

Entergy Operations, Inc. P. O. Box 756 Port Gibson, MS 39150

Douglas A. Neve Manager, Regulatory Assurance Grand Gulf Nuclear Station Tel. (601) 437-2103

10CFR50.36(a)(2)

GNRO-2018/00021

April 25, 2018

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

SUBJECT:

Grand Gulf Nuclear Station Annual Radioactive Effluent Release Report (ARERR) Grand Gulf Nuclear Station, Unit 1 Docket No. 50-416 License No. NPF-29

Dear Sir or Madam:

Attached is the Grand Gulf Nuclear Station Annual Radioactive Effluent Release Report for the time period of January 1, 2017 through December 31, 2017. This report is submitted in accordance with the requirements of 10CFR50.36(a)(2) and GGNS Unit 1 Technical Specification 5.6.3.

This letter contains no new commitments. If you have any questions or require additional information, please contact George Wynn at 601-437-1426.

Sincerely,

Douglas A. Neve Regulatory Assurance Manager Grand Gulf Nuclear Station DAN/jw

Attachment: Grand Gulf Nuclear Station 2017 Annual Radioactive Effluent Release Report

cc: see next page

GNRO-2018/00021 Page 2 of 2

cc: U.S. Nuclear Regulatory Commission ATTN: Mr. Siva Lingam Mail Stop OWFN 8 B1 Rockville, MD 20852-2738

NRC Senior Resident Inspector Grand Gulf Nuclear Station Port Gibson, MS 39150

U. S. Nuclear Regulatory Commission ATTN: Mr. Kriss Kennedy Region Administrator, Region IV Mail Stop OWFN 8 B1 Washington, DC 20555-0001

Mr. B. J. Smith (w/2) Director, Division of Radiological Health Mississippi State Department of Health Division of Radiological Health 3150 Lawson Street Jackson, MS 39213

i.

Grand Gulf Nuclear Station 2017 Annual Radioactive Effluent Release Report

ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION

Annual Radioactive Effluent Release Report

JANUARY 1, 2017 – DECEMBER 31, 2017

Prepared:	- S Reese	4/24/18
	Jim Reese Senior Chemistry Specialist	Date
Reviewed:	Teith O-Neal	4/24/18
n tha Aller 49 a fan Huar Net Handel a Barnan a san	Keith O'Neal Chemistry Supervisor	Date
Approved:	They	4124/18
	jimmy Wynn Chemistry Manager	Date

TABLE OF CONTENTS

í,

	SUBJECT	PAGE
1.	INTRODUCTION	4
II.	DETAILED INFORMATION	5
	A. Regulatory Limits	5
	1. ODCM Control Limits	5
	a. Fission and Activation Gases	5
	b. Radioiodines, Tritium and Particulates	5
	c. Liquid Effluents	5
	2. 10CFR50, Appendix I Limits	· 6
	a. Fission and Activation Gases	6
	b. Radioiodines, Tritium and Particulates	6
	c. Liquid Effluents	6
	3. 40CFR190 Limits	7
	B. Effluent Concentrations	7
	1. Airborne	7
	2. ² Liquid	7
	C. Average Energy	8
	D. Measurements and Approximations of Total Activity	8
	1. Fission and Activation Gases	9
	2. Particulates and Radioiodines	10
	3. Continuous Releases	10
	4. Batch Releases: Gases	10
	5. Batch Releases: Liquid Effluents	11
	E. Batch Releases	11
	1. Liquid	11
	2. Gaseous	12
	F. Abnormal Releases	12
	1. Liquid	12
	2 Gaseous	12

TABLE OF CONTENTS (CONT'D)

SUBJECT

	G. Estimate of Total Error	12
	1. Liquid	12
	2. Gaseous	13
	3. Solid Radioactive Waste	13
	H. Solid Radioactive Waste Shipments	13
	I. Meteorological Data	13
	J. Radioactive Effluent Monitoring Instrumentation Operability	13
	K. Annual Sewage Disposal Summary	13
III.	RADIATION DOSE SUMMARY	14
	A. Water-Related Exposure Pathways	14
	B. Airborne-Related Exposure Pathways	14
IV.	OFFSITE DOSE CALCULATION MANUAL/	
	RADIOACTIVE WASTE TREATMENT SYSTEM CHANGES	17
	A. Offsite Dose Calculation Manual (ODCM)	17
	B. Radioactive Waste Treatment Systems	17

LIST OF TABLES

PAGE

28

	ATTACHMENTS	PAGE
3	Solid Radioactive Waste and Irradiated Fuel Shipments	25
20	Radioactive Liquid Waste Sampling and Analysis Program	24
2B	Liquid Effluents – Continuous and Batch Modes	23
2A	Liquid Effluents – Summation of All Releases	22
1D	Radioactive Gaseous Waste Sampling and Analysis Program	21
1C	Gaseous Effluents – Ground-Level Releases – Continuous	20
1B	Gaseous Effluents – Elevated Releases	∖19
1A	Gaseous Effluents – Summation of All Releases	18
III.B	2017 Airborne Effluent Dose	16
III.A	2017 Liquid Effluent Dose	14

Attachment I – Nuclear Energy Institute (NEI) Groundwater Protection Initiative Sample Results

I. INTRODUCTION

This Annual Radioactive Effluent Release Report (ARERR) for the period of January 1 through December 31, 2017 is submitted in accordance with Technical Specifications, Section 5.6.3, of Grand Gulf Nuclear Station (GGNS) License Number NPF-29. The monitoring of radioactive effluents is referenced in Offsite Dose Calculation Manual (ODCM) Appendix A, Sections 6.11 and 6.12.

Airborne discharges at GGNS are considered ground-level releases. All liquid and airborne discharges to the environment were analyzed in accordance with ODCM requirements. All effluent releases were within the concentration and total release limits specified by the ODCM. Projected offsite doses were within the dose limits specified by the ODCM.

The summation of all known gaseous releases during the reporting period is reported in Table 1A.

Elevated gaseous releases are not applicable at GGNS as reported in Table 1B.

The summation of all known ground-level gaseous release during the reporting period is reported in Table 1C.

The radioactive gaseous sampling and analysis program implemented at GGNS is described in Table 1D.

The summation of all liquid releases during the reporting period is reported in Table 2A.

The continuous and batch mode liquid releases are reported in Table 2B.

The radioactive liquid waste sampling and analysis program implemented at GGNS is described in Table 2C.

Solid radioactive waste and irradiated fuel shipments during the reporting period are summarized in Table 3.

Groundwater Protection Initiative (GPI) well sample tritium results, which are not included in the AREOR, are included as Attachment I to the ARERR.

The annual summary of meteorological data (joint frequency distribution) will be maintained on site. The option to maintain meteorological data on site is in accordance with ODCM Administrative Controls Section 5.6.3. This data shall be provided to the Nuclear Regulatory Commission (NRC) upon request.

II. DETAILED INFORMATION

- A. Regulatory Limits
 - 1. ODCM Control Limits
 - a. <u>Fission and Activation Gases</u> The release rate limit at any time for noble gases to areas at or beyond the site boundary shall be such that:

 D_{tb} = average total body dose rate in the current year (mrem/yr)

= $\overline{X/Q} \Sigma_i K_i Q_i \leq 500$ mrem/yr

 D_s = average skin dose rate in the current year (mrem/yr)

= $\overline{X/Q} \Sigma_i$ (L_i + 1.1 M_i) Q $_i' \leq$ 3000 mrem/yr

where the terms are defined in the GGNS ODCM.

b. <u>Radioiodines, Tritium and Particulates</u> - The release rate limit for the sampling period for all radioiodines, tritium and radioactive materials in particulate form with half-lives greater than 8 days shall be such that:

 D_o = average organ dose rate in current year (mrem/yr)

= Σ_i W P_i $\overline{Q'_i} \leq 1500$ mrem/yr

where the terms are defined in the GGNS ODCM.

c. <u>Liquid Effluents</u> - The concentration of radioactive materials released in liquid effluents to unrestricted areas from the site shall not exceed at any time ten times the values specified in 10CFR20, Appendix B, Table 2, Column 2. The concentration of dissolved or entrained noble gases, released in liquid effluents to unrestricted areas from all reactors at the site, shall be limited to 2×10^{-4} microcuries/ml total activity.

