

10 CFR 50.36a 10 CFR 72.44(d)(3) Technical Specifications

NMP1L 3150 April 28, 2017

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Nine Mile Point Nuclear Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR-63 and NPF-69 NRC Docket Nos. 50-220 and 50-410

Independent Spent Fuel Storage Installation (ISFSI) ISFSI Docket No. 72-1036

Subject:

2016 Radioactive Effluent Release Report for Nine Mile Point Units 1 and 2

In accordance with 10 CFR 50.36a, and the Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2) Technical Specifications, enclosed are the Radioactive Effluent Release Reports for NMP1 and NMP2 for the period of January through December 2016. This letter also satisfies the annual effluent reporting requirements for the ISFSI required by 10 CFR 72.44(d)(3).

The format used for the effluent data is outlined in Appendix B of Regulatory Guide 1.21, Revision 1. During the reporting period, NMP1, NMP2, and the ISFSI did not exceed any 10 CFR 20, 10 CFR 50, 10 CFR 72, 40 CFR 190, Technical Specification, or ODCM limits for gaseous or liquid effluents.

Should you have questions regarding the information in this submittal, please contact Morgan Cazzolli, Acting Site Chemistry Environmental & Radwaste Manager, at (315) 349-4188.

Sincerely,

Peter M. Orphanos

Vice President, Nine Mile Point Nuclear Station

Exelon Generation Company, LLC

PMO/RSP

ADD9 IE48 NMSSZ6 NRR NMSS Document Control Desk April 28, 2017 Page 2

Enclosures: (1) Nine Mile Point Nuclear Station, Unit 1
Radioactive Effluent Release Report, January – December 2016

(2) Nine Mile Point Nuclear Station, Unit 2 Radioactive Effluent Release Report, January – December 2016

(3) Errata/Correction to the 2015 Annual Radioactive Effluent Release Report

Cc: NRC Regional Administrator, Region 1

NRC Project Manager NRC Resident Inspector

R. Rolph, NRC

NINE MILE POINT NUCLEAR STATION - UNIT 1 RADIOACTIVE EFFLUENT RELEASE REPORT

January - December 2016

NINE MILE POINT NUCLEAR STATION - UNIT 1

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY - DECEMBER 2016

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit 1 Licensee: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION LIMITS/ODCM Limits

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at and beyond the site boundary shall be less than or equal to 500 mrem/year to the total body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose due to noble gases released in gaseous effluents from Nine Mile Point Unit 1 to areas at and beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 milliroentgen for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 milliroentgen for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at and beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 1 to areas at and beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- 1. The concentration of radioactive material released in liquid effluents to unrestricted areas shall be limited to ten times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 1 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by on-line gross activity monitoring (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic stack sample stream.

B) IODINES

Iodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic stack sample stream.

C) PARTICULATES

Activity released from the main stack is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus. Tritium effluent activity is measured during purge and weekly when fuel is offloaded until stable tritium release rates are demonstrated.

E) EMERGENCY CONDENSER VENT EFFLUENTS

The effluent curie quantities are estimated based on the isotopic distribution in the Condensate Storage Tank water and the Emergency Condenser shell water. Actual isotopic concentrations are found via gamma spectroscopy. Initial release rates of Sr-89, Sr-90 and Fe-55 are estimated by applying scaling factors to release rates of gamma emitters and actual release rates are determined from post offsite analysis results. The activity of fission and activation gases released due to tube leaks is based on reactor steam leak rates using offgas isotopic analyses.

F) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters. Tritium activity is estimated on the most recent analysis of the Condensate Storage Tank water. Initial release rates of Sr-89, Sr-90, and Fe-55 are estimated by applying scaling factors to release rates of gamma emitters and actual release rates are determined from post offsite analysis results.

G) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analysis of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

H) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010 and NUREG-0016, Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code).

3. METEOROLOGICAL DATA

An annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Radiological Effluent Release Report, the licensee is exercising the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

Unit 1	XUr	nit 2				Reporting	Period: Jar	nuary - December 2016
Liquid Efflu	uents:						•	
ODCM Req	uired Maximum Effluen	nt Concentration (MEC)	= 10 x 10CF	FR20, Appendi	x B, Table 2, C	olumn 2		
There were	no batch discharges of	f liquid radwaste requiri	ng use of Mi	EC to determin	ie allowable rele	ease rate.		
		,						
There were	no Emergency Conder	nser Vent Liquid Discha	rges in 2016	ô.				
	Average MEC - μCi/ Average MEC - μCi/	·	NO RELEASES	-	_	: - μCi/ml (Qtr. <u>3</u> : - μCi/ml (Qtr. <u>4</u>	-	NO RELEASES NO RELEASES
Average Er	nergy (Fission and Ac	tivation gases - MeV):						
	Qrtr. <u>1</u> : Ēγ	= N/A		Ēβ =	N/A			
	Qrtr. <u>1</u> : Ēγ Qrtr. <u>2</u> : Ēγ Qrtr. <u>3</u> : Ēγ	= N/A		Ēβ = Ēβ = Ēβ =	N/A			
	Qrtr. <u>3</u> : Ε̈́γ	= N/A		Ēβ =	N/A			
	Qrtr. <u>4</u> : Ēγ	= N/A		Ēβ =	N/A			
Liquid:				Radwaste		EC Vent		
Liquia.	Number of Batch Re	eleases		Nauwasie 0	1 1	0 EC AGUE		
1		or Batch Releases (hrs)		0	j	0.00		ì
		od for a Batch Release	<u> </u>	0	<u>.</u>	0.00		
ı		d for a Batch Release (od for a Batch Release		0 0	1	0.00		
_	Manufacture 1 one	54 151 4 54.617 1 C.5465	()		.	<u> </u>		
	Total volume of water	er used to dilute		<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>	
	the liquid effluent du	-			r			,
	period (L)	F	Radwaste	N/A	N/A	N/A	N/A	<u> </u>
						•		
	Total volume of water			<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>	
	dilute the liquid efflu	• .	Padwasta	1.31E+11	1.29E+11	1.37E+11	1.32E+11	1
	period (L)	Г	Radwaste	1.315711	1.295+11	1.3/6711	1.325711	J
Gaseous(E	mergency Condense	r Vent):			_			
	Number of Batch Re	eleases		0]			
	Total Time Period for Batch Releases (hrs)		0.00				'	
	Maximum Time Period for a Batch Release (hrs)		0.00					
		Average Time Period for a Batch Release (hrs)		0.00				
	Minimum Time Perio	od for a Batch Release	(hrs)	0.00				
Gaspons (I	Primary Containment	Purge):						
Cascous (i	Number of Batch Re			0	7			
		or Batch Releases (hrs)		0.00	1			
		iod for a Batch Release	(hrs)	0.00	1		•	
		d for a Batch Release (<u> </u>	0.00	1			
		od for a Batch Release		0.00	1			
L					- 			

Unit 1 X	Unit 2	Reporting Period: January - December 2016
Abnormal Releases:		
A. Liquids:		
	Number of Releases Total Activity Released	N/A Ci
B. Gaseous:		· · · · · · · · · · · · · · · · · · ·
	Number of Releases Total Activity Released	N/A Ci
Condenser Vent dischargeffluent releases to the e annually in the Radioacti As a result of this discove Drain be collected and as	ges (during periodic testing, as w nvironment via the Emergency we Effluent Release Report (RE ery, the Unit 1 ODCM was revis	sed (Revision 34) to require composite samples of discharges from the Reactor Building Perimeter ed in the RERR. Because this activity has been accounted for in previous RERRs, it is to be
Since 2003, the Emerger drain pumps were out of were functional. During th	ncy Condensers have been actu service between 2008 and 2012 ne first quarter of 2016, Tritium	uated 7 times. These are identified in the 2003, 2004, 2009, 2010 and 2013 RERRs. The perimeter 2. Releases prior to that are assumed to have been dicharged to the storm drains while the pumps was detected in the Perimeter Drain discharge at 1.79E-05 µCi/mL resulting in 0.19 Ci of tritium hird or fourth quarters of 2016. No other isotopes were identified.
		•
		. •

GASEOUS EFFLUENT	S - SUMMA	TION OF ALL F	KELEASES, EL	EVATED AND	GROUND LEVEL	
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	EST. TOTAL ERROR, %
. Fission & Activation Gases (1)						
 Total Release Average Release Rate 	Ci µCi/sec	**	**	**	**	5.00E+01
2. Average Release Rate	µCi/sec		_ ^^	~~		
. <u>lodines (1)</u>						
1. Total lodine - 131	Ci	3.06E-05	1.02E-04	2.30E-04	2.83E-04	3.00E+01
Average Release Rate for Period	μCi/sec	3.62E-06	1.31E-05	2.90E-05	3.60E-05	
. Particulates (1)						
Particulates with Half-lives>8 days	Ci	4.31E-04	3.66E-04	1.08E-03	1.76E-03	3.00E+01
Average Release Rate for Period	μCi/sec	5.09E-05	4.71E-05	1.35E-04	2.24E-04	0.002.0
3. Gross Alpha Radioactivity	Ci	**	**	**	**	2.50E+01
Trisi (d)						
0. <u>Tritium (1)</u> 1. Total Release	Ci	0.045:04	6 505204	5.13E+01	4 225404	5.00E+01
Average Release Rate for Period	μCi/sec	9.01E+01 1.07E+01	6.50E+01 8.33E+00	6.45E+00	4.33E+01 5.49E+00	J.UU⊑∓U I
	μοσο	1.07 E.01	1 0.00E.00	0.70L 100	0.402.00	
. <u>Percent of Tech. Spec. Limits</u> <u>Fission and Activation Gases</u>						
Percent of Quarterly Gamma Air Dose Limit (5 mR)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Beta Air Dose Limit (10 mrad)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Gamma Air Dose Limit to Date (10 mR)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Beta Air Dose Limit to Date (20 mrad)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Whole Body Dose Rate Limit (500 mrem/yr)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Skin Dose Rate Limit (3000 mrem/yr)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Tritium, Iodines, and Particulates (with half-lives greater than 8 days)			,			
Percent of Quarterly Dose Limit (7.5 mrem)	%	6.23E-02	8.19E-02	1.45E-01	1.76E-01	,
Percent of Annual Dose Limit to Date (15 mrem)	%	3.11E-02	7.21E-02	1.45E-01	2.33E-01	
Percent of Organ Dose Limit (1500	` %	1.26E-03	1.64E-03	2.88E-03	3.49E-03	

