

XCEL ENERGY CORPORATION

PRAIRIE ISLAND NUCLEAR GENERATING PLANT

ANNUAL REPORT

UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiological Environmental Monitoring Program

January 1 to December 31, 2016

Docket No. 50-282 Renewed Operating License No. DPR-42 Docket No. 50-306 Renewed Operating License No. DPR-60

ISFSI Docket No. 72-10

Renewed License No. SNM-2506

Prepared under Contract by

ATI ENVIRONMENTAL, Inc. MIDWEST LABORATORY

Project No. 8010

Bronia Grob, M.S. Laboratory Manager

Approved:

PREFACE

The staff of Environmental, Inc., Midwest Laboratory was responsible for the acquisition of data presented in this report. Samples were collected by members of the staff of the Prairie Island Nuclear Generating Plant, operated by Northern States Power Co. –Minnesota, for XCEL Energy Corporation. The report was prepared by Environmental, Inc., Midwest Laboratory.

ii

TABLE OF CONTENTS

<u>Sectior</u>	1	Page
	Preface	ii
	List of Tables	iv
	List of Figures	v
1.0		1
2.0	SUMMARY	2
3.0	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)	3
	 3.1 Program Design and Data Interpretation. 3.2 Program Description. 3.3 Program Execution. 3.4 Laboratory Procedures. 3.5 Program Modifications. 3.6 Land Use Census. 	3 4 5 5 6 6
4.0	RESULTS AND DISCUSSION	7
	4.1 Atmospheric Nuclear Detonations and Nuclear Accidents	7
	4.2 Summary of Preoperational Data	7
	4.3 Program Findings	8
5.0	FIGURES AND TABLES	12
6.0	REFERENCES CITED	24
APPEN	IDICES	
A	Interlaboratory Comparison Program Results	A-1
	Attachment A, Acceptance Criteria for "Spiked" Samples	A-2
В	Data Reporting Conventions	B-1
С	Annual Average Effluent Concentration Limits of Radioactivity in Air and Water Above Background in Unrestricted Areas	C-1
D	Sampling Location Maps	D-1
Е	Special Well and Surface Water Samples	E-1

LIST OF TABLES

<u>No</u> .	<u>Title</u>	<u>Page</u>
5.1	Sample Collection and Analysis Program	15
5.2	Sampling Locations	16
5.3	Missed Collections and Analyses	19
5.4	Radiological Environmental Monitoring Program Summary	20
Ìn ado	dition, the following tables can be found in the Appendices:	
<u>Apper</u>	ndix A	
A-1	Environmental Resources Associates, Crosscheck Program Results	. A1-1
A-2	Program Results; (TLDs)	A2-1
A-3	In-house "Spiked" Samples	A3-1
A-4	In-house "Blank" Samples	. A4-1
A-5	In-house "Duplicate" Samples	A5-1
A-6	Department of Energy MAPEP comparison results	A6-1
A-7	Environmental Resources Associates, Crosscheck Program Results (EML study replacement)	. A7-1
A		
<u>Appei</u>		
C-1	Average Annual Effluent Concentration Limits of Radioactivity in Air and Water Above Natural Background in Unrestricted Areas	C-2
<u>Apper</u>	ndix E	
E-4.1	Sample collection and analysis program	E-5
E-4.2	Sampling locations	E-6
E-4.3	REMP Summary	E-8
E-4.4	REMP Complete Data Tables	E-9
E-4.5	Supplementary Data Tables	E-13

LIST OF FIGURES

No. Title Page 5.1 Offsite Ambient Radiation (TLDs), average of inner and outer ring indicator locations versus control 13 5.2 Airborne Particulates; analysis for gross beta, average mean of all indicator locations (P-2,3,4,6,7) versus control location (P-1) 14

MAPS

Appendix D	I ITIE	Page
TLD locations within a one mile ra	adius	D-2
TLD locations, Controls TLD locations, surrounding the ISI	FSI Area	D-3 D-3
TLD locations within a five mile ra	idius	D-4
REMP sampling points within a or	ne mile radius	D-5
REMP sampling points within a fiv REMP sampling points, Control lo	/e mile radius ocations	D-6 D-7

Appendix E

Groundwater Monitoring Well locations E-16

1.0 INTRODUCTION

This report summarizes and interprets results of the Radiological Environmental Monitoring Program (REMP) conducted by Environmental, Inc., Midwest Laboratory at the Prairie Island Nuclear Generating Plant, Red Wing, Minnesota, during the period January - December, 2016. This program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the plant on its surroundings.

Tabulations of the individual analyses made during the year are not included in this report. These data are included in a reference document (Environmental, Inc., Midwest Laboratory, 2016b) available at Prairie Island Nuclear Generating Plant.

Prairie Island Nuclear Generating Plant is located on the Mississippi River in Goodhue County, Minnesota, owned by Xcel Energy Corporation and operated by Northern States Power Co.-Minnesota. The plant has two 575 MWe pressurized water reactors. Unit 1 achieved initial criticality on 1 December 1973. Commercial operation at full power began on 16 December 1973. Unit 2 achieved initial criticality on 17 December 1974. Commercial operation at full power began on 21 December 1974.

1

2.0 SUMMARY

The Radiological Environmental Monitoring Program (REMP) required by the U.S. Nuclear Regulatory Commission (NRC) Offsite Dose Calculation Manual for the Prairie Island Nuclear Generating Plant and the Independent Spent Fuel Storage Installation (ISFSI) is described. Results for 2016 are summarized and discussed.

Program findings show background levels of radioactivity in the environmental samples collected in the vicinity of the Prairie Island Nuclear Generating Plant.

3.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.1 Program Design and Data Interpretation

The purpose of the Radiological Environmental Monitoring Program (REMP) at the Prairie Island Nuclear Generating Plant is to assess the impact of the plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLDs).

Sources of environmental radiation include the following:

- (1) Natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) Fallout from atmospheric nuclear detonations;
- Releases from nuclear power plants;
- (4) Industrial and medical radioactive waste; and
- (5) Fallout from nuclear accidents.

In interpreting the data, effects due to the plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Prairie Island Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in radiation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in the environmental samples collected from the plant site. The plant's monitoring program includes analyses for tritium and iodine-131. Most samples are analyzed for gamma-emitting isotopes with results for the following groups quantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:10.03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered radiological impact indicators.

The other group quantified consists of niobium-95, ruthenium-103 and -106, cesium-134, bariumlanthanum-140, and cerium-141. These isotopes are released in small quantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, iron-59, cobalt-58 and -60, and zinc-65, are activation products and arise from activation of corrosion products. They are typical components of a nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

3.1 Program Design and Data Interpretation (continued)

Other means of distinguishing sources of environmental radiation are employed in interpreting the data. Current radiation levels are compared with previous levels, including those measured before the plant became operational. Results of the plant's monitoring program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.2 <u>Program Description</u>

The sampling and analysis schedule for the radiological environmental monitoring program at Prairie Island is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the reactor site or ISFSI facility, as appropriate. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Prairie Island Nuclear Generating Plant, 2016). Maps of fixed sampling locations are included in Appendix D.

To monitor the airborne environment, air is sampled by continuous pumping at six stations, four site boundary indicators (P-2, P-3, P-4 and P-7), located in the highest calculated D/Q sectors, one community indicator (P-6), and one control (P-1). The particulates are collected on membrane filters, airborne iodine is trapped by activated charcoal canisters. Particulate filters are analyzed for gross beta activity and charcoal canisters for iodine-131. Quarterly composites of particulate filters from each location are analyzed for gross.

Offsite ambient gamma radiation is monitored at thirty-four locations, using CaSO₄:Dy dosimeters with four sensitive areas at each location: ten in an inner ring in the general area of the site boundary, fifteen in the outer ring within a 4-5 mile radius, eight at special interest locations, and one control location, 11.1 miles distant from the plant. They are replaced and measured quarterly.

Ambient gamma radiation is monitored at the Independent Spent Fuel Storage Installation (ISFSI) Facility by twenty CaSO₄:Dy dosimeters. Twelve dosimeters are located inside of the earthen berm in direct line of sight from the storage casks and eight dosimeters are located outside of the earthen berm. They are replaced and measured quarterly.

Milk samples are collected monthly from two farms (one indicator and one control) and analyzed for iodine-131 and gamma-emitting isotopes. The milk is collected biweekly during the growing season (May - October), because the milk animals may be on pasture.

For additional monitoring of the terrestrial environment, green leafy vegetables (cabbage) are collected annually from the highest D/Q garden and a control location (P-38), and analyzed for gamma-emitting isotopes, including iodine-131. Corn is collected annually only if fields are irrigated with river water and analyzed for gamma-emitting isotopes. Well water and ground water are collected quarterly from four locations near the plant and analyzed for tritium and gamma-emitting isotopes.

River water is collected weekly at two locations, one upstream of the plant (P-5) and one downstream (P-6, Lock and Dam No.3). Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

Drinking water is collected weekly from the City of Red Wing well. Monthly composites are analyzed for gross beta, iodine-131, and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

3.2 <u>Program Description (continued)</u>

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, periphyton or invertebrates, and bottom sediments. Shoreline sediment is collected semi-annually from one location. All samples are analyzed for gamma-emitting isotopes.

3.3 <u>Program Execution</u>

The Program was executed as described in the preceding section with the following exceptions:

(1) <u>Milk:</u>

There was no milk collected after 10/11/16 at locations P-37 and P-43. The P-37 farm had permanently suspended milking operations and the P-43 control samples were no longer required.

(2) <u>Airborne Particulate / Airborne Iodine</u>

A partial sample was collected from location P-2 for the week of 4/13/16 and 7/11/16. Power was lost due to a loss of the temporary power source at this location. A permanent power supply was connected on 7/25/16.

A partial sample was collected from location P-1 for the week ending 7/11/16. Power was lost to the sampler due to a storm-induced power outage.

(3) <u>TLD</u>

The TLD at location P-09B (south sector) for the third quarter of 2016 was missing in the field.

Deviations from the program are summarized in Table 5.3.

3.4 Laboratory Procedures

The iodine-131 analyses in milk and drinking water were made using a sensitive radiochemical procedure which involves separation of the iodine using an ion-exchange method, solvent extraction and subsequent beta counting.

Gamma-spectroscopic analyses are performed using high-purity germanium (HPGe) detectors. Levels of iodine-131 in cabbage and natural vegetation and concentrations of airborne iodine-131 in charcoal samples were determined by gamma spectroscopy.

Tritium concentrations are determined by liquid scintillation.

Analytical Procedures used by Environmental, Inc. are on file and are available for inspection. Procedures are based on those prescribed by the Health and Safety Laboratory of the U.S. Dep't of Energy, Edition 28, 1997, U.S. Environmental Protection Agency for Measurement of Radioactivity in Drinking Water, 1980, and the U.S. Environmental Protection Agency, EERF, Radiochemical Procedures Manual, 1984. Environmental, Inc., Midwest Laboratory has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of the QA Program are presented elsewhere (Environmental, Inc., Midwest Laboratory, 2016). The QA Program includes participation in Interlaboratory Comparison (crosscheck) Programs. Results obtained in the crosscheck programs are presented in Appendix A.

3.5 Program Modifications

None.

3.6 Land Use Census

In accordance with the Prairie Island Nuclear Generating Plant Offsite Dose Calculation Manual, H4, (ODCM) a land use census is conducted in order to identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft² producing fresh leafy vegetables in each of the 16 meteorological sectors within a distance of 5 miles. This census is conducted at least once per 12 months between the dates of May 1 and September 30. If new locations yield a calculated dose or dose equivalent (via the same exposure pathway) twenty percent greater than the required locations per the ODCM, then the new locations are added to the radiological environmental monitoring program within 30 days, and sampling locations having lower calculated doses or a lower dose commitment may be deleted from this monitoring program after September of the year in which the land use census was conducted.

This land use census insures the updating of the radiological environmental monitoring program should sampling locations change within the 5 mile radius from the plant.

The Land Use Census was conducted 8/10/16 through 9/9/16. The ranking of the highest D/Q garden spot changed in 2016. Samples were taken from this garden. In addition several other close gardens in the vicinity of the plant were sampled, plus a control farm. This farm does not have calculated doses greater than 1 mrem per year.

No downstream irrigation of corn was discovered within 5 miles of the Prairie Island Plant. The Minnesota and Wisconsin Departments of Natural Resources were both consulted and both confirmed that no irrigation permits had been issued for water from the Mississippi River . Therefore, no corn samples were collected for analysis.

4.0 RESULTS AND DISCUSSION

All scheduled collections and analyses were made except those listed in Table 5.3.

The results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.1 <u>Atmospheric Nuclear Detonations and Nuclear Accidents</u>

There were no reported accidents involving significant release to the environment at nuclear reactor facilities in 2016. The Fukushima Daiichi nuclear accident occurred March 11, 2011.

There were no reported atmospheric nuclear tests in 2016. The last reported test was conducted on October 16, 1980 by the People's Republic of China.

4.2 <u>Summary of Preoperational Data</u>

The following constitutes a summary of preoperational studies conducted at the Prairie Island Nuclear Power Plant during the years 1970 to 1973, to determine background levels expected in the environment, and provided, where applicable, as a means for comparison with present day levels. Strict comparisons, however, are difficult, since background levels of radiation were much higher in these years due to radioactive fallout from the atmosphere. Gross beta measurements in fallout declined yearly from a level of 12,167 pCi/m³ to 1,020 pCi/m³, and these declining values are reflected throughout the various media tested.

In the air environment, ambient gamma radiation (TLDs) averaged 9.4 mR/4 weeks during preoperational studies. Gross beta in air particulates declined from levels of 0.38 to 0.037 pCi/m³. Average present day levels have stabilized at around 0.025 pCi/m³. Airborne radioiodine remained below detection levels.

In the terrestrial environment of 1970 to 1973, milk, agricultural crops, and soil were monitored. In milk samples, low levels of Cs-137, I-131, and Sr-90 were detected. Cs-137 levels declined from 16.5 to 8.6 pCi/L. Present day measurements for both Cs-137 and I-131 are below detection levels. Agricultural crop measurements averaged 57.7 pCi/g for gross beta and 0.47 pCi/g for Cs-137. Gross beta measured in soil averaged 52 pCi/g.

The aqueous environment was monitored by testing of river, well and lake waters, bottom sediments, fish, aquatic vegetation and periphyton. Specific location comparison of drinking, river and well water concentrations for tritium and gross beta are not possible. However, tritium background levels, measured at eight separate locations, declined steadily from an average concentration of 1020 pCi/L to 490 pCi/L. Present day environmental levels of tritium measure below a detection limit of approximately 160 pCi/L. Values for gross beta, measured from 1970 to 1973, averaged 9.9 pCi/L in downstream Mississippi River water, 8.2 pCi/L for well water, and 11.0 pCi/L for lake water. Gamma emitters were below the lower limit of detection (LLD). In bottom sediments, gross beta background levels were determined at 51.0 pCi/g. Cs-137 activity during preoperational studies in 1973 measured 0.25 pCi/g upstream and 0.21 pCi/g downstream. The lower levels occasionally observed today can still be attributed to residual activity from atmospheric fallout. Gross beta in fish, measured in both flesh and skeletal samples, averaged 7.3 and 11.7 pCi/g, respectively. Gross beta background levels in aquatic vegetation, algae and periphyton samples measured 76.0 pCi/g, 46.0 pCi/g, and 13.6 pCi/g, respectively.

4.3 Program Findings

Results obtained show background levels of radioactivity in the environmental samples collected in the vicinity of the Prairie Island Nuclear Generating Plant.

Ambient Radiation (TLDs)

Ambient radiation was measured in the general area of the site boundary, at the outer ring 4 - 5 mi. distant from the Plant, at special interest areas and at one control location. The means ranged from 16.6 mR/91 days at inner ring locations to 16.8 mR/91 days at outer ring locations. The mean at special interest locations was 15.8 mR/91 days and 17.4 mR/91 days at the control location. Dose rates measured at the inner and outer ring and the control locations were comparable to 2015 dose rates and consistent with results from previous years. The results are tabulated below. No plant effect on ambient gamma radiation measurements was indicated (Figure 5-1).

Year	Average (<u>Inner and</u> <u>Outer Rings)</u>	Control		<u>Year</u>	Average (<u>Inner and</u> Outer Rings)	Control
1999	16.6	17.5		2008	16.9	17.1
2000	17.0	17.1		2009	15.9	16.3
2001	16.8	17.2		2010	16.0	16.0
2002	17.4	16.9		2011	15.7	15.7
2003	16.2	16.0		2012	16.5	16.2
2004	17.6	17.6		2013	15.1	16.0
2005	16.8	16.3		2014	15.3	16.2
2006	16.6	16.6	•	2015	16.0	17.4
2007	17.5	17.7		2016	16.7	17.4

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates (mR/91 days).

ISFSI Facility Operations Monitoring

Ambient radiation was measured inside the ISFSI earth berm, outside the ISFSI earth berm and at two special locations between the plant ISFSI and the Prairie Island Indian Community. The mean dose rates averaged 168.4 mR/91 days inside the ISFSI earth berm and 24.6 mR/91 days outside the ISFSI earth berm. No additional casks were placed on the ISFSI pad in 2016, a total of forty loaded casks remain. The higher levels inside the earth berm are expected, due to the loaded spent fuel casks being in direct line-of-sight of the TLDs.

Ambient radiation levels measured outside the earth berm show a slight increase as compared to other offsite dose rates around the plant. The cumulative average of the two special Prairie Island Indian Community TLDs measured 15.9 and 17.2 mR/91 days. Although the skyshine neutron dose rates are not directly measured, the neutron levels measured next to the casks are below the levels predicted in the ISFSI SAR Report, Table 7A-4, "TN-40 Dose Rates at Short Distances". Therefore, the skyshine dose rates at farther distances from the casks should be at or below the calculated dose rates. No spent fuel storage effect on offsite ambient gamma radiation was indicated (Fig. 5-1).

Airborne Particulates

Typically, the highest averages for gross beta occur during the months of January and December, and the first and fourth quarters, as in 1999 through 2006, and also in 2008 through 2015. The elevated activity observed in 2007 was attributed to construction activity in the area, an increase in dust and consequent heavier particulate filter loading.

Average annual gross beta concentrations in airborne particulates were 0.027 pCi/m³ for both the indicators and the control location and similar to levels observed from 1999 through 2006 and 2008 to 2015. The results are tabulated below.

Year	Average of Indicators	<u>Control</u>
	Concentration	<u>n (pCi/</u> m ³)
1999	0.024	0.022
2000	0.025	0.025
2001	0.023	0.023
2002	0.028	0.023
2003	0.027	0.025
2004	0.025	0.026
2005	0.027	0.025
2006	0.026	0.025
2007	0.037	0.031
2008	0.028	0.027
2009	0.029	0.029
2010	0.025	0.025
2011	0.026	0.027
2012	0.031	0.032
2013	0.027	0.028
2014	0.026	0.026
2015	0.029	0.029
2016	0.027	0.027

Average annual gross beta concentrations in airborne particulates.

Gamma spectroscopic analysis of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955) was detected in all samples, with an average activity of 0.076 pCi/m³ for indicator locations and 0.080 pCi/m³ at the control locations. All other isotopes were below the lower limit of detection.

There was no indication of a plant effect.

Airborne Iodine

Weekly levels of airborne iodine-131 were below the lower limit of detection (LLD) of 0.03 pCi/m³ in all samples. There was no indication of a plant effect.

<u>Milk</u>

lodine-131 results were below a detection limit of 0.5 pCi/L in all samples.

Cs-137 results were below 5 pCi/L in all samples. No other gamma-emitting isotopes, except naturally occurring potassium-40, were detected in any milk sample.

In summary, the data for 2016 show no radiological effects of the plant operation.

Drinking Water

In drinking water from the City of Red Wing well, tritium activity measured below a detection limit of 155 pCi/L for all samples.

Gross beta concentrations averaged 12.3 pCi/L throughout the year, ranging from 9.0–14.8 pCi/L. These concentrations are consistent with levels observed from 1999 through 2015. The most likely contribution is the relatively high levels of naturally-occurring radium. Gamma spectroscopy indicates the presence of lead and bismuth isotopes, which are daughters of the radium decay chain. There is no indication from the 2016 data of any effect of plant operation.

	· · · · · · · · · · · · · · · · · · ·
Year	Gross Beta (pCi/L)
1999	5.3
2000	10.1
2001	8.3
2002	8.7
2003	9.9
2004	9.8
2005	11.5
2006	13.4
2007	11.6
2008	11.6
2009	11.4
2010	11.7
2011	12.4
2012	11.8
2013	12.2
2014	11.5
2015	11.4
2016	12.3

Average annual concentrations; Gross beta in drinking water.

