the outer bearings are greater than those near the
center of the isolation system due to the rocking motion of the superstructure. The compressive
deformation in the bearings due to gravity load is approximately 0.8 mm.

The rotations of the superstructure at the basemat level are summarized in Table 9-8, where
g7 is the mean peak torsion about the vertical Z axis, and ¢;"* and "> are the mean
rotations about horizontal X and y , respectively, for the 30 ground motion sets. Angles are
calculated by the inverse sine of the peak differential displacements between nodes at the
opposite corners of the basemat divided by the distance between them. Although these values
are small, they result in finite relative horizontal and vertical displacements over the plan

dimension of the basemat.

The mean peak zero-period and spectral accelerations in the three orthogonal directions, at the
center of basemat, for the 30 ground motion sets are presented in Table 9-9 and Table 9-10,
respectively. The zero-period spectral accelerations are consistent with the values obtained
from the response spectra in Figure 9-6. Spectral acceleration in the vertical direction is
sensitive to how damping is defined for the response-history analysis. The effect of damping on
the response of lumped-mass stick model is discussed in a later section.

Mean and 50", 90" and 99" percentile responses are presented in Appendix C.5, noting that
the 90" and 99" percentile responses, for beyond design basis and design basis shaking,
respectively, are important thresholds for seismically isolated nuclear structures (Huang et al.,
2009; Huang et al., 2013). The horizontal response of isolation system is assumed to be
represented by the bearing at the center of the basemat. Vector sums of the shear
displacements and forces are calculated at each time step in an analysis and the peak values
for a given ground motion are used to form the distributions of response.
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Table 9-7 Mean peak displacements (mm) for the 30 ground motion sets at the center and
four corners of the basemat (model T2Q6); simplified model

. 100% DBE 200% DBE
Bearlng u;nax utmax Ufr,nax E’Tax u/r7nax /Do uzr:nax u:nax u;,nax 8;,”6)( u/r7nax /Do
4137 1.9 0.3 | 340 | 110 0.23 3.0 0.8 | 851 | 275 0.57
4001 2.0 0.4 340 | 110 0.23 3.2 1.6 | 853 | 275 0.57
4021 2.0 0.4 335 | 108 0.22 3.3 1.6 | 830 | 268 0.56
4253 2.0 0.4 347 | 112 0.23 3.2 1.6 | 875 | 282 0.59
4273 2.0 0.4 341 110 0.23 3.2 1.6 855 | 276 0.57

Table 9-8 Mean peak rotations (degrees) for the 30 ground motion sets; simplified model

50% DBE

100% DBE

150% DBE

200% DBE

Model

max
02

max max
¢x ¢y

max
02

¢max
X

¢;nax

max
02

¢max
X

¢;n ax

max
HZ

¢max
X

¢}I’/T1 ax

T2Q6

0.004

0.0003 | 0.0002

0.016

0.0005

0.0003

0.031

0.0007

0.0004

0.047

0.0010

0.0006

T2Q12

0.003

0.0004 | 0.0002

0.009

0.0005

0.0003

0.018

0.0007

0.0004

0.031

0.0009

0.0006

T2Q18

0.003

0.0004 | 0.0003

0.007

0.0006

0.0004

0.013

0.0008

0.0005

0.022

0.0010

0.0006

T3Q6

0.005

0.0002 | 0.0001

0.013

0.0004

0.0002

0.025

0.0005

0.0003

0.041

0.0007

0.0004

T3Q12

0.005

0.0003 | 0.0002

0.009

0.0005

0.0003

0.016

0.0006

0.0004

0.026

0.0008

0.0005

T3Q18

0.005

0.0004 | 0.0003

0.009

0.0006

0.0004

0.014

0.0007

0.0004

0.021

0.0009

0.0005

1. An angle of 0.01 degrees correspond to 17 mm of horizontal displacement over a basemat length of 100 m.
2. An angle of 0.0005 degrees correspond to 1 mm of vertical displacement over a basemat length of 100 m.

Table 9-9 Mean peak zero-period accelerations (g) for the 30 ground motion sets at center of
basemat (node 2137); simplified model

50% DBE 100% DBE 150% DBE 200% DBE
Model a)r(nax a;ﬂax arz’nax a)n(wax a;ﬁax a:wax a)r(nax ar;ax a;nax a:’lax a;nax a;nax
T2Q6 | 0.16 | 0.17 | 0.56 | 0.33 | 0.35 | 1.11 | 0.52 | 0.55 | 1.66 | 0.76 | 0.78 | 2.23
T2Q12 | 0.2 0.22 | 0.56 | 0.31 | 0.34 | 1.12 | 0.46 0.5 165 | 0.65 | 0.69 | 2.23
T2Q18 | 0.25 | 0.27 | 056 | 0.34 | 0.39 | 1.12 | 047 | 052 | 1.68 | 0.63 | 1.21 | 2.25
T3Q6 | 0.12 | 0.12 0.6 0.2 0211119 | 0.3 | 031|179 | 039 | 042 | 2.34
T3Q12 | 0.17 | 0.18 0.6 | 0.23 | 0.24 1.2 0.3 | 0.33 1.8 0.4 0.42 24
T3Q18 | 0.22 | 0.23 0.6 | 0.27 0.3 1721 1 035|036 | 1.81 | 041 | 044 | 2.41

Table 9-10 Mean peak spectral accelerations (g) for the 30 ground motion sets at center of
basemat (node 2137); simplified model

Model

50% DBE

100% DBE

150% DBE

200% DBE

max

aX

max

a,

max

max

aX

max

a,

max

aZ

max

aX

max

a,

max

aZ

max

aX

max

a,

max

aZ

T2Q6

0.54

0.55

2.14

1.17

1.15

4.28

2.15

2.11

6.35

3.46

3.33

8.56

T2Q12

0.8

0.91

2.14

1.08

1.1

4.28

1.48

1.49

6.37

2.3

2.26

8.56

T2Q18

1.07

1.14

2.14

1.35

1.48

4.28

1.61

1.65

6.42

1.99

3.29

8.71

T3Q6

0.43

0.42

2.06

0.56

0.59

4.13

0.88

0.93

6.19

1.36

1.42

8.08

T3Q12

0.76

0.69

2.06

0.86

0.84

4.11

0.96

1

6.17

1.12

1.16

8.22

T3Q18

1.06

0.92

2.05

1.19

1.1

4.11

1.3

1.26

6.16

1.39

1.41

8.22




9.6 Results of Analysis using the Advanced Isolator Model

The advanced isolator model considers the five characteristics of LR bearings identified in
Section 9.4. The response of base-isolated NPP considering all five characteristics is
considered next.

The peak horizontal, compressive and tensile displacements of the bearings are summarized in
Table 9-11. All of the bearings undergo approximately the same shear deformation. Rocking of
the superstructure induces additional tensile and compressive deformation in the outer
bearings.

The rotations of the superstructure at the basemat level are summarized in Table 9-12. A
substantial increase in rotation about the horizontal axes is observed with respect to the
simplified isolator model of Table 9-9, which is due to cavitation and buckling producing larger
axial deformations in the bearings at the higher intensities of ground motion.

The mean peak zero-period and spectral accelerations in the three orthogonal directions, at the
center of the basemat, for the 30 ground motion sets, are presented in Table 9-13 and Table
9-14, respectively. The advanced isolator models result in higher accelerations than the
simplified isolator models (Table 9-9 and Table 9-10). A substantial increase in the vertical
acceleration is observed at higher intensities of ground motion. Spectral acceleration in the
vertical direction is sensitive to how damping is defined for the response-history analysis. The
effect of damping on the response of lumped-mass stick model is discussed in a later section.

The stick model, unlike the two-node macro model, provides information on cavitation and
buckling of individual bearings in an isolation system. The isolation system consists a total of
273 bearings. The outer bearings are more vulnerable to cavitation and buckling than those
bearings near the center of the basemat. The number of bearings (of 273) that underwent
cavitation and buckling were recorded for each ground motion set. The median numbers for the
30 ground motion sets, at each intensity, are presented in Table 9-15 and Table 9-16 for
buckling and cavitation, respectively. All six isolation systems provide adequate safety against
buckling even at the higher intensities of shaking, except for T3Q6 at 200%DBE. The flexible
(longer period) isolation systems with low strength (e.g., T3Q6) are more vulnerable to buckling.
Bearings in the isolation system cavitate at intensities of 100+% DBE shaking due to the intense
vertical shaking at the Diablo Canyon site. The period of vibration in the axial direction for the 2
and 3 sec isolation systems are 0.06 and 0.07 sec, respectively, and the 2% damped vertical
spectral acceleration at these periods exceed 2.2g at 100% DBE shaking (see Figure 9-6c¢).
(Note that the vertical DBE spectrum is for the surface free field and not a foundation input
response spectrum: accounting for input at depth and incoherence should substantially reduce
the vertical shaking effects.) Cavitation in bearings can be reduced by increasing the shear
modulus, but this option is limited by a manufacturer’s ability to produce natural rubber bearings
of high shear modulus that do not exhibit scragging or age-related stiffening.
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Table 9-11 Mean peak displacements (mm) for 30 ground motion sets at the center and four
corners of the basemat (model T2Q6); advanced model

Beari 100% DBE 200% DBE
earin
g u‘r:nax utmax ufr,nax g}Tax U/Tax /Do u(r:nax u;nax ufr]nax g}Tax UITEX /Do

4137 2.0 0.3 | 359 | 116 0.24 6.3 6.1 981 | 316 0.66

4001 2.3 0.5 | 359 | 116 0.24 84 | 10.0 | 979 | 316 0.66

4021 2.2 0.5 | 352 | 114 0.24 7.7 1 10.3 | 958 | 309 0.64

4253 2.2 04 | 366 | 118 0.24 8.1 9.8 | 1008 | 325 0.67

4273 2.2 04 | 360 | 116 0.24 8.0 9.5 | 988 | 319 0.66

Table 9-12 Mean peak rotations (degrees) for 30 ground motion sets; advanced model

50% DBE 100% DBE 150% DBE 200% DBE

MOdeI max max max max max max max max max max max max
02 ¢ ¢,V 02 ¢ ¢y 02 ¢ ¢y 02 ¢ ¢y

X X X X

T2Q6 | 0.005 |0.0003|0.0002| 0.018 |0.0006|0.0003| 0.036 |0.0017|0.0013| 0.06 |0.0056|0.0052

T2Q12 | 0.003 |0.0003]0.0002| 0.01 |[0.0006|0.0003| 0.022 |0.0014| 0.001 | 0.04 |0.0047/0.0042

T2Q18 | 0.003 |0.0004|0.0002| 0.007 |0.0006|0.0004| 0.015 |0.0014| 0.001 | 0.028 |0.0042|0.0035

T3Q6 | 0.005 |0.0002|0.0001| 0.015 |0.0006|0.0004 | 0.033 |0.0032| 0.003 | 0.07 |0.0072|0.0086

T3Q12 | 0.005 |0.0003|0.0002| 0.01 |0.0006|0.0004| 0.019 |0.0032|0.0025| 0.034 |0.0064|0.0068

T3Q18 | 0.005 [0.0004|0.0002| 0.009 {0.0008]0.0005| 0.015 |0.0035|0.0027 | 0.025 |0.0066 |0.0062

1. An angle of 0.01 degrees correspond to 17 mm of horizontal displacement over a basemat length of 100 m.
2. An angle of 0.0005 degrees correspond to 1 mm of vertical displacement over a basemat length of 100 m.

Table 9-13 Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of
the basemat (node 2137); advanced model

50% DBE 100% DBE 150% DBE 200% DBE
Model a:ﬁax a;ﬁax arz’nax a)n(wax a;ﬂax a:wax a)r(nax ar;ax a;nax a)TaX a;nax a;’lax

T2Q6 | 0.16 | 0.18 | 0.56 | 0.34 | 0.36 | 1.13 | 0.62 | 0.67 | 1.89 | 1.08 | 1.2 | 3.54

T2Q12 | 0.19 | 0.22 | 0.56 | 0.31 | 0.34 | 1.12 | 053 | 0.6 | 1.87 | 0.98 | 1.1 3.4

T2Q18 | 0.25 | 0.26 | 0.56 | 0.33 | 0.38 | 1.12 | 0.5 | 0.6 | 1.88 | 0.89 | 1.03 | 3.28

T3Q6 | 0.11 | 012 | 0.6 | 0.21 | 0.23 | 1.27 | 0.49 | 0.59 | 2.56 | 0.98 | 1.1 4.81

3
T3Q12 | 0.17 | 018 | 0.6 | 023 | 0.26 | 1.24 | 0.5 | 0.64 | 2.58 | 0.92 | 1.04 | 4.38

T3Q18 1 0.21 | 0.22 | 0.6 | 0.27 | 0.31 | 1.26 | 0.54 | 0.7 | 255 | 091 | 1.1 | 4.27

Table 9-14 Mean peak spectral accelerations (g) for 30 ground motion sets at center of
basemat (node 2137); advanced model

Model 50% DBE 100% DBE 150% DBE 200% DBE
ode a:wax a}r/nax rznax a;nax a;/nax arz1nax a:‘ax a;/nax a;nax a:wax a}r/nax arz’nax

T2Q6 | 0.52 | 0.54 | 214 | 1.33 | 1.29 | 435 | 3.01 | 2.72 | 6.77 | 4.97 | 4.62 | 12.97

T2Q12 | 0.78 | 0.88 | 2.14 | 1.02 | 1.06 | 4.31 | 1.72 | 1.82 | 6.7 | 3.3 | 3.38 | 11.64

T2Q18 | 1.03 | 1.11 | 214 | 1.28 | 1.38 | 43 | 1.51 | 1.78 | 6.79 | 2.38 | 2.85 | 11.16

T3Q6 | 0.41 | 0.4 | 2.06 | 0.57 | 0.66 | 417 | 1.32 | 1.81 | 8.91 | 2.51 | 3.22 | 14.43

T3Q12 | 0.72 | 0.65 | 2.05 | 0.78 | 0.8 | 4.07 | 1.17 | 1.99 | 8.62 | 2.25 | 2.99 | 13.81

T3Q18 | 1.00 | 0.88 | 2.05 | 1.07 | 1.04 | 41 | 1.38 | 224 | 8.2 | 218 | 3.27 | 13.71




Table 9-15 Median number of bearings (of 273) for 30 ground motion sets for which buckling
is predicted; advanced model

s 1o Isolation system
Intensity (% DBE) 506 T 12012 [ T3a1s | T3Q6 | T3Qi2 | T3Qis
50 0 0 0 0 0 0
100 0 0 0 0 0 0
150 0 0 0 0 0 0
200 0 0 0 43 0 0

is predicted; advanced model

Table 9-16 Median number of bearings (of 273) for 30 ground motion sets for which cavitation

s 1o Isolation system
Intensity (% DBE) 506 T 12012 [ T2Q18 | T306 | T3Q12 | T3Q18
50 0 0 0 0 0 0
100 0 0 0 250 243 240
150 273 261 266 273 273 273
200 273 273 273 273 273 273

