

J. J. Hutto Regulatory Affairs Director 40 Inverness Center Parkway Post Office Box 1295 Birmingham, AL 35242 205 992 5872 tel 205 992 7601 fax

jjhutto@southernco.com

NL-17-0845

MAY 1 5 2017

Docket Nos.: 50-321 50-348 50-424 50-366 50-364 50-425

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001

> Edwin I. Hatch Nuclear Plant – Units 1 & 2 Joseph M. Farley Nuclear Plant– Units 1 & 2 Vogtle Electric Generating Plant– Units 1 & 2 Annual Radiological Environmental Operating Reports for 2016

Ladies and Gentlemen:

In accordance with section 5.6.2 of the referenced plants' Technical Specifications, Southern Nuclear Operating Company hereby submits the Annual Radiological Environmental Operating Reports for 2016.

This letter contains no NRC commitments. If you have any questions, please contact Ken McElroy at 205.992.7369.

Respectfully submitted,

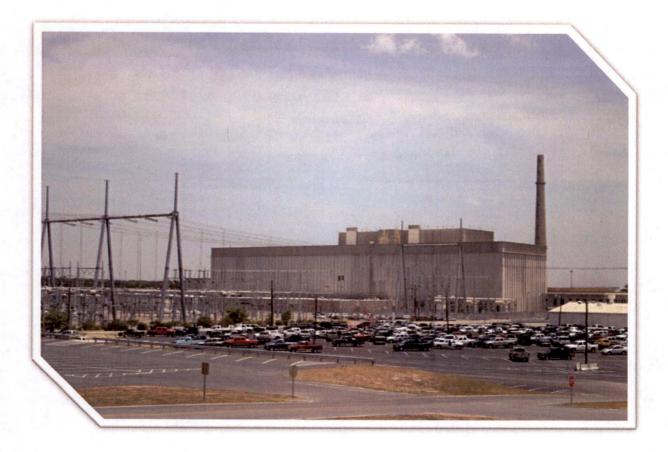
Hto

J. J. Hutto Regulatory Affairs Director

JJH/RMJ

Enclosures: 1. Hatch Annual Radiological Environmental Operating Report for 2016
2. Farley Annual Radiological Environmental Operating Report for 2016
3. Vogtle Annual Radiological Environmental Operating Report for 2016
cc: Regional Administrator, Region II

NRR Project Manager – Farley, Hatch, Vogtle 1 & 2 Senior Resident Inspector – Farley, Hatch, Vogtle 1 & 2 NRR Project Manager – Farley, Hatch, Vogtle 1 & 2 RType: Farley=CFA04.054, Hatch=CHA02.004, Vogtle=CVC7000 State of Alabama Department of Public Health, Office of Radiation Control State of Georgia Department of Natural Resources American Nuclear Insurers


IEZ5 NRR

Edwin I. Hatch Nuclear Plant – Units 1 & 2 Joseph M. Farley Nuclear Plant– Units 1 & 2 Vogtle Electric Generating Plant– Units 1 & 2 Annual Radiological Environmental Operating Reports for 2016

Enclosure 1

Hatch Annual Radiological Environmental Operating Report for 2016

EDWIN I. HATCH NUCLEAR PLANT 2016 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

This page intentionally left blank.

1

.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

TABLE OF CONTENTS

1	Introd	luction1					
2	REMP	Description2					
3	Resul	ts Summary7					
	3.1	Airborne Particulates153.1.1Gross Beta153.1.2Gamma Particulates17					
	3.2 3.3	Direct Radiation17Biological Media213.3.1Milk213.3.2Vegetation223.3.3Fish223.3.4Biological Media Summary23					
	3.4	Surface Water					
	3.5	Sediment					
	3.6	Interlaboratory Comparison Program25					
	3.7	Groundwater					
4	Surve	y Summaries					
	4.1	Land Use Census					
	4.2	Altamaha River Survey 32					
5	Concl	usions					
<u>Tables</u>							
Table 2 Table 3 Table 3 Table 3	-2. Radi -1. Radi -2. Rep -3. Ano	imary Description of Radiological Environmental Monitoring Program					
		rage Quarterly Exposure from Direct Radiation					
Table 3-6. Interlaboratory Comparison Limits							
		rlaboratory Comparison Summary27					
		undwater Monitoring Locations					
		undwater Protection Program Tritium Results (pCi/L)					
		cial Sample Results (Corn)					
	pe						

Environmental Operating Report

Figures

Figure 3-1. Average Weekly Gross Beta Air Concentration	17
Figure 3-2. Average Quarterly Exposure from Direct Radiation	20
Figure 3-3. 2016 Average Exposure from Direct Radiation	21
Figure 3-4. 2016 Biological Media Average Cs-137 Concentrations	23
Figure 3-5. Average Annual Tritium Concentrations in River Water	24

<u> Appendix A – Maps</u>

A-1 – REMP Stations in Plant Vicinity

A-2 – REMP Stations within 10 Miles

A-3 – Facility Groundwater Wells

Appendix B – Errata

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

LIST OF ACRONYMS

AREOR	Annual Radiological Environmental Operating Report
ASTM	American Society for Testing and Materials
BWR	Boiling Water Reactor
CL	Confidence Level
EPA	Environmental Protection Agency
GA EPD	State of Georgia Environmental Protection Division
GPC	Georgia Power Company
GPCEL	Georgia Power Company Environmental Laboratory
HNP	Edwin I. Hatch Nuclear Plant
ICP	Interlaboratory Comparison Program
MDC	Minimum Detectable Concentration
MDD	Minimum Detectable Difference
MWe	MegaWatts Electric
NA	Not Applicable
NDM	No Detectable Measurement(s)
NEI	Nuclear Energy Institute
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
OSL	Optically Stimulated Luminescence
Ро	Preoperation
REMP	Radiological Environmental Monitoring Program
RL	Reporting Level
RM	River Mile
SNC	Southern Nuclear Operating Company
TLD	Thermoluminescent Dosimeter
TS	Technical Specification

ENVIRONMENTAL OPERATING REPORT

1 INTRODUCTION

The Radiological Environmental Monitoring Program (REMP) is conducted in accordance with Chapter 4 of the Offsite Dose Calculation Manual (ODCM). REMP activities for 2016 are reported herein in accordance with Technical Specification (TS) 5.6.2 and ODCM 7.1.

The objectives of the REMP are to:

 Determine the levels of radiation and the concentrations of radioactivity in the environs and;
 Assess the radiological impact (if any) to the environment due to the operation of the Edwin I. Hatch Nuclear Plant (HNP).

The assessments include comparisons between the results of analyses of samples obtained at locations where radiological levels are not expected to be affected by plant operation (control stations), areas of higher population (community stations), and at locations where radiological levels are more likely to be affected by plant operation (indicator stations), as well as comparisons between preoperational and operational sample results.

The pre-operational stage of the REMP began with the establishment and activation of the environmental monitoring stations in January of 1972. The operational stage of the REMP began on September 12, 1974 with Unit 1 initial criticality.

- A description of the REMP is provided in Section 2 of this report
- Section 3 provides a summary of the results and an assessment of any radiological impacts to the environment as well as the results from the interlaboratory comparison
- A summary of the land use census and the river survey are included in Section 4
- Conclusions are included in Section 5

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

2 **REMP DESCRIPTION**

The following section provides a description of the sampling and laboratory protocols associated with the REMP. Table 2-1 provides a summary of the sample types to be collected and the analyses to be performed in order to monitor the airborne, direct radiation, waterborne and ingestion pathways, and also summarizes the collection and analysis frequencies (in accordance with ODCM Section 4.2). Table 2-2 provides specific information regarding the station locations, their proximity to the plant, and exposure pathways. Additionally, the locations of the sampling stations are depicted on Maps A-1 through A-3 of the georeferenced data included in Appendix A of this report.

Georgia Power Company's Environmental Laboratory (GPCEL), located in Atlanta, Georgia collects and analyzes REMP samples.

Exposure Pathway Approximate Number of and/or Sample Sample Locations		Sampling/Collection Frequency	Type/Frequency of Analysis		
Direct Radiation	37 routine monitoring stations	Quarterly	Gamma dose, quarterly		
Airborne Radioiodine Samples from six and Particulates locations:		Continuous sampler operation with sample collection weekly	Radioiodine canister: I-131 analysis, weekly Particulate sampler: analyze for gross beta radioactivity not less than 24 hours following filter change, weekly; perform gamma isotopic analysis on affected sample when gross beta activity is 10 times the yearly mean of control samples; and composite (by location) for gamma isotopic analysis, quarterly.		
Waterborne	and the state of the state of the	L La settina tua anna dia settina.			
Surface		Composite sample over one month period ¹	Gamma isotopic analysis ² , monthly Composite for tritium analysis, quarterly		
Drinking ^{3,4}	water near the intake and one sample of finished water from each of one to three of the nearest water supplies which could be affected by HNP	River water collected near the intake will be a composite sample; the finished water will be a grab sample. These samples will be collected monthly unless the calculated dose due to consumption of the water is greater than 1 mrem/year; then the collection will be biweekly. The collections may revert to monthly should the calculated doses become less than 1 mrem/year.	I-131 analysis on each sample when biweekly collections are required. Gross beta and gamma isotopic analysis on each sample; composite (by location) for tritium analysis, quarterly.		
Groundwater See Table 3-8 and Map A- 4 in Appendix A for on- site well locations. These are part of the GWPP (NEI 07-07).		Quarterly sample; pump used to sample GW wells; grab sample from yard drains and ponds Groundwater is sampled per the guidance under NEI 07-07.	Tritium, gamma isotopic, and field parameters of each sample; hard-to-detects based on tritium and gamma results		

Approximate Number of Sample Locations	Sampling/Collection Frequency	Type/Frequency of Analysis			
Shoreline Sediment Two Semiannually		Gamma isotopic analysis², semiannually			
an station in the second s	I Ang the well-reference of the gradient of the transfer				
		Gamma isotopic analysis ^{2,7} , bimonthly			
Two	Semiannually	Gamma isotopic analysis ² on edible portions, semiannually			
Three	Monthly during growing season	Gamma isotopic analysis ^{2,7} , monthly			
	Sample Locations Two One Two	Sample Locations Two Semiannually One Bimonthly Two Semiannually			

Notes:

¹Composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) to assure obtaining a representative sample.

²Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.

³If it is found that river water downstream of the plant is used for drinking, drinking water samples will be collected and analyzed as specified herein. ⁴A survey shall be conducted annually at least 50 river miles downstream of the plant to identify those who use water from the Altamaha River for drinking.

⁵Up to three sampling locations within five miles and in different sectors will be used as available. In addition, one or more control locations beyond 10 miles will be used.

⁶Commercially or recreationally important fish may be sampled. Clams may be sampled if difficulties are encountered in obtaining sufficient fish samples.

⁷If the gamma isotopic analysis is not sensitive enough to meet the Minimum Detectable Concentration (MDC) for I-131, a separate analysis for I-131 may be performed.

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Table 2-2. Radiological Environmental Sampling Locations									
Station Number	Station Type	Descriptive Location	Direction ¹	Distance (miles) ¹	Radiation Sample Type				
064	Other	Roadside Park	WNW	0.8	Direct				
101	Indicator	Inner Ring	N	1.9	Direct				
102	Indicator	Inner Ring	NNE	2.5	Direct				
103	Indicator	Inner Ring	NE	1.8	Airborne, Direct				
104	Indicator	Inner Ring	ENE	1.6	Direct				
105	Indicator	Inner Ring	E	3.7	Direct				
106	Indicator	Inner Ring	ESE	1.1	Direct, Vegetation				
107	Indicator	Inner Ring	SE	1.2	Airborne, Direct				
108	Indicator	Inner Ring	SSE	1.6	Direct				
109	Indicator	Inner Ring	S	0.9	Direct				
110	Indicator	Inner Ring	SSW	1.0	Direct				
111	Indicator	Inner Ring	SW	0.9	Direct				
112	Indicator	Inner Ring	WSW	1.0	Airborne, Direct, Vegetation				
113	Indicator	Inner Ring	W	1.1	Direct				
114	Indicator	Inner Ring	WNW	1.2	Direct				
115	Indicator	Inner Ring	NW	1.1	Direct				
116	Indicator	Inner Ring	NNW	2.0 ⁴	Airborne, Direct				
170	Control	Upstream	WNW	2	River ³				
172	Indicator	Downstream	E	2	River ³				
201	Other	Outer Ring	N	5.0	Direct				
202	Other	Outer Ring	NNE	4.9	Direct				
203	Other	Outer Ring	NE	5.0	Direct				
204	Other	Outer Ring	ENE	5.0	Direct				
205	Other	Outer Ring	E	7.2	Direct				
206	Other	Outer Ring	ESE	4.8	Direct				
207	Other	Outer Ring	SE	4.3	Direct				
208	Other	Outer Ring	SSE	4.8	Direct				
209	Other	Outer Ring	S	4.4	Direct				
210	Other	Outer Ring	SSW	4.3	Direct				
211	Other	Outer Ring	SW	4.7	Direct				
212	Other	Outer Ring	WSW	4.4	Direct				
213	Other	Outer Ring	W	4.3	Direct				
214	Other	Outer Ring	WNW	5.4	Direct				
215	Other	Outer Ring	NW	4.4	Direct				
216	Other	Outer Ring	NNW	4.8	Direct				

Table 2-2. Radiological Environmental Sampling Locations

2016 HNP Annual Radiological Environmental Operating Report

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Station Number		Descriptive Location	Direction ¹	Distance (miles) ¹	Radiation Sample Type
301	Other	Toombs Central School	N	. 8.0	Direct
304	Control	State Prison	ENE	11.2	Airborne, Direct
304	Control	State Prison	ENE	10.3	Milk
309	Control	Baxley Substation	S	10.0	Airborne, Direct
416	Control	Emergency News Center	NNW	21.0	Direct, Vegetation

Table 2-2. Radiological Environmental Sampling Locations

Notes:

¹Direction and distance are determined from the main stack.

²Station 170 is located approximately 0.6 river miles upstream of the intake structure for river water, 1.1 river miles for sediment and clams, and 1.5 river miles for fish.

Station 172 is located approximately 3.0 river miles downstream of the discharge structure for river water, sediment and clams, and 1.7 river miles for fish.

The locations from which river water and sediment may be taken can be sharply defined. However, the sampling locations for clams often have to be extended over a wide area to obtain a sufficient quantity. High water adds to the difficulty in obtaining clam samples and may also make an otherwise suitable location for sediment sampling unavailable. A stretch of the river of a few miles or so is generally needed to obtain adequate fish samples. The mile locations given above represent approximations of the locations where samples are collected.

³River (fish or clams, shoreline sediment, and surface water)

⁴This station was shifted approximately 0.4 miles due to a highway widening project. Sector did not change. Map A-1 shows the new station and contains a red cross-out of the previous station.

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

3 RESULTS SUMMARY

Included in this section are statistical evaluations of the laboratory results, comparison of the results by media, and a summary of the anomalies and deviations. Overall, 885 analyses were performed across nine exposure pathways. Tables and figures are provided throughout this section to provide an enhanced presentation of the information.

In recent history, man-made nuclides have been released into the environment and have resulted in wide spread distribution of radionuclides across the globe. For example, atmospheric nuclear weapons tests from the mid-1940s through 1980 distributed man-made nuclides around the world. The most recent atmospheric tests in the 1970s and in 1980 had a significant impact upon the radiological concentrations found in the environment prior to and during pre-operation, and through early operation. Some long-lived radionuclides, such as Cs-137, continue to be detected and a portion of these detections are believed to be attributed to the nuclear weapons tests.

Additionally, data associated with certain radiological effects created by off-site events have been removed from the historical evaluation, this includes: the nuclear atmospheric weapon test in the fall of 1980, the Chernobyl incident in the spring of 1986 and the Fukushima accident in the spring of 2011.

As indicated in ODCM 7.1.2.1, the results for naturally occurring radionuclides that are also found in plant effluents must be reported along with man-made radionuclides. Historically, the radionuclide Be-7, which occurs abundantly in nature, is often detected in REMP samples, and occasionally detected in the plant's liquid and gaseous effluents. When it is detected in effluents and REMP samples, it is also included in the REMP results. In 2016, Be-7 was not detected in any plant effluents and is therefore not included in this report. The Be-7 detected in select REMP samples likely represents naturally occurring and/or background conditions.

As part of the data evaluation process, SNC considered the impact of the non-plant associated nuclides along with a statistical evaluation of the REMP data. The statistical evaluations included within this report include the Minimum Detectable Concentration (MDC), the Minimum Detectable Difference (MDD), and Chauvenet's Criterion as described below.

Minimum Detectable Concentration

The minimum detectable concentration is defined as an estimate of the true concentration of an analyte required to give a specified high probability that the measured response will be greater than the critical value.

Minimum Detectable Difference

The Minimum Detectable Difference (MDD) compares the lowest significant difference (between the means) of a control station, versus an indicator station or a community station, that can be determined statistically at the 99% Confidence Level (CL). A difference in mean values which was less than the MDD was considered to be statistically indiscernible.

Chauvenet's Criterion

All results were tested for conformance with Chauvenet's criterion (G. D. Chase and J. L. Rabinowitz, Principles of Radioisotope Methodology, Burgess Publishing Company, 1962, pages 87-90) to identify values which differed from the mean of a set by a statistically significant amount. Identified outliers were investigated to determine the reason(s) for the difference. If equipment malfunction or other valid physical reasons were identified as causing the variation, the anomalous result was excluded from the data set as non-representative.

The 2016 results were compared with past results, including those obtained during preoperation. As appropriate, results were compared with their MDC (listed in Table 3-1) and RL which is listed in Table 3-2. The required MDCs were achieved during laboratory sample analysis. No data points were excluded for violating Chauvenet's criterion.

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of Measurement) Airborne Particulates	Type and Total Number of Analyses Performed Gross Beta 312	Minimum Detectable Concentration (MDC) (a)	Indicator Locations Mean (b), Range (Fraction) 21.4 6.6-52.4	Name Distance and Direction Baxley Substation S	h the Highest I Mean Mean (b), Range (Fraction) 21.9 10.1-54.4	Other Stations (f) Mean (b), Range (Fraction).	21.6 10.1-54.4
(fCi/m3)	Gamma Isotopic 24 I-131 Cs-134 Cs-137	70 50 60	(208/208) NDM(c) NDM NDM	10 mi.	(52/52) NDM NDM NDM_		(104/104) NDM NDM NDM
Airborne Radioiodine (fCi/m3)	l-131 312	70	NDM		NDM	NDM	NDM
Direct Radiation (mR/91 days)	Gamma Dose 148		12.1 8.7-19.9 (64/64)	Inner Ring NM 1.1 mi.	18.4 16.8-19.9 (4/4)	11.3 6.8-16.5 (72/72)	11.0 8.8-12.7 (12/12)
Milk (pCi/l)	Gamma Isotopic 24 I-131 Cs-134 Cs-137 Ba-140	1 15 18 60		State Prison ENE 10.3 Miles	NDM NDM 0.88 0.88-0.88 (1/24) NDM		NDM NDM 0.88 0.88-0.88 (1/24) NDM
	La-140	15			NDM		NDM
Vegetation (pCi/kg-wet)	Gamma Isotopic 37		and the second s			ga se	

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of	Type and Total Number of Analyses	Minimum Detectable Concentration	Locations Mean (b), Range	Annua	h the Highest I Mean Mean (b), Range	Other Stations (f) Mean (b),	Control Locations Mean (b), Range
Measurement)	Performed	(MDC) (a)	(Fraction)	and Direction	(Fraction)	Range (Fraction)	
	1-131	60	NDM	л н н н н н н н н н н н н н н н н н н н		i si i	NDM
	Cs-134	60	NDM			ં પ્લુ થી દેવરીડું ગાણીસાં કે કે કે કે કે	NDM
	Cs-137	80	47.3	Inner Ring ESE	69.8		NDM
			14.2-183.8	1.1 mi.	27.7-183.8		
		i i i j _{ele} tera gibarat d	(14/25)	್ಷ ಸಂಸ್ಥತ ಹನ್ನ ಹನ್ಗಳನ್ ಸ್ಟ್ರಾಮ್	(11/13)		2 · · · · · · · · · · · · · · · · · · ·
River Water (pCi/l)	Gamma Isotopic 12			n alle vien a ser a		i de sette d	the state when
(perr)	Mn-54	15	NDM		NDM		NDM
	Fe-59	30	NDM		NDM	S CARA S BOOK S &	NDM
	Co-58	15	NDM	and a straight of the	NDM	a data data data data data data data da	NDM
	Co-60	15	NDM		NDM		NDM
	Zn-65	30	NDM		NDM		NDM
	Zr-95	30	NDM		NDM	the second se	NDM
	Nb-95	15	NDM		NDM		NDM
	l-131	15(d)	NDM		NDM		NDM
	Cs-134	15	NDM		NDM	and the second second	NDM
	Cs-137	18	NDM		NDM		NDM
	Ba-140	60	NDM		NDM	a start and a start	NDM
	La-140	15	NDM		NDM		NDM
	Tritium	3000 (e)	106	Upstream WNW	152	an a	152
	8		24.3-169 , (4/4)	~0.6 RM from intake	125-192 (3/4)		125-192 (3/4)

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Minimum Detectable Concentration (MDC) (a)	Indicator Locations Mean (b), Range (Fraction)	<u> </u>	h the Highest I Mean Mean (b), Range (Fraction)	Other Stations (f) Mean (b), Range (Fraction)	Control Locations Mean (b), Range (Fraction)
Fish (pCi/kg-wet)	Gamma Isotopic 4						n an
	Be-7	655(d)	NDM		A state of the second sec		NDM
	Mn-54	130	NDM	 March 1991 March 1992 March 1992	· · · · ·		NDM
	Fe-59	260	NDM	to a to a state	Alt and a star of		NDM .
·	Co-58	130	NDM	· · · · · ·			NDM
	Co-60	130	NDM	and the second	1, e 1 4. 6. y m - y m - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NDM
	Zn-65	260	NDM				NDM
	Cs-134	130	NDM	and a second s	ing a second start of the	2 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NDM
	Cs-137	150	20.7	Downstream E	20.7		18.1
			20.7-20.7	~ 1.7 RM	20.7-20.7		18.1-18.1
			(1/2)	from intake	(1/2)	<u>, '</u> ,	(1/2)
Sediment (pCi/kg-dry)	Gamma Isotopic 4						
	Cs-134	150	NDM				NDM
	Cs-137	180	73.4 31.2-115.5 (2/2)	Upstream WNW 1.1 RM from intake	114.3 114.3-114.3 (1/2)		114.3 114.3-114.3 (1/2)

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of	Type and Total Number of Analyses	Minimum Detectable Concentration		Indicator Locations Mean (b), Range	_	<u>Annu</u> Name Distance	ith the Highest a <u>l Mean</u> Mean (b), Range	e 👖 (f) N	r Stations Mean (b),	Control Locations Mean (b), Range
Measurement)	Performed	(MDC) (a)	-	(Fraction)		and Direction	(Fraction)	Range	e (Fraction)	(Fraction)
Notes:	ned in ODCM 10.1. Excep	at as noted other	vico	the values list	i ha	n this column are	the detection can	bilities re	ouired by Of	CM Table 4-3
	•								•	
	The values listed in this column are a priori (before the fact) MDCs. In practice, the a posteriori (after the fact) MDCs are generally lower than the values listed. (b) Mean and range are based upon detectable measurements only. The fraction of all measurements at a specified location that are detectable is placed in parenthesis.									
(c) No Detectable N	Measurement(s) (NDM).									
(d) If a drinking wa	ter pathway were to exist	t, a MDC of 1pCi/	. wo	uld have been	use	d.				
(e) If a drinking wat	(e) If a drinking water pathway were to exist, a MDC of 2000pCi/L would have been used.									
Not Applical	ble (sample not required))								

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Analysis	Water (pCi/l)	Airborne Particulate or Gases (fCi/m3)		Milk (pCi/l)	Grass or Leafy Vegetation (pCi/kg-wet)
H-3	20,000ª				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-95	400				
Nb-95	700				
I-131	2 ^b	900		3	100
Cs-134	30	10,000	1,000	60	1,000
Cs-137	50	20,000	2,000	70	2,000
Ba-140	200			300	
La-140	100			400	
30,000 ma	y be used.	lue for drinking water s			hway exists, a value of

^b If no drinking water pathway exists, a value of 20 pCi/l may be used.

In accordance with ODCM 4.1.1.2.1, deviations from the required sampling schedule are permitted, if samples are unobtainable due to hazardous conditions, unavailability, inclement weather, equipment malfunction or other just reasons. Deviations from conducting the REMP sampling (as described in Table 2-1) are summarized in Table 3-3 along with their causes and resolution.

ENVIRONMENTAL OPERATING REPORT

Collection Period	Affected Samples	Anomaly (A)* or Deviation (D)**	ر المراجع	Resolution
5/30/16-6/6/16	Air station #112	(A) Sample was short 16.2 hours	Blown fuse at transformer.	Repairs were made by Georgia Power Company and
CR 10233330				power to the air cabinet was restored.
Second half of 2016	Fish sample at Station #170 & #172	(D) No fish samples were collected	Drought conditions led to extremely low river for an extended period	No resolution necessary; river level is back to normal
CR 10310386				
			outlined in SNC and Georgia Power Lab p	
** A deviation is a samp	le result that is not recorded	l due to not meeting scheduling a	nd/or procedural requirements as outli	ned by SNC and Georgia Power
Lab				

Table 3-3. Anomalies and Deviations from Radiological Environmental Monitoring Program

ENVIRONMENTAL OPERATING REPORT

3.1 Airborne Particulates

As specified in Table 2-1, airborne particulate filters and charcoal canisters are collected weekly at four indicator stations (Stations 103, 107, 112 and 116) which encircle the plant at the site periphery, and at two control stations (Station 304 and 309) which is approximately 10 miles from the main stack. At sampling locations containing a filter and cartridge series, air is continuously drawn through a glass fiber filter to retain airborne particulate and an activated charcoal canister is placed in series with the filter to adsorb radioiodine.

