

Crystal River Nuclear Plant 15760 W. Power Line Street Crystal River, FL 34428 Docket 50-302 Docket 72-1035 Operating License No. DPR-72

> 10 CFR 50.36a(a)(2) PDTS 5.7.1.1(c) ODCM 6.4 PDTS 5.6.2.3

April 5, 2017 3F0417-01

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

Subject:

Crystal River Unit 3 – 2016 Annual Radioactive Effluent Release Report

Dear Sir:

Duke Energy Florida, LLC (DEF), hereby provides the 2016 Radioactive Effluent Release Report for Crystal River Unit 3 (CR-3) in accordance with 10 CFR 50.36a(a)(2), the CR-3 Permanently Defueled Technical Specifications (PDTS), Section 5.7.1.1(c) and Section 6.4 of the Offsite Dose Calculation Manual (ODCM). The attached report includes a summary of the quantities of radioactive liquid and gaseous effluents, and solid waste released from the CR-3 site during 2016. The data provided in the attached report is consistent with the objectives outlined in the ODCM and the Process Control Program (PCP), and is in conformance with 10 CFR 50, Appendix I, Section IV.B.1.

The CR-3 PDTS, Section 5.6.2.3, requires submittal of licensee initiated changes to the ODCM as part of the Radioactive Effluent Release Report for the period of the report in which any changes were made. The ODCM was not revised in 2016. The PCP was revised in 2016; changes are described in the attached report.

No new regulatory commitments are made in this letter.

If you have any questions regarding this submittal, please contact Mr. Mark Van Sicklen, Licensing Lead, Nuclear Regulatory Affairs, at (352) 563-4795.

Sincerely,

Terry D. Hobbs

General Manager, Decommissioning - SAFSTOR

TDH/mvs

Attachment 1: 2016 Annual Radioactive Effluent Release Report

xc: NMSS Project Manager

Regional Administrator, Region I

DUKE ENERGY FLORIDA, LLC

DOCKET NUMBER 50 - 302 / LICENSE NUMBER DPR - 72

ATTACHMENT 1

2016 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT 2016

DUKE ENERGY FLORIDA, LLC CRYSTAL RIVER UNIT 3

Facility Operating License No. DPR-72

Docket No. 50-302

Prepared By:	Chuck Burtoff	ChaelButter
	Lead Scientist	
		e Ithi
Approved By:	Bryant Akins	Drug with Kins
	Manager Radiation	Protection & Chemistry

Date: 03-01-2017

CONTENTS

Introduction	1
Tabular Data Summaries	
Gaseous Effluents - Quarters 1 to 4	2
Liquid Effluents - Quarters 1 to 4	7
Batch Release Summary	10
Abnormal Release Summary	12
Dose Evaluation	14
Appendix I Dose Summary	16
Radwaste Shipments	18
Unplanned Releases	19
Radioactive Waste Treatment Systems	19
Annual Land Use Census	19
Effluent Monitor Instrument Operability	19
Meterology Instrumentation Evaluation	20
ODCM Changes	20
Process Control Program Changes	20
Carbon-14 Evaluation	20
NEI 07-07 Required Data	21

INTRODUCTION

This report is submitted as required by the Offsite Dose Calculation Manual, section 6.5, and Technical Specifications 5.6.2.3.3 and 5.7.1.1.c. All 40 CFR 190 limits have been met. There were no NEI 07-07 groundwater protection reportable events in 2016.

The scope of this report includes:

- A summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the plant.
- Quarterly and annual dose summaries.
- A list and description of unplanned releases to unrestricted areas.
- A description of any changes to the:

Process Control Program (PCP), and Offsite Dose Calculation Manual (ODCM).

- Significant changes to any radioactive waste treatment system.
- A list of new dose calculation location changes identified by the annual land-use census.
- Information relating to effluent monitors or required supporting instrumentation being inoperable for 30 or more days.
- Information required to be included in this report per NEI 07-07 Industry Ground Water Protection Initiative-Final Guidance Document issued in August 2007.

Note for reporting purposes, N/D = Not Detected.