River Water

All river water samples measured below an LLD level of 155 pCi/L for tritium.

Gamma-emitting isotopes were below detection limits in all samples.

In summary, the data for 2016 show no radiological effects from the plant operation.

Well Water

Water samples tested from the control well, P-43 (Peterson Farm) and from four indicator wells (P-8, Community Center, P-6, Lock and Dam No. 3, P-9, Plant Well No. 2 and P-24, Suter Farm) showed no tritium detected above a detection limit of 192 pCi/L. Gamma-emitting isotopes were below detection limits in all samples.

In summary, well water data for 2016 show no radiological effects of the plant operation.

Crops

Four samples of broadleaf vegetation, cabbage leaves, were collected in August ,2016 and one in September 2016 and analyzed for gamma-emitting isotopes, including iodine-131. The I-131 level was below 0.019 pCi/g wet weight in all samples. With exceptions for naturally-occurring beryllium-7 and potassium-40, all other gamma-emitting isotopes were below their respective detection limits. There was no indication of a plant effect.

Field sampling personnel conducted an annual land use survey and found no river water taken for irrigation into fields within 5 miles downstream from the Prairie Island Plant. The collection and analysis of corn samples was not required.

<u>Fish</u>

Fish were collected in May, June and October, 2016 and analyzed for gamma emitting isotopes. Only naturally-occurring potassium-40 was detected, and there was no significant difference between upstream and downstream results. There was no indication of a plant effect.

Aquatic Insects or Periphyton

Aquatic insects (invertebrates) or periphyton were collected in June and October, 2016 and analyzed for gamma-emitting isotopes. All gamma-emitting isotopes measured below detection limits except in one instance naturally occurring potassium-40. There was no indication of any plant effect.

Bottom and Shoreline Sediments

Upstream and downstream bottom sediments and downstream recreational area shoreline sediments were sampled in May, June and September, 2016 and analyzed for gamma-emitting isotopes. The only gamma-emitting isotope detected was naturally-occurring potassium-40.

There was no indication of a plant effect.

5.0 FIGURES AND TABLES

Figure 5-1. Offsite Ambient Radiation (TLDs); average of inner and outer ring indicator locations versus control location.

Figure 5-2. Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location.

Table 5.1. Sample collection and analysis program, Prairie Island Nuclear Ge
--

			Collection	Analysis
		Location	Type and	Type and
Medium	No.	Codes (and Type) ^a	Frequency ^b	Frequency ^c
Ambient radiation (TLD's)	54	P-01A - P-10A	C/0	Ambient gamma
/	•.	P-01B - P-15B	- , .	i instent Bannia
		P-01S - P-08S		
		P-01IA - P-08IA		
		P-011B - P-081B		
		P-01IX- P-04IX, P-01C	ł	
Airborne Particulates	5	P-1(C). P-2.	C/W	GB. GS (OC of
1		P-3, P-4, P-6, P-7	1 .	each location)
Airborne Iodine	5	P-1(C), P-2, P-3, P-4, P-6, P-7	C∕W	I-131
Milk	4	P-37, P-43 (C)	G/M ^d	I-131, GS
River water	2	P-5(C), P-6	G/W	GS(MC), H-3(QC)
Drinking water	1	P-11	G/W	GB(MC), I-131(MC) GS (MC), H-3 (QC)
Well water	5	P-6, P-8, P-9, P-24, P-43 (C)	G/Q	H-3, GS
Edible cultivated crops - leafy green vegetables	3	P-28, P-38(C), P-45	G/A	GS (l-131)
			/	
Fish (one species, edible portion)	2	P-19(C), P-13	G/SA	GS
Periphyton or invertebrates	2	P-40(C), P-6	G/SA	GS
Bottom sediment	2	P-20(C), P-6	G/SA	GS
Shoreline sediment	1	P-12	G/SA	GS

^a Location codes are defined in Table 5.2. Control stations are indicated by (C). All other stations are indicators.

^b Collection type is coded as follows: C/ = continuous, G/ = grab. Collection frequency is coded as follows:

W= weekly, M = monthly, Q = quarterly, SA = semiannually, A = annually.

^c Analysis type is coded as follows: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, I-131 = iodine-131. Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

^d Milk is collected biweekly during the grazing season (May - October).

Code	Type ^a	Collection Site	Sample Type ^b	Distance and Direction from Reactor
P-1	С	Air Station P-1	AP, AI	11.8 mi @ 316°/NNW
P-2		Air Station P-2	AP, AI	0.5 mi @ 294°/WNW
P-3		Air Station P-3	AP, AI	0.8 mi @ 313°/NW
P-4		Air Station P-4	AP, AI	0.4 mi @ 359°/N
P-5	C	Upstream of Plant	RW	1.8 mi @ 11°/N
P-6		Lock and Dam #3 & Air Station P-6	AP, AI, RW	1.6 mi @ 120°/SE
D 7		Air Ctation D 7		1.0 m @ 129 / 3E
P-/		Air Station P-7	AP, AI	0.5 mi = 271 / W
г-о в о		Community Center		$1.0 \text{ mi} \otimes 321 / \text{WWW}$
P-9		Plant Well #2		$0.3 \text{ mi} \oplus 300 / \text{NW}$
P-11 D 4 2		Red Wing Service Center	DW SS	3.3 mi@ 138 / 35E
P-12		Downstream of Plant	55 5 ⁰	$3.0 \text{ III} \oplus 110 \text{ / ESE}$
P-13		Downstream of Plant	F	3.5 m @ 113 / ESE
P-18		Christiansen Farm	M	3.8 mi @ 88°/E
P-19	С	Upstream of Plant	F°	1.3 mi @ 0°/N
P-20	С	Upstream of Plant	BS	0.9 mi @ 45°/NE
P-24		Suter Residence	WW	0.6 mi @ 158°/SSE
P-28		Allyn Residence	VE	1.0 mi @ 152°/SSE
P-37		Welsch Farm	М	4.1 mi @ 87°/E
P-38	С	Cain Residence	VE	14.2 mi @ 359°/N
P-40	С	Upstream of Plant	BO°	0.4 mi @ 0°/N
P-43	С	Peterson Farm	M, WW	13.9 mi. @ 355°/N
P-45		Glazier Residence	VE	0.6 mi. @ 341°/NNW
<u>General</u>	Area of t	he Site Boundary		
P-01A		Property Line	TLD	0.4 mi @ 359°/N
P-02A		Property Line	TLD	0.3 mi @ 10°/N
P-03A		Property Line	TLD	0.5 mi @ 183°/S
P-04A		Property Line	TLD	0.4 mi @ 204°/SSW
P-05A		Property Line	TLD	0.4 mi @ 225°/SW
P-06A		Property Line	TLD	0.4 mi @ 249°/WSW
P-07A		Property Line	TLD	0.4 mi @ 268°/W
P-08A		Property Line	TLD	0.4 mi @ 291°/WNW
P-09A		Property Line	TLD	0.7 mi @ 317°/NW
P-10A		Property Line	TLD	0.5 mi @ 333°/NNW

Table 5.2. Sampling locations, Prairie Island Nuclear Generating Plant.

Code	Type ^a	Collection Site	Sample Type ^b	Distance and Direction from Reactor
<u>Approxin</u>	nately 4	to 5 miles Distant from the Plant		
P-01B		Thomas Killian Residence	TLD	4.7 mi @ 355°/N
P-02B		Roy Kinneman Residence	TLD	4.8 mi @ 17°/NNE
P-03B		Wayne Anderson Farm	TLD	4.9 mi @ 46°/NE
P-04B		Nelson Drive (Road)	TLD	4.2 mi @ 61°/ENE
P-05B		County Road E and Coulee	TLD	4.2 mi @ 102°/ESE
P-06B		William Hauschildt Residence	TLD	4.4 mi @ 112°/ESE
P-07B		Red Wing Public Works	TLD	4.7 mi @ 140°/SE
P-08B		David Wnuk Residence	TLD	4.1 mi @ 165°/SSE
P-09B		Highway 19 South	TLD	4.2 mi @ 187°/S
P-10B		Cannondale Farm	TLD	4.9 mi @ 200°/SSW
P-11B		Wallace Weberg Farm	TLD	4.5 mi @ 221°/SW
P-12B		Ray Gergen Farm	TLD	4.6 mi @ 251°/WSW
P-13B		Thomas O'Rourke Farm	TLD	4.4 mi @ 270°/W
P-14B		David J. Anderson Farm	TLD	4.9 mi @ 306°/NW
P-15B		Holst Farms	TLD	3.8 mi @ 345°/NNW
<u>Special l</u>	nterest I	Locations		
P-01S		Federal Lock & Dam #3	TLD	1.6 mi @ 129º/SE
P-02S		Charles Suter Residence	TLD	0.5 mi @ 155°/SSE
P-03S		Carl Gustafson Farm	TLD	2.2 mi @ 173°/S
P-04S		Richard Burt Residence	TLD	2.0 mi @ 202°/SSW
P-05S		Kinney Store	TLD	2.0 mi @ 270°/W
P-06S		Earl Flynn Farm	TLD	2.5 mi @ 299°/WNW
P-07S		Indian Community	TLD	0.7 mi @ 271°/W
P-08S		Indian Community	TLD	0.7 mi @ 287°/WNW
P-01C	С	Robert Kinneman Farm	TLD	11.1 mi @ 331°/NNW

Table 5.2. Sampling locations, Prairie Island Nuclear Generating Plant (continued).

Code	Type ^a	Collection Site	Sample Type ^b	Distance and Directior from ISFSI Center.
ISFSI Area	Inside	Earth Berm		· .
P-01IA		ISFSI Nuisance Fence	[;] TLD	190' @ 45°/NE
P-021A		ISFSI Nuisance Fence	TLD	360' @ 82°/E
P-03IA		ISFSI Nuisance Fence	TLD	370' @ 100°/E
P-04IA		ISFSI Nuisance Fence	TLD	200' @ 134°/SE
P-051A		ISFSI Nuisance Fence	TLD	180' @ 219°/SW
P-061A		ISFSI Nuisance Fence	TLD	320' @ 258°/WSW
P-07IA		ISFSI Nuisance Fence	TLD	320' @ 281°/WNW
P-081A		ISFSI Nuisance Fence	TLD	190' @ 318°/NW
P-01.IX		ISFSI Nuisance Fence	TLD	140' @ 180°/S
P-02IX		ISFSI Nuisance Fence	TLD	310' @ 270°/W
P-03IX		ISFSI Nuisance Fence	TLD	140' @ 0°/N
P-041X		ISFSI Nuisance Fence	TLD	360' @ 90°/E
ISFSI Area	Outsic	le Earth Berm		
P-01IB		ISFSI Berm Area	TLD	340' @ 3°/N
P-02IB		ISFSI Berm Area	TLD	380' @ 28°/NNE
P-03IB	·	ISFSI Berm Area	TLD	560' @ 85°/E
P-04IB		ISFSI Berm Area	TLD	590' @ 165°/SSE
P-05IB		ISFSI Berm Area	TLD	690' @ 186°/S
P-06IB		ISFSI Berm Area	TLD	720' @ 201°/SSW
P-071B		ISFSI Berm Area	TLD	610' @ 271°/W
P-081B		ISFSI Berm Area	TLD	360' @ 332°/NNW

Table 5.2. Sampling locations, Prairie Island Nuclear Generating Plant (continued).

^a "C" denotes control location. All other locations are indicators.

^b Sample Cod	es:		
AF	Airborne particulates	F	Fish
A	Airborne lodine	М	Milk
BS	Bottom (river) sediments	SS	Shoreline Sediments
ВС) Bottom organisms	SW	Surface Water
	(periphyton or macroinvertebrates)	VE	Vegetation/vegetables
DV	V Drinking water	ww	Well water
			· · · · · · · · ·

⁶ Distance and direction data for fish and bottom organisms are approximate since availability of sample specimen may vary at any one location.

Table 5.3. Missed collections and analyses at the Prairie Island Nuclear Generating Plant.

Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence
AP/AI	Beta, I-131	P-2	4/13/2016	Lost temporary power for greater than 8 hours	Permanent Power to be installed
AP/AI	Beta, I-131	P-2	7/11/2016	Lost temporary power for greater than 8 hours	Permanent Power to be installed
AP/AI	Beta, I-131	P-1	7/11/2016	Lost power for greater than 8 hours due to storm induced power outage	Power was restored
Milk	Gamma, I-131	P-37	10/11/2016	Ceased dairy operations at this location	
Milk	Ġamma, I-131	P-43	10/11/2016	No longer sample this control dairy due to no indicator dairy being sampled.	
TLD	Gamma	P-09B	7/1/16- 09/30/16	TLD was missing	Replaced TLD

All required samples were collected and analyzed as scheduled with the following exceptions:

Name of Facility	Prairie Island Nuclear Power Station	Docket No.	50-282, 50-306
Location of Facility	Goodhue, Minnesota	Reporting Period	January-December, 2016
	(County, State)		

			Indicator	Location with H	Control	Number				
Sample	Type and			Locations	Annual Me	an	Locations	Non-		
Туре	Number of		LLD [₽]	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine		
(Units)	Analyses ^a			Range ^c	Location ^d	Range ^c	Range ^c	Results ^e		
				Dire	ect Radiation					
TLD (Inner Ring, Gamma, 40		Gamma 40 3.0		Samma 40 30		16.6 (40/40)	P-06A 19.4 (4		(See Control	o
Area at Site				(13.5-19.9)	0.4 mi @ 249° /WSW	(18.6-19.9)	below.)			
Boundary)					Contraction of the second s	()	,			
mR/91 days)],									
TLD (Outer Ring,	Gamma	59	3.0	16.8 (59/59)	P-03B	19 (4/4)	(See Control	0		
4-5 mi. distant)				(13.9-21.2)	4.9 mi @ 46o/NE	(17.9-20.7)	below.)			
mR/91 days)				· · ·	, C	. ,	,			
TLD (Special	Gamma	32	3.0	15.8 (32/32)	P-03S, Gustafson Farm,	18.1 (4/4)	(See Control	0		
Interest Areas)				(12.5-19.6)	2.2 mi @ 173° /S	(16.7-19.6)	below.)			
mR/91 days)					а. С					
				u						
, TLD (Control)	Gamma	4	3.0	None	P-01C, Robert Kinneman	17.4 (4/4)	17.4 (4/4)	0		
mR/91 days)					11.1 mi @ 331° /NNW	(15.8-18.3)	(15.8-18.3)			
							. <u>.</u>			
				Airb	orne Pathway			1		
Airborne	GB	312	0.005	0.027 (260/260)	P-06, Air Station	0.028 (52 /52)	0.027 (52/52)	0		
Particulates				(0.012-0.070)	1.6 mi @ 259° /SE	(0.014-0.070)	(0.012-0.049)			
(pCi/m ³)										
	GS	20								
	Be-7		0.015	0.076 (20/20)	P-01, Air Station	0.080 (4/4)	0.080 (4/4)	0		
				(0.051-0.116)	11.8 mi @ 316° /NNW	(0.059-0.107)	(0.059-0.107)			
	Mn-54		0.0009	< LLD	-	-	< LLD	0		
	Co-58		0.0009	< LLD	-	-	< LLD	0		
	Co-60		0.0007	< LLD	-	-	< LLD	0		
	[°] Zn-65		0.0013	< LLD	-	-	< LLD	0		
	Zr-Nb	95	0.0013	< LLD	-	-	< LLD	0		
	Ru-10	3	0.0012	< LLD	-	-	. < LLD	0		
	Ru-10	6	0.0088	< LLD	-	-	< LLD	0		
	Cs-13	4	0.0009	< LLD	-	-	< LLD	0		
	Cs-13	7	0.0008	< LLD	-	-	< LLD	0		
	Ba-La	-140	0.0046	< LLD	- '	-	< LLD	0		
Į	Ce-14	1	0.0018	< LLD	-	-	< LLD	0		
	Ce-14	4	0.0049	< LLD	-	-	< LLD	0		
Airborne Iodine	1-131	312	0.030	<[]D		-	<[]D	0		
(pCi/m ³)										
	I			I	1 -					

.

r

Name of Facility	Prairie Island Nuclear Power Station	Docket No.	50-282, 50-306
Location of Facility	Goodhue, Minnesota (County, State)	Reporting Period	January-December, 2016

			Indicator	Indicator Location with Highest		Control	Number
Sample	Type and	J Locations		Annual Me	an	Locations	Non-
Туре	Number of	LLD	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
			Terre	strial Pathway		1	
Milk							
(pCi/L)	I-131 30	0.5	< LLD	-	-	< LLD	0.
	GS 30						
	K-40	200	1386 (15/15) (1234-1459)	P-43 (C), Peterson Farm 13.9 mi @ 355° /N	1434 (15 /15) (1349-1514)	1434 (15/15) (1349-1514)	
	Cs-134	5	< LLD	-	-	< LLD	0
	Cs-137	5	< LLD	-	-	< LLD	0
	Ba-La-140	5	< LLD	-	-	< LLD	0
Crops - Cabbage (pCi/gwet)	I-131 5	0.019	< LLD	-	-	< LLD	0
Well Water (pCi/L)	H-3 20	192	< LLD	-	-	< LLD	0
	GS 20						
· · ·	Mn-54	10	< LLD	-	-	< LLD	0
	Fe-59	30	· < LLD	-	-	< LLD	0
	Co-58	10	< LLD	-	-	< LLD	0
	Co-60	10	< LLD	-	-	< LLD	0
	Zn-65	30	< LLD	-	-	< LLD	0
	Zr-Nb-95	15	< LLD	-	-	< LLD	0
	Cs-134	10	< LLD	-	-	< LLD	0
	Cs-137	10	< LLD	-	-	< LLD	0
	Ba-La-140	15	< LLD	-	-	< LLD	0
	Ce-144	48	< LLD	-	-	< LLD	0

21

c,'

Name of Facility	Prairie Island Nuclear Power Station	Docket No.	50-282, 50-306
Location of Facility	Goodhue, Minnesota	Reporting Period	January-December, 2016
	(County, State)		

			Indicator	Location with I	Control	Number	
Sample	ample Type and		Locations	Annual Me	an	Locations	Non-
Туре	Number of	LLD⁰	Mean (F) ^c		Mean (F) ^c	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location	Range ^c	Range ^c	Results ^e
			Water	borne Pathway			
Drinking Water	GB 12	1.0	12.3 (12/12)	P-11, Red Wing S.C.	12.3 (12/12)	None	0
(pCi/L)			(9.0-14.8)	3.3 mi @ 158° /SSE	(9.0-14.8)		
	1-131 12	1.0	、 < LLD	-	· · ·	None	0
	Н-3 4	155	< LLD	_	-	None	0
	GS 12						
	Mn-54	10	< LLD	-	-	None	0
	Fe-59	30	< LLD		-	None	0
1	Co-58	10	< LLD	-	-	None	0
	Co-60	10	< LLD	-	-	None	0
	Zn-65	30	< LLD	-	-	None	0
	Zr-Nb-95	15	< LLD	-	-	None	0
	Cs-134	10	< LLD	-	-	None	0
	Cs-137	10	< LLD	-	-	None	0
	Ba-La-140	15	< LLD	-	-	None	0
	Ce-144	39	< LLD	-	-	None	0
River Water	Н-3 8	155	< LLD	-	-	<1LD	· o
(nCi/L)			,				
(p 0)	GS 24						
	Mn 54	10		_	_		0
	Eo 50	20		_	_		0
	Co 59	10		-	_		Ň
1	C0-56	10		-	-		
	7- 65	10	< LLD	-	-		0
		30		-	-		
	ZI-IND-95	15		-	-		
	Cs-134	10	< LLD		-		
	CS-137	10		-	-		
	Da-La-140	53		-	-	<11D	0
	00-144						Ŭ
Fish	GS 6						
(pCi/g wet)	K-40	0.10	2.77 (6/6)	P-13. Downstream	2.77 (6/6)	2,71 (6/6)	0
			(2.48-3.16)	3.5 mi @ 113º/ESE	(2.48-3.16)	(2.34-3.07)	_
	Mn-54	0.021	<ltd< td=""><td></td><td>-</td><td><lld< td=""><td>o</td></lld<></td></ltd<>		-	<lld< td=""><td>o</td></lld<>	o
	Fe-59	0.112	< LLD	-	-	< LLD	0
	Co-58	0.029	< LLD	~	-	< LLD	Ō
	Co-60	0.018	< LLD	~	-	< LLD	o
	Zn-65	0.046	< LLD	,	-	< LLD	0
	Zr-Nb-95	0.050	< LLD		~	< LLD	0
	Cs-134	0.024	< LLD	-	-	< LLD	0
	Cs-137	0.020	< LLD	-	-	< LLD	0
	Ba-La-140	0.41	< LLD		-	< LLD	0