3.1.1 Gross Beta

As provided in Table 3-1, the 2016 annual average weekly gross beta activity was 21.4 fCi/m3 for the indicator stations. It was 0.2 fCi/m3 less than the control station average of 21.6 fCi/m3 for the year. This difference is not statistically discernible, since it is less than the calculated MDD of 4.6 fCi/m3.

Average Air Gross Beta historical data (Table 3-4) is graphed to show trends associated with a prevalent exposure pathway (Figure 3-1). In general, there is close agreement between the results for the indicator, control and community stations. This close agreement supports the position that the plant is not contributing significantly to the gross beta concentrations in air.

Period	Indicator (fCi/m3)	Control (fCi/m3)
Pre-op	140	140
1974	87	90
1975	85	90
1976	135	139
1977	239	247
1978	130	137
1979	38	39
1980	49	48
1981	191	203
1982	33	34
1983	31	30
1984	26	28
1985	22	21
1986	36	38
1987	23	22
1988	22.6	21.7
1989	18.4	17.8
1990	19.3	18.7

Table 3-4. Average Weekly Gross Beta Air Concentration

1

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Period	le 3-4. Average Weekly Gross Beta A Indicator (fCi/m3)	Control (fCi/m3)		
1991	18.1	18		
1992	18.5	18.4		
1993	20.4	20.7		
1995	19.5	19.7		
1994	21.7	21.7		
L				
1996	21.3	21.4		
1997	20.3	20.7		
1998	20.0	20.5		
1999	21.3	21.3		
2000	23.6	23.9		
2001	21.5	21.0		
2002	19.3	19.2		
2003	18.8	18.2		
2004	21.4	21.3		
2005	19.7	19.4		
2006	24.9	24.7		
2007	24.4	24.3		
2008	21.8	22.5		
2009	21.2	21.4		
2010	23.1	24.0		
2011	23.5	25.1		
2012	23.7	22.7		
2013	21.3	20.3		
2014	22.0	22.3		
2015		19.6		
2016	21.4	21.6		

Table 3-4. Average Weekly Gross Beta Air Concentration

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

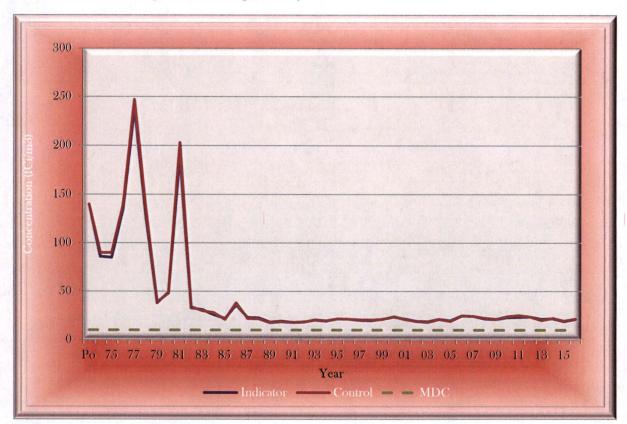


Figure 3-1. Average Weekly Gross Beta Air Concentration

3.1.2 Gamma Particulates

During 2016, no man-made radionuclides were detected from the gamma isotopic analysis of the quarterly composites of the air particulate filters.

On only one occasion since 1986, has a man-made radionuclide been detected in a quarterly composite. A small amount of Cs-137 (1.7 fCi/m3) was identified in the first quarter of 1991 at Station 304. The MDC and RL for Cs-137 in air are 60 and 20,000 fCi/m3, respectively.

3.2 Direct Radiation

In 2016, direct (external) radiation was measured with Optically Stimulated Luminescent (OSL) dosimeters by placing two OSL badges at each station. The gamma dose at each station is reported as the average reading of the two badges. The badges are analyzed on a quarterly basis. An inspection is performed near mid-quarter for offsite badges to assure that the badges are on-station and to replace any missing or damaged badges.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Two direct radiation stations are established in each of the 16 compass sectors, to form two concentric rings. The inner ring stations (Nos. 101 through 116) are located near the plant perimeter as shown in Map A-1 in Appendix A and the outer ring stations (Nos. 201 through 216) are located at distances of four to five miles from the plant as shown in Map A-2 in Appendix A. The stations in the East sector are a few additional miles away with regard to the other stations in their respective rings due to large swamps making normal access extremely difficult. The 16 stations forming the inner ring are designated as the indicator stations. The two-ring configuration of stations was established in accordance with NRC Branch Technical Position "An Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. The three control stations (Nos. 304, 309 and 416) are located at distances greater than 10 miles from the plant as shown in Map A-2. The mean and range values presented in the "Other" column in Table 3-1 includes the outer ring stations (stations 201 through 216) as well as stations 064 and 301, which monitor special interest areas. Station 064 is located at the onsite roadside park, while Station 301 is located near the Toombs Central School. Station 210, in the outer ring, is located near the Altamaha School (the only other nearby school).

As provided in Table 3-1, the 2016 average quarterly exposure at the indicator stations (inner ring) was 12.1 mR with a range of 8.7-19.9 mR. The indicator station average was 1.1 mR more than the control station average (11.0 mR). This difference is not considered statistically discernible since it is less than the MDD of 1.5 mR.

The quarterly exposures acquired at the community/other (outer ring) stations during 2016 ranged from 6.8 to 16.5 mR with an average of 11.3 mR which was 0.3 mR more than that for the control stations. However, this difference is not discernible since it is less than the MDD of 0.7 mR.

Average Direct Radiation historical data (Table 3-5) is graphed to show trends associated with a prevalent exposure pathway (Figure 3-2). The decrease between 1991 and 1992 values is attributed to a change in TLDs from Teledyne to Panasonic. It should be noted however that the differences between indicator and control and outer ring values did not change.

Period	Indicator (mR)	Control (mR)	Outer Ring (mR)
Pre-op	22.3	23.0	NA
1974	23.2	25.6	NA
1975	10.0	10.5	NA
1976	8.18	6.90	NA
1977	7.31	6.52	NA
1978	6.67	6.01	NA

 Table 3-5. Average Quarterly Exposure from Direct Radiation

2016 HNP Annual Radiological Environmental Operating Report

ENVIRONMENTAL OPERATING REPORT

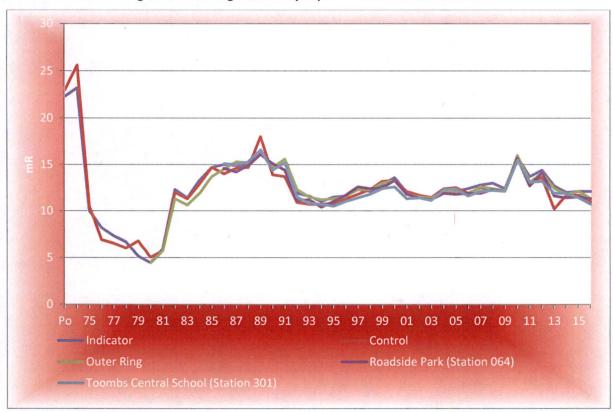

Period	Indicator (mR)	Control (mR)	Outer Ring . (mR)
1979	5.16	6.77	NA
1975	4.44	5.04	4.42
1981	5.90	5.70	5.70
1982	12.3	12.0	11.3
1982	11.4	11.3	10.6
1983	13.3	11.3	11.9
1985	<u> </u>	14.7	13.7
1985	14.7	14.7	14.5
1986	14.9	14.6	15.3
	14.9	14.6	15.2
1988			16.5
1989	16.4	18.0	
1990	14.9	13.9	14.7
1991	15.1	13.7	15.6
1992	11.9	10.9	12.3
1993	11.6	10.7	11.5
1994	11.0	10.7	11.2
1995	11.5	10.8	11.3
1996	11.6	11.3	11.6
1997	12.3	11.8	12.3
1998	12.1	12.3	12.3
1999	12.8	13.2	13.0
2000	13.6	13.3	13.3
2001	12.0	12.1	11.8
2002	11.7	11.7	11.5
2003	11.4	11.4	11.4
2004	12.2	12.4	12.2
2005	12.1	12.5	12.0
2006	12.4	11.9	11.8
2007	12.8	12.5	12.6
2008	13.0	12.3	12.4
2009	12.4	12.2	12.2
2010	15.8	15.6	16.0
2011	19.7	19.1	19.2
2012	14.4	13.6	14.1
2013	12.7	10.2	12.4
2014	12.0	11.7	11.8
2015	12.1	11.7	12.1
2016	12.1	11.0	11.3

Table 3-5. Average Quarterly Exposure from Direct Radiation

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

The increase shown in 2010 reflects issues with the aging Panasonic TLD reader. The close agreement between the station groups supports the position that the plant is not contributing significantly to direct radiation in the environment. Figure 3-3 below provides a more detailed view of the 2016 values. The values for the special interest areas detailed below, indicate that Plant Hatch did not significantly contribute to direct radiation at those areas.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

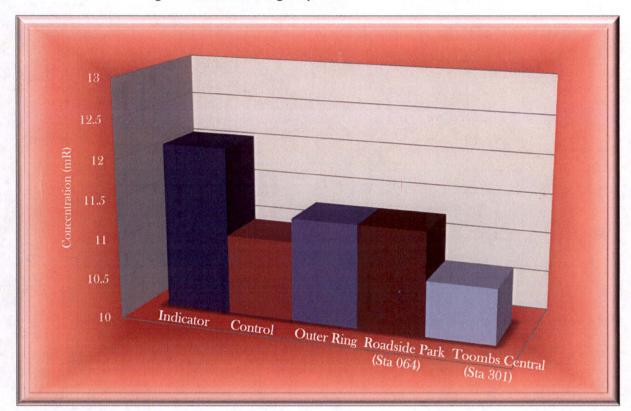


Figure 3-3. 2016 Average Exposure from Direct Radiation

3.3 Biological Media

Cs-137 was the only radionuclide analyzed across all three biological mediums. As indicated in Figure 3-4, the Cs-137 activity levels are below the respective MDCs and well below that of the respective RLs for each sample media for both the indicator and control stations.

3.3.1 Milk

In accordance with Tables 2-1 and 2-2, milk samples are collected bimonthly from Station 304 (the state prison dairy) which is a control station located more than 10 miles from the plant. Since 1989, efforts to locate a reliable milk sample source within five miles of the plant have been unsuccessful and the 2016 land census did not identify a milk animal within five miles of the plant.

Gamma isotopic (including I-131 and Cs-137) analyses were performed on each collected milk sample and there were no detectable results for gamma isotopes, except for a single detection of Cs-137 (0.88 pCi/L) in January 2016. Figure 3-4 provides the 2016 Cs-137 concentration in milk.

3.3.2 Vegetation

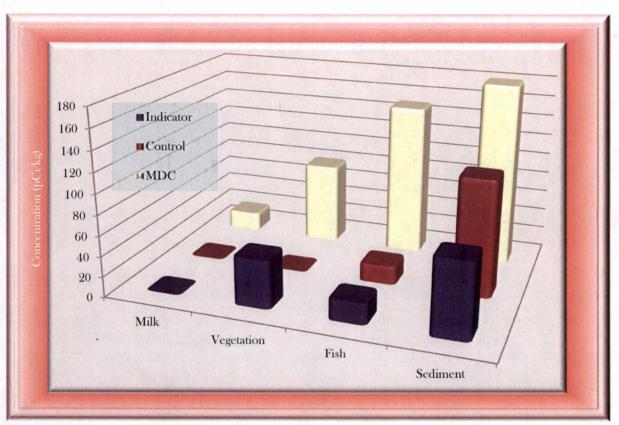
In accordance with Tables 2-1 and 2-2, vegetation samples are collected monthly for gamma isotopic analyses at two indicator locations near the site boundary (Stations 106 and 112) and at one control station located about 21 miles from the plant (Station 416). Cesium-137 was detected in 14 of the 25 samples collected at the indicator stations. The average of the samples was 47.3 pCi/kg-wet. Cs-137 was not detected in any control station samples. Due to the low number of samples, MDD was not able to be used to evaluate the data. The man-made radionuclide Cs-137 is periodically identified in vegetation samples, and is generally attributed to offsite sources (such as weapons testing, Chernobyl, and Fukushima).

While Cs-137 and I-131 were periodically found in vegetation samples during pre-operation, the historical trends and the relationship between the indicator and control stations demonstrate that plant operations are having no adverse impact to the environment. The sample results have consistently been below the MDC and the RL for Cs-137 (80 and 2000 pCi/kg-wet, respectively).

During 2016, no other man-made gamma isotopes were detected in any Hatch REMP vegetation samples.

3.3.3 Fish

Fish samples were collected in accordance with the ODCM (as indicated in Table 2-1). For the semiannual collections, the control location (Station 170) is located upriver of the plant intake structure, and the indicator location (Station 172) is located downriver of the plant discharge structure.


Cs-137 was detected in one sample at both the indicator and control locations. The indicator sample value was 20.7 pCi/kg and the control value was 18.1 pCi/kg, which were comparable. Cs-137 is not typically detected in fish samples at Plant Hatch; however, the indicator and the control both showed positive results, so this is not believed to be a result of operations at Plant Hatch. These results are also well below the MDC of 150 pCi/kg.

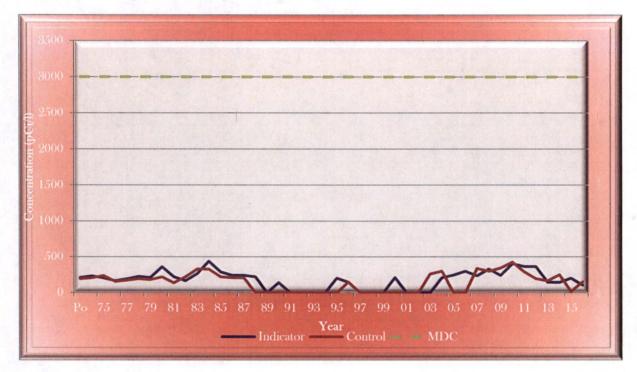
ENVIRONMENTAL OPERATING REPORT

3.3.4 Biological Media Summary

There were no statistical differences, trends, or anomalies associated with the 2016 biological media samples when compared to historical data. Figure 3-4 below, details the 2016 Cs-137 concentration compared to the MDC.

3.4 Surface Water

Composite river water samples are collected monthly at an upstream control location and at a downstream indicator location (shown on Map A-3 in Appendix A). The details of the sampling protocols are outlined in Tables 2-1 and Table 2-2. A gamma isotopic analysis is conducted on each monthly sample and the monthly aliquots are combined to form quarterly composite samples, which are analyzed for tritium.


As provided in Table 3-1, there were no positive results during 2016 from the gamma isotopic analysis of the river water samples. Also indicated in Table 3-1, the average tritium

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

concentration found at the indicator station was 106 pCi/l which was 46 pCi/l less than the average at the control station (152 pCi/l). No MDD was calculated because the indicator average was less than the control. Historically, the relationship between the indicator and control stations has remained consistent. Figure 3-5 below details the 2016 historical average tritium concentrations in river water.

Figure 3-5. Average Annual Tritium Concentrations in River Water

3.5 Sediment

Sediment was collected along the shoreline of the Altamaha River in the spring and fall, at the upstream control station (No. 170) and the downstream indicator station (No. 172). A gamma isotopic analysis was performed on each sample. There were no man-made radionuclides detected in sediment samples, except for Cs-137, which is plotted along with biological media (Cs-137 across all detected mediums) in Section 3.3.4, and Figure 3-4. The Cs-137 average at the indicator stations was 73.4 pCi/kg which is 40.9 p/Ci/kg less than the control station average of 114.3 pCi/kg. No MDD was applied because the indicator is less than the control. The values for Cs-137 in sediment are both below the MDC of 180 pCi/kg.

ENVIRONMENTAL OPERATING REPORT

3.6 Interlaboratory Comparison Program

In accordance with ODCM 4.1.3, GPCEL participates in an Interlaboratory Comparison Program (ICP) that satisfies the requirements of Regulatory Guide 4.15, Revision 1, "Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment", February 1979. The ICP includes the required determinations (sample medium/radionuclide combinations) included in the REMP.

The ICP was conducted by Eckert & Ziegler Analytics, Inc. (EZA) of Atlanta, Georgia. EZA has a documented Quality Assurance (QA) program and the capability to prepare Quality Control (QC) materials traceable to the National Institute of Standards and Technology. The ICP is a third party blind testing program which provides a means to ensure independent checks are performed on the accuracy and precision of the measurements of radioactive materials in environmental sample matrices. EZA supplies the crosscheck samples to GPCEL which performs routine laboratory analyses. Each of the specified analyses is performed three times.

The accuracy of each result is measured by the normalized deviation, which is the ratio of the reported average less the known value to the total error. An investigation is undertaken whenever the absolute value of the normalized deviation is greater than three or whenever the coefficient of variation is greater than 15% for all radionuclides other than Cr-51 and Fe-59. For Cr-51 and Fe-59, an investigation is undertaken when the coefficient of variation exceeds the values shown on Table 3-6 below:

Nuclide	Concentration *	Total Sample Activity (pCi)	Percent Coefficient of Variation
	<300	NA	25
Cr-51	NA	>1000	25
	>300	<1000	15
	<80	NA	25
Fe-59	>80	NA	15
* For air filter (pCi/l).	s, concentration units are p	oCi/filter. For all other media, co	oncentration units are pCi/liter

Table 3-6.	Interlaboratory Comparison Limits
------------	-----------------------------------

As required by ODCM 4.1.3.3 and 7.1.2.3, a summary of the results of the GPCEL's participation in the ICP is provided in Table 3-7 for:

- gross beta and gamma isotopic analyses of an air filter
- gamma isotopic analyses of milk samples
- gross beta, tritium and gamma isotopic analyses of water samples

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

The 2016 analyses included tritium, gross beta and gamma emitting radio-nuclides in different matrices. The attached results for all analyses were within acceptable limits for accuracy (less than 15% coefficient of variation and less than 3.0 normalized deviations, except for Cr-51 and Fe-59, which are outlined in Table 3-6).

ENVIRONMENTAL OPERATING REPORT

Analysis or	Date Prepared	P	Known Value	Standard	Uncertainty	Percent Coefficient	Normalized
Radionuclide	, 	Average		Deviation EL	Analytics (3S)	of Variation	Deviation
I-131	9/15/2016	61.65	NALYSIS OF AN AIR 59.1	3.09	0.9 <u>9</u>	7.15	0.58
1-131	<u> </u>	1	ISOTOPIC ANALYSIS		l		
Ce-141	9/15/2016	61.6	63.2	2.32	1.06	6.05	0.39
Co-58	9/15/2016	63.0	66.0	1.40	1.10	6.03	-0.79
Co-60		-					
·	9/15/2016	86.5	91.4	2.65	1.53	5.52	-1.03
Cr-51	9/15/2016	145.7	160.0	6.82	2.67	9.47	-1.04
Cs-134	9/15/2016	85.8	92	4.17	1.54	7.14	-1.11
Cs-137	9/15/2016	79.8	80.3	1.85	1.34	5.67	-0.12
Fe-59	9/15/2016	55.9	61.4	7.09	1.03	12.63	-0.65
Mn-54	9/15/2016	103.5	103.0	2.55	1.72	5.50	0.09
Zn-65	9/15/2016	128.0	121.0	4.71	2.02	6.89	0.80
		GROSS	BETA ANALYSIS OF	AN AIR FILTER (PCI/	FILTER)		n y tangat w na manaka na mangah y n ku tangat na mangah y
Gross Beta	9/15/2016	89.8	76.6	3.44	1.28	5.57	2.63
- The set of the set		GAMMA IS	OTOPIC ANALYSIS (OF A MILK SAMPLE	(PCI/LITER)	an an ann an	
Co-58	6/9/2016	146.7	142.0	6.81	2.37	7.29	0.44
Co-60	6/9/2016	187.8	173.0	7.74	2.88	6.08	1.29
Cr-51	6/9/2016	305.3	276.0	7.33	4.60	11.16	0.86
Cs-134	6/9/2016	191.5	174.0	4.15	2.91	4.66	1.96
Cs-137	6/9/2016	137.0	120.0	5.93	2.01	7.30	1.70
Fe-59	6/9/2016	128.5	122.0	10.7	2.03	10.97	0.46
I-131	6/9/2016	107.0	94.5	6.80	1.58	8.93	1.30
Mn-54	6/9/2016	144.2	125.0	3.05	2.09	5.99	2.22
Zn-65	6/9/2016	273.9	235.0	10.8	3.93	7.03	2.02

Table 3-7. Interlaboratory Comparison Summary

ENVIRONMENTAL OPERATING REPORT

Analysis or	Date Prepared	Reported	Known Value	Standard	Uncertainty	Percent Coefficient	Normalized
Radionuclide		Average		Deviation EL	Analytics (3S)	of Variation	Deviation
and the second sec	· · · · · · · · · · · · · · · · ·	GROSS I	BETA ANALYSIS OF	WATER SAMPLE (PC	CI/LITER)		a ingeni ay
Gross Beta	3/17/2016	264.4	250.0	11.24	4.17	6.09	0.89
01033 Deta	6/9/2016	277.01	250.0	6.53	4.18	4.24	2.30
		GAMMA ISO	DTOPIC ANALYSIS C	F WATER SAMPLES	(PCI/LITER)		
Ce-141	3/17/2016	121.9	118.0	7.45	1.98	9.44	0.34
Co-58	3/17/2016	143.7	141.0	3.12	2.36	6.29	0.30
Co-60	3/17/2016	300.9	293.0	2.89	4.90	4.40	0.60
Cr-51	3/17/2016	308.6	293.0	22.7	4.88	14.12	0.36
Cs-134	3/17/2016	168.7	157.0	6.51	2.61	5.81	1.20
Cs-137	3/17/2016	205.5	194.0	7.11	3.23	6.20	0.90
Fe-59	3/17/2016	166.0	157.0	2.49	2.63	6.96	0.78
I-131	3/17/2016	96.1	88.9	6.56	1.48	14.48	0.52
Mn-54	3/17/2016	158.1	140.0	6.45	2.34	6.94	1.65
Zn-65	3/17/2016	242.5	215.0	11.7	3.58	7.96	1.42
		TRITIU	M ANALYSIS OF WA	TER SAMPLES (PCI	/LITER)		5
H-3	3/17/2016	5118.5	4630.0	89.3	77.4	3.19	2.99
	6/9/2016	12338.6	12000.0	58.41	201	2.06	1.33

Table 3-7. Interlaboratory Comparison Summary

3.7 Groundwater

To ensure compliance with NEI 07-07 (Industry Ground Water Protection Initiative – Final Guidance Document), Southern Nuclear developed the Nuclear Management Procedure, Radiological Groundwater Protection Program. The procedure contains detailed site-specific monitoring plans, program technical bases, and communications protocol (to ensure that radioactive leaks and spills are addressed and communicated appropriately). In an effort to prevent future leaks of radioactive material to groundwater, SNC plants have established robust buried piping and tanks inspection programs. No changes were made to the Groundwater Protection Program in 2016.

Plant Hatch maintains the following wells (Table 3-8), which are sampled at a frequency that satisfies the requirements of NEI 07-07. The analytical results for 2016 were all within regulatory limits specified within this report. Table3-9 contains the results of the Groundwater Protection Program tritium results (in pCi/L). See Map A-4 in Appendix A for well locations.

