

May 31, 2017

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

Peach Bottom Atomic Power Station Units 2 and 3 Independent Spent Fuel Storage Installation (ISFSI) Facility Operation License DPR-12, DPR-44 and DPR-56 NRC Docket 50-171, 50-277 and 50-278 and ISFSI Docket 72-29

Subject: Annual Radiological Environmental Operating Report 74 January 1, 2016 through December 31, 2016

In accordance with the requirements of Section 5.6.2 of the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3 Technical Specifications, this letter submits the Annual Radiological Environmental Operation Report 74. This report provides the 2016 results for the Radiological Environmental Monitoring Program (REMP) as called for in the Offsite Dose Calculation Manual.

In assessing the data collected for the REMP, we have concluded that the operation of PBAPS, Units 2 and 3, had no adverse impact on the environment. There are no commitments contained in this letter.

If you have any questions or require additional information, please do not hesitate to contact Dr. Amber Donley at 717-456-3056.

Sincerely,

Matthew J. Herr, Plant Manager Peach Bottom Atomic Power Station

MJH/JMA/SMO/GRS/JCC/ASD/asd

Enclosure (1)

cc: USNRC Region I, Regional Administrator (Daniel H. Dorman) USNRC Senior Resident Inspector, PBAPS (Justin Heinly) USNRC Region I Inspector (Bruce Dionne)

CCN 17-53

Docket No: 50-277 50-278

PEACH BOTTOM ATOMIC POWER STATION UNITS 2 and 3

Annual Radiological Environmental Operating Report

Report No. 74 January 1 through December 31, 2016

> **Prepared By** Teledyne Brown Engineering Environmental Services

Peach Bottom Atomic Power Station Delta, PA 17314

May 2017

Intentionally Left Blank

TABLE OF CONTENTS

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
<u>Tables</u>	Dediclosical Environmental Manitaring Dreason Annual Summary for
Table A-1	Radiological Environmental Monitoring Program Annual Summary for the Peach Bottom Atomic Power Station, 2016
Appendix B	Sample Designation and Locations
<u>Tables</u>	
Table B-1	Radiological Environmental Monitoring Program – Sampling Locations, Distance and Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2016
Table B-2	Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2016
Figures	
Figure B-1	Environmental Sampling Locations within One Mile of the Peach Bottom Atomic Power Station, 2016
Figure B-2	Environmental Sampling Locations between One and Approximately Five Miles of the Peach Bottom Atomic Power Station, 2016
Figure B-3	Environmental Sampling Locations Greater than Five Miles from the Peach Bottom Atomic Power Station, 2016
Appendix C	Data Tables and Figures Primary Laboratory
<u>Tables</u>	
Table C-I.1	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-I.2	Concentrations of I-131 in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-II.1	Concentrations of Gross Beta in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
	ii

Table C-II.2	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-II.3	Concentrations of I-131 in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-II.4	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-III.1	Concentrations of Gamma Emitters in Predator and Bottom Feeder (Fish) Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-VIII.1	Concentrations of Gamma Emitters in Food Product Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table C-IX.1	Quarterly OSLD Results for Peach Bottom Atomic Power Station, 2016
Table C-IX.2	Mean Quarterly OSLD Results for the Site Boundary, Intermediate, and Control Locations for Peach Bottom Atomic Power Station, 2016
Table C-IX.3	Summary of the Ambient Dosimetry Program for Peach Bottom Atomic Power Station, 2016
Figures	
Figure C-1	Monthly Total Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of PBAPS, 2016

Figure C-2	Mean Annual Cs-137 Concentrations in Fish Samples Collected in the Vicinity of PBAPS, 1971-2016
Figure C-3	Mean Semi-Annual Cs-137 Concentrations in Sediment Samples Collected in the Vicinity of PBAPS, 1971-2016
Figure C-4	Mean Weekly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 2016
Figure C-5	Mean Monthly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 1970-2016
Figure C-6	Mean Annual Cs-137 Concentrations in Milk Samples Collected in the Vicinity of PBAPS, 1971-2016
Figure C-7	Mean Quarterly Ambient Gamma Radiation Levels in the Vicinity of PBAPS, 1973-2016
Figure C-8	Quarterly Ambient Gamma Radiation Levels near the Independent Spent Fuel Storage Installation Located at PBAPS, 1998-2016
Appendix D	Data Tables and Figures QC Laboratory
Tables	
Table D-I.1	Concentrations of Gross Beta Insoluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-I.2	Concentrations of Gross Beta Soluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-I.3	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-I.4	Concentrations of I-131 in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-I.5	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-II.1	Concentrations of Gross Beta Insoluble in Air Particulate and I-131 in Air Iodine Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-II.2	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
Table D-III.1	Concentrations of I-131 by Chemical Separation and Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016

Table D-IV.1	Summary of Collection Dates for Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2016
<u>Figures</u>	
Figure D-1	Comparison of Monthly Total Gross Beta Concentrations in Drinking Water Samples Split Between the Primary and QC Laboratories, 2016
Figure D-2	Comparison of Weekly Gross Beta Concentrations from Co-Located Air Particulate Locations Split Between the Primary and QC Laboratories, 2016
Appendix E	Inter-Laboratory Comparison Program Acceptance Criteria and Results
<u>Tables</u>	
Table E-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering Environmental Services, 2016
Table E-2	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering Environmental Services, 2016
Table E-3	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering Environmental Services, 2016
Table E-4	ERA Statistical Summary Proficiency Testing Program MRAD Study, Environmental, Inc., 2016
Table E-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2016
Table E-6	Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA) RAD Study, Environmental, Inc., 2016
Appendix F	Errata Data
Appendix G	Annual Radiological Groundwater Protection Program Report (ARGPPR)
	 I. Summary and Conclusions II. Introduction III. Program Description IV. Results and Discussion V. References

Intentionally Left Blank

I. Executive Summary

The 2016 Annual Radiological Environmental Operating Report (AREOR) describes the results of the Radiological Environmental Monitoring Program (REMP) conducted for Peach Bottom Atomic Power Station (PBAPS) by Exelon Nuclear and covers the period of 1 January 2016 through 31 December 2016. Throughout that time period, 1,293 analyses were performed on 1,001 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was evident that the operation of PBAPS had no adverse radiological impact on the environment.

The various media collected in the REMP include aquatic, terrestrial, airborne, and ambient radiation. The corresponding analyses performed on the collected specimen were:

Aquatic:

- Surface water samples were analyzed for concentrations of tritium (H-3) and gamma-emitting nuclides. All nuclides were below minimum detectable activity.
- Drinking water samples were analyzed for concentrations of gross beta, lodine-131 (I-131), H-3, and gamma-emitting nuclides. All nuclides were below minimum detectable activity. Any gross beta activity detected was not above the reporting limit and therefore, likely background.
- Precipitation samples were analyzed under the Radiological Groundwater Protection Program (RGPP) in 2016.
- Fish and sediment samples were analyzed for concentrations of gamma-emitting nuclides. Fish samples showed no detectable fission or activation products, while Cesium-137 (Cs-137) activity was found at one of three sediment locations. The level of Cs-137 was well below the reporting level.

Terrestrial:

 Milk samples were analyzed for low level concentrations of I-131 and gamma-emitting nuclides. Food product samples were analyzed for concentrations of gamma-emitting nuclides. All nuclides were below minimum detectable activity.

Airborne:

• Air particulates and air iodine samples were analyzed for gross beta, gamma-emitting nuclides, and low level I-131. All nuclides were below minimum detectable activity. The gross beta results were less than reportable levels and there were no notable differences between control and indicator locations. Ambient Radiation:

 Ambient gamma radiation levels were measured quarterly. Average measurements were 10.1 mR/standard month, consistent with those measured in previous years, indicating that the Independent Spent Fuel Storage Installation (ISFSI) had no measurable impact to the environs.

In 2016, the doses from both liquid and gaseous effluents were conservatively calculated for the Maximum Exposed Member of the Public for PBAPS. Doses calculated were well below all Offsite Dose Calculations Manual (ODCM) limits. The results of those calculations were as follows:

					Location			
Effluent	Applicable Organ	Estimated Dose	Age Group	Distance (meters)	Direction (toward)	Applicable Limit	Limit	Unit
Noble Gas	Gamma - Air Dose	2.53E-01	All	1.10E+03	SSE	1.26E+00	2.00E+01	mrad
Noble Gas	Beta - Air Dose	1.73E-01	All	1.10E+03	SSE	4.32E-01	4.00E+01	mrad
Noble Gas	Total Body (gamma)	2.45E-01	All	1.10E+03	SSE	2.45E+00	1.00E+01	mrem
Noble Gas	Skin (Beta)	3.19E-01	All	1.10E+03	SSE	1.06E-01	3.00E+01	mrem
Gaseous Iodine, Particulate, Carbon-14 & Tritium	Bone	5.95E-01	Child	1.10E+03	SSE	1.98E+00	3.00E+01	mrem
Gaseous Iodine, Particulate, & Tritium	Thyroid	3.74E-03	Infant	1.10E+03	SSE	1.16E-02	3.00E+01	mrem
Liquid	Total Body (gamma)	1.36E-04	Child	Site Bo	undary	2.26E-03	6.00E+00	mrem
Liquid	Liver	2.43E-04	Child			1.21E-03	2.00E+01	mrem
Direct Radiation	Total Body	0.00E+00	All	1.15E+03	SSE	0.00E+00	2.20E+01	mrem

	40 CFR Part 190 Compliance							
Effluent	Applicable Organ	Estimated Dose	Age Group	Loca Distance (meters)	tion Direction (toward)	% of Applicable Limit	Limit	Unit
Total Dose	Total Body	2.45E-01	All	1.15E+03 SSE		9.79E-01	2.50E+01	mrem
Total Dose	Thyroid	3.47E-03	All	1.15E+03	SSE	4.63E-03	7.50E+01	mrem
Total Dose	Bone	5.95E-01	All	1.15E+03	SSE	2.38E+00	2.50E+01	mrem
Total Dose	Total Body	2.45E-01	All	1.15E+03	SSE	8.16E+00	3.00E+00	mrem
Total Dose	Bone	5.95E-01	All	1.15E+03	SSE	1.98E+01	3.00E+00	mrem
Total Dose	Thyroid	2.56E-01	All	1.15E+03	SSE	4.66E-01	5.50E+01	mrem

II. Introduction

PBAPS is located along the Susquehanna River between Holtwood and Conowingo Dams in Peach Bottom Township, York County, Pennsylvania. PBAPS Units 2 and 3 are boiling water reactors, each with a rated full-power output of approximately 3,951 MWth and one decommissioned 200 MWth High Temperature, Gas-cooled Reactor (HTGR). The initial environmental monitoring program began 5 February 1966. A summary of the Unit 1 preoperational monitoring program was presented in a previous report ⁽¹⁾. Preoperational summary reports ⁽²⁾⁽³⁾ for Units 2 and 3 have been previously issued and summarize the results of all analyses performed on samples collected from 5 February 1966 through 8 August 1973.

The sampling and analysis requirements for REMP are contained in the PBAPS Offsite Dose Calculations Manual (ODCM). This AREOR covers those analyses performed by Teledyne Brown Engineering (TBE), Landauer, and Environmental Inc. (EI, Midwest Labs) on samples collected during the period 01 January 2016 through 31 December 2016.

A. Objectives

The objectives of the REMP are:

- 1. Provide data on measurable levels of radiation and radioactive materials in the publicly-used environs;
- 2. Evaluate the principal pathways of exposure to the public as described in the ODCM and determine the relationship between quantities of radioactive material released from the plant and resultant radiation doses to members of the public.
- B. Implementation of the Objectives

Implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways;
- 2. Establishing baseline radiological data of media within those pathways;
- 3. Continuously monitoring those media before and during plant operation to assess station radiological effects (if any) on man and the environment.

C. Radiation and Radioactivity

All matter is made of atoms. An atom is the smallest part into which matter can be broken down and still maintain all its chemical properties. Nuclear radiation is energy, in the form of waves or particles that is given off by unstable, radioactive atoms. Radioactive material exists naturally and has always been a part of our environment. The earth's crust, for example, contains radioactive uranium, radium, thorium and potassium. Some radioactivity is a result of nuclear weapons testing. Examples of radioactive fallout that is normally present in environmental samples are Cs-137 and Strontium-90 (Sr-90). Some examples of radioactive materials released from a nuclear power plant are Cs-137, I-131, Sr-90 and Cobalt-60 (Co-60).

Radiation is measured in units of millirem; much like temperature is measured in degrees. A millirem is a measure of the biological effect of the energy deposited in tissue. The natural and man-made radiation dose received in one year by the average American is 300 to 400 mrem (References 2, 3, 4 in Table 1 below). Radioactivity is measured in curies. A curie is that amount of radioactive material needed to produce 37,000,000,000 nuclear disintegrations per second. This is an extremely large amount of radioactivity in comparison to environmental radioactivity. That is why radioactivity in the environment is measured in picocuries. One picocurie is equal to 1.00E-12 (one trillionth) of a curie.

D. Sources of Radiation

As mentioned previously, naturally occurring radioactivity has always been a part of our environment. Table I shows the typical doses received from natural and man-made sources.

NATU	RAL	MAN-MADE		
Source	Radiation Dose (millirem/year)	Source	Radiation Dose (millirem/year)	
Internal, inhalation (2)	228	Medical ⁽³⁾	300	
External, space	33	Consumer ⁽⁴⁾	13	
Internal, ingestion	29	Industrial ⁽⁵⁾	0.3	
External, terrestrial	21	Occupational	0.5	
		Weapons Fallout	<1	
		Nuclear Power Plants	<1	
Approximate Total	311	Approximate Total	314	

Radiation Sources and Corresponding Doses (1)

Table 1

- (1) Information from NCRP Reports 160 and 94
- (2) Primarily from airborne radon and its radioactive progeny
- (3) Includes CT (147 mrem), nuclear medicine (77 mrem), interventional fluoroscopy (43 mrem) and conventional radiography and fluoroscopy (33 mrem)
- (4) Primarily from cigarette smoking (4.6 mrem), commercial air travel (3.4 mrem), building materials (3.5 mrem), and mining and agriculture (0.8 mrem)
- (5) Industrial, security, medical, educational, and research

Cosmic radiation from the sun and outer space penetrates the earth's atmosphere and continuously bombards earth with rays and charged particles. Some of this cosmic radiation interacts with gases and particles in the atmosphere, making them radioactive. These radioactive byproducts from cosmic ray bombardment are referred to as cosmogenic radionuclides. Isotopes such as Beryllium-7 (Be-7) and Carbon-14 (C-14) are formed in this way. Exposure to cosmic and cosmogenic sources of radioactivity results in about 33 mrem of radiation dose per year.

Additionally, natural radioactivity is in our body and in the food we eat (about 29 millirem/yr), the ground we walk on (about 21 millirem/yr) and the air we breathe (about 228 millirem/yr). The majority of a person's annual dose results from exposure to radon and thoron in the air we breathe. These gases and their radioactive decay products arise from the decay of naturally occurring uranium, thorium and radium in the soil and building products such as brick, stone and concrete. Radon and thoron levels vary greatly with location, primarily due to changes in the concentration of uranium and thorium in the soil. Residents at some locations in Colorado, New York, Pennsylvania, and New Jersey have a higher annual dose as a result of higher levels of radon/thoron gases in these areas. In total, these various sources of naturally occurring radiation and radioactivity contribute to a total dose of about 311 mrem per year.

In addition to natural radiation, we are normally exposed to radiation from a number of man-made sources. The single largest dose from man-made sources result from therapeutic and diagnostic applications of x-rays and radiopharmaceuticals. The annual dose to an individual in the U.S. from medical and dental exposure is about 300 mrem. Consumer products, such as televisions and smoke detectors, contribute about 13 mrem/yr. Much smaller doses result from weapons fallout (less than 1 mrem/yr) and nuclear power plants. Typically, the average person in the United States receives about 314 mrem per year from man-made sources.

III. Program Description

A. Sample Collection

Normandeau Associates Inc., (NAI), collected samples for the PBAPS REMP for Exelon Nuclear. This section describes the general collection methods used by NAI to obtain environmental samples for the PBAPS REMP in 2016. Sample locations and descriptions can be found in Table B-1 and Figures B-1 through B-3, Appendix B. The collection procedures used by NAI are listed in Table B-2, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, precipitation, fish and sediment. Surface water is sampled from two locations as prescribed by the ODCM: one upstream (1LL) and one downstream (1MM) of the plant discharge canal. Drinking water is sampled from a control location (6I) and up to three locations nearest to public drinking water supplies. Two locations are identified in the ODCM as the closest drinking water supplies, the Conowingo Dam (4L) and Chester Water Authority (13B). All samples were collected weekly by automatic sampling equipment or as grab samples. Weekly samples from each location were composited into two one-gallon monthly samples for analysis. A separate quarterly composite of the monthly samples was also collected.

Fish sample collection locations required by the ODCM are in an area close to the discharge of PBAPS (4) and a control location, unaffected by plant discharge (6). These samples should be comprised of the flesh of commercially and recreationally important species specific to the environs around PBAPS. Fish samples were collected semiannually from two groups: Bottom Feeder (channel catfish, flathead catfish, carp, and shorthead redhorse) and Predator (smallmouth bass and largemouth bass). The total weight of fish flesh was approximately 1000 grams. The samples were preserved on ice for shipping to the laboratory.

The ODCM requires one sediment sample to be collected downstream of the plant in an area with existing or potential recreational value. The REMP collects samples from three locations (4J, 4T and 6F; 6F is the control). Sediment samples, composed of recently deposited substrate, were collected semiannually. Multiple grab samples of the sediment were collected to obtain an approximately homogenous, representative sample totaling 1000 grams of sediment at those three locations.

Terrestrial Environment

The terrestrial environment was evaluated by performing radiological analyses on milk and food product samples. The ODCM requires milk samples at three locations within three miles of PBAPS with the highest dose potential, and one sample at a control location. The REMP meets these requirements and samples extra locations. Milk samples were collected biweekly at five locations (J, R, S, U, X and V; V is the control) from April through November and monthly from December through March. Six additional locations (C, D, E, L, P and W; C and E are the controls) were sampled quarterly. All samples were collected in new unused two-gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite and shipped promptly to the laboratory.

Food products are only required if milk sampling was not performed. The ODCM only requires two gardens located in the area of highest dose impact and a control location. However, the REMP has five gardens, two of which are maintained by the site. Food product samples, comprised of annual broad green leaf vegetation, were collected monthly at five locations (1C, 2B, 2Q, 3Q and 55; 55 is the control) in June through September. Typically, the 'planting' season starts late April/early May, with the plants gaining sufficient mass for collection in late June or July. Approximately 1000 g of unwashed samples were collected in new unused plastic bags and shipped promptly to the laboratory.

Airborne Environment

The airborne atmospheric environment was evaluated by performing radiological analyses on air particulate and radioiodine samples. The ODCM requires sampling from five locations, three of the highest site boundary locations with greatest dose impact, one location within a local community with highest dose impact, and one control location. Air particulate and radioiodine samples were collected and analyzed weekly from five locations (1B, 1C, 1Z/1A, 3A and 5H2; 5H2 is the control, 1A is the duplicate QA location). Airborne iodine and particulate samples were obtained at each location using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately 1 cubic foot per minute to obtain a minimum total volume of 280 cubic meters. The weekly filters were composited for a quarterly sample.

Ambient Gamma Radiation

The ambient gamma radiation in the areas surrounding PBAPS for the REMP is measured using dosimeters, which are exposed in the field for a quarter and then exchanged. The ODCM requires at least 40 routine

monitoring stations with two or more dosimeters for continuous monitoring. The REMP contains 48 dosimeter monitoring locations. The dosimeters are located (geography dependent) at the site boundary in the 16 meteorological sectors and within a three to six mile radius from the plant.

Optically-Stimulated Luminescent Dosimeters (OSLD) replaced the Thermo-Luminescent Dosimeter (TLD) type in the field starting in 2012. However, PBAPS decided to continue using TLD in addition to OSLD to compare the two technologies. Therefore, both technologies are employed at PBAPS, but the primary data reported after 2012 is from OSLD. Additionally, only the "gross" OSLD exposure (i.e. no background or control subtraction) is reported in this report; prior to 2012, "net' TLD exposures data were reported. This explains the increase in ambient radiation levels displayed in Figures C-7 and C-8.

The OSLD locations were placed on and around the PBAPS site as follows:

A site boundary ring, consisting of 19 locations (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1NN, 1P, 1Q, 1R, 2, and 40), near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off-site doses) from PBAPS releases.

An intermediate distance ring, consisting of 23 locations (14, 15, 17, 22, 23, 26, 27, 31A, 32, 3A, 42, 43, 44, 45, 46, 47, 48, 49, 4K, 5, 50, 51 and 6B), extending to approximately 5 miles from the site and designed to measure possible exposures to close-in population.

Six locations (16, 18, 19, 24, 2B and 1T) represent control and special interests areas such as population centers, schools, and nearest residents.

The specific dosimeter locations were determined by the following criteria:

- 1. The presence of relatively dense population, nearby residences, schools, and control locations;
- 2. Site meteorological data taking into account distance and elevation for each of the sixteen 22.5 degree sectors around the site, where estimated annual dose from PBAPS, if any, would be more significant;
- 3. And on hills free from local obstructions and within sight of the vents (where practical).

Each dosimetry location in the environment has either 2 or 4 OSLD and 2 TLD dosimeters which are enclosed in plastic as a moisture barrier. These dosimeters are protected from the environment in either a small Formica box or a polyethylene jar approximately six feet above the ground level. These dosimeters are exchanged quarterly and sent to an off-site laboratory for analysis.

B. Sample Analysis

This section describes the general analytical methods used by TBE and EI to analyze the environmental samples for radioactivity. The analytical procedures used by the laboratories are listed in Table B-2, Appendix B.

The required OCDM analyses include:

- 1. Concentrations of beta emitters in drinking water and air particulates;
- 2. Concentrations of gamma-emitting nuclides in surface and drinking water, air particulates, milk, fish, sediment and food products;
- 3. Concentrations of tritium in surface and drinking water;
- 4. Concentrations of I-131 in air, milk, and food products. Although not required by the ODCM, I-131 is also analyzed in drinking and surface water;
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

The radiological and direct radiation data collected prior to PBAPS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, PBAPS was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors are important in the interpretation of the data.

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) detectable with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is intended as a "before-the-fact" (*a priori*) estimate of a system (including instrumentation, procedure and sample type) and not as an "after-the-fact" (*a posteriori*) measurement for the presence of activity. All analyses

are designed to achieve the required PBAPS ODCM detection capabilities for environmental sample analysis.

The minimum detectable concentration or activity (MDC or MDA) is defined similarly as above for LLD; however, the MDC is the "after-the-fact" (*a posteriori*) estimate determined during the analysis of the sample.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample is calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations can result in sample activity being lower than the background activity causing a negative number. MDC is reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

- For surface and drinking water, twelve nuclides, Manganese-54 (Mn-54), Cobalt-58 (Co-58), Iron-59 (Fe-59), Cobalt-60 (Co-60), Zinc-65 (Zn-65), Zirconium-95 (Zr-95), Niobium-95 (Nb-95), I-131, Cesium-134 (Cs-134), Cs-137, Barium-140 (Ba-140), and Lanthanum-140 (La-140) were reported.
- For fish, eight nuclides, Potassium-40 (K-40), Mn-54, Co-58, Fe-59, Co-60, Zn-65, Cs-134 and Cs-137 were reported.
- For sediment, seven nuclides, K-40, Mn-54, Co-58, Co-60, I-131, Cs-134 and Cs-137 were reported.
- For air particulates, six nuclides, Beryllium-7 (Be-7), Mn-54, Co-58, Co-60, Cs-134 and Cs-137 were reported.
- For milk, six nuclides, K-40, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.
- For food products, eight nuclides, Be-7, K-40, Mn-54, Co-58, Co-60, I-131, Cs-134 and Cs-137 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

Table 2

For 2016 the PBAPS REMP had a sample collection recovery rate of 100%. The exceptions to this program are listed below:

LIST OF SAMPLE ANOMALIES

Sample Type	Location Code	Collection Date	Reason
AP/AI*	3A	08/11/16- 08/18/16	Found with no power to the pump, sample volume was acceptable
Drinking Water	r 13B	10/06/16- 10/13/16	Power failure at Chester Water Co no weekly sample, monthly composite still acceptable

*AP/AI = Air Particulates/Air Iodine

Table 3 LIST OF MISSING SAMPLES

Sample Type	Location Code	Collection Date	Reason
Surface Water	1MM	02/25/16- 03/03/16	Frozen water, grab sample obtained
AP/AI*	1C	07/21/16- 07/28/16	Pump seized, unknown volume of sample
Dosimeters	4K	11/23/16	Discovered one of two OSLDs missing due to work being performed at location
Food Products	1C	June 2016	Only 1 type of sample collected, rather than 3; plants still too small for harvesting
Food Products	s 1C	Sept 2016	Only 2 types of sample collected, rather than 3, due to insect predation

*AP/AI = Air Particulates/Air Iodine

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent a recurrence. Occasional equipment breakdowns and power outages were unavoidable.

IV. Program Changes

There were no program changes to report for the 2016 reporting period.

- V. Results and Discussion
 - A. Aquatic Environment
 - 1. <u>Surface Water</u>

A summary of the 2016 analysis results for surface water samples from stations 1LL and 1MM are listed below:

<u>Tritium</u>

Monthly samples from both locations were composited quarterly and analyzed for tritium activity (Table C-I.1, Appendix C). No tritium activity was detected and the required LLD was met.

<u>lodine</u>

Monthly samples from both locations were analyzed for I-131. All results were less than the MDC and the required LLD was met. (Table C-I.2, Appendix C).

Gamma Spectrometry

Monthly samples from both locations were analyzed for gammaemitting nuclides (Table C-I.3, Appendix C). All nuclides were less than the MDC and all required LLDs were met.

2. Drinking Water

The results from the drinking water samples collected in 2016 from stations 13B, 4L and 6l are described below:

Gross Beta

Samples from all locations were analyzed monthly for concentrations of gross beta activity (Table C-II.1 and Figure C-1 Appendix C). Gross beta was detected in 23 of 36 samples. The values ranged from 1.9 to 5.4 pCi/L with a mean value of 2.8 ± 1.8 pCi/L. Concentrations detected were generally below those detected in previous years.

<u>Tritium</u>

Monthly samples from three locations were composited quarterly and analyzed for tritium activity (Table C-II.2, Appendix C). Tritium activity was not detected in any samples and the required LLD was met.

<u>lodine</u>

Monthly samples from the three locations were analyzed for I-131 (Table C-II.3, Appendix C). All results were less than the MDC and the required LLD was met.

Gamma Spectrometry

Samples from the three locations were analyzed monthly for gamma-emitting nuclides (Table C-II.4, Appendix C). All nuclides were less than the MDC and all required LLDs were met.

3. Precipitation

Precipitation sample results can be found in the RGPP portion of this report.

4. <u>Fish</u>

Results from fish samples collected at locations 4 and 6 in 2016 are described below:

Gamma Spectrometry

The edible portions of the collected fish samples from both locations was analyzed semiannually for gamma-emitting nuclides (Table C-III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,586 to 3,949 pCi/kg wet, with a mean value of 3290 ± 932 pCi/kg wet, consistent with levels detected in previous years. No fission or activation

products, due to plant operations were found in 2016 and all required LLDs were met. Historical levels of Cs-137 are shown in Figure C-2, Appendix C. There have been no detectable levels of Cs-137 in fish since 1983.

5. <u>Sediment</u>

Sediment samples were collected at locations 6F, 4J, and 4T and the results are described below:

Gamma Spectrometry

Sediment samples were semiannually analyzed for gammaemitting nuclides (Table C-IV.1, Appendix C). K-40 was found in all locations and ranged from 9,115 to 25,700 pCi/kg dry with a mean value of $16,299 \pm 12,023$ pCi/kg dry. The fission product Cs-137 was detected in 1 of the 6 samples at a concentration of 167 pCi/kg dry, which is below the required LLD of 180 pCi/kg dry. The positive results indicate the sensitivity of the detection method. Historical levels of Cs-137 are shown in Figure C-3, Appendix C. The last 10 years of Cs-137 activity have been around the LLD value, indicating a new background level of Cs-137. No other fission or activation products were found and all LLDs were met.

- B. Atmospheric Environment
 - 1. <u>Airborne Particulates</u>

Continuous air particulate samples were collected from five locations. The five locations were separated into three groups: Group I represents locations within the PBAPS site boundary (1B, 1C and 1Z/1A), Group II represents the location of the closest local community (3A) and Group III represents the control location at a remote distance from PBAPS (5H2). 1A results will be discussed in Appendix D. The results from samples collected in 2016 are described below:

Gross Beta

Weekly samples were analyzed for concentrations of betaemitters (Tables C-V.1 and C-V.2, Appendix C). Detectable gross beta activity was observed at all locations. The results from Group I ranged from 7E-3 to 28E-3 pCi/m³, with a mean of 15E-3 \pm 5E-3 pCi/m³. The results from Group II ranged from 6E-3 to 23E-3 pCi/m³ with a mean of 14E-3 \pm 5E-3 pCi/m³. The results from the Group III ranged from 7E-3 to 28E-3 pCi/m³ with a mean of 15E-3 \pm 4E-3 pCi/m³.

The mean value from all three groups are the same within error, indicating the gross beta activity is not a result of the operation of PBAPS, as shown in Figure C-4, Appendix C. In addition, a comparison of the 2016 air particulate data with historical data indicates a decreasing trend in gross beta activity since initial operation of the plant (Figure C-5, Appendix C).

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma-emitting nuclides (Table C-V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in all 20 samples. The values ranged from 42E-3 to 100E-3 pCi/m³, with a mean value of 71E-3 \pm 31E-3pCi/m³. All other nuclides were less than the MDC and all required LLDs were met.

2. <u>Airborne Iodine</u>

Continuous air samples were collected from five locations and analyzed weekly for I-131 (Table C-VI.1, Appendix C). All results were less than the MDC for I-131 and the required LLD was met.

C. Terrestrial

1. <u>Milk</u>

During 2016, 156 milk samples were collected and analyzed. The results are described below:

<u>lodine-131</u>

Milk samples from all locations were analyzed for concentrations of I-131 (Tables C-VII.1, Appendix C). All results were less than the MDC for I-131 and all required LLDs were met.

Gamma Spectrometry

Milk samples from all locations were analyzed for concentrations of gamma-emitting nuclides (Table C-VII.2, Appendix C). Naturally occurring K-40 was found in all samples and ranged from 941 to 3,040 pCi/l, with a mean value of 1319 ± 445 pCi/L. All other nuclides were less than the MDC and all required LLDs were met.

Historical concentrations of Cs-137 in milk is plotted in Figure C-6, Appendix C. Since PBAPS started operation, the activity of Cs-137 has been less than the required LLD. The values reported before 2000 were the actual measured activity value, while those reported after 2000 are the instrumentation detection level. This prevents negative values from being plotted in the figure.

2. Food Products

Throughout 2016, 59 samples of various green leafy vegetation (kale, cabbage, collard greens, corn, broccoli, cauliflower, etc.) were collected and analyzed for concentrations of gammaemitting nuclides (Table C-VIII.1, Appendix C). The results are discussed below:

Gamma Spectrometry

Naturally occurring Be-7 activity was found in 16 of 59 samples and ranged from 300 to 2,315 pCi/kg wet, with a mean of 947 \pm 1457 pCi/kg wet. Also, naturally occurring K-40 activity was found in all samples and ranged from 709 to 10,350 pCi/kg wet, with a mean of 3599 \pm 4161 pCi/kg wet. All other nuclides were less than the MDC and all required LLDs were met.

D. Ambient Gamma Radiation

Results of OSLD measurements are listed in Tables C-IX.1 through C-IX.3 and Figure C-7, Appendix C.

The mean gross OSLD measurement was 10.1 mRem per standard month, with a range of 6.6 to 13.6 mRem per standard month. The period mean for the control locations (16, 18, 19 and 24) is the same, within error, of the OSLDs located within the site boundary and intermediate distances. These results indicate PBAPS operation had no impact on the ambient gamma radiation levels in the areas surrounding PBAPS. This low impact trend has occurred throughout the history of the plant and can be seen in Figure C-7, Appendix C. The increase in ambient radiation reading in 2012, seen in Figure C-7, was due to the change from TLD to OSLD monitoring and the reporting of gross rather than net measurement values.