Name of Facility	Prairie Isla	Ind Nuclear Pow	er Station	Docket No.	50-282, 50-306	
Location of Facility	f Facility Goodhue, Minnesota			Reporting Period	January-Decem	ber, 2016
		(County	/, State)	-		
		Indicator		Location with Highest	Control	Number

Sample	Type and		Locations	Annual Me	ean	Locations	Non-
Туре	Number of	LLD [⊾]	Mean (F) ^c		Mean (F) [°]	Mean (F) ^c	Routine
(Units)	Analyses ^a		Range ^c	Location ^d	Range ^c	Range ^c	Results ^e
			Water	borne Pathway			
Invertebrates	GS 4						
(pCi/g wet)	Be-7	0.38	< LLD	-	-	< LLD	0
	K-40	1.05	1.24(1/2)	P-6 Downstream 1.6 mi @ 129º/SE	1.24(1/2) -	< LLD -	0
	Min-54	0.045	< LLD	-	-	< LLD	0
	Co-58	0.046	< LLD	-	-	< LLD	0
	Co-60	0.047	< LLD	-	-	< LLD	0
	Zn-65	0.08	< LLD	-	-	. < LLD	0
	Zr-Nb-95	0.09	< LLD	-	<u> </u>	< LLD	0
`	Ru-103	0.06	< LLD	-	-	< LLD	0
	Ru-106	0.36	< LLD	-	- '	< LLD	0
	Cs-134	0.040	< LLD	-	-	< LLD	0
	Cs-137	0.048	< LLD	-	-	< LLD	0
	Ba-La-140	0.47	< LLD		-	< LLD	0
	Ce-141	0.12	< LLD	· -	-	< LLD	0
	Ce-144	0.23	< LLD	-	-	< LLD	0
Bottom and	GS 6						
Shoreline Sediments	Be-7	0.25	< LLD	-	-	< LLD	0
(pCi/g dry)	K-40	0.10	8.72 (4/4) (8.07-9.95)	P-6, Downstream 1.6 mi @ 129º/SE	9.01 (2/2) (8.07-9.95)	8.60 (2/2) (7.74-9.47)	0
	Mn-54	0.020	< LLD	-	-	< LLD	0
	Co-58	0.026	< LLD	-	-	< LLD	0
	Co-60	0.022	< LLD	-	-	< LLD	0
	Zn-65	0.039	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.032	< LLD	-	-	< LLD	0
]	Ru-103	0.038	< LLD	-	-	< LLÐ	0
	Ru-106	0.15	< LLD	-	-	< LLD	0
	Cs-134	0.014	< LLD	-	- ·	< LLD	0
	'Cs-137	0.019	< LLD	· -	-	< LLD	0
	Ba-La-140	0.17	< LLD	-	-	< LLD	0
	Ce-141	0.07	< LLD	-	-	< LLD	0
	Ce-144	0.12	< LLD	-	-	< LLD	0

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code and (2) by distance (miles) and direction relative to reactor site.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten times the typical preoperational value for the medium or location.

6.0 <u>REFERENCES CITED</u>

Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275 and 276.

Environmental, Inc., Midwest Laboratory.

__ 2001a through 2015a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January-December, 2000 through 2016.

_ 2001b through 2015b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 2000 through 2016.

_ 1984a to 2000a. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

1984b to 2000b. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.

_ 1979a to 1983a. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1978 through 1982.

1979b to 1983b. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December, 1978 through 1982.

_____ 2016. Quality Manual, Rev. 2, 9 May 2016.

2012. Quality Assurance Program Manual, Rev. 3, 14 November 2012.

- _____ 2009. Quality Control Procedures Manual, Rev. 2, 08 July 2009.
- _____2009. Quality Control Program, Rev. 2, 12 November 2009.

Gold, S., H. W. Barkhau, B. Shlein, and B. Kahn, 1964. Measurement of Naturally Occurring Radionuclides in Air, in the Natural Environment, University of Chicago Press, Chicago, Illinois, 369-382.

Northern States Power Company.

_ 1972 through 1974. Prairie Island Nuclear Generating Plant, Environmental Monitoring and Ecological Studies Program, January 1, 1971 to December 31, 1971, 1972, 1973. Minneapolis, Minnesota.

_____ 1979 to 2008. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 1978 through 2007. Minneapolis, Minnesota.

Prairie Island Nuclear Generating Plant, 2013. Radiological Environmental Monitoring for Prairie Island Nuclear Generating Plant, Radiation Protection Implementing Procedures, 4700 series.

U.S. Dep't of Energy 1997 HASL-300, Edition 28, Procedures Manual, Environmental Measurements Laboratory, New York, NY.

24

6.0 REFERENCES CITED (continued)

U.S. Environmental Protection Agency.

____ 1980. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, Cincinnati, Ohio (EPA-600/4-80-032).

____ 1984. Eastern Environmental Radiation Facility, Radiochemistry Procedures Manual, Montgomery, Alabama (EPA-520/5-84-006).

_____ 2012. RadNet, formerly Environmental Radiation Ambient Monitoring System, Gross Beta in Air, Gross Beta in Drinking Water (MN) 1981– 2009.

Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p.125.

Xcel Energy Corporation.

2009 to 2015. Monticello Nuclear Generating Plant, Annual Radiological Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 through 2015. Minneapolis, Minnesota.

_ 2009 to 2015. Prairie Island Nuclear Generating Plant, Annual Radiological Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 through 2015. Minneapolis, Minnesota.

700 Landwehr Road • Northbrook, IL 60062-2310 phone (847) 564-0700 • fax (847) 564-4517

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2016 through December, 2016

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the RAD PT Study Proficiency Testing Program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via irradiation and evaluation by the University of Wisconsin-Madison Radiation Calibration Laboratory at the University of Wisconsin Medical Radiation Research Center.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the MRAD PT Study Proficiency Testing Program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

Analysis	Level	One standard deviation for single determination		
Gamma Emitters	5 to 100 pCi/liter or kg > 100 pCi/liter or kg	5.0 pCi/liter 5% of known value		
Strontium-89 ^b	5 to 50 pCi/liter or kg > 50 pCi/liter or kg	5.0 pCi/liter 10% of known value		
Strontium-90 ^b	2 to 30 pCi/liter or kg > 30 pCi/liter or kg	5.0 pCi/liter 10% of known value		
Potassium-40	≥ 0.1 g/liter or kg	5% of known value		
Gross alpha	≤ 20 pCi/liter > 20 pCi/liter	5.0 pCi/liter 25% of known value		
Gross beta	≤ 100 pCi/liter > 100 pCi/liter	5.0 pCi/liter 5% of known value		
Tritium	≤ 4,000 pCi/liter	± 1σ = 169.85 x (known) ^{0.0933}		
	> 4,000 pCi/liter	10% of known value		
Radium-226,-228	≥ 0.1 pCi/liter	15% of known value		
Plutonium	≥ 0.1 pCi/liter, gram, or sample	10% of known value		
Iodine-131, Iodine-129 ^b	≤ 55 pCi/liter > 55 pCi/liter	6 pCi/liter 10% of known value		
Uranium-238, Nickel-63 ^b Technetium-99 ^b	≤ 35 pCi/liter > 35 pCi/liter	6 pCi/liter 15% of known value		
Iron-55 ^b	50 to 100 pCi/liter > 100 pCi/liter	10 pCi/liter 10% of known value		
Other Analyses ^b		20% of known value		

^a From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies

Program", Fiscal Year, 1981-1982, EPA-600/4-81-004.

^b Laboratory limit.

}

Lab Code	Date	Analysis	Laboratory	ERA	Control	
			Result	Result	Limits	Acceptance
EDW/ 4000	4440040	0- 00		40.0	07.0 55.0	P
ERVV-1392	4/4/2016	Sr-89	43.5 ± 4.3	48.2	37.8 - 55.6	Pass
ERVV-1392	4/4/2016	Sr-90	27.5 ± 1.9	28.5	20.7 - 33.1	Pass
ERVV-1394	4/4/2016	Ba-133	65.2 ± 3.8	58.8	48.7 - 64.9	Fail
ERVV-1394	4/4/2016	Ba-133	57.8 ± 5.3	58.8	48.7 - 64.9	Pass
ERW-1394	4/4/2016	Cs-134	43.7 ± 3.0	43.3	34.6 - 47.6	Pass
ERW-1394	4/4/2016	Cs-137	86.1 ± 5.3	/8.4	70.6 - 88.9	Pass
ERW-1394	4/4/2016	Co-60	108 ± 44	102	91.8 - 114	Pass
ERW-1394	4/4/2016	Zn-65	240 ± 13	214	193 - 251	Pass
ERW-1397	4/4/2016	Gr. Alpha	52.0 ± 2.2	62.7	32.9 - 77.8	Pass
ERW-1397	4/4/2016	Gr. Beta	33.9 ± 1.2	39.2	26.0 - 46.7	Pass
ERW-1400	4/4/2016	_ I-131	24.7 ± 0.6	26.6	22.1 - 31.3	Pass
ERW-1402	4/4/2016	Ra-226	15.6 ± 0.5	15.2	11.3 - 17.4	Pass
ERW-1402	4/4/2016	Ra-228	5.28 ± 0.76	5.19	3.12 - 6.93	Pass
ERW-1403	4/4/2016	Uranium	4.02 ± 0.42	4.64	3.39 - 5.68	Pass
ERW-1405	4/4/2016	H-3	8,150 ±270	7,840	6,790 - 8,620	Pass
SPW-2845	7/7/2015	Ba-133	60.3 ± 5.7	64.7	53.9 - 71.2	Pass
SPW-2845	7/7/2015	Cs-134	48.8 ± 9.3	50.1	40.3 - 55.1	Pass
SPW-2845	7/7/2015	Cs-137	101 ± 8	89.8	80.8 - 101	Pass
SPW-2845	7/7/2015	Co-60	65.1 ± 5.8	59.9	53.9 - 68.4	Pass
SPW-2845	7/7/2015	Zn-65	288 ± 29	265	238 - 310	Pass
ERW-3485	7/11/2016	Sr-89	43.3 ± 6.5	53.3	42.3 - 60.9	Pass
ERW-3485	7/11/2016	Sr-90	39.0 ± 2.8	39.2	28.8 - 45.1	Pass
ERW-3487	7/11/2016	Ba-133	83.3 ± 4.9	82.9	69.7 - 91.2	Pass
ERW-3487	7/11/2016	Cs-134	62.5 ± 4.4	65.3	53.1 - 71.8	Pass
ERW-3487	7/11/2016	Cs-137	98.1 ± 5.6	95.2	85.7 - 107	Pass
ERW-3487	7/11/2016	Co-60	122 ± 5	117	105 - 131	Pass
ERW-3487	7/11/2016	Zn-65	124 ± 9	113	102 - 134	Pass
ERW-3490	7/11/2016	Gr. Alpha	46.6 ± 2.2	48.1	25.0 - 60.5	Pass
ERW-3490	7/11/2016	Gr. Beta	26.8 ± 1.1	28.6	18.2 - 36.4	Pass
ERW-3492	7/11/2016	l-131	23.7 ± 1.0	24.9	20.7 - 29.5	Pass
ERW-3493	7/11/2016	Ra-226	12.9 ± 0.4	12.3	9.2 - 14.2	Pass
ERW-3493	7/11/2016	Ra-228	58+08	5.8	35-76	Pass
ERW-3493	7/11/2016	Uranium	32.8.+0.8	25.2	28.4 - 39.3	Pass
ERW-3495	7/11/2016	H-3	12.400 ± 334	12.400	10.800 - 13.600	Pass
			,	,		

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a. RAD study

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b No reason determined for failure of Ba-133 result.

^c The result of reanalysis (Compare to original result, footnoted "b" above).

				mrem		
Lab Code	Irradiation		Delivered	Reported	Performance ^c	
	Date	Description	Dose	Dose	Quotient (P)	Acceptance a
Environmenta	al, Inc.	Group 1				
2016-1	10/7/2016	Spike 1	135.0	148.3	0.10	
2016-1	10/7/2016	Spike 2	135.0	144.3	0.07	
2016-1	10/7/2016	Spike 3	135.0	133.2	-0.01	
2016-1	10/7/2016	Spike 4	135.0	139.6	0.03	
2016-1	10/7/2016	Spike 5	135.0	128.4	-0.05	
2016-1	10/7/2016	Spike 6	135.0	123.9	-0.08	
2016-1	10/7/2016	Spike 7	135.0	124.0	-0.08	
2016-1	10/7/2016	Spike 8	135.0	121.5	-0.10	
2016-1	10/7/2016	Spike 9	135.0	148.3	0.10	
2016-1	10/7/2016	Spike 10	135.0	126.8	-0.06	
2016-1	10/7/2016	Spike 11	135.0	123.3	-0.09	
2016-1	10/7/2016	Spike 12	135.0	137.9	. 0.02	
2016-1	10/7/2016	Spike 13	135.0	126.0	-0.07	
2016-1	10/7/2016	Spike 14	135.0	127.2	-0.06	,
2016-1	10/7/2016	Spike 15	135.0	144.5	0.07	
2016-1	10/7/2016	Spike 16	135.0	140.5	0.04	
2016-1	10/7/2016	Spike 17	135.0	146.0	0.08	
2016-1	10/7/2016	Spike 18	135.0	127.7	-0.05	
2016-1	10/7/2016	Spike 19	135.0	146.8	0.09	
2016-1	10/7/2016	Spike 20	135.0	122.6	-0.09	
2016-1	10/7/2016	Spike 21	135.0	108.6	-0.20	
2016-1	10/7/2016	Spike 22	135.0	119.6	-0.11	
2016-1	10/7/2016	Spike 23	135.0	135.1	0.00	
2016-1	10/7/2016	Spike 24	135.0	116.2	-0.14	
2016-1	10/7/2016	Spike 25	135.0	118.9	-0.12	
2016-1	10/7/2016	Spike 26	135.0	128.5	-0.05	
2016-1	10/7/2016	Spike 27	135.0	115.6	-0.14	
2016-1	10/7/2016	Spike 28	135.0	126.4	-0.06	
2016-1	10/7/2016	Spike 29	135.0	115.0	-0.15	
2016-1	10/7/2016	Spike 30	135.0	147.3	0.09	
Mean (Spike	1-30)			130.4	0.03	Pass
Standard Dev	viation (Spike 1	-30)		11.5	0.09	Pass

TABLE A-2. Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards). ^{ab}

^a Table A-2 assumes 1 roentgen = 1 rem (NRC -Health Physics Questions and Answers

10 CFR Part 20 - Question 96 - Page Last Reviewed/Updated Thursday, October 01, 2015).

^b TLD's were irradiated by the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose.

^c Performance Quotient (P) is calculated as ((reported dose - conventially true value) + conventially true value) where the

conventially true value is the delivered dose.

^d Acceptance is achieved when neither the absolute value of mean of the P values, nor the standard deviation of the P values exceed 0.15.

		mrem				
Lab Code	Irradiation		Delivered	Reported	Performance ^c	
	Date	Description	Dose	Dose	Quotient (P)	Acceptance d
Environmental, Inc.		Group 2				
2016-2	10/7/2016	Spike 31	87.0	83.0	-0.05	
2016-2	10/7/2016	Spike 32	87.0	88.3	0.01	*
2016-2	10/7/2016	Spike 33	87.0	83.1	-0.04	
2016-2	10/7/2016	Spike 34	87.0	81.4	-0.06	
2016-2	10/7/2016	Spike 35	87.0	78.9	-0.09	
2016-2	10/7/2016	Spike 36	87.0	80.3	-0.08	
2016-2	10/7/2016	Spike 37	87.0	101.1	0.16	
2016-2	10/7/2016	Spike 38	87.0	78.3	-0.10	
2016-2	10/7/2016	Spike 39	87.0	86.6	0.00	
2016-2	10/7/2016	Spike 40	87.0	81.8	-0.06	
2016-2	10/7/2016	Spike 41	87.0	84.8	-0.03	
2016-2	10/7/2016	Spike 42	87.0	79.9	-0.08	
2016-2	10/7/2016	Spike 43	87.0	80.8	-0.07	
2016-2	10/7/2016	Spike 44	87.0	80.2	-0.08	
2016-2	10/7/2016	Spike 45	87.0	82.7	-0.05	
2016-2	10/7/2016	Spike 46	.87.0	104.0	0.20	
2016-2	10/7/2016	Spike 47	87.0	86.1	-0.01	
2016-2	10/7/2016	Spike 48	87.0	104.0	0.20	
2016-2	10/7/2016	Spike 49	87.0	86.1	-0.01	
2016-2	10/7/2016	Spike 50	87.0	90.8	0.04	
2016-2	10/7/2016	Spike 51	87.0	85.7	-0.01	
2016-2	10/7/2016	Spike 52	87.0	86.5	-0.01	
2016-2	10/7/2016	Spike 53	87.0	86.4	-0.01	
2016-2	10/7/2016	Spike 54	87.0	92.6	0.06	
2016-2	10/7/2016	Spike 55	87.0	88.6	0.02	
2016-2	10/7/2016	Spike 56	87.0	78.9	-0.09	
2016-2	10/7/2016	Spike 57	87.0	82.6	-0.05	
2016-2	10/7/2016	Spike 58	87.0	80.6	-0.07	
2016-2	10/7/2016	Spike 59	87.0	89.9	0.03	
2016-2	10/7/2016	Spike 60	87.0	85.0	-0.02	
Mean (Spike 31-60)				86.0	0.01	Pass
Standard Deviation (Spike 31-60)				6.9	0.08	Pass

TABLE A-2 Thermoluminescent Dosimetry, (TLD, CaSO4: Dy Cards). ab

^a Table A-2 assumes 1 roentgen = 1 rem (NRC -Health Physics Questions and Answers

10 CFR Part 20 - Question 96 - Page Last Reviewed/Updated Thursday, October 01, 2015).

^b TLD's were irradiated by the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose.

^c Performance Quotient (P) is calculated as ((reported dose - conventially true value) ÷ conventially true value) where the conventially true value is the delivered dose.