Continuous Mode (2) Continuous Mode (3) Continuous Mode (4) Continuous Mode (5) Continuous Mode (6) Continuous Mode (7) Continuous Mode (8)	Unit 1	<u>x</u>	Unit 2	_ `	<u>Reportin</u>	g Period: Janı	Jary - Decemb
Strontlum-88			GASEOUS EFFLU	JENTS - ELEVA	TED RELEASE		
### Fission Gases (1) Argon-41		<u>. </u>			Contin	uous Mode (2)	
Argon-41 Krypton-85 Ci Krypton-87 Ci Krypton-87 Ci Krypton-88 Ci Krypton-127 Xenon-131m Ci Xenon-133 Xenon-133 Ci Xenon-133m Ci Xenon-135 Ci Xenon-135 Ci Xenon-137 Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-137 Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-137 Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xenon-139 Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xenon-139 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xenon-139 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139	uclides Re	eleased		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Krypton-85		Fission Gases (1)				
Krypton-85		Argon-41	Ci	**	**	**	**
Krypton-85m Krypton-87 Ci Krypton-88 Ci Xenon-127 Ci Xenon-131m Ci Xenon-133 Ci Xenon-133 Ci Xenon-135 Ci Xenon-135 Ci Xenon-135m Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xenon-138 Ci Xenon-139 Ci Xe				**	**	**	**
Krypton-87 Krypton-88 Ci Krypton-88 Ci Krypton-88 Ci Kenon-127 Ci Xenon-131m Ci Xenon-133m Ci Xenon-133m Ci Xenon-135 Ci Xenon-135 Ci Xenon-135 Ci Xenon-136m Ci Xenon-137 Ci Xenon-138 Ci				**	**	**	**
Krypton-88 Ci				**	**	**	**
Xenon-127 Ci *** **				**	**	**	**
Xenon-133				**	**	**	**
Xenon-133				**	**	**	**
Xenon-133m Ci Xenon-135 Ci Xenon-135 Ci Xenon-135m Ci Xenon-136m Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-139 Ci Xenon-139 Ci Xenon-135 Xenon-135 Ci Xenon-135 Xenon-				**	**	**	**
Xenon-135				**	**	**	**
Xenon-135m Ci				**	**	**	**
Name				**	**	**	**
Codines (1) Iodine-131 Ci 3.06E-05 1.02E-04 2.30E-04 2.83E-04 Iodine-133 Ci 5.29E-04 1.35E-03 2.92E-03 3.34E-03 Iodine-135 Ci **						_	
Iodine-131				**	**	**	**
Iodine-131			_,	L			<u> </u>
Iodine-133							
Particulates (1) Strontium-89 Ci		lodine-131	Ci	3.06E-05	1.02E-04	2.30E-04	2.83E-04
Particulates (1) Strontium-89 Ci		lodine-133	Ci	5.29E-04	1.35E-03	2.92E-03	3.34E-03
Strontium-89 Ci ** ** ** 4.39E-05 Strontium-90 Ci ** <t< td=""><td></td><td>lodine-135</td><td>Ci</td><td>**</td><td>**</td><td>**</td><td>**</td></t<>		lodine-135	Ci	**	**	**	**
Strontium-89 Ci ** ** ** 4.39E-05 Strontium-90 Ci ** <t< td=""><td></td><td>Particulatos (1)</td><td></td><td></td><td></td><td></td><td></td></t<>		Particulatos (1)					
Strontium-90 Ci ** ** ** ** Cesium-134 Ci ** ** ** ** ** Cesium-137 Ci 9.52E-06 5.08E-06 1.00E-05 ** Cobalt-60 Ci 2.72E-04 2.73E-04 6.63E-04 1.02E-03 Cobalt-58 Ci 1.63E-06 2.77E-05 2.98E-04 5.80E-04 Manganese-54 Ci 2.07E-06 ** 2.73E-05 3.76E-05 Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Chromium-51 Ci ** ** ** ** **			Ci	**	**	**	4 39F-05
Cesium-134 Ci **				**	**	**	
Cesium-137 Ci 9.52E-06 5.08E-06 1.00E-05 ** Cobalt-60 Ci 2.72E-04 2.73E-04 6.63E-04 1.02E-03 Cobalt-58 Ci 1.63E-06 2.77E-05 2.98E-04 5.80E-04 Manganese-54 Ci 2.07E-06 ** 2.73E-05 3.76E-05 Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** ** ** Cesium-136 Ci ** ** ** ** ** ** Cesium-136 Ci ** ** ** ** ** ** Chromium-51 Ci ** ** ** ** ** ** ** ** **				**	**	**	**
Cobalt-60 Ci 2.72E-04 2.73E-04 6.63E-04 1.02E-03 Cobalt-58 Ci 1.63E-06 2.77E-05 2.98E-04 5.80E-04 Manganese-54 Ci 2.07E-06 ** 2.73E-05 3.76E-05 Barium-140 Ci ** ** ** ** Lanthanum-140 Ci ** ** ** ** Niobium-95 Ci ** ** ** ** ** Cerium-141 Ci ** ** ** ** ** Cerium-144 Ci ** ** ** ** ** Cesium-136 Ci ** ** ** ** ** ** Chromium-51 Ci ** ** ** ** ** ** ** Zinc-65 Ci 1.50E-06 ** 7.69E-05 3.26E-05 1.44E-04 6.00E-05 ** 4.80E-05 Molybdenum-99 Ci **				9.52F-06	5.08F-06	1.00E-05	**
Cobalt-58 Ci 1.63E-06 2.77E-05 2.98E-04 5.80E-04 Manganese-54 Ci 2.07E-06 ** 2.73E-05 3.76E-05 Barium-140 Ci ** ** ** ** ** Lanthanum-140 Ci ** ** ** ** ** ** Niobium-95 Ci ** *							1.02E-03
Manganese-54 Ci 2.07E-06 ** 2.73E-05 3.76E-05 Barium-140 Ci ** ** ** ** ** Lanthanum-140 Ci ** ** ** ** ** ** Niobium-95 Ci **							
Barium-140 Lanthanum-140 Niobium-95 Cerium-141 Cerium-144 Iron-59 Cesium-136 Chromium-51 Zinc-65 Iron-55 Molybdenum-99 Neodymium-147 Ci							
Lanthanum-140 Niobium-95 Cerium-141 Cerium-144 Ci							
Niobium-95 Ci ** ** ** ** ** ** ** ** ** ** ** ** **		_				_	
Cerium-141 Ci ** ** ** ** Cerium-144 Ci ** ** ** ** Iron-59 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Chromium-51 Ci ** ** ** Zinc-65 Ci 1.50E-06 ** 7.69E-05 3.26E-05 Iron-55 Ci 1.44E-04 6.00E-05 ** 4.80E-05 Molybdenum-99 Ci ** ** ** Neodymium-147 Ci ** ** ** ** Neodymium-147				**	**	**	**
Cerium-144 Ci ** ** ** ** Iron-59 Ci ** ** ** ** Cesium-136 Ci ** ** ** ** Chromium-51 Ci ** ** ** Zinc-65 Ci 1.50E-06 ** 7.69E-05 3.26E-05 Iron-55 Ci 1.44E-04 6.00E-05 ** 4.80E-05 Molybdenum-99 Ci ** ** ** Neodymium-147 Ci ** ** **							
Iron-59							
Cesium-136 Ci ** ** ** ** ** Chromium-51 Ci ** ** ** ** Zinc-65 Ci 1.50E-06 ** 7.69E-05 3.26E-05 Iron-55 Ci 1.44E-04 6.00E-05 ** 4.80E-05 Molybdenum-99 Ci ** ** ** Neodymium-147 Ci ** ** **						_	
Chromium-51 Ci							
Zinc-65 Ci 1.50E-06 ** 7.69E-05 3.26E-05 Iron-55 Ci 1.44E-04 6.00E-05 ** 4.80E-05 Molybdenum-99 Ci ** ** ** ** Neodymium-147 Ci ** ** ** **							
Iron-55 Ci 1.44E-04 6.00E-05 ** 4.80E-05 Molybdenum-99 Ci ** ** ** Neodymium-147 Ci ** ** **							
Molybdenum-99 Ci ** ** ** ** Neodymium-147 Ci ** ** **							
Neodymium-147 Ci ** ** ** **							
Neody/IIIdili-147				l			
Teltium (4) Ci 9 23C±04 5 52C±04 2 00C±01 2 72C±01		Neodymium-147	Ci	**	**	**	<u> </u>
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates, 1.00E-12 μCi/ml for required lodines, and 1.00E-06 μCi/ml for Tritium as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges are included. There were no other batch releases during the reporting period.

Nuclides Released 1st Quarter 2nd Quarter 2nd Quarter 4th Quarter	Unit 1 X	Unit 2	-	Reporting	Period: Janu	ary - December 2016				
Nuclides Released Set Quarter Set Quar		GASEOUS EFFLU	ENTS - ELEVAT	ED RELEASE						
### Argon-41	Batch Mode (2)									
Argon-41 Krypton-85 Ci Krypton-86 Ci Krypton-87 Ci Krypton-88 Ci Xenon-127 Ci Xenon-131m Ci Xenon-133 Ci Xenon-133 Ci Xenon-135 Ci Xenon-135 Ci Xenon-136 Ci Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-138 Ci Xenon-137 Ci Xenon-138 Ci Xeno	Nuclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter				
Krypton-85 Krypton-87 Ci Krypton-87 Ci Krypton-88 Ci Krypton-88 Ci Xenon-127 Xenon-131m Xenon-133m Ci Xenon-133m Ci Xenon-135 Ci Xenon-136 Ci Xenon-137 Ci Xenon-137 Ci Xenon-137 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xenon-139 Ci Xenon-139 Ci Xenon-130 Ci Xenon-131 Ci Xenon-132 Ci Xenon-133 Ci Xenon-134 Ci Xenon-134 Ci Xenon-135 Ci Xenon-136 Ci Xenon-136 Ci Xenon-138 Ci Xenon-	Fission Gases (1)									
Krypton-85m CI	Argon-41	Ci	**	**	**	**				
Krypton-87	Krypton-85	Ci	**	**	**	**				
Krypton-87 Krypton-88 Ci Xenon-127 Ci Xenon-131m Ci Xenon-133 Ci Xenon-133m Ci Xenon-135m Ci Xenon-135m Ci Xenon-137 Ci Xenon-138 Ci Xenon-138 Ci Xenon-138 Ci Xenon-139 Ci Xe		Ci	**	**	**	**				
Krypton-88	Krypton-87	Ci	**	**	**	**				
Xenon-127		Ci	**	**	**	**				
Xenon-1338		Ci	**	**	**	**				
Xenon-133m Ci	Xenon-131m	Ci	**	**	**	**				
Xenon-135	Xenon-133	Ci	**	**	**	**				
Xenon-135	Xenon-133m	Ci	**	**	**	**				
Xenon-137			**	**	**	**				
Name	Xenon-135m	Ci	**	**	**	**				
Dodines (1) Iodine-131 Ci			**	**	**	**				
Iodine-131			**	**	**	**				
Iodine-131	lodines (1)									
Dodine-135 Ci		Ci	**	**	**	**				
Particulates (1)	lodine-133	Ci	**	**	**	**				
Strontium-89 Ci **	lodine-135	Ci	**	**	**	**				
Strontium-90 Ci										
Cesium-134	Strontium-89	Ci								
Cesium-137 Ci	Strontium-90	Ci								
Cobalt-60 Cobalt-58 Ci	Cesium-134	. Ci	**	**	**	**				
Cobalt-58 Manganese-54 Barium-140 Ci *** *** *** *** *** *** ***	Cesium-137	Ci	**	**	**	**				
Manganese-54 Barium-140 Ci	Cobalt-60	Ci	**	**	**	**				
Barium-140 Ci	Cobalt-58	Ci								
Lanthanum-140 Ci Niobium-95 Ci ** ** ** ** ** ** ** Cerium-141 Ci ** ** ** ** ** ** ** ** **	Manganese-54	Ci	**	**	**	**				
Niobium-95		Ci	**	**	**	**				
Cerium-141	Lanthanum-140	Ci	**	**	**	**				
Cerium-144 Ci	Niobium-95	Ci	**	**	**	**				
Iron-59	Cerium-141	Ci	**	**	**	**				
Cesium-136	Cerium-144	Ci	.**	**	**	**				
Cesium-136 Ci **	Iron-59	Ci	**	**	**	**				
Chromium-51	Cesium-136	Ci	**	**	**	**				
Zinc-65			**	**	**	**				
Iron-55 Ci ** ** ** ** Molybdenum-99 Ci ** ** ** ** Neodymium-147 Ci ** ** ** **			**	**	**	**				
Molybdenum-99 Ci ** ** ** ** Neodymium-147 Ci ** ** ** **			**	**	**	**				
Neodymium-147 Ci ** ** ** **			**	**	**	**				
Tritium (1) Ci ** ** ** **			**	**	**	**				

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates, 1.00E-12 μCi/ml for required lodines, and 1.00E-06 μCi/ml for Tritium as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges, if any, are included. There were no other batch releases during the reporting period.

		ENTS - GROUND			
ound level releases are determined in ac	cordance with t	the Off-Site Dose		nual and Chemi itinuous Mode	stry procedure
			Cor	itinuous Mode	
uclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Fission Gases (1)			-		
Argon 41	Ci	**	**	**	**
Argon-41	Ci	**	**	**	**
Krypton-85	Ci	**	**	**	**
Krypton-85m		**	**	**	**
Krypton-87	Ci		**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci	**	**	**	**
Xenon-131m	Ci	**	**	** :	**
Xenon-133	Ci		**	**	**
Xenon-133m	Ci	**	**	**	**
Xenon-135	Ci		**	**	**
Xenon-135m	Ci	**			**
Xenon-137 Xenon-138	Ci Ci	**	**	**	**
. Xenon-136	Ci	L	l	<u> </u>	<u> </u>
lodines (1)					
lodine-131	Ci	**	**	**	**
lodine-133	Ci	**	**	**	**
lodine-135	Ci	**	**	**	**
Particulates (1)					
Strontium-89	Ci	**	**	**	**
Strontium-90	Ci	**	**	**	**
	Ci		**	**	**
Cesium-134		**	**	**	**
Cesium-137	Ci	**	**	**	**
Cobalt-60	Ci	**	**	**	**
Cobalt-58	Ci	**	**	**	**
Manganese-54	Cì	**	**	**	**
Barium-140	Ci	**	**	**	**
Lanthanum-140	Ci			**	**
Niobium-95	Ci	**	**		
Cerium-141	Ci	**		**	**
Cerium-144	Ci	**	**	**	**
Iron-59	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	**
Chromium-51	Ci	**	**	**	**
Zinc-65	Ci	**	**	**	**
Iron-55	Ci	**	**	**	**
Molybdenum-99	Ci	**	**	**	**
Neodymium-147	Ci	**	**	**	**
<u>Tritium (1)</u>	Ci	6.78E+00	9.62E+00	1.14E+01	5.93E+00

