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ABSTRACT 

NUREG/CR-7221 reports on integrating modeling abstraction techniques into subsurface 
monitoring strategies.  This research is the culmination of many field and modeling studies 
conducted by the USDA/Agricultural Research Service (ARS) at their Beltsville Area Research 
Center.  The research design was to identify and examine near-surface water flow pathways by 
monitoring performance indicators within the unsaturated zone and local water-table system.  The 
peak tracer concentration and the time to peak concentration at several monitoring locations 
served as the performance indicators.  The objective was to apply model abstraction techniques in 
designing monitoring networks such as those used at nuclear waste and decommissioned 
facilities.  The level of spatial and temporal detail in characterizing soil properties (e.g. water 
contents and hydraulic conductivities) is based upon the model abstraction considerations.  
Simplifications may omit significant processes and conditions that control the water and 
contaminant migration.  The ARS field studies provided detailed databases for modeling water 
and chemical tracer movement in 2- and 3- dimensions to facilitate understanding of what 
processes and properties could be simplified (abstracted).  Model abstractions included using 
pedotransfer functions for hydraulic conductivity, soil profile homogenization, and unsaturated 
zone omission.  This latter abstraction proved to be the most accurate in generating a monitoring 
network that reflected the calibrated model.  A comprehensive sensitivity analysis was performed 
to identify possible directions of model simplification in the model abstraction process.  The 
integration of model abstraction into monitoring strategies based upon the ARS field and modeling 
findings was documented and reviewed by international soil scientists.  The studies were jointly 
funded by NRC and USDA/ARS. 
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FOREWORD 

This technical report was prepared by the USDA’s Agricultural Research Service (ARS), under a 
follow-on to Interagency Agreement 05-005 (RES-05-005, JCN N6730) with the Office of 
Nuclear Regulatory Research. The objective was to characterize how groundwater model 
abstractions (simplifications) within conceptual site models impact subsurface monitoring 
strategies.  These monitoring strategies are used to confirm the performance of nuclear waste 
and decommissioned facilities.  Numerical models which assess environmental impacts rely on 
both the conceptual site model simplifications (abstractions) and the monitoring data.  The 
monitoring networks should incorporate the significant processes and conditions of the model 
abstraction, and be compatible with the performance indicators of the numerical models.   

The findings in this report represent the culmination of efforts presented in NUREG/CR-6884 and 
NUREG/CR-7026.  These reports were previously developed under Interagency Agreement 02-
008 (RES-02-008), “Model Abstraction Techniques for Soil Water Flow and Transport.”  The 
research presented in this document builds upon the previous work by characterizing the 
accuracy of ground-water monitoring networks derived from abstracted subsurface models.  

NRC licensees and NRC licensing staff routinely develop and assess numerical models of 
subsurface transport based upon conceptual site models.  Simplifications in these models are due 
to uncertainties in identifying the significant flow and transport processes, parameter estimations 
and soil structure as reflected in the model framework.  Examples of these simplifications include: 
soil profile homogenization, unsaturated zone omission, and pedotransfer function usage to 
estimate hydraulic conductivities.  This report directly addresses how such simplifications impact 
ground-water monitoring networks.  NRC staff can use the information presented here to review 
licensees’ monitoring and modeling programs, and assess the use of more compact, efficient 
ground-water models.  

This report is not a substitute for NRC regulations, and compliance is not required. Consequently, 
the approaches and methods described in this report are provided for information only, and 
publication of this report does not necessarily constitute NRC approval or agreement with the 
information contained herein. Similarly, the use of product or trade names in this report is intended 
for identification purposes only and does not constitute endorsement by either the NRC or 
USDA/ARS.  

________________________________ 

Michael F. Weber 
Director of Nuclear Regulatory Research 

________________________________
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EXECUTIVE SUMMARY 

This study was designed and performed to investigate the opportunities and benefits of integrating 
model abstraction techniques into subsurface monitoring strategies. The study focused on future 
applications of modeling in contingency planning and management of potential and actual 
contaminant release sites within the scope of US NRC operations. The main objective was to 
develop methods for incorporating model abstraction techniques into the design of subsurface 
hydrologic monitoring and performance assessment programs. This study is based on a 
systematic model abstraction methodology that was developed and tested in previous work on 
flow and transport in soils and shallow groundwater systems.  

A comprehensive review of groundwater monitoring network (GMN) design techniques was 
conducted first.  The review demonstrated the recent increased use of physically-based pollutant 
fate and transport models in monitoring network designs. Since GMN designs are based on a 
conceptual model of the presumed subsurface flow and transport conditions, and since 
abstraction of the model structure leads to a range of conceptual models and their mathematical 
counterparts, an opportunity arises to design GMNs that decrease uncertainty in the predictions of 
individual abstracted models, or in weighted predictions from several models combined via model 
averaging. Another opportunity is to use model abstraction via parameter estimation to augment 
existing monitoring networks for discriminating between different conceptual and mathematical 
abstractions. These opportunities are pursued in this work and applied to models that are 
obtained via model abstraction for full three-dimensional (3D) flow and transport in variably 
saturated flow domains. 

The USDA-ARS OPE3 experimental field site near Beltsville, MD, has been studied extensively 
for more than 10 years using geophysical, biophysical, remote sensing, and soil and groundwater 
monitoring methods. Available data were analyzed using systematic procedures within a broad 
vadose zone modeling context developed in our previous work. A major focus was on subsurface 
structural units and features that could drastically change the fate and transport of contaminants in 
the vadose zone, as well as on projected trajectories of the contaminant plume in groundwater.  

Solute transport in soils and shallow groundwater at the site could potentially be affected by such 
features as the presence of a restrictive fine-textured layer that is not fully continuous laterally; the 
complex topography of the restrictive layer favoring preferential flow and transport along preferred 
pathways along its surface relief; the presence of natural capillary barriers, possible funnel flow in 
a coarse-textural layer between the more fine-textured layers, and localized high-conductivity 
parts of the soil pore space.  

The abstraction methodologies were applied to data from the originally designed field site showing 
lateral transport of a surface-applied conservative tracer pulse, with transport being controlled by 
regular irrigation pulses and natural precipitation. The vadose zone was monitored for soil water 
contents and pressure heads, while groundwater levels and tracer concentrations in groundwater 
at three depths were also recorded. Fine-scale ground-penetration radar and time-lapsed 
electrical resistivity surveys, along with the borehole logs, contributed to the development of the 
original conceptual model in which subsurface structures exerted strong controls on flow and 
transport. A cluster analysis of borehole data showed the presence of nine soil materials in the 
studied subsurface domain.  
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A comprehensive sensitivity analysis was performed to identify possible directions of model 
simplification in the model abstraction process. Two sensitivity indexes, a first-order sensitivity 
coefficient and a derivative-based measure of sensitivity (section 5.1), were used to reflect the 
effect of parameter variations on variations in simulated values. These indexes were first 
computed as daily values, with their time series providing insight into the spatio-temporal 
sensitivity of solute transport in the variably saturated heterogeneous domain. The sensitivity of 
the base HYDRUS-3D model to the transport parameters and soil materials depended upon both 
location and time. The HYDRUS-3D code was found to be more sensitive to the transport 
parameters than modified TOUGH2. Time series of first-order sensitivity coefficient were 
aggregated to obtain an average and standard deviation of daily value over the observation period 
for each of eight soil materials. Ranking soil materials according to the aggregated sensitivity 
indexes allowed identification of those soil materials most appropriate for model simplification by 
material elimination. 

The proposed approach to abstract a model by decreasing the number of soil materials consisted 
of replacing the eliminated soil material with one of the closest materials according to the cluster 
analysis used for the material definition.  The simulations were run with the three closest soil 
materials as possible replacement for the eliminated material. Different replacement materials 
were selected when the HYDRUS-3D or modified TOUGH2 codes were used, possibly because 
of differences in averaging hydraulic conductivity procedures.  

Four examples of model abstraction were developed using the manually calibrated HYDRUS-3D 
code as a base model. The examples included using pedotransfer functions for the hydraulic 
conductivity, profile aggregation, ignoring the unsaturated zone, and combining the use of 
pedotransfer functions with scaling. The efficiency of a particular abstraction option was evaluated 
by comparing simulation results of the calibrated and abstracted models using three performance 
indicators, namely simulated peak concentration, time to reach the peak concentration, and total 
mass flow through observation nodes and transects at different distances from the release points 
based on simulations of 10 year-long tracer flow and transport.  

The simulation domain that mimicked an NRC site was set within the boundaries of the GPR 
survey, and included the tracer application plot and 56 groundwater observation wells. Forty eight 
scenarios were simulated, each one being different in terms of the location and depth of the tracer 
release, groundwater dynamics, and precipitation. Pedotransfer estimates of soil water retention 
and the saturated hydraulic conductivity were generated using the Rosetta software and the 
tabulated summary of the Rawls databases, respectively. Estimates were found for each of 
20,000 simulation nodes.  

Abstraction of parameter estimation using empirical pedotransfer functions was found not to be 
efficient in our study due to the considerable sensitivity of HYDRUS-3D modeling results on the 
saturated hydraulic conductivity. Pedotransfer predictions of the saturated hydraulic conductivity 
were relatively poor as compared to calibrated values. Therefore, pedotransfer-based simulations 
produced results that were quite different from the calibrated model results. Time to peak 
concentration and total mass were better discriminators between the calibrated and abstracted 
models than the peak concentration itself. 

The scale mismatch between measurements reflected in the pedotransfer database and the 
computational grid discretization was a plausible explanation of the low efficiency of the 
pedotransfer abstraction process. Pedotransfer abstraction for this reason was complemented 
with scaling abstraction. The increase in the saturated hydraulic conductivity with the size of grid 
cells was simulated assuming a power-law dependence of hydraulic conductivity on the ratio of 
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characteristic lengths (section 5.2.8). The accuracy of simulations with the concurrent use of 
pedotransfer and scaling abstraction was very close to that of the calibrated model, thus 
confirming the efficiency of systematic model abstraction. 

Profile aggregation, i.e. assuming a single soil material for all depths was another model abstraction 
technique implemented in this study. A motivation for this abstraction technique is possible 
dominance of one soil material in the simulation domain. Profile aggregation had a major effect on 
tracer transport in our study. Introducing a homogeneous profile resulted in drastic changes in the 
spatial pattern of the performance indicators. The model that used profile aggregation performed 
the poorest. 

Ignoring the unsaturated zone implies ignoring the retardation of water and chemical fluxes due to 
the nonlinear decrease in hydraulic conductivity with a decrease of water content in the absence 
of preferential flow and transport in the vadose zone. However, ignoring the unsaturated zone did 
not lead to noticeable changes of the performance indicators. A systematic difference between 
abstracted and calibrated modeling results was found for the times to peak concentration, but not 
for the maximum concentration and the total mass transported. The abstraction scheme which 
ignored the unsaturated zone was acceptable if the key performance indicators were the peak 
concentration and the total contaminant flux which passed through a transect or observation well. 
This method of model simplification was found to be acceptable because of a relatively shallow 
vadose zone at our site.  

It should be used with caution at sites with deep phreatic surfaces where characteristic times of 
vertical transport in unsaturated zone and lateral transport in groundwater are comparable. The 
procedure of this work needs to be re-applied to make sure that the travel time in the unsaturated 
zone can be ignored which may be the case in semi-arid zone. 

Mathematical models developed with model structure abstractions should have different 
underlying conceptual hypotheses. Since a monitoring network is always designed based on a 
conceptual model, designs may need to be different for models that are abstracted differently. A 
monitoring network design could either jointly use the designs resulting from several conceptual 
models, or develop a particular design to discriminate between models with the goal of selecting 
the more plausible one.  

Two approaches were developed and implemented for situations in which monitoring network 
augmentation is envisaged for flow and transport in a variably saturated three-dimensional 
subsurface domain. 

A sensitivity-based statistical inference method has been proposed in steady-state groundwater 
studies to rank candidate monitoring locations by their potential to improve model predictions and 
the accuracy of parameter estimation. The method was expanded in this study for applications in 
variably-saturated 3D flow and transport domains by redefining parameter sensitivities for non-
stationary conditions. The modified statistical inference method was tested first using simulated 
data of the tracer experiment as obtained with the calibrated model so as to rank the existing 
observation wells in terms of their importance for model calibration. The method provided stable 
results indicating that (a) one (deeper) observation depth rather than two would be sufficient in the 
calibration, and (b) that the relative importance of wells is defined by either their presence in 
subdomains where fast changes in flow and transport occur within small distances, or their 
presence in relatively large subdomains where flow is slow compared to other parts of the OPE3 
simulated field site. The sensitivity based statistical inference method was further used to 
augment the observation network with the aim of improving the HYDRUS-3D calibration. 
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Observations at the lower of the two depths appeared to be more important, and followed the 
previously noted trend of importance of observations in subdomains where fast changes in flow 
and transport occur within small distances.   

Performance indicators were used to compare monitoring locations selected for the base model 
and for models abstracted using pedotransfer, profile aggregation, and ignoring the vadose zone 
by placing the tracer into groundwater at the very beginning of the simulations. Locations selected 
for the pedotransfer abstraction were close to those for base model if the peak concentration was 
used as the performance indicator. Soil profile aggregation was the only abstraction technique 
that generated a monitoring network dissimilar to the network obtained using the calibrated 
HYDRUS model. This occurred primarily due to existence of preferential lateral flow paths in the 
heterogeneous simulation domain, which were entirely discarded in the homogeneous profile 
abstraction process. Soil profile aggregation abstraction in general may well be suitable for small-
scale applications or when vertical soil stratification is not important hydrologically. However, for 
large-scale projects natural succession of soil genetic horizons producing different hydrological 
regimes at different depths cannot be ignored when water flow and chemical transport are 
modeled.  

Abstraction by ignoring the unsaturated zone appeared to be the most accurate in predicting the 
tracer concentrations and fluxes, and consequently generated essentially the same monitoring 
network as the calibrated model. This occurred because the unsaturated zone was very thin in our 
study, while vertical transport dominated at the release points. These hydrological conditions 
created a specific flow regime in which the tracer was transported preferentially in the vertical 
direction before approaching the groundwater. The results of this abstraction can differ for a 
deeper unsaturated layer, especially when the soil profile contains horizontal lenses with 
contrasting hydraulic properties. The presence of such structural factors, and their effects, need to 
be evaluated at the conceptual model development stage.  Model abstraction then can help to 
quantify their possible role at the mathematical modeling stage of a project. 

Model discrimination can be one of several objectives of groundwater monitoring design. A 
simplistic search for a location where predictions using two models differ the most can give 
unsatisfactory results since both data and model predictions are uncertain. The novel method 
developed in this work method determines new monitoring locations where the total information 
gain is maximized. The latter is computed based on estimates of the uncertainty in modeling 
results and uncertainty in observations. The discrimination was sought for the original model and 
the model obtained with the soil profile aggregation abstraction. 

 Pedotransfer functions were used to develop the ensemble of models for estimating the 
uncertainty in modeling results obtained with the numerical 3D flow and transport model. Peak 
tracer breakthrough concentrations were used to define the information gains. The determination 
of the new locations to augment existing ones was conducted on a 2-D grid. The information gain 
peaked in small area, and additional observation locations were very well spatially defined. 

Overall, integrating model abstraction and monitoring strategies appears to be a logical step given 
that both the mathematical models and the groundwater monitoring network designs are based on 
conceptual site models of subsurface structural and geochemical conditions. Developments in the 
fields of monitoring data assimilation and geophysical data fusion will further help to interfacing of 
the two technologies.  Since the use of mathematical fate and transport models in groundwater 
monitoring designs is expanding, one should expect further intertwining of modeling and 
monitoring based on common conceptual modeling.  
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1    INTRODUCTION 

1.1  Background 

U.S. NRC staff reviews of performance assessments of nuclear facilities (e.g., decommissioning 
of the facilities, management of low-level and high-level radioactive waste disposal sites) 
frequently involve assessing models for subsurface water flow and solute transport in the vicinity 
of a nuclear facility (U.S. NRC, 1993, 1994). These models seek to represent complex and highly 
transient subsurface systems. Representations of those complex systems in existing models 
range from very simple to extremely sophisticated formulations (Neuman et al., 2003; Reilly and 
Harbaugh, 2004; Hill and Tiedeman, 2007; Valocchi, 2012).  One reason for this is the inherent 
complexity of the subsurface, which needs to be dramatically simplified to be expressed in 
mathematical terms. Different sets of simplifying assumptions can be used that lead to different 
models (Neuman et al., 2003). And even when the types and relative positions of subsurface 
structural units are selected, knowledge about the locations of the boundaries of these units, and 
about the flow and transport properties of the soils and fractured rocks making up those units is 
uncertain. This creates substantial uncertainty with regard to the assignment of parameter values 
in the models. 

The existence of several candidate models for the same observation site or for the same 
phenomenon is common in the environmental sciences and their applications, as well as in other 
disciplines. Making use of several models has been shown to be more beneficial than looking for 
the “single best” model. The use of simpler modes to complement a complex model is a promising 
approach (Bigelow and Davies, 2003; Van Ness and Scheffer, 2005). Simple models have 
advantages regarding the collection of data, the computations involved, the interpretation of the 
simulation results, and conveying the simulation approach to both technical and lay audiences. On 
the other hand, the explicit description of mechanisms in more complex models may cause their 
better performance outside of conditions for which the simple models were initially developed or 
tested. 

Currently, different research fields have been adopting various approaches for selecting or 
deriving simple models for use along with more complex models (e.g., Casteletti, 2011; Lawrie 
and Hearne, 2007; Raick et al., 2006). One of these methods consists of a systematic derivation 
of simpler models from the original complex model. This method has been termed “model 
abstraction”. The systematic model simplification in subsurface hydrology was first suggested by 
Neuman and colleagues (2003) in their work performed for the U.S. Nuclear Regulatory 
Commission. Examples of useful simplifications of ground water models were later presented by 
Hill (2006). For soils, the model abstraction methodology, including those techniques and 
examples used in simulating water flow, was developed in a recent interagency study by 
Pachepsky, et al. (2006).  

One essential application of subsurface modeling is the development of monitoring programs and 
strategies. Monitoring of subsurface processes has been expanded significantly in the past 
several decades to address soil, groundwater, and surface water contamination. A wide variety of 
monitoring design techniques has been proposed (Minsker, 2003; Quevauviller et al., 2009). Yet, 
the central conundrum of subsurface monitoring design--the struggle between subsurface 
complexity and available monitoring resources still presents a challenge at decommissioning and 
new reactor sites--as well as at other potential point source contamination sites. Ideally, 
subsurface environments at potential or actual contaminated sites should be described using 
state-of-the-art conceptual models in conjunction with extensive monitoring data collected at the
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site.  While potentially very realistic, these models generally introduce large data requirements 
and often focus on parameters that have only minimal influence on the specific subsurface 
processes of concern to anticipated contaminant transport.  Limited costs and resources, 
however, tend to make this approach an unlikely option. Instead, there is a tendency toward 
modeling complex and highly transient subsurface flow and transport processes with greatly 
simplified models that overlook fine-scale heterogeneities that may well control contaminant flow 
and transport at coarser scales (Neuman, et al., 2003). 

Model abstraction techniques can be utilized to reduce the complexity of a natural system to its 
essential components and processes through a series of conceptualizations, selection of 
processes, and identification of parameters and boundary conditions. The result of successful 
model abstraction is to simplify the representation of a complex, natural groundwater system to a 
manageable level while still capturing an acceptable level of detail and realism (Pachepsky et al., 
2006).  The central hypothesis of this study is that models of intermediate complexity as 
developed using model abstraction can be useful for the design of feasible monitoring networks 
and schedules at actual and potential contaminated sites. The selection of a specific model should 
depend on the purpose of monitoring, such as obtaining calibration data, demonstration of 
compliance with a regulatory limit, or for obtaining information to remediate a plume. 

1.2   Objectives 

The objective of this research was to develop methods for incorporating model abstraction 
techniques into the design of subsurface hydrologic monitoring and performance assessment 
programs. The enhanced abstraction strategies and models needed to be tested using a site-
specific database on flow and transport of tracers from pre-defined sources.   

1.3   Approach 

The research effort utilized a unique, long-term monitoring data set from the ongoing 
environmental monitoring program at the ARS OPE3 site, along with datasets collected at that 
same site during subsequent tracer experiments (Pachepsky et al., 2011). Both the vadose zone 
and groundwater were sampled continuously, which should present an advantage given the 
importance of the vadose zone in evaluating groundwater recharge and contaminant transport to 
groundwater (Hunt et al., 2008; Harter and Hopmans, 2004.). As appropriate for the shallow 
groundwater site, the base conceptual model to be simplified was selected to be fully three-
dimensional. The highly nonlinear nature of flow in the unsaturated zone makes the modeling 
results dependent upon mathematical approximations needed for numerical solutions using a 
realistic temporal and spatial discretization. To evaluate this issue, two available codes 
(HYDRUS-3D and TOUGH 2) were used concurrently in this study.  

The following requirements were considered to be important: 
1. The model abstraction techniques should be selected to support the performance
assessment modeling and monitoring at the field/watershed scale; 
2. The research should recognize a variety of data aggregation methods used in
performance assessment; data abstraction should be considered along with model 
abstraction; 
3. The effect and efficiency of model abstraction must be characterized in statistical terms;
and 
4. Monitoring should improve both the performance of the abstracted models and
discrimination between the abstracted models. 
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The following research questions were addressed to meet the above requirements: 

1. Do the analyses and evaluations produce a sufficient technical basis to designate the 
appropriateness of the abstractions as represented by the different models, depending 
upon the “complexity” of the results (all data, filtered data or derivative data) used for the 
comparisons?  

2. When does a simplification create significant error and/or uncertainty, and what 
monitoring data support that determination? 

3. For the various abstracted models using filtered data or derivatives of the data, what test 
methods could be used to predict where (or when) to sample for a) an optimal reduction 
of uncertainty in the model; and b) discriminating indicators (or criteria) between models 
of different abstraction? 

4. How can monitoring assist in determining which abstracted model and its assumptions 
are appropriate for estimating transport given the release scenario and site-specific 
subsurface flow conditions (e.g., presence of preferential pathways, perching units, 
fracture connectivity)? 

5. Given the goals stated in the voluntary EPRI/NEI Industry Ground-Water Protection 
Initiative (Kim, 2009), what monitoring densities (i.e., areal, depth and time determinants) 
for that magnitude of release at the OPE3 field site would be needed to assure a high (or 
absolute) probability that the release would be detected? 

6. How much uncertainty can be reduced by monitoring the unsaturated zone close to the 
release location, as opposed to monitoring at the water table, and which performance 
indicators could best be used and monitored in the unsaturated zone? 

7. How could model abstraction techniques be coupled with site attributes and conditions to 
select the proper monitoring strategy to provide confidence in the selection of an 
appropriate remediation technique or techniques? 

 
Monitoring network design issues includes (a) creating an initial monitoring network and (b) 
augmenting an existing network.   The modeling-based initial monitoring design at the OPE3 site 
was described earlier (Pachepsky et al., 2011). Here the ARS study team concentrated on 
augmentation of an existing monitoring network, and two reasons for this approach are 
considered: 

- improving model performance by augmenting the network to include optimal locations to 
decrease uncertainty in the predictions, and  

- improving model discrimination by augmenting the network to include the best locations for 
distinguishing between two models. 
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2    MONITORING AND MODEL ABSTRACTION 
IN SUBSURFACE HYDROLOGY 

This section provides an overview of the state-of-the art of model abstraction and model-based 
monitoring design, and outlines the interactions between these two components of environmental 
assessments and predictions.  Modeling and monitoring have substantial potential to complement 
each other to improve studies of any contamination problem. This is because the mathematical 
model and the monitoring network both require a conceptual model of the contaminated site, with 
both at the same time providing information about the validity of the invoked conceptual model. 
Monitoring and modeling both should also recognize the non-uniqueness of possible conceptual 
models, and thus should foresee their possible application to several models, rather than singling 
out only one model, even if thought to be the best. 