- 2. 10CFR50, Appendix I Limits
 - a. <u>Fission and Activation Gases</u> The dose from noble gases in gaseous effluents to areas at or beyond the site boundary shall be such that:

 D_v = air dose due to gamma emissions from noble gases

= $3.17 \times 10^{-8} \Sigma_i M_i \overline{X/Q'} Q_i \le 5 \text{ mrad/qtr}$

≤ 10 mrad/yr

 D_{β} = air dose due to beta emissions from noble gases

= 3.17 x 10⁻⁸ $\Sigma_i N_i \overline{X/Q'} Q_i \leq 10 \text{ mrad/qtr}$

 \leq 20 mrad/yr

where the terms are defined in the GGNS ODCM.

- b. <u>Radioiodines, Tritium and Particulates</u> The dose to an individual from tritium, I-131, I-133 and radioactive material in particulate form with halflives greater than 8 days in gaseous effluents shall be such that:
 - D_p = dose to an individual from tritium, I-131, I-133 and radionuclides in particulate form with half-lives greater than 8 days (mrem)
 - = $3.17 \times 10^{-8} \Sigma_i R_i W' Q_i \le 7.5$ mrem/qtr Any Organ

≤ 15 mrem/yr Any Organ

where the terms are defined in the GGNS ODCM.

c. <u>Liquid Effluents</u> - The dose from radioactive materials in liquid effluents shall be such that:

 $D_{Tau} = \sum_{i} [A_{iTau} \quad \sum_{i=1}^{m} \Delta t_i C_{ii} \quad F_i] \le 1.5 \text{ mrem/qtr Total Body}$

 \leq 5 mrem/qtr Any Organ

 \leq 3 mrem/yr Total Body

 \leq 10 mrem/yr Any Organ

where the terms are defined in the GGNS ODCM.

3. 40CFR190 Limits

Doses are calculated for Fission and Activation Gases; Radioiodines and Particulates; and Liquid Effluents according to equations contained in Sections 2.(a), (b), and (c) respectively, with the exception that the limits applied are:

Section 25 mrem/yr, Total Body or any Organ except Thyroid

 \leq 75 mrem/yr, Thyroid

 \leq 10 mrad γ /qtr or \leq 20 mrad γ /yr, Fission and Activation Gases

 \leq 20 mrad β /qtr or \leq 40 mrad β /yr, Fission and Activation Gases

 \leq 15 mrem/qtr or \leq 30 mrem/yr, any Organ, lodine and Particulates

 \leq 3 mrem/qtr or \leq 6 mrem/yr, Total Body, Liquid Effluents

 \leq 10 mrem/qtr or \leq 20 mrem/yr, any Organ, Liquid Effluents

- B. Effluent Concentrations
 - 1. Airborne

The Effluent Concentration Limit (ECL) of radioactive materials in gaseous effluents is limited by the dose rate restrictions given in Section II.A.1.a. In this case, the ECLs are actually determined by the dose factors in Table 2.1-1 of the GGNS ODCM.

Gaseous dose rates rather than ECL are used to calculate permissible release rates for gaseous releases. The maximum permissible dose rates for gaseous releases are defined in the GGNS ODCM 6.11.4.a as 500 mrem/yr (Total Body) and 3000 mrem/yr (Skin) and in 6.11.4.b as 1500 mrem/yr (Organ).

2. Liquid

The ECL of radioactive materials in liquid effluents is limited by ten times the values in 10CFR20, Appendix B, Table 2, Column 2. The ECL chosen is the most conservative value of either the soluble or insoluble ECL for each radioisotope.

C. Average Energy

Not applicable for GGNS ODCM Appendix A.

The GGNS ODCM limits the instantaneous dose equivalent rates due to the release of noble gases to less than or equal to 500 mrem/year to the total body and less than or equal to 3000 mrem/year to the skin. The average beta and gamma energies of the radionuclide mixture in releases of fission and activation gases as described in Regulatory Guide 1.21, "Measuring, Evaluation, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," may be used to calculate doses in lieu of more sophisticated software. The GGNS radioactive effluent programs employs the methodologies presented in U.S. NRC Regulatory Guide 1.109 "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants, October 1978. Therefore, average energies are not applicable to GGNS.

D. Measurements and Approximations of Total Activity

The following discussion details the methods used to measure and approximate the total activity for the following:

Fission and Activation Gases	Particulates
Radioiodines	Liquid Effluents

Tables 1D and 2C give sampling frequencies and Lower Limit of Detection requirements for the analysis of gaseous and liquid effluent streams, respectively.

Values in the attached tables given as zero do not necessarily imply that the radionuclides were not present. A zero indicates that the radionuclide was not present at levels greater than the sensitivity requirements shown in Tables 1D and 2C. For some radionuclides, lower detection levels than required may be readily achievable; when a radionuclide is measured below its stated detection limits, it is reported.

1. Fission and Activation Gases

The principal gamma emitters for which the LLD specification in Table 1D applies exclusively are:

Kr-87	Xe-133	Xe-135	
Kr-88	Xe-133m	Xe-138	

Periodic grab samples from Station effluent streams are analyzed by gamma spectral analysis utilizing high-resolution germanium detectors (see Table 1D for sampling and analytical requirements). Isotopic values thus obtained are used for dose release rate calculations due to effluent releases as given in Section II.A.1 of this report. The radionuclides that are detected are used in this computation. When no radionuclides are detected, a historical default mixture is used. During the period between grab samples, the amount of radioactivity released is based on the effluent monitor readings. Monitors are assigned a calibration factor based upon the last isotopic analysis, using the following relationship:

$$C_i = U_i \div m$$

where:

- C_i = isotopic calibration factor for isotope i
- U_i = concentration of isotope i in the grab sample in μ Ci/ml.
- m = net monitor reading associated with the effluent stream (determined at the time of grab sampling).

These calibration factors, along with the hourly effluent monitor values and flow rates, are entered into the laboratory computer where the release rates for individual radionuclides are calculated and stored. If no activity is detected in the grab sample, the calibration factor defaults to a historical default mixture of Kr-88, Xe-133, Xe-135m, Xe-135, and Xe-138.

2. Particulates and Radioiodines

The principal gamma emitters for which the LLD specification in Table 1D applies exclusively are:

Zn-65	Mo-99
Mn-54	Cs-134
Fe-59	Cs-137
Co-58	Ce-141
Co-60	Ce-144
Sr-89	I-131
Sr-90	1-133

3. Continuous Releases

Continuous sampling is performed on the continuous release points when releasing (i.e., Offgas/Radwaste Building, Containment Building, Fuel Handling Area, Turbine Building, and Turbine Building Occasional Release Point). Particulate material is collected by filtration. Radioiodines are collected by adsorption onto a charcoal filter. Periodically these filters are removed and analyzed by gamma spectral analysis utilizing high-resolution Germanium detectors to identify and quantify radioactive materials collected. Particulate filters are then analyzed for gross alpha and Strontium-89/90 as required. Gross alpha is analyzed using a gas flow proportional detector. Strontium-89/90 values are obtained by chemical separation and subsequent counting analysis using a gas flow proportional detector. Tritium concentrations are determined using distillation and a liquid scintillation detector. During major operational occurrences, the frequency of sampling is increased to satisfy the requirements of footnote "c" of Table 1D. "Radioactive Gaseous Waste Sampling and Analysis," (GGNS ODCM Appendix A, Table 6.11.4-1). Strontium analysis is performed by a qualified contract laboratory. Carbon-14 (C-14) activity of 11.24 Curies released this year in gaseous form was obtained by estimation using EPRI spreadsheet BWR Source Term Calculation (MAL-1)_r1 and the information in NEAD-NS-11-0060-Rev1-EC42519 and adjusted by 224.0 full power production days. Carbon-14 curies are reported in Tables 1A and 1C of this report and based on a constant release rate throughout the quarter.

