

10 CFR 50.36a 10 CFR 72.44(d)(3) Technical Specifications

NMP1L3211 April 19, 2018

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Nine Mile Point Nuclear Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR-63 and NPF-69 <u>NRC Docket Nos. 50-220 and 50-410</u>

Independent Spent Fuel Storage Installation (ISFSI) <u>ISFSI Docket No. 72-1036</u>

Subject: 2017 Radioactive Effluent Release Report for Nine Mile Point Units 1 and 2

In accordance with 10 CFR 50.36a, and the Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2) Technical Specifications, enclosed are the Radioactive Effluent Release Reports for NMP1 and NMP2 for the period of January through December 2017. This letter also satisfies the annual effluent reporting requirements for the ISFSI required by 10 CFR 72.44(d)(3).

The format used for the effluent data is outlined in Appendix B of Regulatory Guide 1.21, Revision 1. During the reporting period, NMP1, NMP2, and the ISFSI did not exceed any 10 CFR 20, 10 CFR 50, 10 CFR 72, Technical Specification, or ODCM limits for gaseous or liquid effluents.

Should you have questions regarding the information in this submittal, please contact Tom Tanguay, Site Chemistry Environmental & Radwaste Manager, at (315) 349-4264.

Sincerely,

Peter M. Orphanos Vice President, Nine Mile Point Nuclear Station Exelon Generation Company, LLC

IE48 NMSSZG NRR MSS

PMO/RSP

Document Control Desk April 19, 2018 Page 2

1 🗶

- Enclosures: (1) Nine Mile Point Nuclear Station, Unit 1 Radioactive Effluent Release Report, January – December 2017
 - (2) Nine Mile Point Nuclear Station, Unit 2 Radioactive Effluent Release Report, January – December 2017
- Cc: NRC Regional Administrator, Region 1 NRC Project Manager NRC Resident Inspector R. Rolph, NRC

NINE MILE POINT NUCLEAR STATION - UNIT 1 RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2017

NINE MILE POINT NUCLEAR STATION - UNIT 1

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY – DECEMBER 2017

SUPPLEMENTAL INFORMATION

<u>Facility</u>: Nine Mile Point Unit 1 <u>Licensee</u>: Nine Mile Point Nuclear Station, LLC

1. <u>TECHNICAL SPECIFICATION LIMITS/ODCM Limits</u>

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at and beyond the site boundary shall be less than or equal to 500 mrem/year to the total body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose due to noble gases released in gaseous effluents from Nine Mile Point Unit 1 to areas at and beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 milliroentgen for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 milliroentgen for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at and beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 1 to areas at and beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- 1. The concentration of radioactive material released in liquid effluents to unrestricted areas shall be limited to ten times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 1 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

2. <u>MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY</u>

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by on-line gross activity monitoring (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic stack sample stream.

B) IODINES

Iodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic stack sample stream.

C) PARTICULATES

Activity released from the main stack is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus. Tritium effluent activity is measured during purge and weekly when fuel is offloaded until stable tritium release rates are demonstrated.

E) EMERGENCY CONDENSER VENT EFFLUENTS

The effluent curie quantities are estimated based on the isotopic distribution in the Condensate Storage Tank water and the Emergency Condenser shell water. Actual isotopic concentrations are found via gamma spectroscopy. Initial release rates of Sr-89, Sr-90 and Fe-55 are estimated by applying scaling factors to release rates of gamma emitters and actual release rates are determined from post offsite analysis results. The activity of fission and activation gases released due to tube leaks is based on reactor steam leak rates using offgas isotopic analyses.

F) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters. Tritium activity is estimated on the most recent analysis of the Condensate Storage Tank water. Initial release rates of Sr-89, Sr-90, and Fe-55 are estimated by applying scaling factors to release rates of gamma emitters and actual release rates are determined from post offsite analysis results.

G) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analysis of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

H) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, *Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents*, December 2010 and NUREG-0016, *Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)*.

3. METEOROLOGICAL DATA

An annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Radiological Effluent Release Report, the licensee is exercising the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

Reporting Period: January - December 2017 Unit 1 Unit 2 х Liquid Effluents: ODCM Required Maximum Effluent Concentration (MEC) = 10 x 10CFR20, Appendix B, Table 2, Column 2 There were no batch discharges of liquid radwaste requiring use of MEC to determine allowable release rate. There were no Emergency Condenser Vent Liquid Discharges in 2017. Average MEC - µCi/ml (Qtr. 1) = Average MEC - µCi/ml (Qtr. 3) = NO RELEASES NO RELEASES Average MEC - µCi/ml (Qtr. 2) = NO RELEASES Average MEC - µCi/ml (Qtr. 4) = NO RELEASES Average Energy (Fission and Activation gases - MeV): Ēν Qrtr. 1: N/A Εβ N/A = = Qrtr.<u>2</u>: Ēγ Ēβ N/A = N/A = Qrtr. 3: Eγ = N/A Ēβ = N/A N/A Ēβ N/A Qrtr. 4: Eν = = Liquid: Radwaste EC Vent Number of Batch Releases 0 0 Total Time Period for Batch Releases (hrs) 0 0.00 Maximum Time Period for a Batch Release (hrs) 0 0.00 Average Time Period for a Batch Release (hrs) 0.00 0 Minimum Time Period for a Batch Release (hrs) 0 0.00 Total volume of water used to dilute <u>1st</u> <u>2nd</u> <u>3rd</u> <u>4th</u> the liquid effluent during release period (L) Radwaste N/A N/A N/A N/A Total volume of water available to <u>1st</u> <u>2nd</u> <u>3rd</u> <u>4th</u> dilute the liquid effluent during report period (L) Radwaste 1.11E+11 1.26E+11 | 1.31E+11 | 1.30E+11 Gaseous(Emergency Condenser Vent): Number of Batch Releases n Total Time Period for Batch Releases (hrs) 0.00 Maximum Time Period for a Batch Release (hrs) 0.00 Average Time Period for a Batch Release (hrs) 0.00 Minimum Time Period for a Batch Release (hrs) 0.00 Gaseous (Primary Containment Purge): Number of Batch Releases **2** · Total Time Period for Batch Releases (hrs) 10.58 Maximum Time Period for a Batch Release (hrs) 5.73 Average Time Period for a Batch Release (hrs) 5.29 Minimum Time Period for a Batch Release (hrs) 4.85

Unit 1	(Unit 2		· ,	Reporting Period:	January - December 2017
Abnormal Releases	:			· · · · · ·	
A. Liquids:					
	Number of Releases	s 0]			
	Total Activity Release		i		
	/				
B. Gaseous:					
	Number of Releases	s 0	-		
	Total Activity Release		i		
					nd 2013 RERRs. The perimete e storm drains while the pump
Condenser Vent disc effluent releases to ti annually in the Radic composite samples of this activity has been On September 6, 20 monitored. Condens	accounted for in previous F 17 from 11:58 to 12:04, #11 er temperatures never react	ting, as well as past even ergency Condenser path port (RERR). As a result tor Building Perimeter D RERRs, it is to be report Emergency Condenser ned boiling as the tempe	hts). Per the ODCM, and i way are analyzed and rep of this discovery, the Uni rain be collected and ana ed as a separate item, and String inlet and outlet isol rature reached a maximu	through station procedure ported in the monthly efflu t 1 ODCM was revised (F lyzed, and total curies rep d not included in the liqui lation valves were opene m of 165°F for shell #111	es, the gaseous and liquid ent releases and reported Revision 34) to require borted in the RERR. Because d releases (Attachment 5). d. System parameters were and 182°F for shell #112. For
visually inspected. B	month, average shell tempe elow and surrounding the ve er liquid release did not take	ents showed no indication	n that any liquid discharg	-	nere the vents are located was son, it is concluded that an
		· ·	· · · ·		
					,
·					
		•			
				· .	
				· · · ·	

GASEOUS EFFLUEN	rs - Summa	TION OF ALL F	RELEASES, EL	EVATED AND (GROUND LEVEL	
		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	4th Quarter	EST. TOTAL
Fission & Activation Gases (1)						
 Total Release Average Release Rate 	Ci µCi/sec	**	**	**	**	5.00E+01
	µ0//sec					
. <u>lodines (1)</u>						
1. Total lodine - 131	Ci	1.03E-05	**	**	**	3.00E+01
2. Average Release Rate for Period	µCi/sec	1.31E-06	**	**		
. Particulates (1)						
1. Particulates with Half-lives>8 days	Ci	1.82E-03	2.52E-04	1.93E-04	1.64E-04	3.00E+01
 Average Release Rate for Period Gross Alpha Radioactivity 	µCi/sec Ci	2.31E-04	3.21E-05	2.65E-05	2.09E-05	2.50E+01
5. Gross Alpha Radioactivity						2.50E+01
. <u>Tritium (1)</u>					,	
1. Total Release	Ci	1.94E+01	1.77E+01	1.79E+01	9.62E+00	5.00E+01
2. Average Release Rate for Period	µCi/sec	2.48E+00	2.25E+00	2.41E+00	1.22E+00	
<u>Percent of Tech. Spec. Limits</u> <u>Fission and Activation Gases</u> Percent of Quarterly Gamma Air Dose		, . 				,
Limit (5 mR)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Beta Air Dose Limit (10 mrad)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Gamma Air Dose Limit to Date (10 mR)	.%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Beta Air Dose Limit to Date (20 mrad)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Whole Body Dose Rate Limit (500 mrem/yr)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Skin Dose Rate Limit (3000 mrem/yr)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
<u>Tritium, lodines, and Particulates (with</u> <u>half-lives greater than 8 days)</u>						
Percent of Quarterly Dose Limit (7.5 mrem)	%	7.68E-02	1.31E-02	1.55E-02	9.56E-03	
Percent of Annual Dose Limit to Date (15 mrem)	%	3.84E-02	4.49E-02	5.27E-02	5.74E-02	
Percent of Organ Dose Limit (1500 mrem/yr	%	1.56E-03	2.62E-04	3.07E-04	1.90E-04	•

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk.