Model abstraction is a methodology for reducing the complexity of a simulation model while 
maintaining the validity of the simulation. Model abstraction, if conducted in a systematic manner, 
generates a variety of both conceptual and mathematical models. Any one of the conceptual 
models could serve as a basis for the monitoring design. The monitoring design itself can be 
useful by allowing one to distinguish between the mathematical models and their conceptual 
counterparts, and by eliminating models that generate unacceptable results. On the other hand, 
an ensemble of simplified models can serve as a source of data about uncertainty in model 
predictions, which then can be incorporated implicitly or explicitly in the monitoring design 
process.  

2.1  Model Abstraction in Subsurface Hydrology 

2.1.1  Background 

Model abstraction techniques stem from a need to improve the reliability of simulations, and to 
reduce their uncertainty, to make modeling and its results more explicable and transparent to end 
users, and to enable more efficient use of available resources in data collection and computations. 

An important feature of model abstraction is the explicit treatment of model structure uncertainty. 
Model structure, along with data uncertainty and scenario uncertainty, is known to introduce 
uncertainty in the modeling results. Unlike uncertainty in input data, model parameters and 
scenarios, the effect of model structure uncertainty on uncertainty in the simulation results is 
usually impossible to quantify in statistical terms. However, using model abstraction, a series of 
models with feasible structures can be built and evaluated in a systematic manner. Each of the 
models is evaluated from results of an ensemble of simulations by its ability to match observed 
data, and by its predictions with respect to scenarios that have not been observed.  

Earlier collaborative work of ARS and NRC staff resulted in the definition of several categories of 
model abstraction techniques relevant to subsurface flow and transport modeling (Pachepsky et 
al., 2006). These categories included abstractions of model structure and model parameter 
determination, and were based on a comprehensive review of model simplification techniques 
developed for subsurface flow and transport (Fig. 2-1). A brief review of available model 
abstraction techniques is given below for clarity and reference purposes; more detailed 
descriptions are in the above cited NUREG report.  
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Figure 2-1 Categories of model abstraction techniques relevant to flow and transport 
modeling in subsurface hydrology. 

2.1.2  Abstraction of Model Structure 

Hierarchies of models. An example of the possible hierarchy of models available to simulate water 
flow in variably-saturated porous subsurface media is presented in Fig. 2-2. A pre-defined 
hierarchy of models has been suggested previously for flow and transport in structured media 
(Altman et al., 1996). Fig. 2-2 shows a schematic representation of increasingly complex models 
that may be used to simulate preferential flow and transport in macroporous soils or unsaturated 
fractured rock. The simplest water budget model describes the accumulation of water in the soil 
matrix and its discharge when the water content exceeds the field water capacity, or during 
evaporation periods (Fig. 2-2a). The classical approach of simulating flow/transport processes in a 
vadose zone devoid of macropores or fractures is to use the Richards equation for variably-
saturated water flow and the advection-dispersion equation for solute transport (Fig. 2-2b). The 
simplest situation (Fig. 2-2c) for a fractured medium arises when the Richards and advection-
dispersion equations are still used in an equivalent continuum approach, but with composite 
(double-hump type) hydraulic conductivity (permeability) curves of the type shown by Durner 
(1994) and Mohanty et al. (1997), rather than the classical smooth curve for the relative 
permeability shown in Fig. 2b.  

More involved dual-porosity type models (Fig. 2-2d) result when the medium is partitioned into 
fracture and matrix pore regions, with water and/or solutes allowed to exchange between the two 
liquid regions (Ventrella et al., 2000; Šimůnek  et al., 2003). Different formulations of this type are 
possible. For example, one could permit transient variably-saturated flow in the fractures only, 
while allowing water to exchange between the fracture and matrix domains. The latter situation 
leads to both advective and diffusive exchange of solutes between the fractures and the matrix, 
but still without vertical flow in the matrix (e.g., Zurmühl and Durner, 1996; Zurmühl, 1998). Dual-
permeability models (Fig. 2-2e) arise when water flow occurs in both the fracture and the matrix 
domains. Examples are models by Pruess (1991), Gerke and van Genuchten (1993) and Jarvis 
(1999). These models use different formulations for the exchange of water between the fracture 
and matrix regions.  In some models, (e.g., Wilson et al., 1998) more than two domains are 
considered, each one having its own hydraulic properties. The modeling approach can be refined 
further by considering transient flow and/or transport in well-defined discrete fractures without (Fig. 
2-2f) or with (Fig. 2-2g) interactions between the 
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fractures and matrix. The latter approach is based on the assumption that the flow and transport 
equations of the fracture network can be solved in a fully coupled fashion with the corresponding 
equations for the matrix (e.g., Therrien and Sudicky, 1996).  

Limited input domain. Model abstraction techniques based on delimiting the input domain rely on 
the notion that some feature or process may not be relevant for a given class of scenarios or for a 
given set of model outputs. A reduction in the spatial dimensionality is one application of this 
technique. Two-dimensional representations of the subsurface are sometimes redundant and 1D 
representation may suffice as shown by Wang et al. (2003). In another example, Guswa and 
Freyberg (2002) explored the possibility of using a 1D model to characterize solute spreading in a 
medium containing low-permeability lenses; they found that the 1D macroscopic advection-
dispersion equation closely matched results of the 2D model when the equivalent conductivity of 
the domain was less than the geometric mean conductivity. This example shows that one should 
expect a change in parameter values when the dimensionality is reduced.  

Scale change. Scale is a complex concept having multiple connotations. The notion of support is 
important to characterize and relate different scales in subsurface hydrology.  Support is given by 
the length, area, or volume of a sample or element for which a single value of a porous medium  

Figure 2-2  Hierarchy of models to simulate water flow and solute transport in structured 
soils or in unsaturated fractured rock (after Altman et al., 1996). 

property is defined and no variations in this or other properties are taken into account. The size of 
an individual sample, and the size of a discrete spatial element in the flow model, are typical 
examples of support. The terms "resolution," "pixel size," "grid size,” and “voxel size" are often 
used to define the resolution in terms of length, area, or volume. An area or volume that is 
sampled with given support determines the extent of measurements. Distances between sampling 
locations define the spacing, which is also a function of scale. Blöschl and Sivapalan (1995) 
suggested characterizing scale not with a single value of support, extent, or spacing, but 
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with a position of a particular hydrological dataset in the 3D space of coordinates ‘support-
spacing-extent’. Therefore, change(s) in one or more of the numerical values of support, spacing, 
or extent leads to a change in scale.   

In practice, vadose zone investigations generally define the support of core scale, soil profile or 
“pedon” scale, field scale, and watershed scale operationally, i.e. based on the measurement 
setup and available equipment. Increasing the linear size by about two orders of magnitude 
generally corresponds to a transition from one of these scales to the next one, as shown 
schematically in Fig. 2-3. Changes in the spatial scale are usually reflected by changes in the 
temporal scale as shown in this figure. 

 Scale change with upscaling. This category of model abstraction recognizes the need to alter the 
model structure when the spatial scale changes. Model equations, variables and parameters 
change as the scale changes. A key premise of upscaling is the possibility to derive parameters of 
a coarser-scale model from parameters of a finer-scale model.  

Figure 2-3 Spatial and temporal operational scales in hydrology (after Blöschl and 
Sivapalan, 1995). 
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To be effective, all upscaling techniques must use the correct statistical representations of 
relatively rare but essential features at the finer scale since those features often govern relevant  

media properties or processes at the coarser scale. For example, if the hydraulic conductivity is 
distributed lognormally, then five percent of a fine-scale representative elementary volume 

(REV) will conduct 95% of all flow, which implies that relatively rare features at the smaller scale 
may control flow at the coarser scale. Macropores (i.e. relatively large pores) provide another 
example of the importance of relatively rare fine-scale features. As compared to smaller matrix 
pores, macropores are rare in soils and are easy to miss during sampling. Yet, continuous 
macropores largely control rates of water flow and solute transport in a soil profile. Similarly, 
lateral preferential flow pathways in the subsurface are fine-scale features at the field or 
watershed scale, and relatively difficult to locate. Yet, lateral preferential flow pathways often 
control lateral flow and solute transport at the larger scale. 

Scale change with aggregation. Aggregation also leads to a change in the governing equations 
and model parameters. However, unlike with upscaling, no relationship is assumed between the 
model parameters at the fine and coarse scales. Parameters of the coarser-scale model are 
deemed to be lumped, which suggests that field data are needed to calibrate the coarse scale 
models. An example is the use of a water budget soil flow model (Fig. 2-2a) at the field scale, 
while the Richards equation is used at the soil profile scale (Fig. 2-2b). Soil water retention is then 
parameterized in terms of field capacity at the coarse scale, whereas soil water retention curves 
are used at the fine scale. The value of water content at field capacity cannot be attributed to a 
single value of the soil water potential, and therefore no relationship exists between the coarse- 
and fine-scale soil water retention parameters.  

Aggregation can be also implemented without a change in the model equations by combining 
several soil horizons or geologic strata. For flow and transport in the vadose zone, one common 
application is to replace a heterogeneous soil profile with an equivalent homogenous profile while 
retaining the Richards equation as the flow model (Zhu and Mohanty, 2002). The flow and 
transport parameters are still lumped in that case. Attempts to determine the effective hydraulic 
properties of the equivalent homogeneous soil profile from the layer properties have shown that 
the effective properties depend not only on the layer properties as such, but also on the type of 
predominant water regime (infiltration or evaporation).  

Many examples of distributed watershed modeling with varying degrees of sub-watershed 
aggregation have recently been developed in surface hydrology. In general, excessive 
aggregation worsens model performance. For example, Boyle et al. (2001) showed that 
aggregation from eight to three sub-watersheds did not worsen model performance, whereas 
aggregating all sub-watersheds into only one watershed did.  

Metamodeling. Metamodeling is a group of abstraction methods that uses results of multiple 
simulation runs to extract information helpful for simplifying a complex model. Metamodeling 
literally means modeling a model. Also known as the repro-modeling (Meisel and Collins, 1973) or 
response surface modeling, metamodeling creates a relatively simple empirical model intended to 
mimic the performance of a large complex model in order to reproduce the object model’s input-
output relationships (Davis and Bigelow, 2003). A common way to develop a metamodel is to 
generate “data” from a number of large-model runs and then to use statistical methods to relate 
model input to model output without attempting to understand the model’s internal working. 
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Machine learning methods have become a popular means to build metamodels. Artificial neural 
networks (ANNs) are the most widespread among these since they are powerful approximators 
and, as such, are popularly used to relate multiple input variables to outputs from the complex 
model (Haykin, 2008). Examples of the application of artificial neural networks to mimic 
MODFLOW output for a range of scenarios for particular remediation sites were published as 
early as 10 years ago (Kron and Rosberg, 1998; Masket et al., 2000). The use of ANNs requires 
development of a large number of training datasets covering the range of possible scenarios of 
forcing variables. Generating such datasets requires extensive computing efforts, but after the 
ANN is trained, computations with the derive ANN are several orders of magnitude faster than 
simulations with the original model. An example involving regional wastewater planning in which, 
for reasons of computational efficiency, an artificial neural network was employed is given by 
Wang and Jamieson (2002). The ANN replicated the process-based model in multiple evaluations 
of the model output during optimization aimed at determining both the best sites and individual 
discharge standards. Other machine learning methods such as support vector machines, 
classification and regression trees, and genetic programming are increasingly being appreciated 
also in subsurface hydrology. 

Machine learning methods can be used to simulate not only the model output of interest, but also 
the results of any part of the computations performed during a model run. For example, Hassan 
and Hamed (2001) demonstrated the use of ANNs to predict particle trajectories in a particle-
tracking algorithm simulating plume migration in heterogeneous media. Their metamodeling 
approach substantially improved the computational efficiency of the entire algorithm.  

2.1.3  Abstraction of Parameter Determination 

Discretization. Using a set of discrete parameter values, instead of continuous functions, can 
sometimes lead to substantial simplifications. This simple but very important abstraction approach 
is commonly used in flow and transport modeling by employing soil and geological maps to define 
soil or sediment structural units that have the same hydraulic properties, even though the real-
world hydraulic properties may change more gradually from one unit to another. Zonation of the 
hydraulic conductivity was found to be efficient when geophysical and hydrogeological data were 
combined (Chen et al., 2001, 2004; Straface et al., 2011). Automated zonation is now also 
feasible (Tsai et al, 2003), which has the advantage of not needing a specific equation to simulate 
the dependence of parameters on the spatial coordinates. 

 Abstraction by temporal discretization is often used to create soil surface boundary conditions or 
discharge values. The temporal support of precipitation and evaporation or discharge is then 
coarsened to time intervals of months or years to speed up computations or to avoid generating 
synthetic weather patterns. Unfortunately, this type of abstraction can potentially also introduce 
substantial errors. For example, McLaren et al. (2000) studied the transport of 35Cl in fractured tuff 
at Yucca Mountain and showed that changing the infiltration regime from a constant value of 5 
mm y-1 to a pulsing regime with the same annual average value greatly enhanced the transport of 
the radioactive isotope. The effect of infiltration pulsing was model dependent; low rates of mass 
exchange between preferential flow zones and the matrix further enhanced transport to make the 
predictions more consistent with observations (Bandurraga and Bodvarsson, 1999). Relationships 
between flow properties and water contents are highly nonlinear in the vadose zone.  Temporal 
coarsening for this reason may cause simulated plumes to move much slower and to become 
much more compact from what they would have been otherwise.  

Pedotransfer functions. Parameters of models for flow in variably-saturated porous media are 
nonlinear functions of the pressure head or water content. The parameters in these hydraulic 
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functions are notoriously difficult to measure. Accurate measurement of water and solute fluxes in 
unsaturated soils remains a major research issue; no routine methods have been devised to-date. 
Therefore, defining parameters using inverse methods is often problematic. Substantial efforts 
have been made to estimate the hydraulic parameters from data available from soil surveys or 
borehole logs. Regression equations used for this purpose are often called pedotransfer functions 
(PTFs). These regressions relate soil water retention and hydraulic conductivity to more readily 
available soil parameters, such as contents of textural fractions, bulk density and organic carbon 
content. Extensive work has been carried to develop PTFs.  The proceedings of two international 
conferences (van Genuchten et al., 1992, 1997), a book on this topic (Pachepsky and Rawls, 
2004), and a recent review (Vereecken et al., 2010) provide a panoramic view of these fast-
developing studies. 

The performance of pedotransfer functions can be evaluated in terms of their accuracy, reliability, 
and utility. In broad terms, the accuracy of a PTF can be defined as the correspondence between 
measured and estimated data for the data set from which a PTF has been developed. The 
reliability of a PTF may be viewed as the correspondence between measured and estimated data 
for data set(s) other than the one used to develop the PTF. Finally, the utility of a PTF in model 
applications can be assessed in terms of the correspondence between certain measured and 
simulated environmental variables.  

PTFs developed from regional databases have been shown to be more reliable in regions with 
similar soil and landscape histories. For example, PTFs developed from the country-wide US 
database by Rawls et al. (1982) appear to be more robust than PTFs developed from regional 
databases. However the accuracy of any PTF outside of its development dataset is essentially 
unknown, and using multiple PTFs instead of relying on a single PTF may well be preferred. Ye et 
al. (2004) suggested averaging spatial variability models for unsaturated fractured tuff in situations 
where standard information criteria provide an ambiguous ranking of the models such that it was 
not justified to select one model and discarding all others. Guber et al. (2006, 2008) likewise used 
an ensemble of pedotransfer functions to simulate water flow in variable saturated soils.  

Recent developments in pedotransfer technologies have focused on the use of spatially dense 
physical information related to soil cover. Using topographic information is based on the 
hypothesis that some relationship may exist between the soil hydraulic properties and topographic 
variables (Pachepsky et al., 2001) since (a) the basic properties of soil are known to be related to 
landscape position, and (b) soil hydraulic properties are related to basic soil properties. Soil water 
retention was found to exhibit a strong dependence upon terrain attributes in the work by Rawls 
and Pachepsky (2002) who used U.S. soil survey data from the National Resources Conservation 
Service (NRCS). Terrain attributes were also used by Romano and Palladino (2002) to improve 
PTFs.  

The use of hydrogeophysical, remote sensing, and crop yield data is based on a similar premise 
as using topography. The basic soils data should affect both the sensor readings and the soil 
hydraulic properties. Therefore, some relationship between the geophysical data and the hydraulic 
properties should be expected. A recent book on hydrogeophysics (Rubin and Hubbard, 2005) 
summarizes the rapid progress in this field. Cross-borehole resistivity measurements are now also 
showing promise in improving estimates of flow and transport properties of the vadose zone 
(Looms et al., 2008; Deiana et al, 2008). One recent example involved the use of airborne gamma 
radiometric sensing to estimate the clay content of surface soils and using a simple pedotransfer 
function to convert this information into a spatial representation of soil water retention parameters 
(Smettem et al., 2004). In another example, Timlin et al. (2003) related biophysical information 
from yield maps to the soil field capacity. 



2-8 

The use of dense auxiliary data in PTFs reflects an attempt to trade data quality for data quantity. 
Since dense coverage can be treated as an image, image analysis techniques may be used for 
segmentation and classification, as well as for delineating the structural units of soils. Data 
assimilation techniques may be suited also for combining soil survey and sensor information 
(McLaughlin, 1995). PTFs developed with auxiliary data are probably highly site-specific and, 
therefore, useful mostly only for sites for which they were developed. Nevertheless, the availability 
of sensor data can make such PTFs a viable component of supplying parameters of models for 
water flow in the vadose zone.  

Scaling. Abstraction of scaling presumes the dependence of flow and transport parameters on the 
shape and dimensions of the domain over which these parameters are averaged. The saturated 
hydraulic conductivity and the dispersivity are most often viewed as scale dependent parameters, 
although parameters of geochemical kinetics are also shown to be subject to scale-dependency 
(Malmstrom et al., 2000; White and Brantley, 2003; Li et al., 2006). Evidence is accumulating that 
parameters of biological activity models show scale-dependencies, too. 

Examples of observed scale dependencies in the saturated hydraulic conductivity are shown in 
Fig. 2-4.  Ks values tend first to increase as the cross-sectional area or volume of the reference 
area increases and then presumably stabilize. The increase in Ks is caused by a change in the 
type of structural heterogeneities that are encountered as the scale increases. Large 
heterogeneities that are rarely viewed at the finer scales dominate flow as the scale increases. 
The dispersivity shows a similar behavior. Different measurement techniques (e.g., slug, single 
well, and multiple well pumping tests) represent different scales, and integration of their results 
presumes application of scaling as discussed by Neuman (1991). 

The structure of surface soils in some cases can create the decrease in the value of hydraulic 
conductivity with the increase of the thickness of soil layers that is involved in flow (Lauren et al., 
1988). There reason for that is the number of well-conducting macropores connecting top and 
bottom boundary of soil sample decreased as the length of soil column increased. 

The scaling abstraction of parameter determination provides compatibility of the scale of 
measurement with the scale of model resolution. Neuman et al. (2003) suggested that this can be 
done by either rescaling the data to fit the scale of model resolution (which often entails averaging 
or upscaling over computational grid cells) or adapting model resolution to fit the scale of 
measurement (which often entails adapting the size of grid cells to the size of the data support). 

2.1.4  Systematic Model Abstraction 

Earlier collaborative work between ARS and NRC staff resulted in the development of a 
systematic and objective approach for model abstraction (MA) relevant to subsurface flow and 
transport modeling (Neuman et al., 2003; Pachepsky et al., 2006). The approach included (a) 
justifying the need for model abstraction, (b) reviewing the context of the modeling problem, (c) 
selecting applicable MA techniques, and (d) determining alternative MA directions and simplifying 
the base model in each direction.   

The ARS study team emphasized that model abstraction is always site-specific. Pachepsky et al. 
(2011) provides a detailed overview of the model abstraction process. In this section the ARS 
study team provides a brief description.  
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2.1.4.1  Model Abstraction Steps 

The MA process starts with an existing base model that can be calibrated and used in the 
simulations. Key output of the model is defined in this first step.  The output provides the 
necessary and sufficient information required to make decisions about a certain issue of interest. 

The model abstraction process includes the following steps: 
1. Justify the need for the envisioned model abstraction 
2. Review the context of the modeling problem 
3. Design the model abstraction using selected techniques 
4. Perform the model abstraction. 

 
Model abstraction justification. Any model simplification requires calibration of the abstracted 
simpler model and its confirmation with multiple model runs. This is a separate modeling project 
that demands resources, and may be used later to justify the need for model abstraction. The 
base model may need abstraction for one or more of the following reasons: 

 The base model includes a complex description of processes that cannot be observed well, 
but still needs to be calibrated; the calibrated parameter values of those processes may be 
very uncertain.  

 The base model propagates uncertainty in the initial distributions, the parameters, and the 
invoked boundary conditions (forcings) in a manner that creates unacceptable uncertainty in 
the key output.  

 The base model produces inexplicable results in terms of the key output.  

 The base model requires an unacceptable amount of resources for the computations, data 
preprocessing, or data post-processing (e.g., the base model is not suited to be part of an 
operational modeling system that requires real-time data processing).  

 The base model lacks transparency to make the model and its results explicable and 
believable to users of the key output.  
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Figure 2-4 Relationships between the scale of measurement and the saturated hydraulic 

conductivity of soils and sediments; a – saprolite, North Carolina; 
measurements on cores, columns, and at the drain field scale (Vepraskas and 
Williams, 1995); b – Kokomo clay soil, Ohio; measurements with a 
permeameter, on cores, and on soil blocks (Zobeck et al., 1985); c – aquifer in 
a stream alluvium, Columbus, Ohio; measurements with a permeameter, flow 
meter, and using a slug test (Zlotnik et al., 2000); d – aquifer in glacial 
outwash, Cape Cod, MA (Zlotnik et al., 2000);  e, f, g, h – aquifers in Wisconsin 
(Schulze-Makuch et al., 1999), e –glacial outwash sediments, f – carbonate 
aquifer, g – high magnesium limestone with shale, h – finely crystalline 
dolomite,  - permeameter tests,  - piezometer tests,  - packer tests,  - 
single well pumping and specific capacity tests; oversized symbols show 
averages over a large number of replications. 
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The lack of transparency of the base model is often a result of abstraction motivated by the 
perception of potential users or critics of the simulation results. Incomprehensible simulation 
results with the base model or the unacceptable resource demand of the base model are often 
reasons that preclude timely completion of a modeling project.  

The need for abstraction may stem also from uncertainty in the calibrated parameter values 
because of limited observation ability or uncertainty in the simulation results.  The decision to 
carry out model abstraction may be based on the statistics of the parameter estimates and the key 
output, as discussed by Pachepsky et al. (2006).  

Context of the modeling problem. The context of a modeling project has to be reviewed to assure 
the objectiveness and comprehensiveness of the selected model abstraction process. One must 
realize which details and features of the problem are to be omitted or de-emphasized when 
abstraction is performed. Neuman et al. (2003) list the following issues that constitute the context: 

 
1. What is (are) the question(s) that the base and abstracted models are to address? The 

answer should consider (a) the existing or potential problem in which modeling is one of the 
solution instruments, (b) existing or potential causes of the problem, (c) issues requiring 
resolution, and (d) criteria to be used for deciding the level of resolution. The key output has 
to be provided with the spatial and temporal scale at which model abstraction is evaluated. 
Acceptable criteria for accuracy and uncertainty of the model output must to be established 
by the end users. In some cases mandatory regulations exist on performance measures that 
articulate the statistics to use in a particular case. If such regulations do not exist, then the 
statistics must be selected and defined; they should describe simple and clear ideas about 
the correspondence between the data and the simulations, such as how variability in the 
model errors compares with variability in the data, if the model residuals have trends, or if 
systematic relative or absolute errors exist in the predictions. 

2. What type of data is available to calibrate the base and abstracted models and to test them 
with respect to the key output? An essential prerequisite is to have a database that is as 
broad as possible. The database must include data from public and private sources, cover 
both quantitative and qualitative (expert) information, and encompass both site-specific and 
generic information. A list of base model inputs and outputs would provide a convenient 
template for the necessary parts of the database. It is imperative to have statistics of all 
available model input and measurable model output data, including (a) the initial 
distributions of water contents and/or pressure heads, and the concentrations of solutes of 
interest, (b) surface and subsurface soil properties including horizon or layer thicknesses, 
porosities, bulk densities, sorption parameters, and in some cases redox conditions, (c) the 
forcings that provide the boundary conditions and the source/sink terms, and (d) the model 
parameters typical for the site. The latter can be inferred from an ensemble of pedotransfer 
functions, provided the necessary soil survey and/or borehole log data are available to serve 
as pedotransfer inputs. Statistic measures include the type of statistical distribution used, 
median values and variability estimates, information about observed outliers, and 
correlations between parameter values.  