^d Acceptance is achieved when neither the absolute value of mean of the P values, nor the standard deviation of the P values exceed 0.15.
TABLE A-3. In-House "Spiked" Samples

·		Concentration ^a							
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control				
			2s, n=1 °	Activity	Limits ^d	Acceptance			
SPW-290	1/21/2016	Sr-90	38.6 + 1.5	37.3	22 4 - 52 2	Pass			
SPW-292	1/21/2016	Sr-90	358 + 16	37.3	224 - 522	Pass			
SPW-294	1/21/2016	C-14	4.689 ± 18	4.735	2.841 - 6.629	Pass			
			1000 - 10	1,100	2,011 0,020	1 400			
SPW-414	2/1/2016	Ra-228	18.4 ± 2.2	17.7	10.6 - 24.8	Pass			
W-020416	2/4/2016	Gr. Alpha	20.8 ± 0.4	20.1	12.0 - 28.1	Pass			
W-020416	2/4/2016	Gr. Beta	29.7 ± 0.3	28.9	17.3 - 40.4	Pass			
W-021716	2/17/2016	Ra-226	17.9 ± 0.5	16.7	10.0 - 23.4	Pass			
W-030716	3/7/2016	Gr. Alpha	16.3 ± 0.8	20.1	12.0 - 28.1	Pass			
W-030716	3/7/2016	Gr. Beta	27.0 ± 0.7	28.9	17.3 - 40.4	Pass			
SPDW-70046	3/29/2016	Ra-226	134 ± 0.4	16.7	10.0 - 23.4	Pass			
SPW-1163	3/22/2016	Ra-228	4.2 ± 0.7	4.4	26-62	Pass			
SPW-1235	3/29/2016	Gr. Alpha	21.0 ± 0.4	20.1	12.0 - 28.1	Pass			
SPW-1235	3/29/2016	Gr. Beta	29.4 ± 0.3	28.9	17.3 - 40.4	Pass			
SDW 1720	1/21/2016	Do 339	16.2 + 2.0	477	10 6 04 9	Dasa			
SFW-1739	4/21/2016	Ra-220	16.2 ± 2.0	17.7	10.6 - 24.8	Pass			
SPVV-2052	4/21/2016	Ra-226	16.0 ± 0.5	16.7	10.0 - 23.4	Pass			
00-042616	4/21/2016	Fe-55	$1,519 \pm 61$	1,482	889 - 2,075	Pass			
SPVV-1823	4/23/2016	Gr. Alpha	21.0 ± 0.4	20.1	12.0 - 28.1	Pass			
SPW-1823	4/23/2016	Gr. Beta	26.6 ± 0.3	28.9	17.3 - 40.4	Pass			
SPW-1998	4/29/2016	Cs-134	35.9 ± 6.0	36.2	21.7 - 50.6	Pass			
SPW-1998	4/29/2016	Cs-137	82.5 ± 7.6	71.9	43.1 - 100.6	Pass			
SPW-2097	5/3/2016	H-3	3,349 ± 184	3,280	1,968 - 4,592	Pass			
SPW-2132	5/4/2016	H-3	3,174 ± 178	3,280	1,968 - 4,592	Pass			
SPW-2229	5/7/2016	H-3	3,182 ± 179	3,280	1,968 - 4,592	Pass			
SPW-2313	5/13/2016	H-3	3,183 ± 179	3,280	1,968 - 4,592	Pass			
SPW-2341	5/13/2016	H-3	3,201 ± 178	3.280	1.968 - 4.592	Pass			
SPW-2374	5/14/2016	H-3	3,037 ± 175	3,280	1,968 - 4,592	Pass			
SPW-2411	5/17/2016	Sr-90	37.3 ± 1.6	37.3	22.4 - 52.2	Pass			
SPW-2455	5/19/2016	Gr. Alpha	19.3 ± 0.4	20.1	12.0 - 28.1	Pass			
SPW-2455	5/19/2016	Gr. Beta	28.6 ± 0.3	28.9	17.3 - 40.4	Pass			
SPW-2457	5/19/2016	U-238	48.2 ± 2.4	41.7	25.0 - 58.4	Pass			
SPW-2504	5/20/2016	H-3	3,181 ± 178	3,280	1,968 - 4,592	Pass			
SPW-2528	5/23/2016	H-3	2.998 ± 175	3,280	1,968 - 4,592	Pass			
SPW-2566	5/24/2016	Gr. Alpha	19.8 ± 0.5	20.1	12.0 - 28.1	Pass			
SPW-2566	5/24/2016	Gr. Beta	30.4 ± 0.3	28.9	17.3 - 40.4	Pass			
W-053116	4/29/2016	Cs-134	34.0 ± 5.0	36.2	21.7 - 50.6	Pass			
W-053116	4/29/2016	Cs-137	78.8 ± 7.0	71.9	43.1 - 100.6	Pass			
SPW-2704	6/1/2016	Sr-90	38.0 + 1.6	37 3	224 - 52 2	Pase			
SPW-2719	6/2/2016	Ra-228	181 + 21	17 7	10.6 - 24.8	Pace			
SPW-2749	6/3/2016	H_3	3 197 + 180	3 280	1 968 - 4 502	Pace			
SPW/-2843	6/7/2016	H-3	3 133 + 179	3 280	1 968 - 1 592	Pace			
SPW/-3227	6/17/2016	Ra-226	186 + 01	167	10.0 - 4,002	Pace			
W-061716	4/29/2016	Ce_12/	373 + 80	26.2	217 50 6	Paeé			
W_061716	4/20/2010	Ce-127	707±102		121.7 - 50.0 121 100 G	Pass			
SPW-3240	6/28/2010	Gr Alpha	253±05	20.1	120 291	Pass			
SPW_3240	6/28/2010	Gr Bata	20.0 ± 0.0 27.1 ± 0.3	20.1	173 101	Pass			
01 11-0240	012012010		21.1 I U.J	20.9	17.3 - 40.4	1-455			

A3-1

			· · · · ·			
Lab Code ^b	Date	Analysis	Laboratory results 2s, n=1 °	Known Activity	Control Limits ^d	Acceptance
6D/W 2044	7/1/2016	LI 2	0 001 + 000	9 650	E 100 12 110	Deep
SFW-3241	7/1/2016	п-з ⊔ э	$0,021 \pm 200$, 0,000	5,190 - 12,110	Pass
SPVV-3309	7/1/2016	⊡-ა `Do 000	$0,019 \pm 2/0$	0,00U	5,190 - 12,110	Pass
SPW-3313	7/1/2016	Ra-228	10.6 ± 2.0	17.7	10.6 - 24.8	Pass
SPVV-3328	7/6/2016	Sr-89	13.4 ± 9.2	14.0	8.9 - 20.7	Pass
SPVV-3328	7/6/2016	Sr-90	12.3 ± 1.3	11.4	6.8 - 16.0	Pass
SPAP-3365	7/7/2016	Gr. Beta	39.7 ± 0.1	42.2	25.3 - 59.0	Pass
SPAP-3367	7/7/2016	Cs-134	1.2 ± 0.7	1.2	0.7 - 1.7	Pass
SPAP-3367	7/7/2016	Cs-137	94.4 ± 2.8	94.0	56.4 - 131.6	Pass
SPW-3370	////2016	C-14	4,444 ± 17	4,735	2,841 - 6,629	Pass
SPW-3373	7/7/2016	Ni-63	446 ± 5	401	241 - 561	Pass
SPW-3375	7/7/2016	Tc-99	545 ± 9	539	324 - 755	Pass
SPW-3519	7/14/2016	H-3	8,621 ±279	8650	5,190 - 12,110	Pass
SPW-3688	6/29/2016	Ra-226	17.5 ± 0.4	16.7	10.0 - 23.4	Pass
SPW-3711	7/20/2016	H-3	44,368 ± 612	43,766	26,260 - 61,273	Pass
SPW-3774	7/22/2016	H-3	45,259 ± 619	43,766	26,260 - 61,273	Pass
SPW-3776	7/22/2016	Gr. Alpha	23.3 ± 0.5	20.1	12.0 - 28.1	Pass
SPW-3776	7/22/2016	Gr. Beta	27.5 ± 0.3	28.9	17.3 - 40.4	Pass
SPW-3884	7/26/2016	H-3	45,850 ± 623	43,766	26,260 - 61,273	Pass
SPW-3950	7/28/2016	Ra-228	17.8 ± 1.8	16.7	10 - 23	Pass
SPW-3982	7/29/2016	H-3	45,273 ± 619	43,766	26,260 - 61,273	Pass
W-073016	4/29/2016	Cs-134	36.5 ± 6.1	36.2	21.7 - 50.6	Pass
W-073016	4/29/2016	Cs-137	80.6 ± 7.5	71.9	43.1 - 100.6	Pass
SPW-4134	8/4/2016	Ra-228	5.5 ± 0.8	6.7	4.0 - 9.3	Pass
SPW-4340	8/17/2016	Ra-228	19.9 ± 2.0	16.7	10.0 - 23.4	Pass
SPW-4386	7/15/2016	Ra-226	18.0 ± 0.4	16.7	10.0 - 23.4	Pass
W-082716	4/29/2016	Ra-228	32.5 ± 5.2	36.2	21.7 - 50.6	Pass
W-082716	4/29/2016	Ra-226	78.5 ± 8.3	71.9	43.1 - 100.6	Pass
SPW-4642	9/6/2016	U-238	45.8 ± 2.5	41.7	25.0 - 58.4	Pass
SPW-4999	9/26/2016	Sr-90	35.1 ± 2.2	36.8	22.1 - 51.5	Pass
SPW-5091	9/12/2016	Ra-226	18.2 ± 0.4	16.7	10.0 - 23.4	Pass
W-092716	4/29/2016	Cs-134	37.3 ± 11.8	36.2	21.7 - 50.6	/ Pass
W-092716	4/29/2016	Cs-137	78.3 ± 11.2	71.9	43.1 - 100.6	Pass
SPW-5165	9/30/2016	Gr. Alpha	22.2 ± 0.4	20.1	12.0 - 28.1	Pass
SPW-5165	9/30/2016	Gr. Beta	27.2 ± 0.3	28.9	17.3 - 40.4	Pass
SPW-5426	9/28/2016	Ra-226	18.2 ± 0.4	16.7	10.0 - 23.4	Pass
SPW-5510	10/18/2016	H-3	44,398 ± 618	43,766	26,260 - 61273	Pass
SPW-5553	10/19/2016	U-238	50.0 ± 2.6	41.7	25.0 - 58.4	Pass
SPW-5555	10/19/2016	Ra-228	17.4 ± 1.9	16.7	10.0 - 23.4	Pass
SPW-5612	10/20/2016	H-3	44,681 ± 622	43,766	26,260 - 61,273	Pass
SPW-5741	10/25/2016	H-3	44,946 + 624	43,766	26.260 - 61.273	Pass
SPU-5833	10/26/2016	H-3	10.018 + 946	8,622	5.173 - 12 071	Pass
SPW-5862	10/28/2016	H-3	18 061 + 374	17 244	10 346 - 24 141	Pass
W-103116	4/29/2016	Cs-134	360 + 4 6	36.2	217 - 506	Pass
W_103116	4/29/2016	Ce_137	811 + 73	71 Q	43.1 - 100.6	Paee
VV-100110	712012010	03-107	01.1 ± 7.0	11.0	40.1 - 100.0	1 000

TABLE A-3. In-House "Spiked" Samples

A3-2

		Concentration ^a						
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control			
			2s, n=1 °	Activity	Limits	Acceptance		
SPW-5984	11/2/2016	H-3	17,727 ± 399	17,244	10,346 - 24,141	Pass		
SPW-6008	11/4/2016	H-3	17,854 ± 402	17,244	10,346 - 24,141	Pass		
SPW-6124	11/8/2016	Ra-228	14.4 ± 1.9	16.0	9.6 - 22.4	Pass		
SPW-6132	11/9/2016	H-3	18,135 ± 374	17,243	10,346 - 24,140	Pass		
SPW-6135	10/12/2016	Ra-226	18.9 ± 0.4	16.7	10.0 - 23.4	Pass		
SPW-6146	11/10/2016	H-3	17,488 ± 398	17,243	10,346 - 24,140	Pass		
SPW-6222	11/12/2016	H-3	17,787 ± 408	17,243	10,346 - 24,140	Pass		
SPW-6318	11/16/2016	H-3	17,379 ± 408	17,243	10,346 - 24,140	Pass		
SPW-6349	11/17/2016	H-3	17,893 ± 371	17,243	10,346 - 24,140	Pass		
SPW-6424	11/19/2016	H-3	18,258 ± 379	17,243	10,346 - 24,140	Pass		
W-112616	4/29/2016	Cs-134	35.0 ± 6.0	36.2	21.7 - 50.6	Pass		
W-112616	4/29/2016	Cs-137	75.0 ± 7.1	71.9	43.1 - 100.6	Pass		
SPW-6456	11/28/2016	Sr-90	41.9 ± 2.5	36.8	22.1 - 51.5	Pass		
SPW-6486	11/30/2016	Sr-90	35.6 ± 2.2	36.6	21.9 - 51.2	Pass		
SPW-6490	11/29/2016	Ra-226	18.8 ± 0.4	16.7	10.0 - 23.4	Pass		
SPW-6519	11/30/2016	Ni-63	438 ± 4	400	240 - 560	Pass		
SPW-6527	12/1/2016	U-238	49.5 ± 2.5	41.7	25.0 - 58.4	Pass		
SPW-6616	12/3/2016	H-3	18.018 ± 374	17.243	10.346 - 24.140	Pass		
SPW-6669	12/5/2016	H-3	18,237 ± 377	17,243	10,346 - 24,140	Pass		
SPW-6735	12/9/2016	H-3	17.939 ± 396	17.243	10.346 - 24.140	Pass		
SPW-6880	12/21/2016	H-3	17.835 ± 396	17.243	10.346 - 24.140	Pass		
SPW-6947	12/22/2016	Ni-63	450 ± 4	400	240 - 560	Pass		
W-122316	4/29/2016	Cs-134	36.0 ± 2.2	36.2	21.7 - 50.6	Pass		
W-122316	4/29/2016	Cs-134	76.1 ± 2.9	71.9	43.1 - 100.6	Pass		
SPW-6948	12/30/2016	H-3	17,999 ± 398	17,243	10,346 - 24,140	Pass		
SPW-6974	12/29/2016	Ra-226	17.6 ± 0.4	16.7	10.0 - 23.4	Pass		

TABLE A-3. In-House "Spiked" Samples

^a Liquid sample results are reported in pCi/Liter, air filters (pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b Laboratory codes : W (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine).

^c Results are based on single determinations.

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2s.

NOTE: For fish, gelatin is used for the spike matrix. For vegetation, cabbage is used for the spike matrix.

TABLE A-4. In-House "Blank" Samples

					Concentration ^a	
Lab Code	Sample	Date	Analysis ^b	Laborator	y results (4.66σ)	Acceptance
	Туре			LLD	Activity ^c	Criteria (4.66 σ)
SPW-289	Water	1/21/2016	Sr-90	0.55	0.28 ± 0.29	1
SPW-291	Water	1/21/2016	Sr-90	0.61	0.15 ± 0.30	1.
SPW-293	Water	1/21/2016	C-14	147	-12 ± 89	200
SPW-413	Water	2/1/2016	Ra-228	0.86	1.86 ± 0.60	2
W-020416	Water	2/4/2016	Gr. Alpha	0.43	-0.17 ± 0.28	2
W-020416	Water	2/4/2016	Gr. Beta	0.73	0.36 ± 0.53	4
W-020916	Water	2/9/2016	Ra-226	0.02	0.01 ± 0.01	2
W-030716	Water	3/7/2016	Gr. Alpha	0.90	-0.36 ± 0.32	2
W-030716	Water	3/7/2016	Gr. Beta	1.59	-0.62 ± 0.71	4
SPDW-70045	Water	3/29/2016	Ra-226	0.03	0.01 ± 0.02	2
SPDW-1234	Water	3/30/2016	Gr. Alpha	0.44	-0.05 ± 0.30	2
SPDW-1234	Water	3/30/2016	Gr. Beta	0.79	-0.54 ± 0.54	4
SPW-1738	Water	4/21/2016	Ra-228	1.05	0.13 ± 0.50	2
SPW-1822	Water	4/23/2016	Gr. Alpha	0.50	-0.18 ± 0.33	2
SPW-1822	Water	4/23/2016	Gr. Beta	0.08	-0.35 ± 0.51	4
SPW-2051	Water	4/12/2016	Ra-226	0.02	0.03 ± 0.02	2
SPW-2069	Water	5/3/2016	I-131	0.15	0.06 ± 0.09	1
SPW-2133	Water	5/4/2016	H-3	148	55 ± 76	200
SPW-2230	Water	5/7/2016	H-3	149	-11 ± 73	200
SPW-2314	Water	5/13/2016	H-3	150	-29 ± 72	200
SPW-2342	Water	5/13/2016	H-3	143	50 ± 74	200
SPW-2364	Water	5/13/2016	I-131	0.22	-0.03 ± 0.12	1
SPW-2375	Water	5/14/2016	H-3	146	1 ± 70	200
SPW-2410	Water	5/17/2016	Sr-90	0.59	0.10 ± 0.29	1
SPW-2454	Water	5/19/2016	Gr. Alpha	0.47	-0.21 ± 0.31	2
SPW-2454	Water	5/19/2016	Gr. Beta	0.77	-0.49 ± 0.52	. 4
SPW-2456	Water	5/19/2016	0-238	0.15	0.00 ± 0.09	1
SPVV-2485	vvater	5/20/2016	1-131	0.18	-0.01 ± 0.10	1
SPW-2505	vvater	5/20/2016	H-3	144	64 ± 75	200
SPVV-2529	Water	5/23/2016	п-з Do 000	152	-3 ± /5	200
SPVV-2530	Water	5/23/2016	Ra-228	0.96	-0.12 ± 0.43	2
SPW-2565	Water	5/24/2016	Gr. Beta	0.47	-0.23 ± 0.33	4
SPW-2703	Water	6/1/2016	Sr-89	0.68	-0.13 + 0.50	5
SPW-2703	Water	6/1/2016	Sr-90	0.55	0.11 ± 0.27	1
SPW-2718	Water	6/2/2016	Ra-228	0.67	0.23 ± 0.34	2
SPW-2720	Water	6/2/2016	I-131	0.16	0.01 ± 0.09	- 1
SPW-2750	Water	6/3/2016	H-3	151	-31 ± 73	200
SPW-2844	Water	6/7/2016	H-3	148	-55 ± 75	200
SPMI-2959	Milk	6/14/2016	I-131	0.16	0.09 ± 0.10	1
SPW-3137	Water	6/23/2016	I-131	0.15	-0.03 ± 0.08	1
SPW-3226	Water	6/17/2016	Ra-226	0.02	-0.01 ± 0.04	2
SPW-3239	Water	6/28/2016	Gr. Alpha	0.40	-0.15 ± 0.26	2
SPW-3239	Water	6/28/2016	Gr. Beta	0.73	0.14 ± 0.52	4
CDW 2697	Mator	6/00/2010	Ba 200	0.04	0.02 1.0.02	<u>^</u>

^a Liquid sample results are reported in pCi/Liter, air filters (pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).
 ^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.
 ^c Activity reported is a net activity result.

TABLE A-4. In-House "Blank" Samples

			. —		Concentration ^a	
Lab Code	Sample	Date	Analysis [⊳]	Laborator	y results (4.66σ)	Acceptance
	Туре			LLD	Activity	Criteria (4.66 σ)
SPW-3312	Water	7/1/2016	Ra-228	0.67	0.35 ± 0.35	2
SPW-3327	Water	7/6/2016	Sr-89	0.67	0.51 ± 0.51	5
SPW-3327	Water	7/6/2016	Sr-90	0.60	-0.14 ± 0.26	1
SPAP-3364	AP	7/7/2016	Gr.Beta	0.002	0.005 ± 0.001	0.01
SPW-3370	Water	7/7/2016	C-14	115	49 + 71	200
SPW-3372	Water	7/7/2016	Ni-63	122	115 + 76	200
SPW-3374	Water	7/7/2016	Tc-99	6.07	1.00 ± 3.70	10
SPW-3710	Water	7/20/2016	H-3	147	35 + 75	200
SPW-3775	Water	7/22/2016	Gr Alpha	0.73	0.41 ± 0.53	200
SPW-3775	Water	7/22/2016	Gr. Beta	0.45	-0.14 + 0.30	4
SPW-3884	Water	7/26/2016	H-3	151	-1 + 73	200
SPW-3949	Water	7/28/2016	Ra-228	0.76	0.32 + 0.39	200
SPW-3982	Water	7/29/2016	H-3	145	49 + 75	200
01 11 0002	Trator	112012010	110	140	40 ± 70	200
SPW-4133	Water	8/4/2016	Ra-228	0.80	0.26 ± 0.40	2
SPW-4257	Water	8/11/2016	I-131	0.17	-0.01 ± 0.10	1
SPW-4339	Water	8/17/2016	Ra-228	0.73	0.36 ± 0.39	2
SPW-4385	Water	7/15/2016	Ra-226	0.09	0.75 ± 0.09	2
SPW-4641	Water	9/6/2016	U-238	0.21	0.00 ± 0.13	1
SPW-4684	Water	9/8/2016	H-3	151	48 ± 78	200
SPW-4872	Water	9/16/2016	1-131	0.21	0.05 ± 0.11	1
SPW-4998	Water	9/26/2016	Sr-89	0.54	0.06 ± 0.39	5
SPW-4998	Water	9/26/2016	Sr-90	0.53	-0.03 ± 0.24	. 1
SPW-5090	Water	8/19/2016	Ra-226	0.03	0.03 ± 0.02	2
SPW-5164	Water	9/30/2016	Gr. Alpha	0.46	-0.05 ± 0.32	2
SPW-5164	Water	9/30/2016	Gr. Beta	0.74	-0.02 + 0.52	4
SPW-5425	Water	9/28/2016	Ra-226	0.02	0.07 ± 0.05	2
SPW-5323	Water	10/7/2016	Н-3	157	-12 + 75	200
SPW-5552	Water	10/19/2016	11-238	0.18	0.00 ± 0.11	1
SPW-5554	Water	10/19/2016	Ra-228	0.70	0.22 ± 0.36	2
SPW-5611	Water	10/20/2016	H-3	153	67 + 80	200
SPW-5613	Water	10/21/2016	Gr Alnha	0.76	-0.55 + 0.51	200
SPW-5613	Water	10/21/2016	Gr. Beta	0.70	0.02 + 0.29	4
SPW-5740	Water	10/25/2016	H-3	154	-2 + 72	200
SPW-5743	Water	10/25/2016	Sr-90	1 26	0.72 ± 0.67	1
SPW-5861	Water	10/28/2016	H-3	179	129 ± 91	200
SD/// 5083	\\/otor	11/2/2016	LI 2	156	0 + 70	200
SEM 6007	Water	11/2/2010	H-3	150	0 ± 70	200
SF W-0007	Water	11/4/2010	H-3	100	-34 ± 73	200
SEW-0131	Water	10/12/2010	⊡-3 Do 226	180	60 ± 92	200
SC VV-0134	Water	11/10/2016	⊼а-220 ⊔ ว	0.05	-0.02 ± 0.12	2
SDW/6217	Water	11/10/2010	п-э ⊔ э	1/1	-40 ± 00	200
SD\A/ 6240	Water	11/10/2010	п-э ⊔ э	100	-40 I 02	200
SE VV-0340	Water	11/10/2010	п-э ⊔ э	102 -	-40 ± 00	200
SDW 6455	Water	11/19/2010	П-Э Ст 00	101	0 ± 95	200
SPW-0455	vvater Water	11/28/2016	51-09	0.58	-0.15 ± 0.46	5
STVV-0455	Water	11/28/2016	SI-90	0.67	0.09 ± 0.32	1
5511-0409	vvater	11/29/2016	Ra-226	0.03	0.03 ± 0.02	2

^a Liquid sample results are reported in pCi/Liter, air filters (pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).
 ^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.
 ^c Activity reported is a net activity result.