The ratios of the percentiles of peak shear displacement for the simplified and advanced base-
isolated NPP models, considered separately, at different intensities of shaking, are presented in
Figure 9-7, where D is the displacement and its subscript denotes the intensity and the
percentile of the peak shear displacement. Figure 9-8 presents horizontal displacements
obtained using the advanced models normalized by the median DBE horizontal displacement
calculated using the simplified model. The plots in the figures can be used to estimate horizontal
displacements at 150+% DBE shaking for a range of isolation systems by calculating the
median DBE horizontal displacement. For example, the DBE median horizontal displacement
obtained using a simplified model can be increased by the ratios presented in Figure 9-8 to
address the five intra-earthquake changes in the mechanical properties of LR bearings
enumerated in Section 9.4. Note that the ground motions used for these analyses were
spectrally matched and do not consider differences in the intensity of shaking along the
perpendicular horizontal axes that is observed in recorded ground motions (Huang et al., 2009).
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9.7 Comparison with Macro-model Analysis

The ratios of the percentiles of the peak horizontal displacement of the two-node macro model
to those of the stick model using the simplified and advanced models of LR bearings, at different
intensities of shaking, are presented in Figure 9-9 and Figure 9-10, respectively. The differences
are small for all three intensities of shaking for the simplified model. Larger differences are
observed at 200% DBE shaking using the advanced isolator model due to buckling in the two-
node macro model. Differences are most pronounced for models T3Q6 and T3Q12, which are
more prone to buckling due to their lower compressive load capacity and higher displacement
demands. The shear stiffness (and hence shear displacement) of an elastomeric bearing
depends on the axial load. The post-buckling® shear response of the two-node macro model,
which consists of a single LR bearing, is not reliable in terms of system behavior, whereas the
isolation system of the stick model of the base-isolated NPP comprises many bearings, so when
one bearing fails, the load is redistributed amongst other bearings in the isolation system. The
post-buckling shear response of the stick model will be more reliable than that of the two-node
macro model. Results of analysis using the two-node macro model are in better agreement with
the stick model for stiffer (smaller period) isolation systems with higher strength (e.g., T2Q12).
The stick model of a base-isolated NPP provides additional information on torsional and rocking
response and the spatial distribution of cavitation and buckling in the bearings.

" The post-buckling capacity of an isolator is assumed to be a small fraction of the buckling load at zero
horizontal displacement and a small compressive stiffness is assigned to avoid convergence issues.
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9.8 Vertical Accelerations in the Superstructure

The base isolation of a nuclear power plant significantly reduces seismic demand in the
horizontal plane but may amplify demand in the vertical direction depending on a) the frequency
content of the ground motion, and b) the mechanical properties of the isolation system. Table
9-17 and Table 9-18 present the mean peak ground accelerations and the mean peak zero-
period accelerations at the center of the basemat of the base-isolated NPPs, respectively, from
response-history analysis of the lumped-mass stick model for the 30 ground motion sets at the
site of the Diablo Canyon Nuclear Generating Station (see Section 9.4). The variations of these
accelerations along the height of the fixed-base and base-isolated superstructure (T2Q6) are
plotted in Figure 9-11. The addition of an isolation system substantially increases response in
the Z (vertical) direction. Ground motion 1 (GM1) and the acceleration response at the center of
the basemat of the base-isolated NPP (T2Q6) subjected to GM1 are plotted in Figure 9-12. The
corresponding response spectra are plotted in Figure 9-13.

The vertical accelerations at locations high in the superstructure (e.g., node 310, 417 in Figure
9-1) are much greater than the peak vertical ground acceleration. This is attributed to 1) the
modal properties of this superstructure, and 2) how damping is modeled, both of which are
described in the following sections.

Table 9-17 Mean peak ground acceleration (g) for 30 ground motion sets

50% DBE 100% DBE 150% DBE 200% DBE
a)r(nax a;nax afZT'IaX a)r;nax a;nax arz’nax a)r:]ax a)r?ax afZT'IaX a)r;nax a;nax asz]aX

052 | 052 | 0.41 | 1.03 | 1.04 | 0.82 | 1.55 | 1.56 | 1.23 | 2.06 | 2.08 | 1.64

Table 9-18 Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of
the basemat; base-isolated NPP

Model 50% DBE 100% DBE 150% DBE 200% DBE
ode a)r(nax a;WaX a;nax a;nax a}'jqax a;nax a)r(nax a;nax a;nax a)r(nax a;nax arznax

T2Q6 | 0.16 | 0.17 | 0.56 | 0.33 | 0.35 | 1.11 | 0.52 | 0.55 | 1.66 | 0.76 | 0.78 | 2.23

T2Q12 | 0.2 {022 1056 | 031 | 0.34 | 112 | 046 | 0.5 | 1.65 | 0.65 | 0.69 | 2.23

T2Q18 | 0.250.27 | 0.56 | 0.34 | 0.39 | 112 | 047 | 052 | 1.68 | 0.63 | 1.21 | 2.25

T3Q6 | 0.12]0.12| 0.6 | 0.2 | 0.21 119 | 0.3 | 0.31]1.79 | 0.39 | 0.42 | 2.34

T3Q12 | 0.17 | 0.18 | 0.6 0..23 0.24 1.2 03 |033| 1.8 | 04 |042 ] 24

T3Q18 1 0.22 {0.23| 0.6 | 0.27 | 0.3 1.21 | 0.35 | 0.36 | 1.81 | 0.41 | 0.44 | 2.41
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9.8.1 Modal properties

The power spectral densities of the ground acceleration (GM1) and the isolated basemat
acceleration (model T2Q6) are shown in Figure 9-14. The vertical frequency of the isolation
system at zero lateral displacement is 16 Hz. The predominant frequency? of the vertical
accelerations of the ground motion and isolated basemat are 7 Hz and 16 Hz, respectively. The
superstructure experiences the vertical acceleration of the isolated basemat. The first vertical
frequency of the fixed-base SCV and the CIS, and the second vertical frequency of the ASB are
16, 32, and 19 Hz, respectively (Table 9-2 through Table 9-4). An input excitation frequency
close to these natural frequencies will result in a significant amplification of motion, which is why
the vertical accelerations of the SCV and ASB are high, but that of the CIS is (relatively) low, as
shown in Figure 9-11.
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Figure 9-14 Power spectral density of vertical acceleration for model T2Q6 subject to GM1;
100% DBE shaking

2 Frequency corresponding to the peak value of the Fourier amplitude spectrum.
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9.8.2 Damping

Damping of the horizontal response of a LR-isolated NPP is provided by hysteretic energy
dissipation in the lead cores of the bearings. Damping will be in the range of 10% to 30% of
critical. A bidirectional hysteretic model is used in the horizontal direction for response-history
analysis to capture energy dissipation (damping) explicitly.

Damping in the LR isolators in the vertical direction will be of the order of 2% to 4% of critical,
and this can be considered viscous. OpenSees provides three options for including viscous
damping in dynamic analysis: 1) mass-proportional, 2) stiffness-proportional, and 3) Rayleigh.
The general formulation of the damping matrix C is:

C=aM+ pK (9.6)

where M and K are the global mass and stiffness matrices, respectively, and « and f are
proportionality coefficients, which are calculated by assigning damping ratios to selected modes.
The coefficients a and [ are zero for stiffness and mass proportional damping, respectively.

The effects of these three damping models on the response of the lumped-mass stick model of
base-isolated NPP are investigated here. The responses of the base-isolated NPP in the
horizontal and vertical directions are mostly due to shear and axial deformations in the LR
bearings. The multipliers to the mass and stiffness matrices, @ and f, were calculated using
Equation (8.2) by assigning 2% damping to the modes (frequencies) corresponding to the
vertical (f = 17.7 Hz) and torsional excitation (f = 0.27 Hz) of the single LR bearing (i.e., two-
node macro model®). This ensured that the contribution of Rayleigh damping to the modes
corresponding to response of base-isolated NPP in the shearing and torsional directions were
bounded and small. The variation of modal damping ratio with frequency is presented in Figure
9-15 for the three damping models. The mass and stiffness proportional damping models
overdamps the lower and higher modes of vibration, respectively, of the structure.

20 T T T T T T . : :
Damping model
16 F Rayleigh |
;\? Mass l
TR —-—-- Stiffness ||
o
i
o 8| 4
%
A
4 (17.7 Hz, 2%) |
0 | |
0 4 8 12 16 20

Frequency (Hz)
Figure 9-15 Variation of modal damping ratios with frequency

3 The two-node macro model is a simplified representation of the lumped-mass stick model of a base-
isolated NPP and both models have the same isolation frequencies in the horizontal and vertical
directions.
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The damping ratios corresponding to the vertical and horizontal isolation frequencies of the
lumped-mass stick model are presented in Table 9-19. The isolation systems T2Qy and T3Qy
have horizontal isolation periods of 2 sec and 3 sec, respectively. The damping ratios
corresponding to the horizontal and vertical frequencies of the superstructure (i.e., ASB, SCV,
CIS) are presented in Table 9-20 through Table 9-22. The damping ratio corresponding to the
horizontal isolation frequency of the isolation sytem is excessive for mass proportional damping,
but small and tiny for Rayleigh and stiffness proportional damping, respectively. Similarly, the
damping ratios corresponding to horizontal and vertical frequencies of the reinforced concrete
superstructure, where an expected value is between 4% and 7%, generally fall well outside this
range.

Response-history analysis of the the lumped-mass stick model of the base-isolated NPP was
performed using the three viscous damping models described above. The mean peak zero-
period accelerations and the percentiles of the peak horizontal displacements at the center of
the basemat are presented in Table 9-23 through Table 9-25 and Table 9-26 through Table
9-28, respectively. No effect of the choice of damping model is observed on basemat
acceleration, but much smaller horizontal displacements of the basemat are obtained when
mass proportional damping is used. There is no meaningful difference between the horizontal
displacements obtained using the Rayleigh and stiffness proportional damping.

The variations of mean peak zero-period acceleration along the height of the superstructure are
plotted in Figure 9-16. All three damping models provide similar accelerations along the height
of the superstructure. This counterintuitive observation can be explained using mean floor
spectra at the center of the isolated basemat. Figure 9-17 presents such spectra for the 30
ground motion sets for the three damping models, for the ASB, SCV and CIS, in the X-, Y- and
Z-directions. The fundamental frequency for the substructure (e.g., CIS) in the direction
considered (e.g., Z-direction, CIS, in Figure 9-17i) is identified: see Table 9-20 through Table
9-22 for details. The floor spectra are generated for the damping calculated for each model at
the fundamental frequency. The damping ratios in the legends of Figure 9.17 are those reported
in Table 9-20 through Table 9-22. The first mode responses are similar in each direction for
each substructure, except for the ASB and CIS in the Z-direction. The relative spectral
amplitudes of Figure 9-17c and Figure 9-17i are consistent with the zero-period accelerations
plotted in Figure 9-16¢c and Figure 9-16i, respectively. It is highly unlikely this outcome would be
observed for substructures in other NPPs.

Although Rayleigh and stiffness proportional damping are suitable for the calculation of isolation
level response as both provide similar estimate of acceleration and displacement response (see
Table 9-23 through Table 9-28), none of the three formulations discussed here adequately
damp the superstructure response. An alternate method to assign damping is discussed in the
following subsection to address this issue.
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Table 9-19 Damping ratios corresponding to isolation frequency

Damping (%)
. . Frequenc :
Direction y (Hz) Rayleigh Mari-s | pz’gf;rr]t?srs]al
- _ 4 proportiona
(a=0.067, f=3.5x10"%) (o= 4.45) (f = 3.6x104)
Vertical 17.7 2.0 2.0 2.0
Horizontal 0.5 1.12 70.8 0.06
(T2Qy ) . . . .
Horizontal 0.33 1.65 107.3 0.04
(T3Qy ) . . . .
Table 9-20 Damping ratios corresponding to the frequencies of the ASB
i o
Direction Frequency (Hz) Damping (%)
Rayleigh Mass Stiffness
Horizontal 1 3.0 0.5 11.8 0.3
Horizontal 2 2.8 0.5 12.6 0.3
Vertical 7.0 0.9 51 0.8
Table 9-21 Damping ratios corresponding to the frequencies of the SCV
D ing (%
Direction Frequency (Hz) amping (%)
Rayleigh Mass Stiffness
Horizontal 1 5.5 0.7 6.4 0.6
Horizontal 2 3.6 0.5 9.8 04
Vertical 16.2 1.8 2.2 1.8
Table 9-22 Damping ratios corresponding to the frequencies of the CIS
i o
Direction Frequency (Hz) Damping (%)
Rayleigh Mass Stiffness
Horizontal 1 12.9 1.5 2.7 1.5
Horizontal 2 12.3 1.4 2.9 1.4
Vertical 31.9 3.6 1.1 3.6
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Table 9-23 Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of
the basemat (node 2137); Rayleigh damping

50% DBE 100% DBE 150% DBE 200% DBE
MOdeI a)r?ax a;"ax a;nax a)r:]ax a;/nax a;nax a)r?ax a;nax asz]aX a)r(nax a;nax asz]aX
T2Q6 | 0.16 | 0.17 | 0.56 | 0.33 | 0.35 | 1.11 | 0.52 | 0.55 | 1.66 | 0.76 | 0.78 | 2.23
T2Q12| 0.2 [ 0.22 /056 | 031 ] 0.34 | 112 | 046 | 0.5 | 1.65 | 0.65 | 0.69 | 2.23
T2Q18 | 0.25|0.27 | 0.56 | 0.34 | 0.39 | 1.12 | 047 | 052 | 1.68 | 0.63 | 1.21 | 2.25
T3Q6 | 0.12]012| 0.6 | 0.2 | 0.21 | 119 | 0.3 | 0.31 ] 1.79 | 0.39 | 0.42 | 2.34
T3Q12 | 0.17 | 0.18 | 0.6 | 0.23 | 0.24 1.2 03 |033| 1.8 | 04 |042 | 24
T3Q18 1 0.22 {0.23| 0.6 | 0.27 | 0.3 1.21 | 0.35 | 0.36 | 1.81 | 0.41 | 0.44 | 2.41

