

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

April 10, 2018

Mr. Christopher R. Church Senior Vice President Northern States Power Company - Minnesota Monticello Nuclear Generating Plant 2807 West County Road 75 Monticello, MN 55362-9637

SUBJECT: MONTICELLO NUCLEAR GENERATING PLANT - REPORT FOR THE AUDIT OF LICENSEE RESPONSES TO INTERIM STAFF EVALUATIONS OPEN ITEMS RELATED TO NRC ORDER EA-13-109 TO MODIFY LICENSES WITH REGARD TO RELIABLE HARDENED CONTAINMENT VENTS CAPABLE OF OPERATION UNDER SEVERE ACCIDENT CONDITIONS (CAC NO. MF4376; EPID L-2014-JLD-0052)

Dear Mr. Church:

On June 6, 2013 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML13143A334), the U.S. Nuclear Regulatory Commission (NRC) issued Order EA-13-109, "Order to Modify Licenses with Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident Conditions," to all Boiling-Water Reactor licensees with Mark I and Mark II primary containments. The order requirements are provided in Attachment 2 to the order and are divided into two parts to allow for a phased approach to implementation. The order required licensees to submit for review overall integrated plans (OIPs) that describe how compliance with the requirements for both phases of Order EA-13-109 will be achieved.

By letter dated June 30, 2014 (ADAMS Accession No. ML14183A412), Northern States Power Company - Minnesota (NSPM, the licensee) submitted its Phase 1 OIP for Monticello Nuclear Generating Plant (MNGP, Monticello). By letters dated December 16, 2014, June 22, 2015, December 17, 2015 (which included the combined Phase 1 and Phase 2 OIP), June 17, 2016, December 19, 2016, June 14, 2017, and December 21, 2017 (ADAMS Accession Nos. ML14353A215, ML15173A176, ML15356A120, ML16169A309, ML16354A666, ML17166A051, and ML17355A508, respectively), the licensee submitted its 6-month updates to the OIP. The NRC staff reviewed the information provided by the licensee and issued interim staff evaluations (ISEs) for Phase 1 and Phase 2 of Order EA-13-109 for Monticello by letters dated April 2, 2015 (ADAMS Accession No. ML15082A167), and September 6, 2016 (ADAMS Accession No. ML16244A120), respectively. When developing the ISEs, the staff identified open items where the staff needed additional information to determine whether the licensee's plans would adequately meet the requirements of Order EA-13-109.

The NRC staff is using the audit process described in letters dated May 27, 2014 (ADAMS Accession No. ML14126A545), and August 10, 2017 (ADAMS Accession No. ML17220A328), to gain a better understanding of licensee activities as they come into compliance with the order. As part of the audit process, the staff reviewed the licensee's closeout of the ISE open items.

C. Church

If you have any questions, please contact me at (301) 415-1025 or by e-mail at Rajender.Auluck@nrc.gov.

Sincerely,

hulvek

Rajender Auluck, Senior Project Manager Beyond-Design-Basis Engineering Branch Division of Licensing Projects Office of Nuclear Reactor Regulation

Docket No. 50-263

Enclosure: Audit report

cc w/encl: Distribution via Listserv

,

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

AUDIT REPORT BY THE OFFICE OF NUCLEAR REACTOR REGULATION

AUDIT OF LICENSEE RESPONSES TO INTERIM STAFF EVALUATIONS OPEN ITEMS

RELATED TO ORDER EA-13-109 MODIFYING LICENSES

WITH REGARD TO RELIABLE HARDENED CONTAINMENT VENTS CAPABLE OF

OPERATION UNDER SEVERE ACCIDENT CONDITIONS

NORTHERN STATES POWER COMPANY - MINNESOTA

MONTICELLO NUCLEAR GENERATING PLANT

DOCKET NO. 50-263

BACKGROUND

On June 6, 2013 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML13143A334), the U.S. Nuclear Regulatory Commission (NRC) issued Order EA-13-109, "Order to Modify Licenses with Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident Condition," to all Boiling-Water Reactor (BWR) licensees with Mark I and Mark II primary containments. The order requirements are divided into two parts to allow for a phased approach to implementation.

Phase 1 of Order EA-13-109 requires license holders of BWRs with Mark I and Mark II primary containments to design and install a Hardened Containment Vent System (HCVS), using a vent path from the containment wetwell to remove decay heat, vent the containment atmosphere (including steam, hydrogen, carbon monoxide, non-condensable gases, aerosols, and fission products), and control containment pressure within acceptable limits. The HCVS shall be designed for those accident conditions (before and after core damage) for which containment venting is relied upon to reduce the probability of containment failure, including accident sequences that result in the loss of active containment heat removal capability or extended loss of alternating current (ac) power (ELAP). The order required all applicable licensees, by June 30, 2014, to submit to the Commission for review an overall integrated plan (OIP) that describes how compliance with the Phase 1 requirements described in Order EA-13-109 Attachment 2 will be achieved.

Phase 2 of Order EA-13-109 requires license holders of BWRs with Mark I and Mark II primary containments to design and install a system that provides venting capability from the containment drywell under severe accident conditions, or, alternatively, to develop and implement a reliable containment venting strategy that makes it unlikely that a licensee would need to vent from the containment drywell during severe accident conditions. The order required all applicable licensees, by December 31, 2015, to submit to the Commission for

review an OIP that describes how compliance with the Phase 2 requirements described in Order EA-13-109 Attachment 2 will be achieved.

By letter dated June 30, 2014 (ADAMS Accession No. ML14183A412), Northern States Power Company - Minnesota (NSPM, the licensee) submitted its Phase 1 OIP for Monticello Nuclear Generating Plant (MNGP, Monticello). By letters dated December 16, 2014, June 22, 2015, December 17, 2015 (which included the combined Phase 1 and Phase 2 OIP), June 17, 2016, December 19, 2016, June 14, 2017, and December 21, 2017 (ADAMS Accession Nos. ML14353A215, ML15173A176, ML15356A120, ML16169A309, ML16354A666, ML17166A051, and ML17355A508, respectively), the licensee submitted its 6-month updates to the OIP. as required by the order.

The NRC staff reviewed the information provided by the licensee and issued interim staff evaluations (ISEs) for Phase 1 and Phase 2 of Order EA-13-109 for Monticello by letters dated April 2, 2015 (ADAMS Accession No. ML15082A167), and September 6, 2016 (ADAMS Accession No. ML16244A120), respectively. When developing the ISEs, the staff identified open items where the staff needed additional information to determine whether the licensee's plans would adequately meet the requirements of Order EA-13-109.