GAS	EOUS EFFLU	ENTS - GROUND	LEVEL RELEA	SES	
evel releases are determined in a	ccordance with	the Off-Site Dose	Calculation Mar	nual and Chemi	stry procedures
				Batch Mode	
s Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Fission Gases (1)					
Argon-41	Ci	**	**	**	**
Krypton-85	Ci	**	**	**	**
Krypton-85m	Ci	**	**	**	**
Krypton-87	Ci	**	**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci	**	**	**	**
Xenon-131m	Ci	**	**	**	**
		**	**	**	**
Xenon-133	Ci	**	**	**	**
Xenon-133m	Ci		l	**	**
Xenon-135	Ci	**	**		
Xenon-135m	Ci	**	**	**	**
Xenon-137	Ci	**	**	**	**
Xenon-138	Ci	**	**	**	**
lodines (1)					
lodine-131	Ci	**	**	**	**
lodine-133	Ci	**	**	**	**
lodine-135	Ci	**	**	**	**
Particulates (1)					
Strontium-89	Ci	**	**	**	**
Strontium-90	Ci	**	**	**	**
Cesium-134	Ci	**	**	**	**
Cesium-137	Ci	**	**	**	**
Cobalt-60	Ci	**	**	**	**
		**	**	**	**
Cobalt-58	Ci	**	**	**	**
Manganese-54	Ci	**	**	**	**
Barium-140	Ci				**
Lanthanum-140	Ci	**	**	**	
Niobium-95	Ci	**	**	**	**
Cerium-141	Ci	**	**	**	**
Cerium-144	Ci	**	**	**	**
Iron-59	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	**
Chromium-51	Ci	**	**	**	**
Zinc-65	Ci	**	**	**	**
Iron-55	Ci	**	**	**	**
Molybdenum-99	Ci	**	**	**	**
Neodymium-147	Ci	**	**	**	**
<u>Tritium (1)</u>	Ci	**	**	**	**

Unit 1 X Unit 2				Reporting	Period: Janua	ary - December 2016			
LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES (1)									
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Est. Total Error, %			
A. <u>Fission & Activation Products</u> 1. Total Release (not including Tritium, gases, alpha) 2. Average diluted concentration during reporting period	Ci µCi/ml	No Releases	No Releases	No Releases	No Releases	5.00E+01			
B. <u>Tritium</u>									
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01			
Average diluted concentration during the reporting period	μCi/ml	No Releases	No Releases	No Releases	No Releases				
C. Dissolved and Entrained Gases			_						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01			
Average diluted concentration during the reporting period	μCi/ml	No Releases	No Releases	No Releases	No Releases				
D. Gross Alpha Radioactivity									
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01			
E. <u>Volumes</u>									
1. Prior to Dilution	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01 ·			
Volume of dilution water used during release period	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01			
Volume of dilution water available during reporting period - Cooling Water	Liters	1.31E+11	1.29E+11	1.37E+11	1.32E+11	5.00E+01			
F. Percent of Tech. Spec. Limits									
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	No Releases	No Releases	No Releases	No Releases				
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	No Releases	No Releases	No Releases	No Releases				
Percent of Quarterly Organ Dose Limit (5 mrem)	%	No Releases	No Releases	No Releases	No Releases				
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	No Releases	No Releases	No Releases	No Releases				
Percent of 10CFR20 Concentration Limit	%	No Releases	No Releases	No Releases	No Releases				
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 µCi/ml)	%	No Releases	No Releases	No Releases	No Releases				
Concentrations less than the lower limit of dete	ction of the	counting system	used are indica	ated with a doub	ole asterisk.				

	LIQUID E	FFLUENTS RELE	ASED						
Batch Mode (1),(2)									
		4-4 0			451- 0				
uclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter				
Nuclides Released		•							
Strontium-89	Ci	No Releases	No Releases	No Releases	No Releases				
Strontium-90	Ci	No Releases	No Releases	No Releases	No Releases				
Cesium-134	Ci	No Releases	No Releases	No Releases	No Releases				
Cesium-137	Ci	No Releases	No Releases	No Releases	No Releases				
lodine-131	Ci	No Releases	No Releases	No Releases	No Releases				
Cobalt-58	Ci	No Releases	No Releases	No Releases	No Releases				
Cobalt-60	Ci	No Releases	No Releases	No Releases	No Releases				
Iron-59	Ci	No Releases	No Releases	No Releases					
Zinc-65	Ci	No Releases	No Releases	No Releases	No Releases				
Manganese-54	Ci	No Releases	No Releases	No Releases	No Releases				
Chromium-51	Ci	No Releases	No Releases	No Releases	No Releases				
7	0'				 _				
Zirconium-95	Ci	No Releases	No Releases	No Releases	No Releases				
Niobium-95	Ci	No Releases	No Releases	No Releases	No Releases				
Molybdenum-99	Ci	No Releases	No Releases	No Releases	No Releases				
Barium-140	Ci	No Releases	No Releases	No Releases	No Releases				
Lanthanum-140	Ci	No Releases	No Releases	No Releases	No Releases				
Cerium-141	Ci	No Releases	No Releases	No Releases	No Releases				
lodine-133	Ci	No Releases	No Releases	No Releases	No Releases				
. Iron-55	Ci	No Releases	No Releases	No Releases	No Releases				
Cerium-144	· Ci	No Releases	No Releases	No Releases	No Releases				
Cesium-136	Ci	No Releases	No Releases	No Releases	No Releases				
Copper-64	Ci	No Releases	No Releases	No Releases	No Releases				
Manganese-56	Ci	No Releases	No Releases	No Releases	No Releases				
Nickel-65	Ci	No Releases	No Releases	No Releases	No Releases				
Sodium-24	Ci								
Sodium-24	G	No Releases	No Releases	No Releases	No Releases				
Dissolved or Entrained Gases	Ci	No Releases	No Releases	No Releases	No Releases				
Tritium	Ci	No Releases	No Releases	No Releases	No Releases				

⁽¹⁾ No continuous mode release occurred during the report period as indicated by effluent sampling. There were no Radwaste Batch Releases.

⁽²⁾ Concentrations less than the lower limit of detection of the counting system used have been verified for sampled effluents. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified. Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk.

Unit 1 X	Unit 2		-	Reporting Per	iod: January - De	ecember 2016
	SOLID W	ASTE AND IRRA	DIATED FUEL SH	IPMENTS		
A1. TYPE		<u>Volume</u> (m³)			Activity (1) (Ci)	
		<u>Class</u>		i	<u>Class</u>	
	Α	В	С	A	В	С
a.1 Spent Resin (Dewatered)	2.00E+01	0.00E+00	0.00E+00	4.86E+01	0.00E+00	0.00E+00
a.2 Filter Sludge	0.00E+00	8.13E+00	0.00E+00	0.00E+00	1.17E+03	0.00E+00
a.3 Concentrated Waste	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	2.00E+01	8.13E+00	0.00E+00	4.86E+01	1.17E+03	0.00E+00
		T				
b.1 Dry Compressible Waste	1.80E+02	0.00E+00	0.00E+00	7.70E+00	0.00E+00	0.00E+00
b.2 Dry Non-Compressible Waste (Contaminated Equipment)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Totals	1.80E+02	0.00E+00	0.00E+00	7.70E+00	0.00E+00	0.00E+00
						
c. Irradiated Components, Control Rods, etc.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
d. Other (to vendor for processing) 	 		· · · · · · · · · · · · · · · · · · ·		
d.1 #13 Sump Liner	1.42E+00	0.00E+00	0.00E+00	8.17E+00	0.00E+00	0.00E+00
) The estimated total error is 5.0E						

Unit 1 X	Unit 2	Reporting Pe	eriod: January - December 2016
	SOLID WASTE AND IRR	ADIATED FUEL SHIPMENTS	
A1. TYPE	Container	<u>Package</u>	Solidification Agent
a.1 Spent Resin	Poly Liner	General Design	None
a.2 Filter Sludge	Poly Liner	Type B	None
b.1 Dry Compressible Waste	Seavan	General Design	None
b.2 Dry Non-Compressible Waste (contaminated equipment)	N/A	N/A	N/A
c. Irradiated Components,			1
Control Rods	N/A	N/A	N/A
d. Other (To vendor for processing)			
d.1 Sump Liner	Poly Liner	General Design	None

Unit 1 X Unit 2	<u>R</u>	Reporting Period: January - December 2016
SOLID WASTE AN	D IRRADIATED FUEL SHIPME	ENTS
A2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (BY T)	(PE OF WASTE)	
a. Spent Resins, Filter Sludges, Concentrated Waste		
<u>Nuclide</u> Mn-54 Fe-55 Co-60 Ni-63 Cs-137	Percent 1.99% 28.46% 58.03% 1.09% 9.31%	<u>Curies</u> 2.41E+01 3.46E+02 7.05E+02 1.32E+01 1.13E+02
b. Dry Compressible Waste, Dry Non-Compressible Waste (Control Nuclide	Percent	<u>Curies</u>
Mn-54 Fe-55	1.90% 51.21%	1.47E-01 3.94E+00
Co-60	41.42%	3.19E+00
Ni-63	1.40%	1.08E-01
Cs-137	1.43%	1.10E-01
c. Irradiated Components, Control Rods: There were no shipn	nents.	
<u>Nuclide</u> N/A		<u>Percent</u> N/A
d. Other: (To vendor for processing) 1. Sump Liner		
i. Sump Liner Nuclide	<u>Percent</u>	Curies
H-3	16.75%	1.64E+00
Fe-55	31.07%	3.05E+00
Co-60	47.38%	4.65E+00
Cs-137	4.41%	4.32E-01

Unit 1	x	Unit 2		Reporting Period: January - December 2016
		SOLID WASTE AND I	RRADIATED FUEL SHIP	MENTS
A3. SOLID WA	STE DISPOSITIO	N		
No seed and a	· Oh:	M 4. 47		
	Shipments	Mode of Transp		<u>Destination</u>
	<u> </u>	Truck, high		Bear Creek
	4	Truck, high	vay	Clive
		·····		
B. IRRADIATE	D FUEL SHIPMEN	NTS (Disposition)		
_ ;				
	Shipments	Mode of Transp	ortation	<u>Destination</u>
	0	N/A		N/A
D. SEWAGE V	VASTES SHIPPE	TO A TREATMENT FACILITY	FOR PROCESSING AN	D BURIAL
There were no during the repo		age sludge with detectible quant	ties of plant-related nucli	des from NMP to the treatment facility

Unit 1	X Unit 2		Reporting Period: January - December 2016
		GES TO THE OFF-SITE DOSE CA	<u> </u>
he follow eriod.	ing changes were mad	le to the Unit 1 Off-Site Dose Calcu	lation Manual (ODCM) during the reporting
		REVISION 35	
Page #	New/Amended Section #	Description of Change	Reason For Change
All	All	Assigned procedure number CY-NM- 170-301 per CY-AA-170-3100.	Align with Fleet procedure specifications.
Cover	Cover	Replaced CENG logo with Exelon	Align with Fleet procedure specifications.
II 16	2.1.5.4 Sampling Frequency/Sample Analysis	Changed 2.1.5.4 paragraph 2 to allow for performing tritium analyses on-site in addition to off-site.	Allow for on-site analysis.
II 17	2.1.5.6 Gaseous Radwaste Treatment System Operation	Removed specific values for non- gamma emitting nuclides to be used when performing dose calculations and actual values are not yet available.	Current scaling factors are based on data from the 1980's and are not indicative of recent performance. Inserted language from Unit 2 ODCM stating dose contributions would be calculated using concentration estimates. Actual values will be controlled by individual procedures to allow for changes due to plant conditions.
II 67	TABLE 3-23 PARAMETERS FOR THE EVALUATION OF DOSES TO REAL MEMBERS OF THE PUBLIC FROM GASEOUS AND LIQUID EFFLUENTS	Corrected Reg. Guide Reference for Shoreline Pathway	Digit was missing from the number.
II 84	C.2 Ground Plane Pathway	Reformatted equation using equation editor.	Update to format
II 85	C.3 Grass-(Cow or Goat)-Milk Pathway	Reformatted equation using equation editor.	Update to format
II 86	C.3 Grass-(Cow or Goat)-Milk Pathway	Reformatted equation using equation editor.	Update to format
II 87	C.4 Grass-Cow-Meat Pathway	Reformatted equation using equation editor.	Update to format
II 88	C.5 Vegetation Pathway	Reformatted equation using equation editor.	Update to format

Unit 1	х	Unit 2	Reporting Period: January - December 2016
	SUMMA	RY OF CHAN	GES TO THE PROCESS CONTROL PROGRAM (PCP)
There were no	were no changes to the NMP1 Process Control Program (PCP) during the reporting period.		
	,		
·			

Unit 1 X	Unit 2	Reporting Period: January - December 2016
	SUMMARY	OF NON-FUNCTIONAL MONITORS
Monitor Dates Monitor was Non-Functional Cause and Corrective		Cause and Corrective Actions
Liquid Radwaste Discharge Monitors 11 and 12	January 1, 2016 to December 31, 2016	These monitors were intentionally allowed to exceed their quarterly functional test and annual calibration frequency, as no discharges are planned or expected. This condition is allowed as long as blank flanges are installed in the discharge line, precluding any unmonitored discharge. No liquid waste discharges were performed during 2016. This non-functionality is tracked in Equipment Status Log (ESL) 2006-0192.