		GASI		UENTS - ELEVA			·
					Contin	uous Mode (2)	
uclides R	eleased		4	<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	4th Quarter
	Fission Gases (1)				,		
	Argon-41		Ci	**	**	**	**
	Krypton-85		Ci	**	**	**	**
	Krypton-85m		Ci	**	**	**	**
	Krypton-87		Ci	**	**	**	**
	Krypton-88		Ci	**	**	**	**
	Xenon-127		Ci	. **	**	**	**
	Xenon-131m		Ci	**	**	**	**
	Xenon-133		Ci	**	**	**	**
	Xenon-133m		Ci	**	**	**	**
	Xenon-135		Ci	**	**	. ** .	**
	Xenon-135m		Ci	**	**	**	. **.
	Xenon-137		Ci	**	**	**	**
	Xenon-138		Ci	**	**	**	**
	lodines (1)						. *
	lodine-131		Ci	1.03E-05	**	**	**
	lodine-133		Ci	**	**	**	**
	lodine-135		Ci	**	**	**	**
	Particulates (1)						
	Strontium-89		Ci	7.21E-05	2.07E-05	7.61E-05	7.65E-05
	Strontium-90		Ci	**	**	**	**
	Cesium-134		Ci	**	**	**	**
	Cesium-137		Ci	**	**	**	. **
	Cobalt-60		. Ci	1.26E-03	8.81E-05	1.17E-04	8.78E-05
	Cobalt-58		Ci	9.21E-05	**	**	**
	Manganese-54		Ci	6.04E-05	4.62E-06	**	**
	Barium-140		Ci	**	**	**	**
	Lanthanum-140		Ci	**	**	**	**
	Niobium-95		Ci	**	**	**	**
	Cerium-141		Ci	**	**	**	**
•	Cerium-144		Ci	**	**	**	**
	Iron-59		Ci	**	**	**	**
	Cesium-136		Ci	**	**	**	**
	Chromium-51		Ċ	1.91E-04	**	**	**
	Zinc-65		Ci	**	**	** .	**
	Iron-55		Ci	1.38E-04	1.39E-04	**	**
	Molybdenum-99		Ci	**	**	**	**
	Neodymium-147		Ci	**	**	**	**
	<u>Tritium (1)</u>		Cì	1.53E+01	1.45E+01	1.34E+01	7.58E+00

	(GASEOUS EFFLU	JENTS - ELEVAT	ED RELEASE		·
				E	Batch Mode (2)	
Nuclides Re	eleased		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter
	Fission Gases (1)					
	Argon-41	Ci	**	**	**	**
	Krypton-85	, Ci	**	**	**	**
;	Krypton-85m	Ci	**	**	**	**
	Krypton-87	Ci	**	**	** .	**
	Krypton-88	Ci	**	**	**	**
	Xenon-127	Ci	**	**	**	**
	Xenon-131m	Ci	**	**	**	**
	Xenon-133	Ci	**	**	**	**
	Xenon-133m	Ci	**	**	**	**
	Xenon-135	Ci	**	**	**	**
•	Xenon-135m	Ci	**	**	**	**
	Xenon-137	Ci	**	**	**	**
	Xenon-138	Ci	**	· **	**	**
	lodines (1)					
	lodine-131	Ci	**	**	**	**
	lodine-133	Ci	**	**	**	**
	lodine-135	Ci	**	. **	**	**
	Particulates (1)					
	Strontium-89	Ci	* **	**	**	** ·
	Strontium-90	Ci	**	**	**	**
	Cesium-134	Ci	**	**	**	**
	Cesium-137	Ci	**	**	**	. **
	Cobalt-60	Ci	**	**	**	**
	Cobalt-58	Ci	**	**	**	**
	Manganese-54	Ci	**	**	**	**
	Barium-140	Ci	**	**	**	**
	Lanthanum-140	Ci	**	**	**	**
	Niobium-95	Ci	**	**	**	**
	Cerium-141	Ci	**	**	**	**
	Cerium-144	Ci	**	**	**	**
	Iron-59	Ci	**	**	**	**
	Cesium-136	Ci	**	**	**	**
-	Chromium-51	Ci	**	**	**	**
	Zinc-65	Ci	**	**	**	**
	Iron-55	Ci	**	**	**	**
	Molybdenum-99	Ci	**	**	**	**
	Neodymium-147	Ci	**	**	**	**
	<u>Tritium (1)</u>	Ci	**	**	**	**
detection of and 1.00E-0	ons less than the lower limit 1.00E-04 μCi/ml for required ι6 μCi/ml for Tritium as requi is from purges, if any, are ind	noble gases, 1.0 red by the ODCM	0E-11 μCi/ml for , has been verifie	required particul d.	ates, 1.00E-12	µCi/ml for required lo

GA	SEOUS EFFLUE	NTS - GROUND	LEVEL RELEA	SES	
evel releases are determined in a	ccordance with th	ne Off-Site Dose	Calculation Mar	ual and Chemi	stry procedure
<u> </u>	· · · · · · · · · · · · · · · · · · ·			tinuous Mode	
Released		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	<u>4th Quarter</u>
Fission Gases (1)					
Argon-41	Ci	**	**	**	. **
		**	**	**	**
Krypton-85	. Ci	**	**	**	**
Krypton-85m	Ci	**	**	**	**
Krypton-87	Ci	×	**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci		**	**	**
Xenon-131m	Ci	**		**	**
Xenon-133	Ci	**	**		
Xenon-133m	Ci	**	**	**	**
Xenon-135	Ci	**	**	**	**
Xenon-135m	Ci	**	**	**	**
Xenon-137	Ci	**	**	**	**
Xenon-138	Ci	**	**	**	**
<u>Iòdines (1)</u>	•				
lodine-131	Ci	**	**	**	**
lodine-133	Ci	**	**	**	**
lodine-135	Ci	**	**	**	**
Particulates (1)					
Strontium-89	Ci	**	**	**	**
Strontium-90	Ci	**	**	**	**
Cesium-134	Ci	**	**		· **
		**	**	**	**
Cesium-137	Ci	**	**		**
Cobalt-60	Ci	**	**	4.41E-08	**
Cobalt-58	Ci	**	**	2.85E-08	**
Manganese-54	Ci		**	7.91E-09	**
Barium-140	Ci	**			
Lanthanum-140	Ci	**	**	**	**
Niobium-95	Ci	· **	**	**	**
Cerium-141	Ci	**	**	**	**
Cerium-144	Ci	**	**	**	** .
Iron-59	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	**
Chromium-51	Ci	**	**	**	**
Zinc-65	Ci	**	** .	**	. **
lron-55	Ci	** 、	**	**	**
Molybdenum-99	Ci	**	**	**	**
Neodymium-147	Ci	**	**	**	** .
•			•		
<u>Tritium (1)</u>	Çi	4.16E+00	3.19E+00	4.45E+00	2.03E+00

		ENTS - GROUND				
Ground level releases are determined in ac	cordance with t	the Off-Site Dose	Calculation Mar	·	stry procedures.	¥
				Batch Mode		
Nuclides Released		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	<u>4th Quarter</u>	
Fission Gases (1)		· · · ·			v	
Argon-41	Ci	**	**	**	**	
Krypton-85	Cì	**	**	**	**	
Krypton-85m	Ci	**	**	**	**	
Krypton-87	Ci	**	**	**	**	
Krypton-88	Ċi	**	**	**	**	
Xenon-127	Ci	**	**	**	**	
Xenon-131m	Ci	**	**	**	**	
Xenon-133	Ci	**	**	**	**	
Xenon-133m	Ci	**	**	**	**	
Xenon-135	Ci	**	**	**	**	
Xenon-135m	Ci	**	**	**	**	
Xenon-137	Ci	**	**	**	**	
Xenon-138	Ci	**	**	**	**	
lodines (1)						
Iodine-131	Ci	**	**	**	**	
lodine-133	Ci	**	**	**	**	
lodine-135	Ci	**	**	**	**	
Particulates (1)						
Strontium-89	Ci	**	**	**	**	
Strontium-90	Ci	**	**	**	**	
Cesium-134	Ci	**	**	**	**	
Cesium-137	Ci	. **	**	**	**	
Cobalt-60	Ci	**	**	**	**	
Cobalt-58	Ci	**	**	**	**	
Manganese-54	Ci	**	**	**	**	
Barium-140	Ci	**	**	**	**	
Lanthanum-140	Ci	**	**	**	**	
Niobium-95	Ci	**	**	**	**	
Cerium-141	Ci	**	**	**	**	
Cerium-144	Ci	- **	**	**	**	
Iron-59	Ci	**	**	**	**	
Cesium-136	Ci	**	**	**	**	
Chromium-51	Cì	**	**	**	**	
Zinc-65	Ci	**	**	**	**	
Iron-55	Ci	**	**	**	**	
Molybdenum-99	Ci	**	**	**	**	
Neodymium-147	Ci	**	**	**	**	
<u>Tritium (1)</u>	Ci	**	**	**	**	

Page 1 of 2

LIQUI	DEFFLUEN	ITS - SUMMATIO	ON OF ALL RE	LEASES (1)		
		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	4th Quarter	<u>Est. Total Error</u>
A. <u>Fission & Activation Products</u> 1. Total Release (not including Tritium,						
gases, alpha)	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
B. <u>Tritium</u>			`			
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
C. Dissolved and Entrained Gases						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
D. Gross Alpha Radioactivity						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. <u>Volumes</u>						
1. Prior to Dilution	Liters	No Releases	No Releases	1.89E+03	No Releases	5.00E+01
Volume of dilution water used during release period	Liters	No Releases	No Releases	0.00E+00	No Releases	5.00E+01
3. Volume of dilution water available during reporting period - Cooling Water	Liters	1.11E+11	1.26E+11	1.31E+11	1.30E+11	5.00E+01
F. Percent of Tech. Spec. Limits						
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of Quarterly Organ Dose Limit	%	No Releases	No Releases	No Releases	No Releases	
(5 mrem) Percent of Annual Organ Dose Limit to Date (10 mrem)	%	No Releases	No Releases	No Releases	No Releases	
Percent of 10CFR20 Concentration	%	No Releases	No Releases	No Releases	No Releases	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	No Releases	No Releases	No Releases	No Releases	

	LIQUID EI	FLUENTS RELE	ASED		· · · · · ·
			Batch Mo	ode (1),(2)	
es Released		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	<u>4th Quarter</u>
Nuclides Released		2000 1	ф		
Strontium-89	Ci	No Releases	No Releases	No Releases	No Releases
Strontium-90	Ci	No Releases	No Releases	No Releases	No Releases
Cesium-134	Ci	No Releases	No Releases	No Releases	No Releases
Cesium-137	Ci	No Releases	No Releases	No Releases	No Releases
lodine-131	Ci	No Releases	No Releases	No Releases	No Releases
Cobalt-58	Ci	No Releases	No Releases	No Releases	No Releases
Cobalt-60	Ci	No Releases	No Releases	No Releases	No Releases
Iron-59	Ci	No Releases	No Releases	No Releases	No Releases
Zinc-65	Ci	No Releases	No Releases	No Releases	No Releases
Manganese-54	Ci	No Releases	No Releases	No Releases	No Releases
Chromium-51	Ci	No Releases	No Releases	No Releases	No Releases
Zirconium-95	Ci	No Releases	No Releases	No Releases	No Releases
Niobium-95	Ci	No Releases	No Releases	No Releases	No Releases
Molybdenum-99	Ci	No Releases	No Releases	No Releases	No Releases
Barium-140	Ci	No Releases	No Releases	No Releases	No Releases
Lanthanum-140	Ci	No Releases	No Releases	No Releases	No Releases
Cerium-141	Ci	No Releases	No Releases	No Releases	No Releases
	C.	Di Dilana			
lodine-133	Ci	No Releases	No Releases	No Releases	No Releases
Iron-55	Ci	No Releases	No Releases	No Releases	No Releases
Cerium-144	Ci	No Releases	No Releases	No Releases	No Releases
Cesium-136	Ci	No Releases	No Releases	No Releases	No Releases
Copper-64	Ci	No Releases	No Releases	No Releases	No Releases
Manganese-56	Ci	No Releases	No Releases	No Releases	No Releases
Nickel-65	Ci	No Releases	No Releases	No Releases	No Releases
Sodium-24	Ci	No Releases	No Releases	No Releases	No Releases
	Ci	No Releases	No Releases	No Releases	No Releases
Dissolved or Entrained Gases					No Releases

(2) Concentrations less than the lower limit of detection of the counting system used have been verified for sampled effluents. A lower limit of detection of 5.00E-07 µCi/ml for required gamma emitting nuclides, 1.00E-05 µCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 µCi/ml for Sr-89/90, 1.00E-06 µCi/ml for I-131 and Fe-55, and 1.00E-07 µCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified. Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk.