The NRC staff is using the audit process in accordance with the letters dated May 27, 2014 (ADAMS Accession No. ML14126A545), and August 10, 2017 (ADAMS Accession No. ML17220A328), to gain a better understanding of licensee activities as they come into compliance with the order. The staff reviews submitted information, licensee documents (via ePortals), and preliminary Overall Program Documents (OPDs)/OIPs, while identifying areas where additional information is needed. As part of this process, the staff reviewed the licensee closeout of the ISE open items.

AUDIT SUMMARY

As part of the audit, the NRC staff conducted a teleconference with the licensee on March 22, 2018. The purpose of the audit teleconference was to continue the audit review and provide the NRC staff the opportunity to engage with the licensee regarding the closure of open items from the ISEs. As part of the preparation for this audit call, the staff reviewed the information and/or references noted in the OIP updates to ensure that closure of ISE open items and the HCVS design are consistent with the guidance provided in Nuclear Energy Institute (NEI) 13-02, Revision 1 and related documents (e.g. white papers (ADAMS Accession Nos. ML14126A374, ML14358A040, ML15040A038 and ML15240A072, respectively) and frequently asked questions (FAQs), (ADAMS Accession No. ML15271A148)) that were developed and reviewed as part of overall guidance development. The NRC staff audit members are listed in Table 1. Table 2 is a list of documents reviewed by the staff. Table 3 provides the status of the ISE open item closeout for Monticello. The open items are taken from the Phase 1 and Phase 2 ISEs issued on April 2, 2015, and September 6, 2016, respectively.

FOLLOW UP ACTIVITY

The staff continues to audit the licensee's information as it becomes available. The staff will issue further audit reports for Monticello, as appropriate.

Following the licensee's declarations of order compliance, the licensee will provide a final integrated plan (FIP) that describes how the order requirements are met. The NRC staff will

evaluate the FIP, the resulting site-specific OPDs, as appropriate, and other licensee documents, prior to making a safety determination regarding order compliance.

CONCLUSION

This audit report documents the staff's understanding of the licensee's closeout of the ISE open items, based on the documents discussed above. The staff notes that several of these documents are still preliminary, and all documents are subject to change in accordance with the licensee's design process. In summary, the staff has no further questions on how the licensee has addressed the ISE open items, based on the preliminary information. The status of the NRC staff's review of these open items may change if the licensee changes its plans as part of final implementation. Changes in the NRC staff review will be communicated in the ongoing audit process.

Attachments:

- 1. Table 1 NRC Staff Audit and Teleconference Participants
- 2. Table 2 Audit Documents Reviewed
- 3. Table 3 ISE Open Item Status Table

Title	Team Member	Organization
Team Lead/Sr. Project Manager	Rajender Auluck	NRR/DLP
Project Manager Support/Technical		
Support – Containment / Ventilation	Brian Lee	NRR/DLP
Technical Support – Containment /		
Ventilation	Bruce Heida	NRR/DLP
Technical Support – Electrical	Kerby Scales	NRR/DLP
Technical Support – Balance of Plant	Garry Armstrong	NRR/DLP
Technical Support – I&C	Steve Wyman	NRR/DLP
Technical Support – Dose	John Parillo	NRR/DRA

.

Table 1 - NRC Staff Audit and Teleconference Participants

Table 2 – Audit Documents Reviewed

Calculation 16-006, "Hard Pipe Vent D8 Battery HCVS 125VDC Battery Calculation," Revision 1 Engineering Change (EC) 23964 – FLEX 480 V Diesel Generator Sizing

Calculation 94-017, "Calculation of Alternate Nitrogen System Supply Pressure and Spare Bottle Inventory," Revision 10B

Calculation 16-011, "Calculation of HPV System Dedicated Nitrogen Supply and Pressure Requirements," Revision 0A

Calculation 16-055, "Monticello GOTHIC Analysis for the Hardened Contianment Vent Project," Revision 0

Calculation 16-054, "MNGP HCVS Radiological Assessment," Revision 0

Calculation 16-019, "Monticello Hardened Containment Vent System (HCVS) Capacity Analysis and Verification of Suppression Pool Decay Heat Capacity," Revision 0

Engineering Evaluation (EE) 26081-01 – Reasonable Protection Evaluation Grade for HCVS Tornado Missile Barrier

Calculation 16-032, "Hardened Containment Vent Pipe Supports HPVH1, HPVH2, HPVH3, and HPVH4," Revision 11

Calculation 16-012, "Pipe Stess Analysis of Hard Pipe Vent," Revision 0

Calculation 16-003, "Evaluation of HPV Missile Barrier - Lower Frame," Revision 0

Engineering Change (EC) 28557 - PT-7251B - Severe Accident Temperature Conditions

Engineering Evaluation EC 28582 - BDBEE Environmental Conditions for LT-7338B, Revision 0

Environmental Qualification (EQ) 98-039 – Rosemount Pressure Transimitter Series A (DOR), Revision 0

Environmental Qualification (EQ) 08-016 - Rosemount 1154 Transimitters, Revision 1

Engineering Evaluation EC 28546 – BDBEE Environmental Conditions for AO-4539 and AO-4540, Revision 1

Specification NPD-M-39, "Specification for Valve Requirements for Pneumatic Operated Butterfly Valves for the Hard Pipe Vent System," Revision 8

Qualification Summary Report 04518900-QSR – HCVS Radiation Monitoring System (DC & AC Input Power Supplies), Revision C

Operations Manual Section B.08.08-01, "Plant Communications Systems," Revision 7

Operations Manual Section A.8-06.02, "Repower PAB PBX Phone System with Portable Generator," Revision 3

Engineering Change (EC) 26083, "Hardened Containment Venting System NRC Order EA-13-109 Phase 1," Revision 0

Operations Manual Section C.5.-3505, "Venting Primary Containment," Revision 14

Calculation 16-002, "Evaluation of HPV Missile Barrier – Upper & Intermediate Frames," Revision 2

Calculation 16-067, "HCVS Radiation Detector Support Evaluation," Revision 0

Calculation 16-059, "Seismic Evaluation of SPOTMOS Panel C-289B," Revision 0

Calculation 16-065, "Seismic Evaluation of Panel C-292," Revision 0

Calculation 03-008, "AOV Component Calculation, Hard Pipe Vent Valves, AO-4539 and AO-4540," Revision 5

EPRI Technical Report 3002003301 – Technical Basis for Severe Accident Mitigating Strategies, Volume 1 Engineering Evaluation 28694 – Evaluation of Radiological Conditions at the Southside of the Radwaste Building during Hard Pipe Vent (HPV) Use As An Optional Location for the Portable Diesel Pump

Environemental Qualification (EQ) 98-026, "Limitorque Motor Operators (50.49)," Revision 2