Well	Depth (Feet)	3-8. Groundwater Monitoring Locations Monitoring Purpose			
R1	82.9	Confined Aquifer Upgradient			
R2	82.7	Confined Aquifer Near Diesel Generator Bldg.			
R3	89.2	Confined Aquifer Near CST-1			
R4	41	Dilution Line Near River Water Discharge Structure			
	33.6	Between Subsurface Drain Lines Downgradient			
R6	38.2	Between Subsurface Drain Lines Downgradient			
NW2A	27	Water Table Near CST-2 Inside of Subsurface Drain			
NW2B	27	Water Table Outside of Subsurface Drain			
NW3A	26.5	Water Table Inside of Subsurface Drain			
NW3B	25.3	Water Table Outside of Subsurface Drain			
NW4A	27	Water Table Upgradient Inside of Subsurface Drain			
NW5A	26.7	Water Table Upgradient Inside of Subsurface Drain			
NW5B	26.3	Water Table Upgradient Outside of Subsurface Drain			
NW6	27	Water Table Near Diesel Generator Bldg.			
NW8	23	Water Table Near Diesel Generator Bldg.			
NW9	26.1	Water Table Downgradient Inside of Subsurface Drain			
NW10	26.2	Water Table Near CST-2			
Т3	18	Water Table Near Turbine Bldg.			
T7	21.4	Water Table Near Diesel Generator Bldg.			
T10	18.8	Water Table Near CST-1			

Table 3-8. Groundwater Monitoring Locations

PLANT HATCH

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Well	Depth (Feet)	Monitoring Purpose		
T12 [°]	23.2	Water Table Near CST-1		
T15	27.4	Water Table Near CST-1		
P15A	74.5	Confined Aquifer Near Turbine Bldg.		
P15B	18	Water Table Near Turbine Bldg.		
P17A*	77	Confined Aquifer Near Diesel Generator Bldg.		
P17B	14.8	Water Table Near Diesel Generator Bldg.		
Deep Well 1	680	Backup Supply for Potable Water (infrequently used)		
Deep Well 2	711	Plant Potable Water Supply		
Deep Well 3	710	Potable Water Supply – Rec. Center, Firing Range, and Garage		

Table 3-8. Groundwater Monitoring Locations

Table 3-9. Groundwater Protection Program Tritium Results (pCi/L)

	Tubic 5 5. Groundwa	ter i foteetion i fogia			
Well	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
R1	NDM	NDM	NDM	NDM	
R2	NDM	NDM	NDM	NDM	
R3	2,230	1,140	1,090	,666	
R4	NDM	NDM	NDM	NDM	
R5	4,860	5,380	6,980	8,120	
R6	NDM	NDM	NDM	NDM	
NW2A	229	388	290	NDM	
NW2B	NDM	NDM	NDM	NDM	
NW3A	NDM	NDM	NS	NS	
NW3B	NDM	NDM	195	255	
NW4A	NDM	185	NDM	134	
NW5A	NDM	NDM	158	NDM	
NW5B	NDM	NDM	NDM	NDM	
NW6	136	141	NS	205	
NW8	NDM	NS	NDM	NS	
NW9	171	151	434	234	
NW10	3,460	2,140	2,880	5,790	
Т3	3,290	1,320	614	753	
Т7	216	202	338	287	
T10	119,000	31,300	21,600	17,100	
T12	82,500	22,300	14,000	12,700	
T15	16,300	8,900	5,240	2,040	
P15A	NDM	NDM	NDM	NS	

ENVIRONMENTAL OPERATING REPORT

Table 3-9. Groundwater Protection Program Tritlum Results (pCI/L)				
Well	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
P15B	2,190	2,480	2,090	NS
P17A	NDM	NDM	NDM	NDM
P17B	216	463	526	NS
Deep Well 1	NS – Out of Service			
Deep Well 2	NDM	NDM	222	NDM
Deep Well 3	NDM	NDM	171	NDM

able 3-9. Groundwater Protection Program Tritium Results (pCi/L)

Plant Hatch has had historic tritium leaks into the perched aquifer from around the Unit 1 Condensate Storage Tank (CST), documented on 10 CFR 50.75(g) records. The tritium values in the wells that were found to be elevated above MDC were from previous CST and related piping leaks and are not considered present issues. Historic leaks and spills are reported in accordance with NEI 07-07.

4 SURVEY SUMMARIES

4.1 Land Use Census

In accordance with ODCM 4.1.2, a land use census was conducted on November 14, 2016 to verify the locations of the nearest radiological receptor within five miles. The census results, shown in Table 4-1, indicated no major changes from 2015; therefore, no changes to the ODCM are required. Residents were located in each sector as identified below; no resident was identified closer than the current closest resident.

* ". * ".	4	र के 19 क	a 20 au	a
Sector	Residence	Milk Animal	Beef Cattle	Garden
	Distance in Mi	les to the Nearest	Location in Each	Sector
N	2.0	None	None	3.8
NNE	2.9	None	None	None
NE	3.3	None	None	3.1
ENE	4.2	None	4.1	None
E	3.0	None	None	None
ESE	3.8	None	None	None
SE	1.8	None	2.4	None
SSE	2.0	None	3.6	2.2
S	1:0	None	2.5	1.0
SSW	1.1	None	2.8	2.5
SW	1.1	None	2.6	1.6
WSW	1.0	None	3.6	2.0
W	1.1	None	2.7	None
WNW	1.1	None	None	None
NW	3.6	None	4.5	None
NNW	1.8	None	2.8	2.9

Table 4-1. Land Use Census Results

4.2 Altamaha River Survey

A survey of the Altamaha River downstream of the plant was scheduled for September 19, 2016 to identify any new withdrawal of water from the river for drinking, irrigation, or construction purposes. This survey was unable to be conducted due to the drought conditions that caused extremely low river levels until the last week in December, 2016.

ENVIRONMENTAL OPERATING REPORT

Irrigation equipment was identified at Clarke's Farm about ¾ mile downstream of Station #172 river water sampling station. The equipment is potentially used to irrigate crops. Mr. Clarke was contacted on June 16, 2016, and he stated that he had used river water to irrigate corn this year. A sample of corn was collected and analyzed for gamma isotopes. The data is indicated in Table 4-2 below.

Correspondence from the Georgia Environmental Protection Division (EPD) on September 27, 2016, and September 23, 2016, indicated that no new agricultural or drinking water withdrawal permits had been issued at those respective times.

Nuclide	Sample	Units	Activity	MDA
Cs-134	Corn	pCi/Kg	NDM	1.20E+01
Cs-137	Corn	pCi/Kg	NDM _	1.59E+01
I-131	Corn	pCi/Kg	NDM	1.49E+01

Table 4-2. Special Sample Results (Corn)

NDM – No Detectable Measurement

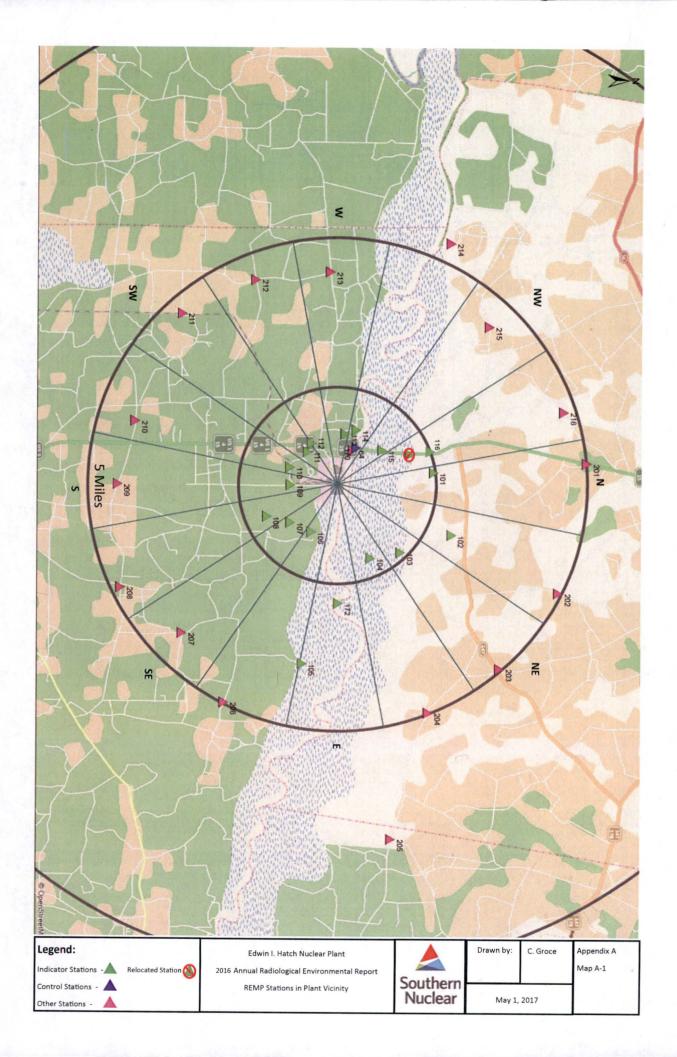
5 CONCLUSIONS

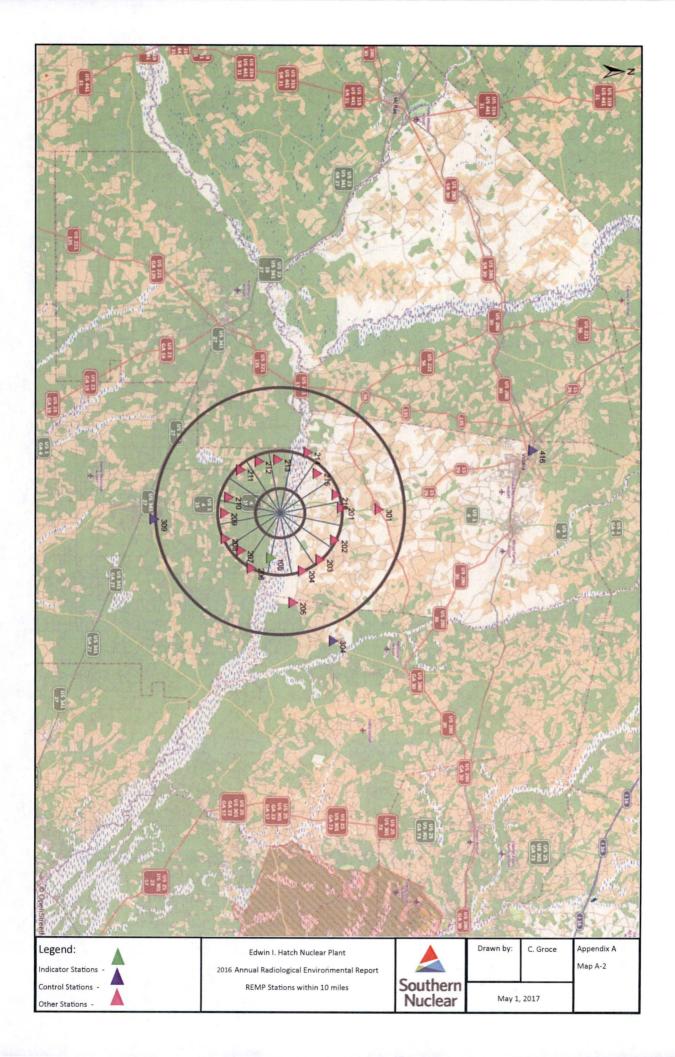
This report confirms SNCs conformance with the requirements of Chapter 4 of the ODCM and the objectives were to:

1) Determine the levels of radiation and the concentrations of radioactivity in the environs and;

2) Assess the radiological impact (if any) to the environment due to the operation of the HNP.

Based on the 2016 activities associated with the REMP, SNC offers the following conclusions:


- Samples were collected and there were no deviations or anomalies that negatively affected the quality of the REMP
- Land use census and river survey did not reveal any changes
- Analytical results were below reporting levels
- These values are consistent with historical results, indicating no adverse radiological environmental impacts associated with the operation of HNP



APPENDIX A

Maps

Appendix A

APPENDIX B

Errata

Appendix B

PLANT HATCH

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

°°°

| . J

There are no errata to include in the 2016 report.

.

Edwin I. Hatch Nuclear Plant – Units 1 & 2 Joseph M. Farley Nuclear Plant– Units 1 & 2 Vogtle Electric Generating Plant– Units 1 & 2 Annual Radiological Environmental Operating Reports for 2016

Enclosure 2

Farley Annual Radiological Environmental Operating Report for 2016

JOSEPH M. FARLEY NUCLEAR PLANT 2016 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

ENVIRONMENTAL OPERATING REPORT

TABLE OF CONTENTS

1	Introd	duction	1
2	REMP	P Description	2
3	Resul	ts Summary	8
-	3.1 3.2 3.3	Airborne Particulates 3.1.1 Gross Beta 3.1.2 Gamma Particulates Direct Radiation Biological Media 3.3.1 Milk 3.3.2 Vegetation 3.3.3 Fish 3.3.1 Bottom Feeding Species 3.3.2 Game Species	18 20 . 20 . 24 24 25 25 25
	3.4 3.5 3.6 3.7 3.8	3.3.4 Biological Media Summary Off-site Groundwater River Water Sediment Interlaboratory Comparison Program Groundwater	. 26 . 26 . 27 . 27
4		Land Use Census Chattahoochee River Survey	.33 . 33
5	Concl	usions	.35

<u>Tables</u>

Table 2-1.	Summary Description of Radiological Environmental Monitoring Program	3
	Radiological Environmental Sampling Locations	
Table 3-1.	Radiological Environmental Monitoring Program Annual Summary	10
Table 3-2.	Reporting Levels (RL)	15
Table 3-3.	Anomalies and Deviations from Radiological Environmental Monitoring Program	. 16
Table 3-4.	Average Weekly Gross Beta Air Concentration	18
Table 3-5.	Average Quarterly Exposure from Direct Radiation	21
Table 3-6.	Interlaboratory Comparison Limits	28
Table 3-7.	Interlaboratory Comparison Summary	29
Table 3-8.	Groundwater Protection Program Locations	31
Table 3-9.	Groundwater Protection Program Results	32

2016 FNP Annual Radiological Environmental Operating Report

ENVIRONMENTAL OPERATING REPORT

<u>Figures</u>

Figure 3-1. Average Weekly Gross Beta Air Concentration	20
Figure 3-2. Average Quarterly Exposure from Direct Radiation	23
Figure 3-3. 2016 Average Exposure from Direct Radiation in Select Locations	24
Figure 3-4. 2016 Average Tritium Concentrations in River and Off-site Groundwater	27

Appendix A – Maps

A-1 – REMP Stations in Plant Vicinity

A-2 – REMP Stations within 10 Miles

A-3 – Extended REMP Stations

A-4 – Facility Groundwater Wells

<u>Appendix B – Errata</u>

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

LIST OF ACRONYMS

ADEM	Alabama Department of Environmental Management
APC	Alabama Power Company
AREOR	Annual Radiological Environmental Operating Report
ASTM	American Society for Testing and Materials
CL	Confidence Level
EPA	Environmental Protection Agency
GA EPD	State of Georgia Environmental Protection Division
FNP	Joseph M. Farley Nuclear Plant
GPCEL	Georgia Power Company Environmental Laboratory
ICP	Interlaboratory Comparison Program
MDC	Minimum Detectable Concentration
MDD	Minimum Detectable Difference
MWe	MegaWatts Electric
NA	Not Applicable
NDM	No Detectable Measurement(s)
NEI	Nuclear Energy Institute
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
OSL	Optically Stimulated Luminescence
Ро	Preoperation
PWR	Pressurized Water Reactor
REMP	Radiological Environmental Monitoring Program
RL	Reporting Level
RM	River Mile
SNC	Southern Nuclear Operating Company
TLD	Thermoluminescent Dosimeter
TS	Technical Specification

ENVIRONMENTAL OPERATING REPORT

1 INTRODUCTION

The Radiological Environmental Monitoring Program (REMP) is conducted in accordance with Chapter 4 of the Offsite Dose Calculation Manual (ODCM). The REMP activities for 2016 are reported herein in accordance with Technical Specification (TS) 5.6.2 and ODCM 7.1.

The objectives of the REMP are to:

Determine the levels of radiation and the concentrations of radioactivity in the environs and;
 Assess the radiological impact (if any) to the environment due to the operation of the Joseph M. Farley Nuclear Plant (FNP).

The assessments include comparisons between results of analyses of samples obtained at locations where radiological levels are not expected to be affected by plant operation (control stations), areas of higher population (community stations), and at locations where radiological levels are more likely to be affected by plant operation (indicator stations), as well as comparisons between preoperational and operational sample results.

FNP is owned by Alabama Power Company (APC) and operated by Southern Nuclear Operating Company (SNC). It is located in Houston County, Alabama approximately fifteen miles east of Dothan, Alabama on the west bank of the Chattahoochee River. Unit 1, a Westinghouse Electric Corporation Pressurized Water Reactor (PWR) with a licensed core thermal power output of 2775 MegaWatts thermal (MWt), achieved initial criticality on August 9, 1977 and was declared "commercial" on December 1, 1977. Unit 2, also a 2775 MWt Westinghouse PWR, achieved initial criticality on May 8, 1981 and was declared "commercial" on July 30, 1981.

The preoperational stage of the REMP began with initial sample collections in January of 1975. The transition from the preoperational to the operational stage of the REMP was marked by Unit 1 initial criticality.

- A description of the REMP is provided in Section 2 of this report
- Section 3 provides a summary of the results and an assessment of any radiological impacts to the environment as well as the results from the Interlaboratory Comparison
- A summary of the land use census and the river survey are included in Section 4
- Conclusions are included in Section 5

ENVIRONMENTAL OPERATING REPORT

2 REMP DESCRIPTION

The following section provides a description of the sampling and laboratory protocols associated with the REMP. Table 2-1 provides a summary of the sample types to be collected and the analyses to be performed in order to monitor the airborne, direct radiation, waterborne and ingestion pathways, and also summarizes the collection and analysis frequencies (in accordance with ODCM Section 4.2). Table 2-2 provides specific information regarding the station locations, their proximity to the plant, and exposure pathways. Additionally, the locations of the sampling stations are depicted on Maps A-1 through A-3 of the station locations included in the Appendix A of this report.

Plant personnel collect some samples, while others are collected by Georgia Power Company's Environmental Laboratory (GPCEL), located in Atlanta, Georgia. The lab analyzes all REMP samples.

Exposure Pathway and/or	Number of Representative Samples and Sample Locations	Sampling/Collection Frequency	Type/Frequency of Analysis
Direct Radiation	Forty routine monitoring stations with two or more dosimeters placed as follows:	Quarterly	Gamma dose, quarterly
	An inner ring of stations, one in each compass sector in the general area of the site boundary;		
	An outer ring of stations, one in each compass sector at approximately 5 miles from the site; and		
	Special interest areas, such as population centers, nearby recreation areas, and control stations		
Airborne Radioiodine and	Samples from nine locations:	Continuous sampler operation with sample collection weekly	Particulate sampler: Analyze for gross beta radioactivity ≥ 24 hours following filter
	Four locations close to the site boundary in different sectors;		change. Perform gamma isotopic analysis on each sample when gross beta activity is > 10 times the yearly mean of control samples.
	Three community stations; within 8 miles		Perform gamma isotopic analysis on composite sample (by location) quarterly.
	Two control locations near population centers, approximately 15 and 18 miles away		Radioiodine canister: I-131 analysis, weekly (One community station)
Waterborne	and a second	and and	-
	One sample upriver One sample downriver	Composite sample over one month period ⁴	Gamma isotopic analysis ² , monthly Composite for tritium analysis, quarterly

Table 2-1. Summary Description of Radiological Environmental Monitoring Program

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Exposure Pathway and/or	Number of Representative Samples and Sample Locations	Sampling/Collection Frequency	Type/Frequency of Analysis
	Off-site monitoring includes one indicator station and one control station	Quarterly	Off-site wells are analyzed only for Gamma Isotopic, I-131, & tritium
	See Table 3-8 and Map A-4 in Appendix A for on-site well locations. These are part of the GWPP (NEI 07- 07).	Frequency based on GWPP	Tritium, gamma isotopic, and field parameters of each sample; hard-to-detects based on tritium and gamma results
Shoreline Sediment ⁷	 One sample from downriver area with existing or potential recreational value One sample from upriver area with existing or potential recreational value 	Semiannually	Gamma isotopic analysis ² , semiannually
Ingestion.			
Milk	Two samples from milking animals ⁵ at control locations at a distance of about 10 miles or more	Bimonthly	Gamma isotopic analysis ^{2,6} , bimonthly
Fish ⁸	 One bottom feeding fish and one game fish both upstream and downstream 	Semiannually During spring/fall spawning season	Gamma isotopic analysis ² on edible portions, semiannually Gamma isotopic analysis ² on edible portions, annually.
Grass or Leafy Vegetation	 One sample from two onsite locations near the site boundary in different sectors One sample from a control location at a distance of about 18 miles 	Monthly during growing season	Gamma isotopic analysis ^{2,6} , monthly

Table 2-1. Summary Description of Radiological Environmental Monitoring Program

.

Table 2-1. Summary Description of Radiological Environmental Monitoring Program

Exposure	Number of Representative Samples and	d Sample	Frequency Type/Frequency of Analysis
Pathway and/or	Locations	Sampling/Collection Fi	
Notes: Airborne particula daughter decay. If shall be performed Gamma isotopic a the facility. Upriver sample is Composite sample assure obtaining a assure obtaining a A milking animal i If the gamma isotr may be performed These collections sediment shifting c to 49 for the control	ate sample filters shall be analyzed for gro gross beta activity in air particulate samp I on the individual samples. Inalysis means the identification and quan taken at a distance beyond significant infl e aliquots shall be collected at time interva representative sample. s a cow or goat producing milk for human opic analysis is not sensitive enough to me are normally made at river mile 41.3 for th caused by high flows, dredging, etc., collect ol station. es of river water may be needed to obtain	bles is greater than 10 times the yea ntification of gamma-emitting radio fluence of the discharge. Downriver vals that are very short (e.g., hourly) n consumption, no milk animals wer eet the Minimum Detectable Conce the indicator station and river mile 4 ctions may be made from river mile n adequate fish samples, these river	nore after sampling to allow for radon and thoron arly mean of control samples, gamma isotopic analysis onuclides that may be attributable to the effluents from er samples are taken beyond but near the mixing zone. b) relative to the compositing period (e.g., monthly) to re found within five miles of the plant. tentration (MDC) for I-131, a separate analysis for I-131 47.8 for the control station; however, due to river botto e 40 to 42 for the indicator station and from river mile 4 er mile positions represent the approximate locations fro 42.5 and for the control station from river mile 47 to 52

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

,	Table 2-2. Radiological Environmental Sampling Locations						
Station	Station	Descriptive Location	Direction ¹		Radiation Sample Type		
Number				(miles) ¹			
0501	Indicator	River Intake Structure	ESE	0.8	Airborne		
0701	Indicator	South Perimeter	SSE	1.0	Airborne		
1101	Indicator	Plant Entrance	WSW	0.9	Airborne		
1601	Indicator	North Perimeter	N	0.8	Airborne		
0215	Control	Blakely GA	NE	15	Airborne, Direct		
0718 ³	Control	Neals Landing, FL	SSE	18	Airborne, Direct		
1218	Control	Dothan, AL	W	18	Airborne, Direct, Vegetation		
0703	Community	GA Pacific Paper Co.	SSE	3	Airborne, Direct		
1108	Community	Ashford, AL	WSW	8	Airborne		
1605	Community	Columbia, AL	N	5	Airborne, Direct		
0101	Indicator	Plant Perimeter	NNE	0.9	Direct		
0201	Indicator	Plant Perimeter	NE	1.0	Direct		
0301	Indicator	Plant Perimeter	ENE	0.9	Direct		
0401	Indicator	Plant Perimeter	Ē	0.8	Direct		
0501	Indicator	Plant Perimeter	ESE	0.8	Direct		
0601	Indicator	Plant Perimeter	SE	1.1	Direct		
0701	Indicator	Plant Perimeter	SSE	1.0	Direct, Vegetation		
0801	Indicator	Plant Perimeter	S	1.0	Direct		
0901	Indicator	Plant Perimeter	SSW	1.0	Direct		
1001	Indicator	Plant Perimeter	SW	0.9	Direct		
1101	Indicator	Plant Perimeter	wsw	0.9	Direct		
1201	Indicator	Plant Perimeter	w	0.8	Direct		
1301	Indicator	Plant Perimeter	WNW	0.8	Direct		
1401	Indicator	Plant Perimeter	NW	1.1	Direct		
1501	Indicator	Plant Perimeter	NNW	0.9	Direct		
1601	Indicator	Plant Perimeter	N	0.8	Direct, Vegetation		
1215	Control	Dothan, AL	w	15	Direct		
1311	Control	Webb, AL	w	11	Direct		
1612	Control	Haleburg, AL	WNW	12	Direct		
1001	Community	Whatley Residence	SW	12	Direct		
1108	Community	Ashford, AL	wsw	8.0	Direct		
WRI	Indicator	Downstream of plant discharge, approximately RM 40	s	3.0	River Water		
WRB	Control	Upstream of plant intake, approximately RM 47	NNE	3.0	River Water		
WGI-07	Indicator	Paper Mill Well	SSE	4.0	Groundwater		

2016 FNP Annual Radiological Environmental Operating Report

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

				0	
Station Number	Station Type	Descriptive Location		Distance (miles) ¹	Radiation Sample Type
WGB-10	Control	Whatley Residence	SW	1.2	Groundwater
RSI	Indicator	Downstream of plant discharge at Smith's Bend (RM 41)	S	4.0	Sediment
RSB	Control	Upstream of plant intake at Andrews Lock and Dam (RM 48)	N	4.0	Sediment
MB-0714	Control ²	Robert Weir Dairy, Donaldsonville, GA	SSE	14	Milk
FGI & FGB	Indicator	Downstream of plant discharge at Smith's Bend (RM 41)	S	4.0	Fish
FGB & FBB	Control	Upstream of plant intake at Andrews Lock and Dam (RM 48)	N	4.0	Fish
0104	Community	Early Co., GA	NNE	4.0	Direct
0204	Community	Early Co., GA	NE	4.0	Direct
. 0304	Community	Early Co., GA	ENE	4.0	Direct
0405	Community	Early Co., GA	E	5.0	Direct
0505	Community	Early Co., GA	ESE	5.0	Direct
0605	Community	Early Co., GA	SE	5.0	Direct
0805	Community	Houston Co., AL	SSE	5.0	Direct
0904	Community	Houston Co., AL	SSW	4.0	Direct
1005	Community	Houston Co., AL	SW	5.0	Direct
1104	Community	Houston Co., AL	wsw	4.0	Direct
1204	Community	Houston Co., AL	w	4.0	Direct
1304	Community	Houston Co., AL	WNW	4.0	Direct
1404	Community	Houston Co., AL	NW	4.0	Direct
1504	Community	Houston Co., AL	NNW	4.0	Direct

Table 2-2. Radiological Environmental Sampling Locations

Notes: ¹Direction and distance are determined as the mid-point between the Unit 1 and Unit 2 vent stacks. ² No milk animals were found within five miles of the plant, control sample not collected since 2009. ³ Spare, per the ODCM

3 RESULTS SUMMARY

Included in this section are statistical evaluations of the laboratory results, comparison of the results by media, and a summary of the anomalies and deviations. Overall, 1,019 analyses were performed across nine exposure pathways. Tables and figures are provided throughout this section to provide an enhanced presentation of the information.