TABLE A-4. In-House "Blank" Samples

Lab Code	Sample	Date	Analysis ^b	Laborator	y results (4.66σ)	Acceptance
Туре		·	LLD	Activity ^c	Criteria (4.66 σ)	
SPW-6529	Water	12/1/2016	⁶ I-131	0.18	-0.03 ± 0.10	1
SPW-6616	Water	12/3/2016	H-3	180	72 ± 92	200
SPW-6670	Water	12/5/2016	H-3	174	28 ± 92	200
SPW-6735	Water	12/9/2016	H-3	152	2 ± 73	200
SPW-6792	Water	12/15/2016	I-131	0.17	0.03 ± 0.12	1
SPW-6819	Water	12/16/2016	H-3	158	14 ± 77	200
SPW-6879	Water	12/21/2016	H-3	147	80 ± 75	200
SPW-6947	Water	12/22/2016	Ni-63	93	26 ± 57	200
SPW-6973	Water	12/29/2016	Ra-226	0.03	0.03 ± 0.02	2

^a Liquid sample results are reported in pCi/Liter, air filters (pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).
 ^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.
 ^c Activity reported is a net activity result.

				Concentration ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
AP-010416	1/4/2016	Gr. Beta	0.044 + 0.006	0.051 + 0.006	0.047 + 0.004	Page /
SPS-62 63	1/7/2016	GI. Dela K-40	21 1 + 1 9	21.2 ± 2.000	0.047 ± 0.004	Pass
M/M-125 126	1/7/2016	H_3	659 + 102	748 + 106	703 + 74	Pass
SPS-199 200	1/7/2016	Ce 137	0.09 ± 0.02	0.08 ± 0.03	0.08 + 0.02	Pass
SPS 100 200	1/7/2016	CS-137	0.09 ± 0.02	0.08 ± 0.03	0.08 ± 0.02	Pass
AD 011116	1/11/2010	Cr. Poto	7.00 ± 0.00	0.02 ± 0.02	0.006 ± 0.002	Pass
AP-011216	1/17/2010	Gr. Beta	0.024 ± 0.003	0.027 ± 0.003	0.020 ± 0.003	Pass
AF-011210	1/12/2010		152 ± 79	144 ± 79	0.032 ± 0.003	Pass
VVVV-202, 203	1/14/2016	п-з цэ	103 ± 70	141 ± 70	147 1 00	Pass
VVVV-340, 347	1/14/2010	п-з ц э	1,030 ± 117	959 ± 115	997 I OZ	Pass
AD 011016	1/10/2010	n-o Cr. Poto	437 ± 92	427 ± 91	432 ± 03	Pass
AP-011910	1/19/2016	Gr. Beta	0.042 ± 0.005	0.037 ± 0.004	0.040 ± 0.003	Pass
AP-012010	1/20/2016	Gr. Bela	0.023 ± 0.003	0.030 ± 0.004	0.027 ± 0.002	Pass
AP-020116	2/1/2016	Gr. Beta	0.023 ± 0.005	0.023 ± 0.005	0.023 ± 0.004	Pass
SWU-472, 473	2/2/2016	Gr. Beta	4.37 ± 0.47	4.60 ± 0.49	4.49 ± 0.34	Pass
SG-493, 494	2/6/2016	Ac-228	2.10 ± 0,20	2.13 ± 0.20	2.12 ± 0.14	Pass
SG-493, 494	2/6/2016	K-40	5.79 ± 0.57	5.50 ± 0.69	5.65 ± 0.45	Pass
SG-493, 494	2/6/2016	Pb-214	1.84 ± 0.11	1.91 ± 0.11	1.88 ± 0.08	Pass
AP-020816	2/8/2016	Gr. Beta	0.020 ± 0.004	0.019 ± 0.004	0.020 ± 0.003	Pass
AP-020916	2/9/2016	Be-7	0.032 ± 0.005	0.041 ± 0.006	0.036 ± 0.004	Pass
SPS-619, 620	2/18/2016	K-40	20.0 ± 1.8	19.1 ± 1.6	19.5 ± 1.2	Pass
WW-640, 641	2/18/2016	H-3	90.1 ± 75.0	153.6 ± 78.4	121.8 ± 54.2	Pass
AP-021916	2/19/2016	Gr. Beta	0.021 ± 0.003	0.025 ± 0.004	0.023 ± 0.002	Pass
WW-822, 823	2/26/2016	H-3	2,770 ± 173	2,974 ± 178	2,872 ± 124	Pass
DW-70010, 70011	2/29/2016	Ra-226	4.88 ± 0.29	4.93 ± 0.28	4.91 ± 0.20	Pass
DW-70010, 70011	2/29/2016	Ra-228	3.00 ± 0.77	1.90 ± 0.62	2.45 ± 0.49	Pass
SW-934, 935	3/1/2016	Gr. Beta	0.94 ± 0.52	1.36 ± 0.60	1.15 ± 0.40	Pass
SPS-913, 914	3/3/2016	Cs-137	0.08 ± 0.03	0.10 ± 0.03	0.09 ± 0.02	Pass
SPS-913, 914	3/3/2016	K-40	17.45 ± 0.94	16.83 ± 0.95	17.14 ± 0.67	Pass
SPS-913, 914	3/3/2016	Ra-226	1.02 ± 0.08	1.13 ± 0.17	1.07 ± 0.09	Pass
SPS-913, 914	3/3/2016	Ra-228	1.09 ± 0.15	1.13 ± 0.17	1.11 ± 0.11	Pass
AP-030716	3/7/2016	Gr. Beta	0.018 ± 0.005	0.021 ± 0.005	0.019 ± 0.003	Pass
F-1303,1304	3/7/2016	K-40	3.320 ± 0.475	3.508 ± 0.396	3.414 ± 0.309	Pass
SG-976, 977	3/8/2016	Ra-226	6.75 ± 0.25	6.28 ± 0.22	6.52 ± 0.17	Pass
SG-976, 977	3/8/2016	Ra-228	9.21 ± 0.49	9.09 ± 0.49	9.15 ± 0.35	Pass
PM-1094, 1095	3/9/2016	K-40	14.01 ± 0.68	14.47 ± 0.72	14.24 ± 0.49	Pass
MI-1042,1043	3/7/2016	K-40	1,684 ± 124	1,804 ± 119	1,744 ± 86	Pass
DW-70023, 70024	3/7/2016	Ra-226	3.40 ± 0.43	2.68 ± 0.35	3.04 ± 0.28	Pass
DW-70023, 70024	3/7/2016	Ra-228	4.46 ± 0.83	5.74 ± 0.94	5.10 ± 0.63	Pass
DW-70014, 70015	3/7/2016	Gr. Alpha	13.38 ± 1.58	11.40 ± 1.43	12.39 ± 1.07	Pass
DW-70026, 70027	3/7/2016	Gr. Alpha	3.46 ± 0.79	3.08 ± 0.74	3.27 ± 0.54	Pass
DW-70038, 70039	3/8/2016 ′	Gr. Alpha	1.14 ± 0.89	1.73 ± 0.95	1.44 ± 0.65	Pass
DW-70035, 70036	3/8/2016	Ra-226	0.47 ± 0.10	0.45 ± 0.09	0.46 ± 0.07	Pass
DW-70035, 70036	3/8/2016	Ra-228	0.56 ± 0.45	0.47 ± 0.44	0.52 ± 0.31	Pass
AP-031516	3/15/2016	Gr. Beta	0.014 ± 0.003	0.016 ± 0.004	0.015 ± 0.002	Pass
AP-032116	3/21/2016	Gr. Beta	0.014 ± 0.004	0.020 ± 0.004	0.017 ± 0.003	Pass
AP-1218,1219	3/24/2016	Be-7	0.135 ± 0.065	0.167 ± 0.081 ,	0.151 ± 0.052	Pass
AP-1719,1720	3/28/2016	Be-7	0.075 ± 0.008	0.076 ± 0.007	0.076 ± 0.005	Pass
AP-033016	3/30/2016	Gr. Beta	0.023 ± 0.004	0.025 ± 0.004	0.024 ± 0.003	Pass
SPS-1260, 1261	3/30/2016	K-40	18.00 ± 1.92	19.67 ± 1.77	18.84 ± 1.30	Pass
XW-1467, 1468	3/30/2016	H-3	310 ± 87	295 ± 86	303 ± 61	Pass
XWW-1530, 1531	3/30/2016	H-3	198 ± 84	162 ± 82	180 ± 59	Pass
AP-1827, 1828	3/30/2016	Be-7	0.069 ± 0.011	0.072 ± 0.011	0.071 ± 0.008	Pass
AP-1323,1324	3/31/2016	Be-/	0.206 ± 0.120	0.197 ± 0.091	0.202 ± 0.076	Pass
LVV-1440,1447	3/31/2016	Gr. Beta	2.36 ± 0.93	2.23 ± 1.01	2.29 ± 0.69	Pass

				Concentration ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
\\\\\L1740 1741	4/2/2016	н.з	21 162 + 120	21 091 + 427	21 126 + 222	Pass
SPS-1344 1345	4/4/2016	K-40	17 98 + 0 93	$17 14 \pm 0.96$	17 56 + 0.67	Pass
SPS-1344 1345	4/4/2016	Ph-214	1 12 + 0 09	1.04 + 0.08	1.08 ± 0.06	Pass
SPS-1344, 1345	4/4/2016	Ac-228	1 23 + 0 15	1.33 ± 0.19	1.28 ± 0.12	Pass
SPS-1344 1345	4/4/2016	Cs-137	0.13 ± 0.03	0.13 ± 0.03	0.13 ± 0.02	Pass
P-1509 1510	4/8/2016	H-3	1 084 + 120	1.038 ± 119	1.061 ± 85	Pass
AP-041116	4/11/2016	Gr. Beta	0.020 ± 0.004	0.019 ± 0.004	0.019 ± 0.003	Pass
SS-1551.1552	4/12/2016	Gr. Beta	8.71 ± 1.11	8.88 ± 1.13	8.80 ± 0.79	Pass
SS-1551,1552	4/12/2016	K-40	3.50 ± 0.25	3.06 ± 0.28	3.28 ± 0.19	Pass
SS-1551,1552	4/12/2016	TI-208	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.01	Pass
SS-1551,1552	4/12/2016	Bi-214	0.10 ± 0.02	0.09 ± 0.02	0.10 ± 0.02	Pass
SS-1551,1552	4/12/2016	Pb-212	0.13 ± 0.02	0.11 ± 0.02	0.12 ± 0.01	Pass
SS-1551,1552	4/12/2016	Ra-226	0.35 ± 0.17	0.30 ± 0.17	0.32 ± 0.12	Pass
SS-1551,1552	4/12/2016	Ac-228	0.16 ± 0.05	0.17 ± 0.05	0.17 ± 0.04	Pass
SS-1593,1594	4/12/2016	K-40	14.80 ± 0.73	14.89 ± 0.78	14.85 ± 0.53	Pass
WW-1677, 1678	4/14/2016	Ra-226	0.23 ± 0.13	0.35 ± 0.15	0.29 ± 0.10	Pass
WW-1783,1784	4/14/2016	H-3	768 ± 111	632 ± 107	700 ± 77	Pass
BS-1804,1805	4/18/2016	K-40	0.79 ± 0.02	0.87 ± 0.19	0.83 ± 0.10	Pass
WW-2021,2022	4/18/2016	H-3	5,548 ± 221	5,707 ± 224	5,627 ± 157	Pass
XWW-2240, 2241	4/18/2016	Н-З	638 ± 104	543 ± 101	591 ± 72	Pass
XWW-2109, 2110	4/19/2016	Н-3	3461 ± 185	3250 ± 180	3356 ± 129	Pass
SPS-2130, 2131	4/25/2016	K-40	7.80 ± 0.84	6.80 ± 0.60	7.30 ± 0.52	Pass
AP-042516	4/25/2016	Gr. Beta	0.020 ± 0.004	0.023 ± 0.004	0.022 ± 0.003	Pass
BS-2065, 2066	4/25/2016	K-40	14.40 ± 1.50	14.72 ± 1.19	14.56 ± 0.96	Pass
AP-042716	4/27/2016	Gr. Beta	0.023 ± 0.003	0.019 ± 0.003	0.021 ± 0.002	Pass
SPS-1999, 2000	4/28/2016	K-40	19.84 ± 1.76	18.963 ± 2.42	19.40 ± 1.50	Pass
SO-2153,2154	5/2/2016	K-40	21.80 ± 0.81	21.17 ± 0.85	21.48 ± 0.59	Pass
SO-2153,2154	5/2/2016	Cs-137	0.11 ± 0.03	0.11 ± 0.07	0.11 ± 0.04	Pass
SO-2153,2154	5/2/2016	Ra-226	1.50 ± 0.29	1.22 ± 0.29	1.36 ± 0.21	Pass
SO-2153,2154	5/2/2016	Pb-214	0.56 ± 0.06	0.57 ± 0.06	0.57 ± 0.04	Pass
W-2394,2395	5/5/2016	Н-3	736 ± 106	631 ± 102	683 ± 74	Pass
VE-2284,2285	5/9/2016	K-40	3.50 ± 0.25	3.06 ± 0.28	3.28 ± 0.19	Pass
AP-051016	5/10/2016	Gr. Beta	0.020 ± 0.005	0.018 ± 0.005	0.019 ± 0.003	Pass
SG-2261, 2262	5/10/2016	Ac-228	34.4 ± 1.2	34.4 ± 1.4	34.4 ± 0.9	Pass
SG-2261, 2262	5/10/2016	Pb-214	29.5 ± 3.0	31.9 ± 3.3	30.7 ± 2.2	Pass
BS-2439, 2440	5/12/2016	K-40	9.96 ± 0.91	10.27 ± 0.76	10.11 ± 0.59	Pass
WW-2534,2535	5/16/2016	H-3	14,342 ± 354	14,613 ± 357	14,477 ± 252	Pass
AP-051716	5/17/2016	Gr. Beta	0.014 ± 0.004	0.015 ± 0.004	0.014 ± 0.003	Pass
SPS-2945, 2946	5/19/2016	K-40	30.71 ± 0.74	31.75 ± 0.78	31.23 ± 0.54	Pass
SPS-2945, 2946	5/19/2016	Be-7	1.55 ± 0.24	1.90 ± 0.35	1.73 ± 0.21	Pass
SPS-2578, 2579	5/24/2016	Pb-214	0.96 ± 0.12	0.80 ± 0.14	0.88 ± 0.09	Pass
AP-052516	5/25/2016	Gr. Beta	0.022 ± 0.004	0.022 ± 0.004	0.022 ± 0.003	Pass
G-2642,2643	5/26/2016	Be-7	0.443 ± 0.178	0.247 ± 0.247	0.345 ± 0.152	Pass
SO-2663, 2664	5/26/2016	Cs-137	0.08 ± 0.03	0.07 ± 0.03	0.07 ± 0.02	Pass
SO-2663, 2664	5/26/2016	K-40	12.44 ± 0.68	11.64 ± 0.63	12.04 ± 0.46	Pass
SO-2663, 2664	5/26/2016	11-208	0.13 ± 0.02	0.14 ± 0.03	0.14 ± 0.02	Pass
SO-2663, 2664	5/26/2016	Pb-212	0.43 ± 0.04	0.41 ± 0.04	0.42 ± 0.03	Pass
SO-2663, 2664	5/26/2016	Ra-226	1.19 ± 0.34	0.87 ± 0.28	1.03 ± 0.22	Pass
SO-2663, 2664	5/26/2016	Ac-228	0.45 ± 0.09	0.53 ± 0.10	0.49 ± 0.07	Pass
SPS-2817, 2818	5/31/2016	K-40	12.10 ± 0.70	11.05 ± 0.70	11.58 ± 0.49	Pass
DW-70091, 70092	6/1/2016	Ra-226	5.61 ± 0.29	5.53 ± 0.30	5.57 ± 0.21	Pass
DW-70091, 70092	6/1/2016	Ra-228	1.45 ± 0.58	1.91 ± 0.62	1.68 ± 0.42	Pass
BS-2925,2926	6/3/2016	K-40	7.74 ± 0.44	7.86 ± 0.42	7.80 ± 0.30	Pass
SPS-2796, 2797	6/2/2016	K-40	20.91 ± 2.38	21.16 ± 1.82	21.04 ± 1.50	Pass
SPS-2882, 2883	6/7/2016	K-40	14.64 ± 0.52	14.60 ± 0.52	14.62 ± 0.37	Pass
SPS-2882, 2883	6/7/2016	Be-7	2.00 ± 0.25	1.94 ± 0.20	1.97 ± 0.16	Pass
DW-70102, 70103	6/13/2016	Ra-226	0.34 ± 0.09	0.36 ± 0.08	0.35 ± 0.06	Pass