Engineering Evaluation 60800000102 – SAWA Flowrates and Torus Water Levels

Calculation 16-057, "3rd Floor EFT Exhaust Fan," Revision 0

Calculation 16-022, "Ventilation Requirements for Batteries Located on the Third Floor of theft Building," Revision 0

Specifications for Model EL 2200 Electromagnetic Flow Meter

BWROG-TP-008, "Severe Accident Water Addition Timing"

BWROG-TP-011, "Severe Accident Water Management Supporting Evaluations"

Monticello Nuclear Generating Plant Vent Order Interim Staff Evaluation Open Items:

Table 3 - ISE Open Item Status Table

ISE Open Item Number	Licensee Response – Information	NRC Staff Close-out notes	Safety Evaluation (SE)
Requested Action	provided in 6 month updates and on the		status Classed: Danding: Open
Requested Action	ePortai		(need additional
			information from licensee)
Phase 1 ISE 1	A calculation has been performed that	The NRC staff reviewed the	Closed
	confirms that the HCVS battery and	information provided in the 6-	
Make available for NRC staff	battery charger are sized adequately.	month updates and on the	[Staff evaluation to be
audit the final sizing evaluation	The results of the analysis show that the	ePortal.	included in SE Section
for HCVS batteries/Battery	battery is adequately sized to supply		3.1.2.6]
charger including incorporation	power to the HCVS devices for twenty-	The licensee stated that all	
into. FLEX DG loading	four (24) hours following the onset of an	electrical power required for	
calculation.	ELAP. The analysis results also show	operation of HCVS components is	
	that the minimum calculated terminal	provided by the HCVS 125 VDC	
	minimum voltage required for each HCVS	Dattery and Dattery charger.	
	device while being supplied from the	The battery sizing calculation 16-	
	battery.	006. "Hard Pipe Vent D8 Battery	
		HCVS 125VDC Battery	
	The design allows for use of the Diverse	Calculation," Revision 1	
	and Flexible Coping Strategies (FLEX)	confirmed that the 125 VDC	
	equipment (i.e. FLEX generator) to power	battery has a minimum capacity	
	the system after 24 hours. The design	capable of providing power for 24	
	incorporates a manual, break-before-	hours without recharging, and	
	make transfer switch to transfer the load	therefore is adequate.	
	250VDC [volts direct current] battery	The licensee provided	
	number 16 During an FLAP event the	Engineering Change (EC) 23964	
	16 battery through its associated battery	– FLEX 480 V Diesel Generator	
	charger, will be connected to and	Sizing, which discusses re-	
	powered from the FLEX portable diesel	powering of the HCVS 125 VDC	
	generator per procedure.	battery charger using the FLEX	
		DG.	
	An engineering evaluation was performed		
	to demonstrate that the FLEX 480 V	No follow-up questions.	

	Diesel Generator is of adequate size to		
	determined that the FLEX 480 V Diesel		
	Generator is capable of supplying the		
	battery chargers for the 11, 12, 13, and 16		
	batteries at current limits. Therefore, the		
	FLEX 480 V Diesel Generator has the		
	required capacity to supply the HCVS		
	loads since it is sized for the full capacity	3	
	of the battery chargers.		
	The extendering and evolutions have		
	I he calculation and evaluations have		
	A seleviation has been performed that	The NBC stoff reviewed the	Cloopd
Phase 1 ISE OI 2	A calculation has been performed that	information provided in the 6	Closed
Make evollable for NPC stoff	supply systems that provide projumatic	month undates and on the	(Staff evaluation to be
audit documentation of the	consists to the HCVS rupture disc and	ePortal	included in SE Section
	containment isolation valves are sized		3 1 2 6]
system design sizing and	adequately. This calculation determined	Calculation 94-017 "Calculation	0.1.2.0]
	that one (1) nitrogen bottle is required to	of Alternate Nitrogen System	
	fully burst the HCVS rupture disc and two	Supply Pressure and Spare Bottle	
	(2) nitrogen bottles are required to actuate	Inventory " Revision 10B and	
	the primary containment isolation valves	Calculation 16-011. "Calculation	
	over 24 hours	of HPV System Dedicated	
		Nitrogen Supply and Pressure	
	Two (2) new nitrogen supply systems are	Requirements," Revision 0A	
	installed in the 931' east Turbine Building	discusses the pneumatic design	
	with a remote manual operating station	and sizing.	
	located south of the nitrogen bottles near		
	the B Alternate Nitrogen supply.	For rupture disc, the licensee	
	Pneumatic tubing was routed through the	determined that one bottle of	
	Turbine Building, Condenser Room,	nitrogen can rupture the disc in 12	
	Reactor Core Isolation Cooling (RCIC)	minutes (which is less than the	
	Room, and Torus Room to the HCVS	required 15 minutes) to supply	
	rupture disc and containment isolation	nitrogen upstream for HCVS	•
	valves. The primary location for control of	operation. A spare nitrogen bottle	
	the HCVS remains in the third floor	will be stored in the Monticello	
	Emergency Filtration Train (EFT) Building	warehouse on site.	
	at the Alternate Shutdown System		
	(ASDS) panel.		

	The design of the new HCVS nitrogen system is provided in Figure OI 2-1 of the Sixth 6-Month Status Update submittal. The calculation and drawings for the new nitrogen systems were provided to the NRC on the eportal.	For hard pipe vent (HPV) supply, the licensee determined that 2 bottles of nitrogen will be needed for 8 air operated valves (AOV) actuations for 24 hours. An additional minimum of 12 nitrogen bottles will be needed for 6 days after the initial 24 hours for more AOV actuations for the HCVS.	
Phase 1 ISE OI 3	The primary operating station (POS) for	The NRC staff reviewed the	Closed
	the HCVS is in the third floor of the EFT	information provided in the 6-	
Make available for NRC staff	building and includes the controls for the	month updates and on the	[Staff evaluation to be
audit an evaluation of	HCVS as well as the instruments used to	ePortal.	included in SE Sections
temperature and radiological	monitor drywell pressure, suppression		3.1.1.2 and 3.1.1.3]
conditions to ensure that	pool level, HCVS radiation, and HCVS	Calculation 16-055, "Monticello	
operating personnel can safely	temperature. The remote operating	GOTHIC Analysis for the	
access and operate controls	station (ROS) is located in the 931'	Hardened Containment Vent	
and support equipment.	elevation of the turbine building east side.	Project," Revision 0 indicates that	
	The nitrogen bottle rack, controls, and	the temperature in the Emergency	
	indicators are located at the north end of	Filtration Train (EFT) building	
	931' east and the ROS valves are located	third floor (location of the primary	
	at the south end of 931' east.	operaring station (POS)) would	
		peak at 135°F in the summer at	
	Dose rates due to the Beyond Design	12 hours. By 12 hours.	
	Basis External Event (BDBEE) and the	supplemental ventilation will be	
	HCVS order severe accident conditions	installed per Procedure C 5-4503	
	assumed in the containment atmosphere	The supplemental ventilation will	
	during HPV operation were determined by	maintain the temperature below	
	calculation using the methodology in NEI-	120°F Figure 7.2-1 indicates the	
	13-02. Rev 1 and HCVS-WP-02. Rev 0.	ETF Building 3rd floor	
	The seven day integrated dose values at	temperature varies between	
	the POS and ROS locations are well	110°F and 100°F with the daily	
	within the dose limit of 5 rem. Transit	diurnal temperature variation after	
	paths and locations outside of the Reactor	supplemental ventilation is	
	and/or HPCI Building have unlimited	installed. The NRC staff	
	access up to 7 hours after ELAP	requested clarification that the	
	Additionally, transit paths are acceptable	high temperature in the POS	
	for short durations after venting has	would not hinder operators ability	