E. Independent Spent Fuel Storage Installation (ISFSI)

ISFSI began at PBAPS in June 2000. Five new casks were added to the ISFSI pad in 2016. Site boundary OSLDs which measure the ambient gamma radiation closest to ISFSI are locations 1A, 1D, 1M, 1P, 1Q, 1R, with 1R being the closest. Location 2B is the nearest real resident that could be impacted by ISFSI. Location 1R, showed a general increase of 1 to 3 mRem per standard month from pre-ISFSI loading (Figure C-8, Appendix C). Location 2B, follows closely with values from locations 1A, 1D, and controls, indicating no impact from ISFSI on nearest real resident. Data from location 2B is used to demonstrate compliance to both 40CFR190 and 10CFR72.104 limits. All radiation levels are well-below regulatory limits.

Pre-operational ambient gamma radiation levels are shown on Figure C-8. TLD data, except for 2006, were below pre-operational levels indicating ISFSI is not impacting the ambient gamma levels around PBAPS. The large increase in multiple direct radiation locations after 2012 is a result of the transition from TLD to OSLD and the use of "gross" data rather than "net". The transient background values were added to the pre-operational value to display the actual ambient gamma background for the OSLDs. Location 1R is approaching the preoperational levels, but the other locations around ISFSI are still well below background levels.

F. Land Use Census

A Land Use Survey, conducted during the fall of 2016, was performed by NAI Environmental Services Division, to comply with Section 3.8.E.2 of PBAPS's ODCM Specifications. The survey documented the nearest milk-producing and meat animal, nearest residence, and garden larger than 500 square feet in each of the sixteen meteorological sectors out to five miles. Also, because PBAPS is an elevated release facility, an additional requirement of identifying all gardens larger than 500 square feet and every dairy operation within three (3) miles was included in the 2016 survey. The distance and direction of all locations were positioned using Global Positioning System (GPS) technology. The results of this survey are summarized below. A new gated community was located in the SE sector near the river, with one home closer than identified in previous years; it also has the nearest garden for the SE sector. A total of six new gardens were located in 2016. The closest milk-producing animals and meat animals in each sector for the 2016 report remains the same as the previous year.

		PBAPS Reactor	Building Exhaust Vents	S
Sector	-	Residence	Garden	Milk Farm
		Feet	Feet	Feet
1	N	12,362	14,003	14,455
2	NNE	11,112	11,041	10,843
3	NE	10,080	10,004	10,492
4	ENE	10,495	11,554	10,925
5	E	10,066	14,540	14,471
6	ESE	16,085	20,374	20,154
7	SE	10,772	10,772	19,134
8	SSE	3,912	3,912	-
9	S	5,545	5,545	-
10	SSW	6,072	8,167	11,602
11	SW	4,755	4,865	4,860
12	WSW	4,036	9,072	-
13	W	5,327	5,327	5,136
14	WNW	2,928	4,192	22,124
15	NW	2,948	9,545	9,545
16	NNW	5,124	-	-

Location of the Nearest Residence, Garden, Milk, Meat, Animal within a Five-Mile Radius of PBAPS Reactor Building Exhaust Vents

G. Errata Data

There is no errata data for 2016.

H. Quality Control (QC) Laboratory Analysis

The Appendix D section of this report presents the results of data analysis performed by the QC laboratory, Environmental Inc. Duplicate samples were obtained from several locations and media and split between the primary laboratory, Teledyne Brown Engineering (TBE) and the QC laboratory, Environmental Inc. Comparisons of the results for all media were within expected ranges.

I. Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, food products and water matrices (Appendix E). The PE samples, supplied by Eckert & Ziegler Analytics, Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against a pre-set acceptance criteria described in Appendix E.

For the Teledyne Brown Engineering (TBE) laboratory, 156 out of 160 analyses performed met the specified acceptance criteria. Four analyses (Milk - Sr-90 for two different samples/dates, Vegetation -Sr-90, and Water - H-3 samples) did not meet the specified acceptance criteria and are documented in Appendix E. TBE has addressed each issue through the TBE Corrective Action Program.

For the EIML laboratory, 198 of 203 analyses met the specified acceptance criteria. Five analyses (Water - Ba-133, Co-57; Soil - Ni-63, U-233/234, U-238) did not meet the specified acceptance criteria for the reasons described in Appendix E.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

VI. References

- 1. Preoperational Environs Radioactivity Survey Summary Report, March 1960 through January 1966. (September 1967).
- Interex Corporation, Peach Bottom Atomic Power Station Regional Environs Radiation Monitoring Program Preoperational Summary Report, Units 2 and 3, 5 February 1966 through 8 August 1973, June 1977, Natick, Massachusetts.
- 3. Radiation Management Corporation Publication, Peach Bottom Atomic Power Station Preoperational Radiological Monitoring Report for Unit 2 and 3, January 1974, Philadelphia, Pennsylvania.

Intentionally left blank

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

NAME OF FACILITY: LOCATION OF FACILITY:	PEACH BOTTOM ATOMIC POWER STATION YORK COUNTY , PA			DOCKET NUN REPORTING		50-277 & 50 2016	-278	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMEI	NUMBER OF ANALYSIS D PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	Control Location Mean (M) (F) RANGE	LOCATI MEAN (M) (F) <i>RANGE</i>	ON WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT
SURFACE WATER	H-3	8	200	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
(PCI/LITER)	I-131	24	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	24						
		1n-54	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		Co-58	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		Fe-59	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		Co-60	15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		.0-00 In-65	30	<lld< td=""><td><lld< td=""><td>_</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>_</td><td></td><td>0</td></lld<>	_		0
		lb-95	15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
		Zr-95	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		5-134	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		5-134 5-137	15	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>0</td></lld<></lld 	-		0
		a-140	60	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>0</td></lld<></lld 	-		0
		a-140	15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
DRINKING WATER (PCI/LITER)	GR-B	36	4	2.9 (15/24) 1.9 - 5.4	2.6 (8/12) 1.9 - 3.3	3.4 (7/12) 2.3 - 5.4	13B INDICATOR CHESTER WATER AUTH. SUSQUEHANN/ 13306 FEET ESE	0 A PUMPING STA.
	H-3	12	200	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	I-131 (LOW LVL)	36	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	36						
	M	N-54	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		O-58	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	F	E-59	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		O-60	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	Z	N-65	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	٨	IB-95	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		R-95	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		5-134	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		5-137	18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		-140	60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: LOCATION OF FACILITY:	PEACH BOTTOM ATOMIC POWER STATION YORK COUNTY , PA			DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50-278 2016		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	Locatio Mean (M) (F) <i>Range</i>	ON WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
BOTTOM FEEDER	GAMMA	4						
(PCI/KG WET)	I	<-40	NA	3232 (2/2) 3086 - 3378	2894 (2/2) 2586 - 3201	3232 (2/2) 3086 - 3378	4 INDICATOR CONOWINGO POND 7162 FEET SE	0
	MN-54 130 CO-58 130 FE-59 260 CO-60 130 ZN-65 260 CS-134 130		<lld <lld< td=""><td rowspan="2"><lld <lld< td=""><td rowspan="2">-</td><td rowspan="2"></td><td>0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td rowspan="2">-</td><td rowspan="2"></td><td>0</td></lld<></lld 	-		0	
							0	
			260	<lld< td=""><td><lld< td=""><td><lld -<="" td=""><td></td><td>0</td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld -<="" td=""><td></td><td>0</td></lld></td></lld<>	<lld -<="" td=""><td></td><td>0</td></lld>		0
				<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
				<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
				<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS	-137	150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
PREDATOR	GAMMA	4						
(PCI/KG WET)	Ĩ	K-40	NA	3642 (2/2) 3335 - 3949	3391 (2/2) 2885 - 3897	3642 (2/2) 3335 - 3949	4 INDICATOR CONOWINGO POND 7162 FEET SE	0
	MI	V-54	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		D-58	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FI	E-59	260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		D-60	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		V-65	260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		-134 -137	130 150	<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>0 0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>0 0</td></lld<></lld 	-		0 0
SEDIMENT	GAMMA	6						
(PCI/KG DRY)		K-40	NA	17730 (4/4) 10500 - 25700	13438 (2/2) 9115 - 17760	22110 (2/2) 18520 - 25700	4T INDICATOR CONOWINGO POND NEAR CONOWINGO DAM 41818 FEET SE	0 /
	MI	V-54	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		D-58	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		D-60	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		-134	150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		137	180	<lld< td=""><td>167 (1/2)</td><td>167 (1/2)</td><td>6F CONTROL HOLTWOOD DAM 31469 FEET NW</td><td>0</td></lld<>	167 (1/2)	167 (1/2)	6F CONTROL HOLTWOOD DAM 31469 FEET NW	0

NAME OF FACILITY: LOCATION OF FACILITY:	PEACH BOTTOM ATOMIC POWER STATION YORK COUNTY , PA			DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50-278 2016		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	Control Location Mean (M) (F) <i>Range</i>	LOCATI MEAN (M) (F) <i>RANGE</i>	ON WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	259	10	15 (206/207) <i>6 - 28</i>	16 (49/52) 7 - <i>28</i>	16 (52/52) 7 - 24	1C INDICATOR PEACH BOTTOM SOUTH SUB STATION 4513 FEET SSE	0
	GAMMA	20						
	I	3E-7	NA	71 (16/16) <i>42 - 100</i>	69 (4/4) 58 - 82	83 (4/4) 58 - 100	1B INDICATOR WEATHER STATION #2 2587 FEET NW	0
	MN-54 NA CO-58 NA CO-60 NA CS-134 50 CS-137 60		NA	42 - 700 <lld< td=""><td><pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre></td><td>-</td><td rowspan="3">23071221100</td><td>0</td></lld<>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	-	23071221100	0
				<lld< td=""><td><lld< td=""><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>0</td></lld<>	-		0
				<lld< td=""><td><lld< td=""><td>-</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>0</td></lld<>	-		0
				<lld <lld< td=""><td><lld <lld< td=""><td>-</td><td></td><td>0 0</td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td>-</td><td></td><td>0 0</td></lld<></lld 	-		0 0
AIR IODINE	GAMMA	260						
(E-3 PCI/CU.METER)	Ι	-131	70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
MILK (PCI/LITER)	I-131 (LOW LVL)	156	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	156						
		K-40	NA	1322 (127/127)	1288 (30/30)	1445 (23/23)		0
	<u>^</u>	-134	15	941 - 3040 <lld< td=""><td>1069 - 1474 <lld< td=""><td>1036 - 3040 -</td><td>5119 FEET W</td><td>0</td></lld<></td></lld<>	1069 - 1474 <lld< td=""><td>1036 - 3040 -</td><td>5119 FEET W</td><td>0</td></lld<>	1036 - 3040 -	5119 FEET W	0
		-137	18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		-140	60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA	-140	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

NAME OF FACILITY: Location of Facility:	PEACH BOTTOM ATOMIC POWER STATION YORK COUNTY , PA			DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50- 2016	278	
MEDIUM OR			REQUIRED	INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION WITH HIGHEST ANNUAL MEAN (M)		NUMBER OF
PATHWAY SAMPLED	TYPES OF	NUMBER OF	LOWER LIMIT	MEAN (M)	MEAN (M)	MEAN (M)	STATION #	NONROUTINE
(UNIT OF	ANALYSIS	ANALYSIS	OF DETECTION	(F)	(F)	(F)	NAME	REPORTED
MEASUREMENT)	PERFORMED	PERFORMED	(LLD)	RANGE	RANGE	RANGE	DISTANCE AND DIRECTION	MEASUREMENTS
VEGETATION	GAMMA	59						
(PCI/KG WET)	BE-7		NA	876	1179	1340	1C INDICATOR	0
				(13/47)	(4/12)	(5/11)	PEACH BOTTOM SOUTH SUB STATION	
				300 - 2315	417 - 2043	344 - 2315	4513 FEET SSE	
	K-40 MN-54 CO-58 CO-60 I-131 CS-134		NA	3131	5432	5432	55 CONTROL	0
				(47/47)	(12/12)	(12/12)	NE SECTOR	
				709 - 6278	1750 - 10350	1750 - 10350	52272 FEET NE	
			NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-1	37	80	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
DIRECT RADIATION (MILLI-ROENTGEN/STD.MO.)	OSLD-QUARTERLY	192	NA	10.2 (176/176) 6.6 - 13.6	9.8 (16/16) <i>8.3 - 10.7</i>	13.4 (4/4) 12.9 - 13.6	1R INDICATOR TRANSMISSION LINE HILL 2798 FEET SSE	0

Intentionally left blank

APPENDIX B

SAMPLE DESIGNATION AND LOCATIONS

TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and
Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2016

Lo	cation	Location Description	Distance & Direction from Site per PBAPS ODCM		
٨	Surface Motor				
<u>A.</u>	Surface Water				
	1LL	Peach Bottom Units 2 and 3 Intake - Composite (Control)	1,200 feet ENE		
	1MM	Peach Bottom Canal Discharge -Composite	5,500 feet SE		
<u>B.</u>	Drinking (Potable) Water			
	4L 6I	Conowingo Dam EL 33' MSL - Composite Holtwood Dam Hydroelectric Station - Composite (Control)	45,900 feet SE 30,500 feet NW		
	13B	Chester Water Authority (CWA) Susquehanna Pumping Station- Composite	13,300 feet ESE		
<u>C.</u>	Fish				
	4	Conowingo Pond	6,000 – 10,000 feet SE		
	6	Holtwood Pond (Control)	50,000 – 70,000 feet NNW		
<u>D.</u>	Sediment				
	4J	Conowingo Pond near Berkin's Run	7,400 feet SE		
	4T	Conowingo Pond near Conowingo Dam	41,800 feet SE		
	6F	Holtwood Dam (Control)	31,500 feet NW		
<u>E.</u>	Air Particulate - A	<u>ir Iodine</u>			
	1B	Weather Station #2	2,500 feet NW		
	1Z	Weather Station #1	1,500 feet SE		
	1A	Weather Station #1	1,500 feet SE		
	1C 3A	Peach Bottom South Sub Station	4,700 feet SSE		
	5H2	Delta, PA – Substation Manor Substation (Control)	19,300 feet SW 162,400 feet NE		
-	-		102,400 leet NL		
<u>F.</u>	Milk – bi-weekly /	monthly			
	J R S U V X	(Control)	5,100 feet W 4,900 feet SW 19,100 feet SE 11,200 feet SSW 32,600 feet W 9,500 feet NW		
<u>G.</u>	Milk – quarterly				
	С	(Control)	5,000 feet NW		
	D		18,500 feet NE		
	E	(Control)	46,100 feet N		
	L		11,200 feet NE		
	P W		11,000 feet ENE 89,200 feet S		
	vv		03,200 1001 0		

TABLE B-1	Radiological Environmental Monitoring Program – Sampling Locations, Distance and
	Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2016

Location	Location Description	Distance & Direction from Site per PBAPS ODCM
H. Food Produ	cts - monthly when available	
1B 1C 2Q 3Q 55	(Control)	2,500 feet NW 4,700 feet SSE 9,200 feet SW 9,500 feet W 51,900 feet NE
J. Environmer	ntal Dosimetry - OSLD	
Site Boundary		
1L 1P 1A 1Q 1D 2 2B 1M 1R 1I 1C 1J 1K 1F 40 1NN 1H 1G 1B 1E	Peach Bottom Unit 3 Intake Tower B & C Fence Weather Station #1 Tower D & E Fence 140 ° Sector Peach Bottom 130° Sector Hill Burk Property Discharge Transmission Line Hill/ISFSI Pad Peach Bottom South Substation Peach Bottom South Substation Peach Bottom 180° Sector Hill Peach Bottom 200° Sector Hill Peach Bottom Site Area Peach Bottom Site Area Peach Bottom Site Peach Bottom 270° Sector Hill Peach Bottom 270° Sector Hill Peach Bottom North Substation Weather Station #2 Peach Bottom 350° Sector Hill	1,100 feet NE 2,200 feet ESE 1,500 feet SE 3,300 feet SE 3,500 feet SE 4,700 feet SE 3,900 feet SSE 5,400 feet SSE 2,800 feet SSE 2,900 feet SSE 4,700 feet SSE 4,700 feet SW 2,900 feet SW 2,900 feet SW 2,900 feet SW 2,700 feet WSW 3,200 feet W 3,100 feet WNW 2,500 feet NW 3,000 feet NWW
Intermediate Dis	stance	
5 15 22 44 32 45 14 17 31A 4K 23 27 48	Wakefield, PA Silver Spring Rd Eagle Road Goshen Mill Rd Slate Hill Rd PB-Keeney Line Peters Creek Riverview Rd Eckman Rd Conowingo Dam Power House Roof Peach Bottom 150° Sector Hill N. Cooper Road Macton Substation	24,400 feet E 19,300 feet N 12,500 feet NNE 26,700 feet NE 14,400 feet ENE 17,600 feet ENE 10,300 feet E 21,500 feet ESE 24,100 feet SE 45,900 feet SSE 14,400 feet S 26,500 feet SSW

TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and
Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2016

Location	Location Description	Distance & Direction from
		Site per PBAPS ODCM

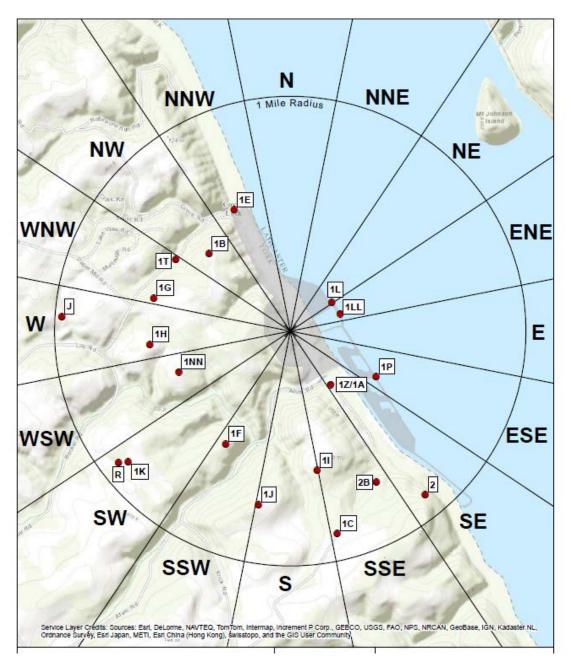
J. Environmental Dosimetry – OSLD (cont'd)

Intermediate Distance (cont'd)

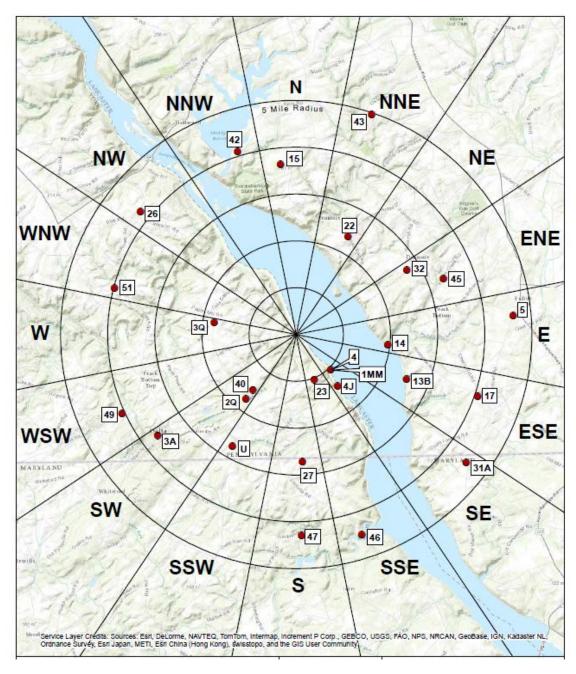
ЗA	Delta, PA Substation	19,300 feet SW
49	PB-Conastone Line	21,500 feet WSW
50	TRANSCO Pumping Station	26,400 feet W
51	Fin Substation	21,000 feet WNW
26	Slab Road	22,300 feet NW
6B	Holtwood Dam Power House Roof	30,400 feet NW
42	Muddy Run Environ. Laboratory	21,600 feet NNW
43	Drumore Township School	26,200 feet NNE
46	Broad Creek	23,800 feet SSE
47	Broad Creek Scout Camp	22,700 feet S
1T	Lay Road/LLRWSF	3,100 feet WNW
<u>Control</u>		
10	Nettingham DA Cubatation (Control)	

16	Nottingham, PA Substation (Control)	67,100 feet E
24	Harrisville, MD Substation (Control)	57,600 feet ESE
18	Fawn Grove, PA (Control)	52,200 feet W
19	Red Lion, PA (Control)	124,000 feet WNW

TABLE B-2

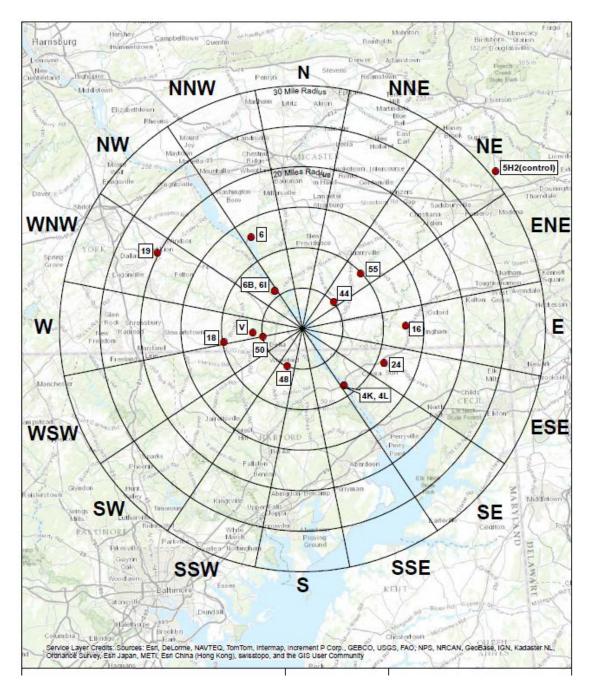

Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2016

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number			
Surface Water	Gamma Spectroscopy			2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis			
					Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy			
Surface Water	Tritium	Quarterly composite from a continuous	NAI-ER15 Collection of water samples for radiological analysis	500 ml	TBE, TBE-2010 Tritium and carbon-14 analysis by liquid scintillation			
		water compositor	(Peach Bottom Atomic Power Station)		Env. Inc., T-02 Determination of tritium in water (direct method)			
Surface	I-131	Monthly composite from a continuous	NAI-ER15 Collection of water samples for radiological analysis	2 gallon	TBE, TBE-2012 Radioiodine in various matrices			
Water		water compositor	(Peach Bottom Atomic Power Station)		Env. Inc., I-131-01 Determination of I-131 in water by an ion exchange			
Drinking	Gross Beta	bss Beta Monthly composite from a continuous water compositor	NAI-ER15 Collection of water samples for radiological analysis	2 gallon	TBE, TBE-2008 Gross alpha and/or gross beta activity in various matrices			
Water			(Peach Bottom Atomic Power Station)		Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)			
Drinking	I-131	Monthly composite from a continuous	NAI-ER15 Collection of water samples for radiological analysis	2 gallon	TBE, TBE-2031 Radioiodine in drinking water			
Water		water compositor	(Peach Bottom Atomic Power Station)		Env. Inc., I-131-01 Determination of I-131 in water by an ion exchange			
Drinking Water	Gamma Spectroscopy	Monthly composite from a continuous	NAI-ER15 Collection of water samples for radiological analysis	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis			
		water compositor	(Peach Bottom Atomic Power Station)		Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy			
Drinking Water	Tritium	Quarterly composite from a continuous	NAI-ER15 Collection of water samples for radiological analysis	500 ml	TBE, TBE-2010 Tritium and carbon-14 analysis by liquid scintillation			
		water compositor	(Peach Bottom Atomic Power Station)		Env. Inc., T-02 Determination of tritium in water (direct method)			


TABLE B-2

Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2016

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Fish	Gamma Spectroscopy	Semi-annual samples collected via electroshocking or other techniques	NAI-ER3 Collection of fish samples for radiological analysis (Peach Bottom Atomic Power Station)	1000 grams (wet)	TBE, TBE-2007 Gamma emitting radioisotope analysis
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2023 Compositing of samples Env. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters (approximately 3600 cubic meters)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Iodine	Gamma Spectroscopy	One-week composite of continuous air sampling through charcoal filter	NAI-ER8 Collection of air particulate and air iodine samples for radiological analysis (Peach Bottom Atomic Power Station)	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
Milk	I-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	NAI-ER10 Collection of milk samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2012 Radioiodine in various matrices Env. Inc., I-131-01 Determination of I-131 in milk by an ion exchange
Milk	Gamma Spectroscopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	NAI-ER10 Collection of milk samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Food Products	Gamma Spectroscopy	Monthly when available	NAI-ER12 Collection of vegetation samples for radiological analysis (Peach Bottom Atomic Power Station)	1000 grams	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
OSLD	Optically Stimulated Luminescence Dosimetry	Quarterly OSLDs comprised of two Al ₂ O ₃ :C Landauer Incorporated elements.	NAI-ER9 Collection of OSLD samples for radiological analysis (Peach Bottom Atomic Power Station)	2 dosimeters	Landauer Incorporated



Not all listed REMP locations are shown on the map. Locations not displayed include: 1Q, 1D, 1M, 1R

Not all listed REMP locations are shown on the map. Locations not displayed include: 1X, S, C, D, L, P

Figure B-2 Environmental Sampling Locations Between One and Approximately Five Miles of the Peach Bottom Atomic Power Station, 2016

Not all listed REMP locations are shown on the map. Locations not displayed include: 6F, 4T, E, W

Figure B-3 Environmental Sampling Locations Greater Than Five Miles from the Peach Bottom Atomic Power Station, 2016 Intentionally left blank

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

Table C-I.1CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

COLLECTION		
PERIOD	1LL	1MM
12/30/15 - 03/30/16	< 198	< 196
03/30/16 - 06/29/16	< 181	< 180
06/29/16 - 09/28/16	< 186	< 179
09/28/16 - 12/28/16	< 177	< 195
MEAN	-	-

RESULTS IN UNITS OF PCI/LITER + 2 SIGMA

Table C-I.2 CONCENTRATIONS OF I-131 IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER + 2 SIGMA

COLLECTION PERIOD	1LL	1MM
12/30/15 - 01/27/16	< 0.6	< 0.6
01/27/16 - 02/24/16	< 0.5	< 0.6
02/24/16 - 03/30/16	< 0.6	< 0.7
03/30/16 - 04/27/16	< 0.6	< 0.7
04/27/16 - 06/01/16	< 0.8	< 0.8
06/01/16 - 06/29/16	< 0.5	< 0.8
06/29/16 - 07/27/16	< 0.7	< 0.6
07/27/16 - 08/31/16	< 0.7	< 0.7
08/31/16 - 09/28/16	< 0.7	< 0.6
09/28/16 - 10/26/16	< 0.8	< 0.8
10/26/16 - 11/30/16	< 0.7	< 0.7
11/30/16 - 12/28/16	< 0.6	< 0.7
MEAN	-	-

Table C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

SITE	COLLECTION PERIOD	Mp E1	Co 59	Fo 50	Co-60	70 65		Zr-95	Co 124	Co 127	Po 140	10.140
SITE		Mn-54	Co-58	Fe-59		Zn-65	Nb-95		Cs-134	Cs-137	Ba-140	La-140
1LL	12/30/15 - 01/27/16	< 6	< 4	< 14	< 6	< 8	< 5	< 11	< 5	< 5	< 28	< 11
	01/27/16 - 02/24/16	< 4	< 5	< 9	< 4	< 8	< 4	< 7	< 4	< 4	< 16	< 7
	02/24/16 - 03/30/16	< 6	< 6	< 14	< 7	< 10	< 6	< 10	< 5	< 6	< 24	< 9
	03/30/16 - 04/27/16	< 6	< 5	< 12	< 5	< 9	< 5	< 8	< 6	< 7	< 27	< 10
	04/27/16 - 06/01/16	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 2	< 2	< 17	< 5
	06/01/16 - 06/29/16	< 7	< 9	< 16	< 5	< 10	< 9	< 10	< 6	< 7	< 39	< 10
	06/29/16 - 07/27/16	< 1	< 1	< 3	< 1	< 3	< 2	< 2	< 1	< 1	< 9	< 3
	07/27/16 - 08/31/16	< 7	< 7	< 12	< 5	< 12	< 8	< 11	< 6	< 6	< 34	< 12
	08/31/16 - 09/28/16	< 5	< 4	< 9	< 5	< 10	< 4	< 8	< 4	< 5	< 21	< 7
	09/28/16 - 10/26/16	< 5	< 5	< 11	< 6	< 13	< 7	< 9	< 5	< 5	< 31	< 9
	10/26/16 - 11/30/16	< 7	< 6	< 17	< 7	< 13	< 7	< 13	< 8	< 7	< 27	< 6
	11/30/16 - 12/28/16	< 4	< 4	< 9	< 5	< 9	< 4	< 7	< 4	< 4	< 21	< 6
	MEAN	-	-	-	-	-	-	-	-	-	-	-
1MM	12/30/15 - 01/27/16	< 4	< 6	< 14	< 5	< 10	< 9	< 11	< 4	< 9	< 37	< 9
	01/27/16 - 02/24/16	< 5	< 5	< 10	< 5	< 11	< 5	< 10	< 5	< 4	< 22	< 7
	02/24/16 - 03/30/16	< 6	< 5	< 13	< 6	< 12	< 6	< 12	< 5	< 7	< 31	< 9
	03/30/16 - 04/27/16	< 5	< 5	< 12	< 5	< 9	< 7	< 12	< 6	< 7	< 29	< 9
	04/27/16 - 06/01/16	< 3	< 3	< 6	< 2	< 6	< 3	< 5	< 3	< 3	< 24	< 6
	06/01/16 - 06/29/16	< 7	< 8	< 16	< 9	< 17	< 6	< 13	< 7	< 8	< 40	< 12
	06/29/16 - 07/27/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 13	< 4
	07/27/16 - 08/31/16	< 6	< 5	< 10	< 6	< 11	< 7	< 9	< 5	< 6	< 29	< 11
	08/31/16 - 09/28/16	< 5	< 5	< 12	< 5	< 11	< 7	< 8	< 5	< 6	< 27	< 8
	09/28/16 - 10/26/16	< 5	< 6	< 12	< 5	< 12	< 7	< 12	< 5	< 6	< 35	< 13
	10/26/16 - 11/30/16	< 8	< 8	< 16	< 6	< 17	< 9	< 12	< 8	< 9	< 44	< 8
	11/30/16 - 12/28/16	< 7	< 8	< 12	< 8	< 13	< 8	< 12	< 6	< 7	< 29	< 9
	MEAN	-	-	-	-	-	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-II.1 CONCENTRATIONS OF GROSS BETA IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

COLLECTION PERIOD	13B	4L	61
12/29/15 - 01/28/16	5.3 ± 1.5	< 1.8	1.9 ± 1.1
01/25/16 - 02/25/16	2.9 ± 1.3	1.9 ± 1.3	2.7 ± 1.3
02/22/16 - 03/31/16	2.8 ± 1.4	2.2 ± 1.2	2.5 ± 1.3
03/28/16 - 04/28/16	< 2.1	< 2.0	< 2.1
04/25/16 - 06/02/16	< 2.3	< 2.2	< 2.2
5/312016 - 06/30/16	< 2.0	2.0 ± 1.4	2.9 ± 1.5
06/27/16 - 07/28/16	< 2.0	< 2.1	< 2.1
07/25/16 - 09/01/16	< 2.0	2.6 ± 1.4	2.8 ± 1.5
08/29/16 - 09/29/16	2.3 ± 1.5	2.2 ± 1.5	2.3 ± 1.5
09/27/16 - 10/27/16	5.4 ± 1.8	3.9 ± 1.6	3.3 ± 1.5
10/24/16 - 12/01/16	2.5 ± 1.5	2.4 ± 1.4	< 2.0
11/28/16 - 12/29/16	2.8 ± 1.5	2.4 ± 1.4	2.3 ± 1.4
MEAN ± 2 STD DEV	3.4 ± 2.6	2.5 ± 1.3	2.6 ± 0.9

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-II.2 CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	13B	4L	61
12/29/15 - 03/31/16	< 193	< 194	< 192
03/28/16 - 06/30/16	< 182	< 180	< 181
06/27/16 - 09/29/16	< 183	< 181	< 180
09/27/16 - 12/29/16	< 181	< 182	< 184
MEAN	-	-	-