Table 9-24 Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of
the basemat (node 2137); mass proportional damping

50% DBE 100% DBE 150% DBE 200% DBE
Model a;”ax a)rjwax arz’nax a;nax a}r/nax arz’nax a;”ax a;/nax arzmax a:‘ax a;/nax arz1nax
T2Q6 | 0.19| 0.2 | 0.56 | 0.35| 0.35 112 | 051 | 0.51 | 1.68 | 0.67 | 0.67 | 2.24
T2Q12 | 0.23 | 0.24 | 0.56 | 0.38 | 0.39 1.12 0.53 | 054 | 169 | 069 | 0.7 | 2.25
T2Q18 | 0.27 | 0.27 | 0.56 | 0.42 | 0.43 1.13 0.57 | 0.59 | 1.69 | 0.72 | 0.74 | 2.25
T3Q6 | 0.17 | 0.18 | 0.61 | 0.31 0.31 1.22 044 | 044 | 1.84 | 0.58 | 0.57 | 2.45
T3Q12| 0.2 | 0.21]0.61 | 0.34 | 0.35 123 | 048 | 048 | 1.84 | 0.61 | 0.61 | 2.46
T3Q18 | 0.22 | 0.23 | 0.61 | 0.38 | 0.39 1.23 | 0.51 | 0.53 | 1.84 | 0.64 | 0.66 | 2.46

Table 9-25 Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of
the basemat (node 2137); stiffness proportional damping

50% DBE 100% DBE 150% DBE 200% DBE
MOdeI a)Tax a;"ax a;nax a;{nax a}rPaX a;nax a)rrax a;"'ax a;nax a)r:]ax a;nax a;nax
T2Q6 | 0.16 | 0.17 | 0.56 | 0.34 | 0.36 | 1.12 | 0.56 | 0.59 | 1.67 | 0.82 | 0.84 | 2.23
T2Q12| 0.2 | 0.22 | 0.56 | 0.32 | 0.35 | 1.12 | 0.49 | 0.53 | 1.68 | 0.69 | 0.73 | 2.24
T2Q18| 0.26 | 0.27 | 0.56 | 0.34 | 0.39 | 1.12 | 048 | 0.52 | 1.68 | 0.62 | 0.68 | 2.24
T3Q6 | 012 | 012 | 06 | 0.2 | 021 | 119 | 03 | 032 | 1.79 | 0.41 | 0.45 | 2.39
T3Q12| 0.17 | 018 | 0.6 | 0.23 | 0.24 | 119 | 0.31 | 0.33 | 1.8 | 0.39 | 042 | 24
T3Q18] 022 | 0.23 | 0.6 | 028 | 0.3 | 1.21 | 0.34 | 0.36 | 1.81 | 0.42 | 0.45 | 2.41
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Figure 9-16 Mean peak zero-period accelerations (g) for 30 ground motion sets in the
superstructure along the height of the base-isolated NPP model T2Q6; 100% DBE
shaking
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9.8.3 Substructuring

An alternative approach is explored here to capture the vertical acceleration response at higher
locations in the superstructure, where the increases in acceleration response of Figure 9-11c), f)
and i) might result from an inadequate treatment of damping. This analysis approach uses a
substructuring technique in which the six components of acceleration response are obtained at
the center of the isolated basemat (node 2137) and used as input excitations for the response-
history analysis of the three fixed-base components of the superstructure (i.e., ASB, CIS, and
SCV). The response-history analyses of the three superstructure components are performed in
OpenSees and SAP2000. These models are designated as the equivalent fixed-base (EFB)
models in OpenSees (EFB_OpenSees) and SAP2000 (EFB_SAP2000). The results of the
response-history analysis of these models are benchmarked against the response of the
lumped-mass stick model of base-isolated NPP (Stick_model_OpenSees) presented in Section
9.5. The simplified isolator model is used for all analyses because the focus here is on utility of
the substructuring approach.

The Rayleigh damping formulation is used in OpenSees and the proportionality coefficients are
calculated for EFB_OpenSees by assigning 5% damping (i.e., between 4% and 7%) to the first
horizontal and vertical translational modes of vibration of each superstructure. This ensures that
the contribution of Rayleigh damping to other modes in the horizontal and vertical directions are
bounded and small. Table 9-29 presents the damping ratios in the first mode of vibration along
the three orthogonal directions of the ASB, SCV, and CIS.

Table 9-29 Rayleigh damping in the horizontal and vertical modes of the fixed-base
superstructures in OpenSees

ASB SCV CIS
Direction Frequency Damping | Frequency | Damping | Frequency | Damping
(Hz) (%) (Hz) (%) (Hz) (%)
Horizontal 1 3.0 4.9 5.5 4.1 12.9 4.9
Horizontal 2 2.8 5.0 3.6 5.0 12.3 5.0
Vertical 7.0 5.0 16.2 5.0 31.9 5.0

The results of the response-history analysis obtained using OpenSees (EFB_OpenSees) and
base-isolated NPP in Section 9.5 and their differences are presented in Table 9-30, Table 9-31,
and Table 9-32 respectively, for node 417, which is located at the uppermost point of the SCV.
A substantial reduction of the order of 30% is observed in the vertical acceleration across all
shaking intensities when the equivalent fixed-based model approach is used. The reductions in
the horizontal accelerations are small, except at smaller shaking intensities.

SAP2000 provides the option to assign modal damping in response-history analysis of a MDOF
system. Damping of 5% is used for all modes in the SAP2000 model. Acceleration histories at
node 417 in the SCV obtained using EFB_OpenSees, EFB_SAP2000 and the base-isolated
OpenSees model, for isolation system T2Q6 subject to ground motion 1, are plotted in Figure
9-18. The difference in responses obtained using 5% modal damping in SAP2000 and 5%
Rayleigh damping in OpenSees are negligible in all three directions, which suggests that the
Rayleigh damping in OpenSees and modal damping in SAP2000 provides similar results for the
EFB models. Moreover, it suggests that Rayleigh damping based on vertical frequency does not
overdamp response in the horizontal directions though this is dependent on the vertical and
horizontal frequencies of the ASB, SCV, and CIS. Results of analysis of the EFB_OpenSees
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model are presented in Table 9-33 through Table 9-35 and Figure 9-19 for the uppermost point
in the ASB (node 310), and Table 9-36 through Table 9-38 and Figure 9-20 for the uppermost
point in the CIS (node 538). A reduction of the order of 30% is observed in the ASB when the
substructuring approach is used. The reductions in the horizontal accelerations are small. Unlike
the SCV and ASB, the accelerations in the three orthogonal directions at node 538 in the CIS
obtained using the substructuring approach are similar to that obtained from the lumped-mass
stick model of base-isolated NPP.

Table 9-30

lumped-mass stick model

Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417;

50% DBE 100% DBE 150% DBE 200% DBE
Model a;wax a;ﬁax a;wax a;wax a;ﬁax a;wax a;wax a;ﬁax a;wax a:wax a;ﬁax arznax
T2Q6 | 0.29 | 0.32 7.6 0.47 | 0.5 152 | 068 | 0.7 |22.46| 091 | 0.94 | 304
T2Q12 |1 0.36 | 0.39 | 76 | 0.57 | 063 [1521| 0.75 | 0.78 |22.57 | 0.94 | 0.98 | 30.41
T2Q18 | 0.42 | 045 | 761 | 0.63 | 0.73 |1521| 0.85 | 0.95 |22.82| 1.05 | 1.62 | 30.4
T3Q6 | 0.17 | 0.19 | 6.71 | 0.27 | 0.3 |13.42| 0.38 | 0.41 |20.13| 0.5 | 0.53 | 26.36
T3Q12| 0.23 | 0.24 | 661 | 0.34 | 0.38 |13.22| 0.45 | 0.48 [19.84 | 0.53 | 0.59 | 26.45
T3Q18| 0.27 | 0.29 | 6.53 | 0.4 0.43 |13.05| 0.5 | 0.56 |19.58| 0.61 | 0.65 | 26.11

Table 9-31 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417;
equivalent fixed-base model in OpenSees (EFB_OpenSees)

50% DBE 100% DBE 150% DBE 200% DBE
Model a)r;nax a;mx arz'nax a)r(nax ar;ax a;nax a:’lax a;nax arznax a)r(nax a;nax arz~nax
T2Q6 | 0.22 | 0.28 | 494 | 0.38 | 0.47 | 9.88 | 0.58 | 0.67 | 14.57 | 0.82 | 0.93 | 19.76
T2Q12 | 0.28 | 0.34 | 495 | 0.44 | 0.56 | 9.9 0.59 | 074 {1485| 0.76 | 0.94 | 19.8
T2Q18 | 0.35 | 0.39 | 4.96 0.5 063 1991|065 | 085 (14.87| 0.81 | 1.03 | 19.83
T3Q6 | 0.14 | 0.18 | 488 | 0.23 | 0.28 | 9.77 | 0.33 0.4 |1465| 0.44 | 0.55 | 19.53
T3Q12| 0.2 0.24 | 484 | 0.29 | 0.36 | 9.68 | 0.37 | 0.47 | 14.51| 0.46 | 0.58 | 19.35
T3Q18| 0.25 | 0.29 | 4.8 0.34 | 0.42 | 9.6 043 | 053 | 144 | 0.52 | 0.64 | 19.19

Table 9-32 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 417 obtained using the lumped-mass stick model and the
equivalent fixed-base model in OpenSees (EFB_OpenSees)

50% DBE 100% DBE 150% DBE 200% DBE
Model a;wax a;\ax a?ax a;wax a;/nax arz~nax a:wax a;ﬁax a;nax a;wax a;ﬁax arz~nax
T2Q6 24 13 35 19 6 35 15 4 35 10 1 35
T2Q12 | 22 13 35 23 11 35 21 5 34 19 4 35
T2Q18 | 17 13 35 21 14 35 24 11 35 23 36 35
T3Q6 18 5 27 15 7 27 13 2 27 12 4 26
T3Q12| 13 0 27 15 5 27 18 2 27 13 2 27
T3Q18 7 0 26 15 2 26 14 5 26 15 2 27
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Table 9-33 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310;
lumped-mass stick model

50% DBE 100% DBE 150% DBE 200% DBE
Model a:ﬁax a;ﬁax arz’nax a)r(nax a;wx a;nax a;nax a;wax a;wax a)r(nax a;ﬂax arzﬂax
T2Q6 0.6 062 | 3.33 |1 0.79 | 0.83 | 665 | 0.97 | 1.05| 9.84 | 1.22 | 1.32 | 13.31
T2Q12| 0.83 | 0.92 | 3.33 1.2 124 | 665 | 1.35 | 143 | 9.72 | 1.55 | 1.63 | 13.1
T2Q18 | 0.95 | 1.09 | 3.32 1.5 1.58 | 6.65 1.8 1.87 | 9.97 2 2.42 [ 13.33
T3Q6 | 0.39 | 0.41 | 3.31 | 0.57 | 0.59 | 6.61 0.7 0.71 1992 | 079 | 082 | 129
T3Q12| 0.51 | 057 | 3.31 | 0.79 | 082 | 662 | 0.97 | 1.03 | 992 | 114 | 117 | 13.23
T3Q18 | 0.58 | 0.65 | 3.31 0.9 099 | 662 | 118 | 1.23 | 993 | 1.35 | 1.42 |13.14

Table 9-34 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310;
equivalent fixed-base model in OpenSees (EFB_OpenSees)

M | 50% DBE 100% DBE 150% DBE 200% DBE
ode a:wax a)rjwax a;wax a;nax a}r/nax arz’nax a;nax a;/nax a;nax a;nax a;/nax a;nax
T2Q6 | 0.53 | 0.59 | 2.25 | 0.7 0.8 45 1089|103 |671 114 | 1.31 9
T2Q12| 0.73 | 0.86 | 225 | 1.06 | 1.18 | 451 | 1.21 1.39 | 6.76 1.4 1.61 | 9.01
T2Q18 | 0.85 | 1.02 | 2.25 1.3 148 | 451 |1 159 | 1.76 | 6.76 | 1.75 2 9.02
T3Q6 | 0.37 | 04 | 244 | 052 |1 059|488 | 065 | 0.72 | 7.32 | 0.75 | 0.86 | 9.76
T3Q12| 0.48 | 0.57 | 246 | 0.73 | 0.81 | 492 | 0.89 | 1.02 | 7.37 | 1.05 | 1.19 | 9.83
T3Q18 | 0.55 | 0.64 | 247 | 0.85 | 097 | 494 | 1.09 | 1.22 | 7.42 | 1.26 | 1.43 | 9.88

Table 9-35 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 310 obtained using the lumped-mass stick model and the
equivalent fixed-base model in OpenSees (EFB_OpenSees)

Model 50% DBE 100% DBE 150% DBE 200% DBE
Ode a)Tax a;"ax a;nax a;{nax a}'jqax a;nax a;nax a;"'ax a;nax a)r:]ax a;nax a;nax
T2Q6 | 12 5 32 11 4 32 8 2 32 7 1 32
T2Q12| 12 7 32 12 5 32 10 3 30 10 1 31
T2Q18 | 11 6 32 13 6 32 12 6 32 13 17 32
T3Q6 5 2 26 9 0 26 7 1 26 5 5 24
T3Q12| 6 0 26 8 1 26 8 1 26 8 2 26
T3Q18| 5 2 25 6 2 25 8 1 25 7 1 25
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Table 9-36 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538;
lumped-mass stick model

50% DBE 100% DBE 150% DBE 200% DBE

Model max

max max max max max max max max max max max
a a a a
ax y az ax y az ax y az ax y az

T2Q6 | 0.19 | 0.23 | 0.78 | 0.39 | 0.43 | 1.57 | 0.61 | 0.67 | 2.34 | 0.87 | 0.95 | 3.14

T2Q12| 0.25 | 0.28 | 0.78 | 0.39 | 0.44 | 1.57 | 0.57 | 0.61 | 2.32 | 0.78 | 0.88 | 3.13

T2Q18| 0.3 | 0.33 | 0.78 | 0.43 | 0.49 | 1.57 | 0.58 | 0.66 | 2.35 | 0.77 | 1.34 | 3.07

T3Q6 | 0.13 | 0.14 | 0.77 | 0.23 | 0.25 | 1.53 | 0.36 | 0.44 | 2.3 | 0.51 | 0.68 3

T3Q12| 018 | 0.2 | 0.77 | 0.26 | 0.28 | 1.54 | 0.36 | 0.4 | 231 | 0.5 | 0.58 | 3.08

T3Q18| 0.23 | 0.25 | 0.77 | 0.31 | 0.33 | 1.54 | 0.39 | 0.44 | 232 | 0.5 | 0.56 | 3.09

Table 9-37 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538;
equivalent fixed-base model in OpenSees (EFB_OpenSees)

