

Byron Generating Station

4450 North German Church Rd Byron, IL 61010-9794

www.exeloncorp.com

May 11, 2017

LTR: BYRON 2017-0038 File: 1.10.0101 (1D.101) 2.12.1523 (2C.111)

United States Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

> Byron Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN 50-454 and STN 50-455

Subject: 2016 Annual Radiological Environmental Operating Report (AREOR)

In accordance with Technical Specification 5.6.2, "Annual Radiological Environmental Operating Report," we are submitting the Annual Radiological Environmental Operating Report (AREOR) for Byron Station. This report is required to be submitted to the NRC by May 15th of each year and contains the results of the radiological environmental and meteorological monitoring programs. The Radioactive Effluent Release Report was submitted under separate cover. Also included are the results of groundwater monitoring conducted in accordance with Exelon's Radiological Groundwater Protection Program (RGPP), which is a voluntary program implemented in 2006. This information is being reported in accordance with a nuclear industry initiative.

If you have any questions regarding this information, please contact Mr. Douglas Spitzer, Regulatory Assurance Manager, at (815) 406-2800.

Respectfully,

Nr. K.

Mark E. Kanavos Site Vice President Byron Generating Station

MEK/JG/LZ/rm

Attachment: AREOR Report

cc: Regional Administrator – NRC Region III

NRC.Docket No: 50-454 50-455

BYRON NUCLEAR GENERATING STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January Through 31 December 2016

Prepared By

Teledyne Brown Engineering Environmental Services

Byron Nuclear Generating Station Byron, IL 61010

April 2017

Intentionally left blank

Table Of Contents

١.	Summary and Conclusions	1
Ш.	Introduction	2
	A. Objectives of the REMP	2
	B. Implementation of the Objectives	2
		Goot
.	Program Description	2
	A. Sample Collection	2
	B. Sample Analysis	5
	C. Data Interpretation	5
	D. Program Exceptions	6
	E. Program Changes	8
ΝŻ	Popula and Discussion	~
IV.	Results and Discussion	
	A. Aquatic Environment	8
	 Surface Water	ð o
	3. Fish	
	4. Sediment B. Atmospheric Environment	8
	1. Airborne	U A
	a. Air Particulates	0
	b. Airborne Iodine	4
	2. Terrestrial	4
	a. Milk	
	b. Vegetation 1	1
	C. Ambient Gamma Radiation	່
	D. Land Use Survey	2
	E. Errata Data	
	F. Summary of Results – Inter-laboratory Comparison Program	

-1-

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program Summary for Byron Nuclear Generating Station, 2016
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Byron Nuclear Generating Station, 2016
Table B-2	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Byron Nuclear Generating Station, 2016
Figures	
Figure B-1	Inner Ring and Special Interest OSLD Locations of the Byron Nuclear Generating Station, 2016
Figure B-2	Outer Ring OSLD Locations of the Byron Nuclear Generating Station, 2016
Figure B-3	Onsite Air Sampling Locations of the Byron Nuclear Generating Station, 2016
Figure B-4	Offsite Air Sampling Locations of the Byron Nuclear Generating Station, 2016
Figure B-5	Ingestion and Waterborne Exposure Pathway Sampling Locations of the Byron Nuclear Generating Station, 2016
Appendix C	Data Tables and Figures - Primary Laboratory
Tables	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016.
Table C-I.3	Concentrations of Nickel-63 in Surface Water Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016

Table C-I.4	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-II.1	Concentrations of Tritium in Ground Water Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-II.2	Concentrations of Gamma Emitters in Ground Water Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-III.1	Concentrations of Nickel-63 and Gamma Emitters in Fish Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-IV.1	Concentrations of Nickel-63 and Gamma Emitters in Sediment Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-VI.1	Concentrations of I-131 in Air lodine Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-VII.2	2 Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-VIII.	1 Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table C-IX.1	Quarterly OSLD Results for Byron Nuclear Generating Station, 2016
Table C-IX.2	Mean Quarterly OSLD Results for the Inner Ring, Outer Ring, Special Interest, Other and Control Locations for Byron Nuclear Generating Station, 2016
Table C-IX.3	Summary of the Ambient Dosimetry Program for Byron Nuclear Generating Station, 2016
Figures	
Figure C-1	Surface Water - Gross Beta – Stations BY-12 and BY-29 (C) Collected in the Vicinity of BNGS, 2000 - 2016
Figure C-2	Surface Water - Tritium – Stations BY-12 and BY-29 (C) Collected in the Vicinity of BNGS, 2000 - 2016

Figure C-3	Ground Water - Tritium – Station BY-14-1 Collected in the Vicinity of BNGS, 2000 – 2016
Figure C-4	Ground Water - Tritium – Station BY-18-1 Collected in the Vicinity of BNGS, 2010 – 2016
Figure C-5	Ground Water - Tritium – Station BY-32 Collected in the Vicinity of BNGS, 2006 – 2016
Figure C-6	Ground Water - Tritium – Stations BY-35 and BY-36 Collected in the Vicinity of BNGS, 2006 – 2016
Figure C-7	Ground Water - Tritium – Stations BY-37 and BY-38 Collected in the Vicinity of BNGS, 2006 – 2016
Figure C-8	Air Particulate – Gross Beta – Stations BY-08 (C) and BY-21 Collected in the Vicinity of BNGS, 2000 - 2016
Figure C-9	Air Particulate – Gross Beta – Stations BY-22 and BY-23 Collected in the Vicinity of BNGS, 2000 - 2016
Figure C-10	Air Particulate – Gross Beta – Station BY-24 Collected in the Vicinity of BNGS, 2000 - 2016
Figure C-11	Air Particulate – Gross Beta – Stations BY-01 and BY-04 Collected in the Vicinity of BNGS, 2005 - 2016
Figure C-12	Air Particulate – Gross Beta – Station BY-06 Collected in the Vicinity of BNGS, 2005 – 2016
Appendix D	Inter-Laboratory Comparison Program
Tables	
Table D-1	Analytics Environmental Radioactivity Cross Check Program
	Teledyne Brown Engineering, 2016
Table D-2	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2016
Table D-3	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2016
Appendix E	Effluent Report
Appendix E-1	Data Tables and Figures
Appendix F	Meteorological Data

-iv-

Appendix G

Errata data

Appendix H Annual Radiological Groundwater Protection Program Report (ARGPPR)

Intentionally left blank

Summary and Conclusions

١.

This report on the Radiological Environmental Monitoring Program conducted for the Byron Nuclear Generating Station by Exelon covers the period 1 January 2016 through 31 December 2016. During that time period, 1,482 analyses were performed on 1,320 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of BNGS had no adverse radiological impact on the environment.

Surface water samples were analyzed for concentrations of gross beta, tritium, Nickel-63 (Ni-63), and gamma-emitting nuclides. Ground water samples were analyzed for concentrations of tritium and gamma-emitting nuclides. Gross beta activities detected were consistent with those detected in previous years. All surface water samples analyzed for Ni-63 were less than the minimum detectable concentration. Tritium detected in downstream surface water was well below reportable limits and consistent with expected levels as a result of permitted liquid discharges.

Fish (commercially and/or recreationally important species) and sediment samples were analyzed for concentrations of Ni-63 and gamma-emitting nuclides. Non-plant produced Cesium-137 (Cs-137) activity was detected at one sediment location at a concentration of 225 pCi/kg. Low levels of Cs-137 are detected occasionally and are consistent with data from previous years and are not a result of plant effluents.

Air particulate samples were analyzed for concentrations of gross beta and gamma-emitting nuclides. No fission or activation products were detected.

High sensitivity lodine-131 (I-131) analyses were performed on weekly air samples. All results were less than the minimum detectable concentration for I-131.

Cow milk samples were analyzed for concentrations of I-131 and gammaemitting nuclides. All I-131 results were below the minimum detectable activity. No fission or activation products were found.

Food Product samples were analyzed for concentrations of gamma-emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using Optically Stimulated Luminescence Dosimeters (OSLD). Beginning in 2012, Exelon changed the type of dosimetry used for the Radiological Environmental Monitoring Program (REMP). Optically Stimulated Luminescent Dosimetry were deployed and Thermoluminescent Dosimetry (TLD) were discontinued. This change may result in a step change in readings, up or down, depending on site characteristics. The relative comparison to control locations remains valid. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation). Intentionally left blank

II. Introduction

Byron Station, a two-unit PWR station, is located about two miles east of the Rock River and approximately three miles southwest of Byron in Ogle County, Illinois. The reactors are designed to have capacities of 1,268 and 1,241 MW gross, respectively. Unit One loaded fuel in November 1984 and went on line February 2, 1985. Unit Two went on line January 9, 1987. The station has been designed to keep releases to the environment at levels below those specified in the codes of federal regulations.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) and Landauer on samples collected during the period 1 January 2016 through 31 December 2016.

A. Objectives of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways
- 2. Establishing baseline radiological data of media within those pathways
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment

III. Program Description

A. Sample Collection

Samples for the BNGS REMP were collected for Exelon Nuclear by Environmental Inc. (Midwest Labs). This section describes the general

collection methods used by Environmental Inc. to obtain environmental samples for the BNGS REMP in 2016. Sample locations and descriptions can be found in Table B–1 and Figures B–1 through B–5, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, ground water, fish and sediment. Two gallon water samples were collected weekly from two surface water locations (BY-12 and BY-29 [Control location]) and quarterly from six ground water locations (BY-14-1, BY-18-1, BY-32, BY-35, BY-37 and BY-38). All samples were collected in new unused plastic bottles, which were rinsed with source water prior to collection. Fish samples comprising the flesh of golden redhorse, shorthead redhorse, quillback, river carpsucker, and channel catfish were collected semiannually at two locations, BY-29 (control) and BY-31. Sediment samples composed of recently deposited substrate were collected at two locations semiannually, BY-12 and BY-34 (control).

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, and airborne iodine. Airborne iodine and particulate samples were collected and analyzed weekly at eight locations (BY-01, BY-04, BY-06, BY-08, BY-21, BY-22, BY-23 and BY-24). The control location was BY-08. Airborne iodine and air particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps ran continuously and sampled air at the rate of approximately one cubic foot per minute. The air filters and air iodine samples were replaced weekly and sent to the laboratory for analysis.

Terrestrial Environment

The terrestrial environment was evaluated by performing radiological analyses on samples of milk and food products. Milk samples were collected monthly from January through April and November through December, and biweekly May through October. The control location was BY-26-2 and the indicator location was BY-20-1. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfate and shipped promptly to the laboratory.

Food products were collected annually in July at five locations (BY-Control, BY-Quad 1, BY-Quad 2, BY-Quad 3 and BY-Quad 4).

Various types of samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Beginning in 2012, Exelon changed the type of dosimetry used for the Radiological Environmental Monitoring Program (REMP). Optically Stimulated Luminescent Dosimetry (OSLD) were deployed and Thermoluminescent Dosimetry (TLD) were discontinued. This change may result in a step change in readings, up or down, depending on site characteristics. The relative comparison to control locations remains valid. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation).

Each location consisted of 2 OSLD sets. The OSLDs were exchanged quarterly and sent to Landauer for analysis. The OSLDs were placed at locations on and around the BNGS Station site as follows:

An <u>inner ring</u> consisting of 16 locations (BY-101, BY-102, BY-103, BY-104, BY-105, BY-106, BY-107, BY-108, BY-109, BY-110, BY-111, BY-112, BY-113, BY-114, BY-115 and BY-116) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off-site doses) from BNGS releases.

An <u>outer ring</u> consisting of 16 locations (BY-201, BY-202, BY-203, BY-204, BY-205, BY-206, BY-207, BY-208, BY-209, BY-210, BY-211, BY-212, BY-213, BY-214, BY-215 and BY-216) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

A <u>special interest</u> set consisting of nine locations (BY-301-1, BY-301-2, BY-309-1, BY-309-2, BY-309-3, BY-309-4, and BY-314-2) to measure possible exposures from on-site storage facilities.

An <u>other</u> set consisting of seven locations (BY-01, BY-04, BY-06, BY-21, BY-22, BY-23 and BY-24) at locations where air samplers are present.

The balance of one location (BY-08) representing the control area.

The specific OSLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- 2. Site meteorological data taking into account distance and elevation

for each of the sixteen-22 1/2 degree sectors around the site, where estimated annual dose from BNGS, if any, would be most significant;

- 3. On hills free from local obstructions and within sight of the vents (where practical);
- 4. And near the closest dwelling to the vents in the prevailing downwind direction if applicable.

Two OSLDs were placed at each location located at a minimum of five feet above ground level. The OSLDs were exchanged quarterly and sent to Landauer for analysis.

B. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the BNGS REMP in 2016. The analytical procedures used by the laboratory are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in surface water and air particulates
- 2. Concentrations of gamma emitters in ground and surface water, air particulates, milk, fish, sediment and vegetation
- 3. Concentrations of tritium in ground and surface water
- 4. Concentrations of lodine-131 in air and milk
- 5. Concentrations of Nickel-63 in surface water, fish and sediment
- 6. Ambient gamma radiation levels at various site environs
- C. Data Interpretation

The radiological and direct radiation data collected prior to Byron Nuclear Generating Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Byron Nuclear Generating Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before-thefact estimate of a system (including instrumentation, procedure and sample type) and not as an after-the-fact criteria for the presence of activity. All analyses were designed to achieve the required BNGS detection capabilities for environmental sample analysis. The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after-the-fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity, effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface water, ground water and vegetation twelve nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For fish, sediment, air particulate and milk eleven nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2016, the BNGS REMP had a sample recovery rate in excess of 99%. Sample anomalies and missed samples are listed in the tables below:

TABLE D-1 LISTING OF SAMPLE ANOMALIES

Sample Type	Location Code	Collection Date	Reason
A/I	BY-01	03/22/16	Replaced broken vacuum gauge
A/I	BY-21	04/12/16	Unable to reset timer; collector replaced
A/I	BY-22	05/03/16	Power out; dead animal found at transformer; POC notified. FlA of 60 based on previous 4 weeks
A/I	BY-22	05/10/16	Low reading of 163.2 hours due to transformer repair
A/I	BY-04	10/18/16	Low reading of 166.4 hours due to power outage from storms in area

TA	BL	Ε	D-2	

LISTING OF MISSED SAMPLES

Sample Type	Location Code	Collection Date	Reason
SW	BY-12, BY-29	01/12/16	No sample, water frozen
SW	BY-12, BY-29	01/19/16	No sample, water frozen
SW	BY-12, BY-29	01/26/16	No sample, water frozen
SW	BY-12, BY-29	02/16/16	No sample, water frozen
OLSD	BY-110-2	1st Qtr, 2016	Sample lost during exchange
SW	BY-12, BY-29	12/13/16	No sample, water frozen
SW	BY-12, BY-29	12/20/16	No sample, water frozen
SW	BY-29	12/27/16	No sample, water frozen

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

There were no program changes in 2016.

IV. Results and Discussion

- A. Aquatic Environment
 - 1. Surface Water

Samples were taken weekly and composited monthly at two locations (BY-12 and BY-29). Of these locations only BY-12 located downstream, could be affected by Byron Nuclear Generating Station's effluent releases. The following analyses were performed:

Gross Beta

Samples from both locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). The values ranged from 3.0 to 6.5 pCi/I. Concentrations detected were consistent with those detected in previous years (Figure C–1, Appendix C).

<u>Tritium</u>

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). Tritium was detected in four samples. The concentrations ranged from 371 – 2200 pCi/L (Figure C–2, Appendix C). Tritium detected in downstream surface water was well below reportable limits and consistent with expected levels as a result of permitted liquid discharges.

<u>Nickel</u>

Samples from both locations were analyzed for concentration of Ni-63 (Table C–I.3, Appendix C). All results were less than the minimum detectable concentration.

Gamma Spectrometry

Samples from both locations were analyzed for gamma-emitting nuclides (Table C–I.4, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Ground Water

Quarterly grab samples were collected at seven locations (BY-14-1, BY-18-1, BY-32, BY-35, BY-37 and BY-38). These locations could be affected by Byron Nuclear Generating Station's effluent releases. The following analyses were performed:

<u>Tritium</u>

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–II.1, Appendix C). No tritium was detected, and the required LLD was met (Figures C–3 through C–7, Appendix C).

Gamma Spectrometry

Samples from all locations were analyzed for gamma-emitting nuclides (Table C–II.2 Appendix C). No nuclides were detected, and all required LLDs were met.

3. Fish

Fish samples comprised of shorthead redhorse, golden redhorse, quillback, river carpsucker, and channel catfish were collected at two locations (BY-29 and BY-31) semiannually. Location BY-31 could be affected by Byron Nuclear Generating Station's effluent releases. The following analyses were performed:

<u>Nickel</u>

The edible portion of fish samples from both locations was analyzed for Ni-63 (Table C–III.1, Appendix C). Nickel-63 was not detected and the required LLD was met.

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma-emitting nuclides (Table C–III.1, Appendix C). No nuclides were detected, and all required LLDs were met.

4. Sediment

Aquatic sediment samples were collected at two locations (BY-12 and BY-34) semiannually. BY-12, located downstream, could be affected by Byron Nuclear Generating Station's effluent releases. The following analyses were performed:

<u>Nickel</u>

Sediment samples from both locations were analyzed for Ni-63 (Table C–IV.1, Appendix C). Ni-63 was not detected and the required LLD was met.

Gamma Spectrometry

Sediment samples from both locations were analyzed for gammaemitting nuclides (Table C–IV.1, Appendix C). Cesium-137 was detected in one sample. The concentration was 225 pCi/kg dry. The concentrations detected was consistent with those detected in previous years and is not a result of plant effluents. No other nuclides were detected, and all required LLDs were met.

B. Atmospheric Environment

- 1. Airborne
 - a. Air Particulates

Continuous air particulate samples were collected from eight locations on a weekly basis. The eight locations were separated into three groups: Nearsite samplers within 4 km of the site (BY-21, BY-22, BY-23 and BY-24), Far Field samplers between 4 and 10 km of the site (BY-01, BY-04 and BY-06) and the Control sampler between 10 and 30 km from the site (BY-08). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C–V.1 and C–V.2, Appendix C). Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of BNGS.

The results from the Nearsite locations (Group I) ranged from 6 to 41 E–3 pCi/m³ with a mean of 16 E–3 pCi/m³. The results from the Far Field locations (Group II) ranged from 6 to 39 E–3 pCi/m³ with a mean of 16 E–3 pCi/m³. The results from the Control location (Group III) ranged from 8 to 36 E–3 pCi/m³ with a mean of 16 E–3 pCi/m³. Comparison of the 2016 air particulate data with previous year's data indicate no effects from the operation of BNGS. In addition, a comparison of the weekly mean values for 2016 indicate no notable differences among the three groups (Figures C–8 through C-12, Appendix C).

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma-emitting nuclides (Table C–V.3, Appendix C). No nuclides were detected, and all required LLDs were met.

b. Airborne lodine

Continuous air samples were collected from eight locations (BY-01, BY-04, BY-06, BY-08, BY-21, BY-22, BY-23 and BY-24) and analyzed weekly for I-131 (Table C–VI.1, Appendix C). All results were less than the minimum detectable concentration for I-131.

2. Terrestrial

a. Milk

Samples were collected from two locations (BY-20-1 and BY-26-2) monthly from January to April and November through December, and biweekly May through October. The following analyses were performed:

lodine-131

Milk samples from all locations were analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma-emitting nuclides (Table C–VII.2, Appendix C). No nuclides were detected, and all required LLDs were met.

b. Vegetation

Vegetation samples were collected at five locations (BY-Control, BY-Quad 1, BY-Quad 2, BY-Quad 3 and BY-Quad 4). Four locations (BY-Quad 1, BY-Quad 2, BY-Quad 3 and BY-Quad 4) could be affected by Byron Nuclear Generating Station's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gammaemitting nuclides (Table C–VIII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing OSLDs. Ninety-one OSLD locations were established around the site. Results of OSLD measurements are listed in Tables C–IX.1 to C–IX.3, Appendix C.

All OSLD measurements were below 30 mR/standard quarter, with a range of 16 to 28 mR/standard quarter. A comparison of the Inner Ring, Outer Ring, Special Interest, Other and Control Location data indicate that the ambient gamma radiation levels were comparable among the groups.

D. Land Use Survey

A Land Use Survey conducted during August 2016 around the Byron Nuclear Generating Station (BNGS) was performed by Environmental Inc. (Midwest Labs) for Exelon Nuclear to comply with the Byron Nuclear Generating Station's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, livestock, and milk producing animals in each of the sixteen 22 ½ degree sectors and garden in each of the four 90 degree quadrants around the site. The results of this survey are summarized below:

	Dist	ance in Miles from		
S	ector	Residence	Livestock	Milk Farm
		Miles	Miles	Miles
A	N	1.2	5.9	89
В	NNE	1.6	1.6	
С	NE	1.1	4.8	and a state of the second
D	ENE ^(a)	1.4	3.5	-
Е	E	1.2	4.2	-
F	ESE	1.5	1.5	
G	SE	1.7	4.3	-
Н	SSE	0.7	3.3	and the second se
J	S	0.6	0.7	
K	SSW	0.7	1.0	
L	SW	0.8	2.0	· · · · · · · · · · · · · · · · · · ·
M	WSW ^(b)	1.6	1.7	4.5
N	W	1.8	3.4	500 Sec.
Р	WNW	1.6	5.7	11.5
Q	NW	1.2	1.5	acer -
R	NNW	0.9	1.4	1

(a) Denotes the nearest industrial facility located at 1.0 miles.

(b) Denotes the nearest industrial facility located at 1.5 miles.

E. Errata Data

There was no errata data for 2016.

F. Summary of Results – Inter-Laboratory Comparison Program

The primary laboratory analyzed Performance Evaluation (PE) samples of air particulate, air iodine (charcoal), milk, soil, vegetation and water (including fish) matrices (Appendix D). The PE sample matrices were chosen based on the types of samples submitted to the primary laboratory for analysis. The selected parameters for the PE samples are based on the appropriate matrices, methodologies and geometries, which include geometries that are comparable. The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Program (MAPEP) were evaluated against the following preset acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the TBE laboratory, 156 out of 160 analyses performed met the specified acceptance criteria. Four analyses (Milk - Sr-90, Vegetation - Sr-90, and Water - H-3 samples) did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program.

Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

1. Teledyne Brown Engineering's MAPEP March 2016 air particulate cross check sample is now being provided to TBE by Analytics. MAPEP's policy is to evaluate as failed non reported nuclides that were reported in the previous study. Since the Sr-90 was reported

in the previous MAPEP study but not in this study MAPEP evaluated the Sr-90 for Soil as failed. NCR 16-14

The MAPEP March 2016 Sr-90 in vegetation was evaluated as failing a false positive test. In reviewing the data that was reported vs the data in LIMS, it was found that the error was incorrectly reported as 0.023 rather than the correct value of 0.230. If the value had been reported with the activity and correct uncertainty of 0.301 \pm 0.230, MAPEP would have evaluated the result as acceptable. NCR 16-14

- 2. Teledyne Brown Engineering's Analytics' March 2016 milk Sr-90 result of $15 \pm .125 \text{ pCi/L}$ was higher than the known value of 11.4 pCi/L with a ratio of 1.32. The upper ratio of 1.30 (acceptable with warning) was exceeded. After an extensive review of the data it is believed the technician did not rinse the filtering apparatus properly and some cross contamination from one of the internal laboratory spike samples may have been transferred to the Analytics sample. We feel the issue is specific to the March 2016 Analytics sample. NCR 16-26
- Teledyne Brown Engineering's ERA November 2016 sample for H-3 in water was evaluated as failing. A result of 918 pCi/L was reported incorrectly due to a data entry issue. If the correct value of 9180 had been reported, ERA would have evaluated the result as acceptable. NCR 16-34
- 4. Teledyne Brown Engineering's Analytics' December 2016 milk Sr-90 sample result of 14.7 ± .26 pCi/L was higher than the known value of 10 pCi/L with a ratio of 1.47. The upper ratio of 1.30 (acceptable with warning) was exceeded. The technician entered the wrong aliquot into the LIMS system. To achieve a lower error term TBE uses a larger aliquot of 1.2L (Normally we use .6L for client samples). If the technician had entered an aliquot of 1.2L into the LIMS system, the result would have been 12.2 pCi/L, which would have been considered acceptable. NCR 16-35

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

- 15 -

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

Intentionally left blank

NAME OF FACILITY:	BYRON NUCLEAR GENERATING STATION	CENERATING S	TATION		DOCKET NUMBER:	IBER:	50-454 & 50-455	
LOCATION OF FACILITY:	BYRON, IL				REPORTING PERIOD:	PERIOD:	2016	
MEDIUM OR PATHWAY SAMPLED (Unit of Measurement)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	INDICATOR LOCATIONS MEAN (M) (F) DAMCE	CONTROL LOCATION MEAN (M) (F)	LOCATIC MEAN (M) (F)	LOCATION WITH HIGHEST ANNUAL MEAN (M) AN (M) STATION # ANME	NUMBER OF NONROUTINE REPORTED
SURFACE WATER (PCI/LITER)	GR-B	24	4	3.8	4.3	4.3	UIS IANCE AND DIRECTION BY-29 CONTROL	MEASUREMENTS 0
				(9/12) 3.1 - 5.4	(8/12) 3 - 6.5	(8/12) 3 - 6.5	Byron - Upstream 3.0 MILES N OF SITE	
	÷.	œ	200	844 (4/4) 271 2200	<pre>CLLD</pre>	844 (4/4)	BY-12 INDICATOR Oregon Pool of Rock River - Downstream	o
	NI-63	24	30	<pre>cuto</pre>	₹FLD	3/1 - 2200	4.5 MILES SSW OF SITE	Q
	GAMMA	24						>
			15	ĴĴ ĴĴ	d L d			
	FE-59 CO-60	6	30 15	¢∏0	Q ↓	8 F		
	ZN-65 NB-95	5	30)] {)	• •		00
	ZR-95 1-131	16	30)∄≜) 1 1 1	∎ ',∎ ' a		000
	CS-134 CS-137 RA-140	4	18 5	1 3 3 4) 3 3 3			000
	LA-140	0	15) 1	<u></u>	3 I		00
GROUND WATER	H-3	24	200	¢	NA			0
ILONFILEN	GAMMA	24						
	MN-54	*	ស្ព	<pre></pre>	NA	•		0
	CU-58 FF-59	20 03	15	∃ €	NA	•		0
	CO-60	0	5) 1	AN	•		0 0
	ZN-65	5	30	⊲TL⊳	NA			
	NB-95 72-05		15	Ĵ (NA N	•		0
	1-131		30 15	j, i	NA	•. •		0
	CS-134	4	15	l 1j	NA			
	CS-137	7	æ :	≤LD	NA	•		0
	BA-140		60 1	d1 d	NA	•		0
	262-03		2	<pre></pre>	NA	•		0

NAME OF FACILITY:	BYRON NUCLEAR GENERATING STATION	GENERATING S	TATION		DOCKET NUMBER:	BER:	50-454 & 50-455	
LOCATION OF FACILITY:	BYRON, IL				REPORTING PERIOD:	ERIOD:	2016	
			REOURED	INDICATOR I OCATIONS	CONTROL	I OCATK	I OCATION WITH HICHEST ANNIJAL MEAN MI	NI IMBER OF
MEDIUM OR	TYPES OF	NUMBER OF	LOWER LIMIT	MEAN (M)	MEAN (M)	MEAN (M)	STATION #	NONROUTINE
PATHWAY SAMPLED (Uint of Measurement)	ANALYSIS PERFORMED	PERFORMED	OF DETECTION (LLD)	(r) RANGE	(r) RANGE	(r) RANGE	NAME DISTANCE AND DIRECTION	MEASUREMENTS
FISH	NI-63	80	260	¢∏D	<pre>CLLD</pre>	E		0
(PCUKG WET)								
	GANNA	8						
	MN-54	** 0	130	- - - - - - - - - - - - - - - - - - -	GLD F	•		0
	CU-58		130					5
	CO-60		130] ₽	, 1		5 0
	19-NZ		260	۹ ۱	1	•		0
	NB-95	-10	NA	<pre></pre>	€LLD	•		0
	ZR-95	5	NA	dl⊳	¢۲۲D	,		0
	CS-134	4	130	<pre>dLD</pre>	¢LD	•		0
	CS-137	7	150	¢۱		1		0
	BA-140	0	NA	¢LD	¢∏D	t		0
	LA-14	0	NA	¢∐⊅		•		0
SEDIMENT	NI-63	4	260	<pre></pre>	4LD	4		0
(PCI/KG DRY)	CABBRAD	V						
	MN-54		NA	₹	¶ T₽			0
	CO-58	8	NA	d⊥⊳	⊲LLD			0
	FE-59	9	NA	¢∏D	<pre> </pre>	•		0
	CO-60	0	MA	¢∏D	<pre></pre>			0
	ZN-65	5	NA	¢LD	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
	NB-95	5	MA	₹FD	۲۲D	ł		0
	ZR-9	5	NA	¢TTD	۲۲D	,		0
	CS-134	4	150	<lld< td=""><td><lld< td=""><td>•</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>•</td><td></td><td>0</td></lld<>	•		0
	CS-13	1	180	225	₹TD	225	BY-12 INDICATOR Uregon Pool of Kock Kiver - Lownstream	0
							4.5 MILES SSW OF SITE	
	BA-140	0	NA		4LD	•		0
	LA-140	0	NA	QIJ	¢∏⊅	••• •••		0