In recent history, man-made nuclides have been released into the environment and have resulted in wide spread distribution of radionuclides across the globe. For example, atmospheric nuclear weapons tests from the mid-1940s through 1980 distributed man-made nuclides around the world. The most recent atmospheric tests in the 1970s and in 1980 had a significant impact upon the radiological concentrations found in the environment prior to and during pre-operation, and through early operation. Some long-lived radionuclides, such as Cs-137, continue to be detected and a portion of these detections are believed to be attributed to the nuclear weapons tests.

Additionally, data associated with certain radiological effects created by off-site events have been removed from the historical evaluation, this includes: the nuclear atmospheric weapon test in the fall of 1980, the Chernobyl incident in the spring of 1986 and the Fukushima accident in the spring of 2011.

As indicated in ODCM 7.1.2.1, the results for naturally occurring radionuclides that are also found in plant effluents must be reported along with man-made radionuclides. Historically, the radionuclide Be-7, which occurs abundantly in nature, is often detected in REMP samples, and occasionally detected in the plant's liquid and gaseous effluents. When it is detected in effluents and REMP samples, it is also included in the REMP results. In 2016, Be-7 was not detected in any plant effluents and therefore is not included in this report. The Be-7 detected in select REMP samples likely represents naturally occurring and/or background conditions.

As part of the data evaluation process, SNC considered the impact of the non-plant associated nuclides along with a statistical evaluation of the REMP data. The statistical evaluations included within this report include the Minimum Detectable Concentration (MDC), the Minimum Detectable Difference (MDD), and Chauvenet's Criterion as described below.

Minimum Detectable Concentration

The minimum detectable concentration is defined as an estimate of the true concentration of an analyte required to give a specified high probability that the measured response will be greater than the critical value.

Minimum Detectable Difference

The Minimum Detectable Difference (MDD) compares the lowest significant difference (between the means) of a control station, versus an indicator station or a community station, that can be determined statistically at the 99% Confidence Level (CL). A difference in mean values which was less than the MDD was considered to be statistically indiscernible.

Chauvenet's Criterion

All results were tested for conformance with Chauvenet's criterion (G. D. Chase and J. L. Rabinowitz, Principles of Radioisotope Methodology, Burgess Publishing Company, 1962, pages 87-90) to identify values which differed from the mean of a set by a statistically significant amount. Identified outliers were investigated to determine the reason(s) for the difference. If equipment malfunction or other valid physical reasons were identified as causing the variation, the anomalous result was excluded from the data set as non-representative.

The 2016 results were compared with past results, including those obtained during preoperation. As appropriate, results were compared with their MDC (listed in Table 3-1) and RL which is listed in Table 3-2. The required MDCs were achieved during laboratory sample analysis. No data points were excluded for violating Chauvenet's criterion.

1

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Minimum Detectable Concentration (MDC) (a)	Indicator Locations Mean (b), Range (Fraction)	Location with Annual Name Distance and Direction	Mean Mean (b), Range (Fraction)	Other Stations (f) Mean (b), Range (Fraction)	Control Locations Mean (b), Range (Fraction)
Airborne Particulates	Gross Beta 416	10	18.7 3.5-46.8	Columbia, AL N 5 mi.	24.2 8.2-46.5	19.9 6.9-46.5	18.8 6.2-45.1
(fCi/m3)	410		3.5-46.8 (156/156)	Community	(52/52)	(155/156)	(104/104)
	Gamma Isotopic 33	in the second					
	I-131	70	NDM(c)		NDM	NDM	NDM
	Cs-134	50	NDM	N-0	NDM	NDM	NDM
	Cs-137	60	NDM		NDM	NDM	NDM
Airborne Radioiodine(fCi/m3)	l-131 312	70 [·]	NDM	تع . • • • • • • • • • • • • • • • • • • •	NDM	NDM	NDM
Direct Radiation (mR/91 days)	Gamma Dose 160		16.3 12.2-25.5 (64/64)	Plant Perimeter, E 0.8 Indicator	24.5 23.6-25.5 (4/4)	13.9 10.9-17.2 (72/72)	15.2 12.2-18.7 (24/24)
Milk (pCi/l)	Gamma Isotopic 0				A A A A A A A A A A A A A A A A A A A		
	I-131	1		An a shere			
	Cs-134	15		*	the second and		the second second
	Cs-137	18			1994 - 3 - 4 - 5 - 5 M - 5 - 4 - 5 - 646 - 3 - 6 - 4 - 6 - 646 - 7 - 6 - 7 - 7 - 7		
	Ba-140	60			a [™] / ~ =	·····	
<u></u>	La-140	15			<u>\$</u>		
Vegetation (pCi/kg- wet)	Gamma Isotopic 36				e de la companya de l La companya de la comp		a di senta d Senta di senta
	l-131	60	NDM				NDM
	Cs-134	60	NDM		1. K		NDM

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled	Type and Total Number of	Minimum Detectable	Indicator Locations Mean (b),	Location with Annual	Mean	Other Stations (f) Mean (b),	Control Locations Mean
(Unit of Measurement)	Analyses Performed	Concentration (MDC) (a)	Range (Fraction)	Name Distance and Direction	Mean (b), Range (Fraction)	Range (Fraction)	(b), Range (Fraction)
	Cs-137	80	20.8	Dothan, AL	38.4		38.4
			13.9-32.2	W 18 mi.	5.0-71.)	a the second second	5.0-71.7
			(3/12)	Control	(2/12)		(2/12)
River Water (pCi/l)	Gamma Isotopic 26		Notice of the straight to be	National Andrews States		and a second	Land Control of the second sec
AF - 7 - 7	Mn-54	15	NDM		NDM	NDM	NDM
	Fe-59	30	NDM		NDM	NDM	NDM
	Co-58	15	NDM		NDM	NDM	NDM
	Co-60	15	NDM		NDM	NDM	NDM
	Zn-65	30	NDM	17 8	NDM	NDM	NDM
	Zr-95	30	NDM		NDM	NDM	NDM
	Nb-95	15	NDM	an a	NDM	NDM	NDM
	I-131	15	NDM	Serie and	NDM	NDM	NDM
	Cs-134	15	NDM		NDM	NDM	NDM
	Cs-137	18	NDM	and the second	NDM	and the state of the	
	Ba-140	60	NDM	an a	NDM		
-	La-140	15	NDM	and a straight of an	NDM		Server and the state of the
	Tritium	3000	583	Paper Mill (RM 40)	583		NDM
	8		583-583	Indicator	583-583		
			(1/4)		(1/4)		_
Off-site Groundwater	Gamma Isotopic 8	2.5 2.5 2.5 2.5 2.5 2.5 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1			antiga tin na santa antiga tin na santa antiga tin na santa		
Giounuwalei	Mn-54	15	NDM		NDM	an <u>an an a</u>	NDM
	Fe-59	30	NDM		NDM	· · · · · · · ·	NDM
	Co-58	15	NDM	a an	NDM		NDM

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of	Type and Total Number of Analyses	Minimum Detectable Concentration	Indicator Locations Mean (b), Range	Location with Annual Name Distance and	Mean	Other Stations (f) Mean (b), Range	Control Locations Mean (b), Range
Measurement)	Performed	(MDC) (a)	(Fraction)	Direction	(Fraction)	(Fraction)	(Fraction)
	Co-60	15	NDM		NDM	······································	NDM
	Zn-65	30	NDM	, Le Sur La Sur	NDM	and the second sec	NDM
	Zr-95	30	NDM		NDM	ter to the term	NDM
	Nb-95	15	NDM		NDM		NDM
	I-131	15	NDM		NDM		NDM
	Cs-134	15	NDM		NDM	· · · · · · · · · · · · · · · · · · ·	NDM
	Cs-137	18	NDM	* . * * * * *	NDM		NDM
	Ba-140	60	NDM		NDM	and a second	NDM
	La-140	15	NDM	· · · · · · · · · · · · · · · · · · ·	NDM	· · · · ·	NDM
	Tritium 8	2000	NDM		NDM		NDM
Bottom Feeding Fish	Gamma Isotopic 4						
(pCi/kg-wet)	Mn-54	130	NDM	and a second	ND <u>M</u>		NDM
	Fe-59	260	NDM		NDM	· · · · · · · · · · · · · · · · · · ·	NDM
	Co-58	130	NDM		NDM		NDM
	Co-60	130	NDM		NDM		NDM
	Zn-65	260	NDM		NDM		NDM
	Cs-134	130	NDM		NDM		NDM
	Cs-137	150	17.1	Downstream of	17.1		NDM
			17.1-17.1	plant discharge	17.1-17.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
			(1/2)	near Smith's Bend	(1/2)		
				(RM 41)			
				Indicator			

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled	Type and Total Number of		able Mean (b),	Location with the Highest Annual Mean		Other Stations (f) Mean (b),	Control Locations Mean
(Unit of Measurement)	Analyses Performed	Concentration (MDC) (a)	Range (Fraction)	Name Distance and Direction	Mean (b), Range (Fraction)	Range (Fraction)	(b), Range (Fraction)
Game Fish (pCi/kg-wet)	Gamma Isotopic 4			And Anna Andreas Anna Anna Anna Anna Anna Anna Anna An			
	Mn-54	130	NDM		NDM	ti ngili kanya na	NDM
	Fe-59	260	NDM		NDM		NDM
	Co-58	130	NDM	n an	NDM	a state the second	NDM
	Co-60	130	NDM		NDM		NDM
	Zn-65	260	NDM	in the set of the	NDM		NDM
	Cs-134	130	NDM	i an	NDM		NDM
	Cs-137	150	10.1 10.1-10.1	Upstream of plant discharge in	15.2 15.2-15.2		15.2 15.2-15.2
			(1/2)	Andrews Lock &	(1/ 2)		(1/2)
				Dam Reservoir (RM			
				48)			
				Control			
Sediment (pCi/kg-dry)	Gamma Isotopic 4		A TOTAL AND A AND				
	Co-60	70	NDM		NDM		NDM
	Cs-134	150	NDM	· · · · · · · · · · · · · · · · · · ·	NDM		NDM
	Cs-137	180	NDM		NDM		NDM

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

ENVIRONMENTAL OPERATING REPORT

	Idbi	e 3-1. Radiologica	Environmenta	al Wohltoring Program	n Annual Summar	<u> </u>	
Medium or Pathway Sampled	Type and Total Number of	Minimum Detectable	Indicator Locations Mean (b),	Location with Annual	-	Other Stations (f) Mean (b),	Control
(Unit of	Analyses	Concentration	Range	Name Distance and	Mean (b), Range	Range	(b), Range
Measurement)	Performed	(MDC) (a)	(Fraction)	Direction	(Fraction)	(Fraction)	(Fraction)
Notes:							
(a)The MDC is defined	in ODCM 10.1. Exc	ept as noted otherw	ise, the values li	sted in this column are th	he detection capabil	ities required by O	DCM Table 4-3.
The values listed in thi	is column are a prio	ri (before the fact) N	IDCs. In practice	e, the a posteriori (after t	the fact) MDCs are g	enerally lower than	n the values listed.
(b) Mean and range ar parenthesis.	e based upon deter	ctable measurement	s only. The fract	ion of all measurements	at a specified locati	on that are detecta	able is placed in .
(c) No Detectable Mea	surement(s) (NDM)).					
(d) The Georgia Power	Company Environr	nental Laboratory ha	is determined th	at this value may be rou	tinely attained unde	r normal condition	s. No value is
provided in ODCM Tab	ole 4-3.				_		
(e) Item 3 of ODCM Ta	ble 4-1 implies that	an I-131 analysis is r	not required to b	e performed on water sa	amples when the do	se calculated from	the consumption
of water is less than 1	mrem per year. Ho	wever, I-131 analyse	es have been per	formed on the finished o	drinking water samp	les.	-
(f) "Other" stations, as	identified in the "S	tation Type" column	of Table 2-2, are	e "Community" and/or-"	Special" stations.		
Not Applicabl	e (sample not requi	red)	_				

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Table 3-2. Reporting Levels (RL)							
Analysis	Water (pCi/l)	Airborne Particulate or Gases (fCi/m3)	Fish (pCi/kg-wet)	Milk (pCi/l)	Grass or Leafy Vegetation (pCi/kg-wet)		
H-3	20,000ª						
Mn-54	1,000		30,000				
Fe-59	400		10,000				
Co-58	1,000		30,000				
Co-60	300		10,000				
Zn-65	300		20,000				
Zr-95	400						
Nb-95	700						
I-131	2 ^b	900		3	100		
Cs-134	30	10,000	1,000	60	1,000		
Cs-137	50	20,000	2,000	70	2,000		
Ba-140	200			300			
La-140	100			400			
30,000 ma	y be used.	lue for drinking water s way exists, a value of 2		•	hway exists, a value of		

In accordance with ODCM 4.1.1.2.1, deviations from the required sampling schedule are permitted, if samples are unobtainable due to hazardous conditions, unavailability, inclement weather, equipment malfunction or other just reasons. Deviations from conducting the REMP sampling (as described in Table 2-1) are summarized in Table 3-3 along with their causes and resolution.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Collection Period	Affected Samples	Anomaly (A)* or Deviation (D)**	Cause	Resolution
01/01/16 - 02/02/16	PI-0701/II-0701 1.0 mile - SSE	(D) Air samples not obtained	In-service air samples and sampling equipment ruined during river	Station operation satisfactory following power restoration
CR 10162781			flooding event.	and replacement of sample equipment.
1 st Quarter 2016	OSLD Station RC-0405A&B	(A) OSLD quarterly exchange	OSLD station inaccessible due to closed roads in surrounding area.	4th Quarter 2015 OSLD badge set remained in-service
CR 10167965	5 miles - E	delayed		throughout 1st Quarter 2016; replaced upon restoration of normal access during 2nd
				Quarter 2016 exchange.
07/05/16 - 07/12/16 CR 10247607	PB-1218/IB-1218 18 miles - W	(A) Non-representative sample of airborne particulates	Lost 63.6 hours of sample time after local breaker on sampler tripped off during electrical storm.	Station operation satisfactory after normal power restored.
07/19/16 - 07/27/16 CR 10253638	PC-0703/IC-0703 3 miles - SSE	(A) Non-representative sample of airborne particulates.	Lost 101.1 hours of sample time after local breaker on sampler tripped off during electrical storm.	Station operation satisfactory after normal power restored.
09/20/16 09/27/16 CR 10279013	Pl-1601/ll-1601 0.8 miles - N	(A) Non-representative sample of airborne particulates.	Lost 30.4 hours of sample time after lightning took out transformer supplying power to station	Station operation satisfactory after normal power restored.
10/04/16 – 10/11/16 CR 10285473	PI-1601/II-1601 0.8 miles - N	(A) Non-representative sample of airborne particulates.	Lost 129.9 hours of sample time after birds contacted line supplying power to station.	Station operation satisfactory after normal power restored.
10/04/16 10/11/16 CR 10285473	PB-1218/IB-1218 18 miles - W	(A) Non-representative sample of airborne particulates.	Lost 139.6 hours of sample time after local breaker on sampler tripped off during electrical storm.	Station operation satisfactory after normal power restored

Table 3-3. Anomalies and Deviations from Radiological Environmental Monitoring Program

Annual Radiological

ENVIRONMENTAL OPERATING REPORT

2016 CR 10237345	Groundwater Sample Point PW#3 (onsite Production Well #3 supply)	Samples not obtained for tritium and gamma isotopic analyses (GWPP)	PW#3 pump and discharge piping isolated due to an underground piping leak.	Samples will be collected once PW#3 pump is returned to operable status (per GWPP).
		• -	outlined in SNC and Georgia Power Lab and/or procedural requirements as ou	-

3.1 Airborne Particulates

As specified in Table 2-1, airborne particulate filters and charcoal canisters are collected weekly at four indicator stations (Stations 0501, 0701, 1101, and 1601) which encircle the plant at the site periphery, at three community station (0703, 1108, and 1605) approximately three to eight miles from the plant, and at three control stations (0215 and 1218) which range from approximately 15 to 18 miles from the plant. At each location, air is continuously drawn through a glass fiber filter to retain airborne particulate. An activated charcoal canister is also placed in series with the particulate filter to adsorb radioiodine at each indicator and control station and at community station 0703 in Cedar Springs, GA for comparison purposes with GA EPD.

3.1.1 Gross Beta

As provided in Table 3-1, the 2016 annual average weekly gross beta activity was 18.7 fCi/m3 for the indicator stations. It was 0.1 fCi/m3 less than the control station average of 18.8 fCi/m3 for the year. The MDD is not applicable as the indicator stations produced a lower average than the control stations.

The 2016 annual average weekly gross beta activity at the community stations was 19.9 fCi/m3 which was 1.1 fCi/m3 more than the control station average. This difference is not statistically discernible since it is less than the calculated MDD of 3.2 fCi/m3.

Average Air Gross Beta historical data (Table 3-4) is graphed to show trends associated with a prevalent exposure pathway (Figure 3-1). In general, there is close agreement between the results for the indicator, control and community stations. This close agreement supports the position that the plant is not contributing significantly to the gross beta concentrations in air.

Period	Indicator (fCi/m3)	Control (fCi/m3)	Community (fCi/m3)
Pre-op	90	92	91
1977	205	206	206
1978	125	115	115
1979	27.3	27.3	28.7
1980	29.7	28.1	29.2
1981	121	115	115
1982	20.0	20.4	21.0
1983	15.5	14.1	14.5
1984	10.2	12.6	10.5
1985	9.0	9.6	10.3

Table 3-4. Average Weekly Gross Beta Air Concentration

ENVIRONMENTAL OPERATING REPORT

Period	Indicator (fCi/m3)	Control (fCi/m3)	Community (fCi/m3)
1986	10.5	15.8	12.5
1987	9.0	11.0	17.0
1988	8	8	10
1989	7	7	8
1990	10	10	10
1991	9	10	8
1992	15	17.9	18.5
1993	19.1	22.3	22.4
1994	19.0	20.0	19.0
1995	21.7	22.9	21.6
1996	20.3	22.3	23.5
1997	21.1	21.6	22.4
1998	20.6	19.3	22.0
1999	20.5	22.1	25.2
2000	20.9	20.8	23.6
2001	16.3	17.2	17.3
2002	16.8	18	16.8
2003	19.1	19.3	19.9
2004	22.0	21.3	22.4
2005	18.4	19.3	19.0
2006	16.1	17.5	16.8
2007	14.5	18.9	17.3
2008	16.7	20.6	18.0
2009	16.2	16.3	17.3
2010	21.2	17.5	18.2
2011	20.9	14.5	18.2
2012	18.0	17.3	18.9
2013	16.7	18.7	16.1
2014	17.7	19.1	18.5
2015	13.4	15.9	16.8
2016	18.7	18.8	19.9

Table 3-4. Average Weekly Gross Beta Air Concentration

ENVIRONMENTAL OPERATING REPORT

Figure 3-1. Average Weekly Gross Beta Air Concentration

3.1.2 Gamma Particulates

During 2016, no man-made radionuclides were detected from the gamma isotopic analysis of the quarterly composites of the air particulate filters.

Historically, gamma isotopes have been detected as a result of offsite events. During preoperation Cs-137 was occasionally detected.

3.2 Direct Radiation

In 2016, direct (external) radiation was measured with Optically Stimulated Luminescent (OSL) dosimeters by placing two OSL badges at each station. The gamma dose at each station is reported as the average reading of the two badges. The badges are analyzed on a quarterly basis. An inspection is performed near mid-quarter for offsite badges to assure that the badges are on-station and to replace any missing or damaged badges.

PLANT FARLEY

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Two direct radiation stations are established in each of the 16 compass sectors, to form two concentric rings. The inner ring (Stations 0101 through 1601) is located near the plant perimeter as shown in Map A-1 in Appendix A and the outer ring (Stations 0104 through 1605) is located at approximately 5 miles (varying distances) from the plant as shown in Map A-2 in Appendix A. The 16 stations forming the inner ring are designated as the indicator stations. The two ring configuration of stations was established in accordance with NRC Branch Technical Position "An Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. The six control stations (Stations 0215, 0718, 1215, 1218, 1311 and 1612) are located at varying distances greater than 10 miles from the plant as shown in Map A-3 in Appendix A. Monitored special interest areas consist of the following: Station 1001 which is the nearest residence to the plant, and Station 1108 in the town of Ashford, Alabama. The mean and range values presented in the "Other" column in Table 3-1 includes the outer ring stations (stations 0104 through 1605) as well as stations 1001 and 1108.

As provided in Table 3-1, the 2016 average quarterly exposure at the indicator stations (inner ring) was 16.3 mR with a range of 12.2 to 25.5 mR. The indicator station average was 1.1 mR more than the control station average (15.2 mR; range 12.2-18.7 mR). This difference is considered statistically discernible since it is equal to the MDD of 1.1 mR. However, the average is consistent with historical readings and is only slightly above the control value. Therefore, no health or environmental concerns were identified.

The quarterly exposures acquired at the community/other (outer ring) stations during 2016 ranged from 10.9 to 17.2 mR with an average of 13.9 mR which was 1.3 mR less than that of the control stations (15.2 mR).

Average Direct Radiation historical data (Table 3-5) is graphed to show trends associated with a prevalent exposure pathway (Figure 3-2). The decrease between 1991 and 1992 values is attributed to a change in TLDs from Teledyne to Panasonic. It should be noted however that the differences between indicator and control and outer ring values did not change.

Period	Indicator (mR)	Control (mR)	Outer Ring (mR)
Pre-op	12.6	11.4	10.1
1977	10.6	12.2	10.6
1978	15	13.5	12
1979	20.3	18.7	15.2
1980	21.9	21.6	18.5
1981	16.5	14.9	14.5
1982	15.5	14.7	13
1983	20.2	20.2	17.4

Table 3-5. Average Quarterly Exposure from Direct Radiation

2016 FNP Annual Radiological Environmental Operating Report

1 .

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Period	Indicator	Control	Outer Ring
:	(mR)	(mR)	(mR)
1984	18.3	16.9	15.3
1985	21.9	22	18
1986	17.8	17.7	15.1
1987	20.8	20.0	18.0
1988	21.5	19.9	18.5
1989	18.0	16.2	15.3
1990	18.9	16.4	15.8
1991	18.4	16.1	16.1
1992	16.1	13.6	13.5
1993	17.4	15.9	15.6
1994	15.0	13.0	12.0
1995	14.0	12.5	11.8
1996	14.2	12.7	11.9
1997	15.3	13.9	11.9
1998	16.2	14.6	13.9
1999	14.7	13.4	12.6
2000	15.5	14.1	13.5
2001	14.9	13.4	12.7
2002	14.1	12.6	11.9
2003	15.2	13.6	12.9
2004	14.3	12.9	12.1
2005	14.7	13.4	12.5
2006	15.2	13.6	12.9
2007		13.3	12.5
2008	15.0	13.7	12.9
2009	15.2	13.6	12.8
2010	17.8	16.7	15.5
2011	21.0	19.9	18.4
2012	17.4	15.8	14.7
2013	16.5	15.1	13.8
2014	16.7	15.7	14.1
2015	17.1	15.6	14.4
2016	16.3	15.2	13.9

Table 3-5. Average Quarterly Exposure from Direct Radiation

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

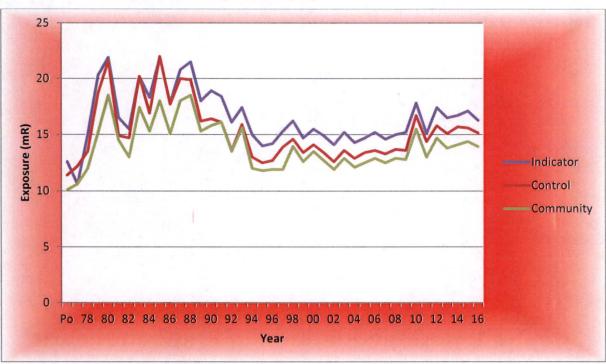


Figure 3-2. Average Quarterly Exposure from Direct Radiation

The increase shown in 2010 reflects issues with the aging Panasonic TLD reader. The close agreement between the station groups supports the position that the plant is not contributing significantly to direct radiation in the environment. Figure 3-3 provides a more detailed view of the 2016 values. The values for the special interest areas detailed below indicate that Plant Farley did not significantly contribute to direct radiation at those areas.

PLANT FARLEY

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

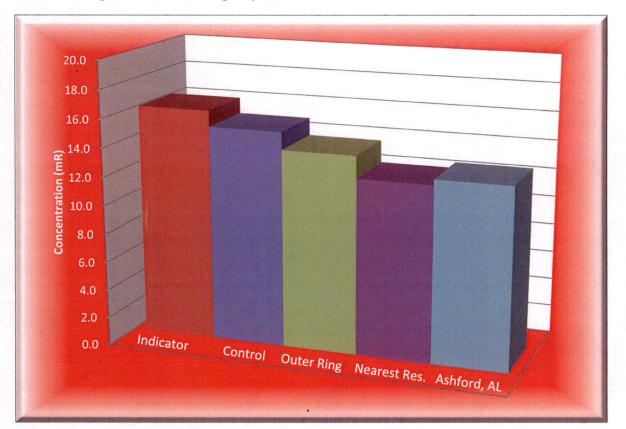


Figure 3-3. 2016 Average Exposure from Direct Radiation in Select Locations

3.3 Biological Media

Cs-137 was the only radionuclide detected in two of the three biological media. As indicated in Figure 3-4, the Cs-137 activity levels are below the respective MDCs and well below that of the respective RLs for each sample media for both the indicator and control stations.