				Concentration ^a		
<u> </u>	-				Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
DW 70102 70103	611212016	Po 228	0.03 + 0.47	1 11 + 0 53	1.02 + 0.35	Pase
AP-061416	6/14/2016	Gr Beta	0.026 ± 0.004	0.023 ± 0.004	0.02 ± 0.00	Pass
SG-3144 3145	6/17/2016	Be-7	223 ± 0.004	224 ± 0.004	2 24 + 0 08	Pass
SG-3144, 3145	6/17/2016	K-40	7.57 ± 0.25	7.09 ± 0.23	7.33 ± 0.17	Pass
SO-0144, 0140	6/22/2016	K-40	21 14 + 2 27	22.88 ± 1.60	7.00 ± 0.17	Page
SPS-3103, 3100	6/24/2016	K-40	21.14 ± 2.27	22.00 ± 1.00	22.01 ± 1.03	Pass
MAAA 2024 2020	6/24/2010	L 2	10.07 ± 1.07	21.00 ± 1.00	20,10 ± 1.14	Pass
VVVV-3231, 3232	6/2//2016	n-s On Rote	414 ± 104	490 ± 100	$+30 \pm 75$	Pass
AP-3630,3631	0/29/2010	Gr, Bela	0.008 ± 0.012	0.093 ± 0.013	0.091 ± 0.010	Fass
AP-070516A	7/5/2016	Gr. Beta	0.018 ± 0.002	0.014 ± 0.002	0.016 ± 0.002	Pass
AP-070516B	7/5/2016	Gr. Beta	0.025 ± 0.005	0.026 ± 0.005	0.025 ± 0.004	Pass
XWW-3605,3606	7 <i>1</i> 7/2016	H-3	3,316 ± 186	3,316 ± 181	3,316 ± 130	Pass
DW-70135,70136	7/8/2016	Gr. Alpha	3.68 ± 1.01	2.76 ± 0.98	3.22 ± 0.70	Pass
DW-70132,70133	7/8/2016	Ra-226	1.32 ± 0.14	1.11 ± 0.15	1.22 ± 0.10	Pass
DW-70132,70133	7/8/2016	Ra-228	3.92 ± 0.94	2.94 ± 0.90	3.43 ± 0.65	Pass
AP-071216	7/12/2016	Gr. Beta	0.014 ± 0.004	0.018 ± 0.004	0.016 ± 0.003	Pass
DW-70150,70151	7/14/2016	Gr. Alpha	5.00 ± 1.06	4.43 ± 1.04	4.72 ± 0.74	Pass
SPS-3649,3650	7/15/2016	Cs-137	0.12 ± 0.03	0.12 ± 0.03	0.12 ± 0.02	Pass
SPS-3649,3650	7/15/2016	K-40	16.68 ± 0.79	16.52 ± 0.86	16.6 ± 0.58	Pass
SPS-3649,3650	7/15/2016	Pb-214	1.20 ± 0.08	1.17 ± 0.08	1.19 ± 0.06	Pass
SPS-3649,3650	7/15/2016	Ac-228	1.28 ± 0.16	1.28 ± 0.16	1.28 ± 0.11	Pass
AP-071816	7/18/2016	Gr. Beta	0.022 ± 0.005	0.024 ± 0.005	0.023 ± 0.003	Pass
DW-70163,70164	7/19/2016	Gr. Alpha	1.08 ± 0.66	1.36 ± 0.70	1.22 ± 0.48	Pass
WW-3761,3762	7/20/2016	Н-3	347 ± 90	466 ± 96	407 ± 66	Pass
SPS-4003,4004	7/23/2016	K-40	7.15 ± 1.59	6.86 ± 1.21	7.00 ± 1.00	Pass
AP-072516	7/25/2016	Gr. Beta	0.023 ± 0.004	0.020 ± 0.004	0.022 ± 0.003	Pass
VE-3936,3937	7/25/2016	Sr-90	0.048 ± 0.007	0.058 ± 0.010	0.053 ± 0.006	Pass
VE-3936,3937	7/25/2016	Be-7	0.49 ± 0.15	0.51 ± 0.15	0.50 ± 0.10	Pass
VE-3936,3937	7/25/2016	K-40	4,70 ± 0.35	4.86 ± 0.37	4.78 ± 0.25	Pass
VE-3959.3960	7/27/2016	Sr-90	0.002 ± 0.002	0.003 ± 0.001	0.003 ± 0.001	Pass
VE-3959,3960	7/27/2016	Be-7	0.30 ± 0.14	0.25 ± 0.12	0.27 ± 0.09	Pass
VE-3959.3960	7/27/2016	K-40	4.01 ± 0.37	4.16 ± 0.34	4.08 ± 0.25	Pass
DW-70169.70170	7/28/2016	Ra-226	0.83 ± 0.11	0.69 ± 0.11	0.76 ± 0.08	Pass
DW-70169,70170	7/28/2016	Ra-228	1.85 ± 0.63	1.31 ± 0.84	1.58 ± 0.53	Pass
						5
AP-080116	8/1/2016	Gr. Beta	0.029 ± 0.003	0.033 ± 0.003	0.031 ± 0.002	Pass
SS-4131,4132	8/1/2016	K-40	12.47 ± 0.71	13.24 ± 0.81	12.86 ± 0.54	Pass
SS-4131,4132	8/1/2016	Cs-137	0.10 ± 0.03	0.13 ± 0.04	0.12 ± 0.02	Pass
SPS-4087,4088	8/2/2016	K-40	17.06 ± 1.58	19.5 ± 1.97	18.28 ± 1.26	Pass
WW-4976,4977	8/4/2016	H-3	$17,043 \pm 390$	16,821 ± 388	$16,932 \pm 275$	Pass
SPS-4266,4267	8/10/2016	K-40	1.06 ± 0.47	1.69 ± 0.52	1.375 ± 0.35	Pass
AP-081616	8/16/2016	Gr. Beta	0.029 ± 0.005	0.025 ± 0.004	0.027 ± 0.003	Pass
VE-4399,4400	8/18/2016	K-40	3.85 ± 0.23	3.27 ± 0.41	3.56 ± 0.24	Pass
VE-4399,4400	8/18/2016	Be-7	0.30 ± 0.08	0.45 ± 0.20	0.37 ± 0.11	Pass
WW-5394,5395	8/18/2016	H-3	947 ± 122	846 ± 119	896 ± 85	Pass
SPS-4441,4442	8/22/2016	K-40	20.55 ± 2.23	19.69 ± 1.74	20.12 ± 1.41	Pass
AP-082216	8/22/2016	Gr. Beta	0.021 ± 0.005	0.015 ± 0.005	0.018 ± 0.003	Pass
VE-4462,4463	8/22/2016	Be-7	0.91 ± 0.09	0.89 ± 0.11	0.90 ± 0.07	Pass
VE-4462,4463	8/22/2016	K-40	7.48 ± 0.26	7.60 ± 0.23	7.54 ± 0.17	Pass
WW-4594,4595	8/26/2016	H-3	675 ± 107	788 ± 111	731 ± 77	Pass
WW-4663,4664	8/26/2016	H-3	607 ± 104	501 ± 100	554 ± 72	Pass
SPS-4529,4530	8/26/2016	K-40	21.98 ± 2.52	21.85 ± 1.56	21.92 ± 1.48	Pass
AP-083016A	8/30/2016	Gr. Beta	0.030 ± 0.003	0.035 ± 0.004	0.033 ± 0.002	Pass
AP-083016B	8/30/2016	Gr. Beta	0.032 ± 0.009	0.026 ± 0.004	0.029 ± 0.005	Pass
VE-4615,4616	8/31/2016	K-40	2.96 ± 0.16	3.11 ± 0.17	3.03 ± 0.11	Pass

.

				Concentration ^a		
	_ .				Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
AP-090216	9/2/2016	Gr Beta	0.022 + 0.004	0.027 + 0.004	0.024 + 0.003	Pass
AP-090616	9/6/2016	Gr. Beta	0.023 ± 0.005	0.023 ± 0.005	0.023 ± 0.003	Pass
MI-4751 4752	9/7/2016	K-40	1.693 ± 1.000	1 760 + 99	1 726 + 75	Pass
MI-4751 4752	9/7/2016	Sr-90	123 ± 0.38	1.00 ± 0.33	1.11 ± 0.25	Pass
SWI-4772 4773	9/8/2016	H-3	196 + 91	236 + 93	216 + 65	Pass
\\\\\\-5285 5286	9/13/2016	H-3	18010 ± 400	18686 ± 407	18 348 + 286	Pass
MI-4826 4827	9/14/2016	K-40	$1.372.6 \pm 105$	1 198 1 + 97	1 285 4 + 71	Pass
VF-4868 4869	9/15/2016	Gr Beta	2 50 + 0.06	2 57 + 0.06	2 53 + 0.04	Pass
VE-4868 4869	9/15/2016	K-40	2.00 ± 0.00 2.20 ± 0.17	2.30 ± 0.17	2.25 ± 0.12	Pass
CE-4934 4935	9/19/2016	K-40	11.47 ± 0.82	11.76 ± 0.50	11.61 ± 0.48	Pass
CF-4934 4935	9/19/2016	Be-7	0.43 ± 0.22	0.46 ± 0.13	0.45 ± 0.13	Pass
AP-092016	9/20/2016	Gr. Beta	0.021 ± 0.004	0.017 ± 0.004	0.019 ± 0.003	Pass
DW-70196 70197	9/20/2016	Gr Alnha	138+136	15 28 + 1 36	14.54 ± 0.96	Pass
E 4055 4056	0/20/2016	K 40	3 40 ± 0 44	2.96 ± 0.30	3 43 ± 0 30	Pass
VE-5044 5045	9/20/2016	R-40 Be-7	0.46 ± 0.05	2.00 ± 0.03	0.48 ± 0.06	Pass
VE 5044,5045	0/20/2016	K 40	4 27 + 0 10	469 ± 0.24	4 53 ± 0.13	Pass
VE-5044,5045	9/20/2018	K-40	4.37 ± 0,12	4.00 ± 0.24	4,55 ± 0,15	_ Fass
VVVV-5219,5220	9/20/2016	H-3	63,744 ± 743	64,755 ± 749	$64,250 \pm 527$	Pass
SPS-5087,5088	9/23/2016	K-40	21.04 ± 2.32	10.04 ± 1.00	19.94 ± 1.49	Pass
AP-092716	9/2//2016	Gr. Beta	0.031 ± 0.005	0.032 ± 0.005	0.031 ± 0.003	Pass
AP-5660,5661	9/28/2016	Be-7	0.093 ± 0.014	0.086 ± 0.019	0.089 ± 0.012	Pass
AP-5681,5682	9/2//2016	Be-/	0.079 ± 0.019	0.071 ± 0.015	0.075 ± 0.012	Pass
VE-5110,5111	9/28/2016	K-40 ·	1.82 ± 0.15	2.14 ± 0.16	1.96 ± 0.12	Pass
AP-5154,5155	9/29/2016	Be-7	0.237 ± 0.116	0.195 ± 0.096	0.216 ± 0.075	Pass
AF-5702,5703	9/30/2016	De-/	0.084 ± 0.015	0.070 ± 0.018	0.077 ± 0.012	rass
MI-5264,5265	10/4/2016	K-40	1,636 ± 128	1,610 ± 124	1,623 ± 89	Pass
MI-5264,5265	10/4/2016	Sr-90	2.00 ± 0.44	1.28 ± 0.37	1.64 ± 0.29	Pass
SS-5547,5548	10/11/2016	Gr. Beta	11.27 ± 1.19	9.47 ± 1.20	10.37 ± 0.84	Pass
SS-5547,5548	10/11/2016	K-40	8.03 ± 0.45	7.23 ± 0.46	7.63 ± 0.32	Pass
SS-5547,5548	10/11/2016	TI-208	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.01	Pass
SS-5547,5548	10/11/2016	Bi-214	0.14 ± 0.03	0.12 ± 0.03	0.13 ± 0.02	Pass
SS-5547,5548	10/11/2016	Pb-212	0.12 ± 0.02	0.11 ± 0.02	0.11 ± 0.01	Pass
SS-5547,5548	10/11/2016	Ac-228	0.10 ± 0.05	0.16 ± 0.05	0.13 ± 0.04	Pass
AP-101116	10/11/2016	Gr. Beta	0.032 ± 0.004	0.028 ± 0.004	0.030 ± 0.003	Pass
WW-5526.5527	10/11/2016	H-3	$18,865 \pm 408$	$18,904 \pm 408$	$18,884 \pm 289$	Pass
WW-5639,5640	10/19/2016	H-3	192 ± 103	52 ± 98	122 ± 71	Pass
WW-5/23,5/24	10/18/2016	H-3	$36,012 \pm 560$	$36,207 \pm 561$	36,110 ± 396	Pass
F-5811,5812	10/20/2016	K-40	0.91 ± 0.30	0.75 ± 0.22	0.83 ± 0.19	Pass
SO-5900,5901	10/22/2016	CS-137	0.05 ± 0.02	0.03 ± 0.02	0.04 ± 0.02	Pass
SO-5900,5901	10/22/2016	K-40 TI 208	9.82 ± 0.60	10.77 ± 0.01	10.29 ± 0.43	Pass
SO-5900,5901	10/22/2016	Ph-212	0.10 ± 0.02 0.32 ± 0.03	0.14 ± 0.03 0.33 ± 0.03	0.12 ± 0.02 0.32 ± 0.02	Pass
SO-5900.5901	10/22/2016	Bi-214	0.20 ± 0.04	0.27 ± 0.04	0.23 ± 0.03	Pass
SO-5900,5901	10/22/2016	Ac-228	0.41 ± 0.08	0.48 ± 0.09	0.44 ± 0.06	Pass
SO-5900,5901	10/22/2016	Ra-226	0.45 ± 0.23	0.61 ± 0.27	0.53 ± 0.18	Pass
SO-5900,5901	10/22/2016	Gr. Beta	16.49 ± 1.01	17.71 ± 1.03	17.10 ± 0.72	Pass
SS-5879,5880	10/25/2016	K-40	14.94 ± 0.83	15.26 ± 0.84	15.10 ± 0.59	Pass
SS-5879,5880	10/25/2016	Cs-137	0.06 ± 0.03	0.09 ± 0.04	0.08 ± 0.02	Pass
LW-6072,6073	10/27/2016	Gr. Beta	0.88 ± 0.49	1.53 ± 0.56	1.21 ± 0.37	Pass
BS-6009, 6010	10/27/2016	Cs-137	0.14 ± 0.08	0.13 ± 0.06	0.13 ± 0.05	Pass
BS-6009, 6010	10/27/2016	K-40	17.04 ± 1.58	18.30 ± 1.42	17.67 ± 1.06	Pass
F-6211,6212	10/28/2016	Gr. Beta	3.25 ± 0.07	3.27 ± 0.07	3.26 ± 0.05	Pass
F-6211,6212	10/28/2016	K-40	2.45 ± 0.33	2.49 ± 0.3/	∠.4/±0.25	Pass
DW-70230, 70231	10/28/2016	Ra-226	4,00 ± 0,20	4.10 ± 0.30	4.05 ± 0.18 5 25 ± 0.57	Pass
E-6093 6094	10/20/2016	K-40	3.30 ± 0.00 3.77 ± 0.50	3.51 ± 0.44	3.64 ± 0.33	Pass
, 0000,0004	10/01/2010		0.77 ± 0.00	0.01 2 0.44	0,07 ± 0.00	. 400

.

				Concentration ^a		
					Averaged	
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
						_
AP-110116	11/1/2016	Gr. Beta	0.021 ± 0.004	0.024 ± 0.004	0.023 ± 0.003	Pass
S-5963, 5964	11/1/2016	K-40	20.35 ± 2.29	18.59 ± 1.90	19.47 ± 1.49	Pass
SG-6119, 6120	11/1/2016	Ac-228	5.70 ± 0.44	6.28 ± 0.57	5.99 ± 0.36	Pass
SG-6119, 6120	11/1/2016	Gr. Alpha	21.59 ± 1.88	24.35 ± 1.93	22.97 ± 1.35	Pass
SG-6119, 6120	11/1/2016	K-40	4.89 ± 1.10	5.90 ± 1.08	5.40 ± 0.77	Pass
SG-6119, 6120	11/1/2016	Pb-214	3.99 ± 0.21	4.35 ± 0.32	4.17 ± 0.19	Pass
S-6051, 6052	11/4/2016	K-40	7.05 ± 0.60	7.56 ± 0.53	7.31 ± 0.40	Pass
WW-6297, 6298	11/8/2016	H-3	207 ± 98	165 ± 97	186 ± 69	Pass
WW-6341,6342	11/8/2016	H-3	1,356 ± 140	1,404 ± 141	1,380 ± 99	Pass
SO-6406,6407	11/9/2016	Cs-137	0.36 ± 0.04	0.43 ± 0.05	0.40 ± 0.03	Pass
SO-6406,6407	11/9/2016	K-40	10.90 ± 0.68	11.29 ± 0.74	11.09 ± 0.50	Pass
AP-111416	11/14/2016	Gr. Beta	0.024 ± 0.005	0.021 ± 0.006	0.022 ± 0.004	Pass
WW-6829,6830	11/15/2016	H-3	39,982 ± 589	40,315 ± 591	40,149 ± 417	Pass
DW-70239, 70240	11/17/2016	Gr. Alpha	7.99 ± 1.15	6.41 ± 1.05	7.20 ± 0.78	Pass
AP-112216	11/22/2016	Gr. Beta	0.049 ± 0.005	0.045 ± 0.005	0.047 ± 0.003	Pass
S-6473, 6474	11/24/2016	K-40	19.37 ± 1.97	23.80 ± 3.54	21.58 ± 2.02	Pass
SG-6938, 6939	11/28/2016	Ac-228	18.99 ± 0.59	19.92 ± 0.79	19.46 ± 0.49	Pass
SG-6938, 6939	11/28/2016	Pb-214	15.28 ± 0.34	14.96 ± 0.43	15.12 ± 0.27	Pass
AP-120116	12/1/2016	Gr. Beta	0.029 ± 0.003	0.030 ± 0.003	0.030 ± 0.002	Pass
F-6567,6568	12/1/2016	K-40	3.76 ± 0.40	3.83 ± 0.46	3.80 ± 0.30	Pass
S-6522, 6523	12/1/2016	Ac-228	1.08 ± 0.13	1.29 ± 0.16	1.19 ± 0.10	Pass
S-6522, 6523	12/1/2016	Pb-214	1.00 ± 0.08	1.01 ± 0.09	1.01 ± 0.06	Pass
S-6609 6610	12/1/2016	K-40	15 57 + 1.01	15.99 ± 0.78	15.78 ± 0.64	Pass
S-6718 6719	12/7/2016	K-40	18 19 + 2 13	18 76 + 1 80	18 48 + 1 39	Pass
MIN 6784 6785	12/7/2016	H-3	922 + 117	905 + 116	914 + 82	Pass
AD 101016	12/12/2010	Gr Boto	0.006 ± 0.005	0.028 ± 0.005	0.027 ± 0.003	Page
AF-121210	12/12/2010	GI. Dela	0.020 ± 0.005	0.020 ± 0.000	0.027 ± 0.003	Fass
AP-/1/8,/1/9	1/3/2017	ве-/	0.047 ± 0.015	0.062 ± 0.017	0.054 ± 0.012	Pass

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter or pCi/m3), food products, vegetation, soil and sediment (pCi/g).

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

Lab Code ^b	Reference Date			14	a	
Lab Code ^b	Date			Known	Control	
		Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MASO-1053	2/1/2016	Ni-63	1.206 ± 20	1250	875 - 1625	Pass
MASO-1053	2/1/2016	Sr-90	0.65 ± 1.27	0.00	NA ^c	Pass
MASO-1053	2/1/2016	Tc-99	0.1 ± 5.5	0.0	NA ^c	Pass
MASO-1053	2/1/2016	Cs-134	908 ± 26	1030	721 - 1339	Pass
MASO-1053	2/1/2016	Cs-137	0.10 ± 6.20	0.00	NA ^c	Pass
MASO-1053	2/1/2016	Co-57	1058 ± 26	992	694 - 1290	Pass
MASO-1053	2/1/2016	Co-60	1229 ± 28	1190	833 - 1547	Pass
MASO-1053	2/1/2016	Mn-54	1235 ± 43	1160	812 - 1508	Pass
MASO-1053	2/1/2016	Zn-65	753 ± 64	692	484 - 900	Pass '
MASO-1053	2/1/2016	K-40	753 ± 140	607	425 - 789	Pass
MASO-1053	2/1/2016	Am-241	79 ± 6	103	72 - 134	Pass
MASO-1053	2/1/2016	Pu-238	73.9 ± 9.2	63.6	44.5 - 82.7	Pass
MASO-1053	2/1/2016	Pu-239/240	0.76 ± 1.34	0.21	NA ^d	Pass
MASO-1053	2/1/2016	U-234/233	45.0 ± 5.1	45.9	32.1 - 59.7	Pass
MASO-1053	2/1/2016	U-238	129 ± 9	146	102 - 190	Pass
	014/004/0	A 0.44	0.040 + 0.045	0.00	NA C	D
IVIAVV-989	2/1/2016	Am-241	0.018 ± 0.015	0.00		Pass
MAVV-989	2/1/2016	H-3	0.2 ± 2.8	0.0	NA -	Pass
MAW-989	2/1/2016	NI-63	12.8 ± 2.7	12.3	8.6 - 16.0	Pass
MAW-989	2/1/2016	Sr-90	8.70 ± 1.20	8.74	6.12 - 11.36	Pass
MAW-989	2/1/2016	10-99	-1.1 ± 0.6	0.0	NA -	Pass
MAW-989	2/1/2016	Cs-134	15.5 ± 0.3	16.1	11.3 ± 20.9	Pass
MAW-989	2/1/2016	Cs-137	23.7 ± 0.5	21.2	14.8 - 27.6	Pass
MAW-989°	2/1/2016	Co-57	1.38 ± 0.12	0.00	NA	Fail
MAW-989	2/1/2016	Co-60	12.5 ± 0.3	11.8	8.3 - 15.3	Pass
MAW-989	2/1/2016	Mn-54	12.2 ± 0.4	11.1	7.8 - 14.4	Pass
MAW-989	2/1/2016	Zn-65	15.7 ± 0.7	13.6	9.5 - 17.7	Pass
MAW-989	2/1/2016	K-40	288 ± 5	251	176 - 326	Pass
MAW-989	2/1/2016	Fe-55	17.3 ± 7.0	16.2	11.3 - 21.1	Pass
MAW-989	2/1/2016	Ra-226	0.710 ± 0.070	0.718	0.503 - 0.933	Pass
MAW-989	2/1/2016	Pu-238	1.280 ± 0.110	1.244	0.871 ± 1.617	Pass
MAW-989	2/1/2016	Pu-239/240	0.640 ± 0.080	0.641	0.449 - 0.833	Pass
MAW-989	2/1/2016	U-234/233	1.39 ± 0.12	1.48	1.04 - 1.92	Pass
MAW-989	2/1/2016	0-238	1.43 ± 0.12	1.53	1.07 - 1.99	Pass
MAW-893	2/1/2016	Gross Alpha	0.600 ± 0.050	0.673	0.202 - 1.144	Pass
MAW-893	2/1/2016	Gross Beta	2.10 ± 0.06	2.15	1.08 - 3.23	Pass
MAW-896	2/1/2016	l-129	3.67 ± 0.20	3.85	2.70 - 5.01	Pass
MAAP-1056	2/1/2016	Gross Alpha	0.39 ± 0.05	1.20	0.36 - 2.04	Pass
MAAP-1056	2/1/2016	Gross Beta	1.03 ± 0.07	0.79	0.40 - 1.19	Pass