	MANE OF FAULTT:	BYRON NUCLEAR GENERATING STATION	ENERATING S	TATION		DOCKET NUMBER:	BER:	50-454 & 50-455	
Ref to the controls Controls Controls Controls Control SMMED ANVISS NANTSS	LUCATION OF FACILITY:	BYRON, IL		1918 -		REPORTING I	ERIOD:	2016	
MARTED AMALVED AMALVED <th< th=""><th>×</th><th>TYPES OF</th><th>NUMBER OF</th><th>REQUIRED I OWFR I IMIT</th><th>INDICATOR LOCATIONS</th><th>CONTROL LOCATION</th><th>LOCATIO</th><th>ON WITH HIGHEST ANNUAL MEAN (M)</th><th>NUMBER OF</th></th<>	×	TYPES OF	NUMBER OF	REQUIRED I OWFR I IMIT	INDICATOR LOCATIONS	CONTROL LOCATION	LOCATIO	ON WITH HIGHEST ANNUAL MEAN (M)	NUMBER OF
ULIVIE GRB C4 10 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 15 17 15 17 15 15 17 15 15 15 10 </th <th>Y SAMPLED easurement)</th> <th>ANALYSIS PERFORMED</th> <th>ANAL YSIS PERFORMED</th> <th>OF DETECTION (LLD)</th> <th>(F) (F) RANGE</th> <th>(F) (F) RANGE</th> <th>(F) (F) RANGE</th> <th>STATION # NAME DISTANCE AND DIRECTION</th> <th>NONROUTINE REPORTED MAEASI IPEMENTS</th>	Y SAMPLED easurement)	ANALYSIS PERFORMED	ANAL YSIS PERFORMED	OF DETECTION (LLD)	(F) (F) RANGE	(F) (F) RANGE	(F) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NONROUTINE REPORTED MAEASI IPEMENTS
Miletan Common (5.433) (5.533) <t< td=""><td>TCULATE</td><td>GR-B</td><td>424</td><td>10</td><td>16</td><td>16</td><td>17</td><td>BY-06 INDICATOR</td><td></td></t<>	TCULATE	GR-B	424	10	16	16	17	BY-06 INDICATOR	
GAMM 2 6-41 8-36 7.39 47 MLESSWOFSITE 0xest 0	LU.MEIEKJ				(370/371)	(53/53)	(53/53)	Oregon	
Miled (2018) Miled (2018)<		GAMMA	32		6 - 41	8 - 36	7 - 39	4.7 MILES SSW OF SITE	
CO38 M 4.0 4.0 4.0 FE39 M 4.0 4.0 4.0 4.0 RE33 M 4.0 4.0 4.0 4.0 4.0 R533 M 4.0 4.0 4.0 4.0 4.0 4.0 R533 M 4.0 <td< td=""><td></td><td></td><td></td><td>NA</td><td>d⊥></td><td>U I⊳</td><td>•</td><td></td><td><</td></td<>				NA	d⊥>	U I⊳	•		<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CO-58		NA	ĴĴ) (00
$ \begin{array}{cccccc} & \mathcal{M} & \mathcal$		FE-59		NA	۹TD	<pre></pre>	•		> 0
MATER MA 4LD 4LD <td></td> <td>CO-60</td> <td></td> <td>NA</td> <td>¢∏</td> <td>dl⊳</td> <td>,</td> <td></td> <td>, C</td>		CO-60		NA	¢∏	dl⊳	,		, C
MATERIA MATERIA CANNA CALL		ZN-65 MR-05		NA	1 ,		•		0
MATER GAMMA CS-137 Table of the constraints Canada		70-07		NA	Ĵ ;	<u></u>	1		0
MATTER GAMMA 424 420 410 4		CS-134		NA 150	Ĵ,		*		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CS-137		180	ĴĴ	₽ ₽	J		0
MATER GAMMA 224 ALD 4LD 4L		BA-140		NA	¢∏	¢ l			
MARTER) 424 424 I-131 (GEU) 424 70 41D I-131 (GEU) 38 70 41D 41D I-131 (GEU) 38 1 41D 41D 41D I-131 (LOW LVL) 38 7 41D 41D 41D 41D I-131 (LOW LVL) 38 MM 41D <		LA-140		NA	Ĵ,	<pre> </pre>	•		0
GAMMA 424 Intra (GEL) 72 410 410 410 Intra (GEL) 70 410 410 410 410 Intra (GEL) 38 1 410 410 410 4 Intra (GEL) 38 1 410 410 4 4 4 GAMMA 38 MA 410 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Metter 424 70 410 411 1131 (GEU) 38 1 410 410 410 410 1131 (LOW LVU) 38 1 410 410 410 410 1131 (LOW LVU) 38 1 410 410 410 410 1131 (LOW LVU) 38 1 410 410 410 410 1131 (LOW LVU) 38 1 410									
H131 (LOW LVL) 38 1 <lld< th=""> R133 (LOW LVL) 38 1 <lld< td=""> RAMA 38 M <lld< td=""> RAMS M <lld< td=""> <lld< td=""> RB-95 M <lld< td=""> <lld< td=""> RB-96 M <lld< td=""> <lld< td=""> RB-96 M <lld< td=""> <lld< td=""> RB-100 ES-134 15 <lld< td=""> RA-140 15 <lld< td=""> <lld< td=""> RA-140 15 <ld< td=""> <ld< td=""></ld<></ld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	L U.METER)		424	70	<pre>dlb</pre>	٩٢D	•		¢
I-131 (LOW LVL) 38 1 $<$ LLD									2
GAMMA 38 1 $<$ LLD		1 101 10 101	ç						
38 MM-54 38 MA $MN-54$ MM ALD ALD $FE-59$ MM ALD ALD $FE-59$ MM ALD ALD $FE-50$ MM ALD ALD $FE-59$ MM ALD ALD $CO-60$ MM ALD ALD $MB-95$ MM ALD ALD $SC-134$ 15 ALD ALD $CS-134$ 15 ALD ALD $BA-140$ 60 ALD ALD $BA-140$ 61 ALD ALD	6	1-131 (FOM TAT)	ŝ		¢∏D	¢	•		0
WM WM MM MM MM MM MM MM MM MM MM MM MM M			38	NA	⊲	¶1	1		0
MM MM MM		CO-58		NA NA		2			
MM MID MM MID MM <		FE-59		NA) Ĵ	99	•		0
MM <lld< td=""> <lld< td=""> MA <lld< td=""> <lld< td=""> MA <lld< td=""> <lld< td=""> MB <lld< td=""> <lld< td=""> MB</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>		CO-60		NA	d⊥⊳	⊲LLD	ı		
MA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		ZN-65		NA	dl≯	≤LLD	•		00
15 15 15 15 15 15 15 15 15 15		ZR-95		NA		9€	•		0
18 ≪LLD ≪LLD 60 ≪LLD ≪LLD 15 ≪LLD ≪LLD 15 ×LLD 16 ×LLD 16 ×LLD 17 ×LLD 18 ×LLD 18 ×LLD 18 ×LLD 18 ×LLD 18 ×LLD 18 ×LLD 19 ×LD 19		CS-134		5	ĴĴ) Ĵ			0 0
15 <lld .<="" <lld="" td=""><td></td><td>C-13/ BA-140</td><td></td><td>80 28</td><td>Ĵ Ĵ</td><td></td><td>•</td><td></td><td>0</td></lld>		C-13/ BA-140		80 28	Ĵ Ĵ		•		0
		LA-140		15	↓	1]	•		-

NAME OF FACILITY:	BYRON NUCLEAR GENERATING STATION	TATION		DOCKET NUMBER:	3ER: 50-454 & 50-455	-455	
LOCATION OF FACILITY:	BYRON, IL			REPORTING PERIOD:	ERIOD: 2016		
		REOURED	INDICATOR I OCATIONS	CONTROL	I OCATION WITH HIGH	I OCATION NUTH HIGHEST ANNIJAL MEAN (M)	NI IMBER OF
MEDIUM OR	TYPES OF NUMBER OF	LOWER LIMIT	MEAN (M)	MEAN (M)	MEAN (M)	STATION #	NONROUTINE
PATHWAY SAMPLED (Unit of Measurement)	ANALYSIS ANALYSIS PERFORMED PERFORMED	OF DETECTION (LLD)	(F) RANGE	(F) RANGE	(F) RANGE DIST	NAME DISTANCE AND DIRECTION	REPORTED MEASUREMENTS
VEGETATION	GAMMA 11						
(PCIKG WET)	MN-54	NA	<pre></pre>	¢LD			0
	CO-58	NA	¢⊓D	<pre>CLD</pre>			0
	FE-59	NA	¢∏D	¢TLD			0
	CO-60	NA	<pre></pre>	۹۲D			0
	ZN-65	NA	۹TI>	¢ILD	•		0
	NB-95	NA	ollo €	<pre></pre>			0
	ZR-95	NA		¢LD	•		0
	1-131	60	<pre> </pre>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CS-134	60	٩LD	₹FD	•		0
	CS-137	80	¶.	<pre></pre>			0
	BA-140	NA	¢∏D	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	LA-140	NA	¢	<lld< td=""><td>•</td><td></td><td></td></lld<>	•		
DIRECT RADIATION	OSLD-QUARTERLY 363	NA	22.7	19.5		BY-212-4 INDICATOR	0
(MILLIREWQTR.)			(355/355) 15.6 - 28.2	(8/8) 18.4 - 21	(4/4) 24.2 - 28.2	4.7 MILES WSW	
			2		1		

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

Intentionally Left Blank

Location		Location Description	Distance & Direction From Sil
٨	Surface M	lator	
Α.	Surface W	alei	
BY-12 BY-29		Oregon Pool of Rock River, Downstream Byron, Upstream (control)	4.5 miles SSW 3.0 miles N
3.	Ground/W	ell Water	
3Y-14-1		3200 North German Church Road	1.0 miles SSE
BY-18-1		Calhoun	0.7 miles SSW
BY-32		Ron Wolford Well	1.9 miles W
3Y-35		Vancko Well	1.9 miles WNW
3Y-37		Alexander Well	2.0 miles WNW
3Y-38		Steve Storz Well	2.0 miles WNW
	5.8:11.		
<u>.</u>	Milk		
3Y-20-1		Ron Snodgrass Farm	4.8 miles WSW
3Y-26-2		Joseph Akins Farm (control)	12.2 miles WNW
).	Air Particul	ates / Air Iodine	
Y-01		Byron	3.0 miles N
3Y-04		Paynes Point	5.0 miles SE
3Y-06		Oregon	4.7 miles SSW
3Y-08		Leaf River (control)	7.0 miles WNW
3Y-21		Byron Nearsite North	0.3 miles N
3Y-22		Byron Nearsite Southeast	0.4 miles SE
3Y-23		Byron Nearsite South	0.6 miles S
Y-24		Byron Nearsite Southwest	0.7 miles SW
	Fish		
**	11311		
3Y-29		Byron, Upstream (control)	3.0 miles N
IY-31		Byron, Discharge	2.6 miles WNW
•	Sediment		
Y-12		Oregon Pool of Rock River, Downstream	4.6 miles SSW
Y-34		Rock River, Upstream of Discharge (control)	2.6 miles WNW
•	Vegetation		
uadrant 1	1	5186 N. Cox Road, Stillman Valley	4.8 miles ENE
uadrant 2	2	5671 Brick Road, Oregon	4.4 miles SE
uadrant 3	}	2002 Deer Path Road, Oregon	0.9 miles SW
uadrant 4	1 · · · · · · · · · · · ·	6120 Razorville Road, Byron	2.1 miles NNW
ontrol		3933 S. Bend Road, New Milford	10.7 miles NE
	Environmen	tal Dosimetry - OSLD	
ner Ring			
Y-101-1 and -2			0.3 miles N
3Y-102-1			1.0 miles NNE
/-102-2			1.0 miles NNE

Location	Location Description	Distance & Direction From S
H. Environ	mental Dosimetry – OSLD (continued)	
Innor Ping		
Inner Ring		
BY-103-1 and -2		1.7 miles NE
BY-103-3		0.4 miles NE
BY-104-1 and -2		1.4 miles ENE
BY-104-3		0.3 miles ENE
BY-105-1 and -2		1.3 miles E
BY-106-1 and -2		1.4 miles ESE 1.4 miles SE
BY-107-1 and -2		0.4 miles SE
BY-107-3		0.7 miles SSE
BY-108-1		0.6 miles SSE
BY-108-2 BY-109-1 and -2		0.6 miles S
BY-110-1 and -2		0.7 miles SSW
BY-111-3		0.8 miles SW
BY-111-4		0.9 miles SW
BY-112-3 and -4		0.8 miles WSW
BY-113-1 and -2		0.7 miles W
BY-114-1 and -2		0.8 miles WNW
BY-115-1 and -2		1.0 miles NW
BY-116-1 and -2		1.4 miles NNW
BY-116-3		0.9 miles NNW
Outer Ring		
BY-201-3		4.4 miles N
BY-201-4		4.4 miles N
BY-202-1		4.4 miles NNE 4.8 miles NNE
BY-202-2		4.8 miles NE
BY-203-1 BY-203-2		4.7 miles NE
BY-204-1		4.1 miles ENE
BY-204-2		4.0 miles ENE
		3.8 miles E
BY-205-1 and -2		4.0 miles ESE
BY-205-1 and -2 BY-206-1		
		4.3 miles ESE
BY-206-1		4.3 miles ESE 4.2 miles SE
BY-206-1 BY-206-2		4.3 miles ESE 4.2 miles SE 3.9 miles SE
BY-206-1 BY-206-2 BY-207-1		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE
BY-206-1 BY-206-2 BY-207-1 BY-207-2		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-212-1 and -4		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-212-1 and -4 BY-213-1		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW 4.7 miles W
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-211-1 and -4 BY-213-1 BY-213-4		4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW 4.7 miles W
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-211-1 and -4 BY-213-1 BY-213-1 BY-213-4 BY-214-1		 4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW 4.7 miles W 4.7 miles W 4.7 miles W 4.7 miles WNW
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-211-1 and -4 BY-213-1 BY-213-4 BY-214-1 BY-214-4		 4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW 4.7 miles W 4.7 miles W 4.7 miles W 4.6 miles WNW
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-212-1 and -4 BY-213-1 BY-213-1 BY-213-4 BY-213-4 BY-214-1 BY-215-1		 4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW 4.7 miles W 4.7 miles W 4.7 miles WNW 4.6 miles WNW 4.2 miles NW
BY-206-1 BY-206-2 BY-207-1 BY-207-2 BY-208-1 BY-208-2 BY-209-1 and -4 BY-210-3 and -4 BY-211-1 and -4 BY-211-1 and -4 BY-213-1 BY-213-4 BY-214-1 BY-214-4		 4.3 miles ESE 4.2 miles SE 3.9 miles SE 4.0 miles SSE 3.8 miles SSE 4.0 miles S 3.9 miles SSW 4.9 miles SW 4.7 miles WSW 4.7 miles W 4.7 miles W 4.7 miles W 4.6 miles WNW

TABLE B-1:

Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Byron Nuclear Generating Station, 2016

Location Description	Distance & Direction From Site
Special Interest	
BY-301-1	0.3 miles N
BY-301-2	0.2 miles N
BY-309-1	0.3 miles S
BY-309-2	0.4 miles S
BY-309-3	0.4 miles S
BY-309-4	0.4 miles SSW
BY-314-2	0.3 miles WNW
	0.0 111100 941499
Other	
BY-01-1 and -2	3.0 miles N
BY-04-1 and -2	5.0 miles SE
BY-06-1 and -2	4.7 miles SSW
BY-21-1 and -2	0.3 miles N
BY-22-1 and -2	0.4 miles SE
BY-23-1 and -2	0.6 miles S
BY-24-1 and -2	0.7 miles SW
Control	
BY-08-1 and -2	7.0 miles WNW

 TABLE B-1:
 Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Byron Nuclear Generating Station, 2016

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Byron Nuclear Generating Station, 2016

Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from weekly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
Surface Water	Gross Beta	Monthly composite from weekly grab samples.	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
Surface Water	Nickel-63	Monthly composite from weekly grab samples.	TBE, TBE-2013 Radionickel activity in various matrices
Surface Water	Tritium	Quarterly composite from weekly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
Ground Water	Gamma Spectroscopy	Quarterly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
Ground Water	Tritium	Quarterly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
Fish	Gamma Spectroscopy	Semi-annual samples collected via electroshocking or other techniques	TBE-2007 Gamma emitting radioisotope analysis
Fish	Nickel-63	Semi-annual samples collected via electroshocking or other techniques	TBE, TBE-2013 Radionickel activity in various matrices
Sediment	Gamma Spectroscopy	Semi-annual grab samples	TBE, TBE-2007 Gamma emitting radioisotope analysis
Sediment	Nickel-63	Semi-annual grab samples	TBE, TBE-2013 Radionickel activity in various matrices
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter paper	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2007 Gamma emitting radioisotope analysis
Air Iodine	Gamma Spectroscopy	One-week composite of continuous air sampling through charcoal filter	TBE, TBE-2007 Gamma emitting radioisotope analysis
Milk	I-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	TBE, TBE-2012 Radioiodine in various matrices
Milk	Gamma Spectroscopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	TBE, TBE-2007 Gamma emitting radioisotope analysis
Vegetation	Gamma Spectroscopy	Annual grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
OSLD	Optically Stimulated Luminescence Dosimetry	Quarterly OSLDs comprised of two Al ₂ O ₃ :C Landauer Incorporated elements.	Landauer Incorporated

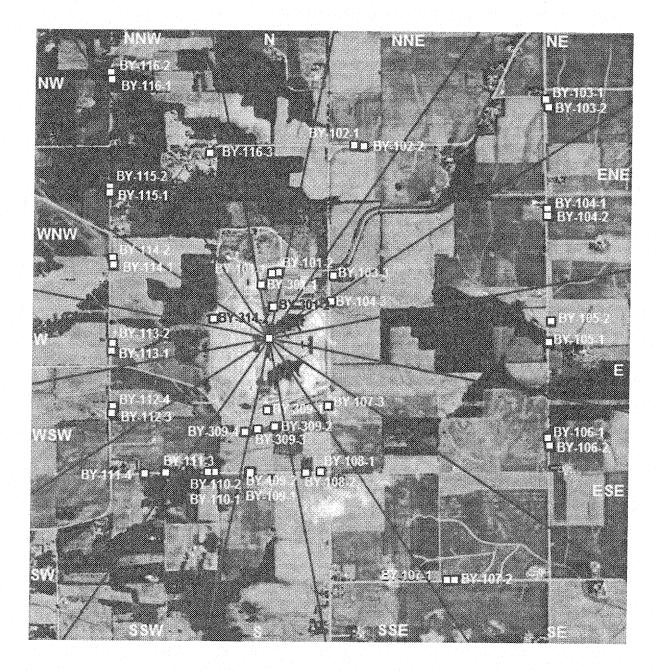


Figure B-1 Inner Ring and Special Interest OSLD Locations of the Byron Nuclear Generating Station, 2016

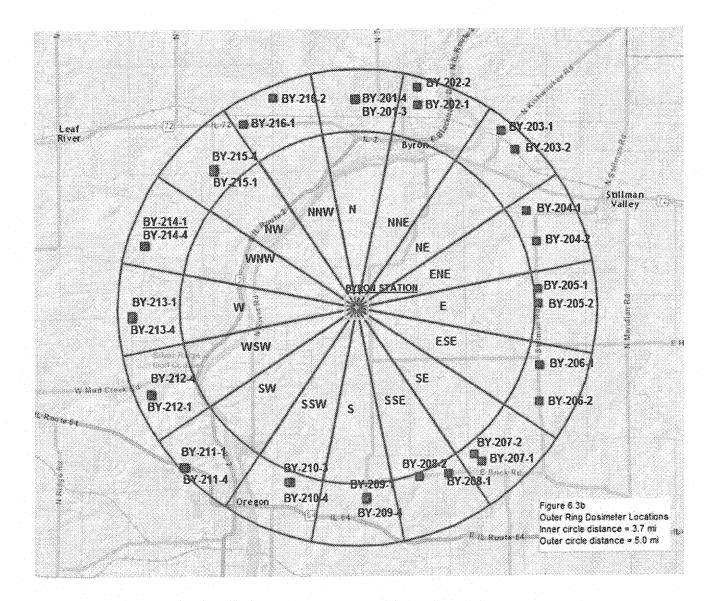


Figure B-2 Outer Ring OSLD Locations of the Byron Nuclear Generating Station, 2016

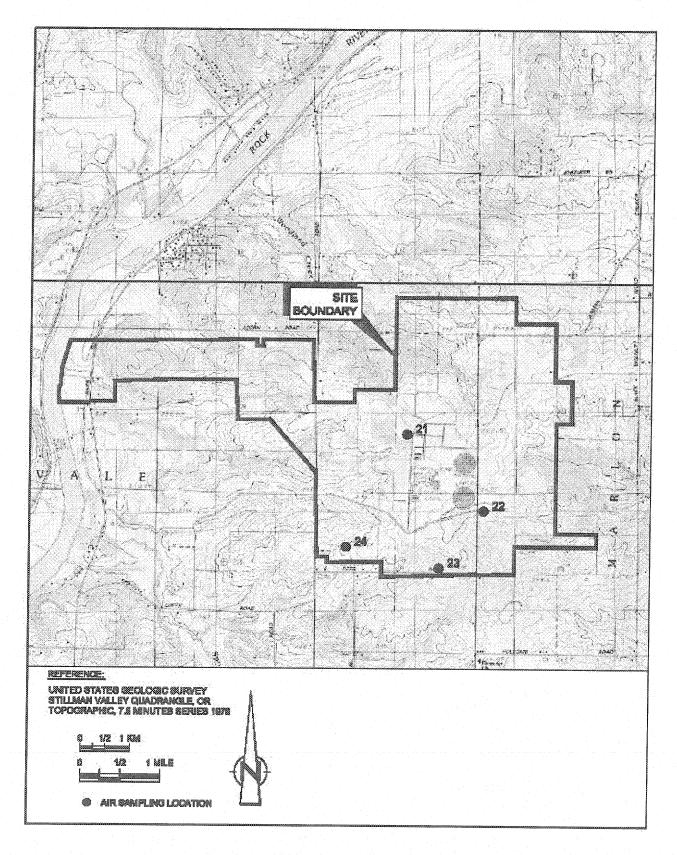
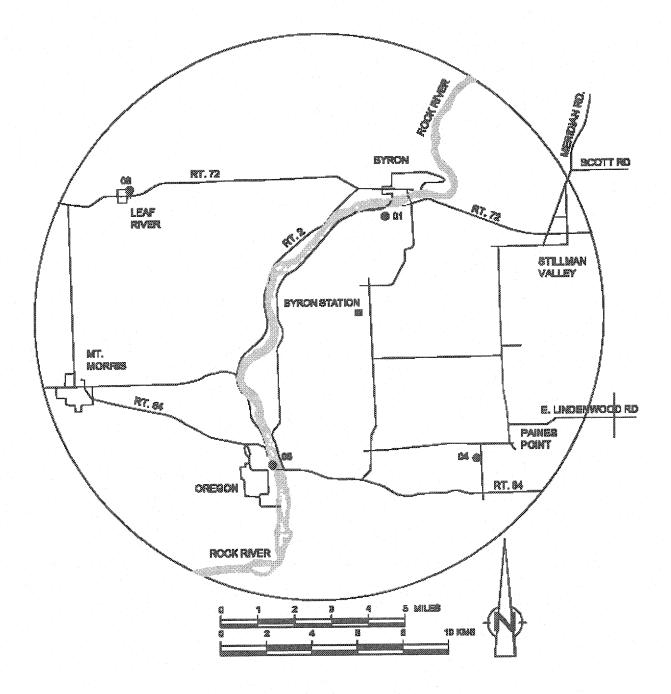



Figure B-3 Onsite Air Sampling Locations of the Byron Nuclear Generating Station, 2016

Air Sampling Location

Byron Station

Figure B-4 Offsite Air Sampling Locations of the Byron Nuclear Generating Station, 2016

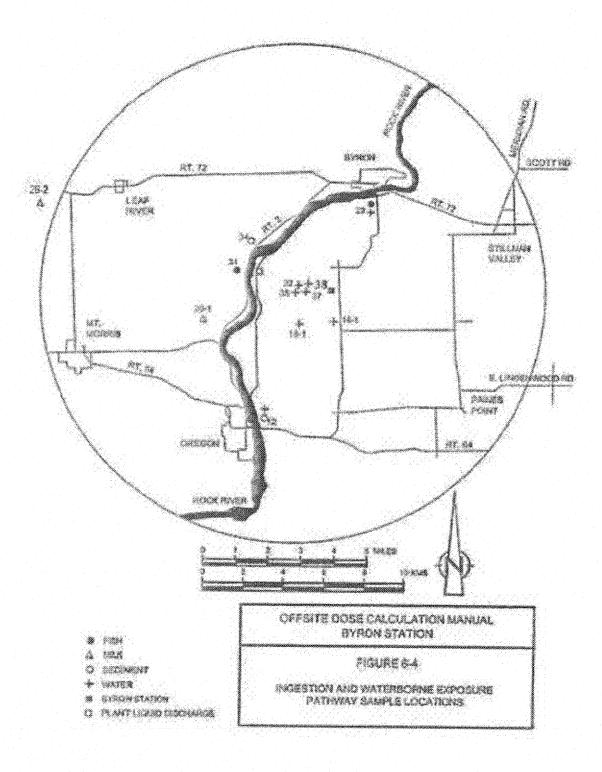


Figure B-5 Ingestion and Waterborne Exposure Pathway Sampling Locations of the Byron Nuclear Generating Station, 2016

Intentionally left blank

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

Table C-I.1

CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016

COLLECTION		
PERIOD	BY-12	BY-29
01/05/16 - 01/05/16	3.2 ± 1.9	< 2.6
02/02/16 - 02/23/16	3.9 ± 1.9	3.5 ± 1.9
02/29/16 - 03/29/16	< 2.9	< 2.8
04/05/16 - 04/26/16	< 2.9	< 2.9
05/03/16 - 06/01/16	< 3.0	3.9 ± 2.2
06/07/16 - 06/28/16	3.1 ± 1.9	4.5 ± 2.1
07/05/16 - 07/26/16	4.5 ± 1.9	4.2 ± 1.9
08/02/16 - 08/30/16	3.8 ± 2.3	6.5 ± 2.1
09/06/16 - 09/27/16	3.2 ± 2.0	3.0 ± 2.0
10/04/16 - 10/25/16	4.3 ± 2.1	4.0 ± 2.1
11/01/16 - 11/29/16	3.2 ± 2.0	4.9 ± 2.1
12/06/16 - 12/27/16	5.4 ± 2.3	< 3.0
MEAN ± 2 STD DEV	3.8 ± 1.6	4.3 ± 2.1

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-I.2

CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION		
PERIOD	BY-12	BY-29
01/05/16 - 03/29/16	2200 ± 281	< 173
04/05/16 - 06/28/16	379 ± 126	< 171
07/05/16 - 09/27/16	425 ± 137	< 191
10/04/16 - 12/27/16	371 ± 133	< 182
MEAN ± 2 STD DEV	844 ± 1809	- 4

Table C-I.3

CONCENTRATIONS OF NI-63 IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION		
PERIOD	BY-12	BY-29
01/05/16 - 01/05/16	< 16	< 16
02/02/16 - 02/23/16	< 21	< 4
02/29/16 - 03/29/16	< 13	< 13
04/05/16 - 04/26/16	< 20	< 20
05/03/16 - 06/01/16	< 14	< 14
06/07/16 - 06/28/16	< 13	< 13
07/05/16 - 07/26/16	< 14	< 14
08/02/16 - 08/30/16	< 15	< 15
09/06/16 - 09/27/16	< 16	< 14
10/04/16 - 10/25/16	< 14	< 14
11/01/16 - 11/29/16	< 14	< 14
12/06/16 - 12/27/16	< 15	< 16
MEA	N -	