3. To make sure that the abstracted models are sound, additional information may have to be 
collected to ensure that the abstracted models include descriptions of all essential 
processes of flow and transport at a given site. This information may be of lower quality 
compared with the necessary part of the database. For example, again, one must be sure to 
not ignore certain small-scale internal heterogeneities that may have a dominant effect on 
flow and/or transport at the scale of interest. 
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2.1.4.2 Model Abstraction Design and Example 

The design of a model abstraction project should include selection of the model abstraction 
techniques, definition of uncertainties that have to be simulated using Monte Carlo or other 
methods, and selection of the software to be used (Pachepsky et al., 2006). Decisions about 
which model abstraction technique to use depend on the reasons for the model abstraction. In 
general, model abstraction can lead to simplifications via: 

 the number of processes being considered explicitly,

 adopting simpler process descriptions,

 coarsening the spatial or temporal support

 the number of measurements to be used for reliable parameter estimation,

 reduced computational burden, and

 simplified pre-processing and post-processing data.

An example of model abstraction design and implementation was developed in a study focusing 
on infiltration in a variably-saturated soil subject to natural rainfall (Pachepsky et al., 2006). The 
base model for that study was previously developed by Jacques et al. (2002) who simulated water 
flow in a layered soil using a single-continuum pore space model (media b in Fig. 2-2). 
Parameters were estimated by calibration using measured water content and pressure head time 
series. Key output was the soil water flux at three depths. The base model provided an excellent 
fit to the soil water contents but failed to simulate measured soil water fluxes.  

The results initially could not be explained well (Jacques et al., 2002). Fig. 2-5 shows the selected 
model abstraction techniques, the uncertainty treatment, and the software selected (Pachepsky et 
al., 2006). Four abstraction techniques were used. Two techniques simplified the base model via 
(1) a simpler process description, i.e., by changing the porous media model from a single-
continuum (Fig. 2-2b) to a water budget model (Fig. 2-2a), and (2) by aggregating soil layers into 
a single layer with effective hydraulic properties. Two other techniques simplified parameter 
estimation by using only laboratory data, or an ensemble of pedotransfer functions. Fifty Monte-
Carlo simulations were performed, with each abstracted model using data on variability of the 
calibrated, measured or estimated hydraulic properties. The HYDRUS 2D and MWBUS software 
packages were used to simulate water flow in the single-continuum medium and water budget 
model, respectively.  

The abstracted model correctly simulated fluxes and showed why inexplicable results had been 
obtained with the more complex model. Simultaneous calibration of a large number of parameters 
in the base model caused unrealistic flow simulations that included substantial runoff generation, 
whereas no runoff was observed during the experiments. The model abstraction process via 
pedotransfer functions at the same site showed that an ensemble of pedotransfer functions 
produced a satisfactory representation of field uncertainty in the soil hydraulic properties (Guber et 
al., 2006).  

2.1.5  Model Abstraction vs. Arbitrary Selection of a “Simple” Model 

Models used in performance assessments of waste disposal sites generally ignore small-scale 
heterogeneities in space and time. Preferential pathways are typically ignored when a single-
continuum pore space representation is used. Observed strongly asymmetrical distributions of the 
pore water velocity are then often represented by an average velocity. Similarly, strongly 
asymmetrical temporal distributions of actual rainfall or discharge are represented by rates
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averaged across long periods of time. Thus, the often-used models are actually abstractions of 
more realistic models that explicitly could account for spatial and temporal heterogeneities.  

One argument for using a simplified model based on averaging is that locating and quantifying 
small-scale spatial and temporal heterogeneities has substantial conceptual and resource 
limitations. However, the magnitude of errors caused by ignoring the small-scale heterogeneities 
is never known a priori. Recent research shows that heterogeneities are common, and that even 
slight variations in soil texture may lead to flow barriers and associated lateral flow.  These lateral 
flow paths may lead to solute mass losses, lowed vertical fluxes, and higher longitudinal 
dispersivities (Looms et al., 2008). This shows that it is imperative to evaluate possible prediction 
errors when the “simple” model is used. Deriving a simple model from a more complex base 
model provides opportunities for such an evaluation.  

 

Figure 2-5 Design of model abstraction via model structure and parameter determination 

 

2.2  Approaches to Modeling-Based Monitoring Optimization 

2.2.1  Background 

Significant efforts have been invested in the development of techniques to design groundwater 
monitoring networks (GMN), particularly for groundwater quality monitoring. A range of state-of-
the art reviews and guidance documents have been published about GMNs during the last 
decade (Bloomfield, 2000; Hassan, 2003; Minsker, 2003; U.S. EPA, 2005; U.S. DOE, 2004; Kollat 
et al., 2011).  It is generally agreed that there is no unique “best” way to conduct a long-term 
monitoring optimization project. Multiple guidance documents, tools, and standardized methods 
and approaches which utilize qualitative, temporal, and/or spatial-statistical methods have been 
applied successfully to a range of sites. The most significant advantage conferred by any 
optimization approach is the fact that they are used to apply consistent, well-documente 
procedures, which incorporate formal decision tools, to the process of evaluating and optimizing 
monitoring programs (U.S. EPA, 2005). 
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2.2.2  Components of a Groundwater Monitoring Network Design 

The design of modern groundwater monitoring networks requires consideration of a range of 
factors that include having adequate spatial and temporal coverage of sampling sites, balancing 
potentially competing objectives within a monitoring program, considering the complex nature of 
geologic, hydrologic, and other environmental factors, accounting for the significant uncertainty 
about many parameters used in the design process, and considering the range of applicability of 
various methods in network design including their relative strengths and weaknesses (Bloomfield, 
2000). 

Implementation of a GMN always requires clearly stated objectives. Loaiciga et al. (1992) proposed 
a classification of objectives that forms the basis of Fig. 2-6. Specifically, the objective of ambient 
monitoring is to establish an understanding of characteristic regional groundwater trends with time. 
Detection monitoring is designed to identify the presence of targeted parameters, such as 
contaminants, as soon as they exceed background or established levels. Compliance monitoring is 
established to examine whether or not a set of specified groundwater-monitoring requirements, 
usually for chemical constituents, is met, for example near waste disposal facilities. Research 
monitoring on the other hand is a characteristically detailed spatial and temporal groundwater 
sampling effort designed to meet specific research goals. Objectives of the monitoring network 
define the monitoring scale.  

Phase-dependent classification of monitoring objectives includes four general categories (U.S. EPA 
2004): identification of changes in ambient conditions; detection of flow and transport of the 
environmental constituent of interest, demonstration of compliance with regulatory requirements; 
and demonstration of the effectiveness of a particular response activity or action.  

The dynamic nature of a groundwater monitoring network is an important factor in the design of an 
effective groundwater monitoring network. Network design may be an iterative process in which 
initial sampling programs are often revised or updated as a result of previously collected data. Thus 
network augmentation or reduction is a characteristic feature of dynamic GMNs. In addition, the 
objectives of the monitoring network may also change with time.  
A dynamic GMN design hence includes an iterative validation-monitoring-refinement cycle 
(Hassan, 2003). 

GMNs must be developed according to a conceptual model of the site that includes geological 
and hydrogeological boundaries; the physical structure of the aquifer; information about recharge, 
discharge, groundwater flow pattern and mechanisms, rock-groundwater interactions, and the 
effects of unsaturated zone processes. Central to conceptual site model development is the 
collection, fusion and integration of appropriate geological data. Neuman et al. (2003) noted that it 
is often possible to postulate hydrogeologic conceptual models or hypotheses for a site on the 
basis of a broad range of publicly available geologic and geographic information about its 
surroundings.  

Additional conceptualizations can be implemented on the basis of generic data about similar 
regions and the properties of similar materials elsewhere. Still, it is important to realize that each 
site is unique and very likely to reveal additional properties and features when characterized in 
some detail locally. Local characterization is hence essential for postulating acceptably robust 
conceptual hydrogeologic models for a particular site. The broader the available database, the
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more robust the conceptualization likely becomes. Key data categories include site and regional 
physiography, topography, climate, meteorology, soils, vegetation, land use, geomorphology, 
geology, geophysics, surface and subsurface hydrology, inorganic and organic hydrochemistry, 
radiochemistry, natural and anthropogenic isotopes, and remotely sensed data. Of special 
relevance to hydrogeologic model development are regional and local site data that allow one to 
define the distribution of hydrostratigraphic units on a variety of scales; their geologic structure; 
rock and soil types; their textural, physical, flow and transport properties; fluid types; the states of 
fluid saturation, pressure, temperature and density; chemical constituents and isotopes; major 
contaminants in soil, rock and groundwater; and their sources. 

Common constraints on groundwater monitoring networks include budgetary limitations, including 
availability and stability of funding, opportunities for developing dynamic GMNs, access to 
appropriate sites, environmental impact from the monitoring setups, availability of staff with 
appropriate skills, and technical limitations such as remote data collection. 

2.2.3  Methods of Groundwater Monitoring Network Design 

Existing GMN design methods differ in terms of the objectives of the design, the invoked physical 
model, the methods and objectives of optimization, the use of statistical representations of data, 
and the dimensionality of the spatial domain. Various classifications of GMN design methods have 
been proposed. One of the earlier classifications of GMN design methods (Hassan, 2003) is 
shown in Fig. 2-7. The two main categories and their branches were identified earlier by Loaiciga 
et al. (1992). However, the different methodologies developed under each of the general themes 
of Loaiciga et al. (1992) have been added to each methodology associated with either a network 
design theme or a network augmentation theme (Hassan, 2003). The author noted that that many 
of the developed approaches belong to more than one of the categories in Fig. 2-6. For example, 
a probability-based approach may be cast within an optimization framework, a variance-reduction 
approach may be based on kriging or co-kriging, and a simulation approach may be linked to an 
optimization technique.  Kollat et al. (2011) recently listed such categories of methodological 
approaches that include expert-based hydrogeologic judgments, deterministic physics based 
simulations, geostatistical interpolation approaches, Monte Carlo physics-based simulations, and 
statistical filtering/data assimilation. 

One of the primary distinctions among GMN design methods is whether the method uses a 
physics-based mathematical model of subsurface flow and transport (FTM), or employs 
geostatistics and statistical inference based on the past observations. Each of the two approaches 
has advantages and disadvantages. Grabow et al. (2000) noted that geostatistical methods as 
generally applied are essentially interpolation techniques and are most useful for siting wells to 
better define a plume once it is located and its boundaries are identified. However, these methods 
are not as good at extrapolating as they are at interpolating, and thus may be of limited help in 
predicting plume movement. On the other hand, flow and transport model-based (FTM-based) 
methods provide essential forecast information on plume movement, and thus can be 
instrumental in siting wells to characterize future plume development. The forecast skill of such 
models, however, depends on the conceptual model of the subsurface and can be seriously 
compromised if the conceptual model is flawed. 

Recent developments in geostatistical methods in GMN design have progressed well beyond the 
optimal interpolation approach. An advanced, purely geostatistical/statistical toolbox, MAROS, 
was introduced with much success in 2003 (Aziz, 2003, Ling et al., 2004). Additional work in the 
same period was done on redundancy reduction using geostatistics (Nunes et al., 2004; Wu et al., 
2005). Since then, geostatistics-based methods began to include FTM components for various 
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reasons. For example, Rivest et al. (2012) noted that groundwater contaminant plumes often 
display a curvilinear anisotropy, which conventional kriging and geostatistical simulation 
approaches generally fail to reproduce. They proposed to use a FTM to relate the spatial 
concentration patterns in natural coordinates directly with simulated flow patterns. Shlomi and 
Michalak (2007) proposed two new geostatistical tools based on using spatial structures of 
simulated flow and transport extracted from a FTM for spatial interpolation and uncertainty 
estimation. The new tools yielded results that are superior to those obtained by kriging, with a 
better reproduction of the true plume shape and lower uncertainty. Kollat et al. (2011) further 
demonstrated advantages of using data assimilation in GMN design. Data assimilation assumes 
knowledge of uncertainties in both the measurement and the modeling results. To estimate 
uncertainties in the modeling results, Kollat et al. (2011) used the Ensemble Kalman filter, with 
uncertainties in the modeling results being estimated from the ensemble FTM.  The trend of 
merging geostatistical methods and FTMs seems to be very productive and is expected to 
continue. 
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Figure 2-6 Classification of groundwater monitoring network objectives (after Loaiciga et 
al, 1992). 

 
 

 

 

Figure 2-7 Classification of groundwater monitoring design approaches (after Hassan, 
2003). 
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2.2.4  Groundwater Monitoring Network Design Based on Flow and Transport Models 

Developments in using flow and transport models (FTMs) in the design of groundwater modeling 
networks (GMNs) during the last 20 years are summarized in Table 2.1. The table shows that 
FTMs have been used most often within a Monte Carlo simulations framework. Random 
selections of flow and transport parameters, locations of the contaminant sources (leaks), and 
boundary conditions are then used to develop probability distribution functions (PDFs) of 
contaminant concentrations at predefined locations. In several cases it was sufficient to obtain 
statistical moments, rather than full PDFs. Less often FTMs have been used to determine 
sensitivities of simulated concentrations to the parameter values. Deterministic representations of 
plumes with a single set of subsurface media parameters were used most often in past, but not 
lately. 

FTMs have been implemented for both static and dynamic network designs. Proposed dynamic 
FTM-based designs mostly considered only augmentations of an existing network.  For example, 
the assumption is generally made that wells in operation before network augmentation will 
continue to function after the expansion (Hudak and Loaiciga, 1992; Lee and Kitanidis, 1996; Dhar 
and Datta, 2007; Tonkin et al., 2007; Kim and Lee, 2007; Chadalavada and Datta, 2008; Datta et 
al., 2009). Some authors did not specify a trigger for the network expansion, while others 
assumed that the management stages were defined such that eventually the well network would 
be augmented (e.g. Grabow et al., 2000).  The common assumption is that the period of additional 
well installation is much shorter that the period between network augmentation events. Potential 
locations for the new wells typically were set at the nodes of a predefined grid (e.g. Cieniawski et 
al., 1995). Use of a dynamic design emphasizes efficient use of collected information, such as 
allowing the past behavior of the plume to serve as a predictive model for placing future wells 
(Grabow et al., 2000). The term “sequential design” has been utilized seemingly interchangeably 
with the term “network augmentation.” Sequential GMN designs appear to be much more cost-
effective than static one-time setups such as used in the work of Kim and Lee (2007).  

Two-dimensional flow and transport domains have been used most often in the past. Three-
dimensional layered domains with wells located in different layers were investigated by Hudak and 
Loaiciga (1992), and more recently by Kollat et al. (2011). The computational load using 3D 
models in the past called for simplification of the solute transport simulations by using particle 
tracking methods (Storck et al., 1997). Evidence suggests that in some situations two-dimensional 
simulations are poor approximations of natural three-dimensional systems (Hassan et al., 1998). 
Based on a case study review, Montas et al. (2000) concluded that 2D models can be very useful 
tools to study and predict contaminant behavior in natural aquifers, and thus can be used to 
design monitoring well networks to detect and characterize plume spreading and evolution in 
regional aquifers.  

The objective of FTM-based GNM designs have been related mostly with the detection, 
delineation and characterization of contaminant plumes.  The probability of detection associated 
with any GMN design can be expected to increase with increased density of the network and/or 
increased frequency of sampling. A sensitivity analysis by Meyer et al. (1994) showed that the 
predicted performance of a given number of wells can decrease significantly as the heterogeneity 
of the porous medium increases. Poor estimates of the hydraulic conductivity were further shown 
to result in too optimistic estimates of network performance. 

Model discrimination was addressed in early studies by Usunoff et al. (1992) and Nordquist and 
Voss (1996). The former authors noted that conceptual model uncertainties often are the main
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source of prediction uncertainties. Orders of magnitude differences in peak concentrations and 
arrival times were found when performing long-term predictions with the two models used in their 
study. They emphasized that simulations of the proposed experiment with all models are 
necessary but not sufficient since data obtained from the experiment could be fitted with several of 
the models. Nordquist and Voss (1996) tested the hypothesis that measurements in regions 
where alternative models produce the most divergent predictions will give the best information 
possible for deciding which of the candidate models is the most appropriate. 

Until recently few if any studies have addresses the effects of uncertainty in observed data on 
GMN designs using FTMs.  Datta et al. (2009) may have been the first by using explicitly treated 
measurement errors as normally distributed additive terms. They indicated that source 
identification errors depend upon assumptions in the measurement error characteristics.  

A variety of optimization algorithms have been used to solve the extremely complex problem of 
well placement optimization under multiple constraints. Substantial progress has been achieved 
with the advent of evolutionary algorithms (Minsker, 2003). Comparison of results obtained with 
different algorithms showed potentially substantial differences between different multi-objective 
optimization approaches (Cieniawski et al, 1995; Kollat and Reed, 2006). The ARS study team 
note that monitoring designs for FTM parameter estimation are not considered in this report; 
reviews and summaries of progress can be found elsewhere (e.g., Tsai et al., 2003; Hill and 
Tiedeman, 2007).  

The need to monitor both the vadose zone and groundwater has been emphasized repeatedly in 
the literature.  Hudak and Loaiciga (1999) provided a compelling argument that comprehensive 
subsurface monitoring programs should include contaminant detectors in both the vadose and 
saturated zones. This work demonstrated that vadose zone detectors can provide early warnings 
of an impending groundwater contamination problem, and also yield information relevant to 
placing groundwater monitoring wells. Ward (2006) reported that, at the Hanford site, fine-scale 
geologic heterogeneities, including grain fabric and lamination, were observed to have a strong 
effect on the large-scale behavior of contaminant plumes, primarily through increased lateral 
spreading resulting from anisotropy. To our knowledge, no studies on optimization of FTM-based 
coupled monitoring of vadose zone and groundwater have been reported to date. Although 
conceptually the purposes and constraints for monitoring flow and transport in a coupled 
groundwater and vadose zone system may be similar in some aspects to monitoring flow and 
transport in groundwater only, the process rates in groundwater can be quite different from those 
in the vadose zone.  Opportunities for sampling of dissolved contaminants hence are also 
different. 

Research on GMN optimization have only recently addressed uncertainties in the conceptual 
models that form the basis of the invoked FTM. These uncertainties are now increasingly 
acknowledged, and both model discrimination and model combination are viewed as potential 
directions to address these uncertainties (see e.g. Refsgaard et al., 2012). 

Overall, the steady progress in physical model-based optimization of groundwater monitoring has 
resulted in the development of a variety of powerful and robust optimization methods. Multi-
objective criteria are now increasingly being used successfully in many studies. Multiple sets of 
model parameters have been used similarly in Monte Carlo simulations and sensitivity analyses. 
Furthermore, geostatistics-based GMN design methods are now starting to benefit FTM 
simulations. In particular, FTM-based GMN designs can be improved by incorporating information 
about uncertainties in both data and the model predictions. 
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2.3  Integrating Model Abstraction into Monitoring Design  

Systematic model abstraction can lead to a variety of conceptual models of potential use for 
optimization of the monitoring efforts. A conceptual model is always needed to address any of 
GMN objectives shown in Fig. 2-6. Therefore, as a result of the model abstraction process, 
multiple GMNs can be designed for purposes of aquifer characterization, parameter estimation, 
characterization of the background concentration, contaminant detection, compliance 
assessment, plume characterization, source identification, and model discrimination. Because 
each conceptual model has a flow and transport model associated with it, most of the above GMN 
optimization tasks can be approached with one of the methods shown in Fig. 2-1.  
 
Abstraction of the model structure can, in particular, be used in GMN design efforts that address 
the model discrimination problem. The specific objective then will be to augment an existing well 
network for the purpose of optimizing model discrimination. It is generally accepted that the 
traditional approach of model uncertainty analysis, which considers only a single conceptual 
model, may fail to adequately sample the full space of plausible conceptual models. As such, the 
traditional approach is prone to modeling bias and underestimation of predictive uncertainty. The 
purpose of model discrimination is not to identify the best model but rather to provide insight into 
the behavior of the different models, thereby adding important information about subsurface 
properties controlling or affecting flow and transport. A reduction in the prediction uncertainty 
resulting from model discrimination can be expected in three categories of uncertainty as defined 
by Refsgaard et al. (2012): (a) the geological structure; (b) the effective model parameters; and (c) 
model parameters including local scale heterogeneity. Two approaches to GMN design for model 
discrimination have been used in subsurface contaminant hydrology so far. Knopman and Voss 
(1989) postulated that points of greatest difference in predictions can contribute the most 
information to the discriminatory power of a sampling design. They suggested the use of three 
objective functions in the design optimization: the sum of squared differences in predicted 
concentrations, the squared scaled difference, and the minimum squared difference. This 
approach has been successfully used in several field cases (Knopman et al., 1991; Nordquist and 
Voss, 1996). Another approach was proposed by Usunoff et al. (1992). They formulated the 
optimization problem within a maximum likelihood framework and defined the performance of 
each model in terms of its ability to fit existing experimental data as well as data predicted with 
other models at additional monitoring points.  Both approaches do not impose any restrictions on 
model structure and hence can be applied with the abstracted models. 
 
Several GMN designs are possible if alternative conceptual models are proposed as a result of 
model abstraction. Monitoring design optimization may then rely on weighted simulation results 
from the corresponding mathematical models to provide the required input for the optimization 
algorithms as outlined in Table 2-1. Bayesian model averaging (Ye et al., 2004) can be 
instrumental in determining model weights. Rojas et al. (2010) recently used a combined GLUE-
BMA approach to analyze prediction uncertainties generated with eight different conceptual 
models. The models predicted substantially different flow processes outside of the studied area.  
Having an appropriate site-specific GMN design (or designs) is then important to decrease model 
uncertainty.  If the scale of the prediction domain is substantially different from the scale of the 
domain of the initial observations, then the abstraction of scale change can provide additional 
conceptual and mathematical models to be included in the monitoring design using methods 
outlined in Table 2-1. 
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Metamodeling abstraction is currently already being used for GMN designs.  As shown by Arndt et 
al. (2005), replacing time-consuming model runs with computations using regression equations 
appears to be very efficient in designing optimal monitoring schemes for contamination sources. 

Abstraction of parameter determination includes the application of pedotransfer functions that 
allow one to generate model ensembles for application to flow in variably saturated soils (Guber et 
al., 2006; Guber et al., 2008). Model-based GMN design methods include the use of ensemble 
modeling with Monte Carlo-based randomly generated hydraulic and transport parameters (Table 
2-1). It has been noted that such methods for generating parameters can be hampered by 
uncertainty about possible correlation between parameters and appropriate ranges of some 
parameter values. The use of pedotransfer functions may alleviate this problem since the 
parameters of water retention and (if available) the hydraulic conductivity are not randomly 
generated but fitted to measured data. Another abstraction of this type – zonation – has already 
been used successfully in the design of GMNs (Tsai et al., 2003). 

Most of the model-based GMN design methods have been developed using assumptions that 
numerical calibration of the models can be performed, that parametric sensitivities can be 
determined, that measurement errors can be neglected, that the vadose zone can be neglected, 
and that a one-dimensional solute transport model is fully acceptable. One or more of these 
assumptions may not be applicable in most practically important cases. In this study the ARS 
study team develop or modify heuristic techniques that will avoid the need to make these types of 
assumptions (Section 6). The techniques will be applied to models that are obtained via model 
abstraction for full 3D flow and transport in a variably-saturated flow domain. 
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3    EXPERIMENT TO TEST AND CONFIRM MODEL ABSTRACTION FOR                    
MONITORING FLOW AND TRANSPORT IN SOILS 

 
In this study, the ARS study team applied a systematic abstraction process to base models 
accounting for heterogeneities in subsurface flow and transport. The abstraction will lead to 
often-used simplified models, with as overall objective the estimation of pattern and magnitudes 
of possible errors obtained with the simplified models. The purpose of this section is to provide 
an analysis of the exhaustive ARS OPE3 vadose zone flow and transport database within the 
context of model abstraction, and to describe the experiments and measurements carried out to 
develop the dataset and the comprehensive model of flow and transport. This model and its 
abstractions have been used to demonstrate the integrating model abstractions in developing 
monitoring designs for the ARS OPE3 site example. 