Table 1A - Regulatory Guide 1.21

Gaseous Effluents - Summation of All Releases Unit: 3

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Est. Total % Error
A. Fission & Activation Gases						
1. Total Release	Curies	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.00E+01
2. Average Release Rate for Period	uCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
B. Iodines						
1. Total Iodine-131	Curies	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.00E+01
2. Average Release Rate for Period	uCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
C. Particulates						
1. Particulates with half-lives > 8 days	Curies	0.00E+00	0.00E+00	4.17 E-07	0.00E+00	3.00E+01
2. Average Release Rate for Period	uCi/sec	0.00E+00	0.00E+00	5.24E-08	0.00E+00	
3. Gross Alpha Radioactivity	Curies	0.00E+00	5.08 E-08	0.00E+00	0.00E+00	
D. Tritium						
1. Total Release	Curies	1.94E-01	1.84E-01	1.52E-01	1.60E-01	3.00E+01
2. Average Release Rate for Period	uCi/sec	2.47E-02	2.34E-02	1.91E-02	2.01E-02	

Table 1B - Regulatory Guide 1.21

Gaseous Effluents - Elevated Batch Mode Unit: 3

(This Table Does Not Apply to Crystal River Unit 3)

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
Fission & Activation Gases					
Total	Curies	N/D	N/D	N/D	N/D
Iodines					
Total	Curies	N/D	N/D	N/D	N/D
Particulates					
Total	Curies	N/D	N/D	N/D	N/D
Н-3	Curies	N/D	N/D	N/D	N/D
Gross Alpha	Curies	N/D	N/D	N/D	N/D

Table 1B – (Continued) Regulatory Guide 1.21

Gaseous Effluents - Elevated Continuous Mode Unit: 3

(This Table Does Not Apply to Crystal River Unit 3)

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
Fission & Activation Gases					
Total	Curies	N/D	N/D	N/D	N/D
Iodines					
Total	Curies	N/D	N/D	N/D	N/D
Particulates					
Total	Curies	N/D	N/D	N/D	N/D
H-3	Curies	N/D	N/D	N/D	N/D
Gross Alpha	Curies	N/D	N/D	N/D	N/D
Ologo Alpiia	Carico	11/10	14/10	14/10	14/10

Table 1C - Regulatory Guide 1.21

Gaseous Effluents - Ground Batch Mode Unit: 3

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
Fission & Activation Gases					
Total	Curies	N/D	N/D	N/D	N/D
Iodines					
Total	Curies	N/D	N/D	N/D	N/D
Particulates					
Total	Curies	N/D	N/D	N/D	N/D
Н-3	Curies	N/D	N/D	N/D	N/D
Gross Alpha	Curies	N/D	N/D	N/D	N/D

Table 1C – (Continued) Regulatory Guide 1.21

Gaseous Effluents - Ground Continuous Mode Unit: 3

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
Fission & Activation Gases					
Total	Curies	N/D	N/D	N/D	N/D
Iodines					
Total	Curies	N/D	N/D	N/D	N/D
Particulates					
Cs-137	Curies	2.38E-7	1.03E-7	N/D	N/D
Total	Curies	2.38E-7	1.03E-7	N/D	N/D
H-3	Curies	1.94E-01	1.84E-01	1.52E-01	1.60E-01
Gross Alpha	Curies	N/D	5.08E-08	N/D	N/D

Table 2A - Regulatory Guide 1.21

Liquid Effluents - Summation of All Releases Unit: 3

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Est. Total % Error
A. Fission & Activation Products						
Total Release (not including tritium, gases, alpha)	Curies	1.15E-06	0.00E-00	2.13E-04	1.75E-04	2.50E+01
Average diluted concentration during period	uCi/ml	1.00E-14	0.00E-00	9.24E-13	1.15E-13	
3. Percent of Applicable Limit	%	1.00E-07	0.00E-00	2.05E-06	6.93E-07	
B. Tritium						
1. Total Release	Curies	3.34E-04	1.98E-04	3.56E-02	1.18E-04	3.00E+01
Average diluted concentration during period	uCi/ml	2.90E-12	9.94E-13	1.54E-10	7.98E-13	
3. Percent of Applicable Limit	%	2.90E-08	9.94E-09	1.54E-06	7.98E-09	
Percent of Applicable Limit Dissolved and Entrained Gase Total Release		2.90E-08 0.00E+00	9.94E-09 0.00E+00	1.54E-06 0.00E+00	7.98E-09 0.00E+00	2.50E+01
C. Dissolved and Entrained Gase	es					2.50E+01
C. Dissolved and Entrained Gase 1. Total Release 2. Average diluted concentration	e s Curies	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.50E+01
Dissolved and Entrained Gase Total Release Average diluted concentration during period	Curies uCi/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	2.50E+01
Dissolved and Entrained Gase Total Release Average diluted concentration during period Percent of Applicable Limit	Curies uCi/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	2.50E+01 3.00E+01
Dissolved and Entrained Gase Total Release Average diluted concentration during period Percent of Applicable Limit D. Gross Alpha Radioactivity	Curies uCi/ml	0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00	