Table C-II.3CONCENTRATIONS OF I-131 IN DRINKING WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	13B	4L	61	
12/29/15 - 01/28/16	< 0.9	< 0.6	< 0.5	
01/25/16 - 02/25/16	< 0.7	< 0.5	< 0.6	
02/22/16 - 03/31/16	< 0.8	< 0.6	< 0.8	
03/28/16 - 04/28/16	< 0.6	< 0.6	< 0.4	
04/25/16 - 06/02/16	< 0.8	< 1.0	< 0.8	
5/312016 - 06/30/16	< 0.6	< 0.6	< 0.7	
06/27/16 - 07/28/16	< 0.8	< 0.7	< 0.9	
07/25/16 - 09/01/16	< 0.6	< 0.6	< 0.7	
08/29/16 - 09/29/16	< 1.0	< 0.7	< 0.8	
09/27/16 - 10/27/16	< 0.8	< 0.7	< 0.7	
10/24/16 - 12/01/16	< 0.8	< 0.5	< 0.6	
11/28/16 - 12/29/16	< 0.6	< 0.5	< 0.6	
MEAN	-	-	-	

Table C-II.4

CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER + 2 SIGMA

	COLLECTION											
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
13B	12/29/15 - 01/25/16	< 6	< 8	< 11	< 6	< 12	< 6	< 12	< 5	< 7	< 34	< 13
	01/25/16 - 02/22/16	< 7	< 7	< 16	< 5	< 12	< 8	< 13	< 7	< 7	< 31	< 13
	02/22/16 - 03/28/16	< 6	< 5	< 8	< 5	< 10	< 6	< 11	< 4	< 5	< 30	< 10
	03/28/16 - 04/25/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 8	< 3
	04/25/16 - 05/31/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 15	< 5
	05/31/16 - 06/27/16	< 6	< 6	< 15	< 6	< 11	< 7	< 11	< 5	< 6	< 34	< 10
	06/27/16 - 07/25/16	< 2	< 2	< 6	< 2	< 4	< 3	< 4	< 2	< 2	< 18	< 6
	07/25/16 - 08/29/16	< 5	< 7	< 8	< 6	< 14	< 6	< 11	< 6	< 7	< 39	< 10
	08/29/16 - 09/27/16	< 6	< 7	< 16	< 5	< 15	< 6	< 13	< 6	< 6	< 35	< 10
	09/27/16 - 10/24/16	< 3	< 4	< 8	< 3	< 7	< 4	< 7	< 3	< 4	< 21	< 7
	10/24/16 - 11/28/16	< 7	< 7	< 18	< 8	< 16	< 8	< 12	< 7	< 8	< 40	< 10
	11/28/16 - 12/27/16	< 5	< 4	< 11	< 6	< 10	< 5	< 10	< 4	< 5	< 23	< 7
	MEAN	-	-	-	-	-	-	-	-	-	-	-
4L	12/30/15 - 01/28/16	< 5	< 5	< 10	< 7	< 14	< 5	< 11	< 6	< 7	< 30	< 10
	01/28/16 - 02/25/16	< 4	< 4	< 9	< 4	< 8	< 5	< 9	< 4	< 5	< 20	< 6
	02/25/16 - 03/31/16	< 5	< 4	< 9	< 5	< 11	< 5	< 9	< 5	< 5	< 26	< 7
	03/31/16 - 04/28/16	< 6	< 6	< 14	< 7	< 12	< 6	< 10	< 6	< 6	< 25	< 12
	04/28/16 - 06/02/16	< 3	< 3	< 7	< 3	< 6	< 3	< 6	< 3	< 3	< 23	< 7
	06/02/16 - 06/30/16	< 7	< 7	< 10	< 8	< 15	< 9	< 9	< 7	< 7	< 40	< 14
	06/30/16 - 07/28/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 11	< 4
	07/28/16 - 09/01/16	< 6	< 7	< 13	< 6	< 14	< 8	< 12	< 9	< 7	< 36	< 9
	09/01/16 - 09/29/16	< 5	< 5	< 9	< 7	< 10	< 6	< 7	< 5	< 5	< 24	< 9
	09/29/16 - 10/27/16	< 6	< 7	< 13	< 8	< 10	< 8	< 10	< 7	< 7	< 30	< 12
	10/27/16 - 12/01/16	< 7	< 6	< 14	< 6	< 14	< 7	< 14	< 7	< 8	< 35	< 11
	12/01/16 - 12/29/16	< 5	< 5	< 12	< 4	< 10	< 5	< 10	< 5	< 5	< 24	< 10
	MEAN	-	-	-	-	-	-	-	-	-	-	-
61	12/30/15 - 01/28/16	< 10	< 8	< 20	< 7	< 19	< 8	< 14	< 7	< 9	< 47	< 12
	01/28/16 - 02/25/16	< 6	< 6	< 12	< 7	< 12	< 6	< 10	< 6	< 4	< 30	< 8
	02/25/16 - 03/31/16	< 5	< 7	< 13	< 4	< 14	< 6	< 10	< 5	< 8	< 28	< 7
	03/31/16 - 04/28/16	< 7	< 5	< 14	< 6	< 11	< 6	< 13	< 6	< 6	< 29	< 9
	04/28/16 - 06/02/16	< 2	< 2	< 6	< 2	< 5	< 3	< 4	< 2	< 2	< 20	< 5
	06/02/16 - 06/30/16	< 6	< 7	< 15	< 6	< 16	< 8	< 14	< 8	< 8	< 41	< 11
	06/30/16 - 07/28/16	< 2	< 2	< 5	< 2	< 5	< 2	< 4	< 2	< 2	< 14	< 5
	07/28/16 - 09/01/16	< 8	< 8	< 16	< 7	< 15	< 9	< 11	< 6	< 7	< 36	< 13
	09/01/16 - 09/29/16	< 6	< 6	< 16	< 6	< 14	< 6	< 12	< 6	< 7	< 32	< 7
	09/29/16 - 10/27/16	< 8	< 7	< 14	< 7	< 13	< 9	< 15	< 7	< 8	< 33	< 7
	10/27/16 - 12/01/16	< 9	< 9	< 22	< 8	< 19 < 8	< 9	< 18 < 7	< 9	< 11 < 5	< 39	< 10
	12/01/16 - 12/29/16	< 4	< 4	< 11	< 5	< 0	< 5	< 7	< 4	< 0	< 17	< 6
	MEAN	-	-	-	-	-	-	-	-	-	-	-

Table C-III.1 CONCENTRATIONS OF GAMMA EMITTERS IN PREDATOR AND BOTTOM FEEDER (FISH) SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016 RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

SITE	COLLECTION PERIOD	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137
4	06/15/16	3949 ± 702	< 45	< 43	< 102	< 41	< 78	< 47	< 49
PREDATOR	10/11/16	3335 ± 864	< 55	< 61	< 86	< 26	< 64	< 52	< 54
	MEAN ± 2 STD DEV	3642 ± 868	-	-	-	-	-	-	-
4	06/15/16	3086 ± 612	< 39	< 34	< 85	< 29	< 82	< 34	< 33
BOTTOM FEEDER	10/11/16	3378 ± 678	< 39	< 29	< 111	< 36	< 95	< 41	< 35
	MEAN ± 2 STD DEV	3232 ± 413	-	-	-	-	-	-	-
6	06/10/16	2885 ± 785	< 57	< 48	< 111	< 49	< 112	< 59	< 45
PREDATOR	10/12/16	3897 ± 983	< 63	< 73	< 148	< 51	< 153	< 66	< 82
	MEAN ± 2 STD DEV	3391 ± 1431	-	-	-	-	-	-	-
6	06/10/16	2586 ± 1133	< 84	< 91	< 151	< 87	< 184	< 61	< 89
BOTTOM FEEDER	10/12/16	3201 ± 770	< 54	< 54	< 109	< 52	< 133	< 84	< 70
	MEAN ± 2 STD DEV	2894 ± 870	-	-	-	-	-	-	-

Table C-IV.1CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

SITE	COLLECTION PERIOD	K-40	Mn-54	Co-58	Co-60	Cs-134	Cs-137
4J	06/29/16	10500 ± 1039	< 46	< 46	< 49	< 39	< 48
	11/18/16	16200 ± 1812	< 63	< 75	< 79	< 58	< 96
ME	EAN ± 2 STD DEV	13350 ± 8061	-	-	-	-	-
4T	06/29/16	25700 ± 3301	< 157	< 158	< 165	< 134	< 149
	11/18/16	18520 ± 2131	< 87	< 97	< 72	< 87	< 122
ME	EAN ± 2 STD DEV	22110 ± 10154	-	-	-	-	-
6F	06/29/16 11/18/16	17760 ± 1690 9115 ± 1553	< 71 < 83	< 73 < 74	< 77 < 70	< 64 < 79	167 ± 90 < 95
ME	EAN ± 2 STD DEV	13438 ± 12226	-	-	-	-	167 ± 0

RESULTS IN UNITS OF PC/KG DRY ± 2 SIGMA

Table C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES **COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016**

COLLECTION		GROUP I	1	GROUP II	GROUP III
PERIOD	1B	1C	1Z	ЗA	5H2
12/29/15 01/04/16					11 ± 4
12/28/15 - 01/04/16 12/30/15 - 01/07/16	18 ± 4	14 ± 5	18 ± 3	17 ± 3	11 ± 4
01/04/16 - 01/11/16	10 ± 4	14 ± 5	10 ± 5	17 ± 5	12 ± 5
01/07/16 - 01/14/16	17 ± 4	18 ± 5	15 ± 3	16 ± 3	12 ± 5
01/11/16 - 01/19/16	17 1 4	10 ± 5	15 ± 5	10 ± 5	16 ± 4
01/14/16 - 01/21/16	16 ± 4	21 ± 5	20 ± 4	17 ± 3	10 1 4
01/19/16 - 01/26/16	10 ± 4	21 ± 5	20 ± 4	17 ± 5	9 ± 4
01/21/16 - 01/28/16	15 ± 4	11 ± 5	12 ± 3	12 ± 3	0 1 4
01/26/16 - 02/01/16			0	0	16 ± 6
01/28/16 - 02/04/16	11 ± 4	19 ± 6	13 ± 4	11 ± 3	
02/01/16 - 02/08/16					17 ± 5
02/04/16 - 02/11/16	9 ± 4	16 ± 5	12 ± 3	11 ± 3	-
02/08/16 - 02/14/16	• - ·				< 8
02/11/16 - 02/18/16	11 ± 4	12 ± 4	9 ± 3	8 ± 3	-
02/14/16 - 02/22/16					12 ± 4
02/18/16 - 02/25/16	13 ± 4	14 ± 4	10 ± 3	10 ± 3	
02/22/16 - 02/29/16					14 ± 5
02/25/16 - 03/03/16	12 ± 4	13 ± 5	10 ± 3	13 ± 3	
02/29/16 - 03/07/16					12 ± 5
03/03/16 - 03/10/16	15 ± 4	15 ± 5	15 ± 3	16 ± 3	
03/07/16 - 03/14/16					14 ± 5
03/10/16 - 03/17/16	10 ± 4	11 ± 4	12 ± 3	11 ± 3	
03/14/16 - 03/21/16					11 ± 5
03/17/16 - 03/24/16	11 ± 4	13 ± 5	13 ± 3	12 ± 3	
03/21/16 - 03/28/16					14 ± 5
03/24/16 - 03/31/16	12 ± 5	10 ± 5	11 ± 4	11 ± 3	
03/28/16 - 04/04/16					18 ± 5
03/31/16 - 04/07/16	15 ± 5	14 ± 5	14 ± 3	13 ± 3	
04/04/16 - 04/11/16					16 ± 5
04/07/16 - 04/14/16	10 ± 4	11 ± 5	10 ± 3	7 ± 3	
04/11/16 - 04/18/16					17 ± 5
04/14/16 - 04/21/16	18 ± 5	16 ± 5	15 ± 4	14 ± 3	
04/18/16 - 04/25/16					14 ± 5
04/21/16 - 04/28/16	15 ± 5	17 ± 5	15 ± 4	17 ± 3	
04/25/16 - 05/03/16					< 5
04/28/16 - 05/05/16	8 ± 4	7 ± 4	8 ± 3	6 ± 3	
05/03/16 - 05/09/16					< 7
05/05/16 - 05/13/16	< 5	10 ± 4	8 ± 3	9 ± 3	
05/09/16 - 05/16/16					10 ± 5
05/13/16 - 05/19/16	14 ± 5	10 ± 5	8 ± 3	10 ± 3	
05/16/16 - 05/23/16					13 ± 5
05/19/16 - 05/26/16	16 ± 5	17 ± 5	15 ± 4	16 ± 3	
05/23/16 - 05/31/16					20 ± 5
05/26/16 - 06/02/16	18 ± 5	23 ± 5	17 ± 3	19 ± 3	
05/31/16 - 06/06/16					13 ± 6
06/02/16 - 06/09/16	8 ± 4	10 ± 5	10 ± 3	10 ± 3	<i>i</i> -
06/06/16 - 06/13/16	<i>i</i> -				10 ± 5
06/09/16 - 06/16/16	13 ± 5	12 ± 5	13 ± 3	14 ± 3	40 5
06/13/16 - 06/20/16	45 5	47 5	47 4	40 0	18 ± 5
06/16/16 - 06/23/16	15 ± 5	17 ± 5	17 ± 4	16 ± 3	40 5
06/20/16 - 06/28/16	40 5	40 5	40 0	40 0	19 ± 5
06/23/16 - 06/30/16	13 ± 5	18 ± 5	13 ± 3	16 ± 3	7.5
06/28/16 - 07/05/16		47 . 5	45 . 0	15 . 0	7 ± 5
06/30/16 - 07/07/16	15 ± 5	17 ± 5	15 ± 3	15 ± 3	

Table C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES **COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016**

COLLECTION		GROUP I	1	GROUP II	GROUP III
PERIOD	1B	1C	1Z	ЗA	5H2
07/05/16 - 07/11/16					14 ± 6
07/07/16 - 07/14/16	15 ± 5	19 ± 5	11 ± 3	15 ± 3	14 ± 0
07/11/16 - 07/19/16	.0 _ 0			.0 _ 0	16 ± 5
07/14/16 - 07/21/16	17 ± 5	21 ± 5	14 ± 3	16 ± 3	
07/19/16 - 07/25/16					18 ± 6
07/21/16 - 07/28/16	22 ± 6	(1)	18 ± 4	18 ± 3	
07/25/16 - 08/01/16		. ,			16 ± 5
07/28/16 - 08/04/16	11 ± 5	16 ± 5	15 ± 4	14 ± 3	
08/01/16 - 08/08/16					13 ± 5
08/04/16 - 08/11/16	11 ± 5	16 ± 5	16 ± 4	14 ± 3	
08/08/16 - 08/15/16					17 ± 5
08/11/16 - 08/18/16	8 ± 5	8 ± 5	9 ± 3	8 ± 3	
08/15/16 - 08/22/16					15 ± 5
08/18/16 - 08/25/16	13 ± 5	15 ± 5	16 ± 4	13 ± 3	
08/22/16 - 08/29/16					18 ± 5
08/25/16 - 09/01/16	22 ± 5	24 ± 5	22 ± 4	19 ± 3	
08/29/16 - 09/06/16					13 ± 4
09/01/16 - 09/08/16	21 ± 5	23 ± 5	20 ± 4	23 ± 4	
09/06/16 - 09/13/16					17 ± 5
09/08/16 - 09/15/16	16 ± 5	20 ± 5	17 ± 4	17 ± 3	
09/13/16 - 09/19/16					22 ± 6
09/15/16 - 09/22/16	13 ± 5	18 ± 5	14 ± 3	14 ± 3	
09/19/16 - 09/26/16					27 ± 6
09/22/16 - 09/29/16	18 ± 5	17 ± 5	21 ± 4	16 ± 3	<i></i>
09/26/16 - 10/03/16	• • •	<u> </u>	40 0		10 ± 5
09/29/16 - 10/06/16	8 ± 4	8 ± 4	10 ± 3	8 ± 3	04 5
10/03/16 - 10/11/16	44 . 5	40 . 5	40 . 0	44 . 0	24 ± 5
10/06/16 - 10/13/16	11 ± 5	16 ± 5	12 ± 3	14 ± 3	10
10/11/16 - 10/17/16	10 · F	45 . 5	20 . 4	16 . 2	12 ± 6
10/13/16 - 10/20/16	19 ± 5	15 ± 5	20 ± 4	16 ± 3	20 + 5
10/17/16 - 10/24/16 10/20/16 - 10/27/16	13 ± 5	13 ± 5	13 ± 3	13 ± 3	20 ± 5
10/24/16 - 10/31/16	15 ± 5	13 ± 5	15 ± 5	15 ± 5	14 ± 5
10/27/16 - 11/03/16	17 ± 6	18 ± 5	17 ± 4	14 ± 3	14 ± 5
10/31/16 - 11/07/16	17 ± 0	10 ± 0	17 ± 4	14 ± 0	15 ± 5
11/03/16 - 11/10/16	13 ± 5	20 ± 6	13 ± 4	18 ± 4	10 2 0
11/07/16 - 11/14/16	10 1 0	20 2 0	10 1 1	10 1 1	19 ± 5
11/10/16 - 11/17/16	28 ± 6	24 ± 5	26 ± 4	20 ± 4	10 2 0
11/14/16 - 11/21/16		-	-	-	28 ± 6
11/17/16 - 11/23/16	22 ± 6	20 ± 6	17 ± 4	22 ± 4	
11/21/16 - 11/28/16					19 ± 5
11/23/16 - 12/01/16	16 ± 5	18 ± 4	16 ± 3	18 ± 3	
11/28/16 - 12/05/16					16 ± 5
12/01/16 - 12/08/16	21 ± 5	21 ± 5	17 ± 4	17 ± 3	
12/05/16 - 12/12/16					10 ± 5
12/08/16 - 12/15/16	16 ± 5	22 ± 5	17 ± 4	20 ± 4	
12/12/16 - 12/19/16					21 ± 6
12/15/16 - 12/22/16	19 ± 4	24 ± 5	21 ± 3	16 ± 3	
12/19/16 - 12/27/16					20 ± 5
12/22/16 - 12/29/16	17 ± 3	16 ± 5	17 ± 3	17 ± 3	
12/27/16 - 01/03/17					14 ± 5
MEAN ± 2 STD DEV	15 ± 8	16 ± 9	14 ± 8	14 ± 8	16 ± 9
	10 ± 0	10 ± 3	14 10	17 I U	10 ± 3

RESULTS IN UNITS OF E-3 PCI/CUBIC METER ± 2 SIGMA

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-V.2

MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

GROUP I - ON-SITE LOCATIONS				GROUP II - INTERMEDIA	LOCATIONS	GROUP III - CONTROL LOCATION					
COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD
12/30/15 - 02/04/16	11	21	16 ± 7	12/30/15 - 02/04/16	11	17	15 ± 6	12/28/15 - 02/01/16	9	16	13 ± 6
02/04/16 - 03/03/16	9	16	12 ± 4	02/04/16 - 03/03/16	8	13	10 ± 5	02/01/16 - 02/29/16	12	17	14 ± 4
03/03/16 - 03/31/16	10	15	12 ± 4	03/03/16 - 03/31/16	11	16	12 ± 5	02/29/16 - 03/28/16	11	14	13 ± 3
03/31/16 - 04/28/16	10	18	14 ± 5	03/31/16 - 04/28/16	7	17	12 ± 8	03/28/16 - 05/03/16	14	18	16 ± 3
04/28/16 - 06/02/16	7	23	13 ± 10	04/28/16 - 06/02/16	6	19	12 ± 11	05/03/16 - 05/31/16	10	20	14 ± 10
06/02/16 - 06/30/16	8	18	13 ± 6	06/02/16 - 06/30/16	10	16	14 ± 6	05/31/16 - 06/28/16	10	19	15 ± 8
06/30/16 - 08/04/16	11	22	16 ± 6	06/30/16 - 08/04/16	14	18	16 ± 3	06/28/16 - 08/01/16	7	18	14 ± 9
08/04/16 - 09/01/16	8	24	15 ± 11	08/04/16 - 09/01/16	8	19	13 ± 10	08/01/16 - 08/29/16	13	18	16 ± 5
09/01/16 - 09/29/16	13	23	18 ± 6	09/01/16 - 09/29/16	14	23	18 ± 8	08/29/16 - 10/03/16	10	27	18 ± 14
09/29/16 - 11/03/16	8	20	14 ± 8	09/29/16 - 11/03/16	8	16	13 ± 6	10/03/16 - 10/31/16	12	24	17 ± 11
11/03/16 - 12/01/16	13	28	19 ± 10	11/03/16 - 12/01/16	18	22	20 ± 4	10/31/16 - 12/05/16	15	28	19 ± 11
12/01/16 - 12/29/16	16	24	19 ± 5	12/01/16 - 12/29/16	16	20	17 ± 4	12/05/16 - 01/03/17	10	21	16 ± 11
12/30/15 - 12/29/16	7	28	15 ± 5	12/30/15 - 12/29/16	6	23	14 ± 5	12/28/15 - 01/03/17	7	28	15 ± 4

Table C-V.3 CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION						
SITE	PERIOD	Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
1B	12/30/15 - 03/31/16	74 ± 29	< 2	< 3	< 3	< 2	< 2
	03/31/16 - 06/30/16	99 ± 25	< 3	< 4	< 3	< 2	< 2
	06/30/16 - 09/29/16	100 ± 28	< 4	< 3	< 4	< 4	< 4
	09/29/16 - 12/29/16	58 ± 18	< 2	< 3	< 3	< 3	< 2
	MEAN ± 2 STD DEV	83 ± 41	-	-	-	-	-
1C	12/30/15 - 03/31/16	66 ± 44	< 4	< 7	< 2	< 4	< 3
	03/31/16 - 06/30/16	90 ± 24	< 3	< 4	< 3	< 3	< 3
	06/30/16 - 09/29/16	67 ± 18	< 3	< 3	< 3	< 2	< 2
	09/29/16 - 12/29/16	75 ± 26	< 4	< 3	< 3	< 4	< 3
	MEAN ± 2 STD DEV	74 ± 23	-	-	-	-	-
1Z	12/30/15 - 03/31/16	54 ± 21	< 2	< 2	< 1	< 2	< 2
	03/31/16 - 06/30/16	78 ± 18	< 2	< 2	< 2	< 2	< 1
	06/30/16 - 09/29/16	66 ± 16	< 1	< 2	< 2	< 2	< 2
	09/29/16 - 12/29/16	71 ± 15	< 2	< 1	< 2	< 2	< 1
	MEAN ± 2 STD DEV	67 ± 20	-	-	-	-	-
ЗA	12/30/15 - 03/31/16	42 ± 25	< 3	< 4	< 2	< 3	< 3
	03/31/16 - 06/30/16	77 ± 25	< 2	< 3	< 2	< 2	< 2
	06/30/16 - 09/29/16	76 ± 14	< 2	< 2	< 2	< 2	< 2
	09/29/16 - 12/29/16	46 ± 10	< 1	< 1	< 1	< 2	< 1
	MEAN ± 2 STD DEV	60 ± 38	-	-	-	-	-
5H2	12/28/15 - 03/28/16	58 ± 41	< 3	< 5	< 4	< 4	< 4
	03/28/16 - 06/28/16	82 ± 27	< 2	< 3	< 2	< 3	< 2
	06/28/16 - 10/03/16	66 ± 20	< 2	< 2	< 2	< 3	< 3
	10/03/16 - 01/03/17	69 ± 16	< 2	< 2	< 3	< 2	< 3
	MEAN ± 2 STD DEV	69 ± 20	-	-	-	-	-

Table C-VI.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN
THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	COLLECTION	_	GROUP I		GROUP II	GROUP III
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PERIOD	1B	1C	1Z	ЗA	5H2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12/28/15 - 01/04/16					~ 17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 52	< 64	~ 20	~ 30	< 1 <i>1</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 52	< 04	< 20	< 00	~ 27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		~ 16	~ 10	~ 12	- 12	< 21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			< 15	< 1Z	< 12	- 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 18	~ 56	< 36	< 35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 40	< 50	< 50	< 55	~ 28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 13	< 52	< 33	~ 13	< 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 45	< 52	< 55	< 15	~ 25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		~ 10	- 18	< 30	< 30	< 25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 40	< 40	< 50	< 50	- 17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 11	< F0			< 17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 44	< 52	< 32	< 32	. 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 07	. 00	. 00	< 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 32	< 37	< 23	< 23	07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 04		. 01	< 27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 29	< 34	< 9	< 21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10				< 33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 46	< 51	< 32	< 32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						< 16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 32	< 37	< 22	< 22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						< 21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/10/16 - 03/17/16	< 36	< 34	< 9	< 9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/14/16 - 03/21/16					< 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/17/16 - 03/24/16	< 53	< 61	< 16	< 37	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/21/16 - 03/28/16					< 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/24/16 - 03/31/16	< 40	< 46	< 28	< 28	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/28/16 - 04/04/16					< 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03/31/16 - 04/07/16	< 36	< 39	< 25	< 24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/04/16 - 04/11/16					< 24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/07/16 - 04/14/16	< 60	< 67	< 41	< 41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/11/16 - 04/18/16					< 39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/14/16 - 04/21/16	< 58	< 66	< 41	< 39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/18/16 - 04/25/16					< 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/21/16 - 04/28/16	< 49	< 54	< 33	< 32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-		-	< 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 25	< 28	< 17	< 17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						< 21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 34	< 36	< 23	< 21	• = •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				- 20		< 18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 62	< 65	< 40	< 39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 02	< 00	< 1 0	< 00	- 21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 66	< 70	- 13	- 10	< 21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		< 00	< 10	< 43	< 40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 10	- 12	. 07	- 24	< 22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 40	< 42	< 21	< 24	. 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		~ 20	~ 20	~ 20	- 10	< 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 30	< 32	< 20	< 10	
06/13/16 06/20/16 < 17					. 10	< 60
06/16/16 - 06/23/16 < 65 < 68 < 43 < 38 06/20/16 - 06/28/16 < 19 06/23/16 - 06/30/16 < 64 < 67 < 43 < 38 06/28/16 - 07/05/16 < 38		< 58	< 57	< 37	< 13	
06/20/16 - 06/28/16 < 19 06/23/16 - 06/30/16 < 64 < 67 < 43 < 38 06/28/16 - 07/05/16 < 38						< 17
06/23/16 - 06/30/16 < 64 < 67 < 43 < 38 06/28/16 - 07/05/16 < 38		< 65	< 68	< 43	< 38	
06/28/16 - 07/05/16 < 38						< 19
		< 64	< 67	< 43	< 38	
06/30/16 - 07/07/16 < 61 < 63 < 40 < 35						< 38
	06/30/16 - 07/07/16	< 61	< 63	< 40	< 35	

Table C-VI.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN
THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

COLLECTION	_	GROUP I		GROUP II	GROUP III
PERIOD	1B	1C	1Z	ЗA	5H2
07/05/16 07/11/16					< 2E
07/05/16 - 07/11/16 07/07/16 - 07/14/16			- 44	. 16	< 35
07/11/16 - 07/19/16	< 65	< 67	< 44	< 16	< 27
07/14/16 - 07/21/16	< 60	< 61	< 40	< 34	< 21
07/19/16 - 07/25/16	< 00	< 01	< 40	< 34	< 25
	- 69	(1)	- 16	- 10	< 25
07/21/16 - 07/28/16	< 68	(1)	< 46	< 18	. 05
07/25/16 - 08/01/16	. 50			. 00	< 25
07/28/16 - 08/04/16	< 50	< 52	< 33	< 29	04
08/01/16 - 08/08/16	45	45	00	00	< 31
08/04/16 - 08/11/16	< 45	< 45	< 30	< 26	
08/08/16 - 08/15/16					< 41
08/11/16 - 08/18/16	< 41	< 40	< 27	< 30	
08/15/16 - 08/22/16					< 54
08/18/16 - 08/25/16	< 40	< 41	< 27	< 25	
08/22/16 - 08/29/16					< 49
08/25/16 - 09/01/16	< 48	< 49	< 31	< 29	
08/29/16 - 09/06/16					< 13
09/01/16 - 09/08/16	< 51	< 51	< 34	< 30	
09/06/16 - 09/13/16					< 35
09/08/16 - 09/15/16	< 36	< 37	< 24	< 8	
09/13/16 - 09/19/16					< 15
09/15/16 - 09/22/16	< 47	< 48	< 32	< 28	
09/19/16 - 09/26/16					< 11
09/22/16 - 09/29/16	< 48	< 50	< 32	< 12	
09/26/16 - 10/03/16					< 14
09/29/16 - 10/06/16	< 36	< 38	< 25	< 22	
10/03/16 - 10/11/16					< 25
10/06/16 - 10/13/16	< 42	< 43	< 29	< 10	
10/11/16 - 10/17/16		-	-	-	< 21
10/13/16 - 10/20/16	< 36	< 36	< 24	< 21	
10/17/16 - 10/24/16			• = •		< 10
10/20/16 - 10/27/16	< 67	< 67	< 23	< 21	
10/24/16 - 10/31/16			1 20	~	< 24
10/27/16 - 11/03/16	< 52	< 50	< 34	< 12	121
10/31/16 - 11/07/16	< 02	< 00	V 0 4	\$ 12	< 32
11/03/16 - 11/10/16	< 55	< 55	< 37	< 32	< 52
11/07/16 - 11/14/16	< 55	< 55	< 57	< 52	< 22
11/10/16 - 11/17/16	< 41	< 40	< 28	< 9	< 22
	< 41	< 40	< 20	< 9	- 10
11/14/16 - 11/21/16	. 66	. 60	- 44	. 20	< 18
11/17/16 - 11/23/16	< 66	< 63	< 44	< 38	- 40
11/21/16 - 11/28/16			. 00	. 04	< 40
11/23/16 - 12/01/16	< 57	< 53	< 36	< 31	. 45
11/28/16 - 12/05/16		40	4 -	45	< 15
12/01/16 - 12/08/16	< 47	< 48	< 15	< 15	10
12/05/16 - 12/12/16			~-		< 18
12/08/16 - 12/15/16	< 55	< 50	< 35	< 16	~~
12/12/16 - 12/19/16					< 32
12/15/16 - 12/22/16	< 27	< 45	< 25	< 26	
12/19/16 - 12/27/16				-	< 12
12/22/16 - 12/29/16	< 22	< 40	< 21	< 8	
12/27/16 - 01/03/17					< 10
MEAN	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CUBIC METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-VII.1

CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	(CONTROL F	ARMS				II	NDICATOR I	ARMS			
PERIOD	С	E	V	D	J	L	Р	R	S	U	W	Х
01/04/16					< 0.5			< 0.6	< 0.6	< 0.5		< 0.4
02/01/16	< 0.8	< 0.9	< 1.0	< 0.9	< 1.0	< 1.0	< 0.8	< 0.9	< 0.9	< 0.9	< 0.9	< 0.8
03/03/16			< 0.6		< 0.6			< 0.6	< 0.5	< 0.5		< 0.5
04/01/16			< 0.7		< 0.4			< 0.5	< 0.4	< 0.4		< 0.4
04/15/16			< 0.8		< 0.5			< 0.4	< 0.5	< 0.6		< 0.3
05/02/16	< 0.6	< 0.5	< 0.6	< 0.4	< 0.5	< 0.5	< 0.6	< 0.7	< 0.5	< 0.8	< 0.5	< 0.7
05/16/16			< 0.9		< 0.6			< 0.4	< 0.6	< 0.5		< 0.6
05/30/16			< 0.8		< 0.8			< 0.8	< 0.8	< 0.8		< 0.8
06/13/16			< 0.7		< 0.6			< 0.7	< 0.9	< 0.8		< 0.9
06/27/16			< 0.8		< 0.6			< 0.6	< 0.8	< 0.5		< 0.7
07/11/16			< 0.4		< 0.3			< 0.3	< 0.3	< 0.3		< 0.3
07/26/16			< 0.7		< 0.6			< 0.6	< 0.4	< 0.5		< 0.5
08/08/16	< 0.6	< 0.8	< 0.7	< 0.9	< 0.6	< 0.7	< 0.7	< 0.8	< 0.7	< 0.7	< 0.8	< 0.7
08/22/16			< 0.8		< 0.9			< 0.8	< 0.7	< 0.7		< 0.7
09/05/16			< 0.6		< 0.7			< 0.6	< 0.7	< 0.7		< 0.5
09/19/16			< 0.8		< 0.7			< 0.8	< 0.6	< 0.6		< 0.6
10/03/16			< 0.5		< 0.7			< 0.8	< 0.8	< 1.0		< 0.7
10/17/16			< 0.7		< 0.6			< 0.6	< 0.6	< 0.8		< 0.6
10/31/16			< 0.7		< 0.8			< 0.5	< 0.5	< 0.9		< 0.6
11/14/16	< 0.8	< 0.8	< 0.8	< 0.8	< 0.7	< 0.7	< 0.8	< 0.7	< 0.6	< 0.9	< 0.7	< 0.8
11/28/16			< 0.5		< 0.4			< 0.4	< 0.3	< 0.4		< 0.3
12/08/16			< 0.9		< 0.9			< 0.8	< 0.8	< 0.8		< 0.6
MEAN	-	-	-	-	-	-	-	-	-	-	-	-