 
3.1  Outline of Lateral Flow and Transport Experiment 

A century-long history of experimentation on solute transport in soils has resulted in a multitude 
of advanced experiment setups and procedures, as well as methods of data analysis. 
Experiments may be carried out at different scales as illustrated in Fig. 2-3.  Currently no single-
source compendium of experimental methodologies exists to study flow and transport in soils, 
and to characterize the ability of soils to transmit and retain chemicals. One exception may be a 
recent monograph by Dane and Topp (2002).  Applying a model to infer soil properties from 
experimental results is still the standard method of data analysis.  
 
Generally, there are three sources of information about solute transport in soils: outflow 
breakthrough sampling, destructive soil sampling after transport has occurred, and monitoring of 
pore solution concentrations within the soil during the observed solute transport event. The 
applicability and relative reliability of those sources depends on the scale of the study.  
 
Outflow breakthrough sampling is probably the most reliable methodology since it effectively 
integrates solute transport for the given support area or volume. However, its applicability is 
limited when no or little breakthrough is present. Such situations are typical for strongly 
absorbed chemicals, colloids and microorganisms, and generally for all solutes if the soil is 
unsaturated and transport is slow. Even if considerable breakthrough occurs, the presence of 
several alternative transport and retention processes may complicate the interpretation of 
results.  This because multiple parameters describing those processes cannot be 
simultaneously inferred from a single breakthrough curve.  
 
Destructive post-experiment sampling is a useful complement to breakthrough data in that this 
may help to diminish or eliminate ambiguity in parameterization of the retention processes in soil 
column experiments. As the scale coarsens, however, the resource demands may become 
daunting and sample cross-contamination may become an issue, while field variability may 
further compromise data reliability. A destructive sample may not contribute much to 
understanding the physical or chemical heterogeneity of a soil. 

Monitoring the pore solution composition is in principle the best approach for obtaining data. 
Unfortunately, monitoring devices tend to distort the concentration field within a soil. It is often not 
clear what part of the soil solution affects the sensor reading, or what part of the pore solution is 
extracted. As the observation scale coarsens, field variability introduces additional uncertainty in 
the data.  
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Although the ambiguity of data and/or their analysis undoubtedly creates difficulties in solute 
transport experiments at the field scale, the importance of the vadose zone in controlling 
chemical fate and transport in the subsurface requires the development and application of field-
scale predictive models.  These field-scale models require data for their calibration and testing.  
A list of structural heterogeneities that are important to consider within the context of vadose 
zone modeling is given in Appendix A. Experimental setups in general should addresses two 
types of heterogeneities: differences in water mobility in different parts of the soil pore space, and 
the effects of restricting layers and the capillary fringe on lateral transport.  

The field experimental setup was implemented in this study to evaluate the potential contribution 
of the variably-saturated zone and the capillary fringe to lateral chemical transport along a 
restrictive fine-textured layer. The lateral flow and transport processes were found to be relatively 
complex since the perched groundwater table fluctuated substantially in time. A schematic of the 
experiment is shown in Fig. 3-18. The tracer application area during the experiments was 
continuously irrigated, leading to a gradually expanding groundwater mound. The composition of 
groundwater during the experiment was monitored using observation wells located within the 
projected plume. The chemical application area had a radius of several meters to accommodate 
the scale of possible releases of contaminants from waste storage facilities. A conservative tracer 
was used.  No soil solution sampling during the experiments was envisioned. The irrigation rate 
was selected such that the soils remained unsaturated. Soil moisture sensors had been installed 
to monitor the soil moisture content. Groundwater depths were measured, while surface runoff 
was monitored and, if found significant, intercepted and measured. All vegetation was eliminated 
from the chemical application area. Data obtained from soil surveys, water content 
measurements and the tracer experiment itself provided information for a base model that was 
developed to accommodate the encountered complexities as explained in the following chapter.  

3.2  The OPE3 Experimental Site at the Beltsville Agricultural Research Center  

3.2.1  General Description 

The study area was the 22-ha USDA-ARS “Optimizing Production Inputs for Economic and 
Environmental Enhancement,” or OPE3, experimental site in Beltsville, MD. An aerial view of the 
site is shown in Fig. 3-1. The watershed in the area drains into a riparian wetland forest that 
contains a first-order stream (Gish et al., 2002, 2005; Chinkuyu et al., 2008). The vadose zone at 
the site was formed in fluvial deposits. Soils are mostly sandy loams and coarse sands on a clay 
layer with surface slopes ranging from 1 to 4%. A description of the soil cover is given in Table 3-
1. The watershed is in agricultural use and has been under corn since 1998. Tillage practices 
were the same each year, with fields typically being disked about one month prior to a second 
disking operation, followed by planting.  
 
OPE3 is a small watershed site that is intensively instrumented, and where all data are 
geo-located with a differential or kinematic global positioning system. Data collection included the 
following: 

• Over 40 km of ground penetrating radar (GPR) data were collected and analyzed.  
• Every two years, soil cores were extracted to determine spatial correlations and 

distributions of organic matter, pH, and sand, silt, and clay percentages.  
• Electromagnetic induction (EM-31 and EM-38) data were collected for two of the sites.  
• 36,000 volumetric water content measurements at 48 locations were collected daily.  
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Figure 3-1 The USDA-ARS OPE3 research site; a – aerial view, b – instrumentation. A, B, 
C, D – research fields. 

• Micro-meteorological stations with eddy covariance systems to monitor climatic conditions.  
• Multiple pesticide vapor flux towers were operational after pesticide application.  
• Water and chemical (N, P, and pesticides) runoff fluxes were collected from each field.  
• Field B (Fig. 3-2) was instrumented with 52 groundwater observation wells.  
• Corn grain yields were measured using a grain yield monitoring device.  
• Aircraft and satellite remote sensing imagery were collected. Ground- and tower-based 

reflectances were collected as needed.  
• Plant growth and development were measured periodically during the growing season.  
• 180 observation wells in the riparian wetland were monitored for anions and pesticides.  
• Stream flows and chemical fluxes in the stream were measured at five stations within the 

riparian wetland.  
• Wetland soil cores were extracted up to one-meter depth and analyzed for grain size, bulk 

density, carbon content, hydraulic conductivity, water content, and denitrification potential.  
• Dissolved gas was measured in groundwater samples throughout the wetland for evidence 

of denitrification and methanogenesis.  
• Dissolved oxygen, dinitrogen, nitrous oxide, and methane were measured.  
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The experimental site of this particular study is located at the 3-ha field B of the OPE3 
experimental site. The field is currently instrumented with 64 soil moisture sensors (EnviroSCAN, 
SENTEK Pty Ltd., South Australia) distributed among 12 capacitance probes (Fig. 3-2) that 
measure soil water content at depths from 10 to 180 cm every 10 min year-round. Table 3-2 
shows installation depths of the soil moisture sensors. Field B was equipped with 52 groundwater 
monitoring wells, 41 of which are still active (Fig. 3-2). Some of the wells were instrumented with 
Divers (Van Essen Instruments, Giesbeek, The Netherlands) to measure groundwater levels 
every 30 min.  

Other monitoring equipment at Field B included an automated Sigma 980 runoff flow meter (Hach 
Company, Loveland, CO) that measured water flow every 10 min and periodically collected 
surface runoff samples so that water and chemical fluxes could be determined. The flume was 
installed at the field surface outlet (Fig. 3-1b). The automated runoff sampler monitored fluxes on 
an event basis. An energy balance meteorological station with an eddy covariance tower was 
installed 20 m south of the boundary between Fields A and B (Fig. 3-1b).  

3.2.2  Existing OPE3 Information Relevant to Flow and Transport in Soils 

3.2.2.1  Small Scale Structural Units and Heterogeneities 

The focus here was on heterogeneities that could be revealed at the core scale and could control 
the behavior of flow and transport at the field scale. The following information was used: 

 Borehole data of soil texture and composition

 Soil water retention measurements on undisturbed samples,

 Field and laboratory soil hydraulic conductivity measurements.

3.2.2.1.1  Basic Soil Properties 

Data on pH, organic matter content, Ca, Mg, K, P, sand, silt and clay contents had been collected 
during a soil survey performed by the USDA-NRCS at OPE3 site in 1997 using samples 
representing distinct genetic horizons. A detailed description of selected data is shown in Fig. 3-3. 
The soil pH was in a range between 4.3 and 7.5. The organic matter content varied from 0.12 to 
4.65% and demonstrated a typical decrease with depth, indicating the absence of recent 
substantial changes in soil stratification caused by floods or erosion. The sand, silt and clay 
content exhibited large variations at each depth. Although the soils were characterized as having 
a coarse texture (Table 3-1), sand content varied in the range between 34 and 97 % (Fig. 3-3), 
with often drastic changes from one horizon to another in some profiles. Loamy sand and sandy 
loam classes dominated in soil texture. Only 9% of the samples belonged to sand, sandy clay 
loam and loam texture classes according to the survey (Fig. 3-4a). The relationship between soil 
clay and sand content was linear below 60 cm (Fig. 3-4b), which suggests a potential for having 
isolated lenses of predominantly coarse and predominantly fine material. 
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Figure 3-2 Locations of groundwater wells (brown circles) and soil moisture sensors 
(green circles) at field B. 

Table 3-1 Soil cover of the OPE3 crop production area. 

Soil associations 
and soil series 

Coverage 
% 

Topsoil 
texture 

Description 

Downer-Muirkirk-
Matawan 

49 Sandy loam 

Downer Coarse-loamy, siliceous, semiactive, mesic 
Typic Hapludults 

Muirkirk Clayey, kaolinitic, mesic Arenic Paleudults 

Matawan Fine-loamy, siliceous, semiactive, mesic Aquic 
Hapludults 

Bourne 23 Fine sandy 
loam 

Fine-loamy, mixed, semiactive, thermic Typic 
Fragiudults 

Matawan-
Hammonton 

23 Loamy sand 

Matawan Fine-loamy, siliceous, semiactive, mesic Aquic 
Hapludults 

Hammonton Coarse-loamy, siliceous, semiactive, mesic 
Aquic Hapludults 

Downer-
Ingleside 

5 Loamy sand 

Downer Coarse-loamy, siliceous, semiactive, mesic 
Typic Hapludults 

Ingleside Coarse-loamy, siliceous, semiactive, mesic 
Typic Hapludults 
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Table 3-2    Installation depths of the soil moisture sensors at field B of OPE3 site. 

Location Depth (cm) 

10 30 50 80 120 150 180 

BH1 x x ns x ns ns ns 

BH2 x x ns x ns ns ns 

BH3 x x ns x ns ns ns 

BH4 x x ns x ns ns ns 

BL1 x x x x x x x 

BL2 x x x x x x x 

BL3 x x x x x x x 

BL4 x x x x x x x 

BM1 x x x ns x x x 

BM2 x x x ns x x x 

BM3 x x x ns x x x 

BM4 x x x ns x x x 

ns stands for no sensor. 

3.2.2.1.2   Soil Hydraulic Property Measurements 

To evaluate possible effect of the macroporosity on the soil hydraulic properties, undisturbed 
samples having a 20 cm2 support area were taken for hydraulic conductivity measurements at the 
same support size in both the laboratory and the field. An example of water retention data from 
three depths with increasing clay content is shown in Fig. 3-5. Samples taken close to the soil 
surface showed well-defined macroporosity. A small decrease in the pressure head close to zero 
caused a substantial decrease in the water content of these samples. This decrease is a result of 
macropores being emptied. The effect is almost absent at 50 cm depth where the clay content is 
larger than close to the surface, and where root activity is also lower. Macropores may be less 
developed at this depth and hence are more difficult to detect here because of their infrequent 
appearance.  

Data for the saturated hydraulic conductivity corroborated the water retention data in terms of a 
decrease in macroporosity with an increase in clay content and a decrease in root activity. As 
shown in Fig. 3-6a, the maximum values of the hydraulic conductivity were similar at depths of 25 
and 40 or 45 cm. However, a substantial part of the soil, about 25% at well w50 and 50% at well 
w52, did not conduct water at a measurable rate at a depth of 40-45 cm where the effects of 
macroporosity on water retention were observed.  
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Anisotropy in the saturated hydraulic conductivity is another consequence of changes in soil 
structure. Fig. 3-6b shows that the horizontal hydraulic conductivity was smaller than the vertical 
conductivity at a depth of 25 cm, with about half of the samples showing distinct non-zero 
horizontal conductivities. At the depth of 45 cm, all samples had zero horizontal conductivity. The 
data are in agreement with visual observations of seepage along the walls of a soil pit where the 
measurements were taken (Fig. 3-7). Seepage can be seen at a depth of 60 cm where the lateral 
conductivity was substantially higher than the vertical conductivity.  

3.2.2.2  Field Scale Heterogeneities 

Considerable field-scale heterogeneity was evidenced by observed groundwater levels and 
chemical compositions, measured soil water contents, ground-penetration radar surveys, remote 
sensing imagery, and maps of measured corn yield.  
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Figure 3-6 Probability distributions of the saturated hydraulic conductivity for 20 cm2 
support areas; a – field falling head measurements;  - well w50, depth 

25 cm , - well w50, depth 45 cm,  - well 52, depth 25 cm, 
 - well 52, depth 40 cm; b – constant head measurements of 

vertical (KSV) and horizontal (KSH) conductivities of undisturbed samples
with 20 cm2 support area in the laboratory (error bars show standard 
deviations).  
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Figure 3-7 Water seepage from the wall above a locally restrictive soil layer near well 
w50. 
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3.2.2.2.1  Hydrologically Active Zones and Subsurface Flow Pathways 

Initially two sets of independent data were collected to determine optimal locations for subsequent 
soil core sampling. Photogrammetric and geophysical techniques were first used to provide a 
general characterization of the experimental site. Because surface slope and aspect influence 
both surface and subsurface hydrology, a 0.25-m contour interval topographic map was derived 
from a stereo pair of aerial photographs and ground control points located with a submeter, a 
differential global positioning system (DGPS) receiver (Trimble 4000-SE, Sunnyvale, CA).  

Electromagnetic induction (EM-38) was used to estimate relative clay contents near the soil 
surface in order to estimate infiltration rates (Doolittle et al., 1994). The results showed EM-38 
values from 5 to 30. The EM data were divided into three equally sized populations, low (EM < 
12), intermediate (17 >EM > 12), and high (EM >17) values.  

The entire 7.5-ha site was next divided into different hydrologic groups based on surface 
topographic features and EM data. The ARS study team assumed that areas with EM > 17 and a 
slope >2% would have a relatively low infiltration capacity, whereas areas with EM <12 and a 
slope < 1% would have relatively high infiltration capacities. All other areas were assumed to have 
medium infiltration capacities. Within each hydrological region of potential infiltration, 7 or 8 plots 
having dimensions of 25 x 25 m2 each were randomly selected for higher resolution surveys (Fig. 
3-8).  

A ground-penetrating radar survey was conducted in 2000. Data were acquired for the entire 7.5-
ha field B along parallel north-south transects 25-m apart using a 150 MHz antenna. Within 
selected 25 by 25 m plots, additional GPR data were collected by towing the 150-MHz antenna 
along north-south transects that were 2 m apart. GPR data were acquired in digital form so that a 
trace of the subsurface reflections could be produced using RADAN software (Geophysical 
Survey Systems, Salem, NH). The GPR data were distance-normalized and low-pass filtered prior 
to data interpretation. The GPR trace followed the shallowest contrasting dielectric discontinuity. 
Strong dielectric reflections were considered to be manifestations of water holding capacity 
differences due to textural discontinuities such as the presences of a clay lens below a sandy soil. 
Generally, the clay lens (high dielectric) occurred below the C horizon, which frequently contained 
much gravel (low dielectric). Depths to the strongest reflection were as shallow as 0.9 m and as 
deep as 3.4 m, but the majority of data gave the strongest reflection at depths of 1.3 and 2 m. A 
GPR image profile is shown in Fig. 3-9. The first continuous restricting layer in this figure was 
situated immediately above the first continuous strong reflection, shown as a dotted line between 
depths of 1 and 2 m. The reflection of the restricting layer was not registered in about 5% of the 
total transect length. The topography of the first restricting layer was constructed using kriging 
assuming an omnidirectional variogram. The ARS study team used the software packages GEO-
EAS (EPA, Las Vegas, NV) and GS_ (Gamma Design Software, Plainwell, MI) for this purpose. 
An example of the topography this obtained is given in Fig. 3-10. A first approximation of the 
subsurface flow pathways was constructed by subtracting the depth to the first continuous 
restricting layer from the surface elevation. The Arc/Info GIS hydrologic modeling tools 
FLOWDIRECTION and FLOWACCUMULATION were applied to a raster grid of the elevation-
corrected subsurface topography to determine potential flow pathways (Fig. 3-10). The 
FLOWDIRECTION routine provided a grid of flow directions from one cell to its steepest 
downslope neighbor, while FLOWACCUMULATION determined the accumulated water from all 
cells that flowed into a particular downslope cell. The location of the restrictive layer was verified 
using multisensor capacitance probes installed at the blocks using a 2-m GPR survey, remote 
sensing imagery and a yield map (Gish et al., 2003, 2005). Sensors above the restrictive layer 
demonstrated the accumulation of water above the layer (Gish et al., 2002).  



3-14 

 

 

 
Figure 3-8 Layout of the 7.5-ha site overlain by a 25x25 m sample grid. Blocks with 

alphanumeric and infiltration capacity designations make up the stratified 
random sample of grid cells selected for soil moisture monitoring probes. The 
shaded rectangle in the southeast corner of the field site shows the 0.5-ha 
subsection that was used for soil moisture measurements and flow 
verifications (after Gish et al., 2002, with permission).  
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Figure 3-9 Ground-penetrating radar image with a digital trace of the first restricting 
layer, indicated by the dotted line (after Gish et al., 2002, with permission). 
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Figure 3-10 Interpolated elevation of the first continuous restricting layer with potential 
subsurface flow pathways (blue lines) identified using Arc/Info hydrologic 
tools. 
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Variability in the depth to the first continuous restricting layer also affected seasonal dynamics of 
the perched water tables. Groundwater depths monitored using Cera-Diver (Van Essen 
Instruments, Delft, The Netherlands) sensors installed in wells at a depth of 2.0 m in 19 locations 
across field B revealed high spatial variability in perched water levels (Fig.3-11). In some locations 
(e.g. w10, w11, w33, w39, w42-w44), the perched water level was consistently higher compared 
to other locations (e.g. w02, w12, w15, w18, w21, w36, w47). The amplitudes of groundwater level 
oscillations observed at locations with a shallow perched water were generally greater than in 
wells with relatively deep groundwater, thus indicating fast response of the water levels to rainfall 
in those locations.  Since no differences in the oscillation phases were observed for the 19 
observation wells installed at different locations across field B, one can conclude that the decline 
in groundwater level was controlled primarily by water permeability of the restrictive layer, and that 
locations with shallow groundwater were hydraulically more active, compared to the other 
locations. In other words water fluxes were greater in wells where the restrictive layer was close to 
the surface due to hydraulic connectivity between surface and groundwater.  Preferential flow was 
also a factor, especially in the well 21. 

Patterns of high crop density during water limited growing seasons were observed with remote 
sensing imagery using the Airborne Imaging Spectroradiometer for Applications (AISA) for areas 
corresponding to the GPR-identified subsurface flow pathways that could accumulate limited 
subsurface water at the site (Gish et al., 2003). During mildly dry years, corn yields decreased 
significantly (P<0.01) as the distance from the pathways increased (Gish et al., 2003). 

3.2.2.2.2  Structural Units of Soil Cover 

The multi-sensor capacitance probe (MCP) network at the site revealed the existence of areas 
where the soil was either consistently wetter or consistently dryer than the average of the study 
area. The different areas defined large spatial structural units in the top part of the vadose zone 
constituting the soil cover of the site. There was a noticeable similarity in the soil water storage 
time series measured at 8 locations of field B from May 1, 2001 through January 1, 2003 (Fig. 3-
12). Time series from different locations appeared to be vertically shifted relative to each other.  

The dense spatial coverage provided by remote sensing and yield mapping supported the 
existence of a spatial organization in soil cover at the site. Differences in soil water retention and 
hydraulic conductivity manifested themselves either by spatially different biomass values or yield 
variability, or both. Areas that produced low corn yields in 2001 (e.g., BL4, BM2, BH3 and BM3 in 
Fig. 3-13) supposedly experienced either more intensive waterlogging or higher soil water losses 
as compared to other locations. The spatial organization can be seen in Fig. 3-14, which shows 
an infrared image of corn biomass, superimposed on adjusted corn yields for 1999 (having a 
relatively dry growing season). Yields were greater than the mean inside the black polygons and 
less than the mean outside these polygons.  Therefore, areas with high biomass (inside the black 
polygons/red colors) will likely produce higher evapotranspiration rates than the low biomass 
areas. Multiyear mapping of the yields supported the existence of zones where water availability 
to plants was consistently better or consistently worse than average (Fig. 3-15).
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Figure 3-11 Time series of groundwater depths measured in field B in 2006-2007. 
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Figure 3-13 Spatial distribution of 2001 corn yields in field B. The red to yellow colors 
represent low corn yield areas and the dark blue colors high corn yield areas. 
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Figure 3-14 Corn yields and color infrared image of corn biomass taken in August 1999 (in 
a relatively dry growing season). Green stars designate moisture probe 
locations, while the yellow, green and light blue lines designate subsurface 
flow pathway locations. The yellow color indicates regions with high biomass 
and the white regions low biomass, each reflecting extremes in the vegetative 
cycle of the corn plant. Corn grain yields greater than the mean are inside the 
black polygons, whereas areas outside the black polygons denote regions 
having yields below the mean.  
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Figure 3-15 Spatial corn yield variations from 1998 to 2002.Note that 1998 and 1999 were 

relatively dry, 2000 was wetter than normal, 2001 was close to normal, and 
2002 was dry.   
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Contaminant release typically occurs over an area much smaller than the biophysics-based unit. 
Still, it seems important to determine locations of different biophysics-based units, since the 
differences between units may reveal differences in the infiltration and groundwater recharge 
rates that will affect the transport of contaminant released over smaller area within a biophysics-
based unit.  

3.2.3  Surveying, Monitoring and Site-Specific Transport Experiments 

The experiments as outlined in Section 3.1 envisaged tracer applications and monitoring in areas 
of 10x10 to 20x20 m2. However, the OPE3 site had been surveyed in the past mostly at a much 
coarser scale. The flux measurement experiment used a location where more detailed surveys 
had been carried out in previous years.  
 
An additional set of measurements was made for selection and characterization of the lateral flow 
experiment. The ARS study team decided to use for this experiment the intensively equipped 
South-Eastern part of Field B. Having a large number of groundwater wells (W18, 19, 20, 22, 23, 
24, 25, 26, 36, 37, and 38) in this area was a major argument for selecting this location. However, 
the area had not been characterized at the fine scale during the ground penetration radar survey 
conducted in 2000 and described in section 3.2.2.2.1. Therefore, an additional fine-scale ground 
penetration radar survey was conducted to delineate boundaries of the soil hydrologic horizons for 
subsurface transport simulations.  
 
3.2.3.1  Location Selection and Site Instrumentation 

 
The location of the experimental site was selected to meet the following specific conditions: 

(a) The experimental area must be large enough to show spatial variability in soil properties; 
(b) The size of the irrigation plot should be reasonable for both a short-duration tracer 

application and a continuous uniform irrigation lasting several months; 
(c) The number of observation wells, and their spacing, should be large enough to reduce 

the influence of neighboring wells, while still capturing subsurface preferential fluxes 
within reasonable time intervals; 

(d) The site should exclude transit runoff and subsurface preferential pathways; 
(e) The site should not interfere with other ongoing long-term studies.  
 

