

Exelon Generation Company, LLC

Braidwood Nuclear Power Station 35100 South Route 53, Suite 84 Braceville, IL 60407-9619

www.exeloncorp.com

May 12, 2017 BW170048

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D.C. 20555-0001

> Braidwood Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-72 and NPF-77 NRC Docket Nos. STN 50-456 and STN 50-457

Subject: 2016 Annual Radiological Environmental Operating Report

Attached is the 2016 Annual Radiological Environmental Operating Report for Braidwood Station. This report is being submitted in accordance with Technical Specification 5.6.2, "Annual Radiological Environmental Operating Report." This report contains information associated with the station's radiological environmental and meteorological monitoring programs. This information is consistent with the objectives described in the Offsite Dose Calculation Manual and 10 CFR 50, Appendix I, "Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion 'As Low as is Reasonably Achievable' for Radioactive Material In Light-Water-Cooled Nuclear Power Reactor Effluents," Sections IV.B.2, IV.B.3, and IV.C. Technical Specification 5.6.2 requires the Annual Radiological Environmental Operating Report to be submitted by May 15 of each year.

If you have any questions regarding this information, please contact Steven Reynolds, Regulatory Assurance Manager, at (815) 417-2800.

Respectfully,

Marni Marchonda

Marri Marchionda-Palmer Site Vice President Braidwood Station

cc: US NRC Regional Administrator, Region III US NRC Senior Resident Inspector - Braidwood Station NRR Project Manager - Braidwood Station Illinois Emergency Management Agency - Division of Nuclear Safety Docket No: 50-456 50-457

BRAIDWOOD STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January through 31 December 2016

Prepared By Teledyne Brown Engineering Environmental Services

Braidwood Station Braceville, IL 60407

May 2017

Intentionally left blank

Table Of Contents

I. Summary and Conclusions1
II. Introduction
III. Program Description3A. Sample Collection3B. Sample Analysis6C. Data Interpretation6D. Program Exceptions7E. Program Changes10
IV. Results and Discussion 11 A. Aquatic Environment 11 1. Surface Water 11 2. Public Water 11 3. Ground/Well Water 12 4. Fish 13 5. Sediment 13 B. Atmospheric Environment 14 1. Airborne 14 a. Air Particulates 14 b. Airborne lodine 15 C. Terrestrial Environment 15 1. Milk 15 2. Food Products 16 D. Ambient Gamma Radiation 16 F. Land Use Survey 16 F. Errata Data 17 G. Summary of Results – Inter-laboratory Comparison Program 17

Appendices

Appendix A	Radiological Environmental Monitoring Report Annual Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program Annual Summary for Braidwood Station, 2016
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
<u>Tables</u>	
Table B-1	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2016
Table B-2	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Braidwood Station, 2016
<u>Figures</u>	
Figure B-1	Inner Ring OSLD Locations of the Braidwood Station, 2016
Figure B-2	Fixed Air Sampling and Outer Ring OSLD Locations of the Braidwood Station, 2016
Figure B-3	Ingestion and Waterborne Exposure Pathway Sample Locations of the Braidwood Station, 2016
Appendix C	Data Tables and Figures - Primary Laboratory
<u>Tables</u>	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-I.3	Concentrations of Nickel-63 in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-I.4	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-II.1	Concentrations of Gross Beta in Public Water Samples Collected in the Vicinity of Braidwood Station, 2016

Table C-II.2	Concentrations of Tritium in Public Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-II.3	Concentrations of I-131 in Public Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-II.4	Concentrations of Gamma Emitters in Public Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-III.1	Concentrations of Tritium in Ground/Well Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-III.2	Concentrations of Gamma Emitters in Ground/Well Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-IV.1	Concentrations of Nickel-63 and Gamma Emitters in Fish Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-V.1	Concentrations of Nickel-63 and Gamma Emitters in Sediment Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-VI.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-VI.2	Monthly and Yearly Mean Values of Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-VI.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-VII.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-VIII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-VIII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-IX.1	Concentrations of Gamma Emitters in Vegetation Samples Collected in the Vicinity of Braidwood Station, 2016
Table C-X.1	Quarterly OSLD Results for Braidwood Station, 2016
Table C-X.2	Mean Quarterly OSLD Results for the Inner Ring, Outer Ring, Other, Control, and Independent Spent Fuel Storage Installation (ISFSI) Locations for Braidwood Station, 2016
Table C-X.3	Summary of the Ambient Dosimetry Program for Braidwood Station, 2016
Figures_	
Figure C-1	Surface Water - Gross Beta – Stations BD-10 and BD-25 (C) Collected

÷

in the Vicinity of Braidwood Station, 2000 - 2016

Surface Water - Gross Beta – Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2007 - 2016
Surface Water - Gross Beta – Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2007 - 2016
Surface Water - Tritium – Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2016
Surface Water - Tritium – Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2006 - 2016
Surface Water - Tritium – Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2007 - 2016
Public Water - Gross Beta – Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Public Water - Tritium – Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Ground/Well Water - Tritium – Stations BD-13 and BD-34 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Ground/Well Water - Tritium – Stations BD-35 and BD-36 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Ground/Well Water - Tritium – Station BD-37 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Ground/Well Water – Tritium – Stations BD-50 and BD-51 Collected in the Vicinity of Braidwood Station, 2007 - 2016
Ground/Well Water – Tritium – Stations BD-53 and BD-54 Collected in the Vicinity of Braidwood Station, 2007 - 2016
Air Particulate - Gross Beta – Stations BD-03 (C) and BD-06 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Air Particulate - Gross Beta – Stations BD-19 and BD-20 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Air Particulate - Gross Beta – Station BD-21 Collected in the Vicinity of Braidwood Station, 2000 - 2016
Air Particulate - Gross Beta – Stations BD-02 and BD-04 Collected in the Vicinity of Braidwood Station, 2005 - 2016
Air Particulate - Gross Beta – Station BD-05 Collected in the Vicinity of Braidwood Station, 2005 - 2016

•

Appendix D	Inter-Laboratory Comparison Program
<u>Tables</u>	
Table D-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2016
Table D-2	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2016
Table D-3	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2016
Table D-4	ERA Statistical Summary Proficiency Testing Program for Environmental, Inc., 2016
Table D-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2016
Table D-6	Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA) RAD Study, Environmental, Inc., 2016
Appendix E	Effluent Data
Appendix F	Meteorological Data
Appendix G	Errata Data
Appendix H	Annual Radiological Groundwater Protection Program Report (ARGPPR)

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program (REMP) conducted for Exelon's Braidwood Station covers the period January 1, 2016 through December 31, 2016. During that time period 1,680 analyses were performed on 1,358 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of Braidwood Station had no adverse radiological impact on the environment.

Surface, public, and ground/well water samples were analyzed for concentrations of tritium and gamma-emitting nuclides. Surface water and public water samples were also analyzed for concentrations of gross beta. Gross beta and tritium activities detected were consistent with those detected in previous years. No fission or activation products were detected. As part of an effort to implement industry best practices, both gaseous and liquid station effluents were evaluated for all 10CFR61 required nuclides. Nuclides exceeding 1% relative abundance in the waste stream were added to the list of nuclides that Teledyne Brown evaluates in potentially impacted REMP matrices. For Braidwood Station, Nickel-63 (Ni-63) exceeds 1% relative abundance in the radwaste resins. Occasionally, Ni-63 is observed in liquid release tank quarterly composites, therefore, beginning in the fall of 2013 the station requested that Ni-63 be evaluated in the downstream surface water, sediment, and fish analyses. Ni-63 has not been observed in downstream surface water.

Fish (commercially and/or recreationally important species) and sediment samples were analyzed for concentrations of gamma-emitting nuclides. No fission or activation products were detected in fish. Nickel-63 was not detected in any fish or sediment samples analyzed. Two of six sediment samples had Cs-137. The concentration was consistent with levels observed during the preoperational years. No plant-produced fission or activation products were found in sediment.

Air particulate samples were analyzed for concentrations of gross beta and gamma-emitting nuclides. No fission or activation products were detected.

High sensitivity lodine-131 (I-131) analyses were performed on weekly air samples. All results were less than the minimum detectable concentration for I-131.

Cow milk samples were analyzed for concentrations of I-131 and gammaemitting nuclides. Iodine-131 was not detected in any milk samples. Concentrations of naturally-occurring Potassium-40 (K-40) were detected. No fission or activation products were found and all required LLDs (Lower Limit of Detection) were met.

Food Product samples were analyzed for concentrations of gamma-emitting nuclides. No plant-produced fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using Optically Stimulated Luminescence Dosimeters (OSLD). Beginning in 2012, Exelon changed the type of dosimetry used for the Radiological Environmental Monitoring Program (REMP). Optically Stimulated Luminescent Dosimetry were deployed and Thermo-luminescent Dosimetry (TLD) were discontinued. This change may result in a step change in readings, up or down, depending on site characteristics. The relative comparison to control locations remains valid. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation).

II. Introduction

The Braidwood Station, consisting of two 3,587 MWt pressurized water reactors owned and operated by Exelon Corporation is located in Will County, Illinois. Unit No. 1 went critical on May 29, 1987. Unit No. 2 went critical on March 08, 1988. The site is located in northeastern Illinois, 15 miles south-southwest of Joliet, Illinois, 60 miles southwest of Chicago and southwest of the Kankakee River.

This report covers those analyses performed by Teledyne Brown Engineering (TBE), Landauer Technologies and Environmental Inc. (Midwest Labs) on samples collected during the period January 1, 2016 through December 31, 2016.

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs;
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways
- 2. Establishing baseline radiological data of media within those pathways
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment
- III. Program Description
 - A. Sample Collection

Samples for the Braidwood Station REMP were collected for Exelon Nuclear by Environmental Inc. Midwest Labs (EIML). This section

describes the general collection methods used by EIML to obtain environmental samples for the Braidwood Station REMP in 2016. Sample locations and descriptions can be found in Table B–1 and Figures B–1 through B–3, Appendix B. The sampling methods used by EIML are listed in Table B-2.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, public water, well water, fish, and sediment. Two gallon water samples were collected weekly from six surface water locations (BD-10, BD-25 [control], BD-38, BD-40, BD-55 and BD-56), and one weekly composite samples of public drinking water at location (BD-22) and ground/well water samples collected quarterly from eight locations (BD-13, BD-34, BD-35, BD-36, BD-37, BD-50, BD-51 and BD-54). All samples were collected in new unused plastic bottles, which were rinsed with source water prior to collection. Fish samples comprising the flesh of golden redhorse, shorthead redhorse, smallmouth bass, common carp, and largemouth bass were collected semiannually at three locations, BD-25 (control), BD-28 and BD-41. Sediment samples composed of recently deposited substrate were collected at three locations semiannually, BD-10, BD-25 (control), and BD-57.

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate and airborne iodine. Air particulate samples were collected and analyzed weekly at eight locations (BD-02, BD-03 [control], BD-04, BD-05, BD-06, BD-19, BD-20 and BD-21). The control location was BD-03. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The air filters and air iodine samples were replaced weekly and sent to the laboratory for analysis.

Terrestrial Environment

The terrestrial environment was evaluated by performing radiological analyses on milk and food product samples. Milk samples were collected biweekly at two locations (BD-17 and BD-18 [control]) from May through October and monthly from November through April. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite and shipped promptly to the laboratory. Food products were collected annually in at six locations (BD-Control, BD-Quad 1 [offsite location and onsite location], BD-Quad 2, BD-Quad 3 and BD-Quad 4). The control location was BD-Control. Various types of samples were collected and placed in new unused plastic bags and sent to the laboratory for analysis.

Ambient Gamma Radiation

Beginning in 2012, Exelon changed the type of dosimetry used for the Radiological Environmental Monitoring Program (REMP). Optically Stimulated Luminescent Dosimeters (OSLD) were deployed and the use of Thermoluminescent Dosimeters (TLD) was discontinued. This change may result in a step change in readings, up or down, depending on site characteristics. The relative comparison to control locations remains valid. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation).

Each location consisted of 2 OSLDs. The OSLDs were exchanged quarterly and sent to Landauer for analysis. The OSLDs were placed at locations on and around the Braidwood Station site as follows:

An inner ring consisting of 16 locations (BD-101, BD-102, BD-103, BD-104, BD-105, BD-106, BD-107, BD-108, BD-109, BD-110, BD-111a, BD-112, BD-113a, BD-114, BD-115 and BD-116) at or near the site boundary.

An outer ring consisting of 16 locations (BD-201, BD-202, BD-203, BD-204, BD-205, BD-206, BD-207, BD-208, BD-209, BD-210, BD-211, BD-212, BD-213, BD-214, BD-215 and BD-216) extending to approximately 5 miles from the site.

An additional (other) set consisting of seven locations (BD-02, BD-04, BD-05, BD-06, BD-19, BD-20 and BD-21).

The balance of one location (BD-03) represents the control area.

The specific OSLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- 2. Site meteorological data taking into account distance and elevation for each of the sixteen–22 1/2 degree sectors around the site
- 3. Where estimated annual dose from Braidwood Station, if any, would be most significant.

B. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc. (Midwest Labs) to analyze the environmental samples for radioactivity for the Braidwood Station REMP in 2016. The analytical procedures used by the laboratories are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in public and surface water and air particulates
- 2. Concentrations of gamma emitters in public, ground/well and surface water, air particulates, milk, fish, sediment and food products
- 3. Concentrations of tritium in public, ground/well and surface water
- 4. Concentrations of I-131 in air, milk and public water
- 5. Concentrations of Ni-63 in surface water, fish and sediment
- 6. Ambient gamma radiation levels at various site environs
- C. Data Interpretation

The radiological and direct radiation data collected prior to Braidwood Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Braidwood Station was considered operational at initial criticality. In addition, data was compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and

sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required Braidwood Station detection capabilities for environmental sample analysis.

The MDC is the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. The MDC is an *a posteriori* determination.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity resulting in a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface, ground/well water, and fish 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For public water, sediment, air particulate, milk and vegetation 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than the single analysis uncertainty.

D. Program Exceptions

For 2016 the Braidwood Station REMP had a sample recovery rate in excess of 98.3%. Sample anomalies and missed samples are listed in the tables below:

Sample Type	Location Code	Collection Date	Reason
MI	BD-18	01/07/16	No milk available; farmer "resting" cows. Collector looked diligently for fresh leafy vegetation, none available. Local hay substituted
WW	BD-54	01/14/16	No sample; house vacant; water off. Collector will check during remaining 1 st qtr
APAI	BD-04	02/25/16	No apparent reason for low reading of 164.6 hours
APAI	BD-03	04/07/16	Low reading of 50.3 hours due to power outage at sampler; POC notified
APAI	BD-20	06/09/16	Low reading of 164 hours possibly due to power outage from storm
APAI	BD-21	06/09/16	Low reading of 164.5 hours possibly due to power outage from storm
PW	BD-22	10/13/16	No water in compositor; grab sample taken from piping. NOTE: Compositor repaired 10/14/16
APAI	BD-03	10/27/16	Low reading of 140.8 hours possibly due to power outage from storms
APAI	BD-02	12/08/16	No reason given for low reading of 166.2 hours. NOTE: Collected at 11:15 on 12/01/16 and 17:40 on 12/08/16. Reading should be approx 174 hours
APAI	BD-03	12/08/16	Low reading of 153.3 hours due to recent Power restoration on 12/01/16. New filter and cartridge placed on 12/02/16.
APAI	BD-19	12/22/16	No apparent reason for low reading of 122.6 hours

Table D-1 LISTING OF SAMPLE ANOMALIES

Sample Type	Location Code	Collection Date	Reason
SW	BD-56	01/07/16	No sample; water frozen
SW	BD-55	01/14/16	No sample; water frozen
SW	BD-56	01/14/16	No sample; water frozen
SW	BD-25	01/21/16	No sample; water frozen
SW	BD-55	01/21/16	No sample; water frozen
SW	BD-56	01/21/16	No sample; water frozen
SW	BD-55	01/27/16	No sample; water frozen
SW	BD-56	01/27/16	No sample; water frozen
SW	BD-55	02/04/16	No sample; water frozen
SW	BD-56	02/04/16	No sample; water frozen
SW	BD-55	02/10/16	No sample; water frozen
SW	BD-56	02/10/16	No sample; water frozen
SW	BD-25	02/18/16	No sample; water frozen
SW	BD-55	02/18/16	No sample; water frozen
SW	BD-56	02/18/16	No sample; water frozen
APAI	BD-03	04/14/16	Pump not running, timer reading zero; collector started pump, checked back later to ensure power was on and perform field check
OLSD	BD-108-1	06/30/16	OSLD was lost in transit
OLSD	ISFSI-SBR-1 & 2	08/04/16	OSLDs missing during monthly check; collector placed spares 9341, 0009, 291551 EX00025328U and 9342, 00010, 291551 EX00064829B

Table D-2 LISTING OF MISSED SAMPLES

Sample Type	Location Code	Collection Date	Reason
OLSD	BD-203-1	09/29/16	OSLDs found missing during monthly exchange; pole replaced. Collector installed new cricket cage and new 4 th quarter OSLD
APAI	BD-03	11/17/16	Power out. POC notified
APAI	BD-03	11/23/16	Power out.
APAI	BD-03	12/01/16	Power out. NOTE: Power restored on 12/01/1
SW	BD-56	12/08/16	No sample; water frozen
SW	BD-10	12/15/16	No sample; water frozen
SW	BD-25	12/15/16	No sample; water frozen
SW	BD-55	12/15/16	No sample; water frozen
SW	BD-56	12/15/16	No sample; water frozen
SW	BD-10	12/22/16	No sample; water frozen
SW	BD-25	12/22/16	No sample; water frozen
SW	BD-55	12/22/16	No sample; water frozen
SW	BD-56	12/22/16	No sample; water frozen
SW	BD-40	12/22/16	Backup collector did not have access to locati
SW	BD-55	12/29/16	No sample; water frozen
SW	BD-56	12/29/16	No sample; water frozen

Table D-2	LISTING OF MISSED SAMPLES (cont'd)

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance issues were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns, power outages and weather related issues were unavoidable.

The overall sample recovery rate indicates that the appropriate

procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

There were no program changes in 2016.

- IV. Results and Discussion
 - A. Aquatic Environment
 - 1. Surface Water

Samples were taken weekly and composited monthly at six locations (BD-10, BD-25 (control), BD-38, BD-40, BD-55 and BD-56). Of these locations, only BD-10 could be affected by Braidwood Station's effluent releases as it is downstream of the NPDES permitted outfall. The following analyses were performed:

Gross Beta

Samples from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). Gross beta was detected in 60 of 73 samples. The values ranged from 2.3 to 10.4 pCi/L. Concentrations detected were consistent with those detected in previous years (Figures C–1 through C-3, Appendix C).

<u>Tritium</u>

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). Tritium activity was detected in one sample. The value was 460 pCi/l (Figures C–4 through C-6, Appendix C).

Nickel-63

Monthly samples were analyzed for Ni-63 activity (Table C–I.3, Appendix C). Ni-63 was not detected and the required LLD was met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma-emitting nuclides (Table C–I.4, Appendix C). The LLD for I-131 and La-140 could not be met for 3 samples due to their age upon receipt at the

laboratory. The samples were counted for 200 minutes to achieve the lowest detection limit possible. No nuclides were detected and all other required LLDs were met.

2. Public Water

Monthly composites of weekly samples were made at one location (BD-22). This location could be affected by Braidwood Station's effluent releases. The following analyses were performed:

Gross Beta

Samples from the location were analyzed for concentrations of gross beta (Tables C–II.1, Appendix C). Gross beta was detected in 9 of 12 samples. The values ranged from 2.3 to 6.4 pCi/L. Concentrations detected were consistent with those detected in previous years (Figure C–7, Appendix C).

<u>Tritium</u>

n, spin a Jan

Monthly composites of weekly samples from BD-22 were analyzed for tritium activity (Table C–II.2, Appendix C). Tritium was detected in 8 of 12 samples. Concentrations ranged from 300 to 1,040 pCi/L. Concentrations detected were consistent with those detected in previous years (Figure C–8, Appendix C).

lodine

Monthly composites of weekly samples from the location were analyzed for I-131 (Table C-II.3, Appendix C). Iodine was not detected in any samples and the required LLD was met.

Gamma Spectrometry

Samples from the location were analyzed for gamma-emitting nuclides (Table C–II.4, Appendix C). No nuclides were detected and all required LLDs were met.

3. Ground/Well Water

Quarterly samples were collected at eight locations (BD-13, BD-34, BD-35, BD-36, BD-37, BD-50, BD-51 and BD-54). The following analyses were performed:

<u>Tritium</u>

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–III.1, Appendix C). Tritium was not detected in any sample and the required LLD was met. (Figures C–9 through C–13, Appendix C).

Gamma Spectrometry

Samples from all locations were analyzed for gamma-emitting nuclides (Table C–III.2, Appendix C). No nuclides were detected and all required LLDs were met.

4. Fish

Fish samples comprised of golden redhorse, shorthead redhorse, smallmouth bass, common carp, and largemouth bass were collected at three locations (BD-25, BD-28, and BD-41)
semiannually. Location BD-28 could be affected by Braidwood Station's effluent releases. The following analyses were performed:

Nickel-63

The edible portion of fish samples from all three locations was analyzed for Ni-63 activity (Table C–IV.1, Appendix C). Ni-63 was not detected and the required LLD was met.

Gamma Spectrometry

The edible portion of fish samples from all three locations was analyzed for gamma-emitting nuclides (Table C–IV.1, Appendix C). No fission or activation products were found. No nuclides were detected and all required LLDs were met.

5. Sediment

Aquatic sediment samples were collected at three locations (BD-10, BD-25, and BD-57) semiannually. The locations at the Braidwood Station outfall to the Kanakakee River and downstream of the outfall, could be affected by Braidwood Station's effluent releases. Sediment samples were also obtained from spoil piles resulting from river dredging in the vicinity of the station's outfall. The following analyses were performed:

Nickel-63

Sediment samples from all three locations was analyzed for Ni-63 activity (Table C–V.1, Appendix C). Ni-63 was not detected and the required LLD was met.

Gamma Spectrometry

Sediment samples from the location were analyzed for gammaemitting nuclides (Table C–V.1, Appendix C). Concentrations of the fission product Cs-137 were found at locations BD-10 and BD-57. The concentrations were 132 pCi/kg/dry and 126 pCi/kg dry respectively. The concentrations of Cs-137 at locations BD-10 and BD-57 were less than the required Cs-137 in sediment LLD of 180 pCi/kg dry. The activity detected was consistent with those detected in previous years (29 pCi/kg to 260 pCi/kg from 1995 to 2006). No other Braidwood fission or activation products were found and all required LLDs were met.

- B. Atmospheric Environment
 - 1. Airborne

D. C. L

a. Air Particulates

Continuous air particulate samples were collected from eight locations on a weekly basis. The eight locations were separated into three groups: Near field samplers (BD-06, BD-19, BD-20 and BD-21), far field samplers within 10 km of the site (BD-02, BD-04 and BD-05) and the Control sampler between 10 and 30 km from the site (BD-03). The following analyses were performed:

<u>Gross Beta</u>

Weekly samples were analyzed for concentrations of beta emitters (Table C–VI.1 and C-VI.2, Appendix C). Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of Braidwood Station. The results from the near field (Group I) ranged from 6E-03 to 38E-03 pCi/m³ with a mean of 17E-03 pCi/m³. The results from the far field (Group II) ranged from 6E-03 to 36E-03 pCi/m³ with a mean of 17 E-03 pCi/m³. The results from the Control location (Group III) ranged from 6E-03 to 29E-03 pCi/m³ with a mean of 16E-03 pCi/m³. Comparison of the 2016 air particulate data with previous years' data indicate no effects from the operation of Braidwood Station. Additionally, a comparison of the weekly mean values for 2016 indicate no notable differences among the three groups (Figures C–14 through C-18, Appendix C).

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma-emitting nuclides (Table C–VI.3, Appendix C). No nuclides were detected and all required LLDs were met.

b. Airborne lodine

Continuous air samples were collected from eight locations (BD-02, BD-03, BD-04, BD-05, BD-06, BD-19, BD-20 and BD-21) and analyzed weekly for I-131 (Table C–VII.1, Appendix C). All results were less than the minimum detectable concentration for I-131.

C. Terrestrial Environment

1.16 64

1. Milk

Samples were collected from two locations (BD-17 and control location BD-18). Sampling frequencies were increased to biweekly in May and continued through October and monthly sampling was performed November through April. The following analyses were performed:

lodine-131

Milk samples from the indicator location were analyzed for concentrations of I-131 (Table C–VIII.1, Appendix C). lodine-131 was not detected in any samples. All required LLDs were met.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of

gamma-emitting nuclides (Table C–VIII.2, Appendix C). No nuclides were detected and all required LLDs were met.

2. Food Products

Food product samples were collected at six locations (BD-Control, BD-Quad 1 [offsite and onsite], BD-Quad 2, BD-Quad 3 and BD-Quad 4) when available. Five locations, (located downwind, BD-Quad 1 [offsite and onsite], BD-Quad 2, BD-Quad 3 and BD-Quad 4) could be affected by Braidwood Station's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gammaemitting nuclides (Table C–IX.1, Appendix C). No nuclides were detected and all required LLDs were met.

D. Ambient Gamma Radiation

ε.

Ambient gamma radiation levels were measured utilizing Optically Stimulated Luminescence Dosimeter (OSLD). 86 OSLD locations were established around the site. Results of OSLD measurements are listed in Tables C–X.1 to C–X.3, Appendix C.

Most OSLD measurements were below 30 mrem/quarter, with a range of 16.5 to 35.0 mrem/quarter. A comparison of the Inner Ring, Outer Ring and Other data to the Control Location data, indicate that the ambient gamma radiation levels from all locations were similar.

E. Land Use Survey

A Land Use Survey conducted during August 2016 around the Braidwood Station was performed by EIML for Exelon Nuclear to comply with section 12.5.2 of the Braidwood Station's Offsite Dose Calculation Manual ODCM). The purpose of the survey was to document the nearest resident, milk-producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors around the site. For dose calculation, a garden is assumed at the nearest residence. There were no changes required to the Braidwood Station REMP, as a result of this survey. The results of this survey are summarized below:

Distance in I	Viles from the Bra	idwood Station Rea	actor Buildings
Sector	Residence	Livestock	Milk Farm
	Miles	Miles	Miles
(A) N	0.5	2.6	
(B) NNE	0.9	-	-
(C) NE	0.7	-	-
(D) ENE	0.8	3.3	-
(E) E	1.5	2.3	-
(F) ESE	2.2	2.3	-
(G) SE	2.7	2.7	-
(H) SSE	4.5	-	-
(J) S	4.2	4.8	-
(K) SSW	1.3	5.3	5.5
(L) SW	0.4	1.2	-
(M) WSW	0.5	- at 5,55 €	-
(N) W	0.4	1.6	8.7
(P) WNW	0.4	-	-
(Q) NW	0.4	-	-
(R) NNW	0.4	-	-

Distance in	Miles from the	Braidwood Station ISFSI PAD, 2016
Sector	Residence Miles	
(N) W	0.7	
(P) WNW	0.7	
(Q) NW	0.7	
(R) NNW	0.7	

F. Errata Data

There was no errata data for 2016.

G. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP) were evaluated against the following pre-set acceptance criteria: 1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, State Specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the TBE laboratory, 156 out of 160 analyses performed met the specified acceptance criteria. Four analyses (Milk - Sr-90, Vegetation - Sr-90, and Water - H-3 samples) did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program.

Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

1. Teledyne Brown Engineering's MAPEP March 2016 air particulate

cross check sample is now being provided to TBE by Analytics. MAPEP's policy is to evaluate as failed non-reported nuclides that were reported in the previous study. NCR 16-14

- 1a Since the Sr-90 was reported in the previous MAPEP study but not in this study MAPEP evaluated the Sr-90 for Soil as failed. No client samples were affected by this failure. NCR 16-14
- 1b. The MAPEP March 2016 Sr-90 in vegetation was evaluated as failing a false positive test. In reviewing the data that was reported vs the data in LIMS, it was found that the error was incorrectly reported as 0.023 rather than the correct value of 0.230. If the value had been reported with the activity and correct uncertainty of 0.301 \pm 0.230, MAPEP would have evaluated the result as acceptable. No client samples were affected by this failure. NCR 16-14
- 2. Teledyne Brown Engineering's Analytics' March 2016 milk Sr-90 result of 15 ± .125 pCi/L was higher than the known value of 11.4 pCi/L with a ratio of 1.32. The upper ratio of 1.30 (acceptable with warning) was exceeded. After an extensive review of the data it is believed the technician did not rinse the filtering apparatus properly and some cross contamination from one of the internal laboratory spike samples may have been transferred to the Analytics sample. We feel the issue is specific to the March 2016 Analytics sample. No client samples were affected by this failure. NCR 16-26
 - Teledyne Brown Engineering's ERA November 2016 sample for H-3 in water was evaluated as failing. A result of 918 pCi/L was reported incorrectly due to a data entry issue. If the correct value of 9180 had been reported, ERA would have evaluated the result as acceptable. No client samples were affected by this failure. NCR 16-34
 - 4. Teledyne Brown Engineering's Analytics' December 2016 milk Sr-90 sample result of 14.7 ± .26 pCi/L was higher than the known value of 10 pCi/L with a ratio of 1.47. The upper ratio of 1.30 (acceptable with warning) was exceeded. The technician entered the wrong aliquot into the LIMS system. To achieve a lower error term TBE uses a larger aliquot of 1.2L (Normally we use .6L for client samples). If the technician had entered an aliquot of 1.2L into the LIMS system, the result would have been 12.2 pCi/L, which would have been considered acceptable. No client samples were affected by this failure. NCR 16-35

For the EIML laboratory, 198 of 203 analyses met the specified acceptance criteria. Five analyses (Water – Ba-133, Co-57; Soil – Ni-63, U-233/234, U-238) did not meet the specified acceptance criteria for the following reasons:

- 1. The Environmental Inc., Midwest Laboratory's ERA April 2016 water Ba-133 result of 65.2 pCi/L was higher than the known value of 58.8 pCi/L, exceeding the upper control limit of 64.9 pCi/L. The reanalysis result of 57.8 pCi/L fell within acceptance criteria. There was no impact to client samples as a result of this failure.
- 2. The Environmental Inc., Midwest Laboratory's MAPEP February 2016 water Co-57 result of 1.38 Bq/L sample was higher than the known value of 0.00 Bq/L sample. This sample is considered a false positive. There was no impact to client samples as a result of this failure.
- 3. The Environmental Inc.; Midwest Laboratory's MAPEP August 2016 soil Ni-63 result of 648 Bq/kg was lower than the known value of 990 Bq/kg, exceeding the lower control limit of 693 Bq/kg. Reanalysis with a smaller aliquot resulted in acceptable results. An investigation is in process to identify better techniques for analyzing samples with complex matrices. There was no impact to client samples as a result of this failure.
- 4. The Environmental Inc., Midwest Laboratory's MAPEP August 2016 soil U-233/234 result of 46.8 Bq/kg was lower than the known value of 122 Bq/kg, exceeding the lower control limit of 85 Bq/kg. MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO3 and HCL acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment cannot assure complete dissolution. Results are consistent with measuring the soluble form. There was no impact to client samples as a result of this failure.
- 5. The Environmental Inc., Midwest Laboratory's MAPEP August 2016 soil U-238 result of 46.6 Bq/kg was lower than the known value of 121 Bq/kg, exceeding the lower control limit of 85 Bq/kg. MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO3 and HCL acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment cannot assure complete dissolution. Results are consistent with measuring the soluble form. There was no impact to client samples as a result of this failure.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY Intentionally left blank

TABLE A-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR BRAIDWOOD STATION, 2016

		NAME OF FACILITY: BRAIDWOOD LOCATION OF FACILITY: BRACEVILLE, IL					2016	
Medium or Pathway Sampled (Unit of Measurement)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	Control Location Mean (M) (F) <i>Range</i>	Location Mean (M) (F) <i>Range</i>	WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER PCI/LITER)	GR-B	71	4	5.4 (48/59) 2.3 - 10.4	3.9 (10/12) 2.7 - 5.5	8.4 (12/12) 5.7 - 10.4	BD-40 INDICATOR BRAIDWOOD STATION COOLING LAKE ONSITE	0
	H-3	24	200	460 (1/20)	<lld< td=""><td>460 (1/4)</td><td>BD-10 INDICATOR KANKAKEE RIVER DOWNSTREAM 5.4 MILES NE OF SITE</td><td>0</td></lld<>	460 (1/4)	BD-10 INDICATOR KANKAKEE RIVER DOWNSTREAM 5.4 MILES NE OF SITE	0
	NI-63	71	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	71						
	MN-	54	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	СО-	58	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FE-	59	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-	60	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-	65	30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB-		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZR-		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	I-1.		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-1.		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-1.		18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-1		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-1	40	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
PUBLIC WATER (PCI/LITER)	GR-B	12	4	3.7 (9/12) 2.3 - 6.4	NA	3.7 (9/12) 2.3 - 6.4	BD-22 INDICATOR WILMINGTON 6.0 MILES NE OF SITE	0
	H-3	12	200	488 (8/12) 300 - 1040	NA	488 (8/12) 300 - 1040	BD-22 INDICATOR WILMINGTON 6.0 MILES NE OF SITE	0
	I-131	12	1	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR BRAIDWOOD STATION, 2016

NAME OF FACILITY: BRA Location of Facility:					DOCKET NUM REPORTING P		50-456 & 50-457 2016	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	I WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT
PUBLIC WATER	GAMMA	12			*			······
(PCI/LITER)	MN-54		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
,	CO-58		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	FE-59		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-60		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZN-65		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	NB-95		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZR-95		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-134		15	<lld< td=""><td>NÀ</td><td>-</td><td></td><td>0</td></lld<>	NÀ	-		0
	CS-137		18	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	BA-140		60	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
GROUND WATER (PCI/LITER)	H-3	32	200	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
·	GAMMA	32						
	MN-54		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-58		15	<lld< td=""><td>NÀ</td><td>-</td><td></td><td>0</td></lld<>	NÀ	-		0
	FE-59		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-60		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZN-65		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	NB-95		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZR-95		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	I-131		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-134		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CS-137		18	<lld< td=""><td>NA</td><td></td><td></td><td>0</td></lld<>	NA			0
	BA-140		60	<lld< td=""><td>NA</td><td>-</td><td></td><td>õ</td></lld<>	NA	-		õ
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
FISH (PCI/KG WET)	NI-63	12	260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

Т	'A	В	L	E	A	-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR BRAIDWOOD STATION, 2016

1,5

NAME OF FACILITY: BRA Location of Facility:					DOCKET NUM REPORTING P		50-456 & 50-457 2016	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	Location Mean (M) (F) <i>Range</i>	N WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT
FISH	GAMMA	12						
(PCI/KG WET)	M	N-54	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	Ci	O-58	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	F	E-59	260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	C	O-60	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	Z	N-65	260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	N	B-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	Z	R-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	1	-131	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS	-134	130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS	-137	150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA	-140	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA	-140	NA	<lld< td=""><td><ÜLD</td><td>-</td><td></td><td>0</td></lld<>	<ÜLD	-		0
SEDIMENT (PCI/KG DRY)	NI-63	7	260	<lld< td=""><td><ĽLD</td><td>-</td><td></td><td>0</td></lld<>	<ĽLD	-		0
	GAMMA	7						
	M	N-54	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	C	O-58	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	F	E-59	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	C	O-60	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	Z	N-65	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	N	B-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	Z	R-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS	5-134	150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS	5-137	180	129	<lld< td=""><td>132</td><td>BD-10 INDICATOR</td><td>0</td></lld<>	132	BD-10 INDICATOR	0
				(2/4)	1.5	(1/2)	KANKAKEE RIVER DOWNSTREAM 5.4 MILES NE OF SITE	
	Đ۸	-140	NA	126 - 132 <lld< td=""><td><lld< td=""><td></td><td>5.4 MILES NE UP SHE</td><td>٥</td></lld<></td></lld<>	<lld< td=""><td></td><td>5.4 MILES NE UP SHE</td><td>٥</td></lld<>		5.4 MILES NE UP SHE	٥
					ę.	-		0
	LA	-140	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR BRAIDWOOD STATION, 2016

6

NAME OF FACILITY: BRA LOCATION OF FACILITY:					DOCKET NUN REPORTING F		50-456 & 50-457 2016	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	Location Mean (M) (F) <i>Range</i>	I WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	412	10	17 (364/364) <i>6 - 38</i>	16 (47/48) <i>6 - 29</i>	17 (52/52) <i>8 - 38</i>	BD-21 INDICATOR NEARSITE NE 0.5 MILES NE OF SITE	0
	GAMMA	32						
	MN	-54	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	СО	-58	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FE	-59	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO	-60	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN	-65	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB	-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZR	-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-	134	50	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-1	137	60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-1	140	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-1	140	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
AIR IODINE	GAMMA	412						
(E-3 PCI/CU.METER)	<i>I</i> -1	131	70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
MILK (PCV/LITER)	I-131	37	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	38						
	MN	-54	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	СО		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FE		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO	-60	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		-65	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB	-95	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZR		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-1		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-1	137	18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-1	140	60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-1	140	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1

TABLE A-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR BRAIDWOOD STATION, 2016

x

 $\frac{1}{2}$

141

2

NAME OF FACILITY: BRAIDWOOD LOCATION OF FACILITY: BRACEVILLE, IL					DOCKET NUMBER: REPORTING PERIOD:		50-456 & 50-457 2016	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
VEGETATION	GAMMA	18		JUNIOL	TUNGE		BIOTATION AND BITEOTION	MERCONCEMENTO
(PCI/KG WET)	MN-54 CO-58 FE-59 CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			NA	<lld< td=""><td><ĽLD</td><td>-</td><td></td><td>0</td></lld<>	<ĽLD	-		0
			NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	NB-95	i	NA	<lld< td=""><td><ĻLD</td><td>-</td><td></td><td>0</td></lld<>	<ĻLD	-		0
	ZR-95 CS-134 CS-137		NA	<lld< td=""><td><ĻLD</td><td>-</td><td></td><td>0</td></lld<>	<ĻLD	-		0
			60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
			80	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140)	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-140)	NA	<lld< td=""><td>LD</td><td>-</td><td></td><td>0</td></lld<>	LD	-		0
DIRECT RADIATION (MILLIREM/QTR.)	OSLD-QUARTERLY	342	NA	21 (334/334)	20.8 (8/8)	31.2 (4/4)	BD-105-4 INDICATOR	0

(M) The Mean Values are calculated using the positive values. (F) Fraction of detectable measurement are indicated in parentheses.

Intentionally left blank

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

TABLE B-1:

Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2016

A. Surface Water BD-10 Kankakee River Downstream (indicator) BD-25 Kankakee River Upstream (control) BD-38 Main Drainage Ditch (indicator) BD-40 Braidwood Station Cooling Lake (indicator) BD-55 North Pond Fatlan Site (indicator) BD-56 South Pond Fatlan Site (indicator) BD-56 South Pond Fatlan Site (indicator) BD-22 Wilmington (indicator) C. Ground/Well Water BD-13 Braidwood City Hall Well (indicator) BD-34 Gibson Well (indicator) BD-35 Joly Well (indicator) BD-36 Hutton Well (indicator) BD-37 Nurczyk Well (indicator) BD-50 Skole Well (indicator) BD-51 Fatlan Well (indicator)	5.4 miles NE 9.6 miles E 1.5 miles SE Onsite 0.6 miles NE 0.6 miles NE 6.0 miles NE 1.7 miles NNE 4.7 miles E 4.7 miles E
BD-25 Kankakee River Upstream (control) BD-38 Main Drainage Ditch (indicator) BD-40 Braidwood Station Cooling Lake (indicator) BD-55 North Pond Fatlan Site (indicator) BD-56 South Pond Fatlan Site (indicator) BD-22 Wilmington (indicator) C. Ground/Well Water BD-13 Braidwood City Hall Well (indicator) BD-34 Gibson Well (indicator) BD-35 Joly Well (indicator) BD-36 Hutton Well (indicator) BD-37 Nurczyk Well (indicator) BD-50 Skole Well (indicator) BD-51 Fatlan Well (indicator)	9.6 miles E 1.5 miles SE Onsite 0.6 miles NE 0.6 miles NE 6.0 miles NE 1.7 miles NNE 4.7 miles E 4.7 miles E
BD-55 North Pond Fatlan Site (indicator) BD-56 South Pond Fatlan Site (indicator) BD-56 South Pond Fatlan Site (indicator) BD-22 Wilmington (indicator) C. Ground/Well Water BD-13 Braidwood City Hall Well (indicator) BD-34 Gibson Well (indicator) BD-35 Joly Well (indicator) BD-36 Hutton Well (indicator) BD-37 Nurczyk Well (indicator) BD-50 Skole Well (indicator) BD-51 Fatlan Well (indicator)	0.6 miles NE 0.6 miles NE 6.0 miles NE 1.7 miles NNE 4.7 miles E 4.7 miles E
BD-22 Wilmington (indicator) C. Ground/Well Water BD-13 Braidwood City Hall Well (indicator) BD-34 Gibson Well (indicator) BD-35 Joly Well (indicator) BD-36 Hutton Well (indicator) BD-37 Nurczyk Well (indicator) BD-50 Skole Well (indicator) BD-51 Fatlan Well (indicator)	1.7 miles NNE 4.7 miles E 4.7 miles E
C.Ground/Well WaterBD-13Braidwood City Hall Well (indicator)BD-34Gibson Well (indicator)BD-35Joly Well (indicator)BD-36Hutton Well (indicator)BD-37Nurczyk Well (indicator)BD-50Skole Well (indicator)BD-51Fatlan Well (indicator)	1.7 miles NNE 4.7 miles E 4.7 miles E
BD-13Braidwood City Hall Well (indicator)BD-34Gibson Well (indicator)BD-35Joly Well (indicator)BD-36Hutton Well (indicator)BD-37Nurczyk Well (indicator)BD-50Skole Well (indicator)BD-51Fatlan Well (indicator)	4.7 miles E 4.7 miles E
BD-34Gibson Well (indicator)BD-35Joly Well (indicator)BD-36Hutton Well (indicator)BD-37Nurczyk Well (indicator)BD-50Skole Well (indicator)BD-51Fatlan Well (indicator)	4.7 miles E 4.7 miles E
	4.7 miles E 4.7 miles E 4.7 miles E 0.6 miles NE 0.9 miles NE
D. Milk - bi-weekly / monthly	
BD-17Halpin's Dairy (indicator)BD-18Biros' Farm (control)	5.5 miles SSW 8.7 miles W
E. Air Particulates / Air Iodine	
BD-02Custer Park (indicator)BD-03County Line Road (control)BD-04Essex (indicator)BD-05Gardner (indicator)BD-06Godley (indicator)BD-19Nearsite NW (indicator)BD-20Nearsite N (indicator)BD-21Nearsite NE (indicator)	5.0 miles E 6.2 miles ESE 4.8 miles SSE 5.5 miles SW 0.5 miles WSW 0.3 miles NW 0.6 miles N 0.5 miles NE
F. Fish	
BD-25Kankakee River, Upstream (control)BD-28Kankakee River, Discharge (indicator)BD-41Cooling Lake (indicator)	9.6 miles E 5.4 miles E 1.0 mile E
G. Sediment	
BD-10 Kankakee River, Downstream (indicator) BD-25 Kankakee River Upstream (control) BD-57 Circulating Water Blowdown Discharge (indicator)	5.4 miles NE 9.6 miles E r) 5.4 miles E
HFood Products	
Quadrant 1 Clark Farm Onsite Garden Quadrant 2 W.F. Soltwisch Quadrant 3 Terri Schultz Quadrant 4 Bruce Sinkular	3.8 miles ENE 0.6 miles NE 4.5 miles SSE 4.8 miles SSW 1.9 miles NNW

. •

TABLE B-1:

Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2016

Location	Location Description	Distance & Direction From Site
I. Environ	mental Dosimetry - OSLD	
Inner Ring		
BD-101-3 and -4		0.5 miles N
BD-102-1 and -2		1.1 miles NNE
BD-103-1 and -2 BD-104-1 and -2		1.0 mile NE 0.7 miles ENE
BD-105-1 and -2		2.2 miles E
BD-106-1 and -2		2.5 miles ESE
BD-107-1 and -2		3.2 miles SE
BD-108-1 and -2		3.2 miles SSE
BD-109-1 and -2		3.8 miles S
BD-110-1 and -2 BD-111a-1 and -2		2.8 miles SSW 1.4 miles SW
BD-112-1 and -2		0.7 miles WSW
BD-113a-1 and -2		0.5 miles W
BD-114-1 and -2		0.4 miles WNW
BD-115-1 and -2		0.3 miles NW
BD-116-1 BD-116-2	, ~·	0.4 miles NNW 0.5 miles NNW
Outer Ring	•	0.5 miles Nivv
BD-201-1 and -2 BD-202-1 and -2		4.2 miles N 4.8 miles NNE
BD-202-1 and -2 BD-203-1 and -2		4.6 miles NNE 4.9 miles NE
BD-204-1 and -2		4.3 miles ENE
BD-205-1 and -2		4.0 miles E
BD-206-1 and -2		4.5 miles ESE
BD-207-1 and -2		4.5 miles SE
BD-208-1 and -2 BD-209-1 and -2		4.5 miles SSE 4.8 miles S
BD-210-1 and -2		5.3 miles SSW
BD-211-1 and -2		4.8 miles SW
BD-212-3 and -4		5.0 miles WSW
BD-213-3 and -4		4.8 miles W
BD-214-1 and -2 BD-215-1 and -2		4.3 miles WNW 4.5 miles NW
BD-216-1 and -2		4.0 miles NNW
<u>Other</u>		
BD-02-1 and -2	Custer Park (indicator)	5.0 miles E
BD-04-1 and -2	Essex (indicator)	4.8 miles SSE
BD-05-1 and -2	Gardner (indicator)	5.5 miles SW
BD-06-1 and -2	Godley (indicator)	0.5 miles WSW
BD-19-1 and -2 BD-20-1 and -2	Nearsite NW (indicator) Nearsite N (indicator)	0.3 miles NW 0.6 miles N
BD-20-1 and -2 BD-21-1 and -2	Nearsite NE (indicator)	0.5 miles NE
I. Environm	ental Dosimetry – OSLD (cont'd)	
Control		
BD-03-1 and -2	13000 W. Road	6.2 miles ESE
ISFSI	-	
BD-104-3 and -4		0.12 miles E

TABLE B-1:

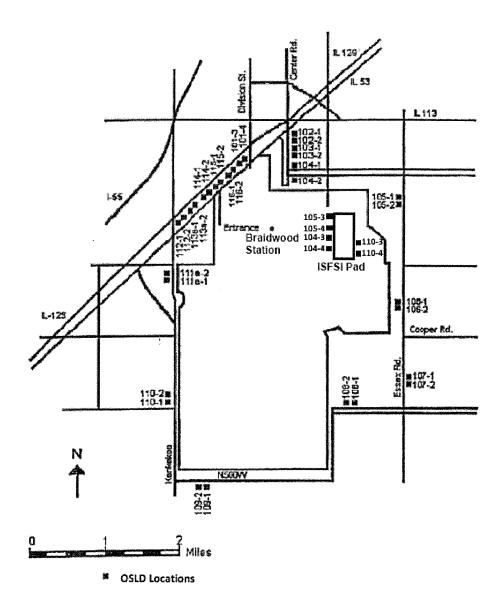
Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Braidwood Station, 2016

Location	Location Description	Distance & Direction From Site
BD-105-3 and -4		0.22 miles SE
BD-110-3 and -4		0.17 miles SE

	stance in miles non the bialt	wood Station ISFSI Pad, 2016
Sector	Residence Miles	
(N) W	0.7	
(P) WNW	0.7	
(Q) NW	0.7	
(R) NNW	0.7	

Dista	nce in Miles from the Braid	wood Station Reactor Buildin	gs, 2016
Sector	Residence Miles	Livestock Miles	Milk Farm Miles
(A) N	0.5	2.6	-
(B) NNE	. 0.9	- >, a	-
(C) NE	0.7	-	-
(D) ENE	0.8	3.3	-
(E) E	1.5	2.3	-
(F) ESE	2.2	2.3	-
(G) SE	2.7	2.7	-
(H) SSE	4.5	-	-
(J) S	4.2	4.8	-
(K) SSW	1.3	5.3	5.5
(L) SW	0.4	1.2	-
(M) WSW	0.5	-	-
(N) W	0.4	1.6	8.7
(P) WNW	0.4	-	-
(Q) NW	0.4	-	-
(R) NNW	0.4	-	-

TABLE B-2:


Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Braidwood Station, 2016

Comple	Analusia	Compling Mathead	Applytiant Dependence Muscher				
Sample Medium	Analysis	Sampling Method	Analytical Procedure Number				
Surface Water Gamma Spectroscopy		Monthly composite from weekly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis				
Surface Water Gross Beta		Monthly composite from weekly grab samples.	TBE, TBE-2008 Gross Alpha and/or Gross Beta activity in various matrices				
Surface Water	Tritium	Quarterly composite from weekly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation				
Surface Water	Nickel-63	Monthly composite from weekly grab samples.	TBE, TBE-2013 Radionickel activity in various matrices				
Drinking Water	Gross Beta	Monthly composite from weekly composite samples.	TBE, TBE-2008 Gross Alpha and/or Gross Beta activity in various matrices				
Drinking Water	Gamma Spectroscopy	Monthly composite from weekly composite samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis				
Drinking Water Tritium		Monthly composite from weekly composite samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation				
Drinking Water	lodine	Monthly composite from weekly composite samples.	TBE, TBE-2031 Radioactive lodine in drinking water				
Ground/Well Water	Gamma Spectroscopy	Quarterly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis				
Ground/Well Water	Tritium	Quarterly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation				
Fish	Nickel-63	Semi-annual samples collected via electroshocking or other techniques	TBE, TBE-2013 Radionickel activity in various matrices				
Fish	Gamma Spectroscopy	Samples collected twice annually via electro-shocking or other techniques	TBE-2007 Gamma emitting radioisotope analysis				
Sediment	Gamma Spectroscopy	Semi-annual grab samples	TBE, TBE-2007 Gamma emitting radioisotope analysis				
Sediment	Nickel-63	Semi-annual grab samples	TBE, TBE-2013 Radionickel activity in various matrices				
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter paper	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices				
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2007 Gamma emitting radioisotope analysis				

TABLE B-2:

Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Braidwood Station, 2016

Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Air Iodine I-131 Milk I-131		Weekly composite of continuous air sampling through charcoal filter	TBE, TBE-2007 Gamma emitting radioisotope analysis
		Bi-weekly grab sample May through October. Monthly all other times	TBE, TBE-2012 Radioiodine in various matrices
Milk	Gamma Spectroscopy	Bi-weekly grab sample May through October. Monthly all other times	TBE, TBE-2007 Gamma emitting radioisotope analysis
Food Products	Gamma Spectroscopy	Annual grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
Optically Stimulated OSLD Luminescence Dosimetry		Quarterly OSLDs comprised of two Al ₂ O ₃ :C Landauer Incorporated elements.	Landauer Incorporated

k

Figure B-1 Inner Ring and Other OSLD Locations of the Braidwood Station, 2016

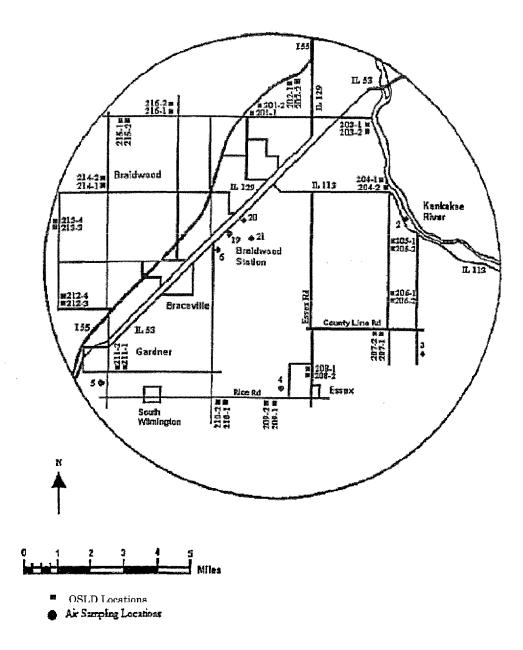


Figure B-2 Fixed Air Sampling and Outer Ring OSLD Locations of the Braidwood Station, 2016

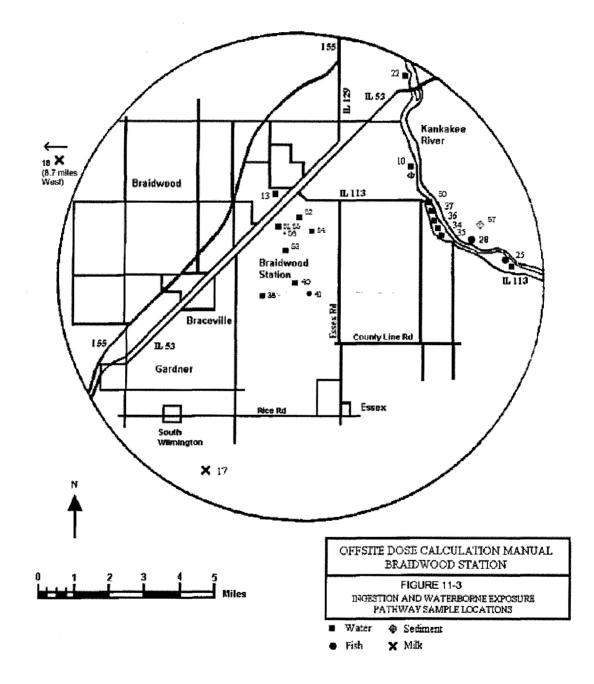


Figure B-3 Ingestion and Waterborne Exposure Pathway Sample Locations of the Braidwood Station, 2016

Intentionally left blank

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

Intentionally left blank

.