	started based on the expected peak dose	to take the required actions. The	
	rates. The FLEX Pump and FLEX	licensee responded that the work	
	Generator deployment locations were	in the POS is classified as light	
	evaluated for a 7-day integrated dose and	duty and consists of manipulating	
	selected locations are accessible. Dose	hand switches and peroidic	
	the operator receives is administratively	monitioring light indicators and	
	controlled by health physics personnel to	indicator readings. Expected stay	
	ensure set dose rates and dose limits are	times are 10 minutes or less.	
	not exceeded.	Work in high temperature	
		environments is controlled by the	
	Temperature in the EFT building third	Monticello Safety Manual.	
	floor (e.g. POS) during an ELAP in the		
	summer will peak at approximately 135°F	In winter, the same procedure	
	[degrees Farenheit] at 12 hours. By hour	(Procedure C.5-4503) instructs	
	12, supplemental ventilation will be	operators to use portable heaters	
	installed per procedure and room	as needed to maintain the	
	temperature will then be maintained	temperature above 40°F.	
	below 120°F for the duration of the 7 day	T 1 11 1 1 1 1 1	
· · · · ·	period. Room temperature in the winter	The licensee concluded the	
	will drop to 35°F after 24 hours and 0°F at	summer temperature at the	
	the end of 7 days with no mitigating	remote operating station (ROS)	
	actions taken. Procedures direct	are not a concern since there are	
	operators to add portable heaters as	no heat loads. There is no	
	needed within 15 hours upon initiation of	equipment adversely affected by	
	an ELAP to maintain EFT building third	cold temperatures. The ROS is	
	floor temperatures above 40°F.	not continuously occupied.	
	Towns and use in the Turking Duilding 004	Operators can perform required	
	remperature in the Turbine Building 931	actions independent of the local	
	east side corridor (near the ROS) in the	ROS temperature.	
	wither will drop to 29 F after 24 hours and 0°E at the end of 7 days with no mitigating	Coloulation 16 0E4 "MANOD	
	o F at the end of 7 days with no mitigating	Calculation 10-054, WINGP	
	actions taken. HCVS equipment in this	Revision 0 was parformed to	
	temporature conditions and therefore is	determine the integrated rediction	
	compendative contaitoris and therefore is	doso duo to HCVS operation	
	in this area are not a concern due to a	The NPC staff reviewed this	
	In this area are not a concern due to a	calculation and determined that	
	ELAD	the licensee used conservative	
	LLAF.	assumptions and followed the	
		assumptions and followed the	
		guidance outlined in NET 13-02	

	The different pathways between the Reactor Building, EFT Building, and Turbine Building were analyzed and it was determined that there are no substantial heat sources in these areas that would cause a significant change in temperature. The analyses and supporting information described has been provided to the NRC in the eportal.	Rev.1 and HCVS-WP-02 Rev.0. Based on the expected integrated whole body dose equivalent in the POS and ROS and the expected integrated whole body dose equivalent for expected actions during the sustained operating period, the NRC staff believes that the order requirements are met. Temperature and radiological conditions should not inhibit operator actions needed to initiate and operate the HCVS during an ELAP with severe accident conditions.	
Phase 1 ISE OI 4 Make available for NRC staff audit analyses demonstrating that HCVS has the capacity to vent the steam/energy equivalent of one percent of licensed/rated thermal power (unless a lower value is justified), and that the suppression pool and the HCVS together are able to absorb and reject decay heat, such that following a reactor shutdown from full power containment pressure is restored and then maintained below the primary containment design pressure and the primary containment pressure	A calculation has been performed that confirms that the modified HCVS configuration with the additional check valve has the capacity to vent the steam/energy equivalent of one (1) percent of the current licensed/rated thermal power of 2004 megawatt thermal (MWT) while maintaining containment pressure below design and Primary Containment Pressure Limit (PCPL). Additionally, this analysis evaluates the capacity of the Suppression Pool (SP) to absorb decay heat following a reactor shutdown from full power. The calculation has been provided to the NRC on the eportal.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. Calculation MNGP 16-019 Revision 1, "Monticello Hardened Containment Vent System (HCVS) Capacity Analysis and Verification of Suppression Pool Decay Heat Capacity," determined that 1% of the licensed thermal power (2004 MWt) venting requirement is 75,718 lbm/hr at 62 per square in gauge (psig) (PCPL = 62 psig). The steady state venting capacity at a torus pressure of 47.9 psig (maximum design pressure in the drywell and the differential	Closed [Staff evaluation to be included in SE Section 3.1.2.1]

		wetwell with the torus completely full of water, is 79,737 lbm/hr (5.3% flow margin to 1% thermal power requirement). Flow varies from roughly 20,000 lbm/hr at 5 psig to 90,000 lbm/hr at 55 psig.	
		No follow-up questions.	
Phase 1 ISE OI 5	HCVS piping outside the Class I structure is designed for tornado/wind loads without	The NRC staff reviewed the information provided in the 6-	Closed
Make available for NRC staff audit the seismic and tornado missile final design criteria for the HCVS stack.	and safety related systems in the vicinity. HCVS piping up to and including the second primary containment isolation valve is designed to safety related seismic Class 1 requirements. HCVS piping downstream of the second containment isolation valve, although non-safety	ePortal. Engineering Evaluation (EE) 26081-01 – Reasonable Protection Evaluation Grade for HCVS Tornado Missile Barrier, evaluated the HCVS stack. The	[Staff evaluation to be included in SE Section 3.2.2]
	related, is designed to seismic Class 1 as it must remain functional following a seismic event.	licensee's HCVS design meets the assumptions found in guidance document HCVS-WP- 04.	
	Analysis of the tornado/wind loads and seismic loading is documented in calculations performed to support the design of the HCVS piping. The analysis of the modified HCVS piping includes incorporation of wind, tornado, and updated seismic requirements to meet sections 5.1.1.6 and 5.2 of NEI 13-02. Design basis loading requirements for wind, tornado, and seismic were used as described in the MNGP USAR [updated safety analysis report], Section 12.02.	No follow up questions.	
	Portions of the HCVS outside of Class I structures will be protected from tornado missile impact up to 30 feet (ft) above		
	grade. The HCVS design will meet assumptions found in guidance document		