An experimental 10x10 m2 site was selected in the intensively equipped South-Eastern part of 
Field B. Ground penetration radar data obtained in 2000 for this site indicated considerable 
variability in the depth to the restrictive soil layer (varying between 2.5 to 4.0 m), which was 
highest within the surveyed site. Two large branches of preferential subsurface pathways as 
identified by GPR survey started in this area, which potentially could be used for the field tracer 
experiment (Fig.3-10). The beginning of the main preferential surface flow pathway was found 
along the Southern boundary of the site on May 11 2006 after intensive rainfall.  This suggests 
that preferential runoff would not affect the tracer study at the selected plot. Analyses of multi-
sensor capacitance probe (MCP) monitoring data at locations BM2, BM3, BM4, BL3 and BH3 
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showed high spatial variability in water content at different depths. The site was located 30 m from 
a nearby road, which did not interfere with the long-term ongoing studies at Field B.  

Four  plots (loc-1, loc-2, loc-3 and loc-4), each of 1 m2 and 10 m apart, were instrumented in the 
spring of 2006 to monitor soil water contents, pressure heads, and groundwater depths  

 (Fig. 3-16). MCPs (EnviroSCAN, SENTEK Pty Ltd., South Australia) and soil tensiometers were 
installed at depths from 0.1 to 1.0 m at 0.1 m increments to monitor soil water contents and 
pressure heads, respectively. The MCP and tensiometers were connected to a CR-10X 
datalogger (Campbell Scientific, Inc., Logan, Utah) to collect data every 15 minutes. Two AM416 
Relay Multiplexers (Campbell Scientific, Inc., Logan, Utah) controlled datalogger communication 
with 40 pressure transducers (PX26-005GV, Omega, Stanford, CT) installed in the tensiometers  

(Fig. 3-17). Collected data were acquired from the Redwing 100 Airlink modem (Campbell 
Scientific, Inc., Logan, Utah) once a week. Five additional locations 7 m downgradient from the 
site, as well as three locations 14 m downgradient, were equipped with observation wells and 
MCPs for monitoring water contents and groundwater depths (Fig. 3-18). Groundwater depths 
were measured at each location using Cera-Diver (Van Essen Instruments, Delft, The 
Netherlands) sensors installed in wells at a depth of 2.0 m. Barometric pressures were recorded 
using a Baro-Diver sensor (Van Essen Instruments, Delft, the Netherlands). Volumetric water 
contents were measured periodically at locations loc-1 to loc-4 to correct MCP factory calibration. 

A drainage line was constructed at a distance of 1m to the South and 1 m to the East of the plot 
boundary to collect runoff water. A ½’ H-type flume was installed at the outlet of the drainage line 
and equipped with a 75 kHz Ultrasonic sensor connected to a Sigma 980 flow meter (Hach 
Company, Loveland, CO) for continuous water level measurements.  

3.2.3.2  Basic Soil Properties at the Lateral Flow Experimental Site 

Soil samples were taken from the soil surface to a depth of 2.0 m at each location during MCP 
and groundwater well installation in 2006. Soil texture was measured with the pipette method 
(Gee and Or, 2002) after dispersion with sodium pyrophosphate Na4P2O7. Values of soil  
pH were measured at a solid to liquid ratio of 1:1 (Page et al., 1982). Organic carbon content was 
measured in the upper 0.6-m soil layer using the dry combustion method (Page et al., 1982).  

Spatial variability in soil texture was found to be surprisingly high for the relatively small site. Soil 
texture was represented by six textural classes within the range from sandy loam to silty clay loam 
(Fig. 3-19). The particle size distribution generally did not change noticeably in the upper 1.3 m of 
the soil profile, where sand dominated over clay and silt. A distinct decrease in sand content and 
an increase in silt content can be seen below 1.3-m depth (Fig. 3-20), thus indicating a gradual 
transition in soil texture from sandy loam to loam and then silty clay loam. The horizontal variability 
in soil texture was of the same order of magnitude as the vertical variability. Coefficients of 
variation for sand and silt content increased with depth and were in the range from 0.06 to 0.92 
and from 0.15 to 0.48, respectively. One could expect much variability in the soil water content at 
the studied site, since spatial variability in soil texture affects substantially the soil hydraulic 
properties.  
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Figure 3-17 Schematic of the data acquisition and collection system. 

 

 

 
Figure 3-18 Locations of multi-sensor capacitance probes and groundwater wells 

(indicated by “Loc-” number) at the experimental plot. 
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Figure 3-19 Soil texture measured at 10 depths in 12 locations. 
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Figure 3-20 Measured clay, silt, sand and organic carbon distributions in the soil profiles. 
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The organic carbon content of the upper 0.6 m of the soil profile did not vary much at each depth; 
values decreased gradually from 0.4-1.2 % at 0.1 m, to 0.03-0.13% at 0.6 m depth. The soil pH 
was highest in the upper 0.2-m soil layer; average pH values gradually decreased with depth from 
5.9 near the soil surface to 4.5 at 2.0-m depth (Fig. 3-20). Coefficients of variation for pH were 
within the range from 0.04 to 0.10, indicating less horizontal variability in pH as compared to the 
soil particle size distribution.  

The ARS team also measured the soil bulk density on undisturbed samples taken from the upper 
1.0-m soil layer at 0.1 m increments during MCP calibration at locations 1-4. The bulk density 
generally increased with depth from 1.3-1.6 to 1.6-1.9 g cm-3 in the upper 0.3 m of the soil profile, 
but did not change noticeably with depth in deeper layers (Fig. 3-21). Coefficients of variation for 
the bulk density were in the range of 0.05 to 0.09 at different depths, and did not correlate with 
average soil bulk density values and/or sampling depths.  

Detailed soil texture measurements carried out in 2006 during the MCP and groundwater well 
installations at 12 locations were supplemented with data obtained in logs (wells w01-w52) 
installed in 2002 across field B. The soil texture was measured using the hydrometer method 
(Gee and Or, 2002) on soil samples taken from selected depths. Soil texture of the soil horizons 
represented 9 texture classes indicating high heterogeneity of soil properties (Table 3-2). In spite 
of the observed variability, four classes dominated soil texture. They were in the order of their 
frequency order: sandy loam (SL), loamy sand (LS), and silt loam (SiL) in layer 46-61cm; SL, LS, 
sand (S) and SiL in layer 107-122 cm; LS, SL and loam (L) in layers 168-183 cm and 229-244 cm; 
and LS, S and SL in layers 290-305 cm (Fig. 3-22).  

Soil hydraulic properties were measured on undisturbed soil samples (5 cm ID, 5.1 cm height) 
taken from depths of 0 to 1.0 m in 0.1 m increments at locations 1, 2, 3, and 4 within the 10x10 m2 
experimental site. Soil samples were gradually saturated from the bottom. A constant head soil 
core method (Reynolds and Elrick, 2002) with a water head of 0.5 m was used to measure the 
saturated hydraulic conductivity of the undisturbed soil cores. The cores subsequently were 
placed into 1400 Tempe pressure cells (Soil Moisture Equipment Corp., Santa Barbara, CA) to 
measure soil water retention as described by Dane and Hopmans (2002). Results of the soil 
hydraulic properties measurements are presented in Figs. 3-23 and 3-24.  

Measured saturated hydraulic conductivities (Ks) varied greatly vertically and laterally; they were 
mostly in the range from 0.003 to 27.1 cm d-1. Generally smaller values were obtained at locations 
1 and 3 compared to locations 2 and 4 (Fig. 3-23). Soil samples taken from depths of 20-50 cm at 
location 1 and from depths of 15-40 cm and below 80 cm at location 3 did not conduct water at 0.5 
m pressure head. Low Ks values measured on 5-cm diameter samples presumably characterized 
the hydraulic conductivity of the soil matrix, while higher values could be measured on large 
undisturbed soil samples.  

Soil water retention was found to vary with depths. Generally, the saturated water content 
decreased and the slope of the water retention curve increased with depth. The ARS study team 
did not observe high lateral variability in soil water retention, except for the 30-40 cm soil layer 
(Fig. 3-24), where the variability could be attributed to high variability in the bulk density (Fig. 3-
21). Summarizing the basic soil properties, one could expect considerable variability in the  
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Figure 3-21  Measured soil bulk density distributions versus depth at locations 1 through 4. 

Location-1

D
e

p
th

 (
c
m

)

0

20

40

60

80

100

120

Location-2

Location-3

Soil bulk density (g cm
-3

)

1.2 1.4 1.6 1.8 2.0 2.2

D
e
p
th

 (
c
m

)

0

20

40

60

80

100

120

Location-4

1.4 1.6 1.8 2.0 2.2



  

3-31 

 
 

Table 3-3 Soil texture measured in soil cores taken during installation of the groundwater 
wells at field B. 

Well 
ID 

Depth, cm Well 
ID 

Depth, cm 

46-61 107-
122 

168-
183 

229-
244 

290-
305 

46-61 107-
122 

168-
183 

229-
244 

290-
305 

W01 SL SiL LS SL LS W27 SL SL    

W02 SL SL LS SL LS W28 SiL SL LS LS LS 

W03 LS S LS LS S W29 SL LS SL SL SL 

W04 LS S S S LS W30 SL SL LS SiL  

W05 SL S S SL SL W31 SL SL L SiL  

W06 SL LS SL SL LS W32 SiL SL SiL L  

W07 LS S LS S S W33 SL S S S S 

W08 LS LS LS LS LS W34 SL LS S LS S 

W09 LS LS LS S  W35 LS LS LS LS  

W10 SL S S S LS W36 SiL SiL SL LS S 

W11 L LS S LS S W37 SL L SL   

W12 SL SL LS LS  W38 SiL SiL SL LS SL 

W13 SL LS LS SL  W39 SL SL LS SL  

W14 SL SL SL LS  W40 LS S LS LS SL 

W15 SL SL SL SL LS W41 LS SL LS SL SL 

W16 SL SiL SL SL SL W42 SL S S LS S 

W17 SL LS SL LS LS W43 SL SL LS SL L 

W18 SL SL LS LS LS W44 LS LS L SiL  

W19 SiL SL SL LS  W45 SL SL SL SL L 

W20 SiL SL S LS LS W46 SL LS SL   

W21 SiL SiL LS SL SL W47 CL SiL SL LS S 

W22 SiL SL LS LS LS W48 SiL SiL SiL LS LS 

W23 SL SiL LS LS SL W49 SiL SiL LS S S 

W24 L L CL CL L W50 S LS S SL LS 

W25 SL SiCL CL SCL  W51 LS S S LS SL 

W26 L SL SiC CL  W52 LS S S S S 

 Abbreviations used in the table: 
S - sand 
SL - sandy loam 
LS - loamy sand 
L - loam 
SiL - silt loam 
SiCL - silty clay loam  
SiC - silty clay 
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Figure 3-22 Soil texture measured in logs w01-w52 at field B. 

 

Figure 3-23 Laboratory measured saturated hydraulic conductivities, Ks. 
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Figure 3-24 Laboratory-measured soil water retention curves. 
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spatial and temporal patterns of soil water content during the experiments, primarily because of 
high spatial variability in the saturated hydraulic conductivity.  

3.2.3.3  Soil Moisture and Groundwater Monitoring 

The monitoring equipment installed in 2006 at the experimental site was tested during July 1, 
2006 – March 1, 2008. Soil water contents and pressure heads were monitored at the 
experimental site. A weather station located about 80 m from the site collected meteorological 
data at short time intervals (10 minutes). These data included: soil temperature, soil heat flux, air 
temperature, relative humidity, 3-D wind speed profile, rainfall, long and short wave solar 
radiation, net solar radiation, saturation and actual vapor pressure, evapotranspiration, and CO2 
fluxes.Daily evapotranspiration (ET) rates were computed using the Penman-Monteith method as 
documented by FAO (Allen et al., 1998). The daily ET and rainfall rates were integrated over time 
to obtain cumulative ET and precipitation values as a function of time from the beginning of the 
observation period.  

Monthly and cumulative ET and rainfall rates for the monitoring period July 1, 2006 - November 1, 
2007 are shown in Fig. 3-25. Daily rainfall and ET values were in the range from 0 to 6.7 cm and 
from 5·10-3 to 0.4 cm respectively. The total amount of precipitation was about two times larger 
than the total ET during the observation period. The rainfall and ET distributions were not uniform 
over the year. Relatively high rates of precipitation were observed in the months of April, 
September, October and November, and low rates in June and July. Contrary to precipitation, ET 
values were higher in the summer and lower in the winter.  

Tensiometer and MCP readings were converted to volumetric water contents and pressure heads. 
The MCP factory calibrations were corrected separately for topsoil and subsoil to improve the 
accuracy of the water content measurements (see Appendix B). Tensiometer readings exhibited 
noise, which was removed using a multilevel 1-D wavelet decomposition with a Daubechies filter 
(db4). The ARS study team used the Wavelet toolbox of the MATLAB 6.5 Software for this 
purpose. Depending upon data quality, the multilevel parameter in the wavelet decomposition was 
fixed at values between 4 and 6.  

The non-uniform distribution of precipitation and ET affected the dynamics of the water content 
and the pressure head in the vadose zone during the experiments. Periods of deep soil drying 
followed rainfall events when water contents approached saturation. Extremely low water contents 
were observed in September 2006, and in August and October 2007, at practically all depths (Fig. 
3-26). The low water contents corresponded to pressure heads close to or below the ceramic's air 
entry value. For this reason, tensiometers installed at depths less than 0.8 m did not work properly 
in August and September 2007.  

Temporal changes in the soil water contents varied with depth. Water contents in the topsoil (0-
0.4 m) generally increased rapidly during and after the rainfall events, while relatively small 
changes occurred in the subsoil (0.4-1.0 m). Water contents in deeper soil layers were less 
sensitive to precipitation and evapotranspiration as compared to the upper layers. This was also 
true for the pressure head. There always was a delay in response of the deeper soil layers to 
changes in the flux at the soil surface.  



3-35 

Figure 3-25 Monthly (a) and cumulative values (b) of evapotranspiration and precipitation 
measured at the experimental site during the monitoring period (during July 
2006 – September 2007). 
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Water contents at similar depths varied considerably among the four locations. The differences 
were most pronounced at depths between 20 and 50 cm, where water contents were consistently 
higher at locations 2 and 4 as compared to locations 1 and 3. Consistently low water contents 
were observed at a depth of 70 cm at location 2 during the entire monitoring period.  

Groundwater depths (GWDs) were monitored at 12 locations starting November 1, 2007. 
Observed values varied between 0.0 and 200 cm during the monitoring period (Fig. 3-27). The 
GWD values were consistently smaller at locations 1, 3, 6, 9 and 11, and greater at locations 7, 8, 
10 and 12, particularly during continuous drying periods. Maximum seasonal variability in the 
GWD was observed at location 5, 8 and 12, while variability was minimal at locations 1 and 3. The 
GWD decreased rapidly after intensive rainfalls at all locations. Changes in the GWD were more 
pronounced at locations 7, 8, 10 and 12 as compared to other locations during drying events.  

Spatial differences in soil water content dynamics were reflected by different field soil water 
retention curves, obtained by plotting field-measured pressure heads versus water contents for 6 
depths at 4 locations (Fig. 3-26). The ARS study team shows only data measured during 
continuous soil drying (drainage water retention curves). The data in Fig. 3-28 in general 
resembled the laboratory-measured water retention curves (Fig. 3-24). Similarly as the laboratory 
data, saturated water contents gradually decreased with depth, whereas the slope of the water 
retention curve increased with depth. The slopes of the laboratory-measured retention curves 
were steeper compared to the field-measured data, resulting in lower water contents at the same 
pressure heads for the field measurements. The field-measured water retention curves at similar 
depths differed among the 4 locations. The maximum differences occurred at depths between 60 
and 75 cm between locations 2 and 3 and locations 1 and 4, with the water retention curves of 
locations 2 and 3 shifted to lower water contents (Fig. 3-28).  

Overall, 44-month intensive equipment testing showed that in spite of some technical issues with 
MCP sensors and tensiometers the installed equipment appeared to be reliable and appropriate 
for the subsurface transport experiment outlined in part 3.1 of this chapter. Results of the soil 
moisture monitoring supported soil hydraulic and soil texture data and confirmed that the studied 
area represents a high heterogeneous layered system.  

3.2.3.4  Fine-Scale Ground Penetration Radar Survey 

A fine-scale GPR survey was conducted in April 2006 to obtain detailed information about the 
stratification of soil hydrological layers at the field site. A polygon of 16,617 m2 in the South-
Eastern part of Field B (Fig. 3-17) was surveyed with a subsurface interface radar system-2 
(Geophysical Survey System, Inc., North Salem, NH). Ground-penetrating radar data were 
acquired for the entire site along parallel east-west transects 2-m apart. The RADAN (Geophysical 
Survey Systems, Inc) software was used to process the acquired information. A total of 60 
scanned images were processed. A horizontal scale adjustment was used first to correct 
horizontal distances based on markers installed every 20 m along the scanned transects. 
Subsequently the diffractions were removed and dipping layers were corrected using the 2-D 
variable velocity migration method. This type of correction was necessary for images in which the 
deeper objects were obscured by numerous shallower objects that appeared as constructively 
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Figure 3-28 Plots of measured soil water pressure heads versus volumetric water 
contents at locations 1-4. 
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interfering hyperbolic reflectors. Zero depths on the images were corrected next to match the soil 
surface using the vertical scale adjustments, after which the reflective layers were digitized using 
the EZ tracker option of the RADAN software. Seven digitized layers from each GPR image were 
saved in ASCI format at 25-cm horizontal resolution. Depths to the reflective layers were expressed 
as two-way signal travel times in the digitized images (Fig. 3-29).  

To define true depths to the reflective layers the ARS study team computed the GPR signal travel 
time τ as a function of the travel depth z as follows: 

𝜏 = 2 ∫ 𝑑𝑧
𝑣(𝑧)⁄

300

0
 (3-1) 

where v is the GPR wave velocity in soil, which depends on the soil dielectric constant E. 

Topp et al. (1980) showed that at frequencies between 1 MHz and 1 GHz values of E for sandy 
loam, clay and clay loam soils can be estimated from the volumetric soil water content θ as: 

𝚬 = 3.03 + 9.3𝜃 + 146.0𝜃2 − 76.7𝜃3                                  (3-2) 

The wave velocity U is then: 

𝑈(𝑍) = 𝑐/√𝚬  (3-3) 

where c is the speed of light (0.3 m ns-1). 
Seven soil water content profiles measured at locations BH3, BH4, BL3, BL4, BM2, BM3 and BM4 
(Fig. 3-8) during the GPR survey were used to compute profile distributions of the soil dielectric 
constant. Measured θ values varied between 0.167 and 0.347 at different depths and locations, 
and tended to decrease with depth (Fig. 3-30a). Variability in the water content translated into 
variability in the soil dielectric constant. Values of E also decreased with depth, ranging from 8.3 to 
20.6 (Fig. 3-30b). The variability in soil water content and associated variability in the soil dielectric 
constant did not produce large differences in the signal travel time τ (Fig. 3-30b). The variability in 
τ increased with depth, but remained less than 8 ns at a depth of 200 cm. Although soil water 
contents were not measured at other locations during the GPR survey, the ARS study team 
assumed that the water content variability measured at the seven selected locations represented 
reasonably well the spatial variability in θ across field B. Since observed variability did not affect 
much the travel time τ, the average relationship τ(Z) was used. 

The data for seven digitized layers were converted into depths to the soil horizons. To do this the 
ARS study team assumed that the vertical variability in soil texture affected the soil hydraulic 
properties and produced abrupt vertical water content changes. The layers between two 
consecutive reflective lines hence can be represented by soil horizons having specific soil hydraulic 
properties. To compute boundaries of these horizons the ARS study team interpolated digitized 
data using the inverse of the average relationship τ(Z). Results of the interpolation for the first six 
soil layers are shown in Fig. 3-31. The thickness of the first soil layer varied from 28 to 50 cm. This 
depth corresponded to the plough depth. The deepest layer detected by the GPR survey at this 
frequency was in the depth range from 211 to 243 cm. 
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3.2.3.5  Tracer Experiment Experimental Setup.

The lateral flow experiment was set up as shown in Figs. 3-16 – 3-18, and Fig 3-32. Four 
sprinkler nozzles (Olson Red Mini Rotor Style Drip Emitter, Olson Irrigation Systems, 
Santee, CA) were installed at heights of 1 m in the corners of the irrigation plot (Fig. 3.22a). 

One additional sprinkler nozzle (Olson Green Mini Rotor Style Drip Emitter) was installed at 
a height of 10 cm above the soil surface in the center of the plot. The system was designed 
to provide continuous irrigation at a rate of 9.6 cm d-1, with a uniformity coefficient of 0.86, to 
the 13x14 m study area. The sprinklers were connected to a water hose equipped with a 
DLJSJ50 water meter (Daniel L. Jerman Co., Hackensack, NJ) to measure the amount of 
applied water. Two 2.1-ton water tanks were installed for the tracer application (Fig. 3-22b). 

The observation wells at locations 1-12 were equipped with samplers to collect water from 3 
different depths (Fig. 3-32c). The samplers consisted of a 16-mm plastic OD tubes containing 4 
rubber packers installed into the wells. The packers separated three 30-cm long sections inside 
of the wells. The 2-mm ID plastic tubing connected the center of each section with the sampler 
outlet. Water samples were taken from each section with a 50 ml syringe. The sample volume 
typically ranged between 10 and 14 ml. The samplers were installed so that the samples were 
taken at depths of 1.1 m at locations 1-4, and depths of 1.05, 1.35 and 1.65 m at locations 5 - 
12. A windshield (160 cm height) was constructed around locations 1- 4 to minimize wind 
impacts on the irrigation uniformity (Fig. 3-22d). 

A total of 42 kg KCl was dissolved in two 2.1-ton tanks with 4050 L of tap water to provide a Cl- 
concentration of 4940 ppm. The KCl solution was applied to the experimental site using the 
irrigation system. The application started at 10:30 am and ended at 5:05 pm on March 25, 2008. 
A total of 3861 liters was applied to the site within 6.6 hr. The irrigation system was reconnected 
to the tap water hose immediately after the application.  

The irrigation was interrupted at 10:30 am on March 27, 2008, because of runoff at the site. 
Runoff losses were 39% of the irrigation water. The irrigation regime was adjusted to minimize 
runoff losses and to provide a nearly steady-state infiltration rate into the soil. Starting March 
28, the site was irrigated twice a day, from 6 to 8 am and from 4 to 6 pm. Irrigation times were 
controlled by an irrigation timer and set such that well water could be sampled twice a day for 
Cl-. Runoff amounts from the experimental site were recorded continuously. Irrigation was 
interrupted only after intensive rainfalls. The irrigation regime was corrected one more time on 
June 1 because of an increase in evapotranspiration that caused a decrease in the 
groundwater levels at locations 1-4. New times were set up for three irrigations each day: from 
5 am to 7 am, from 1 pm to 3 pm, and from 9 pm to 11 pm.  This schedule was followed until 
the end of experiment.  
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Figure 3-31 Depths to six out of seven soil hydrological layers delineated using the fine-
scale GPR survey at the experimental part of field B in 2006. The color scale in 
the legend indicates depths in cm. 

Hydrological layer 1 Hydrological layer 2 

Hydrological layer 3 
Hydrological layer 4 

Hydrological layer 6 Hydrological layer 5 
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Figure 3-32 Plots of (a) the irrigated plot equipped with tensiometers, MCPs and a flume 
for runoff collection, (b) the tracer application tanks, (c) the observation wells 
with the tracer sampling outlets, and (d) the windshield around the tracer 
application area. 
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Water samples were taken from three depths at 12 locations one hour prior to the KCl application.  
Samples were taken twice a day within the first 40 days after application, and then once a day (at 
5 pm) until the end of the experiment. Within 24 hours of their collection in the field, the samples 
were analyzed for Cl- by ion chromatography as described in chapter 3.2.4.1. Irrigation, while 
rainfall water was periodically analyzed also for Cl-. Soil water contents and groundwater depths 
were monitored using MCPs and Cera-Divers at 12 locations as described in chapter 3.2.3.3. The 
study was terminated when the groundwater levels decreased below the water sampling depths at 
most locations. 