50% DBE 100% DBE 150% DBE 200% DBE
MOdeI a)f:'lax a;"ax a;nax a;nax a;/nax a;nax a)f(nax a;nax a;nax a;nax a;nax a;nax

T2Q6 | 0.19 | 0.21 | 0.78 | 0.37 | 0.41 | 1.56 | 0.58 | 0.62 | 2.33 | 0.84 | 0.88 | 3.12

T2Q12| 0.24 | 0.27 | 0.78 | 0.38 | 0.42 | 1.56 | 0.56 | 0.6 | 2.34 | 0.75 | 0.82 | 3.12

T2Q18| 0.3 | 0.33 | 0.78 | 0.42 | 0.48 | 1.56 | 0.56 | 0.64 | 2.34 | 0.75 | 0.82 | 3.12

T3Q6 | 0.13 | 014 | 0.77 | 0.22 | 0.24 | 1.53 | 0.33 | 0.36 | 2.3 | 0.46 | 0.51 | 3.06

T3Q12| 0.18 | 0.2 | 0.77 | 0.25 | 0.28 | 1.54 | 0.34 | 0.37 | 2.3 | 0.46 | 0.48 | 3.07

T3Q18] 0.23 | 0.25 | 0.77 | 0.32 | 0.35 | 1.54 | 0.38 | 0.42 | 2.31 | 0.52 | 0.54 | 3.08

Table 9-38 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 538 obtained using the lumped-mass stick model and the
equivalent fixed-base model in OpenSees (EFB_OpenSees)

50% DBE 100% DBE 150% DBE 200% DBE
Model a:wax a)rjwax a;wax a;n a}r/nax arz’nax a;nax a;/nax a;nax a;nax a;/nax a;nax
T2Q6 0 9 0 5 5 1 5 7 0 3 7 1
T2Q12 4 4 0 3 5 1 2 2 1 4 7 0
T2Q18 0 0 0 2 2 1 3 3 0 3 39 2
T3Q6 0 0 0 4 4 0 8 18 0 10 25 2
T3Q12 0 0 0 4 0 0 6 8 0 8 17 0
T3Q18 0 0 0 3 6 0 3 5 0 4 4 0
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The substructuring technique provides a rational basis to model damping in a nonlinear
response-history analysis of a base-isolated NPP by allowing the use of different damping
values for the isolation system and the superstructure. For the model of the base-isolated NPP
considered here, the nonlinearities are present only in the isolation bearings, and the
superstructure is modeled as elastic. The response-history analysis of the superstructure using
the basemat level input excitation is linear and the use of a classical damping matrix does not
numerically damp the response.

The substructuring techgniue results in vertical acceleration response in the ASB and CIS that is
substantially smaller than that of lumped-mass stick model in Section 9.5. One could argue that
the vertical acceleration response is still too demanding on structures, systems and
components. One solution would be to modify the design of the bearings in the isolation system
so that the vertical frequency of the isolation system is removed from the vertical frequency of
the superstructure. Another solution is to add damping in the vertical direction using
supplemental devices. To investigate the latter, response-history analysis of the lumped-mass
stick model of the base-isolated NPP was performed with the Rayleigh damping of 2% and 10%
of critical. The acceleration response at the node 2137 (isolated basemat), 310 (ASB), 417
(SCV), and 538 (CIS) for these two damping values and the respective percentage difference
are presented in Table 9-39 through Table 9-50. Increasing the damping from 2% to 10% of
critical reduces the acceleration demands by between 25% and 75% in the three orthogonal
directions. The percentage reduction is greater in the SCV and ASB in the vertical direction,
which is expected because the relative reduction in the acceleration response due to damping is
greater for systems whose frequencies are close to the excitation frequency.

9-36



Table 9-39 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 2137
(isolated basemat); lumped-mass stick model, 2% Rayleigh damping

50% DBE 100% DBE 150% DBE 200% DBE

Model max max max max max max max max max max max max
a a a a a a a

a a a a

X y z X y z X y z X y z

T2Q6 | 0.16 | 0.17 | 0.56 | 0.33 | 0.35 | 1.11 | 0.52 | 0.55 | 1.66 | 0.76 | 0.78 | 2.23
T2Q12| 0.2 | 0.22 | 0.56 | 0.31 | 0.34 | 112 | 046 | 0.5 | 1.65 | 0.65 | 0.69 | 2.23
T2Q18| 0.25 | 0.27 | 0.56 | 0.34 | 0.39 | 1.12 | 047 | 0.52 | 1.68 | 0.63 | 1.21 | 2.25
T3Q6 | 012 | 012 | 06 | 0.2 | 021 | 119 | 03 | 0.31 | 1.79 | 0.39 | 0.42 | 2.34
T3Q12| 0.17 | 018 | 0.6 | 023 | 024 | 1.2 | 03 | 033 | 1.8 | 04 | 042 | 24
T3Q18] 0.22 | 0.23 | 0.6 | 027 | 0.3 | 1.21 | 0.35 | 0.36 | 1.81 | 0.41 | 0.44 | 2.41

Table 9-40 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 2137
(isolated basemat); lumped-mass stick model, 10% Rayleigh damping

50% DBE 100% DBE 150% DBE 200% DBE

Model max max max max max max max max max max max max
a a a a a a a

a a a a

X y z X y z X y z X y z

T2Q6 | 0.14 | 016 | 0.45 | 029 | 0.3 | 0.89 | 045 | 047 | 1.33 | 0.64 | 0.67 | 1.8
T2Q12| 0.18 | 0.21 | 043 | 029 | 0.33 | 0.9 | 043 | 045|131 | 058 | 0.6 | 1.74

T2Q18| 0.22 | 0.24 | 044 | 0.3 | 033 | 0.85| 04 | 043 | 1.26 | 0.55 | 0.56 | 1.68

T3Q6 | 0.11 | 011 | 046 | 0.18 | 0.2 | 0.93 | 0.27 | 0.28 | 1.39 | 0.36 | 0.38 | 1.85

T3Q12| 0.16 | 0.17 | 0.46 | 0.22 | 0.22 | 0.91 | 0.26 | 0.28 | 1.28 | 0.34 | 0.36 | 1.75

T3Q18| 0.2 | 0.21 | 046 | 0.25 | 0.28 | 0.9 | 0.32 | 0.34 | 1.39 | 0.38 | 0.43 | 1.79

Table 9-41 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 2137 (isolated basemat) obtained using 2% and 10% Rayleigh
damping, lumped-mass stick model

50% DBE 100% DBE 150% DBE 200% DBE

MOdeI max max max max max max max max max max
a, ; a; a ay a a ay a a a, a

max max
a

T2Q6 | 13 6 20 12 14 20 13 15 20 16 14 19

T2Q12| 10 5 23 6 3 20 7 10 21 11 13 22

T2Q18 | 12 11 21 12 15 24 15 17 25 13 54 25

T3Q6 8 23 10 5 22 10 10 22 8 10 21

8
T3Q12| 6 6 23 4 8 24 13 15 29 15 14 27
T3Q18| 9 9 23 7 7 26 9 6 23 7 2 26

9-37



Table 9-42 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310;
lumped-mass stick model (ASB), 2% Rayleigh damping

50% DBE 100% DBE 150% DBE 200% DBE
MOdeI a)Tax a;]ax a;nax a;nax a}'jqax a;nax a)r?ax a;qax a;nax a;nax a;nax a;nax
T2Q6 | 06 | 0.62 | 3.33 | 0.79 | 0.83 | 6.65 | 0.97 | 1.05 | 9.84 | 1.22 | 1.32 | 13.31
T2Q12] 0.83 | 092 | 3.33 | 1.2 | 1.24 | 6.65 | 1.35 | 143 | 9.72 | 1.55 | 1.63 | 13.1
T2Q18 095 | 1.09 | 332 | 15 | 1.58 | 6.65 | 1.8 | 1.87 | 9.97 2 2.42 113.33
T3Q6 | 0.39 | 0.41 | 3.31 | 0.57 | 0.59 | 661 | 0.7 | 0.71 | 9.92 | 0.79 | 0.82 | 12.9
T3Q12| 0.51 | 0.57 | 3.31 | 0.79 | 0.82 | 6.62 | 0.97 | 1.03 | 9.92 | 1.14 | 1.17 | 13.23
T3Q18] 0.58 | 0.65 | 3.31 | 0.9 [ 0.99 | 6.62 | 1.18 | 1.23 | 9.93 | 1.35 | 1.42 | 13.14

Table 9-43 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310;
lumped-mass stick model (ASB), 10% Rayleigh damping

Model

50% DBE

100% DBE

150% DBE

200% DBE

max max
a

aX y

max

aZ

max max max
a
ax y az

max max max
a
ax y az

max max max
a
ax y az

T2Q6

0.43 | 0.46

1.82

0.55 | 0.6 | 3.55

0.69 | 0.77 | 5.38

0.88 | 0.97 | 7.29

T2Q12

0.6 | 0.68

1.75

0.87 | 0.93 | 3.64

1.02 | 1.07 | 5.33

1.11 | 1.18 | 7.07

T2Q18

0.66 | 0.8

1.8

1.04 | 1.08 | 3.43

1.17 | 1.27 | 5.01

1.36 | 1.4 | 6.83

T3Q6

0.28 | 0.3

1.82

04 | 043 | 3.64

0.5 | 0.52 | 5.46

0.57 | 0.61 | 7.28

T3Q12

0.36 | 0.42

1.82

0.54 | 0.58 | 3.58

0.64 | 0.67 | 5.11

0.76 | 0.81 | 6.81

T3Q18

0.41 | 0.47

1.82

0.61 | 0.69 | 3.56

0.82 | 0.87 | 542

0.94 1 7.02

Table 9-44 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 310 (ASB) obtained using 2% and 10% Rayleigh damping,
lumped-mass stick model

50% DBE 100% DBE 150% DBE 200% DBE
MOdeI a)Tax a;‘ax a;nax a;{nax a}'jqax a;nax a;nax a;"'ax a;nax a)r:]ax a;nax a;nax
T2Q6 | 28 26 45 30 28 47 29 27 45 28 27 45
T2Q12| 28 26 47 28 25 45 24 25 45 28 28 46
T2Q18 | 31 27 46 31 32 48 35 32 50 32 42 49
T3Q6 | 28 27 45 30 27 45 29 27 45 28 26 44
T3Q12| 29 26 45 32 29 46 34 35 48 33 31 49
T3Q18 | 29 28 45 32 30 46 31 29 45 30 30 47
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Table 9-45 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417
(SCV); lumped-mass stick model, 2% Rayleigh damping

50% DBE 100% DBE 150% DBE 200% DBE

Model max max max max max max max max max max max max
a a a a a a a

a a a a a

X y z X y z X y z X y z

T2Q6 | 029 | 032 | 76 | 047 | 05 | 1562 | 0.68 | 0.7 |22.46]| 0.91 | 0.94 | 30.4
T2Q12| 0.36 | 0.39 | 76 | 0.57 | 0.63 |15.21| 0.75 | 0.78 | 22.57 | 0.94 | 0.98 | 30.41
T2Q18| 0.42 | 0.45 | 7.61 | 0.63 | 0.73 |15.21]| 0.85 | 0.95 |22.82| 1.05 | 1.62 | 30.4
T3Q6 | 0.17 | 0.19 | 6.71 | 0.27 | 0.3 |13.42| 0.38 | 0.41 | 20.13| 0.5 | 0.53 | 26.36
T3Q12| 0.23 | 0.24 | 6.61 | 0.34 | 0.38 | 13.22| 0.45 | 0.48 | 19.84 | 0.53 | 0.59 | 26.45
T3Q18] 0.27 | 0.29 | 6.53 | 0.4 | 0.43 |13.05| 0.5 | 0.56 | 19.58 | 0.61 | 0.65 | 26.11

Table 9-46 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417
(SCV); lumped-mass stick model, 10% Rayleigh damping

50% DBE 100% DBE 150% DBE 200% DBE

Model max max max max max max max max max max max max
a a a a a a a

a a a a a

X y z X y z X y z X y z

T2Q6 | 0.2 | 021 | 197 | 034 | 0.36 | 39 | 0.5 | 0.52 | 5.82 | 0.69 | 0.72 | 7.96
T2Q12| 0.27 | 0.27 | 1.94 | 0.41 | 0.43 | 3.97 | 0.54 | 0.57 | 5.82 | 0.68 | 0.71 | 7.76

T2Q18| 0.31 | 0.31 | 1.92 | 0.45 | 0.45 | 3.75 | 0.56 | 0.6 | 552 | 0.73 | 0.72 | 7.25

T3Q6 | 0.13 | 0.14 | 1.8 | 0.21 | 0.22 | 3.6 03 | 032 | 54 | 04 042 7.2

T3Q12| 0.18 | 0.19 | 1.79 | 0.26 | 0.27 | 3.57 | 0.32 | 0.33 | 494 | 0.4 | 0.42 | 6.74

T3Q18] 0.23 | 0.23 | 1.77 | 0.3 ] 0.32 | 348 | 0.39 | 0.4 | 522 | 0.46 | 0.48 | 6.89

Table 9-47 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 417 (SCV) obtained using 2% and 10% Rayleigh damping,
lumped-mass stick model

50% DBE 100% DBE 150% DBE 200% DBE

MOdel max amax max a a

max max max max max max max max max
a a a a

X y z X y a ax ay a y a

T2Q6 | 31 34 74 28 28 74 26 26 74 24 23 74

T2Q12 | 25 31 74 28 32 74 28 27 74 28 28 74

T2Q18 | 26 31 75 29 38 75 34 37 76 30 56 76

T3Q6 | 24 26 73 22 27 73 21 22 73 20 21 73

T3Q12 | 22 21 73 24 29 73 29 31 75 25 29 75

T3Q18 | 15 21 73 25 26 73 22 29 73 25 26 74
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Table 9-48 Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538
(CIS); lumped-mass stick model, 2% Rayleigh damping