	HCVS-WP-04 which provides reasoning why protecting the HCVS 30 ft above grade is not required. An Engineering Evaluation validated the guidance is applicable for use at MNGP. Missile barrier design requirements for tornado generated missiles, seismic, and wind loadings were used as described in the MNGP USAR, Section 12.02. Analysis of the missile barrier to these loading requirements is documented in calculations.		
	The calculations and analyses described above have been provided to the NRC on the eportal.		
Phase 1 ISE OI 6 Make available for NRC staff audit the descriptions of local conditions (temperature, radiation and humidity) anticipated during ELAP and severe accident for the components (valves, instrumentation, sensors, transmitters, indicators, electronics, control devices, and etc.) required for HCVS venting including confirmation that the components are capable of performing their functions during ELAP and severe accident conditions.	The POS for the HCVS is on the third floor of the EFT building and includes the controls for the HCVS as well as the instruments used to monitor drywell pressure, suppression pool level, HCVS radiation, and HCVS temperature. The ROS is located on the south end of the 931' elevation of the Turbine Building east side. The nitrogen bottle rack, controls, and pressure indicators are located at the north end of the 931' elevation of the Turbine Building east side. The primary containment isolation valves (PCIVs) and associated solenoid valves (SVs) are installed in the vent piping near the torus connection in the Reactor Building elevation 923' above the north east section of the torus. The suppression pool level transmitter LT7338B is located in the torus room bay	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. EC 26083 discusses the environmental conditions during an accident at the locations containing instrumentation and controls (I&C) components. The staff's review indicated that the environmental qualification met the order requirements. The primary control location is on the third floor of the EFT building. Controls for the existing HPV are located on the C-292 Alternate Shutdown System (ASDS) panel. The remote operating station is on the 931' elevation of the Turbine Building. Temperature	Closed [Staff evaluation to be included in SE Section 3.1.1.4]

		16-055. The calculation assumed	
	The radiation detector is installed	a 95°F outdoor temperature. The	
	adjacent to the pipe above the high	calculation determined the EIF	
	pressure coolant injection (HPCI) room at	Bidg, 3rd floor peaks at ~135°F	
	elevation 935'. The temperature element	shortly after start of the event and	
	is installed in the HPCI room adjacent to	drops to approximately 100°F	
	the vent pipe at elevation 928'.	after mitigating actions are	
		implemented. The temperature	
	The drywell pressure transmitter	varies between 110°F and 100°F	
	PT7251B is located in the Reactor	with the daily diurnal temperature	
	Building, elevation 985' south wall.	variation.	
	Radiological Conditions	The main control room was	
	<u>Indusiogical Conditions</u> .	previously evaluated as part of	
	Radiological dose rates resulting from	Order EA-12-049.	
	HCVS venting were determined by		
	calculation for each area using the	No follow up questions.	
	methodology in NEI-13-02, Rev 1 and		
	HCVS-WP-02, Rev 0,		
	Temperature/ Humidity Conditions:		
	Temporature conditions for each area		
	have been determined by calculation		
	using the methodology in NEL-13-02 Rev		
	1 An additional analysis was performed		
	to determine the severe accident		
	temperature in the torus room		
	The calculations determined that kev		
	components necessary for HCVS venting		
	are capable of performing their intended		
	functions under ELAP and severe		
	accident conditions.		
	The analyses and supporting information		
	that support these conclusions have been		
	provided to the NRC in the eportal.		
Phase 1 ISE OI 7	The HCVS controls are located on the	The NRC staff reviewed the	Closed
	ASDS panel located on the third floor of	information provided in the 6-	

audit documentation that demonstrates adequate communication between the remote HCVS operation locations and HCVS decision makers during ELAP and severe accident conditions.	pressure and suppression pool level indicators are located on the ASDS panel. Suppression pool temperature, HCVS temperature, and HCVS radiation indicators are on the panel adjoining the ASDS panel. These are the indicators used by the Operator to monitor the primary containment and HCVS when making decisions regarding use of the HCVS during severe accident conditions. When dispatched from the control room, the Operator sent to the ASDS panel will have been given a containment pressure control band by the Control Room Supervisor per procedure. Procedural guidance for operating the HCVS is maintained both in the control room and at the ASDS panel. Therefore, the Operator actuating the HCVS from the ASDS panel requires no further communication. Should actuation of the HCVS from the ASDS panel fail, the HCVS can be actuated by an Operator manipulating manual valves at the ROS, located on the east side of the 931 foot elevation of the Turbine Building. This Operator will be in communication with a second Operator who is at the ASDS panel monitoring the primary containment and HCVS. These Operators will be in communication via the telephone system. There is a phone on the ASDS panel and a phone in the Turbine Building, a short distance from the HCVS ROS.	ePortal. The communication methods are the same as accepted in Order EA-12-049. No follow-up questions.	included in SE Section 3.1.1.1]
---	---	---	------------------------------------

The MNGP phone system is powered by	
the Non-1E Uninterruptable Power Supply	
(Y91), which is powered from the site	
non-essential 250 volt battery. A	
calculation determined that the non-	
essential 250 volt battery will maintain	
power to the portion of the site phone	
system supplied from Y91 energized for	
12 hours following an ELAP event.	
Phones that remain energized include the	
phone at the ASDS panel, the Control	
Room Supervisor's phone in the Main	
Control Room, and the phone in the	
Turbine Building near the HCVS ROS.	
-	
In response to NRC Order EA-12-049	
(Issuance of Order to Modify Licenses	
with Regard to Requirements for	
Mitigation Strategies for Beyond-Design	
Basis External Events), NSPM developed	
and implemented FLEX Support	
Guidelines (FSGs) to provide pre-planned	
procedures to improve the stations	
capability to cope with beyond design	
basis events. As part of the FLEX	
response, MNGP has an FSG procedure	
to stage a 120 volt portable diesel	
generator and a procedure to use this	
generator to repower the phone system.	
Timing studies performed as part of FLEX	
implementation have shown the phone	
system can be repowered from the	
portable diesel generator within 12 hours.	
-	
Since the phones required for	
communication at the ASDS panel and	
the HCVS ROS will be repowered from a	
portable diesel generator before power is	
lost from the site non-essential 250 volt	
battery, the phone system remains	