Table C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION					
SITE	PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
С	02/01/16	1257 ± 131	< 6	< 7	< 25	< 6
	05/02/16	1330 ± 144	< 5	< 6	< 31	< 9
	08/08/16	1301 ± 186	< 6	< 9	< 28	< 8
	11/14/16	1278 ± 171	< 8	< 9	< 30	< 8
MEA	N ± 2 STD DEV	1292 ± 63	-	-	-	-
_	00/01/10	1000 000	10	4.0		
E	02/01/16	1209 ± 236	< 10	< 10	< 32	< 14
	05/02/16	1411 ± 199	< 7	< 11	< 47	< 10
	08/08/16	1210 ± 169	< 6	< 7	< 25	< 8
	11/14/16	1287 ± 209	< 6	< 7	< 28	< 6
MEA	N ± 2 STD DEV	1279 ± 190	-	-	-	-
V	01/30/16	1416 ± 195	< 9	< 10	< 47	< 12
•	03/03/16	1270 ± 185	< 7	< 8	< 48	< 12
	04/01/16	1401 ± 140	< 5	< 6	< 23	< 5
	04/15/16	1276 ± 254	< 10	< 13	< 46	< 11
	04/30/16	1312 ± 204	< 8	< 9	< 35	< 12
	05/14/16	1422 ± 197	< 7	< 9	< 37	< 9
	05/28/16	1392 ± 99	< 4	< 5	< 25	< 6
	06/11/16	1474 ± 209	< 8	< 10	< 41	< 8
	06/25/16	1200 ± 151	< 5	< 7	< 32	< 10
	07/09/16	1438 ± 152	< 6	< 7	< 28	< 9
	07/23/16	1278 ± 210	< 8	< 10	< 33	< 14
	08/06/16	1328 ± 194	< 8	< 9	< 36	< 5
	08/20/16	1069 ± 187	< 7	< 9	< 38	< 9
	09/03/16	1307 ± 172	< 7	< 8	< 36	< 13
	09/16/16	1444 ± 196	< 8	< 9	< 41	< 15
	10/01/16	1085 ± 183	< 6	< 8	< 35	< 8
	10/17/16	1397 ± 200	< 9	< 10	< 37	< 11
	10/31/16	1145 ± 165	< 10	< 10	< 51	< 14
	11/12/16	1185 ± 195	< 8	< 9	< 35	< 10
	11/26/16	1142 ± 169	< 8	< 9	< 35	< 13
	12/08/16	1074 ± 174	< 8	< 8	< 35	< 14
MEA	N ± 2 STD DEV	1288 ± 264	-	-	-	-
-	00/04/40	4007 000	2	~		•
D	02/01/16	1397 ± 232	< 8	< 8	< 33	< 8
	05/03/16	1379 ± 231	< 9	< 6	< 19	< 13
	08/09/16	1502 ± 178	< 8	< 8	< 32	< 9
	11/15/16	1349 ± 223	< 7	< 9	< 30	< 9
MEA	N ± 2 STD DEV	1407 ± 133	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

Table C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

C	COLLECTION						
SITE	PERIOD		K-40	Cs-134	Cs-137	Ba-140	La-140
J	01/04/16		1036 ± 167	< 9	< 10	< 33	< 12
	02/01/16		1365 ± 191	< 7	< 7	< 31	< 14
	03/07/16		1704 ± 271	< 8	< 9	< 34	< 10
	04/04/16		1461 ± 182	< 8	< 8	< 37	< 10
	04/18/16		1278 ± 307	< 8	< 13	< 52	< 15
	05/02/16		1171 ± 165	< 7	< 9	< 30	< 12
	05/16/16		1301 ± 191	< 7	< 7	< 27	< 9
	05/30/16		1323 ± 100	< 4	< 4	< 25	< 8
	06/13/16		1277 ± 184	< 5	< 8	< 39	< 9
	06/27/16		1206 ± 145	< 7	< 7	< 38	< 13
	07/11/16		1161 ± 252	< 11	< 14	< 45	< 10
	07/25/16		1204 ± 220	< 9	< 11	< 36	< 5
	08/08/16		1252 ± 254	< 6	< 13	< 35	< 14
	08/22/16		1466 ± 166	< 6	< 9	< 27	< 5
	09/05/16		1489 ± 190	< 7	< 8	< 30	< 11
	09/19/16		2782 ± 247	< 8	< 9	< 31	< 10
	09/19/16	Reanalysis*	3040 ± 239				
	10/03/16		1261 ± 149	< 8	< 7	< 30	< 9
	10/17/16		1239 ± 202	< 8	< 8	< 41	< 9
	10/31/16		1261 ± 175	< 7	< 8	< 40	< 15
	11/14/16		1458 ± 180	< 6	< 8	< 25	< 6
	11/28/16		1199 ± 147	< 8	< 7	< 27	< 9
	12/12/16		1292 ± 140	< 7	< 7	< 24	< 7
MEAN	I ± 2 STD DEV		1445 ± 969	-	-	-	-
L	02/01/16		1219 ± 238	< 10	< 14	< 43	< 11
L	02/01/16		1219 ± 230 1387 ± 229	< 10	< 14 < 11	< 43 < 48	< 11 < 11
	05/02/16		1307 ± 229 1329 ± 167	< 7	< 8	< 40 < 31	< 7
	11/14/16		1329 ± 107 1421 ± 190	< 8	< 7	< 26	< 10
	11/14/10		1421 ± 150			< 20	
MEAN	I ± 2 STD DEV		1339 ± 177	-	-	-	-
Р	02/01/16		1217 ± 212	< 10	< 8	< 33	< 7
	05/02/16		1265 ± 221	< 8	< 11	< 37	< 7
	08/08/16		1068 ± 175	< 8	< 9	< 31	< 9
	11/14/16		1192 ± 202	< 9	< 9	< 30	< 9
MEAN	I ± 2 STD DEV		1186 ± 168	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

*Sample reanalyzed by lab to confirm orignal result which was higher than historical values THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

Table C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

(COLLECTION					
SITE	PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
R	01/04/16	1397 ± 198	< 8	< 9	< 32	< 9
	02/01/16	1186 ± 213	< 13	< 11	< 48	< 12
	03/07/16	1086 ± 206	< 6	< 10	< 27	< 14
	04/04/16	1191 ± 197	< 10	< 8	< 31	< 13
	04/18/16	1293 ± 276	< 11	< 14	< 45	< 10
	05/02/16	1489 ± 241	< 10	< 10	< 45	< 11
	05/16/16	1288 ± 194	< 8	< 11	< 31	< 13
	05/30/16	1270 ± 132	< 4	< 6	< 36	< 10
	06/13/16	1390 ± 192	< 8	< 9	< 42	< 14
	06/27/16	1313 ± 208	< 8	< 8	< 40	< 14
	07/11/16	1375 ± 241	< 11	< 9	< 36	< 8
	07/25/16	1389 ± 190	< 8	< 8	< 30	< 6
	08/08/16	1332 ± 187	< 8	< 8	< 30	< 11
	08/22/16	1310 ± 146	< 5	< 6	< 22	< 7
	09/05/16	1680 ± 210	< 7	< 8	< 32	< 11
	09/19/16	1171 ± 171	< 5	< 6	< 22	< 8
	10/03/16	1303 ± 196	< 6	< 8	< 34	< 9
	10/17/16	1003 ± 214	< 10	< 11	< 38	< 8
	10/31/16	1348 ± 196	< 8	< 8	< 47	< 9
	11/14/16	1400 ± 189	< 8	< 7	< 27	< 9
	11/28/16	1127 ± 155	< 6	< 7	< 28	< 8
	12/12/16	1333 ± 162	< 5	< 7	< 26	< 5
MEAI	N ± 2 STD DEV	1303 ± 287	-	-	-	-
S	01/04/16	1458 ± 155	< 6	< 7	< 28	< 8
Ũ	02/01/16	1426 ± 227	< 9	< 9	< 35	< 13
	03/08/16	1301 ± 237	< 11	< 13	< 51	< 11
	04/04/16	1314 ± 176	< 6	< 8	< 32	< 12
	04/18/16	1251 ± 236	< 13	< 13	< 45	< 13
	05/02/16	1255 ± 202	< 9	< 11	< 34	< 14
	05/16/16	1456 ± 170	< 8	< 8	< 32	< 7
	05/30/16	1254 ± 115	< 5	< 5	< 32	< 9
	06/13/16	1323 ± 177	< 7	< 7	< 34	< 9
	06/27/16	1348 ± 197	< 7	< 9	< 39	< 13
	07/11/16	1278 ± 200	< 9	< 9	< 32	< 9
	07/25/16	1337 ± 185	< 7	< 9	< 34	< 9
	08/08/16	1399 ± 237	< 9	< 12	< 46	< 8
	08/22/16	1467 ± 200	< 8	< 8	< 34	< 8
	09/05/16	1376 ± 224	< 8	< 10	< 33	< 10
	09/19/16	1269 ± 165	< 6	< 7	< 24	< 7
	10/03/16	1310 ± 213	< 8	< 7	< 28	< 10
	10/17/16	1433 ± 196	< 9	< 9	< 32	< 10
	10/31/16	1343 ± 174	< 7	< 9	< 41	< 15
	11/14/16	1368 ± 220	< 9	< 11	< 41	< 9
	11/28/16	1252 ± 209	< 6	< 9	< 34	< 8
	12/12/16	1120 ± 161	< 7	< 6	< 27	< 8
MEAI	N ± 2 STD DEV	1334 ± 172	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION		_	_	_	
SITE	PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
U	01/04/16	1077 ± 192	< 8	< 8	< 26	< 9
	02/01/16	1183 ± 202	< 7	< 9	< 37	< 10
	03/07/16	1114 ± 165	< 6	< 7	< 28	< 7
	04/04/16	997 ± 166	< 7	< 10	< 36	< 13
	04/18/16	941 ± 215	< 8	< 8	< 28	< 10
	05/02/16	1263 ± 298	< 10	< 13	< 55	< 13
	05/16/16	1107 ± 191	< 7	< 8	< 37	< 11
	05/30/16	1304 ± 124	< 5	< 5	< 30	< 9
	06/13/16	1302 ± 163	< 7	< 9	< 34	< 12
	06/27/16	1297 ± 215	< 8	< 8	< 46	< 7
	07/11/16	1328 ± 246	< 6	< 11	< 39	< 14
	07/26/16	1269 ± 215	< 9	< 9	< 34	< 8
	08/08/16	1126 ± 235	< 9	< 8	< 43	< 12
	08/22/16	1237 ± 137	< 5	< 7	< 20	< 5
	09/05/16	1225 ± 140	< 6	< 7	< 29	< 8
	09/19/16	1076 ± 184	< 8	< 11	< 37	< 12
	10/03/16	1110 ± 162	< 6	< 7	< 24	< 8
	10/17/16	1202 ± 164 1209 ± 147	< 7 < 7	< 8 < 8	< 22 < 43	< 6 < 14
	10/31/16 11/14/16	1209 ± 147 1546 ± 232	_	< 8 < 8	< 43 < 33	< 14 < 10
	11/28/16	1340 ± 232 1237 ± 213	< 7 < 8	< 0 < 11	< 33 < 38	< 10 < 14
	12/12/16	1237 ± 213 1206 ± 147	< 5	< 7	< 18	< 7
	12/12/10	1200 ± 147				
MEA	N ± 2 STD DEV	1198 ± 257	-	-	-	-
W	02/02/16	1193 ± 128	< 4	< 5	< 17	< 5
	05/03/16	1489 ± 198	< 7	< 8	< 36	< 9
	08/09/16	1433 ± 214	< 8	< 9	< 25	< 9
	11/15/16	1468 ± 177	< 10	< 11	< 37	< 11
MEA	N ± 2 STD DEV	1396 ± 274	-	-	-	-
х	01/04/16	1236 ± 152	< 8	< 8	< 31	< 8
	02/01/16	1241 ± 222	< 9	< 10	< 45	< 14
	03/07/16	1466 ± 212	< 9	< 9	< 36	< 7
	04/04/16	1325 ± 174	< 8	< 10	< 29	< 9
	04/18/16	1471 ± 275	< 11	< 12	< 44	< 13
	05/02/16	1438 ± 229	< 7	< 8	< 29	< 8
	05/16/16	1398 ± 177	< 8	< 8	< 31	< 6
	05/30/16	1221 ± 105	< 5	< 4	< 28	< 9
	06/13/16	1197 ± 193	< 7	< 9	< 43	< 14
	06/27/16	1272 ± 222	< 10	< 11	< 41	< 14
	07/11/16	1287 ± 197	< 8	< 8	< 23	< 9
	07/25/16	1131 ± 195	< 8	< 9	< 36	< 9
	08/08/16	1439 ± 230	< 8	< 8	< 34	< 10
	08/22/16	1465 ± 203	< 6	< 7	< 39	< 12
	09/05/16	1312 ± 172	< 6	< 7	< 25	< 11
	09/19/16	1399 ± 176	< 5	< 7	< 27	< 8
	10/03/16	1219 ± 188	< 8	< 10	< 34	< 9
	10/17/16	1330 ± 150	< 11	< 9	< 34	< 8
	10/31/16	1370 ± 132	< 7	< 7	< 35	< 10
	11/14/16	1325 ± 188	< 9	< 12	< 32	< 9
	11/28/16	1300 ± 206	< 9	< 9	< 42	< 14
	12/12/16	1204 ± 163	< 6	< 8	< 25	< 9
MEA	N ± 2 STD DEV	1320 ± 200	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES $$\mathbf{C-17}$$

Table C-VIII.1

CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

COLLECTION

SITE	PERIOD	VEGETATION TYPE	Be-7	K-40	Mn-54	Co-58	Co-60	I-131	Cs-134	Cs-137
1B	06/20/16	Beira Kale Leaves	401 ± 336	3085 ± 484	< 29	< 31	< 28	< 60	< 29	< 32
	06/20/16	Cabbage Leaves	< 342	1093 ± 648	< 43	< 45	< 47	< 59	< 40	< 48
	06/20/16	Collard Leaves	< 278	2632 ± 457	< 29	< 29	< 19	< 40	< 22	< 30
	07/20/16	Beira Kale Leaves	< 370	1545 ± 499	< 36	< 33	< 36	< 40	< 34	< 44
	07/20/16	Cabbage Leaves	< 324	1461 ± 504	< 30	< 27	< 28	< 46	< 34	< 41
	07/20/16	Collard Greens Leaves	< 408	1829 ± 664	< 34	< 35	< 34	< 45	< 38	< 45
	08/24/16	Beira Kale Leaves	< 303	1141 ± 450	< 37	< 37	< 37	< 59	< 32	< 39
	08/24/16	Collard Leaves	< 358	1304 ± 491	< 36	< 34	< 26	< 56	< 33	< 41
	08/24/16	Head Cabbage Leaves	< 288	1470 ± 397	< 28	< 25	< 29	< 47	< 26	< 27
	09/20/16	Cabbage Leaves	< 372	1607 ± 512	< 34	< 37	< 38	< 48	< 40	< 37
	09/20/16	Collard Leaves	< 338	797 ± 523	< 39	< 38	< 43	< 48	< 38	< 50
	09/20/16	Kale Leaves	< 196	940 ± 398	< 26	< 24	< 23	< 30	< 27	< 25
		MEAN ± 2 STD DEV	401 ± 0	1575 ± 1347	-	-	-	-	-	-
1C	06/20/16	Cabbage Leaves	344 ± 278	2974 ± 715	< 24	< 29	< 41	< 59	< 29	< 34
	06/20/16	Collard Leaves	< 322	4031 ± 697	< 34	< 35	< 42	< 59	< 33	< 35
	06/20/16	Field Corn Leaves	588 ± 240	1477 ± 394	< 20	< 26	< 18	< 47	< 23	< 23
	07/20/16	Cabbage Leaves	< 257	1227 ± 428	< 29	< 26	< 26	< 28	< 27	< 32
	07/20/16	Collard Greens Leaves	< 462	709 ± 624	< 43	< 51	< 65	< 58	< 51	< 50
	07/20/16	Field Corn Leaves	1278 ± 380	1001 ± 478	< 39	< 31	< 48	< 43	< 30	< 36
	08/24/16	Beria Kale Leaves	< 319	2167 ± 499	< 28	< 29	< 27	< 55	< 33	< 30
	08/24/16	Field Corn Leaves	2175 ± 406	1335 ± 444	< 31	< 29	< 27	< 51	< 25	< 23
	08/24/16	Head Cabbage Leaves	< 195	1319 ± 288	< 19	< 17	< 12	< 34	< 16	< 21
	09/20/16	Cabbage Leaves	< 254	1760 ± 381	< 21	< 24	< 20	< 33	< 29	< 29
	09/20/16	Field Corn Leaves	2315 ± 508	2141 ± 650	< 40	< 42	< 39	< 54	< 39	< 46
	(1)	MEAN ± 2 STD DEV	1340 ± 1791	1831 ± 1929	_	_	-	_	_	_
		MEAN 12 OID DEV	1040 ± 1701	1001 1 1020						
2Q	06/20/16	Broccoli Leaves	414 ± 296	3271 ± 608	< 30	< 25	< 31	< 58	< 29	< 33
	06/20/16	Cauliflower Leaves	300 ± 197	3365 ± 498	< 23	< 25	< 25	< 44	< 25	< 24
	06/20/16	Kale Leaves	< 245	5493 ± 575	< 24	< 21	< 22	< 42	< 20	< 23
	07/20/16	Broccoli Leaves	< 318	2494 ± 522	< 30	< 26	< 29	< 35	< 27	< 35
	07/20/16	Cabbage Leaves	< 283	3651 ± 618	< 29	< 24	< 39	< 30	< 21	< 28
	07/20/16	Cauliflower Leaves	412 ± 219	4430 ± 684	< 29	< 26	< 25	< 28	< 23	< 32
	08/24/16	Broccoli Leaves	< 228	3077 ± 460	< 22	< 22	< 24	< 38	< 18	< 26
	08/24/16	Cabbage Leaves	< 197	4110 ± 501	< 22	< 20	< 23	< 40	< 20	< 22
	08/24/16	Kale Leaves	< 270	5710 ± 587	< 25	< 27	< 25	< 53	< 34	< 29
	09/20/16	Broccoli Leaves	< 239	1757 ± 429	< 26	< 28	< 26	< 37	< 24	< 32
	09/20/16	Cabbage Leaves	< 267	2083 ± 511	< 24	< 20	< 31	< 33	< 25	< 27
	09/20/16	Kale Leaves	< 320	4351 ± 702	< 37	< 42	< 32	< 48	< 37	< 36
		MEAN ± 2 STD DEV	375 ± 131	3649 ± 2478	-	-	-	-	-	-

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-VIII.1

CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

COLLECTION

SITE	PERIOD	VEGETATION TYPE	Be-7	K-40	Mn-54	Co-58	Co-60	I-131	Cs-134	Cs-137
3Q	06/20/16	Collard Leaves	< 231	6166 ± 460	< 21	< 23	< 22	< 45	< 22	< 23
	06/20/16	Kale Leaves (2)	< 278	6106 ± 680	< 28	< 29	< 25	< 52	< 29	< 26
	06/20/16	Swiss Chard Leaves	< 398	4149 ± 755	< 34	< 28	< 33	< 49	< 31	< 32
	07/20/16	Collard Greens Leaves (2)	< 367	5648 ± 916	< 50	< 39	< 42	< 53	< 40	< 48
	07/20/16	Kale Leaves	< 384	4625 ± 835	< 39	< 47	< 39	< 40	< 36	< 39
	07/20/16	Swiss Chard Leaves	335 ± 281	5936 ± 874	< 34	< 34	< 18	< 32	< 24	< 38
	08/24/16	Collard Leaves	549 ± 289	5099 ± 733	< 28	< 29	< 31	< 59	< 32	< 30
	08/24/16	Kale Leaves	445 ± 303	6230 ± 849	< 35	< 27	< 38	< 59	< 30	< 35
	08/24/16	Swiss Chard Leaves (2)	< 319	4816 ± 642	< 29	< 28	< 30	< 58	< 32	< 34
	09/20/16	Kale Leaves	< 239	5004 ± 495	< 25	< 26	< 22	< 34	< 32	< 28
	09/20/16	Sweet Corn Leaves	1830 ± 498	4262 ± 783	< 45	< 42	< 55	< 57	< 40	< 44
	09/20/16	Swiss Chard Leaves (2)	< 420	6278 ± 887	< 45	< 39	< 33	< 44	< 39	< 41
		MEAN ± 2 STD DEV	790 ± 1398	5360 ± 1587	-	-	-	-	-	-
55	06/20/16	Broccoli Leaves	< 304	5738 ± 615	< 31	< 26	< 22	< 50	< 25	< 24
	06/20/16	Cabbage Leaves	< 253	5058 ± 659	< 26	< 23	< 27	< 50	< 28	< 27
	06/20/16	Collard Leaves	< 311	5707 ± 721	< 31	< 21	< 30	< 50	< 25	< 28
	07/20/16	Cabbage Leaves	< 311	3843 ± 739	< 26	< 25	< 39	< 35	< 29	< 42
	07/20/16	Head Lettuce Leaves	< 213	1750 ± 473	< 30	< 28	< 32	< 34	< 29	< 34
	07/20/16	Sweet Corn Leaves	1358 ± 487	5300 ± 1024	< 44	< 48	< 26	< 46	< 44	< 50
	08/24/16	Red Beet Leaves	< 359	10350 ± 883	< 30	< 36	< 29	< 59	< 32	< 33
	08/24/16	Sweet Corn Leaves	2043 ± 330	5078 ± 620	< 30	< 26	< 27	< 48	< 23	< 26
	08/24/16	Sweet Potato Leaves	900 ± 266	7951 ± 592	< 25	< 26	< 28	< 47	< 28	< 24
	09/20/16	Cabbage Leaves	< 265	3706 ± 671	< 32	< 26	< 29	< 41	< 27	< 34
	09/20/16	Lettuce Leaves	< 259	4406 ± 730	< 26	< 26	< 31	< 39	< 29	< 35
	09/20/16	Red Beet Leaves	417 ± 244	6293 ± 852	< 30	< 41	< 32	< 38	< 34	< 35
		MEAN ± 2 STD DEV	1179 ± 1385	5432 ± 4342	-	-	-	-	-	-

Table C-IX.1 QUARTERLY OSLD RESULTS FOR PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF MILLIREM/STD. MONTH ± STANDARD DEVIATIONS

STATION CODE	MEAN ± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
2	10.1 ± 0.3	10.0	10.1	9.9	10.2
5	9.8 ± 0.9	9.6	10.2	9.3	10.2
14	10.1 ± 0.5	10.4	10.2	10.1	9.8
15	10.0 ± 1.9	11.0	10.1	8.7	10.2
16	10.2 ± 0.5	9.8	10.3	10.3	10.2
17	11.7 ± 0.6	11.4	12.1	11.6	11.6
18	10.5 ± 0.3	10.7	10.5	10.4	10.5
19	9.7 ± 0.6	9.7	10.0	9.3	9.7
1A	10.3 ± 0.4	10.6	10.4	10.1	10.2
1B	9.3 ± 0.6	9.4	8.9	9.2	9.6
1C	10.6 ± 0.6	10.7	10.8	10.6	10.1
1D	10.5 ± 0.3	10.3	10.4	10.4	10.7
1E	10.0 ± 0.5	9.9	10.0	9.8	10.4
1F	11.5 ± 0.7	11.4	11.9	11.1	11.4
1G	7.5 ± 0.9	7.5	7.7	6.8	7.8
1H	10.5 ± 0.3	10.2	10.5	10.6	10.5
11	9.6 ± 0.6	9.3	9.8	9.3	9.8
1J	11.7 ± 0.4	11.5	11.6	11.6	12.0
1K	11.5 ± 0.7	11.1	11.6	11.3	11.9
1L	9.0 ± 1.1	9.8	8.9	8.7	8.7
1M	7.1 ± 0.9	7.7	6.9	6.6	7.1
1P	7.7 ± 0.8	8.0	7.6	7.2	8.1
1Q	8.6 ± 0.5	8.8	8.6	8.3	8.8
1R	13.4 ± 0.7	12.9	13.3	13.6	13.6
1T	10.7 ± 0.9	10.0	11.0	10.6	11.0
22	10.6 ± 0.8	10.4	10.9	10.1	11.0
23	10.7 ± 1.4	9.7	11.2	10.7	11.1
24	8.8 ± 0.8	9.0	8.3	8.6	9.2
26	11.6 ± 0.3	11.6	11.8	11.4	11.7
27	10.5 ± 0.6	10.2	10.7	10.3	10.8
2B	9.7 ± 0.3	9.8	9.7	9.5	9.9
32	10.7 ± 0.8	10.4	11.2	10.4	10.7
ЗA	8.1 ± 0.3	8.2	8.1	7.9	8.3
40	12.0 ± 0.9	11.3	12.1	12.4	12.0
42	9.5 ± 1.3	9.7	9.4	8.6	10.2
43	11.3 ± 0.9	10.8	11.8	11.5	11.0
44	10.3 ± 0.9	9.9	10.9	10.1	10.2
45	10.9 ± 0.5	10.9	11.0	10.5	11.1
46	9.7 ± 0.8	9.6	9.7	9.2	10.2
47	11.0 ± 0.6	10.8	10.8	11.1	11.4
48	10.5 ± 0.3	10.5	10.7	10.3	10.6
49	10.5 ± 0.7	10.0	10.5	10.5	10.9
4K	7.4 ± 1.0	7.8	7.3	6.7	7.6
50	11.9 ± 1.5	11.5	13.0	11.3	11.9
51	10.3 ± 0.4	10.2	10.5	10.0	10.3
6B	9.1 ± 1.0	9.2	9.0	8.5	9.7
1NN	10.8 ± 0.8	10.7	10.4	10.7	11.3
31A	9.2 ± 0.7	8.9	9.6	8.9	9.2

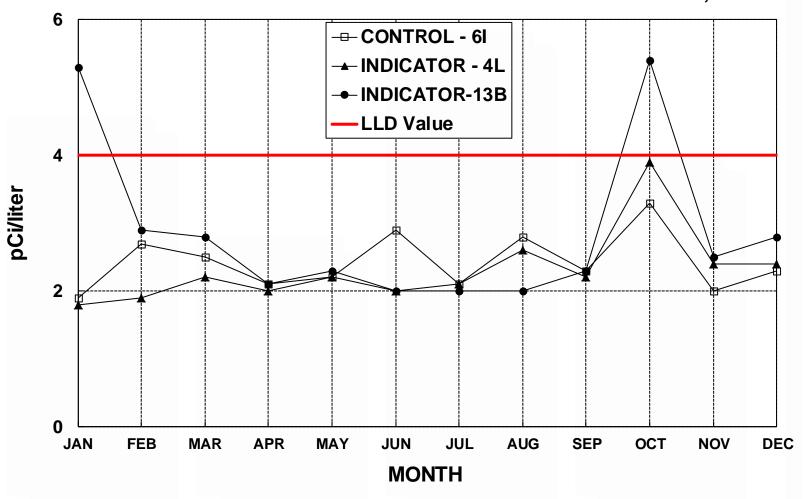
Table C-IX.2MEAN QUARTERLY OSLD RESULTS FOR THE SITE BOUNDARY, INTERMEDIATE,
AND CONTROL LOCATIONS FOR PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION	SITE BOUNDARY	INTERMEDIATE	CONTROL	
_	PERIOD	± 2 S.D.	± 2 S.D.	± 2 S.D.	-
	JAN-MAR	10.0 ± 2.6	10.1 ± 1.9	9.8 ± 1.4	
	APR-JUN	10.1 ± 3.2	10.5 ± 2.5	9.8 ± 2.0	
	JUL-SEP	9.9 ± 3.5	9.9 ± 2.5	9.7 ± 1.7	
	OCT-DEC	10.2 ± 3.1	10.4 ± 2.0	9.9 ± 1.1	

Table C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR
PEACH BOTTOM ATOMIC POWER STATION, 2016

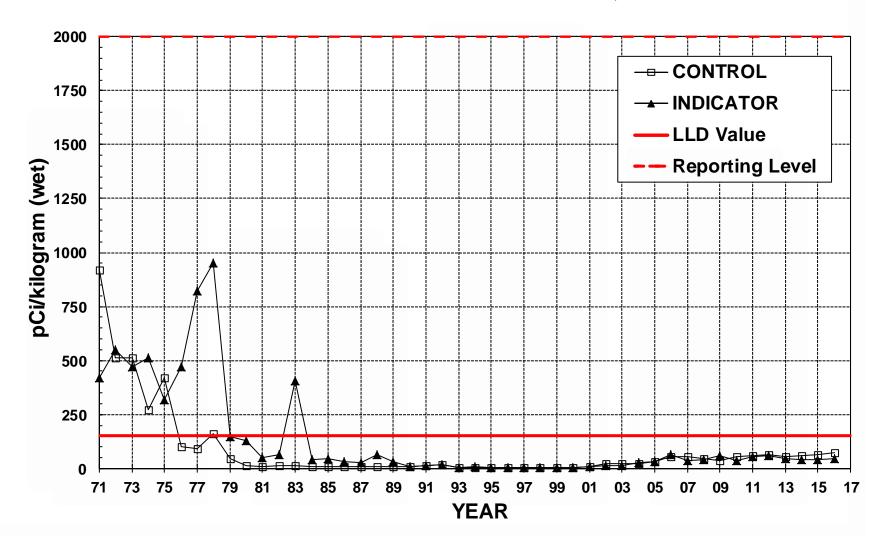
	SAMPLES	PERIOD PERIOD	PERIOD MEAN
LOCATION	ANALYZED	MINIMUM MAXIMUM	± 2 S.D.
SITE BOUNDARY	84	6.6 13.6	10.1 ± 3.1
INTERMEDIATE	92	6.7 13.0	10.2 ± 2.3
CONTROL	16	8.3 10.7	9.8 ± 1.4

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH


SITE BOUNDARY STATIONS - 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1NN, 1P, 1Q, 1R, 1T, 2, 2B, 40

INTERMEDIATE STATIONS - 14, 15, 17, 22, 23, 26, 27, 31A, 32, 3A, 42, 43, 44, 45, 46, 47 48, 49, 4K, 5, 50, 51, 6B

CONTROL STATIONS - 16, 18, 19, 24


FIGURE C-1

MONTHLY TOTAL GROSS BETA CONCENTRATIONS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 2016