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

Table C-1.4

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

																										~	10
	_a-140				4							~ ~	2 2	,		2 V		۸ 4		9 V	N V			>			0 v
	La	v	V	V	¥	¥	v	v	v	v							.*			۰. ۱							-
	40	10	28	13	12	18	31	36	19	15	24	22	9	4			26		16		3						5
	Ba-140	v	V,	Υ.	v	۷	۷	ν.	V	V	v	V	V			٧	v	V	V	V	v	V	V	۷	v	v	V
	22	~~	ধ	2	2	4	ო	2	N	2	2	2	2			***	4	2	2	~	2	4	2	~	2	2	-
	Cs-137	v	۷	v	v	v	v	۷	v	v	۷	v	v			v	v	v	۷	v	v	V	V	v	v	v	v
			~		*			10	~	~	~	N				.	ব	2	2	~	3	ক	N	N	2	N	
	Cs-134				v				v	v	v	v	v	а		v	v	v	v	v		v		v	v	v	v
	ő																										
	1-131				9					80				۰.			< 12			 15 	< 13		× 14	< 10	< 15	 4 	× 1
	-	V.	V.	Ŷ	V	. •	v	v	V	v	v	V	V			, v	v	ľ	•			¥				Č.	
	Zr-95	N	9	e	с р	e	ю	10	e	4	4	4	4			2	2	3	4	ŝ	4	0	S	S	ო	ŝ	ŝ
	Zr-	v	v	۷	v	۷	۷	V	v	v	Y	v	V			V	Y	•	, v	v	V	V	v	۷	v	V	V
	35	***	ទ	2	2		S	9	N	N	2	2	ന			.	ю	2	2	2	2	2	с	ი	2	e	2
	Nb-95	.v	v	v	٧	v	v	v	v	v	v	v	v	•		v	v	v	v	v	v	v	v	ν	v	v	v
		~~~	~		3	N	7		m	4	ষ	ক	-			2	7	4	4	e	<i>с</i> о	0	5	5	e	4	3
	Zn-65				v			,	v		v	v	v	,		v	v	v	v	v			v		v	v	v
	Ž																										
	Co-60	~~	4		2	-			-				2	1			4	2	2	v.	N V	N N	v V		v	N V	N V
	ŏ		v V	· V	V	V	v	v	V	. <b>v</b>	V	v						, T		,	•		j.	•			Ì
	59	e	ω	4	4	4	2	0	4	4	0	ŝ	ŝ			Э	0	4	S	4	S	2	Q	ø	4	S	4
	ц.	V	۷	v	V	۷	V	V	۷	V	v	۷	V			V	v	V	V	V	v	V	v	v	v	v	V.
	8		4	2	2	N	4	ø	N	N	2	N	2			<b>~</b> ~	4	2	2	N	2	4	က	ო	2	ო	2
	Co-58	v	v	v	v	v	v	v	v	v	V	v	v			v	۷	v	v	۷	v	۷	۷	V	v	۷	v
			4	-	-	. <del>4</del> -10	4	in	N	N	N	N	N			<b>~</b>	4	N	N		2	4	2	2	2	2	
	Mn-54	v	v	v	v	v	v		v	v	v	v	v	. • •		v	v	v	v	v	v	v	v	v	v	v	v
	V																										
		6	6	5	6 10	6	6	0	ŝ	O	G	G	g	AN		9	9	ø	9	ő	ø	9	G	g	0	0	G
N	PERIOD	01/05/16 - 01/05/16	02/02/16 - 02/23/16	02/29/16 - 03/29/16	26/11	01/1	28/1	26/1	30/1	27/1	25/1	29/1	12/06/16 - 12/27/16	MEAN		05/1	02/02/16 - 02/23/16	02/29/16 - 03/29/16	04/05/16 - 04/26/16	01/1	06/07/16 - 06/28/16	26/1	30/1	27/1	25/1	29/1	12/06/16 - 12/06/16
CTIC	00	01	02/	03/	04/	00/	/90	120	. 08/	/60	10/	11/	12/			01/	02/	03/	04/	- 06/	- 06	120 -	- 08/	- 09/	, <u>1</u> 0	- 11	- 12
COLLECTION	PERIOD	16 -	16	16	16	16 -	16	16	16	16	16	16	10			16	16	16.	/16	16	16	16	16	116	/16	/16	116
8		1/05/	2/02/	2/29/	4/05/	5/03/	3/07/	7/05/	B/02/	90/6	0/04/	1/01/	2/06/			1/05	2/02	2/29	4/05	5/03	6/07	7/05	8/02	9/00	0/04	1/01	2/06
		ò	ö	õ	ò	ő	ð	0	õ	Ő	Ē					0	0	0	0	0	0	0	0	0	· · ·		
	[1]	2														50											
	SITE	BY-12														BY-29											

i

ī

MEAN

### CONCENTRATIONS OF TRITIUM IN GROUND WATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION						
PERIOD	BY-14-1	BY-18-1	BY-32	BY-35	BY-37	BY-38
01/16/16 - 01/23/16	< 193	< 185	< 190	< 192	< 178	< 181
04/12/16 - 04/12/16	< 170	< 169	< 171	< 170	< 169	< 172
07/12/16 - 07/12/16	< 187	< 192	< 191	< 165	< 165	< 166
10/11/16 - 10/11/16	< 181	< 183	< 183	< 182	< 179	< 178
MEAN	- -	·	_	. (* - *	n an thairte Tairte <del>-</del>	_

Table C-II.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUND WATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	l-131	Cs-134	Cs-137	Ba-140	La-140
BY-14-1	01/16/16 - 01/16/16	7 7	< 2	9 V	5 V	< 4	< 2	4	< 5 5	2 ~	0 V	< 13	۸ 4
	04/12/16 - 04/12/16	ς ν	9 V	× 11	۸ 4	< 12	9 v	∞ v	< 10	ۍ v	Q V	< 27	v t
	07/12/16 - 07/12/16	< 7	< 7	< 13	9 V	<ul><li>16</li></ul>	80 V	< 12	<ul><li>4</li></ul>	< 10	< 7	< 34	< 10
	10/11/16 - 10/11/16	9 V	α V	< 17	۸ 10	< 14	ග v	< 13	< 10	~ ~	ດ v	v 33	< 13
	MEAN	a.	1	1	1 1 1	1	1	4 	ı	1	1	1	ł
BY-18-1	01/23/16 - 01/23/16	∧ 4	00 V	< 10	ې م	< 10	۸ 4	ი v	∧ 4	ი v	د ۲	< 28	v 9
	04/12/16 - 04/12/16	2 V	2 V	< 15	< 7 ×	< 15	< 7	თ v	80 V	۸ 4	~ ~	< 30	< 13
	07/12/16 - 07/12/16	2 >	9 v	< 17	α v	< 14 14	ග v	< 12	۸ 4	9 v	თ v	< 39	< 7
	10/11/16 - 10/11/16	ი v	< 10	< 24	0 V	< 21	< 12 21	< 16	v 5	o V	v 5	< 39	< 13
	MEAN	•	. 1	°т	, <b>1</b>	ı	1		ł	•	t	. , <b>1</b>	
BY-32	01/16/16 - 01/16/16	×	~ v	сı V	N V	ى v	ო v	ۍ ۷	യ v	N V	ო v	< 15	<b>™</b> ∨
	04/12/16 - 04/12/16	9 ×	9 v	< 14	9 v	ہ 44	თ v	80 V	v t	< 7	د ۲	< 20	< 10
	07/12/16 - 07/12/16	۷ د	< 7	14	- 2	< 15	9 V	< 11	۸ 13	< 7	>	< 41	< 10
	10/11/16 - 10/11/16	9 V	∞ v	< 12	ດ v	۸ 4	~ ~	<ul><li></li><li>13</li></ul>	< 10	v v	< >	< 35	თ v
	MEAN	1	: <b>1</b> ,	1			ı		ł	•	.'	- i .	
			. (	- 1	. 1			i		. 1			
BY-35	ł.	Ω V	က V	ی v	N V	ې ۷	ς ν	ی v	9 v	ო v	ო v	< 16	v
	1	9 ~	<	<ul> <li>14</li> </ul>	9 V	< 15	9 v	÷ v	<ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>	ۍ ۷	< >	< 27	< 10 <
	07/12/16 - 07/12/16	9 v	2 >	< 10	< 7	< 15	80 V	< 12	v 33	~	< 7	<ul><li>30</li></ul>	۸ 4
	10/11/16 - 10/11/16	< 7	~ ~	< 15	9 V	< 17	∞ v	< 12	۸ 10	< 7	6 V	< 35	× 1
	MEAN	•	ŀ	•	£ .	•	T.	3	1	. <b>1</b> .	•	1	1
ΒΥ-37	01/16/16 - 01/16/16	2 V	× 2	ى م	v v	ন্থ V	N V	۸ 4	ил V	N V	2 2	< 12	۸ 4
	04/12/16 - 04/12/16	80 V	9 v	< 17	< 10	<ul><li>16</li></ul>	ග v	< 15	÷. v	< 7	ດ v	< 26	2 >
	07/12/16 - 07/12/16	ດ v	ග v	< 13	< 7	< 18	ග v	< 14	م 15	б V	ං v	< 36	v
	10/11/16 - 10/11/16	9 V	ى v	× 12	< 7	< 12	Q V	÷ v	80 V	< 7	ο V	< 24	80 V
	MEAN	g	,	'	1	. '	, <b>1</b> ,	, .	4	ı	ı,	1	- <b>1</b>
BY-38	1	5 V	n V	0 v	v v	v v	ი v	ي v	9 v	2 V	v v	<ul><li>15</li></ul>	ເດ v
	¥	ග v	<ul><li>10</li></ul>	< 20	9 V	۷	თ v	< 16	< 15 <	с v	თ v	< 32	< 14
	i.	∞ v	6 V	v 19	< 12	۷	< 10	< 13	v 15	6 v	6 V	< 43	< 11
	10/11/16 - 10/11/16	< 7	< >	<ul><li>15</li></ul>	2 >	< 17	80 V	×	~ ~	< 7	v	< 29	ග v
	MEAN		1	•	ı	,	ł	8	•	1	1	3	ı,

Table C-III.1

# CONCENTRATIONS OF NICKEL-63 AND GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

	COLLECTION													
SITE PERI	PERIOD		Ni-63	Mn-54	Co-58	Fe-59	0	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
BY-29														
Golden Redhorse	Golden Redhorse 05/05/16 - 05/05/16	9	< 249	< 82	< 53	< 165	< 74	< 146	v 84	< 113	< 71	< 85	< 416	د ۲05
Quillback	05/05/16 - 05/05/16	9	< 229	< 77	< 65	< 155	< 51	< 160	< 77 >	< 156	< 68	× 88	<ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>	<ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>
Golden Redhorse	10/25/16 - 10/25/16	9	۸ 18	< 43	4 34 ×	< 102	< 44	66 ×	<ul><li>√</li><li>54</li></ul>	× 89	< 37	× 34	< 285	~ v
Shorhead Redhorse	10/25/16 - 10/25/16	9	< 19	< 72	06 ×	< 154	< 69 >	< 174	< 90 <	< 135	< 75	< 77 >	< 463	< 110
	MEAN	N	, <b>1</b>	1	1	1	,		1		1			
												•	•	•
BY-31														
River Carpsucker	River Carpsucker 05/05/16 - 05/05/16	9	< 235	< 45	< 56	< 102	< 56	< 128	< 45 <	× 93	< 34	< 52	< 230	90 V
Quiliback	Quiliback 05/05/16 - 05/05/16	9	< 243	< 58	< 58 <	× 98	< 48	< 102	v 59	96 v	45.	<ul> <li>A</li> <li>A</li></ul>	< 203	
River Carpsucker	10/25/16 - 10/25/16	9	< 16	< 76	< 84	< 157	< 66	< 165	× 81	< 141	× 66	< 76	< 501	<ul><li>153</li></ul>
Channel Catfish	10/25/16 - 10/25/16	0	4 18 18	< 42	< 50	< 111	< 47	< 124	< 70	< 98	< 65	< 56	< 367	<ul><li>113</li></ul>
	MEAN	N	I	1	•	• • • • •	н			•	I	<b>1</b> 2 - 2		

CONCENTRATIONS OF NICKEL-63 AND GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCIKG DRY ± 2 SIGMA

		< 236	< 159	3	< 279	< 103	1
	Ba-140	< 593	< 530	1	< 847	< 301	
	Cs-137	225 ± 127	< 88	225 ± 0	< 91	< 48	ľ
		< 53		3	< 61	< 47	1
	Zr-95	< 103	< 131	ł	< 152	<ul><li>66</li></ul>	1
	Nb-95	< 59 <	<ul> <li>94</li> </ul>	ы 1, <b>1</b> 1, 1	<ul><li>94</li></ul>	< 47	1
	Zn-65	< 75	< 132	1	< 166	۸ 88	,
	Co-60	< 97	<ul><li>64</li></ul>	- 1	< 72	< 36	1
	Fe-59	< 147	< 134	,	< 205	<ul><li>84</li></ul>	1
	Co-58	< 70	< 72	I	< 78	< 55	1
	Mn-54	< 71	< 70	•	< 74	< 42	1
	Ni-63	< 173	< 234		< 206	< 236	I
COLLECTION	SITE PERIOD NI-63 MI	05/24/16 - 05/24/16	10/18/16 - 10/18/16	MEAN ± 2 STD DEV	05/24/16 - 05/24/16	10/18/16 - 10/18/16	MEAN
	SITE	BY-12			ΒΥ-34		

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

### CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION		GRO		a sterioù				
PERIOD	BY-21	BY-22	BY-23	BY-24	BY-01	GROUP II BY-04	BY-06	GROUP III BY-08
12/29/15 - 01/05/16	27 ± 5	21 ± 4	27 ± 5	29 ± 5	30 ± 5	27 ± 5	27 ± 5	28 ± 5
01/05/16 - 01/12/16	$14 \pm 4$	18 ± 4	$15 \pm 4$	19 ± 4	$16 \pm 4$	$16 \pm 4$	$18 \pm 4$	$17 \pm 4$
01/12/16 - 01/19/16	29 ± 5	27 ± 5	$28 \pm 5$	$24 \pm 4$	$26 \pm 4$	$24 \pm 4$	$27 \pm 4$	$28 \pm 5$
01/19/16 - 01/26/16	17 ± 4	19 ± 4	$23 \pm 5$	$19 \pm 4$	$22 \pm 4$	18 ± 4	$18 \pm 4$	$20 \pm 3$
01/26/16 - 02/02/16	17 ± 4	18 ± 4	$13 \pm 4$	$15 \pm 4$	$14 \pm 4$	$13 \pm 4$	$18 \pm 4$	$19 \pm 4$
02/02/16 - 02/09/16	16 ± 4	$14 \pm 4$	15 ± 4	17 ± 4	$19 \pm 4$	$16 \pm 4$	$18 \pm 4$	$16 \pm 4$
02/09/16 - 02/16/16	$13 \pm 4$	18 ± 4	$16 \pm 4$	16 ± 4	$17 \pm 4$	$13 \pm 4$	$17 \pm 4$	$13 \pm 4$
02/16/16 - 02/23/16	$15 \pm 4$	9 ± 3	$13 \pm 4$	$14 \pm 4$	$16 \pm 4$	$10 \pm 1$ 11 ± 3	$11 \pm 3$	$13 \pm 4$
02/23/16 - 02/29/16	$19 \pm 5$	18 ± 4	$17 \pm 4$	18 ± 4	$19 \pm 4$	$15 \pm 4$	$20 \pm 5$	$19 \pm 5$
02/29/16 - 03/08/16	$13 \pm 3$	14 ± 4	$11 \pm 3$	$11 \pm 3$	$13 \pm 4$	9±3	$14 \pm 4$	$14 \pm 4$
03/08/16 - 03/15/16	$13 \pm 3$	$13 \pm 3$	$14 \pm 4$	$14 \pm 4$	$17 \pm 4$	$15 \pm 4$	$17 \pm 4$	$14 \pm 3$
03/15/16 - 03/22/16	8 ± 4	$10 \pm 4$	9 ± 4	$12 \pm 4$	$10 \pm 4$	6 ± 3	8 ± 3	8 ± 4
03/22/16 - 03/29/16	$13 \pm 4$	$12 \pm 4$	$10 \pm 4$	8 ± 4	$11 \pm 4$	15 ± 4	$12 \pm 4$	$14 \pm 4$
03/29/16 - 04/05/16	$12 \pm 4$	$12 \pm 4$	$10 \pm 4$	12 ± 4	$13 \pm 4$	$10 \pm 4$	$9 \pm 4$	$10 \pm 4$
04/05/16 - 04/12/16	$12 \pm 4$	$12 \pm 4$	$9 \pm 4$	$11 \pm 4$	13 ± 4	9 ± 4	13 ± 4	$10 \pm 4$
04/12/16 - 04/19/16	$17 \pm 4$	$13 \pm 4$	$13 \pm 4$	$12 \pm 4$	19 ± 5	11 ± 4	$15 \pm 4$	$15 \pm 4$
04/19/16 - 04/26/16	20 ± 5	16 ± 4	$17 \pm 4$	$13 \pm 4$	$17 \pm 4$	18 ± 4	16 ± 4	$18 \pm 4$
04/26/16 - 05/03/16	7 ± 3	< 7	$6 \pm 3$	9 ± 4	8 ± 3	7 ± 3	7 ± 3	9 ± 4
05/03/16 - 05/10/16	$10 \pm 4$	$10 \pm 4$	$11 \pm 4$	$11 \pm 4$	$11 \pm 4$	$11 \pm 4$	$14 \pm 4$	$12 \pm 4$
05/10/16 - 05/17/16	9 ± 3	9 ± 3	$11 \pm 4$	$10 \pm 4$	8 ± 3	8 ± 3	$11 \pm 4$	9±3
05/17/16 - 05/24/16	16 ± 4	$23 \pm 5$	$25 \pm 5$	23 ± 5	21 ± 4	18 ± 4	19 ± 4	$23 \pm 4$
05/24/16 - 05/31/16	16 ± 4	15 ± 4	$14 \pm 3$	$14 \pm 4$	15 ± 4	$14 \pm 3$	$15 \pm 4$	$15 \pm 4$
05/31/16 - 06/07/16	15 ± 4	$15 \pm 4$	$13 \pm 4$	$12 \pm 4$	11 ± 4	13 ± 4	15 ± 4	$12 \pm 4$
06/07/16 - 06/14/16	13 ± 4	$17 \pm 4$	$15 \pm 4$	$14 \pm 4$	$13 \pm 4$	$13 \pm 4$	$13 \pm 4$	18 ± 4
06/14/16 - 06/21/16	16 ± 4	21 ± 4	18 ± 4	$16 \pm 4$	18 ± 4	$16 \pm 4$	18 ± 4	$17 \pm 4$
06/21/16 - 06/28/16	16 ± 4	$14 \pm 4$	$17 \pm 4$	$10 \pm 3$	$15 \pm 4$	$14 \pm 4$	$14 \pm 4$	$15 \pm 4$
06/28/16 - 07/05/16	$10 \pm 4$	$14 \pm 4$	$13 \pm 4$	$11 \pm 4$	13 ± 4	$13 \pm 4$	$14 \pm 4$	$12 \pm 4$
07/05/16 - 07/12/16	$14 \pm 4$	$14 \pm 4$	$17 \pm 4$	$16 \pm 4$	18 ± 4	13 ± 4	12 ± 4	$15 \pm 4$
07/12/16 - 07/19/16	$15 \pm 4$	$16 \pm 4$	$15 \pm 4$	$13 \pm 4$	$17 \pm 4$	$14 \pm 4$	15 ± 4	$14 \pm 4$
07/19/16 - 07/26/16	$18 \pm 4$	17 ± 4	$14 \pm 4$	$17 \pm 4$	16 ± 4	$16 \pm 4$	$14 \pm 4$	$17 \pm 4$
07/26/16 - 08/02/16	$15 \pm 4$	$16 \pm 4$	$12 \pm 4$	18 ± 4	$16 \pm 4$	$17 \pm 4$	$15 \pm 4$	17 ± 4
08/02/16 - 08/09/16	$22 \pm 4$	18 ± 4	$17 \pm 4$	$17 \pm 4$	$16 \pm 4$	$17 \pm 4$	20 ± 4	$15 \pm 4$
08/09/16 - 08/16/16	$14 \pm 4$	$18 \pm 5$	$18 \pm 5$	$15 \pm 4$	$18 \pm 5$	$17 \pm 5$	$19 \pm 5$	$15 \pm 4$
08/16/16 - 08/23/16	$17 \pm 4$	$16 \pm 4$	18 ± 4	$13 \pm 4$	$16 \pm 4$	$13 \pm 4$	$18 \pm 4$	$13 \pm 4$
08/23/16 - 08/30/16	$14 \pm 4$	$11 \pm 4$	$10 \pm 4$	$12 \pm 4$	$11 \pm 4$	$12 \pm 4$	$12 \pm 4$	$13 \pm 4$
08/30/16 - 09/06/16	19 ± 4	$15 \pm 4$	$13 \pm 4$	$16 \pm 4$	$16 \pm 4$	18 ± 4	$20 \pm 5$	$15 \pm 4$
09/06/16 - 09/13/16	$15 \pm 4$	$17 \pm 4$	18 ± 4	$20 \pm 4$	17 ± 4	$15 \pm 4$	$17 \pm 4$	$14 \pm 4$
09/13/16 - 09/20/16	18 ± 4	$16 \pm 4$	$17 \pm 4$	$17 \pm 4$	$17 \pm 4$	$21 \pm 4$	19 ± 4	16 ± 4
09/20/16 - 09/27/16	$14 \pm 4$	$15 \pm 4$	$17 \pm 4$	21 ± 4	$17 \pm 4$	$17 \pm 4$	$18 \pm 4$	$16 \pm 4$
09/27/16 - 10/04/16	$11 \pm 3$	6 ± 3	8 ± 3	$10 \pm 3$	$10 \pm 3$	8 ± 3	8 ± 3	8 ± 3
10/04/16 - 10/11/16	$24 \pm 5$	$20 \pm 4$	$24 \pm 5$	$20 \pm 4$	$23 \pm 5$	$23 \pm 5$	$24 \pm 5$	$25 \pm 5$
10/11/16 - 10/18/16	21 ± 4	$23 \pm 5$	$21 \pm 4$	$22 \pm 4$	21 ± 4	$19 \pm 4$	23 ± 5	$20 \pm 4$
10/18/16 - 10/25/16	13 ± 4	13 ± 4	$13 \pm 4$	$16 \pm 5$	$13 \pm 4$	$15 \pm 4$	$14 \pm 4$	$14 \pm 4$
10/25/16 - 11/01/16	18 ± 4	$21 \pm 4$	$20 \pm 4$	19 ± 4	$20 \pm 4$	$23 \pm 5$	$21 \pm 4$	$19 \pm 4$
11/01/16 - 11/08/16	$28 \pm 5$	$27 \pm 5$	28 ± 5	$30 \pm 5$	$28 \pm 5$	$31 \pm 5$	$32 \pm 5$	31 ± 5
11/08/16 - 11/15/16	19 ± 4	$20 \pm 4$	$22 \pm 4$	$14 \pm 4$	$16 \pm 4$	21 ± 4	$17 \pm 4$	$20 \pm 4$
11/15/16 - 11/21/16	36 ± 6	41 ± 6	38 ± 6	$39 \pm 6$	$33 \pm 6$	38 ± 6	39 ± 6	36 ± 6
11/21/16 - 11/29/16	$19 \pm 4$	$20 \pm 4$	$23 \pm 4$	19 ± 4	18 ± 4	19 ± 4	$23 \pm 4$	17 ± 4
11/29/16 - 12/06/16 12/06/16 - 12/13/16	$11 \pm 4$	$11 \pm 4$	$10 \pm 4$	$14 \pm 4$	$11 \pm 4$	13 ± 4	12 ± 4	$13 \pm 4$
12/13/16 - 12/20/16	$17 \pm 4$ 19 ± 4	$14 \pm 4$ 18 ± 4	$14 \pm 4$	$16 \pm 4$	$16 \pm 4$	19 ± 4	$15 \pm 4$	$16 \pm 4$
12/20/16 - 12/27/16	$13 \pm 4$	$10 \pm 4$	$18 \pm 4$ 20 + 4	$22 \pm 4$	$19 \pm 4$	$20 \pm 4$	$22 \pm 5$	$22 \pm 5$
12/27/16 - 01/03/17	$12 \pm 4$	$19 \pm 4$ 11 ± 4	20 ± 4 16 ± 4	18 ± 4 13 ± 4	$18 \pm 4$ 13 ± 4	20 ± 4 14 ± 4	$22 \pm 4$ 11 \pm 4	$22 \pm 4$
and a crown	T NO COL T	* * als "?	10 2 7	10 1 7	10 E 4	14 1 4	11 1 4	14 ± 4
MEAN ± 2 STD DEV	16 ± 11	16 ± 11	16 ± 12	16 ± 11	17 ± 10	16 ± 12	17 ± 12	16 ± 11

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

S	MEAN	± 2SD	23 ± 10	15±6	12 ± 6	12 ± 8	15 ± 12	15 ± 5	15 ± 4	14 ± 2	14 ± 6	$20 \pm 10$	$26 \pm 18$	17 ± 9	16 ± 11
DCATION	MAX		28	19	4	18		18	17	15	16	25	36	22	36
ROL LC	NIN		17	13	80	n	6	12	12	<del>1</del> 3	8	14	17	13	8
GROUP III - CONTROL LOCATIONS	CTION	IOD	02/02/16	02/29/16	03/29/16	05/03/16	05/31/16	06/28/16	08/02/16	08/30/16	10/04/16	11/01/16	11/29/16	01/03/17	- 01/03/17
GROL	COLLECTION	PERIOD	12/29/15 -	02/02/16 -	02/29/16 -	03/29/16	05/03/16 -	05/31/16 -	06/28/16 -	08/02/16 -	08/30/16 -	10/04/16 -	11/01/16	11/29/16	12/29/15 -
SN	MEAN	± 2SD	21 ± 11	16 ± 6	12 ± 7	12 ± 8	14 ± 9	14 ± 4	15 ± 4	16 ± 6	16 ± 8	20 ± 8	$26 \pm 17$	16 ± 8	16 ± 11
DCATIO	MAX		30	20	17	19	21	18	18	20	21	24	39	22	39
ELD L	MIN		13		9	2	ω	<del>~</del>	12	t t	8	13	16	<del>~</del>	9
GROUP II - FAR FIELD LOCATIONS	NOIL	DD -	02/02/16	02/29/16	03/29/16	05/03/16	06/01/16	06/28/16	08/02/16	08/30/16	10/04/16	11/01/16	11/29/16	01/03/17	01/03/17
GROUI	COLLECTION	PERIOD	12/29/15 - 02/02/16	02/02/16 -	02/29/16 -	03/29/16 -	05/03/16 -	05/31/16 -	06/28/16 -	08/02/16 -	08/30/16 -	10/04/16 -	11/01/16 -	11/29/16 -	12/29/15 - 01/03/17
NS	MEAN	± 2SD	21 ± 11	15 ± 5	12 ± 4	12 ± 7	14 ± 10	15 ± 5	15±4	16 ± 6	15 ± 8	19 ± 7	$26 \pm 17$	16 ± 7	16 ± 11
CATIONS	MAX		29	19	14	20	25	21	18	22	21	24	41	53	41
	MIN		13	0	8	9	ං ග	10	10	10	9	13	4	0	0
GROUP I - NEARSITE LO	CTION	go	02/02/16	02/29/16	03/29/16	05/03/16	06/01/16	06/28/16	08/02/16	08/30/16	10/04/16	11/01/16	11/29/16	01/03/17	01/03/17
GROL	COLLECTION	PERIOD	12/29/15 -	02/02/16 -	02/29/16 -	03/29/16 -	05/03/16 -	06/01/16 -	06/28/16 - 08/02/16	08/02/16 - 08/30/16	08/30/16 -	10/04/16 -	11/01/16 -	11/29/16 -	12/29/15 - 01/03/17
-		7													

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

12/29/15 - 03/29/16       <3       <5       <16       <2       <8       <3       <8       <3       <2       <8       8       <3       <2       <8       8       <3       <2       <8       8       <3       <2       <8       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       8       <3       <       10       <2       <       10       <2       <       139       <       139       <       10       <2       <       3       <       117       <2       <       117       <2       <       113       <       <2       <       139       <       <11       <2       <       <2       <11       <2       <       <2       <       <117       <2       <2       <2       <2       <2       <2       <2       <2	SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	0 La-140
00228/16 $< 22$ $< 5$ $< 19$ $< 3$ $< 8$ $< 7$ $< 12$ $< 3$ $< 456$ $< 456$ $< 456$ $< 456$ $< 2$ $< 2$ $< 19$ $< 456$ $< 2$ $< 2$ $< 2$ $< 139$ $< 456$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$	BY-01	12/29/15 - 03/29/16	က V	9 V	< 16		∞ ∨	с v					V
06/28/16 $0.027/16$ $< 2$ $< 3$ $< 10$ $< 2$ $< 3$ $< 5$ $< 5$ $< 2$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 139$ $< 1176$ $< 139$ $< 1176$ $< 139$ $< 1176$ $< 139$ $< 1176$ $< 139$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ $< 1176$ < 1122917 $< 139$		03/29/16 - 06/28/16	< 2	ა v		ი v	∞ v	< 7	< 12	ლ V		< 45	v
D9/27/16         03/27/16         01/03/17         <3         <2         <6         <3         <5         <2         <         136            MEAN         .         .         .         .         .         .         .         .         .         <13         <3         <5         <         <13         <         <         <11         <3         <5         <117         <2         <         <13         <3         <11         <3         <3         <11         <3         <3         <11         <3         <3         <11         <2         <2         <13         <3         <3         <11         <3         <3         <4         <11         <7         <12         <4         <3         <4         <13         <3         <4         <13         <3         <4         <13         <3         <4         <12         <3         <4         <13         <3         <3         <4         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3         <3 <t></t>		06/28/16 - 09/27/16	< 2	ი v			ې د						v
MEAN		09/27/16 - 01/03/17					Q V						v
12/29/15 - 03/29/16 $<4$ $<7$ $<26$ $<3$ $<12$ $<66$ $<11$ $<3$ $<3$ $<1176$ $<$ 03/29/16 - 06/28/16 $<3$ $<4$ $<7$ $<26$ $<3$ $<7$ $<4$ $<3$ $<4$ $<17$ $<<0$ $<417$ $<<0$ 06/22/16 $<09/27/16$ $<3$ $<2$ $<3$ $<7$ $<4$ $<6$ $<3$ $<2$ $<116$ $<3$ $<2$ $<116$ $<3$ $<2$ $<116$ $<3$ $<2$ $<116$ $<216$ $<116$ $<2$ $<2$ $<116$ $<217$ $<2$ $<217$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$ $<216$		MEAN		1	• •	. 1							
12/29/15       - 03/29/16 $<4$ $<7$ $<26$ $<3$ $<12$ $<66$ $<11$ $<3$ $<417$ $<<3$ 03/29/16 $<3$ $<4$ $<13$ $<3$ $<72$ $<56$ $<11$ $<3$ $<417$ $<<3$ 03/29/16 $<3$ $<4$ $<13$ $<3$ $<7$ $<4$ $<53$ $<4$ $<13$ $<53$ $<4$ $<13$ $<3$ $<4$ $<13$ $<3$ $<54$ $<13$ $<53$ $<4$ $<13$ $<53$ $<4$ $<13$ $<23$ $<4$ $<11$ $<7$ $<12$ $<4$ $<23$ $<54$ $<11$ $<7$ $<12$ $<23$ $<24$ $<13$ $<26$ $<11$ $<7$ $<12$ $<23$ $<24$ $<13$ $<26$ $<11$ $<7$ $<26$ $<717$ $<262$ $<717$ $<262$ $<717$ $<262$ $<717$ $<262$ $<727$ $<262$ $<727$ $<262$ $<727$ $<262$ $<727$ $<2727$ $<262$ $<2727$ $<2727$ $<2727$ $<2727$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>L.</td> <td>•.</td> <td></td> <td>1</td> <td>•</td> <td>•</td> <td>•</td> <td>1</td>						L.	•.		1	•	•	•	1
12/29/15 $< 03/29/16$ $< 4$ $< 7$ $< 26$ $< 3$ $< 12$ $< 6$ $< 12$ $< 4$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 3$ $< 4$ $< 13$ $< 2$ $< 4$ $< 13$ $< 2$ $< 4$ $< 13$ $< 2$ $< 3$ $< 4$ $< 13$ $< 2$ $< 3$ $< 13$ $< 2$ $< 13$ $< 2$ $< 2$ $< 13$ $< 2$ $< 2$ $< 13$ $< 2$ $< 2$ $< 13$ $< 2$ $< 2$ $< 13$ $< 2$ $< 2$ $< 13$ $< 2$ $< 2$ $< 13$ $< 2$ $< 2$ $< 12$ $< 2$ $< 12$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< 2$ $< $													
03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16       03/22/16 <t< td=""><td>37-04</td><td>12/29/15 - 03/20/16</td><td></td><td>r</td><td></td><td>0</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></t<>	37-04	12/29/15 - 03/20/16		r		0		•					
00228/16       -09/27/16       <3	5			~		n V	< 12	ю v		A 4	ო v		3 < 653
06/28/16       - 09/27/16       < 2				4 4		° ∨	თ v	ဖ v		ი v	ი v		Y
09/27/16 - 01/03/17       <3		1		ຕ ⊻	9 V	ი v	< 7	4			67 V	v 13	V
MEAN       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       12/29/15       -       03/29/16       -       03/29/16       -       03/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/29/16       -       05/27/16       -       11       <       -       1       <       -       1       <       -       1       <       3       <       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3		\$						L >			4 4	v 55	v
12/29/15 - 03/29/16       <3		MEAN	•		. 1	1	ľ						
12/29/15       03/29/16       <3										,	1	1 .	
12/23/15       - 03/29/16       <3													
03229/16 $06/28/16$ $< 3$ $< 5$ $< 15$ $< 4$ $< 8$ $< 5$ $< 12$ $< 335$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 110$ $< 125$ $< 125$ $< 110$ $< 125$ $< 125$ $< 110$ $< 125$ $< 125$ $< 110$ $< 125$ $< 125$ $< 110$ $< 125$ $< 125$ $< 125$ $< 110$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 125$ $< 121$ $< 125$ $< 121$ $< 22$ $< 125$ $< 121$ $< 22$ $< 121$ $< 22$ $< 121$ $< 125$ $< 121$ $< 121$ $< 121$ $< 121$ $< 121$ $< 22$ $< 121$ $< 121$ $< 22$ $< 121$ $< 121$ $< 121$ $< 121$ $< 121$ $< 121$ $< 121$ $< 121$ $< $	90- <i>\</i> 1		ი v	۸ 4		¢ v	v v	c V	c v	ر ۱	0	ŗ	