4. Batch Releases: Gases

Gaseous batch releases are not normally performed at GGNS.

5. Batch Releases: Liquid Effluents

The principal gamma emitters for which the LLD specification in Table 2C applies exclusively are:

H-3	Sr-90
Mn-54	Mo-99
Fe-55	I-131
Co-58	Cs-134
Co-60	Cs-137
Fe-59	Ce-141
Zn-65	Ce-144
Sr-89	

Representative pre-release grab samples are obtained and analyzed as required by Table 2C. Isotopic analyses are performed by gamma spectral analysis utilizing high-resolution germanium detectors. Aliquots of each pre-released sample, proportional to the waste volume released, are composited in accordance with the requirements of Table 2C. Strontium-89/90 and Iron-55 values are obtained by individual chemical separations. Strontium-89/90 is analyzed using a gas flow proportional detector. Iron-55 is analyzed using a low energy photon detector. Gross alpha is analyzed using a gas flow proportional detector. Tritium is distilled and then analyzed using a liquid scintillation detector. Dissolved gases are determined employing grab sampling techniques and analyzed by gamma spectral analysis utilizing high-resolution germanium detectors. Iron and Strontium analyses are performed by a qualified contract laboratory.

E. Batch Releases

1. Liquid

Time periods in minutes	1st QTR	2nd QTR	3rd QTR	4th QTR	YEAR
Number of Releases	11	16	29	24	80
Total Release Time	3.25E+03	4.84E+03	8.50E+03	7.40E+03	2.40E+04
Maximum Release Time	3.08E+02	3.17E+02	3.85E+02	3.90E+02	3.90E+02
Average Release Time	2.95E+02	3.02E+02	2.93E+02	3.08E+02	3.00E+02
Minimum Release Time	2.75E+02	2.90E+02	3.00E+00	2.60E+02	3.00E+00
Average Dilution Water Flow (GPM)	4.32E+03	5.84E+03	6.65E+03	5.75E+03	5.89E+03

The 3rd quarter Minimum Release Time resulted from a liquid discharge that terminated shortly after starting due to high activity on the liquid effluent radiation monitor. After the monitor was flushed, the tank was resampled and discharged under a new release permit.

2. Gaseous

No batch releases occurred during the report period.

F. Abnormal Releases

- 1. Liquid
 - a. Number of Releases: 0
 - b. Total Activity Released: 0.00E+00 Ci

No abnormal liquid releases were identified for this reporting period.

- 2. Gaseous
 - a. Number of Releases: 0
 - b. Total Activity Released: 0.00E+00 Ci

No abnormal gaseous releases were identified for this reporting period.

- G. Estimate of Total Error
 - 1. Liquid

The maximum errors are collectively estimated to be as follows:

Error values in %	Fission & Activation Products	Tritium	Dissolved & Entrained Gases	Gross Alpha
Sampling	2.60E+01	2.60E+01	2.60E+01	2.60E+01
Measurement	6.80E+01	6.50E+01	6.10E+01	9.20E+01
TOTAL	7.30E+01	7.00E+01	6.60E+01	9.50E+01

Sampling errors include uncertainty associated with mixing, representative sampling and discharge volume. Measurement errors include uncertainty associated with instrument calibration and the preparation and counting of low-activity samples. Counting errors are based on measurements of blank samples. For germanium detectors, the least-readily-detectable radioisotope is used to determine the counting error. Calibration errors are calculated by summing the errors associated with the calibration of a particular instrument with a radioactive source.

The total error is calculated by taking the square root of the sum of the squares of the individual errors.

2. Gaseous

The maximum errors (not including sample line loss) are collectively estimated to be as follows:

Error values in %	Fission & Activation Products	lodine	Particulate	Gross Alpha	Tritium
Sampling	3.20E+01	2.30E+01	2.20E+01	2.20E+01	2.30E+01
Measurement	6.10E+01	6.70E+01	6.50E+01	1.01E+02	6.20E+01
TOTAL	6.90E+01	7.10E+01	6.90E+01	1.03E+02	6.60E+01

Sampling errors include uncertainty associated with sample flow, vent flow and monitor calibration.

Measurement and total errors are calculated by the same methods used for liquid effluents.

3. Solid Radioactive Waste

Estimated Total Error % for all waste types is \pm 25%. Sampling errors include uncertainty associated with mixing and representative sampling.

H. Solid Radioactive Waste Shipments

See Table 3 for shipment information.

I. Meteorological Data

The data recovery for the reporting period was 99.6%. The predominant wind direction was from the north-northeast approximately 10.4% of the time. The predominant stability class was class "D" approximately 31.8% of the time. Average wind speed during the reporting period was approximately 4.1 miles per hour at the 33 foot elevation.

The annual meteorological data (Hourly Average Data or Joint Frequency Distribution) will be maintained on site in a file that shall be provided to the NRC upon request.

J. Radioactive Effluent Monitoring Instrumentation Operability

CR-GGN-2017-0051 – On 1/3/17 the Containment Building Vent effluent radiation monitor had been inoperable for 30 days due to detector failure and delays in obtaining replacement parts. Also, another issue was discovered during repairs that added additional repair time to the initial job scope. The monitor was repaired, calibrated, and restored to operable status on 1/21/17.

K. Annual Sewage Disposal Summary

There were no sewage disposals in 2017.

ŕ

III. RADIATION DOSE SUMMARY

Indicated below is the annual summary of offsite doses attributable to GGNS during 2017. Inspection of the values indicates that GGNS releases were within the 10CFR50, Appendix I, design objectives.

Since there are no other fuel cycle facilities within 8 km of GGNS, 40CFR190 limits were also met during this period.

A. Water-Related Exposure Pathways

The values calculated in this section utilize the information provided in Tables 2A and 2B of this report and the calculation methodology of the ODCM.

Liquid Effluents

Total body dose and critical organ doses are computed for the maximum exposed individual. The maximum dose contribution from liquid effluents is considered to occur in the adult age group via consumption of fish.

Dose in mrem	1st QTR	2nd QTR	3rd QTR	4th QTR	TOTAL
Bone	2.61E-02	1.25E-02	1.47E-02	4.74E-02	9.45E-02
Liver	4.29E-02	1.95E-02	2.47E-02	8.46E-02	1.61E-01
Thyroid	4.80E-04	6.56E-04	9.55E-04	9.47E-04	3.00E-03
Kidney	1.57E-02	6.77E-03	9.28E-03	3.20E-02	6.00E-02
Lung	6.08E-03	3.60E-03	3.52E-03	9.12E-03	2.09E-02
GI-LLI	1.01E-02	5.13E-03	3.08E-03	1.28E-02	2.85E-02
Applicable Limit	5	5	5	5	10
Percent of Limit	8.58E-01	3.90E-01	4.94E-01	1.69E+00	1.61E+00
Whole Body	2.72E-02	1.25E-02	1.73E-02	5.89E-02	1.09E-01
Applicable Limit	1.5	1.5	1.5	1.5	3
Percent of Limit	1.82E+00	8.35E-01	1.15E+00	3.93E+00	3.65E+00

Table III.A 2017 Liquid Effluent Dose

B. Airborne-Related Exposure Pathways

The values presented in this section utilize information provided in Tables 1A and 1C of this report and the calculation methodology of the ODCM. Dose and dose rates are computed for locations at the site boundary or at unrestricted areas within the site boundary. Because members of the public, on occasion, may be found within the site boundary, two fishing lakes, the recreational vehicle laydown area, and the GGNS Energy Services Center locations were also evaluated.