Table C-I.1 CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

COLLECTION PERIOD	BD-10	BD-25	BD-38	BD-40	BD-55	BD-56
01/07/16 - 01/27/16	< 2.9	5.3 ± 2.0	< 3.4	8.8 ± 2.6	3.4 ± 1.8	(1)
02/04/16 - 02/25/16	6.4 ± 2.2	4.7 ± 2.1	4.2 ± 2	10.4 ± 2.7	3.9 ± 1.8	5.3 ± 2.2
03/03/16 - 03/31/16	< 2.8	3.3 ± 1.9	< 3.2	8.6 ± 2.5	3.8 ± 1.8	< 2.9
04/07/16 - 04/28/16	4.1 ± 1.8	5.5 ± 1.9	5.6 ± 2.2	10.3 ± 2.4	4.6 ± 1.7	4.1 ± 1.9
05/05/16 - 05/26/16	< 3.3	3.7 ± 2.3	3.5 ± 1.5	10.1 ± 2.9	< 3.0	< 3.1
06/02/16 - 06/30/16	3.1 ± 1.8	2.7 ± 1.8	3.0 ± 2.0	7.1 ± 2.3	2.7 ± 1.6	3.5 ± 1.9
07/07/16 - 07/28/16	3.5 ± 1.9	< 2.7	3.9 ± 2.2	7.9 ± 2.4	< 2.4	7.4 ± 2.3
08/04/16 - 08/25/16	4.7 ± 1.9	4.0 ± 1.8	4.0 ± 2.1	9.1 ± 2.4	3.5 ± 1.6	8.2 ± 2.2
09/01/16 - 09/29/16	2.9 ± 2.0	4.0 ± 1.8	< 2.9	6.7 ± 2.2	2.9 ± 1.6	4.5 ± 1.9
10/06/16 - 10/27/16	3.1 ± 1.7	3.2 ± 1.8	4.1 ± 2.2	7.5 ± 2.3	2.3 ± 1.5	2.8 ± 1.8
11/03/16 - 11/23/16	3.0 ± 1.8	< 2.5	5.7 ± 2.3	8.3 ± 2.2	2.5 ± 1.4	8.9 ± 2.2
12/01/16 - 12/29/16	5.0 ± 2.2	3.3 ± 1.9	< 2.8	5.7 ± 2.2	3.6 ± 1.6	9.1 ± 3.2
	4.0 ± 2.4	3.9 ± 1.9	4.3 ± 1.9	8.4 ± 3.0	3.3 ± 1.4	6.0 ± 4.9

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-I.2

CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	BD-10	BD-25	BD-38	BD-40	BD-55	BD-56
01/07/16 - 03/31/16	< 173	< 171	< 168	< 171	< 168	(1)
04/07/16 - 06/30/16	< 185	< 186	< 171	< 172	< 170	< 172
07/07/16 - 09/29/16	460 ± 141	< 190	< 190	< 189	< 190	< 190
10/06/16 - 12/29/16	< 196	< 194	< 198	< 195	< 197	< 200
MEAN ± 2 STD DEV	460 ± 0	-	-	-	-	-

Table C-I.3

CONCENTRATIONS OF NI-63 IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	BD-10	BD-25	BD-38	BD-40	BD-55	BD-56
01/07/16 - 01/27/16	< 16	< 16	< 23	< 23	< 22	(1)
02/04/16 - 02/25/16	< 18	< 19	< 19	< 19	< 19	< 19
03/03/16 - 03/31/16	< 14	< 14	< 15	< 14	< 14	< 14
04/07/16 - 04/28/16	< 14	< 14	< 14	< 14	< 14	< 14
05/05/16 - 05/26/16	< 14	< 14	< 14	< 15	< 15	< 15
06/02/16 - 06/30/16	< 12	< 12	< 12	< 15	< 14	< 14
07/07/16 - 07/28/16	< 16	< 16	< 16	< 16	< 16	< 16
08/04/16 - 08/25/16	< 16	< 16	< 16	< 16	< 16	< 13
09/01/16 - 09/29/16	< 15	< 15	< 15	< 16	< 16	< 16
10/06/16 - 10/27/16	< 16	< 16	< 16	< 16	< 23	< 23
11/03/16 - 11/23/16	< 13	< 13	< 13	< 13	< 13	< 12
12/01/16 - 12/29/16	< 16	< 16	< 16	< 16	< 16	< 15
MEAN	-	-	-	-	-	-

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-I.4

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

					ILCOOLIO								
	COLLECTION												
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
BD-10	01/07/16 - 01/27/16	< 3	< 4	< 10	< 4	< 8	< 5	< 8	< 12	< 4	< 4	< 28	< 8
	02/04/16 - 02/25/16	< 3	< 3	< 7	< 3	< 6	< 3	< 6	< 6	< 3	< 4	< 18	< 5
	03/03/16 - 03/31/16	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 6	< 2	< 2	< 13	< 4
	04/07/16 - 04/28/16	< 3	< 3	< 7	< 4	< 6	< 3	< 5	< 8	< 3	< 3	< 17	< 6
	05/05/16 - 05/26/16	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 11	< 2	< 2	< 18	< 5
	06/02/16 - 06/30/16	< 4	< 5	< 9	< 4	< 9	< 5	< 8	< 14	< 4	< 4	< 29	< 11
	07/07/16 - 07/28/16	< 2	< 2	< 5	< 2	< 3	< 2	< 4	< 11	< 2	< 2	< 19	< 6
	08/04/16 - 08/25/16	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 14	< 1	< 1	< 20	< 6
	09/01/16 - 09/29/16	< 3	< 4	< 7	< 4	< 7	< 3	< 7	< 10	< 3	< 3	< 22	< 7
	10/06/16 - 10/27/16	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 10	< 2	< 2	< 17	< 5
	11/03/16 - 11/23/16	< 3	< 3	< 7	< 3	< 7	< 4	< 7	< 15	< 3	< 3	< 31	< 10
	12/01/16 - 12/29/16	< 2	< 2	< 6	< 2	< 4	< 3	< 5	< 10	< 2	< 2	< 21	< 7
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-25	01/07/16 - 01/27/16	< 5	< 4	< 11	< 5	< 9	< 5	< 11	< 15	< 4	< 5	< 29	< 11
	02/04/16 - 02/25/16	< 3	< 3	< 8	< 3	< 7	< 4	< 6	< 7	< 3	< 3	< 18	< 6
	03/03/16 - 03/31/16	< 2	< 2	< 3	< 1	< 3	< 2	< 3	< 5	< 2	< 2	< 11	< 4
	04/07/16 - 04/28/16	< 3	< 4	< 7	< 3	< 7	< 4	< 6	< 10	< 3	< 3	< 23	< 6
	05/05/16 - 05/26/16	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 13	< 2	< 2	< 21	< 7
	06/02/16 - 06/30/16	< 4	< 4	< 11	< 6	< 9	< 5	< 9	< 14	< 4	< 5	< 34	< 7
	07/07/16 - 07/28/16	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 10	< 2	< 2	< 18	< 5
	08/04/16 - 08/25/16	< 1	< 1	< 3	< 2	< 2	< 1	< 2	< 10	< 1	< 1	< 15	< 4
	09/01/16 - 09/29/16	< 3	< 3	< 5	< 3	< 5	< 3	< 5	< 8	< 2	< 3	< 17	< 6
	10/06/16 - 10/27/16	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 10	< 2	< 2	< 19	< 6
	11/03/16 - 11/23/16	< 3	< 3	< 7	< 3	< 7	< 4	< 6	< 15	< 3	< 3	< 27	< 9
	12/01/16 - 12/29/16	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 11	< 2	< 2	< 20	< 6
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-38	01/07/16 - 01/27/16	< 4	< 4	< 8	< 4	< 8	< 4	< 8	< 11	< 4	< 4	< 25	< 8
	02/04/16 - 02/25/16	< 3	< 3	< 6	< 3	< 7	< 3	< 6	< 6	< 3	< 4	< 15	< 4
	03/03/16 - 03/31/16	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 5	< 1	< 2	< 11	< 3
	04/07/16 - 04/28/16	< 3	< 3	< 6	< 3	< 5	< 3	< 5	< 9	< 3	< 3	< 19	< 6
	05/05/16 - 05/26/16	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 10	< 1	< 2	< 17	< 6
	06/02/16 - 06/30/16	< 6	< 5	< 15	< 5	< 10	< 5	< 9	< 15	< 5	< 5	< 37	< 11
	07/07/16 - 07/28/16	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 11	< 2	< 2	< 20	< 6
	08/04/16 - 08/25/16	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 15	< 1	< 2	< 22	< 7
	09/01/16 - 09/29/16	< 3	< 3	< 7	< 3	< 6	< 3	< 6	< 10	< 3	< 3	< 21	< 7
	10/06/16 - 10/27/16	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 11	< 2	< 2	< 19	< 6
	11/03/16 - 11/23/16	< 3	< 3	< 8	< 3	< 7	< 4	< 6	< 15	< 3	< 3	< 28	< 9
	12/01/16 - 12/29/16	< 2	< 2	< 5	< 2	< 5	< 3	< 5	< 11	< 2	< 2	< 20	< 7
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-

Table C-I.4

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

	COLLECTION												
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
JIL	FLNOD	1011-04	0-50		00-00				1-101		03-107	Da-140	
BD-40	01/07/16 - 01/27/16	< 5	< 5	< 9	< 5	< 9	< 6	< 9	< 15	< 4	< 5	< 33	< 9
	02/04/16 - 02/25/16	< 3	< 3	< 8	< 4	< 6	< 3	< 5	< 6	< 3	< 3	< 17	< 6
	03/03/16 - 03/31/16	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 5	< 1	< 2	< 11	< 3
	04/07/16 - 04/28/16	< 3	< 3	< 6	< 3	< 6	< 3	< 6	< 9	< 3	< 3	< 19	< 7
	05/05/16 - 05/26/16	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 14	< 2	< 2	< 23	< 6
	06/02/16 - 06/30/16	< 5	< 7	< 13	< 4	< 11	< 6	< 10	< 15	< 5	< 5	< 41	< 10
	07/07/16 - 07/28/16	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 14	< 2	< 2	< 24	< 8
	08/04/16 - 08/25/16	< 2	< 2	< 5	< 2	< 3	< 2	< 3	< 15	< 2	< 2	< 23	< 7
	09/01/16 - 09/29/16	< 3	< 3	< 7	< 3	< 6	< 3	< 5	< 9	< 3	< 3	< 19	< 6
	10/06/16 - 10/27/16	< 2	< 2	< 5	< 2	< 4	< 3	< 4	< 12	< 2	< 2	< 20	< 7
	11/03/16 - 11/23/16	< 3	< 4	< 9	< 3	< 7	< 3	< 6	< 15	< 3	< 3	< 30	< 9
	12/01/16 - 12/29/16	< 2	< 2	< 6	< 2	< 5	< 3	< 4	< 11	< 2	< 2	< 20	< 6
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-55	01/07/16 - 01/27/16	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 22	< 1	< 1	< 25	< 8
22 00	02/04/16 - 02/25/16	< 5	< 5	< 11	< 5	< 11	< 5	< 9	< 10	< 5	< 6	< 27	< 9
	03/03/16 - 03/31/16	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 6	< 2	< 2	< 13	< 4
	04/07/16 - 04/28/16	< 4	< 4	< 9	< 4	< 8	< 4	< 7	< 14	< 4	< 4	< 32	< 11
	05/05/16 - 05/26/16	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 13	< 2	< 2	< 21	< 5
	06/02/16 - 06/30/16	< 6	< 6	< 14	< 6	< 11	< 7	< 11	< 15	< 6	< 6	< 36	< 12
	07/07/16 - 07/28/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 11	< 2	< 2	< 19	< 5
	08/04/16 - 08/25/16	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 14	< 1	< 2	< 21	< 6
	09/01/16 - 09/29/16	< 3	< 3	< 6	< 3	< 6	< 3	< 6	< 11	< 4	< 3	< 22	< 6
	10/06/16 - 10/27/16	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 13	< 2	< 2	< 23	< 8
	11/03/16 - 11/23/16	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 12	< 2	< 2	< 20	< 6
	12/01/16 - 12/29/16	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 32	< 1	< 1	< 30	< 9
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-56	01/07/16 - 01/27/16	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
00-00	02/04/16 - 02/25/16	< 7	< 6	< 13	< 6	< 13	< 7	< 11	< 12	< 6	< 7	< 34	< 10
	03/03/16 - 03/31/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 5	< 1	< 2	< 11	< 4
	04/07/16 - 04/28/16	< 5	< 5	< 9	< 4	< 9	< 6	< 9	< 14	< 4	< 5	< 32	< 9
	05/05/16 - 05/26/16	< 2	< 2	< 4	< 2	< 3	< 2	< 4	< 12	< 2	< 2	< 20	< 6
	06/02/16 - 06/30/16	< 5	< 5	< 10	< 4	< 10	< 5	< 8	< 14	< 5	< 5	< 32	< 8
	07/07/16 - 07/28/16	< 0	< 0	< 1	< 0	< 1	< 0	< 1	< 3	< 0	< 0	< 5	< 1
	08/04/16 - 08/25/16	< 1		< 4	< 2	< 3	< 2	< 3	< 15	< 1	< 2	< 22	< 7
	09/01/16 - 09/29/16	< 4	< 2 < 4	< 4 < 8	< 4	< 8	< 2 < 5	< 7	< 12	< 4	< 4	< 28	< 9
	10/06/16 - 10/27/16	< 2	< 2	< 5	< 2	< 4	< 3	< 4	< 12	< 2	< 2	< 20	< 7
	11/03/16 - 11/23/16	< 3	< 3	< 6	< 2	< 6	< 3	, ~ 4 - < 5	< 12	< 2	< 3	< 23	< 7
	12/01/16 - 12/29/16	< 1	< 2	< 5	< 1	< 2	< 2	< 3	< 62	< 1	< 1	< 56	< 15
	MEAN	-	-	-	-		-	· _	-	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-II.1

CONCENTRATIONS OF GROSS BETA IN PUBLIC WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

COLLECTION PERIOD	BD-22
12/31/15 - 02/04/16 02/04/16 - 03/03/16 03/03/16 - 03/31/16 03/31/16 - 04/28/16 04/28/16 - 06/02/16 06/02/16 - 06/30/16 06/30/16 - 07/28/16	3.3 ± 1.7 < 2.3 < 2.6 < 2.0 3.2 ± 1.6 4.3 ± 1.7 4.0 ± 1.5
07/28/16 - 09/01/16 09/01/16 - 09/29/16 09/29/16 - 11/03/16 11/03/16 - 12/01/16 12/01/16 - 12/29/16 MEAN ± 2 STD DEV	$3.0 \pm 1.5 \\ 6.4 \pm 1.8 \\ 2.8 \pm 1.6 \\ 3.8 \pm 1.7 \\ 2.3 \pm 1.5 \\ 3.7 \pm 2.4$

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-II.2

CONCENTRATIONS OF TRITIUM IN PUBLIC WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

7

COLLECTION PERIOD	BD-22
12/31/15 02/04/16 02/04/16 03/03/16 03/03/16 03/03/16 03/03/16 03/03/16 03/31/16 04/28/16 04/28/16 06/02/16 06/02/16 06/30/16 06/30/16 07/28/16 07/28/16 09/01/16 09/01/16 09/29/16 09/29/16 11/03/16 11/03/16 12/01/16	< 180 < 176 < 182 410 ± 127 300 ± 125 378 ± 126 491 ± 131 411 ± 134 555 ± 137 < 184 320 ± 128
12/01/16 - 12/29/16 MEAN ± 2 STD DEV	1040 ± 170 488 ± 476

Table C-II.3

CONCENTRATIONS OF I-131 IN PUBLIC WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	 CTION OD			BD-22	
12/31/15 02/04/16 03/03/16 03/31/16 04/28/16 06/02/16 06/30/16 07/28/16	 02/04/16 03/03/16 03/31/16 04/28/16 06/02/16 06/30/16 07/28/16 09/01/16	< < < < < < < < < < < < < < < < < < <	0.5 0.6 0.5 0.6 0.7 0.6 0.6 0.6 0.9 0.4		
11/03/16 12/01/16	12/01/16 12/29/16		0.4 0.7		

MEAN -

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

Table C-II.4

CONCENTRATIONS OF GAMMA EMITTERS IN PUBLIC WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

ł

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
SITE	FERIOD	111-34	<u>CU-56</u>	re-59	C0-00	211-00	IND-90	21-90	05-134	08-137	Da-140	La-140
BD-22	12/31/15 - 02/04/16	< 3	< 3	< 7	< 3	< 6	< 3	< 6	< 3	< 3	< 28	< 7
	02/04/16 - 03/03/16	< 4	< 5	< 9	< 4	< 8	< 5	< 6	< 3	< 4	< 29	< 10
	03/03/16 - 03/31/16	< 5	< 5	< 10	< 4	< 9	< 5	< 9	< 5	< 5	< 30	< 9
	03/31/16 - 04/28/16	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 12	< 4
	04/28/16 - 06/02/16	< 4	< 4	< 10	< 4	< 6	< 4	< 7	< 3	< 4	< 33	< 8
	06/02/16 - 06/30/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 16	< 5
	06/30/16 - 07/28/16	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 15	< 5
	07/28/16 - 09/01/16	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 19	< 4
	09/01/16 - 09/29/16	< 7	< 8	< 17	< 10	< 17	< 9	< 16	< 8	< 7	< 40	< 11
	09/29/16 - 11/03/16	< 5	< 7	< 13	< 5	< 12	< 7	< 11	< 5	< 7	< 38	< 12
	11/03/16 - 12/01/16	< 6	< 5	< 12	< 5	< 10	< 6	< 12	< 7	< 6	< 37	< 15
	12/01/16 - 12/29/16	< 4	< 4	< 9	< 4	< 7	< 5	< 8	< 4	< 4	< 25	< 7
	MEAN	-	-	-	-	-	- *	-	-	-	-	-

Table C-III.1 CONCENTRATIONS OF TRITIUM IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

COLLECTION PERIOD	BD-13	BD-34	BD-35	BD-36	BD-37	BD-50	BD-51	BD-54
01/19/16 - 03/10/17	< 181	< 180	< 181	< 184	< 181	< 182	< 178	< 192
04/14/16 - 04/14/16	< 186	< 186	< 186	< 192	< 188	< 191	< 172	< 170
07/14/16 - 07/14/16	< 168	< 167	< 161	< 168	< 166	< 171	< 168	< 166
10/13/16 - 10/13/16	< 190	< 191	< 193	< 194	< 195	< 192	< 191	< 193
MEAN	-	-	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

· · · .

Table C-III.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
BD-13	01/19/16 - 01/19/16	< 7	< 6	< 14	< 6	< 12	< 8	< 11	< 10	< 6	< 6	< 30	< 10
DU-13	04/14/16 - 04/14/16	< 8	< 9	< 18	< 0 < 6	< 17	< 9	< 11 < 14	< 10	< 7	< 8	< 30 < 33	< 10 < 15
	07/14/16 - 07/14/16	< 5	< 5	< 11	< 4	< 8	< 5	< 8	< 11	< 4	< 4	< 27	< 8
	10/13/16 - 10/13/16	< 3	< 3	< 5	< 3	< 6	< 3	< 5	< 5	< 3	< 3	< 14	< 4
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
	04/40/40 04/40/40	< 7	< 7	< 10	< 9	< 10	< 5	< 12	< 10	< 7	< 7	< 37	< 14
BD-34	01/19/16 - 01/19/16	< 7 < 6	< 6	< 10 < 12	< 7	< 10 < 13	< 5 < 6	< 12	< 9	< 6	< 7	< 37 < 29	< 8
	04/14/16 - 04/14/16 07/14/16 - 07/14/16	< 6	< 6	< 9	< 6	< 11	< 5	< 10	< 9 < 12	< 5	< 5	< 29 < 29	< 0 < 11
	10/13/16 - 10/13/16	< 8	< 7	< 16	< 9	< 17	< 9	< 13	< 12	< 7	< 6	< 35	< 13
		• 0	- 1	10		- 11	- 5	4 10	10	- 1	• 0	- 00	- 10
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-35	01/19/16 - 01/19/16	< 8	< 7	< 14	< 7	< 17	< 9	< 15	< 14	< 8	< 7	< 30	< 10
	04/14/16 - 04/14/16	< 5	< 4	< 10	< 6	< 10	< 6	< 11	< 7	< 5	< 5	< 20	< 8
	07/14/16 - 07/14/16	< 9	< 8	< 16	< 8	< 15	< 8	< 14	< 12	< 7	< 8	< 39	< 15
	10/13/16 - 10/13/16	< 6	< 6	< 15	< 9	< 15	< 7	< 13	< 11	< 7	< 8	< 35	< 9
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-36	01/19/16 - 01/19/16	< 6	< 8	< 17	< 8	< 16	< 9	< 12	< 14	< 8	< 9	< 38	< 9
DD-30	04/14/16 - 04/14/16	< 0 < 6	< 0 < 6	< 17	< 0 < 6	< 13	< 7	< 11	< 12	< 6	< 7	< 31	< 13
	07/14/16 - 07/14/16	< 9	< 8	< 14	< 7	< 16	< 7	< 14	< 13	< 7	< 6	< 36	< 9
	10/13/16 - 10/13/16	< 6	< 6	< 10	< 5	< 14	< 7	< 11	< 10	< 6	< 6	< 29	< 11
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-37	01/10/16 01/10/16	- F	< 6	< 10	< 6	< 12	< 7	< 12	< 12	< 5	< 8	< 31	< 13
BD-31	01/19/16 - 01/19/16 04/14/16 - 04/14/16	< 6 < 4	< 6 < 5	< 10 < 11	< 0 < 7	< 12	< 7 < 5	< 12	< 12	< 5 < 6	< 8 < 5	< 31 < 24	< 9
	07/14/16 - 07/14/16	< 4	< 5 < 6	< 13	< 5	< 9	< 5 < 6	< 11	< 15	< 5	< 7	< 24 < 26	< 9 < 10
	10/13/16 - 10/13/16	< 7	< 8	< 15 < 16	< 8	< 17	< 8	< 15	< 13	< 8	< 9	< 36	< 10 < 10
	MEAN	-	-	-	_	-	-	-	-	-	-	-	-

CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
BD-50	01/19/16 - 01/19/16	< 6	< 6	< 13	< 9	< 12	< 9	< 9	< 12	< 7	< 9	< 39	< 10
	04/14/16 - 04/14/16	< 5	< 5	< 9	< 5	< 10	< 4	< 7	< 8	< 5	< 5	< 22	< 7
	07/14/16 - 07/14/16	< 7	< 7	< 11	< 7	< 16	< 6	< 11	< 12	< 6	< 7	< 29	< 12
	10/13/16 - 10/13/16	< 6	< 7	< 17	< 8	< 13	< 9	< 12	< 12	< 7	< 7	< 33	< 14
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-51	01/19/16 - 01/19/16	< 8	< 8	< 13	< 7	< 11	< 9	< 11	< 11	< 7	< 8	< 29	< 11
	04/14/16 - 04/14/16	< 4	< 4	< 8	< 4	< 8	< 4	< 7	< 7	< 4	< 4	< 20	< 6
	07/14/16 - 07/14/16	< 5	< 5	< 11	< 5	< 12	< 7	< 10	< 12	< 6	< 6	< 31	< 7
	10/13/16 - 10/13/16	< 8	< 8	< 11	< 6	< 15	< 10	< 15	< 11	< 8	< 8	< 37	< 12
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-54	03/10/16 - 03/10/16	< 8	< 6	< 17	< 7	< 15	< 6	< 11	< 10	< 7	< 8	< 34	< 9
	04/14/16 - 04/14/16	< 6	< 6	< 10	< 5	< 12	< 6	< 10	< 10	< 6	< 5	< 30	< 8
	07/14/16 - 07/14/16	< 7	< 8	< 14	< 7	< 14	< 7	< 12	< 13	< 6	< 7	< 38	< 9
	10/13/16 - 10/13/16	< 6	< 5	< 10	< 7	< 11	< 7	< 10	< 11	< 6	< 5	< 28	< 11
	MEAN MEAN	-	-	-	-	-	-	-	-	-	-	-	-

Table C-III.2

Table C-IV.1

CONCENTRATIONS OF NICKEL-63 AND GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

	COLLECTION													
SITE	PERIOD	Ni-63	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
BD-25														
Golden Redhorse	05/12/16	< 253	< 55	< 43	< 98	< 44	< 110	< 43	< 94	< 89	< 42	< 50	< 256	< 70
Smallmouth Bass	05/12/16	< 224	< 50	< 48	< 125	< 45	< 120	< 56	< 103	< 107	< 58	< 52	< 307	< 73
Golden Redhorse	10/13/16	< 193	< 71	< 79	< 174	< 78	< 170	< 63	< 123	< 124	< 71	< 73	< 402	< 84
Smallmouth Bass	10/13/16	< 167	< 45	< 49	< 92	< 39	< 98	< 55	< 68	< 75	< 39	< 45	< 200	< 75
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-	-
BD-28														
Golden Redhorse	05/12/16	< 203	< 32	< 37	< 64	< 33	< 58	< 34	< 53	< 56	< 31	< 35	< 153	< 47
Smallmouth Bass	05/12/16	< 193	< 38	< 33	< 66	< 40	< 76	< 37	< 62	< 61	< 34	< 41	< 157	< 50
Golden Redhorse	10/13/16	< 181	< 60	< 60	< 163	< 69	< 113	< 57	< 113	< 96	< 53	< 62	< 263	< 76
Shorthead Redhorse	10/13/16	< 171	< 66	< 63	< 158	< 73	< 137	< 83	< 122	< 119	< 71	< 87	< 341	< 62
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-	-
BD-41														
Common Carp	05/11/16	< 200	< 42	< 45	< 89	< 45	< 106	< 50	< 72	< 145	< 45	< 41	< 252	< 96
Largemouth Bass	05/11/16	< 204	< 48	< 52	< 100	< 41	< 85	< 49	< 91	< 108	< 46	< 52	< 300	< 98
Common Carp	10/13/16	< 174	< 61	< 50	< 123	< 53	< 149	< 64	< 107	< 96	< 66	< 63	< 281	< 79
Largemouth Bass	10/13/16	< 169	< 53	< 59	< 102	< 54	< 124	< 53	< 90	< 91	< 59	< 54	< 291	< 84
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-	-

1

Table C-V.1

CONCENTRATIONS OF NICKEL-63 AND GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

(COLLECTION												
SITE	PERIOD	Ni-63	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
BD-10	05/18/16	< 206	< 105	< 107	< 181	< 109	< 278	< 135	< 201	< 106	< 158	< 541	< 164
	10/13/16	< 207	< 71	< 67	< 104	< 72	< 156	< 80	< 144	< 57	132 ± 53	< 322	< 83
	MEAN	-	-	-	-	-	-	-	-	-	132 ± 0	-	-
BD-25	05/18/16	< 195	< 94	< 88	< 182	< 87	< 180	< 95	< 170	< 86	< 99	< 389	< 134
	10/13/16	< 212	< 65	< 58	< 181	< 40	< 120	< 78	< 122	< 52	< 85	< 256	< 71
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-57	05/18/16	< 220	< 160	< 125	< 418	< 97	< 333	< 156	< 332	< 97	< 179	< 1977	< 459
	10/13/16	< 201	< 96	< 100	< 170	< 89	< 229	< 108	< 170	< 104	126 ± 79	< 452	< 154
	MEAN	-	-	-	-	-	-	-	-	-	126 ± 0	-	-
BD-SPOIL-1	04/07/16	< 242	< 55	< 57	< 149	< 59	< 131	< 67	< 111	< 45	< 66	< 441	< 180
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-SPOIL-2	05/18/16	< 242	< 50	< 65	< 173	< 58	< 134	< 76	< 134	< 58	< 67	< 550	< 161
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-SPOIL-3	05/18/16	< 225	< 63	< 69	< 196	< 62	< 188	< 102	< 148	< 66	< 87	< 695	< 89
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
BD-SPOIL-4	05/18/16	< 242	< 54	< 68	< 174	< 54	< 131	< 79	< 137	< 58	< 65	< 606	< 137
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-

3

Table C-VI.1

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

COLLECTION		GROUP I - NE	EAR FIELD		GROU	IP II - FAR FII	ELD	GROUP III - CONTROL
PERIOD	BD-06	BD-19	BD-20	BD-21	BD-02	BD-04	BD-05	BD-03
12/31/15 - 01/07/16	26 ± 5	21 ± 5	27 ± 5	23 ± 5	21 ± 5	30 ± 5	21 ± 5	23 ± 5
01/07/16 - 01/14/16	20 ± 3 20 ± 4	21 ± 3 23 ± 4	19 ± 4	23 ± 3 21 ± 4	20 ± 4	20 ± 4	20 ± 4	23 ± 3 21 ± 4
01/14/16 - 01/21/16	20 ± 4 27 ± 5	20 ± 4	15 ± 4 25 ± 5	21 ± 4 22 ± 4	20 ± 4 24 ± 5	20 ± 4 27 ± 5	26 ± 5	29 ± 5
01/21/16 - 01/27/16	27 ± 5 20 ± 5	20 ± 5	17 ± 4	17 ± 4	18 ± 5	21 ± 5	23 ± 5	20 ± 5
01/27/16 - 02/04/16	16 ± 4	17 ± 4	17 ± 4	17 ± 4	10 ± 3 17 ± 4	19 ± 4	17 ± 4	18 ± 4
02/04/16 - 02/10/16	10 ± 4 20 ± 5	17 ± 4 22 ± 5	13 ± 4 23 ± 5	15 ± 4	17 ± 4 19 ± 5	22 ± 5	17 ± 5	21 ± 5
02/10/16 - 02/18/16	17 ± 4	15 ± 3	14 ± 3	16 ± 4	15 ± 3	18 ± 4	15 ± 4	14 ± 3
02/18/16 - 02/25/16	6 ± 3	10 ± 3	13 ± 4	10 ± 4	10 ± 4	10 ± 4	10 ± 4	9 ± 3
02/25/16 - 03/03/16	15 ± 4	13 ± 4	15 ± 4	12 ± 4	15 ± 4	14 ± 4	13 ± 4	16 ± 4
03/03/16 - 03/10/16	10 ± 4	10 ± 4	10 ± 4	19 ± 4	14 ± 4	15 ± 4	10 ± 4 17 ± 4	16 ± 4
03/10/16 - 03/17/16	7 ± 3	10 ± 4	10 ± 4	9 ± 4	10 ± 4	12 ± 4	13 ± 4	9 ± 3
03/17/16 - 03/25/16	10 ± 3	11 ± 4	12 ± 3	11 ± 3	12 ± 4	13 ± 4	10 ± 4	10 ± 3
03/25/16 - 03/31/16	13 ± 4	16 ± 4	14 ± 4	15 ± 4	10 ± 4	15 ± 4	16 ± 4	10 ± 0 11 ± 4
03/31/16 - 04/07/16	12 ± 4	9 ± 3	12 ± 4	12 ± 4	10 ± 3	13 ± 4	16 ± 4	< 14 (1)
04/07/16 - 04/14/16	12 ± 4	11 ± 4	8 ± 4	12 ± 4 11 ± 4	10 ± 0 10 ± 4	9 ± 4	13 ± 4	(1)
04/14/16 - 04/21/16	12 ± 4	19 ± 4	18 ± 4	17 ± 4	22 ± 5	22 ± 5	21 ± 5	17 ± 4
04/21/16 - 04/28/16	16 ± 4	14 ± 4	21 ± 4	16 ± 4	18 ± 4	18 ± 4	15 ± 4	17 ± 4
04/28/16 - 05/05/16	10 ± 4	10 ± 4	12 ± 4	8 ± 4	9 ± 4	8 ± 4	6 ± 4	6 ± 3
05/05/16 - 05/12/16	12 ± 4	15 ± 4	15 ± 4	18 ± 4	13 ± 4	17 ± 4	11 ± 4	13 ± 4
05/12/16 - 05/19/16	11 ± 4	10 ± 4	13 ± 4	9 ± 4	11 ± 4	10 ± 4	13 ± 4	13 ± 4
05/19/16 - 05/26/16	21 ± 5	17 ± 4	19 ± 4	18 ± 4	22 ± 5	18 ± 4	17 ± 4	19 ± 4
05/26/16 - 06/02/16	14 ± 4	14 ± 4	14 ± 4	17 ± 4	14 ± 4	13 ± 4	13 ± 4	14 ± 4
06/02/16 - 06/09/16	11 ± 4	10 ± 4	12 ± 4	16 ± 4	10 ± 4	9 ± 4	11 ± 4	10 ± 4
06/09/16 - 06/16/16	19 ± 4	17 ± 4	19 ± 4	20 ± 5	17 ± 4	18 ± 4	18 ± 4	21 ± 4
06/16/16 - 06/23/16	18 ± 4	13 ± 4	15 ± 4	16 ± 4	20 ± 4	17 ± 4	15 ± 4	13 ± 4
06/23/16 - 06/30/16	13 ± 3	16 ± 4	16 ± 4	17 ± 4	17 ± 4	17 ± 4	17 ± 4	17 ± 4
06/30/16 - 07/07/16	10 ± 4	9 ± 4	10 ± 4	13 ± 4	17 ± 4	12 ± 4	13 ± 4	18 ± 4
07/07/16 - 07/14/16	16 ± 4	28 ± 5	18 ± 4	21 ± 4	13 ± 4	16 ± 4	15 ± 4	16 ± 4
07/14/16 - 07/21/16	18 ± 4	13 ± 4	13 ± 4	16 ± 4	14 ± 4	15 ± 4	16 ± 4	17 ± 4
07/21/16 - 07/28/16	17 ± 4	14 ± 4	14 ± 4	15 ± 4	15 ± 4	14 ± 4	15 ± 4	12 ± 4
07/28/16 - 08/04/16	17 ± 4	20 ± 4	19 ± 4	22 ± 4	23 ± 5	19 ± 4	18 ± 4	23 ± 5
08/04/16 - 08/11/16	21 ± 4	19 ± 4	22 ± 4	18 ± 4	22 ± 4	21 ± 4	24 ± 4	22 ± 4
08/11/16 - 08/18/16	19 ± 4	18 ± 4	16 ± 3	20 ± 4	20 ± 4	18 ± 4	16 ± 4	16 ± 4
08/18/16 - 08/25/16	12 ± 4	13 ± 4	13 ± 4	13 ± 4	15 ± 4	11 ± 4	10 ± 3	13 ± 4
08/25/16 - 09/01/16	12 ± 3	14 ± 4	14 ± 4	18 ± 4	12 ± 4	16 ± 4	12 ± 3	16 ± 4
09/01/16 - 09/08/16	10 ± 4	10 ± 4	10 ± 3	11 ± 4	12 ± 4	10 ± 3	13 ± 4	13 ± 4
09/08/16 - 09/15/16	19 ± 4	16 ± 4	15 ± 4	13 ± 4	16 ± 4	14 ± 4	15 ± 4	14 ± 4
09/15/16 - 09/22/16	22 ± 5	21 ± 5	21 ± 4	21 ± 5	22 ± 4	21 ± 4	21 ± 4	23 ± 4
09/22/16 - 09/29/16	21 ± 4	25 ± 5	25 ± 5	22 ± 4	24 ± 5	26 ± 5	27 ± 5	24 ± 5
09/29/16 - 10/06/16	11 ± 4	14 ± 4	12 ± 4	12 ± 4	12 ± 4	8 ± 4	16 ± 4	10 ± 4
10/06/16 - 10/13/16	17 ± 4	23 ± 5	19 ± 4	18 ± 5	21 ± 5	21 ± 5	17 ± 4	19 ± 4
10/13/16 - 10/20/16	21 ± 5	16 ± 4	13 ± 4	12 ± 4	16 ± 4	15 ± 4	17 ± 4	13 ± 4
10/20/16 - 10/27/16	13 ± 4	11 ± 4	9 ± 4	10 ± 4	11 ± 4	9 ± 4	13 ± 4	13 ± 5
10/27/16 - 11/03/16	24 ± 5	22 ± 5	24 ± 5	25 ± 5	18 ± 4	24 ± 5	21 ± 4	18 ± 4
11/03/16 - 11/10/16	18 ± 4	20 ± 4	20 ± 4	24 ± 5	25 ± 5	23 ± 5	22 ± 4	24 ± 4
11/10/16 - 11/17/16	33 ± 5	34 ± 5	35 ± 5	38 ± 6	33 ± 5	33 ± 5	36 ± 5	(1)
11/17/16 - 11/23/16	19 ± 5	14 ± 4	14 ± 4	18 ± 5	16 ± 5	16 ± 5	13 ± 4	(1)
11/23/16 - 12/01/16	18 ± 4	21 ± 4	18 ± 4	19 ± 4	20 ± 4	23 ± 4	21 ± 4	(1)
12/01/16 - 12/08/16	10 ± 4	11 ± 4	10 ± 4	13 ± 4	10 ± 4	10 ± 4	9 ± 4	9 ± 4
12/08/16 - 12/15/16	22 ± 4	19 ± 4	22 ± 4	24 ± 5	19 ± 4	20 ± 4	17 ± 4	19 ± 4
12/15/16 - 12/22/16	25 ± 5	38 ± 7	26 ± 5	31 ± 5	28 ± 5	26 ± 5	28 ± 5	28 ± 5
12/22/16 - 12/29/16	22 ± 5	21 ± 4	25 ± 5	25 ± 5	23 ± 5	24 ± 5	24 ± 5	21 ± 4
MEAN ± 2 STD DEV	17 ± 11	17 ± 12	17 ± 11	17 ± 11	17 ± 11	17 ± 12	17 ± 11	16 ± 10

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

MONTHLY AND YEARLY VALUES OF GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

GROUP I - NEAR FIELD LOCATIONS						GROUP II - FAI	IONS	GROUP III - CONTROL LOCATIONS					
COLLECTION PERIOD	MIN	MAX		IEA 28		COLLECTION PERIOD	MIN	МАХ	MEAN ± 2SD	COLLECTION PERIOD	MIN	MAX	MEAN ± 2SD
12/31/15 - 02/04/16	15	27	21	±	7	12/31/15 - 02/04/16	17	30	22 ± 7	12/31/15 - 02/04/16	18	29	22 ± 8
02/04/16 - 03/03/16	6	23	15	±	8	02/04/16 - 03/03/16	10	22	15 ± 7	02/04/16 - 03/03/16	9	21	15 ± 10
03/03/16 - 03/31/16	7	19	13	±	7	03/03/16 - 03/31/16	10	17	13 ± 5	03/03/16 - 03/31/16	9	16	11 ± 6
03/31/16 - 04/28/16	8	21	14	±	7	03/31/16 - 04/28/16	9	22	16 ± 9	04/14/16 - 04/28/16	17	17	17 ± 1
04/28/16 - 06/02/16	8	21	14	±	7	04/28/16 - 06/02/16	6	22	13 ± 8	04/28/16 - 06/02/16	6	19	13 ± 9
06/02/16 - 06/30/16	10	20	16	±	6	06/02/16 - 06/30/16	9	20	15 ± 7	06/02/16 - 06/30/16	10	21	15 ± 10
06/30/16 - 08/04/16	9	28	16	±	9	06/30/16 - 08/04/16	12	23	16 ± 6	06/30/16 - 08/04/16	12	23	17 ± 7
08/04/16 - 09/01/16	12	22	16	±	7	08/04/16 - 09/01/16	10	24	16 ± 9	08/04/16 - 09/01/16	13	22	17 ± 8
09/01/16 - 09/29/16	10	25	18	±	11	09/01/16 - 09/29/16	10	27	18 ± 12	09/01/16 - 09/29/16	13	24	18 ± 11
09/29/16 - 11/03/16	9	25	16	±	11	09/29/16 - 11/03/16	8	24	16 ± 9	09/29/16 - 11/03/16	10	19	14 ± 8
11/03/16 - 12/01/16	14	38	23	±	15	11/03/16 - 12/01/16	13	36	23 ± 15	11/03/16 - 11/10/16	24	24	24 ± 0
12/01/16 - 12/29/16	10	38	21	±	15	12/01/16 - 12/29/16	9	28	20 ± 14	12/01/16 - 12/29/16	9	28	19 ± 16
12/31/15 - 12/29/16	6	38	17	±	11	12/31/15 - 12/29/16	6	36	17 ± 11	12/31/15 - 12/29/16	6	29	16 ± 10

Table C-VI.2

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES

Table C-VI.3

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
BD-02	12/31/15 - 03/31/16	< 4	< 6	< 16	< 4	< 9	< 6	< 9	< 4	< 3	< 147	< 43
	03/31/16 - 06/30/16	< 3	< 6	< 11	< 4	< 11	< 5	< 9	< 4	< 5	< 46	< 16
	06/30/16 - 09/29/16	< 3	< 3	< 6	< 4	< 8	< 3	< 4	< 4	< 3	< 13	< 7
	09/29/16 - 12/29/16	< 2	< 2	< 5	< 3	< 6	< 2	< 5	< 2	< 1	< 14	< 4
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-03	12/31/15 - 03/31/16	< 2	< 3	< 8	< 3	< 3	< 4	< 5	< 2	< 3	< 76	< 39
	03/31/16 - 06/30/16	< 4	< 4	< 9	< 3	< 6	< 4	< 6	< 3	< 4	< 36	< 15
	06/30/16 - 09/29/16	< 2	< 2	< 6	< 1	< 5	< 2	< 3	< 2	< 2	< 9	< 4
	09/29/16 - 12/29/16	< 3	< 3	< 6	< 2	< 7	< 4	< 5	< 3	< 2	< 16	< 6
	MEAN	-	-	-	-	-	: * *	-	-	-	-	-
		. 0		. 45	. 0	. 7		. 0	. 4		- 440	- 44
BD-04	12/31/15 - 03/31/16	< 3	< 4	< 15	< 3	< 7	< 5	< 9	< 4	< 4	< 110	< 41
	03/31/16 - 06/30/16	< 3	< 4	< 6	< 4	< 6	< 3	< 8	< 4	< 3	< 37	< 12
	06/30/16 - 09/29/16	< 2	< 2	< 5	< 3	< 6	< 2	< 4	< 3	< 2	< 10	< 3
	09/29/16 - 12/29/16	< 3	< 3	< 10	< 4	< 7	< 4	< 7	< 3	< 4	< 18	< 7
	MEAN	-	-	-	-	-	-	-	-	-	-	-
							1					
BD-05	12/31/15 - 03/31/16	< 3	< 4	< 8	< 3	< 6	< 4	< 7	< 3	< 2	< 67	< 26
00 00	03/31/16 - 06/30/16	< 3	< 3	< 6	< 4	< 5	< 4	< 6	< 2	< 3	< 36	< 11
	06/30/16 - 09/29/16	< 2	< 2	< 5	< 3	< 6	< 2	< 2	< 2	< 2	< 8	< 3
	09/29/16 - 12/29/16	< 2	< 2	< 5	< 3	< 5	< 3	< 5	< 2	< 3	< 17	< 7
	MEAN	-	_	_	-	-	-	-	-	-	_	-
BD-06	12/31/15 - 03/31/16	< 2	< 2	< 7	< 2	< 4	< 3	< 4	< 2	< 2	< 61	< 20
	03/31/16 - 06/30/16	< 4	< 4	< 11	< 3	< 8	< 4	< 4	< 4	< 3	< 47	< 14
	06/30/16 - 09/29/16	< 3	< 4	< 7	< 5	< 10	< 4	< 6	< 4	< 3	< 16	< 5
	09/29/16 - 12/29/16	< 2	< 1	< 6	< 3	< 4	< 2	< 4	< 2	< 2	< 13	< 5
	MEAN	-	-	-	-	-	-	-	-	-	-	-

Table C-VI.3 CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
BD-19	12/31/15 - 03/31/16	< 2	< 3	< 7	< 4	< 6	< 3	< 4	< 2	< 2	< 71	< 27
	03/31/16 - 06/30/16	< 3	< 3	< 9	< 3	< 6	< 4	< 7	< 3	< 3	< 34	< 12
	06/30/16 - 09/29/16	< 2	< 2	< 4	< 1	< 5	< 2	< 3	< 3	< 2	< 9	< 2
	09/29/16 - 12/29/16	< 4	< 3	< 9	< 4	< 10	< 5	< 7	< 4	< 4	< 21	< 9
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-20	12/31/15 - 03/31/16	< 3	< 4	< 11	< 3	< 6	< 4	< 8	< 3	< 2	< 76	< 30
	03/31/16 - 06/30/16	< 3	< 4	< 9	< 3	< 7	< 3	< 7	< 4	< 3	< 42	< 14
	06/30/16 - 09/29/16	< 4	< 3	< 6	< 3	< 7	< 3	< 5	< 3	< 3	< 14	< 4
	09/29/16 - 12/29/16	< 2	< 2	< 6	< 2	< 4	< 2	< 4	< 2	< 2	< 10	< 5
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-21	12/31/15 - 03/31/16	< 3	< 3	< 8	< 3	< 6	< 3	< 5	< 3	< 2	< 65	< 32
	03/31/16 - 06/30/16	< 3	< 3	< 8	< 3	< 9	< 3	< 6	< 2	< 3	< 30	< 9
	06/30/16 - 09/29/16	< 2	< 2	< 6	< 3	< 6	< 2	< 4	< 2	< 2	< 11	< 4
	09/29/16 - 12/29/16	< 2	< 3	< 4	< 2	< 6	< 3	< 4	< 2	< 2	< 14	< 5
	MEAN	-	-	-	-	-	-	-	-	-	-	-

Table C-VII.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED
IN THE VICINITY OF BRAIDWOOD STATION, 2016

COLLECTION		GROUP I - I	NEAR FIELD		GRO	UP II - FAR I	FIELD	GROUP III - CONTROL
PERIOD	BD-06	BD-19	BD-20	BD-21	BD-02	BD-04	BD-05	BD-03
12/31/15 - 01/07/16	< 65	< 63	< 63	< 65	< 38	< 39	< 39	< 20
01/07/16 - 01/14/16	< 26	< 51	< 51	< 51	< 65	< 65	< 65	< 63
01/14/16 - 01/21/16	< 50	< 52	< 53	< 52	< 50	< 51	< 51	< 20
01/21/16 - 01/27/16	< 59	< 60	< 60	< 60	< 51	< 53	< 53	< 49
01/27/16 - 02/04/16	< 36	< 36	< 36	< 36	< 52	< 54	< 54	< 50
02/04/16 - 02/10/16	< 65	< 65	< 65	< 65	< 37	< 38	< 38	< 36
02/10/16 - 02/18/16	< 51	< 51	< 51	< 53	< 25	< 47	< 47	< 46
02/18/16 - 02/25/16	< 68	< 68	< 68	< 68	< 34	< 36	< 36	< 33
02/25/16 - 03/03/16	< 50	< 50	< 50	< 50	< 55	< 57	< 57	< 53
03/03/16 - 03/10/16	< 21	< 21	< 21	< 21	< 22	< 22	< 22	< 22
03/10/16 - 03/17/16	< 28	< 28	< 28	< 28	< 38	< 39	< 39	< 37
03/17/16 - 03/25/16	< 44	< 44	< 42	< 44	< 34	< 34	< 35	< 33
03/25/16 - 03/31/16	< 39	< 38	< 38	< 39	< 29	< 29	< 27	< 27
03/31/16 - 04/07/16	< 17	< 65	< 26	< 69	< 8	< 17	< 16	< 55
04/07/16 - 04/14/16	< 37	< 69	< 66	< 68	< 37	< 39	< 37	(1)
04/14/16 - 04/21/16	< 63	< 62	< 65	< 62	< 36	< 40	< 36	< 35
04/21/16 - 04/28/16	< 46	< 46	< 46	< 45	< 40	< 41	< 41	< 38
04/28/16 - 05/05/16	< 44	< 18	< 45	< 46	ິ< 33	< 34	< 34	< 33
05/05/16 - 05/12/16	< 62	< 61	< 62	< 61	< 41	< 41	< 39	< 15
05/12/16 - 05/19/16	< 60	< 66	< 66	< 64	< 68	< 68	< 62	< 26
05/19/16 - 05/26/16	< 50	< 67	< 50	< 50	< 53	< 66	< 67	< 66
05/26/16 - 06/02/16	< 65	< 66	< 67	< 67	< 63	< 20	< 60	< 58
06/02/16 - 06/09/16	< 56	< 56	< 58	< 58	< 69	< 67	< 67	< 64
06/09/16 - 06/16/16	< 55	< 54	< 54	< 54	< 41	< 41	< 39	< 16
06/16/16 - 06/23/16	< 43	< 43	< 44	< 44	< 67	< 67	< 65	< 28
06/23/16 - 06/30/16	< 42	< 43	< 41	< 42	< 57	< 59	< 55	< 55
06/30/16 - 07/07/16	< 39	< 39	< 39	< 39	< 56	< 56	< 55	< 56
07/07/16 - 07/14/16	< 59	< 60	< 56	< 59	< 54	< 54	< 52	< 53
07/14/16 - 07/21/16	< 65	< 68	< 64	< 69	< 67	< 68	< 61	< 25
07/21/16 - 07/28/16	< 62	< 63	< 59	< 62	< 64	< 65	< 23	< 61
07/28/16 - 08/04/16	< 65	< 68	< 64	< 66	< 51	< 51	< 49	< 50
08/04/16 - 08/11/16	< 57	< 57	< 55	< 57	< 40	< 40	< 15	< 39
08/11/16 - 08/18/16	< 62	< 63	< 30	< 62	< 48	< 46	< 59	< 46
08/18/16 - 08/25/16	< 57	< 55	< 53	< 54	< 66	< 64	< 61	< 63
08/25/16 - 09/01/16	< 52	< 54	< 52	< 56	< 64	< 65	< 32	< 66
09/01/16 - 09/08/16	< 44	< 43	< 40	< 42	< 65	< 67	< 63	< 63
09/08/16 - 09/15/16	< 40	< 40	< 37	< 41	< 55	< 56	< 53	< 53
09/15/16 - 09/22/16	< 46	< 48	< 45	< 47	< 54	< 54	< 52	< 52
09/22/16 - 09/29/16	< 46	< 44	< 43	< 43	< 46	< 43	< 44	< 44
09/29/16 - 10/06/16	< 52	< 56	< 52	< 57	< 62	< 62	< 57	< 58
10/06/16 - 10/13/16	< 32	< 33	< 30	< 33	< 36	< 33	< 32	< 32
10/13/16 - 10/20/16	< 50	< 50	< 48	< 49	< 52	< 54	< 53	< 54
10/20/16 - 10/27/16	< 53	< 53	< 51	< 54	< 56	< 56	< 22	< 64
10/27/16 - 11/03/16	< 54	< 55	< 23	< 56	< 66	< 63	< 22	< 64
11/03/16 - 11/10/16	< 45	< 44	< 43	< 45	< 46	< 47	< 18	< 44
11/10/16 - 11/17/16	< 29	< 29	< 28	< 29	< 28	< 28	< 27	(1)
11/17/16 - 11/23/16	< 53	< 64	< 62	< 65	< 53	< 53	< 51	(1)
11/23/16 - 12/01/16	< 49	< 38	< 36	< 15	< 51	< 50	< 50	(1)
12/01/16 - 12/08/16	< 36	< 35	< 34	< 36	< 13	< 12	< 11	< 13
12/08/16 - 12/15/16	< 25	< 25	< 24	< 26	< 29	< 29	< 27	< 28
12/15/16 - 12/22/16	< 25	< 35	< 25	< 25	< 38	< 39	< 35	< 36
12/22/16 - 12/29/16	< 45	< 24	< 44	< 47	< 60	< 58	< 24	< 58
MEAN	-	-	-	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

.