Unit 1 <u>X</u>	Unit 2	Reporting Period: January - December 2016
DO	SES TO MEMBERS OF THE PUBLIC DUE TO THEIR A	ACTIVITIES INSIDE THE SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 1 (NMP1) liquid and gaseous effluents has been conducted for the period January through December 2016.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2016, the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

Dose Pathways

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP1 stack and emergency condenser vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP1 Stack and Emergency Condenser Vent.
- Direct radiation pathway; dose resulting from the operation of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP1 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

Unit 1	X	Unit 2		Reporting Period: January - December 2016
	DO	SES TO MEMBERS OF 1	HE PUBLIC DUE TO THEIR A	ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2016 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time period)
- Average Cs-137 concentration = 1.15E-01 pCi/g

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP1 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2016 calculated using the following input parameters for gaseous effluents released from both the NMP1 Stack and Emergency Condenser Vent for the time period exposure is received:

NMP 1 Stack:

Variable	Fisherman ¹
X/Q (s/m ³)	8.90E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	5.62E+06
Mn-54 (pCi.sec)	2.75E+00
C-14 (pCi/sec)2	2.80 E+05
Fe-55 (pCi/sec)	4.58E+00
Co-58 (pCi/sec)	3.84E+01
Co-60 (pCi/sec)	8.28E+01
Zn-65 (pCi/sec)	4.64E+00
Sr-89 (pCi/sec)	1.86E+00
I-131 (pCi/sec)	2.61E+01
I-133 (pCi/sec)	3.22E+02
Cs-137 (pCi/sec)	6.40E-01

Unit 1 <u>X</u>	Unit 2	Reporting Period: January - December 2016
	DOSES TO MEMBERS OF THE PUB	LIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

NMP1 Emergency Condenser Vent:

Variable	Fisherman ¹
X/Q (s/m³)	6.63E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	1.13E+06

- The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Emergency Condenser Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.
- 2 C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP1 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2016 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.18 E-03
Exposure time (hours)	312

Total doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

Unit 1	_ <u>X</u> _	Unit 2	Reporting Period: January - December 2016
	DO	SES TO MEMBERS OF THE PUBLIC DUE TO THEIR A	CTIVITIES INSIDE THE SITE BOUNDARY

Dose Received By Hypothetical Maximum Exposed Member of the Public Inside the Site Boundary

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP1 during 2016:

TABLE 1 Exposure Pathway Annual Dose

Exposure Pathway	Dose Type	Fisherman (mrem)
F-4101	Whole Body	1.80 E-03
External Ground	Skin of Whole Body	2.10 E-03
	Whole Body	2.89 E-03
Inhalation	Maximum Organ	Lung: 3.06 E-03
	Thyroid	2.89 E-03
Direct Radiation	Whole Body	0.37

Based on these values the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

TABLE 2 Annual Dose Summary

Total Annual Dose for 2016	Fisherman (mrem)
Total Whole Body	3.74 E-01
Skin of Whole Body	2.10 E-03
Maximum Organ	Lung: 3.06 E-03
Thyroid	2.89 E -03

Unit 1 _	X	Unit 2	Reporting Period: January - December 2016
	DOS	ES TO MEMBERS OF THE PUBLIC DUE TO THEIR	ACTIVITIES OUTSIDE THE SITE BOUNDARY

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2016 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 1 (NMP1), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body
- < 25 mRem any organ (except thyroid)
- < 75 mRem thyroid

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have concentrated in vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP facilities (including the Independent Spent Fuel Storage Installations (ISFSI)).

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP1 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2016 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2016; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2016.

Unit 1	<u>x</u>	Unit 2	Reporting Period: January - December 2016
	DOS	SES TO MEMBERS OF THE PUBLIC DUE TO THEIR A	CTIVITIES OUTSIDE THE SITE BOUNDARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The dose for 2016 is calculated from actual analysis results of environmental vegetation samples taken near the most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2016; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2016.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in plant gaseous effluents.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP1 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2016; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2016.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. Actual meteorological data was used to calculate doses to the likely most exposed Member of the Public. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2016 provides a total dose to the whole body and maximum organ dose for this pathway.

Carbon-14 Dose Pathways Resulting from Gaseous Effluents

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2016 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010. The following methodology was used in estimating C-14 gaseous release activity and dose components for the 2016 ARERR.

EPRI methodology for estimating C-14 production rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that ~95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

Unit 1	<u> </u>	Unit 2	Reporting Period: January - December 2016
	DOS	ES TO MEMBERS OF THE PUBLIC DUE TO THEIR A	CTIVITIES OUTSIDE THE SITE BOUNDARY

For NMP1 and NMP2, C-14 gaseous dose calculations in the site ARERR are made using the following assumptions for each unit: (1) continuous release of the estimated C-14 generated during power operation based on the number of Effective Full Power Days (EFPDs) for the period, (2) maximum C-14 activity from literature values cited in EPRI Report 1021106, and (3) typical fraction as carbon dioxide for gaseous releases from literature values also cited in EPRI Report 1021106.

Equation 1 estimates the maximum annual production of C-14, PR_{MAX}, for each BWR unit.

$$PR_{MAX} = 5.1 \bullet MWT / 1000$$
 [Eq 1]

Where:

5.1 = BWR Normalized Production (Ci/GWt-yr)

MWT = MegaWatts Thermal (MWt)

1000 = Conversion Factor (MWt to GWt)

Equation 2 estimates the C-14 activity released, A_{C-14} , into the gaseous pathway during the time period for each BWR unit.

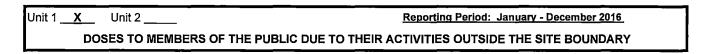
$$A_{C-14} = PR_{MAX} \bullet 0.99 \bullet EFPD / 365, Ci (for time period)$$
 [Eq 2]

Where:

 PR_{MAX} = maximum annual production rate of C-14

0.99 = fraction of C-14 in BWR gaseous pathway releases (maximum

literature value in EPRI Report 1021106; also Table 1)


EFPD = number of effective full power days for the unit during the time

period; e.g., quarterly or yearly (Table 1)

and a supply a supply

[Eq 3]

ATTACHMENT 11

Equation 3 estimates the C-14 activity released in carbon dioxide form, $A_{C-14, CO2}$, into the gaseous pathway during the time period for each BWR unit.

 $PR_{MAX} \bullet 0.99 \bullet 0.95 \bullet EFPD / 365$, Ci (for time period)

For each BWR unit, the 2016 estimated C-14 activity releases (total and carbon dioxide chemical form) are summarized in Table 1.

Table 1
2016 BWR Estimated C-14 Gaseous Releases

BWR	Gaseous Release Fraction ^(a)	CO ₂ Form Release Fraction ^(b)	EFPD Operation	Max. Annual Prod. Rate (Eq 1)	2016 Total Release (Eq 2)	2016 CO2 Release (Eq 3)
NMP1	0.99	0.95	362.1 EFPD (98.9%)	9.44 Ci/yr	9.27 Ci	8.80 Ci
NMP2	0.99	0.95	328.13 EFPD (89.7%)	20.34 Ci/yr ^(c)	18.1 Ci	17.2 Ci
JAFNPP	0.99	0.95	296.4 EFPD (81.0%)	12.93 Ci/yr	10.4 Ci	9.88 Ci

- (a) Maximum literature values from EPRI Report 1021106.
- (b) Typical value from EPRI Report 1021106.

A C-14, CO2

(c) NMP2 Reactor Power Rating increased to 3988 Megawatts thermal.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Unit 1	<u>x</u>	Unit 2	Reporting Period: January - December 2016
	DOS	SES TO MEMBERS OF THE PUBLIC DUE TO THEIR	ACTIVITIES OUTSIDE THE SITE BOUNDARY

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2016, the closest residence and the critical downwind residence are at the same location.

Table 2

Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2016

Exposure Pathway	Dose Type	Dose (mrem)	
Figh and Wassetstian Communication	Total Whole Body	No Dose	
Fish and Vegetation Consumption	Total Maximum Organ	No Dose	
Shoreline Sediment	Total Whole Body	No Dose	
Snoreline Sediment	Total Skin of Whole Body	No Dose	
	Total Whole Body	5.86 E-03	
Gaseous Effluents (excluding C-14)	Thyroid	1.20 E-02	
(excluding C-14)	Maximum Organ	Thyroid: 1.20 E-02	
Gaseous Effluent	Total Whole Body	3.50 E-01	
(C-14)	Maximum Organ	Bone: 1.75 E+00	
Direct Radiation	Total Whole Body	0.92	

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2016 is as follows:

Total Whole Body: 1.28 E+00 mrem
 Total Thyroid: 1.20 E-02 mrem
 Maximum Organ: Bone: 1.75 E+00 mrem

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAFNPP facilities. The maximum organ dose (Bone: 1.75 mrem), maximum thyroid dose (0.012 mrem) and the maximum whole body dose (1.28 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

Unit 1 X Unit 2 Reporting Period: January - Decemb				nuary - December 2016
Well Identification Number	# Samples Collected	# Positive Samples	Minimum Concentration (pCi/l)	Maximum Concentration (pCi/l
GMX-MW1*	4	0	<161	<198
MW-1	4	0	<157	<206
MW-5	4	0	<160	<213
MW-6	4	0	<156	<212
MW-7	4	0	<162	<209
MW-8	4	1	160	<195
MW-9 ¹	4	1	<175	220
MW-10 ¹	4	0	<175	<200
MW-11	4	0	<166	<198
MW-12	4	0	<108	<198
MW-13	4	0	<173	<200
MW-14*	4	0	<170	<199
MW-15	4	4	251	429
MW-16	4	0	<108	<199
MW-17	4	2	<108	261
MW-18	4	0	<172	<192
MW-19	4	0	<173	<203
MW-20	4	0	<109	<202
MW-21	4	1	<176	368
NMP2 MAT 2,3	4	3	<147	201
PZ-1	4	0	<155	<205
PZ-2	4	0	<159	<197
PZ-3	4	0	<149	<212
PZ-4	4	4	199	233
PZ-5	4	4	213	323
PZ-6	4	3	232	292
PZ-7	4	4	496	749
PZ-8	4	0	<157	<204
PZ-9*	4	0	<154	<205

Notes:

- * Control Location
- ¹ Sentinel well location
- ² NMP2 Groundwater Depression Cone
- ³ Samples collected from storm drain system which includes precipitation

NINE MILE POINT NUCLEAR STATION - UNIT 2 RADIOACTIVE EFFLUENT RELEASE REPORT

January – December 2016

NINE MILE POINT NUCLEAR STATION - UNIT 2

RADIOACTIVE EFFLUENT RELEASE REPORT

JANUARY - DECEMBER 2016

SUPPLEMENTAL INFORMATION

Facility: Nine Mile Point Unit 2 Licensee: Nine Mile Point Nuclear Station, LLC

1. TECHNICAL SPECIFICATION/ODCM LIMITS

A) FISSION AND ACTIVATION GASES

- 1. The dose rate limit of noble gases released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 500 mrem/year to the whole body and less than or equal to 3000 mrem/year to the skin.
- 2. The air dose from noble gases released in gaseous effluents from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and during any calendar year to less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

B&C) TRITIUM, IODINES AND PARTICULATES, HALF LIVES > 8 DAYS

- 1. The dose rate limit of Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days, released in gaseous effluents from the site to areas at or beyond the site boundary shall be less than or equal to 1500 mrem/year to any organ.
- 2. The dose to a member of the public from Iodine-131, Iodine-133, Tritium and all radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from Nine Mile Point Unit 2 to areas at or beyond the site boundary shall be limited during any calendar quarter to less than or equal to 7.5 mrem to any organ, and during any calendar year to less than or equal to 15 mrem to any organ.

D) LIQUID EFFLUENTS

- 1. Improved Technical Specifications (ITS) limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001-20.2402, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcuries/ml total activity.
- 2. The dose or dose commitment to a member of the public from radioactive materials in liquid effluents released from Nine Mile Point Unit 2 to unrestricted areas shall be limited during any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and during any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.

2. MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY

Described below are the methods used to measure or approximate the total radioactivity and radionuclide composition in effluents.