Consideration of site boundary locations as well as unrestricted areas within and beyond the site boundary provides assurance that offsite doses will not be substantially underestimated while attempting to provide an accurate dose calculation.

Doses for a Member of the Public are computed based on 2017 meteorological data and on the most recent land use census, with the most limiting location used.

During normal operations, the dispersion and deposition factors used for dose calculations are from five-year historical annual average meteorological data.

III. RADIATION DOSE SUMMARY (CONT'D)

Organ Dose

The maximum organ dose to a MEMBER OF THE PUBLIC (critical receptor) from radioiodines, tritium, and particulates was calculated for this report using the most recent land use census and dispersion and deposition parameters from 2017 meteorological data. The critical receptor residence was determined to be located in the southwest sector at a distance of 1432 meters (0.89 miles) from the plant. Pathways considered for use in the organ dose calculations are inhalation, ground plane, grass/cow/meat, and vegetation. There is no grass/cow/milk pathway within five miles of GGNS. It was assumed that the age group receiving the maximum dose lived at the residence and that the receptor consumed food products that were raised or produced at the residence. This dose is documented in the following table as two separate entries. The first organ dose entry excludes C-14 while the second entry includes organ dose from tritium, radioiodines, particulates, and C-14.

Average Total Body and Skin Dose Rate

Individual total body and skin dose rates from exposure to a semi-infinite cloud of noble gas was calculated for a location in the west-northwest sector at a distance of 1207 meters (0.75 miles) from the plant. This location corresponds to the highest annual average atmospheric dispersion factor for a location at or within the site boundary based on historical 5-year average meteorological data.

The total body and skin dose rates reported are the quarterly average of the maximum instantaneous dose rates determined daily during the reporting period and represent the maximum possible dose rate received by members of the public.

Air Dose from Gamma and Beta Emissions

Air doses from gaseous effluents were calculated for this report using dispersion parameters from historical 5-year average meteorological data. The highest dispersion factor for an unrestricted area was in the west-northwest sector at the site boundary, 1207 meters (0.75 miles) from the plant.

Direct Radiation

Direct radiation dose is calculated by subtracting average doses measured by thermoluminescent dosimeter (TLD) badges located at control locations from average doses measured by TLD badges located near the site boundary. GGNS reported measured doses in 2017 as net exposure normalized to 92 days.

Carbon-14

Carbon-14 (C-14) is a naturally occurring isotope of carbon. Nuclear weapons testing in the 1950s and 1960s significantly increased the amount of C-14 in the atmosphere. Carbon-14 is also produced in commercial nuclear reactors, but the amounts produced are much less than those produced naturally or from weapons testing. In recent years, the analytical methods for determining C-14 have improved. Coincidentally the radioactive effluents from commercial nuclear power plants have also decreased to the point that C-14 has emerged as a principal radionuclide in gaseous effluents.

III. RADIATION DOSE SUMMARY (CONT'D)

The only significant dose pathway to a member of the public from C-14 release is through consumption of vegetation. Vegetation incorporates C-14 in form of carbon dioxide (CO₂) during photosynthesis so doses are calculated based on the CO₂ fraction of the carbon released in gaseous form. A CO₂ fraction of 95% is used based on EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents." The highest atmospheric dispersion factor for an actual garden based on the land use census was used to determine dose from C-14. Carbon-14 is dispersed as a gas (CO₂) to the garden location, where it is then incorporated into plant material.

Carbon-14 dose is calculated to a MEMBER OF THE PUBLIC for the most age restrictive group (Child) and organ (bone) at the garden location. This dose is then added to dose for the same organ from tritium, iodine, and particulates. This organ dose is recorded and compared to the limit in the following table.

	1st QTR	2nd QTR	3rd QTR	4th QTR	TOTAL				
lodine, Tritium & Particulates (excl	uding Carbon	-14)							
Child (mrem)	2.97E-03	6.96E-03	6.23E-03	7.37E-03	2.35E-02				
Organ	Thyroid	Thyroid	Thyroid	Thyroid	Thyroid				
Applicable Limit	7.5	7.5	7.5	7.5	15				
Percent of Limit	3.97E-02	9.27E-02	8.30E-02	9.82E-02	1.57E-01				
lodine, Tritium & Particulates (including Carbon-14)									
Child (mrem)	1.22E+00	1.70E+00	1.20E+00	1.22E+00	5.34E+00				
Organ	Bone	Bone	Bone	Bone	Bone				
Applicable Limit	7.5	7.5	7.5	7.5	15				
Percent of Limit	1.63E+01	2.26E+01	1.60E+01	1.63E+01	3.56E+01				
Total Body Dose Rate (mrem/yr)	4.87E-01	2.91E-01	9.34E+00	2.38E+00					
Applicable Limit	500	500	500	500					
Percent of Limit	9.74E-02	5.82E-02	1.87E+00	4.76E-01					
Skin Dose Rate (mrem/yr)	9.30E-01	5.55E-01	1.42E+01	3.66E+00					
Applicable Limit	3000	3000	3000	3000					
Percent of Limit	3.10E-02	1.85E-02	4.73E-01	1.22E-01					
Gamma Air Dose (mrad)	2.45E-02	1.41E-02	4.92E-02	4.65E-02	1.34E-01				
Applicable Limit	5	5	5	5	10				
Percent of Limit	4.90E-01	2.82E-01	9.84E-01	9.30E-01	1.34E+00				
Beta Air Dose (mrad)	1.91E-02	1.46E-02	3.25E-02	4.67E-02	1.13E-01				
Applicable Limit	10	10	10	10	20				
Percent of Limit	1.91E-01	1.46E-01	3.25E-01	4.67E-01	5.65E-01				
Direct Radiation (mrem)	1.00E-01	0.00E+00	0.00E+00	5.00E-01	6.00E-01				

Table III.B 2017 Airborne Effluent Dose

- 16 -

III. RADIATION DOSE SUMMARY (CONT'D)

The 3rd quarter Total Body Dose Rate and Skin Dose Rate increases resulted from securing the Off Gas system vault refrigeration for repairs during plant operation, which resulted in increased effluent noble gas activity.

The 4th quarter Total Body Dose Rate and Skin Dose Rate increases resulted from continued operation with steam leaks that caused elevated response on the Turbine Building Vent effluent radiation monitor due to presence of N-13. The effluent dose was calculated conservatively using the default mixture when no noble gas was detected in grab samples, and the higher effluent dose rate was driven by the higher net monitor response.

IV. OFFSITE DOSE CALCULATION MANUAL/ RADIOACTIVE WASTE TREATMENT SYSTEM CHANGES

A. Offsite Dose Calculation Manual (ODCM)

The ODCM was revised in January 2017 to align usage of the terms FUNCTIONAL versus OPERABLE.

B. Radioactive Waste Treatment Systems

No major changes were made to the liquid or gaseous radioactive waste treatment systems during this reporting period.