06/28/16       09/27/16           335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335        335       335       35       371		1	en V			1 -	> o ' \			-	V (	2	v
MEAN       -       -       -       -       -       -       -       125       <		5	2 2 2		2 5						° ∨	×	v
09127/16 - 01/03/17 $< 2$ $< 4$ $< 3$ $< 4$ $< 3$ $< 6$ $< 2$ $< 2$ $< 110$ $< 110$ $MEAN$ -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       10 $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 110$ $< 100$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$ $< 120$		I I	n (				e V		0 V	2 2	27 2	< 12	< 36
MEAN       -       -       -       -       -       797       -         12/29/15       -       03/29/16       <2		i.	2								< 2	v 110	
12/29/15 - 03/29/16 <2 <4 < 18 <3 < 6 <6 < 9 <2 <2 < 797 < 03/29/16 - 06/28/16 <3 <5 < 16 <3 < 6 < 6 < 10 <3 <3 < 471 < 06/28/16 <02/27/16 <2 <3 <10 <2 <5 <471 < 06/28/16 - 01/03/17 <3 <3 < 10 <2 < 5 <4 < 7 <2 <2 <12 <471 <00/27/16 <02 <3 <3 <10 <5 <5 <12 <12 <12 <12 <12 <12 <12 <12 <12 <12		MEAN	, <b>1</b>	,	ī	'	1		,		:		
12/29/15 - 03/29/16 < 2 <4 < 18 <3 < 6 <6 < 9 <2 <2 < 797 < 03/29/16 - 06/28/16 <3 <5 <16 <3 <6 <6 < 10 <3 <3 < 471 < 06/28/16 <02/27/16 <2 <3 <10 <2 <5 <471 <<0 <5 <10 <3 <3 <471 <0 <5 <02 <5 <5 <10 <5 <5 <10 <5 <10 <5 <471 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5												ı	
12/29/15 $03/29/16$ $< 2$ $< 4$ $< 18$ $< 3$ $< 6$ $< 6$ $< 9$ $< 2$ $< 797$ $< 03/29/16$ $03/29/16$ $06/28/16$ $< 3$ $< 5$ $< 16$ $< 3$ $< 6$ $< 6$ $< 10$ $< 3$ $< 471$ $< 03/29/16$ $06/28/16$ $-09/27/16$ $< 2$ $< 3$ $< 16$ $< 3$ $< 471$ $< 06/28/16$ $06/28/16$ $-09/27/16$ $< 2$ $< 3$ $< 10$ $< 2$ $< 471$ $< 06/28/16$ $06/28/16$ $-09/27/16$ $< 2$ $< 3$ $< 10$ $< 2$ $< 7$ $< 2$ $< 7$ $< 2$ $< 121$ $< 09/27/16$ $< 10/03/17$ $< 3$ $< 3$ $< 9$ $< 2$ $< 7$ $< 12$ $< 7$ $< 7$ $< 2$ $< 12$ $< 124$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$ $< 145$													
<ul> <li>&lt;3 &lt;5 &lt; 16 &lt;3 &lt; 6 &lt; 6 &lt; 10 &lt;3 &lt; 3 &lt; 7 &lt; 7 &lt; 7 &lt; 12 &lt; 471 &lt;</li> <li>&lt;2 &lt; 3 &lt; 10 &lt;2 &lt; 6 &lt; 4 &lt; 7 &lt; 2 &lt; 2 &lt; 121 &lt;</li> <li>&lt;3 &lt;3 &lt; 9 &lt; 2 &lt; 5 &lt; 4 &lt; 7 &lt; 5 &lt; 2 &lt; 121 &lt;</li> <li>&lt;3 &lt; 9 &lt; 2 &lt; 5 &lt; 4 &lt; 5 &lt; 2 &lt; 145 &lt;</li> </ul>	¥-08		2	4		ი ა	0 v	0 v		ې ۷	~		V
<ul> <li>&lt;2 &lt;3 &lt;10 &lt;2 &lt; 6 &lt;4 &lt; 7 &lt;2 &lt;2 &lt; 121 &lt;</li> <li>&lt;3 &lt;3 &lt;9 &lt;2 &lt; 5 &lt;4 &lt; 5 &lt;2 &lt; 121 &lt;</li> <li>&lt;145 &lt;</li> </ul>				ې ۷	ہ 16	ი v	ი ა		<del></del>		l en V		
<ul> <li>&lt; 3 &lt; 3 &lt; 9 &lt; 2 &lt; 5 &lt; 4 &lt; 5 &lt; 2 &lt; 145 &lt;</li> <li>&lt; 145 </li> </ul>		06/28/16 - 09/27/16	< 2	ς γ			ю v	4			, v		/ \
		09/27/16 - 01/03/17					ເດ V				1 CI	-	v
		AAE AAI									1		

C-9

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

La-140	< 346	< 165	< 56	۸ 81	. 1	•		< 264	< 140	< 37	<ul><li>56</li></ul>	t		< 391	< 202	< 56	< 48	•		< 335	< 129	< 55	< 60	
Ba-140	724	477	139	192		1		884	478	137	135	, i		816	473	124	188	ı		913	395	84	153	
Ba	v	v	v	v				v	v	v	v			v	v	۷	v			v	V	v	v	
Cs-137	v 8	<ul><li>4</li></ul>	ი v	<ul> <li>V</li> <li>V</li> </ul>		•		< 2	ςς Υ	< 2	0 V	· •		v v	с v	~ ~	< 2	. '		со V	ი v	< 2 <	ς γ	
Cs-134	< 2	က v	ო v	۸ 4		•		2 V	ი v	< 2	0 V	•		N V	ς γ	۲ ۲	с v	•		က v	< 2	N V	v v	
Zr-95	α v	<ul><li>&lt; 10</li></ul>	9 v	۸ ۲		J		co V	× 11	< 7	~ ~	,		< 12	< 12	< 7	< 7			۸ 10	× 11	9 v	9 V	
Nb-95	ۍ م	9 V	۸ 4	9 V		1		ى v	ഹ V	ς γ	<b>4</b> V			α0 V	9 v	۸ 4	۸ 4	i		ю v	ю v	× 4	ςς γ	
Zn-65	< 7	< 11	6 V	ത v		•		< 7	∞ v	< 7 >	ဖ v			< 7	ţ	ې ۲	9 v	4		2	∞ v	9 V	0 v	
Co-60	ς γ	ς γ	က V	ი v		i		ი v	ი v	< 2	ი v	,		ი v	N V	ς γ	< 2	1		20 V	ষ v	ი v	ი v	
Fe-59	< 15	< 17	< 10	< 14 44		1.		< 20	< 24	< 13	ο V	1		v 19	< 19	< 12	v F			<ul><li>16</li></ul>	<ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>	αο V	< 12	
Co-58	4 4	9 v	4 4	ю V		•		۸ 4	9 v	× 4	ო v	н		9 V	< 7	ς γ	4 4	•		ŝ	9 v	ი v	∧ 4	
Mn-54	ς γ	4	< 2	A 4		1		2 2 2 2	< 4	ې ۷	<ul><li>2</li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>	,		ი ა	4 V	€ 2	< 2	1		ი v	۰ ۲	ი ა	° ∨	
STION OD	03/29/16	- 06/28/16	- 09/27/16	01/03/17	ARCAN	WEAN		03/29/16	06/28/16	09/27/16	- 01/03/17	MEAN		- 03/29/16	- 06/28/16	- 09/27/16	- 01/03/17	MFAN		03/29/16	06/28/16	09/27/16	01/03/17	
COLLECTION	12/29/15 - 03/29/16	03/29/16 -	06/28/16 -	09/27/16 -				12/29/15 -	03/29/16 - 06/28/16	06/28/16 -				12/29/15 -	03/29/16 -	06/28/16 -	09/27/16 -			12/29/15 - 03/29/16	03/29/16 -	06/28/16 - 09/27/16	09/27/16 - 01/03/17	
SITE	BY-21							BY-22						BY-23						BY-24				

### CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION	0.1.1.1.	GF	ROUPI			GROUP	1	GROUP III
PERIOD	BY-21	BY-22	BY-23	BY-24	BY-01	BY-04	BY-06	BY-08
12/29/15 - 01/05/16	< 68	< 68	< 68	< 67	< 67	< 69	< 68	< 69
01/05/16 - 01/12/16	< 57	< 57	< 57	< 57	< 66	< 67	< 67	< 67
01/12/16 - 01/19/16	< 55	< 57	< 57	< 57	< 55	< 55	< 55	< 21
01/19/16 - 01/26/16	< 18	< 18	< 18	< 18	< 18	< 17	< 17	< 17
01/26/16 - 02/02/16	< 69	< 69	< 69	< 68	< 56	< 57	< 58	< 58
02/02/16 - 02/09/16	< 46	< 46	< 47	< 47	< 34	< 33	< 33	< 33
02/09/16 - 02/16/16	< 44	< 44	< 44	< 44	< 39	< 39	< 39	< 39
02/16/16 - 02/23/16	< 42	< 42	< 42	< 42	< 30	< 30	< 30	< 30
02/23/16 - 02/29/16	< 70	< 69	< 69	< 69	< 63	< 65	< 65	< 65
02/29/16 - 03/08/16	< 30	< 68	< 69	< 69	< 69	< 67	< 68	< 67
03/08/16 - 03/15/16	< 52	< 57	< 57	< 57	< 23	< 53	< 53	< 20
03/15/16 - 03/22/16	< 54	< 54	< 54	< 53	< 48	< 47	< 47	< 48
03/22/16 - 03/29/16	< 67	< 67	< 28	< 66	< 55	< 55	< 55	< 55
03/29/16 - 04/05/16	< 22	< 59	< 59	< 59	< 57	< 59		
04/05/16 - 04/12/16	< 39	< 39	< 39	< 39	< 31	< 30	< 59	< 59
04/12/16 - 04/19/16	< 67	< 52	< 52	< 52	< 68		< 30	< 30
04/19/16 - 04/26/16	< 68	< 68	< 67	< 67	< 68 < 54	< 26	< 68	< 68
04/26/16 - 05/03/16	< 27	< 67	< 27	< 27		< 53	< 54	< 54
05/03/16 - 05/10/16	< 53	< 54			< 51	< 52	< 53	< 53
05/10/16 - 05/17/16	< 65		< 53	< 22	< 65	< 63	< 63	< 25
05/17/16 - 05/24/16	< 05 < 25	< 65	< 65	< 65	< 52	< 54	< 21	< 54
		< 60	< 60	< 60	< 66	< 67	< 66	< 27
05/24/16 - 05/31/16 05/31/16 - 06/07/16	< 54	< 54	< 54	< 54	< 49	< 48	< 58	< 58
	< 70	< 58	< 58	< 59	< 58	< 68	< 61	< 61
06/07/16 - 06/14/16	< 66	< 66	< 66	< 65	< 64	< 66	< 66	< 67
06/14/16 - 06/21/16	< 69	< 69	< 69	< 70	< 69	< 69	< 69	< 68
06/21/16 - 06/28/16	< 24	< 24	< 24	< 24	< 42	< 42	< 43	< 43
06/28/16 - 07/05/16	< 66	< 66	< 67	< 67	< 69	< 67	< 66	< 29
07/05/16 - 07/12/16	< 43	< 43	< 43	< 43	< 43	< 42	< 42	< 44
07/12/16 - 07/19/16	< 63	< 63	< 63	< 63	< 64	< 63	< 64	< 63
07/19/16 - 07/26/16	< 62	< 62	< 61	< 61	< 57	< 58	< 58	< 59
07/26/16 - 08/02/16	< 65	< 65	< 65	< 65	< 64	< 63	< 63	< 63
08/02/16 - 08/09/16	< 65	< 65	< 66	< 66	< 63	< 22	< 64	< 64
08/09/16 ~ 08/16/16	< 50	< 50	< 49	< 49	< 58	< 60	< 59	< 59
08/16/16 - 08/23/16	< 40	< 40	< 40	< 15	< 60	< 60	< 61	< 62
)8/23/16 - 08/30/16	< 67	< 67	< 66	< 66	< 59	< 58	< 58	< 58
08/30/16 - 09/06/16	< 61	< 61	< 61	< 61	< 56	< 57	< 57	< 58
9/06/16 - 09/13/16	< 45	< 45	< 46	< 46	< 50	< 51	< 50	< 50
09/13/16 - 09/20/16	< 46	< 46	< 47	< 46	< 25	< 61	< 61	< 62
9/20/16 - 09/27/16	< 49	< 48	< 48	< 47	< 64	< 62	< 62	< 63
9/27/16 - 10/04/16	< 63	< 63	< 64	< 64	< 24	< 62	< 62	< 63
0/04/16 - 10/11/16	< 58	< 58	< 58	< 57	< 45	< 46	< 45	< 44
0/11/16 - 10/18/16	< 63	< 63	< 63	< 63	< 53	< 53	< 53	< 54
0/18/16 - 10/25/16	< 64	< 63	< 64	< 64	< 66	< 66	< 65	< 64
0/25/16 - 11/01/16	< 65	< 65	< 65	< 64	< 62	< 63	< 64	< 65
1/01/16 - 11/08/16	< 67	< 67	< 67	< 67	< 55	< 54	< 54	< 54
1/08/16 - 11/15/16	< 61	< 61	< 61	< 62	< 51	< 50	< 50	< 49
1/15/16 - 11/21/16	< 64	< 64	< 64	< 64	< 31	< 57	< 57	< 57
1/21/16 - 11/29/16	< 62	< 62	< 62	< 63	< 63	< 61	< 61	< 61
1/29/16 - 12/06/16	< 52	< 52	< 51	< 51	< 43	< 44	< 44	< 45
2/06/16 - 12/13/16	< 64	< 64	< 65	< 34	< 59	< 57	< 56	< 56
2/13/16 - 12/20/16	< 50	< 49	< 49	< 49	< 62	< 61	< 62	
2/20/16 - 12/27/16	< 24	< 24	< 24	< 24	< 32	< 33		< 62
2/27/16 - 01/03/17	< 43	< 43	< 43				< 32	< 32
		~ 4U	~ 40	< 43	< 62	< 60	< 62	< 62

MEAN

### CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	CONTROL FARM BY-26-2	INDICATOR FARM BY-20-1
01/05/16	< 0.6	< 0.6
02/02/16	< 1.0	< 0.7
02/29/16	< 0.6	< 0.6
04/05/16	< 0.3	< 0.5
05/03/16	< 0.5	< 0.6
05/17/16	< 0.5	< 0.6
05/31/16	< 0.5	< 0.6
06/14/16	< 0.9	< 0.9
06/28/16	< 0.5	< 0.3
07/12/16	< 0.5	< 0.8
07/26/16	< 0.4	< 0.5
08/09/16	< 0.7	< 0.6
08/23/16	< 0.8	< 0.8
09/06/16	< 0.6	< 0.6
09/20/16	< 0.7	< 0.7
10/04/16	< 0.6	< 0.5
10/18/16	< 0.7	< 0.9
11/01/16	< 0.9	< 0.7
12/06/16	< 0.8	< 0.8
MEAN	-	•

C-12

COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016

MEAN

Table C-VIII.1

### CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

SITE         COLLECTION           SYCONTROL         Roold         Mn-54         Co-68         F6-50         Zn-66         Nb-96         Zn-95         F1-10         Ra-140         Lan-140         Lan-140           BY-CONTROL         7127/2016         < 21         < 20         < 71         < 65         < 20         < 73         < 61         < 65         < 36         < 66         < 36         < 66         < 36         < 66         < 36         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         < 66         66         66         < 66														
5         7/27/2016         < 24         < 25         < 63         < 36         < 74         < 33         < 51         < 56         < 29         < 30         < 138           16         7/27/2016         < 31         < 30         < 51         < 23         < 61         < 33         < 61         < 33         < 61         < 33         < 61         < 33         < 61         < 33         < 61         < 33         < 61         < 63         < 63         < 64         < 63         < 61         < 21         < 63         < 64         < 64         < 61         < 61         < 61         < 63         < 615         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61         < 61	0	OLLECTION	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95		H-131	Cs-134	Cs-137	Ba-140	La-140
Tiz712016 $< 24$ $< 28$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 63$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< 61$ $< $	BY-CONTROL								8					
712712016         < 31         < 30         < 51         < 33         < 81         < 32         < 57         < 28         < 28         < 145         < 2           MEAN         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	ens	7/27/2016		< 26	< 63		< 74			< 56	< 29		< 138	
T/27/2016         <20         <51         <27         <54         <19         <17         <20         <21         <83            MEAN         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	sets	7/27/2016		< 30			< 81				< 28		< 145	
MEAN         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	age	7/27/2016		< 20			< 54				< 20			
T/27/2016         < 35         < 34         < 79         < 39         < 90         < 35         < 60         < 56         < 33         < 153         < < 175         <           T/27/2016         < 34		MEAN		•	1	1	. 1	1	ł	•	•	1	н - ,	, 1
712712016         < 35         < 34         < 77         < 33         < 33         < 153         <           712712016         < 34														
717712016         < 35         < 74         < 76         < 39         < 90         < 35         < 61         < 51         < 33         < 33         < 155         <           MEAN         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<														
T/277/2016         < 34         < 81         < 44         < 61         < 51         < 33         < 37         < 175         <           MEAN         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	ens	7/27/2016	< 35	< 34	< 79	< 39	06 >	< 35	< 60	< 58			< 153	< 55 <
MEAN       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	ets	7/27/2016	× 34	<ul><li>36</li><li></li></ul>	- 88 - 88	<ul><li>34</li></ul>	× 81	× 44 44	× 610	v 51 0			< 175	
7/27/2016       < 36		MEAN	1	• •2. 12.	•		•		•		,	,	•	•
712712016       < 36														
712772016       < 36														
712772016       < 38	sue	7/27/2016	< 36	< 33	< 62		< 82						< 169	
MEAN       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       124       <       28       <       212       <       28       <       212       <       129       <       212       <       129       <       212       <       129       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       <       212       < <td>ips</td> <td>7/27/2016</td> <td></td> <td>&lt; 40</td> <td>&lt; 77 &gt;</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>&lt; 148</td> <td></td>	ips	7/27/2016		< 40	< 77 >								< 148	
7/27/2016 < 25 < 23 < 47 < 24 < 57 < 29 < 45 < 44 < 35 < 28 < 124 < 7/27/2016 < 24 < 25 < 58 < 24 < 57 < 29 < 45 < 44 < 35 < 28 < 124 < 129 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 120 < 12		MEAN	•	•	а а	<b>a</b>	3	•	ŝ	, , ,	<b>x</b>	1	, 1	•
7/27/2016 < 25 < 23 < 47 < 24 < 57 < 29 < 45 < 44 < 35 < 28 < 124 < 127 < 12016 < 24 < 25 < 58 < 24 < 57 < 29 < 47 < 51 < 59 < 27 < 129 < 12016 < 24 < 25 < 58 < 24 < 75 < 28 < 47 < 51 < 59 < 27 < 129 < 12016 < 129 < 12016 < 12 < 25 < 58 < 24 < 75 < 28 < 47 < 51 < 59 < 27 < 129 < 12016 < 12 < 12016 < 12 < 12 < 12 < 12 < 12 < 12 < 12 <														
Instruction $\sim 20$ $\sim 20$ $\sim 20$ $\sim 20$ $\sim 20$ $\sim 20$ $\sim 124$ $\sim \sim 20$ $\sim 124$ $\sim 129$ $\sim 212$ $\sim 212$ $\sim 124$ $\sim 212$ $\sim 214$ $\sim 212$		210014014	iu C	ŝ	1	č V	C	C N	ų V	4	201			
MEAN	afic	7/27/2016	<pre>&lt; 24 &lt; 24 </pre>	< 25	<ul><li>4</li><li>58</li><li>58</li></ul>	<ul> <li>24</li> <li>24</li> </ul>	< 75	<ul><li>28</li><li>28</li><li>28</li></ul>	<pre>&lt; 47</pre>	, v 12	23 V V		< 129	
ge 7/27/2016 < 21 < 27 < 48 < 17 < 47 < 25 < 42 < 35 < 25 < 96 < estates 7/27/2016 < 35 < 46 < 82 < 44 < 73 < 29 < 64 < 53 < 36 < 38 < 177 < MEAN		MEAN	3	2	4 	1	ł	1	્રેય	1	3	\$	3	ł
ge 7/27/2016 < 21 < 27 < 48 < 17 < 47 < 25 < 42 < 35 < 27 < 96 < 0.5 < 1/27/2016 < 35 < 46 < 82 < 44 < 73 < 29 < 64 < 53 < 36 < 38 < 177 < 0.5 MEAN														
7/27/2016 < 21 < 27 < 48 < 17 < 47 < 25 < 42 < 35 < 25 < 27 < 96 < 7/27/2016 < 35 < 46 < 82 < 44 < 73 < 29 < 64 < 53 < 36 < 38 < 177 < MEAN			-										n An Ar	
	age	7/27/2016	< 21 < 25	< 27	v v 84 S	V 1	< 47	< 25	< 42	<ul><li>35</li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>	<ul><li>25</li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>		V	v 36 v 7
	202	010211211		) /		† † /	2		5 /				1	
		MEAN	1	ł	ł	•	•	1	•	•	•	<b>s</b> 	• *	ł

### Table C-IX.1 QUARTERLY OSLD RESULTS FOR BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF MREM/QUARTER ± 2 STANDARD DEVIATIONS

CODE	± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
BY-01-1	20 ± 2	19	21	20	20
BY-01-2	20 ± 2	21	21	21	18
BY-04-1	$23 \pm 2$	22	24	24	23
BY-04-2	$23 \pm 3$	23	25	24	22
BY-06-1	$20 \pm 4$	17	20	22	20
BY-06-2	20 ± 2	19	21	20	20
BY-21-1	18 ± 2	17	20	19	18
BY-21-2	18 ± 2	19	18	19	17
BY-22-1	24 ± 1	25	25	24	24
BY-22-2	23 ± 3	24	23	25	22
BY-23-1	23 ± 1	22	23	23	22
BY-23-2	23 ± 4	20	24	25	24
BY-24-1	21 ± 3	22	19	22	20
BY-24-2	22 ± 2	21	23	22	20
BY-101-1	18 ± 2	17	19	18	17
BY-101-2	18 ± 4	16	18	20	16
BY-102-1	$24 \pm 3$	23	26	25	24
BY-102-2	25 ± 5	22	27	28	24
BY-103-1	23 ± 2	22	23	24	22
3Y-103-2	24 ± 3	23	25	25	24
3Y-103-3	22 ± 2	21	23	23	22
3Y-104-1	$24 \pm 3$	23	26	25	23
3Y-104-2	25 ± 5	22	27	27	23
3Y-104-3	$22 \pm 3$	21	23	23	20
3Y-105-1	$25 \pm 3$	23	26	27	26
3Y-105-2	25 ± 3	23	26	26	25
3Y-106-1	24 ± 2	24	26	24	23
3Y-106-2	23 ± 2	22	24	24	23
3Y-107-1	$25 \pm 2$	25	25	24	24
3Y-107-2	25 ± 2	24	26	26	25
3Y-107-3	20 ± 2	20	21	20	19
3Y-108-1	$25 \pm 3$	23	26	27	23
3Y-108-2	23 ± 2	21	23	24	
3Y-109-1	$22 \pm 1$	21	23	24	22
SY-109-2	$23 \pm 5$	21	26	23	22
3Y-110-1	$21 \pm 3$	21	20	23	22
3Y-110-2	$23 \pm 4$	(1)	24 25		20
BY-111-3	$25 \pm 5$	22		21	23
3Y-111-4	$23 \pm 3$ 22 ± 3	22	24 24	28	25
SY-112-3	$22 \pm 3$ 23 ± 6			24	21
IY-112-3	$23 \pm 6$ 23 ± 2	19 22	24	26	25
Y-113-1		22	22	22	24
Y-113-1	24 ± 3	22	25	24	24
	20 ± 4	20	22	22	18
IY-114-1	19 ± 3	18	20	19	21
Y-114-2	22 ± 1	22	22	23	22
Y-115-1	23 ± 3	21	25	24	23
Y-115-2	22 ± 4	20	23	25	22
Y-116-1	22 ± 2	21	23	22	22
Y-116-2	$21 \pm 3$	19	22	23	21

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

### Table C-IX.1 QUARTERLY OSLD RESULTS FOR BYRON NUCLEAR GENERATING STATION, 2016 RESULTS IN UNITS OF MREM/QUARTER ± 2 STANDARD DEVIATIONS

	MEAN				
STATION CODE	± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
BY-116-3	21 ± 2	21	22	23	20
BY-201-3	23 ± 2	22	24	24	23
BY-201-4	24 ± 4	21	25	25	23
BY-202-1	22 ± 1	22	23	22	22
BY-202-2	24 ± 3	22	25	25	25
BY-203-1	19 ± 2	20	20	18	19
BY-203-2	22 ± 3	21	22	23	20
BY-204-1	21 ± 2	19	21	22	21
BY-204-2	25 ± 3	23	26	26	24
BY-205-1	$24 \pm 5$	20	26	24	25
BY-205-2	$22 \pm 5$	19	24	24	22
BY-206-1	$24 \pm 4$	23	27	24	23
BY-206-2	$25 \pm 2$	24	25	26	26
BY-207-1	$24 \pm 3$	22	24	26	24
BY-207-2	$23 \pm 3$	22	23	25	22
BY-208-1	$25 \pm 6$	21	27	27	26
BY-208-2	$23 \pm 0$ 24 ± 1	24	25	25	24
	$24 \pm 4$ 24 ± 4	23	26	26	22
BY-209-1	$24 \pm 4$ 25 ± 4	23	27	26	23
BY-209-4	$23 \pm 4$ 22 \pm 4	23	19	24	23
BY-210-3		22	23	24	23
BY-210-4	23 ± 2 23 ± 3	22	24	25	23
BY-211-1	$23 \pm 3$ 24 ± 2	23	24	24	24
BY-211-4	$24 \pm 2$ 25 ± 4	23	28	26	24
BY-212-1		24	26	28	25
BY-212-4	26 ± 4	24	20	24	24
BY-213-1	$24 \pm 5$		27	24	25
BY-213-4	25 ± 3	23	24	25	23
BY-214-1	$24 \pm 2$	23		23	24
BY-214-4	$23 \pm 3$	23	24		23
BY-215-1	$24 \pm 3$	23	25	26	
BY-215-4	$25 \pm 5$	21	26	27	25
BY-216-1	$25 \pm 3$	23	26	26	24
BY-216-2	25 ± 2	25	25	25	23
BY-301-1	17 ± 2	16	18	17	18
BY-301-2	20 ± 2	19	21	21	19
BY-309-1	22 ± 2	21	23	22	23
BY-309-2	23 ± 3	22	26	22	24
BY-309-3	21 ± 3	20	23	22	21
BY-309-4	21 ± 4	20	22	22	18
BY-314-2	19 ± 2	18	20	19	20
BY-08-1 (Ctrl)	19 ± 2	19	21	19	18
BY-08-2 (Ctrl)	20 ± 2	19	21	20	19

TABLE C-IX.2

## MEAN QUARTERLY OSLD RESULTS FOR THE INNER RING, OUTER RING, SPECIAL INTEREST, OTHER, AND CONTROL LOCATIONS FOR BYRON NUCLEAR GENERATING STATION, 2016

RESULTS IN UNITS OF MILLIREM/STD. QUARTER ± 2 STANDARD DEVIATION

CONTROL ± 2 S.D.	19 ± 0	21 ± 0	19 ± 2	19 ± 1
OTHER ± 2 S.D.	21 ± 5	22 ± 4	22 ± 4	21 ± 5
SPECIAL INTEREST ±2 S.D.	19±4	22 ± 5	21 ± 4	20 ± 4
OUTER RING ± 2 S.D.	22 ± 3	25 ± 4	25 ± 4	23 ± 3
INNER RING ± 2 S.D.	21 ± 4	24 ± 4	24 ± 5	22 ± 4
COLLECTION	NAM-WAK		JUL-207	OCI-DEC

TABLE C-IX.3

### SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR BYRON NUCLEAR GENERATING STATION, 2016

## RESULTS IN UNITS OF MILLIREM/STD. QUARTER ± 2 STANDARD DEVIATION

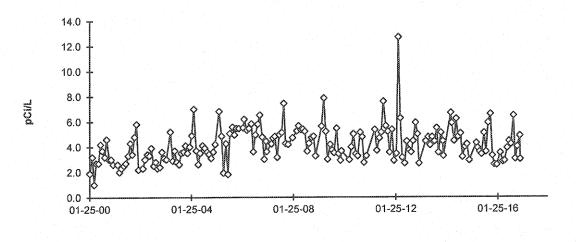
PERIOD MEAN ± 2 S.D.	23 ± 5	24 + 4	21+4	21+4	19 ± 2	
PERIOD MAXIMUM	28	28	26	25	21	
PERIOD MINIMUM	16	18	16	17	18	
SAMPLES ANALYZED	143	128	28	56	8	
LOCATION	INNER RING	OUTER RING	SPECIAL INTEREST	OTHER	CONTROL	

INNER RING STATIONS - BY-101-1, BY-101-2, BY-102-1, BY-102-2, BY-103-1, BY-103-2, BY-103-3, BY-104-1, BY-104-2, BY-104-3, BY-105-1, BY-105-2, BY-106-1, BY-106-2, BY-107-1, BY-107-2, BY-107-3, BY-108-1, BY-109-1, BY-110-2, BY-110-2, BY-110-2, BY-111-3, BY-111-4, BY-112-3, BY-112-4, BY-113-1, BY-113-2, BY-113-2, BY-114-1, BY-114-2, BY-114-2, BY-114-2, BY-114-2, BY-114-2, BY-114-2, BY-114-2, BY-114-2, BY-114-2, BY-114-4, BY-1

OUTER RING STATIONS - BY-201-3, BY-201-4, BY-202-1, BY-202-2, BY-203-1, BY-203-2, BY-204-1, BY-204-2, BY-205-1, BY-205-2, BY-206-1, BY-206-2, BY-207-1, BY-207-2, BY-208-1, BY-208-2, BY-209-1, BY-209-4, BY-210-3, BY-210-4, BY-211-4, BY-211-4, BY-212-1, BY-212-4, BY-213-1, BY-213-4, BY-214-1, BY-214-4, BY-215-1, BY-215-4, BY-216-1, BY-216-2

SPECIAL INTEREST STATIONS - BY-301-1, BY-301-2, BY-309-1, BY-309-2, BY-309-3, BY-309-4, BY-314-2

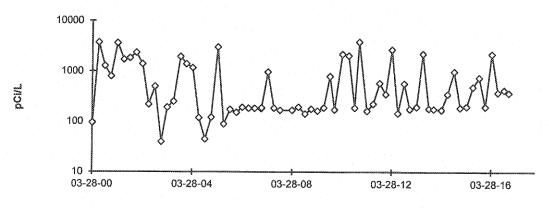
OTHER STATIONS - BY-01-1, BY-01-2, BY-04-1, BY-04-2, BY-06-1, BY-06-2, BY-21-1, BY-21-2, BY-22-1, BY-22-2, BY-23-1, BY-23-2, BY-24-1, BY-24-2


CONTROL STATIONS - BY-08-1, BY-08-2

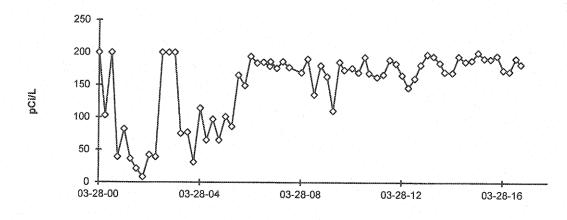
### FIGURE C-1 Surface Water - Gross Beta - Stations BY-12 and BY-29 (C) Collected in the Vicinity of BNGS, 2000 - 2016

 $\mathbf{E}_{\mathbf{2}}^{\mathbf{10.0}}$ 

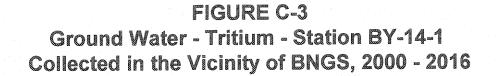
BY-12 Oregon Pool of Rock River, Downstream

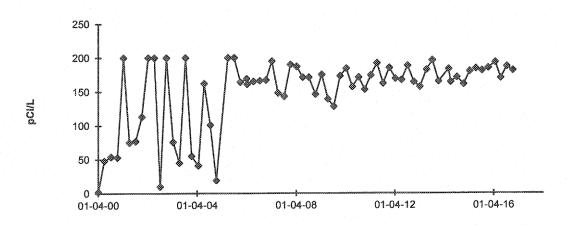






DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