A) FISSION AND ACTIVATION GASES

Noble gas effluent activity is determined by an on-line scintillation detector (calibrated against gamma isotopic analysis of a 4.0L Marinelli grab sample) of an isokinetic sample stream.

B) IODINES

Iodine effluent activity is determined by gamma spectroscopic analysis (at least weekly) of charcoal cartridges sampled from an isokinetic sample stream.

C) PARTICULATES

Activity released from the main stack and the combined Radwaste/Reactor Building vent is determined by gamma spectroscopic analysis (at least weekly) of particulate filters sampled from an isokinetic sample stream and composite analysis of the filters for non-gamma emitters.

D) TRITIUM

Tritium effluent activity is measured by liquid scintillation or gas proportional counting of monthly samples taken with an air sparging/water trap apparatus.

E) LIQUID EFFLUENTS

Isotopic contents of liquid effluents are determined by isotopic analysis of a representative sample of each batch and composite analysis of non-gamma emitters.

F) SOLID EFFLUENTS

Isotopic contents of waste shipments are determined by gamma spectroscopy analyses of a representative sample of each batch. Scaling factors established from primary composite sample analyses conducted off-site are applied, where appropriate, to find estimated concentration of non-gamma emitters. For low activity trash shipments, curie content is estimated by dose rate measurement and application of appropriate scaling factors.

G) C-14

The production of C-14 and the effluent dose consequences are estimates based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010 and NUREG-0016, Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code).

3. METEOROLOGICAL DATA

An annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distribution of wind speed, wind direction, and atmospheric stability. In lieu of submission with the Radiological Effluent Release Report, the licensee is exercising the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

ATTACHMENT 1 SUMMARY DATA

Unit 1	Unit 2 X	Reporting Period: January - December 2016
Liquid Efflu	ients:	
ODCM Regi	uired Maximum Effluent Concentration (MEC) = 10 x 100	SER20 1001 - 20 2402 Appendix B. Table 2. Column 2
ODOW Neq	dired Waximum Emdent Concentration (WEC) = 70 x 100	51 125.1501 - 25.2402, Appendix B, Table 2, Column 2
	Average MEC - µCi/ml (Qtr. 1) = NO RELEASE	S Average MEC - μCi/ml (Qtr. 3) = NO RELEASES
	Average MEC - µCi/ml (Qtr. 2) = NO RELEASE	S Average MEC - μCi/ml (Qtr. <u>4</u>) = NO RELEASES
		·
Average En	ergy (Fission and Activation gases - MEV):	
	3, (
	=	_
	Qrtr. 1: $E_{\gamma} = 1.59E-01$	Eβ = <u>2.53E-01</u>
	Qrtr. $\underline{2}$: $\overline{E}\gamma$ = $\overline{N/A}$ Qrtr. $\underline{3}$: $\overline{E}\gamma$ = $\overline{N/A}$	$\tilde{E}_{\beta} = \frac{N/A}{N}$
	$Qrtr. \underline{3}: \underline{E}\gamma = \underline{N/A}$	$\bar{E}_{\beta} = \frac{N/A}{N}$
	Qrtr. $\underline{4}$: $\overline{E}\gamma$ = N/A	$\bar{E}_{\beta} = N/A$
Liquid:		
Liquidi		
	Number of Batch Releases	0
	Total Time Period for Batch Releases (hrs)	0.0
	Maximum Time Period for a Batch Release (hrs)	0.0
	Average Time Period for a Batch Release (hrs) Minimum Time Period for a Batch Release	0.0
	Minimum Time Feriod for a Batch Release	0.0
		_
	Total volume of water used to dilute the liquid	<u>1st 2nd 3rd 4th</u>
	during the release period (L)	N/A N/A N/A N/A
	Total volume of water available to dilute the liquid	
	effluent during the report period (L)	1.18E+10
Gasoous (F	Emergency Condenser Vent) "Not applicable for Unit	2"
Juseous (E	inorgency condenser venty not applicable for Olit	
,	Number of Batch Releases	N/A
	Total Time Period for Batch Releases (hrs)	N/A
	Maximum Time Period for a Batch Release (hrs)	N/A
	Average Time Period for a Batch Release (hrs)	N/A N/A
	Minimum Time Period for a Batch Release	N/A
Cassaus (E	Primary Containment Purge)	
Gaseous (F	Timary Containment Furge)	
	Number of Batch Releases	15
	Total Time Period for Batch Releases (hrs)	443.0
	Maximum Time Period for a Batch Release (hrs)	157.1
	Average Time Period for a Batch Release (hrs)	29.5
	Minimum Time Period for a Batch Release (hrs)	4.4
	(,,,,,	

ATTACHMENT 1 SUMMARY DATA

Unit 1	Unit 2 X	Reporting Period: January - December 2016
Abnormal Release	s:	
A. Liquids:		
	Number of Releases 0 Total Activity Released N/A Ci	
B. Gaseous:		
	Number of Releases 0 Total Activity Released N/A Ci	

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES, ELEVATED AND GROUND LEVEL						
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Est. Total Error, %
A. Fission & Activation Gases						
1. Total Release	Ci	7.18E-02	0.00E+00	0.00E+00	0.00E+00	5.00E+01
Average Release Rate	μCi/sec	9.13E-03	0.00E+00	0.00E+00	0.00E+00	
3. <u>lodines</u>						
1. Total lodine - 131	Ci	2.31E-04	7.49E-05	6.37E-06	1.74E-05	3.00E+01
2. Average Release Rate for Peri	od µCi/sec	2.94E-05	9.53E-06	8.11E-07	2.21E-06	
2 Destinutation						
C. <u>Particulates</u> 1. Particulates with Half-lives>8da	avs Ci	3.70E-04	6.05E-04	5.54E-05	3.66E-05	3.00E+01
Average Release Rate for Peri		4.71E-05	7.70E-05	7.04E-06	4.66E-06	0.00L·01
Gross Alpha Radioactivity	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.50E+01
D. <u>Tritium</u>	6 :	4 005-04	4.405:04	0.405:04	0.445.04	F 00F : 04
 Total Release Average Release Rate for Peri 	Ci od µCi/sec	1.32E+01 1.68E+00	1.46E+01 1.86E+00	2.16E+01 2.75E+00	3.41E+01 4.34E+00	5.00E+01
E. <u>Percent of Tech. Spec. Limits</u> <u>Fission and Activation Gases</u>						
Percent of Quarterly Gamma Air Dose 5 mR)	e Limit %	2.30E-05	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Beta Air Dose Lin mrad)	mit (10 %	2.02E-06	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Gamma Air Dose L Date (10 mR)	imit to %	1.15E-05	1.15E-05	1.15E-05	1.15E-05	
Percent of Annual Beta Air Dose Limit Date (20 mrad)	t to %	1.01E-06	1.01E-06	1.01E-06	1.01E-06	
Percent of Whole Body Dose Rate Lir mrem/yr)	nit (500 %	8.97E-07	0.00E+00	0.00E+00	0.00E+00	
Percent of Skin Dose Rate Limit (3000 mrem/yr)	O %	1.92E-07	0.00E+00	0.00E+00	0.00E+00	
Tritium, lodines, and Particulates (with ives greater than 8 days)	n haif-					
Percent of Quarterly Dose Limit (7.5 r	nrem) %	6.57E-02	2.93E-02	7.47E-03	1.39E-02	
Percent of Annual Dose Limit to Date mrem)	(15 %	3.29E-02	4.75E-02	5.13E-02	5.82E-02	
Percent of Organ Dose Limit (1500 m	rem/yr %	1.32E-03	5.88E-04	1.48E-04	2.78E-04	

	GAS	SEOUS EFFLUENT	S - ELEVATED RE	LEASE	
			Continuou	s Mode (2)	
clides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Fission Gases (1)					
Argon-41	Ci	**	**	**	**
Krypton-85	· Ci	**	**	**	**
· Krypton-85m	Ci ·	7.18E-02	**	**	**
Krypton-87	Ci	**	**	**	**
Krypton-88	Ci	**	**	**	**
Xenon-127	Ci	**	**	**	**
Xenon-131m	Ci	**	**	**	**
Xenon-133	Ci ,	**	**	**	**
Xenon-133m	Ci	**	**	**	**
Xenon-135	Ci	**	**	**	**
Xenon-135m	Ci	**	**	**	**
Xenon-137	Ci	**	**	**	**
Xenon-138	Ci	**	**	**	**
lodines (1)					
lodines (1)	Ci	2.31E-04	7.49E-05	6.37E-06	1.74E-05
lodine-133	Ci	3.65E-03	7.49E-03 7.16E-04	1.91E-04	**
lodine-135	Ci	**	**	**	**
			<u></u>		
Particulates (1)				,. <u> </u>	
Chromium-51	Ci	**	**	**	**
Manganese-54	Ci	7.19E-06	**	1.47E-06	1.04E-05
Iron-55	Ci	7.30E-05	**	**	**
Iron-59	Ci	**	**	**	**
Cobalt-58	Ci	2.86E-06	**	**	**
Cobalt-60	Ci	1.58E-04	3.88E-05	1.80E-05	1.09E-05
Neodymium-147	Ci	**	**	**	**
Zinc-65	Ci	1.89E-05	6.53E-06	**	**
Strontium-89	Ci	**	**	**	**
Strontium-90	Ci	**	**	**	**
Niobium-95	Ci	**	**	**	**
Zirconium-95	Ci	**	**	**	**
Molybdenum-99	Ci	**	**	**	**
Ruthenium-103	Ci	**	**	**	**
Cesium-134	Ci	**	**	**	**
Cesium-136	Ci	**	**	**	**
Cesium-137	Ci	**	**	**	**
Barium-140	Ci	**	**	**	**
Lanthanum-140	Ci	**	**	**	**
Cerium-141	Ci	**	**	**	**
Cerium-144	Ci	**	**	**	**
Tritium (1)	Ci	1.02E+01	8.41E+00	1.37E+01	1.52E+01

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required lodines, 1.00E-11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges are included. There were no other batch releases during the reporting period.

nit 1	Unit 2	<u> </u>				eriod: January
GASEOUS EFFLUENTS - ELEVATED RELEASE						
				Batch N	lode (2)	
des Released			1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Fission G	200 (4)					
Argon-41	<u> 1565 (1)</u>	Ci	**	**	**	**
Krypton-85		Ci	**	**	**	**
			**	**	**	**
Krypton-85		Ci	**	**	**	**
Krypton-87		Ci C:	**	**	**	**
Krypton-88		Ci	**	**	**	**
Xenon-127		Ci	**	**	**	**
Xenon-131		Ci	**	**	**	**
Xenon-133		Ci	**	**	**	**
Xenon-133		Ci	**	**	**	**
Xenon-135		Ci	<u> </u>		**	
Xenon-135		Ci	**	**		**
Xenon-137		Ci	**	**	**	**
Xenon-138		Ci	**	**	**	**
lodines (1)					
lodine-131		Ci	**	**	**	**
lodine-133		Ci	**	**	. **	**
lodine-135		Ci	**	**	**	**
<u>Particulate</u>						
Chromium-		Ci	**	**	**	**
Manganes	- 54	Ci	**	**	**	**
Iron-55		Ci	**	**	**	**
Iron-59		Ci	**	**	**	**
Cobalt-58		Ci	**	**	**	**
Cobalt-60		Ci	**	**	**	**
Neodymiur	n-147	Ci	**	**	**	**
Zinc-65		Ci	**	**	**	**
Strontium-		Cì	**	**	**	**
Stronium-9		Ci	**	**	**	**
Niobium-9		Ci	**	**	**	**
Zirconium-	95	Ci	**	**	**	**
Molybdenu	m-99	Ci	**	**	**	**
Ruthenium	-103	Ci	**	**	**	**
Cesium-13	4	Ci	**	**	**	**
Cesium-13	6	Ci	**	**	**	**
Cesium-13		Ci	**	**	**	**
Barium-14		Ci	**	**	**	**
Lanthanun		Ci	**	**	**	**
Cerium-14		Çi	**	**	**	**
Cerium-14		Çi Ci	**	**	**	**
20110011 17	-		L			

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required lodines, 1.00E-11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

⁽²⁾ Contributions from purges are included. There were no other batch releases during the reporting period.