Concentration ^a Reference Known Control Lab Code ^b Limits ^c Date Laboratory result Activity Analysis Acceptance **MAAP-1057** 2/1/2016 Sr-90 1.38 0.97 ± 1.79 Pass 1.34 ± 0.15 NA ° MAAP-1057 2/1/2016 Cs-134 -0.01 ± 0.03 ,0.00 Pass MAAP-1057 2/1/2016 Cs-137 2.30 1.61 - 2.99 Pass 2.57 ± 0.10 2/1/2016 Co-57 2.94 2.06 - 3.82 Pass MAAP-1057 3.01 ± 0.06 MAAP-1057 2/1/2016 Co-60 4.28 ± 0.10 4.02 2.81 - 5.23 Pass MAAP-1057 2/1/2016 Mn-54 4.90 ± 0.13 4.53 3.17 - 5.89 Pass MAAP-1057 2/1/2016 Zn-65 4.09 ± 0.18 3.57 2.50 - 4.64 Pass 0.0805 0.0564 - 0.1047 Pass MAAP-1057 2/1/2016 Am-241 0.059 ± 0.015 **MAAP-1057** 2/1/2016 Pu-238 0.066 ± 0.020 0.0637 0.0446 - 0.0828 Pass NA ^d MAAP-1057 2/1/2016 Pu-239/240 ' 0.074 ± 0.020 0.099 Pass 2/1/2016 U-234/233 0.116 - 0.215 Pass MAAP-1057 0.151 ± 0.026 0.165 MAAP-1057 2/1/2016 U-238 0.160 ± 0.026 0.172 0.120 - 0.224 Pass 10.62 7.43 - 13.81 Pass MAVE-1050 2/1/2016 Cs-134 9.83 ± 0.19 6.06 ± 0.19 **MAVE-1050** 2/1/2016 Cs-137 5.62 3.93 - 7.31 Pass MAVE-1050 2/1/2016 Co-57 13.8 ± 0.2 11.8 8.3 - 15.3 Pass Co-60 NA ° **MAVE-1050** 2/1/2016 0.022 ± 0.040 0.00 Pass NA ° **MAVE-1050** 2/1/2016 Mn-54 0.009 ± 0.044 0.000 Pass MAVE-1050 Pass 2/1/2016 Zn-65 10.67 ± 0.39 9.60 6.70 - 12.50 MASO-4780 8/1/2016 693 - 1287 Ni-63 648 ± 14 990 Fail MASO-4780 9 8/1/2016 Ni-63 902 ± 46 990 693 - 1287 Pass MASO-4780 8/1/2016 Sr-90 757 ± 16 894 626 - 1162 Pass MASO-4780 8/1/2016 Tc-99 559 ± 12 556 389 - 723 Pass NA ° MASO-4780 8/1/2016 Cs-134 0.93 ± 2.92 0.00 Pass 747 - 1387 MASO-4780 8/1/2016 Cs-137 1061 ± 12 1067 Pass 833 - 1547 Pass MASO-4780 8/1/2016 Co-57 1178 ± 8 1190 596 - 1106 MASO-4780 8/1/2016 Co-60 841 ± 9 851 Pass NA ^c MASO-4780 8/1/2016 Mn-54 0.00 Pass 0.69 ± 2.53 MASO-4780 8/1/2016 Zn-65 724 ± 19 695 487 - 904 Pass 412 - 764 Pass 8/1/2016 K-40 588 MASO-4780 566 ± 52 NA ^c 0.000 Pass MASO-4780 8/1/2016 Am-241 0.494 ± 0.698 Pu-238 70.4 49.3 - 91.5 Pass MASO-4780 8/1/2016 69.7 ± 7.4 MASO-4780 8/1/2016 Pu-239/240 53.9 ± 6.3 53.8 37.7 - 69.9 Pass MASO-4780 h 8/1/2016 U-233/234 46.8 ± 3.9 122 85 - 159 Fail MASO-4780 h 8/1/2016 Fail U-238 46.6 ± 3.9 121 85 - 157 MAW-4776 8/1/2016 I-129 4.40 ± 0.20 4.54 3.18 - 5.90 Pass NA ° **MAVE-4782** 8/1/2016 Cs-134 -0.01 ± 0.05 0.00 Pass **MAVE-4782** 8/1/2016 5.54 3.88 - 7.20 Pass Cs-137 6.18 ± 0.20 8.13 ± 0.16 MAVE-4782 8/1/2016 Co-57 6.81 4.77 - 8.85 Pass MAVE-4782 8/1/2016 Co-60 5.30 ± 0.15 4.86 3.40 - 6.32 Pass MAVE-4782 8/1/2016 Pass Mn-54 8.08 ± 0.24 7.27 5.09 - 9.45 **MAVE-4782** 8/1/2016 Zn-65 6.24 ± 0.36 5.40 3.78 - 7.02 Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

				Concentration	a	
	Reference			Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAAP-4784	8/1/2016	Sr-90	1.18 ± 0.10	1.03	0.72 - 1.34	Pass
MAAP-4784	8/1/2016	Cs-134	1.58 ± 0.08	2.04	1.43 - 2.65	Pass
MAAP-4784	8/1/2016	Cs-137	1.85 ± 0.09	1.78	1.25 - 2.31	Pass
MAAP-4784	8/1/2016	Co-57	2.39 ± 0.52	2.48	1.74 - 3.22	Pass
MAAP-4784	8/1/2016	Co-60	3.22 ± 0.08	3.26	2.28 - 4.24	Pass
MAAP-4784	8/1/2016	Mn-54	2.82 ± 0.12	2.75	1.93 - 3.58	Pass
MAAP-4784	8/1/2016	Zn-65	-0.015 ± 0.062	0.00	NA ^c	Pass
MAAP-4784	8/1/2016	Am-241	-0.001 ± 0.006	0.00	NA ^c	Pass
MAAP-4784	8/1/2016	Pu-238	0.075 ± 0.022	0.069	0.049 - 0.090	Pass
MAAP-4784	8/1/2016	Pu-239/240	0.048 ± 0.015	0.054	0.038 - 0.070	Pass
MAAP-4784	8/1/2016	U-234/233	0.151 ± 0.036	0.150	0.105 - 0.195	Pass
MAAP-4784	8/1/2016	U-238	0.147 ± 0.034	0.156	0.109 - 0.203	Pass
MAW-4778	8/1/2016	H-3	365 ± 11	334	234 - 434	Pass
MAW-4778	8/1/2016	Fe-55	23.6 ± 16.3	21.5	15.1 ± 28.0	Pass
MAW-4778	8/1/2016	Ni-63	17.0 ± 2.8	17.2	12.0 ± 22.4	Pass
MAW-4778	8/1/2016	Sr-90	0.17 ± 0.28	0.00	NA °	Pass
MAW-4778	8/1/2016	Tc-99	9.50 ± 0.41	11.60	8.10 - 15.10	Pass
MAW-4778	8/1/2016	Cs-134	22.6 ± 0.4	23.9	16.7 - 31.1	Pass
MAW-4778	8/1/2016	Cs-137	0.018 ± 0.117	0.00	NA ^c	Pass
MAW-4778	8/1/2016	Co-57	27.6 ± 0.2	27.3	19.1 ± 35.5	Pass
MAW-4778	8/1/2016	Co-60	0.018 ± 0.090	0.00	NA ^c	Pass
MAW-4778	8/1/2016	Mn-54	16.2 ± 0.4	14.8	10.4 - 19.2	Pass
MAW-4778	8/1/2016	Zn-65	19.3 ± 0.7	17.4	12.2 - 22.6	Pass
MAW-4778	8/1/2016	K-40	286 ±6	· 252	176 - 328	Pass
MAW-4778	8/1/2016	Ra-226	1.48 ± 0.09	1.33	0.93 - 1.73	Pass
MAW-4778	8/1/2016	Pu-238	1.09 ± 0.13	1.13	0.79 - 1.47	Pass
MAW-4778	8/1/2016	Pu-239/240	0.003 ± 0.011	0.016	NA ^d	Pass
MAW-4778	8/1/2016	U-234/233	1.80 ± 0.13	1.86	1.30 - 2.42	Pass
MAW-4778	8/1/2016	U-238	1.77 ± 0.13	1.92	1.34 - 2.50	Pass
MAW-4778	8/1/2016	Am-241	0.678 ± 0.086	0.814	0.570 ± 1.058	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

^d Provided in the series for "sensitivity evaluation". MAPEP does not provide control limits.

^e The laboratory properly identified the Sn-75 interfering peak in the vicinity of Co-57 and stated so in the comment field. MAPEP requires results to be reported as an activity with an uncertainty. Since the calculated uncertainty was less than the activity MAPEP interpreted the submitted result as a "false positive" resulting in a failure.

^f Original analysis for Ni-63 failed.

^g Reanalysis with a smaller aliquot resulted in acceptable results. An investigation is in process to identify better techniques for analyzing samples with complex matrices.

^h MAPEP states that samples contain two fractions of Uranium; one that is soluble in concentrated HNO³ and HCl acid and one that is "fundamentally insoluble in these acids". They also state that HF treatment can not assure complete dissolution. Results are consistent with measuring the soluble form.

	MRAD Study						
			Concentratio	on ^a			
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control		
		-	Result	Result	Limits	Acceptance	
ERAD 1101	3/1//2016	Am.241	37 3	· 15 0	28.3 - 62.1	Page	
ERAP-1101	3/14/2016	Co-60	637	623	482 - 778	Pass	
ERAP. 1101	3/14/2016	Ce-134	251	304	193 - 377	Page	
ERAP-1101	3/14/2016	Ce-137	1 273	1 150	864 - 1 510	Pass	
ERAP-1101	3/14/2016	Ee-55	< 162	1,100	39.1 - 246	Pass	
ERAP-1101	3/14/2010	Mn 54	< 2.64	< 50.0	0.00 - 50.0	Pass	
EDAD 1101	3/14/2010	Du 229	< 2.04 68 0	< 50.0 70 F	18 3 02 7	Daee	
ERAF-1101	3/14/2010	Fu-230	54.1	70.J	40.3 - 32.7	Dass	
ERAF-1101	3/14/2016	Fu-239/240	120	150	73 2 . 225 0	Page	
ERAF-1101	3/14/2016	01-90	139	. 150	13.3 - 223.0	Pass	
ERAP-1101	3/14/2010	0-233/234	09.0 55.5	64.0	40.2 - 97.7	Pass	
ERAP-1101	3/14/2016	U-230 7n 65	20.0	04.2	41.0 - 00.0	Pass	
ERAP-1101	3/14/2016	20-00	420	300	255 - 492	Pass	
ERAP-1101	3/14/2016	Gr. Alpha	98.0	70.1	23.5 - 109	Pass	
ERAP-1101	3/14/2016	Gr. Beta	78.6	54.4	34.4 - 79.3	Pass	
FRSO-1105	3/14/2016	Am-241	1.030	1.360	796 - 1.770	Pass	
ERSO-1105	3/14/2016	Ac-228	1 540	1 240	795 - 1 720	Pass	
ERSO-1105	3/14/2016	Bi-212	1,550	1,240	330 - 1.820	Pass	
ERSO-1105	3/14/2016	Bi-214	3,100	3.530	2.130 - 5.080	Pass	
ERSO-1105	3/14/2016	Co-60	5,600	5,490	3,710 - 7,560	Pass	
ERSO-1105	3/14/2016	Cs-134	3.030	3.450	2.260 - 4.140	Pass	
ERSO-1105	3/14/2016	Cs-137	4.440	4.310	3.300 - 5.550	Pass	
ERSO-1105	3/14/2016	K-40	10.300	10.600	7,740 - 14,200	Pass	
ERSO-1105	3/14/2016	Mn-54	< 50.8	< 1000	0.0 - 1.000	Pass	
ERSO-1105	3/14/2016	Pb-212	1.140	1.240	, 812 - 1.730	Pass	
ERSO-1105	3/14/2016	Pb-214	3.190	3.710	2,170 - 5,530	Pass	
ERSO-1105	3/14/2016	Pu-238	680	658	396 - 908	Pass	
ERSO-1105	3/14/2016	Pu-239/240	460	496	324 - 0,685	Pass	
ERSO-1105	3/14/2016	Sr-90	7,740	8,560	3,260 - 13,500	Pass	
ERSO-1105	3/14/2016	Th-234	3,630	3,430	1,080 - 6,450	Pass	
ERSO-1105	3/14/2016	U-233/234	3.090	3,460	2,110 - 4,430	Pass	
ERSO-1105	3/14/2016	U-238	3.280	3.430	2.120 - 4.350	Pass	
ERSO-1105	3/14/2016	Zn-65	2,940	2,450	1.950 - 3.260	Pass	
			_10.00	_,	-,		
ERW-1115	3/14/2016	Gr. Alpha	105.0	117.0	41.5 - 181.0	Pass	
ERW-1115	3/14/2016	Gr. Beta	76.2	75.5	43.2 - 112.0	Pass	
ERW-1117	3/14/2016	H-3	8,870	8,650	5,800 - 12,300	Pass	

TABLE A-7. Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)^a.

			MRAD SI	tudy		
			Concentratio	on ^a		
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control	
			Result	Result	Limits	Acceptance
ERVE-1108	3/14/2016	Am-241	1,930	2,120	1,300 - 2,820	Pass
ERVE-1108	3/14/2016	Cm-244;	1,294	1,560	764 - 2,430	Pass
ERVE-1108	3/14/2016	Co-60	1,164	1,100	759 - 1,540	Pass
ERVE-1108	3/14/2016	Cs-134	1,056	1,070	687 - 1,390	Pass
ERVE-1108	3/14/2016	Cs-137	930	838	608 - 1,170	Pass
ERVE-1108	3/14/2016	K-40	32,200	31,000	22,400 - 43,500	Pass
ERVE-1108	3/14/2016	Mn-54	< 24.5	< 300	0.00 - 300	Pass
ERVE-1108	3/14/2016	Zn-65	3,320	2,820	2,030 - 3,960	Pass
ERVE-1108	3/14/2016	Pu-238	3,410	2,810	1,680 - 3,850	Pass
ERVE-1108	3/14/2016	Pu-239/240	4,120	3,640	2,230 - 5,010	Pass
ERVE-1108	3/14/2016	Sr-90	8,120	8,710	4,960 - 11,500	Pass
ERVE-1108	3/14/2016	U-233/234	4,350	4,160	2,740 - 5,340	Pass
ERVE-1108	3/14/2016	U-238	4,220	4,120	2,750 - 5,230	Pass
	04440040	• • • • •		101		_
ERW-1111	3/14/2016	Am-241	113	121	81.5 - 162	Pass
ERW-1111	3/14/2016	Co-60	1,120	1,050	912 - 1,230	Pass
ERW-1111	3/14/2016	Cs-134	806	842	618 - 968	Pass
ERW-1111	3/14/2016	Cs-137	1,190	1,100	934 - 1,320	Pass
ERW-1111	3/14/2016	Mn-54	< 5.89	< 100	0.00 - 100	Pass
ERW-1111	3/14/2016	Pu-238	159	138	102 - 172	Pass
ERW-1111	3/14/2016	Pu-239/240	113	98.7	76.6 - 124	Pass
ERW-1111	3/14/2016	U-233/234	46.9 ·	52.7	39.6 - 68.0	Pass
ERW-1111	3/14/2016	U-238	50.4	52.3	39.9 - 64.2	Pass
ERW-1111	3/14/2016	Zn-65	1,160	1,010	842 - 1,270	Pass
ERW-1111	3/14/2016	Fe-55	1,600	1,650	984 - 2,240	Pass
ERW-1111	3/14/2016	Sr-90	430	434	283 - 574	Pass

TABLE A-7. Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency

testing administered by Environmental Resources Associates, serving as a replacement for studies conducted

previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation). Results are reported in units of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

APPENDIX B. DATA REPORTING CONVENTIONS

Data Reporting Conventions

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

x = value of the measurement;

2.0. Single Measurements

where:

Each single measurement is reported as follows:

x±s

s = 2σ counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: < L, where L = the lower limit of detection based on 4.66 σ uncertainty for a background sample.

3.0. Duplicate analyses

If duplicate analyses are reported, the convention is as follows. :

3.1	Individual results:	For two analysis re	esults; $x_1 \pm s_1$ and x_2 :	±s ₂
	Reported result:	$x \pm s$; where $x =$	(1/2) $(x_1 + x_2)$ and s =	$(1/2) \ \sqrt{s_1^2 + s_2^2}$
3.2.	Individual results:	< L ₁ , < L ₂	Reported result: < L,	where L = lower of L_1 and L_2
3.3.	Individual results:	x ± s, < L	Reported result:	x±s if x≥L; < L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average and standard deviation "s" of a set of n numbers x₁, x₂...x_n are defined as follows:

$=\frac{1}{n} \sum x$	$s = \sqrt{\frac{\sum (x_{-})^2}{n-1}}$
-----------------------	---

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained numbers are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

Table C-1. Annual Average effluent concentration limits of radioactivity in air and water above natural background in unrestricted areas^a.

·	Air (pCi/m ^{³)}	Water (pC	i/L)
Gross alpha Gross beta	1 × 10 ⁻³ 1	Strontium-89 Strontium-90	8,000 500
Iodine-131 ^b	2.8×10^{-1}	Cesium-137 Barium-140 Iodine-131	1,000 8,000 1,000
		Potassium-40 [°] Gross alpha Gross beta	4,000 2 10
		fritium	1 x 10

^a Taken from Table 2 of Appendix B to Code of Federal Regulations Title 10, Part 20, and appropriate footnotes. Concentrations may be averaged over a period not greater than one year.

Value adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

A natural radionuclide.

APPENDIX D

Sample Collection and Analysis Program

D-1

O PRAIRIE ISLAND TLD POINTS

TLD LOCATIONS

CONTROL POINTS PRESCOTT, WISCONSIN

ISFSI AREA TLD LOCATIONS

MONITORING LEGEND:

TLD LOCATIONS FIVE MILE RADIUS

O PRAIRIE ISLAND TLD POINTS

ENVIRONMENTAL SAMPLING POINTS

MILK SAMPLING POINT ID NUMBERS P-18, P-37, P-43	\boxtimes	FISH SAMPLING POINT ID NUMBERS P-13, P-19
AIR SAMPLING POINT ID NUMBERS P-1, P-2, P-3, P-4, P-6, P-7	\oplus	INVERTEBRATES POINT ID NUMBERS P-6. P-40
WATER SAMPLING POINT 10 NUMBERS P-5, P-6, P-8, P-9, P-11, P-24, P-43	\bigotimes	SEDIMENT SAMPLING POINT ID NUMBERS P-6, P-12, P-20

WATER SAMPLING POINT ID NUMBERS P-5, P-6, P-8, P-9, P-11, P-24, P-43 0

 \triangle

VEGETATION / VEGETABLES ID NUMBERS P-28. P-38. P-45 .

\diamond	MILK SAMPLING POINT ID NUMBERS P-18, P-37, P-42, P-43	\boxtimes	FISH SAMPLING POINT ID NUMBERS P-13, P-19
\triangle	AIR SAMPLING POINT ID NUMBERS P-1. P-2. P-3. P-4. P-6. P-7	\oplus	INVERTEBRATES POINT ID NUMBERS P-6, P-40
•	WATER SAMPLING POINT 10 NUMBERS P-5, P-6, P-8, P-9, P-11, P-24, P-43	\bigotimes	SEDIMENT SAMPLING POINT ID NUMBERS P-6, P-12, P-20
•	VEGETATION / VEGETABLES ID NUMBERS P-28, P-38, P-45		

ENVIRONMENTAL SAMPLING POINTS

CONTROL POINTS PRESCOTT, WISCONSIN

MONITORING LEGEND

 \odot

 \wedge

 \odot

- MILK SAMPLING POINT ID NUMBERS P-18, P-37, P-41, P-42, P-43
- AIR SAMPLING POINT ID NUMBERS P-1, P-2, P-3, P-4, P-6, P-7
 - WATER SAMPLING POINT ID NUMBERS P-5, P-6, P-8, P-9, P-11, P-43
- VEGETATION / VEGETABLES ID NUMBERS P-28, P-38, P-45

APPENDIX E

Special Well and

Surface Water Samples

1.0 INTRODUCTION

This appendix to the Radiation Environmental Monitoring Program Annual Report to the United States Nuclear Regulatory Commission summarizes and interprets results of the special well and surface water samples taken at the Prairie Island Nuclear Generating Plant, Red Wing, Minnesota, during the period January - December, 2016. This supplemental special sampling program was established in December of 1989 when higher than expected levels of tritium were detected in a nearby residence well sample.