	available at all times for communication		
	between the Operator at the HCVS ROS		
	and the Operator at the ASDS panel.		
	The calculation and procedures described	·	
	in this response have been provided to		
	the NRC on the eportal.		
Phase 1 ISE OI 8	The risk of hydrogen detonation and	The NRC staff reviewed the	Closed
	deflagration has been mitigated in the	information provided in the 6-	
Provide a description of the	design of the	month updates and on the	[Staff evaluation to be
final design of the HCVS to	MNGP HCVS system by use of the	ePortal.	included in SE Section
address hydrogen detonation	following elements:		3.1.2.11]
and deflagration.		The licensee's design is	-
	- A check valve will be installed on the	consistent with Option 5 of the	
	HCVS piping at the reactor building roof	NRC staff endorsed white paper	
	to prevent ingress of air when venting	HCVS-WP-03.	
	stops and the steam condenses. This will		
	prevent a flammable mixture of gasses	No follow-up questions.	
	from potentially building up within the		
	piping upstream of the check valve.		
	Piping downstream of the check valve will		
	be at a length less than the recommended		
	run up distance in order to rule out		
	detonation loading in this portion of the		
	piping. HCVS piping where the check		
	valve is installed will be routed slightly		
	over the reactor building roof to allow for		
	maintenance/testing accessibility, then		
	routed upwards to direct effluent away		
	from plant structures. This is consistent		
	with Option 5 of NEI 13-02, Appendix H.		
	, , , , , , , , , , , , , , , , , , ,		
	- A check valve will be utilized on the		
	rupture disc pneumatic supply connection		
	to the HCVS piping to prevent backflow to		
	the remote operating station. With		
	exception of the rupture disc supply the		
	HCVS piping is designed to have no		
	interfaces with other plant systems. In		
	addition HCVS pneumatic system values		
	HCVS piping is designed to have no interfaces with other plant systems. In addition, HCVS pneumatic system valves		

Phase 1 ISE OI 9 Provide a description of the strategies for hydrogen control that minimizes the potential for hydrogen gas migration and ingress into the reactor building or other buildings.	 With the exception of the rupture disc supply, the HCVS piping is designed to have no interfaces with other plant systems. In addition, HCVS pneumatic system valves that open external to the system are designed to the system operating conditions. With these design features, the HCVS meets the requirement of minimizing unintended cross flow within the unit. MNGP is a single unit site, so cross flow between units is not a concern. This is consistent with the guidance provided in NEI 13-02, Sections 4.1.2, 4.1.4 and 4.1.6 and HCVS-FAQ-05. The engineering change describing the above design elements has been provided to the NRC on the eportal. The HCVS utilizes a dedicated penetration from the torus to HCVS piping, which is routed through the Reactor Building. The HCVS piping does not pass through other buildings thus eliminating the potential for migration of hydrogen gas from the HCVS into other buildings. A check valve is provided on the rupture disc pneumatic supply connection to the HCVS piping to prevent backflow to the remote operating station. With exception of the rupture disc pneumatic supply, the HCVS piping is designed to have no interfaces with other plant systems, and all valves that open external to the system are designed to the system operating 	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. The NRC staff's review of the proposed system indicates that the licensee's design appears to meet the requirement for minimizing the potential for hydrogen gas migration and ingress into the Reactor Building or other site buildings. No follow-up questions.	Closed [Staff evaluation to be included in SE Section 3.1.2.12]
	are designed to the system operating		
	conditions. Once the rupture disk is burst		
	the pneumatic supply will be isolated to		

	prevent migration of hydrogen gas into the pneumatic supply system.		
	Initial and periodic testing of the HCVS will be performed in accordance with manufacturer instructions and the NEI 13- 02 guidance. This includes leak tests which will ensure leak tightness of the HCVS to prevent hydrogen gas ingress into the Reactor Building.		
	Finally, the HCVS outlet is above plant structures, and is designed to direct the vent discharge away from structures and ventilation inlets and outlets.		
	With these design features, the HCVS meets the requirement for minimizing the potential for hydrogen gas migration and ingress into the Reactor Building or other site buildings.		
	The design documents and procedures described in this response have been provided to the NRC on the eportal.		
Phase 1 ISE OI 10	Required Instrumentation and Controls:	The NRC staff reviewed the	Closed
Make available for NRC staff audit descriptions of all instrumentation and controls	As documented in the MNGP Overall Integrated Plan (OIP), the following instrumentation and controls are required	month updates and on the ePortal.	[Staff evaluation to be included in SE Section 3.1.2.8]
(i.e., existing and planned)	for order compliance:	The existing plant instuments required for HCVS (i.e., wetwell	
order including qualification	Valve Position Indication	level instruments and drywell	
methods.	Effluent Discharge Radioactivity	pressure instruments) meet the	
	Containment Pressure	(RG) 1.97.	
	• Wetwell Level		
	Electrical Power	The licensee provided analyses	
	Remote Operating Station Valves	and/or supporting information of the HCVS instruments and	

· · · · · · · · · · · · · · · · · · ·	- Proumetic Cumply Pressure Indiant's	$a_{\rm embrale} (100)$ including a	
	 Frieumatic Supply Pressure indications and Manual Valves 	description of each component	
		and the qualification method The	
	Qualification Methods:	staff's review indicates that the	
	<u></u>	I&C components are consistent	
	The OIP provides the following	with the guidance in NEI 13-02	
	information related to component	and its qualifications meet the	
	qualification:	order requirements.	
	"The HCVS instruments, including valve	No follow-up questions.	
	position indication, process		
	instrumentation, radiation monitoring, and		
	support system monitoring, will be		
	three methods described in the ISG		
	which includes:		
	1. Purchase of instruments and		
	supporting components with known		
	operating principles from manufacturers		
	with commercial quality assurance		
	programs (e.g., ISO9001) where the		
	procurement specifications include the		
	applicable seismic requirements, design		
	requirements, and applicable testing.		
	2 Demonstration of seismic reliability via		
	methods that predict performance		
	described in IEEE 344-2004.		
	3. Demonstration that instrumentation is		
	substantially similar to the design of		
	instrumentation previously qualified."		
	All components were determined to have		
	Acceptable qualifications to meet the		
	novo order requirements.		