Table C-VIII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016 RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	INDICATOR FARM	CONTROL FAI	RM
PERIOD	BD-17	BD-18	
01/07/16	< 0.88	< 49.3	(1)
02/04/16	< 0.5	< 0.52	• •
03/03/16	< 0.5	< 0.67	
04/07/16	< 0.4	< 0.73	
05/04/16		< 0.46	
05/05/16	< 0.6		
05/16/16		< 0.67	
05/19/16	< 0.5		
06/02/16	< 0.7	< 0.89	
06/16/16	< 0.8	< 0.83	
06/29/16		< 0.37	
06/30/16	< 0.4		
07/13/16		< 0.73	
07/14/16	< 0.9		
07/28/16	< 0.7	< 0.81	
08/10/17		< 0.74	
08/11/16	< 0.4		
08/24/17		< 0.67	
08/25/16	< 0.8		
09/08/16	< 0.4	< 0.36	
09/22/16	< 0.7	< 0.55	
10/06/16	< 0.9	< 0.9	
10/20/16	< 0.6	< 0.73	
11/02/16		< 0.83	
11/03/16	< 0.8		
11/30/17		< 0.7	
12/01/16	< 0.8		
MEAN	-	-	

, a. . . .

Table C-VIII.2

CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION											
SITE	PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
BD-17	01/07/16	< 7	< 8	< 27	< 13	< 22	< 9	< 20	< 8	< 9	< 46	< 15
	02/04/16	< 7	< 8	< 12	< 8	< 16	< 8	< 12	< 7	< 8	< 32	< 11
	03/03/16	< 8	< 7	< 15	< 8	< 18	< 7	< 13	< 7	< 7	< 33	< 10
	04/07/16	< 10	< 9	< 23	< 10	< 22	< 11	< 15	< 9	< 8	< 44	< 12
	05/05/16	< 7	< 8	< 19	< 9	< 16	< 8	< 14	< 6	< 7	< 34	< 10
	05/19/16	< 6	< 6	< 17	< 6	< 14	< 6	< 11	< 5	< 6	< 49	< 14
	06/02/16	< 5	< 6	< 13	< 6	< 12	< 7	< 11	< 5	< 5	< 35	< 10
	06/16/16	< 8	< 8	< 17	< 9	< 14	< 6	< 11	< 7	< 8	< 38	< 10
	06/30/16	< 11	< 9	< 25	< 10	< 21	< 10	< 15	< 10	< 9	< 56	< 10
	07/14/16	< 9	< 9	< 23	< 8	< 20	< 8	< 14	< 9	< 11	< 41	< 8
	07/28/16	< 8	< 8	< 20	< 7	< 19	< 9	< 16	< 6	< 8	< 52	< 14
	08/11/16	< 7	< 7	< 15	< 8	< 16	< 8	< 11	< 6	< 6	< 29	< 8
	08/25/16	< 8	< 7	< 14	< 8	< 18	< 7	< 15	< 8	< 8	< 41	< 14
	09/08/16	< 8	< 9	< 20	< 9	< 23	< 9	< 18	< 10	< 9	< 44	< 10
	09/22/16	< 8	< 6	< 17	< 6	< 16	< 7	< 12	< 8	< 6	< 32	< 9
	10/06/16	< 7	< 7	< 18	< 8	< 16	< 9	< 15	< 6	< 8	< 36	< 8
	10/20/16	< 5	< 7	< 16	< 6	< 14	< 7	< 12	< 5	< 7	< 55	< 14
	11/03/16	< 6	< 8	< 15	< 8	< 19	< 8	< 14	< 8	< 7	< 35	< 10
	12/01/16	< 7	< 7	< 15	< 6	< 16	< 7	< 12	< 7	< 8	< 32	< 9
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-18	01/07/16	< 41	< 33	< 92	< 56	< 95	< 37	< 62	< 30	< 40	< 177	< 57 (1)
	02/04/16	< 7	< 6	< 20	< 7	< 18	< 7	< 12	< 6	< 8	< 34	< 11
	03/03/16	< 9	< 9	< 20	< 9	< 18	< 8	< 16	< 7	< 9	< 41	< 14
	04/07/16	< 9	< 9	< 20	< 4	< 21	< 9	< 17	< 9	< 8	< 43	< 13
	05/04/16	< 7	< 8	< 15	< 7	< 16	< 8	< 12	< 7	< 8	< 31	< 6
	05/16/16	< 4	< 5	< 12	< 5	< 10	< 5	< 9	< 3	< 5	< 53	< 14
	06/02/16	< 5	< 7	< 13	< 6	< 14	< 6	< 12	< 6	< 6	< 37	< 10
	06/16/16	< 10	< 12	< 23	< 12	< 26	< 12	< 18	< 10	< 9	< 47	< 15
	06/29/16	< 7	< 9	< 16	< 9	< 13	< 6	< 11	< 7	< 7	< 45	< 13
	07/13/16	< 7	< 8	< 17	< 8	< 18	< 7	< 10	< 8	< 9	< 46	< 12
	07/28/16	< 6	< 6	< 14	< 6	< 12	< 8	< 12	< 6	< 7	< 37	< 13
	08/10/16	< 6	< 8	< 15	< 6	< 16	< 7	< 12	< 7	< 7	< 35	< 9
	08/24/16	< 6	< 7	< 16	< 6	< 14	< 8	< 12	< 7	< 8	< 38	< 11
	09/08/16	< 7	< 8	< 19	< 7	< 16	< 6	< 10	< 6	< 8	< 31	< 10
	09/22/16	< 7	< 9	< 15	< 9	< 18	< 7	< 14	< 6	< 9	< 32	< 10
	10/06/16	< 8	< 7	< 19	< 8	< 20	< 9	< 16	< 8	< 8	< 34	< 10
	10/20/16	< 5	< 6	< 14	< 5	< 12	< 6	< 10	< 5	< 5	< 47	< 15
	11/02/16	< 7	< 8	< 17	< 7	< 14	< 7	< 12	< 7	< 8	< 30	< 11
	11/30/16	< 7	< 5	< 15	< 6	< 15	< 7	< 10	< 5	< 5	< 31	< 9
	MEAN	-	-	-	-	-	-	-	-	-	-	-

Table C-IX.1

CONCENTRATIONS OF GAMMA EMITTERS IN VEGETATION SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

	COLLECTION	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Ca 107	De 140	1 - 140
SITE	PERIOD	MI1-54	0-58	Fe-59	0-60	20-05	CP-QVI	ZI-95	US-134	Cs-137	Ba-140	La-140
BD-CONTROL												
Cabbage	08/25/16	< 17	< 14	< 37	< 16	< 43	< 18	< 30	< 17	< 18	< 84	< 25
Radishes	08/25/16	< 15	< 15	< 29	< 13	< 28	< 15	< 25	< 13	< 14	< 119	< 28
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-QUAD 1												
Clark Farm Broccoli	08/04/16	< 18	< 19	< 38	< 19	< 46	< 19	< 33	< 16	< 19	< 117	< 28
Clark Farm Cabbage	08/04/16	< 22	< 23	< 50	< 24	< 51	< 25	< 43	< 23	< 25	< 146	< 46
Clark Farm Radishes	08/04/16	< 26	< 28	< 61	< 25	< 56	< 29	< 45	< 26	< 23	< 150	< 44
Cabbage	09/29/16	< 29	< 34	< 62	< 35	< 76	< 47	< 57	< 32	< 32	< 165	< 54
Kohlrabi	09/29/16	< 25	< 23	< 39	< 32	< 65	< 36	< 40	< 28	< 27	< 133	< 33
Red chard	09/29/16	< 28	< 28	< 59	< 21	< 70	< 39	< 47	< 32	< 29	< 135	< 32
Cabbage	10/06/16	< 22	< 22	< 41	< 21	< 39	< 31	< 43	< 23	< 30	< 96	< 33
Turnip greens	10/06/16	< 29	< 30	< 59	< 25	< 63	< 35	< 47	< 29	< 33	< 140	< 36
Yellow Swiss chard	10/06/16	< 32	< 31	< 61	< 35	< 74	< 35	< 50	< 27	< 34	< 120	< 42
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-QUAD 2												
Cabbage	07/14/16	< 17	< 16	< 39	< 17	< 37	< 17	< 26	< 15	< 15	< 81	< 21
Beets	08/04/16	< 8	< 8	< 20	< 8	< 19	< 8	< 16	< 8	< 9	< 51	< 13
Onions	08/04/16	< 10	< 10	< 21	< 9	< 20	< 11	< 18	< 11	< 11	< 63	< 16
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-QUAD 3												
Cabbage	07/14/16	< 29	< 25	< 44	< 20	< 56	< 24	< 41	< 19	< 24	< 138	< 52
Onions	07/14/16	< 37	< 50	< 86	< 24	< 94	< 42	< 75	< 29	< 45	< 145	< 68
	MEAN	-	-	-	-	-	-	-	-	-	-	-
BD-QUAD 4												
Beets	08/25/16	< 8	< 8	< 18	< 10	< 15	< 9	< 17	< 8	< 8	< 68	< 19
Cabbage	08/25/16	< 21	< 14	< 48	< 24	< 52	< 23	< 31	< 22	< 19	< 101	< 18
	MEAN	-	-	-	-	-	-	-	-	-	-	-

Table C-X.1 QUARTERLY OSLD RESULTS FOR BRAIDWOOD STATION, 2016

STATION	MEAN				
CODE	± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
BD-02-1	20.4 ± 3.0	20.0	20.7	18.7	22.3
BD-02-2	20.5 ± 2.7	19.7	20.0	19.7	22.5
BD-03-1	21.1 ± 1.6	20.9	22.2	20.4	20.7
BD-03-2	20.5 ± 1.7	20.3	19.4	21.0	21.3
BD-04-1	20.0 ± 3.0	19.9	18.9	19.1	22.2
BD-04-2	19.7 ± 1.4	19.3	20.7	19.2	19.6
BD-05-1	21.2 ± 2.8	21.0	20.0	20.6	23.2
BD-05-2	21.3 ± 1.9	20.5	20.7	21.4	22.6
BD-06-1	20.2 ± 1.7	19.5	21.2	19.5	20.7
BD-06-2	19.9 ± 2.0	18.9	19.7	19.8	21.3
BD-19-1	21.3 ± 2.0	20.7	21.1	20.7	22.8
BD-19-2	21.1 ± 2.3	20.9	21.2	19.8	22.6
BD-20-1	20.2 ± 3.0	19.0	21.7	18.9	21.3
BD-20-2	21.4 ± 5.0	20.5	24.7	18.7	21.6
BD-21-1	20.5 ± 2.9	20.7	19.1	19.7	22.4
BD-21-2	21.5 ± 3.4	20.1	23.5	20.1	22.4
BD-101-3	19.8 ± 2.5	19.3	21.6	18.7	19.4
BD-101-4	20.3 ± 2.4	20.1	21.6	18.7	20.7
BD-102-1	18.9 ± 1.0	19.6	18.5	18.9	18.6
BD-102-2	21.4 ± 2.9	21.9	21.7	19.3	22.6
BD-103-1	19.9 ± 2.5	18.4	20.0	19.7	21.5
BD-103-2	20.7 ± 1.2	21.0	20.6	19.8	21.2
BD-104-1	19.6 ± 0.7	19.4	19.3	20.1	19.4
BD-104-2	19.9 ± 1.2	19.9	19.8	19.3	20.7
BD-104-3	24.9 ± 3.5	24.2	24.9	23.1	27.2
BD-104-4	25.5 ± 3.5	23.4	27.5	24.9	26.0
BD-105-1	19.6 ± 3.1	18.6	21.8	18.5	19.6
BD-105-2	19.7 ± 1.4	20.5	19.5	19.9	18.8
BD-105-3	26.5 ± 5.2	22.8	28.0	26.6	28.6
BD-105-4	31.2 ± 9.5	24.3	32.1	33.4	35.0
BD-106-1	19.1 ± 2.8	19.9	19.2	17.1	20.3
BD-106-2	19.4 ± 3.8	18.3	21.7	17.4	20.0
BD-107-1	20.7 ± 1.7	20.0	20.8	20.2	21.9
BD-107-2	19.3 ± 1.9	19.9	20.0	18.0	19.1
BD-108-1	20.0 ± 2.6	21.1	(1)	18.6	20.3
BD-108-2	20.4 ± 2.2	19.1	20.4	20.2	21.8
BD-109-1	22.9 ± 3.6	23.4	24.4	20.3	23.4
BD-109-2	23.4 ± 2.5	24.4	23.8	21.6	23.9
BD-110-1	18.5 ± 2.5	18.4	18.7	16.9	19.9
BD-110-2	19.4 ± 2.7	19.4	20.4	17.4	20.2
BD-110-3	21.7 ± 2.0	20.3	22.5	21.5	22.3
BD-110-4	26.4 ± 3.9	25.0	27.2	24.6	28.7
BD-112-1	18.9 ± 1.7	18.7	18.9	18.0	20.1
BD-112-2	19.6 ± 2.5	20.2	18.9	18.3	21.1
BD-114-1	21.1 ± 5.3	20.0	24.6	18.4	21.3
BD-114-2	20.0 ± 1.6	20.0	20.0	19.1	21.0
BD-115-1	20.2 ± 2.9	20.1	19.2	19.3	22.3
BD-115-2	20.2 ± 2.3 20.7 ± 1.9	20.5	21.5	19.4	21.2
BD-116-1	20.7 ± 1.3 20.7 ± 2.4	20.4	20.7	19.3	22.2
BD-116-2	20.4 ± 1.4	20.3	20.8	19.5	21.1
BD-201-1	20.4 ± 1.4 24.3 ± 5.0	24.7	20.8	24.7	26.9
BD-201-2	24.3 ± 5.0 22.3 ± 1.9	24.7	20.9	24.7	23.6
BD-201-2 BD-202-1	22.3 ± 1.9 20.8 ± 1.7	19.6	20.9	21.3	23.0
BD-202-1 BD-202-2		18.4		18.9	21.5
	19.9 ± 2.9		21.0 22.4		20.5
BD-203-1	21.0 ± 2.5	20.1	22.4 20.7	(1) 17 7	
BD-203-2	19.2 ± 2.6	18.8	20.7	17.7	19.7

RESULTS IN UNITS OF MREM/QUARTER ± 2 STANDARD DEVIATIONS

Table C-X.1

QUARTERLY OSLD RESULTS FOR BRAIDWOOD STATION, 2016

STATION CODE	MEAN ± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
BD-204-1	18.7 ± 3.2	18.5	20.0	16.5	19.8
BD-204-2	19.8 ± 1.5	20.0	19.7	18.9	20.7
BD-205-1	19.6 ± 2.3	19.4	19.8	18.2	21.0
BD-205-2	19.6 ± 3.1	20.0	18.8	17.9	21.5
BD-206-1	20.1 ± 3.6	20.3	20.5	17.6	21.9
BD-206-2	21.4 ± 2.0	22.0	20.5	20.5	22.4
BD-207-1	19.0 ± 1.9	19.7	19.8	17.8	18.5
BD-207-2	19.6 ± 1.8	19.2	20.5	18.6	20.2
BD-208-1	19.4 ± 1.7	19.4	20.4	18.3	19.5
BD-208-2	20.6 ± 1.1	20.3	20.3	20.2	21.4
BD-209-1	23.3 ± 2.2	23.0	23.4	22.1	24.7
BD-209-2	24.9 ± 2.7	24.0	25.5	23.5	26.4
BD-210-1	22.8 ± 3.5	23.1	20.7	22.6	24.9
BD-210-2	20.8 ± 1.9	19.9	21.5	20.1	21.8
BD-211-1	25.1 ± 1.7	24.7	25.3	24.2	26.2
BD-211-2	24.3 ± 5.1	23.8	24.6	21.3	27.5
BD-212-3	19.9 ± 1.4	20.3	20.6	19.8	19.0
BD-212-4	24.2 ± 3.0	22.9	24.3	23.3	26.3
BD-213-3	19.0 ± 2.8	18.7	20.7	17.3	19.3
BD-213-4	19.5 ± 3.7	18.7	20.3	17.4	21.6
BD-214-1	19.5 ± 2.7	18.0	21.1	18.9	20.0
BD-214-2	23.2 ± 1.0	22.6	23.8	23.0	23.3
BD-215-1	20.4 ± 1.8	19.8	21.4	19.4	20.8
BD-215-2	19.4 ± 3.0	18.1	19.5	18.5	21.5
BD-216-1	22.5 ± 2.4	21.4	23.1	21.7	23.9
BD-216-2	21.9 ± 2.0	22.4	23	21.2	20.8
BD-111A-1	19.1 ± 1.2	18.4	18.9	19.7	19.5
BD-111A-2	20.2 ± 2.5	18.8	20.3	19.7	21.8
BD-113A-1	20.6 ± 5.4	19.2	24.6	18.7	19.9
BD-113A-2	20.6 ± 2.0	19.8	21.5	19.6	21.4

RESULTS IN UNITS OF MREM/QUARTER ± 2 STANDARD DEVIATIONS

TABLE C-X.2MEAN QUARTLY OSLD RESULTS FOR THE SITE BOUNDARY, INTERMEDIATE DISTANCE,
OTHER, CONTROL AND ISFSI LOCATIONS FOR BRAIDWOOD STATION, 2016

COLLECTION PERIOD	SITE BOUNDARY ± 2 S.D.	INTERMEDIATE DIST ± 2 S.D.	OTHER ± 2 S.D.	CONTROL ± 2 S.D.	ISFSI <u>± 2 S.D.</u>
JAN-MAR	20.0 ± 2.7	20.7 ± 4.0	20.1 ± 1.4	20.6 ± 0.8	23.3 ± 3.3
APR-JUN	20.8 ± 3.4	21.5 ± 3.5	20.9 ± 3.2	20.8 ± 4.0	27.0 ± 6.4
JUL-SEP	19.1 ± 2.1	20.1 ± 4.5	19.7 ± 1.6	20.7 ± 0.8	25.7 ± 8.3
OCT-DEC	20.8 ± 2.6	22.1 ± 5.0	22.0 ± 1.9	21.0 ± 0.8	28.0 ± 8.3

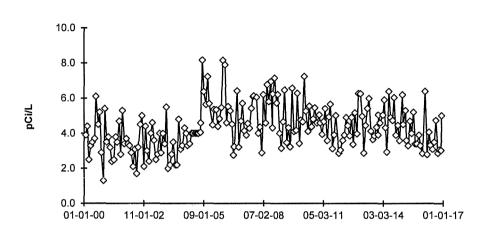
RESULTS IN UNITS OF MREM/QUARTER ± 2 STANDARD DEVIATION OF THE STATION DATA

TABLE C-X.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR BRAIDWOOD STATION, 2016

LOCATION	SAMPLES ANALYZED	PERIOD MINIMUM	PERIOD MAXIMUM	PERIOD MEAN ± 2 S.D.
SITE BOUNDARY	127	16.9	24.6	20.1 ± 3.1
INTERMEDIATE DISTANCE	127	16.5	27.5	21.1 ± 4.5
OTHER	56	18.7	24.7	20.7 ± 2.7
CONTROL	8	19.4	22.2	20.8 ± 1.6
ISFSI	24	20.3	35.0	26.0 ± 7.4

RESULTS IN UNITS OF MREM/QUARTER ± 2 STANDARD DEVIATION

SITE BOUNDARY STATIONS - BD-101-3, BD-101-4, BD-102-1, BD-102-2, BD-103-1, BD-103-2, BD-104-1, BD-104-2, BD-105-1, BD-105-2, BD-106-1, BD-106-2, BD-107-1, BD-107-2, BD-108-1, BD-108-2, BD-109-1, BD-109-2, BD-110-1, BD-110-2, BD-111A-1, BD-111A-2, BD-112-1, BD-112-2, BD-113A-1, BD-113A-2, BD-114-1, BD-114-2, BD-115-1, BD-115-2, BD-116-1, BD-116-2


INTERMEDIATE DISTANCE STATIONS - BD-201-1, BD-201-2, BD-202-1, BD-202-2, BD-203-1, BD-203-2, BD-204-1, BD-204-2, BD-205-1, BD-205-2, BD-206-1, BD-206-2, BD-207-1, BD-207-2, BD-208-1, BD-208-2, BD-209-1, BD-209-2, BD-210-1, BD-210-2, BD-211-1, BD-211-2, BD-212-3, BD-212-4, BD-213-3, BD-213-4, BD-214-1, BD-214-2, BD-215-1, BD-215-2, BD-215-1, BD-215-2, BD-216-1, BD-216-2

OTHER STATIONS - BD-02-1, BD-02-2, BD-04-1, BD-04-2, BD-05-1, BD-05-2, BD-06-1, BD-06-2, BD-19-1, BD-19-2, BD-20-1, BD-20-2, BD-21-1, BD-21-2

CONTROL STATIONS - BD-03-1, BD-03-2

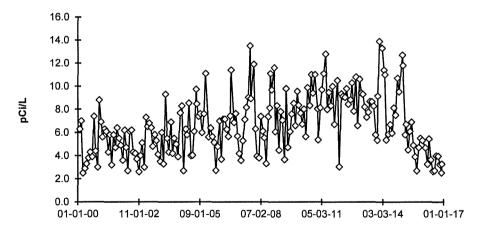
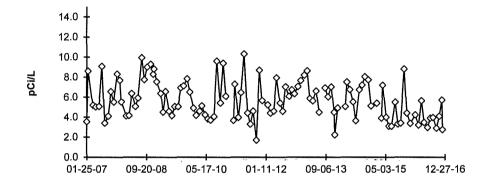

ISFSI STATIONS - BD-104-3, BD-104-4, BD-105-3, BD-105-4, BD-110-3, BD-110-4

FIGURE C-1 Surface Water - Gross Beta - Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2016

BD-10 Kankaee River, Downstream



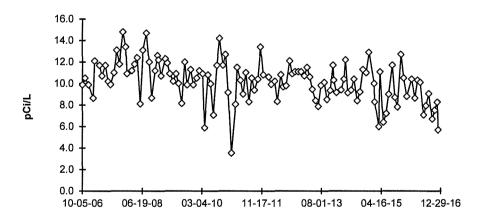
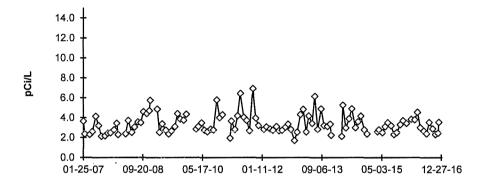

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-2 Surface Water - Gross Beta - Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2007 - 2016

BD-38 Main Drainage Ditch



BD-40 Braidwood Station Cooling Lake

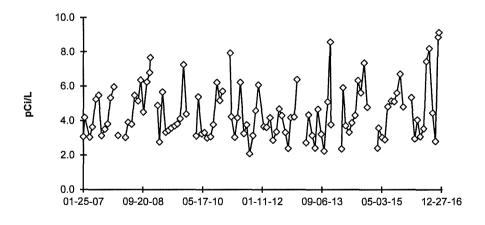
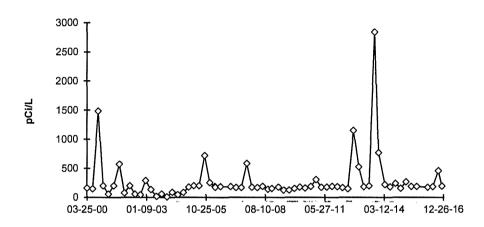


FIGURE C-3 Surface Water - Gross Beta - Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2007 - 2016

BD-55 North Pond Fatlan Site


BD-56 South Pond Fatlan Site

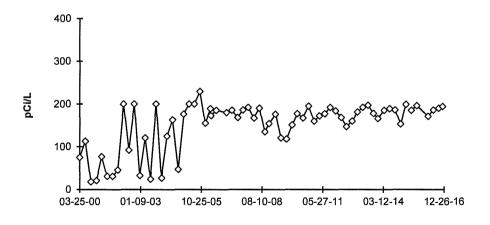
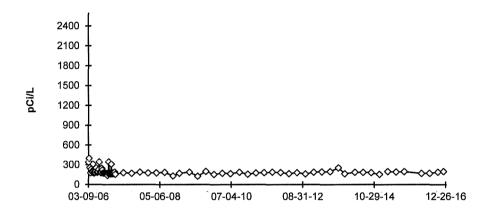

GAPS IN DATA ARE DUE TO SAMPLING POINTS BEING FROZEN AT TIME OF COLLECTION

FIGURE C-4 Surface Water - Tritium - Stations BD-10 and BD-25 (C) Collected in the Vicinity of Braidwood Station, 2000 - 2016

BD-10 Kankakee River, Downstream


BD-25 (C) Kankakee River, Upstream

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-5 Surface Water - Tritium - Stations BD-38 and BD-40 Collected in the Vicinity of Braidwood Station, 2006 - 2016

BD-38 Main Drainage Ditch

BD-40 Braidwood Station Cooling Lake

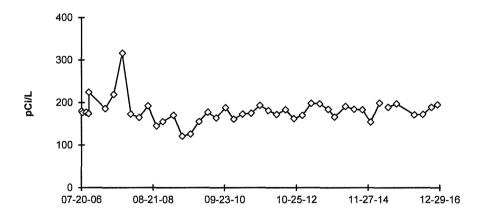
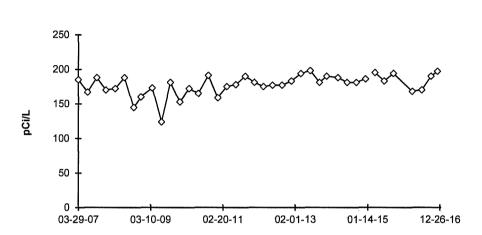



FIGURE C-6 Surface Water - Tritium - Stations BD-55 and BD-56 Collected in the Vicinity of Braidwood Station, 2007 - 2016

BD-55 North Pond Fatlan Site

BD-56 South Pond Fatlan Site

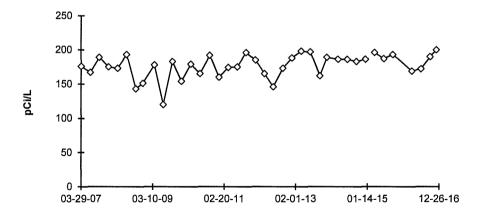
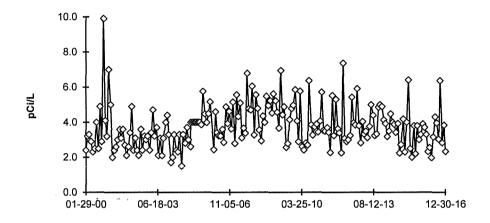
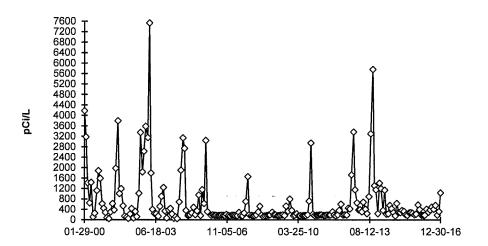
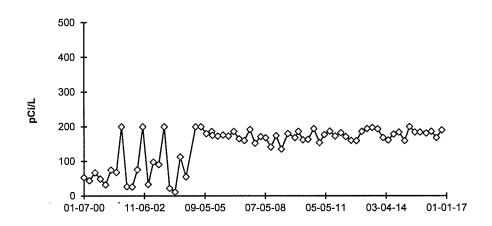



FIGURE C-7 Public Water - Gross Beta - Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2016



DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-8 Public Water - Tritium - Station BD-22 Collected in the Vicinity of Braidwood Station, 2000 - 2016


BD-22 Wilmington

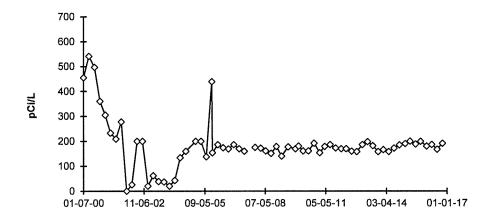
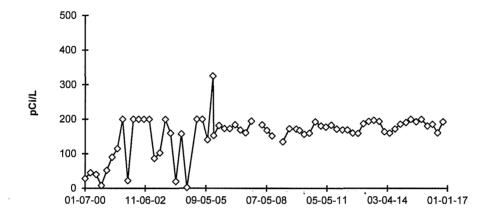

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JUNE 2005

FIGURE C-9 Ground/Well Water - Tritium - Stations BD-13 and BD-34 Collected in the Vicinity of Braidwood Station, 2000 - 2016


BD-34 Gibson Well

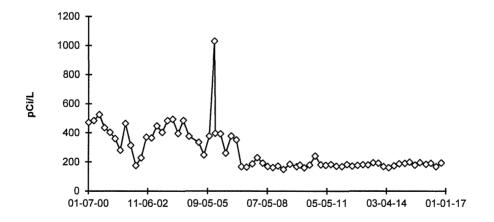
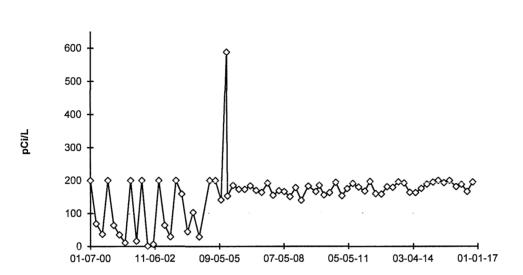
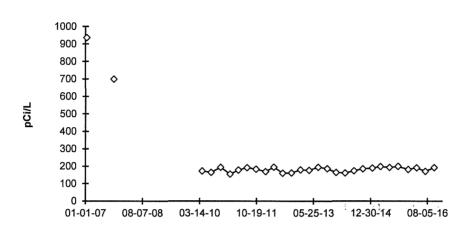

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY.

FIGURE C-10 Ground/Well Water - Tritium - Stations BD-35 and BD-36 Collected in the Vicinity of Braidwood Station, 2000 - 2016



BD-36 Hutton Well

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY.


FIGURE C-11 Ground/Well Water - Tritium - Station BD-37 Collected in the Vicinity of Braidwood Station, 2000 - 2016

BD-37 Nurczyk Well

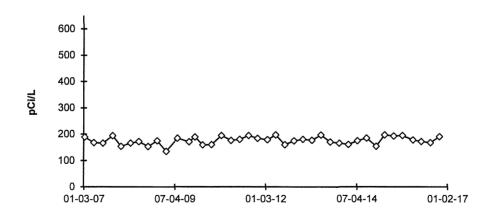
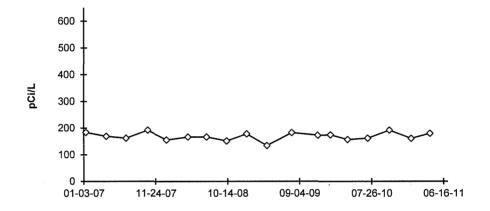

DUE TO VENDOR CHANGE IN 2005, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY.

FIGURE C-12 Ground/Well Water - Tritium - Station BD-50 and BD-51 Collected in the Vicinity of Braidwood Station, 2007 - 2016

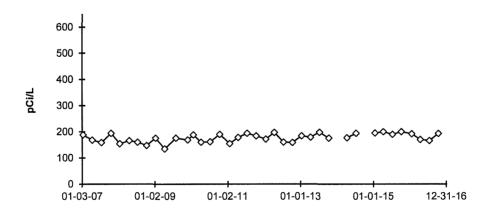
BD-50 Skole Well

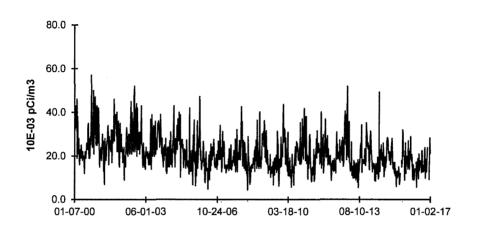
STATION BD-50 WAS INITIALLY DISCONTINUED ON 10/18/07 AND RESUMED ON 04/08/10



BD-51 Fatlan Well

NEW STATIONS BD-50 AND BD-51 ADDED IN 2007


FIGURE C-13 Ground/Well Water - Tritium - Stations BD-53 and BD-54 Collected in the Vicinity of Braidwood Station, 2007 - 2016



*BD-53 was removed from the program during the 3rd quarter of 2011

BD-54 Cash Well

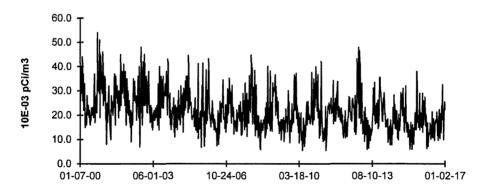
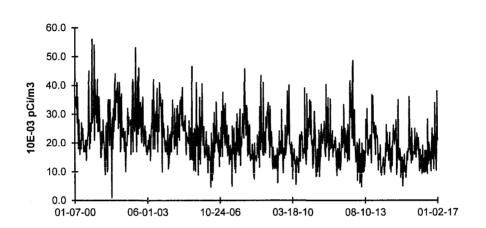


FIGURE C-14 Air Particulate - Gross Beta- Stations BD-03 (C) and BD-06 Collected in the Vicinity of Braidwood Station, 2000 - 2016



BD-03 (C) County Line Road

FIGURE C-15 Air Particulate - Gross Beta- Stations BD-19 and BD-20 Collected in the Vicinity of Braidwood Station, 2000 - 2016

BD-19 Near Field, NW

BD-20 Near Field, N

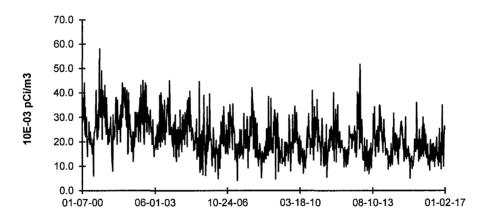
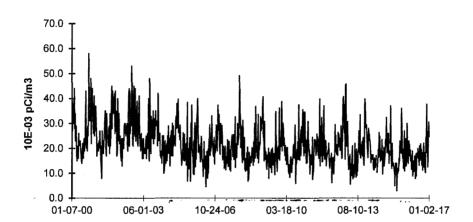
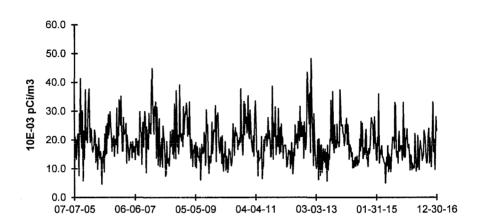




FIGURE C-16 Air Particulate - Gross Beta- Station BD-21 Collected in the Vicinity of Braidwood Station, 2000 - 2016

BD-21 Near Field, NE

FIGURE C-17 Air Particulate - Gross Beta- Stations BD-02 and BD-04 Collected in the Vicinity of Braidwood Station, 2005 - 2016

BD-02 Near Field, NW

BD-04 Near Field, N

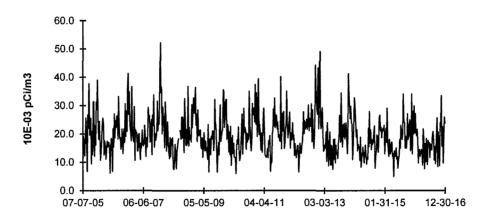
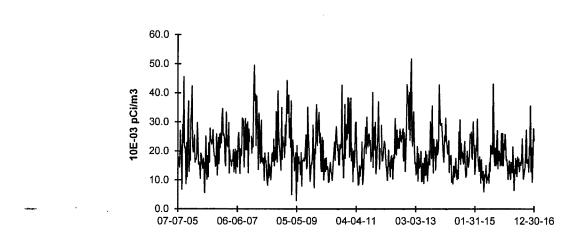



FIGURE C-18 Air Particulate - Gross Beta- Station BD-05 Collected in the Vicinity of Braidwood Station, 2005 - 2016

BD-05 Near Field, NE

Intentionally left blank

APPENDIX D

INTER-LABORATORY COMPARISON PROGRAM

Intentionally left blank

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 1 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
March 2016	E11476	Milk	Sr-89	pCi/L	97	86.7	1.12	A
	LIIIIO		Sr-90	pCi/L	15	11.4	1.32	N(2)
	E11477	Milk	I-131	pCi/L	85.9	82.2	1.05	А
			Ce-141	pCi/L	106	98.4	1.08	А
			Cr-51	pCi/L	255	243	1.05	А
			Cs-134	pCi/L	134	130	1.03	А
			Cs-137	pCi/L	174	161	1.08	А
			Co-58	pCi/L	123	117	1.05	А
			Mn-54	pCi/L	141	117	1.21	W
			Fe-59	pCi/L	152	131	1.16	А
			Zn-65	pCi/L	193	179	1.08	А
			Co-60	pCi/L	259	244	1.06	А
	E11479	AP	Ce-141	pCi	69	81.1	0.85	А
			Cr-51	pCi	242	201	1.20	W
			Cs-134	pCi	98.1	107.0	0.92	A
~			Cs-137	pCi	136	133	1.02	А
			Co-58	pCi	91.9	97	0.95	А
			Mn-54	pCi	98.6	96.2	1.02	А
			Fe-59	pCi	98.8	108	0.91	Α
			Zn-65	pCi	131	147	0.89	A
			Co-60	pCi	209	201	1.04	A
	E11478	Charcoal	I-131	pCi	85.3	88.3	0.97	А
	E11480	Water	Fe-55	pCi/L	1800	1666	1.08	А
June 2016	E11537	Milk	Sr-89	pCi/L	94.4	94.4	1.00	А
			Sr-90	pCi/L	13.4	15.4	0.87	А
	E11538	Milk	I-131	pCi/L	96.8	94.5	1.02	А
			Ce-141	pCi/L	129	139	0.93	А
			Cr-51	pCi/L	240	276	0.87	А
			Cs-134	pCi/L	157	174	0.90	А
			Cs-137	pCi/L	117	120	0.98	А
			Co-58	pCi/L	131	142	0.92	А
			Mn-54	pCi/L	128	125	1.02	А
			Fe-59	pCi/L	132	122	1.08	A
			Zn-65	pCi/L	235	235	1.00	А
			Co-60	pCi/L	169	173	0.98	A
June 2016	E11539	Charcoal	I-131	pCi	86.1	89.4	0.96	А
	E11540	AP	Ce-141	pCi	105	99.8	1.05	А
			Cr-51	pCi	216	198.0	1.09	A
			Cs-134	pCi	113	125	0.90	А
			Cs-137	pCi	94.5	86.6	1.09	A
			Co-58	pCi	101	102	0.99	A
			Mn-54	pCi	88.8	90.2	0.98	А
			Fe-59	pCi	82	87.5	0.94	A
			Zn-65	pCi	174	169	1.03	A
					440	404	4 4 10	
			Co-60	pCi	143	124	1.15	А