Tabulations of the special sampling program individual analyses made during the year are included in this appendix. A summary table of tritium analyses is also included in this appendix.

2.0 SUMMARY

This special sampling program was established following the detection of tritium in a residence well water sample south of the PINGP during 1989. This program is described and the results for 2016 are summarized and discussed.

Program findings for 2016 detected low levels of tritium in nearby residence wells, ground water, surface samples, and storage tanks at or near the expected natural background levels with the exception of ground water sample wells MW-7 and MW-8, D5/6 tank vaults, S-7 and S-9 surface water, and the septic system. The 2016 sample results (except for MW-7, MW-8, D5/6 tank vaults, S-7 and S-9 surface water, and the septic system) ranged from <19 pCi/L to 234 pCi/L. Sample well MW-7 ranged from 22 pCi/L to 741 pCi/L. Sample well MW-8 ranged from 356 pCi/L to 552 pCi/L. D5/6 tank vaults were 871 and 705 pCi/L. S-7 surface water ranged from 95 pCi/L to 1445 pCi/L. S-9 surface water was 605 pCi/L. The septic system sample ranged from 48 pCi/L to 943 pCi/L. All tritium results are far below the Environmental Protection Agency's drinking water standard of 20,000 pCi/L and present no harm to any members of the public.

None of the water samples monitored for gamma-emitting isotopes showed any activity greater than the LLD.

3.0 Special Tritium Sampling Program

3.1 Program Design and Data Interpretation

The purpose of this sampling program is to assess the impact of any tritium leaching into the environment (ground water system) from the PINGP. For this purpose, special water samples are collected and analyzed for tritium content.

3.2 Program Description

The sampling and analysis schedule for the special water sampling program is summarized in Table E-4.1 and briefly reviewed below. Table E-4.2 defines the additional sample locations and codes for the special water sampling program.

Special well, tank, and surface water samples were collected quarterly (spring, summer, fall) at seven locations, quarterly at one location, monthly at six locations, semi-annually at five locations, and annually at thirty-six locations. The Peterson (P-43) and Hanson (SW-1) farm wells are used as control locations for these special samples.

To detect low levels of tritium at or below natural background levels, analyses of the samples have been contracted to a laboratory (University of Waterloo Laboratories) capable of detecting tritium concentrations down to 19 pCi/L. Waterloo Laboratories report tritium analyses results in Tritium Units (1 TU = 3.2 pCi/L). The tritium results in this report are indicated in pCi/L.

3.3 <u>Program Execution</u>

The special water sampling was executed as described in the preceding section.

3.4 Program Modifications

Changes to the program in 2016 include:

- samples were taken from monitoring wells P-10, and MW-8 and snow from S-6, S-7, S-8, S-9, and P-43
 and were sent to Environmental Incorporated for analysis for hard-to-detect nuclides in accordance with
 American Nuclear Insurers recommendation
- sample location SW-8 was added for the SGR Building (this well was previously listed as the Restroom Trailer well)
- sample location SW-9 was added for the FLEX Building
- samples were taken from the D5/6 Fuel Oil Storage Tank vaults because the area was accessible in 2016
- at the request of the homeowner, no samples were taken at P-28

3.5 <u>Results and Discussion</u>

Results show tritium in well water and ground water samples at or near expected natural background levels except the MW-7 and MW-8 ground water sample wells. Table E-4.4 provides the complete data table of results for each period and sampling location.

The tritium level annual averages have shown a downward trend since the special sampling began in 1989.

Except for sample wells MW-7 and MW-8, D5/6 tank vaults, S-7 and S-9 surface water, and the septic system, the 2016 sample results are within the range of expected background tritium levels in shallow ground water and surface water due to tritium concentrations measured in precipitation. Sampling points in North America have shown tritium concentrations in precipitation ranging from 5 pCi/L to 157 pCi/L (Environmental Isotope Data No. 10; World Survey of Isotope Concentration in Precipitation (1988-1991)).

The higher level results at the Suter residence and Birch Lake in 1989 were possibly due to seepage from the PINGP discharge canal water into the ground water. This is thought to occur due to the elevation difference between the Vermillion River and the discharge canal. The Suter residence is located between the discharge canal and Birch Lake, which connects to the Vermillion River. The PINGP discharge canal piping was lengthened during 1991, so that liquid discharges from the plant are released near the end of the discharge canal, diffused and discharged to the Mississippi River. In 1992, the underground liquid discharge pipe from the plant to the discharge canal piping was replaced with a double walled leak detectable piping system. This year's sample results continue to indicate that these modifications have eliminated the suspected radioactive effluent flow into the local ground water.

The elevated tritium levels in sample wells MW-7 and MW-8 in 2016 may be due to prior leakage from the PINGP liquid radwaste discharge pipe, discharge of turbine building sump water into the landlocked area, or discharge of heating steam condensate from the main warehouse in 1978/1979. The liquid radwaste discharge pipe was replaced in 1992 and the discharge to the landlocked area has been terminated, the last discharge took place on 11/14/09. The main warehouse heating system was repaired in 1979. The heating steam system has not been used in the outer plant buildings since the 2011 – 2012 heating season.

The elevated tritium levels in D5/6 tank vaults and S-7 and S-9 surface water are most likely due to tritium recaptured from effluent releases by precipitation. The levels found in the septic system have returned to background levels.

None of the water samples monitored for gamma-emitting isotopes showed any activity greater than the LLD.

E-4

Table E-4.1. Sample collection and analysis program for special well, storage tank, and surface water samples, Prairie Island Nuclear Generating Plant, 2016.

Medium	No.	Location codes and type ^a	Collection type and frequency ^b	Analysis type ^c
Well water Annual	26	P-8 post-treat, P-8 pre-treat, REMP P-6, REMP P-11, PIIC-22, PIIC-26, PIIC-28, PIIC-29, P-7, P-11, PZ-1, PZ-2, PZ-4, PZ-5, PZ-7, MW-6, P-26, P-30, SW-3, SW-4, SW-5, SW-6, SW-7, SW-8, SW-9, P- 9	G/A	Н-3
Well water quarterly	1	P-24D	G/Q	H-3
Well water quarterly'	7	P-2, P-3, P-5, P-6, PZ-8, MW-4, MW-5	G/Q'	Н-3
Well water monthly	5	P-43(C), SW-1(C), MW-7, MW-8, P-10	G/M	H-3
Surface water	8	S-1, S-2, S-3, S-4, S-5, S-6, S-7, P-31	G/A ^d	H-3
Storage Tank	. 7	11 CST, 21 CST, 22 CST, U1/2 Demin Hdr, D5/6 vaults	G/S	H-3
Storage Tank	1	Septic System	G/M	H-3
Snow	5	S-6, S-7, S-8, S-9, P-43(C)	G/A	H-3

^a Location codes are defined in table D-4.2. Control Stations are indicated by (C). All other stations are indicators.

^b Collection type is codes as follows: G/ = grab. Collection frequency is coded as follows: M = monthly; Q = quarterly;

Q' = quarterly (spring, summer, and fall), S= semiannually: A = annually.

^c Analysis type is coded as follows: $H_{r}3 = tritium$.

^d Location S-6 and S-7 are sampled semi-annually.

Table E-4.2. Sampling locations for special well, storage tank, and surface water samples, Prairie Island Nuclear Generating Plant, 2016.

Code	Collection site	Type of sample ^a	Distance and direction from reactor
P-8	PI Community well post treat	DW ^î	1.0 mi. @ 321°/WNW
P-8	PI Community well pre treat	DW	1.0 mi. @ 321°/WNW
REMP P-6	Lock & Dam #3 well	DW	1.6 mi. @ 129°/SE
REMP P-11	Red Wing Service Center	DW	3.3 mi @ 158°/SSE
PIIC-22	1773 Buffalo Slough Rd	DW	1 mi. @ 315°/NW
PIIC-26	1771 Buffalo Slough Rd	DW	1 mi. @ 315°/NW
PIIC-28	1960 Larson Lane	DW	1.5 mi @ 288°/WNW
PIIC-29	Buffalo Project	DW	4.3 mi @ 302°/WNW
P-24D	Suter residence	DW .	0.6 mi. @ 158°/SSE
P-43	Peterson Farm (Control)	DW	13.9 mi. @ 355°/N
SW-1	Hanson Farm (Control)	DW	2.2 mi. @ 315°/NW
P-2	Sample well	WW.	See map
P-3	Sample well	ww	See map
P-5	Sample well	WW	See map
P-6	Sample well	WW	See map
P-7	Sample well	ww	See map
P-10	Sample well	WW	See map
P-11	Sample well	WW	See map
PZ-1	Sample well	. WW	See map
PZ-2	Sample well	ww	See map
PZ-4	Sample well	ww	See map
PZ-5	Sample well	ww	See map
PZ-7	Sample well	ww	See map
PZ-8	Sample well	ww	See map
MW-4	Sample well	ww	See map
MVV-5	Sample well	ww	See map
MW-6	Sample well	ww	See map
MW-7	Sample well	ww	See map
MW-8	Sample well	WW	See map
P-26	PITC well	DW	0.4 mi. @ 258°/WSW
P-30	Environ lab well	DW	0.2 mi. @ 32°/NNE

Code	Collection site	Type of sample ^a	Distance and direction from reactor
SW-3	Cooling Tower pump	WW	See map
SW-4	New Admin Bldg	DW	0.05 mi. @ 315°/NW
SW-5	Plant Screenhouse well	ww	0.05 mi. @ 0°/N
SW-6	Site Admin Building well	DW	0.2 mi @ 310°/NW
SW-7	Distribution Center	DW	0.35 mi @ 271°/W
SW-8	SGR Building		0.2 mi @ 310°/NW
SW-9	FLEX Building	ww	0.2 mi @ 238°/WSW
P-9	Plant well # 2	DW	0.3 mi. @ 306°/NW
S-1	Upstream Miss. River	SW	See map
S-2	Recirc/Intake canal	SW	See map
S-3	Cooling water canal	SW	See map
S-4	Discharge Canal (end)	SW	See map
S-5	Mid Discharge Canal	SW	See map
S-6	Roof Stormwater Runoff (also snow)	SW	0.05 mi. @ 0°/N
S-7	Parking Lot Stormwater (also snow)	SW	0.3 mi @ 306°/NW
S-8	P-10 area snow	SW	See map
S-9	MW-7/8 area snow	SW	See map
P-31	Birch Lake Seepage	SW	0.69 mi. @ 172°/S
<u>1</u> 1 CST	Storage Tank	ST	Turbine Building
21 CST	Storage Tank	ST	Turbine Building
22 CST	Storage Tank	ST	Turbine Building
Unit 1/2 demin hdr	Storage Tank	ST	Turbine Building
Septic System	Storage Tank	ST	Outside #1 Warehouse
D5/6 Vault	Concrete Vault	ST	Outside Turbine Bldg

Table E-4.2. Sampling locations for special well, storage tank, and surface water samples, Prairie Island Nuclear Generating Plant, 2016 (continued).

^a Sample codes: DW = Drinking Water: WW = Well Water; SW = Surface Water: ST = Storage Tank.

Table E-4.3 Radiation Environmental Monitoring Program Summary: Special well, storage tank, and surface water samples.

N	ame of Facilit	iy <u>Pra</u>	irie Island Nuclear	Power Station	Docket No.	50-282, 50-306	
Lo	ocation of Fac	cility <u>Go</u>	odhue, Minnesota		Reporting Period	January – Decem	ıber, 2016
			(County, State)				
			Indicator Locations	Location w Annua	vith Highest al Mean	Control Locations	
Sample Type (Units)	Type and Number o Analyses	n Maria LLD	[▶] Mean (F) [°] Range [°]	Location ^d	Mean (F) ° Range °	Mean (F) ° Range °	Number Non- Routine Results ^e
Offsite Well Water (pCi/L)	H-3 1	14 19	29 (7/14) (22-40)	PIIC-29	35 (1/1) (35)	(See Control Below)	0
Onsite Well Water (pCi/L)	H-3	78 19	170 (62/78) (20-741)	MW-8	465 (12/12) (356-552)	(See Control Below)	13
Onsite Surface Water (pCi/L)	H-3 1	17 19	218 (13/17) (20-1445)	S-7	451 (4/4) (95-1445)	(See Control Below)	2
Onsite Storage Tank (pCi/L)	н-з :	24 19	188 (22/24) (22-943)	D-5 Fuel Oil Storage Tank Vault	871 (1/1) (871)	(See Control Below)	3
Control (offsite well water)	н-з :	24 19	none	P-43	36 (10/12) (23-54)	36 (10/24) (23-54)	0
Control (offsite snow)	H-3	1 19	none	P-43	42 (1/1) (42)	42 (1/1) (42)	o

 ^a H-3 = tritium
 ^b LLD = Nominal lower limit of detection based on 4.66 sigma error for background sample. Value shown is lowest for the period.
 ^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F). ^d Locations are specified by code.

^e Non-routine results are those which exceed ten times the control station mean value.

	SAMPLE DATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
		2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
CODE	SAMPLE LOCATIONS	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L
	OFFSITE WELLS												
P-8 Post-treat	Pl Comm. Well							<19					
P-8 Pre-treat	PI Comm. Well							<19					
REMP P-6	Lock & Dam #3 well							<19					
REMP P-11	Red Wing Service Center							<19					
PIIC-22	1773 Buffalo Slough Rd							27					
PIIC-26	1771 Buffalo Slough Rd			1a.				27					
PIIC-28	1960 Larson Lane							<19					
PIIC-29	Buffalo Project							35					
P-24D	Suter residence	` <19		24		<19		22	31			40	
P-43	Peterson Farm(Control	39/42* *snow	[.] 28	43	54	33	31	28	38	40	23	<19	<19
SW-1	Hanson Farm (Control)	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19

Table E-4.4 Radiological Environmental Monitoring Program , Complete Data Table, 2016.

٠.

	SAMPLE DATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
CODE	SAMPLE LOCATIONS	pCi/L	pCi/L.										
	ONSITE WELLS												
P-2	Sample well				96			45			69		
P-3	Sample well				28			<19			30		
P-5	Sample well			-	126			62			52		
P-6	Sample well				48			<19			21		
P-7	Sample well							51					
P-10	Sample well	126	133	100	85	83	102	110	110	150	219	169	143
P-11	Sample well							95				•	
PZ-1	Sample well							<19					
PZ-2	Sample well							<19					
PZ-4	Sample well							<19					
PZ-5	Sample well							31					
PZ-7	Sample well			_				29			<19		
PZ-8	Sample well				72		-	44			37		
MW-4	Sample well				20			20			45		
MW-5	Sample well				20			<19		_	234		
MW-6	Sample well							20				<19	
MW-7	Sample well	741	408	212	102	28	52	22.	116	69	76	98	90
MW-8	Sample well	552	504	408	356	453	474	491	481	485	474	440	464
P-26	PITC well							<19					
P-30	Env. lab well							<19					
SW-3	CT pump						35 -						
P-9	Plant well # 2		-			39		<19					
SW-4	New Admin							<19					
SW-5	Pint Scrnhs							<19					
SW-6	Site Admin Bldg							<19					
SW-7	Dist Center							<19					

Table E-4.4 Radiological Environmental Monitoring Program, Complete Data Table, 2016 (continued).

	SAMPLE DATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
		2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
CODE	SAMPLE LOCATIONS	pCi/L	pCi/L	_pCi/L	pCi/L	pCi/L	pCi/L	<u> </u>	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L
	ONSITE WELLS												
SW-8	RSG Bldg							<19					
SW-9	FLEX Bldg							28					

Table E-4.4 Radiological Environmental Monitoring Program, Complete Data Table, 2016 (continued).
Table E-4.4 Radiological Environmental Monitoring Program , Complete Data Table, 2016 (continued).

	SAMPLE DATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
		2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	_ 2016	2016
CODE	SAMPLE LOCATIONS	pCi/L	_pCi/L	pCi/L	pCi/L	pCi/L							
	ONSITE SURFACE WATER												
S-1	Mississippi River upstream							<19					
S-2	Recirculation/Intake canal							<19					
S-3	Cooling water canal							26					
S-4	Discharge Canal (end)							20		_	-		
S-5	Discharge Canal (midway)							<19					
S-6	Stormwater runoff	85*			67						67	<19	
S-7	Parking Lot runoff	163*			99						1445	95	
S-8	P-10 area snow	72*											
S-9	MW-7/8 area snow	605*	· ·										
P-31	Birch Lake Seepage				36					_ 48			

* snow samples

. .

Table E-4.4 Radiological Environmental Monitoring Program , Complete Data Table, 2016 (continued).

						-							
	SAMPLE DATES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
		2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016
CODE	SAMPLE LOCATIONS	pCi/L	pÇi/L	pCi/L	pCi/L	pCi/L	· pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L
· · · · ·	ONSITE STORAGE TANKS									-	-		
11 CST	Storage tank				<19						45		
21 CST	Storage tank				29						54		
22 CST	Storage tank				22						45		
U1/U2 Demin Header	Storage tank				<19/144						28/62		
Septic System	Storage tank	62	131	48	110	142	86	68	118	88	943	248	- 93
D5/6	D5/6 Fuel Oil Storage Tank Vaults									871/705			

....

Location	P-10 Snow	Peterson Snow	MW-7/8 Snow	OAB Snow	Parking Lot Snow
Collection Date	01-14-16	01-12-16	01-13-16	01-13-16	01-14-16
Lab Code	PXW-356	PXW-357	PXW-358	PXW-359	PXW-360
Isotope		Concentratio	on (μCi/mL)		
Fe-55	< 6.5 E-07	< 6.5 E-07	< 6.3 E-07	< 6.3 E-07	< 6.6 E-07
Ni-63	< 1.3 E-07	< 1.6 E-07	< 1.1 E-07	< 1.2 E-07	< 1.0 E-07
Sr-90	< 5.0 E-10	< 4.6 E-10	< 5.1 E-10	< 5.2 E-10	< 4.3 E-10
Pu-238 Pu-239/240	< 6.4 E-11 < 1.1 E-10	< 1.4 E-10 < 5.8 E-11	< 1.9 E-10 < 1.8 E-10	< 1.3 E-10 < 2.6 E-10	< 1.5 E-10 < 1.7 E-10
Am-241 Cm-242 Cm-243/244	< 1.7 E-10 < 1.9 E-10 < 5.5 E-11	< 9.1 E-11 < 1.8 E-10 < 3.7 E-11	< 1.3 E-10 < 1.0 E-10 < 1.6 E-10	< 3.9 E-11 < 6.7 E-11 < 1.2 E-10	< 9.8 E-11 < 1.8 E-10 < 2.2 E-10

Table E4.5. Results of the analyses for iron-55, nickel-63, strontium-90, isotopic plutonium, americium-241 and isotopic curium on five samples.

Less than (<), value is based on a 4.66 sigma counting error for the background sample.

Location	OAB Roof	Parking Lot	P-10	MW-8					
Collection Date	04-28-16	04-28-16	06-09-16	06-09-16					
Lab Code	PXW-2254	PXW-2255	PXW-3258	PXW-3259					
Isotope Concentration (µCi/mL)									
Fe-55	< 7.7 E-07	< 8.1 E-07	< 3.6 E-07	< 3.7 E-07					
Ni-63	< 1.5 E-07	< 1.4 E-07	< 1.4 E-07	< 1.3 E-07					
Sr-90	< 5.2 E-10	< 4.7 E-10	< 6.0 E-10	< 7.7 E-10					
Pu-238 Pu-239/240	< 1.1 E-10 < 1.4 E-10	< 6.6 E-11 < 1.6 E-10	< 1.3 E-10 < 1.3 E-10	< 1.0 E-10 < 6.0 E-11					
Am-241 Cm-242 Cm-243/244	< 1.1 E-10 < 8.0 E-11 < 8.0 E-11	< 5.2 E-11 < 1.3 E-10 < 1.3 E-10	< 6.0 E-11 < 6.0 E-11 < 1.0 E-10	< 1.2 E-10 < 1.7 E-10 < 2.4 E-10					

Table E4.5. Results of the analyses for iron-55, nickel-63, strontium-90, isotopic plutonium, americium-241 and isotopic curium on four samples.

Less than (<), value is based on a 4.66 sigma counting error for the background sample.

Groundwater Monitoring Well Locations