	The analyses and supporting information		
	provided to the NRC in the eportal.		
Phase 1 ISE OI 11 Make available for NRC staff audit documentation of an evaluation verifying the existing containment isolation valves, relied upon for the HCVS, will open under the maximum expected differential pressure during BDBEE and severe accident wetwell venting.	A calculation was performed that determined that the HCVS primary containment isolation valves, AO-4539 and AO-4540, will open under the maximum differential pressure expected during Beyond Design Basis External Event (BDBEE) suppression pool venting with greater than 20% margin. The valves have been shown to open against a maximum expected differential pressure of 76.7 psid [per square inch differential]. The calculation has been provided to the NRC on the eportal.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. The NRC staff reviewed calculation 03-088, "AOV Component Calculation, Hard Pipe Vent Valves, AO-4539 and AO-4540," which discusses the valve/actuator information for the PCIVs. The calculation determined the full opening maximum torque was 252 foot-pounds and the corresponding actuator capability at that required valve toque is 304 foot-pounds. The NRC staff verified the actuator can develop greater torque than PCIV's unseating torque. No follow-up questions.	Closed [Staff evaluation to be included in SE Section 3.2.1]
Phase 2 ISE OI 1	NEI 13-02 Section 4.1.1.2 provides the	The NRC staff reviewed the	Closed
Licensee to provide the plant specific justification for SAWA [Severe Accident Water Addition] flow capacity less than specified in the guidance in NEI 13-02, Section 4.1.1.2.	 4.1.1.2.1 Sites may use SAWA capacity at 500 GPM based on the generic analysis per reference 27. 4.1.1.2.2 Sites may use SAWA 	SAWA provides cooling of core debris limiting the drywell temperature. SAWA permits venting containment through the	[Staff evaluation to be included in SE Section 4.1.1.3]
	- 4.1.1.2.2 Sites may use a SAWA capacity equivalent to the site	of having a drywell vent (see	

		· · · · · · · · · · · · · · · · · · ·	
	Reference plant values: Rated thermal power= 3514 MWth		
	SAWA flow= 500 gpm		
	MNGP calculation:		
	SAWA = 500 gpm * (2004/ 3514) = 285		
	gpm		
	SAWM = 100 gpm * (2004/ 3514) = 57		
	gpm		
	It should be noted that these values are		
	different than those provided in the Phase		
	2 OIP. The original calculation used a		
	MW/th resulting is SAW/A/SAW/M [severe		
	accident water managementl values of		
	305/61 gpm.		
	The analyses and supporting information		
	NRC in the eportal		
Phase 2 ISE OI 2	Plant instrumentation for SAWM that is	The NRC staff reviewed the	Closed
	qualified to RG 1.97 or equivalent is	information provided in the 6-	
Licensee to evaluate the	considered qualified for the sustained	month updates and on the	[Staff evaluation to be
SAWA equipment and	operating period without further	ePortal.	Included in SE Sections
and egress paths for the	instruments are qualified to RG 1.97	The drywell pressure and torus	4.5.1.1, 4.5.1.2 and 4.5.1.3]
expected severe accident		level indications are RG 1.97	
conditions (temperature,	 PI-7251B (PT-7251B) Primary 	compliant and are acceptable as	
humidity, and radiation) for the	Containment Wide Range Pressure	qualified.	
sustained operating period.	• (17338B (1T 7338B)	Calculation 16 054 "MNGP	
	Suppression Pool Level	HCVS Radiological Assessment."	
		Revision 0 shows that radiological	
	Passive components that do not need to	conditions should not inhibit	
	change state after initially establishing	operator actions or SAWA	
	SAWA flow do not require evaluation	equipment and controls needed to	
	they are expected to be installed and	during an ELAP with severe	
	ready for use to support SAWA/SAWM.	accident conditions.	

Intake Structure- 3.1R/hr, 261 R (7-day	
Discharge Canal- 0.15 R/hr. 122 R (7-	
day integrated dose)	
· Cooling Tower Basin (not calculated, but	
similar to Discharge canal)	
An alternate staging location for a flood	
event requires suction from the	
condensate Storage Tanks (CST). An	
determine dose rates in a staging location	
south of the Radwaste Building. This	
evaluation concludes that the dose rates	
would be similar to the FLEX Diesel	
Generator south location, which are	
negligible.	
These rediclosical conditions in the	
planned staging locations are not	
expected to affect pump operation	
SAWA/SAWM generator (FLEX	
generator)	
Deployment and staging of the 480VAC	
portable diesel generator is the same as	
provide the power supply to the low	
pressure coolant injection (LPCI) valve via	
the LPCI swing bus. The deployment	
routes and environmental operating	
conditions (temperature) have previously	
been addressed for FLEX. Planned	
staging locations are near the Plant	
Administration Building (PAB) South	
Dose calculations determined the peak	
accident dose rates and integrated	

7- day dose in these areas:	
day dose	
• PAB east- peoligible dose rate and 7-	
day dose	
These radiological conditions are not	
expected to affect concrater operation	
expected to affect generator operation.	
Ingress and Egress	
Instrumentation (PI-7251B and LI-7338B)	
These instruments are located on the	
ASDS Panel in the EFT Building 3rd	
Floor. Dose calculations performed	
determine the peak accident dose rate in	
this area is 1.75mR/ hr. Access to this	
area will not be affected by the	
radiological conditions.	
SAWA/SAWM flow instrument	
Dose calculations determined the peak	
dose rate associated with the transit path	
to the flow instrument (Turbine Building	
931' east side) is approximately 5 R/hr.	
Since the transit times to the area are	
short, ingress and egress are not	
expected to be impacted.	
SAWA/SAWM pump (FLEX Pump)	
As documented above, the radiological	1
conditions for the deployment and staging	
locations are relatively low. The dose	
rates at the Intake Structure location	
could preclude access to that area; in that	
case, one of the alternate locations would	
be used. Access for operation and	
refueling of the pump would not be	
impacted by the radiological conditions.	

	SAWA/SAWM generator (FLEX generator) As documented above, the radiological conditions for the deployment and staging locations are negligible. Access for operation and refueling of the generator would not be impacted by the radiological conditions. [Note: The dose calculation performed does not consider radiation shine from the external radioactive plume. Station procedures will direct plant staff to monitor the radiological conditions in and around the plant during an emergency. Based on the specific site conditions, equipment locations, transport paths, and stay times would be altered as necessary		
	to minimize personnel dose.] The analyses and supporting information described above were provided to the NRC in the eportal.		
Phase 2 ISE OI 3 Licensee to demonstrate how instrumentation and equipment being used for SAWA and supporting equipment is capable to perform for the sustained operating period under the expected temperature and radiological conditions.	Equipment and Controls:The following instrumentation and equipment has been evaluated for the expected temperature and radiological conditions (Reference the response to Phase 2 Open Item 2):-PI-7251B Primary Containment Wide Range Pressure LI-7338B Suppression Pool Level SAWA/SAWM flow instrument SAWA/SAWM pump (FLEX pump)	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. The NRC staff confirmed the PI- 7251B Primary Containment Wide Range Pressure and LI-7338B Suppression Pool Level are previously qualified for R.G. 1.97 accident monitoring. The flow instrument qualification is discussed in Phase 2 Open Item #7 below.	Closed [Staff evaluation to be included in SE Sections 4.4.1.3 and 4.5.1.2]