3.3.1 Milk

Milk samples had been collected biweekly from a control location until the end of 2009 when the dairy would no longer provide samples. No indicator station (a location within five miles of the plant) has been available for milk sampling since 1987. As discussed in Section 4.0, no milk animals were found within five miles of the plant during the 2016 land use census and therefore no milk sampling was performed during the reporting year.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

3.3.2 Vegetation

In accordance with Table 2-1 and 2-2, forage samples are collected every four weeks at two indicator stations on the plant perimeter, and at one control station located approximately 18 miles west of the plant, in Dothan. The man-made radionuclide Cs-137 is periodically identified in vegetation samples, and is generally attributed to offsite sources (such as weapons testing, Chernobyl, and Fukushima).

During 2016, one gamma isotope (Cs-137) was identified in three samples at Station 1601 (Plant Perimeter) and in two samples at the control station, 1218 (Dothan, Alabama). The average for the indicator station (20.8 pCi/L) was below the average for the control station (38.4 pCi/L). These averages are based only on the detected vales; all other results were below detection limits. No environmental concerns are noted as these values are below the MDC and RL.

3.3.3 Fish

Two types of fish (bottom-feeding and game) are collected semiannually from the Chattahoochee River at a control station several miles upstream of the plant intake structure and at an indicator station a few miles downstream of the plant discharge structure. These locations are shown in Map A-3 in Appendix A.

3.3.3.1 Bottom Feeding Species

For bottom-feeding species, all fish sampled are considered indicator stations. One sample location identified Cs-137 on one occasions with a value of 17.1 pCi/kg. While the control samples did not contain Cs-137, the indicator value is below the MDC (50 pCi/kg) and the RL (2,000 pCi/kg) and this value is not considered attributable to Plant activity.

3.3.3.2 Game Species

For game species, all fish sampled are considered indicator stations. One sample location identified Cs-137 on one occasions with a value of 10.1 pCi/kg. The control location upstream of the discharge also identified Cs-137 in one sample at 15.2 pCi/kg. The indicator value is less than that of the control, so no MDD applies. Additionally, the detected indicator and control values are below the MDC (50 pCi/kg) and the RL (2,000 pCi/kg) and these values are not considered attributable to plant activity.

3.3.4 Biological Media Summary

There were no statistical differences, trends, or anomalies associated with the 2016 biological media samples when compared to historical data. As shown in Table 3-1, Cs-137 was identified in vegetation and fish samples at low levels; no other reportable radionuclides were found from the gamma isotopic analysis of biological media samples in 2016.

3.4 Off-site Groundwater

There are no true indicator sources of ground water offsite of Plant Farley. A well, located approximately four miles south-southeast of the plant on the east bank of the Chattahoochee River, serves Georgia Pacific Paper Company as a source of potable water and is designated as the indicator station. A deep well located about 1.2 miles southwest of the plant, which supplies water to the Whatley residence, is designated as the control station. Samples are collected quarterly and analyzed for gamma isotopic, I-131 and tritium as specified in Table 2-1. In 2016, there were no radionuclides detected in any of the ground water samples from either sample station, apart from tritium.

Since 2004, tritium has been detected at very low concentrations (near the instrument detection level) and close to environmental background levels in off-site groundwater. In 2016, tritium was not detected. Typically, the positive results are at concentrations well below the MDC and RL for tritium (2,000 and 20,000 pCi/l, respectively).

3.5 River Water

Composite river water samples are collected monthly at an upstream control location and at two downstream indicator locations (shown on Figure 2). The details of the sampling protocols are outlined in Tables 2-1 and Table 2-2. A gamma isotopic analysis is conducted on each monthly sample and the monthly aliquots are combined to form quarterly composite samples, which are analyzed for tritium.

As provided in Table 3-1, there were no positive results during 2016 from the gamma isotopic analysis of the river water samples. Also indicated in Table 3-1, the tritium concentration (only one sample contained a positive tritium result) found at the indicator station was 583 pCi/l, the control station did not indicate any positive concentrations (four samples). The indicator value is less than the MDC and RL limits for tritium in a drinking water supply source (2000 pCi/l and 20000 pCi/l, respectively).

Figure 3-4 below details the 2016 average tritium concentrations across both water mediums.

PLANT FARLEY

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

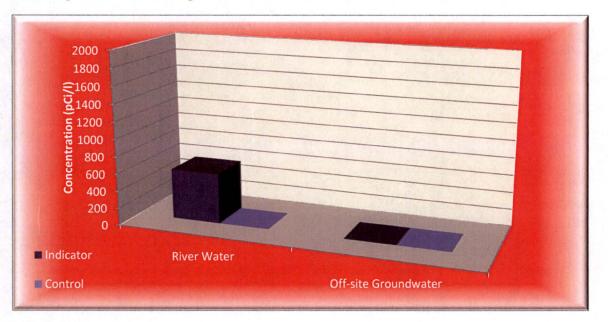


Figure 3-4. 2016 Average Tritium Concentrations in River and Off-site Groundwater

3.6 Sediment

Sediment was collected along the shoreline of the Chattahoochee River in the spring and fall at a control station which is approximately four miles upstream of the intake structure and at an indicator station which is approximately two miles downstream of the discharge structure as shown in Map A-3. A gamma isotopic analysis was performed on each sample. There were no reportable radionuclides detected in sediment samples in 2016.

3.7 Interlaboratory Comparison Program

In accordance with ODCM 4.1.3, GPCEL participates in an Interlaboratory Comparison Program (ICP) that satisfies the requirements of Regulatory Guide 4.15, Revision 1, "Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment", February 1979. The ICP includes the required determinations (sample medium/radionuclide combinations) included in the REMP.

The ICP was conducted by Eckert & Ziegler Analytics, Inc. (EZA) of Atlanta, Georgia. EZA has a documented Quality Assurance (QA) program and the capability to prepare Quality Control (QC) materials traceable to the National Institute of Standards and Technology. The ICP is a third party blind testing program which provides a means to ensure independent checks are

ENVIRONMENTAL OPERATING REPORT

performed on the accuracy and precision of the measurements of radioactive materials in environmental sample matrices. EZA supplies the crosscheck samples to GPCEL which performs routine laboratory analyses. Each of the specified analyses is performed three times.

The accuracy of each result is measured by the normalized deviation, which is the ratio of the reported average less the known value to the total error. An investigation is undertaken whenever the absolute value of the normalized deviation is greater than three or whenever the coefficient of variation is greater than 15% for all radionuclides other than Cr-51 and Fe-59. For Cr-51 and Fe-59, an investigation is undertaken when the coefficient of variation exceeds the values shown on Table 3-6 below:

Nuclide	Concentration *	Total Sample Activity (pCi)	Percent Coefficient of Variation
	<300	NA	25
Cr-51	NA	>1000	25
	>300	<1000	15
	<80	[•] NA	25
Fe-59	>80	NA	15
* For air filters (pCi/l).	s, concentration units are	pCi/filter. For all other media, co	ncentration units are pCi/liter

Table 3-6. Interlaboratory Comparison Limits

As required by ODCM 4.1.3.3 and 7.1.2.3, a summary of the results of the GPCEL's participation in the ICP is provided in Table 3-7 for:

- gross beta and gamma isotopic analyses of an air filter
- gamma isotopic analyses of milk samples
- gross beta, tritium and gamma isotopic analyses of water samples

The 2016 analyses included tritium, gross beta and gamma emitting radio-nuclides in different matrices. The attached results for all analyses were within acceptable limits for accuracy (less than 15% coefficient of variation and less than 3.0 normalized deviations, except for Cr-51 and Fe-59, which are outlined in Table 3-6).

The 2016 analyses included tritium, gross beta and gamma emitting radio-nuclides in different matrices. The attached results for all analyses were within acceptable limits for accuracy.

ENVIRONMENTAL OPERATING REPORT

Analysis or Radionuclide	Date Prepared	Reported Average	Known Value	Standard Deviation EL	Uncertainty Analytics (3S)	Percent Coefficient : of Variation	Normalized Deviation
7 Հեր ան բանցագ Դեպոր	at y tat y		NALYSIS OF AN AIR				ta sakir
I-131	9/15/2016	61.65	59.1	3.09	0.99	7.15	0.58
		GAMMA	ISOTOPIC ANALYSIS	OF AN AIR FILTER	(pCi/filter)		
Ce-141	9/15/2016	61.6	63.2	2.32	1.06	6.05	0.39
Co-58	9/15/2016	63.0	66.0	1.40	1.10	6.03	-0.79
Co-60	9/15/2016	86.5	91.4	2.65	1.53	5.52	-1.03
Cr-51	9/15/2016	145.7	160.0	6.82	2.67	9.47	-1.04
Cs-134	9/15/2016	85.8	92	4.17	1.54	7.14	-1.11
Cs-137	9/15/2016	79.8	80.3	1.85	1.34	5.67	-0.12
Fe-59	9/15/2016	55.9	61.4	7.09	1.03	12.63	-0.65
Mn-54	9/15/2016	103.5	103.0	2.55	1.72	5.50	0.09
Zn-65	9/15/2016	128.0	121.0	4.71	2.02	6.89	0.80
		GROSS	BETA ANALYSIS OF	AN AIR FILTER (PCI)	/FILTER)		
Gross Beta	9/15/2016	89.8	76.6	3.44	1.28	5.57	2.63
		GAMMA IS	OTOPIC ANALYSIS	OF A MILK SAMPLE	(PCI/LITER)		
Co-58	6/9/2016	146.7	142.0	6.81	2.37	7.29	0.44
Co-60	6/9/2016	187.8	173.0	7.74	2.88	6.08	1.29
Cr-51	6/9/2016	305.3	276.0	7.33	4.60	11.16	0.86
Cs-134	6/9/2016	191.5	174.0	4.15	2.91	4.66	1.96
Cs-137	6/9/2016	137.0	120.0	5.93	2.01	7.30	1.70
Fe-59	6/9/2016	128.5	122.0	10.7	2.03	10.97	0.46
I-131	6/9/2016	107.0	94.5	6.80	1.58	8.93	1.30
Mn-54	6/9/2016	144.2	125.0	3.05	2.09	5.99	2.22
Zn-65	6/9/2016	273.9	235.0	10.8	3.93	7.03	2.02

Table 3-7. Interlaboratory Comparison Summary

2016 FNP Annual Radiological Environmental Operating Report

ENVIRONMENTAL OPERATING REPORT

Analysis or	Date Prepared	Reported	Known Value	Standard	Uncertainty	Percent Coefficient	Normalized
Radionuclide		Average		Deviation EL	Analytics (35)	of Variation	Deviation
	A A A A A A A A A A A A A A A A A A A	GROSS I	BETA ANALYSIS OF	WATER SAMPLE (PC	I/LITER)	<u></u>	
Gross Beta	_3/17/2016	. 264.4	250.0	11.24	4.17	6.09	0.89
GIUSS DELa	6/9/2016	277.01	250.0	6.53	4.18	4.24	2.30
	- Carling and State	GAMMA IS	OTOPIC ANALYSIS C	PF WATER SAMPLES	(PCI/LITER)	He was a start of the second s	the second to
Ce-141	3/17/2016	121.9	118.0	7.45	1.98	9.44	0.34
Co-58	3/17/2016	143.7	141.0	3.12	2.36	6.29	0.30
Co-60	3/17/2016	300.9	293.0	2.89	4.90	4.40	0.60
Cr-51	3/17/2016	308.6	293.0	22.7	4.88	14.12	0.36
Cs-134	3/17/2016	168.7	157.0	6.51	2.61	5.81	1.20
Cs-137	3/17/2016	205.5	194.0	7.11	3.23	6.20	0.90
Fe-59	- 3/17/2016	166.0	157.0	2.49	2.63	6.96	0.78
I-131	3/17/2016	96.1	88.9	6.56	1.48	14.48	0.52
Mn-54	3/17/2016	158.1	140.0	6.45	2.34	6.94	1.65
Zn-65	3/17/2016	242.5	215.0	11.7	3.58	7.96	1.42
· Frank in the	TRITIUM ANALYSIS OF WATER SAMPLES (PCI/LITER)						
H-3	3/17/2016	5118.5	4630.0	89.3	77.4	3.19	2.99
	6/9/2016	12338.6	12000.0	58.41	201	2.06	1.33

Table 3-7. Interlaboratory Comparison Summary

3.8 Groundwater

To ensure compliance with NEI 07-07, Southern Nuclear developed the Nuclear Management Procedure, Radiological Groundwater Protection Program. The procedure contains detailed site-specific monitoring plans, program technical bases, and communications protocol (to ensure that radioactive leaks and spills are addressed and communicated appropriately). In an effort to prevent future leaks of radioactive material to groundwater, SNC plants have established robust buried piping and tanks inspection programs.

Plant Farley maintains the following wells (Table 3-8), which are sampled at a frequency that satisfies the requirements of NEI 07-07. The analytical results for 2016 were all within regulatory limits specified within this report. Table 3-9 contains the results of the Groundwater Protection Program results for tritium (in pCi/L).

		er Protection Program Locations
Well	Aquifer	Monitoring Purpose
R1	Major Shallow aquifer	Dilution line
R2	Major Shallow aquifer	Dilution line
R3	Major Shallow aquifer	Unit 2 RWST
R4	Major Shallow aquifer	Unit 1 RWST
R5	Major Shallow aquifer	Dilution line
R6	Major Shallow aquifer	Dilution line
R7	Major Shallow aquifer	Dilution line
R8	Major Shallow aquifer	Dilution line
R9	Major Shallow aquifer	Dilution line
R10	Major Shallow aquifer	Dilution line
R11	Major Shallow aquifer	Background 1
R13	Major Shallow aquifer	Dilution line
R14	Major Shallow aquifer	Background 2
PW#2	Drinking water	Production Well #2 Supply
PW#3	Drinking water	Production Well #3 Supply
PW#4	Drinking water	Production Well #4 Supply
CW West	Drinking water	Construction Well West Supply
CW East	Drinking water	Construction Well East Supply
FRW	Drinking water	Firing Range Well Supply
SW-1	N/A	Background 3, Service Water Pond

Table 3-8. Groundwater Protection Program Locations

set and

ENVIRONMENTAL OPERATING REPORT

Table 3-9.	Groundwater Protect	ion Program Results
Well	June 2016	November 2016
R1	NDM	NDM
R2	NDM	NDM
R3	1,620	913
R4	NDM	NDM
R5	NDM	277
R6	NDM	NDM
R7	NDM	NDM
R8	198	NDM
R9	NDM	271
R10	NDM	NDM
R11	NDM	NDM
R13	NDM	NDM
R14	NDM	NDM
PW#2	NDM	NS
PW#3	NS – Out of Service	NS – Out of Service
PW#4	NDM	201
CW West	240	NDM
CW East	228	137
FRW	NDM	NDM
SW-1	148	NDM

NDM – No Detectable Measurements

NS – Not Sampled

-

,

4 SURVEY SUMMARIES

4.1 Land Use Census

In accordance with ODCM 4.1.2, a land use census was conducted on November 29, 2016 to determine the locations of the nearest permanent residence, milk animal, and garden of greater than 500 square feet producing broad leaf vegetation, in each of the 16 compass sectors within a distance of five miles; the locations of the nearest beef cattle in each sector were also determined. A milk animal is a cow or goat producing milk for human consumption. The census results are tabulated in Table 4.1-1. The 2016 census indicated that there were no changes to the nearest location for any of the categories in any of the sectors when compared to the 2015 census, nor were any milk animals located within a five+mile radius.

In 2013, a new permanent resident was identified in the western sector (12) at approximately 1.0 mile from the plant (0.2 miles closer than the current controlling receptor). This location was evaluated under CAR 249563 in accordance with ODCM 4.1.2.2.1. There were no significant differences in X/Q or D/Q values or radiological doses between the new location and the previous location, so the controlling receptor remained the same. No ODCM update was made.

Sector	Residence	Milk Animal
Distance	in Miles to the Nearest Location	in Each Sector
NN	2.6	None
NNE	2.5	None
NE	2.4	None
ENE	2.4	None
E	2.8	None
ESE	3.0	None
SE	3.4	None
SSE	None (>5.0)	None
S	4.3	None
SSW	2.9	None
SW	1.2	None
WSW	2.4	None
W	1.0	None
WNW	2.1	None
NW	1.5	None
NNW	3.4	None

Table 4-1. Land Use Census Results

ENVIRONMENTAL OPERATING REPORT

4.2 Chattahoochee River Survey

A previous river survey performed for Plant Farley identified a potential use of water from the Chattahoochee River, downstream of the plant discharge at a distance of approximately 2 miles. In July 2013, the Georgia Department of Natural Resources issued a farm use permit to withdraw from the Chattahoochee River to the Nature Conservancy of Georgia. The Nature Conservancy of Georgia leases property along the river for agricultural and grazing purposes to a private farm family, and water from the river could potentially be used for crop irrigation. At the time of this report, no water has been withdrawn and used for crop irrigation by the landowners.

In the fall of 2016, the Georgia Environmental Protection Division (EPD), Alabama Department of Environmental Management (ADEM) and Alabama Department of Economic and Community Affairs (ADECA) was contacted to request any information about river use permits that had been issued in the area near the plant. No additional withdrawal permits or intake locations had been added at the time of the survey.

ENVIRONMENTAL OPERATING REPORT

5 CONCLUSIONS

This report confirms SNCs conformance with the requirements of Chapter 4 of the ODCM and the objectives were to:

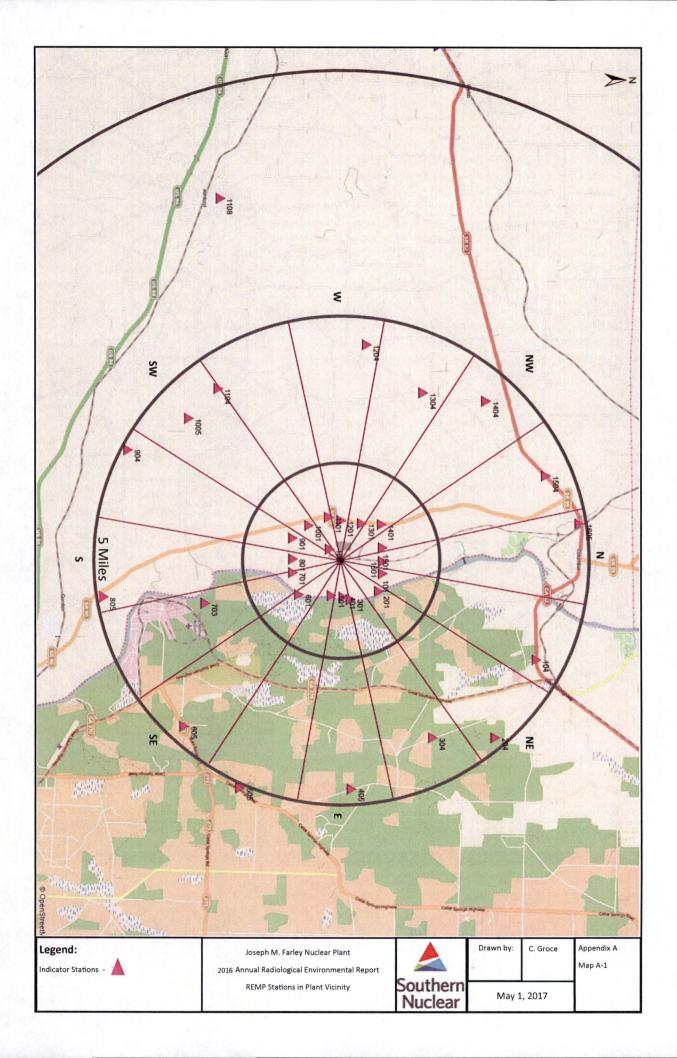
1) Determine the levels of radiation and the concentrations of radioactivity in the environs and;

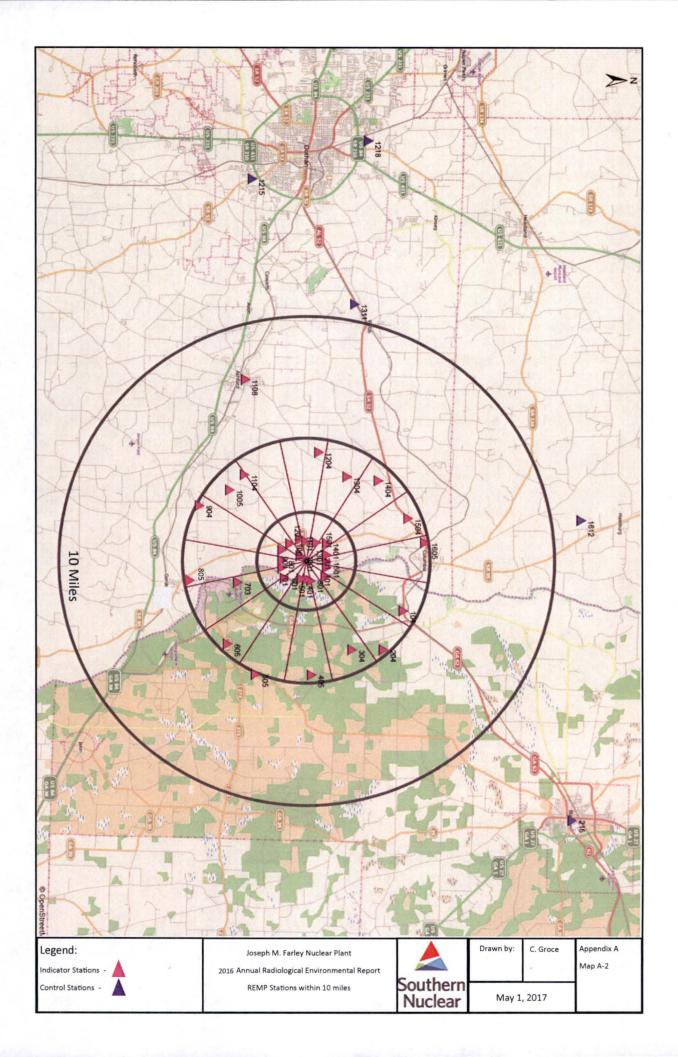
2) Assess the radiological impact (if any) to the environment due to the operation of the FNP.

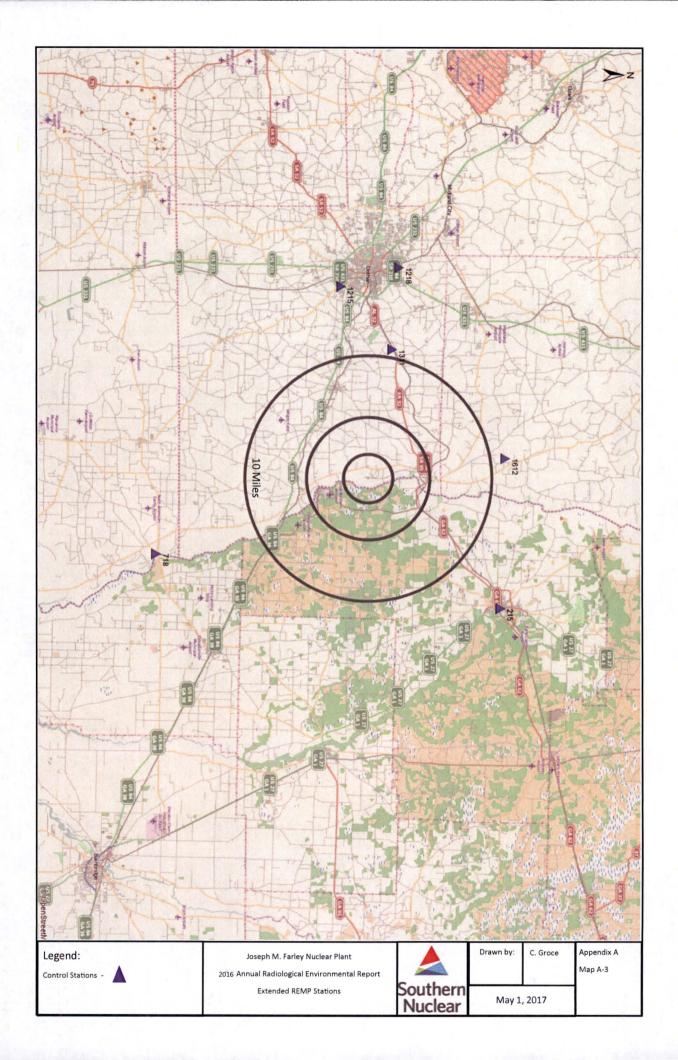
Based on the 2016 activities associated with the REMP, SNC offers the following conclusions:

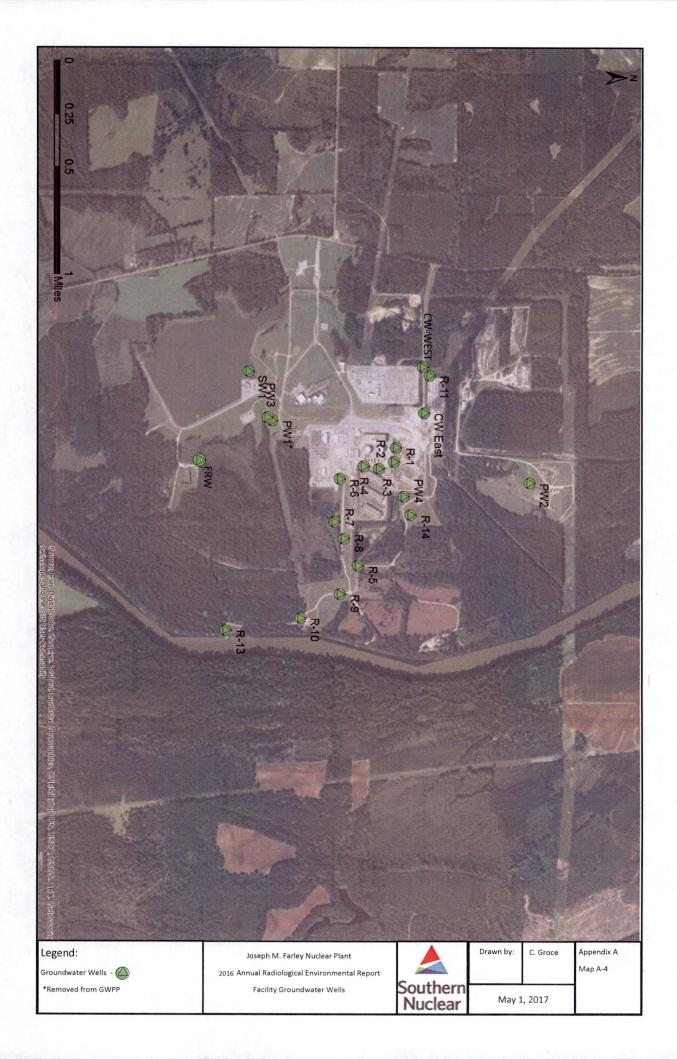
- Samples were collected and there were no deviations or anomalies that negatively affected the quality of the REMP
- Land use census and river survey did not reveal any changes
- Analytical results were below reporting levels
- These values are consistent with historical results, indicating no adverse radiological environmental impacts associated with the operation of FNP

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT


APPENDIX A


1


Maps



Appendix A

PLANT FARLEY

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

APPENDIX B

Errata

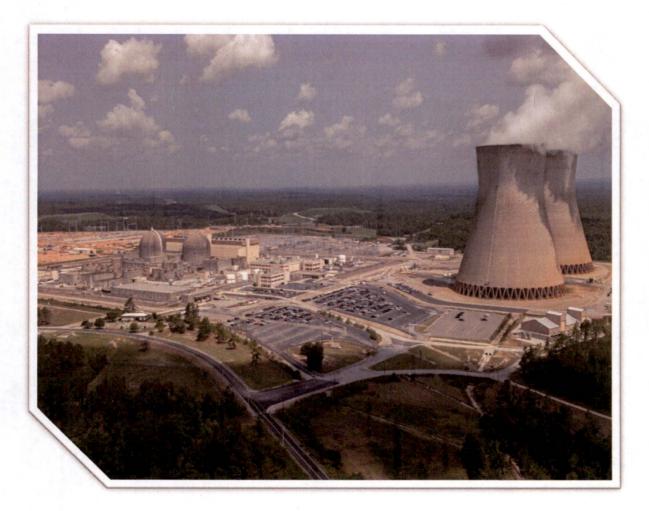
Appendix B

PLANT FARLEY

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

There are no errata for the 2016 reporting year.