### FIGURE C-2 Surface Water - Tritium - Stations BY-12 and BY-29 (C) Collected in the Vicinity of BNGS, 2000 - 2016

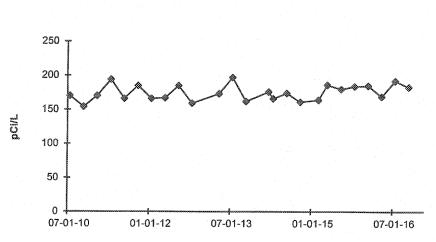

BY-12 Oregon Pool of Rock River, Downstream



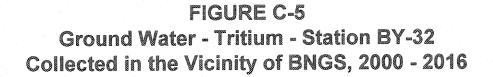

BY-29 (C) Byron, Rock River Upstream



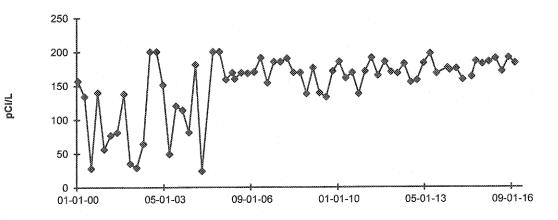
DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

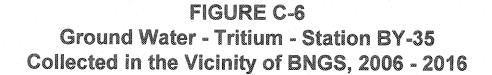




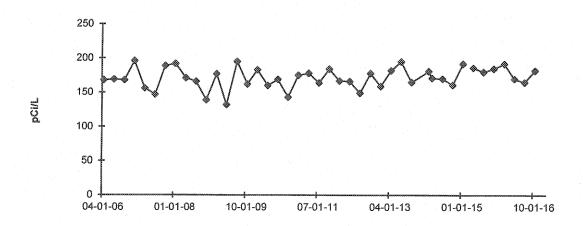


BY-14-1 3200 N. German Church Road Well

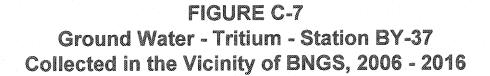
DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005


### FIGURE C-4 Ground Water - Tritium - Stations BY-18-1 Collected in the Vicinity of BNGS, 2010 - 2016

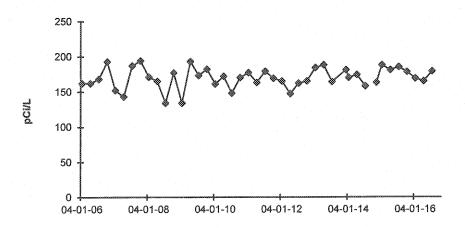



BY-18-1 Calhoun Well

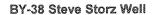


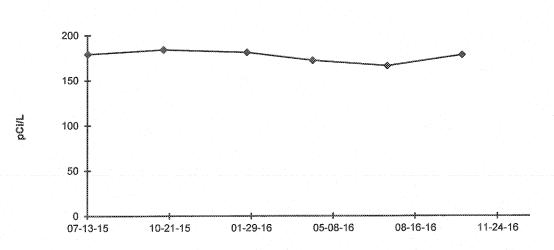


**BY-32 Wolford Well** 

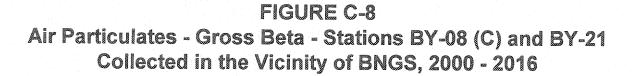




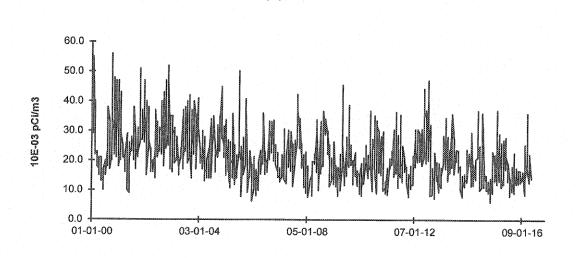

BY-35 Vancko Well

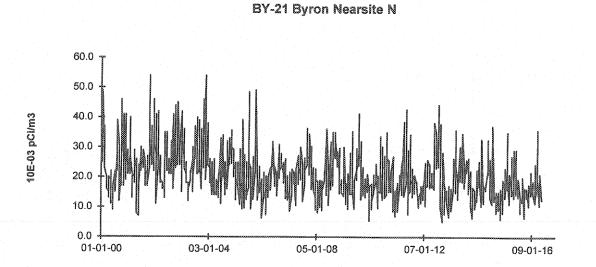


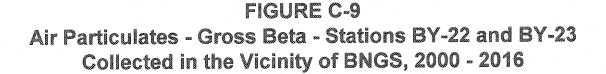


**BY-37 Alexander Well** 



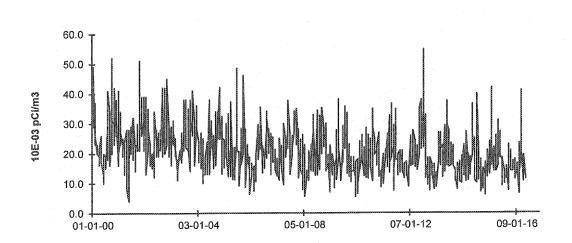

Ground Water - Tritium - Station BY-38 Collected in the Vicinity of BNGS, 2006 - 2016

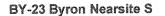


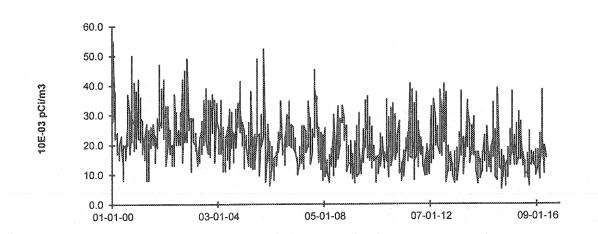


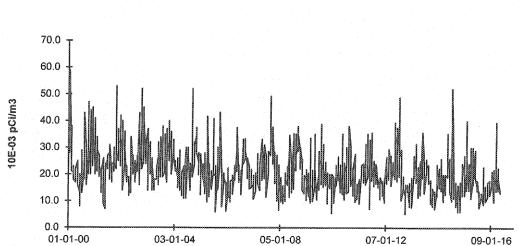

BY-08 (C) Leaf River WNW



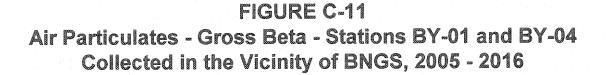



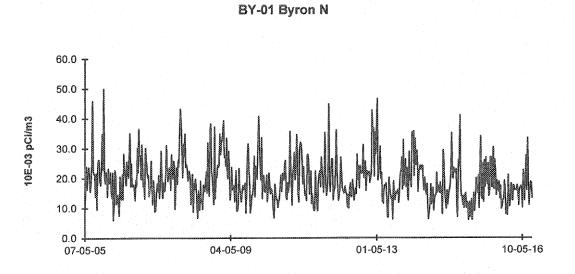


C-25

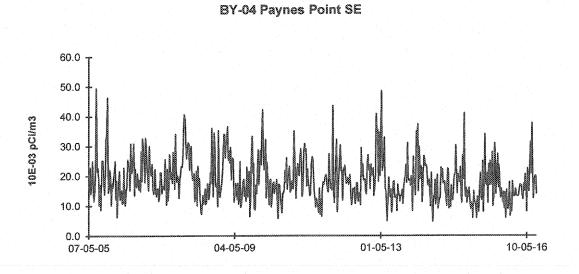



**BY-22 Byron Nearsite SE** 

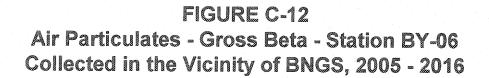


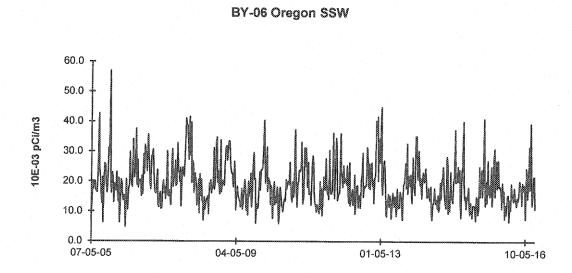




### FIGURE C-10 Air Particulates - Gross Beta - Stations BY-24 Collected in the Vicinity of BNGS, 2000 - 2016




BY-24 Byron Nearsite SW








Regular analysis of far field air particulate & gross beta did not take place prior to 2005





Regular analysis of far field air particulate & gross beta did not take place prior to 2005

Intentionally left blank

APPENDIX D

# INTER-LABORATORY COMPARISON PROGRAM

Intentionally left blank

## ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c)	Evoluction
MUTILI/TEAL	Number	Wallix	Nucilde	Units	value (a)	value (b)	TBE/Analytics	Evaluation (
March 2016	E10646	Milk	Sr-89	pCi/L	97	86.7	1.12	А
			Sr-90	pCi/L	15	11.4	1.32	N(2)
				• • •				()
	E10647	Milk	I-131	pCi/L	85.9	82.2	1.05	A
			Ce-141	pCi/L	106	98.4	1.08	А
			Cr-51	pCi/L	255	243	1.05	A
			Cs-134	pCi/L	134	130	1.03	A
			Cs-137	pCi/L	174	161	1.08	А
			Co-58	pCi/L	123	117	1.05	A
			Mn-54	pCi/L	141	117	1.21	W
			Fe-59	pCi/L	152	131	1.16	A
			Zn-65	pCi/L	193	179	1.08	A
			Co-60	pCi/L	259	244	1.06	A
	E10672	AP	Ce-141	pCi	69	81.1	0.85	A
			Cr-51	pCi	242	201	1.20	W
			Cs-134	pCi	98.1	107.0	0.92	A
			Cs-137	pCi	136	133	1.02	A
			Co-58	pCi	91.9	97	0.95	A
			Mn-54	pCi	98.6	96.2	1.02	А
			Fe-59	pCi	98.8	108	0.91	A
			Zn-65	pCi	131	147	0.89	А
			Co-60	pCi	209	201	1.04	А
	E10648	Charcoal	I-131	pCi	85.3	88.3	0.97	А
	E10673	Water	Fe-55	pCi/L	1800	1666	1.08	А
une 2016	E11537	Milk	Sr-89	pCi/L	94.4	94.4	1.00	А
			Sr-90	pCi/L	13.4	15.4	0.87	А
	E11538	Milk	I-131	pCi/L	96.8	94.5	1.02	А
			Ce-141	pCi/L	129	139	0.93	A
			Cr-51	pCi/L	240	276	0.87	A
			Cs-134	pCi/L	157	174	0.90	A
			Cs-137	pCi/L	117	120	0.98	A
			Co-58	pCi/L	131	142	0.92	A
			Mn-54	pCi/L	128	125	1.02	A
			Fe-59	pCi/L	132	122	1.08	A
			Zn-65	pCi/L	235	235	1.00	A
			Co-60	pCi/L	169	173	0.98	A

(PAGE 1 OF 3)

(a) Teledyne Brown Engineering reported result.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

(2) NCR 16-26 was initiated

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

TABLE D-1

### ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 2 OF 3)

Nonth/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (c
June 2016	E11539	Charcoal	I-131	pCi	86.1	89.4	0.96	А
	E11540	AP	Ce-141	pCi	105	99.8	1.05	A
	2,1010		Cr-51	pCi	216	198.0	1.09	Α
			Cs-134	pCi	113	125	0.90	А
			Cs-137	pCi	94.5	86.6	1.09	А
			Co-58	pCi	101	102	0.99	А
			Mn-54	pCi	88.8	90.2	0.98	A
			Fe-59	pCi	82	87.5	0.94	A
			Zn-65	pCi	174	169	1.03	А
			Co-60	pCi	143	124	1.15	A
	E11541	Water	Fe-55	pCi/L	164	186	0.88	А
September 2016	E11609	Milk	Sr-89	pCi/L	90	90.9	0.99	A
			Sr-90	pCi/L	13.3	13.7	0.97	A
	E11610	Milk	I-131	pCi/L	80.4	71.9	1.12	А
			Ce-141	pCi/L	81.3	93	0.87	A
			Cr-51	pCi/L	198	236	0.84	A
			Cs-134	pCi/L	122	136	0.90	A
			Cs-137	pCi/L	119	119	1.00	A
			Co-58	pCi/L	92.2	97.4	0.95	А
			Mn-54	pCi/L	156	152	1.03	A
			Fe-59	pCi/L	97.5	90.6	1.08	A
			Zn-65	pCi/L	189	179	1.06	A
			Co-60	pCi/L	131	135	0.97	А
	E11611	Charcoal	I-131	pCi	52.4	59.9	0.87	A
	E11612	AP	Ce-141	pCi	67.5	63.6	1.06	A
	Ann 1 ( W. Cam		Cr-51	pCi	192	161.0	1.19	А
			Cs-134	pCi	91.4	92.6	0.99	А
			Cs-137	pCi	93.9	80.8	1.16	А
			Co-58	pCi	66	66.4	0.99	А
			Mn-54	pCi	104	104	1.00	A
			Fe-59	pCi	60.5	61.8	0.98	А
			Zn-65	pCi	140	122	1.15	A
			Co-60	pCi	119	91.9	1.29	W

(a) Teledyne Brown Engineering reported result.

(b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20.
 W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

#### ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES** (PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
September 2016	E11613	Water	Fe-55	pCi/L	1990	1670	1.19	A
	E11614	Soil	Ce-141	pCi/g	0.153	0.175	0.87	А
			Cr-51	pCi/g	0.482	0.441	1.09	А
			Cs-134	pCi/g	0.270	0.254	1.06	A
			Cs-137	pCi/g	0.313	0.299	1.05	A
			Co-58	pCi/g	0.177	0.182	0.97	A
			Mn-54	pCi/g	0.340	0.285	1.19	А
			Fe-59	pCi/g	0.206	0.17	1.21	W
			Zn-65	pCi/g	0.388	0.335	1.16	Α
			Co-60	pCi/g	0.284	0.252	1.13	Α
December 2016	E11699	Milk	Sr-89	pCi/L	95	74.2	1.28	W
			Sr-90	pCi/L	14.7	10	1 47	N(3)
	E11700	Milk	I-131	pCi/L	97.5	97.4	1.00	A
			Ce-141	pCi/L	136	143	0.95	A
			Cr-51	pCi/L	247	280	0.88	A
			Cs-134	pCi/L	164	178	0.92	A
			Cs-137	pCi/L	120	126	0.95	A
			Co-58	pCi/L	139	146	0.95	A
			Mn-54	pCi/L	126	129	0.98	А
			Fe-59	pCi/L	114	125	0.91	A
			Zn-65	pCi/L	237	244	0.97	A
			Co-60	pCi/L	168	178	0.94	Α
	E11701	Charcoal	I-131	pCi	95.6	98	0.98	А
	E11702	AP	Ce-141	pCi	91.7	97.7	0.94	Α
			Cr-51	pCi	210	192.0	1.09	A
			Cs-134	pCi	122	122	1.00	A
			Cs-137	pCi	93.9	86.4	1.09	А
			Co-58	pCi	92	100	0.92	A
			Mn-54	pCi	93.7	88.5	1.06	А
			Fe-59	pCi	84.9	84.5	1.00	А
			Zn-65	pCi	176	167	1.05	A
			Co-60	pCi	151	122	1.24	W
	E11702	AP	Sr-89	pCi	79.1	92	0.86	A
			Sr-90	pCi	10	12.5	0.80	A
	E11703	Water	Fe-55	pCi/L	2180	1800	1.21	W

(a) Teledyne Brown Engineering reported result.

(b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

(3) NCR 16-35 was initiated

TABLE D-2

#### DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 1 OF 1)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (
March 2016	16-MaW34	Water	Am-241	Bq/L	0.008		(1)	A
sharon Lono			Ni-63	Bq/L	12.4	12.3	8.6-16.0	А
			Pu-238	Bq/L	1.4900	1.2440	0.871-1.617	A
			Pu-239/240	Bq/L	0.729	0.641	0.449-0.833	A
	16-MaS34	Soil	Ni-63	Bq/kg	1140	1250.0	875-1625	А
			Sr-90	Bq/kg	8.15		(1)	A
	16-RdF34	AP	U-234/233	Bq/sample	0.1620	0.1650	0.116-0.215	А
			U-238	Bq/sample	0.163	0.172	0.120-0.224	А
	16-GrF34	AP	Gr-A	Bq/sample	0.608	1.20	0.36-2.04	A
			Gr-B	Bq/sample	0.8060	0.79	0.40-1.19	A
	16-RdV34	Vegetation	Cs-134	Bq/sample	10.10	10.62	7.43-13.81	А
			Cs-137	Bq/sample	6.0	5.62	3.93-7.31	А
			Co-57	Bq/sample	13.3000	11.8	8.3-15.3	A
			Co-60	Bq/sample	0.013		(1)	A
			Mn-54	Bq/sample	0.0150		(1)	A
			Sr-90	Bq/sample	0.301		(1)	N(4)
			Zn-65	Bq/sample	10.500	9.6	6.7-12.5	A
September 2016	16-MaW35	Water	Am-241	Bq/L	0.626	0.814	.570-1058	W
			Ni-63	Bq/L	12.4	17.2	12.0-22.4	A
			Pu-238	Bq/L	1.23	1.13	0.79-1.47	W
			Pu-239/240	Bq/L	0.0318	0.013	(1)	Α
	16-MaS35	Soil	Ni-63	Bq/kg	724	990	693-1287	А
			Sr-90	Bq/kg	747	894	626-1162	A
	16-RdF35	AP	U-234/233	Bq/sample	0.160	0.15	0.105-0.195	А
			U-238	Bq/sample	0.157	0.156	0.109-0.203	А
	16-RdV35	Vegetation	Cs-134	Bq/sample	-0.103		(1)	А
			Cs-137	Bq/sample	5.64	5.54	3.88-7.20	A
			Co-57	Bq/sample	7.38	6.81	4.77-8.85	A
			Co-60	Bq/sample	4.81	4.86	3.40-6.32	A
			Mn-54	Bq/sample	7.4	7.27	5.09-9.45	А
			Sr-90	Bq/sample	0.774	0.80	0.56-1.04	А
			Zn-65	Bq/sample	5.46	5.4	3.78-7.02	A

(1) False positive test.

(a) Teledyne Brown Engineering reported result.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

(4)NCR 16-14 was initiated

⁽b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

#### TABLE D-3

## ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 1 OF 1)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c)
May 0040	D40 405		0.00	2.1.1				
May 2016	RAD-105	Water	Sr-89	pCi/L	48.9	48.2	37.8 - 55.6	A
			Sr-90	pCi/L	25.0	28.5	20.7 - 33.1	A
			Ba-133	pCi/L	53.1	58.8	48.7 - 64.9	A
			Cs-134	pCi/L	40.9	43.3	34.6 - 47.6	A
			Cs-137	pCi/L	84.8	78.4	70.6 - 88.9	A
			Co-60	pCi/L	108	102	91.8 - 114	A
			Zn-65	pCi/L	226	214	193 - 251	A
			Gr-A	pCi/L	38.9	62.7	32.9 - 77.8	A
			Gr-B	pCi/L	41.9	39.2	26.0 - 46.7	A
			I-131	pCi/L	24.1	26.6	22.1 - 31.3	A
			U-Nat	pCi/L	4.68	4.64	3.39 - 5.68	A
			H-3	pCi/L	7720	7840	6790 - 8620	А
November 2016	RAD-107	Water	Sr-89	pCi/L	43.0	43.3	33.4-50.5	А
			Sr-90	pCi/L	30.0	33.6	24.6-38.8	Α
			Ba-133	pCi/L	47.8	54.9	45.4-60.7	A
			Cs-134	pCi/L	72.9	81.8	67.0-90.0	A
			Cs-137	pCi/L	189	210	189-233	А
			Co-60	pCi/L	58.4	64.5	58.0-73.4	А
			Zn-65	pCi/L	243	245	220-287	А
			Gr-A	pCi/L	37.2	68.4	35.9-84.5	A
			Gr-B	pCi/L	35.1	33.9	22,1-41.6	А
			I-131	pCi/L	23.5	26.3	21.9-31.0	A
			U-Nat	pCi/L	49.2	51.2	41.6-56.9	A
			H-3	pCi/L	918	9820	8540-10800	N(5)
	MRAD-25	AP	Gr-A	pCi/Filter	56.8	71.2	23.9-111	А

(a) Teledyne Brown Engineering reported result.

⁽b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

 ⁽c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.
 (5) NCR 16-34 was initiated

Intentionally left blank

# APPENDIX E

# **EFFLUENT REPORT**

Intentionally left blank

# TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
1.0. EFFLUENTS	
1.1. Gaseous Effluents to the Atmosphere	
1.2. Liquids Released to Rock River	3
2.0. SOLID RADIOACTIVE WASTE	4
3.0. DOSE TO MAN	4
3.1. Gaseous Effluent Pathways	4
3.1.1. Noble Gases	4
3.1.1.1. Gamma Dose Rates	4
3.1.1.2. Beta Air and Skin Dose Rate	4
3.1.2. Radioactive Iodine & Particulate	5
3.1.3. Gaseous Total Dose	5
3.2. Liquid Effluent Pathways	· .
3.3. Total Dose	3
3.4. Assessment of Dose to Member of Public	<b>3</b> :
4.0. SITE METEOROLOGY	7

# Table of Contents (cont.)

# APPENDIX E-1 DATA TABLES AND FIGURES

# Station Releases

Table 1.1-1 G	Saseous Effluents	E-1-1
Table 1.2-1 L	iquid Effluents	E-1-3
Table 3.1-1 4	0CFR190 Maximum Doses Resulting from Liquid Releases	E-1-5
Table 3.2-1 4	0CFR190 Maximum Doses Resulting from Gaseous Releases.	E-1-6
Table 3.3-1 4	0CFR190 Uranium Fuel Cycle Report – Total Dose	E-1-8
Table 3.4-1 N	laximum Doses Resulting from Airborne Releases Based	
C	On Concurrent Meteorological Data	E-1-10

### <u>SUMMARY</u>

Calculations based on gaseous and liquid effluents and meteorological data indicate that public dose due to radioactive material attributable to Byron Station during the period does not exceed regulatory or Offsite Dose Calculation Manual (ODCM) limits.

The Total Effective Dose Equivalent (TEDE) due to licensed activities at Byron Station calculated for the maximum exposed individual for the period is 2.61E-01 mrem. The annual limit on TEDE is 100 mrem.

The assessment of radiation doses to the public is performed in accordance with the ODCM. The results of these analyses confirm that the station is operating in compliance with 10CFR50 Appendix I, 10CFR20 and 40CFR190.

There were no additional operational controls implemented which affected the areas of radiological effluents in 2016.

There were no measurements which exceeded the reporting levels, including any which would not have been attributable to station effluents.

The results of the current radiological environmental monitoring program are approximately the same as those found during the pre-operational studies conducted at Byron Station.

### **INTRODUCTION**

Liquid effluents from Byron Station are released to the Rock River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere and are calculated on the basis of analyses of weekly grab samples and grab samples of batch releases prior to the release of noble gases as well as continuously collected composite samples of iodine and particulate radioactivity sampled during the course of the year. The results of effluent analyses are summarized on a monthly basis. Airborne concentrations of noble gases, I-131, and particulate radioactivity in offsite areas are calculated using isotopic composition of effluents and meteorological data. C-14 concentration in offsite areas is calculated based on industry-approved methodology for estimation of the amount released and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of Byron Station to measure changes in radiation or radioactivity levels that may be attributable to station operation. If significant changes attributable to Byron Station are measured, these changes are correlated with effluent releases. An environmental monitoring program is conducted which also includes all potential pathways at the site. Gaseous pathways include ground plane (direct), inhalation, vegetation, meat, and milk. Liquid pathways include potable water and freshwater fish. The critical pathway for 2016 gaseous dose was vegetation. The critical pathway for 2016 liquid dose was freshwater fish.

### 1.0 <u>EFFLUENTS</u>

### 1.1 <u>Gaseous Effluents to the Atmosphere</u>

Measured concentrations and isotopic composition of noble gases, radioiodine, tritium and particulate radioactivity released to the atmosphere during the year are listed in Table 1.1-1.

A total of 1.45E+00 curies of fission and activation gases were released with a maximum average quarterly release rate of 1.22E-01  $\mu$ Ci/sec.

A total of 0.00E+00 curies of 1-131 were released during the year with a maximum average quarterly release rate of  $0.00E+00 \ \mu Ci/sec$ .

A total of 3.44E-06 curies were released as airborne particulate matter with a maximum average quarterly release rate of 4.38E-07 µCi/sec.

A total of 8.50E+00 curies of other (C-14) radioisotopes were released with a maximum average quarterly release rate of 2.85E-01 µCi/sec.

A total of 4.70E+01 curies of tritium were released with a maximum average quarterly release rate of 2.01E+00 µCi/sec.

Gross alpha-emitting radionuclides were below detectable limits.

### 1.2 Liquids Released to Rock River

A total of 2.84E+10 liters of radioactive liquid wastes containing 1.61E-02 curies of fission and activation products were discharged with a maximum quarterly average concentration of 6.98E-10 µCi/ml.

A total of 2.14E+03 curies of tritium were discharged with a maximum quarterly average concentration of 1.39E-04 uCi/ml.

A total of 1.72E-04 curies of dissolved and entrained gases were discharged with a maximum quarterly average concentration of 2.53E-11 uCi/ml.

Gross alpha-emitting radionuclides were below detectable limits.

- 3 -

Quarterly release totals of principal radionuclides in liquid effluents are given in Table 1.2-1.

### 2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck. For detail, refer to Byron Station 2016 Annual Radiological Effluent Release Report.

### 3.0 DOSE TO MAN

### 3.1 Gaseous Effluent Pathways

Table 3.2-1 summarizes the doses resulting from releases of airborne radioactivity via the different exposure pathways.

### 3.1.1 Noble Gases

### 3.1.1.1 Gamma Dose Rates

Offsite Gamma air and whole body dose rates are shown in Table 3.2-1 and were calculated based on measured release rates, isotopic composition of the noble gases, and average meteorological data for the period. Dose rates based on concurrent meteorological data are shown in Table 3.4-1. Based on measured effluents and average meteorological data, the maximum gamma air dose was 5.13E-05 mrad based on measured effluents and average meteorological data, and 9.35E-06 mrad based on measured effluents and concurrent meteorological data. (Table 3.4-1).

### 3.1.1.2 Beta Air and Skin Dose Rates

The range of beta particles in air is relatively small (on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "semi-infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is taken to have a thickness of 7.0 mg/cm² and an occupancy factor of 1.0 is used. The skin dose based on measured effluents and average meteorological data was 1.53E-05 mrem, and 1.31E-05 mrem based on measured effluents and concurrent meteorological data. The maximum offsite beta air dose for the year based on measured effluents and average meteorological data was 2.30E-05 mrad. The beta air dose based on measured effluents and concurrent meteorological data was 1.73E-05 mrad.

### 3.1.2 Radioactive lodine & Particulate

The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine. I-131 released during routine operation of the station may be made available to man resulting in a dose to the thyroid. C-14 is also included in this category. C-14 exhibits a capacity to concentrate in bone. C-14 is released in gaseous form and is absorbed into vegetation through photosynthesis. The principal pathways of interest for C-14 are the consumption of vegetation by humans and milk from which animals have ingested C-14 through the consumption of vegetation. With the addition of C-14 to plant effluents, human dose in this category is primarily driven by the release of C-14 from the plant.

The hypothetical dose to the maximum exposed individual living near the station via ingestion of milk and vegetation was calculated. The source of milk and vegetation was assumed to be at the nearest site boundary with the cows pastured and vegetation grown from May through October. The maximum dose from radioactive iodine and particulate (including C-14) to any organ was 6.93E-01 mrem (child/bone) based on measured effluents and average meteorological data and 6.65E-01 mrem based on measured effluents and concurrent meteorological data. The maximum dose from radioactive iodine and particulate (including C-14) to the whole body was 1.41E-01 mrem (child) based on measured effluents and average meteorological data and 1.36E-01 mrem based on measured effluents and concurrent meteorological data.

### 3.1.3 Gaseous Total Dose

The maximum total dose from gaseous releases to any organ was 6.93E-01 mrem (child/bone) based on measured effluents and average meteorological data, and 6.65E-01 mrem (child/bone) based on measured effluents and concurrent meteorological data. The maximum total dose from gaseous releases to the whole body was 1.41E-01 mrem (child) based on measured effluents and average meteorological data, and 1.36E-01 mrem (child) based on measured effluents and average meteorological data.

### 3.2 Liquid Effluent Pathways

The principal pathways through the aquatic environment for potential doses to man from liquid waste are ingestion of potable water and eating aquatic foods. Liquid dose was calculated based on the ingestion of potable water and sport fish. It should be noted, however, there were no communities within 10 km downstream of the plant using the Rock River for drinking water. NRC-developed equations were used to calculate the doses to the whole body, bone, liver, thyroid, kidney, lung, lower GI tract, and skin. Specific parameters for use in the equations are given in the Exelon Offsite Dose Calculation Manual (ODCM). The maximum dose from liquid releases to any organ was 1.73E-01 mrem (adult/gilli). The maximum dose from liquid releases to the whole body was 1.41E-01 mrem (adult).

### 3.3 Total Dose

The maximum total dose to any organ via both gaseous and liquid effluents to any organ is 7.74E-01 mrem (child/bone). The maximum dose to the whole body via both gaseous and liquid effluents is 2.61E-01 mrem (child).

### 3.4 Assessment of Dose to Member of Public

Byron Station did not exceed any of the dose limits as shown below based on concurrent or historical meteorological data.

- The RETS limits on dose or dose commitment to a member of the public due to radioactive materials in liquid effluents from each reactor is 1.5 mrem to the whole body or 5 mrem to any organ during any calendar quarter and 3 mrem to the whole body or 10 mrem to any organ during a calendar year.
- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor is 5 mrad for gamma radiation or 10 mrad for beta radiation during any calendar quarter and 10 mrad for gamma radiation or 20 mrad for beta radiation during a calendar year.
- The RETS limits on dose to a member of the public due to radioactive iodine & particulate with half-lives greater than eight days in gaseous effluents released from each reactor is 7.5 mrem to any organ during any calendar guarter and 15 mrem during a calendar year.

- The 10CFR20 limit on Total Effective Dose Equivalent to individual members of the public is 100 mrem during a calendar year.
- The 40CFR190 limits on individual members of the public is 25 mrem to the whole body, 25 mrem to any organ (except thyroid), and 75 mrem to the thyroid.

## 4.0 SITE METEOROLOGY

Detailed records of the site meteorological measurements taken during each calendar quarter of the year are maintained by the meteorological vendor, retained on site, and are available upon request. The data are presented as cumulative joint frequency distributions of the wind direction for the 250' level and wind speed class by atmospheric stability class determined from the temperature difference between the 250' and 30' levels. Data recovery for all measurements on the meteorological tower was 99.8% during 2016.

Intentionally left blank

# **APPENDIX E-1**

# DATA TABLES AND FIGURES

Intentionally left blank

### Table 1.1-1

# RG 1.21 EFFLUENT AND WASTE DISPOSAL REPORT GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

Unit 1

REPORT FOR 2016	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
Fission and Activation	Gases					
1. Total Release	Ci	1.04E-01	7.32E-02	8.70E-02	5.01E-01	7.65E-01
2. Avg. Release Rate	uCi/sec	1.32E-02	9.31E-03	1.09E-02	6.30E-02	2.42E-02
lodine-131						
1. Total Release	Ci	(1)	(1)	(1)	(1)	(1)
2. Avg. Release Rate	uCi/sec	(1)	(1)	(1)	(1)	(1)
Particulates Half Life >	·= 8 days					
1. Total Release	Ci	(1)	1.95E-06	(1)	(1)	1.95E-06
2. Avg. Release Rate	uCi/sec	(1)	2.48E-07	(1)	(1)	6.18E-08
Others						
1. Total Release	Ci	1.10E+00	1.11E+00	1.11E+00	1.15E+00	4.45E+00
2. Avg. Release Rate	uCi/sec	1.39E-01	1.41E-01	1.39E-01	1.44E-01	1.41E-01
Tritium						
1. Total Release	Ci	3.00E+00	2.04E+00	2.92E+00	4.33E+00	1.23E+01
2. Avg. Release Rate	uCi/sec	3.81E-01	2.59E-01	3.68E-01	5.45E-01	3.89E-01
Gross Alpha Radioacti	vity					
1. Total Release	Ci	(1)	(1)	(1)	(1)	(1)
2. Avg. Release Rate	uCi/sec	(1)	(1)	(1)	(1)	(1)

# Table 1.1-1 (cont.)

## RG 1.21 EFFLUENT AND WASTE DISPOSAL REPORT GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES Unit 2

REPORT FOR 2016 Uni	ts QTR 1	QTR 2	QTR 3	QTR 4	YEAR
Fission and Activation Gas 1. Total Release Ci	ses 1.03E-0	1 7.06E-02	4.00E-02	4.67E-01	6.81E-01
2. Avg. Release Rate uCi			5.03E-03	5.88E-02	2.15E-02
lodine-131					
1. Total Release Ci 2. Avg. Release Rate uCi	(1) i/sec (1)	(1) (1)	(1) (1)	(1) (1)	(1) (1)
Particulates Half Life >= 8	days				
1. Total Release Ci 2. Avg. Release Rate uCi	(1) i/sec (1)	1.49E-06 1.90E-07	(1) (1)	(1) (1)	1.49E-06 4.72E-08
Others					
1. Total Release Ci 2. Avg. Release Rate uCi	1.10E+ i/sec 1.40E-		1.12E+00 1.41E-01	1.12E+00 1.41E-01	4.05E+00 1.28E-01
Tritium					
1. Total Release Ci 2. Avg. Release Rate uCi	9.66E+( i/sec 1.23E+(		6.88E+00 8.65E-01	1.16E+01 1.46E+00	3.47E+01 1.10E+00
Gross Alpha Radioactivity		14	141	(4)	(4)
1. Total Release Ci 2. Avg. Release Rate uCi	(1) i/sec (1)	(1) (1)	(1) (1)	(1) (1)	(1) (1)

# Table 1.2-1

### RG 1.21 EFFLUENT AND WASTE DISPOSAL REPORT LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES Unit 1

onic i

REPORT FOR 2016	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
Fission and Activation	Products					
1. Total Release	Ci	2.09E-03	2.06E-03	1.27E-03	2.61E-03	8.04E-03
2. Avg. Diluted Conc.	uCi/ml	6.16E-10	6.25E-10	3.34E-10	6.98E-10	5.64E-10
Tritium						
1. Total Release	Ci	2.84E+02	1.44E+02	1.21E+02	5.19E+02	1.07E+03
2. Avg. Diluted Conc.	uCi/ml	8.37E-05	4.35E-05	3.16E-05	1.39E-04	7.49E-05
Dissolved and Entrain	ed Gases					
1. Total Release	Ci	8.58E-05	(1)	(1)	(1)	8.58E-05
2. Avg. Diluted Conc.	uCi/ml	2.53E-11	(1)	(1)	(1)	6.02E-12
Gross Alpha Radioacti	vity					
1. Total Release	Ci	(1)	(1)	(1)	(1)	(1)
Volume of liquid waste	liters	3.39E+09	3.30E+09	3.81E+09	3.74E+09	1.42E+10

# Table 1.2-1 (cont.)

### RG 1.21 EFFLUENT AND WASTE DISPOSAL REPORT LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES Unit 2

REPORT FOR 2016	Units	QTR 1	QTR 2	QTR 3	QTR 4	YEAR
Fission and Activation	Products	and the second				
	Ci	2.09E-03	2.06E-03	1.27E-03	2.61E-03	8.04E-03
1. Total Release	<b>.</b>			3.34E-10	6.98E-10	5.64E-10
2. Avg. Diluted Conc.	uCi/mi	6.16E-10	6.25E-10	3.340-10	0.900-10	5.04E-10
Tritium						
1. Total Release	Ci	2.84E+02	1.44E+02	1.21E+02	5.19E+02	1.07E+03
2. Avg. Diluted Conc.		8.37E-05	4.35E-05	3.16E-05	1.39E-04	7.49E-05
Z. Avy. Diluted Colic.	uomin	0.07 2-00	4.00L-00	0.102 00	1.002.01	
Dissolved and Entrain	ed Gases					
1. Total Release	Ci	8.58E-05	(1)	(1)	(1)	8.58E-05
2. Avg. Diluted Conc.	uCi/ml	2.53E-11	(1)	(1)	(1)	6.02E-12
Gross Alpha Radioact	ivity					
1. Total Release	Ci	(1)	(1)	(1)	(1)	(1)
	<u>.</u>			( )		
Volume of liquid waste	e liters	3.39E+09	3.30E+09	3.81E+09	3.74E+09	1.42E+10

### Table 3.1-1

# 40CFR190 URANIUM FUEL CYCLE DOSE REPORT

# LIQUID DOSE SUMMARY

# Units 1 & 2

Report for: 2016 Unit Range - From: 1 To: 2 Liquid Receptor

	=== PERI	OD DOSE	BY ORGAN	AND AGE	GROUP (m	ırem) =====	===== AN	NUAL 2016	une auto auto casa was sing and auto acco auto auto auto auto acco
1	Agegrp ADULT FEEN	<u>Bone</u> 5.97E-02 6.18E-02	<u>Liver</u> 1.43E-01 1.09E-01	<u>Thyroid</u> 1.38E-01 1.04E-01	<u>Kidney</u> 1.38E-01 1.04E-01	<u>Lung</u> 1.38E-01 1.04E-01	<u>GI-LLI</u> 1.73E-01 1.28E-01	<u>Skin</u> 0.00E+00 0.00E+00	<u>TB</u> 1.41E-01 1.07E-01
	CHILD NFANT	8.14E-02 4.55E-04	1.21E-01 5.12E-02	1.15E-01 5.11E-02	1.16E-01 5.11E-02	1.15E-01 5.11E-02	1.24E-01 5.12E-02	0.00E+00 0.00E+00	1.20E-01 5.12E-02
	=== SITE	DOSE LIM	IT ANALYSI	S ======	o noon anna ainin kinin vieni uigen anna oron an 1 vienin presi ainin kinin vienin ainin anna an	an man anda dala alia yaki yeki kan aka aka aka aka	==== ANNU	AL 2016 ===	
12	<u>Annual – I</u> 2016 – A		Drgan	Age <u>Group</u> ADULT ADULT	<u>Organ</u> GILLI TBODY	Dose <u>(mrem)</u> 1.73E-01 1.41E-01	Limit ( <u>mrem</u> 7.50E+ 2.25E+	Max 0 <u>Lin</u> -00 2.31	% of
ON NHONFOONUNS	Critical Pa Major Con Iuclide I-3 CR-51 IN-54 E-59 CO-58 CO-60 II-63 IN-65 IB-95 IB-95 IB-95	ntributors (0 Pe 7. 3. 6. 1. 3. 2. 2. 4. 1. 1. 1. 1. 1. 1.	sh Water Fis % or greater <u>arcentage</u> 97E+01 55E-02 76E-02 24E-01 47E+00 27E+00 97E-01 32E-01 37E+01 39E-03		GILLI FFSP)	1.73E-01	1.00E+	01 1.73	<b>E+00</b>
C ≥ ZHC≥FCCZNZ	ritical Pa	tributors (09 9.7 1.7 5.1 1.7 4.7 3.2 1.4 1.1 1.4	3ody h Water Fis % or greater <u>rcentage</u> 77E+01 73E-04 16E-03 75E-02 70E-01 17E-01 11E+00 16E-01 19E-03 19E-05		TBODY FSP)	1.41E-01	3.00E+	00 4.718	E+00

### Table 3.2-1

# 40CFR190 URANIUM FUEL CYCLE DOSE REPORT

### GASEOUS DOSE SUMMARY

### Units 1 & 2

Report for: 2016 Unit Range - From: 1 To: 2 Liquid Receptor

=== I & P DOSE LIMIT ANALYS	IS =====		and some state water state from their balls with state rates from their some	=== ANNUAL	2016 ======	2009 SADE
<u>Annual – Limit</u> 2016 - Admin. Any Organ 2016 - Admin. Total Body	Age <u>Group</u> CHILD CHILD	<u>Organ</u> BONE TBODY	Dose ( <u>mrem)</u> 6.93E-01 1.41E-01	Limit ( <u>mrem)</u> 1.13E+01 1.05E+01	Max % of Limit 6.16E+00 1.34E+00	
2016 - T.Spc. Any Organ Receptor: Composite Crit. Receptor: Distance: 800 (meters) Co Critical Pathway: Vegetation	CHILD otor - IP mpass Poir	BONE nt: SSE	6.93E-01	1.50E+01	4.62E+00	
Major Contributors (0% or greate	er to total)					

Nuclide	Percentage
H-3	0.00E+00
C-14	1.00E+02
CO-58	2.25E-05

2016 - T.Spc. Total BodyCHILDTBODY1.41E-011.50E+019.41E-01Receptor: Composite Crit. Receptor - IPDistance: 800 (meters)Compass Point: SSECritical Pathway: VegetationMajor Contributors (0% or greater to total)

Nuclide	Percentage
H-3	1.88E+00
C-14	9.81E+01
CO-58	1.93E-04

# Table 3.2-1 (cont.)

## 40CFR190 URANIUM FUEL CYCLE DOSE REPORT

# GASEOUS DOSE SUMMARY

## Units 1 & 2

Report for: 2016 Unit Range - From: 1 To: 2

=== NG DOSE LIMIT ANALYSIS ===================================	and along which which which share some some some some state state along which which which share some some some some some some some som	= ANNUAL 2	016 =======
Annual - Limit	Dose (mrad)	Limit (mrem)	Max % of _Limit
2016 - Admin. Gamma 2016 - Admin. Beta	5.13E-05 2.30E-05	7.50E+00 1.50E+01	6.84E-04 1.53E-04
2016 - T. Spc. Gamma Receptor: Composite Crit. Receptor - NG	5.13E-05	1.00E+01	5.13E-04
Distance: 800 (meters) Compass Point: SSE			

Percentage
4.37E+01
2.40E-03
3.74E-01
1.09E-01
5.59E+01

2016 - T.Spc. Beta Receptor: Composite Crit. Receptor - NG Distance: 800 (meters) Compass Point: SSE

Nuclide	Percentage
AR-41	8.43E+00
KR-85M	2.10E-03
XE-135	2.62E-01
XE-133M	2.71E-01
XE-133	9.10E+01

2.30E-05 2.00E+01 1.15E-04

### Table 3.3-1

# 40CFR190 URANIUM FUEL CYCLE DOSE REPORT

### Units 1 & 2

Report for: 2016 Unit Range - From: 1 To: 2

=== MAXIMUM DOSE ANALYSIS		== ANNUAL 2016 =======
	Age Dose	

	Age		Duse
Dose Type	Group	<u>Organ</u>	<u>(mrem)</u>
Any Organ	CHILD	BONE	7.74E-01

Liquid Receptor: Liquid Receptor Gaseous Receptor: Composite Crit. Receptor - IP Distance: 800 (meters) Compass Point: SSE

Liquid Dose: 8.14E-02 % of Total: 1.05E+01 Critical Pathway: Fresh Water Fish - Sport (FFSP) Major Contributors (0% or greater to total)

Nuclide	Percentage
H-3	0.00E+00
CR-51	0.00E+00
MN-54	0.00E+00
FE-59	4.23E-02
CO-58	0.00E+00
CO-60	0.00E+00
NI-63	9.98E+01
ZN-65	1.31E-01
NB-95	1.03E-02
SB-125	4.57E-04

Gaseous Dose: 6.93E-01 % of Total: 8.95E+01 Critical Pathway: Vegetation (VEG) Major Contributors (0% or greater to total)

Nuclide	Percentage
H-3	0.00E+00
C-14	1.00E+02
C-14	2.25E-05

	Age		Dose
Dose Type	Group	<u>Organ</u>	(mrem)
Any Organ	CHILD	TBODY	2.61E-01
Liquid Receptor: Liquid Re	eceptor		
Gaseous Receptor: Compo	site Crit. Recepto	or - IP	
		1 A A A M	

Distance: 800 (meters) Compass Point: SSE

## Table 3.3-1 (cont.)

# 40CFR190 URANIUM FUEL CYCLE DOSE REPORT

Units 1 & 2

Liquid Dose: 1.20E-01 % of Total: 4.58E+01 Critical Pathway: Fresh Water Fish - Sport (FFSP) Major Contributors (0% or greater to total)

<u>Nuclide</u>	Percentage
H-3	9.65E+01
CR-51	2.25E-04
MN-54	6.56E-03
FE-59	2.32E-02
CO-58	6.07E-01
CO-60	4.23E-01
NI-63	2.31E+00
ZN-65	1.47E-01
NB-95	1.95E-03
SB-125	6.51E-05

Gaseous Dose: 1.41E-01 % of Total: 5.41E+01 Critical Pathway: Vegetation (VEG) Major Contributors (0% or greater to total)

Nuclide	Percentage
H-3	1.885E+00
C-14	9.81E+01
CO-58	1.93E-04

## Table 3.4-1

The following are the maximum annual calculated cumulative offsite doses resulting from Byron airborne releases in 2016 based on concurrent meteorological data:

8 8	3	it	4	
S		88.	8	Ð,

Dose	<u>Maximum Value</u>	Sector Affected
gamma air ⁽¹⁾	5.42 x10 ⁻⁶ mr	ad North-Northwest
beta air ⁽²⁾	9.26 x10 ⁻⁶ mr	ad North-Northwest
whole body (3)	7.04 x10 ⁻² mr	em North-Northwest
skin ⁽⁴⁾	7.42 x10 ⁻⁶	mrem North-Northwest
organ ⁽⁵⁾ (child-bone)	3.48 x10 ⁻¹ mr	em North-Northwest

# Unit 1 Compliance Status

Yearly Objective		% of Appendix I		
10.0	mrad		0.00	
20.0	mrad		0.00	
5.0	mrem		1.41	
15.0	mrem		0.02	
15.0	mrem	2	2.32	
	10.0 20.0 5.0 15.0	10.0 mrad 20.0 mrad 5.0 mrem 15.0 mrem	10.0 mrad 20.0 mrad 5.0 mrem 15.0 mrem (	10.0mrad0.0020.0mrad0.005.0mrem1.4115.0mrem0.02

Unit 2:

188, Am -			Sector
Dose	<u>Maximum V</u>	'alue	Affected
gamma air ⁽¹⁾	3.93 x10 ⁻⁶	mrad	North-Northwest
beta air ⁽²⁾	8.01 x10 ⁻⁶	mrad	North-Northwest
whole body (3)	6.54 x10 ⁻²	mrem	North-Northwest
skin ⁽⁴⁾	5.67 x10 ⁻⁶	mrem	North-Northwest
organ ⁽⁵⁾ (child-bone)	3.17 x10 ⁻¹	mrem	North-Northwest

### **Unit 2 Compliance Status**

10 CFR 50 Appendix I	Yearly Objective		% of Appendix I	
gamma air	10.0	mrad	0.00	
beta air	20.0	mrad	0.00	
whole body	5.0	mrem	1.31	
skin	15.0	mrem	0.00	
organ	15.0	mrem	2.11	

(1) Gamma Air Dose - GASPAR II, NUREG-0597

- (2) Beta Air Dose GASPAR II, NUREG-0597
- (3) Whole Body Dose GASPAR II, NUREG-0597
- (4) Skin Dose GASPAR II, NUREG-0597
- (5) Inhalation and Food Pathways Dose GASPAR II, NUREG-0597

Data recovery: 99.8%

APPENDIX F

# METEOROLOGICAL DATA

Intentionally left blank

	Period	of Record: January - March 2016	
Stability	Class -	Extremely Unstable - 250Ft-30Ft	Delta-T (F)
	Ū	linds Measured at 30 Feet	

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0.	0	0
SSE	0	0	0	0	0	0	
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0 1	0	0	0	0	0
MNM	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 3

Period of Record: January - March 2016 Stability Class - Moderately Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	0	0	0	0	0	0	0		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	0	0	0	0	0	0	0		
SSW	0	0	0	0	0	0	0		
SW	0	0	0	0	0	0	0		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	1	3	0	0	4		
NW	0	0	0	0	0	0	0		
NNW	0	0.	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	0	1	3	0	0	4		

Wind Speed (in mph)

Period of Record: January - March 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

r.7	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0 .	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	· • 0 .	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	
SSW	0	0	0	0	0	0	0	
SW	0	0	0	0	0	0	0	
WSW	0	0	1	0	0	0	1	
W	0	0	0	1	0	0	1	
WNW	0	0	3	2	2	0	7	
NW	0	0	2	0	1	0	3	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	0	6	3	3	0	12	

Period of Record: January - March 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

· · · · · · · ·		y y	ariid speed	(III mpn	/		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	24	29	17	6	0	78
NNE	2	9	3	7	1	0	22
NE	0	8	2	14	2	0	26
ENE	3	13	15	27	0	0	58
E	1	7	7	2	0	0	17
ESE	10	11	5	6	1	0	33
SE	5	13	19	10	5	0	52
SSE	5	20	27	6	1	0	59
S	1	16	28	21	0	0	66
SSW	2	14	9	17	2	0	44
SW	7	23	25	7	1	0	63
WSW	5	14	22	10	5	1	57
W	2	20	38	59	7	9	135
WNW	4	31	56	62	3	0	156
NW	2	17	55	67	19	0	160
NNW	2	17	50	53	1	0	123
Variable	0	0	0	0	0	0	0
Total	53	257	390	385	54	10	1149

Wind Speed (in mph)

Period of Record: January - March 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		W	ind Speed	d (in mph	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	9	15	6	2	0	0	32
NNE	6	6	5	2	0	0	19
NE	1	11	5	3	0	0	20
ENE	2	10	13	6	0	0	31
E	8	14	7	0	0 a	0	29
ESE	3	13	14	2	1	0	33
SE	4	17	33	3	2	0	59
SSE	1	24	40	13	10	0	88
S	6	24	42	24	2	0	98
SSW	4	26	19	32	2	0	83
SW	7	16	36	11	1	0	71
WSW	6	16	19	16	3	5	65
W	5	23	13	15	3	3	62
WNW	8	45	19	4	1	0	77
NW	3	28	25	3	0	0	59
NNW	3	27	13	2	0	0	45
Variable	0	0	0	0	0	0 0 0	0
Total	76	315	309	138	25	8	871

Period of Record: January - March 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

	Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
	0	1	0	0	0	0	1		
NNE	0	0	0	0	0	0	0		
NE	1	0	0	0	0	0	1		
ENE	1	3	0	0	0	0	4		
E	4	12	0	0	0	0	16		
ESE	1	7	7	0	0	0	15		
SE	4	11	8	0	0	0	23		
SSE	5	11	10	0	0	0	26		
S	4	3	5	0	0	0	12		
SSW	2	1	1	1	0	0	5		
SW	2	1	0	0	0	0	3		
WSW	2	0	0	0	0	0	2		
W	2	1	0	0	0	0	3		
WNW	5	3	0	0	0	0	8		
NW	1	1	0	0	0	0	2		
NNW	1	0	0	0	0	0	1		
Variable	0	0	0	0	0	0	0		
Total	35	55	31	1	0	0	122		

Period of Record: January - March 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		W	ind Speed	(in mph	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total						
N	0	0	0	0	0	0	0						
NNE	1	0	0	0	0	0	1						
NE	0	0	0	0	0	0	0						
ENE	0	0	0	0	0	0	0						
E	0	3	0	0	0	0	3						
ESE	1	4	1	0	0	0	6						
SE	0	2	0	0	0	0	2						
SSE	2	6	0	0	0	0	8						
S	1	1	0	0	0	0	2						
SSW	0	0	0	0	0	0	0						
SW	0	0	0	0	0	0	0						
WSW	0	0	0	0	0	0	0						
W	0	0	0	0	0	0	0						
WNW	0	0	0	0	0	0	0						
NW	0	0	0	0	0	0	0						
NNW	0	0	0	0	0	0	0						
Variable	0	0	0	0	0	0	0						
Total	5	16	1 	0	0	0	22						

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 3

F-7

Period of Record: January - March 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

		Wind Speed (in mph)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
 N	0	0	0	0	0	0	0				
NNE	0	0	0	0	0	0	0				
NE	0	0	0	0	0	0	0				
ENE	0	0	0	0	0	0	0				
E	0	0	0	0	0	0	0				
ESE	0	0	0	0	0	0	0				
SE	0	0	0	0	0	0	0				
SSE	0	0	0	0	0	0	0				
S	0	0	0	0	0	0	0				
SSW	0	0	0	0	0	0	0				
SW	0	0	0	0	0	0	0				
WSW	0	0	0	0	0	0	0				
W	0	0	0	0	0	0	0.0				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	0	0				
NNW	0	0	0	0	0	0	0				
Variable	0	0	0	0.	0	0	0				
Total	0	0	0	0	0	0 0	. 0				

Period of Record: January - March 2016 Stability Class - Moderately Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	
SSW	0	0	0	0	0	0	0	
SW	0	0	0	0	0	0	0	
WSW	0 .	0	0	0	0	0	0	
W	0	0	0	0	0	0	0	
WNW	0	0	0	3	1	0	4	
NW	0	0	0	0	0	0	0	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	0	0	3	1	0	4	

Period of Record: January - March 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

		Wind Speed (in mph)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	0	0	0	0	0	0			
SW	0	0	1	0	0	0	1			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	1	0	1			
WNW	0	0	2	2	5	0	9			
NW	0	0	1	0	0	0	1			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	0	0	4	2	6	0	12			

Wind Speed (in mph)

Period of Record: January - March 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	2	18	14	17	14	4	69			
NNE	2	13	10	5	10	2	42			
NE	2	5	4	3	10	0	24			
ENE	1	3	11	13	21	4	53			
E	2	5	7	7	5	2	28			
ESE	3	10	8	1	6	1	29			
SE	1	12	10	15	7	7	52			
SSE	4	12	21	18	3	1	59			
S	2	14	18	20	13	0	67			
SSW	1	6	12	8	12	4	43			
SW	3	13	25	15	10	3	69			
WSW	2	5	17	15	8	7	54			
W	3	14	33	35	54	11	150			
WNW	2	19	28	59	31	1	140			
NW	0	8	28	74	32	8	150			
NNW	0	9	36	45	30	0	120			
Variable	0	0	0	0	0	0	0			
Total	30	166	282	350	266	55	1149			

Period of Record: January - March 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

e.v. 1 . 1		AA T	na speed	(Tu mbu			
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	12	10	12	3	0	38
NNE	1	11	7	5	5	0	29
NE	. 3	5	6	6	4	0	24
ENE	1	4	4	10	4	0	23
Ē	0	9	15	8	4	0	36
ESE	0	2	7	10	2	1	22
SE	1	5	9	32	9	2	58
SSE	2	5	11	24	17	18	77
S	1	3	19	32	33	9	97
SSW	1	4	17	24	22	25	93
SW	0	0	9	31	22	6	68
WSW	3.	6	11	15	18	12	65
W	0	5	16	26	14	8	69
WNW	1	6	27	28	0	1	63
NW	0	3	29	32	1	0	65
NNW	1	14	17	12	1	0	45
Variable	0	0	0	0	0	0	0
Total	16	94	214	307	159	82	872

Wind Speed (in mph)

Period of Record: January - March 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind Speed (in mph)

Wind	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	2	1	0	0	0	3			
NNE	0	1	0	0	0	0	1			
NE	0	1	0	0	0	0	1			
ENE	0	0	0	0	0	0	0			
E	1	2	4	0	0	0	7			
ESE	1	1	2	5	2	0	11			
SE	0	3	4	14	2	0	23			
SSE	0	1	4	12	6	0	23			
S	0	2	6	7	9	1	25			
SSW	0	1	2	2	2	0	7			
SW	0	4	4	1	0	1	10			
WSW	0	1	0	0	0	0	1			
W	0	0	2	0	0	0	2			
WNW	0	0	0	1	0	0	1			
NW	0	0	4	1	0	0	5			
NNW	0	1	1	0	0	0	2			
Variable	0	0	0	0	0	0	0			
Total	2	20	34	43	21	2	122			

Period of Record: January - March 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

 		Wi	nd Speed	l (in mph	)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	1	0	0	0	0	1
ESE	0	0	0	0	0	0	0
SE	0	0	3	1	0	0	4
SSE	0.	0	3	0	0	0	3
S	0	0	9	4	0	0	13
SSW	0	0	0	1	0	0	1
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	1	15	6	0	0	22

Wind Speed (in mph)

Period of Record: April - June 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wi	nd Speed	(in mph	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	· · · · · · 0 . · · .	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	· 0 · · ·	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0 0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	
Total	0	0	0	0	0	0	0
f anlm in th	ic ctobi	734		<b>,</b>			

Period of Record: April - June 2016 Stability Class - Moderately Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

		Wi	nd Speed	(in mph	)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0.
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0.	0	0	0	0
SSW	0 .	0	1	0	0	0	1
SW	0.	0	0	0	· 0 ·	0	0
WSW	0	0	0	0	0	0	0
W	0	0	1	0	0	0	1
WNW	0	0	3	5	0	0	8
NW	0	0	0	0	0	0	0
NNW	0	0	1	0	0	0	1
Variable	0	0	0	0	0	0	0
Total	0	0	6	5	0	0	11

Period of Record: April - June 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wi	nd Speed	(in mph	)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	1	0	0	0	0	1
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E state	0	0	0	0	0	0	0
ESE	0	0	1	0	0	0	1
SE	0	0	1	0	0	0	1
SSE	0	0	0	1	0	0	1
S	0	0	1	0	0	0	1