Unit 1		Unit 2 X	-		Reporting	Period: Janu	ary - December 2016
		GASEOUS E	FFLUENTS - G	ROUND LEVEL	RELEASES		
-		<u>_</u>		Continuou	s Mode (2)		
Nuclides Re	eleased		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
	Fission Gases (1)						
	Argon-41	Ci	**	**	**	**	
	Krypton-85	Ci	**	**	**	**	
	Krypton-85m	Ci	**	**	**	**	
	Krypton-87	Ci	**	**	**	**	
	Krypton-88	Ci	**	**	**	**	
	Xenon-127	Ci	**	**	**	**	
	Xenon-131m	Ci	**	**	**	**	1
	Xenon-133	Ci	**	**	**	**	
	Xenon-133m	Ci	**	**	**	**	
	Xenon-135	Ci	**	**	**	**	
	Xenon-135m	Ci	**	**	**	**	
	Xenon-137	. Ci	**	**	**	**	
	Xenon-138	Ci	**	**	**	**	
	Indinan (4)						
	<u>lodines (1)</u> lodine-131	0:	**	**	**	**	1
	lodine-133	Ci Ci	**	**	**	**	
	lodine-135	Ci	**	**	**	**	
	100IIIe-133	Ci		ــــــ ـــــــ	ļ		
	Particulates (1)						
	Chromium-51	Ci	**	5.47E-05	**	**	
	Manganese-54	Ci	**	**	4.02E-06	**	
	Iron-55	Ci	8.74E-05	2.45E-04	**	**	
	Iron-59	Ci	**	**	**	**	
	Cobalt-58	Ci	**	7.86E-06	**	**	
	Cobalt-60	Ci	2.26E-05	2.52E-04	2.78E-05	1.54E-05	
	Neodymium-147	Ci	**	**	**	**	
	Zinc-65	Ci	**	**	**	**	
	Strontium-89	Ci	**	**	**	**	
	Strontium-90	Ci	**	**	**	**	
	Niobium-95	Ci	**	**	**	**	
	Zirconium-95	Ci	**	**	**	**	['
	Molybdenum-99	Ci	**	2.55E-06	**	**	
	Ruthenium-103	Ci		**	**		
	Cesium-134	Ci	**	**	**	**	
	Cesium-136	Ci	**	**	**	**	
	Cesium-137	Ci	**	**	4.09E-06	**	
	Barium-140	Ci	**	**	**	**	1
	Lanthanum-140	Ci	**	**	**	**	1
	Cerium-141	Ci		**	**		
	Cerium-144	Ci	**	**	**	**	l
	Tritium (1)	Ci	3.01E+00	6.23E+00	7.93E+00	1.89E+01	1
(4) Consendenti	ma lana Abam Aba lawa	r limit of dotaction of the		ringed and bading	طريمام مطارات امما	la astaniale A l	accomplicate of detection of

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 1.00E-04 μCi/ml for required noble gases, 1.00E-11 μCi/ml for required particulates and gross alpha, 1.00E-12 μCi/ml for required iodines, 1.00E - 11 μCi/ml for Sr-89/90 and 1.00E-06 μCi/ml for Tritium, as required by the ODCM, has been verified.

⁽²⁾ There were no batch releases from this path during the reporting period.

Unit 1	Unit 2 X			Reportin	g Period: Janua	ry - December 2016
	GASEOUS	EFFLUENTS - GR	OUND LEVEL R	ELEASES		
			Batch	Mode		
Nuclides Released		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
Fission Gases	= (1)					
Ar-41	Ci	**	**	**	**	
Kr-85	Ci	**	**	**	**	
Kr-85m	Ci	**	**	**	**	
Kr-87	Ci	**	**	**	**	
Kr-88	Ci	**	**	**	**	
, Xe-127	Ci	**	**	**	**	
Xe-127 Xe-131m	Ci	**	**	**	**	
Xe-133	Ci	**	**	**	**	
Xe-133 Xe-133m	Ci	**	**	**	**	
Xe-135	Ci	**	**	**	**	
Xe-135m	Ci	**	**	**	**	
Xe-135ff Xe-137	Ci	**	**	**	**	
Xe-138	Ci	**	**	**	**	
∧e-136	Ci		L		L	
lodines (1)						
I-131	Ci	**	**	**	**	
· I-132	Ci	**	**	**	**	
I-133	Ci	**	**	**	**	
		<u> </u>	·			
<u>Particulates (</u>	1)					
Cr-51	 Ci	**	**	**	**	
Mn-54	Ci	**	**	**	**	
Fe-55	Ci	**	**	**	**	
Fe-59	Ci	**	**	**	**	
Co-58	Ci	**	**	**	**	
Co-60	Ci	**	**	**	**	
Nd-147	Ci	**	**	**	**	
Zn-65	Ci	**	**	**	**	
Sr-89	. Ci	**	**	**	**	
Sr-90	Ci	**	**	**	**	
Nb-95	Ci	**	**	**	**	
Zr-95	Ci	**	**	**	**	
Mo-99	Ci	**	**	**	**	
Ru-103	Ci	**	**	**	**	
Cs-134	Ci	**	**	**	**	
Cs-136	Ci	**	**	**	**	
Cs-137	· Ci	**	**	**	**	
Ba-140	Ci	**	**	**	**	
La-140	Ci	**	**	**	**	
Ce-141	Ci	**	**	**	**	
Ce-144	Ci	**	**	**	**	
						•
<u>Tritium (1)</u>	Ci	**	**	**	**	
l						
1						

(1) Concentrations less than the lower limit of detection of the counting system used are indicated with a double **.

Unit 1 Unit 2	х	_		Reporting	Period: Janua	ary - December 2016
LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES (1)						
		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	Est. Total Error, %
A. <u>Fission & Activation Products</u> Total Release (not including Tritium, gases, alpha) Average diluted concentration during	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
reporting period	μCi/ml 、	No Releases	No Releases	No Releases	No Releases	
B. <u>Tritium</u>						
1.Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
Average diluted concentration during the reporting period	μCi/ml	No Releases	No Releases	No Releases	No Releases	
C. Dissolved and Entrained Gases				 _		
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
Average diluted concentration during the reporting period	μCi/ml	No Releases	No Releases	No Releases	No Releases	
D. Gross Alpha Radioactivity						
1. Total release	Ci	No Releases	No Releases	No Releases	No Releases	5.00E+01
E. <u>Volumes</u>						
1. Prior to Dilution	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
Volume of dilution water used during release period	Liters	No Releases	No Releases	No Releases	No Releases	5.00E+01
Volume of dilution water available during reporting period	Liters	1.18E+10	1.21E+10	1.23E+10	1.22E+10	5.00E+01
F. Percent of Tech. Spec. Limits		·			·	
Percent of Quarterly Whole Body Dose Limit (1.5 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Whole Body Dose Limit to Date (3 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Quarterly Organ Dose Limit (5 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Annual Organ Dose Limit to Date (10 mrem)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of 10CFR20 Concentration Limit (2), (3)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Percent of Dissolved or Entrained Noble Gas Limit (2.00E-04 μCi/ml)	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

⁽¹⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as required by the Off-Site Dose Calculation Manual (ODCM), has been verified.

⁽²⁾ The percent of 10CFR20 concentration limit is based on the average concentration during the quarter.

⁽³⁾ Improved Technical Specifications limit the concentration of radioactive material released in the liquid effluents to unrestricted areas to ten times the concentrations specified in 10CFR20.1001 - 20.2402, Appendix B, Table 2, Column 2. Maximum Effluent Concentrations (MEC) numerically equal to ten times the 10CFR20.1001 - 20.2402 concentrations were adopted to evaluate liquid effluents.

Unit 1	Unit	2 X	•		Reporting	Period: Janua	ary - December 2016
		LIC	QUID EFFLUEN	ITS RELEASE			
-	Batch Mode (1),(2)						,
Nuclides Rel	eased		1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
	Nuclides Released						
	Strontium-89	Ci	No Releases	No Releases	No Releases	No Releases	
	Strontium-90	Ci	No Releases	No Releases	No Releases	No Releases	
	Cesium-134	Ci	No Releases	No Releases	No Releases	No Releases	
	Cesium-137	Ci	No Releases	No Releases	No Releases	No Releases	
	lodine-131	Ci	No Releases	No Releases	No Releases	No Releases	
	Cobalt-58	Ci	No Releases	No Releases	No Releases	No Releases	
	Cobalt-60	Ci	No Releases	No Releases	No Releases	No Releases	
1	Iron-59	Ci	No Releases	No Releases	No Releases	No Releases	
	Zinc-65	Ci	No Releases	No Releases	No Releases	No Releases	
	Manganese-54	Ci	No Releases	No Releases	No Releases	No Releases	
	Chromium-51	Ci	No Releases	No Releases	No Releases	No Releases	
	Zirconium-95	Ci	No Releases	No Releases	No Releases	No Releases	
	Niobium-95	Ci	No Releases	No Releases	No Releases	No Releases	
	Molybdenum-99	Ci	No Releases	No Releases	No Releases	No Releases	
,	Technetium-99m	Ci	No Releases	No Releases	No Releases	No Releases	
	Barium-140	Ci	No Releases	No Releases	No Releases	No Releases	
	Lanthanum-140	Ci	No Releases	No Releases	No Releases	No Releases	
	Cerium-141	Ci	No Releases	No Releases	No Releases	No Releases	
	Tungsten-187	Ci	No Releases	No Releases	No Releases	No Releases	
	Arsenic-76	Ci	No Releases	No Releases	No Releases	No Releases	
	Iodine-133	Ci	No Releases	No Releases	No Releases	No Releases	
	Iron-55	Ci	No Releases	No Releases	No Releases	No Releases	
	Neptunium-239	Ci '	No Releases	No Releases	No Releases	No Releases	
	Silver-110m	Ci	No Releases	No Releases	No Releases	No Releases	
	Gold-199	Ci	No Releases	No Releases	No Releases	No Releases	
	Cerium-144	Ci	No Releases	No Releases	No Releases	No Releases	
	Cesium-136	Ci	No Releases	No Releases	No Releases	No Releases	
	Copper-64	Ci	No Releases	No Releases	No Releases	No Releases	
Dissolved or	r Entrained Gases	Ci	No Releases	No Releases	No Releases	No Releases	
	Tritium	Ci	No Releases	No Releases	No Releases	No Releases	

⁽¹⁾ No continuous mode release occurred during the report period as indicated by effluent sampling.

⁽²⁾ Concentrations less than the lower limit of detection of the counting system used are indicated with a double asterisk. A lower limit of detection of 5.00E-07 μCi/ml for required gamma emitting nuclides, 1.00E-05 μCi/ml for required dissolved and entrained noble gases and tritium, 5.00E-08 μCi/ml for Sr-89/90, 1.00E-06 μCi/ml for I-131 and Fe-55, and 1.00E-07 μCi/ml for gross alpha radioactivity, as identified in the ODCM, has been verified.

Unit 2	X		Reporting Per	riod: January - D	ecember 2016			
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS								
	<u>Volume</u> (m³)			Activity (1) (Ci)				
	<u>Class</u>	1		<u>Class</u>				
Α	В	С	A	В	С			
4.90E+01	0.00E+00	0.00E+00	1.06E+02	0.00E+00	0.00E+00			
0.00E+00	9.91E-01	0.00E+00	0.00E+00	5.93E+01	0.00E+00			
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
4.90E+01	9.91E-01	0.00E+00	1.06E+02	5.93E+01	0.00E+00			
1.13E+03	0.00E+00	0.00E+00	1.39E+01	0.00E+00	0.00E+00			
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
1.13E+03	0.00E+00	0.00E+00	1.39E+01	0.00E+00	0.00E+00			
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
)								
1.43E+01	0.00E+00	0.00E+00	2.00E-02	0.00E+00	0.00E+00			
	A 4.90E+01 0.00E+00 0.00E+00 4.90E+01 1.13E+03 0.00E+00 1.13E+03	Volume (m³) Class A	Volume (m³) Class A	Note	Nolid Class Class			

Unit 1	Unit 2 X	Reporting Po	eriod: January - December 20
	SOLID WASTE AND IRRADI	ATED FUEL SHIPMENTS	
A1. TYPE	Container	Package	Solidification Agent
a.1 Spent Resin (Dewatered)	Poly Liner	General Design	None
a.2 Filter Sludge	Poly Liner	Туре В	None
b.1 Dry Compressible Waste	Seavan	General Design	None
b.2 Dry Non-Compressible Waste (contaminated equipment)	N/A	N/A	N/A
c. Irradiated Components, Control Rods	N/A	N/A	N/A
d. Other (To vendor for processing	j)		
Oìl/Aqueous Liquid	20' Pan Van (Metal box)	General Design	None

Unit 1	Unit 2	x		Reporting Period: January - December 2016					
SOLID WASTE AND IRRADIATED FUEL SHIPMENTS									
A2 ESTIMATE OF MAIO	A2. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (BY TYPE OF WASTE)								
	udges, Concentrated Waste								
a. open resins, riner on	Nuclide Mn-54 Fe-55 Co-60 Ni-63 Zn-65		Percent 1.72% 29.26% 62.79% 2.07% 2.43%	Curies 2.85E+00 4.85E+01 1.04E+02 3.43E+00 4.04E+00					
b. Dry Compressible Was	Nuclide Mn-54 Fe-55 Co-60	Waste (Contaminated	Equipment) Percent 1.25% 70.66% 26.93%	<u>Curies</u> 1.73E-01 9.81E+00 3.74E+00					
c. Irradiated Components, Control Rods: There were no shipments. Nuclide N/A				<u>Percent</u> N/A					
d. Other: (To vendor for p 1. Oil 2. Aqueous Liquid	Nuclide Mn-54 Fe-55 Co-60		Percent 1.20% 70.28% 27.43%	<u>Curies</u> 2.40E-04 1.40E-02 5.48E-03					