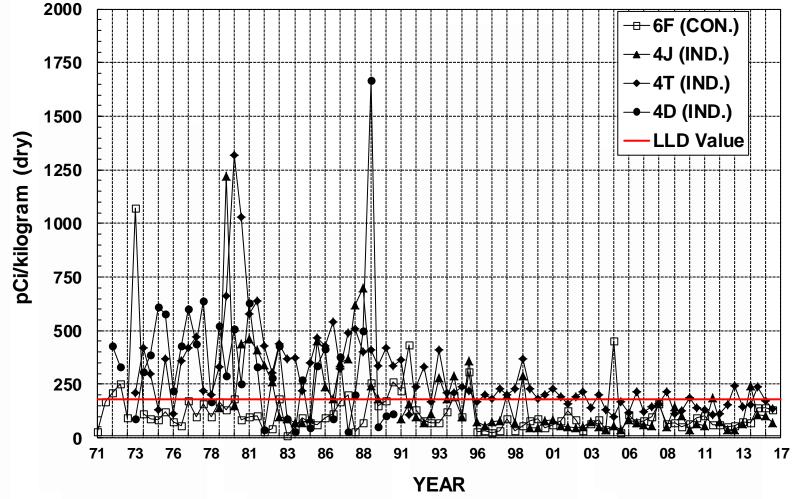
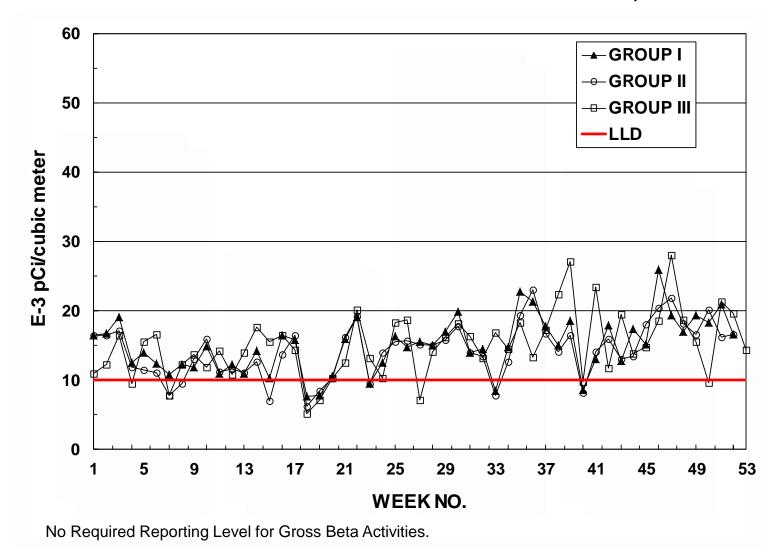
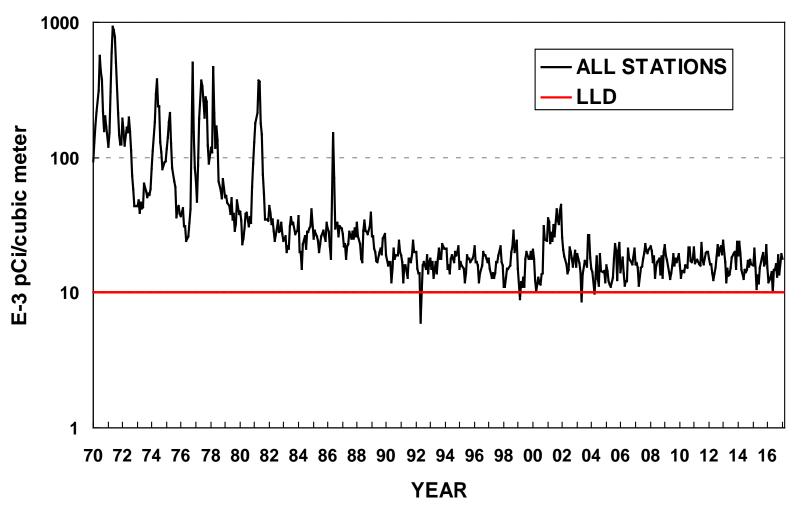

C-22

FIGURE C-2 MEAN ANNUAL CS-137 CONCENTRATIONS IN FISH SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 1971 – 2016

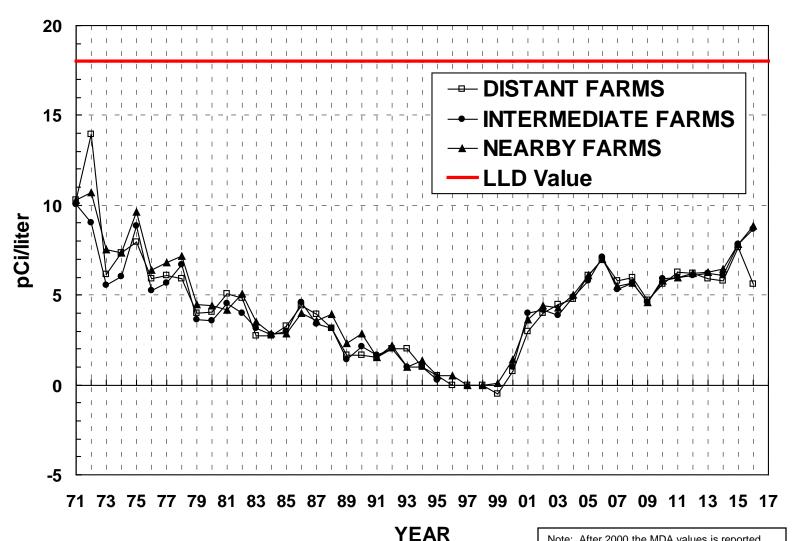
FIGURE C-3




No sample collected from Station 4J in 1990 and Station 4D discontinued beginning 1991

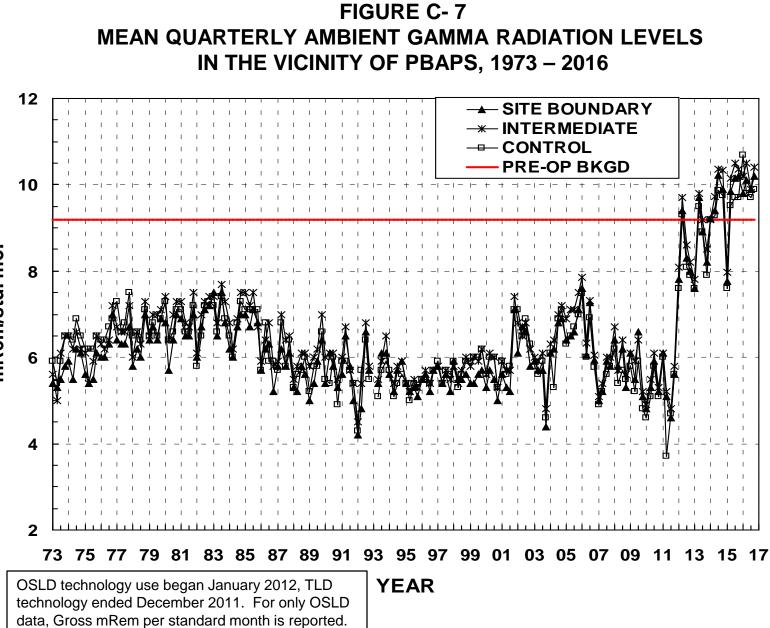
C-24

FIGURE C-4 MEAN WEEKLY GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 2016

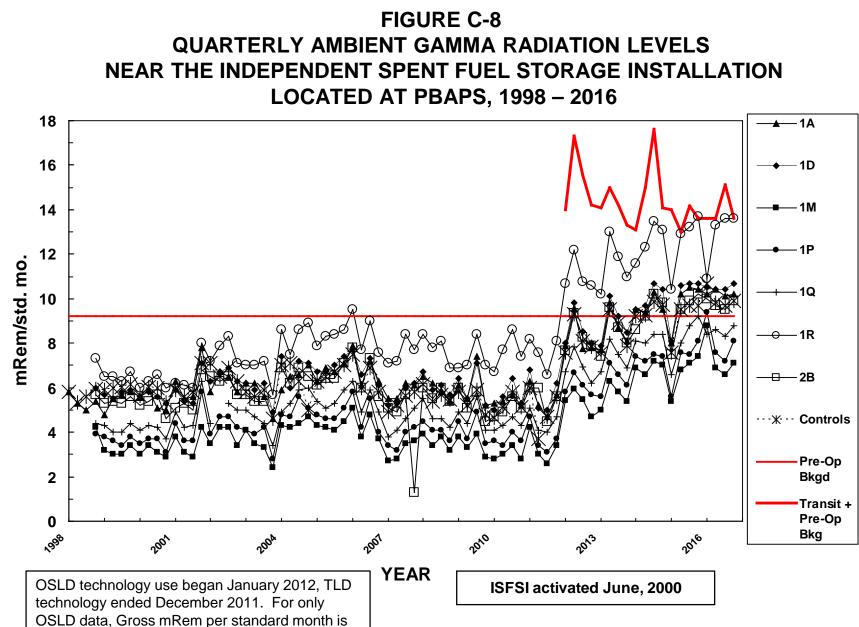


No Required Reporting Level for Gross Beta Activities.

C-26


FIGURE C-6 MEAN ANNUAL CS-137 CONCENTRATIONS IN MILK SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 1971 - 2016

Intermediate Farms Discontinued from 1995 - 1999 Cs-137 milk Reporting Level = 70 pCi/liter


Note: After 2000 the MDA values is reported, while previously the measured activity was reported, even if less than MDA.

C-27

C-28

C-29

reported. TLD data was reported as Net Value.

APPENDIX D

DATA TABLES AND FIGURES QC LABORATORY

TABLE D-I.1

CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

COLLECTION PERIOD	4L
JAN	< 1.9
FEB	< 1.9
MAR	< 1.9
APR	< 1.8
MAY	< 1.8
JUN	< 1.6
JUL	< 1.7
AUG	< 1.9
SEP	< 1.7
OCT	< 1.1
NOV	< 1.7
DEC	< 1.8
MEAN	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE D-I.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN
DRINKING WATER SAMPLES COLLECTED IN THE VICINITY
OF PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	4L
JAN	< 1.8
FEB	< 0.9
MAR	1.9 ± 0.9
APR	< 1.7
MAY	1.9 ± 0.9
JUN	2.8 ± 0.9
JUL	2.2 ± 1.0
AUG	2.7 ± 0.9
SEP	2.1 ± 1.0
OCT	1.7 ± 0.4
NOV	2.2 ± 1.0
DEC	2.1 ± 1.0
MEAN ± 2 STD DEV	2.2 ± 0.7

TABLE D-I.3CONCENTRATIONS OF TRITIUM IN DRINKING WATER
SAMPLES COLLECTED IN THE VICINITY OF
PEACH BOTTOM ATOMIC POWER STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	
PERIOD	4L
JAN-MAR	< 145
APR-JUN	< 150
JUL-SEP	< 157
OCT-DEC	< 153
MEAN	-

 TABLE D-I.4
 CONCENTRATIONS OF I-131 IN DRINKING WATER

 SAMPLES COLLECTED IN THE VICINITY OF

 PEACH BOTTOM ATOMIC POWER STATION, 2016

 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	
PERIOD	4L
JAN	< 0.4
FEB	< 0.3
MAR	< 0.2
APR	< 0.2
MAY	< 0.3
JUN	< 0.3
JUL	< 0.4
AUG	< 0.1
SEP	< 0.2
OCT	< 0.2
NOV	< 0.3
DEC	< 0.3
MEAN	-

TABLE D-I.5

CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016

SITE	COLLECTION PERIOD	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
4L	JAN	< 2	< 4	< 1	< 2	< 4	< 5	< 2	< 3	< 3	< 15	< 4
	FEB	< 2	< 4	< 2	< 2	< 4	< 4	< 3	< 3	< 3	< 13	< 3
	MAR	< 2	< 5	< 2	< 2	< 5	< 2	< 3	< 2	< 3	< 17	< 2
	APR	< 3	< 7	< 3	< 2	< 4	< 6	< 3	< 4	< 3	< 15	< 3
	MAY	< 2	< 4	< 2	< 2	< 5	< 5	< 4	< 2	< 2	< 17	< 4
	JUN	< 2	< 4	< 3	< 2	< 3	< 3	< 4	< 2	< 3	< 13	< 2
	JUL	< 2	< 4	< 2	< 2	< 3	< 4	< 3	< 1	< 2	< 19	< 8
	AUG	< 2	< 5	< 3	< 3	< 4	< 4	< 3	< 2	< 2	< 32	< 4
	SEP	< 3	< 4	< 2	< 2	< 4	< 6	< 4	< 3	< 3	< 18	< 2
	OCT	< 2	< 2	< 2	< 3	< 4	< 5	< 4	< 3	< 4	< 29	< 5
	NOV	< 2	< 4	< 2	< 1	< 3	< 5	< 3	< 2	< 2	< 23	< 6
	DEC	< 3	< 3	< 2	< 3	< 5	< 5	< 2	< 2	< 4	< 12	< 2
	MEAN	-	-	-	-	-	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE D-II.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN AIR PARTICULATE
AND 1-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF
PEACH BOTTOM ATOMIC POWER STATION, 2016

COLLECTION	1A	1A
PERIOD	GROSS BETA	I-131
1	28 ± 3	< 10
2	29 ± 4	< 11
3	32 ± 4	< 10
4	27 ± 4	< 13
5	20 ± 4	< 11
6	19 ± 2	< 13
7	12 ± 3	< 14
8	17 ± 3	< 12
9	21 ± 3	< 17
10	23 ± 3	< 9
11	15 ± 3	< 10
12	20 ± 3	< 13
13	20 ± 3	< 9
14	19 ± 3	< 7
15	16 ± 3	< 12
16	28 ± 3	< 11
17	23 ± 3	< 14
18	10 ± 3	< 9
19	11 ± 3	< 9
20	17 ± 3	< 9
21	23 ± 3	< 12
22	26 ± 3	< 13
23	14 ± 3	< 13
24	23 ± 3	< 11
25	20 ± 3	< 12
26	23 ± 3	< 11
27	25 ± 3	< 12
28	21 ± 4	< 7
29	27 ± 4	< 12
30	28 ± 4	< 7
31	26 ± 3	< 13
32	22 ± 4	< 10
33	14 ± 3	< 9
34	26 ± 4	< 10
35	32 ± 4	< 12
36	26 ± 4	< 11
37	31 ± 3	< 10
38	22 ± 3	< 7
39	27 ± 3	< 10
40	16 ± 3	< 8
41	19 ± 3	< 12
42	32 ± 4	< 14
43	17 ± 4	< 11
44	27 ± 3	< 13
45	26 ± 3	< 12
46	37 ± 4	< 7
47	32 ± 4 29 ± 3	< 19
48		< 15
49	24 ± 4	< 14
50	32 ± 4	< 7
51	28 ± 3	< 7
52	34 ± 3	< 9
MEAN	23 ± 13	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

TABLE D-II.2 CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES **COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2016**

SITE	COLLECTION PERIOD	Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
1A	12/30/15 - 03/31/16	69 ± 11	< 0.3	< 0.4	< 0.4	< 0.4	< 0.5
	03/31/16 - 06/30/16	85 ± 11	< 0.5	< 0.3	< 0.3	< 0.4	< 0.3
	06/30/16 - 09/29/16	81 ± 13	< 0.6	< 0.7	< 0.4	< 0.6	< 0.4
	09/29/16 - 12/29/16	64 ± 11	< 0.3	< 0.6	< 0.2	< 0.5	< 0.3
	MEAN ± 2 STD DEV	75 ± 20	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

TABLE D-III.1CONCENTRATIONS OF I-131 BY CHEMICAL SEPARATION AND
GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY
OF PEACH BOTTOM ATOMIC POWER STATION, 2016

SITE	COLLECTION PERIOD	I-131	K-40	Cs-134	Cs-137	Ba-140	La-140
J	02/01/16	< 0.2	1348 ± 85	< 3	< 3	< 19	< 3
	05/02/16	< 0.4	1367 ± 110	< 2	< 4	< 9	< 2
	08/08/16	< 0.3	1479 ± 96	< 3	< 3	< 58	< 9
	11/14/16	< 0.5	1379 ± 97	< 3	< 3	< 44	< 5
	MEAN ± 2 STD DEV	-	1393 ± 117	-	-	-	-
S	02/01/16	< 0.2	1341 ± 84	< 2	< 2	< 19	< 6
	05/02/16	< 0.5	1342 ± 115	< 4	< 2	< 15	< 4
	08/08/16	< 0.3	1327 ± 101	< 3	< 3	< 53	< 6
	11/14/16	< 0.3	1414 ± 99	< 2	< 3	< 30	< 4
	MEAN ± 2 STD DEV	-	1356 ± 79	-	-	-	-
V	01/30/16	< 0.2	1326 ± 85	< 3	< 2	< 21	< 4
	04/30/16	< 0.3	1320 ± 95	< 2	< 3	< 15	< 1
	08/06/16	< 0.4	1356 ± 92	< 2	< 2	< 42	< 10
	11/12/16	< 0.5	1268 ± 96	< 3	< 3	< 47	< 12
	MEAN ± 2 STD DEV	-	1318 ± 73	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE D-IV.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY
OF PEACH BOTTOM ATOMIC POWER STATION, 2016

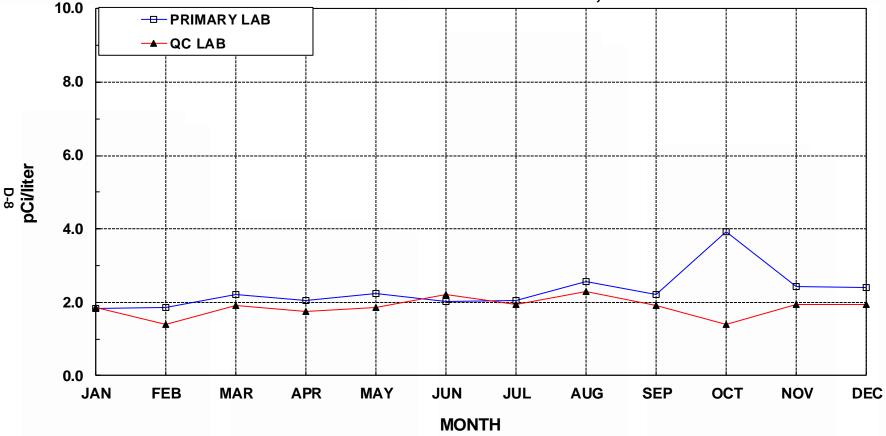
DRINKING WATER (GROSS BETA & GAMMA SPECTROSCOPY)

COLLECTION PERIOD		4L
JAN	12/30/15	- 01/28/16
FEB	01/28/16	- 02/25/16
MAR	02/25/16	- 03/31/16
APR	03/31/16	- 04/28/16
MAY	04/28/16	- 06/02/16
JUN	06/02/16	- 06/30/16
JUL	06/30/16	- 07/28/16
AUG	07/28/16	- 09/01/16
SEP	09/01/16	- 09/29/16
OCT	09/29/16	- 10/27/16
NOV	10/27/16	- 12/01/16
DEC	12/01/16	- 12/29/16

DRINKING WATER (TRITIUM)

COLLECTION PERIOD	4L
JAN-MAR	12/30/15 - 03/31/16
APR-JUN	03/31/16 - 06/30/16
JUL-SEP	06/30/16 - 09/29/16
OCT-DEC	09/29/16 - 12/29/16

AIR PARTICULATE (GAMMA SPECTROSCOPY)


COLLECTION PERIOD	1A
JAN-MAR	12/30/15 - 03/31/16
APR-JUN	03/31/16 - 06/30/16
JUL-SEP	06/30/16 - 09/29/16
OCT-DEC	09/29/16 - 12/29/16

AIR PARTICULATE (GROSS BETA) AND AIR IODINE (I-131)

COLLECTION PERIOD	1A	COLLECTION PERIOD	1A
1	12/30/15 - 01/07/16	27	06/30/16 - 07/07/16
2	01/07/16 - 01/14/16	28	07/07/16 - 07/14/16
3	01/14/16 - 01/21/16	29	07/14/16 - 07/21/16
4	01/21/16 - 01/28/16	30	07/21/16 - 07/28/16
5	01/28/16 - 02/04/16	31	07/28/16 - 08/04/16
6	02/04/16 - 02/11/16	32	08/04/16 - 08/11/16
7	02/11/16 - 02/18/16	33	08/11/16 - 08/18/16
8	02/18/16 - 02/25/16	34	08/18/16 - 08/25/16
9	02/25/16 - 03/03/16	35	08/25/16 - 09/01/16
10	03/03/16 - 03/10/16	36	09/01/16 - 09/08/16
11	03/10/16 - 03/17/16	37	09/08/16 - 09/15/16
12	03/17/16 - 03/24/16	38	09/15/16 - 09/22/16
13	03/24/16 - 03/31/16	39	09/22/16 - 09/29/16
14	03/31/16 - 04/07/16	40	09/29/16 - 10/06/16
15	04/07/16 - 04/14/16	41	10/06/16 - 10/13/16
16	04/14/16 - 04/21/16	42	10/13/16 - 10/20/16
17	04/21/16 - 04/28/16	43	10/20/16 - 10/27/16
18	04/28/16 - 05/05/16	44	10/27/16 - 11/03/16
19	05/05/16 - 05/13/16	45	11/03/16 - 11/10/16
20	05/13/16 - 05/19/16	46	11/10/16 - 11/17/16
21	05/19/16 - 05/26/16	47	11/17/16 - 11/23/16
22	05/26/16 - 06/02/16	48	11/23/16 - 12/01/16
23	06/02/16 - 06/09/16	49	12/01/16 - 12/08/16
24	06/09/16 - 06/16/16	50	12/08/16 - 12/15/16
25	06/16/16 - 06/23/16	51	12/15/16 - 12/22/16
26	06/23/16 - 06/30/16	52	12/22/16 - 12/29/16

FIGURE D-1


COMPARISON OF MONTHLY TOTAL GROSS BETA CONCENTRATIONS IN DRINKING WATER SAMPLES SPLIT BETWEEN THE PRIMARY AND QC LABORATORIES, 2016

ENVIRONMENTAL INC. SOLUBLE AND INSOLUBLE FRACTIONS WERE COMBINED FOR TOTAL GROSS BETA COMPARISON.

FIGURE D-2

COMPARISON OF WEEKLY GROSS BETA CONCENTRATIONS FROM CO-LOCATED AIR PARTICULATE LOCATIONS SPLIT BETWEEN THE PRIMARY AND QC LABORATORIES, 2016

D-9

APPENDIX E

INTER-LABORATORY COMPARISON PROGRAM ACCEPTANCE CRITERIA AND RESULTS

Intentionally left blank

- A. Pre-set Acceptance Criteria
 - 1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

The Environmental Resource Associates' evaluation report provides an acceptance range for control and warning limits with associated flag values. The Environmental Resource Associates' acceptance limits are established per the United States Environmental Protection Agency (USEPA), National Environmental Laboratory Accreditation Conference (NELAC), state-specific performance testing program requirements or ERA's standard operating procedure for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

- B. Teledyne Brown Engineering PE Results and Discussion
 - 1. Teledyne Brown Engineering's MAPEP March 2016 air particulate cross check sample is now being provided to TBE by Analytics. MAPEP's

policy is to evaluate as failed non-reported nuclides that were reported in the previous study. NCR 16-14

- a. Since the Sr-90 was reported in the previous MAPEP study but not in this study MAPEP evaluated the Sr-90 for Soil as failed. NCR 16-14
- b. The MAPEP March 2016 Sr-90 in vegetation was evaluated as failing a false positive test. In reviewing the data that was reported vs the data in LIMS, it was found that the error was incorrectly reported as 0.023 rather than the correct value of 0.230. If the value had been reported with the activity and correct uncertainty of 0.301 \pm 0.230, MAPEP would have evaluated the result as acceptable. NCR 16-14
- 2. Teledyne Brown Engineering's Analytics' March 2016 milk Sr-90 result of $15 \pm .125$ pCi/L was higher than the known value of 11.4 pCi/L with a ratio of 1.32. The upper ratio of 1.30 (acceptable with warning) was exceeded. After an extensive review of the data it is believed the technician did not rinse the filtering apparatus properly and some cross contamination from one of the internal laboratory spike samples may have been transferred to the analytics sample. We feel the issue is specific to the March 2016 Analytics sample. NCR 16-26
- 3. Teledyne Brown Engineering's ERA November 2016 sample for H-3 in water was evaluated as failing. A result of 918 pCi/L was reported incorrectly due to a data entry issue. If the correct value of 9180 had been reported, ERA would have evaluated the result as acceptable. NCR 16-34
- 4. Teledyne Brown Engineering's Analytics' December 2016 milk Sr-90 sample result of 14.7 ± .26 pCi/L was higher than the known value of 10 pCi/L with a ratio of 1.47. The upper ratio of 1.30 (acceptable with warning) was exceeded. The technician entered the wrong aliquot into the LIMS system. To achieve a lower error term TBE uses a larger aliquot of 1.2L (Normally we use .6L for client samples). If the technician had entered an aliquot of 1.2L into the LIMS system, the result would have been 12.2 pCi/L, which would have been considered acceptable. NCR 16-35
- C. EIML PE Results and Discussion
 - 1. The Environmental Inc., Midwest Laboratory's ERA April 2016 water Ba-133 result of 65.2 pCi/L was higher than the known value of 58.8 pCi/L, exceeding the upper control limit of 64.9 pCi/L. The reanalysis result of 57.8 pCi/L fell within acceptance criteria.

- 2. The Environmental Inc., Midwest Laboratory's MAPEP February 2016 water Co-57 result of 1.38 Bq/L sample was higher than the known value of 0.00 Bq/L sample. This sample is considered a false positive.
- 3. The Environmental Inc., Midwest Laboratory's MAPEP August 2016 soil Ni-63 result of 648 Bq/kg was lower than the known value of 990 Bq/kg, exceeding the lower control limit of 693 Bq/kg. Reanalysis with a smaller aliquot resulted in acceptable results. An investigation is in process to identify better techniques for analyzing samples with complex matrices.
- 4. The Environmental Inc., Midwest Laboratory's MAPEP August 2016 soil U-233/234 result of 46.8 Bq/kg was lower than the known value of 122 Bq/kg, exceeding the lower control limit of 85 Bq/kg. MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO₃ and HCI acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment cannot assure complete dissolution. Results are consistent with measuring the soluble form.
- 5. The Environmental Inc., Midwest Laboratory's MAPEP August 2016 soil U-238 result of 46.6 Bq/kg was lower than the known value of 121 Bq/kg, exceeding the lower control limit of 85 Bq/kg. MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO₃ and HCI acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment cannot assure complete dissolution. Results are consistent with measuring the soluble form.

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES, 2016

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
March 2016	E11476	Milk	Sr-89	pCi/L	97	86.7	1.12	А
March 2010	E11470	IVIIIK	Sr-90	pCi/L pCi/L	97 15	11.4	1.12	N(2)
					-		-	()
	E11477	Milk	I-131	pCi/L	85.9	82.2	1.05	A
			Ce-141	pCi/L	106	98.4	1.08	A
			Cr-51	pCi/L	255	243	1.05	A
			Cs-134	pCi/L	134	130	1.03	A
			Cs-137 Co-58	pCi/L pCi/L	174 123	161 117	1.08 1.05	A A
			Mn-54	pCi/L pCi/L	123	117	1.03	Ŵ
			Fe-59	pCi/L	152	131	1.16	A
			Zn-65	pCi/L pCi/L	193	179	1.08	A
			Co-60	pCi/L	259	244	1.06	A
	E11479	AP	Ce-141	pCi	69	81.1	0.85	А
			Cr-51	pCi	242	201	1.20	W
			Cs-134	pCi	98.1	107.0	0.92	А
			Cs-137	pCi	136	133	1.02	А
			Co-58	pCi	91.9	97	0.95	А
			Mn-54	pCi	98.6	96.2	1.02	A
			Fe-59	pCi	98.8	108	0.91	А
			Zn-65	pCi	131	147	0.89	A
			Co-60	pCi	209	201	1.04	A
	E11478	Charcoal	I-131	pCi	85.3	88.3	0.97	А
	E11480	Water	Fe-55	pCi/L	1800	1666	1.08	А
June 2016	E11537	Milk	Sr-89	pCi/L	94.4	94.4	1.00	А
			Sr-90	pCi/L	13.4	15.4	0.87	А
	E11538	Milk	I-131	pCi/L	96.8	94.5	1.02	А
			Ce-141	pCi/L	129	139	0.93	А
			Cr-51	pCi/L	240	276	0.87	А
			Cs-134	pCi/L	157	174	0.90	А
			Cs-137	pCi/L	117	120	0.98	A
			Co-58	pCi/L	131	142	0.92	A
			Mn-54	pCi/L	128	125	1.02	A
			Fe-59	pCi/L	132	122	1.08	A
			Zn-65	pCi/L	235	235	1.00	A
			Co-60	pCi/L	169	173	0.98	A
June 2016	E11539	Charcoal	I-131	pCi	86.1	89.4	0.96	А
	E11540	AP	Ce-141	pCi	105	99.8	1.05	А
			Cr-51	pCi	216	198.0	1.09	A
			Cs-134	pCi	113	125	0.90	A
			Cs-137	pCi	94.5	86.6	1.09	A
			Co-58	pCi	101	102	0.99	A
			Mn-54	pCi	88.8	90.2	0.98	A
			Fe-59	pCi	82	87.5	0.94	A
			Zn-65	pCi pCi	174 142	169 124	1.03	A
			Co-60	pCi	143	124	1.15	A
	E11541	Water	Fe-55	pCi/L	164	186	0.88	А

(PAGE 1 OF 3)

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES, 2016

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
September 2016	E11609	Milk	Sr-89	pCi/L	90	90.9	0.99	А
			Sr-90	pCi/L	13.3	13.7	0.97	A
	E11610	Milk	I-131	pCi/L	80.4	71.9	1.12	۸
	EII0IU	IVIIIK	Ce-141	pCi/L pCi/L	80.4 81.3	93	0.87	A A
			Cr-51	pCi/L pCi/L	198	236	0.84	A
			Cs-134	pCi/L pCi/L	190	136	0.84	
								A
			Cs-137	pCi/L	119	119	1.00	A
			Co-58	pCi/L	92.2	97.4	0.95	A
			Mn-54	pCi/L	156	152	1.03	A
			Fe-59	pCi/L	97.5	90.6	1.08	A
			Zn-65	pCi/L	189	179	1.06	A
			Co-60	pCi/L	131	135	0.97	A
	E11611	Charcoal	I-131	pCi	52.4	59.9	0.87	А
	E11612	AP	Ce-141	pCi	67.5	63.6	1.06	А
			Cr-51	pCi	192	161.0	1.19	А
			Cs-134	pCi	91.4	92.6	0.99	А
			Cs-137	pCi	93.9	80.8	1.16	А
			Co-58	pCi	66	66.4	0.99	А
			Mn-54	pCi	104	104	1.00	А
			Fe-59	pCi	60.5	61.8	0.98	A
			Zn-65	pCi	140	122	1.15	A
			Co-60	pCi	119	91.9	1.29	Ŵ
	E11613	Water	Fe-55	pCi/L	1990	1670	1.19	А
	E11614	Coil	Co 111	nCi/a	0 152	0 175	0.97	۸
	E11614	Soil	Ce-141	pCi/g	0.153 0.482	0.175	0.87	A
			Cr-51	pCi/g		0.441	1.09	A
			Cs-134	pCi/g	0.270	0.254	1.06	A
			Cs-137	pCi/g	0.313	0.299	1.05	A
			Co-58	pCi/g	0.177	0.182	0.97	A
			Mn-54	pCi/g	0.340	0.285	1.19	A
			Fe-59	pCi/g	0.206	0.17	1.21	W
			Zn-65	pCi/g	0.388	0.335	1.16	А
			Co-60	pCi/g	0.284	0.252	1.13	A
December 2016	E11699	Milk	Sr-89	pCi/L	95	74.2	1.28	W
			Sr-90	pCi/L	14.7	10	1.47	N(3)
	E11700	Milk	I-131	pCi/L	97.5	97.4	1.00	А
			Ce-141	pCi/L	136	143	0.95	А
			Cr-51	pCi/L	247	280	0.88	A
			Cs-134	pCi/L	164	178	0.92	A
			Cs-137	pCi/L	120	126	0.95	A
			Co-58	pCi/L	139	146	0.95	A
			Mn-54	pCi/L	126	129	0.98	A
			Fe-59	pCi/L pCi/L	114	125	0.98	A
			Zn-65	pCi/L pCi/L	237	244	0.97	A
			Co-60	pCi/L pCi/L	168	178	0.94	A
	E11701	Charcoal	I-131	pCi	95.6	98	0.98	А

(PAGE 2 OF 3)

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES, 2016 (PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2016	F11702		Co 141		01 7	07.7	0.04	^
December 2016	E11702	AP	Ce-141	pCi	91.7	97.7	0.94	A
			Cr-51	pCi	210	192.0	1.09	A
			Cs-134	pCi	122	122	1.00	A
			Cs-137	pCi	93.9	86.4	1.09	А
			Co-58	pCi	92	100	0.92	А
			Mn-54	pCi	93.7	88.5	1.06	А
			Fe-59	pCi	84.9	84.5	1.00	А
			Zn-65	pCi	176	167	1.05	А
			Co-60	pCi	151	122	1.24	W
	E11702	AP	Sr-89	pCi	79.1	92	0.86	А
			Sr-90	pCi	10	12.5	0.80	А
	E11703	Water	Fe-55	pCi/L	2180	1800	1.21	W

(a) Teledyne Brown Engineering reported result.

(2) NCR 16-26 was initiated

(3) NCR 16-35 was initiated

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) Ratio of Teledyne Brown Engineering to Analytics results.