Unit 1 X	Unit 2			Reporting Per	iod: January - De	cember 2017
	SOLID W	ASTE AND IRRA	DIATED FUEL SH	PMENTS	<u> </u>	A 4
A1. TYPE		<u>Volume</u> (m ³)			<u>Activity (1)</u> (Ci)	
		<u>Class</u>			<u>Class</u>	
	А	В	С	A	В	С
a.1 Spent Resin (Dewatered)	2.02E+01	0.00E+00	0.00E+00	1.66E+02	0.00E+00	0.00E+00
a.2 Filter Sludge	0.00E+00	9.49E+00	0.00E+00	0.00E+00	4.67E+02	0.00E+00
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	2.02E+01	9.49E+00	0.00E+00	1.66E+02	4:67E+02	0.00E+00
·		-				
b.1 Dry Compressible Waste	2.89E+02	0.00E+00	0.00E+00	2.22E-01	0.00E+00	0.00E+00
b.2 Dry Non-Compressible Waste (Contaminated Equipment)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	2.89E+02	0.00E+00	0.00E+00	2.22E-01	0.00E+00	0.00E+00
		-	-			-
c. Irradiated Components, Control Rods, etc.	0.00E+00	0.00E+00	0.00E+00 [,]	0.00E+00	0.00E+00	0.00E+00
			· · · · · · · · · · · · · · · · · · ·			
d. Other (to vendor for processin	g)					
d.1 Sewage Sludge	3.53E+01	0.00E+00	0.00E+00	4.99E-03	0.00E+00	0.00E+00
The estimated total error is 5.0		1	·		<u> </u>	· · · · · · · · · · · · · · · · · · ·

			· · · · · · · · · · · · · · · · · · ·
Unit 1 X	Unit 2	Reporting Perio	od: January - December 2017
	SOLID WASTE AND IRRA	DIATED FUEL SHIPMENTS	
A1. TYPE	<u>Container</u>	<u>Package</u>	Solidification Agent
a.1 Spent Resin	Poly Liner	General Design	None
a.2 Filter Sludge	Poly Liner	Туре В	None
b.1 Dry Compressible Waste	Seavan	General Design	None
b.2 Dry Non-Compressible Waste (contaminated equipment)	N/A	N/A	N/A
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
c. Irradiated Components, Control Rods	N/A	N/A	N/A
d. Other (To vendor for processing)			
d.1 Sewage Sludge	Bags	General Design	None

Unit 1	x	Unit 2	<u>R</u>	Reporting Period: January - December 2017
-		SOLID WASTE AND	IRRADIATED FUEL SHIPME	ENTS
A2. ESTIMATE O	F MAJOR NUCLI	E COMPOSITION (BY TY	PE OF WASTE)	· · · · · · · · · · · · · · · · · · ·
a. Spent Resins,	Filter Sludges, Cor	centrated Waste		
	<u>Nuclic</u> Fe-5 Co-6 Ni-63 Cs-13	5) }	Percent 16.03% 73.69% 1.08% 6.57%	<u>Curies</u> 1.02E+02 4.70E+02 6.91E+00 4.19E+01
b. Dry Compressi		n-Compressible Waste (Co	ntaminated Equipment)	
e Irradiated Com	Nuclic Mn-5 Fe-5 Co-6 Ni-63 Cs-13	4 5 0 3	Percent 1.90% 51.08% 41.59% 1.40% 1.44%	<u>Curies</u> 4.22E-03 1.14E-01 9.25E-02 3.12E-03 3.19E-03
c. Inaulated Com	Nuclic			Percent
	NA	-		NA
	dor for processing)		, -	· · · · · · · · · · · · · · · · · · ·
1. Sump Liner	<u>Nuclic</u> Mn-5 Co-6 Cs-13	4	Percent 2.03% 94.70% .3.27%	<u>Curies</u> 9.88E-05 4.62E-03 1.59E-04

·	SOLID WASTE AND IRRADIATED FUE	
3. SOLID WASTE DISPOSITION		
Number of Shipments	Mode of Transportation	Destination
8	Truck, highway	Bear Creek
1	Truck, highway	Gallaher Road
5	Truck, highway	Clive
3	Truck, highway	WCS
·	· · · · · · · · · · · · · · · · · · ·	
Number of Shipments	Mode of Transportation	Destination
·	· · · · · · · · · · · · · · · · · · ·	Destination
·	· · · · · · · · · · · · · · · · · · ·	Destination
·	· · · · · · · · · · · · · · · · · · ·	<u>Destination</u>
· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Number of Shipments	Mode of Transportation	NG AND BURIAL
Number of Shipments	Mode of Transportation	NG AND BURIAL

Page 4 of 4

Unit 1	X Unit 2	<u></u>	porting Period: January - December 201
	SUMMARY OF CH	ANGES TO THE OFF-SITE DOSE CALCULATI	ON MANUAL (ODCM)
he follow	ing changes were made	e to the Unit 1 Off-Site Dose Calculation Manual	(ODCM) during the reporting period.
		REVISION 36	
Page #	New/Amended Section #	Description of Change	Reason For Change
13.1-10	NOTES FOR TABLE D 3.6.14-2	Removed phrasing in (g) action	The basis for the change comes from NER-NC-17-001-Yellow "Review of Offsite Dose Calculation Manual (ODCM) for Shutdown or Power Reduction Action Statements"
	3.6.14-2	Added rewritten action (g) "Place the nonfunctional channel in the tripped condition within 12 hours OR (2) (a) Take grab samples within 12 hours and once per 12 hours thereafter AND (b) Analyze samples for gross activity within 24 hours of sampling completion. AND (3) Restore nonfunctional channel(s) to FUNCTIONAL status within 30 days. (j)"	The basis for the change comes from NER-NC-17-001-Yellow
13.1-11	NOTES FOR TABLE D 3.6.14-2	Added action (j) "If nonfunctional channel(s) not restored within specified time, explain why the inoperability was not corrected in a timely manner in the next Radioactive Effluent Release Report."	The basis for the change comes from NER-NC-17-001-Yellow
I B 3.1-1	BASES FOR DLCO 3.6.14 and DSR 4.6.14 RADIOACTIVE EFFLUENT INSTRUMENTATION	BASES changed to align with notes from Table D 3.16.14-2	The basis for the change comes from NER-NC-17-001-Yellow
I B 3.1-1	BASES FOR DLCO 3.6.14 and DSR 4.6.14 RADIOACTIVE EFFLUENT INSTRUMENTATION	Removed the line to align with BASES change: "When serving as backup to the Offgas Monitors (Table D 3.6.14-2 Note g), this function may be satisfied by a single Low Range or High Range monitor because all Stack monitors function in the region of interest due to their design overlap."	The basis for the change comes from NER-NC-17-001-Yellow
II -19	2.2.1.1 Noble Gases	Added missing Q _{is} in the whole body dose rates equation.	For whole body dose rates (mrem/sec was missing the release rate of isotope i from the stack factor (Qis)in the equation.
II -19	2.2.1.1 Noble Gases	Elaborated the definition of the structural shielding factor adding: "(dimensionless). A shielding factor of 0.7 is discussed in Table E-15 of Regulatory Guide 1.109 Revision 1"	Definition was not comprehensive.

Unit 1 X	Unit 2	Reporting Period: January - December 2017
SU	MMARY OF CHANGES	S TO THE PROCESS CONTROL PROGRAM (PCP)
RW-AA-100, PRO(Calhoun from the p	CESS CONTROL PROG procedure and include Ja	GRAM FOR RADIOACTIVE WASTES, was updated to remove Fort ames A. Fitzpatrick Nuclear.
,	-	
•		
÷	· .	
	·	
		·

.

.

Unit 1 <u>X</u>	Unit 2	Reporting Period: January - December 2017			
SUMMARY OF NON-FUNCTIONAL MONITORS					
Monitor	Dates Monitor was Non-Functional	Cause and Corrective Actions			
Liquid Radwaste Discharge Monitors 11 and 12	January 1, 2017 to December 31, 2017	These monitors were intentionally allowed to exceed their quarterly functional tests and annual calibration frequency, as no discharges are planned or expected. This condition is allowed as long as blank flanges are installed in the discharge line, precluding any unmonitored discharge. No liquid waste discharges were performed during 2017. This non-functionality is tracked in Equipment Status Log (ESL) 2006-0192.			

Unit 1 📝	x	Unit 2	Reporting Period: January - December 2017
	DO	SES TO MEMBERS	OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 1 (NMP1) liquid and gaseous effluents has been conducted for the period January through December 2017.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2017, the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

Dose Pathways

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP1 stack and emergency condenser vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP1 Stack and Emergency Condenser Vent.
- Direct radiation pathway; dose resulting from the operation of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP1 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

0.1

Unit 1 X Unit 2 <u>Reporting Period: January - December 2017</u> DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2017 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time period)
- Average Cs-137 concentration = 1.30E-01 pCi/g

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP1 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2017 calculated using the following input parameters for gaseous effluents released from both the NMP1 Stack and Emergency Condenser Vent for the time period exposure is received:

NMP 1 Stack:

Variable	Fisherman ¹
X/Q (s/m ³)	8.90E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m ³ /year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	1.55E+06
Mn-54 (pCi.sec)	2.01E-01
$C-14 (pCi/sec)^2$	2.63E+05
Fe-55 (pCi/sec)	6.04E+00
Co-60 (pCi/sec)	1.27E+01
Sr-89 (pCi/sec)	6.64E+00

Unit 1 X Unit 2

Reporting Period: January - December 2017

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

NMP1 Emergency Condenser Vent:

Variable	Fisherman ¹
X/Q (s/m ³)	6.63E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m ³ /year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	4.05E+05
Mn-54 (pCi/sec)	3.33E-04
Co-58 (pCi/sec)	1.20E-03
Co-60 (pCi/sec)	1.85E-03

- ¹ The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Emergency Condenser Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.
- ² C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP1 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2017 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.04E-03
Exposure time (hours)	312

Total doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

Unit 1	<u>x</u>	Unit 2	. <u> </u>	Reporting Period: January - December 2017
	DC	SES TO	MEMBERS OF	THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Dose Received By Hypothetical Maximum Exposed Member of the Public Inside the Site Boundary

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP1 during 2017:

Exposure Pathway	Dose Type	Fisherman (mrem)
Enternal Carried	Whole Body	2.04 E-03
External Ground	Skin of Whole Body	2.38 E-03
	Whole Body	1.02 E-03
Inhalation	Maximum Organ	Bone: 1.51 E-03
	Thyroid	1.02 E-03
Direct Radiation	Whole Body	0.32

TABLE 1Exposure Pathway Annual Dose

Based on these values the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

TABLE 2Annual Dose Summary

Total Annual Dose for 2017	Fisherman (mrem)
Total Whole Body	3.26 E-01
Skin of Whole Body	, 2.38 E-03
Maximum Organ	Bone: 1.51 E-03
Thyroid	1.02 E -03

Unit 1 _	<u>x</u>	Unit 2	Reporting Period: January - December 2017
1	DOS	SES TO MEMBERS OF THE PUBLIC DUE TO THEIR /	ACTIVITIES OUTSIDE THE SITE BOUNDARY

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2017 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 1 (NMP1), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body</p>
- <25 mRem any organ (except thyroid)
- <75 mRem thyroid

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have concentrated in vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP facilities (including the Independent Spent Fuel Storage Installations (ISFSI)).

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP1 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2017 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2017; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2017.

Unit 1	<u>x</u>	Unit 2	Reporting Period: January - December 2017
	DO	SES TO	MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The dose for 2017 is calculated from actual analysis results of environmental vegetation samples taken near the most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2017; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2017.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in plant gaseous effluents.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP1 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2017; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2017.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. Actual meteorological data was used to calculate doses to the likely most exposed Member of the Public. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2017 provides a total dose to the whole body and maximum organ dose for this pathway.

Carbon-14 Dose Pathways Resulting from Gaseous Effluents

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2017 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010. The following methodology was used in estimating C-14 gaseous release activity and dose components for the 2017 ARERR.

EPRI methodology for estimating C-14 production rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that ~95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

For NMP1 and NMP2, C-14 gaseous dose calculations in the site ARERR are made using the following assumptions for each unit: (1) continuous release of the estimated C-14 generated during power operation based on the number of Effective Full Power Days (EFPDs) for the period, (2) maximum C-14 activity from literature values cited in EPRI Report 1021106, and (3) typical fraction as carbon dioxide for gaseous releases from literature values also cited in EPRI Report 1021106.