Table 2B - Regulatory Guide 1.21

Liquid Effluents - Batch Mode Unit: 3

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
Fission & Activation Products					
Fe-55	Curies	N/D	N/D	N/D	N/D
Co-60	Curies	N/D	N/D	1.28E-04	N/D
Ni-63	Curies	N/D	N/D	8.13E-05	6.89E-6
Cs-137	Curies	1.15E-06	N/D	3.89E-06	1.02E-05
Total	Curies	1.15E-06	N/D	2.13E-04	1.71E-05
Dissolved and Entrained Gases					
Total	Curies	N/D	N/D	N/D	N/D
H-3	Curies	3.34E-04	1.98E-04	3.56E-02	1.18E-04
Gross Alpha	Curies	N/D	N/D	N/D	N/D

Table 2B - (Continued) Regulatory Guide 1.21

Liquid Effluents - Continuous Mode Unit: 3

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
Fission & Activation Products					
Total	Curies	N/D	N/D	N/D	N/D
Dissolved and Entrained Gases					
Total	Curies	N/D	N/D	N/D	N/D
H-3	Curies	N/D	N/D	N/D	N/D
Gross Alpha	Curies	N/D	N/D	N/D	N/D

Regulatory Guide 1.21

Gaseous Batch Release Summary Unit: 3

	Jan - Jun	Jul - Dec
Number of Batch Releases	0	0
Total Time Period for Batch Releases	0.00E+00 min	0.00E+00 min
Maximum Time Period for a Batch Release	0.00E+00 min	0.00E+00 min
Average Time Period for a Batch Release	0.00E+00 min	0.00E+00 min
Minimum Time Period for a Batch Release	0.00E+00 min	0.00E+00 min

Regulatory Guide 1.21

Liquid Batch Release Summary Unit: 3

	Jan - Jun	Jul - Dec
Number of Batch Releases	3	6
Total Time Period for Batch Releases	9.30E+02 min	1.17E+03 min
Maximum Time Period for a Batch Release	4.51E+02 min	4.94E+02 min
Average Time Period for a Batch Release	3.10E+02 min	1.96E+02 min
Minimum Time Period for a Batch Release	5.90E+01 min	5.10E+01 min
Average Stream Flow During Release Periods	1.12E+05 gpm	2.55E+05 gpm

Regulatory Guide 1.21

Gaseous Abnormal Release Summary Unit: 3

	Jan - Jun	Jul - Dec
Number of Abnormal Releases	0	0
Total Time Period for Abnormal Releases	0.00E+00 min	0.00E+00 min
Maximum Time Period for an Abnormal Release	0.00E+00 min	0.00E+00 min
Average Time Period for an Abnormal Release	0.00E+00 min	0.00E+00 min
Minimum Time Period for an Abnormal Release	0.00E+00 min	0.00E+00 min
Total Activity for Abnormal Releases	0.00E+00 Ci	0.00E+00 Ci

Regulatory Guide 1.21

Liquid Abnormal Release Summary Unit: 3

	Jan - Jun	Jul - Dec
Number of Abnormal Releases	0	0
Total Time Period for Abnormal Releases	0.00E+00 min	0.00E+00 min
Maximum Time Period for an Abnormal Release	0.00E+00 min	0.00E+00 min
Average Time Period for an Abnormal Release	0.00E+00 min	0.00E+00 min
Minimum Time Period for an Abnormal Release	0.00E+00 min	0.00E+00 min
Total Activity for Abnormal Releases	0.00E+00 Ci	0.00E+00 Ci