⁽d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20. W= Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES, 2016

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
March 2016	16-MaW34	Water	Am-241	Bq/L	0.008	40.0	(1)	A
			Ni-63	Bq/L	12.4	12.3	8.6-16.0	A
			Pu-238	Bq/L	1.4900	1.2440	0.871-1.617	A
			Pu-239/240	Bq/L	0.729	0.641	0.449-0.833	A
	16-MaS34	Soil	Ni-63	Bq/kg	1140	1250.0	875-1625	А
			Sr-90	Bq/kg	8.15		(1)	А
	16-RdF34	AP	U-234/233	Bq/sample	0.1620	0.1650	0.116-0.215	А
			U-238	Bq/sample	0.163	0.172	0.120-0.224	А
	16-GrF34	AP	Gr-A	Bq/sample	0.608	1.20	0.36-2.04	А
			Gr-B	Bq/sample	0.8060	0.79	0.40-1.19	А
	16-RdV34	Vegetation	Cs-134	Bq/sample	10.10	10.62	7.43-13.81	А
		regetation	Cs-137	Bq/sample	6.0	5.62	3.93-7.31	A
			Co-57	Bq/sample	13.3000	11.8	8.3-15.3	A
			Co-60	Bq/sample	0.013		(1)	А
			Mn-54	Bq/sample	0.0150		(1)	А
			Sr-90	Bq/sample	0.301		(1)	N(4)
			Zn-65	Bq/sample	10.500	9.6	6.7-12.5	Â
September 2016	16-MaW35	Water	Am-241	Bq/L	0.626	0.814	.570-1058	W
·			Ni-63	Bq/L	12.4	17.2	12.0-22.4	А
			Pu-238	Bq/L	1.23	1.13	0.79-1.47	W
			Pu-239/240	Bq/L	0.0318	0.013	(1)	А
	16-MaS35	Soil	Ni-63	Bq/kg	724	990	693-1287	А
			Sr-90	Bq/kg	747	894	626-1162	А
	16-RdF35	AP	U-234/233	Bq/sample	0.160	0.15	0.105-0.195	А
			U-238	Bq/sample	0.157	0.156	0.109-0.203	А
	16-RdV35	Vegetation	Cs-134	Bq/sample	-0.103		(1)	А
		5	Cs-137	Bq/sample	5.64	5.54	3.88-7.20	А
			Co-57	Bq/sample	7.38	6.81	4.77-8.85	А
			Co-60	Bq/sample	4.81	4.86	3.40-6.32	А
			Mn-54	Bq/sample	7.4	7.27	5.09-9.45	А
			Sr-90	Bq/sample	0.774	0.80	0.56-1.04	А
			Zn-65	Bq/sample	5.46	5.4	3.78-7.02	А

(PAGE 1 OF 1)

(1) False positive test.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

(4)NCR 16-14 was initiated

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES, 2016**

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c)
May 2016	RAD-105	Water	Sr-89	pCi/L	48.9	48.2	37.8 - 55.6	А
			Sr-90	pCi/L	25.0	28.5	20.7 - 33.1	A
			Ba-133	pCi/L	53.1	58.8	48.7 - 64.9	A
			Cs-134	pCi/L	40.9	43.3	34.6 - 47.6	A
			Cs-137	pCi/L	84.8	78.4	70.6 - 88.9	A
			Co-60	pCi/L	108	102	91.8 - 114	А
			Zn-65	pCi/L	226	214	193 - 251	А
			Gr-A	pCi/L	38.9	62.7	32.9 - 77.8	А
			Gr-B	pCi/L	41.9	39.2	26.0 - 46.7	А
			I-131	pCi/L	24.1	26.6	22.1 - 31.3	А
			U-Nat	pCi/L	4.68	4.64	3.39 - 5.68	А
			H-3	pCi/L	7720	7840	6790 - 8620	А
November 2016	RAD-107	Water	Sr-89	pCi/L	43.0	43.3	33.4-50.5	А
			Sr-90	pCi/L	30.0	33.6	24.6-38.8	А
			Ba-133	pCi/L	47.8	54.9	45.4-60.7	А
			Cs-134	pCi/L	72.9	81.8	67.0-90.0	А
			Cs-137	pCi/L	189	210	189-233	А
			Co-60	pCi/L	58.4	64.5	58.0-73.4	А
			Zn-65	pCi/L	243	245	220-287	А
			Gr-A	pCi/L	37.2	68.4	35.9-84.5	А
			Gr-B	pCi/L	35.1	33.9	22.1-41.6	А
			I-131	pCi/L	23.5	26.3	21.9-31.0	А
			U-Nat	pCi/L	49.2	51.2	41.6-56.9	А
			H-3	pCi/L	918	9820	8540-10800	N(5)
	MRAD-25	AP	Gr-A	pCi/Filter	56.8	71.2	23.9-111	А

(PAGE 1 OF 1)

(a) Teledyne Brown Engineering reported result.

(5) NCR 16-34 was initiated

⁽b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. N=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

ERA STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM^a MRAD Study, ENVIRONMENTAL, INC., 2016

				Concentration	а	
			Laboratory	ERA	Control	
Lab Code ^b	Date	Analysis	Result	Result	Limits	Acceptance
ERAP-1101	3/14/2016	Am-241	37.3	45.9	28.3 - 62.1	Pass
ERAP-1101	3/14/2016	Co-60	637	623	482 - 778	Pass
ERAP-1101	3/14/2016	Cs-134	251	304	193 - 377	Pass
ERAP-1101	3/14/2016	Cs-137	1,273	1,150	864 - 1,510	Pass
ERAP-1101	3/14/2016	Fe-55	< 162	126	39.1 - 246	Pass
ERAP-1101	3/14/2016	Mn-54	< 2.64	< 50.0	0.00 - 50.0	Pass
ERAP-1101	3/14/2016	Pu-238	68.0	70.5	48.3 - 92.7	Pass
ERAP-1101	3/14/2016	Pu-239/240	54.1	54.8	39.70 - 71.60	Pass
ERAP-1101	3/14/2016	Sr-90	139	150	73.3 - 225.0	Pass
ERAP-1101	3/14/2016	U-233/234	59.3	64.8	40.2 - 97.7	Pass
ERAP-1101	3/14/2016	U-238	55.5	64.2	41.5 - 88.8	Pass
ERAP-1101	3/14/2016	Zn-65	428	356	255 - 492	Pass
	0, 1 1, 2010					
ERAP-1101	3/14/2016	Gr. Alpha	98.0	70.1	23.5 - 109	Pass
ERAP-1101	3/14/2016	Gr. Beta	78.6	54.4	34.4 - 79.3	Pass
-				-		
ERSO-1105	3/14/2016	Am-241	1,030	1,360	796 - 1,770	Pass
ERSO-1105	3/14/2016	Ac-228	1,540	1,240	795 - 1,720	Pass
ERSO-1105	3/14/2016	Bi-212	1,550	1,240	330 - 1,820	Pass
ERSO-1105	3/14/2016	Bi-214	3,100	3,530	2,130 - 5,080	Pass
ERSO-1105	3/14/2016	Co-60	5,600	5,490	3,710 - 7,560	Pass
ERSO-1105	3/14/2016	Cs-134	3,030	3,450	2,260 - 4,140	Pass
ERSO-1105	3/14/2016	Cs-137	4,440	4,310	3,300 - 5,550	Pass
ERSO-1105	3/14/2016	K-40	10,300	10,600	7,740 - 14,200	Pass
ERSO-1105	3/14/2016	Mn-54	< 50.8	< 1000	0.0 - 1,000	Pass
ERSO-1105	3/14/2016	Pb-212	1,140	1,240	812 - 1,730	Pass
ERSO-1105	3/14/2016	Pb-214	3,190	3,710	2,170 - 5,530	Pass
ERSO-1105	3/14/2016	Pu-238	680	658	396 - 908	Pass
ERSO-1105	3/14/2016	Pu-239/240	460	496	324 - 0,685	Pass
ERSO-1105	3/14/2016	Sr-90	7,740	8,560	3,260 - 13,500	Pass
ERSO-1105	3/14/2016	Th-234	3,630	3,430	1,080 - 6,450	Pass
ERSO-1105	3/14/2016	U-233/234	3,090	3,460	2,110 - 4,430	Pass
ERSO-1105	3/14/2016	U-238	3,280	3,430	2,120 - 4,350	Pass
ERSO-1105	3/14/2016	Zn-65	2,940	2,450	1,950 - 3,260	Pass
	0, 1 1, 2010		_,0.0	_,	.,	
ERW-1115	3/14/2016	Gr. Alpha	105.0	117.0	41.5 - 181.0	Pass
ERW-1115	3/14/2016	Gr. Beta	76.2	75.5	43.2 - 112.0	Pass
ERW-1117	3/14/2016	H-3	8,870	8,650	5,800 - 12,300	Pass
ERVE-1108	3/14/2016	Am-241	1,930	2,120	1,300 - 2,820	Pass
ERVE-1108	3/14/2016	Cm-244	1,294	1,560	764 - 2,430	Pass
ERVE-1108	3/14/2016	Co-60	1,164	1,100	759 - 1,540	Pass
ERVE-1108	3/14/2016	Cs-134	1,056	1,070	687 - 1,390	Pass
ERVE-1108	3/14/2016	Cs-137	930	838	608 - 1,170	Pass
ERVE-1108	3/14/2016	K-40	32,200	31,000	22,400 - 43,500	Pass
ERVE-1108	3/14/2016	Mn-54	< 24.5	< 300	0.00 - 300	Pass
ERVE-1108	3/14/2016	Zn-65	3,320	2,820	2,030 - 3,960	Pass
			F-6			

ERA STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM^a MRAD Study, ENVIRONMENTAL, INC., 2016

				Concentration ^a		
			Laboratory	ERA	Control	
Lab Code ^b	Date	Analysis	Result	Result	Limits	Acceptance
ERVE-1108	3/14/2016	Pu-238	3,410	2,810	1,680 - 3,850	Pass
ERVE-1108	3/14/2016	Pu-239/240	4,120	3,640	2,230 - 5,010	Pass
ERVE-1108	3/14/2016	Sr-90	8,120	8,710	4,960 - 11,500	Pass
ERVE-1108	3/14/2016	U-233/234	4,350	4,160	2,740 - 5,340	Pass
ERVE-1108	3/14/2016	U-238	4,220	4,120	2,750 - 5,230	Pass
ERW-1111	3/14/2016	Am-241	113	121	81.5 - 162	Pass
ERW-1111	3/14/2016	Co-60	1,120	1,050	912 - 1,230	Pass
ERW-1111	3/14/2016	Cs-134	806	842	618 - 968	Pass
ERW-1111	3/14/2016	Cs-137	1,190	1,100	934 - 1,320	Pass
ERW-1111	3/14/2016	Mn-54	< 5.89	< 100	0.00 - 100	Pass
ERW-1111	3/14/2016	Pu-238	159	138	102 - 172	Pass
ERW-1111	3/14/2016	Pu-239/240	113	98.7	76.6 - 124	Pass
ERW-1111	3/14/2016	U-233/234	46.9	52.7	39.6 - 68.0	Pass
ERW-1111	3/14/2016	U-238	50.4	52.3	39.9 - 64.2	Pass
ERW-1111	3/14/2016	Zn-65	1,160	1,010	842 - 1,270	Pass
ERW-1111	3/14/2016	Fe-55	1,600	1,650	984 - 2,240	Pass
ERW-1111	3/14/2016	Sr-90	430	434	283 - 574	Pass

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation). Results are reported in units of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) ENVIRONMENTAL, INC., 2016

				Concentration ⁶		
. . h	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MASO-1053	2/1/2016	Ni-63	1,206 ± 20	1250	875 - 1625	Pass
MASO-1053	2/1/2016	Sr-90	0.65 ± 1.27	0.00	NA ^c	Pass
MASO-1053	2/1/2016	Tc-99	0.1 ± 5.5	0.0	NA ^c	Pass
MASO-1053	2/1/2016	Cs-134	908 ± 26	1030	721 - 1339	Pass
MASO-1053	2/1/2016	Cs-137	0.10 ± 6.20	0.00	NA ^c	Pass
MASO-1053	2/1/2016	Co-57	1058 ± 26	992	694 - 1290	Pass
MASO-1053	2/1/2016	Co-60	1229 ± 28	1190	833 - 1547	Pass
MASO-1053	2/1/2016	Mn-54	1235 ± 43	1160	812 - 1508	Pass
MASO-1053	2/1/2016	Zn-65	753 ± 64	692	484 - 900	Pass
MASO-1053	2/1/2016	K-40	753 ± 140	607	425 - 789	Pass
MASO-1053	2/1/2016	Am-241	79 ± 6	103	72 - 134	Pass
MASO-1053	2/1/2016	Pu-238	73.9 ± 9.2	63.6	44.5 - 82.7	Pass
MASO-1053	2/1/2016	Pu-239/240	0.76 ± 1.34	0.21	NA ^d	Pass
MASO-1053	2/1/2016	U-234/233	45.0 ± 5.1	45.9	32.1 - 59.7	Pass
MASO-1053	2/1/2016	U-238	129 ± 9	146	102 - 190	Pass
MAW-989	2/1/2016	Am-241	0.018 ± 0.015	0.00	NA ^c	Pass
MAW-989	2/1/2016	H-3	0.2 ± 2.8	0.0	NA ^c	Pass
MAW-989	2/1/2016	Ni-63	12.8 ± 2.7	12.3	8.6 - 16.0	Pass
MAW-989	2/1/2016	Sr-90	8.70 ± 1.20	8.74	6.12 - 11.36	Pass
MAW-989	2/1/2016	Tc-99	-1.1 ± 0.6	0.0	NA ^c	Pass
MAW-989	2/1/2016	Cs-134	15.5 ± 0.3	16.1	11.3 ± 20.9	Pass
MAW-989	2/1/2016	Cs-137	23.7 ± 0.5	21.2	14.8 - 27.6	Pass
MAW-989 ^e	2/1/2016	Co-57	1.38 ± 0.12	0.00	NA ^c	Fail
MAW-989	2/1/2016	Co-60	12.5 ± 0.3	11.8	8.3 - 15.3	Pass
MAW-989	2/1/2016	Mn-54	12.2 ± 0.4	11.1	7.8 - 14.4	Pass
MAW-989	2/1/2016	Zn-65	15.7 ± 0.7	13.6	9.5 - 17.7	Pass
MAW-989	2/1/2016	K-40	288 ± 5	251	176 - 326	Pass
MAW-989	2/1/2016	Fe-55	17.3 ± 7.0	16.2	11.3 - 21.1	Pass
MAW-989	2/1/2016	Ra-226	0.710 ± 0.070	0.718	0.503 - 0.933	Pass
MAW-989	2/1/2016	Pu-238	1.280 ± 0.110	1.244	0.871 ± 1.617	Pass
MAW-989	2/1/2016	Pu-239/240	0.640 ± 0.080	0.641	0.449 - 0.833	Pass
MAW-989	2/1/2016	U-234/233	1.39 ± 0.12	1.48	1.04 - 1.92	Pass
MAW-989	2/1/2016	U-238	1.43 ± 0.12	1.53	1.07 - 1.99	Pass
MAW-893	2/1/2016	Gross Alpha	0.600 ± 0.050	0.673	0.202 - 1.144	Pass
MAW-893	2/1/2016	Gross Beta	2.10 ± 0.06	2.15	1.08 - 3.23	Pass
MAW-896	2/1/2016	I-129	3.67 ± 0.20	3.85	2.70 - 5.01	Pass
MAAP-1056	2/1/2016	Gross Alpha	0.39 ± 0.05	1.20	0.36 - 2.04	Pass
MAAP-1056	2/1/2016	Gross Beta	1.03 ± 0.07	0.79	0.40 - 1.19	Pass
MAAP-1057	2/1/2016	Sr-90	1.34 ± 0.15	1.38	0.97 ± 1.79	Pass
MAAP-1057	2/1/2016	Cs-134	-0.01 ± 0.03	0.00	NA ^c	Pass
MAAP-1057	2/1/2016	Cs-137	2.57 ± 0.10	2.30	1.61 - 2.99	Pass

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) ENVIRONMENTAL, INC., 2016

				Concentration	а	
	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAAP-1057	2/1/2016	Co-57	3.01 ± 0.06	2.94	2.06 - 3.82	Pass
MAAP-1057	2/1/2016	Co-60	4.28 ± 0.10	4.02	2.81 - 5.23	Pass
MAAP-1057	2/1/2016	Mn-54	4.90 ± 0.13	4.53	3.17 - 5.89	Pass
MAAP-1057	2/1/2016	Zn-65	4.09 ± 0.18	3.57	2.50 - 4.64	Pass
MAAP-1057	2/1/2016	Am-241	0.059 ± 0.015	0.0805	0.0564 - 0.1047	Pass
MAAP-1057	2/1/2016	Pu-238	0.066 ± 0.020	0.0637	0.0446 - 0.0828	Pass
MAAP-1057	2/1/2016	Pu-239/240	0.074 ± 0.020	0.099	NA ^d	Pass
MAAP-1057	2/1/2016	U-234/233	0.151 ± 0.026	0.165	0.116 - 0.215	Pass
MAAP-1057	2/1/2016	U-238	0.160 ± 0.026	0.172	0.120 - 0.224	Pass
MAVE-1050	2/1/2016	Cs-134	9.83 ± 0.19	10.62	7.43 - 13.81	Pass
MAVE-1050	2/1/2016	Cs-137	6.06 ± 0.19	5.62	3.93 - 7.31	Pass
MAVE-1050	2/1/2016	Co-57	13.8 ± 0.2	11.8	8.3 - 15.3	Pass
MAVE-1050	2/1/2016	Co-60	0.022 ± 0.040	0.00	NA ^c	Pass
MAVE-1050	2/1/2016	Mn-54	0.009 ± 0.044	0.000	NA ^c	Pass
MAVE-1050	2/1/2016	Zn-65	10.67 ± 0.39	9.60	6.70 - 12.50	Pass
MASO-4780 [†]	8/1/2016	Ni-63	648 ± 14	990	693 - 1287	Fail
MASO-4780 ^g	8/1/2016	Ni-63	902 ± 46	990	693 - 1287	Pass
MASO-4780	8/1/2016	Sr-90	757 ± 16	894	626 - 1162	Pass
MASO-4780	8/1/2016	Tc-99	559 ± 12	556	389 - 723	Pass
MASO-4780	8/1/2016	Cs-134	0.93 ± 2.92	0.00	NA ^c	Pass
MASO-4780	8/1/2016	Cs-137	1061 ± 12	1067	747 - 1387	Pass
MASO-4780	8/1/2016	Co-57	1178 ± 8	1190	833 - 1547	Pass
MASO-4780	8/1/2016	Co-60	841 ± 9	851	596 - 1106	Pass
MASO-4780	8/1/2016	Mn-54	0.69 ± 2.53	0.00	NA ^c	Pass
MASO-4780	8/1/2016	Zn-65	724 ± 19	695	487 - 904	Pass
MASO-4780	8/1/2016	K-40	566 ± 52	588	412 - 764	Pass
MASO-4780	8/1/2016	Am-241	0.494 ± 0.698	0.000	NA ^c	Pass
MASO-4780	8/1/2016	Pu-238	69.7 ± 7.4	70.4	49.3 - 91.5	Pass
MASO-4780	8/1/2016	Pu-239/240	53.9 ± 6.3	53.8	37.7 - 69.9	Pass
MASO-4780 ^h	8/1/2016	U-233/234	46.8 ± 3.9	122	85 - 159	Fail
MASO-4780 ^h	8/1/2016	U-238	46.6 ± 3.9	121	85 - 157	Fail
MAW-4776	8/1/2016	I-129	4.40 ± 0.20	4.54	3.18 - 5.90	Pass
MAVE-4782	8/1/2016	Cs-134	-0.01 ± 0.05	0.00	NA ^c	Pass
MAVE-4782	8/1/2016	Cs-137	6.18 ± 0.20	5.54	3.88 - 7.20	Pass
MAVE-4782	8/1/2016	Co-57	8.13 ± 0.16	6.81	4.77 - 8.85	Pass
MAVE-4782	8/1/2016	Co-60	5.30 ± 0.15	4.86	3.40 - 6.32	Pass
MAVE-4782	8/1/2016	Mn-54	8.08 ± 0.24	7.27	5.09 - 9.45	Pass
MAVE-4782	8/1/2016	Zn-65	6.24 ± 0.36	5.40	3.78 - 7.02	Pass
MAAP-4784	8/1/2016	Sr-90	1.18 ± 0.10	1.03	0.72 - 1.34	Pass
MAAP-4784	8/1/2016	Cs-134	1.58 ± 0.08	2.04	1.43 - 2.65	Pass

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) ENVIRONMENTAL, INC., 2016

				Concentration ⁴	a	
	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAAP-4784	8/1/2016	Cs-137	1.85 ± 0.09	1.78	1.25 - 2.31	Pass
MAAP-4784	8/1/2016	Co-57	2.39 ± 0.52	2.48	1.74 - 3.22	Pass
MAAP-4784	8/1/2016	Co-60	3.22 ± 0.08	3.26	2.28 - 4.24	Pass
MAAP-4784	8/1/2016	Mn-54	2.82 ± 0.12	2.75	1.93 - 3.58	Pass
MAAP-4784	8/1/2016	Zn-65	-0.015 ± 0.062	0.00	NA ^c	Pass
MAAP-4784	8/1/2016	Am-241	-0.001 ± 0.006	0.00	NA ^c	Pass
MAAP-4784	8/1/2016	Pu-238	0.075 ± 0.022	0.069	0.049 - 0.090	Pass
MAAP-4784	8/1/2016	Pu-239/240	0.048 ± 0.015	0.054	0.038 - 0.070	Pass
MAAP-4784	8/1/2016	U-234/233	0.151 ± 0.036	0.150	0.105 - 0.195	Pass
MAAP-4784	8/1/2016	U-238	0.147 ± 0.034	0.156	0.109 - 0.203	Pass
MAW-4778	8/1/2016	H-3	365 ± 11	334	234 - 434	Pass
MAW-4778	8/1/2016	Fe-55	23.6 ± 16.3	21.5	15.1 ± 28.0	Pass
MAW-4778	8/1/2016	Ni-63	17.0 ± 2.8	17.2	12.0 ± 22.4	Pass
MAW-4778	8/1/2016	Sr-90	0.17 ± 0.28	0.00	NA ^c	Pass
MAW-4778	8/1/2016	Tc-99	9.50 ± 0.41	11.60	8.10 - 15.10	Pass
MAW-4778	8/1/2016	Cs-134	22.6 ± 0.4	23.9	16.7 - 31.1	Pass
MAW-4778	8/1/2016	Cs-137	0.018 ± 0.117	0.00	NA ^c	Pass
MAW-4778	8/1/2016	Co-57	27.6 ± 0.2	27.3	19.1 ± 35.5	Pass
MAW-4778	8/1/2016	Co-60	0.018 ± 0.090	0.00	NA ^c	Pass
MAW-4778	8/1/2016	Mn-54	16.2 ± 0.4	14.8	10.4 - 19.2	Pass
MAW-4778	8/1/2016	Zn-65	19.3 ± 0.7	17.4	12.2 - 22.6	Pass
MAW-4778	8/1/2016	K-40	286 ± 6	252	176 - 328	Pass
MAW-4778	8/1/2016	Ra-226	1.48 ± 0.09	1.33	0.93 - 1.73	Pass
MAW-4778	8/1/2016	Pu-238	1.09 ± 0.13	1.13	0.79 - 1.47	Pass
MAW-4778	8/1/2016	Pu-239/240	0.003 ± 0.011	0.016	NA ^d	Pass
MAW-4778	8/1/2016	U-234/233	1.80 ± 0.13	1.86	1.30 - 2.42	Pass
MAW-4778	8/1/2016	U-238	1.77 ± 0.13	1.92	1.34 - 2.50	Pass
MAW-4778	8/1/2016	Am-241	0.678 ± 0.086	0.814	0.570 ± 1.058	Pass

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

^d Provided in the series for "sensitivity evaluation". MAPEP does not provide control limits.

^e The laboratory properly identified the Sn-75 interfering peak in the vicinity of Co-57 and stated so in the comment field. MAPEP requires results to be reported as an activity with an uncertainty. Since the calculated uncertainty was less than the activity MAPEP interpreted the submitted result as a "false positive" resulting in a failure.

^f Original analysis for Ni-63 failed.

^g Reanalysis with a smaller aliquot resulted in acceptable results. An investigation is in process to identify better techniques for analyzing samples with complex matrices.

^h MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO³ and HCl acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment can not assure complete dissolution. Results are consistent with measuring the soluble form.

Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)^a RAD Study, ENVIRONMENTAL, INC., 2016

	Concentration (pCi/L)						
Lab Code	Date	Analysis	Laboratory	ERA	Control		
			Result	Result	Limits	Acceptance	
						<u> </u>	
ERW-1392	4/4/2016	Sr-89	43.5 ± 4.3	48.2	37.8 - 55.6	Pass	
ERW-1392	4/4/2016	Sr-90	27.5 ± 1.9	28.5	20.7 - 33.1	Pass	
ERW-1394 ^b	4/4/2016	Ba-133	65.2 ± 3.8	58.8	48.7 - 64.9	Fail	
ERW-1394 ^c	4/4/2016	Ba-133	57.8 ± 5.3	58.8	48.7 - 64.9	Pass	
ERW-1394	4/4/2016	Cs-134	43.7 ± 3.0	43.3	34.6 - 47.6	Pass	
ERW-1394	4/4/2016	Cs-137	86.1 ± 5.3	78.4	70.6 - 88.9	Pass	
ERW-1394	4/4/2016	Co-60	108 ± 44	102	91.8 - 114	Pass	
ERW-1394	4/4/2016	Zn-65	240 ± 13	214	193 - 251	Pass	
ERW-1397	4/4/2016	Gr. Alpha	52.0 ± 2.2	62.7	32.9 - 77.8	Pass	
ERW-1397	4/4/2016	Gr. Beta	33.9 ± 1.2	39.2	26.0 - 46.7	Pass	
ERW-1400	4/4/2016	I-131	24.7 ± 0.6	26.6	22.1 - 31.3	Pass	
ERW-1402	4/4/2016	Ra-226	15.6 ± 0.5	15.2	11.3 - 17.4	Pass	
ERW-1402	4/4/2016	Ra-228	5.28 ± 0.76	5.19	3.12 - 6.93	Pass	
ERW-1403	4/4/2016	Uranium	4.02 ± 0.42	4.64	3.39 - 5.68	Pass	
ERW-1405	4/4/2016	H-3	8,150 ± 270	7,840	6,790 - 8,620	Pass	
SPW-2845	7/7/2015	Ba-133	60.3 ± 5.7	64.7	53.9 - 71.2	Pass	
SPW-2845	7/7/2015	Cs-134	48.8 ± 9.3	50.1	40.3 - 55.1	Pass	
SPW-2845	7/7/2015	Cs-137	101 ± 8	89.8	80.8 - 101	Pass	
SPW-2845	7/7/2015	Co-60	65.1 ± 5.8	59.9	53.9 - 68.4	Pass	
SPW-2845	7/7/2015	Zn-65	288 ± 29	265	238 - 310	Pass	
ERW-3485	7/11/2016	Sr-89	43.3 ± 6.5	53.3	42.3 - 60.9	Pass	
ERW-3485	7/11/2016	Sr-90	39.0 ± 2.8	39.2	28.8 - 45.1	Pass	
ERW-3487	7/11/2016	Ba-133	83.3 ± 4.9	82.9	69.7 - 91.2	Pass	
ERW-3487	7/11/2016	Cs-134	62.5 ± 4.4	65.3	53.1 - 71.8	Pass	
ERW-3487	7/11/2016	Cs-137	98.1 ± 5.6	95.2	85.7 - 107	Pass	
ERW-3487	7/11/2016	Co-60	122 ± 5	117	105 - 131	Pass	
ERW-3487	7/11/2016	Zn-65	124 ± 9	113	102 - 134	Pass	
ERW-3490	7/11/2016	Gr. Alpha	46.6 ± 2.2	48.1	25.0 - 60.5	Pass	
ERW-3490	7/11/2016	Gr. Beta	26.8 ± 1.1	28.6	18.2 - 36.4	Pass	
ERW-3492	7/11/2016	I-131	23.7 ± 1.0	24.9	20.7 - 29.5	Pass	
ERW-3493	7/11/2016	Ra-226	12.9 ± 0.4	12.3	9.2 - 14.2	Pass	
ERW-3493	7/11/2016	Ra-228	5.8 ± 0.8	5.8	3.5 - 7.6	Pass	
ERW-3493	7/11/2016	Uranium	32.8 ± 0.8	25.2	28.4 - 39.3	Pass	
ERW-3495	7/11/2016	H-3	12,400 ± 334	12,400	10,800 - 13,600	Pass	

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b No reason determined for failure of Ba-133 result.

^c The result of reanalysis (Compare to original result, footnoted "b" above).

APPENDIX F

ERRATA DATA

There is no errata data for 2016.

APPENDIX G

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

PEACH BOTTOM ATOMIC POWER STATION UNITS 2 and 3

Annual Radiological Groundwater Protection Program Report (ARGPPR)

January 1 through December 31, 2016

Prepared By Teledyne Brown Engineering Environmental Services

Peach Bottom Atomic Power Station Delta, PA 17314

May 2017

Table of Contents

I. Summary and Conclusions	1
 II. Introduction A. Objectives of the RGPP B. Implementation of the Objectives C. Program Description D. Characteristics of Tritium (H-3) 	2 3 3
 III. Program Description A. Sample Analysis B. Data Interpretation C. Background Analysis 	5 5
 IV. Results and Discussion	8 10 11 11 11 11
V. References	14

Appendices

Appendix A	Sampling Locations, Distance and Direction
<u>Tables</u>	
Table A-1	Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Peach Bottom Atomic Power Station, 2016
<u>Figures</u>	
Figure A-1	Well Water Locations, Peach Bottom Atomic Power Station, 2016
Figure A-2	RGPP Monitoring Locations, Peach Bottom Atomic Power Station, 2016
Appendix B	Data Tables
<u>Tables</u>	
Table B-I.1	Concentrations of Tritium, Strontium, Gross Alpha and Gross Beta in Groundwater and Seep Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2016
Table B-I.2	Concentrations of Gamma Emitters in Groundwater and Seep Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2016
Table B-I.3	Concentrations of Hard-to-Detects in Groundwater Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2016
Table B-II.1	Concentrations of Tritium in Surface Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2016
Table B-II.2	Concentrations of Gamma Emitters in Surface Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2016
Table B-III.1	Concentrations of Tritium in Precipitation Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2016

I. Summary and Conclusions

This report on the Radiological Groundwater Protection Program (RGPP) conducted for the Peach Bottom Atomic Power Station (PBAPS) by Exelon Nuclear covers the period 01 January 2016 through 31 December 2016. This evaluation involved numerous station personnel and contractor support personnel. At PBAPS, there are 31 permanent groundwater monitoring wells. Installation of the wells began in 2006. Of these monitoring locations, none were assigned to the station's Radiological Environmental Monitoring Program (REMP). This is the tenth in a series of annual reports on the status of the RGPP conducted at PBAPS. This report covers groundwater, surface water, seep water, and precipitation water samples collected from the environment on station property in 2016. During that time period, 1,411 analyses were performed on more than 336 samples from 41 locations. These 41 locations include 27 groundwater monitoring wells, 3 surface water sample points, 3 groundwater seeps and 2 yard drain sumps (groundwater) and 6 precipitation water sampling points. Phase 1 of the monitoring was part of a comprehensive study initiated by Exelon to determine whether groundwater or surface water in the vicinity of PBAPS had been adversely impacted by any releases of radionuclides. Phase 1 was conducted by Conestoga Rovers and Associates (CRA) and the conclusions were made available to state and federal regulators as well as the public. Phase 2 of the RGPP was conducted by Exelon corporate and station personnel to initiate follow up of Phase 1 and begin long-term monitoring at groundwater and surface water locations selected during Phase 1. All analytical results from Phase 2 monitoring are reported herein.

Samples supporting the RGPP were analyzed for Tritium, Strontium-89 (Sr-89), Strontium-90 (Sr-90), gross alpha, gross beta, and gamma-emitting radionuclides associated with licensed plant operations and isotopes known as 'hard to detects'.

In assessing all the data gathered for this report, it was concluded that the operation of PBAPS had no adverse radiological impact on the environment and there are currently no known active releases into the groundwater at PBAPS.

Tritium was not detected at any location in concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission [NRC] Reporting Limit) of 20,000 pCi/L.

Tritium was not detected at concentrations greater than the minimum detectable concentration (MDC) in any surface water, seep water or precipitation water sample locations. Based on the sample data tritium is not migrating off the station property at detectable concentrations.