Equation 1 estimates the maximum annual production of C-14, PR_{MAX}, for each BWR unit.

$$PR_{MAX} = 5.1 \bullet MWT / 1000$$

[Eq 1]

Where:

5.1	=	BWR Normalized Production (Ci/GWt-yr)
MWT	=	MegaWatts Thermal (MWt)
1000	H	Conversion Factor (MWt to GWt)

Equation 2 estimates the C-14 activity released, A_{C-14} , into the gaseous pathway during the time period for each BWR unit.

$$A_{C-14} = PR_{MAX} \bullet 0.99 \bullet EFPD / 365, Ci (for time period) \qquad [Eq 2]$$

Where:

1

PR _{MAX}	=	maximum annual production rate of C-14
0.99	=	fraction of C-14 in BWR gaseous pathway releases (maximum
		literature value in EPRI Report 1021106; also Table 1)
EFPD	=	number of effective full power days for the unit during the time
		period; e.g., quarterly or yearly (Table 1)
365	=	number of days in a typical year

Unit 1 _	<u>x</u>	Unit 2	Reporting Period: January - December 2017
	DOS	SES TO MEMBERS O	THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Equation 3 estimates the C-14 activity released in carbon dioxide form, A C-14, CO2, into the gaseous pathway during the time period for each BWR unit.

$$A_{C-14, CO2} = PR_{MAX} \bullet 0.99 \bullet 0.95 \bullet EFPD / 365, Ci (for time period) [Eq 3]$$

Where:

PR _{MAX}	=	maximum annual production rate of C-14
0.99	=	fraction of C-14 in BWR gaseous pathway releases (maximum
		literature value in EPRI Report 1021106; also Table 1)
0.95	=	fraction of C-14 as carbon dioxide in BWR gaseous pathway
		releases (typical literature value in EPRI Report 1021106; also Table 1)
EFPD	=	number of effective full power days for the unit during the time
		period, e.g. quarterly or yearly (Table 1)
365	=	conversion factor, 365 days in a typical average year

For each BWR unit, the 2017 estimated C-14 activity releases (total and carbon dioxide chemical form) are summarized in Table 1.

2017 BWR Estimated C-14 Gaseous Releases						
BWR	Gaseous Release Fraction ^(a)	CO ₂ Form Release Fraction ^(b)	EFPD Operation	Max. Annual Prod. Rate (Eq 1)	2017 Total Release (Eq 2)	2017 CO2 Release (Eq 3)
NMP1	0.99	0.95	331.2 EFPD (90.7%)	9.44 Ci/yr	8.48 Ci	8.05 Ci
NMP2	0.99	0.95	359.85 EFPD (98.9%)	20.33 Ci/yr ^(c)	19.85 Ci	18.86 Ci
JAFNPP	0.99	0.95	309.1 EFPD (84.7%)	12.93 Ci/yr	9.09 Ci	8.63 Ci

Table 1

(a) Maximum literature values from EPRI Report 1021106.

(b) Typical value from EPRI Report 1021106.

(c) NMP2 Reactor Power Rating increased to 3988 Megawatts thermal.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Unit 1 _	<u>X</u>	Unit 2	Reporting Period: January - December 2017
	DOS	SES TO MEMB	ERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2017, the closest residence and the critical downwind residence are at the same location.

<u>Table 2</u>

Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2017

Exposure Pathway	Dose Type	Dose (mrem)
	Total Whole Body	No Dose
Fish and Vegetation Consumption	Total Maximum Organ	No Dose
Shoreline Sediment	Total Whole Body	No Dose
Shoreline Sediment	Total Skin of Whole Body	No Dose
	Total Whole Body	4.42 E-03
Gaseous Effluents (excluding C-14)	Thyroid	1.02 E-02
(excluding C-14)	Maximum Organ	Thyroid: 1.02 E-02
Gaseous Effluent	Total Whole Body	3.52 E-01
(C-14)	Maximum Organ	Bone: 1.76 E+00
Direct Radiation	Total Whole Body	0.91

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2017 is as follows:

٠	Total Whole Body:	1.27 E+00 mrem
٠	Total Thyroid:	1.02 E-02 mrem

Maximum Organ:
 Bone: 1.76 E+00 mrem

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAFNPP facilities. The maximum organ dose (Bone: 1.76 mrem), maximum thyroid dose (0.010 mrem) and the maximum whole body dose (1.27 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

Well Identification Number	# Samples Collected	# Positive Samples	Minimum Concentration (pCi/l)	Maximum Concentration (pCi/l
GMX-MW1*	4	0	<188	<194
MW-1	4	0	<188	<200
MW-5	4	0	<183	<193
MW-6	4	0	<186	<191
MW-7	4	0	<186	<194
MW-8	4	0	<187	<193
MW-9 ¹	4	0	<187	<192
MW-10 ¹	4	1	<186	240
MW-11	4	0	<186	<193
MW-12	4	0	<190	<193
MW-13	4	0	<184	<192
MW-14*	4	1	<183	234
MW-15	4	1	<186	252
MW-16	4	0	<184	<192
MW-17	4	1	<183	222
MW-18	4	1 ·	<190	270
MW-19	4	0	<186	<190
MW-20	4	0	<183	<192
MW-21	4	0	<183	<190
NMP2 MAT 2,3	4	1	<181	279
PZ-1	4	0	<190	<193
PZ-2	4	0	<191	<196
PZ-3	4	0	<187	<194
PZ-4	4	1	<189	214
PZ-5	4	0	<190	<191
PZ-6	4	0	<188	<192
PZ-7	4	• 4	291	435
PZ-8	4	0	<190	<198
PZ-9*	4	0	<189	<194

Notes:

* - Control Location

¹ - Sentinel well location

² - NMP2 Groundwater Depression Cone

³ - Samples collected from storm drain system which includes precipitation

Enclosure 2

Nine Mile Point Nuclear Station, Unit 2

Radioactive Effluent Release Report, January – December 2017

Ţ

NINE MILE POINT NUCLEAR STATION - UNIT 2 RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2017

Page 1 of 2

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY – DECEMBER 2017

SUPPLEMENTAL INFORMATION

<u>Facility</u>: Nine Mile Point Unit 2 <u>Licensee</u>: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION/ODCM LIMITS

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- Improved Technical Specifications (ITS) limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by an on-line scintillation detector (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic sample stream.

B) IODINES

Iodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

G) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, *Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents*, December 2010 and NUREG-0016, *Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)*.

3. METEOROLOGICAL DATA

An annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Radiological Effluent Release Report, the licensee is exercising the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request. Supplemental Information

ATTACHMENT 1 SUMMARY DATA

Page 1 of 2

Unit 1	Unit 2 <u>X</u>	Reporting Period: January - December 2017
Liquid Efflu	ents:	
ODCM Requ	ired Maximum Effluent Concentration (MEC) = 1	0 x 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2
		RELEASESAverage MEC - μ Ci/ml (Qtr. 3) =NO RELEASESRELEASESAverage MEC - μ Ci/ml (Qtr. 4) =NO RELEASES
Average En	ergy (Fission and Activation gases - MEV):	
	Qrtr. 1: $\vec{E}\gamma$ =N/AQrtr. 2: $\vec{E}\gamma$ =N/AQrtr. 3: $\vec{E}\gamma$ =1.01E+00Qrtr. 4: $\vec{E}\gamma$ =N/A	$ \begin{array}{rcl} \bar{E}\beta &=& N/A \\ \bar{E}\beta &=& N/A \\ \bar{E}\beta &=& 5.69E-01 \\ \bar{E}\beta &=& N/A \\ \end{array} $
Liquid:		
Gaseous (E	Number of Batch Releases Total Time Period for Batch Releases (hrs) Maximum Time Period for a Batch Release (hrs) Average Time Period for a Batch Release (hrs) Minimum Time Period for a Batch Release Total volume of water used to dilute the liquid during the release period (L) Total volume of water available to dilute the liquid effluent during the report period (L) mergency Condenser Vent) "Not applicable for Number of Batch Releases	0.0 0.0 1st 2nd 3rd 4th N/A N/A N/A N/A iid 1st 2nd 3rd 4th 1.08E+10 1.15E+10 1.31E+10 1.16E+10
	Total Time Period for Batch Releases (hrs)	N/A
	Maximum Time Period for a Batch Release (hrs	
1	Average Time Period for a Batch Release (hrs) Minimum Time Period for a Batch Release	
Gaseous (P	rimary Containment Purge)	N/A
	Number of Poteb Polococc	
}	Number of Batch Releases Total Time Period for Batch Releases (hrs)	7 386.5
l	Maximum Time Period for a Batch Release (hrs)	
	Average Time Period for a Batch Release (hrs)	
	Minimum Time Period for a Batch Release (hrs	

Supplemental Information

ATTACHMENT 1 SUMMARY DATA

Page 2 of 2

.

Unit 1	Unit 2 X			<u>Reporti</u>	ng Period: January - De	cember 2017
Abnormal Release	es:				- <u></u>	
A. Liquids:				, ,		
	Number of Releases Total Activity Released	0 N/A Ci	!			
B. Gaseous:						
	Number of Releases Total Activity Released	0 N/ACi				

Table 1A Gaseous Effluents -Summation of All Releases -Elevated and Ground Level

ATTACHMENT 2

Page 1 of 1

Un	it 1 Unit 2	X	-		<u>Reporting</u>	Period: Januar	y - December 201
	GASEOUS EFFLU	JENTS - SU	MMATION OF A	LL RELEASES	, ELEVATED A	ND GROUND LE	/EL
			<u>1st</u> Quarter	<u>2nd</u> Quarter	<u>3rd</u> Quarter	<u>4th</u> Quarter	<u>Est. Total</u> <u>Error, %</u>
<i>א</i> . <u>Fis</u> e 1.	ion & Activation Gases Total Release	Ci	0.00E+00	0.00E+00	2.19E+00	0.00E+00	5.00E+01
2.	Average Release Rate	µCi/sec	0.00E+00	0.00E+00	3.91E-01	0.00E+00	0.002 01
3. <u>lod</u>	nes						
1.	Total lodine - 131	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.00E+01
2.	Average Release Rate for Period	µCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
C Par	ticulates						
1.	Particulates with Half-lives>8days	Ci	0.00E+00	0.00E+00	3.29E-05	3.92E-06	3.00E+01
2.	Average Release Rate for Period	µCi/sec	0.00E+00	0.00E+00	4.19E-06	4.99E-07	
3.	Gross Alpha Radioactivity	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.50E+01
D. Trit	ium			,			
1.	Total Release	Ci	2.63E+01	4.38E+01	3.56E+01	4.14E+01	5.00E+01
2.	Average Release Rate for Period	µCi/sec	3.35E+00	5.56E+00	4.54E+00	5.27E+00	
	ion and Activation Gases nt of Quarterly Gamma Air Dose Limit)	%	0.00E+00	0.00E+00	5.24E-03	0.00E+00	
Perce mrad)	nt of Quarterly Beta Air Dose Limit (10	%	0.00E+00	0.00E+00	1.39E-04	0.00E+00	
	nt of Annual Gamma Air Dose Limit to 10 mR)	%	0.00E+00	0.00E+00	2.62E-03	2.62E-03	
Date (nt of Annual Beta Air Dose Limit to 20 mrad)	%	0.00E+00	0.00E+00	6.95E-05	6.95E-05	
mrem	• ·	%	0.00E+00	0.00E+00	1.99E-04	0.00E+00	
Perce mrem	nt of Skin Dose Rate Limit (3000 yr)	%	0.00E+00	0.00E+00	4.00E-05	0.00E+00	
	n. lodines, and Particulates (with half- reater than 8 days)					,	
Perce	nt of Quarterly Dose Limit (7.5 mrem)	%	5.71E-03	1.29E-02	1.07E-02	1.09E-02	
Perce mrem	nt of Annual Dose Limit to Date (15	%	2.85E-03	9.28E-03	1.46E-02	1.99E-02	
	nt of Organ Dose Limit (1500 mrem/yr	%	1.16E-04	2.57E-04	2.11E-04	2.20E-04	

Table 1B Gaseous Effluents - Elevated Releases

-

.