Cumulative irrigation, precipitation, evapotranspiration and runoff data are shown in Fig. 3-33. The 
daily irrigation rate was 9.5 cm d-1 during the first two days, 1.5 cm d-1 during the next 64 days, 
and 1.8 cm d-1 during the following 65 days. The first portions of runoff usually approached the 
flume 30-40 min after irrigation started.  Runoff amounts were found to be in the range from 21 to 
38% of the irrigation volumes. A total of 59 rainfall events were recorded during the 132-day 
experiment. The mean daily precipitation depth was 3.0 mm, which did not affect the soil water 
contents. Several events, however, did affect the water contents, the groundwater levels, as well 
as Cl- concentrations in the wells. Rainfall events on April 22-23 (54.6 mm), on May 10-14 (159 
mm), on June 5-6 (43.4 mm), and on July 25 (50.0 mm) exceeded the daily irrigation rates 
considerably, and as such affected the soil water regime as shown below. The average ET values 
were 0.5, 0.8, 1.0 and 1.1 mm d-1 in April, May, June and July, respectively, which did not affect 
the soil water content dynamics.  

Figure 3-34 illustrates the water table dynamics. Groundwater levels remained relatively high at 
locations 1-4 during the lateral flow experiment (Fig 3-34a). Minimum groundwater depths 
(GWDs) were observed at location 3, and the maximum levels at location 2 where they exhibited 
severe oscillations.  Severe oscillations were also observed at location 4, but the phreatic surface 
there was closer to the soil surface as compared to location 2. Peaks in the GWD at locations 2 
and 4 generally corresponded to the more intensive rainfall events. The GWD at location 1 was 
affected less by rainfall as compared to locations 2 and 4. Observed differences in the water 
content and GWD dynamics at locations 1 through 4 implied different hydrological regimes in 
different parts of the irrigated site. The same is obviously true for locations 5 through 12. However, 
GWD differences between those locations remained between 5 cm after rainfall events, and 119 
cm after continuous soil drying. These differences were largest between the wells at adjacent 
locations 11 and 12. Considerable temporal variably in the GWD was also observed at locations 5 
through 12. Average GWDs varied from 5 to 161 cm during the lateral flow experiment. Spatial 
and temporal variability in the GWD created unsteady subsurface flow from the irrigated plot 
toward locations 5-9 and locations 10-12.  

Plots of the soil water content during the experiment are shown in Fig 3-35. Soil water contents 
before the experiment were in the range from 0.148 to 0.403 cm3 cm-3 and gradually decreased 
with depth. Three days after the experiment started, water content approached maximum values 
at practically all depths at locations 1 and 3, and below 25 cm depth at location 4, while remaining 
relatively constant until the end of the experiment. The water contents oscillated noticeably in the 
upper 20 cm at location 4 and at all depths at location 2.   
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Figure 3-33 Cumulative water fluxes measured during the lateral flow experiment. 

Considerable water content oscillations were observed also at non-irrigated locations 5 - 12 in the 
upper 40-cm soil layer. Sharp increases and gradual decreases were observed in this soil layer 
immediately after the rainfall events (Fig. 3-35). Water contents at depths of 50 and 60 cm 
showed different trends at these locations. Sharp increases were followed by sharp decreases at 
locations 7-9, whereas water contents at locations 11 and 12 did not change noticeably with time. 
Differences in the soil moisture dynamics were caused by different soil texture and changes in the 
groundwater depth at these locations. Soil texture at depths of 50-60 cm was sandy loam at 
locations 7-9, and loam at locations 11-12. Water contents in sandy loam soils near saturation 
tend to decrease faster with an increase in the absolute value of the pressure head, compared 
with loamy soils. Rapid changes in the GWD, as well as transitions from saturation to unsaturated 
conditions and vice-versa, likely contributed further to the abrupt water content changes at 
locations 7-9.  

Differences in soil properties, hydraulic regimes and unsteady subsurface flow at the 12 locations 
affected Cl- transport. Cl- concentrations in groundwater prior to irrigation varied within the range 
from 6 to 24 ppm, but did not differ significantly between the different depths and locations. 
Because of small spatial variability in the initial Cl- concentration at the different locations, the 
ARS study team did not expect any effect of the initial Cl- distribution on the results of the lateral 
flow experiment. Cl- concentrations in the irrigated water were 10.2±3.0 ppm, whereas rainfall Cl- 
concentrations (0.6±0.6 ppm) were one order of magnitude less than the irrigation water and the 
groundwater concentrations.  Hence, the effect of rainfall on the groundwater concentrations could 
be quite pronounced, especially after intensive rain events. 
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Figure 3-35 Soil water content measured at 12 locations during the lateral flow 
experiment. 
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Figure 3-36 Chloride contents of groundwater measured in 12 wells during the lateral 
flow experiment. 
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The Cl- time series measured in 12 wells are shown in Fig. 3-36. The ARS study team    observed 
two distinctly different breakthrough curves at the irrigated site. A fast increase in Cl- 
concentration was observed in wells 1 and 4 at the initial stage of the breakthrough curve soon 
after the tracer was applied. 

A gradual decrease and another increase in Cl- concentration followed the initial stage. Contrary to 
wells 1 and 4, a relatively slow increase was followed by a gradual decrease in Cl- in wells 2 and 
3. These dramatic differences in the vertical transport rates of Cl- at the irrigated site were likely
caused by different transport conditions. The water contents were relatively constant and 
groundwater was closer to the soil surface at locations 1 and 3 compared to locations 2 and 4 
where GWDs and the water content in the upper 0.50-m soil layer varied significantly during the 
later flow experiment. The water content and GWD data indicated that flow conditions were close 
to saturation at locations 1 and 3, but far from saturation in the topsoil layer at locations 2 and 4.  

The tracer arrived at locations 5 through 9 at different times. It took approximately 60 days for the 
Cl- to appear in noticeable amounts at three depths at location 7, and 80 days at locations 5 and 
6. The distance between the irrigation site and locations 5 through 9 was 7 m, which means that
the flow velocity should be within the range from 9 to 12 cm d-1. The tracer arrived at locations 5 
and 7 at higher concentrations than at location 6. Surprisingly, the ARS study team did not 
observe Cl- breakthrough at locations 8 and 9, which were also located 7 m downgradient from the 
irrigation site. Locations 5 through7 were probably closer to location 4, where vertical Cl- transport 
was faster than at location 3.  

An increase in the Cl- concentration was observed at a depth of 1.65 m at locations 10, 11 and 12 
at the end of the experiment. However, the increases were not so pronounced as those at 
locations 5, 6 and 7 where the concentrations remained within the range observed at locations 8 
and 9.  

The Cl- concentration time series differed at three depths at locations 5 through 12. Cl- 
concentrations were generally higher at depth of 1.6 m, than at the 0.5-m and 0.8-m depths, 
except at locations 8 and 12 where the Cl- concentrations did not change with depth, and location 
7 where the highest Cl- concentrations were observed at a depth of 1.35 m. Noticeable differences 
in the Cl- breakthrough curves were observed at three depths at locations 5, 6 and7. The peak 
concentrations at location 6 did not differ among three depths. At location 5, larger values were 
observed at depths of 1.05 and 1.35 m, whereas at location 7 the peak Cl- concentrations at a 
depth of 1.35 m were smaller than those at depths of 1.05 and 1.65 m. Differences in the arrival 
times and the Cl- concentration at three depths and 12 locations imply that the tracer was 
transported preferentially in hydraulically active soil zones.  

An interesting phenomenon the ARS study team observed was the synchronous dilution of 
groundwater at different depths during rainfall. This follows from the oscillations in the Cl- 
concentration time series at locations 7, 8, 10, 11 and 12. These oscillations corresponded to the 
GWD oscillations caused by fast decreases in the GWD after intensive rainfalls (Fig. 3-36). 
Smaller Cl- concentrations were measured when the GWDs were smaller. An increase in the 
GWD always caused an increase in the Cl- concentration. The decrease in Cl- concentration can 
be explained as being the result of ground water dilution by infiltrated precipitation (CCl=0.6 ppm), 
while an increase could be caused partly by evaporation. However, it remains to be explained why 
Cl- changes occurred synchronously at three different depths without changes in the concentration 
with depth.  
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4    DETAILED FLOW AND TRANSPORT MODELS OF 
THE OPE3 WATERSHED SITE 

4.1  Description of Models 

Two fully 3D numerical codes, HYDRUS-3D and TOUGH2, were used for the water flow and 
contaminant transport simulations in the subsurface at the OPE3 site. Advantages of these two 
codes are their built-in mass conservation and having the same data preprocessing and post-
processing through the entire flow domain. The codes are, however, computationally intensive 
and not attractive for parameter estimation, uncertainty, sensitivity evaluation, and monitoring 
optimization unless massive parallel computing is used (e.g., Coumou et al., 2008).  

The complexity of subsurface flow systems creates a need and various opportunities for 
conceptual simplifications leading to a multiplicity of flow models. One common simplification is 
based on the assumption that lateral flow and transport in the unsaturated zone is not significant, 
except for the capillary fringe (Abit et al., 2008) or when perched temporary saturated layers 
appear are present (Twarakavi et al., 2009).  If lateral flow is ignored in the unsaturated zone are, 
flow and transport can be simulated as a one-dimensional (1D) process, while flow and transport 
in groundwater remains a fully 2D or 3D phenomenon. The scarcity of information on the 
anisotropy of hydraulic properties in the vadose zone also favors the 1D approximation above the 
groundwater table. Such anisotropy has been demonstrated (Zhang et al., 2007), but is very rarely 
characterized to the extent of providing accurate estimates of the lateral flow process. As soon as 
the relative insignificance of lateral flow and transport in the vadose zone is surmised for the 
expected hydrologic forcing, a more efficient computational scheme will result, which is important 
when multiple simulations are needed to evaluate uncertainty or sensitivity. 

Barthel (2006) discussed alternative integrated modeling approaches that are based on coupling of 
existing modeling concepts for the saturated and unsaturated zones. A problematic issue with 
coupling existing models is the question of how to tailor their output in a consistent manner. 
Twarakavi et al. (2008) noted that evaluation of interactions between near-surface and groundwater 
flow processes using coupled models has been a desirable but difficult goal. These authors coupled 
the HYDRUS-1D code for the vadose zone with the MODFOW code for groundwater zone.  The 
two computer codes interact (i.e., exchange information about groundwater recharge and 
groundwater level) only at the end of each MODFLOW time step, during which HYDRUS may 
perform multiple time steps to simulate the unsaturated zone flow. The MODFLOW code receives 
the recharge flux from HYDRUS and evaluates a new water table depth for the next time step. A 
new water table depth is then estimated and assigned as the pressure head bottom boundary 
condition for the HYDRUS code at the next time step of the MODFLOW code. A similar method 
was applied by Facchi et al. (2004). This approach is known to create mass balance error. 
Twarakavi et al. (2009) noted that for cases where the coupled mass balance is not achieved 
satisfactorily, a version of the HYDRUS package is available that can attain complete mass balance 
between the saturated and unsaturated zones by suitably altering the unsaturated profiles for each 
zone at the end of each time step. The need for modifications of the profiles can create difficulties 
in using water flow simulation results in subsequent simulations of solute transport.  

In efforts to control mass balance errors, Stoppelenburg et al. (2005) used an iterative approach 
to gradually adjust the recharge rates, while Liang et al. (2003) searched iteratively for the 
groundwater level until the mass balance requirements were met. In the latter case, the amount 
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of water in the unsaturated zone was used to adjust the position of the groundwater table. Shen 
and Phanikumar (2010) further used the mass balance equation to provide a linkage between the 
unsaturated zone and groundwater. The saturated zone vertically was represented as a single cell 
extending from the bottom of the unconfined aquifer to the lower boundary of the first element (cell) 
in the unsaturated zone above the water table. In other work, Yakirevich et al. (1998) coupled a 2D 
Boussinesq-like equation for the saturated zone with the 1D Richards model for the unsaturated 
zone. Unlike the Boussinesq equation for a leaky phreatic aquifer, the developed model did not 
contain a storage term with specific yield and a source term for natural replenishment. Instead, the 
equation included a water flux in the phreatic surface term through which the Richards equation 
was linked with the groundwater flow equation. Xu et al. (2012) integrated the Soil–Water–
Atmosphere–Plant (SWAP) package into the MODFLOW groundwater flow model in such a way 
that the SWAP package calculates vertical fluxes for MODFLOW, while MODFLOW provides 
averaged water table depths to determine the bottom boundary condition for the SWAP zones. 

Instead of coupling different models for areas above and below the groundwater table, one can also 
formulate one model for the entire continuous flow domain including both groundwater and the 
unsaturated zone. An efficient approach would be to develop a modeling approach that would (a) 
use the same model for the entire flow domain and (b) ignore lateral flow in the unsaturated zone 
or outside of the capillary fringe. The ARS study team addressed this by developing in this chapter 
the QUASI-3D model based on the Richards equation assuming 1D vertical flow in the unsaturated 
zone above the capillary fringe, together with 3D flow in groundwater and the capillary fringe in the 
unsaturated zone just above the groundwater table. As a first step the ARS study team implemented 
the quasi-3D approach only for water flow; the QUASI-3D code hence was not used for simulations 
of flow and transport of the OPE3 field experiment. The ARS study team benchmarked the code for 
simulating flow problems; some results are presented in Appendix B. 

4.1.1  The HYDRUS-3D Code 

The HYDRUS software package consists of a computational module, and an interactive graphics-
based user interface. (Šimůnek et al., 2006). The package can be used to simulate a wide range of 
problems involving water, heat and solute movement in two- and three dimensional variably-
saturated porous media.  

The mathematical model for simulating water flow and contaminant transport is based on the 
Richards equation for flow and the advection-dispersion equation for transport.  Assuming a 
conservative tracer (no sorption and decay), the governing equations are, respectively, 
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where θ is the volumetric water content (L3/L3), t is time (T), h  is the pressure head (L), K is the 

hydraulic conductivity tensor (L/T), C is the solute concentration (M/L3), D is the hydrodynamic 
dispersion tensor (L2/T), q is the Darcy flux vector (L/T), S is a sink/source term accounting for water 
uptake by plant roots or the presence of wells (1/T), and t is time (T). The transport equation can be 
extended to include provisions for nonlinear nonequilibrium reactions between the solid and liquid 
phases, linear equilibrium reactions between the liquid and gaseous phases, zero- and first-order 
production and degradation reactions. In addition, physical nonequilibrium transport can be 
accounted for by assuming a two-region, dual-porosity type formulations. 
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The soil water retention and the unsaturated hydraulic conductivity functions needed for solution of 
Eq. (1) were described in this study using the van Genuchten (1980) relationships: 
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respectively, where Se is relative saturation, θr is the residual water content (L3/L3), θs is the water 
content at saturation (L3/L3), Ks is the saturated hydraulic conductivity (L/T), α (L-1) and n (-) are 

shape parameters, m=1-1/n, and l =0.5.  

The components of the hydrodynamic dispersion tensor for the case of an isotropic porous medium 
are expressed as 

     i j
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           (4-5)   

where i,j = 1, 2, 3 correspond to the x, y, z coordinate directions, respectively, 
La  and 

Ta  are 

longitudinal and transverse dispersivities (L), respectively, 
iv  are components of the flow velocity 

(L/T), and 
2

ii
v v  (L/T) 

The governing flow and transport equations in HYDRUS-3D were solved numerically using 
Galerkin-type linear finite element schemes. Application of equations (4-1) to (4-5) to the field tracer 
experiment requires definition of the domain boundaries, the initial and boundary conditions, a 
numerical finite element mesh, and soil hydraulic and solute transport parameters. 

4.1.2  Modified TOUGH2 Code 

  
The TOUGH2 code, developed by Lawrence Berkeley National Laboratory (Pruess et al., 1999), is 
a numerical model for multidimensional fluid and heat flow of multi-phase, multi-component fluid 
mixtures in porous and fractured media.  TOUGH2 has been applied to a wide range of problems, 
including geothermal reservoir engineering, nuclear waste disposal, environmental assessment and 
remediation, and unsaturated and saturated zone hydrology (Pruess et al., 1999). An advantage of 
the TOUGH2 simulator is that it can simulate flow in fractured porous media using double-porosity, 
dual-permeability, and multiple interacting continua (MINC) formulations.   

Similarly as HYDRUS-3D, the physical processes of fluid flow and tracer transport in TOUGH2 are 
governed by Equations (4-1) and (4-2), respectively.  An integral finite-difference method is used to 
discretize the governing equations in space.  TOUGH2 provides multiple equation-of-state (EOS) 
modules to handle different fluid mixtures, which are described by their components and phases 
with related thermophysical properties. The EOS9 module of TOUGH2 is a saturated-unsaturated 
flow module applicable to variably saturated media (Wu et al., 1996). EOS9 only considers a single 
aqueous phase and a single water component for variably saturated flow (Pruess et al., 1999). Like 
HYDRUS-3D, the EOS9 model ignores any effect of the air phase on fluid flow.  The module is very 
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efficient numerically and well-suited to simulate water flow in the very heterogeneous variably 
saturated subsurface of the OPE3 site.  

For tracer transport, the ARS study team used the T2R3D module of TOUGH2 code, which is based 
on Equation (4.2) assuming general multi-phase subsurface flow conditions (Wu et al., 1996).  The 
current version of TOUGH2 did not have provisions for directly coupling the EOS9 module with 
T2R3D (only the numerically more cumbersome EOS3 multiphase module enabled this coupling). 
It was therefore necessary to develop a fully coupled EOS9 and T2R3D model to simulate fluid flow 
and tracer transport in 3D variably-saturated media. For this reason the ARS study team 
incorporated the T2R3D numerical solution for tracer transport directly into the original EOS9 code. 
The resulting scheme first numerically solved the governing flow equation for each grid block, 
followed by solution of the transport equation using simulated values for fluid flow obtained at the 
same time step. 

The newly coupled model was first tested for flow simulations using a case of the Yucca Mountain 
project as solved with the EOS9 module. The flow results obtained with the two models were very 
close, indicating that the new coupled model could be used reliably for more general flow 
simulation in variably saturated porous media.  The model was tested next for tracer transport 
using an example provided by the coupled EOS3 and T2R3D modules of TOUGH2. Differences 
between simulated tracer concentrations using the two models were within 5%, thus 
demonstrating that the new coupled model is suitable for simulations of tracer transport in variably 
saturated media. 

4.1.3  FULL-3D and QUASI-3D Models 

In this section, the ARS study team describes the FULL-3D and QUASI-3D finite difference codes 
based on complete and approximate solutions of the Richards equation for 3D variably-saturated 
media.  The ARS study team is especially interested in QUASI-3D since this code provides an 
attractive alternative via model abstraction of the computationally more demanding HYDRUS-3D 
and TOUGH2 codes.  QUASI-3D assumes that flow in the unsaturated zone above the capillary 
fringe occurs only in the vertical direction, but is fully 3D elsewhere.  FULL-3D is an extension of 
QUASI-3D in that flow in the entire domain is described using the Richards equation.  

Figure 4-1 shows a schematic of the modeled hydrologic system, which includes both the 
unsaturated zone and the underlying groundwater zone. The boundary zcf(x,y,t) between the two 
zones, referred to as the specific surface, is characterized by a prescribed pressure head hcf.  Let 
us introduce the following simplifying assumptions: 1) Flow in the unsaturated zone is in the vertical 
direction only; 2) 3D flow is considered in the groundwater zone, which can include the capillary 
fringe; 3) Water is incompressible and its density does not depend on solute concentration or 
temperature; and 4) the porous matrix is rigid.   

Water flow in the unsaturated zone and in groundwater is governed by the general 3D Richards 
equation  
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(4-6) 

where   is the volumetric water content [L3L-3], t is time [T], S is a sink/source term [T-1], x and  y 

are horizontal coordinates [L], z is the vertical coordinate, directed upward [L] and, qy and qz are 
Darcy-Buckingham fluxes [LT-1] given by 
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Figure 4-1 Modeled variably-saturated subsurface system with a section of the finite 

difference (FD) grid (dashed lines). 
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in which Kx, Ky and Kz are hydraulic conductivitites in the x, y, and z directions [L], H=h + z is the 
total hydraulic head [L], and h is pressure head [L].  
Using the assumption that lateral water flow is negligible in the unsaturated zone above capillary 
fringe (qx = qy = 0), a series of 1D Richards equations can be used to describe vertical flow at 
selected points within an areal plane as follows 
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Flow in groundwater and the capillary fringe is governed also by (4-6), but with ∂θ/∂t=0 assuming 
fully saturated flow. At the specific surface (4-6) and (4-7) are coupled subject to conditions of 
continuity for the hydraulic head and the vertical water fluxes, i.e.,  
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HH (4-8) 
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respectively, where zcf is the coordinate of the moving specific surface evaluated as a height where 
the hydraulic head is equal to the prescribed value to give 

  cfzz
htzyxh

cf
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in which hcf characterizes the thickness of the capillary fringe above the water table (phreatic 
surface). Lateral flow in the capillary fringe is not considered if hcf=0, in which case the specific 
surface coincides with the water table.  

The model given by (4-6) through (4-10) was solved numerically using a finite-difference (FD) 
approximation on a rectangular grid. While not mandatory, the ARS study team considers here for 
simplicity, a uniform grid with nodes xi=(i-1)Δx, i=1,2,…,Mx, yj=(j-1)Δy, j=1,2,…,My, and zk=(k-1)Δz, 
and k=1,2,…,Mz.  

The general FD approximation of (4-6) and (4-7) is 
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where the superscripts n and n+1 denote old and new time steps, respectively, and 
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in which kcf(i,j) refers to the first node on the vertical grid line (xi,yj) below the moving boundary 

defined by (4-6) (Figure 4-1). Values of the hydraulic conductivity (
1

,,2/1





n

kjiK ) are calculated as the

arithmetic mean of the hydraulic conductivities at the neighboring cells (i,j,k) and (i+1,j,k).  The value 
of kcf(i,j) meets the conditions 

2/,, zhzH cfkkji cfcf
  (4-12) 
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The system of equations given by (4-11) is strongly nonlinear due to the nonlinearity of the θ(h) and 
K(h) functions). A common method to solve (4-11) is linearization of the equations leading to a linear 
set of equations at each iteration of the form (Celia et al. 1990) 
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where μ=dθ/dh is the soil water (or specific) capacity, s=0, 1, 2,.. is the iteration number in the 
iterative solution process, with H(0) = Hn and θ(0) = θn. 

The assumption that lateral water flow is negligible in the unsaturated zone above the capillary 
fringe can substantially decrease the number of computations needed to solve (4-13).  Specifically, 
the system of the FD equations given by (4-13) can be decomposed into two simpler systems that 
are linked to each other at only one node on each vertical grid line. One possible decomposition is 
to use the following 1D equations for the unsaturated zone above the specific surface  
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 ,  k>kcf(i,j) (4-14) 

while the full 3D equations are used for the medium below the specific surface: 
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 , k ≤ kcf(i,j)  (4-15) 

Equations (4-14) and (4-15) can be rewritten as follows 
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At internal nodes of a regular grid, the coefficients of (4-16) and (4-17) become 
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The tridiagonal system of equations given by (4-16) are most easily solved using the standard 
Thomas algorithm: 

kjikjikjikji HH ,,,,,,1,,   (4-19) 
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Now consider the subset of equations given by (4-15) pertaining to the combined saturated and 
capillary fringe region below the specific surface.  These equations also contain values of H 
evaluated at nodes (i,j,kcf+1). The ARS study team used (4-14) with k=kcf, and substitute this equation 

into (4-15) to eliminate the variable
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The system of equations (4-21) allows one to obtain the pressure head values 
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19) at each (i,j) node. The iteration step is completed by checking the condition stated in (4-7) and
determining the new position of the specific surface for each pair (i,j). Iterations for each time step 
end when the following conditions are fulfilled 
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in which εH and εθ are prescribed error tolerances for the total head and the water content, 
respectively. 

The numerical model above is complemented with initial and boundary conditions that prescribe 
heads and/or fluxes at the assumed domain boundaries. The algorithm given by (4-11) to (4-22) 
was implemented by modifying the MODFLOW code (Harbaugh et al., 2000), and applying the 
Groundwater Modeling Software (GMS 6.0, 2002) software for pre- and post-processing. The 
MODFLOW model was modified for this purpose in two ways.  First, the composite 1D unsaturated 
zone and 3D groundwater flow model was combined into the QUASI-3D code.  The ARS study 
team next solved the complete 3D Richards equation to yield the FULL-3D code using procedures 
very similar as implemented for the VSF model of Thoms et al. (2006). The FULL-3D was later used 
as a benchmark for testing the computationally more attractive QUASI-3D model. 