Model

50% DBE

100% DBE

150% DBE

200% DBE

max max
a

aX y

max

max max max
a
ax y az

max max max
a
ax y az

max max max
a
ax y az

T2Q6

0.19 | 0.23

0.78

0.39 | 043 | 1.57

0.61 | 0.67 | 2.34

0.87 | 0.95 | 3.14

T2Q12

0.25 | 0.28

0.78

0.39 | 0.44 | 1.57

0.57 | 0.61 | 2.32

0.78 | 0.88 | 3.13

T2Q18

0.3 | 0.33

0.78

0.43 | 0.49 | 1.57

0.58 | 0.66 | 2.35

0.77 | 1.34 | 3.07

T3Q6

0.13 | 0.14

0.77

0.23 | 0.25 | 1.53

0.36 | 0.44 | 2.3

0.51 | 0.68 3

T3Q12

0.18 | 0.2

0.77

0.26 | 0.28 | 1.54

0.36 | 04 | 2.31

0.5 | 0.58 | 3.08

T3Q18

0.23 | 0.25

0.77

0.31 | 0.33 | 1.54

0.39 | 0.44 | 2.32

0.5 | 0.56 | 3.09

Table 9-49

(CIS); lumped-mass stick model, 10% Rayleigh damping

Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538

Model

50% DBE

100% DBE

150% DBE

200% DBE

max max
a

aX y

max

max max max
a a
X y z

max max max
a
ax y az

max max max
a
ax y az

T2Q6

0.15 | 0.17

0.55

0.3 | 0.32

0.47 | 0.51 | 1.63

0.67 | 0.72 | 2.23

T2Q12

0.2 | 0.23

0.54

0.31 | 0.36

0.46 | 0.48 | 1.62

0.6 | 0.64 | 2.16

T2Q18

0.24 | 0.26

0.55

0.33 | 0.37

0.43 | 0.47 | 1.55

0.59 | 0.61 | 2.07

T3Q6

0.11 | 0.12

0.55

019 ] 021 | 1.0

028 | 0.3 | 1.64

0.39 | 042 | 2.18

T3Q12

0.16 | 0.18

0.55

0.28 | 0.29 | 1.5

0.36 | 0.39 | 2.07

T3Q18

0.21 | 0.21

0.54

9
0.23 | 0.23 | 1.07
0.26 | 0.29 7

0.33 | 0.36 | 1.63

04 | 042 | 212

Table 9-50 Percentage reduction in means of peak zero-period accelerations (g) for 30 ground
motion sets at node 538 (CIS) obtained using 2% and 10% Rayleigh damping,
lumped-mass stick model

50% DBE 100% DBE 150% DBE 200% DBE
MOdeI a)r(nax a;qax a;nax a)r(nax a;nax a;nax a;nax a;nax a;nax a;nax a}r?ax arznax
T2Q6 | 21 26 29 23 26 30 23 24 30 23 24 29
T2Q12 | 20 18 31 21 18 29 19 21 30 23 27 31
T2Q18 | 20 21 29 23 24 34 26 29 34 23 54 33
T3Q6 | 15 14 29 17 16 29 22 32 29 24 38 27
T3Q12 | 11 10 29 12 18 31 22 28 35 28 33 33
T3Q18 | 9 16 30 16 12 31 15 18 30 20 25 31
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9.9 Conclusions

Most of the conclusions related to the horizontal displacement response of the base-isolated
NPP calculated using the two-node macro model are valid for the stick model. The conclusions
listed below add to those presented in Chapter 8 and are somewhat specific to the Diablo
Canyon site and the NPP studied:

1.

2.

10.

All of the isolation systems considered here provide an adequate margin of safety
against buckling at 200% DBE shaking, except for T3Q6.

Bearings cavitate at 150% and 100% DBE shaking for isolation systems of periods 2 and
3 sec, respectively. Bearings around the perimeter of the isolation system are more
prone to cavitation due to rocking of the superstructure.

The peak horizontal displacements obtained using the two-node macro NPP model are
in good agreement with those for the lumped-mass stick NPP model for the simplified
and advanced isolator representations for 150% DBE shaking and smaller if the
horizontal displacement of lumped-mass stick model is represented by the center of the
basemat.

The base-isolated NPP undergoes appreciable torsional motion at shaking intensities
greater than 150% DBE. For example, the contribution of torsion to the horizontal
displacement in the bearings around the perimeter of T3Q6 exceeds 10% at 200% DBE
shaking.

Although the two-node macro model can be used to estimate the horizontal
displacement response of a base-isolated NPP, a three-dimensional model that explicitly
considers all of the bearings in the isolation system is required to estimate demands on
individual bearings, and to investigate rocking and torsional responses.

The torsional response increases with increasing shear displacement in the bearings
and eccentricity in the structure. Isolations systems with higher strengths (e.g., T2Q18,
T3Q18) exhibit a smaller torsional response.

The use of the simplified LR bearing model will underestimate the torsional and rocking
response of a base-isolated NPP.

Rayleigh and stiffness proportional damping are suitable for the calculation of isolation
level response as both provide similar estimates of basemat acceleration and isolator
displacement response.

The vertical acceleration response in the superstructure is sensitive to the definition of
damping in the structural model. Rayleigh, mass proportional and stiffness proportional
damping models anchored to the isolation frequencies do not appropriately damp the
superstructure.

The substructuring technique provides a rational basis to model damping for the
nonlinear response-history analysis of a base-isolated NPP by allowing the use of
different damping values for the isolation system and the superstructure.
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10 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary

Mission-critical infrastructure in the form of buildings and bridges has been seismically isolated
in the United States. Isolation tools and technology developed in the United States have been
used to protect infrastructure abroad, including LNG tanks and offshore oil and gas platforms.
Safety-related nuclear facilities have been seismically isolated in France and South Africa at
sites of low to moderate seismic hazard. The bearings used in those plants were synthetic
rubber isolators and would not be used for seismic isolation of structures in the United States.
This because of the reported and documented long-term changes in the mechanical properties
of the elastomers, specifically the synthetic rubber, which is a neoprene and has stiffened
significantly (37%) over time, changing the properties of the isolation system.

Issues related to the application of elastomeric seismic isolation bearings to Nuclear Power
Plants (NPPs) in the United States were investigated. Sites in regions of high seismic hazard
were emphasized because they pose the greatest challenges in terms of demands on isolators
for design basis and beyond design basis earthquake shaking. Mathematical models of low
damping rubber (LDR) and lead rubber (LR) bearings suitable for analysis of safety-related
nuclear structures subjected to design basis and beyond design basis earthquake shaking were
developed to accommodate the following five characteristics or behaviors that may be important
for US plants sited in regions of high seismic hazard:

Strength degradation in shear due to heating of the lead core (LR bearings)
Variation in buckling load due to horizontal displacement

Cavitation and post-cavitation behavior due to tensile loading

Variation in axial stiffness due to horizontal displacement

Variation in shear stiffness due to axial load

RN~

These advanced mathematical models, ElastomericX and LeadRubberX, extended the available
robust formulation in shear and compression and implemented a new phenomenological model
for behavior in tension. LeadRubberX includes an algorithm to address heating of the lead core
in a LR bearing. The mathematical models were implemented in OpenSees (McKenna et al.,
2006) and ABAQUS (Dassault, 2010e) as user elements, and are being implemented in LS-
DYNA (LSTC, 2012a) at the time of this writing, to enable use by researchers, regulators and
the design professional community. The models were verified and validated following ASME
best practices (ASME, 2006). A mathematical model for high-damping rubber bearings, HDRX,
was implemented in OpenSees; the model includes many of the features of ElastomericX but
implements the Grant et al. (2004) model in shear. HDRX was written for completeness and not
in support of application to nuclear facilities in the United States.

The mathematical models in the shear (horizontal) and axial directions were validated using
existing experimental data. A series of experiments were conducted at the University at Buffalo
to characterize behavior of elastomeric bearings in tension and tension/shear. Sixteen low
damping rubber bearings from two manufacturers, with similar geometric properties but different
shear moduli, were tested under various loading conditions to identify those factors that affect
cavitation in an elastomeric bearing. The effect of cavitation on the shear and axial properties of
elastomeric bearings was investigated by performing post-cavitation tests. The test data was
used to validate a phenomenological model of an elastomeric bearing in tension.
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A model of a base-isolated nuclear island was analyzed using response-history techniques. The
NPP nuclear island model was derived from an early version of the Westinghouse AP1000
reactor (Orr, 2003) but is considered to be representative of large light water reactors currently
under construction at Vogtle and Summer in the United States. The set of 30 three-component
ground motions selected and spectrally matched by Kumar (2015) to be consistent with uniform
hazard response spectra (UHRS) for design basis earthquake (DBE) shaking at the site of the
Diablo Canyon Nuclear Generating Station were used for response-history analysis. The ground
motions were amplitude scaled by 1.0, 1.5, 1.67 and 2.0 to represent DBE shaking (1.0) and
three representations of beyond design basis earthquake (BDBE, 1.5, 1.67 and 2.0) shaking at
Diablo Canyon. The return period of DBE shaking at Diablo Canyon is 10,000 years. Two times
DBE shaking at Diablo Canyon is associated with a return period of approximately 100,000
years.

Two representations of the base-isolated NPP were considered: 1) a two-node macro model,
involving a macro seismic isolator and a supported mass equal to that of the model NPP, and 2)
a lumped-mass stick model, involving 273 isolators distributed across the footprint of the
basemat and lumped mass stick models representing the auxiliary building containment vessel
and containment internal structure. The isolators were LR bearings modeled using both the
simplified and the advanced representations of behavior. The simplified model, with equal axial
stiffness in compression and tension (and independent of shear displacement), represents the
state-of-the-art for response-history analyses of seismically isolated structures using
contemporary software programs. The advanced isolator model considers the five
characteristics of LR bearings identified above. Isolation systems of different combinations of
isolated time-period (T ) and supported weight to strength ratios (Q, / W) were analyzed. The
effect of each of the five characteristics on the response of the isolated structure was quantified.
Results calculated using the simplified and advanced models were compared and contrasted.
The lumped-mass stick models of the base-isolated NPP provided additional information on
torsional and rocking response and the spatial distribution of cavitation and buckling in the
bearings comprising the isolation system. Floor response spectra in two orthogonal horizontal
directions were obtained at different locations in the stick model. Vertical accelerations in the
superstructure of the base-isolated NPP were sensitive to the definition of damping. A
substructuring method was proposed that allowed the use of different damping values for the
isolation system and the superstructure and provided a more realistic estimate of vertical
acceleration without overdamping the horizontal response. The reported data allow a reader to
judge which representation of an isolated NPP (macro model or lumped-mass stick) and which
features, if any, of the advanced isolator model are needed to compute response for different
intensities of earthquake shaking.

10.2 Conclusions

The key conclusions of the research presented in this report are:

1. The value of 3GA is a reasonable estimate of the cavitation strength of an elastomeric
bearing, where G is the shear modulus and A is the bonded area.

2. There is no significant change in the shear modulus, compressive stiffness, and buckling
load of a bearing after cavitation.

3. Of the five characteristics of LR bearings discussed, 1) strength degradation due to
heating of the lead core, 2) variation in buckling load due to horizontal displacement, and
3) variation in axial stiffness due to horizontal displacement, affect most significantly the
responses of base-isolated NPPs.
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10.

11.

12.

Heating of the lead core in a LR bearing has a relatively small effect (< 10%) on
horizontal DBE (shear) displacements but the influence increases at higher intensities of
shaking.

For a given isolation period, the effect of lead core heating decreases with an increase in
the ratio of characteristic strength to weight, whereas for a given value of the ratio, the
effect decreases with an increase in isolation period.

The characteristic strength of a LR bearing may degrade substantially during extreme
earthquake shaking, with values falling below half the initial value for 150+% DBE
shaking. The temperature in a lead core may rise by 100+ °C for 150+% DBE shaking.
The influence of the variation in axial stiffness with horizontal displacement on the axial
response is negligible for DBE shaking but considerable for beyond design basis
shaking, with percentage changes in axial displacement being greater than those in axial
force.

The two-node macro model can be used to estimate the horizontal displacement
response of a base-isolated NPP, but a three-dimensional model that explicitly considers
all of the bearings in the isolation system is required to estimate demands on individual
bearings, and to investigate rocking and torsional response.

The buckling load of a LR bearing varies substantially during earthquake shaking. The
displacement-dependent model for buckling load predicts failure for many more ground
motions than the constant buckling load model, and is thus recommended for use in
practice.

The torsional response of a base-isolated NPP nuclear island structure may be
significant at high intensities of shaking due to high shear displacement demand and
eccentricity in the structure. For example, the contribution of torsion to the horizontal
displacement in the bearings around perimeter of T3Q6 exceeds 10% at 200% DBE
shaking.

The use of the simplified LR bearing model will underestimate the torsional and rocking
response of a base-isolated NPP nuclear island structure, with the differences becoming
significant at the higher intensities of ground shaking.

The superstructure response of the lumped-mass stick model representation of a base-
isolated NPP nuclear island structure is sensitive to the definition of damping (e.g.,
Rayeligh, mass proportional, stiffness proportional). A substructuring approach that
allows the analyst to specify reasonable level of damping to all modes of interest in the
superstructure should be used in response-history analysis.

10.3 Recommendations for Future Research

The following recommendations are made for future studies:

1.

Experiments were performed on bearings with very thin rubber layers (4 mm and 7 mm),
which likely affected their response under cyclic tensile loading. Full-size bearings
representative of those to be used for base-isolated NPPs should be tested using
protocols similar to those described in this report.

Response-history analysis was performed for the site of the Diablo Canyon Nuclear
Generating Station: a site of high seismic hazard. These analysis results could inform
preliminary decisions regarding required model complexity at sites of lower hazard.
However, similar response-history analyses should be performed for representative sites
of low and moderate seismic hazard in the Central and East United States (CEUS) to
better inform decision making.