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

insplember 2016 E11609 Milk Sr-89 pC/L 90 90.9 0.99 A E11610 Milk I-131 pC/L 80.4 71.9 1.12 A E11610 Milk I-131 pC/L 80.4 71.9 1.12 A Cs-131 pC/L 182 236 0.84 A Cs-133 pC/L 198 236 0.84 A Cs-137 pC/L 196 136 0.80 A Mir54 pC/L 195 152 103 A F6-59 pC/L 199 179 1.06 A Zn-85 pC/L 199 179 1.06 A Cr-81 pCI 192 161.0 1.19 A E11612 AP Cs-141 pCI 67.5 63.6 1.06 A Cr-81 pCI 192 161.0 1.19 A A Cs-137 pCI	Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
$ \begin{array}{c cccc} Sr-90 & pCi/L & 13.3 & 13.7 & 0.97 & A \\ \hline E11610 & Milk & I-131 & pCi/L & 80.4 & 71.9 & 1.12 & A \\ Ce-141 & pCi/L & 81.3 & 93 & 0.87 & A \\ Ce-141 & pCi/L & 198 & 236 & 0.84 & A \\ Ce-131 & pCi/L & 198 & 236 & 0.84 & A \\ Ce-131 & pCi/L & 198 & 236 & 0.84 & A \\ Ce-134 & pCi/L & 122 & 136 & 0.90 & A \\ Ce-137 & pCi/L & 119 & 119 & 1.00 & A \\ Ce-56 & pCi/L & 97.5 & 90.6 & 1.08 & A \\ Fe-59 & pCi/L & 198 & 179 & 1.06 & A \\ Ce-60 & pCi/L & 131 & 135 & 0.97 & A \\ \hline E11611 & Charcoal & I-131 & pCi & 52.4 & 59.9 & 0.87 & A \\ \hline E11612 & AP & Ce-141 & pCi & 67.5 & 83.6 & 1.06 & A \\ Ce-58 & pCi & 149 & 179 & 1.06 & A \\ Ce-58 & pCi & 192 & 161.0 & 1.19 & A \\ Ce-5137 & pCi & 93.9 & 80.8 & 1.16 & A \\ Ce-58 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 104 & 122 & 1.15 & A \\ Ce-60 & pCi & 119 & 91.9 & 1.29 & W \\ \hline E11613 & Water & Fe-55 & pCi & 140 & 122 & 1.15 & A \\ Ce-58 & pCi/g & 0.335 & 0.176 & A \\ Ce-58 & pCi/g & 0.335 & 0.176 & A \\ Ce-58 & pCi/g & 0.335 & 0.176 & A \\ Ce-58 & pCi/g & 0.246 & 0.441 & 1.09 & A \\ Ce-58 & pCi/g & 0.335 & 0.176 & A \\ Ce-58 & pCi/g & 0.238 & 0.335 & 1.16 & A \\ Ce-58 & pCi/g & 0.238 & 0.335 & 1.16 & A \\ Ce-58 & pCi/g & 0.238 & 0.335 & 1.16 & A \\ Ce-58 & pCi/g & 0.238 & 0.335 & 1.16 & A \\ Ce-58 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \hline \end{array}$	· · · · · · · · · · · · · · · · · · ·								
$ \begin{array}{c cccc} E11610 & Milk & I-131 & pCi/L & 80.4 & 71.9 & 1.12 & A \\ C-511 & pCi/L & 198 & 236 & 0.87 & A \\ C-511 & pCi/L & 198 & 236 & 0.84 & A \\ C-513 & pCi/L & 198 & 236 & 0.90 & A \\ C-513 & pCi/L & 119 & 119 & 110 & A \\ C-5137 & pCi/L & 119 & 119 & 110 & A \\ C-5137 & pCi/L & 156 & 152 & 1.03 & A \\ F-6-59 & pCi/L & 156 & 152 & 1.03 & A \\ F-6-59 & pCi/L & 131 & 135 & 0.97 & A \\ E11611 & Charcoal & I-131 & pCi & 52.4 & 59.9 & 0.87 & A \\ E11612 & AP & C-141 & pCi & 67.5 & 63.6 & 1.06 & A \\ C-538 & pCi & 192 & 161.0 & 1.19 & A \\ C-5344 & pCi & 91.4 & 92.6 & 0.99 & A \\ C-538 & pCi & 66 & 66.4 & 0.99 & A \\ C-568 & pCi & 104 & 104 & 100 & A \\ C-568 & pCi & 104 & 104 & 100 & A \\ C-568 & pCi & 66 & 66.4 & 0.99 & A \\ M-54 & pCi & 119 & 91.9 & 12.9 & W \\ E11613 & Water & F-55 & pCi/L & 1990 & 1670 & 1.19 & A \\ E11614 & Soil & C-5134 & pCig & 0.153 & 0.175 & 0.87 & A \\ C-568 & pCi & 60.5 & 61.8 & 0.98 & A \\ C-6-60 & pCi/g & 0.424 & 0.441 & 1.09 & A \\ C-568 & pCi & 0.41 & 100 & A \\ C-5137 & pCig & 0.373 & 0.255 & 119 & A \\ E11614 & Soil & C-513 & pCig & 0.313 & 0.175 & 0.87 & A \\ C-568 & pCi & 0.388 & 0.335 & 1.16 & A \\ C-568 & pCi/g & 0.324 & 0.255 & 1.19 & A \\ E11614 & Soil & C-513 & pCig & 0.313 & 0.175 & 0.87 & A \\ C-568 & pCi/g & 0.324 & 0.255 & 1.19 & A \\ C-568 & pCi/g & 0.324 & 0.255 & 1.19 & A \\ F-6-59 & pCi/g & 0.324 & 0.255 & 1.19 & A \\ C-568 & pCi/g & 0.244 & 0.255 & 1.19 & A \\ C-568 & pCi/g & 0.244 & 0.255 & 1.13 & A \\ C-660 & pCi/g & 0.244 & 0.255 & 1.13 & A \\ C-671 & pCi/g & 0.244 & 0.255 & 1.13 & A \\ C-571 & pCi/g & 0.274 & 206 & 0.88 & A \\ C-571 & pCi/l & 247 & 280 & 0.88 & A \\ C-5737 & pCi/l & 0.264 & 0.255 & 1.13 & A \\ C-571 & pCi/l & 247 & 280 & 0.88 & A \\ C-5737 & pCi/l & 144 & 125 & 0.98 & A \\ C-5737 & pCi/l & 126 & 129 & 0.88 & A \\ C-5737 & pCi/l & 126 & 129 & 0.88 & A \\ C-5737 & pCi/l & 126 & 129 & 0.88 & A \\ C-5737 & pCi/l & 126 & 129 & 0.88 & A \\ C-5737 & pCi/l & 126 & 129 & 0.88 & A \\ F-599 & pCi/l & 144 & 125 & 0.918 & A \\ F-599 & pCi/l & 148 & 178 & 0.94 & A \\ \end{array}$	September 2016	E11609	Milk						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Sr-90	pCi/L	13.3	13.7	0.97	А
Cr-51 pC/L 198 236 0.84 A Cs-137 pC/L 112 138 0.94 A Cs-137 pC/L 119 119 1.00 A Co-58 pC/L 92.2 97.4 0.95 A Mn-54 pC/L 97.5 90.6 1.03 A Fe-59 pC/L 131 135 0.97 A E11611 Charcoal I-131 pCi 52.4 59.9 0.87 A E11612 AP Ce-141 pCi 67.5 63.6 1.06 A Cs-134 pCi 191.4 92.6 0.99 A Cs-137 pCi 93.9 80.8 1.16 A Cs-137 pCi 193.9 80.8 1.16 A Cs-137 pCi 93.9 80.8 1.16 A Cs-137 pCi/g 0.153 0.175 0.87 A		E11610	Milk	I-131	pCi/L	80.4	71.9	1.12	А
$E 11611 \qquad Water \qquad Fe-55 \qquad pCi/L 122 \\ E 11613 \qquad Water \qquad Fe-59 \qquad pCi/L 199 \\ E 11613 \qquad Water \qquad Fe-59 \qquad pCi/L 199 \\ E 11613 \qquad Water \qquad Fe-59 \qquad pCi/L 192 \\ E 11614 \qquad Soil Ce-141 \\ Co-60 \\ Co-60 \\ PCi/L \\ Ci \\ C$				Ce-141	pCi/L			0.87	А
$ \begin{array}{c cccc} C_{0}-37 & pCill & 119 & 119 & 100 & A \\ C_{0}-58 & pCill & 92.2 & 97.4 & 0.05 & A \\ Fe-59 & pCill & 97.5 & 90.6 & 1.08 & A \\ Fe-59 & pCill & 131 & 135 & 0.97 & A \\ \hline Fe-59 & pCill & 131 & 135 & 0.97 & A \\ \hline E11611 & Charcoal & I-131 & pCi & 52.4 & 59.9 & 0.87 & A \\ \hline E11612 & AP & Ce-141 & pCi & 67.5 & 63.6 & 1.06 & A \\ C-51 & pCi & 192 & 161.0 & 1.19 & A \\ C-51 & pCi & 192 & 161.0 & 1.19 & A \\ C-51 & pCi & 192 & 161.0 & 1.19 & A \\ C-51 & pCi & 192 & 161.0 & 1.19 & A \\ C-53 & pCi & 102 & 161.0 & 1.19 & A \\ C-55 & pCi & 66 & 66.4 & 0.99 & A \\ C-56 & pCi & 104 & 104 & 100 & A \\ Fe-59 & pCi & 104 & 104 & 100 & A \\ Fe-59 & pCi & 104 & 104 & 100 & A \\ Fe-59 & pCi & 104 & 104 & 100 & A \\ Fe-59 & pCi & 140 & 122 & 1.15 & A \\ C-60 & pCi & 119 & 91.9 & 1.29 & W \\ \hline E11613 & Water & Fe-55 & pCill & 1990 & 1670 & 1.19 & A \\ \hline E11614 & Soil & Cr-51 & pCig & 0.183 & 0.175 & 0.87 & A \\ C-313 & pCig & 0.482 & 0.441 & 1.09 & A \\ C-313 & pCig & 0.482 & 0.441 & 1.09 & A \\ C-313 & pCig & 0.333 & 0.299 & 1.06 & A \\ C-313 & pCig & 0.340 & 0.285 & 1.16 & A \\ C-3-60 & pCill & 95 & 74.2 & 0.97 & A \\ Mn-54 & pCig & 0.388 & 0.335 & 1.16 & A \\ C-60 & pCill & 0.264 & 0.252 & 1.13 & A \\ \hline PCig & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 1.13 & A \\ \hline PCill & 0.284 & 0.252 & 0.144 & 0.97 & A \\ \hline PCill & 0.284 & 0.252 & 0.18 & A \\ \hline PCill & 127 & 100 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 129 & 0.98 & A \\ \hline PCill & 126 & 128 & 0.99 & A \\ \hline PCill & 126 & 178 & 0.94 & A \\ \hline PCill & 126 & 178 & 0.94 & A \\ \hline PCill & 127 &$				Cr-51					
$ \begin{array}{c cccc} C_{0}-58 & pCi/L & 92.2 & 97.4 & 0.95 & A \\ Mn-54 & pCi/L & 156 & 152 & 10.3 & A \\ Fe.59 & pCi/L & 198 & 179 & 1.06 & A \\ C_{-80} & pCi/L & 189 & 179 & 1.06 & A \\ C_{-80} & pCi/L & 189 & 179 & 0.87 & A \\ \end{array} \\ \hline \\ \hline E11611 & Charcoal & l-131 & pCi & 52.4 & 59.9 & 0.87 & A \\ \hline \\ E11612 & AP & Ce-141 & pCi & 67.5 & 63.6 & 1.08 & A \\ C_{-51} & pCi & 91.4 & 92.6 & 0.99 & A \\ C_{-51} & pCi & 91.4 & 92.6 & 0.99 & A \\ \hline \\ C_{-8-137} & pCi & 01.4 & 92.6 & 0.99 & A \\ \hline \\ C_{-8-137} & pCi & 01.4 & 92.6 & 0.99 & A \\ \hline \\ C_{-8-137} & pCi & 01.4 & 92.6 & 0.99 & A \\ \hline \\ C_{-8-137} & pCi & 01.4 & 92.6 & 0.99 & A \\ \hline \\ C_{-8-137} & pCi & 104 & 104 & 1.00 & A \\ \hline \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ \hline \\ Fe-59 & pCi & 104 & 104 & 1.00 & A \\ \hline \\ Fe-59 & pCi/L & 1990 & 1670 & 1.19 & A \\ \hline \\ E11613 & Water & Fe-55 & pCi/L & 1990 & 1670 & 1.19 & A \\ \hline \\ E11614 & Soil & Ce-141 & pCi/g & 0.482 & 0.441 & 1.09 & A \\ \hline \\ C_{-8-137} & pCi/g & 0.482 & 0.441 & 1.09 & A \\ \hline \\ C_{-8-137} & pCi/g & 0.313 & 0.175 & 0.87 & A \\ \hline \\ C_{-8-134} & pCi/g & 0.343 & 0.299 & 1.05 & A \\ \hline \\ C_{-8-6} & pCi/g & 0.340 & 0.285 & 1.19 & A \\ \hline \\ \hline \\ Pecember 2016 & E11699 & Milk & Sr-89 & pCi/L & 95 & 74.2 & 1.28 & W \\ \hline \\ E11700 & Milk & I-131 & pCi/L & 97.5 & 97.4 & 1.00 & A \\ \hline \\ \hline \\ \hline \\ Fe-59 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \hline \\$				Cs-134					
$ \begin{array}{c ccc} \mbox{Min} = 5 & pCi/L & 166 & 152 & 1.03 & A \\ Fe-59 & pCi/L & 97.5 & 90.6 & 1.08 & A \\ Zn-65 & pCi/L & 131 & 135 & 0.97 & A \\ \hline E11611 & Charcoal & I-131 & pCi & 52.4 & 59.9 & 0.87 & A \\ \hline E11612 & AP & Ce-141 & pCi & 67.5 & 63.6 & 1.06 & A \\ Cr-51 & pCi & 192 & 161.0 & 1.19 & A \\ Cs-134 & pCi & 91.4 & 92.6 & 0.99 & A \\ Cs-137 & pCi & 93.9 & 80.8 & 1.16 & A \\ Cs-68 & pCi & 66 & 66.4 & 0.99 & A \\ Cs-65 & pCi & 160 & 61.4 & 0.98 & A \\ Mn-54 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 66 & 66.4 & 0.99 & A \\ Cs-60 & pCi & 119 & 91.9 & 1.29 & W \\ \hline E11613 & Water & Fe-55 & pCi/L & 1990 & 1670 & 1.19 & A \\ \hline E11614 & Soil & Ce-141 & pCi/g & 0.153 & 0.175 & 0.87 & A \\ Cs-137 & pCi/g & 0.482 & 0.441 & 1.09 & A \\ Cs-137 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Cs-137 & pCi/g & 0.388 & 0.385 & 1.16 & A \\ Cs-137 & pCi/g & 0.388 & 0.355 & 1.16 & A \\ Cs-137 & pCi/g & 0.388 & 0.355 & 1.16 & A \\ Cs-137 & pCi/g & 0.388 & 0.355 & 1.16 & A \\ Cs-137 & pCi/g & 0.388 & 0.355 & 1.16 & A \\ Cs-137 & pCi/g & 0.388 & 0.355 & 1.16 & A \\ Cs-137 & pCi/g & 0.388 & 0.355 & 1.16 & A \\ Cs-60 & pCi/g & 0.265 & 1.19 & A \\ Fe-59 & pCi/g & 0.286 & 0.17 & 1.21 & W \\ Zn-65 & pCi/g & 0.286 & 0.37 & 1.28 & W \\ Nn-54 & pCi/L & 97.5 & 97.4 & 1.00 & A \\ Cs-134 & pCi/L & 14.7 & 10 & 1.47 & N(3) \\ \hline \end{array}$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$E 11611 \qquad Charcoal \qquad I-131 \qquad pCi \qquad 52.4 \qquad 59.9 \qquad 0.87 \qquad A \\ E 11611 \qquad Charcoal \qquad I-131 \qquad pCi \qquad 52.4 \qquad 59.9 \qquad 0.87 \qquad A \\ E 11612 \qquad AP \qquad Ce-141 \qquad pCi \qquad 67.5 \qquad 63.6 \qquad 1.06 \qquad A \\ Cr-51 \qquad pCi \qquad 192 \qquad 161.0 \qquad 1.19 \qquad A \\ Ce-134 \qquad pCi \qquad 91.4 \qquad 92.6 \qquad 0.99 \qquad A \\ Ce-137 \qquad pCi \qquad 93.9 \qquad 80.8 \qquad 1.16 \qquad A \\ Ce-537 \qquad pCi \qquad 033.9 \qquad 80.8 \qquad 1.16 \qquad A \\ Ce-56 \qquad pCi \qquad 66 \qquad 66.4 \qquad 0.99 \qquad A \\ Ce-56 \qquad pCi \qquad 104 \qquad 104 100 \qquad A \\ Fe-59 \qquad pCi \qquad 104 \qquad 104 100 \qquad A \\ Fe-59 \qquad pCi \qquad 104 \qquad 104 100 \qquad A \\ Fe-59 \qquad pCi \qquad 104 \qquad 104 122 \qquad 1.15 \qquad A \\ Ce-141 \qquad pCi \qquad 901.4 \qquad 026 \qquad 0.98 \qquad A \\ Ce-51 \qquad Ce-60 \qquad pCi \qquad 119 \qquad 91.9 \qquad 0.98 \qquad A \\ Ce-51 \qquad Ce-60 \qquad pCi \qquad 119 \qquad 91.9 \qquad 0.98 \qquad A \\ Ce-51 \qquad Ce-61 \qquad PCi \qquad 104 \qquad 104 \qquad 100 \qquad A \\ Fe-59 \qquad pCi \qquad 60.5 \qquad 61.8 \qquad 0.98 \qquad A \\ Ce-51 \qquad Ce-60 \qquad pCi \qquad 119 \qquad 91.9 \qquad 0.98 \qquad A \\ Ce-51 \qquad Ce-51 \qquad pCi/2 \qquad 0.482 \qquad 0.441 \qquad 1.09 \qquad A \\ Ce-5134 \qquad pCi/9 \qquad 0.482 \qquad 0.441 \qquad 1.09 \qquad A \\ Ce-5134 \qquad pCi/9 \qquad 0.270 \qquad 0.254 \qquad 1.06 \qquad A \\ Ce-5134 \qquad pCi/9 \qquad 0.313 \qquad 0.299 \qquad 1.05 \qquad A \\ Ce-58 \qquad pCi/9 \qquad 0.313 \qquad 0.299 \qquad 1.05 \qquad A \\ Ce-58 \qquad pCi/9 \qquad 0.335 \qquad 0.335 \qquad 1.16 \qquad A \\ Ce-60 \qquad pCi/9 \qquad 0.388 \qquad 0.335 \qquad 1.16 \qquad A \\ Ce-60 \qquad pCi/9 \qquad 0.388 \qquad 0.335 \qquad 1.16 \qquad A \\ Ce-6141 \qquad pCi/9 \qquad 0.388 \qquad 0.335 \qquad 1.16 \qquad A \\ Ce-131 \qquad pCi/9 \qquad 0.388 \qquad 0.335 \qquad 1.16 \qquad A \\ Ce-131 \qquad pCi/1 \qquad 0.284 \qquad 0.252 \qquad 1.13 \qquad A \\ Fe-59 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.255 \qquad 1.19 \qquad A \\ Fe-59 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.255 \qquad 1.19 \qquad A \\ Fe-59 \qquad pCi/1 \qquad 14.7 \qquad 10 \qquad 1.47 \qquad N(3) \\ E \\ E 11700 \qquad Milk \qquad Sr-89 \qquad pCi/L \qquad 95 \qquad 74.2 \qquad 1.28 \qquad W \\ Ce-131 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.95 \qquad A \\ Ce-131 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.95 \qquad A \\ Ce-131 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.95 \qquad A \\ Ce-131 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.95 \qquad A \\ Ce-131 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.95 \qquad A \\ Ce-131 \qquad pCi/1 \qquad 136 \qquad 143 \qquad 0.95 \qquad A \\ Ce-53 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-531 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-531 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-531 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-541 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-541 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-541 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-543 \qquad PCi/1 \qquad 126 \qquad 129 \qquad 0.98 \qquad A \\ Ce-543 \qquad PCi/1$									
$ \begin{array}{c cccc} Co-60 & pCi/L & 131 & 135 & 0.97 & A \\ \hline E11611 & Charcoal & I-131 & pCi & 52.4 & 59.9 & 0.87 & A \\ \hline E11612 & AP & Co-141 & pCi & 67.5 & 63.6 & 1.06 & A \\ \hline Cr-51 & pCi & 192 & 161.0 & 1.19 & A \\ \hline Cs-137 & pCi & 91.4 & 92.6 & 0.99 & A \\ \hline Cs-137 & pCi & 0.93 & 80.8 & 1.16 & A \\ \hline Cr-58 & pCi & 66 & 66.4 & 0.99 & A \\ \hline Mn-54 & pCi & 104 & 104 & 1.00 & A \\ \hline Fe-59 & pCi & 60.5 & 61.8 & 0.98 & A \\ \hline Zn-65 & pCi & 119 & 91.9 & 1.29 & W \\ \hline E11614 & Soil & Ce-141 & pCi/g & 0.482 & 0.441 & 1.09 & A \\ \hline Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ \hline Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ \hline Cs-137 & pCi/g & 0.342 & 0.441 & 1.09 & A \\ \hline Cs-137 & pCi/g & 0.342 & 0.441 & 1.09 & A \\ \hline Cs-137 & pCi/g & 0.342 & 0.441 & 1.09 & A \\ \hline Cs-137 & pCi/g & 0.348 & 0.325 & 1.19 & A \\ \hline Cs-137 & pCi/g & 0.348 & 0.325 & 1.19 & A \\ \hline Cs-66 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ \hline Cs-66 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ \hline Fe-59 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \hline December 2016 & E11699 & Milk & Sr-89 & pCi/L & 95 & 7.4.2 & 1.28 & W \\ \hline E11700 & Milk & I-131 & pCi/l & 97.5 & 97.4 & 1.00 & A \\ \hline Cs-137 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-3137 & pCi/l & 120 & 126 & 0.88 & A \\ \hline Cs-3137 & pCi/l & 120 & 126 & 0.88 & A \\ \hline Cs-60 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-613 & pCi/l & 27.5 & 97.4 & 1.00 & A \\ \hline Fe-59 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-317 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-314 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-314 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-314 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-317 & pCi/l & 120 & 128 & 0.98 & A \\ \hline Cs-314 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-317 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-38 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-38 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-38 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-38 & pCi/l & 139 & 146 & 0.95 & A \\ \hline Cs-68 & pCi/l & 138 & 146 & 0.95 & A \\ \hline Cs-68 & pCi/l & 138 & 146 & 0.95 & A \\ \hline Cs-68 & pCi/l & 138 & 146 & 0.95 & A \\ \hline Cs-68 & pCi/l & 138 & 146 & 0.95 & A \\ \hline Cs-68 & pCi/l & 138 & 146 & 0.95 & A \\ \hline Cs-68 & pCi/l & 138 & $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{ccccc} E11612 & AP & Ce-141 & pCi & 67.5 & 63.6 & 1.06 & A \\ Cr-51 & pCi & 192 & 161.0 & 1.19 & A \\ Cs-137 & pCi & 91.4 & 92.6 & 0.99 & A \\ Cs-137 & pCi & 93.9 & 80.8 & 1.16 & A \\ Cc-58 & pCi & 66 & 66.4 & 0.99 & A \\ Mn-54 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 60.5 & 61.8 & 0.98 & A \\ Zn-65 & pCi & 140 & 122 & 1.15 & A \\ Cc-60 & pCi & 119 & 91.9 & 1.29 & W \\ \end{array} $				Co-60	pCi/L	131	135	0.97	A
$\begin{array}{ccccc} Cr-51 & pCi & 192 & 161.0 & 1.19 & A \\ Cs-134 & pCi & 91.4 & 92.6 & 0.99 & A \\ Cs-137 & pCi & 93.9 & 80.8 & 1.16 & A \\ Co-58 & pCi & 66 & 66.4 & 0.99 & A \\ Re-59 & pCi & 60.5 & 61.8 & 0.98 & A \\ Zn-65 & pCi & 140 & 122 & 1.15 & A \\ Co-60 & pCi & 119 & 91.9 & 1.29 & W \\ \end{array}$		E11611	Charcoal	I-131	pCi	52.4	59.9	0.87	А
$\begin{array}{c cccc} C_{8}-134 & pCi & 91.4 & 92.6 & 0.99 & A \\ C_{8}-137 & pCi & 93.9 & 80.8 & 1.16 & A \\ C_{6}-58 & pCi & 66 & 66.4 & 0.99 & A \\ Mn.54 & pCi & 104 & 104 & 1.00 & A \\ Fe.59 & pCi & 60.5 & 61.8 & 0.98 & A \\ Zn.65 & pCi & 140 & 122 & 1.15 & A \\ Co-60 & pCi & 119 & 91.9 & 1.29 & W \\ \hline \\ E11613 & Water & Fe.55 & pCi/L & 1990 & 1670 & 1.19 & A \\ \hline \\ E11614 & Soil & Ce-141 & pCi/g & 0.153 & 0.175 & 0.87 & A \\ Cs-134 & pCi/g & 0.153 & 0.175 & 0.87 & A \\ Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-137 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ \hline \\ Recember 2016 & E11699 & Milk & Sr-89 & pCi/L & 95 & 74.2 & 1.28 & W \\ Fe11700 & Milk & I-131 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \hline \\ PCi/L & 14.7 & 10 & 1.47 & N(3) \\ \hline \\ E11700 & Milk & I-131 & pCi/L & 97.5 & 97.4 & 1.00 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 146 & 178 & 0.92 & A \\ Cs-134 & pCi/L & 126 & 129 & 0.88 & A \\ Cs-134 & pCi/L & 126 & 129 & 0.88 & A \\ Cs-134 & pCi/L & 126 & 129 & 0.88 & A \\ Cs-134 & pCi/L & 126 & 129 & 0.88 & A \\ Cs-134 & pCi/L & 126 & 129 & 0.98 & A \\ Fe.59 & pCi/L & 140 & 126 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-65 & pCi/L & 139 & 146 & 0.95 & A \\ Cs-66 & pCi/L & 139 & 146 & 0.95 & A \\ Cs-66 & pCi/L & 168 & 178 & 0.94 & A \\ \end{array}$		E11612	AP	Ce-141	pCi			1.06	А
$ \begin{array}{c cccc} Cs-137 & pCi & 93.9 & 80.8 & 1.16 & A \\ Co-58 & pCi & 66 & 66.4 & 0.99 & A \\ Mn-54 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 60.5 & 61.8 & 0.98 & A \\ Zn-65 & pCi & 140 & 122 & 1.15 & A \\ Co-60 & pCi & 119 & 91.9 & 1.29 & W \\ \end{array} \\ \begin{array}{c cccccccccccccccccccccccccccccccccc$								1.19	
$ \begin{array}{ccccc} Co-58 & pCi & 66 & 66.4 & 0.99 & A \\ Mn-54 & pCi & 104 & 104 & 1.00 & A \\ Fe-59 & pCi & 60.5 & 61.8 & 0.98 & A \\ Zn-65 & pCi & 140 & 122 & 1.15 & A \\ Co-60 & pCi & 119 & 91.9 & 1.29 & W \\ \end{array} \\ \begin{array}{cccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c cccc} Zn-65 & pCi & 140 & 122 & 1.15 & A \\ Co-60 & pCi & 119 & 91.9 & 1.29 & W \\ \hline E11613 & Water & Fe-55 & pCi/L & 1990 & 1670 & 1.19 & A \\ \hline E11614 & Soil & Ce-141 & pCi/g & 0.153 & 0.175 & 0.87 & A \\ Cr-51 & pCi/g & 0.482 & 0.441 & 1.09 & A \\ Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Cs-65 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Cs-65 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ Fe-59 & pCi/g & 0.388 & 0.335 & 1.16 & A \\ Co-66 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \end{array}$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c cccc} E11613 & Water & Fe-55 & pCi/L & 1990 & 1670 & 1.19 & A \\ E11614 & Soil & Ce-141 & pCi/g & 0.153 & 0.175 & 0.87 & A \\ Cr-51 & pCi/g & 0.482 & 0.441 & 1.09 & A \\ Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Cs-58 & pCi/g & 0.177 & 0.182 & 0.97 & A \\ Mn-54 & pCi/g & 0.286 & 0.17 & 1.21 & W \\ Zn-65 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ Fe-59 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ Cs-600 & pCi/L & 95 & 74.2 & 1.28 & W \\ Sr-90 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 126 & 129 & 0.88 & A \\ Cs-137 & pCi/L & 126 & 129 & 0.98 & A \\ Cs-137 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 147 & 106 & 143 & 0.95 & A \\ Cs-137 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 147 & 106 & 178 & 0.94 & A \\ \end{array}$									
$ \begin{array}{c ccccc} E11614 & Soil & Ce-141 & pCi/g & 0.153 & 0.175 & 0.87 & A \\ Cr-51 & pCi/g & 0.482 & 0.441 & 1.09 & A \\ Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Co-58 & pCi/g & 0.177 & 0.182 & 0.97 & A \\ Mn-54 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ Fe-59 & pCi/g & 0.388 & 0.335 & 1.16 & A \\ Co-60 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \end{array} $				Co-60	pCi	119	91.9	1.29	W
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E11613	Water	Fe-55	pCi/L	1990	1670	1.19	А
$ \begin{array}{ccccc} Cs-134 & pCi/g & 0.270 & 0.254 & 1.06 & A \\ Cs-137 & pCi/g & 0.313 & 0.299 & 1.05 & A \\ Co-58 & pCi/g & 0.177 & 0.182 & 0.97 & A \\ Mn-54 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ Fe-59 & pCi/g & 0.206 & 0.17 & 1.21 & W \\ Zn-65 & pCi/g & 0.388 & 0.335 & 1.16 & A \\ Co-60 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \end{array} $		E11614	Soil				0.175		А
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c cccc} Mn-54 & pCi/g & 0.340 & 0.285 & 1.19 & A \\ Fe{} -59 & pCi/g & 0.206 & 0.17 & 1.21 & W \\ Zn-65 & pCi/g & 0.388 & 0.335 & 1.16 & A \\ Co-60 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \end{array} \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c cccc} Fe-59 & pCi/g & 0.206 & 0.17 & 1.21 & W \\ Zn-65 & pCi/g & 0.388 & 0.335 & 1.16 & A \\ Co-60 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \end{array} \\ \hline eccember 2016 & E11699 & Milk & Sr-89 & pCi/L & 95 & 74.2 & 1.28 & W \\ Sr-90 & pCi/L & 14.7 & 10 & 1.47 & N(3) \\ \hline E11700 & Milk & I-131 & pCi/L & 97.5 & 97.4 & 1.00 & A \\ Ce-141 & pCi/L & 136 & 143 & 0.95 & A \\ Cr-51 & pCi/L & 136 & 143 & 0.95 & A \\ Cs-134 & pCi/L & 164 & 178 & 0.92 & A \\ Cs-137 & pCi/L & 120 & 126 & 0.95 & A \\ Co-58 & pCi/L & 139 & 146 & 0.95 & A \\ Co-58 & pCi/L & 120 & 126 & 0.95 & A \\ Fe-59 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 114 & 125 & 0.91 & A \\ Zn-65 & pCi/L & 237 & 244 & 0.97 & A \\ Co-60 & pCi/L & 168 & 178 & 0.94 & A \\ \hline \end{array} $									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c cccc} Co-60 & pCi/g & 0.284 & 0.252 & 1.13 & A \\ \hline \mbox{December 2016} & E11699 & Milk & Sr-89 & pCi/L & 95 & 74.2 & 1.28 & W \\ Sr-90 & pCi/L & 14.7 & 10 & 1.47 & N(3) \\ \hline \mbox{E11700} & Milk & I-131 & pCi/L & 97.5 & 97.4 & 1.00 & A \\ Ce-141 & pCi/L & 136 & 143 & 0.95 & A \\ Cr-51 & pCi/L & 247 & 280 & 0.88 & A \\ Cs-134 & pCi/L & 164 & 178 & 0.92 & A \\ Cs-137 & pCi/L & 120 & 126 & 0.95 & A \\ Co-58 & pCi/L & 139 & 146 & 0.95 & A \\ Mn-54 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 114 & 125 & 0.91 & A \\ Zn-65 & pCi/L & 237 & 244 & 0.97 & A \\ Co-60 & pCi/L & 168 & 178 & 0.94 & A \\ \hline \end{array}$									
December 2016 E11699 Milk Sr-89 pCi/L 95 74.2 1.28 W Sr-90 pCi/L 14.7 10 1.47 N(3) E11700 Milk I-131 pCi/L 97.5 97.4 1.00 A Ce-141 pCi/L 136 143 0.95 A Cr-51 pCi/L 247 280 0.88 A Cs-134 pCi/L 164 178 0.92 A Cs-137 pCi/L 120 126 0.95 A Co-58 pCi/L 139 146 0.95 A Mn-54 pCi/L 139 146 0.95 A Mn-54 pCi/L 126 129 0.98 A Fe-59 pCi/L 114 125 0.91 A Fe-59 pCi/L 114 125 0.91 A Zn-65 pCi/L 237 244 0.97 A Co-60 pCi/L 168 178 0.94 A									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Co-60	pCi/g	0.284	0.252	1.13	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	December 2016	E11699	Milk						
$\begin{array}{c cccccc} Ce-141 & pCi/L & 136 & 143 & 0.95 & A \\ Cr-51 & pCi/L & 247 & 280 & 0.88 & A \\ Cs-134 & pCi/L & 164 & 178 & 0.92 & A \\ Cs-137 & pCi/L & 120 & 126 & 0.95 & A \\ Co-58 & pCi/L & 139 & 146 & 0.95 & A \\ Mn-54 & pCi/L & 126 & 129 & 0.98 & A \\ Fe-59 & pCi/L & 114 & 125 & 0.91 & A \\ Zn-65 & pCi/L & 237 & 244 & 0.97 & A \\ Co-60 & pCi/L & 168 & 178 & 0.94 & A \\ \end{array}$				Sr-90	pCi/L	14.7	10	1.47	N(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		E11700	Milk						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Cs-137pCi/L1201260.95ACo-58pCi/L1391460.95AMn-54pCi/L1261290.98AFe-59pCi/L1141250.91AZn-65pCi/L2372440.97ACo-60pCi/L1681780.94A									
Co-58pCi/L1391460.95AMn-54pCi/L1261290.98AFe-59pCi/L1141250.91AZn-65pCi/L2372440.97ACo-60pCi/L1681780.94A									
Mn-54pCi/L1261290.98AFe-59pCi/L1141250.91AZn-65pCi/L2372440.97ACo-60pCi/L1681780.94A									
Fe-59pCi/L1141250.91AZn-65pCi/L2372440.97ACo-60pCi/L1681780.94A									
Zn-65 pCi/L 237 244 0.97 A Co-60 pCi/L 168 178 0.94 A									
Co-60 pCi/L 168 178 0.94 A									
				00-60	pCi/L	168	178	0.94	A
E11701 Charcoal I-131 pCi 95.6 98 0.98 A		E11701	Charcoal	I-131	pCi	95.6	98	0.98	А

(PAGE 2 OF 3)

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2016	E44700	40	0- 141		01.7	07.7	0.04	Δ
December 2016	E11702	AP	Ce-141	pCi	91.7	97.7	0.94	A
			Cr-51	рСі	210	192.0	1.09	Α
			Cs-134	pCi	122	122	1.00	А
			Cs-137	pCi	93.9	86.4	1.09	А
			Co-58	pCi	92	100	0.92	А
			Mn-54	pCi	93.7	88.5	1.06	А
			Fe-59	pCi	84.9	84.5	1.00	А
			Zn-65	pCi	176	167	1.05	А
			Co-60	pCi	151	122	1.24	W
	E11702	AP	Sr-89	pCi	79.1	92	0.86	А
			Sr-90	pCi	10	12.5	0.80	А
	E11703	Water	Fe-55	pCi/L	2180	1800	1.21	W

.

(a) Teledyne Brown Engineering reported result.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20. W= Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

(2) NCR 16-26 was initiated

(3) NCR 16-35 was initiated

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) Ratio of Teledyne Brown Engineering to Analytics results.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

Known Identification Reported Acceptance Value (a) Value (b) Evaluation (c) Month/Year Media Nuclide Units Range Number March 2016 16-MaW34 Water Am-241 Bq/L 0.008 А (1) 12.3 8.6-16.0 Ni-63 Bq/L 12.4 А Pu-238 Ba/L 1.4900 1.2440 0.871-1.617 Α Pu-239/240 Ba/L 0.729 0.641 0.449-0.833 А 875-1625 16-MaS34 Soil Ni-63 Bq/kg 1140 1250.0 А Sr-90 Bq/kg 8.15 А (1) AP U-234/233 Bq/sample 0.1620 0.1650 0.116-0.215 А 16-RdF34 Bq/sample 0.163 0.172 0.120-0.224 A U-238 AP Bq/sample 0.608 1.20 0.36-2.04 16-GrF34 Gr-A А Gr-B Bq/sample 0.8060 0.79 0.40-1.19 А Bq/sample 10.10 16-RdV34 Vegetation Cs-134 10.62 7.43-13.81 А Cs-137 **Bq/sample** 5.62 3.93-7.31 А 6.0 Co-57 Bg/sample 13.3000 11.8 8.3-15.3 Α Co-60 Bq/sample 0.013 (1) А Bq/sample А Mn-54 0.0150 (1) Sr-90 Bg/sample 0.301 N(4) (1) 6.7-12.5 Zn-65 Bq/sample 10.500 9.6 А September 2016 16-MaW35 Water Am-241 Bq/L 0.626 0.814 .570-1058 W Ni-63 Bq/L 12.4 17.2 12.0-22.4 А Pu-238 Bq/L 1.23 1.13 0.79-1.47 W Pu-239/240 Bq/L 0.0318 0.013 (1) А 16-MaS35 Soil Ni-63 Ba/ka 724 990 693-1287 А Sr-90 Bq/kg 747 894 626-1162 А AP U-234/233 Bq/sample 0.160 0.15 0.105-0.195 16-RdF35 А Bg/sample 0.109-0.203 U-238 0.157 0.156 А Bq/sample 16-RdV35 Vegetation Cs-134 -0.103 Α (1)Cs-137 Bg/sample 5.64 5.54 3.88-7.20 A Co-57 Bq/sample 7.38 6.81 4.77-8.85 A Co-60 Bq/sample 4.81 4.86 3.40-6.32 А Mn-54 **Bq/sample** 7.27 5.09-9.45 А 7.4 Sr-90 Bq/sample 0.774 0.80 0.56-1.04 А Zn-65 Bq/sample 5.46 5.4 3.78-7.02 А

(PAGE 1 OF 1)

(1) False positive test.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

(4)NCR 16-14 was initiated

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 1 OF 1)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c
May 2016	RAD-105	Water	Sr-89	pCi/L	48.9	48.2	37.8 - 55.6	A
			Sr-90	pCi/L	25.0	28.5	20.7 - 33.1	А
			Ba-133	pCi/L	53.1	58.8	48.7 - 64.9	А
			Cs-134	pCi/L	40.9	43.3	34.6 - 47.6	А
			Cs-137	pCi/L	84.8	78.4	70.6 - 88.9	А
			Co-60	pCi/L	108	102	91.8 - 114	А
			Zn-65	pCi/L	226	214	193 - 251	А
			Gr-A	pCi/L	38.9	62.7	32.9 - 77.8	А
			Gr-B	pCi/L	41.9	39.2	26.0 - 46.7	А
			I-131	pCi/L	24.1	26.6	22.1 - 31.3	А
			U-Nat	pCi/L	4.68	4.64	3.39 - 5.68	А
			H-3	pCi/L	7720	7840	6790 - 8620	А
November 2016	RAD-107	Water	Sr-89	pCi/L	43.0	43.3	33.4-50.5	А
			Sr-90	pCi/L	30.0	33.6	24.6-38.8	А
			Ba-133	pCi/L	47.8	54.9	45.4-60.7	А
			Cs-134	pCi/L	72.9	81.8	67.0-90.0	Ą
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4 ¹⁹		Cs-137	pCi/L	189	210	189-233	A
			Co-60	pCi/L	58.4	64.5	58.0-73.4	А
			Zn-65	pCi/L	243	245	220-287	А
			Gr-A	pCi/L	37.2	68.4	35.9-84.5	А
			Gr-B	pCi/L	35.1	33.9	22.1-41.6	А
			I-131	pCi/L	23.5	26.3	21.9-31.0	А
			U-Nat	pCi/L	49.2	51.2	41.6-56.9	А
			H-3	pCi/L	918	9820	8540-10800	N(5)
	MRAD-25	AP	Gr-A	pCi/Filter	56.8	71.2	23.9-111	А

(a) Teledyne Brown Engineering reported result.

⁽b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. N=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

⁽⁵⁾ NCR 16-34 was initiated

ERA STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM^a MRAD Study, ENVIRONMENTAL, INC., 2016

		Concentration ^a								
			Laboratory	ERA	Control					
Lab Code ^b	Date	Analysis	Result	Result	Limits	Acceptance				
ERAP-1101	3/14/2016	Am-241	37.3	45.9	28.3 - 62.1	Pass				
ERAP-1101	3/14/2016	Co-60	637	623	482 - 778	Pass				
ERAP-1101	3/14/2016	Cs-134	251	304	193 - 377	Pass				
ERAP-1101	3/14/2016	Cs-137	1,273	1,150	864 - 1,510	Pass				
ERAP-1101	3/14/2016	Fe-55	< 162	126	39.1 - 246	Pass				
ERAP-1101	3/14/2016	Mn-54	< 2.64	< 50.0	0.00 - 50.0	Pass				
ERAP-1101	3/14/2016	Pu-238	68.0	70.5	48.3 - 92.7	Pass				
ERAP-1101	3/14/2016	Pu-239/240	54.1	54.8	39.70 - 71.60	Pass				
ERAP-1101	3/14/2016	Sr-90	139	150	73.3 - 225.0	Pass				
ERAP-1101	3/14/2016	U-233/234	59.3	64.8	40.2 - 97.7	Pass				
ERAP-1101	3/14/2016	U-238	55.5	64.2	41.5 - 88.8	Pass				
ERAP-1101	3/14/2016	Zn-65	428	356	255 - 492	Pass				
ERAP-1101	3/14/2016	Gr. Alpha	98.0	70.1	23.5 - 109	Pass				
ERAP-1101	3/14/2016	Gr. Beta	78.6	54.4	34.4 - 79.3	Pass				
ERSO-1105	3/14/2016	Am-241	1,030	1,360	796 - 1,770	Pass				
ERSO-1105	3/14/2016	Ac-228	1,540	1,240	795 - 1,720	Pass				
ERSO-1105	3/14/2016	Bi-212	1,550	1,240	330 - 1,820	Pass				
ERSO-1105	3/14/2016	Bi-214	3,100	3,530	2,130 - 5,080	Pass				
ERSO-1105	3/14/2016	Co-60	5,600	5,490	3,710 - 7,560	Pass				
ERSO-1105	3/14/2016	Cs-134	3,030	3,450	2,260 - 4,140	Pass				
ERSO-1105	3/14/2016	Cs-137	4,440	4,310	3,300 - 5,550	Pass				
ERSO-1105	3/14/2016	K-40	10,300	10,600	7,740 - 14,200	Pass				
ERSO-1105	3/14/2016	Mn-54	< 50.8	< 1000	0.0 - 1,000	Pass				
ERSO-1105	3/14/2016	Pb-212	1,140	1,240	812 - 1,730	Pass				
ERSO-1105	3/14/2016	Pb-214	3,190	3,710	2,170 - 5,530	Pass				
ERSO-1105	3/14/2016	Pu-238	680	658	396 - 908	Pass				
ERSO-1105	3/14/2016	Pu-239/240	460	496	324 - 0,685	Pass				
ERSO-1105	3/14/2016	Sr-90	7,740	8,560	3,260 - 13,500	Pass				
ERSO-1105	3/14/2016	Th-234	3,630	3,430	1,080 - 6,450	Pass				
ERSO-1105	3/14/2016	U-233/234	3,090	3,460	2,110 - 4,430	Pass				
ERSO-1105	3/14/2016	U-238	3,280	3,430	2,120 - 4,350	Pass				
ERSO-1105	3/14/2016	Zn-65	2,940	2,450	1,950 - 3,260	Pass				
ERW-1115	3/14/2016	Gr. Alpha	105.0	117.0	41.5 - 181.0	Pass				
ERW-1115	3/14/2016	Gr. Beta	76.2	75.5	43.2 - 112.0	Pass				
ERW-1117	3/14/2016	H-3	8,870	8,650	5,800 - 12,300	Pass				
ERVE-1108	3/14/2016	Am-241	1,930	2,120	1,300 - 2,820	Pass				
ERVE-1108	3/14/2016	Cm-244	1,294	1,560	764 - 2,430	Pass				
ERVE-1108	3/14/2016	Co-60	1,164	1,100	759 - 1,540	Pass				
ERVE-1108	3/14/2016	Cs-134	1,056	1,070	687 - 1,390	Pass				
ERVE-1108	3/14/2016	Cs-137	930	838	608 - 1,170	Pass				
ERVE-1108	3/14/2016	K-40	32,200	31,000	22,400 - 43,500	Pass				
ERVE-1108	3/14/2016	Mn-54	< 24.5	< 300	0.00 - 300	Pass				
ERVE-1108	3/14/2016	Zn-65	3,320	2,820	2,030 - 3,960	Pass				
			D.6	,	, -,					

ERA STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM^a MRAD Study, ENVIRONMENTAL, INC., 2016

				Concentration ^a		
			Laboratory	ERA	Control	
Lab Code ^b	Date	Analysis	Result	Result	Limits	Acceptance
ERVE-1108	3/14/2016	Pu-238	3,410	2,810	1,680 - 3,850	Pass
ERVE-1108	3/14/2016	Pu-239/240	4,120	3,640	2,230 - 5,010	Pass
ERVE-1108	3/14/2016	Sr-90	8,120	8,710	4,960 - 11,500	Pass
ERVE-1108	3/14/2016	U-233/234	4,350	4,160	2,740 - 5,340	Pass
ERVE-1108	3/14/2016	U-238	4,220	4,120	2,750 - 5,230	Pass
ERW-1111	3/14/2016	Am-241	113	121	81.5 - 162	Pass
ERW-1111	3/14/2016	Co-60	1,120	1,050	912 - 1,230	Pass
ERW-1111	3/14/2016	Cs-134	806	842	618 - 968	Pass
ERW-1111	3/14/2016	Cs-137	1,190	1,100	934 - 1,320	Pass
ERW-1111	3/14/2016	Mn-54	< 5.89	< 100	0.00 - 100	Pass
ERW-1111	3/14/2016	Pu-238	159	138	102 - 172	Pass
ERW-1111	3/14/2016	Pu-239/240	113	98.7	76.6 - 124	Pass
ERW-1111	3/14/2016	U-233/234	46.9	52.7	39.6 - 68.0	Pass
ERW-1111	3/14/2016	U-238	50.4	52.3	39.9, - 64.2	Pass
ERW-1111	3/14/2016	Zn-65	1,160	1,010	842 - 1,270	Pass
ERW-1111	3/14/2016	Fe-55	1,600	1,650	984 - 2,240	Pass
ERW-1111	3/14/2016	Sr-90	430	434	283 - 574	Pass

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation). Results are reported in units of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) ENVIRONMENTAL, INC., 2016

				Concentration	3	
	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MASO-1053	2/1/2016	Ni-63	1,206 ± 20	1250	875 - 1625	Pass
MASO-1053	2/1/2016	Sr-90	0.65 ± 1.27	0.00	NA ^c	Pass
MASO-1053	2/1/2016	Tc-99	0.1 ± 5.5	0.0	NA ^c	Pass
MASO-1053	2/1/2016	Cs-134	908 ± 26	1030	721 - 1339	Pass
MASO-1053	2/1/2016	Cs-137	0.10 ± 6.20	0.00	NA °	Pass
MASO-1053	2/1/2016	Co-57	1058 ± 26	992	694 - 1290	Pass
MASO-1053	2/1/2016	Co-60	1229 ± 28	1190	833 - 1547	Pass
MASO-1053	2/1/2016	Mn-54	1235 ± 43	1160	812 - 1508	Pass
MASO-1053	2/1/2016	Zn-65	753 ± 64	692	484 - 900	Pass
MASO-1053	2/1/2016	K-40	753 ± 140	607	425 - 789	Pass
MASO-1053	2/1/2016	Am-241	79 ± 6	103	72 - 134	Pass
MASO-1053	2/1/2016	Pu-238	73.9 ± 9.2	63.6	44.5 - 82.7	Pass
MASO-1053	2/1/2016	Pu-239/240	0.76 ± 1.34	0.21	NA ^d	Pass
MASO-1053	2/1/2016	U-234/233	45.0 ± 5.1	45.9	32.1 - 59.7	Pass
MASO-1053	2/1/2016	U-238	129 ± 9	146	102 - 190	Pass
MAW-989	2/1/2016	Am-241	0.018 ± 0.015	0.00	NA ^c	Pass
MAW-989	2/1/2016	H-3	0.2 ± 2.8	0.0	NA ^c	Pass
MAW-989	2/1/2016	Ni-63	12.8 ± 2.7	12.3	8.6 - 16.0	Pass
MAW-989	2/1/2016	Sr-90	8.70 ± 1.20	8.74	6.12 - 11.36	Pass
MAW-989	2/1/2016	Tc-99	-1.1 ± 0.6	0.0	NA ^c	Pass
MAW-989	2/1/2016	Cs-134	15.5 ± 0.3	16.1	11.3 ± 20.9	Pass
MAW-989	2/1/2016	Cs-137	23.7 ± 0.5	21.2	14.8 - 27.6	Pass
MAW-989 ^e	2/1/2016	Co-57	1.38 ± 0.12	0.00	NA ^c	Fail
MAW-989	2/1/2016	Co-60	12.5 ± 0.3	11.8	8.3 - 15.3	Pass
MAW-989	2/1/2016	Mn-54	12.2 ± 0.4	11.1	7.8 - 14.4	Pass
MAW-989	2/1/2016	Zn-65	15.7 ± 0.7	13.6	9.5 - 17.7	Pass
MAW-989	2/1/2016	K-40	288 ± 5	251	176 - 326	Pass
MAW-989	2/1/2016	Fe-55	17.3 ± 7.0	16.2	11.3 - 21.1	Pass
MAW-989	2/1/2016	Ra-226	0.710 ± 0.070	0.718	0.503 - 0.933	Pass
MAW-989	2/1/2016	Pu-238	1.280 ± 0.110	1.244	0.871 ± 1.617	Pass
MAW-989	2/1/2016	Pu-239/240	0.640 ± 0.080	0.641	0.449 - 0.833	Pass
MAW-989	2/1/2016	U-234/233	1.39 ± 0.12	1.48	1.04 - 1.92	Pass
MAW-989	2/1/2016	U-238	1.43 ± 0.12	1.53	1.07 - 1.99	Pass
MAW-893	2/1/2016	Gross Alpha	0.600 ± 0.050	0.673	0.202 - 1.144	Pass
MAW-893	2/1/2016	Gross Beta	2.10 ± 0.06	2.15	1.08 - 3.23	Pass
MAW-896	2/1/2016	I-129	3.67 ± 0.20	3.85	2.70 - 5.01	Pass
MAAP-1056	2/1/2016	Gross Alpha	0.39 ± 0.05	1.20	0.36 - 2.04	Pass
MAAP-1056	2/1/2016	Gross Beta	1.03 ± 0.07	0.79	0.40 - 1.19	Pass
MAAP-1057	2/1/2016	Sr-90	1.34 ± 0.15	1.38	0.97 ± 1.79	Pass
MAAP-1057	2/1/2016	Cs-134	-0.01 ± 0.03	0.00	NA ^c	Pass
MAAP-1057	2/1/2016	Cs-137	2.57 ± 0.10	2.30	1.61 - 2.99	Pass

· «.

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) ENVIRONMENTAL, INC., 2016

				Concentration ^a		
L.	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptanc
MAAP-1057	2/1/2016	Co-57	3.01 ± 0.06	2.94	2.06 - 3.82	Pass
MAAP-1057	2/1/2016	Co-60	4.28 ± 0.10	4.02	2.81 - 5.23	Pass
MAAP-1057	2/1/2016	Mn-54	4.90 ± 0.13	4.53	3.17 - 5.89	Pass
MAAP-1057	2/1/2016	Zn-65	4.09 ± 0.18	3.57	2.50 - 4.64	Pass
MAAP-1057	2/1/2016	Am-241	0.059 ± 0.015	0.0805	0.0564 - 0.1047	Pass
MAAP-1057	2/1/2016	Pu-238	0.066 ± 0.020	0.0637	0.0446 - 0.0828	Pass
MAAP-1057	2/1/2016	Pu-239/240	0.074 ± 0.020	0.099	NA ^d	Pass
MAAP-1057	2/1/2016	U-234/233	0.151 ± 0.026	0.165	0.116 - 0.215	Pass
MAAP-1057	2/1/2016	U-238	0.160 ± 0.026	0.172	0.120 - 0.224	Pass
MAVE-1050	2/1/2016	Cs-134	9.83 ± 0.19	10.62	7.43 - 13.81	Pass
MAVE-1050	2/1/2016	Cs-137	6.06 ± 0.19	5.62	3.93 - 7.31	Pass
MAVE-1050	2/1/2016	Co-57	13.8 ± 0.2	11.8	8.3 - 15.3	Pass
MAVE-1050	2/1/2016	Co-60	0.022 ± 0.040	0.00	NA ^c	Pass
MAVE-1050	2/1/2016	Mn-54 👘	0.009 ± 0.044	0.000	~ NA ° ~	Pass
MAVE-1050	2/1/2016	Zn-65	10.67 ± 0.39	9.60	6.70 - 12.50	Pass
MASO-4780 ^f	8/1/2016	Ni-63	648 ± 14	990	693 - 1287	Fail
MASO-4780 ⁹	8/1/2016	Ni-63	902 ± 46	990	693 - 1287	Pass
MASO-4780	8/1/2016	Sr-90	757 ± 16	894	626 - 1162	Pass
MASO-4780	8/1/2016	Tc-99	559 ± 12	556	389 - 723	Pass
MASO-4780	8/1/2016	Cs-134	0.93 ± 2.92	0.00	NA ^c	Pass
MASO-4780	8/1/2016	Cs-137	1061 ± 12	1067	747 - 1387	Pass
MASO-4780	8/1/2016	Co-57	1178 ± 8	1190	833 - 1547	Pass
MASO-4780	8/1/2016	Co-60	841 ± 9	851	596 - 1106	Pass
MASO-4780	8/1/2016	Mn-54	0.69 ± 2.53	0.00	NA ^c	Pass
MASO-4780	8/1/2016	Zn-65	724 ± 19	695	487 - 904	Pass
MASO-4780	8/1/2016	K-40	566 ± 52	588	412 - 764	Pass
MASO-4780	8/1/2016	Am-241	0.494 ± 0.698	0.000	NA ^c	Pass
MASO-4780	8/1/2016	Pu-238	69.7 ± 7.4	70.4	49.3 - 91.5	Pass
MASO-4780	8/1/2016	Pu-239/240	53.9 ± 6.3	53.8	37.7 - 69.9	Pass
MASO-4780 ^h	8/1/2016	U-233/234	46.8 ± 3.9	122	85 - 159	Fail
MASO-4780 ^h	8/1/2016	U-238	46.6 ± 3.9	121	85 - 157	Fail
MAW-4776	8/1/2016	I-129	4.40 ± 0.20	4.54	3.18 - 5.90	Pass
MAVE-4782	8/1/2016	Cs-134	-0.01 ± 0.05	0.00	NA ^c	Pass
MAVE-4782	8/1/2016	Cs-137	6.18 ± 0.20	5.54	3.88 - 7.20	Pass
MAVE-4782	8/1/2016	Co-57	8.13 ± 0.16	6.81	4.77 - 8.85	Pass
MAVE-4782	8/1/2016	Co-60	5.30 ± 0.15	4.86	3.40 - 6.32	Pass
MAVE-4782	8/1/2016	Mn-54	8.08 ± 0.24	7.27	5.09 - 9.45	Pass
MAVE-4782	8/1/2016	Zn-65	6.24 ± 0.36	5.40	3.78 - 7.02	Pass
MAAP-4784	8/1/2016	Sr-90	1.18 ± 0.10	1.03	0.72 - 1.34	Pass
MAAP-4784	8/1/2016	Cs-134	1.58 ± 0.08	2.04	1.43 - 2.65	Pass

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) ENVIRONMENTAL, INC., 2016

				Concentration	3	
	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAAP-4784	8/1/2016	Cs-137	1.85 ± 0.09	1.78	1.25 - 2.31	Pass
MAAP-4784	8/1/2016	Co-57	2.39 ± 0.52	2.48	1.74 - 3.22	Pass
MAAP-4784	8/1/2016	Co-60	3.22 ± 0.08	3.26	2.28 - 4.24	Pass
MAAP-4784	8/1/2016	Mn-54	2.82 ± 0.12	2.75	1.93 - 3.58	Pass
MAAP-4784	8/1/2016	Zn-65	-0.015 ± 0.062	0.00	NA ^c	Pass
MAAP-4784	8/1/2016	Am-241	-0.001 ± 0.006	0.00	NA ^c	Pass
MAAP-4784	8/1/2016	Pu-238	0.075 ± 0.022	0.069	0.049 - 0.090	Pass
MAAP-4784	8/1/2016	Pu-239/240	0.048 ± 0.015	0.054	0.038 - 0.070	Pass
MAAP-4784	8/1/2016	U-234/233	0.151 ± 0.036	0.150	0.105 - 0.195	Pass
MAAP-4784	8/1/2016	U-238	0.147 ± 0.034	0.156	0.109 - 0.203	Pass
MAW-4778	8/1/2016	H-3	365 ± 11	334	234 - 434	Pass
MAW-4778	8/1/2016	Fe-55	23.6 ± 16.3	21.5	15.1 ± 28.0	Pass
MAW-4778	8/1/2016	Ni-63	17.0 ± 2.8	17.2	12.0 ± 22.4	Pass
MAW-4778	8/1/2016	Sr-90	0.17 ± 0.28	0.00	NA ^c	Pass
MAW-4778	8/1/2016	Tc-99	9.50 ± 0.41	11.60	8.10 - 15.10	Pass
MAW-4778	8/1/2016	Cs-134	22.6 ± 0.4	23.9	16.7 - 31.1	Pass
MAW-4778	8/1/2016	Cs-137	0.018 ± 0.117	0.00	NA °	Pass
MAW-4778	8/1/2016	Co-57	27.6 ± 0.2	27.3	19.1 ± 35.5	Pass
MAW-4778	8/1/2016	Co-60	0.018 ± 0.090	0.00	NA °	Pass
MAW-4778	8/1/2016	Mn-54	16.2 ± 0.4	14.8	10.4 - 19.2	Pass
MAW-4778	8/1/2016	Zn-65	19.3 ± 0.7	17.4	12.2 - 22.6	Pass
MAW-4778	8/1/2016	K-40	286 ± 6	252	176 - 328	Pass
MAW-4778	8/1/2016	Ra-226	1.48 ± 0.09	1.33	0.93 - 1.73	Pass
MAW-4778	8/1/2016	Pu-238	1.09 ± 0.13	1.13	0.79 - 1.47	Pass
MAW-4778	8/1/2016	Pu-239/240	0.003 ± 0.011	0.016	NA ^d	Pass
MAW-4778	8/1/2016	U-234/233	1.80 ± 0.13	1.86	1.30 - 2.42	Pass
MAW-4778	8/1/2016	U-238	1.77 ± 0.13	1.92	1.34 - 2.50	Pass
MAW-4778	8/1/2016	Am-241	0.678 ± 0.086	0.814	0.570 ± 1.058	Pass

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

^d Provided in the series for "sensitivity evaluation". MAPEP does not provide control limits.