ATTACHMENT 3

1.1

Page 1 of 2

, ·

······			Continuou	s Mode (2)		
uclides Released		<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	4th Quarter	
			<u> </u>	· · ·		
Fission Gases (1)	1					
Argon-41	Ci	**	**	**	** '	
Krypton-85	Ci	**	**	**	** *	
Krypton-85m	Ci	**	**,	**	**	
Krypton-87	Ci	**	**	1.43E-01	** '	
Krypton-88	Ci	**	**	**	**	
Xenon-127	Ci	**	**	**	**	
Xenon-131m	Ci	**	**	. **	** '	
Xenon-133	Ci	**	**	**	**	
Xenon-133m	Ci	**	**	**	**	
Xenon-135	Ci	**	**	5.76E-02	**	
Xenon-135m	Ci	**	**	<u>3.43E-01_</u>	** '	
Xenon-137 Xenon-138	Ci Ci	**	**	1.65E+00	** '	
X6101-130	G	L		1.032+00	L	
lodines (1)					_	
lodine-131	Ci	**	**	**	**	
lodine-133	Ci	1.16E-04	**	**	**	
lodine-135	Ci	**	**	**	** '	
					,	
<u>Particulates (1)</u> Chromium-51	Ci	**	**	**	**	1
Manganese-54	Ci	**	<u>**</u>	**	**	
lron-55	Ci	**	**	**	** ·	
Iron-59	Ci	**	**	**	**	
Cobalt-58	Ci	**	**	**	**	
Cobalt-60	Ci	**	**	**	**	
Neodymium-147	Ci	**	**	**	**	
Zinc-65	Ci	**	**	**	**	
Strontium-89	Ci	**	**	**	**	
Strontium-90	Ci	**	**	**	**	
Niobium-95	Ci	**	**	**	**	
Zirconium-95 Makkdanum 20	Ci	**	**	**	**	
Molybdenum-99 Ruthenium-103	Ci Ci	**	**	**	** '	
Cesium-134	Ci	**	**	**	** *	
Cesium-134 Cesium-136	Ci	**	**	**	**	
Cesium-137	Ci	**	**	**	** ·	
Barium-140	Ci	**	**	**	**	
Lanthanum-140	Ci	**	**	**	** ·	
Cerium-141	Ci	**	**	**	**	
Cerium-144	Ci	**	**	**	**	
Tritium (4)	Ċ	4 00		4 575 104		
<u>Tritium (1)</u>	Ċi	1.69E+01	1.63E+01	1.57E+01	2.01E+01	

. '

Page 2 of 2

.

٢

	GAS	SEOUS EFFLUENT	S - ELEVATED RE	LEASE		
Batch Mode (2)						
luclides Released		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter	
Fission Gases (1)						I [_]
Argon-41	Ci	**	**	**	**	
Krypton-85	Ci	**	**	**	**	
Krypton-85m	Ci	**	**	**	**	
Krypton-87	Ci	**	**	**	**	
Krypton-88	Ci	**	**	**	**	
Xenon-127	Ci	**	**	**	**	
Xenon-131m	Ci	**	**	**	**	
Xenon-133	Ci	**	**	**	**	
Xenon-133m	Cì	**	**	**	**	
Xenon-135	Ci	**	**	**	**	
Xenon-135m	Ci	**	**	**	**	
Xenon-137	Ci	**	**	**	**	
Xenon-138	Ci	**	**	**	**	
lodines (1)						
lodine-131	Ci	**	**	**	**	
lodine-133	Ci	**	**	**	**	
lodine-135	Ci	**	**	**	**	
Particulates (1)						
Chromium-51	Ci	**	**	**	**	
Manganese-54	Ci	**	**	**	**	
Iron-55	Ci	**	**	**	**	
Iron-59	Ci	**	**	**	**	
Cobalt-58	Ci	**	**	**	**	
Cobalt-60	Ci	**	**	**	**	
Neodymium-147	Ci	**	**	**	**	
Zinc-65	Ci	**	**	**	**	
Strontium-89	Ci	**	**	**	**	
Stronium-90	Ci	**	**	**	**	
Niobium-95	Ci	**	**	**	**	
Zirconium-95	Ci	**	**	**	**	
Molybdenum-99	Ci	**	**	**	**	
Ruthenium-103	Ci	**	**	**	**	
Cesium-134	Ci	**	**	**	**	
Cesium-136	Ci	**	**	**	**	
Cesium-137	Ci	**	**	**	**	
Barium-140	Ci	**	**	**	**	
Lanthanum-140	Cì	**	**	**	**	
Cerium-141	Ci	**	**	**	**	
Cerium-144	Ci	**	**	**	**	
Tritium (1)	Ci	**	**	**	**	
		· · · · · · ·	• _= _=•		·	

(2) Contributions from purges are included. There were no other batch releases during the reporting period.