TABLE 1A ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS – SUMMATION OF ALL RELEASES

REPORT FOR 2017	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
********	<u></u>	<u> </u>				<u> </u>
FISSION AND ACTIVATION	GASES					
1. Total Release	Ci	6.56E+01	5.40E+01	1.05E+02	1.73E+02	3.97E+02
2. Avg. Release Rate 3. Percent of TS Limit	uCi/sec	8.44E+00	6.87E+00	1.32E+01	2.17E+01	1.26E+01
a. Gamma Air	8	N/A	N/A	N/A	N/A	N/A
b. Beta Air	8	N/A	N/A	N/A	N/A	N/A
	·····)	·		
IODINE-131						
1. Total Release	Ci	3.03E-06	1.84E-04	1.63E-04	2.02E-04	5.52E-04
2. Avg. Release Rate	uCi/sec	3.90E-07	2.34E-05	2.05E-05	2.54E-05	1.75E-05
3. Percent of TS Limit	& 	N/A	N/A	N/A	N/A	N/A
•		, a, a		<u> </u>	<u></u>	······
PARTICULATES HALF LIFE	≥ 8 DAYS					
1. Total Release	Cì	5.40E-05	7.65E-06	2.88E-06	1.14E-05	7.59E-05
2. Avg. Release Rate	uCi/sec	6.94E-06	9.73E-07	3.63E-07	1.44E-06	2.41E-06
3. Percent of TS Limit	8	N/A	N/A	N/A	N/A	N/A
		· · · · · ·	<u>.</u>			
TRITIUM						
1. Total Release	Ci	3.81E+00	5.62E+00	5.06E+00	5.76E+00	2.02E+01

2. Avg. Release Rate uCi/sec 4.90E-01 7.15E-01 6.36E-01 7.24E-01 6.42E-01 3. Percent of TS Limit % N/A N/A N/A N/A N/A N/A

CARBON-14						
1. Total Release	Ci	2.57E+00	3.57E+00	2.52E+00	2.57E+00	1.12E+01
2. Avg. Release Rate	uCi/sec	3.27E-01	4.59E-01	3.17E-01	3.24E-01	3.56E-01

GROSS ALPHA RADIOACTIV	ITY					
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2. Avg. Release Rate	uCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

NOTE: Limits are applicable to dose, not concentration. See Table III.B on page 16 for percentage of dose limits.

TABLE 1B ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS – ELEVATED RELEASES

JANUARY – DECEMBER 2017

(Not Applicable – GGNS Releases Are Considered Ground-Level)

TABLE 1C ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS – GROUND-LEVEL RELEASE-CONTINUOUS

REPORT FOR 2017	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
	<u>.</u>					
FISSION AND ACTIVAT	ION GASES					
Ar-41	Ci	7.21E+00	7.62E-01	1.15E+01	3.54E+00	2.30E+01
Kr-85m	Ci	9.19E-01	6.31E-01	4.90E+00	6.05E-01	7.06E+00
Kr-87	Cí	0.00E+00	0.00E+00	9.82E-01	0.00E+00	9.82E-01
Kr-88	Ci	1.15E+00	1.05E+00	6.57E+00	3.36E+00	1.21E+01
Xe-133	Ci	2.69E+01	2.46E+01	4.04E+01	7.89E+01	1.71E+02
Xe-135	Ci	2.57E+01	2.36E+01	3.53E+01	7.54E+01	1.60E+02
Xe-135m	Ci	3.03E+00	2.77E+00	4.16E+00	8.89E+00	1.89E+01
Xe-138	Ci	6.88E-01	6.29E-01	9.45E-01	2.02E+00	4.28E+00
Total for Period	Ci	6.56E+01	5.40E+01	1.05E+02	1.73E+02	3.97E+02
······································			,	· · · · · · · · · · · · · · · · · · ·		······································
IODINES						
I-131	Ci	3.03E-06	1.84E-04	1.63E-04	2.02E-04	5.52E-04
I-133	Ci	1.96E-05	3.69E-05	4.76E-05	1.14E-04	2.18E-04
,		*				
Total for Period	Ci	2.27E-05	2.21E-04	2.10E-04	3.15E-04	7.70E-04
	<u> </u>		<u></u>	<u></u>		<u></u>
	<u> </u>			<u></u>		
PARTICULATES HALF L	$IFE \geq 8 DA$	YS				
Co-58	Ci	9 088-07	2 24E-06	0 002+00	3.95E-06	7 10E-06

Co-58	Ci	9.08E-07	2.24E-06	0.00E+00	3.95E-06	7.10E-06
Co-60	Ci	3.64E-05	3.21E-06	2.50E-06	5.39E-06	4.75E-05
Mn-54	Ci	1.28E-05	6.76E-07	0.00E+00	2.08E-06	1.55E-05
Ru-106	Ci	0.00E+00	1.33E-06	0.00E+00	0.00E+00	1.33E-06
Se-75	Ci	1.62E-07	1.92E-07	3.86E-07	4.44E-09	7.44E-07
Zn-65	Cì	3.74E-06	0.00E+00	0.00E+00	0.00E+00	3.74E-06
Total for Period	Ci	5.40E-05	7.65E-06	2.88E-06	1.14E-05	7.59E-05

OTHER						
н-3	Ci	3.81E+00	5.62E+00	5.06E+00	5.76E+00	2.02E+01
C-14	Ci	2.57E+00	3.57E+00	2.52E+00	2.57E+00	1.12E+01
Gross Alpha	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

NOTE: Only radionuclides with positive results reported.

TABLE 1D ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT Radioactive Gaseous Waste Sampling and Analysis Program

JANUARY - DECEMBER 2017

Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	n Analysis Type of Activity uency Analysis	
	31 Days	31 Days	Principal Gamma Emitters (b,e)	1.00E-04
A. (1) Radwaste Building Ventilation Exhaust	Grab Sample (f)	•	H-3	1.00E-06
(2) Fuel Handling Area	Continuous (d) (f)	7 Days (c)	I-131	1.00E-12
Ventilation Exhaust		Charcoal Sample	I-133	1.00E-10
(3) Containment Ventilation Exhaust(4A) Turbine Building	Continuous (d) (f)	7 Days (c) Particulate Sample	Principal Gamma Emitters (e) (I-131, Others)	1.00E-11
Ventilation Exhaust (4B) Turbine Building	Continuous (d) (f)	31 Days Composite Particulate Sample	Gross Alpha	1.00E-11
Occasional Release Point (g) (when in service)	Continuous (d) (f)	92 Days Composite Particulate Sample	Sr-89, Sr-90	1.00E-11
,	Continuous (f)	Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1.00E-06
B. (1) Offgas Post Treatment Exhaust, whenever there is flow	31 Days Grab Sample (f)	31 Days	Principal Gamma Emitters (e)	1.00E-04
(2) Standby Gas Treatment A Exhaust, whenever there is flow	31 Days Grab Sample (f)	31 Days	Principal Gamma Emitters (e)	1.00E-04
(3) Standby Gas Treatment B Exhaust, whenever there is flow	31 Days Grab Sample (f)	31 Days	Principal Gamma Emitters (e)	1.00E-04

NOTE: Footnotes indicated are listed in GGNS ODCM, Appendix A, Table 6.11.4-1.