^e The laboratory properly identified the Sn-75 interfering peak in the vicinity of Co-57 and stated so in the comment field. MAPEP requires results to be reported as an activity with an uncertainty. Since the calculated uncertainty was less than the activity MAPEP interpreted the submitted result as a "false positive" resulting in a failure.

^f Original analysis for Ni-63 failed.

^g Reanalysis with a smaller aliquot resulted in acceptable results. An investigation is in process to identify better techniques for analyzing samples with complex matrices.

^h MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO³ and HCI acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment can not assure complete dissolution. Results are consistent with measuring the soluble form.

			Concentration (pCi/L)							
	Lab Code	Date	Analysis	Laboratory	ERA	Control	<u></u>			
			-	Result	Result	Limits	Acceptance			
	•••••••									
	ERW-1392	4/4/2016	Sr-89	43.5 ± 4.3	48.2	37.8 - 55.6	Pass			
	ERW-1392	4/4/2016	Sr-90	27.5 ± 1.9	28.5	20.7 - 33.1	Pass			
	ERW-1394 ^b	4/4/2016	Ba-133	65.2 ± 3.8	58.8	48.7 - 64.9	Fail			
	ERW-1394 °	4/4/2016	Ba-133	57.8 ± 5.3	58.8	48.7 - 64.9	Pass			
x	ERW-1394	4/4/2016	Cs-134	43.7 ± 3.0	43.3	34.6 - 47.6	Pass			
	ERW-1394	4/4/2016	Cs-137	86.1 ± 5.3	78.4	70.6 - 88.9	Pass			
	ERW-1394	4/4/2016	Co-60	108 ± 44	102	91.8 - 114	Pass			
	ERW-1394	4/4/2016	Zn-65	240 ± 13	214	193 - 251	Pass			
	ERW-1397	4/4/2016	Gr. Alpha	52.0 ± 2.2	62.7	32.9 - 77.8	Pass			
	ERW-1397	4/4/2016	Gr. Beta	33.9 ± 1.2	39.2	26.0 - 46.7	Pass			
	ERW-1400	4/4/2016	I-131	24.7 ± 0.6	26.6	22.1 - 31.3	Pass			
	ERW-1402	4/4/2016	Ra-226	15.6 ± 0.5	15.2	11.3 - 17.4	Pass			
ter an the second	ERW-1402	4/4/2016	Ra-228	5.28 ± 0.76	5.19	3.12 - 6.93	Pass			
	ERW-1403	4/4/2016	Uranium	4.02 ± 0.42	4.64	3.39 - 5.68	Pass			
	ERW-1405	4/4/2016	H-3	8,150 ± 270	7,840	6,790 - 8,620	Pass			
	SPW-2845	7/7/2015	Ba-133	60.3 ± 5.7	64.7	53.9 - 71.2	Pass			
	SPW-2845	7/7/2015	Cs-134	48.8 ± 9.3	50.1	40.3 - 55.1	Pass			
	SPW-2845	7/7/2015	Cs-137	101 ± 8	89.8	80.8 - 101	Pass			
	SPW-2845	7/7/2015	Co-60	65.1 ± 5.8	59.9	53.9 - 68.4	Pass			
	SPW-2845	7/7/2015	Zn-65	288 ± 29	265	238 - 310	Pass			
	ERW-3485	7/11/2016	Sr-89	43.3 ± 6.5	53.3	42.3 - 60.9	Pass			
	ERW-3485	7/11/2016	Sr-90	39.0 ± 2.8	39.2	28.8 - 45.1	Pass			
	ERW-3487	7/11/2016	Ba-133	83.3 ± 4.9	82.9	69.7 - 91.2	Pass			
	ERW-3487	7/11/2016	Cs-134	62.5 ± 4.4	65.3	53.1 - 71.8	Pass			
	ERW-3487	7/11/2016	Cs-137	98.1 ± 5.6	95.2	85.7 - 107	Pass			
	ERW-3487	7/11/2016	Co-60	122 ± 5	117	105 - 131	Pass			
	ERW-3487	7/11/2016	Zn-65	124 ± 9	113	102 - 134	Pass			
	ERW-3490	7/11/2016	Gr. Alpha	46.6 ± 2.2	48.1	25.0 - 60.5	Pass			
	ERW-3490	7/11/2016	Gr. Beta	26.8 ± 1.1	28.6	18.2 - 36.4	Pass			
	ERW-3492	7/11/2016	I-131	23.7 ± 1.0	24.9	20.7 - 29.5	Pass			
	ERW-3493	7/11/2016	Ra-226	12.9 ± 0.4	12.3	9.2 - 14.2	Pass			
	ERW-3493	7/11/2016	Ra-228	5.8 ± 0.8	5.8	3.5 - 7.6	Pass			
	ERW-3493	7/11/2016	Uranium	32.8 ± 0.8	25.2	28.4 - 39.3	Pass			
	ERW-3495	7/11/2016	H-3	12,400 ± 334	12,400	10,800 - 13,600	Pass			

TABLE D-6 Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)^a RAD Study, ENVIRONMENTAL, INC., 2016

,

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b No reason determined for failure of Ba-133 result.

^c The result of reanalysis (Compare to original result, footnoted "b" above).

Intentionally left blank

APPENDIX E

EFFLUENT REPORT

Intentionally left blank

and the second second

TABLE OF CONTENTS

1
2
3
4
4
4
4
4
5
5
6
6

Table of Contents (cont.)

APPENDIX E-1 DATA TABLES AND FIGURES

Station Releases

	Table 1.1-1 Gaseous Effluents Summation of all Releases	E-1.1
	Table 1.2-1 Liquid Effluents Summation of all Releases	E-1.3
	Table 3.1-1 Maximum Doses Resulting from Airborne Releases	E-1.5
	Table 3.2-1 Maximum Doses Resulting from Liquid Effluents	E-1.16
	Table 3.3-1 10CFR20 Compliance Assessment	E-1.26
	Table 3.4-1 Maximum Doses Resulting from Airborne Releases Based	
	On Concurrent Meteorological Data	E-1.28
. 61 s	يان المان الما المان المان الم	ν.

INTRODUCTION

Braidwood Station, a two-unit PWR station, is located in Will County, Illinois, fifteen (15) miles south-southwest of Joliet, Illinois. Each reactor is designed to have a capacity of 3,587 thermal megawatts. Unit No. 1 went critical on May 29, 1987, and Unit No. 2 went critical on March 8, 1988. The station has been designed to keep releases to the environment at levels below those specified in the regulations.

Liquid effluents from Braidwood Station are released to the Kankakee River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere and are calculated on the basis of analyses of grab samples of noble gases and tritium, as well as continuously collected composite samples of iodine and particulate activity sampled during the course of the year. The results of effluent analyses are summarized on a monthly basis. Airborne concentrations of noble gases, I-131, and particulate radioactivity in offsite areas are calculated using effluent and meteorological data. Carbon-14 (C-14) concentration in offsite areas is calculated based on industry-approved methodology for estimation of the amount released and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of Braidwood Station to measure changes in radiation or radioactivity levels that may be attributable to station operations. If significant changes attributable to Braidwood Station are measured, these changes are correlated with effluent releases. An environmental monitoring program is conducted which also includes all potential pathways at the site. Gaseous pathways include ground plane (direct), inhalation, vegetation, meat, and milk. Liquid pathways include potable water and freshwater fish. The critical pathway for 2016 gaseous dose was vegetation. The critical pathway for 2016 liquid dose was potable water.

<u>SUMMARY</u>

Calculations based on gaseous and liquid effluents, Kankakee River Flow and meteorological data indicate that public dose due to radioactive material attributable to Braidwood Station during the period does not exceed regulatory or Offsite Dose Calculation Manual (ODCM) limits.

The maximally exposed individual's total body dose due to gaseous and liquid emissions from licensed activities at Braidwood Station is 1.93E+00 mrem.

The assessment of radiation doses to the public is performed in accordance with the ODCM. The results of these analyses confirm that the station is operating in compliance with 10 CFR 50 Appendix I, 10 CFR 20 and 40 CFR 190.

1.0 EFFLUENTS

1.1 Gaseous Effluents to the Atmosphere

Measured concentrations of noble gases, radioiodine, C-14, tritium, and particulate radioactivity released to the atmosphere during the year, are listed in Table 1.1-1.

A total of 1.50E-01 curies of fission and activation gases were released with a maximum quarterly average release rate of $6.01E-03 \mu Ci/sec$ for Unit 1 and $6.01E-03 \mu Ci/sec$ for Unit 2.

A total of 7.11E-04 curies of radioiodine were released during the year with a maximum average quarterly release rate of 2.89E-05 μ Ci/sec for Unit 1 and 6.05E-05 μ Ci/sec for Unit 2.

A total of 0.00E+00 curies of beta-gamma emitters were released as airborne particulate matter with a maximum average release rate of <LLD μ Ci/sec for Unit 1 and <LLD μ Ci/sec for Unit 2. Alpha-emitting radionuclides were below the lower limit of detection (LLD) for the year.

A total of 2.13E+02 curies of tritium were released with a maximum average quarterly release rate of 4.55E+00 μ Ci/sec for Unit 1 and 5.98E+00 μ Ci/sec for Unit 2.

A total of 8.84E+00 curies of C-14 was released with a maximum average quarterly release rate of 1.61E-01 μ Ci/sec from Unit 1 and 1.49E-01 μ Ci/sec from Unit 2.

Alpha-emitting radionuclides were less than the LLD for the year.

1.2 Liquids Released to Kankakee River

A total of 4.44E+10 liters of radioactive liquid wastes (prior to dilution) containing 2.98E-02 curies (excluding tritium, noble gases and alpha) were discharged from the station. These wastes were released at a maximum quarterly diluted average concentration of 1.13E-09 μ Ci/ml. Alpha-emitting radionuclides were less than the LLD for the year. A total of 3.40E+03 curies of tritium were released from the station. Quarterly release activities are given in Table 1.2-1.

2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck to the Energy Solutions and Waste Control Specialists disposal facilities and various waste processors.

For details, refer to the Braidwood Station 2016 Radioactive Effluent Release Report.

3.0 DOSE TO MAN

3.1 Gaseous Effluent Pathways

Table 3.1-1 summarizes the doses resulting from releases of airborne radioactivity via the different exposure pathways. Based on measured effluents and average meteorological data, the maximum total body dose to an individual would be 4.03E-01 mrem for the year (Table 3.1-1) with an occupancy or shielding factor of 0.7 used. The maximum total body dose based on measured effluents and concurrent meteorological data would be 5.37E-01 mrem (Table 3.4-1).

3.1.1 Noble Gases

Offsite Gamma air and total body dose rates are shown in Table 3.1-1 and were calculated based on measured effluents and average meteorological data. The maximum gamma air dose was 1.36E-06 mrad (Table 3.1-1) based on measured effluents and average meteorological data and 2.28E-06 mrad based on concurrent meteorological date (Table 3.4-1).

3.1.1.2 Beta Air and Skin Dose

The range of beta particles in air is relatively small (on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is taken to have a thickness of 7.0 ma/cm^2 and an occupancy factor of 1.0 is used. Based on measured effluents and average meteorological data, the skin dose from beta and gamma radiation for the year was 3.45E-6 mrem (Table 3.1-1). The skin dose from beta and gamma radiation for the year was 3.78E-06 mrem based on concurrent

meteorological data (Table 3.4-1).

The maximum offsite beta air dose for the year was 6.03E-06 mrad (Table 3.1-1) based on measured effluents and average meteorological data and 6.22E-06 mrad based on concurrent meteorological data (Table 3.4-1).

3.1.2 Radioactive lodine & Particulate

The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine. I-131 released during routine operation of the station may be made available to man resulting in a dose to the thyroid. C-14 is also included in this category. C-14 exhibits a capacity to concentrate in bone. C-14 is released in gaseous form and is absorbed into vegetation through photosynthesis. The principal pathways of interest for C-14 are the consumption of vegetation by humans and milk from which animals have ingested C-14 through the consumption of vegetation. With the inclusion of C-14 in plant effluent calculations, human dose in this category is primarily driven by the release of C-14 from the plant.

The hypothetical dose to the maximum exposed individual living near the station via ingestion of milk and vegetation was calculated. The dose contributions included in the section include tritium. The source of milk and vegetation was assumed to be at the nearest site boundary with the cows pastured and vegetation grown from May through October. The maximum dose from radioactive iodine and particulate (including C-14 and tritium) to any organ was 1.86E+00 mrem (child/bone) based on measured effluents and average meteorological data and 2.45E+00 mrem based on concurrent meteorological data. The maximum dose from radioactive iodine and particulate (including C-14) to the whole body was 4.03E-01 mrem (child) based on measured effluents and average meteorological data and 5.37E-01 mrem based on concurrent meteorological data.

3.2 Liquid Effluent Pathways

Scal Second

The three principal pathways through the aquatic environment for potential doses to man from liquid waste are ingestion of potable water, eating aquatic foods, and exposure while on the shoreline. Not all of these pathways are significant or applicable at a given time or station but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic environment. NRC developed equations were used to calculate the doses to the whole body, lower GI tracts, thyroid, bone and skin; specific parameters for use in the equations are given in the Braidwood Offsite Dose Calculation Manual. The maximum whole body dose and any organ dose for the year was 7.37E-02 mrem (Table 3.2-1 [child]) and 7.38E-02 mrem, respectively (Table 3.2-1 [child]).

3.3 Assessment of Dose to Member of Public

During the period January to December, 2016, Braidwood Station did not exceed the following limits as shown in Table 3.1-1 and Table 3.2-1 (based on annual average meteorological data), Table 3.4-1 (based on concurrent meteorological data), and Table 3.3-1:

- The RETS limits on dose or dose commitment to an individual due to radioactive materials in liquid effluents from each reactor unit (1.5 mrem to the whole body or 5 mrem to any organ during any calendar year; 3 mrem to the whole body or 10 mrem to any organ during the calendar year).
- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor unit (5 mrads for gamma radiation or 10 mrad for beta radiation during any calendar quarter; 10 mrad for gamma radiation or 20 mrad for beta radiation during a calendar year).
- The RETS limits on dose to a member of the public due to iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from each reactor unit (7.5 mrem to any organ during any calendar quarter; 15 mrem to any organ during any calendar year).
- The 10 CFR 20 limit on Total Effective Dose Equivalent to individual members of the public (100 mrem) during any calendar year.

4.0 SITE METEOROLOGY

A summary of the site meteorological measurements taken during each calendar quarter of the year is given in Appendix F. The data are presented as cumulative joint frequency distributions of the wind direction for the 203' level and wind speed class by atmospheric stability class determined from the temperature difference between the 199' and 30' levels. Data recovery

for these measurements was 99.8% during 2016.

Intentionally left blank

i por e concerno e por El interno e **APPENDIX E-1**

DATA TABLES AND FIGURES

Table 1.1-1

BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2016 GAS RELEASES UNIT 1 (Docket Number 50-456) SUMMATION OF ALL RELEASES

Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Est. Total Error%
-------	---------	---------	---------	---------	----------------------

A. Fission and Activation Gas Releases

1.	Total Release Activity	Ci	<lld< th=""><th>2.28E-03</th><th>4.78E-02</th><th>2.49E-02</th><th>7.59E+00</th></lld<>	2.28E-03	4.78E-02	2.49E-02	7.59E+00
2.	Average Release Rate	mCi/sec	N/A	2.90E-04	6.01E-03	3.13E-03	
3.	Percent of ODCM Limit – gamma	%	N/A	3.63E-07	8.96E-06	4.22E-06	
4.	Percent of ODCM Limit - beta	%	N/A	8.80E-07	1.95E-05	9.81E-06	

B. Iodine Releases

1.	Total Iodine	Ci	<lld< th=""><th>2.38E-08</th><th>2.30E-04</th><th><lld< th=""><th>3.32E+01</th></lld<></th></lld<>	2.38E-08	2.30E-04	<lld< th=""><th>3.32E+01</th></lld<>	3.32E+01
2.	Average Release Rate	mCi/sec	N/A	3.02E-09	2.89E-05	N/A	
3.	Percent of ODCM Limit	%	N/A	2.47E-09	8.04E-02	N/A	

c. Particulate (> 8 day half-life) Releases

1.	Particulates with half-lives > 8 days	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<>	<lld< th=""><th>1.98E+01</th></lld<>	1.98E+01
2.	Average Release Rate	mCi/sec	N/A	N/A	N/A	N/A	
3.	Percent of ODCM Limit	%	N/A	N/A	N/A	N/A	
4.	Gross Alpha Radioactivity	Ci	N/A	N/A	N/A	N/A	

D. Tritium Releases

1.	Total Release Activity	Ci	1.91E+01	1.35E+01	3.26E+01	3.62E+01	8.07E+00
2.	Average Release Rate	mCi/sec	2.43E+00	1.72E+00	4.10E+00	4.55E+00	
3.	Percent of ODCM Limit	%	3.72E-02	2.63E-02	6.33E-02	7.03E-02	

E. Gross Alpha Releases

1.	Total Release Activity	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<>	<lld< th=""><th>1.98E+01</th></lld<>	1.98E+01
2.	Average Release Rate	mCi/sec	N/A	N/A	N/A	N/A	
3.	Percent of ODCM limit	%	N/A	N/A	N/A	N/A	1

F. Carbon-14 Releases

1.	Total Release Activity	Ci	1.11E+00	1.26E+00	1.02E+00	9.39E-01
2.	Average Release Rate	mCi/sec	1.42E-01	1.61E-01	1.29E-01	1.18E-01

Note: LLD Values are included in Appendix A of this report.

Table 1.1-1

BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2016 GAS RELEASES UNIT 2 (Docket Number 50-457) SUMMATION OF ALL RELEASES

Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Est. Total Error%
-------	---------	---------	---------	---------	----------------------

A. Fission and Activation Gas Releases

1.	Total Activity Released	Ci	<lld< th=""><th>2.28E-03</th><th>4.78E-02</th><th>2.49E-02</th><th>7.59E+00</th></lld<>	2.28E-03	4.78E-02	2.49E-02	7.59E+00
2.	Average Release Rate	mCi/sec	N/A	2.90E-04	6.01E-03	3.13E-03	
3.	Percent of ODCM Limit - gamma	%	N/A	3.63E-07	8.96E-06	4.22E-06	
4.	Percent of ODCM Limit - beta	%	N/A	8.80E-07	1.95E-05	9.81E-06	

B. Iodine Releases

1.	Total Iodine	Ci	<lld< th=""><th><lld< th=""><th>4.81E-04</th><th><lld< th=""><th>3.32E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th>4.81E-04</th><th><lld< th=""><th>3.32E+01</th></lld<></th></lld<>	4.81E-04	<lld< th=""><th>3.32E+01</th></lld<>	3.32E+01
2.	Average Release Rate	mCi/sec	N/A	N/A	6.05E-05	N/A	u.
3.	Percent of ODCM Limit	%	N/A	N/A	5.01E-05	N/A	

c. Particulate (> 8 day half-life) Releases

1.	Particulates with half-lives > 8 days	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<>	<lld< th=""><th>1.98E+01</th></lld<>	1.98E+01
2.	Average Release Rate	mCi/sec	N/A	N/A	N/A	N/A	
3.	Percent of OCDM Limit	%	N/A	N/A	N/A	N/A	
4.	Gross Alpha Radioactivity	Ci	N/A	N/A	N/A	N/A	

D. Tritium Releases

1.	Total Release Activity	Ci	1.52E+01	1.67E+01	4.76E+01	3.21E+01	8.07E+00
2.	Average Release Rate	mCi/sec	1.93E+00	2.13E+00	5.98E+00	4.04E+00	
3.	Percent of ODCM Limit	%	2.95E-02	3.25E-02	9.25E-02	6.25E-02	

E. Gross Alpha Releases

1.	Total Release Activity	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>1.98E+01</th></lld<></th></lld<>	<lld< th=""><th>1.98E+01</th></lld<>	1.98E+01
2.	Average Release Rate	mCi/sec	N/A	N/A	N/A	N/A	
3.	Percent of ODCM Limit	%	N/A	N/A	N/A	N/A	

F. Carbon-14 Releases

1.	Total Release Activity	Ci	1.17E+00	1.12E+00	1.11E+00	1.11E+00
2.	Average Release Rate	mCi/sec	1.49E-01	1.42E-01	1.39E-01	1.40E-01

Note: LLD Values are included in Appendix A of this report.

Table 1.2-1

BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2016 LIQUID RELEASES UNIT 1 (Docket Number 50-456) SUMMATION OF ALL RELEASES

Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Est. Total Error %
-------	---------	---------	---------	---------	-----------------------

A. Fission and Activation Products

1.	Total Release	Ci	3.05E-04	3.89E-05	9.07E-03	5.46E-03	2.64E+00
2.	Average Diluted Concentration	mCi/ml	4.18E-11	7.20E-12	1.13E-09	6.58E-10	
3.	Percent of applicable limit	%	*	*	*	*	

B. Tritium

1.	Total Release	Ci	1.45E+02	2.84E+02	8.16E+02	4.50E+02	5.85E+00
2.	Average Diluted Concentration	mCi/ml	1.99E-05	5.26E-05	1.01E-04	5.43E-05	
3.	% of Limit (1E-2 μCi/ml)	%	1.99E-01	5.26E-01	1.01E+00	5.43E-01	

C. Dissolved Noble Gases

1.	Total Release	Ci	<lld< th=""><th><lld< th=""><th>7.72E-07</th><th>3.80E-05</th><th>2.64E+00</th></lld<></th></lld<>	<lld< th=""><th>7.72E-07</th><th>3.80E-05</th><th>2.64E+00</th></lld<>	7.72E-07	3.80E-05	2.64E+00
2.	Average Diluted Concentration	mCi/ml	N/A	N/A	9.58E-14	4.59E-12	
3.	% of Limit (2E-4 μCi/ml)	%	N/A	N/A	4.79E-08	2.30E-06	

D. Gross Alpha

A. Total Release	Ci	<lld< th=""><th><lld< th=""><th><lld< th=""><th><lld< th=""><th>1.47E+01</th></lld<></th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th><lld< th=""><th>1.47E+01</th></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""><th>1.47E+01</th></lld<></th></lld<>	<lld< th=""><th>1.47E+01</th></lld<>	1.47E+01
E. Volume of Waste Released (prior to dilution)	liters	6.11E+09	3.87E+09	6.13E+09	6.10E+09	
F. Volume of Dilution Water	liters	7.29E+09	5.40E+09	8.06E+09	8.29E+09]

Note: LLD Values are included in Appendix A of this report.

Note: % Limit Values are included in Appendix C of this report.

*This limit is equal to 10 times the concentration values in Appendix B, Table 2, Column 2 to 10CFR20.1001-20.2402, except for Dissolved Noble Gases. The limits for Dissolved Noble Gases are found the Braidwood Station ODCM, Table C-6 of ODCM Appendix C for Noble Gases.

Table 1.2-1

BRAIDWOOD NUCLEAR POWER STATION ANNUAL EFFLUENT REPORT FOR 2016 LIQUID RELEASES UNIT 2 (Docket Number 50-457) SUMMATION OF ALL RELEASES

Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Est. Total Error %	
-------	---------	---------	---------	---------	-----------------------	--

A. Fission and Activation Products

1.	Total Release	Ci	3.05E-04	3.89E-05	9.07E-03	5.46E-03	2.64E+00
2.	Average Diluted Concentration	mCi/ml	4.18E-11	7.20E-12	1.13E-09	6.58E-10	
3.	Percent of applicable limit	%	*	*	*	*	

B. Tritium

.

5 har	• All gamma in the hold of many of the second se			ł ,		· +	-
1.	Total Release	Ci	1.45E+02	2.84E+02	8.16E+02	4.50E+02	5.85E+00
2.	Average Diluted Concentration	mCi/ml	1.99E-05	5.26E-05	1.01E-04	5.43E-05	
3.	% of Limit (1E-2 μCi/ml)	%	1.99E-01	5.26E-01	1.01E+00	5.43E-01	

C. Dissolved Noble Gases

1.	Total Activity Released	Ci	<lld< th=""><th><lld< th=""><th>7.72E-07</th><th>3.80E-05</th><th>2.64E+00</th></lld<></th></lld<>	<lld< th=""><th>7.72E-07</th><th>3.80E-05</th><th>2.64E+00</th></lld<>	7.72E-07	3.80E-05	2.64E+00
2.	Average Diluted Concentration	mCi/ml	N/A	N/A	9.58E-14	4.59E-12	
3.	% of Limit (2E-4 μCi/ml)	%	N/A	N/A	4.79E-08	2.30E-08	

D. Gross Alpha

1 Total Release						4 475.04		
1. I otal Release	L Ci	<lld< td=""><td> <lld< td=""><td><lld< td=""><td><lld< td=""><td>1.47E+01</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.47E+01</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.47E+01</td></lld<></td></lld<>	<lld< td=""><td>1.47E+01</td></lld<>	1.47E+01		

E. Volume of Waste Released (prior to dilution)	liters	6.11E+09	3.87E+09	6.13E+09	6.10E+09
F. Volume of Dilution Water	liters	7.29E+09	5.40E+09	8.06E+09	8.29E+09

Note: LLD Values are included in Appendix A of this report.

Note: % Limit Values are included in Appendix C of this report.

*This limit is equal to 10 times the concentration values in Appendix B, Table 2, Column 2 to 10CFR20.1001-2402, except for Dissolved Noble Gases. The limits for Dissolved Noble Gases are found the Braidwood Station ODCM, Table C-6 of ODCM Appendix C for Noble Gases.

Table 3.1-1

RELEASE AND DOSE SUMMARY REPORT PARAMETERS
Date: 3/22/2017 10:49:40 AM Database: BWDOpenEMS_PROD Username: Admin
Permit Type: Gas Start Date
<pre>Sum By: Receptor, Pathway, and Nuclide Include Open Permits: No Release Sources: U1/U2 Gas Abnormal Batch Rel U1/U2 Gas Abnormal Cont Rel Unit 1 Containment Purge Unit 1 DDAF Batch Rel Unit 1 Stack Waste Gas Decay Tank - A Waste Gas Decay Tank - D Waste Gas Decay Tank - D </pre>
Waste Gas Decay Tank - E Waste Gas Decay Tank - F Pathways: Cow Milk Ground Plane
Inhalation Meat Vegetation
Receptors: Critical Receptor / Adult Critical Receptor / Child Critical Receptor / Infant Critical Receptor / Teenager Site Boundary / Adult Site Boundary / Child Site Boundary / Infant Site Boundary / Teenager
Nuclides H-3,C-14,Br-82,Cd-109,I-131,I-132,I-133,Xe-133,Xe-135
RELEASE TOTALS BY RELEASE MODE
Release Mode Mixed Release Duration: 5.559e+05 minutes Release Volume: 7.871e+10 cf Average Flowrate: 1.416e+05 cfm
Activity Avg Conc Avg Conc/ Nuclide (uCi) (uCi/mL) ECL MPC
H-3 1.014e+08 4.549e-08 6.147e-06 C-14 4.342e+06 1.948e-09 5.265e-07 I-131 1.101e+01 4.939e-15 1.335e-09 I-132 2.187e+02 9.811e-14 8.838e-10 I-133 1.430e-01 6.414e-17 4.334e-12 Xe-133 7.264e+04 3.259e-11 2.936e-09 Xe-135 2.270e+03 1.018e-12 2.752e-10 TOTAL : 1.058e+08 6.679e-06

						ose = mRem				
Receptor Receptor Receptor Nuclide	Name: Cri Name: Cri Name: Cri Total Boo	itical Rece itical Rece itical Rece itical Rece itical Rece Skin	eptor / eptor / eptor / Gam	Child Infan Teena	t					
Xe-133 Xe-135	4.821e-07 9.275e-08	1.461e-0 3 2.646e-0	06 5.7 07 9.8	89e-07 39e-08	2.808 2.056	e-06 e-07				
		1.726e-(
Receptor Receptor Receptor Nuclide	Name: Sit Name: Sit Name: Sit Total Boo	te Boundary te Boundary te Boundary te Boundary d Skin	y / Chi y / Inf y / Tee Gam	ld ant nager ma	Beta					
Xe-133 Xe-135	4.821e-07 9.275e-08	3.350e-0 6.234e-0	06 5.7 07 9.8	89e-07	9.289 6.801	e-06 e-07				
		3.973e-0								
							τ			
		EPTOR (Dos								
Pathway	Nuclide	tical Rece Bone	Liver	To	tal Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Cow Milk					~ ~ ~ ~ ~ ~					
	I-132 I-133 Xe-133 Xe-135	5.802e-02 1.697e-06 1.876e-14 2.888e-10 0.000e+00 0.000e+00	1.160e 2.428e 5.017e 5.022e 0.000e 0.000e	-02 1. -06 1. -14 1. -10 1. +00 0. +00 0.	160e-02 392e-06 755e-14 531e-10 000e+00 000e+00	1.624e-03 1.160e-02 7.959e-04 1.755e-12 7.381e-08 0.000e+00 0.000e+00	1.160e-02 4.162e-06 7.992e-14 8.767e-10 0.000e+00 0.000e+00	1.160e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.160e-02 6.405e-07 9.424e-15 4.514e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground P	lane									
	I-133 Xe-133 Xe-135	1.424e-07 1.825e-10 0.000e+00 0.000e+00	1.424e 1.825e 0.000e 0.000e	-07 1. -10 1. +00 0. +00 0.	424e-07 825e-10 000e+00 000e+00	9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	1.424e-07 1.825e-10 0.000e+00 0.000e+00	1.424e-07 1.825e-10 0.000e+00 0.000e+00	1.424e-07 1.825e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
Inhalatio				-						
	Xe-135	2.909e-03 1.021e-08 9.338e-09 4.547e-11 0.000e+00 0.000e+00	5.450e 1.451e 2.624e 7.790e 0.000e 0.000e	-04 5. -08 8. -08 9. -11 2. +00 0. +00 0.	450e-04 307e-09 338e-09 379e-11 000e+00 000e+00	2.680e-03 5.450e-04 4.822e-06 9.177e-07 1.132e-08 0.000e+00 0.000e+00	5.450e-04 2.484e-08 4.170e-08 1.358e-10 0.000e+00 0.000e+00	5.450e-04 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.450e-04 2.545e-09 3.268e-09 4.674e-11 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Meat	H-3 C-14 I-131 I-132 I-133 Xe-133	0.000e+00 5.323e-02 6.136e-08 0.000e+00 2.756e-17 0.000e+00	6.905e 1.065e 8.831e 0.000e 4.789e 0.000e	-04 6. -02 1. -08 5. +00 0. -17 1. +00 0.	905e-04 065e-02 046e-08 000e+00 460e-17 000e+00	6.905e-04 1.065e-02 2.884e-05 0.000e+00 7.039e-15 0.000e+00 0.000e+00	6.905e-04 1.065e-02 1.508e-07 0.000e+00 8.342e-17 0.000e+00	6.905e-04 1.065e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00	6.905e-04 1.065e-02 2.322e-08 0.000e+00 4.305e-17 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Vegetatio									
	Н-З		4.815e-03						
	C-14	1.434e-01	2.861e-02	2.861e-02	2.861e-02	2.861e-02	2.861e-02	2.861e-02	0.000e+00
	I-131	4.628e-07	6.595e-07	3.796e-07	2.168e-04	1.135e-06	0.000e+00	1.749e-07	0.000e+00
	I-132	6.357e-12	1.697e-11	5.946e-12	5.946e-10	2.711e-11	0.000e+00	3.190e-12	0.000e+00
	I-133		2.696e-10						
	Xe-133		0.000e+00						
			0.000e+00						
		IDES TOTAL		•					
UDD EVIUM	MID/NOCH		6.122e-02	6 1220-02	6 2260-02	6 1220-02	6 1210 02	6 1220-02	0.0000100
		2.5/58-01	0.1228-02	0.1228-02	0.2208-02	0.1228-02	0.1210-02	0.1228-02	0.00000000
Recentor	Name Cr	itical Roc	eptor / Ch	14					
					Thuroid	Kidney	Lung	GI-Lli	Skin
- aciiway	MUCTIOE	Bone	Liver	IOLAI BOU	INYLOIU	Kraney	Lung	GI-DIT	SKIN
Cow Milk									,
COW MITH	11 2	0.000+100	2 240- 02	2 240 - 02	2 240 - 02	2 240 - 02	2 240 - 02	2 240 - 02	0.000-100
	H-3		3.348e-03						
	C-14		5.259e-02						
	I-131		7.512e-06						
	I-132		1.447e-13						
	I-133		1.586e-09						
			0.000e+00						
	Xe-135	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
			~	-:					
Ground Pl	ane								
	I-131	9.863e-08	9.863e-08	9.863e-08	9.863e-08	9.863e-08	9.863e-08	9.863e-08	0.000e+00
	I-132	1.424e-07	1.424e-07	1.424e-07	1.424e-07	1.424e-07	1.424e-07	1.424e-07	0.000e+00
	I-133		1.825e-10						
			0.000e+00						
			0.000e+00						
Inhalatio	n			•					
-imaracro	н-3	0 0000+00	2.389e-03	2 3890-03	2 3890-03	2 3890-03	2 3890-03	2 3890-03	0 0000+00
	C-14		1.076e-03						
	I-131		1.949e-08						
	I-132		3.276e-08						
	I-133		1.068e-10						
	Xe-133		0.000e+00						
			0.000e+00						
				-:					
Meat									
	н-З		5.001e-04						
	H-3 C-14	8.455e-02	1.694e-02	1.694e-02	1.694e-02	1.694e-02	1.694e-02	1.694e-02	0.000e+00
		8.455e-02		1.694e-02	1.694e-02	1.694e-02	1.694e-02	1.694e-02	0.000e+00
	C-14	8.455e-02 9.462e-08	1.694e-02	1.694e-02 5.419e-08	1.694e-02 3.154e-05	1.694e-02 1.565e-07	1.694e-02 0.000e+00	1.694e-02 8.487e-09	0.000e+00 0.000e+00
	C-14 I-131	8.455e-02 9.462e-08 0.000e+00	1.694e-02 9.519e-08 0.000e+00	1.694e-02 5.419e-08 0.000e+00	1.694e-02 3.154e-05 0.000e+00	1.694e-02 1.565e-07 0.000e+00	1.694e-02 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00	0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133	8.455e-02 9.462e-08 0.000e+00 4.283e-17	1.694e-02 9.519e-08 0.000e+00 5.288e-17	1.694e-02 5.419e-08 0.000e+00 2.004e-17	1.694e-02 3.154e-05 0.000e+00 9.832e-15	1.694e-02 1.565e-07 0.000e+00 8.789e-17	1.694e-02 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17	0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 n H-3	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 8.547e-03	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 -: 8.547e-03	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 8.547e-03	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 n H-3 C-14	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00 0.000e+00 5.594e-01	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 0.000e+00 : 8.547e-03 1.120e-01	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03 1.120e-01	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-133 Xe-135 	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00 0.000e+00 5.594e-01 8.200e-07	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 0.000e+00 1.20e-03 1.120e-01 4.685e-07	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03 1.120e-01 2.724e-04	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 1.353e-06	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01 7.340e-08	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 n H-3 C-14 I-131 I-132	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00 5.594e-01 8.200e-07 1.017e-11	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 8.258e-07 1.868e-11	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 -: 8.547e-03 1.120e-01 4.685e-07 8.589e-12	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03 1.120e-01 2.724e-04 8.669e-10	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 1.353e-06 2.859e-11	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 7.340e-08 2.199e-11	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-133 Xe-135 	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00 5.594e-01 8.200e-07 1.017e-11	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 -: 8.547e-03 1.120e-01 4.685e-07 8.589e-12	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03 1.120e-01 2.724e-04 8.669e-10	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 1.353e-06 2.859e-11	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 7.340e-08 2.199e-11	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 Vegetatio	C-14 I-131 I-132 I-133 Xe-133 Xe-135 n H-3 C-14 I-131 I-132	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00 5.594e-01 8.200e-07 1.017e-11 2.622e-10	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 8.258e-07 1.868e-11	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 -: 8.547e-03 1.120e-01 4.685e-07 8.589e-12 1.229e-10	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03 1.120e-01 2.724e-04 8.669e-10 6.026e-08	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 1.353e-06 2.859e-11 5.407e-10	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 7.340e-08 2.199e-11 1.311e-10	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 H-3 C-14 I-131 I-132 I-133	8.455e-02 9.462e-08 0.000e+00 4.283e-17 0.000e+00 0.000e+00 5.594e-01 8.200e-07 1.017e-11 2.622e-10 0.000e+00	1.694e-02 9.519e-08 0.000e+00 5.288e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 8.258e-07 1.868e-11 3.247e-10	1.694e-02 5.419e-08 0.000e+00 2.004e-17 0.000e+00 0.000e+00 -: 8.547e-03 1.120e-01 4.685e-07 8.589e-12 1.229e-10 0.000e+00	1.694e-02 3.154e-05 0.000e+00 9.832e-15 0.000e+00 0.000e+00 8.547e-03 1.120e-01 2.724e-04 8.669e-10 6.026e-08 0.000e+00	1.694e-02 1.565e-07 0.000e+00 8.789e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 1.353e-06 2.859e-11 5.407e-10 0.000e+00	1.694e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 8.547e-03 1.120e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.694e-02 8.487e-09 0.000e+00 2.130e-17 0.000e+00 0.000e+00 8.547e-03 1.120e-01 7.340e-08 2.199e-11 1.311e-10 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

9.135e-01 1.974e-01 1.974e-01 2.002e-01 1.974e-01 1.974e-01 1.974e-01 0.000e+00

Pathway	Name: Cr Nuclide	itical Reco Bone	eptor / In: Liver	fant Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Cow Milk									
	Н-З		5.076e-03						
	C-14		1.101e-01						
	I-131		1.835e-05						
	I-132 I-133		3.315e-13 3.940e-09						
	Xe-133		0.000e+00						
	Xe-135	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
Ground Pl	ane			•					
	I-131 I-132		9.863e-08 1.424e-07						
	I-133		1.825e-10						
	Xe-133		0.000e+00						
	Xe-135	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
Inhalatio			1 070 00	1 070 00	1 070 00	1 070 00	1 070 00	1 272 02	
	H-3 C-14		1.373e-03 8.487e-04						
	L-14 I-131		1.799e-08						
	I-131		2.850e-08						
	I-133		1.011e-10						
	Xe-133		0.000e+00						
	Xe-135	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
ALL PATHW	AYS/NUCL	IDES TOTAL 5.205e-01	: 1.174e-01	1.174e-01	1.235e-01	1.174e-01	1.174e-01	1.174e-01	0.000e+00
		itical Rece							
Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Cow Milk									
	н-З	0 000e+00	2.112e-03	2.112e-03	2.112e-03	2.112e-03	2.112e-03	2.112e-03	0.000e+00
	C-14	1.071e-01	2.142e-02	2.142e-02	2.142e-02	2.142e-02	2.142e-02	2.142e-02	
	C-14 I-131	1.071e-01 3.079e-06	2.142e-02 4.312e-06	2.142e-02 2.317e-06	2.142e-02 1.256e-03	2.142e-02 7.397e-06	2.142e-02 0.000e+00	2.142e-02 8.544e-07	0.000e+00
	C-14 I-131 I-132	1.071e-01 3.079e-06 3.326e-14	2.142e-02 4.312e-06 8.703e-14	2.142e-02 2.317e-06 3.121e-14	2.142e-02 1.256e-03 2.928e-12	2.142e-02 7.397e-06 1.367e-13	2.142e-02 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14	0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133	1.071e-01 3.079e-06 3.326e-14 5.273e-10	2.142e-02 4.312e-06 8.703e-14 8.938e-10	2.142e-02 2.317e-06 3.121e-14 2.726e-10	2.142e-02 1.256e-03 2.928e-12 1.251e-07	2.142e-02 7.397e-06 1.367e-13 1.572e-09	2.142e-02 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10	0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00	2.142e-02 4.312e-06 8.703e-14	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08 1.424e-07	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
	C-14 I-131 I-132 I-133 Xe-133 Xe-135 ane I-131 I-132	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0: 9.863e-08 1.424e-07 1.825e-10	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 ane I-131 I-132 I-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 ane I-131 I-132 I-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 ane I-131 I-132 I-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 -:	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 I-131 I-132 I-133 Xe-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 -: 2.706e-03 7.784e-04	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 Ane I-131 I-132 I-133 Xe-133 Xe-133 Xe-133 Xe-135 	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 -: 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 -: 2.706e-03 7.784e-04 1.070e-08	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.070e-08 1.272e-08	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 Xe-135 Ane I-131 I-132 I-133 Xe-135 N H-3 C-14 I-131 I-132 I-131 I-132 I-133	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.070e-08 1.272e-08 3.274e-11	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06 1.537e-08	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 I-131 I-132 I-133 Xe-133 Xe-135 H-3 C-14 I-131 I-132 I-133 Xe-133 Xe-133	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 6.421e-11 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.070e-08 3.274e-11 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06 1.537e-08 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 I-131 I-132 I-133 Xe-133 Xe-135 H-3 C-14 I-131 I-132 I-133 Xe-133 Xe-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.070e-08 3.274e-11 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06 1.216e-08 0.000e+00 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 I-131 I-132 I-133 Xe-133 Xe-135 I-132 I-131 I-132 I-133 Xe-133 Xe-133 Xe-133 Xe-135	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11 0.000e+00 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.070e-08 3.274e-11 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06 1.537e-08 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 ane I-131 I-132 I-133 Xe-133 Xe-135 n H-3 C-14 I-131 I-132 I-133 Xe-135 Xe-135 H-3	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11 0.000e+00 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00 4.106e-04	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.070e-08 3.274e-11 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.537e-08 0.000e+00 0.000e+00 4.106e-04	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00 0.000e+00 	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00 4.106e-04	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 ane I-131 I-132 I-133 Xe-133 Xe-135 n H-3 C-14 I-131 I-132 I-133 Xe-135 H-3 C-14	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11 0.000e+00 0.000e+00 0.000e+00 4.491e-02	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 1.7784e-04 1.070e-08 3.274e-11 0.000e+00 0.000e+00 0.000e+00 1.106e-04 8.983e-03	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.537e-08 0.000e+00 0.000e+00 4.106e-04 8.983e-03	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00 0.000e+00 0.000e+00 	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 ane I-131 I-132 I-133 Xe-133 Xe-135 n H-3 C-14 I-131 I-132 I-133 Xe-135 H-3 C-14 I-131	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11 0.000e+00 0.000e+00 0.000e+00 4.491e-02 5.115e-08	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 7.168e-08	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.272e-08 3.274e-11 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.272e-08 3.274e-11 0.000e+00 0.000e+00 3.274e-11 0.000e+00 3.274e-04 3.274e-11 0.000e+00 3.274e-11 0.000e+00 3.274e-04 3.274e-11 0.000e+00 3.274e-04	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06 1.537e-08 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.889e-10 0.000e+00 1.889e-10 0.000e+0000000000	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00 0.000e+00 1.022e-08 5.421e-11 0.000e+00 0.000e+00 1.022e-08 5.421e-11 0.000e+00 1.020e+0000000000000000000000000000000000	0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 Xe-135 	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11 0.000e+00 0.000e+00 0.000e+00 4.491e-02 5.115e-08 0.000e+00	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 7.168e-08 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.272e-08 3.274e-11 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.272e-08 3.274e-11 0.000e+0000000000	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.216e-06 1.537e-08 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 1.233e-07 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 1.416e-08 0.000e+00	0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-133 Xe-135 	1.071e-01 3.079e-06 3.326e-14 5.273e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 4.156e-03 1.434e-08 1.280e-08 6.421e-11 0.000e+00 0.000e+00 0.000e+00 4.491e-02 5.115e-08 0.000e+00 2.302e-17	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 7.168e-08 0.000e+00 3.910e-17	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.272e-08 3.274e-11 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.106e-04 8.983e-03 3.848e-08 0.000e+00 1.192e-17	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.216e-06 1.537e-08 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.889e-13 4.106e-04 8.983e-03 1.233e-07 0.000e+00 6.852e-17	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 1.022e-08 5.421e-11 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 1.416e-08 0.000e+00 2.957e-17	0.000e+00 0.000e+00
Ground Pl	C-14 I-131 I-132 I-133 Xe-135 Xe-135 	$\begin{array}{c} 1.071e-01\\ 3.079e-06\\ 3.326e-14\\ 5.273e-10\\ 0.000e+00\\ 0.000e+00\\ \hline \\ 9.863e-08\\ 1.424e-07\\ 1.825e-10\\ 0.000e+00\\ 0.000e+00\\ 0.000e+00\\ \hline \\ 4.156e-03\\ 1.434e-08\\ 1.280e-08\\ 6.421e-11\\ 0.000e+00\\ 0.000e+00\\ \hline \\ 0.000e+00\\ \hline \\ 4.91e-02\\ 5.115e-08\\ 0.000e+00\\ 2.302e-17\\ 0.000e+00\\ \hline \end{array}$	2.142e-02 4.312e-06 8.703e-14 8.938e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 1.990e-08 3.526e-08 1.079e-10 0.000e+00 0.000e+00 0.000e+00 4.106e-04 8.983e-03 7.168e-08 0.000e+00	2.142e-02 2.317e-06 3.121e-14 2.726e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.272e-08 3.274e-11 0.000e+00 0.000e+00 1.106e-04 8.983e-03 3.848e-08 0.000e+00 1.192e-17 0.000e+00	2.142e-02 1.256e-03 2.928e-12 1.251e-07 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 5.916e-06 1.216e-06 1.537e-08 0.000e+00 0.000e+00 4.106e-04 8.983e-03 2.087e-05 0.000e+00 5.452e-15 0.000e+00	2.142e-02 7.397e-06 1.367e-13 1.572e-09 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 3.404e-08 5.570e-08 1.889e-10 0.000e+00 0.000e+00 4.106e-04 8.983e-03 1.233e-07 0.000e+00 6.852e-17 0.000e+00	2.142e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.142e-02 8.544e-07 3.793e-14 6.770e-10 0.000e+00 0.000e+00 9.863e-08 1.424e-07 1.825e-10 0.000e+00 0.000e+00 0.000e+00 2.706e-03 7.784e-04 2.630e-09 1.022e-08 5.421e-11 0.000e+00 0.000e+00 4.106e-04 8.983e-03 1.416e-08 0.000e+00 2.957e-17 0.000e+00	0.000e+00 0.000e+00