Edwin I. Hatch Nuclear Plant – Units 1 & 2 Joseph M. Farley Nuclear Plant– Units 1 & 2 Vogtle Electric Generating Plant– Units 1 & 2 Annual Radiological Environmental Operating Reports for 2016

Enclosure 3

Vogtle Annual Radiological Environmental Operating Report for 2016

VOGTLE ELECTRIC GENERATING PLANT 2016 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

ENVIRONMENTAL OPERATING REPORT

TABLE OF CONTENTS

1	Intro	duction	1
2	REMP	P Description	2
3	Resul	ts Summary	9
	3.1 3.2	Airborne Particulates 3.1.1 Gross Beta 3.1.2 Gamma Particulates Direct Radiation	. 19 . 21 21
	3.3	Biological Media	25 26 26 26 26
·	3.4 3.5 3.6 3.7 3.8	Drinking Water River Water Sediment Interlaboratory Comparison Program Groundwater.	27 29 30 31
4	Surve 4.1	ey Summaries	
5	4.2 Concl	Savannah River Survey	

ر <u>Tables</u>

Table 2-1. Summary Description of Radiological Environmental Monitoring Program	
Table 2-2. Radiological Environmental Sampling Locations	6
Table 3-1. Radiological Environmental Monitoring Program Annual Summary	11
Table 3-2. Reporting Levels (RL)	
Table 3-3. Anomalies and Deviations from Radiological Environmental Monitoring Program	18
Table 3-4. Average Weekly Gross Beta Air Concentration	19
Table 3-5. Average Quarterly Exposure from Direct Radiation	
Table 3-6. Interlaboratory Comparison Limits	
Table 3-7. Interlaboratory Comparison Summary	
Table 3-8. Groundwater Protection Program Locations	35
Table 3-9. Groundwater Protection Program Tritium Results (pCi/L)	

PLANT VOGTLE

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Table 4-1. Land Use Census Results	37
------------------------------------	----

<u>Figures</u>

1.

Figure 3-1. Average Weekly Gross Beta Air Concentration	21
Figure 3-2. Average Quarterly Exposure from Direct Radiation	
Figure 3-3. 2016 Average Exposure from Direct Radiation	
Figure 3-4. 2016 Biological Media Average Cs-137 Concentrations	27
Figure 3-5. 2016 Average Gross Beta Concentration in Raw and Finished Drinking Water	29
Figure 3-6. 2016 Average Tritium Concentrations in River, Raw Drinking, and Finished Drinking Wate	

Appendix A – Maps

- A-1 REMP Stations in Plant Vicinity
- A-2 REMP Stations within 10 Miles
- A-3 Extended REMP Stations
- A-4 Facility Groundwater Wells

Appendix B – Errata

PLANT VOGTLE

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

LIST OF ACRONYMS

AREOR ASTM CL EPA GA EPD	Annual Radiological Environmental Operating Report American Society for Testing and Materials Confidence Level Environmental Protection Agency State of Georgia Environmental Protection Division
GPC	Georgia Power Company
GPCEL	Georgia Power Company Environmental Laboratory
ICP	Interlaboratory Comparison Program
MDC	Minimum Detectable Concentration
MDD	Minimum Detectable Difference
MWe	MegaWatts Electric
NA	Not Applicable
NDM	No Detectable Measurement(s)
NEI	Nuclear Energy Institute
NRC	Nuclear Regulatory Commission
ODCM	Offsite Dose Calculation Manual
OSL	Optically Stimulated Luminescence
Ро	Preoperation
PWR	Pressurized Water Reactor
REMP	Radiological Environmental Monitoring Program
RL	Reporting Level
RM	River Mile
SNC	Southern Nuclear Operating Company
SRS	Savannah River Site
TLD	Thermoluminescent Dosimeter
TS	Technical Specification
VEGP	Alvin W. Vogtle Electric Generating Plant

ENVIRONMENTAL OPERATING REPORT

1 INTRODUCTION

The Radiological Environmental Monitoring Program (REMP) is conducted in accordance with Chapter 4 of the Offsite Dose Calculation Manual (ODCM). The REMP activities for 2016 are reported herein in accordance with Technical Specification (TS) 5.6.2 and ODCM 7.1.

The objectives of the REMP are to:

Determine the levels of radiation and the concentrations of radioactivity in the environs and;
 Assess the radiological impact (if any) to the environment due to the operation of the Alvin W. Vogtle Electric Generating Plant (VEGP).

The assessments include comparisons between results of analyses of samples obtained at locations where radiological levels are not expected to be affected by plant operation (control stations), areas of higher population (community stations), and at locations where radiological levels are more likely to be affected by plant operation (indicator stations), as well as comparisons between preoperational and operational sample results.

VEGP is owned by Georgia Power Company (GPC), Oglethorpe Power Corporation, the Municipal Electric Authority of Georgia, and the City of Dalton, Georgia. It is located on the southwest side of the Savannah River approximately 23 river miles upstream from the intersection of the Savannah River and U.S. Highway 301. The site is in the eastern sector of Burke County, Georgia, and across the river from Barnwell County, South Carolina. The VEGP site is directly across the Savannah River from the Department of Energy Savannah River Site (SRS). Unit 1, a Westinghouse Electric Corporation Pressurized Water Reactor (PWR), with a licensed core thermal power of 3626 MegaWatts (MWt), received its operating license on January 16, 1987 and commercial operation started on May 31, 1987. Unit 2, also a Westinghouse PWR rated for 3626 MWt, received its operating license on February 9, 1989 and began commercial operation on May 19, 1989. Both units were relicensed on June 3, 2009.

The pre-operational stage of the REMP began with initial sample collections in August of 1981. The transition from the pre-operational to the operational stage of the REMP occurred as Unit 1 reached initial criticality on March 9, 1987.

- A description of the REMP is provided in Section 2 of this report
- Section 3 provides a summary of the results and an assessment of any radiological impacts to the environment as well as the results from the interlaboratory comparison
- A summary of the land use census and the river survey are included in Section 4
- Conclusions are included in Section 5

2016 VEGP Annual Radiological Environmental Operating Report

ENVIRONMENTAL OPERATING REPORT

2 REMP DESCRIPTION

The following section provides a description of the sampling and laboratory protocols associated with the REMP. Table 2-1 provides a summary of the sample types to be collected and the analyses to be performed to monitor the airborne, direct radiation, waterborne and ingestion pathways, and also summarizes the collection and analysis frequencies (in accordance with ODCM Section 4.2). Table 2-2 provides specific information regarding the station locations, their proximity to the plant, and exposure pathways. Additionally, the locations of the sampling stations are depicted on Maps A-1 through A-4 of the station locations included in Appendix A of this report.

Georgia Power Company's Environmental Laboratory (GPCEL), located in Atlanta, Georgia collects and analyzes REMP samples.

Exposure Pathway and/or	Number of Representative Samples and Sample Locations	Sampling/Collection Frequency	Type/Frequency of Analysis
	40 routine monitoring stations with two or more dosimeters placed as follows:	Quarterly	Gamma dose, quarterly
	An inner ring of stations, one in each compass sector in the general area of the site boundary;		
	An outer ring of stations, one in each compass sector at approximately five miles from the site; and		
	Special interest areas, such as population centers, nearby recreation areas, and control stations		
Airborne Radioiodine and	Samples from seven locations:	Continuous sampler operation with sample collection weekly, or	Radioiodine canister: I-131 analysis, weekly
Particulates	Five locations close to the site boundary in different		Particulate sampler: Gross beta analysis ¹ following filter change and gamma isotopic analysis ² of composite (by location),
	A community having the highest calculated annual average ground level D/Q;		quarterly
	A control location near a population center at a distance of about 14 miles	×	
Waterborne	and the second of the second and the second and the second and the		and the first the cost of the second
	One sample upriver Two samples downriver	Composite sample over one . month period ⁴ .	Gamma isotopic analysis ² , monthly Composite for tritium analysis, quarterly

Table 2-1. Summary Description of Radiological Environmental Monitoring Program

Exposure Pathway and/or	Number of Representative Samples and Sample Locations	Sampling/Collection Frequency	Type/Frequency of Analysis
Drinking	······································	period ⁴ when I-131 analysis is required for each sample; monthly composite otherwise; and grab sample of finished water at each water treatment plant every two	I-131 analysis on each sample when the dose calculated for the consumption of the water is greater than 1 mrem per year ⁵ . Composite for gross beta and gamma isotopic analysis ² on raw water, monthly. Gross beta, gamma isotopic and I-131 analyses on grab sample of finished water, monthly. Composite for tritium analysis on raw and finished water, quarterly
	See Table 3-8 and Map A-4 for well locations. These are part of the GWPP (NEI 07-07).		Tritium, gamma isotopic, and field parameters of each sample; hard-to-detects based on tritium and gamma results
Shoreline Sediment	 One sample from downriver area with existing or potential recreational value One sample from upriver area with existing or potential recreational value 	Semiannually	Gamma isotopic analysis ² , semiannually
Ingestion	and the set of the second s		and the set of the set
Milk	Two samples from milking animals ⁶ at control locations at a distance of about 10 miles or more	Bimonthly	Gamma isotopic analysis ^{2,7} , bimonthly

Table 2-1. Summary Description of Radiological Environmental Monitoring Program

Exposure Pathway and/or	Number of Representative Samples and Sample Locations	Sampling/Collection Frequency	Type/Frequency of Analysis
Fish	 At least one sample of any commercially or recreationally important species near the plant discharge At least one sample of any commercially or recreationally important species in an area not influenced by plant discharges At least one sample of any anadromous species near the plant discharge 	During spring spawning season	Gamma isotopic analysis ² on edible portions, semiannually Gamma isotopic analysis ² on edible portions, annually.
Grass or Leafy Vegetation	 One sample from two onsite locations near the site boundary in different sectors One sample from a control location at a distance of about 17 miles 	Monthly during growing season	Gamma isotopic analysis ^{2,7} , monthly

Table 2-1. Summary Description of Radiological Environmental Monitoring Program

¹Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than 10 times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.

²Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.

³Upriver sample is taken at a distance beyond significant influence of the discharge. Downriver samples are taken beyond but near the mixing zone. ⁴Composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) to assure obtaining a representative sample.

⁵The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.

⁶A milking animal is a cow or goat producing milk for human consumption.

⁷If the gamma isotopic analysis is not sensitive enough to meet the Minimum Detectable Concentration (MDC) for I-131, a separate analysis for I-131 may be performed.

ANNUAL RADIOLOGICAL ENVIRONMENTAL

Station Number	Station Type	Descriptive Location	Direction ¹	-	Radiation Sample Type
1	Indicator	River Bank	N	1.1	Direct
2	Indicator	River Bank	NNE	0.8	Direct
3	Indicator	Discharge Area	NE	0.6	Airborne
3	Indicator	River Bank	NE	0.7	Direct
4	Indicator	River Bank	ENE	0.8	Direct
5	Indicator	River Bank	E	1.0	Direct
6	Indicator	Plant Wilson	ESE	1.1	Direct
7	Indicator	Simulator Building	SE	1.7	Airborne, Direct, Vegetation
8	Indicator	River Road	SSE	1.1	Direct
. 9	Indicator	River Road	S	1.1	Direct
10	Indicator	Met Tower	SSW	0.9	Airborne
10	Indicator	River Road	SSW	1.1	Direct
11	Indicator	River Road	SW	1.2	Direct
12	Indicator	River Road	WSW	1.2	Airborne, Direct
13	Indicator	River Road	W	1.3	Direct
14	Indicator	River Road	· WNW	1.8	Direct
15	Indicator	Hancock Landing Road	NW	1.5	Direct, Vegetation
16	Indicator	Hancock Landing Road	NNW	1.4	Airborne, Direct
17	Other	Sav. River Site (SRS), River Road	N	5.4	Direct
18	Other	SRS, D Area	NNE	5.0	Direct
19	Other	SRS, Road A.13	NE	4.6	Direct
20	Other	SRS, Road A.13.1	ENE	4.8	Direct
21	Other	SRS, Road A.17	E	5.3	Direct

Table 2-2. Radiological Environmental Sampling Locations

2016 VEGP Annual Radiological Environmental Operating Report

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Station Number	Station Type	Descriptive Location	Direction ¹		Radiation Sample Type
22	Other	River Bank	ESE	5.2	Direct
23	Other	River Road	SE	4.6	Direct
24	Other	Chance Road	SSE	4.9	Direct
25	Other	Chance Road near Highway 23	S	5.2	Direct
26	Other	Highway 23 and Ebenezer Church Road	<u></u> SSW	4.6	Direct
27	Other	Highway 23 opposite Boll Weevil Road	SW	4.7	Direct
28	Other	Thomas Road	WSW	5.0	Direct
29	Other .	Claxton-Lively Road	w	5.1	Direct
30	Other	Nathaniel Howard Road	WNW	5.0	Direct
31	Other	River Road at Allen's Chapel Fork	NW	5.0	Direct
32	Other	River Bank	NNW	4.7	Direct
35	Other	Girard	SSE	6.6	Airborne, Direct
36	Control	GPC Waynesboro Op. HQ	WSW	13.9	Airborne, Direct
37	Control	Substation, Waynesboro, GA	· wsw	16.7	Direct, Vegetation
43	Other	Employee's Rec. Center	SW	2.2	Direct
47	Control	Oak Grove Church	SE	10.4	Direct
48	Control	McBean Cemetery	NW	10.2	Direct
51	Control	SGA School, Sardis, GA	S	11.0	Direct
52	Control	Oglethorpe Substation; Alexander, GA	SW	10.7	Direct
80	Control	Augusta Water Treatment Plant	NNW	29.0	Drinking Water ²
81	Control	Sav. River	N	2.5	Fish ³ Sediment ⁴
82	Control	Sav. River (RM 151.2)	NNE	0.8	River Water
83	Indicator	Sav. River (RM 150.4)	ENE	0.8	River Water Sediment ⁴

Table 2-2. Radiological Environmental Sampling Locations

3

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Station Number	Station Type	Descriptive Location	Direction ¹	Distance ((miles) ¹	Radiation Sample Type
84	Other	Sav. River (RM 149.5)	ESE	1.6	River Water
85	Indicator	Sav. River	ESE	4.3	Fish ³
87	Indicator	Beaufort-Jasper County Water Treatment Plant	SE	76	Drinking Water⁵
88	Indicator	Cherokee Hill Water Treatment Plant, Port Wentworth, GA	SSE	72	Drinking Water ⁶
89	Indicator	Purrysburg Water Treatment Plant; Purrysburg, SC	SSE	76	Drinking Water ⁷
98	Control	W.C. Dixon Dairy	SE	9.8	Milk ⁸
101	Indicator	Girard Dairy	S	5.5	Milk ⁸
102	Control	Seven Oaks Dairy/Milky Way Dairy	W	7.5/16.0	Milk ⁸

Table 2-2. Radiological Environmental Sampling Locations

Notes:

¹Direction and distance are determined from a point midway between the two reactors.

²The intake for the Augusta Water Treatment Plant is located on the Augusta Canal. The entrance to the canal is at River Mile (RM) 207 on the Savannah River. The canal effectively parallels the river. The intake to the pumping station is about 4 miles down the canal.

³A 5-mile stretch of the river is generally needed to obtain adequate fish samples. Samples are normally gathered between RM 153 and 158 for upriver collections and between RM 144 and 149.4 for downriver collections.

⁴Sediment is collected at locations with existing or potential recreational value. Because high water, shifting of the river bottom, or other reasons could cause a suitable location for sediment collections to become unavailable or unsuitable, a stretch of the river between RM 148.5 and 150.5 was designated for downriver collections while a stretch between RM 153 and 154 was designated for upriver collections. In practice, collections are normally made at RM 150.2 for downriver collections and RM 153.3 for upriver collections.

5 DELETED THIS SAMPLE LOCATION IN 2014 (LDCR 2014004) The intake for the Beaufort-Jasper County Water Treatment Plant is located at the end of canal that begins at RM 39.3 on the Savannah River. This intake is about 16 miles by line of sight down the canal from its beginning on the Savannah River.

⁶The intake for the Cherokee Hill Water Treatment Plant is located on Abercorn Creek which is about one and a quarter creek miles from its mouth on the Savannah River at RM 29.

⁷The intake for the Purrysburg Water Treatment Plant is located on the same canal as the Beaufort-Jasper Water Treatment Plant. The Purrysburg intake is closer to the Savannah River at the beginning of the canal.

⁸Girard Dairy is considered an indicator station since it is the closest dairy to the plant (~5.5 miles). Dixon Dairy went out of business in June 2009 and Seven Oaks Dairy (~7.5 miles) was added as a replacement and is considered a control station even though a control station is typically 10 miles or greater. Milky Way Dairy was identified and added to the ODCM in 2015 to replace Seven Oaks since it is at 16.0 miles from the plant.

2016 VEGP Annual Radiological Environmental Operating Report

OPERATING REPORT

3 RESULTS SUMMARY

Included in this section are statistical evaluations of the laboratory results, comparison of the results by media, and a summary of the anomalies and deviations. Overall, 1,201 analyses were performed across nine exposure pathways. Tables and figures are provided throughout this section to provide an enhanced presentation of the information.

In recent history, man-made nuclides have been released into the environment and have resulted in wide spread distribution of radionuclides across the globe. For example, atmospheric nuclear weapons tests from the mid-1940s through 1980 distributed man-made nuclides around the world. The most recent atmospheric tests in the 1970s and in 1980 had a significant impact upon the radiological concentrations found in the environment prior to and during pre-operation, and through early operation. Some long-lived radionuclides, such as Cs-137, continue to be detected and a portion of these detections are believed to be attributed to the nuclear weapons tests.

Additionally, data associated with certain radiological effects created by off-site events have been removed from the historical evaluation, this includes: the nuclear atmospheric weapon test in the fall of 1980; the Chernobyl incident in the spring of 1986; abnormal releases from the Savannah River Site (SRS) during 1987 and 1991; and the Fukushima event in the spring of 2011.

As indicated in ODCM 7.1.2.1, the results for naturally occurring radionuclides that are also found in plant effluents must be reported along with man-made radionuclides. Historically, the radionuclide Be-7, which occurs abundantly in nature, is often detected in REMP samples, and occasionally detected in the plant's liquid and gaseous effluents. When it is detected in effluents and REMP samples, it is also included in the REMP results. In 2016, Be-7 was not detected in any plant effluents and therefore is not included in this report. The Be-7 detected in select REMP samples likely represents naturally occurring and/or background conditions.

As part of the data evaluation process, SNC considered the impact of the non-plant associated nuclides along with a statistical evaluation of the REMP data. The statistical evaluations included within this report include the Minimum Detectable Concentration (MDC), the Minimum Detectable Difference (MDD), and Chauvenet's Criterion as described below.

Minimum Detectable Concentration

The minimum detectable concentration is defined as an estimate of the true concentration of an analyte required to give a specified high probability that the measured response will be greater than the critical value.

OPERATING REPORT

Minimum Detectable Difference

The Minimum Detectable Difference (MDD) compares the lowest significant difference (between the means) of a control station, versus an indicator station or a community station, that can be determined statistically at the 99% Confidence Level (CL). A difference in mean values which was less than the MDD was considered to be statistically indiscernible.

Chauvenet's Criterion

All results were tested for conformance with Chauvenet's criterion (G. D. Chase and J. L. Rabinowitz, Principles of Radioisotope Methodology, Burgess Publishing Company, 1962, pages 87-90) to identify values which differed from the mean of a set by a statistically significant amount. Identified outliers were investigated to determine the reason(s) for the difference. If equipment malfunction or other valid physical reasons were identified as causing the variation, the anomalous result was excluded from the data set as non-representative.