Table 1C

ATTACHMENT 4

Page 1 of 2

΄,

GASEOUS EFFLUENTS - GROUND LEVEL RELEASES Continuous Mode (2) Iucildes Released 1st Quarter 2nd Quarter 4th Quarter Apport-41 Ci ************************************	Unit 1 Unit 2	X				Period: Janua	
Judides Released 1st Quarter 2nd Quarter 2nd Quarter 2nd Quarter 2nd Quarter 4nd Quarter Fission Gases (1) Krypton-85 Cl Image: Cl Im		GASEOUS	EFFLUENTS - G		RELEASES		
Fision Gases (1) Argon-41 Ci Krypton-85 Ci Krypton-85m Ci Krypton-87 Ci Krypton-87 Ci Krypton-87 Ci Krypton-88 Ci Krypton-87 Ci Krypton-88 Ci Krypton-89 Ci Krypton-127 Ci Krypton-133 Ci Xenon-133 Ci Xenon-136 Ci Xenon-137 Ci Xenon-138 Ci Jodine-131 Ci Iodine-131 Ci Iodine-131 Ci Iodine-133 Ci Kron-138 Ci Particulates (1) Ci Crobalt-60 Ci Kron-59 Ci Cobalt-60 Ci Neodymium-147 Ci Zince65 Ci Strontium-90 Ci Kibolum-95 Ci Ci Ci Kibolum-96 Ci Ci Ci				Continuou	s Mode (2)		
Argon-41 Ci $*$ $*$ $*$ Krypton-85 Ci $*$ $*$ $*$ $*$ Krypton-87 Ci $*$ $*$ $*$ $*$ Krypton-88 Ci $*$ $*$ $*$ $*$ Xenon-137 Ci $*$ $*$ $*$ $*$ Xenon-138 Ci $*$ $*$ $*$ $*$ Xenon-136 Ci $*$ $*$ $*$ $*$ Xenon-135 Ci $*$ $*$ $*$ $*$ Xenon-135 Ci $*$ $*$ $*$ $*$ Xenon-137 Ci $*$ $*$ $*$ $*$ Xenon-138 Ci $*$ $*$ $*$ $*$ Jodine-131 Ci $*$ $*$ $*$ $*$ $*$ Jodine-135 Ci $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ <th>uclides Released</th> <th></th> <th><u>1st Quarter</u></th> <th>2nd Quarter</th> <th>3rd Quarter</th> <th>4th Quarter</th> <th></th>	uclides Released		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter	
Argon-41 Ci $*$ $*$ $*$ Krypton-85 Ci $*$ $*$ $*$ $*$ Krypton-87 Ci $*$ $*$ $*$ $*$ Krypton-88 Ci $*$ $*$ $*$ $*$ Xenon-137 Ci $*$ $*$ $*$ $*$ Xenon-138 Ci $*$ $*$ $*$ $*$ Xenon-136 Ci $*$ $*$ $*$ $*$ Xenon-135 Ci $*$ $*$ $*$ $*$ Xenon-135 Ci $*$ $*$ $*$ $*$ Xenon-137 Ci $*$ $*$ $*$ $*$ Xenon-138 Ci $*$ $*$ $*$ $*$ Jodine-131 Ci $*$ $*$ $*$ $*$ $*$ Jodine-135 Ci $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Argon-41 Ci $*$ $*$ $*$ Krypton-85 Ci $*$ $*$ $*$ $*$ Krypton-87 Ci $*$ $*$ $*$ $*$ Krypton-88 Ci $*$ $*$ $*$ $*$ Xenon-137 Ci $*$ $*$ $*$ $*$ Xenon-138 Ci $*$ $*$ $*$ $*$ Xenon-136 Ci $*$ $*$ $*$ $*$ Xenon-135 Ci $*$ $*$ $*$ $*$ Xenon-135 Ci $*$ $*$ $*$ $*$ Xenon-137 Ci $*$ $*$ $*$ $*$ Xenon-138 Ci $*$ $*$ $*$ $*$ Jodine-131 Ci $*$ $*$ $*$ $*$ $*$ Jodine-135 Ci $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Ngarani Ci Image: Network of the second		0		**	++		
Nypton-35m Ci ** ** ** ** Krypton-87 Ci ** ** ** ** ** Krypton-88 Ci ** ** ** ** ** ** Xenon-137 Ci ** ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** ** Xenon-136 Ci ** <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Nypon-87 Ci ** ** ** ** ** Krypton-88 Ci ** ** ** ** ** ** Kenon-127 Ci ** ** ** ** ** ** Xenon-131m Ci ** ** ** ** ** ** Xenon-133m Ci ** ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** ** Xenon-136 Ci ** ** ** ** ** ** Xenon-138 Ci ** ** ** ** ** ** Iodine-131 Ci ** ** ** ** ** ** Particulates (1) Ci ** ** ** ** ** ** Maganese-54 Ci ** ** ** ** ** ** Ion-59 Ci ** ** ** ** ** **			L				
Nypon-38 Ci ** * ** ** ** Kenon-127 Ci ** ** ** ** ** Kenon-137 Ci ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** Xenon-136 Ci ** ** ** ** ** Xenon-137 Ci ** ** ** ** ** Xenon-138 Ci ** ** ** ** ** Iodine-131 Ci ** ** ** ** ** Iodine-133 Ci ** ** ** ** ** Iodine-59 Ci ** ** ** ** ** Iodine-59 Ci							
Nyporada Ci ** ** ** ** ** Xenon-131 Ci ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** Xenon-133 Ci ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** Xenon-137 Ci ** ** ** ** ** Xenon-138 Ci ** ** ** ** ** Jodine-131 Ci ** ** ** ** ** Iodine-135 Ci ** ** ** ** ** Particulates (1) Ci ** ** ** ** ** Chromium-51 Ci ** ** ** ** ** Iodine-135 Ci ** ** ** ** ** Cobalt-60 Ci<							
Xenon-131 m Ci ** ** ** Xenon-133 Ci ** ** ** Xenon-133 m Ci ** ** ** Xenon-135 m Ci ** ** ** Xenon-138 m Ci ** ** ** Vann-138 m Ci ** ** ** Iodine-131 m Ci ** ** ** Iodine-133 m Ci ** ** ** Iodine-135 m Ci ** ** ** Iodine-136 m Ci ** ** ** Iodine-55 m Ci ** ** ** Iodine-58 m							
Xenon-133 Ci ** ** ** Xenon-133m Ci ** ** ** ** Xenon-135 Ci ** ** ** ** Xenon-136 Ci ** ** ** ** Xenon-137 Ci ** ** ** ** Xenon-137 Ci ** ** ** ** Iodines (1) Ci ** ** ** ** Iodine-133 Ci ** ** ** ** Iodine-135 Ci ** ** ** ** Particulates (1) Ci ** ** ** ** ChromUm-51 Ci ** ** ** ** Ion-55 Ci ** ** ** ** Cobalt-60 Ci ** ** ** ** Strontium-89 Ci ** ** ** ** Nibbum-95 Ci ** ** ** ** Zirconium-							
Xenon-133 Ci ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** Xenon-135 Ci ** ** ** ** ** Xenon-137 Ci ** ** ** ** ** Xenon-138 Ci ** ** ** ** ** Iodines (1) Ci ** ** ** ** ** Iodine-131 Ci ** ** ** ** ** Iodine-133 Ci ** ** ** ** ** Iodine-135 Ci ** ** ** ** ** ** Vanganese-54 Ci ** ** ** ** ** ** Iron-55 Ci ** ** ** ** ** ** ** Cobalt-60 Ci ** ** ** ** ** ** ** ** ** ** ** ** ** <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Xeron-135 Ci ** ** ** ** Xeron-135 Ci ** ** ** ** Xeron-137 Ci ** ** ** ** Xeron-138 Ci ** ** ** ** Iodine-137 Ci ** ** ** ** Iodine-133 Ci ** ** ** ** Iodine-133 Ci ** ** ** ** Iodine-135 Ci ** ** ** ** Particulates (1) Ci ** ** ** ** Chromium-51 Ci ** ** ** ** Iron-55 Ci ** ** ** ** Coball-58 Ci ** ** ** ** Coball-58 Ci ** ** ** ** Strontum-90 Ci ** ** ** ** Nioblum-85 Ci ** ** ** **							
Xenon-135 Gi ** ** ** ** ** Xenon-137 Gi ** ** ** ** ** Xenon-137 Gi ** ** ** ** ** Venon-138 Gi ** ** ** ** ** Jodines (1) Gi ** ** ** ** ** Jodine-131 Gi ** ** ** ** ** Jodine-133 Gi ** ** ** ** ** Particulates (1) Gi ** ** ** ** ** Chromium-51 Gi ** ** ** ** ** Iron-55 Gi ** ** ** ** ** Cobalt-60 Gi ** ** ** ** ** Strontium-89 Gi ** ** ** ** ** Nioblum-95 Gi ** ** ** ** ** Nioblum-95 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Xenon-137 Ci ** ** ** ** Venon-138 Ci ** ** ** ** Iodine-131 Ci ** ** ** ** Iodine-131 Ci ** ** ** ** Iodine-131 Ci ** ** ** ** Iodine-133 Ci ** ** ** ** Particulates (1) Ci ** ** ** ** Chromium-51 Ci ** ** ** ** Manganese-54 Ci ** ** ** ** Iron-55 Ci ** ** ** ** ** Cobalt-68 Ci ** ** ** ** ** Cobalt-60 Ci ** ** ** ** ** Neodymium-147 Ci ** ** ** ** ** Strontium-89 Ci ** ** ** ** ** Nioblum-95 Ci							
Action 138 Ci ** ** ** ** Iodine-138 Ci ** ** ** ** ** Iodine-131 Ci ** ** ** ** ** Iodine-133 Ci ** ** ** ** ** Particulates (1) ** ** ** ** ** ** Chromium-51 Ci ** ** ** ** ** Manganese-54 Ci ** ** ** ** ** Iron-59 Ci ** ** ** ** ** Cobalt-60 Ci ** ** ** ** ** Strontium-89 Ci ** ** ** ** ** Strontium-95 Ci ** ** ** ** ** Molybdenum-95 Ci ** ** ** ** ** Cesium-134 Ci ** ** ** ** ** Cesium-134 Ci <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Action - 133 Ci Image: ci = 1 Iodine-131 Ci Image: ci = 1 Iodine-133 Ci Image: ci = 1 Iodine-135 Ci Image: ci = 1 Particulates (1) Image: ci = 1 Image: ci = 1 Chromium-51 Ci Image: ci = 1 Manganese-54 Ci Image: ci = 1 Iron-55 Ci Image: ci = 1 Cobalt-58 Ci Image: ci = 1 Cobalt-60 Ci Image: ci = 1 Neodymium-147 Ci Image: ci = 1 Zinc-65 Ci Image: ci = 1 Strontium-89 Ci Image: ci = 1 Nioblum-95 Ci Image: ci = 1 Zirconium-95 Ci Image: ci = 1 Ruthenium-103 Ci Image: ci = 1 Cesium-134 Ci Image: ci = 1 Cesium-137 Ci Image: ci = 1 Cesium-136 Ci Image: ci = 1 Cesium-137 Ci Image: ci = 1 Cesium-134 Ci Image: ci = 1 Cesium-134 Ci Image: ci = 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Iodine-131Ci******Iodine-133Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Iodine-135Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Particulates (1)Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Chromium-51Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Manganese-54Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Iron-55Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Cobalt-60Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Cobalt-60Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Neodymium-147Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Strontium-89Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Niobium-95Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Molybdenum-103Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Ruthenium-103Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Cesium-134Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Cesium-140Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ Cerium-144Ci $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$ $\stackrel{**}{=}$	Xenon-138	G	L	×*			
Iodine-131 Ci $\frac{\pi}{4}$	lodines (1)						
Jodine-135 Ci ** ** ** ** Particulates (1) Chromium-51 Ci ** ** ** ** Chromium-51 Ci ** ** ** ** ** Iron-55 Ci ** ** ** ** ** Iron-59 Ci ** ** ** ** ** Cobalt-68 Ci ** ** ** ** ** Neodymium-147 Ci ** ** ** ** ** Zinc-65 Ci ** ** ** ** ** Strontium-89 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Cesium-137 Ci ** ** ** **	lodine-131	Ci	**	**	**	**	
Particulates (1) Image: Second Se	Iodine-133	Ci	**	**	**	**	
Chromium-51Ci********Manganese-54Ci**********Iron-55Ci**********Iron-59Ci**********Cobalt-58Ci**********Cobalt-60Ci**********Neodymium-147Ci********Zinc-65Ci********Strontium-89Ci********Strontium-95Ci********Niobium-95Ci********Molybdenum-99Ci********Ruthenium-103Ci********Cesium-134Ci********Cesium-137Ci********Lanthanum-140Ci********Cerium-141Ci********	lodine-135	Ci	**	**	**	**	
Chromium-51Ci********Manganese-54Ci**********Iron-55Ci**********Iron-59Ci**********Cobalt-58Ci**********Cobalt-60Ci**********Neodymium-147Ci********Zinc-65Ci********Strontium-89Ci********Strontium-95Ci********Niobium-95Ci********Molybdenum-99Ci********Ruthenium-103Ci********Cesium-134Ci********Cesium-137Ci********Lanthanum-140Ci********Cerium-141Ci********					+		
ContractionCi******Iron-55Ci******Iron-59Ci******Cobalt-58Ci******Cobalt-60Ci******Neodymium-147Ci******Zinc-65Ci******Strontium-89Ci******Strontium-90Ci******Niobium-95Ci******Zirccolum-95Ci******Ruthenium-103Ci******Cesium-134Ci******Cesium-137Ci******Carium-140Ci******Cerium-141Ci******Cerium-144Ci******		~	r			<u> </u>	
Iron-55 Ci ** ** ** ** Iron-59 Ci ** ** ** ** Cobalt-58 Ci ** ** ** ** Cobalt-60 Ci ** ** ** ** Neodymium-147 Ci ** ** ** ** Zinc-65 Ci ** ** ** ** Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** <					L I		
Iron-59 Ci ** ** ** ** Cobalt-58 Ci ** ** ** ** Cobalt-60 Ci ** ** ** ** Neodymium-147 Ci ** ** ** ** Zinc-65 Ci ** ** ** ** Strontium-89 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **	-						
Cobalt-58 Ci ** ** ** ** Cobalt-60 Ci ** ** 3.29E-05 ** Neodymium-147 Ci ** ** ** ** Zinc-65 Ci ** ** ** ** Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Barium-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
Cobalt-50 Ci ** ** 3.29E-05 ** Neodymium-147 Ci ** ** ** ** ** Zinc-65 Ci ** ** ** ** ** Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** Niobium-95 Ci ** ** ** Zirconium-95 Ci ** ** ** Molybdenum-99 Ci ** ** ** Ruthenium-103 Ci ** ** ** Cesium-134 Ci ** ** ** Cesium-136 Ci ** ** ** Cesium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** **							
Neodymium-147 Ci ** ** ** ** ** Zinc-65 Ci ** ** ** ** ** ** Strontium-89 Ci ** ** ** ** ** ** Strontium-90 Ci ** ** ** ** ** ** Niobium-95 Ci ** ** ** ** ** ** Molybdenum-95 Ci ** ** ** ** ** ** Ruthenium-103 Ci ** ** ** ** ** ** Cesium-134 Ci ** ** ** ** ** ** Cesium-137 Ci ** ** ** ** ** Lanthanum-140 Ci ** ** ** ** ** Cerium-141 Ci ** ** ** ** ** Cerium-144 Ci ** ** ** ** **			1				
Zinc-65 Ci ** ** ** ** Strontium-89 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
21110-65 Ci ** ** ** ** Strontium-90 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Cesium-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
Strontium-90 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
Niobium-95 Ci ** ** ** ** Zirconium-95 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Barium-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
Zirconium-95 Ci ** ** ** Molybdenum-99 Ci ** ** ** Ruthenium-103 Ci ** ** ** Ruthenium-103 Ci ** ** ** Cesium-134 Ci ** ** ** Cesium-136 Ci ** ** ** Cesium-137 Ci ** ** ** Barium-140 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** **							
Molybdenum-99 Ci ** ** ** ** Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Cesium-137 Ci ** ** ** ** Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** **			L	· · · · · · · · · · · · · · · · · · ·			
Ruthenium-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** ** Cesium-136 Ci ** ** ** ** ** Cesium-137 Ci ** ** ** ** ** Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** **					**	**	
Currentiant-103 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** ** Cesium-136 Ci ** ** ** ** ** Cesium-137 Ci ** ** ** 3.92E-06 Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **				1	**	**	
Cesium-136 Ci ** ** ** ** Cesium-137 Ci ** ** ** 3.92E-06 Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
Cesium-137 Ci ** ** ** 3.92E-06 Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** **							
Cestain-137 Ci ** ** 5.322.00 Barium-140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** **				l	1		
Balturi 140 Ci ** ** ** Lanthanum-140 Ci ** ** ** Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** **							
Cerium-141 Ci ** ** ** Cerium-144 Ci ** ** **	Barium-140						
Cerium-144 Ci ** ** **	Lanthanum-140		**	**	**		
	Cerium-141		**				
Tritium (1) Ci 9.44E+00 2.75E+01 1.99E+01 2.13E+01	Cerium-144		**	**	**	**	
	<u>Tritium (1)</u>	Ci	9.44E+00	2.75E+01	1.99E+01	2.13E+01	

Table 1C

.

ATTACHMENT 4

Page 2 of 2

ļ

΄.