Vegetatio	H-3 C-14 I-131 I-132 I-133 Xe-133	2.318e-01 4.404e-07 5.730e-12 1.438e-10 0.000e+00	5.486e-03 4.651e-02 6.193e-07 1.504e-11 2.443e-10 0.000e+00 0.000e+00	4.651e-02 3.314e-07 5.377e-12 7.448e-11 0.000e+00	4.651e-02 1.801e-04 5.046e-10 3.411e-08 0.000e+00	4.651e-02 1.061e-06 2.358e-11 4.283e-10 0.000e+00	4.651e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00	4.651e-02 1.221e-07 6.527e-12 1.847e-10 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
ALL PATHW		IDES TOTAL		-:					
Pathway	Nuclide		y / Adult Liver					GI-Lli	Skin
Inhalatio	H-3 C-14 I-131 I-132 I-133 Xe-133 Xe-135	9.624e-03 3.378e-08 3.089e-08 1.504e-10 0.000e+00 0.000e+00	8.866e-03 1.803e-03 4.799e-08 8.682e-08 2.577e-10 0.000e+00 0.000e+00	1.803e-03 2.748e-08 3.089e-08 7.870e-11 0.000e+00 0.000e+00	1.803e-03 1.595e-05 3.036e-06 3.744e-08 0.000e+00 0.000e+00	1.803e-03 8.218e-08 1.379e-07 4.492e-10 0.000e+00 0.000e+00	1.803e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.803e-03 8.419e-09 1.081e-08 1.546e-10 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
		IDES TOTAL		•				·	0.000e+00
Pathway	Nuclid	te Boundary e Bone	y / Child Liver	Total Boo	d Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatic	H-3 C-14 I-131 I-132 I-133 Xe-133	1.898e-02 6.448e-08 5.646e-08 2.890e-10 0.000e+00	7.903e-03 3.559e-03 6.448e-08 1.084e-07 3.535e-10 0.000e+00 0.000e+00	3.559e-03 3.660e-08 5.007e-08 1.341e-10 0.000e+00 0.000e+00	3.559e-03 2.172e-05 5.166e-06 6.704e-08 0.000e+00 0.000e+00	3.559e-03 1.056e-07 1.664e-07 5.885e-10 0.000e+00 0.000e+00	3.559e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.559e-03 3.807e-09 8.522e-08 9.542e-11 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
ALL PATHW	AYS/NUCL	IDES TOTAL 1.898e-02	: 1.146e-02	1.146e-02	1.149e-02	1.146e-02	1.146e-02	1.146e-02	0.000e+00
Receptor Pathway		te Boundary Bone		Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatic	H-3 C-14 I-131 I-132 I-133 Xe-133 Xe-135	1.401e-02 5.081e-08 4.501e-08 2.298e-10 0.000e+00 0.000e+00 IDES TOTAL	4.544e-03 2.808e-03 5.952e-08 9.427e-08 3.343e-10 0.000e+00 0.000e+00 7.352e-03	2.808e-03 2.628e-08 3.356e-08 9.751e-11 0.000e+00 0.000e+00	2.808e-03 1.984e-05 4.501e-06 6.199e-08 0.000e+00 0.000e+00	2.808e-03 6.944e-08 1.052e-07 3.900e-10 0.000e+00 0.000e+00	2.808e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.808e-03 1.421e-09 5.060e-08 3.761e-11 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

-			dary / Teena. Liver	-	d Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatic	H-3 C-14 I-131 I-132 I-133 Xe-133 Xe-135	1.375e 4.746e 4.234e 2.124e 0.000e 0.000e	+00 8.952e-0 -02 2.575e-0 -08 6.582e-0 -08 1.166e-0 -10 3.570e-1 +00 0.000e+0 +00 0.000e+0	3 2.575e-0 8 3.539e-0 7 4.208e-0 0 1.083e-1 0 0.000e+0 0 0.000e+0	3 2.575e-03 8 1.957e-05 8 4.021e-06 0 5.084e-08 0 0.000e+00	2.575e-03 1.126e-07 1.843e-07 6.251e-10 0.000e+00	2.575e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.575e-03 8.700e-09 3.382e-08 1.793e-10 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
		1.375e	e-02 1.153e-0		2 1.155e-02	2 1.153e-02	1.153e-02	1.153e-02	2 0.000e+00
Date Database.		 : :	REPORT PARA 3/22/2017 11 BWDOpenEMS_P Admin	:47:27 AM					
Start Dat End Date. Unit Scaling F Dose Proj Prorate C Sum By Include C	actor ection Op ption pen Permi		01/01/2016 12/31/2016 Unit 2 Braid 1.000 No Dose Proj Doses Not Pr Only Permits included wit Receptor, Pa	ection orated for which have h no pro-re thway, and normal Bate normal Cont inment Pure Batch Rel cay Tank - cay Tank - cay Tank - cay Tank - cay Tank -	e a release ating. Nuclide ch Rel c Rel ge A B C D E	start dat	e in the s	tart/end p	eriod are
Pathways.		(I	Cow Milk Ground Plane Inhalation Meat Vegetation						
Receptors			Critical Rec Critical Rec Critical Rec Critical Rec Site Boundar Site Boundar Site Boundar	eptor / Chi eptor / Ini eptor / Tee y / Adult y / Child y / Infant	ild Eant enager				
Nuclides.		: 1	H-3,C-14,Br-	82,Cd-109,1	I-131,I-132	,I-133,Xe-1	133,Xe-135		

RELEASE TOTALS BY RELEASE MODE Release Mode..... Mixed Release Duration....: 5.438e+05 minutes Release Volume....: 7.084e+10 cf Average Flowrate....: 1.303e+05 cfmNuclide Detail..... Activity Avg Conc Avg Conc/ Nuclide (uCi) (uCi/mL) ECL|MPC 1.116e+08 5.561e-08 7.515e-06 н-3 4.500e+06 2.243e-09 6.063e-07 C-14 T-132 4.812e+02 2.399e-13 2.161e-09 I-133 8.111e-04 4.043e-19 2.732e-14 Xe-133 7.264e+04 3.621e-11 3.262e-09 Xe-135 2.270e+03 1.131e-12 3.058e-10 TOTAL : 1.161e+08 8.127e-06 NOBLE GAS DOSES BY RECEPTOR (Total Body, Skin Dose = mRem Gamma, Beta Dose = mRad) Receptor Name: Critical Receptor / Adult Receptor Name: Critical Receptor / Child Receptor Name: Critical Receptor / Infant Receptor Name: Critical Receptor / Teenager Nuclide Total Bod Skin Gamma Beta _____ _____ _____ ____ 4.821e-07 1.461e-06 5.789e-07 2.808e-06 Xe-133 Xe-135 9.275e-08 2.646e-07 9.839e-08 2.056e-07 _____ _____ -----TOTAL: 5.749e-07 1.726e-06 6.773e-07 3.013e-06 Receptor Name: Site Boundary / Adult Receptor Name: Site Boundary / Child Receptor Name: Site Boundary / Infant Receptor Name: Site Boundary / Teenager Nuclide Total Bod Skin Gamma Beta 3.350e-06 5.789e-07 9.289e-06 4.821e-07 Xe-133 Xe-135 9.275e-08 6.234e-07 9.839e-08 6.801e-07 _____ TOTAL: 5.749e-07 3.973e-06 6.773e-07 9.969e-06 ORGAN DOSES BY RECEPTOR (Dose = mRem) Receptor Name: Critical Receptor / Adult Pathway Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk Н-З 0.000e+00 1.787e-03 1.787e-03 1.787e-03 1.787e-03 1.787e-03 1.787e-03 0.000e+00 6.013e-02 1.203e-02 1.203e-02 1.203e-02 1.203e-02 1.203e-02 1.203e-02 0.000e+00 C-14 4.129e-14 1.104e-13 3.863e-14 3.863e-12 1.759e-13 0.000e+00 2.074e-14 0.000e+00 T-132 1.638e-12 2.849e-12 8.688e-13 4.188e-10 4.974e-12 0.000e+00 2.561e-12 0.000e+00 I-133

 Xe-133
 0.000e+00
 0.000e+00
 0.000e+00
 0.000e+00
 0.000e+00
 0.000e+00

 Xe-135
 0.000e+00
 0.000e+00
 0.000e+00
 0.000e+00
 0.000e+00
 0.000e+00

 _____ Ground Plane 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 0.000e+00 I-132 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 0.000e+00 I-133 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Inhalatio	n								
	H-3 C-14 I-132 I-133 Xe-133	3.015e-03 2.055e-08 2.580e-13	2.949e-03 5.649e-04 5.775e-08 4.419e-13 0.000e+00	5.649e-04 2.055e-08 1.350e-13	5.649e-04 2.019e-06 6.420e-11	5.649e-04 9.176e-08 7.704e-13	5.649e-04 0.000e+00 0.000e+00	5.649e-04 7.192e-09 2.652e-13	0.000e+00 0.000e+00 0.000e+00
	Xe-135	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
Meat									
Meat	H-3 C-14 I-132 I-133 Xe-133	5.516e-02 0.000e+00 1.563e-19 0.000e+00	7.598e-04 1.103e-02 0.000e+00 2.717e-19 0.000e+00	1.103e-02 0.000e+00 8.282e-20 0.000e+00	1.103e-02 0.000e+00 3.993e-17 0.000e+00	1.103e-02 0.000e+00 4.733e-19 0.000e+00	1.103e-02 0.000e+00 0.000e+00 0.000e+00	1.103e-02 0.000e+00 2.442e-19 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
	Xe-135	0.000e+00	0.000e+00			0.000e+00			0.000e+00
				-:					
Vegetatio									
	H-3 C-14 I-132 I-133 Xe-133 Xe-135	1.486e-01 1.399e-11 8.789e-13 0.000e+00 0.000e+00	5.298e-03 2.965e-02 3.735e-11 1.530e-12 0.000e+00 0.000e+00	2.965e-02 1.309e-11 4.648e-13 0.000e+00 0.000e+00	2.965e-02 1.309e-09 2.248e-10 0.000e+00 0.000e+00	2.965e-02 5.966e-11 2.666e-12 0.000e+00 0.000e+00	2.965e-02 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.965e-02 7.019e-12 1.373e-12 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
		IDES TOTAL	•	-:					
ALL FAINW	AIS/NOCL		6.407e-02	6.407e-02	6.407e-02	6.407e-02	6.407e-02	6.407e-02	0.000e+00
Receptor Pathway		itical Reco Bone	eptor / Chi Liver		Thyroid	Kidnev	Lung	GI-Lli	Skin
								** **** **** **** **** ****	
Cow Milk	н-3	0.000+00	3.684e-03	3.684e-03	3.684e-03	3.684e-03	3.684e-03	3.684e-03	0.000e+00
	C-14	2.733e-01	5.450e-02	5.450e-02	5.450e-02	5.450e-02	5.450e-02	5.450e-02	0.000e+00
	I-132		3.184e-13						
	I-133 Xe-133		9.000e-12 0.000e+00						
	Xe-135		0.000e+00						
Cround Dl				:					
Ground Pl	I-132	3.134e-07	3.134e-07	3.134e-07	3.134e-07	3.134e-07	3.134e-07	3.134e-07	0.000e+00
	I-133		1.035e-12						
	Xe-133		0.000e+00						
	Xe-135		0.000e+00						0.00000+00
Inhalatio									
	H-3 C-14		2.629e-03 1.115e-03						
	I-132		7.210e-08						
	I-133	4.957e-13	6.061e-13	2.299e-13	1.150e-10	1.009e-12	0.000e+00	1.636e-13	0.000e+00
	Xe-133		0.000e+00						
			0.000e+00						
Meat									
	H-3		5.504e-04						
	C-14 I-132		1.756e-02 0.000e+00						
	I-133		3.000e-19						
	Xe-133		0.000e+00						
	Xe-135		0.000e+00						0.000e+00
Vegetatio	n								
	H-3 C-14		9.405e-03 1.161e-01						
	I-132		4.111e-11						
	I-133		1.842e-12						
	V- 100							0 0 0 0 0 0 0	0 000 .00
	Xe-133 Xe-135		0.000e+00 0.000e+00						

<pre>Cov Milk H -3 0.000+00 5.586e-03 5.866e-03 5.586e-03 5.586e-03 5.586e-03 5.586e-03 5.586e-03 0.000e+00 C -4 5.3510-01 1.141e-01 1.000e+00 1.133 1.534e-11 2.552e-13 2.607e-13 2.607e-13 2.607e-10 2.607e-</pre>										
Pathway Wuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk H-3 0.000e+00 5.586e-03 5.586e-03 5.586e-03 5.586e-03 5.586e-03 0.000e+00 0.000e+00 1.141a-01 0.000e+00 <	ALL PATHW	NUCL			2.056e-01	2.056e-01	2.056e-01	2.056e-01	2.056e-01	0.000e+00
<pre>Cow Milk H-3 0.000e+00 5.586e-03 5.586e-03 5.586e-03 5.586e-03 5.586e-03 5.586e-03 0.000e+00 C-14 5.351e-01 1.141e-01 1.141e-01 1.141e-01 1.141e-01 1.141e-01 0.000e+00 I -133 1.534e-11 2.235e-13 2.607e-13 3.409e-11 8.147e-13 0.000e+00 5.916e-13 0.000e+0 Ke-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-133 0.000e+00 0.000</pre>	Receptor Pathway	Name: Cr Nuclide	itical Rece Bone	eptor / Inf Liver	fant Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
C-14 5.351e-01 1.141e-01 1.141e-01 1.141e-01 1.141e-01 1.141e-01 1.141e-01 0.100e+00 T-133 3.535e-13 2.507e-13 3.409e-11 8.147e-13 0.000e+00 5.515e-13 0.000e+00 Ke-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 T-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ce-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-133 0.000e+00 0.000e+04 0.796e-04 8.796e-04 8.796e-04 0.000e+00 L-132 2.994e-08 6.771e-08 2.722e-08 2.994e-08 6.997e-08 0.000e+00 0.000e+00 0.000e+00 Ke-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Ke-135 0.000e+00 0.000	Cow Milk									
Ground Plane I-132 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 0.000e+00 I-133 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 0.000e+00 xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Inhalation H-3 0.000e+00 1.511e-03 1.511e-03 1.511e-03 1.511e-03 1.511e-03 0.000e+00 I-132 2.940e-08 6.776e-04 8.796e-04 8.796e-04 8.796e-04 0.396e-04 0.000e+00 I-133 3.941e-13 5.733e-13 1.672e-13 1.063e-10 6.699e-108 0.000e+00 0.396e-04 0.000e+00 xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 xe-135 0.000e+00 2.355e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 F133 2.932e-13 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 0.000e+00 xe-135 0.000e+00 2.355e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 I-133 2.932e-14 1.51e-13 6.638e-14 6.443e-12 0.008e+00 0.8348e-14 0.000e+00 xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 xe-133 0.000e+00		C-14 I-132 I-133 Xe-133 Xe-135	5.351e-01 3.585e-13 1.534e-11 0.000e+00 0.000e+00	1.141e-01 7.295e-13 2.235e-11 0.000e+00 0.000e+00	1.141e-01 2.607e-13 6.550e-12 0.000e+00 0.000e+00	1.141e-01 3.409e-11 4.065e-09 0.000e+00 0.000e+00	1.141e-01 8.147e-13 2.628e-11 0.000e+00 0.000e+00	1.141e-01 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.141e-01 5.916e-13 3.782e-12 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
<pre>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	Ground Pl									
Inhalation H-3 0.000e+00 1.511e-03 1.511e-03 1.511e-03 1.511e-03 1.511e-03 1.511e-03 0.000e+00 I-132 2.994e-08 6.271e-08 2.232e-08 2.994e-06 6.997e-08 0.000e+00 3.366e-08 0.000e+00 I-133 3.941e-13 5.733e-13 1.672e-13 1.063e-10 6.689e-13 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 0.000e+00 Xeceptor Name: Critical Receptor / Teenager Pathway Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-L11 Skin Cow Milk H-3 0.000e+00 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 I-132 7.320e-14 1.915e-13 6.496e+14 6.443e-12 3.008e-13 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 Xe-133		I-133 Xe-133 Xe-135	1.035e-12 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00						
C-14 1.390e-03 8.796e-04 0.000e+00 I-133 3.941e-13 5.733e-13 1.672e-13 1.063e-10 6.699e-13 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 0.000e+00 Xeceptor Name: Critical Receptor / Teenager Pathway Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk H-3 0.000e+00 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 C-14 1.110e-01 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 0.000e+00 I-132 7.320e-14 1.915e-13 6.869e-14 6.443e-12 3.008e-13 0.000e+00 8.348e-14 0.000e+00 I-133 0.000e+00 0.					-:					
ALL PATHWAYS/NUCLIDES TOTAL: 5.395e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 0.000e+00 Receptor Name: Critical Receptor / Teenager Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk H-3 0.000e+00 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 I.100e-01 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 0.2000e+00 I.110e-01 0.200e+00 2.225e-03 2.325e-03 0.000e+00 I.000e+00 0.000e+00 I-132 7.320e-14 1.915e-13 6.669e-14 6.443e-12 3.008e-13 0.000e+00 8.348e-14 0.000e+00 I.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Sround Plane I-132 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 0.000e+00 I.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 0.000e+00 I.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I.000e+00 0.000e+00 0		C-14 I-132 I-133 Xe-133 Xe-135	4.390e-03 2.994e-08 3.941e-13 0.000e+00 0.000e+00	8.796e-04 6.271e-08 5.733e-13 0.000e+00 0.000e+00	8.796e-04 2.232e-08 1.672e-13 0.000e+00 0.000e+00	8.796e-04 2.994e-06 1.063e-10 0.000e+00 0.000e+00	8.796e-04 6.997e-08 6.689e-13 0.000e+00 0.000e+00	8.796e-04 0.000e+00 0.000e+00 0.000e+00 0.000e+00	8.796e-04 3.366e-08 6.450e-14 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
S.395e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 1.221e-01 0.000e+00 Receptor Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk H-3 0.000e+00 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 Intervention Intervention </td <td></td> <td></td> <td></td> <td></td> <td>-:</td> <td></td> <td></td> <td></td> <td></td> <td></td>					-:					
Pathway Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk H-3 0.000e+00 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 C-14 1.110e-01 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 0.000e+00 0.000e+00 1.33 2.992e-12 5.071e-12 1.547e-12 7.099e-10 8.916e-12 0.000e+00 0.000e+00<					1.221e-01	1.221e-01	1.221e-01	1.221e-01	1.221e-01	0.000e+00
Pathway Nuclide Bone Liver Total Bod Thyroid Kidney Lung GI-Lli Skin Cow Milk H-3 0.000e+00 2.325e-03 2.325e-03 2.325e-03 2.325e-03 2.325e-03 0.000e+00 C-14 1.110e-01 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 0.000e+00 0.000e+00 1.33 2.992e-12 5.071e-12 1.547e-12 7.099e-10 8.916e-12 0.000e+00 0.000e+00<										
H-3 0.000e+00 2.325e-03 2.306e-04 2.300e+00 2.000e+00 2.00	Receptor Pathway	Name: Cr. Nuclide	itical Rece Bone	eptor / Tee Liver	enager Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
C-14 1.110e-01 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 2.220e-02 0.000e+00 I-132 7.320e-14 1.915e-13 6.869e-14 6.443e-12 3.008e-13 0.000e+00 8.348e-14 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.34e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 0.000e+00 C-14 4.307e-03 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 0.000e+00 I-133 3.643e-13 6.121e-13 1.857e-13 8.719e-11 1.072e-12 0.000e+00 3.076e-13 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-1	Cow Milk									
I-132 7.320e-14 1.915e-13 6.869e-14 6.443e-12 3.008e-13 0.000e+00 8.348e-14 0.000e+00 Xe-133 0.000e+00 0.0										
Xe-133 0.000e+00										
Xe-135 0.000e+00										
I-132 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 0.000e+00 I-133 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 0.000e+00 C-14 4.307e-03 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 0.000e+00 I-132 2.817e-08 7.759e-08 2.799e-08 2.675e-06 1.226e-07 0.000e+00 2.250e-08 0.000e+00 I-133 3.643e-13 6.121e-13 1.857e-13 8.719e-11 1.072e-12 0.000e+00 3.076e-13 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-132 0.000e+00 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.033e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00										
I-132 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 3.134e-07 0.000e+00 I-133 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 1.035e-12 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 0.000e+00 C-14 4.307e-03 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 0.000e+00 I-132 2.817e-08 7.759e-08 2.799e-08 2.675e-06 1.226e-07 0.000e+00 2.250e-08 0.000e+00 I-133 3.643e-13 6.121e-13 1.857e-13 8.719e-11 1.072e-12 0.000e+00 3.076e-13 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-132 0.000e+00 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.033e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00	Current Dl									
Xe-133 0.000e+00	Ground PI		3.134e-07	0.000e+00						
Xe-135 0.000e+00										
Inhalation H-3 0.000e+00 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 0.000e+00 C-14 4.307e-03 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 8.067e-04 0.000e+00 I-132 2.817e-08 7.759e-08 2.799e-08 2.675e-06 1.226e-07 0.000e+00 2.250e-08 0.000e+00 I-133 3.643e-13 6.121e-13 1.857e-13 8.719e-11 1.072e-12 0.000e+00 3.076e-13 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 0.000e+00 C-14 4.655e-02 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00										
H-3 0.000e+00 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 2.978e-03 0.000e+00 C-14 4.307e-03 8.067e-04 8.07e-03 8.07e-03 8.07e-03 8.07e-04 8.07e-04 8.07e-04 8.07e-04 8.07e-04 8.07e-04 8.07e-04 8.07e-04 8.067e-04 8.067e-04 8.067e-04 8.000e+00										
I-132 2.817e-08 7.759e-08 2.799e-08 2.675e-06 1.226e-07 0.000e+00 2.250e-08 0.000e+00 I-133 3.643e-13 6.121e-13 1.857e-13 8.719e-11 1.072e-12 0.000e+00 3.076e-13 0.000e+00 Xe-133 0.000e+00 0.000e+00 <td>Innatatic</td> <td></td> <td>0.000e+00</td> <td>2.978e-03</td> <td>2.978e-03</td> <td>2.978e-03</td> <td>2.978e-03</td> <td>2.978e-03</td> <td>2.978e-03</td> <td>0.000e+00</td>	Innatatic		0.000e+00	2.978e-03	2.978e-03	2.978e-03	2.978e-03	2.978e-03	2.978e-03	0.000e+00
I-133 3.643e-13 6.121e-13 1.857e-13 8.719e-11 1.072e-12 0.000e+00 3.076e-13 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Xe-135 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 Heat H-3 0.000e+00 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 0.000e+00 C-14 4.655e-02 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00										
Xe-133 0.000e+00										
Meat H-3 0.000e+00 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 0.000e+00 C-14 4.655e-02 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00		Xe-133	0.000e+00							
Meat H-3 0.000e+00 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 4.518e-04 0.000e+00 C-14 4.655e-02 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 9.310e-03 0.000e+00 I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00										
C-144.655e-029.310e-039.310e-039.310e-039.310e-039.310e-039.310e-030.000e+00I-1320.000e+000.000e+000.000e+000.000e+000.000e+000.000e+000.000e+00I-1331.306e-192.218e-196.761e-203.093e-173.888e-190.000e+001.678e-190.000e+00Xe-1330.000e+000.000e+000.000e+000.000e+000.000e+000.000e+000.000e+00	Meat				-					
I-132 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 I-133 1.306e-19 2.218e-19 6.761e-20 3.093e-17 3.888e-19 0.000e+00 1.678e-19 0.000e+00 Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00										
Xe-133 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00			0.000e+00							

Vegetatio	~								
vegetatio	H-3 C-14 I-132 I-133 Xe-133	2.402e-01 1.261e-11 8.155e-13 0.000e+00	6.037e-03 4.821e-02 3.309e-11 1.386e-12 0.000e+00 0.000e+00	4.821e-02 1.183e-11 4.226e-13 0.000e+00	4.821e-02 1.111e-09 1.935e-10 0.000e+00	4.821e-02 5.189e-11 2.430e-12 0.000e+00	4.821e-02 0.000e+00 0.000e+00 0.000e+00	4.821e-02 1.436e-11 1.048e-12 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
				-:					
ALL PATHW	AYS/NUCL	IDES TOTAL 4.020e-01	: 9.231e-02	9.231e-02	9.232e-02	9.231e-02	9.231e-02	9.231e-02	0.000e+00
Receptor Pathway	Name: Sit Nuclide	te Boundary Bone	y / Adult Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatio									
	H-3 C-14 I-132 I-133 Xe-133 Xe-135	9.974e-03 6.798e-08 8.535e-13 0.000e+00	9.756e-03 1.869e-03 1.911e-07 1.462e-12 0.000e+00 0.000e+00	1.869e-03 6.798e-08 4.465e-13 0.000e+00	1.869e-03 6.681e-06 2.124e-10 0.000e+00	1.869e-03 3.036e-07 2.549e-12 0.000e+00	1.869e-03 0.000e+00 0.000e+00 0.000e+00	1.869e-03 2.379e-08 8.772e-13 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
ALL PATHW	AYS/NUCL	IDES TOTAL		-:					
			1.163e-02	1.162e-02	1.163e-02	1.163e-02	1.162e-02	1.162e-02	0.000e+00
a e e en d		. 1 4 • . • •	**			*			
Receptor	Name: Sit	te Boundary	y / Child Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatio	n								
	H-3 C-14 I-132 I-133 Xe-133 Xe-135	1.967e-02 1.242e-07 1.640e-12 0.000e+00	8.696e-03 3.688e-03 2.385e-07 2.005e-12 0.000e+00 0.000e+00	3.688e-03 1.102e-07 7.606e-13 0.000e+00	3.688e-03 1.137e-05 3.803e-10 0.000e+00	3.688e-03 3.663e-07 3.339e-12 0.000e+00	3.688e-03 0.000e+00 0.000e+00 0.000e+00	3.688e-03 1.875e-07 5.413e-13 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
				-:					
ALL PATHW	AYS/NUCL	IDES TOTAL 1.968e-02	1.238e-02	1.238e-02	1.240e-02	1.238e-02	1.238e-02	1.238e-02	0.000e+00
Receptor Pathway	Name: Sit Nuclide	te Boundary Bone	y / Infant Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatio	n								
	Xe-135	1.452e-02 9.904e-08 1.304e-12 0.000e+00 0.000e+00	5.000e-03 2.910e-03 2.075e-07 1.897e-12 0.000e+00 0.000e+00	2.910e-03 7.384e-08 5.532e-13 0.000e+00 0.000e+00	2.910e-03 9.904e-06 3.517e-10 0.000e+00 0.000e+00	2.910e-03 2.315e-07 2.213e-12 0.000e+00 0.000e+00	2.910e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00	2.910e-03 1.113e-07 2.134e-13 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00
		IDES TOTAL							
Receptor Pathway	Name: Sit Nuclide	te Boundary Bone	y / Teenage Liver	er Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Inhalatio	n H-3 C-14 I-132 I-133 Xe-133 Xe-135	0.000e+00 1.425e-02 9.318e-08 1.205e-12 0.000e+00 0.000e+00	9.851e-03 2.669e-03 2.567e-07 2.025e-12 0.000e+00 0.000e+00	9.851e-03 2.669e-03 9.260e-08 6.144e-13 0.000e+00 0.000e+00	9.851e-03 2.669e-03 8.849e-06 2.885e-10 0.000e+00 0.000e+00	9.851e-03 2.669e-03 4.055e-07 3.546e-12 0.000e+00 0.000e+00	9.851e-03 2.669e-03 0.000e+00 0.000e+00 0.000e+00 0.000e+00	9.851e-03 2.669e-03 7.443e-08 1.017e-12 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
ALL PATHW		IDES TOTAL		1 2520-02	1 2530-02	1 2520-02	1 2520-02	1 2520-02	0 0000+00

Table 3.2-1

DRT PARAMETERS
/2017 11:58:20 AM penEMS_PROD n
id 1/2016 1/2016 0 ose Projection s Not Prorated for period Permits which have a release start date in the start/end period are included . no pro-rating.
ptor, Pathway, and Nuclide Water Blowdown ensate Polisher Sump id Release Tank OWX01T id Release Tank OWX26T e Water Treatment
ble Water t Freshwater Fish
id Receptor / Adult id Receptor / Child id Receptor / Infant id Receptor / Teenager
Cr-51,Mn-54,Fe-55,Fe-59,Co-57,Co-58,Co-60,Zn-65 5,Nb-95,Nb-97,Ag-110m,Sn-113,Sb-124,Sb-125,Te-123m
===== POINT =====
akee River 6e+04 minutes 3e+06 gal 6e+01 gpm 3e+09 gal 6e+04 gpm
ide Detail Avg Conc/ Dil Conc Dil Conc/ ECL MPC (uCi/mL) ECL MPC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-604 é gar

Dilutio	Duration Volume Flowrate n Volume Dil Flowrat	: 5.855e : 2.056e : 0.000e	2+09 gal 2+04 gpm 2+00 gal		
	(uCi)	Avg Conc	Avg Conc/	Dil Conc (uCi/mL)	Dil Conc/ ECL MPC
H-3		1.013e-05	2.739e-07	1.013e-05	2.739e-07
	2.246e+08		2.739e-07		2.739e-07
Release Release Average Dilution Average	ge Point Duration Volume Flowrate N Volume Dil Flowrat	: 5.693e : 1.307e : 2.296e : 0.000e e: 0.000e	2+05 minutes 2+07 gal 2+01 gpm 2+00 gal 2+00 gpm de Detail		
Nuclide	Activity (uCi)	(uCi/mL)	ECL MPC	Dil Conc (uCi/mL)	ECL MPC
н-3	9.192e+05		5.021e-07	1.858e-05	5.021e-07
	9.192e+05		5.021e-07		5.021e-07
Release Release	ge Point Duration Volume Flowrate	: 9.435e	e+05 minutes e+09 gal		
Release Release Average Dilution Average	Duration Volume Flowrate N Volume Dil Flowrat	: 9.435e : 5.869e : 6.221e : 1.803e e: 1.911e Nuclid Avg Conc	e+05 minutes e+09 gal e+03 gpm e+09 gal e+03 gpm de Detail Avg Conc/	Dil Conc	Dil Conc/
Release Release Average Dilution Average 	Duration Volume Flowrate Dil Flowrat Activity (uCi) 1.696e+09	: 9.435e : 5.869e : 6.221e : 1.803e e: 1.911e Nuclic Avg Conc (uCi/mL) 7.632e-05	++05 minutes ++09 gal ++09 gal ++09 gal ++03 gpm He Detail Avg Conc/ ECL MPC 2.063e-06	Dil Conc (uCi/mL) 5.838e-05	Dil Conc/ ECL MPC 1.578e-06
Release Release Average Dilution Average 	Duration Volume Flowrate Dil Flowrat Activity (uCi) 1.696e+09 1.263e+03 2.485e+02 4.208e+03 2.758e+01	: 9.435e : 5.869e : 6.221e : 1.803e e: 1.911e Nuclic Avg Conc (uCi/mL) 7.632e-05 5.683e-11 1.118e-11 1.894e-10 1.241e-12 9.611e-13	<pre>#+05 minutes #+09 gal #+09 gal #+09 gal #+03 gpm ##03 gpm ##04 Detail Avg Conc/ ECL MPC</pre>	Dil Conc (uCi/mL) 5.838e-05 4.347e-11 8.556e-12 1.449e-10 9.496e-13 7.352e-13	Dil Conc/ ECL MPC 1.578e-06 2.350e-12 7.708e-12 3.915e-11 2.567e-12 3.312e-13

ORGAN DOSES BY RECEPTOR (Dose = mRem)

Receptor Name: Liquid Receptor / Adult

Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wa									
	н-3							2.597e-02	
	Cr-51							8.929e-09 2.848e-08	
	Mn-54 Fe-55							2.848e-08 4.934e-08	
	Fe-59							9.399e-09	
	Co-57							0.000e+00	
	Co-58	0.000e+00	1.383e-08	3.097e-08	0.000e+00	0.000e+00	0.000e+00	2.802e-07	0.000e+00
	Co-60							2.017e-06	
	Zr-95							1.778e-08	
	Nb-95							4.133e-08	
	Nb-97							1.436e-10 1.364e-07	
	Sn-113							0.000e+00	
	Sb-124							3.013e-08	
	Sb-125	8.244e-09	9.211e-11	1.962e-09	8.382e-12	0.000e+00	6.356e-09	9.073e-08	0.000e+00
								0.000e+00	
								1.095e-09	
								0.000e+00	
Sport Fres	hwater F	ish	• [.]	•	. · · ·				
	H-3	0.000e+00	2.681e-03	2.681e-03	2.681e-03	2.681e-03	2.681e-03	2.681e-03	0.000e+00
	Cr-51							2.056e-07	
	Mn-54 Fe-55							1.311e-06 5.674e-07	
	Fe-59							1.082e-07	
	Co-57							0.000e+00	
	Co-58							1.615e-06	
	Co-60							1.161e-05	
	Zr-95							6.746e-09	
	Nb-95							1.428e-04	
	Nb-97							4.956e-07 3.604e-08	
								3.604e-08 0.000e+00	
								3.466e-09	
								1.044e-08	
								0.000e+00	
								5.052e-08	
				0.000e+00				0.000e+00	0.000e+00
ALL PATHWA				•					
		1.625e-06	2.866e-02	2.866e-02	2.866e-02	2.866e-02	2.866e-02	2.882e-02	0.000e+00
Receptor N	ame: Liq	uid Recept	or / Child						
Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wa	ter								
								3.512e-02	
	Cr-51							4.407e-09	
	Mn-54							1.282e-08	
	Fe-55 Fe-59							3.565e-08 5.371e-09	
	Co-57							0.000e+00	
	Co-58							1.365e-07	
	Co-60							1.028e-06	
	Zr-95							1.070e-08	
	Nb-95							2.223e-08	
	Nb-97							2.492e-08	
	-							6.807e-08	
	Sn-113							0.000e+00	
	Sb-124 Sb-125							1.837e-08 5.502e-08	
								0.000e+00	
	Te-132							4.477e-10	
	Xe-133							0.000e+00	
					· · · ·				

	1	11.							
Sport Fres	Hwater F H-3		1 706- 03	1.706e-03	1 706- 02	1 706- 07	1 7060 02	1 706- 02	0.0000100
	п-5 Cr-51			8.993e-10					
	Mn-54			8.778e-08					
	Fe-55								
				3.239e-07					
	Fe-59			1.396e-08					
	Co-57			0.000e+00					
	Co-58			1.937e-07					
	Co-60			1.481e-06					
	Zr-95			1.629e-12					
	Nb-95			1.400e-08					
	Nb-97			6.119e-11					
		1.055e-10							
	Sn-113	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Sb-124	1.590e-10	2.063e-12	5.573e-11	3.510e-13	0.000e+00	8.825e-11	9.943e-10	0.000e+00
	Sb-125	1.247e-09	9.612e-12	2.612e-10	1.154e-12	0.000e+00	6.948e-10	2.978e-09	0.000e+00
	Te-123m	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Te-132	2.177e-09	9.652e-10	1.164e-09	1.403e-09	8.968e-09	0.000e+00	9.721e-09	0.000e+00
	Xe-133	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
				:					
ALL PATHWA	YS/NUCLI	DES TOTAL:							
		2.432e-06	3.683e-02	3.683e-02	3.682e-02	3.682e-02	3.682e-02	3.691e-02	0.000e+00
Receptor N	ame: Liq	uid Recepto	or / Infan	t					
Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wa	ter								
	н-З	0.000e+00	3.449e-02	3.449e-02	3.449e-02	3.449e-02	3.449e-02	3.449e-02	0.000e+00
	Cr-51			8.543e-11					
	Mn-54	0.000e+00	1.830e-08	4.149e-09	0.000e+00	4.061e-09	0.000e+00	6.733e-09	0.000e+00
	Fe-55	2.848e-07	1.837e-07	4.913e-08	0.000e+00	0.000e+00	8.978e-08	2.326e-08	0.000e+00
	Fe-59			2.645e-09					
	Co-57			0.000e+00					
	Co-58			7.541e-08					
	Co-60			5.791e-07					
	Zr-95			9.263e-12					
	Nb-95			8.900e-12					
	Nb-97			4.638e-17					
		1.014e-09							
		0.000e+00							
		3.666e-09							
		2.560e-08							
		0.000e+00							
		1.342e-10							
		0.000e+00							
			:						
ALL PATHWA	YS/NUCLI								
		3.191e-07	3.449e-02	3.449e-02	3.449e-02	3.449e-02	3.449e-02	3.449e-02	0.000e+00
Receptor N	ame: Liq	uid Recepto	or / Teena	ger			_		- 1 1
Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wa				1 004 00	1	1 004 00	1 004 00	1 001 00	
	H-3			1.824e-02					
	Cr-51			3.360e-11					
	Mn-54			1.664e-09					
	Fe-55			1.974e-08					
	Fe-59			1.022e-09					
	Co-57			0.000e+00					
	Co-58			2.909e-08					
	Co-60			2.220e-07					
	Zr-95	1.656e-11	5.226e-12	3.594e-12	0.000e+00	7.687e-12	0.000e+00	1.206e-08	0.000e+00
	Nb-95			3.452e-12					
	Nb-97	1.518e-13	3.769e-14	1.376e-14	0.000e+00	4.407e-14	0.000e+00	9.000e-10	0.000e+00
		3.225e-10							
	Sn-113			0.000e+00					
	Sb-124			3.997e-10					
	Sb-125			1.866e-09					
		0.000e+00							
				2.067-11	2.3216-11	2.108 - 10	0.0000+00	6.9830-10	0 0000+00
	Te-132	3.471e-11	2.197e-11						
	Te-132 Xe-133		2.197e-11 0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00

$\begin{array}{ccccc} Cr-51 & 0.000 \\ Mn-54 & 0.000 \\ Fe-55 & 1.498 \\ Fe-59 & 1.422 \\ Co-57 & 0.000 \\ Co-58 & 0.000 \\ Co-60 & 0.000 \\ Cr-60 & 0.000 \\ Zr-95 & 6.857 \\ Nb-95 & 4.256 \\ Nb-97 & 5.714 \\ Ag-110m & 9.307 \\ Sn-113 & 0.000 \\ Sb-124 & 1.286 \\ Sb-125 & 1.001 \\ Te-123m & 0.000 \\ Te-132 & 1.746 \\ Xe-133 & 0.000 \end{array}$	e+00 2.061e-03 2.061e-03 2.061e-03 2.061e-03 2.061e-03 2.061e-03 0.000e+00 e+00 0.000e+00 8.415e-10 4.689e-10 1.850e-10 1.208e-09 1.420e-07 0.000e+00 e+00 4.208e-07 8.357e-08 0.000e+00 1.253e-07 0.000e+00 8.641e-07 0.000e+00 e-06 1.063e-06 2.478e-07 0.000e+00 0.000e+00 6.739e-07 4.608e-07 0.000e+00 e+00 3.323e-08 1.283e-08 0.000e+00 0.000e+00 1.048e-08 7.857e-08 0.000e+00 e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 e+00 7.907e-08 1.821e-07 0.000e+00 0.000e+00 0.000e+00 1.089e-06 0.000e+00 e+00 6.177e-07 1.392e-06 0.000e+00 0.000e+00 0.000e+00 8.059e-06 0.000e+00 e+02 2.365e-08 1.296e-08 0.000e+00 3.180e-12 0.000e+00 5.005e-09 0.000e+00 e-10 1.419e-10 5.179e-11 0.000e+00 1.659e-10 0.000e+00 3.388e-06 0.000e+00 e-11 8.809e-11 5.357e-11 0.000e+00 1.677e-10 0.000e+00 3.388e-06 0.000e+00 e+00 0.000e+00 0.000e+00 0.000e+00 1.123e-10 2.591e-09 0.000e+00 e-10 2.369e-12 5.016e-11 2.917e-13 0.000e+00 1.123e-10 2.591e-09 0.000e+00 e-09 1.094e-11 2.342e-10 9.569e-13 0.000e+00 3.8802e-10 7.793e-09 0.000e+00 e-09 1.094e-11 2.342e-10 9.569e-13 0.000e+00 3.802e-10 7.793e-09 0.000e+00 e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 e-09 1.094e-11 2.342e-10 9.569e-13 0.000e+00 3.802e-10 7.793e-09 0.000e+00 e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
ALL PATHWAYS/NUCLIDES TO	•
1.688	e-06 2.031e-02 2.031e-02 2.031e-02 2.031e-02 2.031e-02 2.042e-02 0.000e+00
RELEASE AND DOSE SUMMARY	REPORT PARAMETERS
Date Database Username	4/12/2017 12:40:58 PM BWDOpenEMS_PROD
	01/01/2016 12/31/2016 Unit 2 Braidwood 1.000
Include Open Permits: Release Sources:	No
Pathways	Potable Water Sport Freshwater Fish
	Liquid Receptor / Adult Liquid Receptor / Child Liquid Receptor / Infant Liquid Receptor / Teenager
	H-3,Cr-51,Mn-54,Fe-55,Fe-59,Co-57,Co-58,Co-60,Zn-65 Zr-95,Nb-95,Nb-97,Ag-110m,Sn-113,Sb-124,Sb-125,Te-123m
RELEASE TOTALS BY DISCHA	RGE POINT
Discharge Point: Release Duration: Release Volume: Average Flowrate: Dilution Volume: Average Dil Flowrate:	Kankakee River 8.946e+04 minutes 1.043e+06 gal 1.166e+01 gpm 1.803e+09 gal

	Activity	Nuclid	e Detail Avg Conc/		Dil Conc/
Nuclide	(uCi)	(uČi/mL)	ECL MPC	Dil Conc (uCi/mL)	ECL MPC
H-3 Cr-51 Mn-54 Fe-55 Fe-59 Co-57 Co-58 Co-60 Zr-95 Nb-95 Nb-97 Ag-110m Sn-113 Sb-124 Sb-125 Te-123m Te-132 Xe-133	1.470e+09 1.263e+03 2.485e+02 4.208e+03 2.758e+01 1.629e+03 6.107e+03 2.538e+01 1.943e+02 3.120e+02 2.594e+02 3.922e+01 2.463e+01 4.866e+02 1.600e+01 4.139e+00 3.881e+01	3.724e-01 3.199e-07 6.295e-08 1.066e-06 6.987e-09 5.409e-09 4.126e-07 1.547e-06 6.429e-09 4.922e-08 7.904e-08 6.572e-08 9.936e-09 6.240e-09 1.233e-07 4.054e-09 1.048e-09 9.831e-09	1.007e-02 1.729e-08 5.671e-08 2.881e-07 1.888e-08 2.437e-09 5.576e-07 1.394e-05 8.687e-09 4.434e-08 7.121e-09 2.960e-07 8.951e-09 2.409e-08 1.111e-07 N/A 3.148e-09 1.329e-09	$\begin{array}{c} 2.153e-04\\ 1.849e-10\\ 3.638e-11\\ 6.161e-10\\ 4.038e-12\\ 3.127e-12\\ 2.385e-10\\ 8.942e-10\\ 3.716e-12\\ 2.845e-11\\ 4.568e-11\\ 3.799e-11\\ 5.743e-12\\ 3.607e-12\\ 7.125e-11\\ 2.343e-12\\ 6.060e-13\\ 5.682e-12\\ \end{array}$	5.818e-06 9.993e-12 3.278e-11 1.665e-10 1.091e-11 1.408e-12 3.223e-10 8.056e-09 5.021e-12 2.563e-11 4.116e-12 1.711e-10 5.174e-12 1.393e-11 6.419e-11 N/A 1.820e-12 7.679e-13
TOTAL :	1.470e+09		1.008e-02		5.827e-06
Dilution Average	Volume Dil Flowrat Activity (uCi)	Avg Conc (uCi/mL)	+00 gal +00 gpm e Detail Avg Conc/ ECL MPC	Dil Conc (uCi/mL)	Dil Conc/ ECL MPC
н-з	2.246e+08	1.013e-05	2.739e-07	1.013e-05	2.739e-07
TOTAL :	2.246e+08		2.739e-07		2.739e-07
Release Release Average Dilution	Duration Volume Flowrate Volume	: Braidw : 5.693e : 1.307e : 2.296e : 0.000e e: 0.000e	+05 minutes +07 gal +01 gpm +00 gal		
	Activity		e Detail	Dil Conc	D11 0 /
Nuclide	(uCi)	Avg Conc (uCi/mL)	Avg Conc/ ECL MPC	(uCi/mL)	ECL/MPC
Н-3	9.192e+05	1.858e-05	5.021e-07	1.858e-05	5.021e-07
TOTAL :	9.192e+05		5.021e-07		5.021e-07
Release	Duration	: ALL DI : 9.435e : 5.869e		NTS	

Release Volume.....: 5.869e+09 gal Average Flowrate.....: 6.221e+03 gpm Dilution Volume.....: 1.803e+09 gal Average Dil Flowrate..: 1.911e+03 gpm

				Table J.Z	- i (concu)
Nuclide	Activity (uCi)	Nuclid Avg Conc (uCi/mL)	e Detail Avg Conc/ ECL MPC	Dil Conc (uCi/mL)	Dil Conc/ ECL MPC
H-3 Cr-51 Mn-54 Fe-55 Fe-59 Co-57 Co-58 Co-60 Zr-95 Nb-95 Nb-97 Ag-110m Sn-113 Sb-124 Sb-125 Te-123m Te-132 Xe-133	1.696e+09 1.263e+03 2.485e+02 4.208e+03 2.758e+01 2.135e+01 1.629e+03 6.107e+03 2.538e+01 1.943e+02 3.120e+02 3.922e+01 2.463e+01 4.866e+02 1.600e+01 4.139e+00 3.881e+01	7.632e-05 5.683e-11 1.118e-11 1.894e-10 1.241e-12 9.611e-13 7.331e-11 2.749e-10 1.142e-12 8.745e-12 1.404e-11 1.168e-11 1.765e-12 1.109e-12 2.190e-11 7.202e-13 1.863e-13 1.747e-12	2.063e-06 3.072e-12 1.008e-11 5.118e-11 3.355e-12 4.329e-13 9.906e-11 2.476e-09 1.543e-12 7.878e-12 1.265e-12 5.260e-11 1.590e-12 4.281e-12 1.973e-11 N/A 5.594e-13 2.360e-13	5.838e-05 4.347e-11 8.556e-12 1.449e-10 9.496e-13 7.352e-13 5.608e-11 2.103e-10 8.737e-13 6.690e-12 1.074e-11 8.932e-12 1.350e-12 8.482e-13 1.675e-11 5.509e-13 1.425e-13 1.336e-12	$\begin{array}{c} 1.578 \pm -06\\ 2.350 \pm -12\\ 3.915 \pm -11\\ 2.567 \pm -12\\ 3.312 \pm -13\\ 7.578 \pm -11\\ 1.894 \pm -09\\ 1.181 \pm -12\\ 6.027 \pm -12\\ 9.678 \pm -13\\ 4.024 \pm -11\\ 1.217 \pm -12\\ 3.275 \pm -12\\ 1.509 \pm -11\\ N/A\\ 4.279 \pm -13\\ 1.806 \pm -13\\$
TOTAL :	1.696e+09		2.065e-06		1.580e-06

ORGAN DOSES BY RECEPTOR (Dose = mRem)

Receptor N Pathway		uid Recepto Bone	or / Adult Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wa	ter								
	н-З	0.000e+00	2.597e-02	2.597e-02	2.597e-02	2.597e-02	2.597e-02	2.597e-02	0.000e+00
	Cr-51	0.000e+00	0.000e+00	3.552e-11	2.126e-11	7.837e-12	4.715e-11	8.929e-09	0.000e+00
	Mn-54	0.000e+00	9.306e-09	1.771e-09	0.000e+00	2.769e-09	0.000e+00	2.848e-08	0.000e+00
	Fe-55	1.243e-07	8.586e-08	2.004e-08	0.000e+00	0.000e+00	4.804e-08	4.934e-08	0.000e+00
	Fe-59	1.200e-09	2.818e-09	1.081e-09	0.000e+00	0.000e+00	7.883e-10	9.399e-09	0.000e+00
	Co-57	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Co-58	0.000e+00	1.383e-08	3.097e-08	0.000e+00	0.000e+00	0.000e+00	2.802e-07	0.000e+00
	Co-60	0.000e+00	1.074e-07	2.369e-07	0.000e+00	0.000e+00	0.000e+00	2.017e-06	0.000e+00
	Zr-95	1.747e-11	5.613e-12	3.788e-12	0.000e+00	8.793e-12	0.000e+00	1.778e-08	0.000e+00
	Nb-95	1.220e-11	6.810e-12	3.660e-12	0.000e+00	6.734e-12	0.000e+00	4.133e-08	0.000e+00
	Nb-97	1.539e-13	3.891e-14	1.421e-14	0.000e+00	4.540e-14	0.000e+00	1.436e-10	0.000e+00
	Ag-110m	3.604e-10	3.333e-10	1.980e-10	0.000e+00	6.547e-10	0.000e+00	1.364e-07	0.000e+00
	Sn-113	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Sb-124	1.061e-09	2.005e-11	4.206e-10	2.573e-12	0.000e+00	8.261e-10	3.013e-08	0.000e+00
	Sb-125	8.244e-09	9.211e-11	1.962e-09	8.382e-12	0.000e+00	6.356e-09	9.073e-08	0.000e+00
	Te-123m	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Te-132	3.587e-11	2.321e-11	2.177e-11	2.560e-11	2.239e-10	0.000e+00	1.095e-09	0.000e+00
	Xe-133	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
Sport Fres	hwater F:	Lsh							
-	н-З	0.000e+00	2.681e-03	2.681e-03	2.681e-03	2.681e-03	2.681e-03	2.681e-03	0.000e+00
	Cr-51	0.000e+00	0.000e+00	8.158e-10	4.888e-10	1.805e-10	1.086e-09	2.056e-07	0.000e+00
	Mn-54	0.000e+00	4.286e-07	8.171e-08	0.000e+00	1.272e-07	0.000e+00	1.311e-06	0.000e+00
	Fe-55	1.430e-06	9.891e-07	2.304e-07	0.000e+00	0.000e+00	5.521e-07	5.674e-07	0.000e+00
	Fe-59			1.244e-08					
	Co-57			0.000e+00					
	Co-58	0.000e+00	7.961e-08	1.785e-07	0.000e+00	0.000e+00	0.000e+00	1.615e-06	0.000e+00
	Co-60	0.000e+00	6.177e-07	1.363e-06	0.000e+00	0.000e+00	0.000e+00	1.161e-05	0.000e+00
	Zr-95	6.636e-12	2.129e-12	1.441e-12	0.000e+00	3.346e-12	0.000e+00	6.746e-09	0.000e+00
	Nb-95	4.228e-08	2.346e-08	1.267e-08	0.000e+00	2.327e-08	0.000e+00	1.428e-04	0.000e+00
	Nb-97	5.312e-10	1.343e-10	4.905e-11	0.000e+00	1.567e-10	0.000e+00	4.956e-07	0.000e+00
	Ag-110m	9.534e-11	8.820e-11	5.238e-11	0.000e+00	1.732e-10	0.000e+00	3.604e-08	0.000e+00
	Sn-113			0.000e+00					
	Sb-124			4.840e-11					
	Sb-125			2.258e-10					
				0.000e+00					
	Te-132			1.006e-09					
	Xe-133			0.000e+00					
				:					