The lumped-mass stick model appears to provide adequate information on the response
of the isolation system and loads and displacements on individual isolators. Response-
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history analysis of a detailed finite element model of base-isolated NPP should be
performed to investigate the accuracy of the superstructure responses calculated
obtained using the stick model.
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APPENDIX A EXPERIMENTAL PROGRAM AND RESULTS

A.1 Experimental Program

The detailed sequence proposed for the testing program is presented here. The characterization
tests before and after cavitation are shaded grey. Some bearings failed prematurely and the
entire number of planned experiments could not be completed for those bearings. Experiments
that were planned but could not be performed are shaded orange.
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A.2 Original Load Cell Design Sheet (source: nees.buffalo.edu)

G5 x

Department of Civil, Structural, and Environmental Engineering

i AND APPLIED ECIENCES

UNIVERSITY AT BUFFALO
Storte Urnirerrarcty of NMero York

292 Ketter Hall, North Campus, Buffalo, NY 142604300 Fax: (716) 645-3733 Tel: (716) 645 2714, x 24719
hitozdsww. chal. buffalo. edu’ Andrei M. Reinhorn, P.E, Ph.D. e-mail: rarﬂmnﬂ@buﬁal‘o adu
Prm%sswafﬁttwfurar Eng.lneenng

26-Mar-52
FIVE AXES LOAD CELL USING TUBE STRUCTURE
Dezigned by Prof Andrei M. Reinhom, Assisted by Prof. Joe Bracd (Texas ABM University)
Height of load cell total HH 13.00 in
Size of top plate (square) EB 16.00 in
Capacity 3l Man Output
Avial Load Capacity N 50.00 Kips 7777 kN 100V
Moment Capacity [} 200,00 Kips-n 226 kN-m 100V
Shear Capacity 5 2000 Kips 891 kN 100V
Desion data
Outzide Diameter Da 800 in
Outside Diameter Gap Dg 500 in |Seamless Alloy Steel 4140 Heat Treated HEHT4140
Inside diameter d 400 in
Height of gap hg 300 in |= This dimension should be equal or bigger than d |
Height of pipe section H 900 in
Thickness of top plate t 200 in
Cross secfion area A 107 in%2 T im2
Moment of inertia I 1811 nM 1885 inM
Modulus of section W 725 m*3 754 in"3
Performance
Axial Strain &n 2358 W5t P 29 MV 4 2200
Moment strain em 920.1 W5t 4 164 mV 679 500
Shear strain &5 1226 5t 4 49 mv 2549 2500
Gage factor - 20 - Ampl Fact= 125
Excitation Volage Vo 100 v MWrofarms  Max Output Amplification for full scale
Total Strains
Modulus of elasticity E 00000 ksi 300 Msi
Steel yvield siress fy B0 ks
Allowakls viekd strain ey 12000 w5t
Total principal strain et 11688 W5t
Matural Freg.
Horzontal Stiffness Kh 5.3TE03 kipsin
Vertical Stiffness K 2365+ kipsin
Horzontal Frequency fx MK
Vertical Frequency fy 68 Hz
Boltz
Numbssr of baolts nnk 8 High Strength (Tens=180 ksi)
Baolt diameter db 0625 in (Shear=162 ksi)
Balt circle diameter Ok 600 in
Distance between bolts s INER ]
Bolts tension Capacity Mb 4418 Kips Single bolt 55 Kips
Boltz shear capacity Sk 375 Kips Single bolt 5 Kips
Colored data can be adjusted

NOTE: QUTPUT=10V*GF=2"uSt#GAGESM = 10-2463°2 6{MU=0.3)4
NOTE: OUTPUT=10V'GR=2"uSt#GAGESM = 10027284
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A.3 String Potentiometer Data Sheet (source: www.celesco.com)

SP1

Compact 5tring Pot - Voltage Divider Output

Linear Position to 50 inches (1270 mm)
Rugged Polycarbonate Enclosure - IP67 Optional

Mounting Bracket & Optional Sensor Cover w/Connector

IN STOCK for Quick Delivery!

This compact stringpot with “voltage divider” output, pro-
vides the ultimate in ease-of-use and flexibility for mea-
surement ranges up to 50 inches. Made of rugged polycar-

bonate, the 5P1 fits in small spaces, dossn't need perfect
alignment and ships with a stainless steel mounting bracket
to let the user easily orient this sensor in just about any di-

: ! : ! : ! T — rection imaginakile.
10" [$& mn] 157 [58 nm] 2.5 [e4 mn] 2.3 [=9 mn]
The 5P1 comes in two different versions: one complete
COMPLETE SPECIFICATIONS with a connector, mating plug and sensor cover to protect
Full Stroke Range Options 0-4,75,0-12.5, 0-25, 0-50 inches against IP&67 (wet) environments and the other, a lower cost,
Output Signal vohagedivider (potentiometer] orpen se1nsor design priced for broth the budget conscious
— single piece user and the OEM alike.
Accuracy +0.25 to+1.00% (see ordering info)
Repeatability + 0.05% full stroke ORDERING INFORMATION
Resolution essentially infinite
Measuring Cable 0.018-in. dia. nylon-coated stainless steel __B_
Measuring Cabla Tension 7oz (19 N) £25% f "| +H
Maximum Cable Acceleration, SP1-o 159 i =i P
Maximum Cable Acceleration, SP1-0:-3 1Z2g e P

aran, SP1-4 5P1-4-3 1.00%  2.5M

Enclosure Material polycarbonate
Sensor plastic-hybrid precision potentiometer 2T SP1-12 SP1-12-3 5% 500K
Weight, max. (includes bracket) A lbs (19 kg)

efmm  SP1-25  SP1-25-3 5% 50K

ELECTRICAL T

pFomm  SP1-50 5P1-50-3 % 250K
Input Resistance 10K ohms, £10% e
Power Rating, Watts 2.0 at 70°F derated to 0 at 250° cardsat &= |
Recommended Maximum Input Voltage 30V (AL/DO) — o A e

Output Signal Change Over Full Stroke Range  94% +4% of input voltage
soldertarminals
4-pin,M12 connector  -Qutput Signal: n

Electrical Connection, SP1xx
Electrical Connection, SP1-xx-3

ENVIRONMENTAL
Enclosure
Operating Temperatura, SP1-100
Operating Temperatura, 5P1-10-3

1P 50 (5P1-00), IPET (SP1-30c-3)
0° to 160°F (-187 to 70"C)
-40° to 160°F (-40° to 70°C) i k) oo F

For sl 5P1-e-3 warsions, an opkicnal convenient 13-f. long cordsat
9036810-0040 is availabla for short-nn connactions.

Or——————————— —0
Vibration up to 10 g to 2000 Hz maximum O e
20630 Plummer Strest = Chatswarth, CA 01311
tel B00.423,5483 » +1.BIE.FOLITED - fae +1.E18.70L.2700
!'I'rl‘&(alsﬁl.llrf[l'!'!tﬂ'l | calesco.com « info@celesco.com
-
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A.4 Linear Potentiometer Data Sheet (source: www.etisystems.com)

SNALSAS

NOILLOW ¥ INIT EWALEAS LA 3NON TS~ T -/ o
”—.“_”.m_” AE p—— =FE = ENME QUF = =
TN 19vd TIIL | R SR
_ _ T 8 8L T FE ZooF
LSZ14T71 DMO 335 OVEEHL HLM NENLSH ONdS 8D4 (310N e el e £ 2t e e
HEMNLIY ONIMLE TWOMIS & ¥ T MOd bFL L _ _ I0'F L3313 IH0MLS
38 OL LivHs J0 HIONT) caldwiuy (SR 001 U0 §¢-SZiad) il < + - 24 | 5C 4 an IiowLS
NMMLLTH SININSS %ﬁﬁ_ (s) . L —gZlaon | Livm EL| Llvm 20| LIV 20| LivM ¥0 | Li¥M ZD ANILYH HEMO
) ) e ECOF £L0F LT T D ENTECE Y
SR CWINDEOD U ﬁuu_ . . - 9Tk XOTF BOTF EOTTF Z0LF LOZF | 710L ZINYLISISIH
UIIINVHD st e | wewoof | sewoos | sewiees | SITVASSIHALS
o WML G ML ME" ML MWL DOG Hl
v op-of  —mmm (2) . . B o T—21e01] 82—21d071] 05—21d01] 62 —21d07 | €1—2do1 ] ON 1300M
QYIHHL OF—i# _HI_ (%) . W = VZld
—=lai/sle
NI T (d) (Csaul-{3vo0ms)-dZian
ETTLIE LIVHES
SHHEMNL3Y ONIEdS
STHOHLS OHYONYLS NOM
.ﬁ . . Wi D.Ewim_ M. TN Q11avHELIN ALIHY 3NN IWID3d5
91/ 7 |_“- SEINIVA ZONYLISICIW TWIDAJS
S14VHS O30NT WITES
i 34 i q VAR I lLd
JUEYId FALINONGD =-=====-=== LIHINITI JINVLSEIH
LNW HLIM JIHSINENA ELYTd 010D SSYHE === e e e e STIVNIRMAL
M3H3S 3215 95-2# 514300V oy S35, SETMVLE ——— - LIV
TIOH OIA VIO 60" ..uT_n _.I ...........................
$97d v Y i / (IZIOOMY HOVIHJANNIAMTY -====== e e e AODE
09z @ & |-|alwm?m} ﬁfw STVIRLVA
P — E
m .@| hd . STHOELS NONMN 0 ========—=ce=— AJINYLO3AXT 34N
I SHYHD GF QL 0f =—-=mm=mmmmmmmem e e [ MM
m 0Z0"FSaL" _l| 0./ Ned DOFF wmmmmmm e O2dNEl IINVISISIH
QALIVHLIY NN CZ0 02 —-————————— HLINIUIS J0L%
(00L-TLd0T ¥0d 2% §T) 79 F| ——------—m----—----=— NOULOIH4
YV = ¥/E NI DA 00S LY SAHO93A 0001 -—--—- JONVISISTH NOLYIASNI
“HIN JWA DOS —=memmme—e HLONIELS DRI
¥Z MYHL 5831 ——-- MOLVINYA “LSIS34 LOVLINOD
FOVLIA LndMl B0 NYHL 8531 -—---—--—-- SEINHLODOWS LNdlro
ALINIAN] —== === == ————————— NOILIT1053Y
ALON 0300% op/sz/eo| @) W t!ih.“alﬁ..:i..ﬂ!ﬁ
Z1ldd7 w7d | GLON A3M | Widdv|  3va| A8 | Adw | Emmacsg Meenow weis £

A-13



A.5 Effect on tensile behavior of a central hole in a bearing

Large diameter elastomeric bearings are generally fabricated using a central mandrel that 1)
enables the stacking of the alternate layers of rubber and steel shims prior to vulcanization, and
2) facilitates efficient heating of the bearing for vulcanization. Upon removal, the resulting hole
can be filled with a lead plug to form a LR bearing.

The behaviors of LR and LDR bearings in tension have been assumed to be identical because
the lead plug is not actively engaged. The effect of the central hole on tensile behavior has been
assumed to be negligible but is studied here because excessive values of tensile stress and/or
shear strain could trigger premature failure due to cavitation or debonding of the rubber from a
shim plate.

Axisymmetric finite element analysis was performed to investigate the effect of the central hole
on distributions of tensile stress and shear strain. Analysis of one 7-mm thick constrained rubber
layers from the DIS bearing type DA (see Table 6-2) was performed using ABAQUS (Dassault,
2010e). The elastomer was modeled as an elastic material with Young’s modulus = 1.35 MPa
and Poisson’s ratio = 0.49. The model is shown in Figure A.1. The central hole, when modeled,
was 20 mm in diameter. The X-Y coordinate system is shown; the origin (0, 0) is identified by
the solid circle.

— ;=1 mm

L

| |
fr=7 mm ! : :
4 o .

Figure A-1 Tension in a single constrained rubber layer

Consider the distribution of normal stress and shear strain at the rubber-shim interface of a
constrained rubber layer that is shown in Figure A.2b and Figure A.2c; this layer has no central
hole. The applied axial displacement, u, =1 mm. The horizontal axis is distance X normalized
by one half of the outside diameter, D, , of the rubber layer.

The following boundary conditions are imposed:

a) Zero displacements in the two horizontal directions (U;=0and U,=0)at Y =0.
b) Zero displacement in the X direction (U,= 0) aty = {,.
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For this example, the distribution of normal stress is approximately parabolic, with a maximum
value at the center of the bearing. The shear strain is small and approximately constant near the
center of the bearing, and has a maximum value at the free edge.

Consider now the distribution of normal stress and shear strain at the rubber-shim interface of a
constrained rubber layer with a central hole of radius 10 mm that is shown in Figure A.3. The
elastomer and the boundary conditions are those reported above. The introduction of a central
hole does not change the shear strain at the outer radius ( X = 150 mm). The inclusion of a
central hole leads to a significant (50%) increase in the maximum shear strain, with the peak
value observed at the inner radius ( X = 10 mm). The distributions of shear and normal stress in
a constrained rubber layer with and without a central hole are presented together in Figure A.4.

There are two mode of failures of elastomeric bearings in tension: 1) formation of cavities in the
rubber volume, and 2) debonding at the rubber-shim interface. The first mode of failure depends
on the hydrostatic stress. As the inclusion of a central hole does not change the maximum value
of normal stress in the three orthogonal direction, the cavitation strength of an elastomeric
bearing will not be significantly affected by the hole. Bearings with a central hole will have a
lower tensile strength if failure occurs due to debonding (prior to cavitation) because the hole
increases the maximum shear strain. The probable location of the debonding is rubber-shim
interface at the inner perimeter.

The lead core in a LR bearing does not contribute to the compressive and tensile capacity. The

results of tensile tests on elastomeric bearings with a central hole are likely better correlated to
the behavior of LR bearing in tension than tests on bearings without a hole.
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a) Model of the rubber layer

2 — T T T T T T T T T T T T T T T

Shear strain
o

-1 N
2 [ . \ . . I . . . . 1 . . . . L I
0 0.2 0.4 0.6 0.8
2x/D, (mm)
b) Shear strain at rubber-shim interface
4 [ N N N N I N N N N I N N N N I N N N N I
3 r

Stress (MPa)
N

-_—
T

0 0.2 0.4 0.6 0.8
2x/D,

c) Tensile stress at rubber shim interface

Figure A-2 Shear strain and tensile stress in a constrained solid rubber layer in tension
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a) Model of the annular rubber layer

N W
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1
—_
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2 F
3 ; A . A R 1 R . A . ] . A . A 1 A . A R 1
0 0.2 0.4 0.6 0.8
2x/D, (mm)
b) Shear strain at rubber-shim interface

4 T T T T T T T T T T T T T T T

w
T

Stress (MPa)
N
T

-_—
T

0 0.2 0.4 0.6 0.8
2x/D,

c) Tensile stress at rubber shim interface

Figure A-3 Shear strain and tensile stress in a constrained annular rubber layer in tension

A-17



2 I I I T N ] 4 I I I I
TF EEY: —
£ 0 g B
£ """ 12
. [ 1 S2F
2t | ¢
7] ' ] &
2 r —— Nohole { TF — No hole
[ Hole f - Hole
i U P EE L i 0 [ R P B — e e ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
2x/D, 2x/D,
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Figure A-4 Distribution of shear strain in the radial direction
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A.6 Failure Mode in Tension

The description of the failure of each bearing in tension is presented here. The mode is defined
here as the loading conditions under which the bearing failed (e.g., pure tension, tension with
lateral offset). The mechanism describes how failure began.