TABLE 2A ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

RADIOACTIVE EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS – SUMMATION OF ALL RELEASES

REPOR	T FOR 2017	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
<u></u>	<u></u>	<u></u>	······································	• • • • • • • • • • •		<u></u>	
FISSIO	N AND ACTIVATIO	N PRODUCTS					
1. Tot	al Release	Ci	1.87E-02	1.60E-02	3.01E-03	3.77E-03	4.15E-02
2. Avg	. Diluted Conc.	uCi/ml	3.44E-07	1.47E-07	1.39E-08	2.30E-08	7.63E-08
3. Per	cent of Limit	ક	N/A	N/A	N/A	N/A	N/A

1. Total Release	Ci	4.25E+00	7.77E+00	1.30E+01	1.11E+01	3.61E+01
2. Avg. Diluted Conc.	uCi/ml	7.82E-05	7.14E-05	5.97E-05	6.79E-05	6.64E-05
3. Percent of Limit	8	N/A	N/A	N/A	N/A	N/A

DISSOLVED AND ENTRAIN	ED GASES					
1. Total Release	Ci	1.79E-05	3.06E-05	3.84E-05	6.87E-05	1.56E-04
2. Avg. Diluted Conc.	uCi/ml	3.29E-10	2.81E-10	1.77E-10	4.20E-10	2.86E-10
3. Percent of Limit	ક	N/A	N/A	N/A	N/A	N/A

GROSS ALPHA RADIOAC	TIVITY						
1. Total Release	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	· · · · · · · · · · · · · · · · · · ·					,	

Volume of Liquid Waste	liters	1.15E+06	1.70E+06	2.98E+06	2.56E+06	8.39E+06
Volume of Dilution Water	liters	5.31E+07	1.07E+08	2.14E+08	1.61E+08	5.35E+08

NOTE: Limits are applicable to dose, not concentration. See Table III.A on page 14 for percentage of dose limits.

A

. /

TABLE 2B ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

RADIOACTIVE EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS – CONTINUOUS AND BATCH MODES

REPORT FOR 2017	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
TICOTON AND ACTIVA		7	·		· · · · · · · · · · · · · · · · · · ·	
FISSION AND ACTIVA	TION GASES		2			
AG-110M	Ci	2.95E-05	0.00E+00	2.44E-05	7.28E-05	1.27E-04
AS-76	Ci	0.00E+00	6.61E-06	0.00E+00	0.00E+00	6.61E-06
CO-58	Ci	0.00E+00	2.17E-05	1.98E-05	1.65E-04	2.06E-04
CO-60	Ci	4.10E-04	5.30E-04	3.84E-04	1.96E-03	3.28E-03
CS-134	Ci	3.98E-05	2.45E-05	2.95E-05	1.15E-04	2.08E-04
CS-137	Ci	6.28E-05	3.86E-05	8.87E-05	2.17E-04	4.07E-04
FE-55	Ci	1.77E-02	1.50E-02	1.53E-03	7.37E-04	3.50E-02
LA-140	Ci	0.00E+00	0.00E+00	0.00E+00	1.74E-05	1.74E-05
MN-54	Ci	1.42E-04	8.66E-05	4.48E-06	1.01E-04	3.34E-04
NA-24	Ci	9.28E-06	3.83E-05	0.00E+00	0.00E+00	4.76E-05
PT-195M	Ci	0.00E+00	0.00E+00	0.00E+00	2.62E-05	2.62E-05
RB-88	Ci	0.00E+00	2.02E-04	7.53E-04	0.00E+00	9.55E-04
RU-106	Ci	2.08E-05	0.00E+00	0.00E+00	0.00E+00	2.08E-05
SB-124	Ci	0.00E+00	0.00E+00	7.76E-05	0.00E+00	7.76E-05
SB-125	Ci	1.74E-05	0.00E+00	3.62E-05	0.00E+00	5.36E-05
ZN-65	Ci	2.06E-04	7.98E-05	6.22E-05	3.56E-04	7.05E-04
Total for Period	Ci	1.87E-02	1.60E-02	3.01E-03	3.77E-03	4.15E-02

TRITIUM Total for Period

Ci

4.25E+00 7.77E+00 1.30E+01 1.11E+01 3.61E+01

2

DISSOLVED AND ENTRAINED GASES				
XE-133 Ci 6.53E	-06 1.34E-05	3.33E-05 5.	96E-05 1.13E-04	
XE-135 Ci 1.13E	-05 1.72E-05	5.10E-06 9.0	06E-06 4.27E-05	
				r
Total for Period Ci 1.79E	-05 3.06E-05	3.84E-05 6.8	87E-05 1.56E-04	4

GROSS ALPHA RADIOAC	TIVITY						
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

TABLE 2C ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

RADIOACTIVE EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

Liquid Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (µCi/ml) (a)
Prior to Release		Prior to Release	Principal Gamma Emitters (d)	5.00E-07
	Each Batch Each Batch		I-131	1.00E-06
A. Batch Waste Release Tanks (c)	Prior to Release One Batch/Month 31 Days		Dissolved and Entrained Gases (Gamma Emitters)	1.00E-05
	Prior to Release	31 Days	H-3	1.00E-05
	Each Batch	Composite (b)	Gross Alpha	1.00E-07
	Prior to Release	92 Days	Sr-89, Sr-90	5.00E-08
	Each Batch Composit		Fe-55	1.00E-06
B. SSW Basin	Prior to Release	Prior to Release	Principal Gamma Emitters (d)	5.00E-07
			I-131	1.00E-06

JANUARY – DECEMBER 2017

NOTE: Footnotes indicated are listed in GGNS ODCM, Appendix A Table 6.11.1-1.

 \mathbf{n}

TABLE 3 ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

RADIOACTIVE EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT SOLID RADIOACTIVE WASTE AND IRRADIATED FUEL SHIPMENTS

JANUARY – DECEMBER 2017

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (NOT IRRADIATED FUEL)

1. Type of Waste	Unit	Class A	Class B	Class C	Estimated Total Error
a. Spent resins, filter sludges, evaporator bottoms, etc.	m³ Ci	1.53E+02 2.61E+02	9.34E-01 1.06E+02	0.00E+00 0.00E+00	± 25%
b. Dry compressible waste, contaminated equipment, etc.	m ³ Ci	7.03E+02 2.92E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	± 25%
c. Irradiated components, control rods, etc.	m ³ Ci	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	± 25%
d. Other: Oily waste drums	m ³ Ci	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	± 25%

- 2. Estimate of Major Nuclide Composition (by type of waste)
 - a. Spent resins, filter sludges, evaporator bottoms, etc.

Isotope (> 0.1%)	Percent	Curies
H-3	2.20E-01	8.10E-01
C-14	2.70E-01	9.87E-01
Cr-51	9.30E-01	3.41E+00
Mn-54	6.66E+00	2.45E+01
Fe-55	6.49E+01	2.38E+02
Fe-59	1.80E-01	6.78E-01
Co-58	1.46E+00	5.36E+00
Co-60	1.84E+01	6.75E+01
Ni-63	4.60E-01	1.70E+00
Zn-65	5.59E+00	2.05E+01
Ag-110m	4.90E-01	1.80E+00
Cs-137	2.20E-01	8.07E-01

TABLE 3 - Continued ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

RADIOACTIVE EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT SOLID RADIOACTIVE WASTE AND IRRADIATED FUEL SHIPMENTS JANUARY – DECEMBER 2017

b. Dry compressible waste, contaminated equipment, etc.

lsotope (> 0.1%)	Percent	Curies
H-3	3.60E-01	1.06E-02
Mn-54	6.84E+00	2.00E-01
Fe-55	6.55E+01	1.91E+00
Co-58	2.00E-01	5.84E-03
Co-60	2.09E+01	6.09E-01
Zn-65	1.07E+00	3.12E-02
Zr-95	1.39E+00	4.05E-02
Nb-95	2.72E+00	7.94E-02
Sb-125	3.90E-01	1.13E-02
Cs-137	2.50E-01	7.38E-03
Ce-144	1.60E-01	4.57E-03

c. Irradiated components, control rods, etc.