ALL PATHWAYS/NUCLIDES TOTAL: 1.625e-06 2.866e-02 2.866e-02 2.866e-02 2.866e-02 2.866e-02 2.866e-02 2.886e-02 0.000e+00

Receptor N Pathway	lame: Liq Nuclide	uid Recepto Bone		Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wa	ter								
	н-3	0.000e+00	3.512e-02	3.512e-02	3.512e-02	3.512e-02	3.512e-02	3.512e-02	0.000e+00
	Cr-51	0.000e+00	0.000e+00	8.286e-11	4.612e-11	1.259e-11	8.415e-11	4.407e-09	0.000e+00
	Mn-54	0.000e+00	1.527e-08	4.051e-09	0.000e+00	4.267e-09	0.000e+00	1.282e-08	0.000e+00
	Fe-55	3.630e-07	1.928e-07	5.978e-08	0.000e+00	0.000e+00	1.089e-07	3.565e-08	0.000e+00
	Fe-59	3.191e-09	5.158e-09	2.566e-09	0.000e+00	0.000e+00	1.502e-09	5.371e-09	0.000e+00
	Co-57	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Co-58		2.338e-08						
	Co-60		1.855e-07						
	Zr-95		1.026e-11						
	Nb-95		1.201e-11						
	Nb-97		8.074e-14						
	-	8.474e-10							
	Sn-113		0.000e+00						
	Sb-124		3.812e-11						
	Sb-125		1.776e-10						
		0.000e+00							
	Te-132		4.450e-11						
	Xe-133		0.000e+00		0.000e+00				0.000e+00
Sport Fres	hwater F								
Shore trep	H-3		1.706e-03	1.7060-03	1.7060-03	1.7060-03	1.706e-03	1.7066-03	0.000+00
	Cr-51		0.000e+00						
	Mn-54		3.298e-07						
	Fe-55		1.043e-06						
	Fe-59		2.792e-08						
	Co-57		0.000e+00						
	Co-58		6.319e-08						
	Co-60		5.019e-07						
	Zr-95		1.830e-12						
	Nb-95		1.958e-08						
	Nb-97		1.311e-10						
		1.055e-10							
	Sn-113		0.000e+00						
	Sb-124		2.063e-12						
	Sb-125		9.612e-12						
		0.000e+00							
	Te-132		9.652e-10						
	Xe-133		0.000e+00						
				:					
ALL PATHWA	YS/NUCLI	DES TOTAL:							
		2.432e-06	3.683e-02	3.683e-02	3.682e-02	3.682e-02	3.682e-02	3.691e-02	0.000e+00
Receptor N							-	o	a 1 /
Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Detable We									
Potable Wa	ter H-3	0 0000+00	3.449e-02	3 4400-00	3 1400-02	3 1100-00	3 4400-02	3 1100-02	0.000-+00
	Cr-51 Mn-54		0.000e+00 1.830e-08						
	Fe-55 Fe-59		1.837e-07 6.727e-09						
	Co-57		0.000e+00						
	Co-58		3.025e-08						
	Co-60		2.461e-07						
	Zr-95		1.305e-11						
	Nb-95		1.542e-11						
	Nb-97		1.286e-16						
	~	1.014e-09							
	Sn-113		0.000e+00						
		3.666e-09							
		2.560e-08							
		0.000e+00							
		1.342e-10							
		0.000e+00							0.000e+00
ALL PATHWA									
ADD FAINWA			2 440- 02	3 1100-00	3 1100-02	3 1100-02	3 1100-00	2 110- 02	0.0000100

3.191e-07 3.449e-02 3.449e-02 3.449e-02 3.449e-02 3.449e-02 3.449e-02 0.000e+00

Table	3.2-1	(cont'd)
-------	-------	----------

Pathway	Nuclide	Bone	Liver	Total Bod	Thyroid	Kidney	Lung	GI-Lli	Skin
Potable Wat	er								
	н-3			1.824e-02					
	Cr-51			3.360e-11					
	Mn-54			1.664e-09					
	Fe-55			1.974e-08					
	Fe-59	1.134e-09	2.645e-09	1.022e-09	0.000e+00	0.000e+00	8.349e-10	6.261e-09	0.000e+00
	Co-57	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00
	Co-58	0.000e+00	1.258e-08	2.909e-08	0.000e+00	0.000e+00	0.000e+00	1.740e-07	0.000e+00
	Co-60	0.000e+00	9.844e-08	2.220e-07	0.000e+00	0.000e+00	0.000e+00	1.284e-06	0.000e+00
	Zr-95	1.656e-11	5.226e-12	3.594e-12	0.000e+00	7.687e-12	0.000e+00	1.206e-08	0.000e+0
	Nb-95	1.126e-11	6.271e-12	3.452e-12	0.000e+00	6.072e-12	0.000e+00	2.677e-08	0.000e+0
	Nb-97	1.518e-13	3.769e-14	1.376e-14	0.000e+00	4.407e-14	0.000e+00	9.000e-10	0.000e+0
	Ag-110m	3.225e-10	3.052e-10	1.861e-10	0.000e+00	5.822e-10	0.000e+00	8.571e-08	0.000e+0
	Sn-113	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+00	0.000e+0
	Sb-124	1.025e-09	1.888e-11	3.997e-10	2.324e-12	0.000e+00	8.948e-10	2.065e-08	0.000e+0
	Sb-125	7.979e-09	8.719e-11	1.866e-09	7.625e-12	0.000e+00	7.014e-09	6.210e-08	0.000e+0
				0.000e+00					
				2.067e-11					
				0.000e+00					
	H-3 Cr-51 Mn-54 Fe-55 Fe-59 Co-57 Co-58 Co-60 Zr-95 Nb-95 Nb-97 Ag-110m Sn-113 Sb-124 Sb-125	0.000e+00 0.000e+00 1.498e-06 0.000e+00 0.000e+00 0.000e+00 6.857e-12 4.256e-08 5.714e-10 9.307e-11 0.000e+00 1.286e-10	0.000e+00 4.208e-07 1.063e-06 3.323e-08 0.000e+00 7.907e-08 6.177e-07 2.162e-12 2.365e-08 1.419e-10 8.809e-11 0.000e+00 2.369e-12	2.061e-03 8.415e-10 8.357e-08 2.478e-07 1.283e-08 0.000e+00 1.821e-07 1.392e-06 1.488e-12 1.296e-08 5.179e-11 5.357e-11 0.000e+00 5.016e-11 2.342e-10	4.689e-10 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.917e-13	1.850e-10 1.253e-07 0.000e+00 0.000e+00 0.000e+00 3.180e-12 2.289e-08 1.659e-10 1.677e-10 0.000e+00 0.000e+00	1.208e-09 0.000e+00 6.739e-07 1.048e-08 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.123e-10	1.420e-07 8.641e-07 4.608e-07 7.857e-08 0.000e+00 1.089e-06 8.059e-06 5.005e-09 1.012e-04 3.388e-06 2.478e-08 0.000e+00 2.591e-09	0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0
	Te-123m	0.000e+00 1.746e-09	0.000e+00 1.102e-09	0.000e+00 1.041e-09	0.000e+00 1.164e-09	0.000e+00 1.061e-08	0.000e+00 0.000e+00	0.000e+00	0.000e+0 0.000e+0

1.688e-06 2.031e-02 2.031e-02 2.031e-02 2.031e-02 2.031e-02 2.042e-02 0.000e+00

Table 3-3.1

Braidwood Nuclear Station

Unit 1

10 CFR 20 Compliance Assessment

Period of Assessment: 1/1/16 through 12/31/16 Calculated: 04/19/17

10 CFR 20.1301(a)(1) Compliance

	Total Effective Dose Equivalent (TEDE)	mrem/year	2.33E+00
. · · · · ·	10 CFR 20.1301(a)(1) limit	mrem/year	~100.00 · · · · · · · · · · · · · · · · ·
		% of limit	2.33%

Compliance Summary

	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr	Total
TEDE (mrem)	5.90E-01	6.58E-01	5.72E-01	5.13E-01	2.33E+00

Table 3-3.1 (cont.)

Braidwood Nuclear Station

Unit 2

10 CFR 20 Compliance Assessment

Period of Assessment: 1/1/16 through 12/31/16 Calculated: 04/19/17

10 CFR 20.1301(a)(1) Compliance

Total Effective Dose Equivalent (TEDE)	mrem/year	2.40E+00
10 CFR 20.1301(a)(1) limit	mrem/year	100.00
	% of limit	2.40%

Compliance Summary

	1 st Qtr	2 nd Qtr	3 rd Qtr	4 th Qtr	Total
TEDE (mrem)	6.11E-01	5.92E-01	6.20E-01	5.78E-01	2.40E+00

Table 3.4-1

Meteorological Data

The Braidwood Station meteorological monitoring program produced 52,584 hours of valid data out of a possible 52,704 parameter hours during 2016 (366 days x 24 hours/day x 6 measured priority parameters). which represents an overall data recovery rate of 99.8%. Priority parameters are all parameters except dew point temperature and precipitation. For the year, winds measured at 34 ft. most frequently came from the West-Northwest (10.74%) and fell into the 3.6 - 7.5 mph wind speed class (40.34%). Calms (wind speeds at or below the sensor threshold) were measured 0.00% of the time and speeds greater than 24.5 mph were measured 0.12% of the time. Stability based on the 199 - 30 ft. differential temperature most frequently fell into the slightly stable classification (35.77%).

The following are the maximum annual calculated cumulative offsite doses resulting from Braidwood Station airborne releases in 2016 based on concurrent meteorological data:

•		
Dose	Maximum Value	Sector Affected
gamma air ⁽¹⁾	1.140 x10 ⁻⁶ mrad	North
beta air ⁽²⁾	3.110 x10 ⁻⁶ mrad	North
whole body ⁽³⁾	2.630 x10 ⁻¹ mrem	North
skin ⁽⁴⁾	1.890 x 10 ⁻⁶ mrem	North
organ ⁽⁵⁾ (child-bone)	1.200 x10 ⁺⁰ mrem	North

Unit 1 Compliance Status

10 CFR 50 Appendix I	Yearly Objective	% of Appendix I
gamma air	10.0 mrad	0.00E+00
beta air	20.0 mrad	0.00E+00
whole body	5.0 mrem	5.26E+00
skin	15.0 mrem	0.00E+00
organ	15.0 mrem	8.00E+00

Unit 2:

Unit 1:

Dose	Maximum Value	Sector Affected
gamma air ⁽¹⁾	1.140 x10 ⁻⁶ mrad	North
beta air ⁽²⁾	3.110 x10 ⁻⁶ mrad	North
whole body ⁽³⁾	2.740 x10 ⁻¹ mrem	North
skin ⁽⁴⁾	1.890 x10 ⁻⁶ mrem	North
organ ⁽⁵⁾ (child-bone)	1.250 x10 ⁺⁰ mrem	North

Unit 2 Compliance Status

10 CFR 50 Appendix I	Yearly Objective	% of Appendix I
gamma air	10.0 mrad	0.00E+00
beta air	20.0 mrad	0.00E+00
whole body	5.0 mrem	5.48E+00
skin	15.0 mrem	0.00E+00
organ	15.0 mrem	8.33E+00

Gamma Air Dose - GASPAR II, NUREG-0597 (1) (2) (3) (4) (5)

Beta Air Dose - GASPAR II, NUREG-0597

Whole Body Dose - GASPAR II, NUREG-0597

Skin Dose - GASPAR II, NUREG-0597

Intentionally left blank

APPENDIX F

METEOROLOGICAL DATA

Intentionally left blank

Period of Record: January - March, 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	0	0	1	0	0	0	1		
NNE	0	0	0	0	0	0	0		
NE	0	0	0	0	0	0	0		
ENE	0	1	1	0	0	0	2		
E	0	2	0	0	0	0	2		
ESE	0	1	3	2	0	0	6		
SE	0	3	3	0	0	0	6		
SSE	0	1	0	0	0	0	1		
S	0	0	0	2	0	0	2		
SSW	0	0	0	4	1	0	5		
SW	0	0	2	2	0	0	4		
WSW	0	1	2	3	0	1	7		
W	0	1	2	8	1	4	16		
WNW	0	2	14	3	0	0	19		
NW	0	6	12	2	0	0	20		
NNW	0	1	3	1	0	0	5		
Variable	0	0	0	0	0	0	0		
Total	0	19	43	27	2	5	96		

Wind Speed (in mph)

Period of Record: January - March, 2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

	Wind Speed (in mph) Wind										
	Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
	Ν	0	0	1	0	0	0	1			
	NNE	0	0	0	0	0	0	0			
	NE	0	0	1	0	0	0	1			
	ENE	0	5	2	0	0	0	7			
	E	0	3	0	0	0	0	3			
- v	ESE	0	0	0	0	0	0	0			
	SE	0	2	0	0	0	0	2			
	SSE	0	3	1	0	0	0	4			
	S	0	1	1	3	0	0	5			
	SSW	0	3	3	1	0	0	7			
	SW	0	2	3	0	2	0	7			
	WSW	0	2	4	0	1	3	10			
	W	0	3	3	0	1	0	7			
	WNW	0	2	4	1	0	0	7			
	NW	0	5	3	0	0	0	8			
	NNW	0	0	3	0	0	0	3			
	Variable	0	0	0	0	0	0	0			
	Total	0	31	29	5	4	3	72			

Period of Record: January - March, 2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

	Trī dara al		W.	ind Speed	l (in mph	1)		
I	Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	Ν	0	1	1	0	0	0	2
	NNE	0	0	1	0	0	0	1
	NE	0	0	0	0	0	0	0
	ENE	0	4	0	0	0	0	4
	Е	0	2	0	0	0	0	2
4 • 1	$\mathbf{ESE}_{\mathbb{G}}$	0	2	·· 1	0	0.12.00	0	3
	SE	0	3	1	3	0	0	7
	SSE	0	1	0	0	0	0	1
	S	0	1	2	2	0	0	5
	SSW	0	0	2	1	3	0	6
	SW	0	1	5	3	2	0	11
	WSW	0	5	9	1	1	0	16
	W	0	2	2	2	1	0	7
	WNW	0	6	11	4	0	0	21
	NW	0	3	2	1	0	0	6
	NNW	1	1	5	0	0	0	7
7	Variable	0	0	0	0	0	0	0
	Total	1	32	42	17	7	0	99
Hours of	calm in this	stab	ility c	Lass:	0			

Period of Record: January - March, 2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

		Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	5	21	14	6	1	0	47		
NNE	3	22	7	7	1	0	40		
NE	6	22	14	1	0	0	43		
ENE	8	16	18	0	0	0	42		
E	13	19	0	2	0	0	34		
ESE	2	12	12	2	0	0	28		
SE	4	15	21	5	0	0	45		
SSE	1	21	16	0	0	0	38		
S	0	10	31	13	0	0	54		
SSW	0	3	12	26	13	0	54		
SW	1	8	25	15	2	0	51		
WSW	4	15	17	14	1	0	51		
W	6	22	24	28	5	1	86		
WNW	7	42	96	3	0	0	148		
NW	9	44	45	6	0	0	104		
NNW	5	22	48	19	2	0	96		
Variable	0	0	0	0	0	0	0		
Total	74	314	400	147	25	1	961		

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 14

F-4

Period of Record: January - March, 2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

FT '1		W	ind Speed	l (in mph	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	13	15	1	0	0	0	29
NNE	11	14	2	0	0	0	27
NE	3	2	1	0	0	0	6
ENE	20	18	1	0	0	0	39
E	21	13	3	1	0	0	38
ESE	4	.31	3	1	0 👝 😅	0	39
SE	3	32	14	3	0	0	52
SSE	0	35	21	4	0	0	60
S	2	17	65	19	0	0	103
SSW	1	10	40	41	5	0	97
SW	5	26	52	5	0	0	88
WSW	5	14	20	4	0	0	43
W	6	28	8	5	1	0	48
WNW	11	39	18	1	1	0	70
NW	13	20	3	2	0	0	38
NNW	9	30	1	0	0	0	40
Variable	0	0	0	0	0	0	0
Total	127	344	253	86	7	0	817

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 14

F-5

Period of Record: January - March, 2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

17 é es el		Wi	nd Speed	d (in mpł	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	5	0	0	0	0	0	5
NNE	3	1	0	0	0	0	4
NE	7	1	0	0	0	0	8
ENE	13	0	0	0	0	0	13
E	14	0	0	0	0	0	14
ESE	7	1	0	0	0	0	8
SE	0	3	0	0	0	0	3
SSE	2	0	0	0	0	0	2
S	1	0	0	0	0	0	1
SSW	1	0	5	1	0	0	7
SW	0	0	1	1	0	0	2
WSW	2	4	0	0	0	0	6
W	5	12	0	0	0	0	17
WNW	3	5	0	0	0	0	8
NW	5	1	0	0	0	0	6
NNW	3	0	0	0	0	0	3
Variable	0	0	0	0	0	0	0
Total	71	28	6	2	0	0	107

Period of Record: January - March, 2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind		Wi	nd Speed	d (in mpł	ר)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	0	0	0	0	0	1
NNE	4	0	0	0	0	0	4
NE	2	0	0	0	0	0	2
ENE	3	0	0	0	0	0	3
E	2	0	0	0	0	0	2
ESE	. 1	0	. О	. 0	0 :	0	1
SE	1	0	0	0	0	0	1
SSE	0	0	0	0	0	0	0
S	0	0	0	0	0	0	0
SSW	0	0	0	0	0	0	0
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	1	0	0	0	0	0	1
WNW	1	0	0	0	0	0	1
NW	2	0	0	0	0	0	2
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	18	0	0	0	0	0	18
f calm in th	nis stab	ility cl	ass:	0			

Period of Record: January - March, 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		Wi	nd Speed	l (in mpł	ı)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	0	1	0	0	1
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	1	2	0	0	0	3
E	0	2	0	0	0	0	2
ESE	0	0	0	2	3	0	5
SE	0	1	5	0	0	0	6
SSE	0	1	0	0	0	0	1
S	0	0	0	0	2	0	2
SSW	0	0	0	1	1	4	6
SW	0	0	0	2	1	0	3
WSW	0	0	4	1	2	1	8
W	0	2	1	4	6	5	18
WNW	0	0	7	7	8	1	23
NW	0	0	8	6	2	0	16
NNW	0	0	0	1	1	0	2
Variable	0	0	0	0	0	0	0
Total	0	7	27	25	26	11	96

Period of Record: January - March, 2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

1 1	wind Speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	0	0	0	1	0	0	1		
NNE	0	0	0	0	0	0	0		
NE	0	0	1	0	0	0	1		
ENE	0	4	3	0	0	0	7		
E	0	1	2	0	0	0	3		
ESE	0	1	0	0	0	0	1		
SE	0	1	2	0		0	3		
SSE	0	4	0	0	0	0	4		
S	0	0	1	0	3	0	4		
SSW	0	1	4	1	1	2	9		
SW	0	0	4	1	0	0	5		
WSW	0	1	4	0	0	4	9		
W	0	0	4	3	0	1	8		
WNW	0	3	3	1	2	0	9		
NW	0	1	2	4	1	0	8		
NNW	0	0	0	0	0	0	0		
Variable	0	0	0	0	0	0	0		
Total	0	17	30	11	7	7	72		

Wind Speed (in mph)

Period of Record: January - March, 2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		Wind Speed (in mph)					
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	0	1	0	0	0	1
NNE	0	0	0	1	0	0	1
NE	0	0	0	0	0	0	0
ENE	0	3	2	0	0	0	5
E	0	2	0	0	0	0	2
ESE	0	1	0	1	0	0	2
SE	0	0	3	0	3	0	6
SSE	0	0	1	1	0	0	2
S	0	2	0	2	1	1	6
SSW	0	2	0	1	1	5	9
SW	0	2	2	7	0	0	11
WSW	0	2	8	3	0	1	14
W	0	0	2	5	1	1	9
WNW	0	3	4	7	5	0	19
NW	0	2	2	5	1	1	11
NNW	0	1	0	0	0	0	1
Variable	0	0	0	0	0	0	0
Total	0	20	25	33	12	9	99

Period of Record: January - March, 2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		W	ind Speed	l (in mp)	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	8	27	4	4	2	49
NNE	2	7	13	10	4	4	40
NE	5	8	19	14	2	0	48
ENE	5	10	9	7	0	0	31
E	2	7	17	3	0	2	31
ESE	1	· 3	8	12	9 🖅	2	35
SE	0	6	16	10	4	3	39
SSE	3	3	15	16	2	0	39
S	1	3	8	23	15	5	55
SSW	0	2	5	16	14	25	62
SW	0	1	17	13	7	1	39
WSW	2	9	13	16	8	5	53
W	3	12	15	26	16	12	84
WNW	4	25	21	72	38	1	161
NW	2	16	20	58	22	1	119
NNW	3	7	20	29	11	6	76
Variable	0	0	0	0	0	0	0
Total	37	127	243	329	156	69	961

6.5

Period of Record: January - March, 2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

trī á an al		W	ind Speed	l (in mpł	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	13	12	3	0	0	28
NNE	2	3	13	3	0	0	21
NE	0	6	4	1	0	0	11
ENE	2	19	15	1	0	0	37
E	1	10	16	5	2	1	35
ESE	• 0	5	15	10	3 ··	1	34
SE	0	5	22	21	4	2	54
SSE	0	3	25	29	3	4	64
S	1	3	9	50	37	7	107
SSW	0	2	13	48	35	16	114
SW	1	10	16	32	6	0	65
WSW	0	8	9	24	4	3	48
W	1	6	18	18	3	4	50
WNW	1	6	22	30	1	2	62
NW	1	7	29	5	1	3	46
NNW	1	13	23	4	0	0	41
Variable	0	0	0	0	0	0	0
Total	11	119	261	284	99	43	817

a alle a

Period of Record: January - March, 2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

TT - 1		W	ind Speed	l (in mpł	1)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	1	4	1	0	0	8
NNE	1	3	2	1	0	0	7
NE	1	3	3	0	0	0	7
ENE	1	6	4	0	0	0	11
E	1	2	6	1	0	0	10
ESE	0	3	7	2	0	0	12
SE	0	0	3	1	0	0	4
SSE	1	2	2	0	0	0	5
S	0	0	0	0	0	0	0
SSW	0	0	1	0	2	2	5
SW	0	0	0	2	2	0	4
WSW	1	1	1	1	0	0	4
W	0	1	6	2	0	0	9
WNW	0	0	7	8	0	0	15
NW	1	0	2	3	0	0	6
NNW	0	0	0	0	0	0	0
Variable	0	0	0	0	0	0	0
Total	9	22	48	22	4	2	107

Period of Record: January - March, 2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Trī dava al	Wind Speed (in mph)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	0	0	0	0	0	1
NNE	1	0	0	0	0	0	1
NE	0	0	1	0	0	0	1
ENE	1	2	0	0	0	0	3
E	2	0	0	0	0	0	2
ESE	0	0	0	0	0	0	0
SE	1	0	1	1	0	0	3
SSE	1	1	1	0	0	0	3
S	0	1	0	0	0	0	1
SSW	1	1	0	0	0	0	2
SW	0	0	0	0	0	0	0
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	0	0
NNW	0	0	1	0	0	0	1
Variable	0	0	0	0	0	0	0
Total	8	5	4	1	0	0	18
of calm in t	this stab	ility c	lass:	0			

Period of Record: April - June, 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	0	2	7	0	0	0	9	
NNE	0	0	7	0	0	0	7	
NE	1	1	11	1	0	0	14	
ENE	1	7	1	0	0	0	9	
E	1	13	1	0	0	0	15	
ESE	1	15	7	0	0	0	23	
SE	2	16	11	0	0	0	29	
SSE	1	14	2	0	0	0	17	
S	1	13	8	3	0	0	25	
SSW	0	1	7	3	2	0	13	
SW	0	3	8	5	1	0	17	
WSW	0	7	12	3	0	0	22	
W	0	3	17	2	0	0	22	
WNW	0	15	28	3	0	0	46	
NW	1	11	8	0	0	0	20	
NNW	0	6	17	2	0	0	25	
Variable	0	0	0	0	0	0	0	
Total	9	127	152	22	3	0	313	

Wind Speed (in mph)

Period of Record: April - June, 2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind	Wind Speed (in mph)						
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	3	1	0	0	0	4
NNE	0	2	6	0	0	0	8
NE	0	4	8	0	0	0	12
ENE	0	1	0	0	0	0	1
E	1	7	0	0	0	0	8
ESE	0	7	0	0	0	0	7
SE	0	7	1	0	0	0	8
SSE	0	0	0	0	0	0	0
S	1	7	1	0	0	0	9
SSW	1	4	3	0	0	0	8
SW	0	5	1	2	1	0	9
WSW	1	2	1	0	0	0	4
W	0	4	2	0	0	0	6
WNW	0	6	13	2	0	0	21
NW	0	2	3	0	0	0	5
NNW	0	0	1	2	0	0	3
Variable	0	0	0	0	0	0	0
Total	4	61	41	6	1	0	113

Period of Record: April - June, 2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	0	8	3	0	0	0	11	
NNE	0	7	4	0	0	0	11	
NE	0	5	8	0	0	0	13	
ENE	1	1	2	0	0	0	4	
E	2	5	0	0	0	0	7	
ESE	0	4	1	0	0	0	5	
SE	1	10	3	0	0	0	14	
SSE	0	2	3	0	0	0	5	
S	0	2	5	1	0	0	8	
SSW	0	4	2	3	0	0	9	
SW	0	1	2	4	1	0	8	
WSW	0	1	3	0	0	0	4	
W	1	4	4	0	0	0	9	
WNW	0	5	5	2	0	0	12	
NW	1	2	1	2	1	0	7	
NNW	0	4	З	1	0	0	8	
Variable	0	0	0	0	0	0	0	
Total	6	65	49	13	2	0	135	

Period of Record: April - June, 2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

57 /	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	4	21	26	1	0	0	52	
NNE	2	24	23	0	0	0	49	
NE	2	54	41	3	0	0	100	
ENE	8	35	24	0	0	0	67	
E	5	15	7	0	0	0	27	
ESE	1	13	. 9	· 0	0	. 0	23	
SE	2	20	10	2	0	0	34	
SSE	4	25	9	5	0	0	43	
S	1	22	23	9	0	0	55	
SSW	0	12	19	17	1	0	49	
SW	0	7	28	9	3	0	47	
WSW	1	15	9	0	0	0	25	
W	1	7	10	1	1	0	20	
WNW	5	13	18	3	3	0	42	
NW	4	15	15	5	0	0	39	
NNW	2	16	9	4	0	0	31	
Variable	0	0	0	0	0	0	0	
Total	42	314	280	59	8	0	703	

Wind Speed (in mph)

Period of Record: April - June, 2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

rri - 1	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	10	5	2	0	0	0	17	
NNE	6	8	0	0	0	0	14	
NE	6	14	0	0	0	0	20	
ENE	23	30	0	0	0	0	53	
E	29	18	1	0	0	0	48	
ESE	12	43	6	<u>,</u> 0	0 - 14	0	61	
SE	11	20	6	0	0	0	37	
SSE	4	26	9	0	0	0	39	
S	1	28	31	1	0	0	61	
SSW	1	9	15	2	0	0	27	
SW	3	24	27	4	0	0	58	
WSW	3	23	5	1	0	0	32	
W	8	20	5	1	0	0	34	
WNW	18	26	11	0	0	1	56	
NW	13	9	6	0	0	0	28	
NNW	6	13	5	1	0	0	25	
Variable	0	0	0	0	0	0	0	
Total	154	316	129	10	0	1	610	

÷

Period of Record: April - June, 2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

	Wind Speed (in mph)						
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	1	0	0	0	0	5
NNE	6	0	0	0	0	0	6
NE	3	0	0	0	0	0	3
ENE	9	1	0	0	0	0	10
E	29	5	0	0	0	0	34
ESE	21	11	, O	0	0	0	32
SE	4	2	0	0	0	0	6
SSE	8	3	0	0	0	0	11
S	3	0	0	0	0	0	3
SSW	3	4	0	0	0	0	7
SW	1	2	1	0	0	0	4
WSW	7	12	0	0	0	0	19
W	16	6	0	0	0	0	22
WNW	18	0	0	0	0	0	18
NW	13	1	0	0	0	0	14
NNW	2	0	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	147	48	1	0	0	0	196

Period of Record: April - June, 2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

tra é en la	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	3	0	0	0	0	0	3	
NNE	2	0	0	0	0	0	2	
NE	8	0	0	0	0	0	8	
ENE	4	0	0	0	0	0	4	
E	14	3	0	0	0	0	17	
ESE	6	0	0	<u> </u>	0	0	6	
SE	3	0	0	0	0	0	3	
SSE	0	0	0	0	0	0	0	
S	2	0	0	0	0	0	2	
SSW	1	0	0	0	0	0	1	
SW	1	1	0	0	0	0	2	
WSW	7	5	0	0	0	0	12	
W	15	2	0	0	0	0	17	
WNW	13	1	0	0	0	0	14	
NW	7	0	0	0	0	0	7	
NNW	1	0	0	0	0	0	1	
Variable	0	0	0	0	0	0	0	
Total	87	12	0	0	0	0	99	

Period of Record: April - June, 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind	Wind Speed (in mph)						
	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	7	1	0	0	9
NNE	0	0	5	4	1	0	10
NE	0	1	2	6	0	0	9
ENE	1	4	4	0	0	0	9
E	0	10	4	2	0	0	16
ESE	1	4	15	, 2	0	0	25
SE	1	14	13	4	0	0	32
SSE	0	5	3	2	0	0	10
S	1	4	13	5	4	1	28
SSW	0	1	1	8	2	2	14
SW	0	1	5	6	1	1	14
WSW	0	2	7	9	2	0	20
W	0	2	11	13	2	0	28
WNW	0	2	18	20	9	0	49
NW	0	4	12	9	1	0	26
NNW	0	1	4	8	1	0	14
Variable	0	0	0	0	0	0	0
Total	4	56	124	102	23	4	313

*

Wind Speed (in mph)

Period of Record: April - June, 2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		Wind Speed (in mph)						
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	3	1	0	0	4	
NNE	0	1	6	4	0	0	11	
NE	0	0	4	2	0	0	6	
ENE	0	0	1	0	0	0	1	
E	0	5	2	0	0	0	7	
ESE	0	, 6	5	. 0	0	0	11	
SE	0	3	4	1	0	0	8	
SSE	0	0	0	0	0	0	0	
S	0	1	4	0	1	0	6	
SSW	0	4	3	2	1	0	10	
SW	0	2	2	2	0	1	7	
WSW	0	4	2	1	0	0	7	
W	0	2	1	1	0	0	4	
WNW	0	2	5	8	4	2	21	
NW	0	0	1	2	1	0	4	
NNW	0	0	3	1	2	0	6	
Variable	0	0	0	0	0	0	0	
Total	0	30	46	25	9	3	113	

Period of Record: April - June, 2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wide al	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	0	5	6	4	0	0	15	
NNE	0	2	6	4	0	0	12	
NE	0	2	4	1	0	0	7	
ENE	0	2	3	0	0	0	5	
E	1	2	2	1	0	0	6	
ESE	0	3	2	• 2	0 · ·	0	7	
SE	0	5	4	3	0	0	12	
SSE	0	3	2	1	0	0	6	
S	0	0	1	4	2	1	8	
SSW	0	1	3	1	3	1	9	
SW	0	1	1	2	1	1	6	
WSW	0	1	3	2	0	0	6	
W	0	1	3	3	0	0	7	
WNW	0	4	1	2	5	1	13	
NW	0	1	1	1	2	1	6	
NNW	0	4	4	2	0	0	10	
Variable	0	0	0	0	0	0	0	
Total	1	37	46	33	13	5	135	

*

Wind Speed (in mph)

Period of Record: April - June, 2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

**' 1		V 1	ind speed		1 /		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	9	20	22	0	0	52
NNE	1	7	37	20	0	0	65
NE	1	15	43	30	3	0	92
ENE	4	14	21	10	0	0	49
E	2	6	8	9	6	0	31
ESE	0	. 6	10	. 5	6	0	27
SE	1	7	13	9	8	0	38
SSE	0	4	18	8	4	1	35
S	1	3	14	19	18	3	58
SSW	0	3	15	16	15	6	55
SW	0	1	11	20	2	3	37
WSW	0	5	11	8	1	0	25
W	1	2	5	8	3	1	20
WNW	1	8	7	18	12	4	50
NW	0	10	9	9	8	3	39
NNW	1	10	9	7	3	0	30
Variable	0	0	0	0	0	0	0
Total	14	110	251	218	89	21	703

Wind Speed (in mph)

Period of Record: April - June, 2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		Wi	nd Speed	l (in mp)	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	3	9	3	0	0	15
NNE	0	4	14	0	0	0	18
NE	1	10	21	1	0	0	33
ENE	0	14	26	0	0	0	40
E	0	5	25	15	4	0	49
ESE	- 0	5	15	23	5 …	0	48
SE	0	6	32	7	0	0	45
SSE	0	4	12	15	4	0	35
S	0	4	15	39	5	0	63
SSW	0	2	12	27	3	0	44
SW	0	3	19	16	3	1	42
WSW	0	2	19	6	1	0	28
W	0	4	20	8	1	1	34
WNW	0	4	13	30	3	1	51
NW	1	4	18	10	3	0	36
NNW	0	5	18	6	0	0	29
Variable	0	0	0	0	0	0	0
Total	2	79	288	206	32	3	610

Period of Record: April - June, 2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

	Wind		M	lind Speed	l (in mph	1)		
	Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
	N	1	3	5	0	0	0	9
	NNE	0	0	3	0	0	0	3
	NE	0	1	1	0	0	0	2
	ENE	0	7	1	0	0	0	8
	E	1	3	15	8	0	0	27
Ę	ESE c	- 0	1	11	.16	0	0	28
	SE	0	2	12	0	0	0	14
	SSE	1	1	6	1	0	0	9
	S	0	1	4	0	0	0	5
	SSW	2	2	4	1	0	0	9
	SW	0	4	5	2	0	0	11
	WSW	1	3	5	7	0	0	16
	W	0	4	8	4	0	0	16
	WNW	0	6	8	2	0	0	16
	NW	0	5	12	1	0	0	18
	NNW	0	2	4	1	0	0	7
	Variable	0	0	0	0	0	0	0
	Total	6	45	104	43	0	0	198
lours	of calm in t	his stab	ility c	lass:	0		-	

w. 11

Period of Record: April - June, 2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

	Wind Speed (in mph) Wind												
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total						
Ν	0	0	4	0	0	0	4						
NNE	1	1	0	0	0	0	2						
NE	2	2	1	0	0	0	5						
ENE	1	2	2	0	0	0	5						
E	1	0	2	4	0	0	7						
ESE	1	0	5	2	0	0	8						
SE	0	1	4	1	0	0	6						
SSE	1	4	0	0	0	0	5						
S	1	2	0	0	0	0	3						
SSW	2	2	3	0	0	0	7						
SW	2	1	0	1	0	0	4						
WSW	1	6	0	0	0	0	7						
W	1	4	8	9	0	0	22						
WNW	1	3	7	4	0	0	15						
NW	0	2	3	0	0	0	5						
NNW	0	2	5	0	0	0	7						
Variable	0	0	0	0	0	0	0						
Total	15	32	44	21	0	0	112						
Hours of calm in t Hours of missing w	ind meas	urements	s in this				0						

Hours of missing stability measurements in all stability classes: 0

Period of Record: July - September 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind					- /		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	2	0	0	0	0	2
NNE	0	1	0	0	0	0	1
NE	2	5	0	0	0	0	7
ENE	3	7	0	0	0	0	10
E	5	13	0	0	0	0	18
ESE	5	17	0	0	0	0	22
SE	6	16	1	0	0	0	23
SSE	5	15	0	0	0	0	20
S	3	20	22	0	0	0	45
SSW	0	11	19	9	0	0	39
SW	1	5	19	5	0	0	30
WSW	1	9	7	0	0	0	17
W	0	16	10	10	0	0	36
WNW	1	13	13	0	0	0	27
NW	0	6	1	0	0	0	7
NNW	1	14	0	0	0	0	15
Variable	0	0	0	0	0	0	0
Total	33	170	92	24	0	0	319

Wind Speed (in mph)

Period of Record: July - September, 2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

	Wind Speed (in mph)												
	Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total					
	N	0	2	3	0	0	0	5					
	NNE	0	0	1	0	0	0	1					
	NE	1	6	2	0	0	0	9					
	ENE	1	5	0	0	0	0	6					
	E	4	7	0	0	0	0	11					
1 %	ESE	0	· 3	0	0	0	0	3					
	SE	2	9	0	0	0	0	11					
	SSE	1	4	0	0	0	0	5					
	S	2	5	5	0	0	0	12					
	SSW	0	5	11	1	0	0	17					
	SW	1	2	6	2	0	0	11					
	WSW	1	3	1	0	0	0	5					
	W	1	7	10	0	0	0	18					
	WNW	0	8	1	0	0	0	9					
	NW	2	1	0	0	0	0	3					
	NNW	0	2	0	0	0	0	2					
	Variable	0	0	0	0	0	0	0					
	Total	16	69	40	3	0	0	128					

Period of Record: July - September, 2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

17		Þ	Nind Speed	d (in mpł	n)		
Wind Directio		4-7	8-12	13-18	19-24	> 24	Total
N	3	4	4	0	0	0	11
NNE	0	3	3	0	0	0	6
NE	3	10	4	0	0	0	17
ENE	6	1	1	0	0	0	8
E	5	5	0	0	0	0	10
ESE .	<u> </u>	7	0	0	0	0	14
SE	5	1	0	0	0	0	6
SSE	3	6	0	0	0	0	9
S	4	4	З	0	0	0	11
SSW	0	2	4	4	0	0	10
SW	0	4	3	1	0	0	8
WSW	0	8	5	0	0	0	13
W	1	7	3	1	0	0	12
WNW	0	4	3	0	0	0	7
NW	1	2	1	0	0	0	4
NNW	2	2	1	0	0	0	5
Variable	e 0	0	0	0	0	0	0
Total	40	70	35	6	0	0	151

Period of Record: July - September, 2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind		W	ind Speed	l (in mph	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	4	7	8	1	0	0	20
NNE	9	33	15	0	0	0	57
NE	6	49	13	0	0	0	68
ENE	16	23	1	0	0	0	40
E	25	22	0	0	0	0	47
ESE	13	· 2	1	0	0	0	16
SE	7	7	1	0	0	0	15
SSE	6	30	2	0	0	0	38
S	4	25	14	0	0	0	43
SSW	3	4	28	2	0	0	37
SW	6	20	29	1	0	0	56
WSW	6	29	5	0	0	0	40
W	8	18	10	1	0	0	37
WNW	7	14	6	0	0	0	27
NW	7	6	0	0	0	0	13
NNW	5	8	5	0	0	0	18
Variable	0	0	0	0	0	0	0
Total	132	297	138	5	0	0	572

Period of Record: July - September, 2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

57 / J		W	ind Speed	(in mph	.)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	6	7	8	0	0	0	21
NNE	13	14	2	0	0	0	29
NE	26	20	2	0	0	0	48
ENE	27	19	0	0	0	0	46
E	49	4	0	0	0	0	53
ESE	22	16	0	0	0 -	0	38
SE	14	33	0	0	0	0	47
SSE	23	44	2	0	0	0	69
S	12	71	13	0	0	0	96
SSW	2	24	12	0	0	0	38
SW	8	22	6	1	0	0	37
WSW	15	33	2	1	0	0	51
W	15	17	2	0	0	0	34
WNW	26	9	2	0	0	0	37
NW	14	3	0	0	0	0	17
NNW	18	6	0	0	0	0	24
Variable	0	0	0	0	0	0	0
Total	290	342	51	2	0	0	685

Period of Record: July - September, 2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind		Wi	nd Speed	d (in mpł	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	7	1	0	0	0	0	8
NNE	2	0	0	0	0	0	2
NE	8	0	0	0	0	0	8
ENE	15	1	0	0	0	0	16
E	31	0	0	0	0	0	31
ESE	20	4	0	0	0	0	24
SE	7	2	0	0	0	0	9
SSE	3	6	0	0	0	0	9
S	3	2	0	0	0	0	5
SSW	4	5	0	0	0	0	9
SW	11	3	1	0	0	0	15
WSW	13	8	0	0	0	0	21
W	27	8	0	0	0	0	35
WNW	19	1	0	0	0	0	20
NW	6	0	0	0	0	0	6
NNW	12	0	0	0	0	0	12
Variable	0	0	0	0	0	0	0
Total	188	41	1	0	0	0	230

Period of Record: July - September, 2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Tota		
N	4	0	0	0	0	0			
NNE	5	0	0	0	0	0	!		
NE	7	0	0	0	0	0			
ENE	16	0	0	0	0	0	1		
E	13	0	0	0	0	0	1		
ESE	, 5	. 0	0	0	0	. 0			
SE	1	0	0	0	0	0			
SSE	0	0	0	0	0	0			
S	3	0	0	0	0	0			
SSW	2	1	0	0	0	0			
SW	1	0	0	0	0	0			
WSW	1	0	0	0	0	0			
W	5	0	0	0	0	0			
WNW	7	0	0	0	0	0			
NW	2	0	0	0	0	0			
NNW	5	0	0	0	0	0			
Variable	0	0	0	0	0	0			
Total	77	1	0	0	0	0	7		

Period of Record: July - September, 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

	Wind Speed (in mph)										
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total				
N	0	1	2	0	0	0	3				
NNE	0	1	0	0	0	0	1				
NE	0	6	2	0	0	0	8				
ENE	1	3	3	0	0	0	7				
E	0	12	9	0	0	0	21				
ESE	: 3	14	6	0	0	0	23				
SE	1	15	3	1	0	0	20				
SSE	0	15	7	2	0	0	24				
S	0	12	14	17	0	0	43				
SSW	1	3	14	19	11	0	48				
SW	0	2	11	6	0	0	19				
WSW	2	2	11	4	0	0	19				
W	0	7	11	9	11	0	38				
WNW	0	6	11	7	4	0	28				
NW	0	6	7	0	0	0	13				
NNW	0	0	4	0	0	0	4				
Variable	0	0	0	0	0	0	0				
Total	8	105	115	65	26	0	319				

Period of Record: July - September, 2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
Ν	0	0	1	3	0	0	4	
NNE	0	0	1	0	0	0	1	
NE	0	2	6	1	0	0	9	
ENE	0	4	2	0	0	0	6	
E	2	4	5	0	0	0	11	
ESE	. 1	1	3	0	0	0	5	
SE	0	4	5	0	0	0	9	
SSE	1	3	2	0	0	0	6	
S	1	3	3	4	1	0	12	
SSW	0	2	7	10	0	0	19	
SW	0	0	3	3	1	0	7	
WSW	0	2	0	1	0	0	3	
W	1	5	5	8	0	0	19	
WNW	1	4	4	0	0	0	9	
NW	1	5	0	0	0	0	6	
NNW	0	0	1	1	0	0	2	
Variable	0	0	0	0	0	0	0	
Total	8	39	48	31	2	0	128	
of colm in th	ia atab	:] : + · ·]]		0				

Period of Record: July - September, 2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

tational	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	2	0	4	2	0	0	8	
NNE	0	6	3	2	0	0	11	
NE	5	3	5	3	0	0	16	
ENE	2	5	0	0	0	0	7	
E	5	6	1	0	0	0	12	
ESE	1	6	2	0	0	0	9	
SE	2	4	3	0	0	0	9	
SSE	1	2	4	2	0	0	9	
S	1	1	3	3	1	0	9	
SSW	0	3	2	3	3	0	11	
SW	0	1	5	0	0	0	6	
WSW	0	6	8	2	0	0	16	
W	0	4	3	2	1	0	10	
WNW	0	2	1	4	0	0	7	
NW	0	3	2	0	0	0	5	
NNW	0	2	2	2	0	0	6	
Variable	0	0	0	0	0	0	0	
Total	19	54	48	25	5	0	151	

Period of Record: July - September, 2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

**! 1	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	0	7	8	8	1	0	24			
NNE	0	17	29	18	0	0	64			
NE	1	7	36	8	0	0	52			
ENE	3	23	14	0	0	0	40			
E	2	20	22	0	0	0	44			
ESE	5	11	4	2	0	0	22			
SE	4	5	3	2	0	0	14			
SSE	0	12	12	14	0	0	38			
S	0	5	19	16	2	0	42			
SSW	0	3	7	41	2	0	53			
SW	3	5	25	8	1	0	42			
WSW	1	17	22	4	1	0	45			
W	2	13	11	7	1	0	34			
WNW	5	4	12	5	5	0	31			
NW	1	7	5	2	0	0	15			
NNW	3	3	3	5	0	0	14			
Variable	0	0	0	0	0	0	0			
Total	30	159	232	140	13	0	574			

Wind Speed (in mph)

Period of Record: July - September, 2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	1	9	10	6	1	0	27	
NNE	1	8	16	3	0	0	28	
NE	2	14	36	6	0	0	58	
ENE	0	25	17	0	0	0	42	
E	0	10	28	3	0	0	41	
ESE	0	10	17	11	0	0	38	
SE	1	8	17	11	0	0	37	
SSE	3	10	23	17	1	0	54	
S	0	6	53	43	1	0	103	
SSW	2	6	26	24	0	0	58	
SW	1	10	25	8	1	0	45	
WSW	1	12	24	5	1	1	44	
W	1	7	16	5	1	0	30	
WNW	2	14	16	6	0	0	38	
NW	0	8	8	3	0	0	19	
NNW	0	6	15	6	0	0	27	
Variable	0	0	0	0	0	0	0	
Total	15	163	347	157	6	1	689	

Period of Record: July - September, 2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	1	4	11	1	0	0	17		
NNE	1	2	3	0	0	0	6		
NE	3	3	0	0	0	0	6		
ENE	2	1	0	0	0	0	3		
E	3	2	13	3	0	0	21		
ESE	1	6	9	5	0	0	21		
SE	1	5	9	2	0	0	17		
SSE	1	7	3	0	0	0	11		
S	1	5	5	1	0	0	12		
SSW	2	2	8	0	0	0	12		
SW	1	15	7	1	0	0	24		
WSW	2	8	9	2	0	0	21		
W	1	3	8	11	0	0	23		
WNW	0	7	16	6	0	0	29		
NW	0	3	8	0	0	0	11		
NNW	0	5	4	0	0	0	9		
Variable	0	0	0	0	0	0	0		
Total	20	78	113	32	0	0	243		

Wind Speed (in mph)

Period of Record: July - September, 2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind	Wind Speed (in mph)						
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	1	3	0	0	0	0	4
NNE	4	2	0	0	0	0	6
NE	1	1	0	0	0	0	2
ENE	3	5	0	0	0	0	8
E	4	5	1	0	0	0	10
ESE	3	3	0	0	0	0	6
SE	5	7	3	0	0	0	15
SSE	6	4	1	0	0	0	11
S	2	2	0	0	0	0	4
SSW	1	4	3	0	0	0	8
SW	1	2	1	0	0	0	4
WSW	1	4	0	0	0	0	5
W	0	0	1	0	0	0	1
WNW	1	7	4	0	0	0	12
NŴ	0	1	0	0	0	0	1
NNW	1	1	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	34	51	14	0	0	0	99

Period of Record: October - December 2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

	wind Speed (in mpn)									
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
Ν	0	0	2	0	0	0	2			
NNE	0	0	0	0	0	0	0			
NE	0	0	0	. 0	0	0	0			
ENE	0	0	0	0	0	0	0			
E	0	3	0	0	0	0	3			
ESE	0	2	0	0	0	0	2			
SE	1	1	1	0	0	0	3			
SSE	0	2	0	0	0	0	2			
S	0	1	7	2	0	0	10			
SSW	0	2	5	0	0	0	7			
SW	0	2	8	0	0	0	10			
WSW	0	0	1	1	0	0	2			
W	0	0	4	1	0	0	5			
WNW	0	3	10	0	0	0	13			
NW	0	6	1	0	0	0	7			
NNW	0	4	4	0	0	0	8			
Variable	0	0	0	0	0	0	0			
Total	1	26	43	4	0	0	74			

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind		Wind Speed (in mph)					
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	0	1	1	0	0	0	2
NNE	0	0	0	0	0	0	0
NE	0	0	0	0	0	0	0
ENE	0	1	0	0	0	0	1
E	0	0	0	0	0	0	0
ESE	0	2	0	0	0	0	2
SE	1	1	1	0	0	0	3
SSE	0	3	0	0	0	0	3
S	1	3	5	0	0	0	9
SSW	0	3	1	3	0	0	7
SW	0	6	3	3	0	0	12
WSW	0	0	3	1	0	0	4
W	0	0	5	1	0	0	6
WNW	0	4	6	1	0	0	11
NW	1	1	1	0	0	0	3
NNW	0	4	2	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	3	29	28	9	0	0	69

Hours of calm in this stability class: 0 Hours of missing wind measurements in this stability class: 0 Hours of missing stability measurements in all stability classes: 4

F-44

Period of Record: October - December2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind	Wind Speed (in mph)								
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
Ν	1	5	0	0	0	0	6		
NNE	0	3	1	0	0	0	4		
NE	2	1	1	0	0	0	4		
ENE	2	0	0	0	0	0	2		
E	1	1	0	0	0	0	2		
ESE	0	0	1	0	0	0	1		
SE	0	5	1	0	0	0	6		
SSE	0	2	2	0	0	0	4		
S	0	1	4	2	0	0	7		
SSW	0	1	4	3	0	0	8		
SW	0	1	5	2	0	0	8		
WSW	0	3	3	1	0	0	7		
W	2	0	5	2	0	0	9		
WNW	1	8	7	1	0	0	17		
NW	2	4	0	0	0	0	6		
NNW	1	4	1	0	0	0	6		
Variable	0	0	0	0	0	0	0		
Total	12	39	35	11	0	0	97		