- SAWA/SAWM generator (FLEX	The NRC staff reviewed	
generator)	Radiological Assessment " and	
This equipment is capable of performing	determined that the licensee used	
during the sustained operating period in	conservative assumptions and	
the expected environmental conditions.	followed the guidance outlined in	
	NEI 13-02 Rev.1 and HCVS-WP-	
One additional active component requires	02 Rev.0. Based on the	
review, MO-2014 Residual Heat Removal	expected integrated whole body	
(RHR) Division 1 LPCI indeard injection	BOS and the expected integrated	
opened from the Main Control Room in	whole body dose equivalent for	
order to establish the reactor pressure	expected actions during the	
valve (RPV) injection path. The valve is	sustained operating period, the	
located in the Reactor Building, 931'	NRC staff believes that the order	
elevation, East Shutdown Cooling Room.	requirements are met.	
The motor operated valve would be		
cycled within the first eight hours of the	No follow-up questions.	
event.		
Temperature:		
Tomporatare.		
A calculation determined environmental		
temperature profiles for various locations		
in the Reactor Building. The temperature		
in the East Shutdown Cooling Room is		
not calculated. It is conservative to		
temperature as the Torus room (highest		
value in the Reactor Building), which		
reaches approximately 170°F at 8 hours		
for the severe accident case.		
The Environmental Qualification (EQ)		
Report applicable to MU-2014 specifies a		
with test temperatures at or above 251°F		
for 96 hours Based on this, there is high		
confidence the valve can be electrically		
opened in the first 8 hours of the accident.		

	Radiation:		
	A dose rate calculation determined dose rates and total 7-day integrated dose for various locations, including the Reactor Building. The dose rates in the East Shutdown Cooling Room were not calculated. It is conservative to assume this room has the same radiological conditions as the Torus room, which is the compartment below this area (does not account for any shielding effect from 931' floor slab). The peak dose rate in the Torus room (near CV4539/ CV4540) is 2.7E5 R/hr. The 7-day integrated dose is 1.14E7 R.		
	The environmental qualification (EQ) report applicable to MO-2014 specifies a demonstrated total equivalent gamma dose of 2.04E8 Rad. Assuming that 1Rem = 1Rad for this case, the qualified dose exceeds the calculated accident dose. Based on this, there is high confidence the valve can be electrically opened in the first 8 hours of the accident. The analyses and supporting information described above were provided to the		
Phaes 2 ISE OI 4	The SAWA/SAW/M strategy requires	The NRC staff reviewed the	Closed
	demonstration that the wetwell vent will	information provided in the 6-	CIOSED
Licensee to demonstrate that	remain available for the 7- day mission	month updates and on the	[Staff evaluation to be
containment failure as a result	time (i.e. water level does not rise above	ePortal.	included in SE Section
of overpressure can be	the elevation of the vent connection on		4.2]
prevented without a drywell	the torus). An Engineering Evaluation	BWROG-TP-15-008	
vent during severe accident	has been performed to determine wetwell	demonstrates adding water to the	
conditions.	water level during the event. The	reactor vessel within 8-hours of	
	evaluation determines the SAWA and	the onset of the event will limit the	

	SAVVM flowrates; the RPV injection rate is	peak containment drywell	
	specified as 285 gpm for four nours, then	the people initiation of containment	
	57 gpm for the remainder of the 7 days.	follure due to temporature	
	I ne resulting wetwell water level at 7	Tailure due to temperature.	
	days is approximately 24.2 feet (elevation	Drywell pressure can be	
	922.95 feet), which is below the wetwell	controlled by venting the	
	vent elevation of 925.21 feet (upper limit	suppression chamber through the	
	on water level instrument is 925 feet).	suppression pool.	
	The analysis is conservative since no		
	mass loss through the HPV is credited.	BWROG-TP-011 demonstrates	
	Based on this analysis, the wetwell vent	that starting water addition at a	
	capability is maintained for a 7- day	high rate of flow and throttling	
	mission time.	after approximately 4-hours will	
		not increase the suppression pool	
	The wetwell vent has been designed and	level to that which could block the	
	installed to meet NEI 13-02 Rev 1	suppression chamber HCVS.	
	guidance, which ensures that it is		
	adequately sized to prevent containment	As noted under Phase 1 open	
	overpressure under severe accident	item #4, the vent is sized to pass	
	conditions. The SAWM strategy will	a minimum steam flow equivalent	
	ensure that the wetwell vent remains	to 1% rated core power. This is	
	functional for the period of sustained	sufficient permit venting to	
	operation. MNGP will follow the guidance	maintain containment below the	
	(flow rate and timing) for SAWA/SAWM	lower of PCPL or of design	
	described in BWROG-TP-15-008 and	pressure.	
	BWROG-TP- 15-011. The wetwell vent	No follow-up questions.	
	will be opened prior to exceeding the		
	PCPL value of 62 PSIG. Therefore,		
	containment over pressurization is		
	prevented without the need for a drywell		
	vent.		
	The analyses and supporting information		
	described above were provided to the		
	NRC in the eportal.		
Phase 2 ISE OI 5	NEI 13-02 Appendix C provides a	The NRC staff reviewed the	Closed
	description of the Severe Accident Water	information provided in the 6-	
Licensee to demonstrate how	Management strategy, and recognizes	month updates and on the	[Staff evaluation to be
the plant is bounded by the	insights gained from EPRI Technical	ePortal.	included in SE Section
reference plant analysis that	Report 3002003301.		4.2.1.1]

C. Church

SUBJECT: MONTICELLO NUCLEAR GENERATING PLANT - REPORT FOR THE AUDIT OF LICENSEE RESPONSES TO INTERIM STAFF EVALUATIONS OPEN ITEMS RELATED TO NRC ORDER EA-13-109 TO MODIFY LICENSES WITH REGARD TO RELIABLE HARDENED CONTAINMENT VENTS CAPABLE OF OPERATION UNDER SEVERE ACCIDENT CONDITIONS DATED April 10, 2018

DISTRIBUTION: PUBLIC PBEB R/F RidsNrrDorlLpl3 Resource RidsNrrPMMonticello Resource

RidsRgn3MailCenter Resource TBrown, NRR RAuluck, NRR BLee, NRR

.

ADAMS Accession No.: ML18094A804

OFFICE	NRR/DLP/PBEB/PM	NRR/DLP/PBMB/LA	NRR/DLP/PBEB/BC (A)	NRR/DLP/PBEB/PM		
NAME	RAuluck	SLent	TBrown	RAuluck		
DATE	4/9/18	4/5/18	4/10/18	4/10/18		

OFFICIAL RECORD COPY