None

d. Other: Oil drum sealand, mixed waste for volume reduction

None

TABLE 3 - Continued ENTERGY OPERATIONS, INC. GRAND GULF NUCLEAR STATION UNIT 1

RADIOACTIVE EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT SOLID RADIOACTIVE WASTE AND IRRADIATED FUEL SHIPMENTS

JANUARY – DECEMBER 2017

3. Solid Waste Disposition

Number of Shipments	Destination Name	City	State	Mode of Transportation
3	EnergySolutions, Clive Disposal Site (Bulk Waste Facility)	Clive	UT	Hittman
5	EnergySolutions, Clive Disposal Site (Containerized Waste Facility)	Clive	UT	Hittman
24	EnergySolutions, Bear Creek Road	Oak Ridge	TN	Hittman
3	EnergySolutions, Gallaher Road Facility	Oak Ridge	ΤŇ	Hittman
.2	EnergySolutions, Erwin Resin Solutions	Erwin	TN	Hittman

B. Irradiated Fuel Shipments (Disposition)

Number of Shipments	Mode of Transportation	Destination
None	N/A	N/A

ATTACHMENT I

Nuclear Energy Institute (NEI) Groundwater Protection Initiative Sample Results

JANUARY – DECEMBER 2017

GPI Ground Water samples were collected from onsite Dewatering Wells (DW), Monitoring Wells (MW), Observation Wells (OW), and Sump Wells (SW). Samples were analyzed for Tritium and selected samples were analyzed for gamma and/or hard to detect (HTD) isotopes (Gross Alpha, Iron-55, Nickel-63, Strontium-89 and Strontium-90). Analyses are to the Lower Level of Detection (LLD) values for the GGNS Radiological Environmental Monitoring Program.

No dose to the public is attributed to ground water since wells with results above MDA are bounded by wells which are less than minimum detectable activity (<MDA). Tritium, gamma and/or HTD results are shown in the table below.

All results were less than Reporting Levels of GGNS-ODCM table 6.12.1-2.

LOCATION	DATE	TRITIUM (pCi/L)	<u>GAMMA (pCi/L)</u>
CST FENCE	05/04/17	2040	< MDA
CST FENCE	08/10/17	6610	< MDA
DW-01	02/22/17	1410	< MDA
DW-01	05/10/17	2240	< MDA
DW-01	08/22/17	3300	< MDA
DW-01	11/15/17	886	< MDA
DW-01 REANALYSIS	11/15/17	674	< MDA
DW-02	01/23/17	<440	< MDA
DW-02	02/21/17	<566	< MDA
DW-02 DUPLICATE	02/21/17	<571	< MDA
DW-02	03/22/17	<566	< MDA
DW-02	04/12/17	<523	< MDA
DW-02	05/09/17	<515	< MDA
DW-02 DUPLICATE	05/09/17	<522	< MDA
DW-02	06/20/17	<563	< MDA
DW-02	07/26/17	712	< MDA
DW-02	08/23/17	<576	< MDA
DW-02	09/25/17	<534	< MDA
DW-02	10/18/17	<562	< MDA
DW-02	11/15/17	<570	< MDA
DW-02	12/13/17	<556	< MDA
	•		
DW-03	01/23/17	556	< MDA
DW-03	02/21/17	695	< MDA
DW-03	03/22/17	801	< MDA
DW-03	04/12/17	<531	< MDA
DW-03	05/09/17	795	< MDA

		DATE	TRITIUM (pCi/L)	GAMMA (pCi/L)
	DW-03	06/20/17	<594	< MDA
	DW-03	07/26/17	<494	< MDA
	DW-03 DUPLICATE	07/26/17	661	< MDA
	DW-03	08/22/17	<587	< MDA
	DW-03	09/25/17	830	< MDA
	DW-03	10/18/17	<566	< MDA
	DW-03 DUPLICATE	10/18/17	<558	< MDA
	DW-03	11/14/17	<572	< MDA
	DW-03	12/13/17	<555	< MDA
	DW-04	01/23/17	<445	< MDA
	DW-04 DUPLICATE	01/23/17	<440	< MDA
	DW-04	02/23/17	<503	< MDA
	DW-04	03/22/17	658	< MDA
	DW-04	04/13/17	719	< MDA
	DW-04 DUPLICATE	04/13/17	<530	< MDA
	DW-04	05/11/17	<523	< MDA
	-DW-04	06/20/17	<593	< MDA
	DW-04	07/26/17	805	< MDA
	DW-04	08/23/17	<569	< MDA
	DW-04	09/26/17	<526	< MDA
	DW-04	10/19/17	<519	< MDA
	DW-04	11/14/17	<579	
	DW-04	12/14/17	<554	< MDA
	DW-05	01/24/17	<440	< MDA
	DW-05	02/21/17	<557	< MDA
	DW-05	03/22/17	<565	< MDA
	DW-05	04/12/17	<525	< MDA
	DW-05	05/10/17	<569	< MDA
	DW-05	06/21/17	<563	< MDA
	DW-05 DUPLICATE	06/21/17	<588	< MDA
	DW-05	07/27/17	<506	< MDA
	DW-05	08/23/17	<569	< MDA
	DW-05	09/25/17	<531	< MDA
	DW-05	10/18/17	<574	< MDA
	DW-05	11/16/17	<578	< MDA
	DW-05	12/13/17	<535	< MDA
	DW-06	11/15/17	<592	< MDA
	DW-07	02/22/17	2960	< MDA
	DW-07 DUPLICATE	02/22/17	3700	< MDA
į.	DW-07	05/10/17	5450	< MDA
	DW-07 DUPLICATE	05/10/17	5990	< MDA

- 29 -

LOCATION	DATE	TRITIUM (pCi/L)	GAMMA (pCi/L)
DW-07	08/22/17	4800	< MDA
DW-07	11/14/17	5060	< MDA
DW-08	01/24/17	<435	< MDA
MVV-01	01/23/17	<445	< MDA
MVV-01	02/22/17	<557	< MDA
MVV-01	03/22/17	<557	< MDA
MVV-01	04/12/17	<537	< MDÁ
MVV-01	05/10/17	<566	< MDA
	06/20/17	<590	< MDA
MVV-01	07/26/17	<497	< MDA
MVV-01	08/22/17	<569	< MDA
MW-01	09/25/17	626	< MDA
MW-01 DUPLICATE	09/25/17	<522	< MDA
MVV-01	10/18/17	<554	< MDA
MVV-01	11/14/17	<599	< MDA
MW-01	12/13/17	789	< MDA
	04/00/47	- 4 4 4	
IVIVV-04	01/23/17	<444	
	02/21/17	< 302	
NVV-04	03/22/17	<000 <525	
	04/12/17	<573	
	06/21/17	<588	< MDA
MVV-04	07/27/17	<498	< MDA < MDA
M\V/-04	08/23/17	<578	< MDA
MW-04	09/25/17	<535	< MDA
MW-04	10/18/17	<550	< MDA
MW-04	11/16/17	<579	< MDA
MW-04	12/13/17	<559	< MDA
MW-04 DUPLICATE	12/13/17	<551	< MDA
MVV-05	01/24/17	<445	< MDA
MVV-05	02/21/17	<560	< MDA
MVV-05	03/21/17	<566	< MDA
MVV-05	04/12/17	<527	< MDA
MVV-05	05/10/17	<563	< MDA
MVV-05	06/21/17	<588	< MDA
MVV-05	07/27/17	<515	< MDA
MVV-05	08/23/17	<586	< MDA
MVV-05	09/26/17	<529	< MDA
MW-05	10/19/17	<550	< MDA
MVV-05	11/16/17	<579	< MDA
MVV-05	12/14/17	<560	< MDA