Unit 1	Unit 2 X	Reporting Period: January - December 2016							
	SOLID WASTE AND IRRADIATED FUEL SHIPMENTS								
A3. SOLID WASTE DISPOSITION	A3. SOLID WASTE DISPOSITION								
Number of Shipments	Mode of Transportation	<u>Destination</u>							
28	Truck,highway	Bear Creek							
10	Truck,highway	Clive							
·									
B. IRRADIATED FUEL SHIPME	NTS (Disposition)								
	(2.0)								
Number of Shipments	Mode of Transportation	Destination							
0	N/A	, N/A							
	D TO A TREATMENT FACILITY FOR PROC ge sludge with detectible quantities of plant-re	ESSING AND BURIAL elated nuclides from NMP to the treatment facility							

Unit 1	Unit 2	x	Reporting Period: January - December 2016						
	SUMMARY OF CHANGES TO THE OFF-SITE DOSE CALCULATION MANUAL (ODCM)								
		on Manual (ODCM) was not revised							
	<u> </u>								
		REVISION XX							
Page #	New/Amended Section #	Description of Change	Reason For Change						
									
<u> </u>									
			 						
		REVISION XX							
Page #	New/Amended Section #	Description of Change	Reason For Change						
									

Unit 1	Unit 2	<u>x</u>	Reporting Period: January - December 2016
S	SUMMARY OF CHA	NGES TO	THE PROCESS CONTROL PROGRAM (PCP)
There were no ch	nanges to the NMP2	Process (Control Program (PCP) during the reporting period.
			·
	,		

Unit 1	Unit 2	x	Reporting Period: January - December 2016
	S	UMMA	ARY OF NON-FUNCTIONAL MONITORS
	гь		
Monitor	Dates Monitor Non-Functio	nal	Cause and Corrective Actions
2LWS-CAB206, 2LWS-FT330 & 2LWS-FT331, Liquid Waste Discharge Monitor	January 1, 2016 December 31, 2		No liquid waste discharges were performed during 2016, and therefore, these monitors were not returned to service. The discharge manual isolation valves, 2LWS-V420 and 2LWS-V422, are locked closed during inoperable periods, therefore, no inadvertent discharge can occur. Reference Equipment Status Log (ESL) 2010-0243.
2OFG-AT16B Offgas Hydrogen Monitor	August 18, 2016 November 18, 2		On August 18, 2016, Off Gas Hydrogen Analyzer 20FG-AT16B was found failed during rounds. Trouble shooting determined the analyzer cell failed. Due to obsolescence, a useable replacement cell had a long lead time. The cell was replaced and tested satisfactorily on November 11, 2016. Reference Equipment Status Log (ESL) 2016-0171.

Unit 1	Unit 2	X	Reporting Period: January - December 2016
DOS	SES TO MI	MBERS OF THE PUBLI	C DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Introduction

An assessment of the radiation dose potentially received by a Member of the Public due to their activities inside the site boundary from Nine Mile Point Unit 2 (NMP2) liquid and gaseous effluents has been conducted for the period January through December 2016.

This assessment considers the maximum exposed individual and the various exposure pathways resulting from liquid and gaseous effluents to identify the maximum dose received by a Member of the Public during their activities within the site boundary.

Prior to September 11, 2001, the public had access to the Energy Information Center for purposes of observing the educational displays or for picnicking and associated activities. Fishing also occurred near the shoreline adjacent to the Nine Mile Point (NMP) site. Fishing near the shoreline adjacent to the NMP site was the onsite activity that resulted in the potential maximum dose received by a Member of the Public. Following September 11, 2001 public access to the Energy Information Center has been restricted and fishing by Members of the Public at locations on site is also prohibited. Although fishing was not conducted during 2016 the annual dose to a hypothetical fisherman was still evaluated to provide continuity of data for the location.

Dose Pathways

Dose pathways considered for this evaluation included direct radiation, inhalation and external ground (shoreline sediment or soil doses). Other pathways, such as ingestion pathways, are not considered because they are either not applicable, insignificant, or are considered as part of the evaluation of the total dose to a member of the public located off-site. In addition, only releases from the NMP2 Stack and Radwaste/Reactor Building Vent were evaluated for the inhalation pathway. Dose due to aquatic pathways such as liquid effluents is not applicable since swimming is prohibited at the NMP site.

Dose to a hypothetical fisherman is received through the following pathways while standing on the shoreline fishing:

- External ground pathway; this dose is received from plant related radionuclides detected in the shoreline sediment.
- Inhalation pathway; this dose is received through inhalation of gaseous effluents released from the NMP2 Stack and Radwaste/Reactor Building Vent.
- Direct radiation pathway; dose resulting from the operation of Nine Mile Point Unit 1 (NMP1), NMP2 and the James A. Fitzpatrick Nuclear Power Plant (JAFNPP) Facilities.

Methodologies for Determining Dose for Applicable Pathways

External Ground (Shoreline Sediment) Pathway

Dose from the external ground (shoreline sediment) is based on the methodology in the NMP2 Offsite Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the hypothetical maximum exposed individual fished from the shoreline at all times.

Unit 1 Unit 2 X Reporting Period: January - December 2016

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

The total dose received by the whole body and skin of the maximum exposed individual during 2016 was calculated using the following input parameters:

- Usage Factor = 312 hours (fishing 8 hours per week, 39 weeks per year)
- Density in grams per square meter = 40,000
- Shore width factor = 0.3
- Whole body and skin dose factor for each radionuclide = Regulatory Guide 1.109, Table E-6.
- Fractional portion of the year = 1 (used average radionuclide concentration over total time period)
- Average Cs-137 concentration = 1.15E-01 pCi/g

The total whole body and skin doses received by a hypothetical maximum exposed fisherman from the external ground pathway is presented in Table 1, Exposure Pathway Annual Dose.

Inhalation Pathway

The inhalation dose pathway is evaluated by utilizing the inhalation equation in the NMP2 ODCM, as adapted from Regulatory Guide 1.109. The total whole body dose and organ dose received by the hypothetical maximum exposed fisherman during 2016 calculated using the following input parameters for gaseous effluents released from both the NMP2 Stack and Radwaste/Reactor Building Vent for the time period exposure is received:

NMP2 Stack:

Variable	Fisherman ¹
X/Q (s/m ³)	9.6 E-07
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	1.58 E+06
C-14 (pCi/sec) ²	5.47E+05
Mn-54 (pCi/sec)	5.03E-01
Co-60 (pCI/sec)	2.87E+00
Zn-65 (pCi.sec)	2.77E-01
I-131 (pCi/sec)	4.18E+00
I-133 (pCi/sec)	3.85E+01

Unit 1 _	Unit 2 _ X	<u> </u>	Reporting Period: January - December 2016	
	DOSES TO MEN	IBERS OF THE PUBLIC DU	E TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY	

NMP2 Radwaste/Reactor Building Vent:

Variable	Fisherman ¹
$X/Q (s/m^3)$	2.8 E-06
Inhalation dose factor	Table E-7, Regulatory Guide 1.109
Annual air intake (m³/year) (adult)	8000
Fractional portion of the year	0.0356
H-3 (pCi/sec)	1.40E+06
Cr-51 (pCi/sec)	2.32E+00
Mn-54 (pCi/sec)	1.70E-01
Fe-55 (pCi/sec)	1.04E+01
Co-58 (pCi/sec)	3.33E-01
Co-60 (pCi/sec)	1.25E+01
Mo-99 (pCi/sec)	1.08E-01
Cs-137(pCi/sec)	1.73E-01

- 1. The maximum exposed fisherman is assumed to be present on site during the period of April through December at a rate of 8 hours per week for 39 weeks per year equivalent to 312 hours for the year (fractional portion of the year = 0.0356). Therefore, the Average Stack and Radwaste/Reactor Building Vent flow rates and radionuclide concentrations used to determine the dose are represented by second, third and fourth quarter gaseous effluent flow and concentration values.
- 2. C-14 release rate determined from NUREG-0016, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents for Boiling Water Reactors (BWR-GALE Code)," and EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents."

The total whole body dose and maximum organ dose received by the hypothetical maximum exposed fisherman is presented in Table 1, Exposure Pathway Annual Dose.

Direct Radiation Pathway

The direct radiation pathway is evaluated in accordance with the methodology found in the NMP2 ODCM. This pathway considers four components: direct radiation from the generating facilities, direct radiation from any possible overhead plume, direct radiation from ground deposition and direct radiation from plume submersion. The direct radiation pathway is evaluated by the use of high sensitivity environmental Thermoluminescent Dosimeters (TLDs). Since fishing activities occur between April 1 and December 31, TLD data for the second, third, and fourth quarters of 2016 from TLDs placed in the general area where fishing once occurred were used to determine an average dose to the hypothetical maximum exposed fisherman from direct radiation. The following is a summary of the average dose rate and assumed time spent on site used to determine the total dose received:

Variable	Fisherman
Average Dose Rate (mRem/hr)	1.18E-03
Exposure time (hours)	312

Total Doses received by the hypothetical maximum exposed fisherman from direct radiation is presented in Table 1, Exposure Pathway Annual Dose.

<u>Dose Received By A Hypothetical Maximum Exposed Member of the Public Inside the Site Boundary</u> <u>During 2016</u>

The following is a summary of the dose received by a hypothetical maximum exposed fisherman from liquid and gaseous effluents released from NMP2 during 2016:

TABLE 1
Exposure Pathway Annual Dose

Exposure Pathway	Dose Type	Fisherman (mrem)
External Ground	Whole Body	1. 80 E-03
External Ground	Skin of Whole Body	2.10E-03
	Whole Body	3.09E-04
Inhalation	Maximum Organ	Bone: 3.40 E-04
	Thyroid	3.13E-04
Direct Radiation	Whole Body	0.37

Unit 1 Unit 2 <u>X</u>	Reporting Period: January - December 2016
DOSES TO MEMBERS OF THE PUBLIC DU	E TO THEIR ACTIVITIES INSIDE THE SITE BOUNDARY

Based on these values, the total annual dose received by a hypothetical maximum exposed Member of the Public inside the site boundary is as follows:

TABLE 2 Annual Dose Summary

Total Annual Dose for 2016	Fisherman (mrem)
Total Whole Body	3.72E-01
Skin of Whole Body	2.10E-03
Maximum Organ	Bone: 3.40 E-04
Thyroid	3.13E-04

Unit 1 Unit 2 <u>X</u>	Reporting Period: January - December 2016
DOSES TO MEMBERS OF	HE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Introduction

An assessment of radiation doses potentially received by the likely most exposed Member of the Public located beyond the site boundary was conducted for the period January through December 2016 for comparison against the 40 CFR 190 annual dose limits.

The intent of 40 CFR 190 requires that the effluents of Nine Mile Point Unit 1 (NMP1), as well as other nearby uranium fuel cycle facilities, be considered. In this case, the effluents of NMP1, Nine Mile Point Unit 2 (NMP2) and the James A. FitzPatrick Nuclear Power Plant (JAFNPP) facilities must be considered.

40 CFR 190 requires the annual radiation dose received by Members of the Public in the general environment, as a result of plant operations, be limited to:

- < 25 mRem whole body
- < 25 mRem any organ (except thyroid)
- < 75 mRem thyroid</p>

This evaluation compares doses resulting from liquid and gaseous effluents and direct radiation originating from the site as a result of the operation of the NMP1, NMP2 and JAFNPP nuclear facilities.

Dose Pathways

Dose pathways considered for this evaluation included doses resulting from liquid effluents, gaseous effluents and direct radiation from all nuclear operating facilities located on the Nine Mile Point site.

Dose to the likely most exposed Member of the Public, outside the site boundary, is received through the following pathways:

- Fish consumption pathway; this dose is received from plant radionuclides that have concentrated in fish that is consumed by a Member of the Public.
- Vegetation consumption pathway; this dose is received from plant radionuclides that have concentrated in vegetation that is consumed by a Member of the Public.
- Shoreline Sediment; this dose is received as a result of an individual's exposure to plant radionuclides in the shoreline sediment, which is used as a recreational area.
- Deposition, Inhalation and Ingestion pathways resulting from gaseous effluents; this dose is received through exposure to gaseous effluents released from NMP1, NMP2 and JAFNPP operating facilities.
- Direct Radiation pathway; radiation dose resulting from the operation of NMP1, NMP2 and JAFNPP facilities (including the Independent Spent Fuel Storage Installations (ISFSI)).