Regulatory Guide 1.21

Gaseous NNG Organ Dose Unit: 3

Receptor Name: Infant Max Ind NW at 1.34 km

	1 st Quarter		2 nd Quarter		3 rd Quarter		4 th Quarter		Calendar Year	
Organ	Dose	% of ODCM Limit	Dose	% of ODCM Limit	Dose	% of ODCM Limit	Dose	% of ODCM Limit	Dose	% of ODCM Limit
Bone	5.55E-05	7.40E-04	4.79E-05	6.39E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.78E-04	1.19E-03
Liver	5.68E-05	7.10E 01	4.85E-05	6.47E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.80E-04	1.20E-03
Total Body	4.88E-05	6.50E-04	4.50E-05	6.00E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.69E-04	1.12E-03
Thyroid	4.81E-05	6.42E-04	4.47E-05	5.96E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.68E-04	1.12E-03
Kidney	5.05E-05	6.73E-04	4.57E-05	6.10E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.71E-04	1.14E-03
Lung	4.91E-05	6.54E-04	4.51E-05	6.02E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.69E-04	1.13E-03
GI-Lli	4.82E-05	6.42E-04	4.47E-05	5.97E-04	3.65E-05	4.86E-04	3.83E-05	5.11E-04	1.68E-04	1.12E-03

Maximum Organ was LIVER.

Regulatory Guide 1.21

Liquid Organ & Whole Body Dose Unit: 3

Receptor Name: Adult W at 1.34 km

1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Calendar Year
-------------------------	-------------------------	-------------------------	-------------------------	---------------

Organ	Dose	% of ODCM Limit								
Bone	2.44E-10	4.87E-09	1.84E-12	3.67E-11	2.48E-05	4.96E-04	1.21E-07	2.41E-06	2.49E-05	2.49E-04
Liver	2.76E-10	5.52E-09	1.84E-12	3.67E-11	1.72E-06	3.45E-05	1.62E-07	3.24E-06	1.89E-06	1.89E-05
Total Body	2.35E-10	1.56E-08	1.84E-12	1.22E-10	8.41E-07	5.61E-05	1.06E-07	7.07E-06	9.48E-07	3.16E-05
Thyroid	1.55E-10	3.11E-09	1.84E-12	3.67E-11	3.99E-10	7.98E-09	4.63E-11	9.26E-10	6.03E-10	6.03E-09
Kidney	1.96E-10	3.93E-09	1.84E-12	3.67E-11	6.84E-10	1.37E-08	5.49E-08	1.10E-06	5.58E-08	5.58E-07
Lung	1.69E-10	3.38E-09	1.84E-12	3.67E-11	4.94E-10	9.88E-09	1.83E-08	3.66E-07	1.90E-08	1.90E-07
GI-Lli	1.58E-10	3.15E-09	1.84E-12	3.67E-11	4.34E-07	8.69E-06	3.21E-09	6.42E-08	4.38E-07	4.38E-06

Liquid Effluent Dose Limits

Total Body: 1.5 mrem/quarter, 3 mrem/year Any Organ: 5 mrem/quarter, 10 mrem/year

Regulatory Guide 1.21

Liquid App I Dose Assessment Unit: 3

Adult W at 1.34km

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Annual
Maximum Organ Dose	mrem	0.0	0.0	0.0	0.0	0.0
ODCM Limit	mrem	5.00	5.00	5.00	5.00	10.00
% of ODCM Limit	%	0.0	0.0	0.0	0.0	0.0

Maximum Organ was Bone

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Annual	
Total Body	mrem	0.0	0.0	0.0	0.0	0.0	
ODCM Limit	mrem	1.50	1.50	1.50	1.50	3.00	
% of ODCM Limit	%	0.0	0.0	0.0	0.0	0.0	

Regulatory Guide 1.21

App I Dose Assessment Unit: 3

Airborne Noble Gas Doses Child Site Boundary NW at 1.34 km

	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Annual
Beta Air	mRad	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ODCM Limit	mRad	10.00	10.00	10.00	10.00	20.00
% of ODCM Limit	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Units	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Annual
Gamma Air	mRad	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ODCM Limit	mRad	5.00	5.00	5.00	5.00	10.00
% of ODCM Limit	%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Gaseous Release Dose Summary

Due to the decision to decommission the plant, the facility will remain permanently defueled.