- 30 -

	LOCATION	DATE	TRITIUM (pCi/L)	GAMMA (pCi/L)
	MW-06	02/23/17	1390	< MDA
	MW-06	05/11/17	1560	< MDA
	MW-06	08/24/17	1240	< MDA
	MW-06	11/15/17	683	< MDA
	MW-100B	08/24/17	<573	< MDA
	MW-101B	02/21/17	<518	< MDA
	MW-101B	05/10/17	<551	< MDA
	MW-101B	08/24/17	<576	< MDA
	MW-101B	11/15/17	<570	< MDA
	MW-101B DUPLICATE	02/21/17	<511	< MDA
	MW-102B	08/23/17	<568	< MDA
	MW-103B	08/23/17	<583	< MDA
	MW-104B	08/23/17	<577	< MDA
	MW-105B	02/21/17	648	< MDA
	MW-105B RECOUNT	02/21/17	<522	< MDA
	MW-105B	05/10/17	<567	< MDA
	MW-105B	08/24/17	<581	< MDA
	MW-105B	11/14/17	<570	< MDA
	MW-105B DUPLICATE	11/14/17	<585	< MDA
	MW-106B	02/21/17	<520	< MDA
	MW-106B	05/10/17	<562	< MDA
	MW-106B	08/23/17	<580	< MDA
	MW-106B	11/14/17	<525	< MDA
	MW-107B	02/22/17	1490	< MDA
	MW-107B	05/09/17	1210	< MDA
	MW-107B	08/22/17	968	< MDA
	MW-107B	11/14/17	849	< MDA
	MW-108B	02/22/17	827	< MDA
	MW-108B	05/11/17	1240	< MDA
	MW-108B	08/23/17	792	< MDA
	MW-108B	11/14/17	858	< MDA
	MW-109B	02/23/17	981	< MDA
,	MW-109B	05/11/17	851	< MDA
	MW-109B	08/24/17	1080	< MDA
	MW-109B	11/15/17	917	< MDA

- 31 -

	LOCATION	DATE	TRITIUM (pCi/L)	GAMMA (pCi/L)
	MW-110B	02/21/17	<500	< MDA
	MW-110B	05/10/17	<521	< MDA
	MW-110B	08/22/17	<579	< MDA
	MW-110B	11/14/17	<558	< MDA
	MW-111B	02/22/17	941	< MDA
	MW-111B	05/11/17	1430	
	MW-111B	08/22/17	1980	< MDA
	MW-111B DUPLICATE	08/22/17	1830	< MDA
	MW-111B	11/15/17	1030	< MDA
	MW-112B	01/23/17	<600	< MDA
,	MW-112B	02/22/17	<576	< MDA
	MW-112B	03/22/17	<566	< MDA
	MW-112B	04/13/17	<506	< MDA
Υ.	MW-112B	.05/11/17	<530	< MDA
	MW-112B	06/20/17	<593	< MDA
	MW-112B	07/26/17	<499	< MDA
	MW-112B	08/23/17	<577	< MDA
	MW-112B	09/25/17	<531	< MDA
	MW-112B	10/18/17	<481	< MDA
	MW-112B	11/16/17	<570	< MDA
	MW-112B	12/13/17	761	< MDA
	MW-113B	01/24/17	<437	< MDA
	MW-113B	02/21/17	<518	< MDA
	MW-113B	03/21/17	<573	< MDA
	MW-113B DUPLICATE	03/21/17	<562	< MDA
	MW-113B	04/13/17	<535	< MDA
	MW-113B	05/10/17	<564	< MDA
	MW-113B DUPLICATE	05/10/17	<574	< MDA
	MW-113B	06/21/17	<595	< MDA
	MW-113B	07/27/17	<501	< MDA
	MW-113B	08/22/17	<568	< MDA
	MW-113B DUPLICATE	08/22/17	<569	< MDA
	MW-113B	09/26/17	<520	< MDA
	MW-113B	10/19/17	<514	< MDA
	MW-113B	11/14/17	<594	< MDA
	MW-113B	12/14/17	<566	< MDA
	MW-114B	02/21/17	2180	< MDA
	MW-114B	05/10/17	1800	< MDA
	MW-114B	08/22/17	1790	< MDA
	MW-114B	11/14/17	1360	< MDA

- 32 -

	DATE	TRITIUM (pCi/L)	<u>GAMMA (pCi/L)</u>
MW-115B	02/22/17	820	< MDA
MW-115B	05/10/17	831	< MDA
MW-115B	08/22/17	873	< MDA
MW-115B	11/15/17	<569	< MDA
MW-115B DUPLICATE	11/15/17	<574	< MDA
MW-116B	02/22/17	<561	< MDA
MW-116B	05/10/17	<564	< MDA
MW-116B	08/23/17	<564	< MDA
MW-116B	11/15/17	<563	< MDA
MW-116B DUPLICATE	11/15/17	<580	< MDA
MW-118B	02/22/17	<562	< MDA
MW-118B	05/10/17	<525	< MDA
MW-118B	08/23/17	734	< MDA
MW-118B	11/15/17	675	< MDA
MW-119B	08/23/17	<569	< MDA
MW-120B	08/22/17	<572	< MDA
MW-121B	08/23/17	<571	< MDA
MW-122B	01/24/17	<445	< MDA
MW-122B	02/21/17	<570	< MDA
MW-122B	03/21/17	<567	< MDA
MW-122B	04/12/17	<523	< MDA
MW-122B	05/10/17	<565	< MDA
MW-122B	06/21/17	<597	< MDA
MW-122B	07/26/17	<492	< MDA
MW-122B	08/23/17	<566	< MDA
MW-122B	09/26/17	<528	< MDA
MW-122B	10/19/17	<570	< MDA
MW-122B	11/16/17	<574	< MDA
MW-122B	12/14/17	<556	< MDA
MW-123B	01/24/17	<445	< MDA
MW-123B	02/21/17	<564	< MDA
MW-123B	03/22/17	<564	< MDA
MW-123B	04/12/17	<528	< MDA
MW-123B	05/11/17	<570	< MDA
MW-123B	06/20/17	<599	< MDA
MW-123B	07/27/17	<498	< MDA
MW-123B	08/23/17	<574	< MDA
MW-123B	09/25/17	<535	< MDA

- 33 -

			•
DATE	TRITIUM (pCi/L)	GAMMA (pCi/L)	
10/18/17	<555	< MDA	
11/15/17	<576	< MDA	
12/13/17	<553	< MDA	
08/23/17	<573	< MDA	
08/24/17	<568	< MDA	
08/24/17	<579	< MDA	
08/23/17	<567	< MDA	
08/23/17	<564	< MDA	
08/24/17	<581	< MDA	
08/24/17	<575	< MDA	J
08/24/17	<585	< MDA	
08/23/17	<573	< MDA	
08/23/17	<590	< MDA	
08/24/17	<567	< MDA	
02/21/17	<507	< MDA	
05/10/17	<566	< MDA	
08/24/17	<579	< MDA	
11/15/17	<575	< MDA	
	DATE 10/18/17 11/15/17 12/13/17 08/23/17 08/24/17 08/24/17 08/24/17 08/24/17 08/24/17 08/23/17 08/23/17 08/23/17 08/23/17 08/23/17 08/23/17 08/23/17	DATETRITIUM (pCi/L)10/18/17<555	DATETRITIUM (pCi/L)GAMMA (pCi/L)10/18/17<555

<MDA - Less than Minimum Detectable Activity</p>
DUPLICATE - Duplicate sample collected and analyzed
RECOUNT - Re-performed same sample count
REANALYSIS - Re-performed same sample analysis and counting

- 34 -