•

	GASEOUS	EFFLUENTS - GR				
			Batch			
Nuclides Released		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	<u>4th Quarter</u>	
Einsien Cases (1)		, , , , , , , , , , , , , , , , , , , 				
Fission Gases (1) Ar-41	Ci	**	**	**	**	
Kr-85	Ci	**	**	**	**	
Kr-85m	Ci	**	**	**	**	
Kr-87	Ci	**	**	**	**	
Kr-88	Cì	**	**	**	**	
Xe-127	Ci	**	**	**	**	
Xe-131m	Ċi	**	**	**	**	
Xe-133	Ci	**	**	**	**	
Xe-133m	Ci	**	**	**	**	
Xe-135	Ci	**	**	**	**	
Xe-135m	Ci	**	**		**	
Xe-137 Xe-138	Ci Ci	**			**	
XE-138	Ci	L	<u> </u>	L	LJ	
lodines (1)						
I-131	Ci	**	**	**	**	
J-132	Ci	**	**	**	**	
I-133	Ci	**	**	**	**	
Particulates (1)						
Cr-51	Ci	**	**	**		
Mn-54	Ci	**	**	**	**	
Fe-55	Ci	**	**	**	**	
Fe-59	Ci	**	**	**	**	
Co-58	Ci	**	**	**	**	
Co-60	Ci	**	**	**	**	
Nd-147	Ci	**	**	**	**	
Zn-65	Ci	**	**		**	
Sr-89	Ci	**	**	**	**	
Sr-90	Ci	**	**	**	**	
Nb-95 Zr-95	Ci Ci	**	**	**	**	
ZI-95 Mo-99	Ci	**	**	**	**	
Ru-103	Ci	**	**	**	. **	
Cs-134	Ci	**	**	**	**	
Cs-136	Ci	**	**	**	**	
Cs-137	Ci	**	**	**	**	
Ba-140	Ci	**	**	**	**	
La-140	Ci	**	**	**	**	
Ce-141	Ci	**	**	**	**	
Ce-144	Ci	**	**	**	**	
<u>Tritium (1)</u>	Ci	**	**	**	**	
		·		<u> </u>	•	
Concentrations less than the lower limit of dete						· · _ · _ · _ · _ · _ · _ ·

1

ι.

Page 1 of 2

.,

Unit 1 Unit 2	X			Reporting	Period: Janua	ry - December 2017
	LIQUID EFF	LUENTS - SUM	MATION OF AL		(1)	
		<u>1st Quarter</u>	2nd Quarter	3rd Quarter	<u>4th Quarter</u>	Est. Total Error, %
A. <u>Fission & Activation Products</u> 1. Total Release (not including Tritium, gases, alpha)	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
B. <u>Tritium</u>						
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
C. Dissolved and Entrained Gases			,		•	
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Average diluted concentration during the reporting period	µCi/ml	No Releases	No Releases	No Releases	No Releases	
D. <u>Gross Alpha Radioactivity</u>						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. <u>Volumes</u>						
1. Prior to Dilution	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
2. Volume of dilution water used during release period	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
 Volume of dilution water available during reporting period 	Liters	1.08E+10	1.15E+10	1.31E+10	1.16E+10	5.00E+01
F. Percent of Tech. Spec. Limits						
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of 10CFR20 Concentration Limit (2), (3)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	·
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Limit (2.00E-04 µCi/ml) Concentrations less than the lower limit of dete 5.00E-07 µCi/ml for required gamma emitting i µCi/ml for Sr-89/90, 1.00E-06 µCi/ml for I-131 Calculation Manual (ODCM), has been verified	ection of the onuclides, 1.00 and Fe-55, a	counting system DE-05 µCi/ml for	used are indica required dissolv	ted with a doub ved and entraine	le asterisk. A lo ed noble gases a	and tritium, 5.00E-08

(2) The percent of 10CFR20 concentration limit is based on the average concentration during the quarter.

(3) Improved Technical Specifications limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2. Maximum Effluent Concentrations (MEC) numerically equal to ten times the 10CFR20.1001 - 20.2402 concentrations were adopted to evaluate liquid effluents.

Table 2B

,

Page 2 of 2

z'z

				Batch Mo			
luclides Released			<u>1st Quarter</u>	2nd Quarter	<u>3rd Quarter</u>	<u>4th Quarter</u>	
Nuclid	es Released						
Strontig	um-89	Ci	No Releases	No Releases	No Releases	No Releases	
Stronti	um-90	Ci	No Releases	No Releases	No Releases	No Releases	
Cesiun	n-134	Ci	No Releases	No Releases	No Releases	No Releases	
Cesiun	n-137	Ci	No Releases	No Releases	No Releases	No Releases	
lodine-	131	Ci	No Releases	No Releases	No Releases	No Releases	
Cobalt	-58	Ci	No Releases	No Releases	No Releases	No Releases	
Cobalt	60	Ci	No Releases	No Releases	No Releases	No Releases	
Iron-59		Ci	No Releases	No Releases	No Releases	No Releases	
Zinc-68	5	Ci	No Releases	No Releases	No Releases	No Releases	
Manga	nese-54	Ci	No Releases	No Releases	No Releases	No Releases	
Chrom	ium-51	Ci	No Releases	No Releases	No Releases	No Releases	
Zirconi	um-95	Ci	No Releases	No Releases	No Releases	No Releases	
Niobiu	n-95	Ci	No Releases	No Releases	No Releases	No Releases	
Molybo	leņum-99	Ci	No Releases	No Releases	No Releases	No Releases	
Techne	etiųm-99m	Ci	No Releases	No Releases	No Releases	No Releases	
Barium	-140	Ci	No Releases	No Releases	No Releases	No Releases	
Lantha	num-140	Ci	No Releases	No Releases	No Releases	No Releases	
Cerium	i-141	Ci	No Releases	No Releases	No Releases	No Releases	
Tungst	en-187	Ci	No Releases	No Releases	No Releases	No Releases	
Arseni	c-76	Ci	No Releases	No Releases	No Releases	No Releases	
lodine-	133	Ci	No Releases	No Releases	No Releases	No Releases	
Iron-55	;	Ci	No Releases	No Releases	No Releases	No Releases	
Neptur	ium-239	Ci	No Releases	No Releases	No Releases	No Releases	
Silver-	110m	Ci	No Releases	No Releases	No Releases	No Releases	
Gold-1	99	Ci	No Releases	No Releases	No Releases	No Releases	
Cerium	1-144	Ci	No Releases	No Releases	No Releases	No Releases	
Cesiur	n-136	Ci	No Releases	No Releases	No Releases	No Releases	
Coppe	r-64	Ci	No Releases	No Releases	No Releases	No Releases	
Dissolved or Entrai	ned Gases	Ci	No Releases	No Releases	No Releases	No Releases	
Tritium		Ci	No Releases	No Releases	No Releases	No Releases	
	release occurred during than the lower limit of de			-	• -	ble asterisk. A l	ower limit of detect

Page 1 of 4

Unit 1	Unit 2	X		<u>Reporting Per</u>	iod: January - De	ecember 2017
	SOLID W	ASTE AND IRRAI	DIATED FUEL SHI	PMENTS		
A1. TYPE		<u>Volume</u> (m³)			<u>Activity (1)</u> (Ci)	
1		<u>Class</u>			<u>Class</u>	
	A	В	C	A	В	С
a.1 Spent Resin (Dewatered)	2.70E+01	0.00E+00	0.00E+00	5.17E+01	0,00E+00	0.00E+00
a.2 Filter Sludge	0.00E+00	5.38E+00	0.00E+00	0.00E+00	1,11E+03	0.00E+00
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00
Totals	2.70E+01	5.38E+00	0.00E+00	5.17E+01	1,11E+03	0.00E+00
b.1 Dry Compressible Waste	3.75E+02	0.00E+00	0.00E+00	2.69E-01	0,00E+00	0.00E+00
b.2 Dry Non-Compressible Waste (Contaminated Equipment)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	3.75E+02	0.00E+00	0.00E+00	2.69E-01	0,00E+00	0.00E+00
c. Irradiated Components, Control Rods, etc.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00
d. Other (to vendor for processing)					
d.1 Oily waste	3.67E+01	0.00E+00	0.00E+00	2.95E+02	0,00E+00	0.00E+00
(1) The estimated total error is 5.0E	+01%.	<u>. </u>	1	<u>ا</u>	L	<u>_</u>

ļ

Page 2 of 4

ł

Unit 1	Unit 2X	Reporting Pe	eriod: January - December 2017
	SOLID WASTE AND IRRA	DIATED FUEL SHIPMENTS	
А1. ТҮРЕ	<u>Container</u>	Package	Solidification Agent
a.1 Spent Resin (Dewatered)	Poly Liner	General Design	None
a.2 Filter Sludge	Poly Liner	Туре В	None
b.1 Dry Compressible Waste	Seavan	General Design	None
b.2 Dry Non-Compressible Waste (contaminated equipment)	. N/A	N/A	. N/a
·			· · · · · · · · · · · · · · · · · · ·
c. Irradiated Components, Control Rods	N/A	N/A	N/A
d. Other (To vendor for processing)			
Oil/Aqueous Liquid	55 galion drums	General Design	None
		l	

Page 3 of 4

Unit 1	Unit 2 <u>X</u>		Reporting Period: January - December 2017			
	SOLID WASTE AND IRRAI	DIATED FUEL SHIPN	IENTS			
A2. ESTIMATE OF MAJOR NUCLIDE (COMPOSITION (BY TYPE OF	WASTE)				
a. Spent Resins, Filter Sludges, Concer	trated Waste					
<u>Nuclide</u> Fe-55 Co-60 Mn-54 Zn-65	!	Percent 59.09% 37.00% 1.51% 1.39%	<u>Curies</u> 6.89E+02 4.31E+02 1.76E+01 1.62E+01			
b. Dry Compressible Waste, Dry Non-C	ompressible Waste (Contamin	ated Equipment)				
<u>Nuclide</u> Fe-55 Co-60 Mn-54	· · · · · · · · · · · · · · · · · · ·	Percent 67.14% 28.91% 1.56%	<u>Curies</u> 1.80E-01 7.76E-02 4.20E-03			
c. Irradiated Components, Control Rods <u>Nuclide</u> N/A	: There were no shipments.		Percent N/A			
d. Other: (To vendor for processing)						
<u>Nuclide</u> Fe-55 Co-60 Mn-54		Percent 79.67% 18.61% 1.21%	<u>Curies</u> 2.35E+02 5.50E+01 3.57E+00			

۰.

Unit 1	Unit 2 <u>X</u>	Reporting Period: January - December 2017			
	SOLID WASTE AND IRRADIATED F	UEL SHIPMENTS			
A3. SOLID WASTE DISPOSITIO	N				
Number of Shipments	Mode of Transportation	Destination			
14	Truck,highway	Bear Creek			
6	Truck,highway	Clive			
2	Truck,highway	WCS			
B. IRRADIATED FUEL SHIPMEN					
Number of Shipments	Mode of Transportation	Destination			
0	N/A	N/A			
	D TO A TREATMENT FACILITY FOR PROCES	SSING AND BURIAL ated nuclides from NMP to the treatment facility			

Page 1 of 1	Page	1	of	1
-------------	------	---	----	---

Unit 1	Unit 2	X	Reporting Period: January - December 2017					
SUMMARY OF CHANGES TO THE OFF-SITE DOSE CALCULATION MANUAL (ODCM)								
The Unit 2 Off-Site Dose Calculation Manual (ODCM) was not revised during the reporting period.								
		REVISION XX						
Page #	New/Amended Section #	Description of Change	Reason For Change					
			+					
								
	<u> </u>							
	REVISION XX							
Page #	New/Amended Section #	Description of Change	Reason For Change					
		<u></u>						

Unit 1	Unit 2	<u> </u>		Reporting Period:	January - Dece	ember 2017
	SUMMARY OF C	HANGES TO TH	E PROCESS C	ONTROL PRO	GRAM (PCP)	···
RW-AA-100, PROCESS CONTROL PROGRAM FOR RADIOACTIVE WASTES, was updated to remove Fort Calhoun from the procedure and include James A. Fitzpatrick Nuclear.						
ļ				I		
			· ••		·	
	, · ·					<u>·</u>