Gaseous Effluent Dose Limits

Gamma Air Dose: 5 mrad/quarter, 10 mrad/year Beta Air Dose: 10 mrad/quarter, 20 mrad/year Any Organ: 7.5 mrem/quarter, 15 mrem/year

TABLE 3

EFFLUENT and WASTE DISPOSAL REPORT-2016 SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

A. SOLID WASTE SHIPPED OFFSITE FOR PROCESSING OR BURIAL (Non-irradiated fuel)

1. 1	Type of	waste	waste				h period	Est. T	otal Error %
a	a. Sp	ent resins, filter slu	dge, evaporator bot	ttoms, etc.	m3 Ci	6.30 2.40			25
t	b. Dr	y compressible was	te, contaminated e	quipment, etc.	m3 Ci	6.59l 1.16l	E+01 E+00		25
C	c. Irra	adiated components	s, control rods, etc.		m3 Ci	3.17 3.77	-		25
C	d. Other (describe): Large Components – Reactor Head, two Steam Generators and associated project debris; Drum of Sump Sludge					8.97I 3.32I	=+02 =+02		25
2. I	Estima	te of major nuclid	e composition (by	type of waste in %)*					
а	a.	Fe-55 Co-58 Cs-134 Cs-137	3.00 3.93 7.73 82.96						
b).	C-14 Mn-54 Fe-55 Co-58 Co-60	3.66 1.79 39.05 2.46 19.02	Ni-63 Cs-137	25.20 4.30				
С) .	Fe-55 Co-60 Ni-63	36.19 47.22 15.03						
d	i.	C-14 Co-60 Cs-134 Cs-137 Fe-55	0.61 19.36 0.65 20.31 14.68	Mn-54 Ni-63 Sb-125 Pu-238 Pu-239	0.04 41.87 0.01 0.11 0.02			Pu-241 Cm-243	2.13 0.14

^{*} Curie values and principle radionuclides are estimates based on a combination of direct and indirect methods.

3. Solid Waste Disposition

Number of Shipments	Mode of Transportation	<u>Destination</u>
	(Trucking Shipments)	
2	Hittman Transport Services	Energy Solutions – Gallaher Rd
1	Hittman Transport Services	Energy Solutions – Bear Creek
1	Interstate Ventures	Alaron Nuclear Services
27	Hittman Transport Services	Energy Solutions – Clive, UT
1	Bigge Crane and Rigging	Energy Solutions – Clive, UT
3	Florida Northern Railway	Energy Solutions – Clive, UT
1	Hittman Transport Services	Waste Control Services (WCS)

B. IRRADIATED FUEL SHIPMENTS (Disposition)

0

Unplanned Releases

There were no unplanned releases in 2016.

Radioactive Waste Treatment Systems

There were no significant changes to the radioactive waste treatment systems in 2016. Due to the lengthy shutdown of Crystal River Unit 3, liquid waste volume and radioactivity concentration had continued to decrease until the decision to retire CR3 and begin decommissioning was made in February of 2013. As part of the preparation to place the unit in SAFSTOR, liquid waste inventory of all systems no longer required to support spent fuel cooling have been processed and discharged as liquid wastes, where possible. The liquid waste demineralizers were recharged with new condensate resin that was previously loaded into the condensate demineralizers to support the plant restart from the refuel 16 outage. This resin is a 2:1 cation to anion macroporous gel mixture of Ambersep 200H cation resin and IRN78 anion resin. This resin has performed extremely well while processing higher activity waste tanks including reactor coolant and borated refueling water. The liquid waste processing demineralizers and filters were sluiced and recharged several times to support processing the large volume of water as systems are drained and abandoned to support reaching the SAFSTOR configuration.

Annual Land Use Census

The 2016 land-use census did not identify any new dose calculation locations.

Effluent Monitor Instrument Operability

For the year 2016 the main gaseous effluent pathway is the auxiliary building ventilation exhaust system. Radiation monitor RM-A2N is the effluent monitor for this pathway. This monitor remains in service and has one back up compensatory monitor, RM-A4, which samples closer to the spent fuel pool in the auxiliary building. The Reactor Building is now also lined-up for continuous venting via RM-A2 as a means of maintaining a habitable atmosphere inside containment.

The liquid effluent pathways are the primary plant liquid waste stream, which is monitored by radiation monitor RM-L2, and the secondary plant liquid waste stream, which is monitored by radiation monitor RM-L7. These liquid radiation monitors remain operable.

Meteorology Instrumentation Evaluation

During 2015 the metrology tower was abandoned. It was concluded that an on-site meteorological data collection system was no longer needed at CR3 to support its effluents program because:

- There is no explicit regulatory requirement or license condition to maintain an on-site meteorological program for a decommissioning unit (or facility), and
- From a technical perspective, a reasonably conservative estimate of dose to a member of the public in the unrestricted area can be performed without periodically assessing changes in atmospheric dispersion and deposition based on our low site source term and the conservative nature of the dispersion factors.