The ARS study team noted that the manner in which the saturated and unsaturated zones in 
QUASI-3D are coupled, including the invoked numerical solution algorithm, is different from the 
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methods presented by Yakirevich et al. (1998) and Twarakavi et al. (2008).  QUASI-3D implicitly 
couples the vadose zone and groundwater flow equations, which implies that calculations of the 
phreatic surface water flux at each time step are not required as a source term for the groundwater 
flow equation. The QUASI-3D also does not require introducing the specific yield parameter, unlike 
HYDRUS-MODFLOW (Twarakavi et al., 2008). 

4.2  Model Calibration 

4.2.1  Geometry of the Simulation Domain and Soil Material Distribution 

Based on experimental data that include the location of the tracer application plot, observation 
(sampling) wells, the topography of the soil surface and of the low permeability bottom boundary 
(estimated from GPR survey data), the ARS study team considered for HYDRUS-3D simulations 
a 3-D layered domain that extended laterally for 55 m in the x (east-west) direction and for 50 m in 
the y (north-south) direction. The thickness (z direction) of the domain varied from 3.12 m to 5.18 
m. The domain was smaller than the domain used for the preliminary simulations (Pachepsky et 
al., 2011) to reduce the simulation time. The unstructured (triangular prisms) finite element mesh 
consisted of 24,780 nodes and 45,640 3D elements (Fig. 4-2). The simulation domain was 
subdivided into 15 layers. The vertical size of the finite element prisms varied depending upon 
location, with the elements following the surface of the soil surface and the surface of the lower 
sub-layer. In the upper 1.65-m soil layer the vertical size of the prisms was about 20 cm, while the 
size was about 40 cm below this depth (Fig. 4-2). The horizontal mesh size decreased from 5 m 
near the downgradient domain boundary to 0.7 m close to the irrigation plot where most of the 
transport processes were expected. Using this geometry and finite element mesh, a 125-day long 
simulation generally took between 3 to 6 h with a Dell PC Dimension DXC061, Intel Core™2 Duo 
CPU 6700 @2.66 GHz. Further refinement of the finite element mesh required longer simulation 
times.  
 
Twenty observation nodes (Fig. 4-2) were used to record the simulated breakthrough curves at 
specific sampling locations in observation wells L1 through L12. Although groundwater was 
sampled at three depths in wells L5 through L12, only two observation nodes were located at 
these wells since the grid was very coarse in the lower soil horizon.  
 
The distribution of soil materials with different textures within the domain was set based on logs 
obtained during installation of observation wells L1-L12 (Fig. 4-3). First the ARS study team 
interpolated measured soil textures to depths corresponding to each computational layer. A 
cluster analysis (SPLUS 2000) was subsequently used to group the interpolated soil textures into 
9 classes so that each class was represented by soil texture averaged for the samples belonging 
to this class (Fig.4-4). These classes included: three sandy loam classes (SL1, SL2 and SL3), two 
sandy clay loam classes (SCL1 and SCL2), two loam classes (L1 and L2), and two silty clay loam 
classes (SiCL1 and SiCL2). The soil water retention and hydraulic conductivity parameters of the 
van Genuchten equations (4-3) and (4-4) were obtained for the 9 texture classes with the 
ROSETTA software using data for soil texture and bulk density (Fig. 4-5, Table 4-1). The 
boundaries between different soil materials of each computational layer were set at about equal 
distances from the observation wells where materials were measured (Fig. 4-6). Soil texture 
measured at a depth of 210 cm was mostly presented by the SiCL2 texture class. Since the ARS 
study team did not have measurements below this depth, the SiCL2 texture at this depth was 
extended to the bottom of the flow domain. Subdividing soil hydraulic properties into 9 groups was 
expected to reflect hydrological complexity of the simulated domain and to provide flexibility in the 
model calibration process.  
  

mailto:E8400@3.00
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4.2.2  Initial and Boundary Conditions 

As initial condition for the water flow simulations the ARS study team used an equilibrium 
pressure head distribution. This distribution was obtained from groundwater depths measured in 
the observation wells at the beginning of the tracer experiment (Fig. 4-7a). Spatially variable, but  
constant in time, pressure head profiles were specified along the lateral boundaries based on 
groundwater monitoring data obtained in the summers of 2006-2007 (Fig. 4-7b). The initial Cl- 
distribution varied between 10 to 25 mg/l depending upon location as measured in the observation 
wells prior to the experiment (Fig. 4-7c). A third type (Cauchy) boundary condition was used along 
the soil surface to simulate solute transport. Cl- concentrations of groundwater along the lateral 
boundaries were set to the initial concentrations observed before the tracer experiment. 

Daily-averaged atmospheric boundary conditions were used at the soil surface. These conditions 
simulated a variable flux due to evapotranspiration and prolonged infiltration observed after 
precipitation and intense initial irrigation within the irrigated plot area and along the remaining part 
of the soil surface (Fig. 4-8).  The ARS study team used a zero flux boundary condition along the 
bottom of the domain. 

The imposed flow rate during each irrigation event was decreased by 28% to account for water 
lost to overland flow that was collected.  This runoff water had no effect on the subsurface flow 
and transport processes. The Cl- concentration of the applied tracer solution was 4940 mg/l, while 
the Cl- concentrations of the rainwater and irrigation water were 8 mg/l.  
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Figure 4-2 Mesh generated for HYDRUS-3D simulations.  Observations nodes are shown 

in yellow. 

 

Plot size: 55 x 50 m
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3D elements: 45,640



4-12

F
ig

u
re

 4
-3

 
V

e
rt

ic
a
l 
d

is
tr

ib
u

ti
o

n
 o

f 
c
la

y
, 
s
il
t 

a
n

d
 s

a
n

d
 c

o
n

te
n

ts
 m

e
a
s
u

re
d

 a
t 

1
2
 l
o

c
a
ti

o
n

s
. 

C
la

y
%

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

0
1
0

2
0

3
0

4
0

Depth (cm)

S
il

t%

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

0
2
0

4
0

6
0

8
0

S
a
n

d
%

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

0
2
0

4
0

6
0

8
0

1
0
0

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2



 

4-13 

 

 

 
Figure 4-4 Soil texture groups obtained with cluster analysis. 
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Figure 4-5 ROSETTA estimated soil water retention curves for selected soil texture 
groups. 

Table 4-1 Soil properties used in simulations of Cl subsurface transport. 

Texture θr θs α n Ks1 Ks2 L BD Disp-L Disp-
T 

cm3cm-3 cm3cm-3 m-1 - m d-1 m d-1 - g cm-3 m m 

SL1 0.051 0.369 3.20 1.440 0.32 2.50 0.5 1.6 1.0 0.2 
SL2 0.047 0.500 2.97 1.378 0.21 0.10 0.5 1.6 1.0 0.2 
SL3 0.049 0.380 2.08 1.426 0.24 2.50 0.5 1.5 1.0 0.2 

SCL1 0.048 0.320 3.34 1.204 0.04 0.45 0.5 1.8 1.0 0.2 
SCL2 0.067 0.401 1.65 1.391 0.11 0.11 0.5 1.5 1.0 0.2 

L1 0.053 0.341 1.85 1.309 0.04 2.00 0.5 1.7 1.0 0.2 
L2 0.057 0.341 1.17 1.386 0.03 0.70 0.5 1.7 1.0 0.2 

SiCL1 0.062 0.333 1.10 1.348 0.02 2.00 0.5 1.8 0.1 0.02 
SiCL2 0.066 0.346 0.98 1.375 0.01 0.15 0.5 1.8 1.0 0.2 

Ks1 and Ks2 are Rosetta-estimated and fitted values of saturated hydraulic conductivity. 
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Figure 4-6 Material distribution used for the HYDRUS-3D simulations. 
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Figure 4-7 Initial and boundary conditions used for HYDRUS-3D simulations. 
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4.2.3  Model Calibration 

4.2.3.1  HYDRUS-3D Simulations 

The HYDRUS-3D software in its current version does not have an easily implemented option for 
automatic model calibration. Such an optimization would take an unreasonable amount of time for 
the fully 3-D variably-saturated field scale problem. Therefore, model calibration was performed 
using a trial-and-error method. Our approach involved the sequential fitting of flow and transport 
parameters to available data. At a first step the ARS study team estimated the velocity field by 
varying the saturated hydraulic conductivities of the various soil materials. The second step was 
the calibration of the transport parameters (dispersivities for the conservative tracer) through a 
series of trial-and-error runs. Much of our attention was focused on observation wells L5 through 
L7, where well-defined breakthrough curves (BTCs) were observed, and where both the arrival 
front and the receding (tailing) part of the breakthrough curve had been recorded.  

The ARS study team started HYDRUS-3D simulations using the hydraulic parameter values 
estimated with the ROSETTA software (Table 4-1). The initial values of the longitudinal 
dispersivity were set at 0.5 m, while the ratio of longitudinal to transversal dispersivity was fixed at 
5 for all simulations. The simulation results indicated that soil hydraulic conductivity was not 
sufficient to allow infiltration of the amounts of water precipitated during rainfall and irrigation 
events.  Stable model performance and realistic groundwater depth fluctuations were achieved 
only after the Ks values were increased tenfold. The model reasonably well reproduced the 
phases of the groundwater fluctuations, but not their amplitudes (Fig. 4-9).  This could be caused 
by the adopted coarse vertical discretization of the simulated domain, ignoring macropore flow, 
and imposing time-independent pressure heads along the domain boundaries in the simulations.  

The trial-and-error procedure continued until a better fit for L5 through L7 was obtained. During 
these runs the ARS study team varied the values of Ks, and the longitudinal and transversal 
dispersivities, to obtain more rapid vertical Cl- transport at the irrigated plot, and an increase 
followed by a decrease in Cl- concentrations in wells L5-L7. 

Simulated and observed breakthrough curves are compared in Fig. 4-10. The ARS study team 
noticed that the simulated BTCs for wells L1 and L4 exhibited much later arrival times of the tracer 
than the observed BTCs. Simulated tracer arrived earlier or at about the same time with measured 
tracer in wells L2 and L3, respectively (Table 4-2). The vertical flow during ponded infiltration was 
not simulated properly. Simulated peak concentrations also deviated from the observed in L1-L4. 
Better agreement of simulated and measured peaks was obtained for wells L5-L9. 

Partitioning soil texture into 9 classes provided flexibility for model calibration, particularly at 
depths from 100 to 180 cm. Introducing a higher value of the saturated hydraulic conductivity Ks 
for materials L1 and SiCL1 caused HYDRUS-3D to predict more rapid tracer transport toward 
wells L5-L8 at depths 110 and 160 cm (Fig. 4-10). The applied tracer initially was pushed by the 
incoming fresh water through the high water conductive materials SL1 and SL3 to deeper soil 
layers. Unsaturated soil in the top 100-cm soil layer prevented lateral plume propagation beyond 
the irrigation plot. Vertical Cl- transport dominated at this stage. When the plume approached 
the saturated zone with the more permeable material L1 at a depth of 104 cm and SiCL1 at 
depths of 124 cm and 145 cm, vertical flow turned horizontal at these depths, also due to low Ks 
values in material SiCL2 underlying the SiCL1 at depths of 145 cm and 166 cm (see Fig. 4-6 ). 
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Thus, the incoming irrigation water pushed the plume laterally in the highly permeable L1 and 
SiCL1 materials (see Fig. 4-6). Thus, the incoming irrigation water pushed the plume laterally at 
depths 110 and 160 cm. After some period of time, the plume had a toroid shape with the 
concentration in the center of the plume being lower than at the peripheral part. This shape 
developed due to due to the application of clean irrigation water after Cl- injection The migration of 
the plume and its expansion in different directions was controlled by the spatial distribution of the 
hydraulic properties. Near the end of the simulation the advancing front plume had passed 
observation wells L5-L7. 

In spite of having different transport distances from the irrigated plot to the transects crossing 
wells L5-L9 and wells L10-12 the observed increase in Cl- concentration in the more distant wells 
(L10-L12) occurred almost synchronously with increases in the proximate wells (L5-L9). This 
indicated preferential transport toward wells L10-L12 through material SiCL2 at a depth of 166 cm. 
However, an increase in Ks for this layer resulted in earlier tracer arrival to wells L7-L9 at a depth 
of 145 cm. This explains why the ARS study team were not able to simulate the BTCs in those 
three distant wells.  

The simulated depths differed from the observation depths because of coarse vertical 
discretization of the simulated domain. To compare results of the simulation with measured Cl- 
data, the BTCs were averaged at each location. Cl was measured in the wells at depths of 105 
cm, 135 cm and 165 cm. The computational observation HYDRUS 3d nodes were set at depths of 
110 cm and 160 cm, due to the vertical discretization used in the simulations. The ARS study 
team compared measured concentrations averaged across the three depths (105 cm, 135 cm and 
165 cm) with the simulated Cl concentrations averaged across the two depths (110 cm and 160 
cm). Results of the comparison are shown in Fig. 4-10. Overall, the model was not able to 
simulate fast Cl- transport within the irrigation plot and early plume arrival in wells L10-L12. 
However, the calibrated HYDRUS-3D model did reproduce the most important features of the 
lateral flow experiment. The model gave satisfactory levels of the peak concentrations and was 
able to capture arrival times in the first line of the observation wells (L5-L7). 
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Table 4-2  Statistics of observed and simulated subsurface Cl- transport 

Well # Peak time (day) Peak concentration (ppm) 

 observed simulated observed simulated 

1 4.7 16 205.6 109 
2 27.3 9 180.3 129 
3 7.9 9 316.4 210 
4 1.6 12 284.0 145 
5 98.3 110 68.8 59.1 
6 108.3 110 46.8 47.3 
7 90.3 87 67.0 59.9 
8 120.3 - 39.3 - 
9 105.3 - 33.0 - 
10 98.3 - 30.5 - 
11 105.3 - 46.2 - 
12 122.3 - 33.8 - 
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4.2.3.2  TOUGH2 Simulations 

The structure of simulated domain and the its boundaries for TOUGH2 model were set similar to 
those used for HYDRUS-3D simulations. The simulation domain was discretized into a 3D 
computational grid generated using the integral finite difference method for TOUGH2 (Fig. 4-11). 
The grid had an average of 28 computational layers in the vertical direction, and 1,337 columns 
(or grid blocks) per layer), resulting in 42,900 grid blocks (or elements) and 133,319 connections 
in the grid system. Fine lateral cells (1m x 1m) were implemented in the 
vicinity of the irrigation plot and observation wells, while coarse lateral cells (2m x 2m) were used 
beyond the irrigated area. The thickness of each element varied from 5 cm to 30 cm depending 
upon location and the soil material distribution, resulting in a varying number of vertical elements 
at different locations. The thickness of vertical elements in the upper 1.65-m soil layer was about 
10-15 cm, and about 20 cm below this depth. The EOS9 and T2R3D modules of the TOUGH2 
family were used to simulate flow and tracer transport at the OPE3 site. Based on this adopted 3-
D grid, one simulation took about 6 h with a Dell PC Precision 690, Intel® Xeon® CPU 5130 
@2.00 GHz.  

The soil hydraulic properties, the distribution of soil materials within the domain, and the initial and 
boundary conditions were set similar to the calibrated HYDRUS-3D model.  

Figure 4-11 Mesh generated for the TOUGH2 simulations. 

mailto:E8400@3.00
mailto:E8400@3.00
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Twenty-eight observation nodes were assigned to record simulated breakthrough curves at 
depths corresponded to the sampling depths at the 12 locations. One observation node was set at 
each of four wells at the irrigation plot, while three observation nodes were placed at three depths 
in wells L5 through L12. Observation nodes corresponded closely to the observation depths used 
in the experiment.  

Water flow was simulated using the EOS9 module, which is a saturated-unsaturated flow module 
of TOUGH2. Extensive tests with the EOS3 module, which describes coupled air and water flow, 
indicated instability in the results caused by changing pore air pressures. The EOS3 module was 
therefore replaced with the EOS9 module, which solves the Richard’s equation for water flow only 
and does not consider the presence of an air phase. Results of the water flow simulations are 
shown in Fig. 4-12. Overall, the EOS9 module reproduced the dynamics of the groundwater depth 
slightly better than the HYDRUS-3D code. The model also appeared to be more sensitive to 
rainfall events and, as compared to HYDRUS-3D, produced more accurate simulations of the 
amplitudes of groundwater fluctuations and the receding groundwater levels observed in the 
summer months during the experiments. Root-mean-squared errors of groundwater levels were 
comparable for the two models. In wells 5 through 9, these RMSE were 0.43, 0.30, 0.40, 0.26, 
and 0.27 for HYDRUS 3D and 0.48,0.43, 0.36, 0.31, and 0.38 for TOUGH2 (all in m). 

To simulate the tracer transport, EOS9 was coupled with the T2R3D module, which simulates 
radionuclide transport based on mass conservation and advection-dispersion equations as 
described in section 4.1. Observed BTCs and simulations with the TOUGH2 model are shown in 
Fig. 4-13. The model adequately reproduced the BTCs of wells L2, L3, L6 and L8.  However, 
TOUGH2 failed to correctly predict receding Cl- concentrations of wells L1 and L4 and the BTCs 
of wells L5 and L7. Similar to the HYDRUS-3D results, simulations of the plume did not reach the 
transect across wells L10-12 within the simulation time.  

Overall, predictions of tracer transport was much better with the calibrated HYDRUS-3D model 
compared to the calibrated TOUGH2. HYDRUS-3D was more accurate in reproducing observed 
peak concentrations and peak times of Cl- of wells L5-L8. The ARS study teamrealize that the 
obtained set of parameters may not have been unique and that additional simulations would be 
helpfull to reduce parameter uncertainty. Nevertheless, the ARS study teamaccepted the values 
and used them to evaluate the applicability of different model abstraction techniques to model 
simplification and monitoring strategy development.



 

 

4-25 

 

F
ig

u
re

 4
-1

2
 

O
b

s
e
rv

e
d

 (
d

o
ts

) 
a
n

d
 T

O
U

G
H

2
 s

im
u

la
ti

o
n

s
 o

f 
g

ro
u

n
d

w
a
te

r 
d

e
p

th
 t

im
e
 s

e
ri

e
s
. 

0
.0

0
.5

1
.0

1
.5

lo
c
-1

lo
c
-2

 

lo
c
-3

 

lo
c
-4

 

GW depth (m)

0
.0

0
.5

1
.0

1
.5

lo
c
-5

lo
c
-6

lo
c
-7

 

lo
c
-8

D
a
y
 f
ro

m
 t
h
e
 b

e
g
in

n
in

g
 o

f 
th

e
 e

x
p
e
ri

m
e
n

t

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

0
.0

0
.5

1
.0

1
.5

2
.0

lo
c
-9

lo
c
-1

0
 

lo
c
-1

1

lo
c
-1

2



4-26

F
ig

u
re

 4
-1

3
 

D
e
p

th
-a

v
e
ra

g
e
d

 o
b

s
e
rv

e
d

 (
d

o
ts

) 
a
n

d
 T

O
U

G
H

2
 s

im
u

la
te

d
 (

c
o

n
ti

n
u

o
u

s
 l
in

e
s
) 

C
l-

 c
o

n
c
e
n

tr
a
ti

o
n

s
 o

f 
w

e
ll
s
 1

-1
2
. 

W
e
ll 

1

Cl (ppm)

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

W
e
ll 

2
W

e
ll 

3
W

e
ll 

4

W
e
ll 

5

Cl (ppm)

0

2
0

4
0

6
0

8
0

1
0
0

W
e
ll 

6
W

e
ll 

7
W

e
ll 

8

W
e
ll 

9

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

Cl (ppm)

0

1
0

2
0

3
0

4
0

5
0

6
0

W
e

ll 
1

0

D
a

y
 f

ro
m

 t
h

e
 b

e
g
in

n
in

g
 o

f 
th

e
 e

x
p

e
ri
m

e
n

t

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

W
e
ll 

1
1

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

W
e
ll 

1
2

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0



5-1 

5    SYSTEMATIC APPROACH FOR SIMPLIFYING 
THE OPE3 SITE MODEL 

5.1  Sensitivity Analysis to Direct Model Simplification 

Conducting a sensitivity analysis (SA) is an efficient methodology for model simplification. The SA 
approach for model simplification was first proposed by Rose and Harmsen (1978), and has since 
proven its efficiency in various modeling fields (e.g., Confalonieri et al., 2010; Brooks et al., 2010, 
Do and Rothermel, 2008; Cariboni et al., 2007). The SA has a long history of use in radionuclide 
transport modeling, beginning with U.S. NRC-supported effort (e.g., McKay, 1995) and including 
research in various parts of the world (e.g., Volkova et al., 2008; Ohi et al., 2010; Iooss et al., 
2008; Helton et al, 2010).  

Overall, two types of SA are recognized (Saltelli et al., 2010): a local sensitivity analysis and a 
global sensitivity analysis.  A local SA examines the local response of the output(s) by varying 
input parameters one at a time while holding other parameters at central values. A global SA 
examines the global response (averaged over the variation of all the parameters) of model 
output(s) by exploring a finite (or even an infinite) region. While easier to implement, a local SA 
can only inspect one point at a time, with the sensitivity index of a specific parameter depending 
on the central values of the other parameters. The approach uses a local SA technique (LSA) 
when the sensitivity index measures only the main effect of each input parameter on the output 
variance. The method does not account for interactions among parameters.  

In the study, the ARS team used two indices in a LSA: a first order sensitivity coefficient (Saltelli et 
al., 2010) and a derivative-based measure of sensitivity (Saltelli et al., 2005).First order sensitivity 
coefficients estimate the variance-based first order effect 

 )|(~ iiXXi XYEV (5-1) 

of a generic factor Xi for model prediction Y written in the form: 

),...,( 21 kXXXfY  (5-2) 

where Xi is the i-th factor and X~i denotes the matrix of all factors except Xi, and k is the number of 

factors. The meaning of the inner expectation operator E in Eq.(5-1) is that the mean of Y is 
taken over all possible values of X~i while keeping Xi fixed. The outer variance V in Eq.(5-1) is 
taken over all possible values of Xi. The associated sensitivity measure (the first-order sensitivity 
coefficient) is: 

 
)(

)|(~

YV

XYEV
Si iiXXi (5-3) 

where V(Y) is the total variance of the model output computed as: 

   )|()|()( ~~ iiXXiiiXXi XYVEXYEVYV  (5-4) 
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The first-order sensitivity coefficient Si is a normalized index varying between zero and one, as 

 )|(~ iiXXi XYEV  varies between zero and V (Y ).

The second LS index used in this study is a derivative-based sensitivity index. This index is a 
straightforward implementation of the sensitivity concept: if the model output of interest is Y, its 
sensitivity to an input factor Xi is simply ∂Y/∂Xi. This measure shows how sensitive the output is to 
a perturbation of the input. If a measure independent from the units used for Y and Xi is needed, 
then the normalized value of the model sensitivity can be used: 

ii

i

X

Y

Y

X
Di




 (5-5) 

where iX is the nominal value of factor Xi and iY  is the value of Y when all input factors are at 

their nominal values. 

5.1.1  Analysis of Subsurface Flow and Transport Processes 

The HYDRUS-3D and TOUGH2 model calibrations based on results of the tracer experiment 
revealed considerable hydrologic complexity of the flow system. To understand better the 
behavior of the system, water and Cl- fluxes were analyzed in both the saturated and unsaturated 
zones of the simulation domain.  