Unit 1	Unit 2	X	-	<u>Reporti</u>	ng Period: January	- December 2017
		SUMM	ARY OF NON-FUNCTION	ONAL MONITO	RS	
Monitor	Dates Mor Non-Fur			Cause and Co	rrective Actions	
2LWS-CAB206, 2LWS-FT330 & 2LWS-FT331, Liquid Waste Discharge Monitor	January 1, 2017 to December 31, 2017		No liquid waste discharges were performed during 2017, and therefore, thes monitors were not returned to service. The discharge manual isolation valves, 2LWS-V420 and 2LWS-V422, are locked closed during inoperable periods, therefore, no inadvertent discharge can occur. Reference Equipmen Status Log (ESL) 2010-0243.			
			L			
	·					
	,					
			1			
	- " -	·				

Unit 1	Unit 2 _	<u>X</u>		Reporting Period: Jan	uary - December 2017
DOSE	ES TO ME	MBERS OF THE PUE	BLIC DUE TO THEIR AC	TIVITIES INSIDE THE	SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 2 (NMP2).liquid and gaseous effluents has been conducted for the period January through December 2017.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2017 the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

Dose Pathways

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP2 Stack and Radwaste/Reactor Building Vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP2 Stack and Radwaste/Reactor Building Vent.
- Direct radiation pathway; dose resulting from the operation of Nine Mile Point Unit 1 (NMP1), NMP2 and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP2 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

Unit 1 ____ Unit 2 <u>X</u>_

Reporting Period: January - December 2017

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2017 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time period)
- Average Cs-137 concentration = 1.30E-01 pCi/g

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP2 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2017 calculated using the following input parameters for gaseous effluents released from both the NMP2 Stack and Radwaste/Reactor Building Vent for the time period exposure is received:

NMP2 Stack:

Variable	Fisherman ¹	
X/Q (s/m ³)	9.6 E-07	
Inhalation dose factor	Table E-7, Regulatory Guide 1.109	
Annual air intake (m ³ /year) (adult)	8000	
Fractional portion of the year	0.0356	
H-3 (pCi/sec)	2.21 E+06	
$C-14 (pCi/sec)^2$	6.00 E+05	

NMP2 Radwaste/Reactor Building Vent:

Variable	Fisherman ¹
$X/Q (s/m^3)$	2.8 E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m ³ /year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	2.91E+06
Co-60 (pCi/sec)	1.40E+00
Cs-137(pCi/sec)	1.66E-01

Unit 1 Unit 2 <u>_ X</u>	Reporting Period: January - December 2017
DOSES TO MEMBE	RS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

- 1. The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Radwaste/Reactor Building Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.
- 2. C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2017 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman	
Average Dose Rate (mRem/hr)	1.04E-03	
Exposure time (hours)	312	

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

Unit 1 _____ Unit 2 _X <u>Reporting Period: January - December 2017</u> DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Dose Received By A Hypothetical Maximum Exposed Member of the Public Inside the Site Boundary During 2017

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP2 during 2017:

		Fisherman (mrem)	
Exposure Pathway	Dose Type		
Enternal Creans d	Whole Body	2.04E-03	
External Ground	Skin of Whole Body	2.38E-03	
	Whole Body	5.32E-04	
Inhalation	Maximum Organ	Lung: 5.33E-04	
	Thyroid	5.32E-04	
Direct Radiation	Whole Body	0.32	

TABLE 1Exposure Pathway Annual Dose

Based on these values, the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

TABLE 2Annual Dose Summary

Total Annual Dose for 2017	Fisherman (mrem)	
Total Whole Body	3.26E-01	
Skin of Whole Body	2.38E-03	
Maximum Organ	Lung: 5.33E-04	
Thyroid	5.32E-04	

Unit 1	Unit 2 _	<u>_X</u>	Reporting Period	<u>1: January - December 2017</u>
DOS	ES TO N	MEMBERS OF THE PUBLIC DUE 1	TO THEIR ACTIVITIES OUTS	IDE THE SITE BOUNDARY

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2017 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 2 (NMP2), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of Nine Mile Point Unit 1 (NMP1), NMP2 and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body
- < 25 mRem any organ (except thyroid)
- <75 mRem thyroid

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have concentrated in vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP facilities (including the Independent Spent Fuel Storage Installations (ISFSI)).

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP2 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2017 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2017; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2017.

Unit 1	Unit 2 _	<u>X</u>	· ·	Reporting Period:	January - December 20	<u>17</u>
DOS	SES TO N	MEMBERS OF THE PUB	LIC DUE TO THEIR AG	TIVITIES OUTSID	E THE SITE BOUNDA	ARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP2 ODCM as adapted from Regulatory Guide 1.109. The dose for 2017 is calculated from actual analysis results of environmental vegetation samples taken near the most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2017; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2017.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP2 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in plant gaseous effluents.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP2 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2017; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2017.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. Actual meteorological data was used to calculate doses to the likely most exposed Member of the Public. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2017 provides a total dose to the whole body and maximum organ dose for this pathway.

Carbon-14 Dose Pathways Resulting from Gaseous Effluents

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2017 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010. The following methodology was used in estimating C-14 gaseous release activity and dose components for the 2017 ARERR.

EPRI methodology for estimating C-14 production rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that ~95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

Unit 1 Unit 2X	Reporting Period: January - December 2017
DOSES TO MEMBERS OF THE PUBLIC DUE	TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

For NMP1 and NMP2, C-14 gaseous dose calculations in the site ARERR are made using the following assumptions for each unit: (1) continuous release of the estimated C-14 generated during power operation based on the number of Effective Full Power Days (EFPDs) for the period, (2) maximum C-14 activity from literature values cited in EPRI Report 1021106, and (3) typical fraction as carbon dioxide for gaseous releases from literature values also cited in EPRI Report 1021106.

Equation 1 estimates the maximum annual production of C-14, PR_{MAX}, for each BWR unit.

$$PR_{MAX} = 5.1 \bullet MWT / 1000$$
 [Eq 1]

Where:

5.1	=	BWR Normalized Production (Ci/GWt-yr)
MWT	=	MegaWatts Thermal (MWt)
1000	=	Conversion Factor (MWt to GWt)

Equation 2 estimates the C-14 activity released, A_{C-14} , into the gaseous pathway during the time period for each BWR unit.

ł

A _{C-14}	F	$PR_{MAX} \bullet 0.99 \bullet EFPD / 365, Ci (for time period)$	[Eq 2]
-------------------	---	--	--------

Where:

PR _{MAX}	=	maximum annual production rate of C-14
0.99	=	fraction of C-14 in BWR gaseous pathway releases (maximum
		literature value in EPRI Report 1021106; also Table 1)
EFPD	=	number of effective full power days for the unit during the time
		period; e.g., quarterly or yearly (Table 1)
365	=	number of days in a typical year

Unit 1	Unit 2	<u>x</u>	Reporting Period: January - December 2017
DOS	SES TO N	IEMBERS OF TH	E PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Equation 3 estimates the C-14 activity released in carbon dioxide form, $A_{C-14, CO2}$, into the gaseous pathway during the time period for each BWR unit.

A _{C-14, CO2}	=	PR _{MAX} • 0.99 • 0.95 • EFPD / 365, Ci (for tim	e period) [Eq 3]
------------------------	---	---	------------------

Where:

PR _{MAX}	=	maximum annual production rate of C-14
0.99	=	fraction of C-14 in BWR gaseous pathway releases (maximum
		literature value in EPRI Report 1021106; also Table 1)
0.95	=	fraction of C-14 as carbon dioxide in BWR gaseous pathway
		releases (typical literature value in EPRI Report 1021106; also Table 1)
EFPD	=	number of effective full power days for the unit during the time
		period, e.g. quarterly or yearly (Table 1)
365	-	conversion factor, 365 days in a typical average year

For each BWR unit, the 2017 estimated C-14 activity releases (total and carbon dioxide chemical form) are summarized in Table 1.

		2017		<u>able 1</u> d <u>C</u> -14 Gaseous	Releases	
BWR	Gaseous Release Fraction ^(a)	CO ₂ Form Release Fraction ^(b)	EFPD Operation	Max. Annual Prod. Rate (Eq 1)	2017 Total Release (Eq 2)	2017 CO2 Release (Eq 3)
NMP1	0.99	0.95	331.2 EFPD (90.7%)	9.44 Ci/yr	8.48 Ci	8.05 Ci
NMP2	0.99	0.95	359.85 EFPD (98.6%)	20.34 Ci/yr ^(c)	19.85 Ci	18.86 Ci
JAFNPP	0.99	0.95	309.1 EFPD (84.7%)	12.93 Ci/yr	9.09 Ci	8.63 Ci

(a) Maximum literature values from EPRI Report 1021106.

(b) Typical value from EPRI Report 1021106.

(c) NMP2 Reactor Power Rating increased to 3988 Megawatts thermal.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Unit 1	Unit 2 _	<u>X</u>		Reporting Period: Janua	<u>ary - December 2017</u>
DOS	SES TO N	IEMBERS O	F THE PUBLIC DUE TO THEIR	ACTIVITIES OUTSIDE TH	E SITE BOUNDARY

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2017, the closest residence and the critical downwind residence are at the same location.

<u>Table 2</u>
Dose Potentially Received by the Likely Most Exposed Member of the Public
Outside the Site Boundary During 2017

Exposure Pathway	Dose Type	Dose (mrem)
Fish and Vegetation Consumption	Total Whole Body	No Dose
	Total Maximum Organ	No Dose
Shoreline Sediment	Total Whole Body	No Dose
	Total Skin of Whole Body	No Dose
Gaseous Effluents (excluding C-14)	Total Whole Body	4.42 E-03
	Thyroid	1.02 E-02
	Maximum Organ	Thyroid: 1.02 E-02
Gaseous Effluent (C-14)	Total Whole Body	3.52 E-01
	Maximum Organ	Bone: 1.76 E+00
Direct Radiation	Total Whole Body	0.91

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2017 is as follows:

- Total Whole Body: 1.27 E+00 mrem
- Total Thyroid:
- 1.02 E-02
- Maximum Organ: Bone: 1.76 E+00 mrem

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAFNPP facilities. The maximum organ dose (Bone: 1.76 mrem), maximum thyroid dose (0.010 mrem) and the maximum whole body dose (1.27 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

Unit 1 Unit 2 <u>X</u>			Reporting Period: January - December 2017		
Well Identification Number	# Samples Collected	# Positive Samples	Minimum Concentration (pCi/l)	Maximum Concentration (pCi/l)	
GMX-MW1*	4	0	<188	<194	
MW-1	4	0	<188	<200	
MW-5	4	0	<183	<193	
MW-6	4	0	<186	<191	
MW-7	4	0	<186	<194	
MW-8	4	0	<187	<193	
MW-9 ¹	4	0	<187	<192	
MW-10 ¹	4	1	<186	240	
MW-11	4	0	<186	<193	
MW-12	4	0	<190	<193	
MW-13	4	0 .	<184	<192	
MW-14*	4	1	<183	234	
MW-15	4	1	<186	252	
MW-16	4	0	<184	<192	
MW-17	4	1	<183	222	
MW-18	4	1	<190	270	
MW-19	4	0	<186	<190	
MW-20	4	0	<183	<192	
MW-21	4	0	<183	<190	
NMP2 MAT ^{2,3}	4	1	<181	279	
PZ-1	4	0	<190	<193	
PZ-2	4	0	<191	<196	
PZ-3	4	0	<187	<194	
PZ-4	4	1	<189	214	
PZ-5	4	0	<190	<191	
PZ-6	4	0	<188	<192	
PZ-7	4	4	291	435	
PZ-8	4	0	<190	<198	

Notes:

PZ-9*

Ϊ,

1. 1

* - Control Location

4

¹ - Sentinel well location

² - NMP2 Groundwater Depression Cone

³ - Samples collected from storm drain system which includes precipitation

<189

<194

0