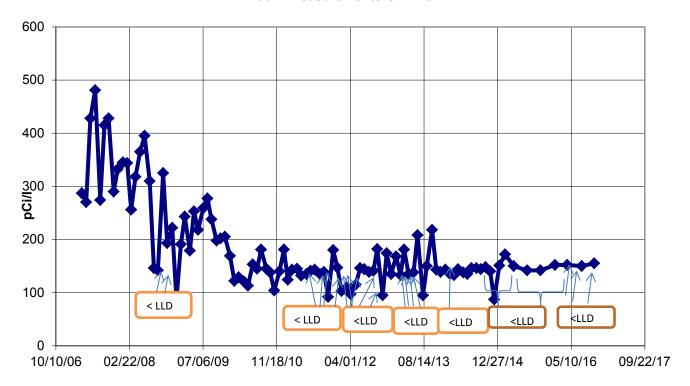
See NTM 229460-80 Met Tower Abandonment White Paper for additional details.

Offsite Dose Calculation Manual (ODCM) Changes

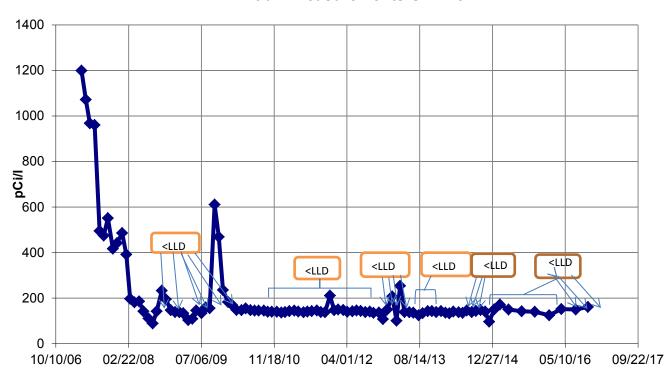
The ODCM was not revised in 2016.

Process Control Program (PCP) Changes

The PCP was revised in 2016 under DRR 2000593 in Passport. The changes were editorial to reflect the current CR3 SAFSTOR status and to add additional references.


Carbon-14 Evaluation

During the entire year of 2016, Crystal River Unit 3 has been in a cold shutdown, defueled mode. The plant was taken off line in September of 2009 for refueling outage 16. In 2009, the primary plant was degassed, the reactor building was purged of radioactivity, waste gas decay tanks were released, a construction opening was made in the side of the reactor building containment wall, and both once through steam generators were replaced. Since the plant has been in cold shutdown for the entire years of 2010 through 2016 due to reactor building containment wall concrete delamination issues, there is no source term generation for carbon-14 production. Since the decision to retire the facility has been announced, there will be no C-14 source term generated ever again at CR-3.


Nuclear Electric Institute (NEI) Required Information

The following environmental data is being included in this report per objective 2.4.b.i and 2.4.b.ii of NEI 07-07 Industry Ground Water Protection Initiative, as this groundwater well data is used to assist in evaluation of groundwater at the site, but is not officially included in the Radiological Environmental Monitoring Program (REMP) or the Offsite Dose Calculation Manual (ODCM). These 2 graphs are of tritium measurements in units of pCi/l, taken from groundwater monitoring wells located west of CR-3 on either side (north and south) of the site settling ponds. There are many other groundwater monitoring wells included in the REMP that are used for evaluating the groundwater in the vicinity of the CR-3 site. These 2 wells are providing supplemental information. The LLD for tritium measurement of these environmental well samples is ~150 pCi/l.

Tritium Measurements GW Well # MWC-IF2

Tritium Measurements GW Well # MWC-27

Additional Information

On February 5, 2013, Duke Energy announced that a decision has been made to permanently retire Crystal River Unit 3. The decision was made due to the high cost of repair and risk associated with repairing the containment building's delaminated concrete wall. The company is working to develop a comprehensive decommissioning plan and intends to place the facility in SAFSTOR for the immediate future and eventual dismantling. The plant staff (called SAFSTOR 1 organization) is working to shut down and abandon as many systems as possible, by removing energy sources, lubrications, greases, electrical, and system fluids to prepare the unit for SAFSTOR and eventual dismantlement.