SSW	0	0	2	1	0	0	3
SW	0	0	3	1	0	0	4
WSW	0	0	1	0	0	0	1
W	0	0	6	2	0	0	8
WNW	0	0	4	2	3	0	9
NW	0	0	<b>1</b>	3	1	0	5
NNW	0	0	0	1	0	0	1
Variable	0	0	0	0	0	0	0
Total	0	1	20	11	4	0	36

Wind Speed (in mph)

Period of Record: April - June 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind Speed (in mph)

		Wl	na speed	a (in mpr	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	21	51	19	0	0	92
NNE	1	8	33	2	0	0	44
NE	0	19	37	12	0	0	68
ENE	1	17	24	16	1	0	59
E	3	23	20	6	0	0	52
ESE	1	13	14	4	7	0	39
SE	0	10	41	14	0	0	65
SSE	0	18	19	17	0	0	54
S	0	19	30	16	0	0	65
SSW	2	16	30	9	2	0	59
SW	1	21	25	9	4	0	60
WSW	1	12	25	7	1	0	46
W	1	10	31	17	0	0	59
WNW	0	13	35	24	5	2	79
NW	1	15	30	42	11	6	105
NNW	1	14	20	19	1	0	55
Variable	0	0	0	0	0	0	0
Total	14	249	465	233	32	8	1001

Period of Record: April - June 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Tri é en el		W	nd Spee	d (in mph	) )		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	3	27	13	0	0	0	43
NNE	5	14	12	0	0	0	31
NE	3	8	10	0	0	0	21
ENE	4	14	16	8	0	0	42
E	6	37	15	0	0	0	58
ESE	5	19	17	8	0	0	49
SE	3	17	31	7	0	0	58
SSE	0	17	38	12	2	0	69
S	3	17	3.0	4	0	0	54
SSW	4	8	15	1	0	0	28
SW	1	15	19	2	0	0	37
WSW	5		13	0	0	0	25
W	10	22	12	7	0	0	51
WNW	5	25	24	9	0	0	63
NW	3	22	17	8	0	0	50
NNW	5	20	12	1	0	0	38
Variable	0	0	0	0	0	0	0
Total	65	289	294	67	2	0	717

Period of Record: April - June 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind Speed (in mph)

		Wi	nd Speed	(in mph)	)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	3	0	0	0	0	5
NNE	1	0.	0	0	0	0	1
NE	0	0	1	0	0	0	1
ENE	1	2	0	0	0	0	3
E	2	24	3	0	0	0	29
ESE	1	16	31	0	0	0	48
SE	3	23	5	0	0	0	31
SSE	5	30	5	0	0	0	40
S	4	24	5	0	0	0	33
SSW	5	6	2	0	0	0	13
SW	11	2	0	0	0	0	13
WSW	9	9	2	0	0	0	20
W	10	5	1	0	0	0	16
WNW	8	3,	2	0	0	0	13
NW	11	4	0	0	0	0	15
NNW	2	6	0	0	0	0	8
Variable	0	0	0	0	0	0	0
Total	75	157	57	0	0	0	289

Period of Record: April - June 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		W	ind Speed	l (in mph)	n de la composition La composition de la composition La composition de la c		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	0	0	0	0	0	2
NNE	0	0	0	ан балан алт <mark>0</mark>	0	0	0
NE	0	0	0	0	0	0 .	0
ENE	0	0	0	0	0	0	0
E	0	6	0	0	0	0	6
ESE	4	10	3	0	0	0	17
SE	2	8	1	0	0	0	11
SSE	5	6	1	0	0	0	12
S	4	3	0	0	0	0	7
SSW	7	5	0	0	0	0	12
SW	3	4	0	0	0	0	7
WSW	4	0	0	0	0	0	4
W	7	0	0	0	0	0	7
WNW	11	2	0	0	0	0	13
NW	18	2	0	0	0	0	20
NNW	4	1	1	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	71	47	6	0	0	0	124

Period of Record: April - June 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

#### Wind Speed (in mph)

ww.t. 3		W.	ind Speed	(in mph)			
Wind Direction	1-3	4-7	8-12	13-18	9-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0		0
NE	0	0	0	0	0	0	0
ENE	0	Ő.	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	. 0	0	0	0	0
Total	0	0	0	0	0	0	0

Period of Record: April - June 2016 Stability Class - Moderately Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind Speed (in m	pn)
------------------	-----

Wind		WIII	na speea	(in mpn)			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	1	0	0	1
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	4	0	0	4
WNW	0	0	0	2	3	0	5
NW	0	0	0	1	0	0	1
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	8	3	0	11

Period of Record: April - June 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

		Wind Speea (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	0	0	0	0	0	0		
NNE	0	0	1	0	0	0	1		
NE	0	0	0	0	0	0	0		
ENE	0	0	0	0	0	0	0		
E	0	0	0	0	0	0	0		
ESE	0	0	0	1	0	0	1		
SE	0	0	1	0	0	0	1		
SSE	0	0.	0	1	0	0	1		
S	0	0	1	0	0	0	1		
SSW	0	0	1	2	0	0	3		
SW	0	0	0	4	0	0	4		
WSW	0	0	0	1	0	0	1		
W	0	0	1	6	1	0	8		
WNW	0	0	3	2	4	1	10		
NW	0	0	1	1	2	0	4		
NNW	0	0	0	1	0	0	1		
Variable	0	0	0	0	0	0	0		
Total	0	0	9	19	7	1.	36		

Wind Speed (in mph)

Period of Record: April - June 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind Speed (in mph)

Wind	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	10	36	22	10	0	78		
NNE	0	8	24	19	4	0	5,5		
NE	1	5	26	27	2	0	61		
ENE	0	13	17	23	11	1	65		
Ē	0	12	18	17	9	1	57		
ESE	1	6	10	9	2	8	36		
SE	0	10	21	35	0	3	69		
SSE	0	11	15	18	8	2	54		
S	1	9	18	27	9	0	64		
SSW	0	15	24	13	8	2	62		
SW	1	12	15	17	11	4	60		
WSW	1	6	20	12	4	1	44		
W	1	7	14	31	8	0	61		
WNW	1	8	20	34	16	6	85		
NW	0	11	17	28	27	13	96		
NNW	2	9	15	22	5	1	54		
Variable	0	0	0	0	0	0	0		
Total	9	152	310	354	134	42	1001		

Period of Record: April - June 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

	wind speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	8	17	13	0	0	38			
NNE	1	7	12	15	1	0	36			
NE	1	7	10	17	0	0	35			
ENE	0	6	16	13	7	0	42			
E	0	5	18	18	10	0	51			
ESE	0	2	8	16	18	0	44			
SE	1	4	14	33	10	2	64			
SSE	0	3	7	23	19	8	60			
S	1	4	8	26	14	1	54			
SSW	1	2	3	25	7	0	38			
SW	0	5	6	6	16	1	34			
WSW	2	4	11	12	4	0	33			
W	0	5	12	15	7	1	40			
WNW	1	9	23	22	6	0	61			
NW	2	3	16	29	8	0	58			
NNW	0	3	12	13	1	0	29			
Variable	0	0	0	0	0	0	0			
Total	10	77	193	296	128	13	717			

Wind Speed (in mph)

Period of Record: April - June 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind	Wind Speed (in mph)								
	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	2	4	1	0	0	7		
NNE	0	0	3	3	0	0	6		
NE	0	1	4	1	0.0	0	6		
ENE	0	4	2	0	0	0	6		
E	0	7	2	1	4	1	15		
ESE	0	2	2	7	30	3	44		
SE	1	1	2	23	10	0	37		
SSE	0	1	7	14	4	0	26		
S	0	4	8	10	3	0	25		
SSW	0	4	4	26	5	0	39		
SW	0	0	7	4	0	0	11		
WSW	0	1	3	6	1	0	11		
W	1	. 1	8	9	0	0	19		
WNW	0	2	10	2	1	0.	15		
NW	0	2	6	9	0	0	17		
NNW	0	0	4	1	0	0	5		
Variable	0	0	0	0	0	.0	0		
Total	2	32	76	117	58	4	289		

Wind Speed (in mph)

Period of Record: April - June 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

	Wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	0	2	5	3	1	0	11		
NNE	0	1	0	0	0	0	1		
NE	0	0	0	0	0	0	0		
ENE	0	2	0	0	0	0	2		
E	1	1	1	1	0	0	4		
ESE	0	0	2	0	6	0	8		
SE	0	0	2	4	11	0	17		
SSE	0	0	4	3	2	0	9		
S	1	0	3	5	0	0	9		
SSW	0	1	5	3	0	0	9		
SW	0	2	2	3	0	0	7		
WSW	0	3	5	3	0	0	11		
W	0	1	7	1	0	0	9		
WNW	0	2	4	1	0	0	7		
NW	1	2	9	8	0	0.0	20		
NNW	0	1	0	0	0	0	1		
Variable	0	0	0	0	0	0	0		
Total	3	18	49	35	20	0	125		

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wi	nd Speed	(in mph)			
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	• 0 •	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Period of Record: July - September 2016 Stability Class - Moderately Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind Speed (in mph)

T.T. i1		Win					
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0.0	0	0	0	0	0	0
n de la companya de l En companya de la comp	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	1	0	0	0	1
SSW	0	0	2	1	0	0	3
SW	0	0	1	0	0	0	1
WSW	0	0	0	2	0 c	0	2
W	0	0	1	3	1	0	5
WNW	0	0	0	1	0	0	1
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0.	5	7	1	0	13

Period of Record: July - September 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind	wind speed (in mpn)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	ů O v	0	0	0	0	0	
NE	0	0	0	0	0	0	.0	
ENE	0	0	0	0	0	0	0	
E	0	2	: . . 1	0	0	0	3	
ESE	0	1	2	0	0	0	3	
SE	0	0	3	0	0	0	3	
SSE	0	0	0	0	0	0	0	
S	0	0	3	3	0	0	6	
SSW	0	1	0	1	0	0	2	
SW	0	0	1	0	0	0	1	
WSW	0	0	0	0	0	0	0	
W	0	0	1	2	2	0	5	
WNW	0	0	0	0	0	0	0	
NW	0	0	0	0	0	0	0	
NNW	0	0	0	0	0	0	0	
Variable	0	0	0	0	0	0	с. 	
Total	0	4	11	6	2	0, , , ,	23	

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Period of Record: July - September 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	4	29	27	0	0	0	60				
NNE	3	15	12	1	1	0	32				
NE	0	12	8	0	0	0	20				
ENE	6	25	19	1	0	0	51				
E	5	40	4	0	0	Ö	49				
ESE	6	14	6	1	0	0	27				
SE	4	22	9	1	0	0	36				
SSE	5	25	51	3	0	0	84				
S	6	47	23	6	0	0	82				
SSW	18	29	15	3	0	0	65				
SW	19	36	7.	0	0	0	62				
WSW	17	31	8	0	0	0	56				
W	13	16	15	1	0	0	45				
WNW	14	32	10	2	0	0	58				
NW	2	18	9	2	0	0	31				
NNW	5	29	8	0	0	0	42				
Variable	0	0	0	0	0	• 0 : · · ·	0				
Total	127	420	231	21	1	0	800				

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		W	Ind Speed	(in mph	)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	5	8	0	0	, 0	0	13
NNE	0	1	0	0	0	0	1
NE	3	2	0	0	0	0	5
ENE	3	6	0	0	0	0	9
E	13	21	0	0	0	0	34
ESE	8	32	16	0	0	0	56
SE	4	22	12	0	0	0	38
SSE	8	58	10	0	0	0	76
S	14	35	2	1	0	0	52
SSW	5	11	0	0	0	0	16
SW	6	2	0	0	0	0	8
WSW	11	4	0	0	0	0	15
W	14	2	1	0	0	0	17
WNW	11	7	0	0	0	0	18
NW	15	8	0	0	0	0	23
NNW	2	11	0	0	0	0	13
Variable	0	0	0	0	0	0	0
Total	122	230	41	1	0	0	394
rocar	1 4 4	200	.# T	1	U	0	594

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	2	0	0	0	0	0	2			
NNE	1	0	0	0	0	0	1			
NE	1	0	0	0	0	0	1			
ENE	3	0	0	0	0	0	3			
E	5	11	0	0	0	0	16			
ESE	0	8	5	0	0	0	13			
SE	2	10	0	0	0	0	12			
SSE	5	10	0	0	0	0	15			
S	9	8	0	0	0	0	17			
SSW	5	1	0	0	0	0	6			
SW	9	0	0	0	0	0	9			
WSW	5	0	0	0	0	0	5			
W		0	0	0	0	0	7			
WNW	6	0	0	0	0	0	6			
NW	10	1	0	0	, 0 ·	0	11			
NNW	7	0	0	0	0	0	7			
Variable	0	0	0	0	0	0	0			
Total	77	49	5	0	0	0	131			

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind	wind Speed (in mpn)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Wind Speed (in mph)

Stability Cl	Lass - M	oderatel	y Unstab	le - 250	Ft-30Ft	Delta-T	(F)
		Wi	nd Speed	(in mph	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	.0
NE	0	0	0	0	0	0	0
ENE	0	0	0	· 0 · ··;	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	2	0	0	2
SSW	0	0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0	3	0	0	3
SW	0	0	0	0	0	0	0
WSW	0	0	0	1	2	0	3
W	0	0	0	2	0	2	4
WNW	0	0	0	0	1	0	1
NW	0	0	0	0	0	0	.0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	8	3	2	13

Period of Record: July - September 2016

Period of Record: July - September 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind		Win	nd Speed	(in mph	)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	Ö	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	4	0	0	0	4
ESE	0	0	2	1	0	0	3
SE	0	0	0	2	0	0	2
SSE	0	0	0	0	0	0	0
S	0	0	0	5	1	0	6
SSW	0	1	0	0	1	Ó	2
SW	0	0	Ō	1	0	0	1
WSW	0	0	0	0	0	0	0
W	0	0	1	0	1	3	5
WNW	0	0		0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0 ⁰	0
Total	0	1	7	9	3	3	23

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind		Wi	nd Speed	d (in mpł	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	6	27	19	6	0	59
NNE	1	4	10	16	4	0	35
NE	1	9	11	1	4	0	26
ENE	2	10	5	1	0	0	18
Ε	3	19	34	1	0	0	57
ESE	2	14	22	11	0	0	49
SE	2	21	10	6	0	0	39
SSE	6	21	23	19	2	0	71
S	. 1	25	37	23	6	0	92
SSW	1	16	32	38	3	0	90
SW	5	17	22	20	2	0	66
WSW	1	17	26	13	0	0	57
W	1	16	22	13	12	5	69
WNW	2	8	9	9	13	2	43
NW	2	6	10	18	2	0	38
NNW	1	6	18	5	0	0	30
Variable	0	0	0	0	0	0	0
Total	32	215	318	213	54	7	839

Period of Record: July - September 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

na J		Wi	nd Speed	(in mph	)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	9	19	22	4	0	54
NNE	0	7	15	21	1	1	45
NE	0	2	10	14	2	0	28
ENE	2	9	16	21	1	0	49
E	1	7	31	14	2	0	55
ESE	0	4	9	7	3	0	23
SE	1	2	7	12	5	0	27
SSE	2	4	13	25	26	1	71
S	1	3	27	29	25	1	86
SSW	1	6	19	21	10	2	59
SW	1	10	40	17	2	0	70
WSW	2	7	33	22	Ó	0	64
W	0	8	13	17	5	0	43
WNW	0	6	21	16	4	0	47
NW	0	8	16	15	1	0	40
NNW	2	6	21	10	0	0	39
Variable	0	0	0	0	0	0	0
Total	13	98	310	283	91	5	800

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

ww i 1		W	ina speed	(in mpn	)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	6	3	0	0	12
NNE	0	1	5	3	0	0	9
NE	1	7 v	7	0	0	0	15
ENE	0	7	2	0	0	0	9
E	2	4	22	7	0	0	35
ESE	0	1	5	10	15	0	31
SE	0	2	6	22	12	0.	42
SSE	0	2	6	9	9	0	26
S	0	8	15	32	15	0	70
SSW	1	7	15	12	8	0	43
SW	0	6	11	15	0	0	32
WSW	1	0	4	2	0	0	7
W	1	4	1	1	1	0	8
WNW	0	3	3	5	0	0	11
NW	0	2	18	3	0	0	23
NNW	1	5	9	7	0	0	22
Variable	0	0	0	0	0	0	0
Total	7	62	135	131	60	0	395

Wind Speed (in mph)

Period of Record: July - September 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	2	0	0	0	3
NNE	0	0	2	0	0	0	2
NE	0	1	1	0	0	0	2
ENE	0	0	0	0	0	0	0
E	0	4	2	4	3	0	13
ESE	0	2	0	2	5	1	10
SE	1	3	0	4	4	0	12
SSE	0	5	0	1	4	0	10
S	1	1	6	5	5	0	18
SSW	0	5	Ó	2	1	0	8
SW	1	3	4	6	0	0	14
WSW	2	1	1	0	0	0	4
W	0	4	0	0	0	0	4
WNW	0	4	1	0	0	0	5
NW	1	7.	8	0	0	0	16
NNW	2	6	4	1	0	.0.	13
Variable	0	0	0	0	0	0	0
Total	8	47	31	25	22	1	134

Wind Speed (in mph)

Period of Record: October - December 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

771 - 1	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	0	0	0	0	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
Е	0	0	0	0	0	0	0	
ESE	0	0	0	0	0	0	0	
SE	0	0	0	0	0	0	0	
SSE	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	
SSW	0	0	0	0	0	0	0	
SW	0	0	0	0	0	0	0	
WSW	0	0	0	0	0	0	0	
W	0	0	0	2	0	0	2	
WNW	0	0	0	0	0	0	0	
NW	0	0	0	0	0	0	0	
NNW	0	0.0	0	0	0	0	0	
Variable	0	0	0	0	0	0	0	
Total	0	0	0	2	0	0	2	
	a ahala	373						

Period of Record: October - December 2016 Stability Class - Moderately Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

	Wind Speed (in mph)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	. 0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0		0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	1	0	0	0	1
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	1	0	0	1
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	1	1	0	0	2

Period of Record: October - December 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind Speed (in mph)

	Wina Speed (in mpn)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	
NE	0	0	1	0	0	0	1
ENE	0	1	0	0	0	0	1
Ε	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	3	0	0	0	3
SSW	0	0	2	1	0	0	3
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	1	1	0	0	0	2
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	<b>0</b>	2	7	1	0	0	10

Period of Record: October - December 2016 Stability Class - Neutral - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind Speed (in mph)

1		W:	ind Speed	d (in mp)	ר)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	2	14	21	8	0	0	4.5
NNE	1	13	21	2	0	0	37
NE	3	3	2	1	0	0	9
ENE	2	7	2	0	0	0	11
E	2	12	6	0	0	0	20
ESE	4	5	13	15	7	0	44
SE	0	14	52	24	1	0	91
SSE	3	22	28	18	7	0	78
S	4	24	35	25	7	0	95
SSW	4	10	23	19	1	0	57
SW	1	18	22	7	1	0	49
WSW	1	23	38	20	4	1	87
W	3	36	56	55	15	2	167
WNW	3	25	71	50	18	1	168
NW	1	17	37	23	11	0	89
NNW	4	18	23	11	0	0	56
Variable	0	0	0	0	0	0 0	0
Total	38	261	450	278	72	4	1103

Period of Record: October - December 2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	5	15	12	0	0	0	32	
NNE	2	11	2	0	0	0	15	
NE	9	14	3	0	0	0	26	
ENE	7	6	4	0	0	0	17	
E	8	11	3	0	0	0	22	
ESE	0	9	15	3	1	1	29	
SE	1	18	18	0	3	0	40	
SSE	3	18	35	14	1	0	71	
Ŝ	0	22	45	27	0	0	94	
SSW	3	14	26	30	1	0	74	
SW	3	48	34	8	0	0	93	
WSW	3	21	21	4	0	0	49	
W	2	27	32	5	3	0	69	
WNW	4	16	16	4	0	0	40	
NW	4	12	17	3	0	0	36	
NNW	4	19	8	0	0	0	31	
Variable	0	- 0	0	0	0	0	0	
Total	58	281	291	98	9	1	738	

Wind Speed (in mph)

Period of Record: October - December 2016 Stability Class - Moderately Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

WING Speed (IN NON	Wind	Speed	(in	mph	)
--------------------	------	-------	-----	-----	---

			Wind Speed	i (in mpr	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	11	0	0	0	0	13
NNE	4	1	0	0	0	0	5
NE	3	1	0	0	0	0	4
ENE	3	0	0	0	0	0	3
Ε	5	2	0	0	0	0	7
ESE	2	10	13	0	0	0	25
SE	2	11	11	0	0	0	24
SSE	0	14	19	0	0	0	33
S	5	27	15	3	0	0	50
SSW	0	19	2	0	0	0	21
SW	9	9	0	0	0	0	18
WSW	5	3	0	0	0	0	8
W	5	5	0	0	0	0	10
WNW	10	5	1	0	0	0	16
NW	4	13	0	0	0.0	0	17
NNW	3	8	0	0	0	0	11
Variable	0	0	0	0	0	0	0
Total	62	139	61	3	0	0	265

Period of Record: October - December 2016 Stability Class - Extremely Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 30 Feet

Wind		Wi	nd Speed	(in mpł	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	0	0	0	0	0	1
NNE	1	0	0	0	0	0	1
NE	2	0	0	0	0	0	2
ENE	0	0	0	0	0	0	0
Е	3	3	0	0	0	0	6
ESE	0	3	0	0	0	0	3
SE	1	14	1	0	0	0	16
SSE	1	10	0	0	0	0	11
S	1	5	0	0	0	0	6
SSW	1	1		0	0	0, .	2
SW	2	0	0, 1, 1,	0	0	0	2
WSW	3	0	0	0	0	0	3
W	8	0	0	0	0	0	8
WNW	10	0	0	0	0	0	10
NW	11	1	0	0	0	0	12
NNW	4	0	0	0	0	0	4
Variable	0	0	0	0	0	0	0
Total	49	37	1	0	0	0	87

Period of Record: October - December 2016 Stability Class - Extremely Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

MING DDEEG (IN HDD)	Wind	Speed	(in	mph)
---------------------	------	-------	-----	------

Wind	Wind Speed (in mph)									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	0	0	0	0	0	0	0			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	0	0	0	0	0	0	0			
SSW	0	· · · · ·	0	0	0	0	0			
SW	0	0	0	0	0	0	0			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	0	0			
NNW	0	0	0	0	0	0	0			
Variable	0	0	0	0	0	0	0			
Total	0	0	0	0	0	0	0			

	Period	l of Record	: Octo	ber -	December 201	6	
Stability	Class	- Moderate	ly Uns	table	- 250Ft-30Ft	Delta-T	(F).
		Winds Meas	sured	at 250	Feet		

Wind	Speed	lin	mph)	
88 T I I O	apeeu	1 1 1 1	mpnj	

Wind		Wl	nd Speed	i (in mph	)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	. 0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	0	0	0	1	0	0	1
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	Ö	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	0	0	1	0	0	1

Period of Record: October - December 2016 Stability Class - Slightly Unstable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

77 J1		W1:	na speea	(in mpn)			
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	0	0	0	0
NNE	0	0	0	0	0	0	0
NE	. 0 :	0	1	0	0	0	1
ENE	0	0	1	0	0	0	1
E	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	Ö	0	0	0	0
S	0	0	1	3	0	0	4
SSW	0	0	0	1	1	0	2
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	1	0	1	0	0	2
NW	0	0	0	0	0	0	0
NNW	0	0, 0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	0	1	3	5	1	0	10

Wind Speed (in mph)

E Stability C	Period of Class - N Wi	eutral			50Ft-30Ft		C (F)
		Wi	nd Speed	d (in mph	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	9	17	15	0	0	41
NNE	0	5	20	15	0	0	40
NE	1	2	3	2	1	0	9
ENE	2	3	3	1	0	0	9
E	4	9	4	6	0	1	24
ESE	0	5	1	16	10	11	43
SE	2	2	13	45	24	2	88
SSE	0	9	23	22	7	18	79
S	1	8	32	27	16	8	92
SSW	2	5	13	13	13	3	49
SW	0	10	17	20	7	2	56
WSW	0	11	25	29	13	6	84
W	0	14	49	45	32	19	159
WNW	3	10	44	41	30	25	153
NW	0	11	23	41	10	4	89
NNW	2	13	17	17	4	0	53
Variable	0	0	0	0	0	0	0
Total	17	126	304	355	167	99	1068

Period of Record: October - December2016 Stability Class - Slightly Stable - 250Ft-30Ft Delta-T (F) Winds Measured at 250 Feet

57 d		wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	0	5	9	26	0	0	40			
NNE	0	4	10	3	1	0	18			
NE	1	11	12	1	0	0	25			
ENE	6	6	9	4	0	0	25			
E	2	6	3	6	0	Ó	17			
ESE	0	1	1	13	12	2	29			
SE	3	2	6	15	9	3	38			
SSE	0	0	6	14	22	11	53			
S	0	1	6	28	39	17	91			
SSW	0	1	5	25	28	19	78			
SW	0	4	12	64	15	2	97			
WSW	1	2	13	32	12	0	60			
W	0	4	23	32	9	3	71			
MNM	0	4	12	18	5	0	39			
NW	1	4	6	15	3	, 0 0	29			
NNW	2	3	8	13	0	0	26			
Variable	0	0	0	0	0	0	0			
Total	16	58	141	309	155	57	736			

Wind Speed (in mph)

Stability	Period of Class - Mo Wir	Record: deratel nds Meas	October y Stable sured at	- Decen - 25 250 Feet	aber 2016 50Ft-30Ft	Delta-1	C (F)
57		Wi	nd Speed	l (in mph	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	0	3	9	0	0	12
NNE	0	1	2	7	0	0	10
NE	0	6	2	2	0	0	10
ENE	0	0	2	0	0	0	2
Е	1	4	3	1	0	0	9
ESE	0	0	0.	3	13	0	16
SE	0	0	4	11	12	2	29
SSE	0	2	1	1	8	0	12
S	0	2	2	13	25	3	45
SSW	0	0	6	17	6	0	29
SW	0	1	5	19	2	0	27
WSW	0	1	7	11	0	0	19
W	1	1	3	5	0	0	10
WNW	1	0	2	5	0	0	8
NW	0	2	1	8	0	0	11
NNW	0	1	9	7	0	0	17
Variable	0	0	0	0	0	0	0
Total	3	21	52	119	66	5	266

	Period	of Record	: October	- December	2016	
Stability	Class -	- Extremel	y Stable	- 250Ft-	-30Ft Delta-1	[ (F)
		Winds Mea	sured at 2	50 Feet		

Wind	Speed	(in	mph)

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	0	1	4	0	0	6
NNE	0	2	0	0	0	0	2
NE	3	2	0	0	0	0	5
ENE	2	3	0	0	0	0	5
E	0	4	0	1	0	0	5
ESE	0	0	2	0	1	0	3
SE	0	0	2	2	2	0	6
SSE	0	0	0	4	0	0	4
S	0	1	2	13	1	0	17
SSW	2	0	3	1	0	0	6
SW	0	1	1	4	0	0	6
WSW	0	0	4	1	0	0	5
W	0	0	0	1	0	0	1
WNW	0	1	0	3	0	0	4
NW	1	2	2	2	0	0	7
NNW	0	0	3	2	0	0  0	5
Variable	0 .	0	0	0	0	0	0
Total	9	16	20	38	4	0	87

## APPENDIX G

# ERRATA DATA

Intentionally left blank

There is no errata data for 2016.

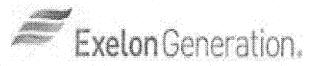
Intentionally left blank

APPENDIX H

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Intentionally left blank

NRC Docket No: 50-454 50-455


# BYRON NUCLEAR GENERATING STATION UNITS 1 and 2

Annual Radiological Groundwater Protection Program Report

1 January Through 31 December 2016

**Prepared By** 

Teledyne Brown Engineering Environmental Services



Byron Nuclear Generating Station Byron, IL 61010

April 2017

Intentionally left blank

## Table Of Contents

I. Summary and Conclusions	
II. Introduction	2
A. Objectives of the RGPP	