II. Introduction

PBAPS is located along the Susquehanna River between Holtwood and Conowingo Dams in Peach Bottom Township, York County, Pennsylvania. The initial loading of fuel into Unit 1, a 40 MWe (net) high temperature gas-cooled reactor, began on 5 February 1966, and initial criticality was achieved on 3 March 1966. Shutdown of Peach Bottom Unit 1 for decommissioning was on 31 October 1974. For the purposes of the monitoring program, the beginning of the operational period for Unit 1 was considered to be 5 February 1966. A summary of the Unit 1 preoperational monitoring program was presented in a previous report ⁽¹⁾. PBAPS Units 2 and 3 are boiling water reactors, each with a power output of approximately 1366 MWe. The first fuel was loaded into Peach Bottom Unit 2 on 9 August 1973. Criticality was achieved on 16 September 1973 and full power was reached on 16 June 1974. The first fuel was loaded into Peach Bottom Unit 3 on 5 July 1974. Criticality was achieved on 7 August 1974 and full power was first reached on 21 December 1974. Preoperational summary reports ⁽²⁾⁽³⁾ for Units 2 and 3 have been previously issued and summarize the results of all analyses performed on samples collected from 5 February 1966 through 8 August 1973.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2016.

A. Objective of the RGPP

The objectives of the RGPP are as follows:

- 1. Ensure that the site characterization of geology and hydrology provides an understanding of predominant groundwater gradients based upon current site conditions.
- 2. Identify site risk based on plant design and work practices.
- 3. Establish an on-site groundwater monitoring program to ensure timely detection of inadvertent radiological releases to ground water.
- 4. Establish a remediation protocol to prevent migration of licensed material off-site and to minimize decommissioning impacts.
- 5. Ensure that records of leaks, spills, remediation efforts are retained and retrievable to meet the requirements of 10 CFR 50.75(g).
- 6. Conduct initial and periodic briefings of their site specific Groundwater Protection Initiative (GPI) program with the designated State/Local officials.
- 7. Make informal communication as soon as practicable to appropriate

State/Local officials, with follow-up notifications to the NRC, as appropriate, regarding significant on-site leaks/spills into groundwater and on-site or off-site water sample results exceeding the criteria in the REMP as described in the OCDM.

- 8. Submit a written 30-day report to the NRC for any water sample result for on-site groundwater that is or may be used as a source of drinking water that exceeds any of the criteria in the licensee's existing REMP/ODCM for 30-day reporting of off-site water sample results.
- Document all on-site groundwater sample results and a description of any significant on-site leaks/spills into groundwater for each calendar year in the Annual Radiological Environmental Operating Report (AREOR) for REMP or the Annual Radioactive Effluent Release Report (ARERR).
- 10. Perform a self-assessment of the GPI program.
- 11. Conduct a review of the GPI program, including at a minimum the licensee's self-assessments, under the auspices of the Nuclear Energy Institute (NEI).
- B. Implementation of the Objectives

The objectives identified have been implemented at PBAPS via Corporate and Site specific procedures. These procedures include:

- 1. EN-AA-407, Response to Inadvertent Releases of Licensed Materials to Groundwater, Surface Water, Soil or Engineered Structures
- 2. EN-AA-408, Radiological Groundwater Protection Program
- 3. EN-AA-408-4000, Radiological Groundwater Protection Program Implementation
- 4. EN-PB-408-4160, RGPP Reference Material for Peach Bottom Atomic Power Station
- C. Program Description
 - 1. Sample Collection

Sample locations can be found in Table A–1 and Figures A–1 and A–2, Appendix A.

Groundwater, Surface Water and Precipitation Water

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry crosscheck programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables as data are received.

Analytical data results are reviewed by both station personnel and an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food or absorption through skin. Once tritium enters the body it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity and in special production reactors, where the isotopes Lithium-7 (Li-7) and/or Boron-10 (B-10) are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to Helium-3 (He-3). This radioactive decay releases a beta

particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium emits a low energy beta particle and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc. Midwest Laboratories (EIML) to analyze the environmental samples for radioactivity for the PBAPS RGPP in 2016.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater and surface water.
- 2. Concentrations of strontium in groundwater.
- 3. Concentrations of tritium in groundwater, surface water and precipitation water.
- 4. Concentrations of 'hard-to-detect' isotopes, Americium-241 (Am-241), Cerium-242/243/244 (Cm-242, Cm-243, Cm-244), Plutonium-238/239/240 (Pu-238, Pu-239, Pu-240), Uranium-233/234/235/238 (U-233, U-234, U-235, U-238), Iron-55 (Fe-55), and Nickel-64 (Ni-63) in groundwater. These analyses are required based on tritium results.
- B. Data Interpretation

The radiological data collected prior to PBAPS becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, PBAPS was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. <u>Lower Limit of Detection</u>

The lower limit of detection (LLD) is a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. <u>Laboratory Measurements Uncertainty</u>

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from factors such as calibration standards, sample volume or weight measurements, and sampling uncertainty. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus \pm the estimated sample standard deviation as TPU that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater and surface water 12 nuclides, Manganese-54 (Mn-54), Colbalt-58/50 (Co-58, Co-60), Iron-59 (Fe-59), Zinc-65 (Zn-65), Niobium-95 (Nb-95), Zirconium-95 (Zr-95), Iodine-131 (I-131), Cerium-134/137 (Cs-134, Cs-137), Barium-140 (Ba-140) and Lanthanum-140 (La-140) are measured.

C. Background Analysis

A pre-operational REMP was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life and foodstuffs. The results of the monitoring were detailed in the report entitled PBAPS, Environs Radiation Monitoring Program, Preoperational Summary Report Units 2 and 3, September 1970- August 1973, January 1974 and PBAPS, Environs Radiation Monitoring Program, Preoperational Summary Report Units 2 and 3, June 1977. The pre-operational REMP contained analytical results from samples collected from the surface water, discharge, well and rain water. 1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references (CRA 2006)⁽¹⁾.

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural Li present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant U and Th. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of Li in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and Sr-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected worldwide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at stations throughout the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations have typically been below 100 pCi/L since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

c. Surface Water Data

Surface water level measurements were collected at the surface water monitoring locations during the groundwater level measurement event. The purpose of the surface water monitoring was to provide surface water elevation data to evaluate the groundwater/surface water interaction at the Station.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or 140 ± 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

- IV. Results and Discussion
 - A. Groundwater Results

Groundwater

Samples were collected from on-site wells throughout the year in accordance with the station radiological groundwater protection program.

Analytical results and anomalies are discussed below.

<u>Tritium</u>

Samples from 41 locations were analyzed for tritium activity (Tables B-I.1, B-II.1 and B-III.1, Appendix B). Tritium values ranged from the detection limit to 11,000 pCi/L. Tritium was not detected in wells at or near the owner-controlled boundary. The location most representative of potential offsite user of drinking water is less than the MDC (Table B-I.1, Appendix B).

Low levels of tritium were detected at concentrations greater than the minimum detectable concentration (MDC) in 11 of 27 groundwater monitoring wells and 1 yard drain sump location. The tritium concentrations ranged from 181 pCi/L to 11,000 pCi/L (Table B–I.1, Appendix B).

No tritium was detected in any surface water samples (Table B–II.1, Appendix B). No tritium was detected in any precipitation water samples (Table B–III.1, Appendix B).

<u>Sr</u>

Sr-89 and Sr-90 were not detected in any of the samples (Table B-I.1, Appendix B).

Gross Alpha and Gross Beta (dissolved and suspended)

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater samples during 2016.

Gross Alpha (dissolved) was detected in 6 of 24 groundwater locations analyzed. The concentrations ranged from 1.5 to 14.6 pCi/L.

Gross Alpha (suspended) was detected in 9 of 24 groundwater locations analyzed. The concentrations ranged from 1.3 to 13.9 pCi/L.

Gross Beta (dissolved) was detected in 24 of 24 groundwater locations analyzed. The concentrations ranged from 1.2 to 50.7 pCi/L.

Gross Beta (suspended) was detected in 6 of 24 groundwater locations analyzed. The concentrations ranged from 1.6 to 12.1 pCi/L.

The activity detected is consistent with historical levels. The activity detected is naturally occurring and the levels are considered to be background (Table B-I.1, Appendix B).

Hard-To-Detect

Hard-To-Detect analyses were performed on a select group of groundwater and surface water locations to establish baseline levels. The analyses for groundwater included Fe-55, Ni-63, Am-241, Cm-242, Cm-243/244, Pu-238, Pu-239/240, U-234, U-235 and U-238.

U-234 was detected in 7 of 24 groundwater monitoring locations analyzed. The concentrations ranged from 0.22 to 15.07 pCi/L.

U-235 was detected in 1 of 24 groundwater monitoring locations analyzed. The concentrations was 0.45 pCi/L.

U-238 was detected in 7 of 24 groundwater monitoring locations analyzed. The concentrations ranged from 0.21 to 13.71 pCi/L. No plant-produced radionuclides were detected.

The activity detected is naturally occurring and the levels are considered to be background (Table B–I.3, Appendix B).

Gamma Emitters

No power-production gamma emitters were detected in any of the samples (Table B–I.2, Appendix B).

B. Surface Water Results

Surface Water

Samples were collected from surface water locations throughout the year in accordance with the station radiological groundwater protection program. Analytical results are discussed below.

<u>Tritium</u>

Samples from three locations were analyzed for tritium activity. Tritium was not detected in any samples (Table B–II.1, Appendix B).

Gamma Emitters

No power-production gamma emitters were detected in any of the samples. No other gamma emitting nuclides were detected (Table B–II.2, Appendix B).

C. Precipitation Water Results

Precipitation Water

Samples were collected at six locations (1A, 1B, 1S, 1SSE, 1Z, and 4M) in accordance with the station radiological groundwater protection program. The following analysis was performed:

<u>Tritium</u>

Samples from six locations were analyzed for tritium activity. Tritium activity was not detected in any samples (Table B-III.1, Appendix B).

D. Drinking Water Well Survey

A drinking water well survey was conducted during the summer 2006 by CRA (CRA 2006)⁽¹⁾ around PBAPS. The water well inventory was updated in 2012⁽⁴⁾. The updated water well database search indicated a new water well off Station property within a one mile radius of the Station. The well is described as a "test" well and its use is listed as "unused". In summary, there were no significant changes in off Station groundwater use from 2006-2012.

E. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE and Environmental Inc. (Midwest Labs) are presented in the AREOR.

F. Leaks, Spills and Releases

There were no inadvertent leaks, spills or releases of water containing licensed material to the environment in 2016.

G. Trends

A tritium plume has been identified northeast of the Unit 3 Turbine Building. The plume extends eastward toward well MW-PB-4. The plume is bounded on the north by wells MW-PB-12 and MW-PB-22. The plume is bounded on the south by wells MW-PB-20 and MW-PB-21.

The tritium plume is a result of licensed material entering the groundwater through degraded floor seams and penetration seals in the Unit 3 Turbine Building. The activity currently detected in the Unit 3 Turbine Building monitoring wells, MW-PB-24, 25, 26 and 27, is the result of legacy licensed material under the turbine building being transported eastward by natural hydrogeologic groundwater flow.

Tritium activity in the Unit 3 Turbine Building monitoring wells are trended. Any adverse trend is captured in the Station's Corrective Action Program.

H. Investigations

MW-PB-4

In 2006, monitoring wells MW-PB-1 through MW-PB-14 were installed. Tritium activity was detected in MW-PB-4, located north of the Unit 3 Circulating Water Pump Structure and MW-PB-12, north of the Administration Building. Groundwater flow on site is from west to east. Monitoring wells were installed to the west, southwest and northwest of monitoring wells MW-PB-4 and MW-PB-12. The wells with the highest tritium activity are the wells installed directly east of and adjacent to the Unit 3 Turbine Building, wells MW-PB-24, 25, 26 and 27.

Investigation of potential sources identified that the likely source of groundwater contamination was due to degraded floor seams in the Unit 3 Turbine Building Moisture Separator area 116' elevation. Leaks internal to the building entered the groundwater through the degraded floor seams. The floor seams were repaired in August 2010. The floor in the Unit 3 Turbine Building Moisture Separator area 116' elevation was sealed and recoated in October 2011.

MW-PB-29, 30 and 31

An extent-of-condition inspection of the Unit 2 Turbine Building Moisture Separator area 116' elevation floor was performed in October 2010. Minor degradation of the floor seams was identified and repaired. In May 2011, monitoring wells MW-PB-29 and 30 were installed directly east of and adjacent to the Unit 2 Turbine Building; MW-PB-31 was installed southeast of and adjacent to the Unit 2 Turbine Building. These wells were installed to determine if a condition existed east of the Unit 2 Turbine Building that is similar to the condition east of the Unit 3 Turbine Building.

Tritium activity in these wells ranged from less than the MDC to 696 pCi/L. Samples from these wells were also analyzed for gamma-emitting isotopes and hard-to-detect radionuclides. All results are less than the MDC for each isotope.

The Unit 2 Turbine Building Moisture Separator floor 116' elevation floor was sealed and recoated in October 2012. Groundwater intrusion into a ventilation pit on the east side of the area was identified. The groundwater was removed and degraded seams in the ventilation pit were successfully repaired.

MW-PB-24, 25, 26 and 27

Wells MW-PB-24, 25, 26 and 27 are considered the wells of primary interest. These wells were sampled on a frequency ranging from weekly to quarterly. Below are 3 tables. The first lists the highest tritium activity of the wells of primary interest and the date of the sampling. The second table lists the highest tritium activity of the wells during 2016. The third table lists the activity of the wells from the last sampling of 2016. The tritium activity is in pCi/L.

Well #	Tritium Activity	Date
MW-PB-24	33,500	3/15/2010
MW-PB-25	161,000	3/8/2010
MW-PB-26	196,000	3/8/2010
MW-PB-27	71,800	2/22/2010
Well #	Tritium Activity	Date
MW-PB-24	3,270	8/23/2016
MW-PB-25	11,00	4/5/2016
MW-PB-26	401	4/26/2016
MW-PB-27	1,830	4/26/2016
Well #	Tritium Activity	Date
MW-PB-24	246	11/30/2016
MW-PB-25	5,150	11/30/2016
MW-PB-26	345	11/30/2016
MW-PB-27	892	11/30/2016
	•	•

Potential sources of tritium in the groundwater are investigated via procedural processes and documented in the corrective action program. The most likely pathway for tritium to enter the groundwater has been determined to be leaks internal to the Unit 3 Turbine Building Moisture Separator 116', migrating through degraded floor seams or other unidentified openings in the floor.

- I. Actions Taken
 - Unit 3 Turbine Building Moisture Separator area 116' A primary system leak past HV-3-01A-32044B was repaired, preventing water from accumulating (retired PIMS Work Order C0259275). Unit 2 Turbine Building Moisture Separator area 116' - Blank floor drain covers were replaced with slotted floor drain covers (Issue Report 2733795). Unit 2 Turbine Building Moisture Separation area 116' -Degradation around a floor drain was repaired (Issue Report

2733799).

2. Installation of Monitoring Wells

No groundwater monitoring wells were installed in 2016.

3. Actions to Recover/Reverse Plumes

There were no actions to recover the plume.

J. Deviations

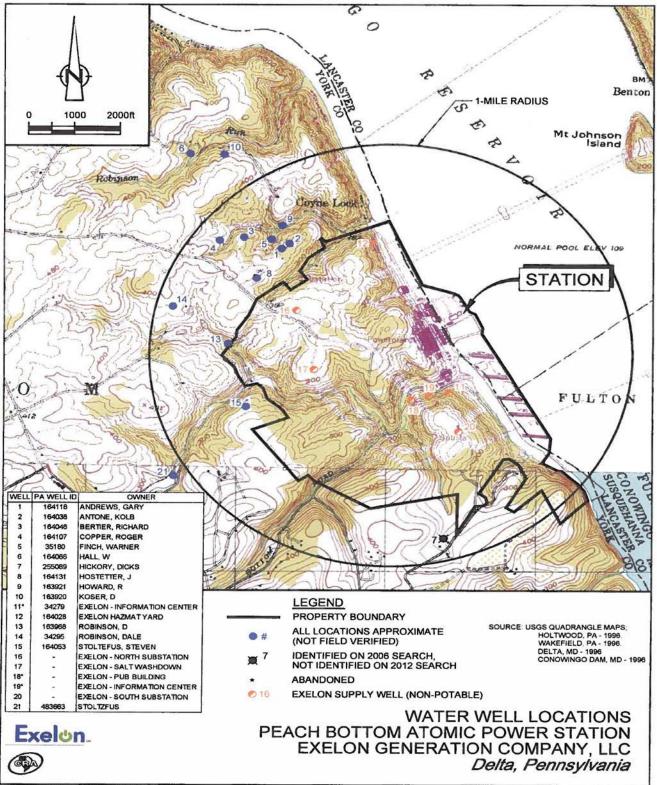
The data tables show that duplicate samples were obtained at several wells during 2016. These duplicate samples were obtained and analyzed for quality control purposes.

For the U/2 Yard Drain sample taken 04/19/16, TBE's lab was unable to reach the client-required detection limits due to its age at the time of analysis for the following nuclides: Co-58, Fe-59, Zn-65, Nb-95, Zr-95, I-131, Ba-140, and La-140. The sample was received on 05/03/16 and gamma was not originally requested on the paperwork received with the sample. The analysis was done promptly upon discovery of the omission and the sample was counted for 891 minutes to achieve the lowest possible MDC.

Due to regional drought conditions, seep SP-PB-3, located west of the Low Level RadWaste Storage Facility was dry during the 4th quarter of 2016. No sample was obtained or analyzed.

V. References

- 1. Conestoga Rovers and Associates, Fleetwide Assessment, Peach Bottom Atomic Power Station, Delta, PA, Fleetwide Assessment, Rev. 1, September 1, 2006.
- 2. Peach Bottom Atomic Power Station, Environs Radiation Monitoring Program, Preoperational Summary Report units 2 and 3, June 1977.
- Peach Bottom Atomic Power Station, Environs Radiation Monitoring Program, Preoperational Summary Report units 2 and 3, September 1970-August 1973, January 1974.
- 4. Conestoga Rovers and Associates, Hydrogeologic Investigation Report, Peach Bottom Atomic Power Station, November 2012.
- 5. AMO Environmental Decisions, 2016 RGPP Summary Monitoring Reports, April 2016, August 2016, October 2016 and February 2017.


APPENDIX A

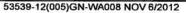
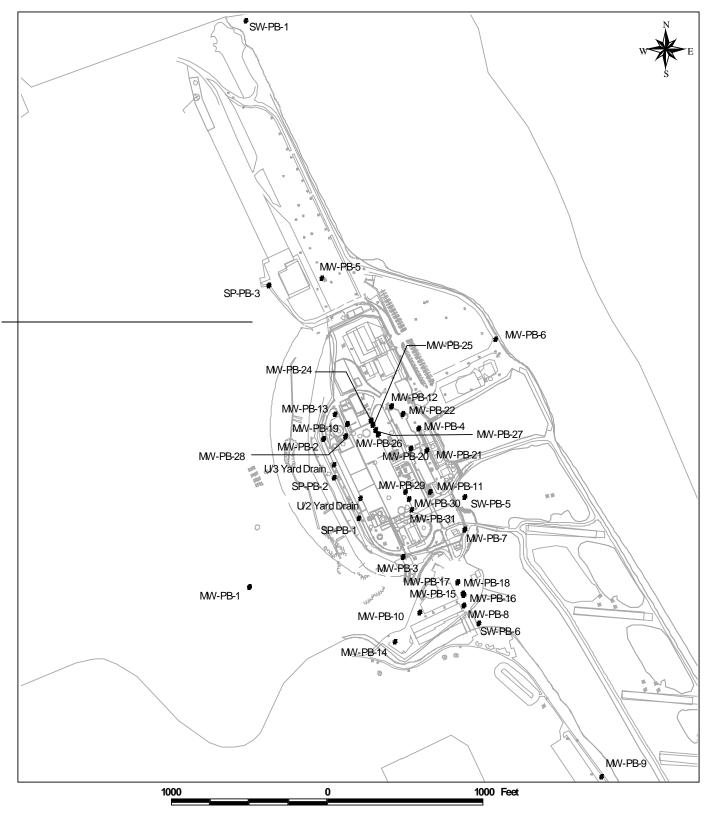

SAMPLING LOCATIONS, DISTANCE AND DIRECTION

TABLE A-1:

Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Peach Bottom Atomic Power Station, 2016


Site	Site Type	Sector	Distance (ft.)	
MW-PB-1	Groundwater Well	SW	1,166.6	
MW-PB-2	Groundwater Well	WNW	309.0	
MW-PB-3	Groundwater Well	SSE	709.7	
MW-PB-4	Groundwater Well	ENE	350.2	
MW-PB-5	Groundwater Well	NNW	1,146.1	
MW-PB-6	Groundwater Well	NE	1,072.4	
MW-PB-7	Groundwater Well	SE	813.9	
MW-PB-8	Groundwater Well	SE	1,167.0	
MW-PB-9	Groundwater Well	SE	2,816.9	
MW-PB-10	Groundwater Well	SSE	1,125.1	
MW-PB-11	Groundwater Well	SE	438.4	
MW-PB-12	Groundwater Well	NNE	317.2	
MW-PB-13	Groundwater Well	NW	329.4	
MW-PB-14	Groundwater Well	S	1,231.2	
MW-PB-15	Groundwater Well	SE	1,087.9	
MW-PB-16	Groundwater Well	SE	1,101.6	
MW-PB-17	Groundwater Well	SE	1,005.4	
MW-PB-18	Groundwater Well	SE	1,010.0	
MW-PB-19	Groundwater Well	NW	226.8	
MW-PB-20	Groundwater Well	E	260.5	
MW-PB-21	Groundwater Well	E	363.3	
MW-PB-22	Groundwater Well	NE	315.4	
MW-PB-24	Groundwater Well	Ν	185.9	
MW-PB-25	Groundwater Well	Ν	159.7	
MW-PB-26	Groundwater Well	NNE	121.1	
MW-PB-27	Groundwater Well	NNE	139.1	
MW-PB-28	Groundwater Well	NW	249.6	
MW-PB-29	Groundwater Well	SE	325.0	
MW-PB-30	Groundwater Well	SE	379.2	
MW-PB-31	Groundwater Well	SE	450.1	
SW-PB-1	Surface Water	NNW	2,850.5	
SW-PB-5	Surface Water	SE	675.1	
SW-PB-6	Surface Water	SE	1,305.9	
SP-PB-1	Groundwater Seep	S	514.2	
SP-PB-2	Groundwater Seep	WNW	311.6	
SP-PB-3	Groundwater Seep	NNW	1,281.1	
U/2 YARD DRAIN SUMP	Groundwater	SSE	498.7	
U/3 YARD DRAIN SUMP	Groundwater	WSW	175.8	
1A	Precipitation Water	ESE	1,271	
1B	Precipitation Water	NW	2,587	
1S	Precipitation Water	S	1,315	
1SSE	Precipitation Water	SSE	1,312	
1Z	Precipitation Water	SE	1,763	
4M	Precipitation Water	SE	45,989	
	·			

1. 3

Figure A-1 Well Water Locations, Peach Bottom Atomic Power Station, 2016

RGPP Surface Water and Groundwater Sample Locations

Figure A-2 RGPP Monitoring Locations, Peach Bottom Atomic Power Station, 2016

APPENDIX B

DATA TABLES

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-1	04/26/16 T	BE < 193						
MW-PB-1		BE < 181						
MW-PB-1		IML < 147						
MW-PB-2	02/02/16	< 194						
MW-PB-2	04/25/16	< 194	< 5.3	< 0.5	2.1 ± 0.7	< 1.3	5.3 ± 0.8	< 2.3
MW-PB-2	07/26/16	< 171						
MW-PB-2	10/11/16	< 181						
MW-PB-3	02/02/16	< 195						
MW-PB-3	04/25/16	< 191	< 8.5	< 0.5	< 0.6	2.2 ± 0.9	1.3 ± 1	1.6 ± 1.1
MW-PB-3	07/26/16	< 171						
MW-PB-3	10/11/16	< 181						
MW-PB-4	02/02/16	241 ± 131						
MW-PB-4	02/02/16	< 200						
MW-PB-4	04/26/16	< 192	< 6.0	< 0.6	< 3.7 (1)	< 0.8	9.1 ± 1.7	< 1.6
MW-PB-4	07/27/16	211 ± 114						
MW-PB-4		BE < 181						
MW-PB-4		BE < 183						
MW-PB-4		IML 243 ± 88						
MW-PB-5	04/25/16	< 194						
MW-PB-6	04/25/16	< 194						
MW-PB-7	02/03/16	< 194						
MW-PB-7		BE < 177	< 4.4	< 0.4	< 2.2	< 0.8	10.0 ± 1.7	< 1.6
MW-PB-7		BE < 191	< 7.9	< 0.6	< 2.3	< 0.8	10.9 ± 1.7	< 1.6
MW-PB-7		IML < 147	< 0.9	< 0.5	1.5 ± 1.1 (2		5.1 ± 0.8 (
MW-PB-7	07/25/16	< 166			·	,		,
MW-PB-7	10/12/16	< 184						
MW-PB-8	02/03/16	< 179						
MW-PB-8	04/26/16	< 195	< 9.4	< 0.4	< 2.3	1.9 ± 0.9	23.5 ± 2.1	< 1.6
MW-PB-8	07/25/16	< 168						
MW-PB-8	10/12/16	< 181						
MW-PB-10	02/03/16	< 193						
MW-PB-10	04/25/16	< 192	< 4.4	< 0.5	< 6.6 (1)	6.4 ± 2.2	9.9 ± 4.2	7.8 ± 2.8
MW-PB-10	07/25/16	< 165						
MW-PB-10	10/12/16	< 180						
MW-PB-11	02/02/16	< 196						
MW-PB-11	04/25/16	< 192	< 6.6	< 0.4	< 4.4 (1)	13.9 ± 3.2	6.7 ± 3.2	12.1 ± 5.4
MW-PB-11	07/27/16	< 171						
MW-PB-11	10/11/16	< 182						
MW-PB-12	02/02/16	< 194						
MW-PB-12	04/27/16	< 191	< 5.2	< 0.5	< 1.0	< 0.8	1.2 ± 0.7	< 1.6
MW-PB-12		BE 250 ± 112						
MW-PB-12	07/27/16 TBL							
MW-PB-12	07/27/16 TBL							
MW-PB-12	07/27/16 E	IML < 150						
MW-PB-12	11/30/16	245 ± 128						
MW-PB-13	02/02/16	248 ± 128						
MW-PB-13	04/25/16	< 192	< 5.1	< 0.7	14.6 ± 6.4	< 4.0	27.3 ± 7.8	< 3.6
MW-PB-13	07/26/16	< 169						
MW-PB-13	10/11/16	< 185						
MW-PB-14	04/26/16	< 195						
MW-PB-15	02/03/16	< 181						
MW-PB-15	04/25/16	< 193	< 4.0	< 0.5	< 1.5	< 0.9	8.8 ± 1.2	< 1.6
MW-PB-15	07/25/16	< 167						
MW-PB-15	10/12/16	< 184						
MW-PB-16	02/03/16	< 178						

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		COLLECTION	Ν		• • •				(-))	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SITE	DATE		H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-1607/25/16Recount< 173MW-PB-1610/12/16< 183					< 5.1	< 0.6	3.5 ± 1.1	1.8 ± 0.9	8.3 ± 1.0	< 1.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Recount							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
MW-PB-19 $07/26/16$ < 167 MW-PB-19 $08/27/16$ < 178 MW-PB-19 $10/11/16$ TBE < 178 MW-PB-19 $10/11/16$ TBE < 182 MW-PB-19 $10/11/16$ EIML < 181 MW-PB-20 $02/02/16$ < 195 MW-PB-20 $02/02/16$ < 194 < 4.5 < 0.7 < 5.5 (1) < 0.9 11.3 ± 2.0 < 1.6 MW-PB-20 $01/11/16$ < 182 $<$ $<$ $<$ $<$ $<$ $<$ $<$ MW-PB-20 $01/2/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $02/02/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $01/11/16$ < 182 $<$ $<$ $<$ $<$ $<$ $<$ $<$ MW-PB-21 $02/02/16$ $< 507 \pm 143$ $<$ $<$ $<$ $<$ $<$ $<$ MW-PB-22 $02/02/16$ 507 ± 136 $<$ $<$ $<$ $<$ $<$ $<$ MW-PB-22 $07/27/16$ TBE 702 ± 133 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ MW-PB-24 $03/03/16$ < 220 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ MW-PB-24 $03/03/16$ < 220 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4</td> <td>4.0</td> <td>0.0 1.0</td> <td></td> <td>4.0</td>						0.4	4.0	0.0 1.0		4.0
MW-PB-19 $08/27/16$ < 178 MW-PB-19 $10/11/16$ TBE < 179 MW-PB-19 $10/11/16$ TBE < 182 MW-PB-19 $10/11/16$ EIML < 181 MW-PB-20 $02/02/16$ < 195 MW-PB-20 $04/25/16$ < 194 < 4.5 < 0.7 < 5.5 (1) < 0.9 11.3 ± 2.0 < 1.6 MW-PB-20 $04/25/16$ < 194 < 4.5 < 0.7 < 5.5 (1) < 0.9 11.3 ± 2.0 < 1.6 MW-PB-20 $04/25/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $04/26/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $07/27/16$ < 181 $MW-PB-21$ $07/27/16$ < 161 < 181 < 181 < 181 < 181 MW-PB-22 $02/02/16$ $< 581 \pm 136$ < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $07/27/16$ TBE 702 ± 133 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-24 $07/27/16$ TBE 702 ± 133 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-24 $07/27/16$ TBE 702 ± 133 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-24 $07/27/16$ TBE 702 ± 133 < 6.4 < 0.6 < 1.3					< 3.3	< 0.4	< 1.0	3.0 ± 1.2	2.9 ± 0.7	4.0 ± 1.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
MW-PB-1910/11/16TBE< 182MW-PB-1910/11/16EIML< 181			TDE							
MW-PB-19 $10/11/16$ EIML< 181MW-PB-20 $02/02/16$ < 195										
MW-PB-20 $02/02/16$ < 195 MW-PB-20 $04/25/16$ < 194 < 4.5 < 0.7 < 5.5 (1) < 0.9 11.3 ± 2.0 < 1.6 MW-PB-20 $07/27/16$ < 162 < 162 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182 < 182										
MW-PB-20 $04/25/16$ < 194 < 4.5 < 0.7 < 5.5 (1) < 0.9 11.3 ± 2.0 < 1.6 MW-PB-20 $07/27/16$ < 162 < 162 < 198 $< 10/11/16$ < 182 $< 1000000000000000000000000000000000000$										
MW-PB-20 $07/27/16$ < 162 MW-PB-20 $10/11/16$ < 182 MW-PB-21 $02/02/16$ < 198 MW-PB-21 $04/26/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $07/27/16$ < 161 < 161 < 181 < 161 < 182 < 161 < 182 MW-PB-22 $02/02/16$ 507 ± 143 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $04/26/16$ 581 ± 136 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $07/27/16$ TBE 745 ± 136 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $07/27/16$ TBE 702 ± 133 < 106 $< 102 \pm 133$ $< 102 \pm 133$ $< 100 \pm 102 \pm 133$ $< 100 \pm 102 \pm 133$ $< 100 \pm 102 \pm 133$ MW-PB-24 $02/02/16$ < 200 $< 229 \pm 130$ $< 129 \pm 109$ $< 103/29/16$ 229 ± 109 $< 106 \pm 115$ MW-PB-24 $03/03/16$ 229 ± 109 $< 106 \pm 115$ $< 106 \pm 115$ $< 106 \pm 115$ $< 106 \pm 115$					< 4.5	< 0.7	< 5.5 (1)	< 0.9	11.3 ± 2.0	< 1.6
MW-PB-20 $10/11/16$ < 182 MW-PB-21 $02/02/16$ < 198 MW-PB-21 $04/26/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $07/27/16$ < 161 < 181 < 181 < 0.9 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $02/02/16$ 507 ± 143 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $02/02/16$ 507 ± 136 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $07/27/16$ TBE 745 ± 136 < 6.4 < 0.6 < 1.3 < 0.9 3.5 ± 0.9 < 1.6 MW-PB-22 $07/27/16$ TBE 702 ± 133 < 1.6 < 1.6 < 1.6 < 1.6 MW-PB-22 $07/27/16$ TBE 702 ± 133 < 1.6 < 1.6 < 1.6 < 1.6 MW-PB-24 $02/02/16$ < 200 < 1.3 < 0.9 < 1.6 < 1.6 MW-PB-24 $03/03/16$ 232 ± 130 < 1.6 < 1.6 < 1.6 < 1.6 MW-PB-24 $03/29/16$ 229 ± 109 < 1.6 < 1.6 < 1.6 < 1.6 MW-PB-24 $04/05/16$ 186 ± 115 < 1.6 < 1.6 < 1.6 < 1.6										
MW-PB-21 $02/02/16$ < 198 MW-PB-21 $04/26/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $07/27/16$ < 161 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181 < 181										
MW-PB-21 $04/26/16$ < 192 < 9.7 < 0.9 < 4.7 (1) < 0.9 50.7 ± 3.0 < 1.6 MW-PB-21 $07/27/16$ < 161 < 181 < 181 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 </td <td></td>										
MW-PB-21 10/11/16 < 181	MW-PB-21				< 9.7	< 0.9	< 4.7 (1)	< 0.9	50.7 ± 3.0	< 1.6
MW-PB-22 02/02/16 507 ± 143 MW-PB-22 04/26/16 581 ± 136 < 6.4	MW-PB-21	07/27/16		< 161						
MW-PB-22 04/26/16 581 ± 136 < 6.4	MW-PB-21	10/11/16		< 181						
MW-PB-22 07/27/16 TBE 745 ± 136 MW-PB-22 07/27/16 TBE 702 ± 133 MW-PB-22 07/27/16 EIML 733 ± 106 MW-PB-22 10/11/16 429 ± 133 MW-PB-24 02/02/16 < 200	MW-PB-22	02/02/16		507 ± 143						
MW-PB-22 07/27/16 TBE 702 ± 133 MW-PB-22 07/27/16 EIML 733 ± 106 MW-PB-22 10/11/16 429 ± 133 MW-PB-24 02/02/16 < 200 MW-PB-24 03/03/16 232 ± 130 MW-PB-24 03/29/16 229 ± 109 MW-PB-24 04/05/16 186 ± 115	MW-PB-22	04/26/16		581 ± 136	< 6.4	< 0.6	< 1.3	< 0.9	3.5 ± 0.9	< 1.6
MW-PB-22 07/27/16 EIML 733 ± 106 MW-PB-22 10/11/16 429 ± 133 MW-PB-24 02/02/16 < 200 MW-PB-24 03/03/16 232 ± 130 MW-PB-24 03/29/16 229 ± 109 MW-PB-24 04/05/16 186 ± 115	MW-PB-22	07/27/16	TBE	745 ± 136						
MW-PB-2210/11/16429 ± 133MW-PB-2402/02/16< 200MW-PB-2403/03/16232 ± 130MW-PB-2403/29/16229 ± 109MW-PB-2404/05/16186 ± 115	MW-PB-22	07/27/16	TBE	702 ± 133						
MW-PB-2402/02/16< 200MW-PB-2403/03/16232 ± 130MW-PB-2403/29/16229 ± 109MW-PB-2404/05/16186 ± 115	MW-PB-22	07/27/16	EIML	733 ± 106						
MW-PB-2403/03/16232 ± 130MW-PB-2403/29/16229 ± 109MW-PB-2404/05/16186 ± 115	MW-PB-22	10/11/16		429 ± 133						
MW-PB-2403/29/16229 ± 109MW-PB-2404/05/16186 ± 115	MW-PB-24									
MW-PB-24 04/05/16 186 ± 115										
MW-PB-24 04/12/16 255 + 125										
	MW-PB-24	04/12/16		255 ± 125						
MW-PB-24 04/19/16 < 192						~ .	.			. –
MW-PB-24 04/26/16 305 ± 114 < 6.3 < 0.4 < 2.1 < 1.1 5.3 ± 1.2 < 1.7					< 6.3	< 0.4	< 2.1	< 1.1	5.3 ± 1.2	< 1./
MW-PB-24 05/02/16 250 ± 125			Original							
MW-PB-24 05/11/16 Original 1010 ± 173 MW-PB-24 05/11/16 Recount 833 ± 152			-							
MW-PB-24 05/11/16 Recount 833 ± 152 MW-PB-24 05/11/16 Rerun 800 ± 149										
MW-PB-24 $05/17/16$ 567 ± 134			Refuit							
$\frac{1}{10000000000000000000000000000000000$										
MW-PB-24 06/01/16 1060 ± 175										
MW-PB-24 06/08/16 1320 ± 197										
MW-PB-24 06/15/16 1010 ± 173										
MW-PB-24 06/22/16 275 ± 121										
MW-PB-24 06/29/16 285 ± 131										
MW-PB-24 07/06/16 Original 1180 ± 188			Original							
MW-PB-24 07/06/16 Rerun 1260 ± 198	MW-PB-24	07/06/16	Rerun							
MW-PB-24 07/12/16 1000 ± 173	MW-PB-24	07/12/16		1000 ± 173						
MW-PB-24 07/19/16 344 ± 124	MW-PB-24	07/19/16		344 ± 124						
MW-PB-24 07/27/16 893 ± 163	MW-PB-24	07/27/16								
MW-PB-24 08/04/16 Original 1910 ± 245	MW-PB-24	08/04/16	Original	1910 ± 245						
MW-PB-24 08/04/16 Rerun 1690 ± 229	MW-PB-24	08/04/16	Rerun	1690 ± 229						
MW-PB-24 08/09/16 1680 ± 229										
MW-PB-24 08/16/16 1700 ± 234	MW-PB-24									
MW-PB-24 08/23/16 Original 3180 ± 373			0							
MW-PB-24 08/23/16 Recount 3040 ± 356										
MW-PB-24 08/23/16 Rerun 3270 ± 378	MW-PB-24	08/23/16	Rerun	3270 ± 378						