The 2016 results were compared with past results, including those obtained during preoperation. As appropriate, results were compared with their MDC (listed in Table 3-1) and RL which is listed in Table 3-2. The required MDCs were achieved during laboratory sample analysis. No data points were excluded for violating Chauvenet's criterion.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Minimum Detectable Concentration (MDC) (a)	iviean (b),	Ánnua	h the Highest <u>I Mean</u> Mean (b), Range (Fraction)		Control Locations Mean (b), Range (Fraction)
Airborne	Gross Beta	10	23.5	River Road WSW	24.3	21.7	22.8
Particulates (fCi/m3)	364		8.6-58.5 (260/260)	1.2 mi.	11.4-58.5 (52/52)	8.8-46.8 (52/52)	12.1-41.4 (52/52)
	Gamma Isotopic 28						
	l-131	70	NDM(c)	and the second second	NDM	NDM	NDM
-	Cs-134	50	NDM		NDM	NDM	NDM
	Cs-137	60	NDM		NDM	NDM	NDM
Airborne Radioiodine (fCi/m3)	I-131 364	70	NDM		NDM	NDM	NDM
Direct Radiation	Gamma Dose	an and a second of the second and and a second	11.5		16.4	11.5	11.5
(mR/91 days)	160	to and man the second	7.1-18.3 (64/64)	River Bank N 1.1 mi.	15.2-17.3 (4/4)	7.0-17.8 (72/72)	8.1-15.4 (24/24)
Milk (pCi/l)	Gamma Isotopic 48				and States and Angles		
	l-131	1	NDM		NDM—	and sold from the second	NDM
	Cs-134	15 、	NDM		NDM	the second second	NDM
	Cs-137	18	1.3 0.8-2.1 (11/24)	Girard Dairy S 5.5 mi	1.3 0.8-2.1 (11/24)		0.9 0.4-1.7 (9/24)
	Ba-140	60	NDM	te gen and a state of the second	NDM	and the start in the	NDM

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled	Type and Total Number of	Minimum Detectable	Indicator Locations Mean (b),	<u>Ann</u> ua	h the Highest I <u>Me</u> an		Control Locations
(Unit of	Analyses	Concentration	Range		Mean (b), Range	Mean (b), Range	Mean (b), Range
Measurement)	Performed	(MDC) (a)	(Fraction)	and Direction	(Fraction)	t (Fraction)	(Fraction)
	La-140	15	NDM		NDM		NDM
Vegetation (pCi/kg-wet)	Gamma Isotopic 36	and a start of the second s I have a second					i si
	I-131	60	NDM				NDM
	Cs-134	60	NDM		a a gran	San tra Carlor and a training and	NDM
	Cs-137	80	NDM	Substation	16.4		16.4
				Waynesboro, GA	16.4-16.4		16.4-16.4
				WSW 16.7 mi.	(1/12)		(1/12)
River Water (pCi/l)	Gamma Isotopic 36			and the second			
	Be-7	124(d)	NDM	and the second	NDM	NDM	NDM
	Mn-54	15	NDM		NDM	NDM	NDM
	Fe-59	30	NDM		NDM	NDM	NDM
	Co-58	15	NDM	******	NDM	NDM	NDM
	Co-60	15	NDM		NDM	NDM	NDM
а. С	Zn-65	30	NDM	and a start a safe a	NDM	NDM	NDM
	Zr-95	30	NDM		NDM	NDM	NDM
	Nb-95	15	NDM	Contra Santa	NDM	NDM	NDM
	I-131	1	NDM		NDM	NDM	NDM
	Cs-134	15	NDM		NDM	NDM	NDM
	Cs-137	18	NDM		NDM	1	
	Ba-140	60	NDM		NDM		
	La-140	15	NDM		NDM	ung P	

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Minimum Detectable Concentration _(MDC) (a)_	Range (Fraction)	Location wit Annua Name Distance and Direction	h the Highest I Mean Mean (b), Range (Fraction)	Other Stations (f) Mean (b), Range (Fraction)	Mean (b), Range (Fraction)
	Tritium	2000	763	Savannah River	763	470	153
	12		354-1340	(RM 150.4) ENE	354-1340	311-629	101-205
		<u></u>	(4/4)	0.8 mi	(4/4)	(4/4)	(2/4)
Water Near	Gross Beta	4	2.4	Augusta Water	3.2	the test the state of the	3.2
Intakes to Water	36		0.3-3.9	Treatment Plant	1.2-6.9		1.2-6.9
Treatment Plants		·····	(24/24)	NNW 29 mi.	(12/12)		(12/12)
(pCi/l)	Gamma Isotopic 36						
	Be-7	124(d)	NDM		NDM	the second se	NDM
	Mn-54	15	NDM	ا آها کمبیت را د	NDM	march and the Space of	NDM
	Fe-59	30	NDM		NDM		NDM
	Co-58	15	NDM	and the real of the real	NDM		NDM
	Co-60	15	NDM	A CONSTRUCTION	NDM	the set of the state	NDM
	Zn-65	30	NDM		NDM	S. S	NDM
	Zr-95	30	NDM		NDM		NDM
	Nb-95	15	NDM	a start of the factor	NDM		NDM
	I-131	1	NDM	it in the state	NDM	the state of the second	NDM
	Cs-134	15	NDM		NDM		NDM
	Cs-137	18	NDM	A REAL PROPERTY AND A REAL	NDM		NDM
	Ba-140	60	NDM		NDM	AND HARAN P	NDM
	La-140	15	NDM		NDM	· · · · · · · · · · · · · · · · · · ·	NDM

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Perfor <u>med</u> Tritium 12	Minimum Detectable Concentration (MDC)_(a) 2000	Indicator Locations Mean (b), Range (Fraction) 283 92-490 (8/8)	Annua Name Distance and Direction Purrysburg Water Treatment Plant,	h the Highest I Mean Mean (b), Range (Fraction) 315 91.6-486 (4/4)	Other Stations (f) Mean (b), Range (Fraction)	Control Locations Mean (b), Range (Fraction) 169.4 22.2-262 (3/4)
				Purrysburg, SC, SSE, 76 miles			
Finished Water at Water Treatment Plants (pCi/l)	Gross Beta 36	4	2.3 0.3-4.3 (24/24)	Cherokee Hill Water Treatment Plant, Port Wentworth, GA SSE 72 mi.	2.8 1.0-4.3 (12/12)		2.4 0.7-7.8 (12/12)
	Gamma Isotopic 36						
	Be-7	124(d)	NDM		NDM		NDM
	Mn-54	15	NDM		NDM		NDM
	Fe-59	30	NDM		NDM	S	NDM
	Co-58	15	NDM		NDM		NDM
	Co-60	15	NDM	1.2.2.4 1.2.2.4 1.2.2.4 1.2.2.4 1.2.2.4 1.	NDM		NDM
	Zn-65	30	NDM	1900 B	NDM		NDM
	Zr-95	30	NDM		NDM	ng a shine and	NDM
	Nb-95	15	NDM		NDM		0.7
							0.7-0.7 (1/12)
	I-131	1	NDM		NDM		NDM
	Cs-134	15	NDM		NDM	and a show of the	NDM
	Cs-137	18	NDM		NDM		NDM
	Ba-140	60	NDM		NDM		NDM

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

2016 VEGP Annual Radiological Environmental Operating Report

14 | P a g e

X

Annual Radiological

ENVIRONMENTAL OPERATING REPORT

Medium or Pathway Sampled	Type and Total Number of	Minimum Detectable	Indicator Locations Mean (b),	<u> </u>	h the Highest I Mean	Other Stations (f)	
(Unit of Measurement)	Analyses Performed	Concentration (MDC) (a)	Range (Fraction)	Name Distance and Direction	Mean (b), Range (Fraction)	Mean (b), Range (Fraction)	Mean (b), Range (Fraction)
	La-140	15	NDM		NDM		NDM
	Tritium	2000	257	Cherokee Hill	261	y a ter dar tr	142
	12		62-463	Water Treatment	178-401		101-183
			(8/8)	Plant, Port	(4/4)		(2/4)
				Wentworth, GA		ile a si	
				SSE 72 mi.		and a state of the	
Anadromous Fish (pCi/kg-wet)	Gamma Isotopic 1	and the second	ne state state	an at a			
	Be-7	655(d)	· · · · · · · · · · · · · · · · · · ·	for the former of	NA	the good of the	NDM
	Mn-54	130			NA		NDM
	Fe-59	260			NA —		NDM
	Co-58	130		Real and r	NA	ry rynn yn 12 my'r	NDM
	· Co-60	130	n a to the state of the	4 8 Mar	NA		NDM
	Zn-65	260	алан алан алан алан алан алан алан алан		NA		NDM
	Cs-134	130	the second s		NA	ad a second s	NDM
	Cs-137	150	a star it is the star		and the state of the		NDM
Fish (pCi/kg-wet)	Gamma Isotopic 8			er a cier de l			
	Be-7	655(d)	NDM		$= \frac{\theta^2}{2} \frac{\partial^2 \psi_{0}}{\partial t} + \frac{\partial^2 \psi_{0}}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NDM
	Mn-54	130	NDM	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			NDM
	Fe-59	260	NDM		-		NDM
	Co-58	130	NDM		2 * 11 to 1 * * *		NDM
	Co-60	130	NDM				NDM
	Zn-65	260	NDM		the second second	تقديني تقدير وال	NDM
	Cs-134	130	NDM			анан алан алан алан алан алан алан алан	NDM

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

2016 VEGP Annual Radiological Environmental Operating Report

15 | Page

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Medium or Pat <u>h</u> way Sampled	 Type and Total Number of 	/ Detectable	Indicator Locations Mean (b),	Location wit	h the Highest I Mean	² Other Stations (f)	Control Locations
(Unit of Measurement)	Analyses Performed	Concentration (MDC) (a)	Range (Fraction)	Name Distance and Direction	Mean (b), Range (Fraction)		Mean (b), Range (Fraction)
	Cs-137	150	97.5 24.5-197.4 (4/4)	Savannah River, ESE, 4.3 mi.	97.5 24.5-197.4 (4/4)		33.0 20.8-41.4 (3/4)
Sediment (pCi/kg-dry)	Gamma Isotopic 4						
	Co-60	70	NDM				NDM
	Cs-134	150	NDM				NDM
	Cs-137	180	137.2 77.4-197.0 (2/2)	Savannah River (RM 150.4), ENE, 0.8 miles	137.2 77.4-197.0 (2/2)		69.2 61.8-76.6 (2/2)

Table 3-1. Radiological Environmental Monitoring Program Annual Summary

Notes:

(a)The MDC is defined in ODCM 10.1. Except as noted otherwise, the values listed in this column are the detection capabilities required by ODCM Table 4-3. The values listed in this column are a priori (before the fact) MDCs. In practice, the a posteriori (after the fact) MDCs are generally lower than the values listed.
(b) Mean and range are based upon detectable measurements only. The fraction of all measurements at a specified location that are detectable is placed in parenthesis.

(c) No Detectable Measurement(s) (NDM).

(d) The Georgia Power Company Environmental Laboratory has determined that this value may be routinely attained under normal conditions. No value is provided in ODCM Table 4-3.

(e) Item 3 of ODCM Table 4-1 implies that an I-131 analysis is not required to be performed on water samples when the dose calculated from the consumption of water is less than 1 mrem per year. However, I-131 analyses have been performed on the finished drinking water samples.

(f) "Other" stations, as identified in the "Station Type" column of Table 2-2, are "Community" and/or "Special" stations.

Not Applicable (sample not required)

ANNUAL RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

Table 3-2. Reporting Levels (RL)								
Analysis	Water (pCi/l)	Airborne Particulate or Gases (fCi/m3)	Fish (pCi/kg-wet)	Milk (pCi/l)	Grass or Leafy Vegetation (pCi/kg-wet)			
H-3	20,000ª							
Mn-54	1,000		30,000					
Fe-59	400		10,000					
Co-58	1,000		30,000					
Co-60	300		10,000					
Zn-65	300		20,000					
Zr-95	400							
Nb-95	700							
I-131	2 ^b	900		3	100			
Cs-134	30	10,000	1,000	60	1,000			
Cs-137	50	20,000	2,000	70	2,000			
Ba-140	200			300				
La-140	100			400				
30,000 ma	^a This is the 40 CFR 141 value for drinking water samples. If no drinking water pathway exists, a value of 30,000 may be used.							
🛯 ° If no drin	^b If no drinking water pathway exists, a value of 20 pCi/l may be used.							

In accordance with ODCM 4.1.1.2.1, deviations from the required sampling schedule are permitted, if samples are unobtainable due to hazardous conditions, unavailability, inclement weather, equipment malfunction or other just reasons. Deviations from conducting the REMP sampling (as described in Table 2-1) are summarized in Table 3-3 along with their causes and resolution.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Table 3-3. Anomalies and Deviations from Radiological Environmental Monitoring Program

Collection Period	Affected Samples	Anomaly (A)* or Deviation	Çause ,	Resolution				
		(D)**	e A					
October	River water	(A) Sample collected was a	Rodents chewed the intake tubing	Tubing repaired and grab				
	station 151.2	grab instead of a not a	for the automatic sampler. No	sample obtained.				
CR 10284264		composite	composite sample was obtained.	· ·				
* An anomaly is consider	ed a non-standard sample th	at still meets sampling criteria o	utlined in SNC and Georgia Power Lab	s procedures.				
** A deviation is a sampl	** A deviation is a sample result that is not recorded due to not meeting scheduling and/or procedural requirements as outlined by SNC and Georgia Power							
Labs								

3.1 Airborne Particulates

As specified in Table 2-1, airborne particulate filters and charcoal canisters are collected weekly at five indicator stations (Stations 3, 7, 10, 12 and 16) which encircle the plant at the site periphery, at a nearby community station (Station 35) approximately seven miles from the plant, and at a control station (Station 36) approximately 14 miles from the plant. At sampling locations containing a filter and cartridge series, air is continuously drawn through a glass fiber filter to retain airborne particulate and an activated charcoal canister is placed in series with the filter to adsorb radioiodine.

3.1.1 Gross Beta

As provided in Table 3-1, the 2016 annual average weekly gross beta activity was 23.5 fCi/m3 for the indicator stations. It was 0.7 fCi/m3 more than the control station average of 22.8 fCi/m3 for the year. This difference is not statistically discernible, since it is less than the calculated MDD of 1.7 fCi/m3.

The 2016 annual average weekly gross beta activity at the Girard community station was 21.7 fCi/m3 which was below the control station average (22.8 fCi/m3). No MDD was applied since the community station average was lower than the control average.

Average Air Gross Beta historical data (Table 3-4) is graphed to show trends associated with a prevalent exposure pathway (Figure 3-1). In general, there is close agreement between the results for the indicator, control and community stations. This close agreement supports the position that the plant is not contributing significantly to the gross beta concentrations in air.

Period	Indicator (fCi/m3)	Control (fCi/m3)	Community (fCi/m3)
Pre-op	22.9	22.1	21.9
1987	26.3	23.6	22.3
1988	24.7	23.7	22.8
1989	19.1	18.2	18.8
1990	19.6	19.4	18.8
1991	19.3	19.2	18.6
1992	18.7	19.3	18.0
1993	21.2	21.4	20.3
1994	20.1	20.3	19.8
1995	21.1	20.7	20.7
1996	23.3	21.0	20.0
1997	20.6	20.6	19.0

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Period	Indicator (fCi/m3)	Control (fCi/m3)	Community (fCi/m3)
1998	22.7	22.4	20.9
1999	22.5	21.9	22.2
2000	24.5	21.5	21.1
2001	22.4	22.0	22.7
2002	19.9	18.9	18.6
2003	19.4	20.5	18.3
2004	21.6	22.8	21.4
2005	20.5	20.4	19.4
2006	25.5	24.6	24.3
2007	27.3	25.1	26.5
2008	24.0	23.2	23.7
2009	23.0	22.4	22.5
2010	25.8	24.4	25.5
2011	25.8	25.1	24.6
. 2012	25.9	25.2	26.1
2013	22.9	23.9	22.2
2014	24.1	23.4	23.5
2015	21.5	20.8	20.8
2016	23.5	22.8	21.7

Table 3-4. Average Weekly Gross Beta Air Concentration

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

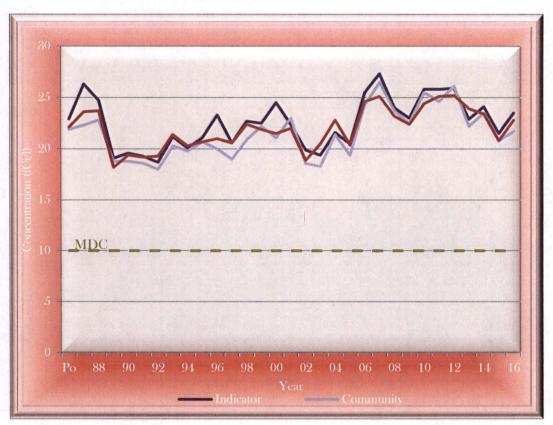


Figure 3-1. Average Weekly Gross Beta Air Concentration

3.1.2 Gamma Particulates

During 2016, no man-made radionuclides were detected from the gamma isotopic analysis of the quarterly composites of the air particulate filters.

Historically, gamma isotopes have been detected as a result of offsite events. During preoperation, Cs-134, Cs-137 and I-131 were occasionally detected. In 1987, Cs-137 was found in one indicator composite at a concentration of 1.7 fCi/m3. Additionally, I-131 was also detected after the Fukushima incident in 2011, the highest I-131 result in 2011 was 93.8 fCi/m3, which is approximately 10% of the RL.

3.2 Direct Radiation

In 2016, direct (external) radiation was measured with Optically Stimulated Luminescent (OSL) dosimeters by placing two OSL badges at each station. The gamma dose at each station is reported as the average reading of the two badges. The badges are analyzed on a quarterly

ANNUAL RADIOLOGICAL

Environmental Operating Report

basis. An inspection is performed near mid-quarter for offsite badges to assure that the badges are on-station and to replace any missing or damaged badges.

Two direct radiation stations are established in each of the 16 compass sectors, to form two concentric rings. The inner ring (Stations 1 through 16) is located near the plant perimeter as shown in Map A-1 in Appendix A and the outer ring (Stations 17 through 32) is located at a distance of approximately five miles from the plant as shown in Map A-2 in Appendix A. The 16 stations forming the inner ring are designated as the indicator stations. The two ring configuration of stations was established in accordance with NRC Branch Technical Position "An Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. The six control stations (Stations 36, 37, 47, 48, 51 and 52) are located at distances greater than 10 miles from the plant as shown in Map A-3 in Appendix A. Monitored special interest areas include Station 35 at the town of Girard and Station 43 at the employee recreational area. The mean and range values presented in the "Other" column in Table 3-1 includes the outer ring stations (Stations 17 through 32) as well as stations 35 and 43.

As provided in Table 3-1, the 2016 average quarterly exposure at the indicator stations (inner ring) was 11.5 mR with a range of 7.1 to 18.3 mR. The indicator station average was equal to the control station average (11.5 mR). No MDD was applied because the indicator was equal to the control. Over the operational history, the annual average quarterly exposures show little variation between the indicator and control stations.

The quarterly exposures acquired at the community/other (outer ring) stations during 2016 ranged from 7.0 to 17.8 mR with an average of 11.5 mR which was equal to the control station average. No MDD was applied because the community average was equal to the control average. For the entire period of operation, the annual average quarterly exposures at the outer ring stations vary by no more than 1.2 mR from those at the control stations.

Average Direct Radiation historical data (Table 3-5) is graphed to show trends associated with a prevalent exposure pathway (Figure 3-2). The decrease between 1991 and 1992 values is attributed to a change in TLDs from Teledyne to Panasonic. It should be noted however that the differences between indicator and control and outer ring values did not change.

Period	Indicator (mR)	Control (mR)	Outer Ring (mR)
Pre-op	15.3	16.5	14.7
1987	17.6	17.9	16.7
1988	16.8	16.1	16.0
1989	17.9	18.4	17.2
1990	16.9	16.6	16.3

Table 3-5. Average Quarterly Exposure from Direct Radiation

ANNUAL RADIOLOGICAL.

ENVIRONMENTAL OPERATING REPORT

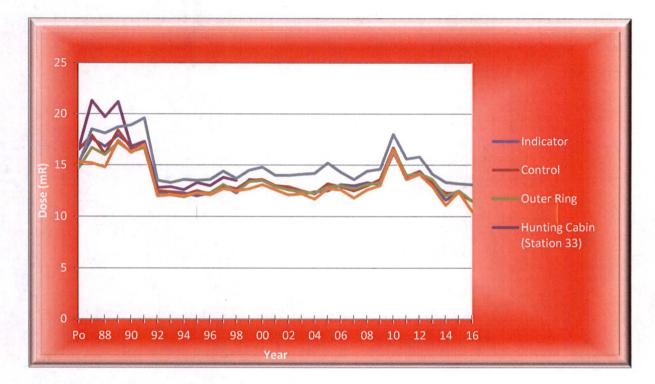

Period	Indicator	Control	Outer Ring
((mR)	(mR)	(mR)
1991	16.9	17.1	16.7
1992	12.3	12.5	12.1
1993	12.4	12.4	12.1
1994	12.3	12.1	11.9
1995	12.0	12.5	12.3
1996	12.3	12.2	12.3
1997	13.0	13.0	13.1
1998	12.3	12.7	12.4
1999	13.6	13.5	13.4
2000	13.5	13.6	13.5
2001	12.9	13.0	12.9
2002	12.8	12.9	12.6
2003	12.2	12.5	12.4
2004	12.4	12.2	12.3
2005	12.5	13.2	12.9
2006	13.1	12.9	13.0
2007	13.0	12.5	12.7
2008	13.3	13.0	13.1
2009	13.1	13.6	13.3
2010	16.2	16.7	16.6
2011	13.9	13.9	14.0
2012	14.4	14.3	14.2
2013	13.1	13.2	13.6
2014	11.6	12.3	12.0
2015	12.5	12.3	12.6
2016	11.5	11.5	11.5

Table 3-5. Average Quarterly Exposure from Direct Radiation

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

The increase shown in 2010 reflects issues with the aging Panasonic TLD reader. The close agreement between the station groups supports the position that the plant is not contributing significantly to direct radiation in the environment. Figure 3-3 provides a more detailed view of the 2016 values. The values for the special interest areas detailed below indicate that Plant Vogtle did not significantly contribute to direct radiation at those areas.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

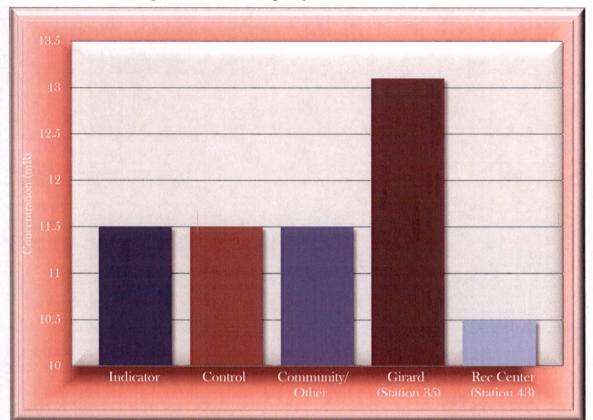


Figure 3-3. 2016 Average Exposure from Direct Radiation

3.3 Biological Media

Cs-137 was the only radionuclide detected in two of the three biological media. As indicated in Figure 3-4, the Cs-137 activity levels are below the respective MDCs and well below that of the respective RLs for each sample media for both the indicator and control stations.

3.3.1 Milk

In accordance with Tables 2-1 and 2-2, milk samples are collected semi-monthly from two locations, the Girard Dairy (Station 101) which is considered an indicator station because it is approximately 5.5 miles from Vogtle (ideally a milk indicator station is less than 5 miles from the plant), and the Seven Oaks Dairy (Station 102) at 7.5 miles from Vogtle is the control location (ideally control locations are greater than 10 miles from the plant). SNC identified Milky Way Dairy as a replacement control location. The ODCM was revised in 2015 to include the Milky Way Dairy for sampling instead of Seven Oaks. No milk animal was found within five miles of Plant Vogtle during the 2016 land use census.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

Gamma isotopic (including I-131 and Cs-137) analyses were performed on each collected milk sample and there were no detectable results for gamma isotopes, with the exception of a Cs-137, which was detected in 11 indicator samples (1.3 pCi/l average) and two control samples (0.9 pCi/l average). The difference is less than the MDD (0.48 pCi/l), therefore there is no statistical difference. Figure 3-4 provides the 2016 Cs-137 concentration in milk.

3.3.2 Vegetation

In accordance with Tables 2-1 and 2-2, vegetation samples are collected monthly for gamma isotopic analyses at two indicator locations near the site boundary (Stations 7 and 15) and at one control station located about 17 miles WSW from the plant (Station 37). The man-made radionuclide Cs-137 is periodically identified in vegetation samples, and is generally attributed to offsite sources (such as weapons testing, Chernobyl, and Fukushima). Cs-137 was detected in one of the samples collected in 2016 at the control station, at a value of 16.4 pCi/kg-wet.

While Cs-137 and I-131 were periodically found and Co-60 was discovered once in vegetation samples during pre-operation, the historical trends and the relationship between the indicator and control stations demonstrate that plant operations are having no adverse impact to the environment. The sample results have consistently been well below the MDC and the RL for Cs-137 (80 and 2000 pCi/kg-wet, respectively).

During 2016, no other gamma isotopes were detected in any Vogtle REMP vegetation samples.

3.3.3 Fish

Fish samples were collected in accordance with the ODCM (as indicated in Table 2-1). For the semiannual collections, the control location (Station 81) extends from approximately two to seven miles upriver of the plant intake structure, and the indicator location (Station 85) extends from about 1.4 to seven miles downriver of the plant discharge structure.

3.3.3.1 Anadromous Species

For anadromous species, all fish sampled are considered indicator stations. Anadromous fish were sampled once during 2016, on March 22. No radionuclides were detected in the 2016 anadromous fish sample.

3.3.3.2 Commercially or Recreationally Important Species

For this year, as provided in Table 3-1, Cs-137 was found in the semiannual collections of commercially or recreationally important species of fish (indicator and control). The indicator station averaged a Cs-137 concentration of 97.5 pCi/kg-wet, and 33.0 pCi/kg-wet was the

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

average Cs-137 detected at the control station. There is no statistically discernible difference between the two since the difference is less than the MDD of 98.8 pCi/kg-wet. No discernible difference between the indicator and control stations has occurred for any year of operation or during pre-operation. No other gamma nuclides were discovered in 2016.

3.3.4 Biological Media Summary

There were no statistical differences, trends, or anomalies associated with the 2016 biological media samples when compared to historical data. Figure 3-4 below, details the 2016 Cs-137 concentration compared to the Reportable Limits.

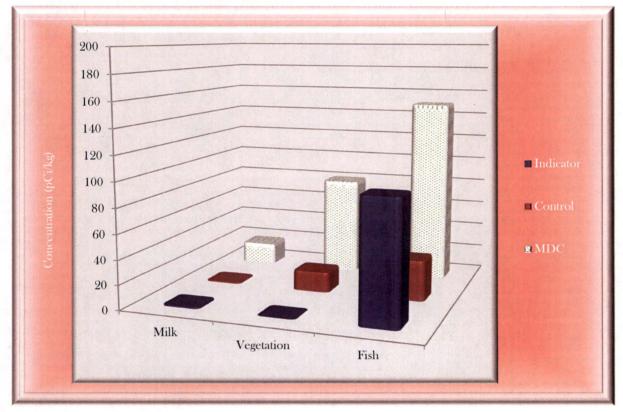


Figure 3-4. 2016 Biological Media Average Cs-137 Concentrations

3.4 Drinking Water

Samples are collected at an upstream control location and at three downstream indicator locations (shown on Map A-3) and further described in Table 2-2.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

Water samples are taken near the intake of each water treatment plant (raw drinking water) using automatic composite samplers, which are collected monthly. Additionally, monthly grab samples of the processed water effluent from the treatment plants (finished drinking water) are collected. Monthly aliquots from the raw and processed drinking water are analyzed for gross beta and gamma isotopic activity. The monthly aliquots are also combined to form quarterly composites, which are analyzed for tritium.

For 2016, the indicator station average gross beta concentration in the raw drinking water was 2.4 pCi/l which was 0.8 pCi/l less than the average gross beta concentration at the control station (3.2 pCi/l). Historically, there has been close agreement between the gross beta values at the indicator stations and the control station which supports that there is no significant gross beta contribution from the plant effluents. The required MDC for gross beta in water is 4.0 pCi/l. There is no RL for gross beta in water.