B. Implementation of the Objectives	
C. Program Description	4
D. Characteristics of Tritium (H-3)	4
III. Program Description	F
A. Sample Analysis	
B. Data Interpretation	
C. Background Analysis	6
1. Background Concentrations of Tritium	
IV. Results and discussion	0
A. Groundwater Results.	
B. Drinking Water Well Survey	10
C. Summary of Results – Inter-laboratory Comparison Program.	
D. Leaks, Spills, and Releases	
E. Trends	
F. Investigations	
G. Actions Taken	

### Appendices

Appendix A	Location Designation
Tables	
Table A-1	Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Byron Nuclear Generating Station, 2016
<b>Figures</b>	
Figure A-1	Monitoring Well Locations, Byron Nuclear Generating Station, 2016 (Extra wells noted on map are for reference only.)
Appendix B	Data Tables
Tables	
Table B-I.1	Concentrations of Tritium, Strontium, Gross Alpha, and Gross Beta in Groundwater Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016
Table B-I.2	Concentrations of Gamma Emitters in Groundwater Samples Collected in the Vicinity of Byron Nuclear Generating Station, 2016

#### Summary and Conclusions

In 2006, Exelon instituted a comprehensive monitoring program to evaluate the impact of station operations on groundwater in the vicinity of Byron Nuclear Generating Station. The monitoring was conducted in two phases. Phase 1 of the monitoring was part of a comprehensive study initiated by Exelon to determine whether groundwater or surface water at and in the vicinity of Byron Nuclear Generating Station had been adversely impacted by any releases of radionuclides. Phase 1 was conducted by Conestoga Rovers and Associates (CRA) and the conclusions were made available to state and federal regulators as well as the public.

Phase 2 of the RGPP was conducted by Exelon corporate and station personnel to initiate follow up of Phase 1 and begin long-term monitoring at groundwater locations selected during Phase 1. This is the ninth in a series of annual reports on the status of the Radiological Groundwater Protection Program (RGPP) conducted at Byron Nuclear Generating Station. This report covers groundwater and surface water samples collected from the environment both on and off station property in 2016. During that time period, 116 analyses were performed on 54 samples from 16 locations.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater samples tested. In the case of tritium, Exelon specified that its laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation.

In 2016, one surface water and fifteen (15) Radiological Groundwater Protection Program (RGPP) monitoring wells were sampled. The samples were obtained throughout the year and analyzed for tritium. In addition, for the samples obtained in June, a study of gamma, beta, and alpha radioisotopes was performed in accordance with Nuclear Energy Institute (NEI) 07-07, Groundwater Protection Initiative. Three wells contained levels of tritium above the lower limit of detection (LLD) of 200 pCi/L. They were: AR-4, with concentrations ranging from 381 - 661 pCi/L; AR-7, with concentrations ranging from 213 - 421 pCi/L; and AR-11, with concentrations ranging from 588 – 920 pCi/L. Wells AR-4 and AR-11 are near the Circulating Water Blowdown piping, where historical leakage through vacuum breakers was known to have occurred. Tritium concentrations in these wells have gradually decreased since being first sampled in 2006. Well AR-7 is located on-site, just west of plant structures. Tritium has been measured in this well just above detectable limits on an intermittent basis since the well was first drilled in 2006. The tritium present in this well is at or below tritium levels that have been measured in rainwater as a result of precipitation recapture from permitted gaseous releases and it is not believed to be the result of new leak(s). In August 2014, a break in the AR-7 well piping was discovered about six feet below the surface that could have served as the entry point for tritium in the

-1-

recapture water. Should the water in these aquifers migrate to off-site wells used for drinking, the off-site dose consequence from tritium present in any of these three wells would be negligible. There are no existing or new leaks evident at the site and all groundwater well sample results are well below the drinking water standard of 20,000 pCi/L tritium.

Strontium-89 (Sr-89) and Strontium-90 (Sr-90) were not detected in any samples above their respective LLDs of 10 and 1 pCi/L.

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater samples during the second quarter sampling in 2016.

Gross Alpha (dissolved) was not detected in any of eight groundwater locations. Gross Alpha (suspended) was detected in one of eight groundwater locations at a concentration of 2.4 pCi/L.

Gross Beta (dissolved) was detected in seven of eight groundwater locations. The concentrations ranged from 1.8 to 26.7 pCi/L. Gross Beta (suspended) was detected in one of eight groundwater locations at a concentration of 2.6 pCi/L.

The concentrations of Gross Alpha and Gross Beta, which are slightly above detectable levels, are considered to be background and are not the result of plant effluents.

Hard-To-Detect analyses were not performed in 2016.

In assessing all the data gathered for this report, it was concluded that the operation of Byron Nuclear Generating Station had no adverse radiological impact on the environment, and there are no known active releases into the groundwater at Byron Nuclear Generating Station.

#### II. Introduction

The Byron Station, a two-unit PWR station, is located about two miles east of the Rock River and approximately three miles southwest of Byron in Ogle County, Illinois. The reactors are designed to have capacities of 1,268 and 1,241 MW gross, respectively. Unit One loaded fuel in November 1984 and went on line February 2, 1985. Unit Two went on line January 9, 1987.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2016.

A. Objectives of the RGPP

The long-term objectives of the RGPP are as follows:

1. Identify suitable locations to monitor and evaluate potential impacts

from station operations before significant radiological impact to the environment and potential drinking water sources

- Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface
- Perform routine water sampling and radiological analysis of water from selected locations
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner
- 5. Regularly assess analytical results to identify adverse trends
- 6. Take necessary corrective actions to protect groundwater resources
- B. Implementation of the Objectives

The objectives identified have been implemented at Byron Nuclear Generating Station as discussed below:

- Exelon and its consultant identified locations as described in the Phase 1 study. Phase 1 studies were conducted by Conestoga Rovers and Associates (CRA) and the results and conclusions were made available to state and federal regulators as well as the public.
- 2. The Byron Nuclear Generating Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements.
- 3. Byron Nuclear Generating Station will continue to perform routine sampling and radiological analysis of water from selected locations.
- 4. Byron Nuclear Generating Station has implemented new procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.
- Byron Nuclear Generating Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.

#### C. Program Description

1. Sample Collection

Sample locations can be found in Table A–1 and Figure A–1, Appendix A.

#### Groundwater

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures following EPA methods. Only groundwater is collected. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry crosscheck programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables as data are received.

Analytical data results are reviewed by both station personnel and an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like nontritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to Helium-3 (³He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

#### III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the Byron Nuclear Generating Station RGPP in 2016.

In order to achieve the stated objectives, the current program includes the following analyses (as required by procedure):

- 1. Concentrations of gamma emitters in groundwater
- 2. Concentrations of strontium in groundwater
- 3. Concentrations of tritium in groundwater
- 4. Concentrations of gross alpha and gross beta in groundwater
- B. Data Interpretation

The radiological data collected prior to Byron Nuclear Generating Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Byron Nuclear Generating Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical parameter.

#### 2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus ± the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

#### C. Background Analysis

A pre-operational radiological environmental monitoring program (preoperational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life, and foodstuffs. The results of the monitoring were detailed in the report entitled, *Environmental Radiological Monitoring for Byron Nuclear Generating Nuclear Power Station, Commonwealth Edison Company, Annual Report 1984, April 1985.* 

The pre-operational REMP contained analytical results from samples collected from the surface water and groundwater. All groundwater samples listed in the pre-Operational REMP report were <200 pCi/L.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references (CRA 2006).

### Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and Sr-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b.

### Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected worldwide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at stations throughout the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and

a.

decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

c. Surface Water Data

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Illinois surface water data were typically less than 100 pCi/L.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a  $\pm$  70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately  $\pm$  70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or  $140 \pm 100$  pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

IV. Results and Discussion

### A. Groundwater Results

### Groundwater

Samples were collected from on- and off-site wells throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below:

### Tritium

Samples from all locations were analyzed for tritium activity (Table B-I.1, Appendix B). Tritium values ranged from less than the detection limit to 920 pCi/L. Outside of the station boundary, tritium concentrations were all less than detection limit (<200 pCi/L). This is based on evaluation of groundwater sample results obtained as part of the Byron Station REMP. In 2016, fifteen (15) Radiological Groundwater Protection Program (RGPP) monitoring wells were sampled. The samples were obtained throughout the year and analyzed for tritium.

In addition, a study of gamma, beta and alpha radioisotopes was performed in accordance with Nuclear Energy Institute (NEI) 07-07, Groundwater Protection Initiative, for the samples obtained in June. Three wells contained levels of tritium above the lower limit of detection (LLD) of 200 pCi/L. They were: AR-4, with concentrations ranging from 381 – 661 pCi/L; AR-7, with concentrations ranging from 213 - 421 pCi/L; and AR-11, with concentrations ranging from 588 – 920 pCi/L. Wells AR-4 and AR-11 are near the Circulating Water Blowdown piping, where historical leakage through vacuum breakers was known to have occurred. Tritium concentrations in these wells have gradually decreased since being first sampled in 2006. Well AR-7 is located on-site, just west of plant structures. Tritium has been measured in this well just above detectable limits on an intermittent basis since the well was first drilled in 2006. The tritium present in this well is at or below tritium levels that have been measured in rainwater as a result of precipitation recapture from permitted gaseous releases and it is not believed to be the result of new leak(s). In August 2014, a break in the AR-7 well piping was discovered about six feet below the surface that could have served as the entry point for tritium in the recapture water. There are no existing or new leaks evident at the site and all groundwater well sample results are well below the drinking water standard of 20,000 pCi/L tritium. The tritium detected in groundwater samples has been isolated to the Galena- Platteville aguifer, which is isolated from the deeper regional groundwater aquifer by the semi-confining Glenwood Formation. Groundwater quality data from production wells and monitoring wells at the station located below this aquifer do not indicate concentrations of tritium greater than the LLD of 200 pCi/L. As such, the tritium impact is limited to the Galena- Platteville aquifer.

### <u>Strontium</u>

Strontium-89 (Sr-89) and Strontium-90 (Sr-90) were not detected in any samples above their respective LLDs of 10 and 1 pCi/L.

### Gross Alpha and Gross Beta (dissolved and suspended)

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater samples during the second quarter sampling in 2016.

Gross Alpha (dissolved) was not detected in any of eight groundwater locations. Gross Alpha (suspended) was detected in one of eight groundwater locations at a concentration of 2.4 pCi/L.

Gross Beta (dissolved) was detected in seven of eight groundwater locations. The concentrations ranged from 1.8 to 26.7 pCi/L. Gross Beta (suspended) was detected in one of eight groundwater locations at a concentration of 2.6 pCi/L. The concentrations of Gross Alpha and Gross Beta, which are slightly above detectable levels, are considered to be background and are not the result of plant effluents.

### Gamma Emitters

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the samples during 2016.

### Hard-To-Detect

Hard-To-Detect analyses were not performed in 2016.

B. Drinking Water Well Survey

No drinking water well surveys were conducted in 2016.

C. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE are presented in the AREOR.

D. Leaks, Spills, and Releases

There are no new previously unidentified leaks or plumes at Byron Station. There were no new leaks, spills or releases at Byron Station in 2016.

E. Trends

Wells AR-4 and AR-11 have shown an overall decrease in tritium concentration since first sampled in 2006. Tritium has been measured in Well AR-7 since 2012, however, tritium has been previously measured in this well and it is believed to be the result of precipitation recapture, not the result of a new spill or leak.

F. Investigations

There were no investigations that took place in 2016 as a result of groundwater sample results.

- G. Actions Taken
  - 1. Compensatory Actions

No compensatory actions were initiated in 2016.

2. Installation of Monitoring Wells

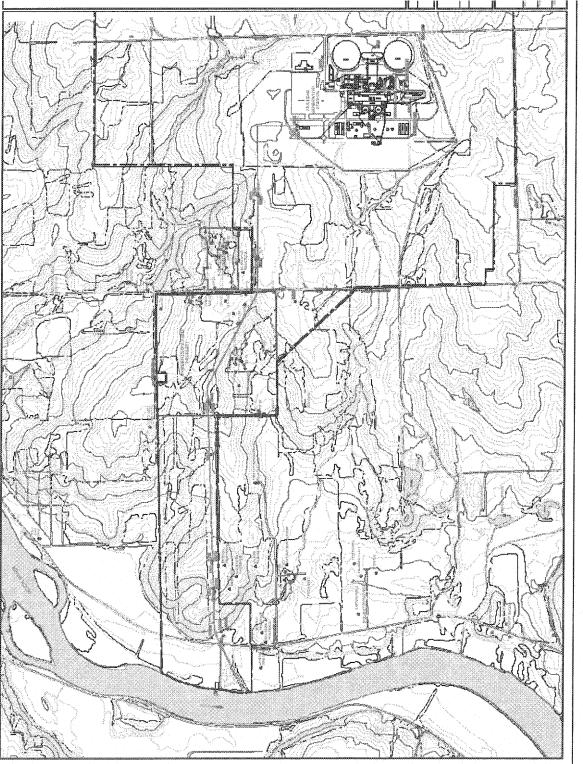
No new monitoring wells were installed in 2016.

3. Actions to Recover/Reverse Plumes

No actions were undertaken to recover/reverse plumes in 2016.

Intentionally left blank

## APPENDIX A


# LOCATION DESIGNATION

Intentionally Left Blank

TABLE A-1:

Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Byron Nuclear Generating Station, 2016

Site	Site Type	Temporary/Permanent	Distance and Direction
AR-1	Monitoring Well	Permanent	0.36 miles/NNW
AR-10	Monitoring Well	Permanent	0.28 miles/NE
AR-11	Monitoring Well	Permanent	1.36 miles/WNW
AR-2	Monitoring Well	Permanent	0.6 miles/NW
AR-2 AR-3		Permanent	0.8 miles/NW
AR-3 AR-4	Monitoring Well		
	Monitoring Well	Permanent	1.36 miles/WNW
AR-5	Monitoring Well	Permanent	1.92 miles/WNW
AR-6	Monitoring Well	Permanent	2.04 miles/WNW
AR-7	Monitoring Well	Permanent	0.04 miles/W
AR-8	Monitoring Well	Permanent	0.12 miles/S
AR-9	Monitoring Well	Permanent	0.24 miles/E
CAR-1	Monitoring Well	Permanent	2.25 miles/WNW
CAR-2	Monitoring Well	Permanent	1.52 miles/WNW
CAR-3	Monitoring Well	Permanent	0.16 miles/SE
DF-24 (EPA well)	Monitoring Well	Permanent	1.36 miles/WNW
GW-9	Monitoring Well	Permanent	0.9 miles/WNW
MW-1 (EPA well)	Monitoring Well	Permanent	0.6 miles/NW
MW-3 (EPA well)	Monitoring Well	Permanent	0.8 miles/NW
TW-13	Monitoring Well	Permanent	2.3 miles/WNW
TW-14	Monitoring Well	Permanent	2.25 miles/WNW
TW-15	Monitoring Well	Permanent	2.2 miles/WNW
Well 7	Monitoring Well	Permanent	0.4 miles/SE
CROP	Surface Water	Permanent	0.2 miles NE





A-2

### TABLE B-I.1

### CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATING STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	SITE	COLLECTIO DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Cr.A. (Suo)	0+ P (Dia)	C+ D (D)
603				01-00	01-90	GI-A (DIS)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
	AR-1 AR-1	03/17/16	< 182 Original < 180	7					- · ·
	AR-1	06/10/16	Original < 189	< 4.7	< 0.6	< 1.0	2.4 ± 1.0	1.8 ± 1.0	< 2.4
	AR-1	06/10/16 08/02/16	Recount				$3.2 \pm 1.6$		
	AR-1		< 175						
		10/19/16	< 185						
	AR-2 AR-2	06/06/16	< 169						
	AR-2 AR-3	10/24/16	< 186						
	AR-3 AR-3	03/14/16	< 185						
	AR-3 AR-3	06/06/16	< 164	< 4.3	< 0.6	< 1.3	< 0.7	$4.6 \pm 1.4$	< 1.7
	AR-3	08/01/16	< 174						
	AR-3 AR-4	10/24/16	< 187						
	AR-4 AR-4	03/14/16	661 ± 142						1
	AR-4	06/06/16	381 ± 122	< 3.7	< 0.6	< 1.8	< 0.7	4.7 ± 1.5	2.6 ± 1.2
	AR-4	08/01/16	411 ± 131						
		10/24/16	387 ± 137						
	AR-7 AR-7	03/21/16	380 ± 131						
	AR-7	06/09/16	421 ± 133	< 7.5	< 0.6	< 4.6	< 1.5	26.7 ± 5.3	< 3,9
	AR-7	08/02/16 10/18/16	213 ± 117						
	AR-8		265 ± 126				•		
	AR-8	03/16/16	< 184						
	AR-8	06/09/16 08/02/16	< 184	< 5.3	< 0.7	< 0.8	< 0.7	$3.4 \pm 0.9$	< 1.6
	AR-8	10/18/16	< 174 < 178						
	AR-9	03/16/16	< 184						
	AR-9	06/10/16	< 183	< 5.2	< 0.7		- 07		
	AR-9	08/02/16	< 175	< 5.2	< 0.7	< 1.3	< 0.7	< 1.9	< 1.6
	AR-9	10/18/16	< 181						
	AR-10	03/17/16	< 185						
	AR-10	06/10/16	< 183	< 6.6	< 0.7	- 0.0	107		
	AR-10	08/02/16	< 173	< 0.0	< 0.7	< 2.8	< 0.7	4.1 ± 1.5	< 1.6
	AR-10	10/19/16	< 185						
	AR-11	03/14/16	920 ± 164						
	AR-11	06/06/16	588 ± 131						
	AR-11	08/01/16	633 ± 136						
	AR-11	10/24/16	623 ± 147						
	CAR-1	06/06/16	< 167						
	CAR-1	10/24/16	< 188						
	CAR-3	03/16/16	< 184						
	CAR-3	06/09/16	< 184	< 5.8	< 0.8	< 1.5	< 0.7	5.9 ± 1.5	< 1.6
	CAR-3	08/02/16	< 179	0.0		- 1.0	- 0.1	0.0 1 3.0	< 3.0
	CAR-3	10/18/16	< 180						
	DF-24	03/14/16	< 186						
	DF-24	06/06/16	< 169						
	DF-24	08/01/16	< 176						
	DF-24	10/24/16	< 188						
	MW-1	06/06/16	< 168						
	MW-1	10/24/16	< 188						
	MW-3	06/06/16	< 168						
	MW-3	10/24/16	< 187						
	TW-13	06/06/16	< 165						
	TW-13	10/24/16	< 185						
	CROP*	03/02/16	< 199						
	CROP*	06/10/16	< 183						
	CROP*	08/02/16	< 172						
	CROP*								

*Surface Water Sample

TABLE B-1.2

# CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF BYRON NUCLEAR GENERATION STATION, 2016

**RESULTS IN UNITS OF PCI/LITER + 2 SIGMA** 

	Zr-95 I-131 Cs-134 Cs-137 Ba-140 La-140	< 14 < 5 < 5 < 33	< 9 < 14 < 4 < 5 < 32 < 9	< 11 < 15 < 6 < 6 < 39 < 12	< 11 < 15 < 6 < 5 < 33 < 10	< 7 < 10 < 3 < 4 < 24 < 9	< 7 < 14 < 4 < 4 < 28 < 8	< 8 < 14 < 4 < 4 < 31 < 8	< 9 < 14 < 4 < 5 < 33 < 11	< 10 < 13 < 4 < 5 < 28 < 6	< 9 < 14 < 5 < 5 < 30 < 9	< 7 < 12 < 3 < 4 < 27 < 9	< 12 < 15 < 5 < 6 < 35 < 13	
	Nb-95	د د د	9 2	9 <	9 v	× 4	9 V	ی ۷	9 V	∧ 4	< 5	∧ 4	9 v	
	Zn-65	ත v	6 ×	< 13	6 v	2 >	ω v	~ v	6 V	00 V	6 v	00 V	< 12	
	e-59 Co-60	9 V	۸ 4	9 v	9 V	۸ 4	4 V	ເດ .∨	v V	4	2 V	۸ 4	9 v	
	Fe-59	< 13	< 10	< 16	< 11	00 V	6 V	ດ v	< 11 11	6 v	<ul><li>11</li></ul>	∞ v	< 12	
	Co-58	9 v	Ω V	< 7	9 v	4 4	۸ 4	∧ 4	ю V	4 V	۷ ۲	থ ধ	د د د	
	Mn-54	с v	4	9 V	9 V	4	۸ 4	4	<u>د</u> ک	ې ۲	ې ۲	ς γ	9 V	
	K-40	< 50	< 110	< 89	<ul><li>66</li></ul>	< 86	A 40	<ul><li>68</li></ul>	< 106	< 37	< 46	< 71	< 119	
	Be-7	< 48	< 45	< 58	< 55	< 35	v 38 v	< 40	< 45	< 41	< 46	< 35	< 52	
COLLECTION	DATE	06/10/16	06/06/16	06/06/16	06/06/16	06/09/16	06/09/16	06/10/16	06/10/16	06/06/16	06/06/16	06/09/16	06/06/16	
	SITE	AR-1	AR-2	AR-3	AR-4	AR-7	AR-8	AR-9	AR-10	AR-11	CAR-1	CAR-3	TW-13	

8-2

*Surface Water Sample