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-24	08/27/16	2190 ± 278						
MW-PB-24	09/07/16	1230 ± 183						
MW-PB-24	09/13/16	1180 ± 183						
MW-PB-24	09/20/16 Origir							
MW-PB-24	09/20/16 Recou	<i>int</i> 307 ± 114						
MW-PB-24	09/20/16 Reru							
MW-PB-24	09/27/16	539 ± 129						
MW-PB-24	10/10/16	362 ± 132						
MW-PB-24	11/14/16	382 ± 139						
MW-PB-24	11/30/16	246 ± 121						
MW-PB-25	02/02/16	8890 ± 946						
MW-PB-25	03/03/16	9130 ± 975						
MW-PB-25	03/29/16	9410 ± 987						
MW-PB-25	04/05/16	11000 ± 1150						
MW-PB-25	04/12/16	10000 ± 1050						
MW-PB-25	04/19/16	8970 ± 951						
MW-PB-25	04/26/16	7560 ± 809	< 3.7	< 0.4	< 1.1	< 1.1	11.5 ± 1.0	< 1.7
MW-PB-25	05/02/16	10900 ± 1150						
MW-PB-25	05/11/16	10000 ± 1060						
MW-PB-25	05/17/16	8030 ± 854						
MW-PB-25	05/25/16	10400 ± 1100						
MW-PB-25	06/01/16	7940 ± 847						
MW-PB-25	06/08/16	7050 ± 757						
MW-PB-25	06/15/16	6760 ± 734						
MW-PB-25	06/22/16	7060 ± 758						
MW-PB-25	06/29/16	8300 ± 889						
MW-PB-25	07/06/16	7330 ± 789						
MW-PB-25	07/12/16	8360 ± 889						
MW-PB-25	07/19/16	5330 ± 587						
MW-PB-25	07/27/16	7690 ± 827						
MW-PB-25	08/04/16 Origir							
MW-PB-25	08/04/16 Reru							
MW-PB-25	08/09/16	7130 ± 765						
MW-PB-25	08/16/16	7590 ± 815						
MW-PB-25	08/23/16 Origir							
MW-PB-25	08/23/16 Recou							
MW-PB-25	08/23/16 Reru							
MW-PB-25	08/27/16	7610 ± 815						
MW-PB-25	09/07/16	4420 ± 490						
MW-PB-25	09/13/16	3870 ± 442						
MW-PB-25	09/20/16 Origir							
MW-PB-25	09/20/16 Reru							
MW-PB-25	09/27/16	4240 ± 471						
MW-PB-25	10/10/16	5930 ± 664						
MW-PB-25	11/14/16	9010 ± 955						
MW-PB-25	11/30/16	5150 ± 562						
MW-PB-26	02/02/16	247 ± 134						
MW-PB-26	03/03/16	299 ± 134						
MW-PB-26	03/29/16	266 ± 112						
MW-PB-26	04/05/16	262 ± 117						
MW-PB-26	04/12/16	211 ± 124						
MW-PB-26	04/19/16	295 ± 130		~ -				
MW-PB-26	04/26/16 TBE		< 7.5	< 0.5	1.9 ± 1.0	1.3 ± 0.7	5.4 ± 0.9	< 1.6
MW-PB-26	04/26/16 TBE		< 6.8	< 0.6	1.6 ± 0.8	< 0.8	3.8 ± 0.9	< 1.6
MW-PB-26	04/26/16 EIM	L 328 ± 93	< 1.0	< 0.6	3.9 ± 0.9 (2)	2)	2.6 ± 0.6 (2)	2)

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-26	05/02/16	214 ± 124						
MW-PB-26	05/11/16	296 ± 131						
MW-PB-26	05/17/16	261 ± 120						
MW-PB-26	05/25/16	< 194						
MW-PB-26	06/01/16	< 179						
MW-PB-26	06/08/16	< 176						
MW-PB-26	06/15/16	205 ± 118						
MW-PB-26	06/22/16	< 175						
MW-PB-26	06/29/16	< 190						
MW-PB-26	07/06/16 Origina	al 221 ± 125						
MW-PB-26	07/06/16 Rerur							
MW-PB-26	07/12/16	253 ± 126						
MW-PB-26	07/19/16	< 177						
MW-PB-26	07/27/16	< 176						
MW-PB-26	08/04/16	< 172						
MW-PB-26	08/09/16	< 167						
MW-PB-26	08/16/16	< 179						
MW-PB-26	08/23/16	187 ± 118						
MW-PB-26	09/07/16	273 ± 118						
MW-PB-26	09/13/16	189 ± 111						
MW-PB-26	09/20/16	191 ± 114						
MW-PB-26	09/27/16	< 167						
MW-PB-26 MW-PB-26	10/10/16 11/14/16	208 ± 132 227 ± 133						
MW-PB-26	11/30/16	345 ± 129						
MW-PB-27	02/02/16	836 ± 162						
MW-PB-27	02/02/16	792 ± 159						
MW-PB-27	03/03/16	1280 ± 202						
MW-PB-27	03/29/16	1100 ± 170						
MW-PB-27	04/05/16	959 ± 167						
MW-PB-27	04/12/16	1050 ± 174						
MW-PB-27	04/19/16	1460 ± 218						
MW-PB-27	04/26/16	1830 ± 245	< 5.5	< 0.8	2.6 ± 1.0	< 0.4	5.1 ± 0.9	< 1.6
MW-PB-27	05/02/16	1250 ± 205						
MW-PB-27	05/11/16	1230 ± 193						
MW-PB-27	05/17/16	1380 ± 202						
MW-PB-27	05/25/16	1260 ± 201						
MW-PB-27	06/01/16	1350 ± 200						
MW-PB-27	06/08/16	1520 ± 215						
MW-PB-27	06/15/16	1250 ± 195						
MW-PB-27	06/22/16	1380 ± 200						
MW-PB-27	06/29/16	1180 ± 192						
MW-PB-27	07/06/16	1210 ± 190						
MW-PB-27	07/12/16	1060 ± 176						
MW-PB-27	07/19/16	1080 ± 177						
MW-PB-27	07/27/16	980 ± 170						
MW-PB-27 MW-PB-27	08/04/16 08/09/16	903 ± 153 935 ± 159						
MW-PB-27	08/16/16	935 ± 159 1060 ± 176						
MW-PB-27	08/23/16	922 ± 159						
MW-PB-27	09/07/16	829 ± 382						
MW-PB-27	09/13/16	743 ± 142						
MW-PB-27	09/20/16	1120 ± 176						
MW-PB-27	09/27/16	621 ± 134						
MW-PB-27	10/10/16	1270 ± 212						

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

C	OLLECTIO	N							
SITE	DATE		H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-27	11/14/16		712 ± 153						
MW-PB-27	11/30/16		892 ± 192						
MW-PB-28	02/02/16		< 192						
MW-PB-28	04/25/16		< 176	< 7.5	< 0.5	< 1.0	2.8 ± 1.1	4.7 ± 0.8	3.6 ± 1.4
MW-PB-28	07/26/16		< 168						
MW-PB-28	08/27/16		< 179						
MW-PB-28	10/11/16		< 184						
MW-PB-29	02/02/16		203 ± 126						
MW-PB-29	04/27/16		373 ± 125	< 3.3	< 0.4	< 0.8	< 0.4	2.6 ± 0.6	< 1.6
MW-PB-29	07/27/16		337 ± 115						
MW-PB-29	10/11/16		294 ± 133						
MW-PB-29	11/30/16		445 ± 136						
MW-PB-30	02/02/16		< 191						
MW-PB-30	04/27/16		696 ± 143	< 6.3	< 0.6	< 0.7	2.0 ± 0.9	2.8 ± 0.7	2.1 ± 1.2
MW-PB-30	07/27/16		220 ± 111						
MW-PB-30	10/11/16		196 ± 119						
MW-PB-30	11/30/16		264 ± 130						
MW-PB-31	02/02/16		< 194						
MW-PB-31	02/02/16		187 ± 120						
MW-PB-31	04/27/16		< 177	< 6.6	< 0.7	< 1.1	< 0.8	2.1 ± 0.9	< 1.6
MW-PB-31	07/26/16		213 ± 111						
MW-PB-31	10/11/16		< 181						
MW-PB-31	11/30/16		212 ± 127						
SP-PB-1	02/02/16		< 179						
SP-PB-1	04/25/16		< 178						
SP-PB-1	07/25/16		< 165						
SP-PB-1	10/11/16		< 180						
SP-PB-2	02/02/16		< 196						
SP-PB-2	04/25/16		< 178						
SP-PB-2	07/26/16		< 164						
SP-PB-2	10/11/16		< 180						
SP-PB-3	02/02/16		< 180						
SP-PB-3	04/26/16		< 178						
SP-PB-3	07/25/16		< 164						
U/2 YARD DRAIN									
U/2 YARD DRAIN		Rerun 2							
U/2 YARD DRAIN			< 180						
U/2 YARD DRAIN			< 176						
U/2 YARD DRAIN			< 183						
U/3 YARD DRAIN			618 ± 148						
U/3 YARD DRAIN		Rerun 2	605 ± 148						
U/3 YARD DRAIN		.	217 ± 129						
U/3 YARD DRAIN		Recount	220 ± 131	5.0	0.0		0.0	05 00	4.0
U/3 YARD DRAIN			< 178	< 5.8	< 0.6	< 1.1	< 0.8	2.5 ± 0.9	< 1.6
U/3 YARD DRAIN			< 164						
U/3 YARD DRAIN	12/19/16		< 182						

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) See program exceptions section for explanation

(2) Total Gross Alpha/Total Gross Beta reported

CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER AND SEEP WATER SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION												
SITE	DATE	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
MW-PB-1	04/26/16 TBE	< 6	< 5	< 12	< 8	< 9	< 5	< 8	< 14	< 7	< 6	< 35	< 10
MW-PB-1	04/26/16 TBE	< 4	< 4	< 8	< 4	< 7	< 4	< 7	< 9	< 4	< 4	< 23	< 8
MW-PB-1	04/26/16 EIML	< 3	< 2	< 4	< 2	< 4	< 2	< 3	< 6	< 3	< 2	< 16	< 4
MW-PB-2	04/25/16	< 6	< 6	< 12	< 6	< 9	< 7	< 11	< 11	< 7	< 6	< 31	< 11
MW-PB-3	04/25/16	< 5	< 5	< 12	< 5	< 10	< 5	< 8	< 11	< 5	< 5	< 27	< 8
MW-PB-4	04/26/16	< 7	< 8	< 13	< 9	< 17	< 9	< 14	< 13	< 7	< 8	< 34	< 11
MW-PB-5	04/25/16	< 5	< 5	< 10	< 6	< 11	< 5	< 10	< 12	< 5	< 5	< 30	< 11
MW-PB-6	04/25/16	< 5	< 7	< 13	< 6	< 12	< 7	< 12	< 14	< 6	< 7	< 31	< 12
MW-PB-7	04/25/16 TBE	< 3	< 3	< 7	< 4	< 6	< 4	< 6	< 9	< 3	< 3	< 19	< 7
MW-PB-7	04/25/16 TBE	< 5	< 5	< 10	< 6	< 11	< 6	< 9	< 12	< 4	< 5	< 27	< 11
MW-PB-7	04/25/16 EIML	< 3	< 2	< 5	< 2	< 4	< 3	< 2	< 7	< 2	< 3	< 17	< 2
MW-PB-8	02/03/16	< 5	< 6	< 10	< 7	< 14	< 6	< 15	< 12	< 6	< 4	< 33	< 15
MW-PB-8	04/26/16	< 5	< 6	< 12	< 6	< 12	< 7	< 9	< 12	< 6	< 6	< 40	< 11
MW-PB-8	07/25/16	< 4	< 3	< 10	< 4	< 7	< 4	< 8	< 13	< 3	< 4	< 27	< 8
MW-PB-8	10/12/16	< 9	< 9	< 16	< 7	< 18	< 11	< 16	< 13	< 9	< 9	< 36	< 14
MW-PB-10	02/03/16	< 5	< 6	< 12	< 6	< 13	< 7	< 11	< 15	< 6	< 6	< 38	< 11
MW-PB-10	04/25/16	< 5	< 6	< 11	< 6	< 7	< 7	< 10	< 15	< 7	< 5	< 42	< 15
MW-PB-10	07/25/16	< 4	< 4	< 11	< 4	< 8	< 5	< 8	< 15	< 4	< 4	< 31	< 11
MW-PB-10	10/12/16	< 6	< 5	< 10	< 5	< 13	< 8	< 11	< 11	< 8	< 6	< 27	< 7
MW-PB-11	04/25/16	< 5	< 5	< 9	< 7	< 11	< 6	< 11	< 13	< 6	< 7	< 32	< 9
MW-PB-12	04/27/16	< 8	< 8	< 15	< 8	< 12	< 9	< 11	< 13	< 8	< 7	< 32	< 8
MW-PB-13	04/25/16	< 6	< 7	< 13	< 6	< 13	< 7	< 12	< 14	< 6	< 7	< 35	< 13
MW-PB-14	04/26/16	< 7	< 5	< 15	< 7	< 12	< 7	< 14	< 14	< 6	< 8	< 36	< 13
MW-PB-15	02/03/16	< 6	< 6	< 13	< 8	< 12	< 8	< 10	< 15	< 6	< 6	< 38	< 13
MW-PB-15	04/25/16	< 5	< 5	< 10	< 5	< 12	< 6	< 8	< 13	< 5	< 6	< 32	< 10
MW-PB-15	07/25/16	< 3	< 4	< 7	< 3	< 6	< 4	< 6	< 11	< 3	< 3	< 24	< 8
MW-PB-15	10/12/16	< 6	< 8	< 13	< 9	< 15	< 11	< 15	< 15	< 7	< 7	< 42	< 13
MW-PB-16	02/03/16	< 4	< 3	< 8	< 3	< 6	< 4	< 8	< 14	< 4	< 4	< 28	< 11
MW-PB-16	04/25/16	< 6	< 6	< 12	< 6	< 11	< 7	< 11	< 12	< 6	< 6	< 29	< 11
MW-PB-16	07/25/16	< 3	< 4	< 9	< 3	< 7	< 4	< 7	< 12	< 3	< 4	< 27	< 10
MW-PB-16	10/12/16	< 6	< 6	< 13	< 7	< 16	< 9	< 11	< 10	< 6	< 7	< 33	< 12
MW-PB-19	04/25/16	< 5	< 5	< 11	< 3	< 11	< 5	< 9	< 13	< 5	< 6	< 35	< 8
MW-PB-20	04/25/16	< 4	< 6	< 13	< 10	< 12	< 5	< 8	< 13	< 5	< 6	< 35	< 6
MW-PB-21	04/26/16	< 6	< 7	< 11	< 7	< 11	< 6	< 13	< 13	< 6	< 6	< 35	< 10
MW-PB-22	04/26/16	< 5	< 5	< 11	< 6	< 11	< 6	< 9	< 12	< 5	< 6	< 31	< 8
MW-PB-24	04/26/16	< 8	< 6	< 12	< 5	< 9	< 7	< 14	< 14	< 6	< 7	< 41	< 12
MW-PB-24	10/10/16	< 5	< 6	< 11	< 5	< 10	< 6	< 9	< 10	< 5	< 5	< 28	< 8
MW-PB-25	04/26/16	< 6	< 6	< 11	< 8	< 10	< 6	< 10	< 12	< 5	< 6	< 30	< 14
MW-PB-25	10/10/16	< 8	< 6	< 16	< 7	< 16	< 6	< 15	< 14	< 6	< 9	< 35	< 8

TABLE B-I.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER AND SEEP WATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2016

SITE	COLLECTION DATE	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131 (Cs-134	Cs-137	Ba-140	La-140
MW-PB-26	04/26/16 TBE	< 5	< 5	< 10	< 6	< 9	< 5	< 10	< 12	< 5	< 5	< 24	< 9
MW-PB-26	04/26/16 TBE	< 3	< 3	< 8	< 4	< 7	< 4	< 6	< 9	< 4	< 4	< 21	< 6
MW-PB-26	04/26/16 EIML	< 2	< 2	< 4	< 3	< 4	< 3	< 5	< 4	< 3	< 2	< 12	< 4
MW-PB-26	10/10/16	< 5	< 6	< 10	< 5	< 11	< 5	< 8	< 10	< 5	< 6	< 24	< 7
MW-PB-27	04/26/16	< 4	< 4	< 10	< 5	< 10	< 7	< 8	< 12	< 5	< 5	< 30	< 8
MW-PB-27	10/10/16	< 6	< 7	< 15	< 7	< 12	< 10	< 11	< 13	< 7	< 7	< 38	< 11
MW-PB-28	04/25/16	< 5	< 5	< 10	< 5	< 11	< 5	< 7	< 12	< 5	< 5	< 26	< 9
MW-PB-29	04/27/16	< 7	< 7	< 19	< 6	< 17	< 8	< 14	< 14	< 7	< 8	< 36	< 10
MW-PB-30	04/27/16	< 6	< 6	< 12	< 7	< 12	< 7	< 10	< 13	< 6	< 6	< 35	< 12
MW-PB-31	04/27/16	< 4	< 5	< 11	< 5	< 10	< 6	< 9	< 11	< 4	< 5	< 27	< 9
SP-PB-1	04/25/16	< 3	< 4	< 8	< 3	< 6	< 4	< 7	< 11	< 3	< 4	< 27	< 5
SP-PB-2	04/25/16	< 4	< 5	< 10	< 4	< 10	< 5	< 9	< 12	< 5	< 6	< 29	< 9
SP-PB-3	04/26/16	< 4	< 5	< 9	< 5	< 11	< 5	< 9	< 12	< 4	< 5	< 27	< 8
U/2 YARD DRAIN	l 04/19/16	< 12	*	*	< 7	*	*	*	*	< 8	< 7	*	*
U/3 YARD DRAIN	04/26/16	< 3	< 3	< 7	< 3	< 5	< 4	< 6	< 8	< 3	< 3	< 18	< 6

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

* Unable to reach client-required detection limit due to age of sample at time of analysis

CONCENTRATIONS OF HARD-TO-DETECTS IN GROUNDWATER SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

	C	OLLECTIO	N									
SITE		DATE	Am-241	Cm-242	Cm-243/244	Pu-238	Pu-239/240	U-234	U-235	U-238	Fe-55	Ni-63
MW-PB-2		04/25/16	< 0.19	< 0.04	< 0.13	< 0.03	< 0.06	2.99 ± 0.54	< 0.03	2.11 ± 0.44		
MW-PB-3		04/25/16	< 0.16	< 0.08	< 0.04	< 0.04	< 0.16	1.09 ± 0.27	< 0.07	0.70 ± 0.21		
MW-PB-4		04/26/16	< 0.02	< 0.02	< 0.02	< 0.04	< 0.13	< 0.04	< 0.03	< 0.08	< 115	< 4.1
MW-PB-7	TBE	04/25/16	(1) < 0.32	< 0.10	< 0.10	< 0.04	< 0.18	< 0.05	< 0.12	< 0.03		
MW-PB-7	TBE	04/25/16	< 0.16	< 0.03	< 0.15	< 0.07	< 0.07	< 0.06	< 0.07	< 0.15		
MW-PB-7	EIML	04/25/16	< 0.05		< 0.05	< 0.10	< 0.25	< 0.09		< 0.05		
MW-PB-8		04/26/16	< 0.14	< 0.05	< 0.12	< 0.05	< 0.07	< 0.06	< 0.08	< 0.06		
MW-PB-10		04/25/16	< 0.05	< 0.04	< 0.04	< 0.06	< 0.03	< 0.02	< 0.03	< 0.07		
MW-PB-11		04/25/16	< 0.09	< 0.17	< 0.09	< 0.11	< 0.15	< 0.08	< 0.06	< 0.09		
MW-PB-12		04/27/16	(1) < 0.29	< 0.29	< 0.29	< 0.08	< 0.18	< 0.06	< 0.15	< 0.18	< 154	< 4.1
MW-PB-13		04/25/16	(1) < 0.21	< 0.06	< 0.06	< 0.09	< 0.13	15.07 ± 2.60	0.45 ± 0.19	13.71 ± 2.38		
MW-PB-15		04/25/16	< 0.20	< 0.08	< 0.19	< 0.17	< 0.14	< 0.13	< 0.05	< 0.12		
MW-PB-16		04/25/16	< 0.10	< 0.03	< 0.15	< 0.12	< 0.10	< 0.10	< 0.03	< 0.14		
MW-PB-19		04/25/16	(1) < 0.21	< 0.21	< 0.21	< 0.05	< 0.13	0.22 ± 0.13	< 0.08	0.21 ± 0.14		
MW-PB-20		04/25/16	< 0.10	< 0.02	< 0.02	< 0.14	< 0.06	< 0.06	< 0.12	< 0.10	< 134	< 4.0
MW-PB-21		04/26/16	< 0.03	< 0.07	< 0.03	< 0.03	< 0.10	< 0.14	< 0.20	< 0.16	< 138	< 4.1
MW-PB-22		04/26/16	< 0.04	< 0.04	< 0.04	< 0.03	< 0.09	< 0.17	< 0.19	< 0.16	< 161	< 4.2
MW-PB-24		04/26/16	< 0.03	< 0.03	< 0.03	< 0.03	< 0.09	< 0.10	< 0.09	< 0.13	< 141	< 4.1
MW-PB-25		04/26/16	< 0.12	< 0.02	< 0.09	< 0.03	< 0.11	1.54 ± 0.39	< 0.04	0.50 ± 0.21	< 100	< 4.1
MW-PB-26	TBE	04/26/16	< 0.09	< 0.04	< 0.07	< 0.02	< 0.06	4.22 ± 0.62	< 0.03	1.71 ± 0.37	< 169	< 4.1
MW-PB-26	TBE	04/26/16	< 0.05	< 0.02	< 0.02	< 0.03	< 0.05	4.82 ± 0.67	< 0.11	2.20 ± 0.42	< 127	< 4.2
MW-PB-26	EIML	04/26/16	< 0.10		< 0.07	< 0.24	< 0.58	4.53 ± 0.45		2.08 ± 0.30		
MW-PB-27		04/26/16	< 0.11	< 0.06	< 0.06	< 0.03	< 0.08	5.00 ± 1.06	< 0.07	3.35 ± 0.82	< 144	< 4.2
MW-PB-28		04/25/16	< 0.11	< 0.07	< 0.11	< 0.02	< 0.06	< 0.08	< 0.14	< 0.12		
MW-PB-29		04/27/16	(1) < 0.22	< 0.22	< 0.22	< 0.05	< 0.02	< 0.12	< 0.12	< 0.12		
MW-PB-30		04/27/16	< 0.03	< 0.07	< 0.05	< 0.05	< 0.08	< 0.08	< 0.12	< 0.08		
MW-PB-31		04/27/16	< 0.06	< 0.02	< 0.09	< 0.04	< 0.08	< 0.02	< 0.09	< 0.02		
U/3 YARD DRAIN		04/26/16	< 0.07	< 0.06	< 0.07	< 0.05	< 0.09	< 0.13	< 0.12	< 0.09		

CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2016

TABLE B-II.1

	C	OLLECTION	
SITE		DATE	H-3
SW-PB-1		02/01/16	< 191
SW-PB-1		02/02/16	< 191
SW-PB-1		04/26/16	< 176
SW-PB-1		07/27/16	< 162
SW-PB-1		10/11/16	< 184
SW-PB-1		10/11/16	< 181
SW-PB-5		02/01/16	< 193
SW-PB-5		04/26/16	< 180
SW-PB-5		07/27/16	< 161
SW-PB-5		10/11/16	< 183
SW-PB-6		02/01/16	< 193
SW-PB-6	TBE	04/26/16	< 180
SW-PB-6	TBE	04/26/16	< 179
SW-PB-6	EIML	04/26/16	< 147
SW-PB-6		07/27/16	< 162
SW-PB-6		07/27/16	< 165
SW-PB-6		10/11/16	< 181

TABLE B-II.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED
AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTIO	N											
SITE	DATE	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
SW-PB-1	04/26/16	< 3	< 3	< 5	< 2	< 5	< 3	< 5	< 8	< 3	< 3	< 18	< 4
SW-PB-5	04/26/16	< 3	< 3	< 7	< 4	< 6	< 3	< 6	< 7	< 3	< 3	< 17	< 5
SW-PB-6	04/26/16	TBE < 4	< 3	< 9	< 4	< 8	< 4	< 7	< 9	< 3	< 4	< 24	< 8
SW-PB-6	04/26/16	TBE < 3	< 4	< 9	< 4	< 7	< 4	< 6	< 8	< 3	< 4	< 21	< 5
SW-PB-6	04/26/16	EIML < 2	< 3	< 3	< 2	< 6	< 2	< 3	< 7	< 3	< 3	< 17	< 4

TABLE B-III.1CONCENTRATIONS OF TRITIUM IN PRECIPITATION WATER
SAMPLES COLLECTED AS PART OF THE
RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2016

`

	COLLECTION	
SITE	DATE	H-3
1A	01/28/16	< 182
1A	02/25/16	< 172
1A	03/31/16	< 187
1A	04/28/16	< 182
1A	06/02/16	< 163
1A	06/30/16	< 175
1A	07/28/16	< 168
1A	09/01/16	< 173
1A	09/29/16	< 181
1A	10/27/16	< 189
1A	12/01/16	< 191
1A	12/29/16	< 193
1B	01/28/16	< 184
1B	02/25/16	< 172
1B	03/31/16	< 177
1B	04/28/16	< 182
1B	06/02/16	< 162
1B	06/30/16	< 181
1B	07/28/16	< 164
1B	09/01/16	< 172
1B	09/29/16	< 178
1B	10/27/16	< 189
1B	12/01/16	< 191
1B	12/29/16	< 193
1S	01/28/16	< 175
1S	02/25/16	< 176
1S	03/31/16	< 179
1S	04/28/16	< 184
1S	06/02/16	< 190
1S	06/30/16	< 182
1S	07/28/16	< 166
1S	09/01/16	< 176
1S	09/29/16	< 183
1S	10/27/16	< 189
1S	12/01/16	< 195
1S	12/29/16	< 193
1SSE	01/28/16	< 183
1SSE	02/25/16	< 178
1SSE	03/31/16	< 182
1SSE	04/28/16	< 183
1SSE	06/02/16	< 164
1SSE	06/30/16	< 181
1SSE	07/28/16	< 168
1SSE	09/01/16	< 175
1SSE	09/29/16	< 181
1SSE	10/27/16	< 190
1SSE	12/01/16	< 195
1SSE	12/29/16	< 196
1Z	01/28/16	< 183
1Z	02/25/16	< 176
1Z	03/31/16	< 181

TABLE B-III.1CONCENTRATIONS OF TRITIUM IN PRECIPITATION WATER
SAMPLES COLLECTED AS PART OF THE
RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2016

	COLLECTION		
SITE	DATE	H-3	
1Z	04/28/16	< 179	
1Z	06/02/16	< 164	
1Z	06/30/16	< 178	
1Z	07/28/16	< 168	
1Z	09/01/16	< 174	
1Z	09/29/16	< 182	
1Z	10/27/16	< 191	
1Z	12/01/16	< 197	
1Z	12/29/16	< 195	
4M	01/28/16	< 186	
4M	02/25/16	< 176	
4M	03/31/16	< 180	
4M	04/28/16	< 183	
4M	06/02/16	< 164	
4M	06/30/16	< 180	
4M	07/28/16	< 167	
4M	09/01/16	< 173	
4M	09/29/16	< 183	
4M	10/27/16	< 182	
4M	12/01/16	< 189	
4M	12/29/16	195	