A-19



Table A-2 Failure states of bearings under tensile load

Failure description

Image of failure

Bearing: DA1
Test no: DA1_13

Failure mode: tension with lateral offset
Failure mechanism: cavities in rubber layer

Image note: 214% lateral offset, 25% tensile
strain

Bearing: DA2
Test no: DA2_3a

Failure mode: tension
Failure mechanism: cavities in rubber layer

Image note: 50% tensile strain

Bearing: DA3
Test no: DA3_06

Failure mode: tension
Failure mechanism: unknown

Image note: 65% tensile strain
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Table A-2 Failure states of bearings under tensile load (contd.)

Failure description Image of failure

Bearing: DA4
Test no: DA4_14

Failure mode: tension
Failure mechanism: unknown

Image note: 25% tensile strain

Bearing: DB1
Test no: DB1_1a

Failure mode: no failure

Image note: 187% lateral offset
10% tensile strain

Bearing: DB1
Test no: DB1_14

Failure mode: no failure

Image note: 93% tensile strain

Bearing: DB2
Test no: DB2_01

Failure mode: tension with lateral offset
Failure mechanism: cavities in rubber layer

Image note: 187% lateral offset

b 0 i w O
§ XN FPOTTE _

R
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Table A-2 Failure states of bearings under tensile load (contd.)

Failure description Image of failure

Bearing: DB3
Test no: DB3_1a

Failure mode: tension No rupture
Failure mechanism: unknown

Bearing: DB4
Test no: DB4_11a

Failure mode: no failure

Image note: 100% tensile strain

Bearing: DB4
Test no: DB4_21

Failure mode: no failure

Image note: 187% lateral offset and 50%
tensile strain

Bearing: DB4
Test no: DB4_21

Failure mode: no failure

Image note: 187% lateral offset and 100%
tensile strain
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Table A-2 Failure states of bearings under tensile load (contd.)

Failure description Image of failure

Bearing: MA1
Test no: MA1_08

Failure mode: tension
Failure mechanism: debonding

Image note: 25% tensile strain

Bearing: MA2
Test no: MA2_03

Failure mode: tension
Failure mechanism: debonding

Image note: 65% tensile strain

Bearing: MA3
Test no: MA3_06

Failure mode: tension
Failure mechanism: unknown

Image note: 50% tensile strain
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Table A-2 Failure states of bearings under tensile load (contd.)

Failure description

Bearing: MA4
Test no: MA4_03

Failure mode: tension
Failure mechanism: debonding

Image note: 50% tensile strain

Image of failure

el

Bearing: MB1
Test no: MB1_12

Failure mode: tension
Failure mechanism: unknown

Bearing: MB2
Test no: MB2_01

Failure mode: tension
Failure mechanism: debonding

Image note: 100% tensile strain

Bearing: MB3
Test no: MB3_06

Failure mode: tension
Failure mechanism: debonding

Image note: 50% tensile strain

Image not available
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Table A-2 Failure states of bearings under tensile load (contd.)

Failure description Image of failure

Bearing: MB4
Test no: MB4_01

Failure mode: tension
Failure mechanism: debonding

Image note: 100% tensile strain
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APPENDIX B RESPONSE OF THE TWO-NODE MACRO MODEL OF
BASE-ISOLATED NUCLEAR POWER PLANT

B.1 Strength Degradation in Shear due to Heating of the Lead Core

The percentiles of peak horizontal displacement and shear force with consideration of heating
are presented here. The peak responses for each ground motion set are assumed to distribute
lognormally with arithmetic mean «, median @, and logarithmic standard deviation o, which
are computed as:

1

—Zn: 0=exp(%znllny,) \/ Zn: (Iny, - Ine
i=1 =1

n;

where N is the total number of ground motion sets (=30), and y, IS the peak response for ith
ground motion set. If a data set Y distributes lognormally then 10gY" follows a normal
(Gaussian) distribution, and is referred to associated normal distribution of Y . The mean and
standard deviation of associated normal distribution are 1096 and o, respectively. The
Standardized normal distribution’ table can be used to calculate the standard normal variable
u, that corresponds to pth percentile. The pth percentile response of Y is calculated as:

Y, =F*1(p|ln6,a):{yp :F(y, |In0,a)=p}

The value of u, for 50" (median), 90", and 99" percentiles can be obtained as 0, 1.29, and 2.33
respectively, from standard normal distribution table. For model T2Q3 in Table B.1 at 100%
DBE, median @ =471 and o = 0.12, which gives the 90" and 99" percentile response as:

Yoo =€Xp(In471+1.29x0.22) =550 mm

Yoo =€Xp(IN471+2.33x0.22) =623 mm

TIf Yis a normal random variable with distribution N(u, 0), then U= (¥- u)/ o is the standardized normal
random vairbale with distribution N(0,1). The cumulative distribution probability of U can be obtained from
standard normal distribution table.
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APPENDIXC RESPONSE OF THE LUMPED-MASS STICK MODEL OF
BASE-ISOLATED NUCLEAR POWER PLANT
C.1 Model of Nuclear Power Plant

The finite element model provided by Roche-Rivera (2013) provides dimensions of the sample

nuclear power plant that is studied in this report. Figure C.1 and C.2 reproduce information from
Roche-Rivera (2013).
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Figure C-1 The plan view of the representative reactor model (Roche-Rivera, 2013)
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Figure C-2 The plan view of the representative reactor model



C.2 Geometric and Material Properties of the Stick Model

The geometric and material properties of the three lumped-mass stick models of the Auxiliary
Shield Building (ASB), Containment Internal Structure (CIS), and Steel Containment Vessel
(SCV) are reproduced from EPRI (2007) in this appendix in Tables C.1 and C.2.



Table C-1 Nodes and mass properties for structural model (units: kip, feet, seconds)

North-South Model East-West Model
NODE | X Y Z MX MZ ly MY Mz Ix
ASB
1 0 0 60.50
11 0 0 66.50 | 236.400 | 236.400 | 1641500 | 236.400 236.400 486740
21 0 0 81.50 ([ 494.260 | 494260 | 3612000 | 494.260 484.260 847820
1 0 0 91.50 307.080 | 439.280 | 1938300 307.080 439.280 456250
41 0 0 99.00 330.460 | 330.460 | 2619900 330.460 330.460 484190
51 0 0 106.17 | 210,100 | 210100 | 1287500 | 210.100 210.100 390700
61 0 0 116.50 | 597.740 | 465.540 | 2526200 597.740 485.540 764330
80 0 0 134.87 0 441.849 | 3448492 0 441.849 710852
80mc | -10 | -20 | 134.87 | 441.849 0 0 441.849 0 0
a0 0 0 145.37 | 165.406 | 165.406 033560 165.406 165.406 293100
100 0 0 153.98 | 190.089 | 190.099 | 1022510 190.099 190.099 316650
110 0 0 164.51 | 164.371 | 164.371 422680 164.371 164.371 271344
120 0 0 179.56 0 200431 323582 0 20043 340825
1200ut | 75 0 179.56 0 0 0 0 0 0
120mec | -10 | -20 | 179.56 | 200.431 0.00 0.00 20043 0.00 0.00
130 0 0 200.00 [ 126.050 | 126.050 37710 126.050 126.050 37710
140 0 0 220,00 [ 132470 | 132470 333900 132.470 132470 333800
150 0 0 24250 [ 140.260 | 140.260 353540 140.260 140.260 353540
160 0 0 265.00 | 231.223 | 231.223 528020 231.223 231.223 528020
308 0 0 295.23 | 263.980 | 433530 | 276470 263.980 433.530 276470
310 0 0 333.13 | 135590 | 91.320 63050 135.590 91.320 63050
H0out | 75 0 333.12 0 0 0 0 0 0
320 0 0 206.77 0.000 0.000 0 0.000 0.000 0
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Table C.1 Nodes and mass properties for structural model (contd.)

North-South Model East-West Model
NODE X Y z MX Mz ly MY MZ Ix
Cls
5 0 0 60.5
500 0 0 66.5 595.3 503.4 568000 505.3 595.3 568000
531 0 0 82.5 927.6 927.6 1422000 927.6 027.6 137100
532 0 0 a8 468.7 468.7 70800 468.7 468.7 680000
533 0 0 103 146.3 286.2 185000 146.3 286.2 177000
534 0 0 107.17 319.1 238.7 358800 2191 238.7 219130
535 0 0 134.25 0 2386 282150 0 238.6 255550
536mec | -10 | -10 134.25 208.2 0 0 208.2 0 0
536 0 0 153 14.6 14.6 2019 14.6 14.6 2504
537 0 0 183 308 30.8 6065 30.8 30.8 4321
538 0 0 169 0 9.4 748 0 94 696
538Bout | 75 0 169 0 0 0 0
538mc | -10 | -10 169 9.4 0 0.4 0
North-South Model East-West Model
NODE X Y Fd MX MZ ly My Mz Ix
sScv
401 0 0 100.000 1.739 1.739 3636 1.739 1.730 3636
402 0 0 104.125 5.541 5.541 11732 5.541 5.541 11732
403 0 0 110.500
404 0 0 112.500 15.388 15.388 33362 15.388 15.388 33362
406 0 0 131.677 17.907 17.907 37914 17.907 17.907 37914
407 0 0 138.583
408 0 0 141.500 17.904 17.904 38689 17.904 17.904 38689
408 0 0 162.000 18.349 18.349 38850 18.349 18.349 38850
410 0 0 169.927 28.004 26.004 61388 26.004 28.004 61368
411 0 0 200.000 28.340 26.340 60003 26.340 28.340 60003
412 0 0 224.000 40.251 51.739 81602 51.522 51.739 81602
413 0 0 224.208 15.746 15,748 33338 15.748 15.746 33338
414 0 0 255.021 11.271 11.271 21897 11.271 11.271 21897
415 0 0 265.833 10.288 10.288 14610 10.268 10.288 14610
416 0 0 273.833 10.070 10.070 8149 10.070 10.070 8149
417 0 0 281.901 5618 5.618 0 5.618 5.618 0
417out | 65 0 281.901 0 0 0 0 0 0
425 0 0 224.000 28.439 16.951 17.168 16.951

Mote: All values are in kip, seconds, feet units.

Assume: Iz = Ix + ly.




Table C-2 Element properties for structural model (units: kip, feet, seconds)

Morth-South Model East-West Model
ELEM | NODES A IYY |Asheary| A izz | AshearZ | Material | _M0dal
Damping
ASB
1 1| 11 | 101877800 10300 67 | 15484.00 | 11236800 | 10322.67 | Concrete| 4%
2 | 11 | 21 |3462.50| 6266240 | 1366.35 | 3462.50 | 4061440 | 1011.20 |Concrete| 4%
3 | 21 | 21 |3462.50 | 6266240 | 1366.35 | 3462.50 | 4061440 | 1011.30 |Concrete| 4%
4 | 31 | 41 |3462.50| 6266240 | 1386.35 | 3462.50 | 4061440 | 1011.30 |Concrete| 4%
5 | 41 | 51 |3293.30 5744880 | 1214.35 | 3203.30 | 3562800 | 1008.14 |Concrete| 4%
6 | 51 | 61 |3203.30 5744880 | 1214.35 | 3203.30 | 3562800 | 1008.14 |Concrete| 4%
7 | 61 | 80 |2203.30 5744880 | 1214.35 | 3203.30 | 3562800 | 1008.14 |Concrete| 4%
80 | 80mc Rigid Link
31 | 80 | 00 |3197.52| 4196560 | 118561 | 3197.52 | 4412370 | 1360.04 |Concreta| 4%
32 | 90 | 100 |3197.52| 4196560 | 118561 | 3197.52 | 4412370 | 1360.04 |Concreta| 4%
33 | 100 | 110 |2501.52 | 3676560 | 874.54 | 2501.52 | 3311570 | 1121.07 |Concrete| 4%
34 | 110 | 120 |1954.00| 3083632 | 810.51 | 1954.00 | 3200060 | 74670 |Concrete| 4%
120 |1200ut Rigid Link
120 [120me Rigid Link
35 | 120 | 130 |1338.00| 2700000 | 53520 | 1338.00 | 2700000 | 535.20 | Concrete | 4%
36 | 130 | 140 |1338.00| 2700000 | 53520 | 1338.00 | 2700000 | 535.20 | Concrete | 4%
37 | 140 | 150 |1338.00| 2700000 | 53520 | 1338.00 | 2700000 | 535.20 | Concrete | 4%
38 | 150 | 160 |1338.00 2700000 | 53520 | 1338.00 | 2700000 | 535.20 | Concrete | 4%
301 | 160 | 309 | 50.45 1 0.000 | 5045 1 0.000 | Concrete | 4%
302 | a20 | 300 | 1350 | 2680 | 10872 | 1350 | 2681.6 | 10872 | Concrete | 4%
303 | 200 | 310 | 704.50 | 431720 | 281.800 | 70450 | 431720 |281.800| Concrete | 4%
310 |3100ut Rigid Link
160 | 320 | Rigid | Rigid | Rigid | Rigid Rigid | Rigid




Table C.2 Element properties for structural model (contd.)