For 2016, the indicator station average gross beta concentration in the finished drinking water was 2.3 pCi/l which was 0.1 pCi/l less than the average gross beta concentration at the control station (2.4 pCi/l). The MDD was not calculated because the concentration at the control station was higher than the indicator station. Figure 3-5 show the relationship between the average indicator station and average control station for 2016 and the comparison to the MDC.

As provided in Table 3-1, there were no positive results during 2016 from the gamma isotopic analysis of the raw and finished drinking water samples except for one control sample that yielded a 0.7 pCi/l result for Nb-95. This value is not typically detected, but was detected at a much lower concentration than the MDC (15.0 pCi/l).

The 2016 raw drinking water indicator stations average tritium concentration was 283 pCi/l which was 114 pCi/l greater than the average concentration found at the control station (169.4 pCi/l). However, this difference is not discernible since it is less than the MDD of 307 pCi/L.

A statistically significant increase in the concentrations found in samples collected at the indicator station compared to those collected at the control station could be indicative of plant releases. Concentrations found at the special station are more likely to represent the activity in the river as a whole, which might include plant releases combined with those from other sources along the river.

The finished drinking water average tritium concentration at the indicator stations during 2016 was 257 pCi/l which was 115 pCi/l greater than the average concentration found at the control station (142 pCi/l). The MDD was calculated as 250 pCi/l between the indicator and control stations, indicating no statistically discernible difference.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

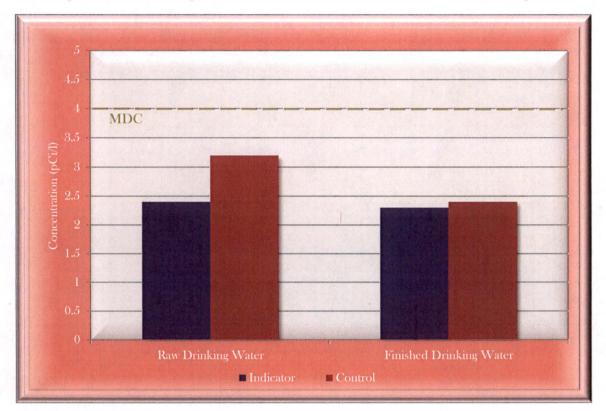
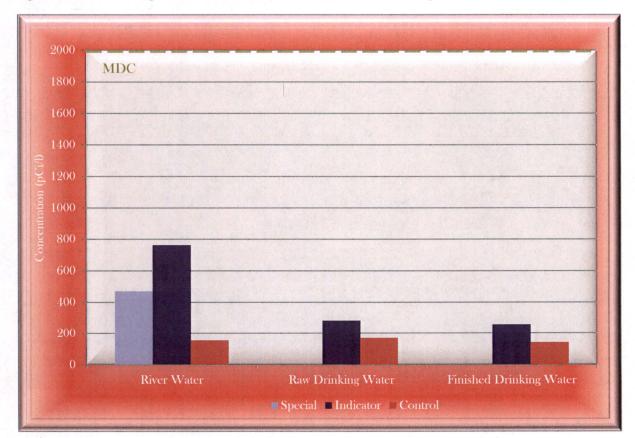


Figure 3-5. 2016 Average Gross Beta Concentration in Raw and Finished Drinking Water

3.5 River Water

Composite river water samples are collected monthly at an upstream control location and at two downstream indicator locations (shown on Map A-3). The details of the sampling protocols are outlined in Tables 2-1 and Table 2-2. A gamma isotopic analysis is conducted on each monthly sample and the monthly aliquots are combined to form quarterly composite samples, which are analyzed for tritium.

As provided in Table 3-1, there were no positive results during 2016 from the gamma isotopic analysis of the river water samples. Also indicated in Table 3-1, the average tritium concentration found at the indicator station was 763 pCi/l which was 610 pCi/l greater than the average at the control station (153 pCi/l). The river water tritium MDD was calculated to be 749 pCi/l, so the difference is not statistically discernible. The values are both below the MDC and the RL of 2000 pCi/l and 20000 pCi/l, respectively.


At the "Other" river water sampling station (Station 84), the results ranged from 311 pCi/l to 629 pCi/l with an average of 470 pCi/l. The difference between the Station 84 and the control

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

station was 317 pCi/l. The MDD was calculated to be 164 pCi/l, which would indicate a difference that is statistically discernible. Since the value is only slightly above the MDD and below the MDC and the RL, no adverse environmental impact exists. Historically, the relationship between the indicator/control stations and Station 84 has remained consistent. Figure 3-6 below details the 2016 average tritium concentrations across the three water mediums.

3.6 Sediment

Sediment was collected along the shoreline of the Savannah River in the spring and fall at Stations 81 and 83. Station 81 is a control station located about 2.5 miles upriver of the plant intake structure while Station 83 is an indicator station located about 0.6 miles downriver of the plant discharge structure. A gamma isotopic analysis was performed on each sample. The radionuclides detected in 2016 samples were Be-7 and Cs-137. Even though Be-7 was detected

2016 VEGP Annual Radiological Environmental Operating Report

30 | Page

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

in sediment, it will not be discussed within this report, because it was not detected in any plant effluents and likely represents naturally occurring and/or background conditions.

For Cs-137, the average concentration at the indicator station during 2016 was 137.2 pCi/kg-dry which was 68 pCi/kg-dry greater than that at the control station (69.2 pCi/kg-dry). The concentration of Cs-137 found at the indicator and control stations could be attributed to plant effluents or to other facilities that release radioactive effluents near the plant. There are not enough sample points to calculate a MDD value; however, both the indicator and control values for Cs-137 were less than the MDC of 180 pCi/kg-dry and therefore no impact to the environment was indicated.

Co-60 has been detected in past results, but was not detected in any sediment samples taken in 2016. A review of plant effluents indicates that Co-60 is regularly released at very low levels. Co-60 is currently measured in both water and fish samples; however, if this isotope is consistently observed in subsequent sediment samples, it will be added to the Vogtle ODCM for future inclusion on the REMP. There are no reporting levels for sediment results.

3.7 Interlaboratory Comparison Program

In accordance with ODCM 4.1.3, GPCEL participates in an Interlaboratory Comparison Program (ICP) that satisfies the requirements of Regulatory Guide 4.15, Revision 1, "Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment", February 1979. The ICP includes the required determinations (sample medium/radionuclide combinations) included in the REMP.

The ICP was conducted by Eckert & Ziegler Analytics, Inc. (EZA) of Atlanta, Georgia. EZA has a documented Quality Assurance (QA) program and the capability to prepare Quality Control (QC) materials traceable to the National Institute of Standards and Technology. The ICP is a third party blind testing program which provides a means to ensure independent checks are performed on the accuracy and precision of the measurements of radioactive materials in environmental sample matrices. EZA supplies the crosscheck samples to GPCEL which performs routine laboratory analyses. Each of the specified analyses is performed three times.

The accuracy of each result is measured by the normalized deviation, which is the ratio of the reported average less the known value to the total error. An investigation is undertaken whenever the absolute value of the normalized deviation is greater than three or whenever the coefficient of variation is greater than 15% for all radionuclides other than Cr-51 and Fe-59. For Cr-51 and Fe-59, an investigation is undertaken when the coefficient of variation exceeds the values shown on Table 3-6 below:

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Nuclide	Concentration *	Total Sample Activity (pCi)	Percent Coefficient of Variation
	<300	NA	25
Cr-51	NA	>1000	25
	>300	<1000	15
Fe-59	<80	NA	25
FE-39	>80	NA	15
* For air filters (pCi/l).	s, concentration units are p	oCi/filter. For all other media, con	centration units are pCi/liter

Table 3-6. Interlaboratory Comparison Limits

As required by ODCM 4.1.3.3 and 7.1.2.3, a summary of the results of the GPCEL's participation in the ICP is provided in Table 3-7 for:

- gross beta and gamma isotopic analyses of an air filter
- gamma isotopic analyses of milk samples
- gross beta, tritium and gamma isotopic analyses of water samples

The 2016 analyses included tritium, gross beta and gamma emitting radio-nuclides in different matrices. The attached results for all analyses were within acceptable limits for accuracy (less than 15% coefficient of variation and less than 3.0 normalized deviations, except for Cr-51 and Fe-59, which are outlined in Table 3-6).

The 2016 analyses included tritium, gross beta and gamma emitting radio-nuclides in different matrices. The attached results for all analyses were within acceptable limits for accuracy.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Analysis or	Date Prepared	Reported	Known Value	Standard	Uncertainty	Percent Coefficient	Normalized
Radionuclide	an property gar	Average	NALYSIS OF AN AIR	Deviation EL CARTRIDGE (pCi/ca	Analytics (3S)	of Variation	Deviation
I-131	9/15/2016	61.65	59.1	3.09	0.99	7.15	0.58
				OF AN AIR FILTER (and the second s
Ce-141	9/15/2016	61.6	63.2	2.32	1.06	6.05	0.39
Co-58	9/15/2016	63.0	66.0	1.40	1.10	6.03	-0.79
Co-60	9/15/2016	86.5	91.4	2.65	1.53	5.52	-1.03
Cr-51	9/15/2016	145.7	160.0	6.82	2.67	9.47	-1.04
Cs-134	9/15/2016	85.8	92	4.17	1.54	7.14	-1.11
Cs-137	9/15/2016	79.8	80.3	1.85	1.34	5.67	-0.12
Fe-59	9/15/2016	55.9	61.4	7.09	1.03	12.63	-0.65
Mn-54	9/15/2016	103.5	103.0	2.55	1.72	5.50	0.09
Zn-65	9/15/2016	128.0	121.0	4.71	2.02	6.89	0.80
		GROSS	BETA ANALYSIS OF	AN AIR FILTER (PCI/	FILTER) 🔬 🚊 👬	the to the work of	State of the state
Gross Beta	9/15/2016	89.8	76.6	3.44	1.28	5.57	2.63
and the second		GAMMA IS	OTOPIC ANALYSIS	OF A MILK SAMPLE	(PCI/LITER)	· · · · · ·	
Co-58	6/9/2016	146.7	142.0	6.81	2.37	7.29	0.44
Co-60	6/9/2016	187.8	173.0	7.74	2.88	6.08	1.29
Cr-51	6/9/2016	305.3	276.0	7.33	4.60	11.16	0.86
Cs-134	6/9/2016	191.5	174.0	4.15	2.91	4.66	1.96
Cs-137	6/9/2016	137.0	120.0	5.93	2.01	7.30	1.70
Fe-59	6/9/2016	128.5	122.0	10.7	2.03	10.97	0.46
I-131	6/9/2016	107.0	94.5	6.80	1.58	8.93	1.30
Mn-54	6/9/2016	144.2	125.0	3.05	2.09	5.99	2.22
Zn-65	6/9/2016	273.9	235.0	10.8	3.93	7.03	2.02

Table 3-7. Interlaboratory Comparison Summary

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Analysis or	Date Prepared	Reported	Known Value	Standard	Uncertainty	Percent Coefficient	Normalized
Radionuclide		Average GROSS I	BETA ANALYSIS OF	Deviation EL WATER SAMPLE (PO	Analytics (3S)	of Variation	Deviation
	3/17/2016	264.4	250.0	11.24	4.17	6.09	0.89
Gross Beta	6/9/2016	277.01	250.0	6.53	4.18	4.24	2.30
and the second second		GAMMA IS	OTOPIC ANALYSIS C	F WATER SAMPLES	(PCI/LITER)		માટે અને અને ગ માટે અને અને ગ માટે માટે અને ગ્રાહ્ય અને અને ગ્રાહ્ય
Ce-141	3/17/2016	121.9	118.0	7.45	1.98	9.44	0.34
Co-58	3/17/2016	143.7	141.0	3.12	2.36	6.29	0.30
Co-60	3/17/2016	300.9	293.0	2.89	4.90	4.40	0.60
Cr-51	3/17/2016	308.6	293.0	22.7	4.88	14.12	0.36
Cs-134	3/17/2016	168.7	157.0	6.51	2.61	5.81	1.20
Cs-137	3/17/2016	205.5	194.0	7.11	3.23	6.20	0.90
Fe-59	3/17/2016	166.0	157.0	2.49	2.63	6.96	0.78
I-131	3/17/2016	96.1	88.9	6.56	1.48	14.48	0.52
Mn-54	3/17/2016	158.1	140.0	6.45	2.34	6.94	1.65
Zn-65	3/17/2016	242.5	215.0	11.7	3.58	7.96	1.42
TRITIUM ANALYSIS OF WATER SAMPLES (PCI/LITER)							
H-3	3/17/2016	5118.5	4630.0	89.3	77.4	3.19	2.99 ·
	6/9/2016	12338.6	12000.0	58.41	201	2.06	1.33

Table 3-7. Interlaboratory Comparison Summary

3.8 Groundwater

To ensure compliance with NEI 07-07 (Industry Ground Water Protection Initiative – Final Guidance Document), Southern Nuclear developed the Nuclear Management Procedure, Radiological Groundwater Protection Program. The procedure contains detailed site-specific monitoring plans, program technical bases, and communications protocol (to ensure that radioactive leaks and spills are addressed and communicated appropriately). In an effort to prevent future leaks of radioactive material to groundwater, SNC plants have established robust buried piping and tanks inspection programs.

Plant Vogtle maintains the following wells (Table 3-8), which are sampled at a frequency that satisfies the requirements of NEI 07-07. The analytical results for 2016 were all within regulatory limits specified within this report. Table 3-9 contains the results of the Groundwater Protection Program tritium results (in pCi/L).

Table 3-8. Groundwater Protection Program Locations				
Well	Aquifer * ~	Monitoring Purpose		
LT-1B	Water Table	NSCW related tank		
LT-7A	Water Table	NSCW related tank		
LT-12	Water Table	NSCW related tank		
LT-13	Water Table	NSCW related tank		
802A	Water Table	Southeastern potential leakage		
803A*	Water Table	Up gradient to rad waste building		
805A**	Water Table	Down gradient from rad waste building and NSCW related facilities		
806B	Water Table	Dilution line		
808	Water Table	Up gradient; along Pen Branch Fault		
R1	Water Table	NSCW related tank; western potential leakage		
R2	Water Table	Southern potential leakage		
R3	Water Table	Eastern potential leakage		
R4	Water Table	Dilution line		
R5	Water Table	Dilution line		
R6	Water Table	Dilution line		
R7	Water Table	Dilution line		
R8	Water Table within Sav. River sediments	Dilution line		
1013*	Water Table	Low level rad waste storage		
1014	Tertiary	Up gradient		
1015	Water Table	Vertically up gradient		
1003*	Tertiary	Up gradient		

Table 3-8. Groundwater Protection Program Locations

2016 VEGP Annual Radiological Environmental Operating Report

1

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

Table 3-8. Groundwater Protection Program Locations

Well	Aquifer	Monitoring Purpose
1004*	Water Table	Vertically up gradient
27**	Tertiary	Down gradient tertiary
29**	Tertiary	Down gradient tertiary
MU-1	Tertiary/Cretaceous	Facility water supply
River	N/A	Surface water
NSCW – Nucle	ar service cooling water	

* Well abandoned due to construction activities with Vogtle Units 3&4

** Well no longer sampled due to structural issues

Table 3-9. Groundwater Protection Program Tritium Results (pCi/L)

Well	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
LT-1B	NS	513	NS	1220
LT-7A	NS	.982	NS	868
LT-12	NS	904	NS	1350
LT-13	NS	NDM	NS	350
802A	NS	NDM	NS	441
806B	NS	NDM	NS	NS
808	NS	NDM	NS	311
R1	NS	NDM	NS	335
R2	NS	193	NS	NDM
R3	NS	NDM	NS	315
R4	NS	147	NS	392
R5	NS	393	NS	280
R6	NS	NDM	NS	322
R7	NS	NDM	NS	NDM
R8	NS	NDM	NS	NDM
1014	NS	NDM	NS	NDM
1015	NS	NDM	NS	NDM
MU-1	NS	NS	NS	NDM
River	NS	276	NS	NDM

NDM – No Detectable Measurement

NS – Not Sampled

ENVIRONMENTAL OPERATING REPORT

4 SURVEY SUMMARIES

4.1 Land Use Census

In accordance with ODCM 4.1.2, a land use census was conducted on November 15, 2016 to verify the locations of the nearest radiological receptor within five miles. The census results, shown in Table 4-1, indicated no major changes from 2015 except for the presence of a garden, which will be evaluated for inclusion in the REMP.

Sector	Residence	Milk Animal*	Beef Cattle	Garden**		
Di	stance in Miles to	the Nearest Locat	ion in Each Sector			
N	1.4	None	None	None		
NNE	None	None	None	None		
NE	None	None	None	None		
ENE	None	None	None	None		
E	None	None	None	None		
ESE	4.2	None	None	None		
SE	4.3	None	4.9	None		
SSE	4.7	None	4.7	None		
S	4.4	None	None	None		
SSW	4.7	None	4.7	None		
SW	3.1	None	4.4	None		
WSW	2.6	None	2.7	None		
W	3.4	None	4.7	4.1		
WNW	1.9	None	None	None		
NW	1.5	None	1.8	None		
NNW	1.5	None	None	None		
*A milk animal is a cow or goat producing milk for human consumption. **A garden of greater than 500 square feet producing broad leaf vegetation.						
Note: Land within SRS was excluded from the census.						

Table 4-1. Land Use Census Results

4.2 Savannah River Survey

A survey of the Savannah River downstream of the plant for approximately 100 miles (approximately river miles 44.7 to 151.2) was conducted on September 20, 2016 to identify any new withdrawal of water from the river for drinking, irrigation, or construction purposes. No

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

new usage was visually identified. These results were verified with both the South Carolina Department of Health and Environmental Control (SC DEHEC) and the Georgia Department of Natural Resources on September 23, 2016. Each of these agencies confirmed that no water withdrawal permits for drinking, irrigation, or construction purposes had been issued for this stretch of the Savannah River. It should be noted that Vogtle Units 3 and 4 received a surface water withdrawal permit in December of 2015.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

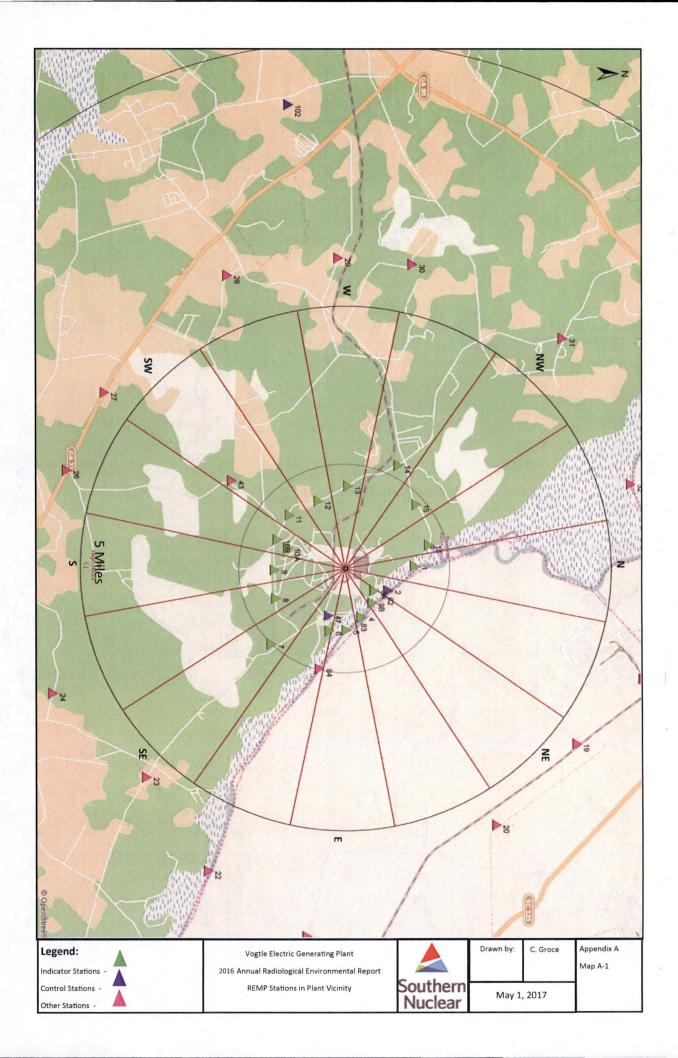
5 CONCLUSIONS

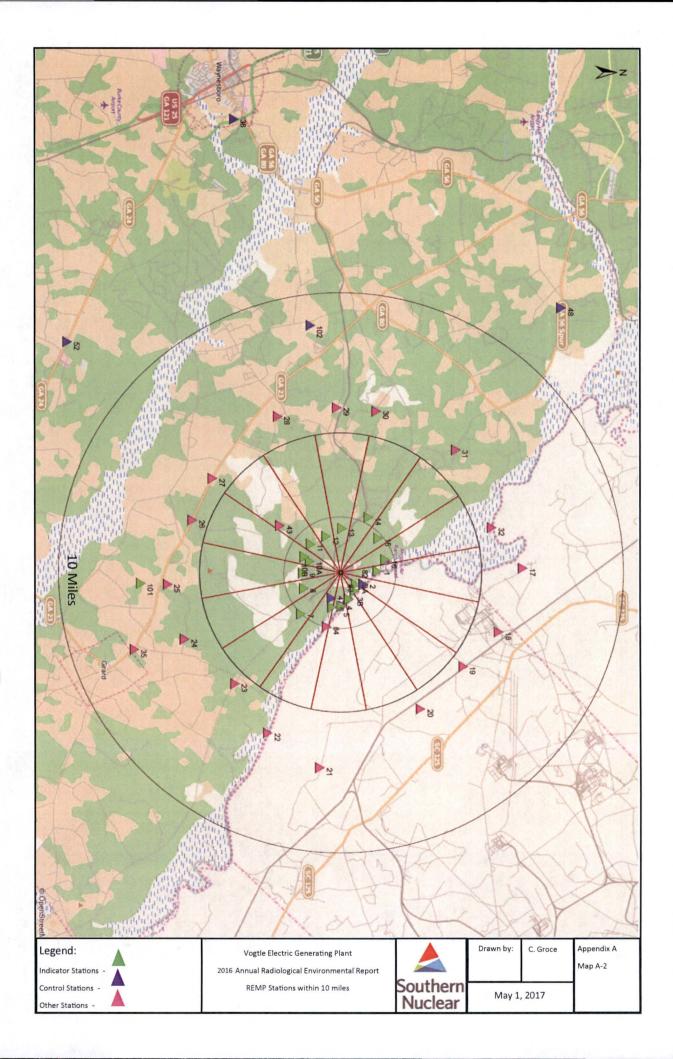
This report confirms SNCs conformance with the requirements of Chapter 4 of the ODCM and the objectives were to:

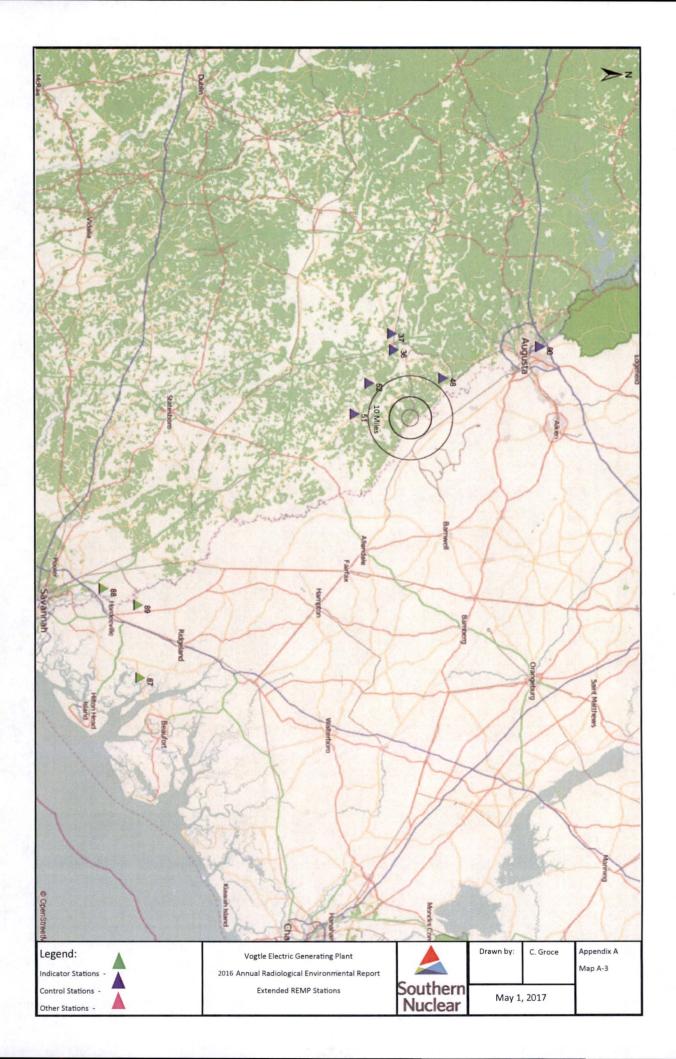
1) Determine the levels of radiation and the concentrations of radioactivity in the environs and;

2) Assess the radiological impact (if any) to the environment due to the operation of the VEGP.

Based on the 2016 activities associated with the REMP, SNC offers the following conclusions:


- Samples were collected and there were no deviations or anomalies that negatively affected the quality of the REMP
- Land use census and river survey did not reveal any significant changes
- Analytical results were below reporting levels
- These values are consistent with historical results, indicating no adverse radiological environmental impacts associated with the operation of VEGP




ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

APPENDIX A

Maps

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

APPENDIX B

Errata

.

ANNUAL RADIOLOGICAL

ENVIRONMENTAL OPERATING REPORT

8

There are no errata for the 2016 reporting year.