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Til - al	Wind Speed (in mph)							
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	6	11	6	0	0	0	23	
NNE	8	10	17	0	0	0	35	
NE	8	8	1	0	0	0	17	
ENE	7	11	0	0	0	0	18	
E	12	21	4	0	0	0	37	
ESE	2	12	8	0	0	0	22	
SE	5	16	39	0	0	0	60	
SSE	1	19	24	8	0	0	52	
S	2	7	54	26	0	0	89	
SSW	3	2	16	23	4	0	48	
SW	3	14	27	14	0	0	58	
WSW	3	18	36	4	0	0	61	
W	6	38	32	17	0	0	93	
WNW	11	41	57	43	1	0	153	
NW	10	22	15	0	0	0	47	
NNW	3	26	19	0	0	0	48	
Variable	0	0	0	0	0	0	0	
Total	90	276	355	135	5	0	861	

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind									
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	10	14	1	0	0	0	25		
NNE	6	13	1	0	0	0	20		
NE	6	8	0	0	0	0	14		
ENE	10	8	0	0	0	0	18		
E	27	5	0	0	0	0	32		
ESE	14	17	7	0	0	0	38		
SE	6	27	7	2	0	0	42		
SSE	11	31	10	4	0	0	56		
S	1	48	56	14	0	0	119		
SSW	1	17	34	16	7	0	75		
SW	3	33	33	8	1	0	78		
WSW	5	17	10	3	0	0	35		
W	12	30	28	4	0	0	74		
WNW	28	43	23	2	0	0	96		
NW	18	13	4	0	0	0	35		
NNW	16	15	1	0	0	0	32		
Variable	0	0	0	0	0	0	0		
Total	174	339	215	53	8	0	789		

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind	Wind Speed (in mph)							
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	2	0	0	0	0	0	2	
NNE	4	1	0	0	0	0	5	
NE	3	0	0	0	0	0	3	
ENE	5	0	0	0	0	0	5	
E	20	0	0	0	0	0	20	
ESE	21	1	0	0	0	0	22	
SE	7	5	0	0	0	0	12	
SSE	2	2	0	0	0	0	4	
S	2	2	0	0	0	0	4	
SSW	6	16	10	0	0	0	32	
SW	5	17	1	0	0	0	23	
WSW	10	13	0	0	0	0	23	
W	15	10	0	0	0	0	25	
WNW	10	4	0	0	0	0	14	
NW	7	0	0	0	0	0	7	
NNW	6	0	0	0	0	0	6	
Variable	0	0	0	0	0	0	0	
Total	125	71	11	0	0	0	207	

Period of Record: October - December2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 34 Feet

Wind		W	ind Speed	d (in mph	n)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	4	0	0	0	0	0	4
NNE	2	0	0	0	0	0	2
NE	0	0	0	0	0	0	0
ENE	2	0	0	0	0	0	2
Ε	8	0	0	0	0	0	8
ESE	6	2	0	0	0	0	8
SE	3	0	0	0	0	0	3
SSE	1	0	0	0	0	0	1
S	0	0	0	0	0	0	0
SSW	1	0	1	0	0	0	2
SW	1	0	0	0	0	0	1
WSW	0	9	0	0	0	0	9
W	3	1	0	0	0	0	4
WNW	9	0	0	0	0	0	9
NW	5	0	0	0	0	0	5
NNW	2	0	0	0	0	0	2
Variable	0	0	0	0	0	0	0
Total	47	12	1	0	0	0	60

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Extremely Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

57 L 1		VV .	ind speed	т (тп шрі				
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total	
N	0	0	0	1	0	0	1	
NNE	0	0	0	0	0	0	0	
NE	0	0	0	0	0	0	0	
ENE	0	0	0	0	0	0	0	
E	0	1	3	0	0	0	4	
ESE	0	1	0	0	0	0	1	
SE	1	2	1	0	0	0	4	
SSE	0	0	2	1	0	0	3	
S	0	1	1	5	1	1	9	
SSW	0	0	3	1	0	0	4	
SW	0	1	2	5	0	0	8	
WSW	0	1	0	1	1	0	3	
W	0	0	1	1	1	0	3	
WNW	0	2	7	6	1	0	16	
NW	0	2	4	5	0	0	11	
NNW	0	1	2	0	0	0	3	
Variable	0	0	0	0	0	0	0	
Total	1	12	26	26	4	1	70	

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Moderately Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		ΈW	ind Speed	d (in mpł	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	1	0	1	0	0	2
NNE	0	1	0	0	0	0	1
NE	0	1	0	0	0	0	1
ENE	0	0	0	0	0	0	0
E	0	0	0	0	0	0	0
ESE	0	1	1	0	0	0	2
SE	0	1	1	1	0	0	3
SSE	0	2	1	0	0	0	3
S	0	2	0	4	0	1	7
SSW	0	3	1	1	0	2	7
SW	0	1	4	5	0	0	10
WSW	0	0	0	2	1	0	3
W	0	0	4	1	3	0	8
WNW	0	1	4	3	0	0	8
NW	0	1	2	2	0	0	5
NNW	0	1	5	0	0	0	6
Variable	0	0	0	0	0	0	0
Total	0	16	23	20	4	3	66

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Slightly Unstable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		Wi	nd Speed	l (in mph	1)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
Ν	0	3	3	0	0	0	6
NNE	0	4	0	1	1	0	6
NE	0	1	0	0	0	0	1
ENE	0	1	0	0	0	0	1
E	0	0	1	0	0	0	1
ESE	0	1	1	1	0	0	3
SE	0	1	4	2	0	0	7
SSE	0	2	0	1	0	0	3
S	0	0	0	4	1	2	7
SSW	0	1	2	4	0	1	8
SW	1	1	3	5	1	0	11
WSW	1	0	2	3	0	0	6
W	0	0	3	3	0	0	6
WNW	1	5	7	5	1	1	20
NW	1	3	2	1	0	0	7
NNW	1	1	2	0	0	0	4
Variable	0	0	0	0	0	0	0
Total	5	24	30	30	4	4	97

Period of Record: October - December2016 Stability Class - Neutral - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

T.T		W	ind Speed	d (in mp)	ר)		
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	4	9	9	7	0	0	29
NNE	2	4	10	13	1	0	30
NE	1	9	5	0	0	0	15
ENE	4	4	6	0	0	0	14
E	3	10	18	9	3	0	43
ESE	2	0	6	7	4	1	20
SE	2	4	16	29	10	0	61
SSE	0	9	13	25	16	2	65
S	1	1	12	40	18	8	80
SSW	5	1	3	13	20	8	50
SW	0	5	13	23	11	0	52
WSW	1	11	14	30	10	0	66
W	0	17	31	20	7	9	84
WNW	1	17	30	45	31	22	146
NМ	1	10	18	15	13	2	59
NNW	3	7	21	15	1	0	47
Variable	0	0	0	0	0	0	0
Total	30	118	225	291	145	52	861

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Slightly Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

	wind speed (in mpn)								
Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total		
N	3	4	13	5	0	0	25		
NNE	0	1	13	1	0	0	15		
NE	1	4	15	2	0	0	22		
ENE	0	7	4	0	0	0	11		
E	1	5	16	3	0	0	25		
ESE	0	8	18	8	4	0	38		
SE	1	7	5	21	2	2	38		
SSE	1	10	15	27	6	4	63		
S	0	1	21	55	28	13	118		
SSW	1	1	9	44	25	9	89		
SW	1	4	29	28	5	0	67		
WSW	2	4	19	12	1	1	39		
W	2	7	24	20	2	1	56		
WNW	2	10	28	30	20	1	91		
NW	4	13	13	20	3	0	53		
NNW	3	15	20	9	0	0	47		
Variable	0	0	0	0	0	0	0		
Total	22	101	262	285	96	31	797		

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Moderately Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total			
N	0	3	5	0	0	0	8			
NNE	0	4	2	0	0	0	6			
NE	1	0	3	0	0	0	4			
ENE	1	0	1	0	0	0	2			
E	0	0	11	3	0	0	14			
ESE	0	2	9	4	0	0	15			
SE	0	4	12	1	0	0	17			
SSE	1	1	6	2	0	0	10			
S	0	1	3	0	0	0	4			
SSW	0	3	7	3	0	0	13			
SW	1	8	12	16	0	0	37			
WSW	1	7	9	2	0	0	19			
W	0	3	14	5	0	0	22			
WNW	0	1	9	5	0	0	15			
NW	0	2	8	3	0	0	13			
NNW	0	1	5	1	0	0	7			
Variable	0	0	0	0	0	0	0			
Total	5	40	116	45	0	0	206			

Wind Speed (in mph)

Period of Record: October - December2016 Stability Class - Extremely Stable - 199Ft-30Ft Delta-T (F) Winds Measured at 203 Feet

Wind		W	nd Speed	d (in mph	n)		
Direction	1-3	4-7	8-12	13-18	19-24	> 24	Total
N	2	7	3	0	0	0	12
NNE	0	2	1	0	0	0	3
NE	2	1	0	0	0	0	3
ENE	0	1	0	0	0	0	1
E	1	1	3	1	0	0	6
ESE	0	1	1	2	0	0	4
SE	0	1	1	1	0	0	3
SSE	1	1	1	0	0	0	3
S	1	3	1	0	0	0	5
SSW	2	4	1	0	0	0	7
SW	2	1	0	0	0	0	3
WSW	0	3	2	4	0	0	9
W	1	0	2	0	0	0	3
WNW	0	0	5	1	0	0	6
NW	2	1	1	0	0	0	4
NNW	0	4	4	0	0	0	8
Variable	0	0	0	0	0	0	0
Total	14	31	26	9	0	0	80

Wind Speed (in mph)

APPENDIX G

ERRATA DATA

There is no errata data for 2016.

APPENDIX H

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

Intentionally left blank

Docket No: 50-456 50-457

BRAIDWOOD STATION UNITS 1 and 2

Annual Radiological Groundwater Protection Program Report

1 January through 31 December 2016

Prepared By Teledyne Brown Engineering Environmental Services

Braidwood Station Braceville, IL 60407

May 2017

Intentionally left blank

Table Of Contents

I. Summary and Conclusions	1
 II. Introduction A. Objectives of the RGPP B. Implementation of the Objectives C. Program Description D. Characteristics of Tritium (H-3) 	3 3 4
 III. Program Description A. Sample Analysis B. Data Interpretation C. Background Analysis	5 5 6
 IV. Results and Discussion	8 9 10 11 11 11 11

Appendices

Appendix A	Location Designation
<u>Tables</u> Table A-1	Radiological Groundwater Protection Program - Sampling Locations, Braidwood Station, 2016
Figures	
Figure A-1	Sampling Locations near the Site Boundary of the Braidwood Station, 2016
Figure A-2	Intermediate Sampling Locations of the Braidwood Station, 2016
Figure A-3	Distant Sampling Locations of the Braidwood Station, 2016
Appendix B	Data Tables
Tables	
Table B-I.1	Concentrations of Tritium, Strontium, Gross Alpha and Gross Beta in Groundwater Samples Collected in the Vicinity of Braidwood Station, 2016
Table B-I.2	Concentrations of Gamma Emitters in Groundwater Samples Collected in the Vicinity of Braidwood Station, 2016
Table B-I.3	Concentrations of Hard-To-Detects in Groundwater Samples Collected in the Vicinity of Braidwood Station, 2016
Table B-II.1	Concentrations of Tritium, Strontium, Gross Alpha and Gross Beta in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2016
Table B-II.2	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Braidwood Station, 2016

I. Summary and Conclusions

In 2016, Exelon continued a comprehensive program that evaluates the impact of station operations on groundwater and surface water in the vicinity of Braidwood Station. This evaluation involved numerous station personnel and contractor support personnel. This report covers groundwater and surface water samples collected from the environment, both on and off station property, in 2016. During that time period, 362 analyses were performed on 137 samples from 36 locations.

In assessing all the data gathered for this report, it was concluded that the operation of Braidwood Station had no adverse radiological impact on the environment.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater or surface water samples. In the case of tritium, Exelon specified that its laboratories achieve a lower limit of detection 10 times less than Braidwood's ODCM and 100 times less than federal regulation.

Strontium-89/90 (Sr-89/90) was not detected at a concentration greater than the LLD of 10.0 and 1.0 picocuries per liter (pCi/L) respectively in any of the groundwater samples tested.

No tritium was detected in the groundwater or surface water samples at concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L. Low levels of tritium were detected in groundwater and surface water at concentrations greater than the LLD of 200 pCi/L in 66 of 140 analyses. The tritium concentrations ranged from 181 ± 116 pCi/L to 1,690 ± 235 pCi/L. The tritium that was detected in the groundwater or surface water is believed to be the result of isolated historical releases and/or background from external sources greater than 200 pCi/L.

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater and surface water samples throughout the sampling year in 2016. Gross Alpha (dissolved) was not detected in any surface water samples and was detected in 4 groundwater samples. The concentrations ranged from 19.5 to 96.3 pCi/L. Gross Alpha (suspended) was not detected in surface water samples and was detected in 3 groundwater samples. The concentrations ranged from 1.8 to 2.5 pCi/L. Gross Beta (dissolved) was detected in 1 surface water and 27 groundwater samples. The concentrations ranged from 1.0 to 90.9 pCi/L. Gross Beta (suspended) was detected in 1 surface water and 2 groundwater samples. The concentrations ranged from 1.0 to 90.9 pCi/L. Gross Beta (suspended) was detected in 1 surface water and 2 groundwater samples. The concentrations ranged from 1.8 to 2.1 pCi/L.

Hard-To-Detect analyses were performed on one groundwater sample in 2016. The analyses included Americium-241 (Am-241), Cerium-242 (Cm-242, Cerium

243/244 (Cm-243/244), Plutonium-238 (Pu-238), Plutonium-239/240 (Pu-239/240), Uranium-234 (U-234), Uranium-235 (U-235) and Uranium-238 (U-238). U-234 was detected in the sample at a concentration of 2.3 pCi/L. All other hard-to-detect nuclides were not detected at concentrations greater than their respective MDCs.

A start to the sta

II. Introduction

Braidwood Station, a two-unit PWR station is located in Will County, Illinois, fifteen (15) miles south-southwest of Joliet, Illinois. Each reactor is designed to have a capacity of 3,587 thermal megawatts. Units No. 1 went critical on May 29, 1987 and Unit No. 2 went critical on March 8, 1988. The station has been designed to keep releases to the environment at levels below those specified in the regulations.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) and Environmental Inc. Midwest Labs (EIML) on samples collected in 2016.

A. Objective of the Radiological Groundwater Protection Program (RGPP)

The long-term objectives of the RGPP are as follows:

- Identify suitable locations to monitor and evaluate potential impacts from station operations to preclude radiological impact to the environment and potential drinking water sources;
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface;
- 3. Perform routine water sampling and radiological analysis of water from selected locations;
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner;
- 5. Regularly assess analytical results to identify adverse trends;
- 6. Take necessary corrective actions to protect groundwater resources.
- B. Implementation of the Objectives

The objectives identified have been implemented at Braidwood Station as discussed below:

- 1. Exelon identified locations to monitor and evaluated potential impacts from station operations
- 2. The Braidwood Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements
- 3. Braidwood Station will continue to perform routine sampling and

radiological analysis of water from selected locations

- 4. Braidwood Station has implemented procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner
- 5. Braidwood Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends
- C. Program Description
 - 1. Sample Collection

Sample locations can be found in Table A-1 and Figures A-1 through A-3, Appendix A.

Groundwater and Surface Water

Samples of groundwater and surface water are collected, managed, transported and analyzed in accordance with EPA methods. Sample locations, sample collection frequencies and analytical frequencies are managed in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management and shipment of samples as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry cross-check programs as well as nuclear industry audits. Station personnel review and evaluate all analytical data as it is received. Additionally, analytical data results are reviewed by an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions.

D. Characteristics of Tritium (H-3)

Tritium is a radioactive isotope of hydrogen. Its chemical properties are the same as hydrogen. Tritiated water behaves the same as ordinary water in both the environment and the body. Tritiated water can be taken into the body by drinking water, breathing air, eating food or absorption through the skin. Once tritiated water enters the body, it disperses quickly and is uniformly distributed. Tritiated water is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. With such a short biological half-life, an acute ingestion would be cleared rapidly. Organically bound tritium (tritium that is incorporated into carbon containing compounds) can remain in the body for a longer period. Tritium is produced naturally in the upper atmosphere when cosmic rays interact with air molecules. Tritium is also produced during nuclear

weapons explosions, as a by-product in reactors producing electricity and in special production reactors. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface and therefore tritiated water will travel at the same velocity as non tritiated groundwater.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by Teledyne Brown Engineering (TBE) and Environmental Incorporated Midwest Laboratory (EIML) to analyze the environmental samples for radioactivity for the Braidwood Station RGPP in 2016.

In order to achieve the stated objectives, the current program includes the following analyses:

- and the second second
 - 1. Concentrations of gamma emitters in groundwater and surface water
 - 2. Concentrations of strontium in groundwater and surface water
 - 3. Concentrations of tritium in groundwater and surface water
 - 4. Concentrations of Gross Alpha and Gross Beta (Dissolved and Suspended) in groundwater and surface water
 - 5. Concentrations of Am-241 in groundwater
 - 6. Concentrations of Cm-242 and Cm-243/244 in groundwater
 - 7. Concentrations of Pu-238 and Pu-239/240 in groundwater
 - 8. Concentrations of U-234, U-235 and U-238 in groundwater
 - 9. Concentrations of Fe-55 in groundwater
 - 10. Concentrations of Ni-63 in groundwater
 - B. Data Interpretation

The radiological data collected prior to Braidwood Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Braidwood Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus (±) the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater and surface water 14 nuclides, Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

C. Background Analysis

ربد المشاو فيهو الد

A pre-operational radiological environmental monitoring program (pre-operational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life and foodstuffs. The results of the monitoring were detailed in the report entitled, Environmental Radiological Monitoring for Braidwood Nuclear Power Station Commonwealth Edison Company, Annual Report 1986, May 1987.

e get i a against a

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others.

a. Tritium Production

Tritium is created in the environment from naturally-occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and Sr-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected worldwide from 1960 to 2014. RadNet provides tritium precipitation concentration data for samples collected at stations throughout the U.S. from 1960 up to and including 2016. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

c. Surface Water Data

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Illinois surface water data were typically less than 100 pCi/L.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 – 240 pCi/L or 140 \pm 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

IV. Results and Discussion

the work of the

A. Missed Samples

There was one missed sample from VB-2-5D for Quarter 4 in 2016 due to miscommunication between the program owner and the vendor sample collector.

- 8 -

B. Groundwater Results

Groundwater

Samples were collected from on and off-site wells throughout the year in accordance with the Station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from all locations were analyzed for tritium activity. Tritium values ranged from the lower detection limit to 1,690 pCi/L. (Table B-I.1, Appendix B).

Strontium

Sr-89 and Sr-90 were analyzed for in 29 samples. Sr-89 was less than the required detection limit of 10.0 pCi/liter. Sr-90 was less than the required detection limit of 1.0 pCi/liter (Table B-I.1, Appendix B).

Gross Alpha and Beta (dissolved and suspended)

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater samples. Gross Alpha (dissolved) was detected in 4 groundwater samples. The concentrations ranged from 19.5 to 96.3 pCi/L. Gross Alpha (suspended) was detected in 3 groundwater samples. The concentrations ranged from 1.8 to 2.5 pCi/L. Gross Beta (dissolved) was detected in 27 groundwater samples. The concentrations ranged from 1.0 to 90.9 pCi/L. Gross Beta (suspended) was detected in 3 groundwater samples. The concentrations ranged from 1.0 to 90.9 pCi/L. Gross Beta (suspended) was detected in 3 groundwater samples. The concentrations ranged from 1.8 to 2.1 pCi/L. (Table B-I.1, Appendix B).

Hard-To-Detect

Hard-To-Detect analyses were performed on one groundwater sample in 2016. The analyses included Am-241, Cm-242, Cm-243/244, Pu-238, Pu-239/240, U-234, U-235 and U-238. The naturally-occurring isotope U-234 was detected in the sample at a concentration of 2.3 pCi/L. All other hard-to-detect nuclides were not detected at concentrations greater than their respective MDCs. (Table B-I.3, Appendix B).

Gamma Emitters

Naturally-occurring K-40 was detected in one sample at a concentration of 58 pCi/L. No other gamma-emitting nuclides were detected in any of the samples analyzed. (Table B–I.2, Appendix B)

C. Surface Water Results

Surface Water

Samples were collected from two surface water locations throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below:

<u>Tritium</u>

Samples from all locations were analyzed for tritium activity. All results were less than the minimum detection limit (Table B-II.1, Appendix B).

Strontium

Sr-89 and Sr-90 were analyzed in two samples. Sr-89 was less than the required detection limit of 10.0 pCi/liter. Sr-90 was less than the required detection limit of 1.0 pCi/liter (Table B-II.1, Appendix B).

Gross Alpha and Beta (dissolved and suspended)

Two surface water samples for analyzed for Gross Alpha (dissolved and suspended) and Gross Beta (dissolved and suspended). Gross Alpha (dissolved) and Gross Alpha (suspended) were not detected in any surface water samples. Gross Beta (dissolved) was detected in 1 surface water sample at a concentration of 7.3 pCi/L. Gross Beta (suspended) was detected in 1 groundwater sample at a concentration of 2.0 pCi/L. (Table B-II.1, Appendix B).

Gamma Emitters

Two surface water samples were analyzed for gamma emitters. No gamma-emitting nuclides were detected in any of the samples analyzed (Table B–II.2, Appendix B).

D. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE are presented in the AREOR.

E. Leaks, Spills, and Releases

There are no new previously unidentified leaks or plumes at Braidwood Station.

F. Trends and Analyses

Monitoring of remediation activities indicate that tritium concentrations in affected areas have remained relatively unchanged since 2010.

G. Investigations

No investigations took place in 2016 as a result of groundwater sample results.

- H. Actions Taken
 - 1. Compensatory Actions

No compensatory actions were initiated in 2016.

2. Installation of Monitoring Wells

No new monitoring wells were installed in 2016.

3. Actions to Recover/Reverse Plumes

No actions were undertaken to recover/reverse plumes in 2016.

4. Well Reduction Efforts

Sampling and monitoring of various well locations was ceased during the third quarter 2015. These wells were used during and after remediation activities completed under the March 11, 2010 Consent Order. On March 28, 2013 the Illinois EPA confirmed that remediation was complete at the sites subject to the March 11, 2010 Consent Order within letters sent to Exelon. In these same letters the Illinois EPA approved termination of pumping in recovery wells, cessation of sampling of most of the monitoring wells and the abandonment of wells not being used at these remediation sites. Intentionally left blank

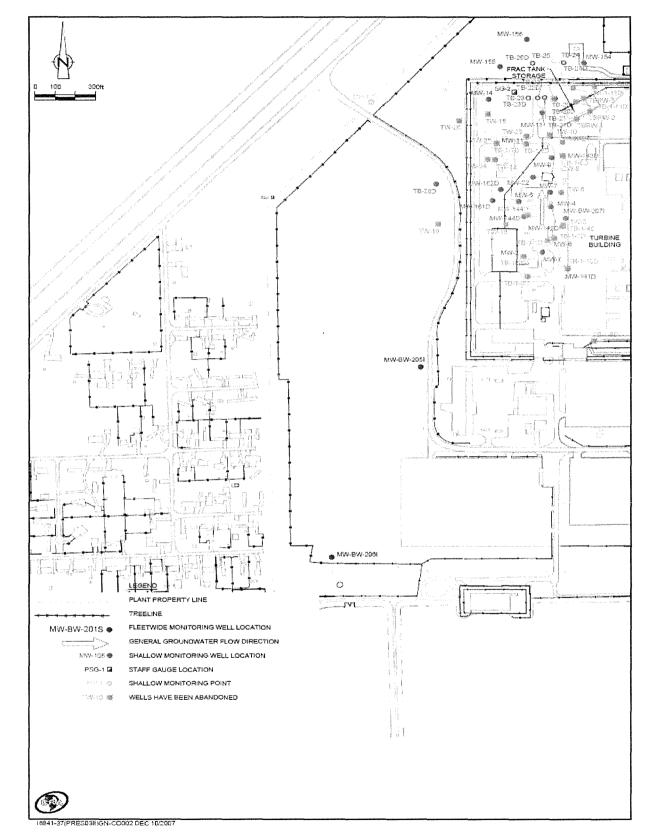
APPENDIX A

LOCATION DESIGNATION

	Braidwood Station, 2016
Station Code	Sample Description
BL-03	Monitoring Woll
BL-05	Monitoring Well Monitoring Well
BL-06D	Monitoring Well
BL-00D BL-09D	Monitoring Well
BL-10D	Monitoring Well
BL-11	Monitoring Well
BL-11D	Monitoring Well
BL-12D	Monitoring Well
BL-13D	Monitoring Well
BL-14D	Monitoring Well
BL-15D	Monitoring Well
BL-16D	Monitoring Well
BL-17D	Monitoring Well
BL-18D	Monitoring Well
BL-21	Monitoring Well
BL-22	Monitoring Well
BL-23	Monitoring Well
BL-24	Monitoring Well
BL-25 BL-26	Monitoring Well Monitoring Well
BL-27	Monitoring Well
D-2D	Surface Water
D-3D	Surface water
DITCH (DS-2)	Surface Water
EXELON POND	Surface Water
F-1D	Monitoring Well
F-3D	-
F-3DR	Monitoring Well Monitoring Well
F-4D	Monitoring Well
F-5D	Monitoring Well
F-6D	Monitoring Well
F-8D	-
F-9D	Monitoring Well
F-9D MW-102R	Monitoring Well Monitoring Well
	-
MW-103	Monitoring Well
MW-105	Monitoring Well
MW-105D	Monitoring Well
MW-106D	Monitoring Well
MW-107	Monitoring Well
MW-109D	Monitoring Well
MW-11	Monitoring Well
MW-110	Monitoring Well
MW-111	Monitoring Well
MW-111DR	Monitoring Well
MW-112D	Monitoring Well
MW-113	Monitoring Well
MW-113DR	Monitoring Well
MW-13	Monitoring Well
MW-130D	Monitoring Well
MW-131D	Monitoring Well
MW-132D	Monitoring Well

TABLE A-1: Radiological Groundwater Protection Program - Sampling Locations, Braidwood Station, 2016

Station Code	Sample Description
MW-133D	Monitoring Well
MW-134D	Monitoring Well
MW-135D	Monitoring Well
MW-136D	Monitoring Well
MW-137D	Monitoring Well
MW-138D	Monitoring Well
MW-139D	Monitoring Well
MW-14	Monitoring Well
MW-140D	Monitoring Well
MW-141D	Monitoring Well
MW-142D	Monitoring Well
MW-143D	Monitoring Well
MW-144D	Monitoring Well
MW-145D	Monitoring Well
MW-154	Monitoring Well
MW-155	Monitoring Well
MW-156	Monitoring Well
MW-158D	Monitoring Well
MW-159D	Monitoring Well
MW-160D	Monitoring Well
MW-161D	Monitoring Well
MW-162D	Monitoring Well
MW-2	Monitoring Well
MW-22	Monitoring Well
MW-4	Monitoring Well
MW-5	Monitoring Well
MW-6	Monitoring Well
MW-7	Monitoring Well
MW-9	Monitoring Well
MW-BW-201BD	Monitoring Well
MW-BW-2011	Monitoring Well
MW-BW-201S	Monitoring Well
MW-BW-2021	Monitoring Well
MW-BW-202S	Monitoring Well
MW-BW-2031	Monitoring Well
MW-BW-203S	Monitoring Well
MW-BW-2041	Monitoring Well
MW-BW-205I	Monitoring Well
MW-BW-2061	Monitoring Well
MW-BW-2071	Monitoring Well
MW-BW-208BD	Monitoring Well
OWM31P	Monitoring Well
P-2D	Monitoring Well
P-4D	Monitoring Well
P-5D	Monitoring Well
P-13D	Monitoring Well
P-14D	Monitoring Well
RW-10	Monitoring Well
RW-5	Monitoring Well


TABLE A-1: Radiological Groundwater Protection Program - Sampling Locations, Braidwood Station, 2016

Station Code	Sample Description
	Sample Description
RW-6	Monitoring Well
RW-7	Monitoring Well
RW-8	Monitoring Well
RW-9	Monitoring Well
S-1D	Monitoring Well
S-2D	Monitoring Well
S-4	Monitoring Well
S-4D	Monitoring Well
S-5	Monitoring Well
S-6	Monitoring Well
S-7D	Monitoring Well
S-8	Monitoring Well
S-8DR	Monitoring Well
SG-BW-105	Surface Water
SG-BW-106	Surface Water
SW-101	Surface Water
SW-102 POINT C	Surface Water
SW-103	Surface Water
SW-104 A DITCH	Surface Water
TB-20	Monitoring Well
TB-20D	Monitoring Well
TB-21	Monitoring Well
TB-21D	Monitoring Well
TB-22	Monitoring Well
TB-22D	Monitoring Well
TB-23	Monitoring Well
TB-23D	Monitoring Well
TB-24	Monitoring Well
TB-24D	Monitoring Well
TB-25	Monitoring Well
TB-25D	Monitoring Well
TB-26D	Monitoring Well
VB10-1	Monitoring Well
VB10-1R	Monitoring Well
VB1-1	Monitoring Well
VB1-10	Monitoring Well
VB1-10D	Monitoring Well
VB11-1	Monitoring Well
VB1-11	Monitoring Well
VB1-11D	Monitoring Well
VB1-12D	Monitoring Well
VB1-2	Monitoring Well
VB1-2D	Monitoring Well
VB1-3	Monitoring Well
VB1-3D	Monitoring Well
VB1-4	Monitoring Well
VB1-4D	Monitoring Well
VB1-5	Monitoring Well
VB1-5D	Monitoring Well

TABLE A-1: Radiological Groundwater Protection Program - Sampling Locations, Braidwood Station, 2016

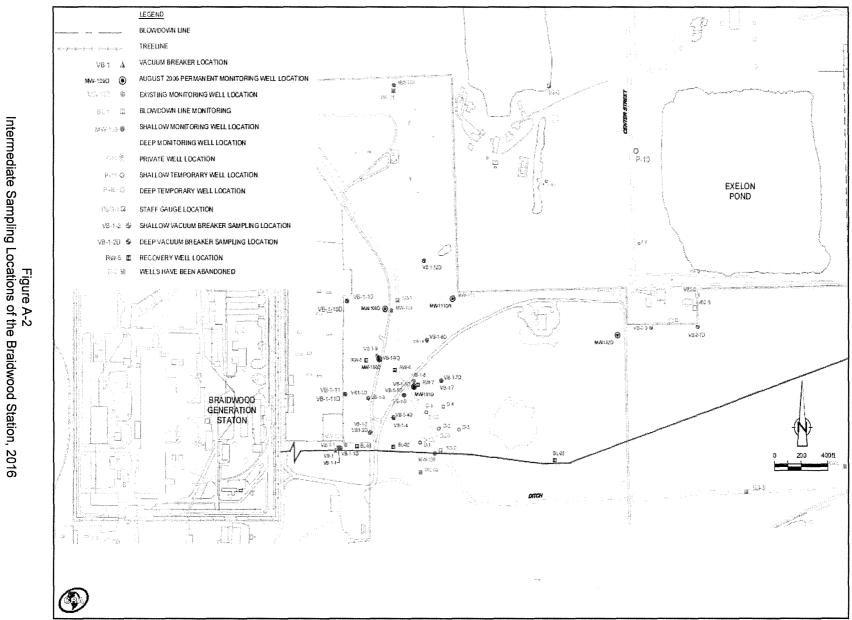

Station Code	Sample Description
VB1-6	Monitoring Well
VB1-6D	Monitoring Well
VB1-7	Monitoring Well
VB1-7D	Monitoring Well
VB1-8	Monitoring Well
VB1-8D	Monitoring Well
VB1-9	Monitoring Well
VB1-9D	Monitoring Well
VB2-10	Monitoring Well
VB2-10D	Monitoring Well
VB2-11	Monitoring Well
VB2-11D	Monitoring Well
VB2-12	Monitoring Well
VB2-12D	Monitoring Well
VB2-13	Monitoring Well
VB2-13D	Monitoring Well
VB2-14	Monitoring Well
VB2-14D	Monitoring Well
VB2-15D	Monitoring Well
VB2-16	Monitoring Well
VB2-16D	Monitoring Well
VB2-17	Monitoring Well
VB2-17D	Monitoring Well
VB2-2D	Monitoring Well
VB2-5D	Monitoring Well
VB2-6D	Monitoring Well
VB2-7D	Monitoring Well
VB2-9D	Monitoring Well
VB3-10D	Monitoring Well
VB3-2	Monitoring Well
VB3-4D	Monitoring Well
VB3-7D	Monitoring Well
VB3-9D	Monitoring Well
VB4-1	Monitoring Well
VB4-5D	Monitoring Well
VB4-6D	Monitoring Well
VB5-2	Monitoring Well
VB6-1	Monitoring Well
VB7-1	Monitoring Well
VB8-2R	Monitoring Well
VB9-1	Monitoring Well

TABLE A-1: Radiological Groundwater Protection Program - Sampling Locations, Braidwood Station, 2016

ŧ

Figure A-1 Sampling Locations near the Site Boundary of Braidwood Station, 2016

1684 1-37 (PRES033) GN-CO004 DEC 1 1/2007

A-6

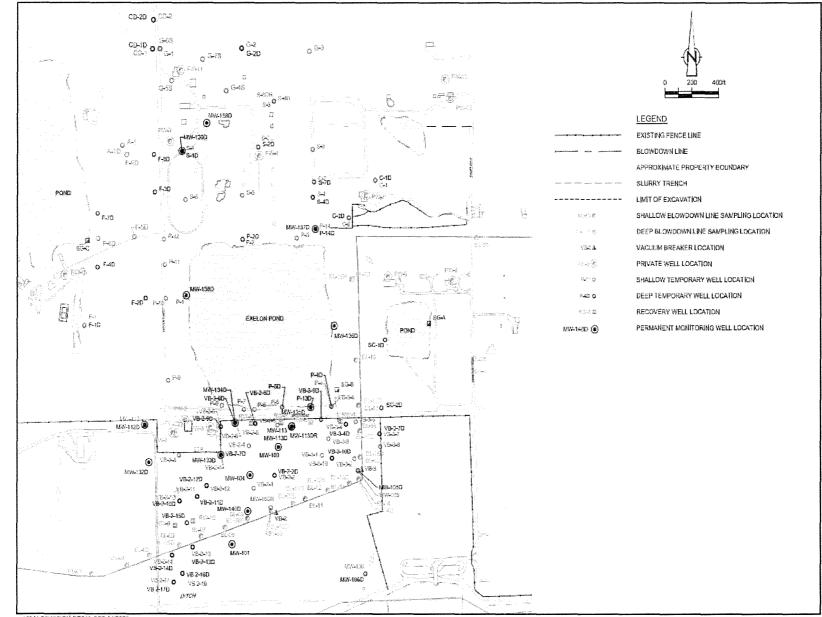


Figure A-3 Distant Sampling Locations of the Braidwood Station, 2016

A-7

16341-37(037)GN-CO005 DCT 04/2097

APPENDIX B

÷,

DATA TABLES

Intentionally left blank

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA, AND GROSS BETA IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITIY OF BRAIDWOOD STATION, 2016

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-2	02/23/16	651 ± 149						
MW-2	06/07/16	287 ± 125	< 5.8	< 0.6	< 1.6	< 0.5	5.4 ± 1.0	< 1.3
MW-2	09/21/16	249 ± 120						
MW-2	10/12/16	386 ± 139						
MW-4	02/29/16	1150 ± 194						
MW-4	06/08/16	703 ± 146	< 3.6	< 0.5	< 3.0	< 0.5	4.8 ± 1.6	< 1.4
MW-4	09/21/16	628 ± 137						
MW-4	10/12/16	417 ± 143						
MW-5	02/29/16	364 ± 137						
MW-5	06/08/16	458 ± 132	< 4.7	< 0.6	< 0.7	< 0.5	2.0 ± 0.7	< 1.4
MW-5	09/20/16	239 ± 120						
MW-5	10/15/16	303 ± 137						
MW-6	02/22/16	1050 ± 181						
MW-6	06/07/16	769 ± 150	< 5.8	< 0.8	< 2.8	< 0.5	3.5 ± 1.5	< 1.4
MW-6	09/21/16	902 ± 158						
MW-6	10/02/16	770 ± 154						
MW-7	02/29/16	1060 ± 186	- 6 4	< 0.7	< 10	< 0.5	10 ± 10	- 1 4
MW-7	06/07/16	505 ± 135	< 6.4	< 0.7	< 1.0	< 0.5	4.0 ± 1.0	< 1.4
MW-7 MW-7	09/20/16 10/15/16	446 ± 132 442 ± 140						
MW-11	02/29/16	441 ± 139						
MW-11	06/18/16	251 ± 130	< 8.7	< 0.7	< 2.9	< 1.0	< 2.8	< 1.6
MW-11	09/26/16	201 ± 130 200 ± 120	- 0.7	× 0.7	- L.J	4 1.0	\$ 2.0	\$ 1.0
MW-11	10/13/16	< 195						
MW-102R	03/16/16	< 184						
MW-102R	05/05/16	< 177						
MW-102R	09/24/16	< 176						
MW-102R	10/22/16	< 190						
MW-141D	02/23/16	469 + 139						
MW-141D	06/07/16	375 ± 129	< 4.4	< 0.5	< 9.8	< 3.1	26.4 ± 5.9	< 3.8
MW-141D	09/21/16	447 ± 129						
MW-141D	10/02/16	611 ± 147						
MW-142D	03/15/16	1690 ± 235						
MW-142D	06/11/16	1630 ± 227	< 6.0	< 0.8	< 4.8	< 0.5	19.0 ± 2.1	< 1.3
MW-142D	09/28/16	1560 ± 218						
MW-142D	10/19/16	1400 + 207						
MW-143D	02/23/16	< 193						
MW-143D	06/18/16	< 190	< 3.3	< 0.2	< 2.8	< 0.5	13.8 ± 1.8	< 1.3
MW-143D	09/25/16	225 ± 119						
MW-143D	10/15/16	243 ± 132						
MW-144D	02/29/16	700 ± 154						
MW-144D	06/08/16	595 ± 138	< 5.3	< 0.8	< 0.9	< 0.5	4.8 ± 0.9	< 1.3
MW-144D	09/20/16	844 ± 153						
MW-144D	10/15/16	697 ± 156						
MW-145D	03/15/16	< 174						
MW-145D	06/14/16	< 180						
MW-145D	09/06/16	< 192 < 194	< 5.6	< 0.9	< 0.9	< 0.7	10 + 06	< 10
MW-145D MW-154	12/14/16 03/23/16	< 194	< 5.6 < 8.1	< 0.9 < 0.3	< 0.5	< 0.6	1.0 ± 0.6 2.4 ± 0.6	< 1.9 < 1.7
MW-154	06/23/16	< 190	< 9.1	< 0.3 < 0.6	< 0.9	< 0.5	2.4 ± 0.6 2.8 ± 0.7	< 1.3
MW-154	09/25/16	< 176	< 5.5	< 0.6	< 0.6	< 0.7	1.2 ± 0.6	< 1.4
MW-154	10/23/16	< 190	< 5.1	< 0.6	< 0.5	< 0.5	1.2 ± 0.6 1.7 ± 0.6	< 1.5
MW-155	03/23/16	< 198	< 6.6	< 0.6	< 3.6	< 0.6	13.3 ± 1.9	< 1.7
MW-155	06/23/16	< 175	< 4.8	< 0.7	< 1.3	< 0.5	3.4 ± 0.8	< 1.3
MW-155	09/24/16	181 ± 116	< 4.3	< 0.4	< 1.2	< 0.7	4.2 ± 1.0	< 1.4
MW-155	10/23/16	< 194	< 3.3	< 0.8	< 1.2	< 0.5	4.2 ± 0.9	< 1.5

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

BOLD Values = Unable to meet detection limit due to high sollds content.

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA, AND GROSS BETA IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITIY OF BRAIDWOOD STATION, 2016

RESULTS	IN UN	ITS OF	PCI/LITE	7 ± 2 SI	GMA

с	OLLECTIC	N							
SITE	DATE		H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-159D	03/11/16		256 ± 125						
MW-159D	06/23/16		< 192	< 4.0	< 0.3	< 5.1	< 0.7	12.1 ± 1.8	< 2.3
MW-159D	09/25/16	Original	315 ± 123	< 4.1	< 0.3	< 1.9	1.8 ± 0.9	6.1 ± 1.5	1.8 ± 1.0
MW-159D		Reanalysis					2.3 ± 1.0		2.1 ± 1.1
MW-159D	10/22/16		283 ± 132	< 4.0	< 0.6	< 2.2	2.5 ± 0.9	6.5 ± 1.3	< 1.5
MW-162D	02/29/16		722 ± 155						
MW-162D	06/18/16		353 ± 132	< 8.0	< 0.6	< 3.0	< 1.0	< 2.9	< 1.6
MW-162D	09/26/16		477 ± 132						
MW-162D	10/13/16		376 ± 136						
MW-BW-201S	03/11/16		401 ± 131						
MW-BW-201S	06/18/16		300 ± 131	< 5.4	< 0.8	< 1.3	< 0.5	7.2 ± 1.3	< 1.3
MW-BW-201S	09/25/16		215 ± 118						
MW-BW-201S	10/22/16		321 ± 134						
MW-BW-202S	03/15/16		326 ± 127						
MW-BW-202S	06/18/16		< 192	< 9.4	< 0.8	< 3.1	< 1.7	9.6 ± 1.8	< 2.6
MW-BW-202S	09/25/16		238 ± 120						
MW-BW-202S	10/22/16		486 ± 141						
MW-BW-203S	03/11/16		199 ± 122						
MW-BW-203S	06/18/16		< 191	< 5.1	< 0.4	< 3.5	< 1.0 👘	< 3.3	< 1.6
MW-BW-203S	09/25/16		< 174						
MW-BW-203S	10/22/16		268 ± 130						
MW-BW-2071	02/22/16	Original	490 ± 142						
MW-BW-2071	02/22/16	Reanalysis	333 ± 184						
MW-BW-2071	06/08/16		955 ± 167	< 3.7	< 0.5	< 18.7	< 2.8	23.1 ± 7.5	< 4.0
MW-BW-2071	09/28/16		997 ± 168						
MW-BW-2071	10/15/16		927 ± 164						
0WM31P	01/06/16		< 191						
0WM31P	06/22/16	Original	< 195	< 4.1	< 0.3	91.3 ± 12.8	< 0.5	88.3 ± 5.1	< 1.3
0WM31P	06/22/16	Recount				96.3 ± 13.9		90.9 ± 5.0	
0WM31P	09/28/16		< 192			41.3 ± 7.0	< 0.4		
0WM31P	10/15/16		< 190			19.5 ± 3.3	< 0.7		
P-13DR	03/15/16		< 173						
RW-6	03/18/16		410 ± 134						
RW-6	06/24/16		260 ± 125	< 5.2	< 0.4	< 5.0	< 0.5	6.7 ± 1.5	< 1.3
RW-6	09/24/16		355 ± 123						
RW-6	10/22/16		262 ± 131						
VB1-1	03/23/16		< 199						
VB1-1	06/11/16		< 179						
VB1-1	09/28/16		< 189						
VB1-1	10/23/16		< 193						
VB1-9DR	03/15/16		< 176						
VB2-5DR	03/15/16		< 175						
VB2-5DR	06/14/16		283 ± 122						
VB2-5DR	09/06/16		240 ± 129						
VB3-2	03/18/16		< 189						
VB3-2	05/05/16		< 181						
VB3-2	09/24/16		< 175						
VB3-2 VB5-2	10/22/16 03/15/16		< 189						
VB5-2 VB5-2			< 174						
VB5-2 VB5-2	06/14/16 09/06/16		< 176 < 192						
VB5-2 VB5-2	12/14/16		< 192						
VB5-2 VB6-1	03/15/16		< 176						
VB6-1 VB6-1	06/14/16		< 182						
VB6-1	09/06/16		< 195						
VB6-1	12/14/16		< 193						
			100						

BOLD Values = Unable to meet detection limit due to high sollds content.

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA, AND GROSS BETA IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITIY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
VB7-1	03/15/16	< 175						
VB7-1	06/14/16	< 180						
VB7-1	09/06/16	< 194						
VB7-1	12/14/16	< 193						
VB8-2R	03/15/16	< 169						
VB8-2R	06/14/16	< 177						
VB8-2R	09/06/16	< 192						
VB8-2R	12/14/16	< 194						
VB9-1	03/15/16	< 173						
VB9-1	06/14/16	< 176						
VB9-1	09/06/16	< 194						
VB9-1	12/14/16	< 194						
VB10-1R	03/15/16	< 170						
VB10-1R	06/14/16	< 180						
VB10-1R	09/06/16	< 190						
VB10-1R	12/14/16	< 191						
VB11-1	03/15/16 Original	/ 207 ± 117						
VB11-1	03/15/16 Recoun	t < 192						
VB11-1	03/15/16 Reanalys	is < 198		a - *			n n siya	1448 - 18 - 18 - 18 - 18 - 18 - 18 - 18
VB11-1	06/14/16	< 184						
VB11-1	09/06/16	< 197						
VB11-1	12/14/16	< 196						

CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION	1													
SITE	DATE	Be-7	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
MW-2	06/07/16	< 21	< 49	< 2	< 3	< 6	< 2	< 4	< 3	< 4	< 15	< 2	< 2	< 24	< 8
MW-4	06/08/16	< 10	< 16	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 8	< 1	< 1	< 12	< 4
MW-5	06/08/16	< 12	< 26	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 9	< 1	< 1	< 15	< 5
MW-6	06/07/16	< 18	< 39	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 12	< 2	< 2	< 21	< 7
MW-7	06/07/16	< 18	< 33	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 13	< 2	< 2	< 21	< 7
MW-11	06/18/16	< 17	< 13	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 14	< 1	< 2	< 19	< 7
MW-141D	06/07/16	< 20	< 37	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 14	< 2	< 2	< 22	< 7
MW-142D	06/11/16	< 30	< 77	< 3	< 3	< 8	< 3	< 6	< 4	< 6	< 14	< 3	< 4	< 28	< 9
MW-143D	06/18/16	< 16	< 14	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 14	< 1	< 2	< 20	< 6
MW-144D	06/08/16	< 12	< 9	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 9	< 1	< 1	< 14	< 4
MW-145D	12/14/16	< 40	< 49	< 6	< 5	< 10	< 5	< 10	< 6	< 8	< 7	< 5	< 6	< 22	< 7
MW-154	03/23/16	< 9	< 16	< 1	< 1	< 2	< 1	< 2	< 1	< 2	< 4	< 1	< 1	< 7	< 2
MW-154	06/23/16	< 25	< 19	< 3	< 3	< 6	< 3	< 5	< 3	< 5	< 15	< 2	< 3	< 25	< 10
MW-154	09/25/16	< 50	< 129	< 5	< 5	< 13	< 5	< 12	< 6	< 10	< 12	< 6	< 6	< 31	< 9
MW-154	10/23/16	< 25	< 20	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 12	< 2	< 3	< 22	< 7
MW-155	03/23/16	< 13	< 11	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 5	< 1	< 1	< 11	< 3
MW-155	06/23/16	< 26	< 22	< 2	< 3	< 6	< 2	< 4	< 3	< 5	< 15	< 2	< 2	< 23	< 8
MW-155	09/24/16	< 54	< 61	< 6	< 5	< 15	< 7	< 13	< 7	< 10	< 14	< 5	< 5	< 32	< 12
MW-155	10/23/16	< 27	< 19	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 14	< 3	< 3	< 25	< 6
MW-159D	03/11/16	< 16	< 28	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 9	< 2	< 2	< 16	< 6
MW-159D	06/23/16	< 17	< 32	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 10	< 2	< 2	< 17	< 6
MW-159D	09/25/16	< 52	< 80	< 7	< 6	< 15	< 7	< 13	< 8	< 11	< 14	< 6	< 6	< 41	< 12
MW-159D	10/22/16	< 23	< 37	< 2	< 2	< 6	< 2	< 5	< 3	< 5	< 14	< 2	< 3	< 22	< 8
MW-162D	06/18/16	< 18	58 ± 32	< 2	< 2	< 4	< 1	< 3	< 2	< 4	< 14	< 1	< 2	< 22	< 7
MW-BW-201S	06/18/16	< 16	< 39	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 13	< 2	< 2	< 21	< 7
MW-BW-202S	06/18/16	< 16	< 11	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 14	< 1	< 1	< 20	< 5
MW-BW-203S	06/18/16	< 19	< 17	< 2	< 2	< 5	< 2	< 3	< 2	< 4	< 14	< 2	< 2	< 24	< 8
MW-BW-2071	06/08/16	< 10	< 9	< 1	< 1	< 2	< 1	< 2	< 1	< 2	< 8	< 1	< 1	< 12	< 4
0WM31P	06/22/16	< 22	< 50	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 14	< 2	< 2	< 21	< 7
RW-6	06/24/16	< 18	< 33	< 2	< 2	< 5	< 2	< 3	< 2	< 3	< 13	< 2	< 2	< 21	< 7

TABLE B-I.3CONCENTRATIONS OF HARD TO DETECTS IN GROUNDWATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTIOIN
PROGRAM, BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

ł

(COLLECTION								
SITE	DATE	Am-241	Cm-242	Cm-243/244	Pu-238	Pu-239/240	U-234	U-235	U-238
0WM31P	06/22/16	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	2.3 ± 0.4	< 0.1	< 0.1

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

SITE	COLLECTION DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
DS-2	03/16/16	< 184						
DS-2	05/05/16	< 179	< 6.1	< 0.9	< 1.5	< 0.4	7.3 ± 1.5	< 1.4
DS-2	09/22/16	< 174						
DS-2	10/08/16	< 191						
SW-102	03/16/16	< 186						
SW-102	06/11/16	< 181	< 4.3	< 0.4	< 2.3	< 0.6	< 1.7	2.0 ± 1.1

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

.

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF BRAIDWOOD STATION, 2016

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION														
SITE	DATE	Be-7	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
DS-2	05/05/16	< 17	< 29	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 14	< 1	< 2	< 21	< 7
SW-102	06/11/16	< 31	< 26	< 3	< 3	< 8	< 3	< 6	< 4	< 6	< 14	< 3	< 3	< 23	< 8