North-South Model East-West Model

Modal

ELEM NODES A Yy AshearY| A 1ZZ AshearZ | Material
Damping

Cls

500 5 500 | 15175 | 1.24E+07 |9228.29 | 15175 | 111E+07 | 8311.88 | Concrete 4%

501 | 500 | 531 | 15175 | 1.24E+07 (9228.29 | 15175 | 1.11E+07 | 8311.88 | Concrete 4 %

502 | 531 | 532 | 6732 | 4.50E+06 (2976.99 | 6732 | 3.33E+€ | 2065.86 | Concrete 4%

503 | 532 | 533 | 7944 | 6.74E+06 (4411.70| 7944 | 5.95E+06 | 3948.04 | Concrete 4%

504 | b33 | B34 5160 | 4.60E+06 | 3026.91 [ 5160 | 2.93E+06 | 2702.19 | Concrete 4%

505 | B34 | 535 1705 | 7.83E+06 | 613.65 | 1706 | b.7bE+05 | 40533 | Concrete 4%

535 | b3abmc Rigid Link

506 | 635 | 536 326 | 3.15B+03 | 13.10 326 1.77E+04 67.36 | Concrete 4%

507 | 636 | B37 484 | 3.80E+04 | 93.98 484 1.58E+04 64.30 | Concrete 4%

508 | 637 | B3B8 164 | 211E+03 | 290.24 164 2.47E+03 17.16 | Concrete 4 %

538 | 538out Rigid Link

538 | 538mc Rigid Link

506 | 636 | B36 326 | 315E+03 | 13.10 326 1.77E+04 67.36 Concrete 4 %

507 | 636 | B37 484 | 3.89E+04 | 93.98 484 1.58E+04 64.30 Concrete 4 %

508 | 537 | 538 164 | 211E+03 | 29.24 164 2.47E+03 17.16 | Concrete 4 %
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Table C.2 Element properties for structural model (contd.)

Morth-South Model East-West Model
ELEM| NODES A IYY |AshearY| A 1ZZ AshearZ | Material Modal
Damping

scv
401 | 401 | 402 14.49 | 29,107 278 14.49 | 29,107 278 Steel 4 %
402 | 402 | 403 £0.63 | 126,243 | 2981 | 5983 | 126,243 29.81 Steel 4 %
403 | 403 | 404 5063 | 126,243 | 2081 | 5963 | 126,243 29.81 Steel 4%
405 | 404 | 406 £0.63 | 126,243 | 2081 | 5963 | 126,243 29.81 Steel 4 %
406 | 406 | 407 Q.63 | 126,243 | 2081 | 5963 | 126,243 29.81 Steel 4 %
407 | 407 | 408 £0.63 | 126,243 | 2081 | 5963 | 126,243 29.81 Steel 4 %
408 | 408 | 409 Q.63 | 126,243 | 2081 | 5963 | 126,243 29.81 Steel 4 %
400 | 409 | 410 £0.63 | 126,243 | 2081 | 5963 | 126,243 29.81 Steel 4 %
410 | 410 | 411 £E0.63 | 126,243 | 2081 | 5063 | 126,243 29.81 Steel 4 %
411 | 411 | 412 £0.63 | 126,243 | 2081 | 5083 | 126,243 29.81 Steel 4 %
412 | 412 | 413 £E0.63 | 126,243 | 2081 | 5063 | 126,243 29.81 Steel 4 %
413 | 413 | 414 13.15 | 110,115 | 271 13.15| 110,115 271 Steel 4 %
414 | 414 | 415 4.58 83,714 248 458 | 83,714 246 Steel 4%
415 | 415 | 416 1.74 | 46,047 190.89 1.74 | 46,047 19.80 Steel 4 %
416 | 416 | 417 0.55 13,850 B.56 0.55 | 13,850 B.56 Steel 4%

417 | H17out Rigid Link

Spring Kz Kx Kz Ky
412 | 425 | 27630 | 80439 276830 9487 4%
Motes:

All values are in kip, seconds, feet units

Material properties:

Concrete:

Elastic modulus
Poisson's rafio

Steel:

Elastic modulus
Poisson's rafio

= 519,120 ksf

=017

= 4,248,000 ksf

=0.30




C.3 Modal Analysis of Lumped-Mass Stick Model

The fixed-base models of the ASB, CIS, and SCV are created in SAP2000. Modal analyses of
the fixed-base models of ASB, SCV, and CIS are performed and results are presented below.

Table C-3 Modal properties of the Auxiliary Shield Building (ASB)

Mode | Period (sec) | Freq. (Hz) UXx uy UZ | SumUX | SumUY | SumUz
1 0.362 2.762 0.000 | 0.405 | 0.000 | 0.000 0.405 0.000
2 0.323 3.097 0.447 | 0.000 | 0.000 | 0.447 0.405 0.000
3 0.158 6.345 0.008 | 0.000 | 0.000 | 0.455 0.405 0.000
4 0.142 7.026 0.001 | 0.177 | 0.000 | 0.456 0.583 0.000
5 0.136 7.336 0.369 | 0.000 | 0.000 | 0.825 0.583 0.000
6 0.093 10.704 0.000 | 0.000 | 0.573 | 0.825 0.583 0.573
7 0.082 12.239 0.000 | 0.000 | 0.000 | 0.825 0.584 0.573
8 0.076 13.090 0.014 | 0.000 | 0.000 | 0.839 0.584 0.573
9 0.072 13.938 0.000 | 0.181 | 0.000 | 0.839 0.765 0.573
10 0.070 14.197 0.038 | 0.000 | 0.000 | 0.877 0.765 0.573
11 0.064 15.624 0.000 | 0.105 | 0.000 | 0.877 0.870 0.573
12 0.051 19.656 0.027 | 0.000 | 0.000 | 0.904 0.870 0.573
13 0.049 20.275 0.000 | 0.005 | 0.000 | 0.904 0.875 0.573
14 0.045 22.124 0.000 | 0.000 | 0.000 | 0.904 0.875 0.573
15 0.043 23.064 0.003 | 0.000 | 0.000 | 0.907 0.875 0.573
16 0.043 23.251 0.000 | 0.000 | 0.282 | 0.907 0.875 0.855
17 0.040 24.998 0.015 | 0.000 | 0.000 | 0.923 0.875 0.855
18 0.039 25.757 0.000 | 0.000 | 0.000 | 0.923 0.875 0.855
19 0.039 25.871 0.000 | 0.022 | 0.000 | 0.923 0.897 0.855
20 0.033 30.346 0.000 | 0.001 | 0.000 | 0.923 0.898 0.855




Table C-4 Modal properties of the Steel Containment Vessel (SCV)

Mode | Period (sec) | Freq. (Hz) (V)4 uy UZ | SumUX | SumUY | SumUz
1 0.275 3.632 0.000 | 0.157 | 0.000 | 0.000 0.157 0.000
2 0.180 5.548 0.716 | 0.000 | 0.000 | 0.716 0.157 0.000
3 0.158 6.325 0.000 | 0.603 | 0.000 | 0.716 0.760 0.000
4 0.157 6.371 0.000 | 0.000 | 0.092 | 0.716 0.760 0.092
5 0.104 9.628 0.043 | 0.000 | 0.000 | 0.759 0.760 0.092
6 0.083 12.048 0.000 | 0.000 | 0.000 | 0.759 0.760 0.092
7 0.062 16.216 0.000 | 0.000 | 0.674 | 0.759 0.760 0.766
8 0.053 18.910 0.000 | 0.148 | 0.000 | 0.759 0.908 0.766
9 0.053 18.973 0.152 | 0.000 | 0.000 | 0.911 0.908 0.766
10 0.038 26.652 0.000 | 0.000 | 0.135 | 0.911 0.908 0.901
11 0.032 31.388 0.000 | 0.020 | 0.000 | 0.911 0.929 0.901
12 0.031 31.976 0.015 | 0.000 | 0.000 | 0.926 0.929 0.901
13 0.028 35.829 0.000 | 0.011 | 0.000 | 0.926 0.939 0.901
14 0.027 36.515 0.000 | 0.000 | 0.000 | 0.926 0.939 0.901
15 0.027 36.559 0.015 | 0.000 | 0.000 | 0.941 0.939 0.901
16 0.023 44.318 0.000 | 0.000 | 0.014 | 0.941 0.939 0.914
17 0.019 52.367 0.000 | 0.024 | 0.000 | 0.941 0.964 0.914
18 0.019 53.011 0.024 | 0.000 | 0.000 | 0.964 0.964 0.914
19 0.017 60.245 0.000 | 0.000 | 0.000 | 0.964 0.964 0.914
20 0.016 61.637 0.000 | 0.000 | 0.048 | 0.964 0.964 0.963




Table C-5 Modal properties of the Containment Internal Structure (CIS)

Mode | Period (sec) | Freq. (Hz) (V)4 uy UZ | SumUX | SumUY | SumUz
1 0.086 11.682 0.002 | 0.212 | 0.000 | 0.002 0.212 0.000
2 0.079 12.608 0.227 | 0.002 | 0.000 | 0.229 0.214 0.000
3 0.061 16.423 0.005 | 0.014 | 0.000 | 0.235 0.227 0.000
4 0.060 16.538 0.003 | 0.048 | 0.000 | 0.238 0.275 0.000
5 0.054 18.566 0.026 | 0.011 | 0.000 | 0.264 0.286 0.000
6 0.048 20.648 0.129 | 0.002 | 0.000 | 0.393 0.289 0.000
7 0.045 22.350 0.001 | 0.041 | 0.000 | 0.394 0.330 0.000
8 0.039 25.879 0.010 | 0.241 | 0.000 | 0.404 0.571 0.000
9 0.036 27.866 0.148 | 0.107 | 0.000 | 0.552 0.678 0.000
10 0.034 29.032 0.145 | 0.041 | 0.000 | 0.698 0.718 0.000
11 0.025 40.062 0.000 | 0.000 | 0.504 | 0.698 0.718 0.504
12 0.020 51.211 0.039 | 0.083 | 0.000 | 0.736 0.802 0.504
13 0.018 54.918 0.107 | 0.053 | 0.000 | 0.843 0.855 0.504
14 0.015 65.950 0.000 | 0.000 | 0.264 | 0.843 0.855 0.768
15 0.012 83.236 0.076 | 0.062 | 0.000 | 0.918 0.916 0.768
16 0.011 91.693 0.000 | 0.000 | 0.007 | 0.918 0.916 0.775
17 0.010 99.850 0.051 | 0.057 | 0.000 | 0.969 0.973 0.775
18 0.008 129.955 | 0.000 | 0.000 | 0.127 | 0.969 0.973 0.902
19 0.007 138.466 | 0.000 | 0.000 | 0.005 | 0.969 0.973 0.907
20 0.004 284.819 | 0.000 | 0.000 | 0.093 | 0.969 0.973 1.000




C.4 Simplified Calculation of Modal Frequencies

A simplified model of the base-isolated nuclear power plant is presented in Figure C.3 to
estimate the horizontal, vertical, torsional and rocking frequencies.
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Figure C-3 A two-dimensional representation of base-isolated NPP

The basemat and superstructure is considered rigid and their masses are lumped at their
respective center of gravities. The center of gravities of the different component of the base-
isolated NPP are calculated using nodal properties presented in Table C.2, and are presented in
Table C.6. The dimensions of the concrete basemat slab is 100mx60mx2.5m and the mat is
assumed to be rigid in its plane. A symmetric layout of isolators is used beneath the basemat
with the distance between the centers of adjacent bearings equal to 5 m, which requires a total
of N, =273 isolators. This results in 13 and 21 rows of LR bearings in the two orthogonal
horizontal directions. The layout of isolators is shown in Figure 9-5.

The modal frequencies are obtained using the properties of LR bearings presented in Table 9-5
and Table 9-6 for the isolation system T2Q6. The horizontal and vertical stiffnesses, K,,, and
K,,, of LR bearings are 5.29 MN/m and 6623 MN/m, respectively. The rocking frequency is
obtained for the rotational motion of the superstructure along the shorter dimension (60 m) of
the basemat, which gives smaller frequency than the rotation about the larger dimension (100
m).
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The modal frequencies are calculated as:

horizontal — 2

f

vertical — 272_

Ny

1 ZKVOXIZ
frockin =5 = 2 2 = 35.2Hz
9 2z \M, hi+M_h;

where h, and h, are the distances of the center of gravities of basemat and superstructure from
the center of gravity of whole superstructure.

Table C-6 Location of the center of gravities

Structure Total mass (kg) C.G. Total height (m)
ASB 65571108 28.3 83.1
SCV 3733776 40.9 67.5
Superstructure (ss) CIS 40979671 9.5 33.1
Total 110284555 21.8 83.1
Basemat (bm) 36000000 1.25 2.5
Base-isolated NPP 146284555 17 41 85.6

(Superstructure+basemat)
1. Distance from the C.G. of the basemat




C.5 Responses of the Base-isolated Nuclear Power Plant

The responses of the base-isolated NPP using the simplified and advanced LR bearing models
are presented in this appendix. Mean ( z ), median @ (50"), and 90" and 99" percentiles
response are tabulated together with o, which logarithmic standard deviation. The calculation
of percentile responses are described in Appendix B.1 and Section 9.4.

The simplified isolator model uses a linear elastic model in the axial direction, and results in
same o in displacement and force response in Table C.8 through C.11. A large dispersion (0')
in the tensile response (Table C.8 and C.9) of the base-isolated NPP models for 30 ground
motion sets is due to fact that some ground motions produce tensile response that is negligible
or very close to zero. Cavitation is observed in the bearings of base-isolated NPP using
advanced isolator model at 200% DBE shaking, hence the maximum tensile force response is
close to the cavitation force in LR bearings for all ground motions. This results in a very small
dispersion in tensile force response at 200% DBE shaking in Table C.20.
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C.6 Basemat Response

Displacement profiles for mean peak tensile (positive) and compressive (negative) displacement
of bearings for 30 ground motion sets are presented here at a shaking intensity of 200% DBE.
The outer bearings experience higher axial displacements than the inner bearings due to
rocking and torsion of superstructure.
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Figure C-4 Spatial profile for mean of peak axial displacements (mm) for sets of 30 ground

motion sets, 200% DBE
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C.7 Superstructure Response

Figures C.4 and C.5 present the variations of zero-period acceleration along the height of the
superstructure for the ASB, CIS, and SCV, and isolation systems T2Q6 and T2Q12.
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C.8 Floor Response Spectra

C.8.1 Simplified isolator model
Floor response spectra (damping = 5%) at the center of the basemat (node 2137) is presented
in Figure C.6 through C.8 for simplified isolator model.
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Figure C-9 Floor response spectra, simplified model, node 2137, Z direction
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C.8.2 Advanced isolator model

Floor response spectra (damping = 5%) at the center of the basemat (node 2137) is presented
in Figure C.9 through C.11 for advanced isolator model. Greater amplitude and record-to-record
variability in the response spectra is observed with respect to results calculated using the
simplified model. The effects of the five characteristics of LR bearings discussed in Section 9.4
become significant at the higher intensities of earthquake shaking.
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Figure C-10 Floor response spectra, advanced model, node 2137, X direction
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Figure C-11 Floor response spectra, advanced model, node 2137, Y direction
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Figure C-12 Floor response spectra, advanced model, node 2137, Z direction
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