Methodologies for Determining Dose for Applicable Pathways

Fish Consumption

Dose received as a result of fish consumption is based on the methodology specified in the NMP1 Off-Site Dose Calculation Manual (ODCM) as adapted from Regulatory Guide 1.109. The dose for 2016 is calculated from actual analysis results of environmental fish samples taken near the site discharge points. For this evaluation it is assumed that the most likely exposed Member of the Public consumes fish taken near the site discharge points.

No radionuclides were detected in fish samples collected and analyzed during 2016; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2016.

Unit 1	Unit 2 <u>X</u>	Reporting Period: January - December 2016
D	OSES TO MEMBERS OF THE PUB	LIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Vegetation Consumption

Dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The dose for 2016 is calculated from actual analysis results of environmental vegetation samples taken near the most exposed Member of the Public.

No radionuclides were detected in vegetation samples collected and analyzed during 2016; therefore, no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2016.

For estimating C-14, dose received as a result of vegetation consumption is based on the methodology specified in the NMP1 ODCM as adapted from Regulatory Guide 1.109. The estimated concentration of C-14 in vegetation is based on the estimated concentration of C-14 in plant gaseous effluents.

Shoreline Sediment

Dose received from shoreline sediment is based on the methodology in the NMP1 ODCM as adapted from Regulatory Guide 1.109. For this evaluation it is assumed that the most likely exposed Member of the Public spends 67 hours/year along the shoreline for recreational purposes.

No radionuclides were detected in shoreline sediment samples collected and analyzed during 2016; therefore no dose was received by the whole body and organs of the likely most exposed Member of the Public during 2016.

Dose Pathways Resulting From Gaseous Effluents

Dose received by the likely most exposed Member of the Public due to gaseous effluents is calculated in accordance with the methodology provided in the NMP1 ODCM, NMP2 ODCM, and the JAFNPP ODCM. These calculations consider deposition, inhalation and ingestion pathways. Actual meteorological data was used to calculate doses to the likely most exposed Member of the Public. The total sum of doses resulting from gaseous effluents from NMP1, NMP2 and JAFNPP during 2016 provides a total dose to the whole body and maximum organ dose for this pathway.

Carbon-14 Dose Pathways Resulting from Gaseous Effluents

The Carbon-14 (C-14) effluent source terms are used to estimate radiological doses from C-14 in site gaseous waste effluents. These estimates were generated in order to meet the NRC requirement to incorporate C-14 in nuclear power plant 2016 Annual Radiological Effluent Release Reports (ARERRs). The C-14 production and effluent source term estimates were based on EPRI methodology provided in EPRI Report 1021106, Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents, December 2010. The following methodology was used in estimating C-14 gaseous release activity and dose components for the 2016 ARERR.

EPRI methodology for estimating C-14 production rates in Boiling Water Reactors (BWRs):

For BWRs, EPRI Report 1021106 summarized the distribution of C-14 in release pathways as follows: gaseous 95% to 99%, liquid <0.5% and solid 1% to 5%. The report also states that ~95% of C-14 in BWR gaseous waste effluents exists in the carbon dioxide form, which contributes to population dose via photosynthesis uptake in the food consumption cycle.

For NMP1 and NMP2, C-14 gaseous dose calculations in the site ARERR are made using the following assumptions for each unit: (1) continuous release of the estimated C-14 generated during power operation based on the number of Effective Full Power Days (EFPDs) for the period, (2) maximum C-14 activity from literature values cited in EPRI Report 1021106, and (3) typical fraction as carbon dioxide for gaseous releases from literature values also cited in EPRI Report 1021106.

Equation 1 estimates the maximum annual production of C-14, PR_{MAX}, for each BWR unit.

$$PR_{MAX} = 5.1 \bullet MWT/1000$$
 [Eq 1]

Where:

5.1 = BWR Normalized Production (Ci/GWt-yr)

MWT = MegaWatts Thermal (MWt)

1000 = Conversion Factor (MWt to GWt)

Equation 2 estimates the C-14 activity released, A_{C-14} , into the gaseous pathway during the time period for each BWR unit.

$$A_{C-14} = PR_{MAX} \bullet 0.99 \bullet EFPD / 365, Ci (for time period)$$
 [Eq 2]

Where:

 PR_{MAX} = maximum annual production rate of C-14

0.99 = fraction of C-14 in BWR gaseous pathway releases (maximum

literature value in EPRI Report 1021106; also Table 1)

EFPD = number of effective full power days for the unit during the time

period; e.g., quarterly or yearly (Table 1)

= number of days in a typical year

Unit 1 ____ Unit 2 __X ___ Reporting Period: January - December 2016

DOSES TO MEMBERS OF THE PUBLIC DUE TO THEIR ACTIVITIES OUTSIDE THE SITE BOUNDARY

Equation 3 estimates the C-14 activity released in carbon dioxide form, $A_{C-14, CO2}$, into the gaseous pathway during the time period for each BWR unit.

$$A_{C-1.4, CO2} = PR_{MAX} \bullet 0.99 \bullet 0.95 \bullet EFPD / 365, Ci (for time period) [Eq 3]$$

Where:

PR_{MAX}	=	maximum annual production rate of C-14
0.99	=	fraction of C-14 in BWR gaseous pathway releases (maximum
		literature value in EPRI Report 1021106; also Table 1)
0.95	=	fraction of C-14 as carbon dioxide in BWR gaseous pathway
		releases (typical literature value in EPRI Report 1021106; also Table 1)
EFPD	=	number of effective full power days for the unit during the time
		period, e.g. quarterly or yearly (Table 1)
365	=	conversion factor, 365 days in a typical average year

For each BWR unit, the 2016 estimated C-14 activity releases (total and carbon dioxide chemical form) are summarized in Table 1.

<u>Table 1</u> 2016 BWR Estimated C-14 Gaseous Releases

BWR	Gaseous Release Fraction ^(a)	CO ₂ Form Release Fraction ^(b)	EFPD Operation	Max. Annual Prod. Rate (Eq 1)	2016 Total Release (Eq 2)	2016 CO2 Release (Eq 3)
NMP1	0.99	0.95	362.1 EFPD (98.9%)	9.44 Ci/yr	9.27 Ci	8.80 Ci
NMP2	0.99	0.95	328.1 EFPD (89.7%)	20.34 Ci/yr ^(c)	18.1 Ci	17.2 Ci
JAFNPP	0.99	0.95	296.4 EFPD (81.0%)	12.93 Ci/yr	10.4 Ci	9.88 Ci

- (a) Maximum literature values from EPRI Report 1021106.
- (b) Typical value from EPRI Report 1021106.
- (c) NMP2 Reactor Power Rating increased to 3988 Megawatts thermal.

As long as the core designs and power ratings are not significantly changed, the maximum annual production rates and annual total and carbon dioxide activity releases in Table 1 should be acceptable for use in estimating C-14 gaseous release activity and dose components for the ARERR.

Direct Radiation Pathway

Dose as a result of direct gamma radiation from the site, encompasses doses from direct "shine" from the generating facilities, direct radiation from any overhead gaseous plumes, plume submersion, and ground deposition. This total dose is measured by environmental TLDs. The critical location is based on the closest year-round residence from the generating facilities as well as the closest residence in the critical downwind sector in order to evaluate both direct radiation from the generating facilities and gaseous plumes as determined by the local meteorology. During 2016, the closest residence and the critical downwind residence are at the same location.

Table 2

Dose Potentially Received by the Likely Most Exposed Member of the Public Outside the Site Boundary During 2016

Exposure Pathway	Dose Type	Dose (mrem)
Fish and Vacatation Communication	Total Whole Body	No Dose
Fish and Vegetation Consumption	Total Maximum Organ	No Dose
Shoreline Sediment	Total Whole Body	No Dose
Shoreline Sediment	Total Skin of Whole Body	No Dose
6 75	Total Whole Body	5.86 E-03
Gaseous Effluents (excluding C-14)	Thyroid	1.20 E-02
(Cacidding C-14)	Maximum Organ	Thyroid: 1.20 E-02
Gaseous Effluent	Total Whole Body	3.50 E-01
(C-14)	Maximum Organ	Bone: 1.75 E+00
Direct Radiation	Total Whole Body	0.92

Based on these values the maximum total annual dose potentially received by the likely most exposed Member of the Public during 2016 is as follows:

Total Whole Body:

1.28 E+00 mrem

• Total Thyroid:

1.20 E-02

Maximum Organ:

Bone: 1.75 E+00 mrem

40 CFR 190 Evaluation

The maximum total doses presented in this attachment are the result of operations at the NMP1, NMP2 and the JAFNPP facilities. The maximum organ dose (Bone: 1.75 mrem), maximum thyroid dose (0.012 mrem) and the maximum whole body dose (1.28 mrem) are below the 40 CFR 190 criteria of 25 mrem per calendar year to the maximum exposed organ or the whole body, and below 75 mrem per calendar year to the thyroid.

Unit 1 Unit 2 _	<u>x</u>	Reporting Period: January - December 2016		
Well Identification Number	# Samples Collected	# Positive Samples	Minimum Concentration (pCi/l)	Maximum Concentration (pCi/l)
GMX-MW1*	4	0	<161	<198
MVV-1	4	0	<157	<206
MW-5	4	0	<160	<213
MW-6	4	0	<156	<212
MW-7	4	0	<162	<209
MW-8	4	1.	160	<195
MW-9 ¹	4	1	<175	220
MW-10 ¹	4	0	<175	<200
MW-11	4	0	<166	<198
MW-12	4	0	<108	<198
MW-13	4	0	<173	<200
MW-14*	4	0	<170	<199
MW-15	4	4	251	429
MW-16	4	0	<108	<199
MW-17	4	2	<108	261
MW-18	4	0	<172	<192
MW-19	4	0	<173	<203
MW-20	4	0	<109	<202
MW-21	4	1	<176	368
NMP2 MAT 2,3	4	3	<147	201
PZ-1	4	0	<155	<205
PZ-2	4	0	<159	<197
PZ-3	4	0	<149	<212
PZ-4	4	4	199	233
PZ-5	4	4	213	323
PZ-6	4	3	232	292
PZ-7	4	4	496	749
PZ-8	4	0	<157	<204
PZ-9*	4	0	<154	<205

Notes:

- * Control Location
- ¹ Sentinel well location
- ² NMP2 Groundwater Depression Cone
- ³ Samples collected from storm drain system which includes precipitation

Unit 1 Unit 2X	Reporting Period: January - December 2016
Off-Site Dose Calcula	ation Manual (ODCM)
There was no revision to the Off-Site	
	·

Unit 1	Unit 2 X	Reporting Period: January - December 2016
		ı
1		
	Process C	ontrol Program (PCP)
	There were no changes t	o the Process Control Program in 2016.
l		
	e e e e e e e e e e e e e e e e e e e	
ı		

Enclosure 3
Errata/Correction to the 2015 Annual Radioactive Effluent Release Report

Attachment 3

Errata/Correction to the 2015 ARERR

The following identifies each piece of errata data that has been identified within the previous year. The following pages reflect the affected original submitted page and the edited page. The edited page contains revision bars to track the changes. At the top of each page, the year of the appropriate report is outlined. The errors in the report are inconsequential. The Station Corrective Action Program was utilized to capture these errors and to provide a tracking mechanism to correct the data from the 2015 Radiological Effluent Release Report.

Changes are made to Attachment 14 Process Control Program (PCP). Procedure RW-AA-101 was revised to clarify the definitions of Blending, Classification Controlling Nuclides, Concentration Averaging, Homogeneous Waste, Mixable Waste, and Nuclides of Concern. The revision also updates the references to NRC-2011-0022 and adds station specific UFSAR references.

Unit 1	<u> x</u>	Unit 2	Reporting Period: January - December 2015
			
		Proc	ess Control Program (PCP)
		<u>1 100</u>	ess Control i Togram (i Oi)
	Changes	s to the P	rocess Control Program in 2015 are as follows:
Concentra	ition Averagir	ng, Homogen	to clarify the definitions of Blending, Classification Controlling Nuclides, eous Waste, Mixable Waste, and Nuclides of Concern. The revision also 1-0022 and adds station specific UFSAR references.
·			
			1
			,
ı			

Unit 1 Unit 2X	Reporting Period: January - December 2015
Process Control F	Program (PCP)
Changes to the Process Control Pr	rogram in 2015 are as follows:
Procedure RW-AA-101 was revised to clarify the definitions Concentration Averaging, Homogeneous Waste, Mixable Wupdates the references to NRC-2011-0022 and adds station	aste, and Nuclides of Concern. The revision also
,	
	·
	·
	i