Ten new observation nodes were assigned at depths of 0.4-0.7 m in addition to the 20 nodes 
used for the HYDRUS-3D calibration and shown in Fig. 4-2 to represent both the saturated and 
unsaturated parts of the soil profiles at the 12 observation locations. The HYDRUS-3D model was 
run with the parameters, initial conditions, and boundary conditions used for the calibration (Table 

4-1). Soil water content ( ) dynamics obtained with HYDRUS-3D simulations indicated that the 
upper 0.5-0.7 m of the soil profiles were not saturated, while the soil was saturated below these 

depths during the entire simulation period (Fig. 5-1). Values of   were generally higher at a depth 
of 1.1 m at locations 1, 2 and 4 than at the same depth and deeper at locations 3, and 5 through 

12. Differences in   values were caused by the material distribution in the simulation domain. The
saturated water content θs among the soil materials was highest (0.5 cm3 cm-3) in SL2 that formed 
the soil layer at a depth of 1.1 m at locations 1, 2 and 4 (Table 4-1). Soil layers at the same depth 
at the other locations were formed by the SL3, L1, L2, SCL1 and SCL2 materials (Fig. 4-5), with 
θs values ranging from 0.32 to 0.38 cm3 cm-3 (Table 4-1).  

Differences in material properties forming the simulation domain resulted in differences in 
simulated concentrations of the Cl- tracer at locations with similar initial and boundary conditions. 
Within the irrigated plot (wells 1-4), the Cl- tracer arrived at a depth of 0.6 m in well 3 and well 4 at 
about the same concentration 24 hours after the tracer application (Fig. 5-2). Tracer transport 
through the SL3 layer at these locations occurred in unsaturated conditions, and both the water 
content and the saturated hydraulic conductivity (Ks) affected Cl- movement. The velocity of 
unsaturated vertical Cl- transport was four times smaller than the Ks  value of this layer. The Cl- 

concentration in well 3 was higher than in well 4 when the tracer reached a depth of 1.1 m. Water 
contents at this depth were close to saturation in both wells, with Cl- transport being controlled 
mostly by the saturated hydraulic conductivity, which was seven times higher in L2 (well 3) 
compared to the SL2 material (well 4) at these depths (Table 4-1).  Therefore, the slower vertical 
Cl- transport rate between depths 0.6 and 1.1 m in well 4 as compared to well 3 was attributed to 
the difference in the saturated hydraulic conductivities of the SL2 and L2 materials at a depth of 
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1.04 m at these two locations (Fig. 4-6). The Cl- breakthrough curve at a depth of 1.1 m in well 2 
was similar to that of well 4. Cl- transport at this depth was controlled by the SL2 material, which 
had the lowest Ks value (0.1 m d-1) of the different soil profiles at both locations.  
Downward Cl- transport within the irrigated plot (wells 1-4) changed to lateral transport soon after 
the tracer approached the saturated zone with its highly conductive layers L1 and SL1. Lateral 
transport was relatively slow: it took from 9 to 16 days for the tracer to pass the 1.1-m depth at the 
irrigated plot and from 87 to 110 days to arrive at wells 5, 6 and 7 which were located at the 
distance of 7 m from wells 3 and 4 at the irrigated plot (Fig. 5-2). Based on the arrival time, the 
average flow velocity was about 0.12 m day-1 in the vertical direction and 0.08 m day-1 in the 
horizontal direction within and outside the irrigated plot, respectively.  

The difference in flow velocities occurred due to a combination of flow conditions and hydraulic 
properties of the materials in the transport domain. Lateral flow was driven by the smaller (about 
0.03) lateral hydraulic gradient as compared to the vertical gradient (about 1), but the saturated 
conditions for horizontal flow vs. the partly saturated conditions for vertical flow, and higher Ks 
values of the SL1 and L1 material (2.0-2.5 m day-1) at locations 5-7 compared to SL2 (Ks=0.1 m 
day-1) at locations 3 and 4, partially compensated for the difference in the hydraulic gradient. The 
ratio between the vertical and horizontal flow velocities was less than 3:1 for these reasons. The 
saturated conditions and high Ks values were not sufficient for the tracer to approach wells 10-12 
within the simulation period of time. The ARS study teamdid not observe any increase in Cl- 
concentrations at these wells during the 132-day long simulations. Based on the flow velocity, the 
tracer arrival time at the transect across wells 10-12 was expected to be about 175th day after 
initiation of the irrigation experiment. 

A decrease in Cl- concentrations with time was observed at the locations of wells 9, 11 and 12. 
The decrease was more pronounced at a depth of 0.6 m as compared to the deeper layers. Two 
processes could cause this decrease. One possible reason is that the 0.6 m depth layer was in 
the unsaturated zone (Fig. 5-1), with the infiltration from the top soil layer delivering precipitation 
with a Cl- concentration of 8 ppm, which diluted the 25 ppm Cl- concentration at this depth. 
Another possible reason was lateral flow from wells 3, 5 and 6 locations that may have decreased 
the Cl- concentration at both 0.6 m and 1.2 m depths. The initial concentration of Cl- was only 
about 10 ppm in the soil at these locations.  The water flux from these locations hence may have 
had a diluting effect on the more concentrated solutions in wells 9, 11 and 12. 

Lateral (qx and qy), vertical (qz) and total (q) water fluxes and Cl- concentrations (C) computed with 
the HYDRUS-3D code for the 30 observation nodes were used to evaluate total vertical and 
horizontal water and tracer fluxes through 12 locations during the 132-day simulation period. The 
lateral (Qx, Qy, QCx and QCy) and vertical (Qz and QCz) components as well as the total water and 
Cl- fluxes in different parts of the simulation domain were computed as:
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where qj are the computed water fluxes at the observation nodes (m day-1),  the index j refers to 

the flow direction (x,y or z), and ti is the time increment in the HYDRUS-3D output (day). These 
fluxes can be viewed as total water and Cl- masses passing through 1 m2 area during the 
simulations.  

The computed water and tracer fluxes are shown in Fig. 5-3. The smallest total water fluxes (Q) 
within the irrigated plot were obtained at locations 1 and 2 at a depth of 1.1 m, while the largest Q 
values occurred at locations 3 and 4 at depths of 1.1 m and 0.6 m respectively (Fig 5-3d). 
Relatively small Q values at locations 1 and 2 were caused by the low hydraulic conductivity of the 
unsaturated SL2 and SCL1 materials in the upper 0.4-m layer of the soil profile. Saturated flow 
conditions and relatively high Ks values of the textures throughout the soil profile at location 3 
resulted in the large total water fluxes at a depth of 1.1 m at this location (Fig 5-3d). Outside the 
irrigated plot, total water fluxes were generally larger in the first transect across locations 5-9 as 
compared to locations 10-12, except the well 9 where the total flux did not differ from the values of 
wells 10-12 (Fig. 5-3d). The differences in the total water fluxes observed for the two transects 
were caused by radial water flow from the irrigated plot. Figure 5-3 shows that the vertical 
component of the water flux Qz (Fig 5-3c) was much smaller than the two horizontal components 
Qx and Qz (Fig. 5-3a and Fig 5-3b) outside of the irrigation area.  The contribution of the vertical 
component Qz to the total flux Q was hence negligible compared with the two horizontal 
components. Lateral water flow eventually did approach the second transect. The Q values in 
wells 10 through 12 were close to their Qx values (Fig. 5-3a and Fig. 5-3d), indicating prevalence 
of water flow from the irrigated plot in the x-direction towards the observation well compared to the 
y-direction.  

The observed patterns in the total water flux translated into simulated total Cl- fluxes, QC.  Within 
the irrigated plot maximum QC values were obtained at locations 3 and 4 as a result of high Q 
values (Fig. 5-3h). Beyond the irrigated plot, QC values were highest at locations 5 through 8 due 
to lateral flow in both the x and y directions. The ratio between the horizontal (QCx or QCy) and 
vertical (QCz) components differed for these wells. The QCy component for well 5 contributed 
more than 50% to the total Cl- flux QC, while locations 6 and 7 were more affected by the QCx 
component. The reasons for this was the high heterogeneity manifested in the variability in the 
saturated hydraulic conductivity of the materials composing the simulation domain.  

Large values of the total water flux did not necessarily lead to high tracer fluxes. The correlation 
coefficient between QC and Q in wells 3 through 8 was statistically insignificant (Fig. 5-4). The 
total Cl- fluxes in these locations were likely a combined result of the tracer fluxes from the  
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Figure 5-3 Total water (a-d) and Cl- (e-h) fluxes obtained in HYDRUS-3D simulations 
during 132 days at three depths in 12 monitoring locations. 
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Figure 5-4 Relationships between total Cl- and water fluxes for four depths. Observation 
well numbers are shown above the symbols. 

irrigated plot at the different depths. The considerable heterogeneity in the simulation domain 
caused high variability in the water and Cl- fluxes.  This was the case even in the relatively small 
10x10 m irrigated plot, which showed elevated QC values at depths of 0.4 and 1.1 m at location 3. 
The fluxes in the Northern locations (wells 5-7) were probably more affected by the tracer flux 
from location 3, while the Southern locations (wells 8 and 9) were affected by the flux initiated 
from location 4. This probably explains the relatively high QC values in the Northern locations as 
compared to those at the Southern side. 

Overall, our analyses of the simulated time series of the water content and Cl- concentrations at 
12 locations, along with total water and tracer fluxes and their components, revealed considerable 
hydrologic complexity in the simulation domain associated with spatial variability in soil properties. 
The presence of both saturated and unsaturated zones, fluctuating perched water tables, 
contrasting hydrological regimes in the irrigated and non-irrigated areas, and spatial variability in 
the soil properties, provided a unique opportunity to explore a range of model abstraction 
techniques, which will be demonstrated in the following chapters.  
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5.1.2  Performance Assessment Indicators 

Sensitivity analyses were conducted to evaluate the applicability of different abstraction 
techniques to the model simplification. The simplifications refer to having distinct structural/textural 
units within the simulation domain and the fluxes on its boundaries. The goal of the sensitivity 
analyses was to simplify the model to a level where simulations still can depict key features of the 
modeled domain.  To do this, the features should be defined explicitly. Standard Review Plan 
2.4.13 (NUREG-0800) specifies pathways and travel times as the critical parameters for 
assessment of ground and surface water radionuclide contamination.  For this reason the ARS 
study team used as performance indicators in their sensitivity analysis, peak concentrations 
(Cpeak) and times to reach peak concentrations (Tpeak).  Because the peak concentration was 
not observed at some locations in HYDRUS-3D simulations and in most TOUGH2 simulations, 
the ARS study team also included entire Cl- time series in the sensitivity analysis. 
 
5.1.3  Transport Parameters 

The sensitivity analysis was first used to evaluate applicability of the aggregation model 
abstraction technique. The ARS study team intended to reduce the number of the transport 
parameters by identifying materials which do not have a substantial effect on the HYDRUS 
simulations, and replacing them with materials having similar transport properties. To do this, the 
local sensitivity analysis (LSA) described in section 6.1 of this report was carried out. For the 
sensitivity analysis the ARS study team used the soil material distribution within the simulation 
domain, and the initial and boundary conditions obtained in the HYDRUS-3D calibration as 
described in detail in section 4.2. The local sensitivity analysis (LSA) was conducted first for the 
saturated hydraulic conductivity (Ks). Next, the effects of the longitudinal (αL) and transversal (αT) 
dispersivities on tracer transport were evaluated for 12 observation locations. Values of Ks, αL and 
αT of the soil materials used in the LSA were set to ±50% of their nominal (calibrated) values. Note 
that all parameters of soil materials SiCL2 and SiCL3 were kept constant during the LSA. The 
SiCL2 and SiCL3 materials served as restrictive layers at the bottom of soil profile.  Parameters 
for these materials were not used in the LSA analyses to eliminate the effects of variations in 
boundary fluxes on the SA results.  
 
As stated above, two values of each parameter were assigned (±50% of their nominal (calibrated) 
values) to eight soil materials (factors) resulting in 256 simulations using HYDRUS-3D and 256 
simulations using TOUGH2 (28 simulations in a multivariate sensitivity analysis).  This was done 
for each of the three parameters studied, Ks, αL and αT for a total of 256 x 2 models x 3 
parameters = 1536 simulations.  Results of the Cl- simulations obtained for the minimum and 
maximum values of each factor were different for the two models. These differences were typically 
greater in wells 1-7 as compared to wells 8-12, and were found to increase when the Cl- plume 
approached these wells.  
 
The first-order sensitivity coefficients Si were computed from the simulated Cl- time series to 
assess the sensitivity of both models to the transport parameters for the eight soil materials. To do 
this, Cl- transport was simulated using 256 combinations of Ks. Si values were computed 
subsequently for each of the eight soil materials and every output time. Specifically, for the 
minimum and maximum Ks values of material SL1 the ARS study team calculated the average 

concentration )|),((~ iiKs KstzCE  and variance )|),((~ iiKs KstzCV  at each output node for each output 

time t from the simulated Cl- concentration time series. The index i is used here to denote the soil 
material. The same computations were then repeated for SL2, SL3, SCL1, SCL2, L1 and L2.  This 

produced estimates of the variance  )|),((~ iiKsKs KstzCEV
i

 and average variance  )|),((~ iiKsKsi KstzCVE  
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from the average concentrations )|),((~ iiKs KstzCE  and the variances )|),((~ iiKs KstzCV computed for 

the two levels of Ks of each material. Finally, the first-order sensitivity coefficients Si and total 

variance V( ),( tzC ) were calculated using Eqs. (5-3) and (5-4), respectively.  

An example of the Si computations for the sensitivity of HYDRUS-3D simulation results to Ks of 
soil material SL1 is shown in Fig. 5-5. The Si values varied in time and among locations. Generally 
the Si values were greater at locations where the material properties could affect the tracer 
transport process directly or indirectly. The direct effect of the SL1 material can be seen on the Si 
time series for wells 1-5 in Fig. 5-5a. The SL1 soil material composed the soil layer at a depth of 
0.62 m at locations 1 and 3, the soil layer at a depth of 1.04 m at location 2, and the soil  
layers at depths of 0.21, 0.41 and 0.62 m at location 5, but was not present in the soil profile at 
location 4 (Fig. 4-5). The maximum Si values were for these reasons considerably greater for 
wells 1-3 and even for well 5 as compared to well 4, notwithstanding the cumulative tracer fluxes 
in well 4 being greater than in well 2 (Fig. 5-5). The indirect effect of material properties on the 
HYDRUS-3D sensitivity can be illustrated with Si values computed for wells 10-12. Note that the 
SL1 material was not presented in soil profiles at these locations. However Si values for simulation 
times between 60 and 100 days were significantly greater for well 11 compared to the other two 
wells (Fig. 5-5a). The reason for this was the high conductive layer L1 near well 11, which at 
location 3 was connected with the SL1 material at a depth of 0.62 m, thus providing preferential 
lateral flow from location 3 towards well 11. Materials at locations 10 and 12 were not connected 
directly with the SL1 material.  The properties of this material hence had little effect on results of 
HYDRUS-3D simulations at these two locations. 
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Figure 5-5 Time series of the sensitivity index Si along with its components obtained for 
HYDRUS-3D simulations using two levels of the saturated hydraulic 
conductivity of the SL1 soil material. 
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The sensitivity of HYDRUS-3D to Ks was different for the eight soil materials. Values of the Si 
index generally were larger for the SL1, SL2, SL3, L1 and SiCL1 materials, and smaller for SCL1, 
SCL2 and L2 (Fig. 5-6). The differences in the HYDRUS-3D sensitivities were caused by Ks 
values used in the LSA. The Ks values of the first group of materials were greater than Ks values 
of the second group, except for SL2 (Table 4-1). The high HYDRUS-3D sensitivity to the relatively 
small Ks value (0.3 m day-1) of this material can be explained by its location. This material served 
as a restrictive flow layer at a depth of 0.41 m at locations 2 and 3, at a depth of 0.83 m at location 
2, and depths of 1.04 m and 1.24 m at locations 2 and 4, and thus controlled downward transport 
of the applied tracer within the irrigated plot. The effect of this material can also be seen in wells 5-
6, where SL2 was not present in the soil profile. These two wells received the dominant amount of 
mass of the applied tracer from the North-East corner of the irrigated plot (well 4), and therefore 
were affected indirectly by Ks of the SL2 material.  

The sensitivity of the HYDRUS-3D modeling results to the material properties was also assessed 
using the derivative-based sensitivity index (Di). Di values were computed using Eq. (6-5) from the 
same time series as used for the Si computations. The parameters obtained with the HYDRUS-
3D calibration and the Cl- concentrations simulated with these parameters were used in Eq. (6-5) 

as the nominal values of factors Xi and iY , respectively. Computed HYDRUS-3D model time 

series of the Di index for Ks of the eight soil materials are shown in Fig. 5-7. Overall variability of 
the Di index was greater compared with Si, with Di values over time changing signs from positive 
to negative and vice versa. This occurred due to acceleration of the tracer flux with an increase in 
Ks, resulted in a shift of the Cl- breakthrough curves along the time axis such that smaller Cl- 

concentrations at Ks,min  corresponded to higher concentrations at Ks,max  in the rising limb, and vice 
versa in the declining limb of the Cl- breakthrough curves.  

The calculated values of Di indices confirmed the high sensitivity of HYDRUS-3D to Ks values of 
materials SL1, SL2, SL3, L1 and SiCL1 obtained in the analysis of Si values. The sensitivity to the 
materials was generally higher for soil types that directly or indirectly affected tracer transport. 
However, unlike the Si index, Di values changed signs from positive to negative, when an increase 
in the factor produced a decrease in the Cl- concentration. Some discrepancy existed between the 
data in Fig. 5-6 and Fig. 10a, and data in Fig. 5-7. Both indices (Si and Di) indicated a high 
sensitivity of the HYDRUS-3D calculations to Ks values of SL1 for well 2 and well 3, and a low 
sensitivity for well 4.  However, unlike the Si index, Di values did not indicate high model sensitivity 
for well 1.  

The first-order sensitivity index (Si) is presumably a more informative measure of model sensitivity 

compared to the derivative-based sensitivity index (Di) since the term  )|(~ iiXXi XYEV  in Eq. (6-3)

accounts for the combined effects of Xi and all other factors. Unlike Si, the Di index estimates the 
effect of Xi factor when all other factors are fixed at their nominal values. Therefore, the Di value 
for factor Xi may depend upon the nominal values of other factors. Nevertheless, Si can also 
mislead when the model sensitivity to all factors is low. In this case small values of the 
denominator in Eq. (6-3) may result in non-zero value of the Si index. Figures 5-5b and 5-5c 
illustrate this case. The variance of Ks of material SL1 did not affect results of HYDRUS-3D 
simulations. The Cl- concentrations in well 10 did not change during the simulation time (Fig. 5-2), 
thus leading to relatively small values of VXi for this parameter (Fig. 5-5b). However results of 
HYDRUS-3D simulations were about the same when Ks values of all materials varied, resulting in 
small values of V(Y) (Fig.5-5c). Division of a small VXi value by a small V(Y) gave Si a value about 
0.3 on day 130 of the HYDRUS-3D simulation (Fig. 5-5a), which indicated a moderate sensitivity 
of the model to Ks of material SL1. 
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The Si time series computed with the HYDRUS-3D and TOUGH2 models were used to assess the 
sensitivity of both models to Ks, and the longitudinal (DL) and transverse (DT) dispersivities of the 
eight soil materials. To reduce the amount of information and simplify the data analysis, the Si time 
series were characterized by the mean, S̅i, and the standard deviation, SDSi, of the Si index over 
the simulation time. The relationships between σ(S̅i) and S̅i are shown in Fig. 5-8. Generally SDSi 
increased with increase in Si value for all materials. Based on data in Fig. 5-8 HYDRUS-3D model 
was more sensitive to Ks and L than TOUGH2 model (Fig. 5-8a,b,d,e). The sensitivity to  was 
about the same in both models (Fig. 5-8c,f). The smallest values of Si and SDSi were obtained for 
SCL2 material in all locations indicating the low sensitivity of the HYDRUS-3D and TOUGH2 models 
to the transport properties in this material within the range of studied parameters. Therefore, based 
on Si index, the SCL2 material can be considered as a candidate for the model simplification. 

The LSA was performed above based on the tracer concentrations representing the whole 
simulation period of time. Two performance indicators: simulated peak concentrations (Cpeak) 
and time of the peak concentrations (Tpeak) at the tracer time series will be considered here as 
an alternative to the entire Cl- series. To evaluate the applicability of Cpeak and Tpeak 
performance indicators the ARS study team analyzed the Cl- time series computed in the LSA of 
the HYDRUS-3D model. New indicators were not applicable for the data from wells 8-12 
simulated with both models and for wells 5-7 simulated with the TOUGH2 model due to absence 
of peaks on the Cl- curves. Therefore only the HYDRUS-3D results for wells 1-7 are used 
hereafter. The LSA was conducted using Si and Di indices computed both for the Cpeak and 

Tpeak data. The nominal values of factors Xi and iY for Di index were taken from the HYDRUS-

3D calibration data, similarly to the previous LSA. Results were presented as relationships 
between the sensitivity indices computed for Cpeak and Tpeak data in wells 1-7. General increase 
in Si(Cpeak) with increase in Si(Tpeak) with the slope close to one was observed in the 
simulations indicating approximately equal model sensitivity to both performance variables (Fig. 5-
9a,b,c). Depending on location, the model sensitivity to the soil materials differed, however the 
values of Si(Cpeak) and Si(Tpeak) were consistently smaller in SCL2 material for Ks, L and  
than in other soil materials. The Di values indicated high sensitivity of the HYDRUS-3D model to 
Ks, moderate sensitivity to  and low sensitivity to L in soil materials (Fig. 5-9d,e,f). Unlike Si 
index no relationship was found between Di(Cpeak) and Di(Tpeak). The values of Di for Ks were 
positive and negative indicating both an increase and decrease in Cpeak and Tpeak associated with 
increasing value of Ks. The Di(Cpeak) values were mostly negative, but Di(Tpeak) were close to zero 
for the αT parameter reflecting a decrease in the peak concentration with an increase in parameter 
of transversal dispersivity, while the peak time remained almost unchanged, which indicates a 
flattening of Cl- BTC. Based both on Si and Di indices computed for peak concentrations and peak 
times, material SCL2 can be selected for model simplification.      

Overall, introducing the peak concentration (Cpeak) and the time to peak concentration (Tpeak) as 
performance indicators for the LSA allowed us to reduce significantly the input information needed 
for the sensitivity analysis and to define the soil material that can be used for the model 
simplification example. One limitation of the new performance indicators is the need to have 
peaks in the simulated BTCs. 
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Figure 5-6 Time series of the sensitivity index Si obtained in HYDRUS-3D simulations 
with two levels of the saturated hydraulic conductivity for eight soil materials. 
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Figure 5-7 Time series of the sensitivity index Di obtained in HYDRUS-3D simulations 
with two levels of the saturated hydraulic conductivity for eight soil materials. 
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Figure 5-8 Sensitivity of the HYDRUS-3D and TOUGH2 models to the hydraulic 
conductivity (a, d), longitudinal (b, e) and transversal (c, f) dispersivity 
assessed for eight soil materials using time-averaged Si indices and their 
standard deviations SDSi. 
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Figure 5-9 Sensitivity of the HYDRUS-3D model to the hydraulic conductivity Ks (a,d), 
longitudinal dispersivity αL (b,e) and transversal dispersivity αT (c,f) assessed 
at seven observation wells using Si and Di indices for simulated peak 
concentrations Cpeak and times Tpeak. 
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5.1.4  Subsurface Textural Units 

The spatial boundary between soil materials was also subjected to the LSA. The materials in the 
simulation domain were vertically distributed within the soil profiles based on soil texture 
measured at 10 depths at 12 locations as described in section 4.2.1 of this report. The lateral 
boundaries between different textural materials were equally spaced between neighboring wells. 
Since no information existed about the actual locations of the various lateral material boundaries, 
it seemed worthwhile to assess the effect of material delineation on results of the tracer 
simulations. To do this, the lateral boundary of each soil material was extended or truncated for 
about 1 m. Only one material boundary out of nine was changed in each model run, resulting in a 
total of 18 runs for the HYDRUS-3D and TOUGH2 models. The model sensitivities to the material 
distributions were assessed using the derivative-based sensitivity index Di. The first-order 
sensitivity coefficient Si was inapplicable for this LSA since boundary locations were not 
independent variables for the different materials. The nominal values of factors Xi and Y̅i  in Eq. 5-
5 were taken from the HYDRUS-3D and TOUGH2 simulations using the calibrated parameters.  

The values of the sensitivity index Di for both models varied greatly in time (Fig. 5-10 and Fig. 5-
11). Modification of the material boundary caused at many locations an increase following by a 
decrease in the Cl- concentration, and vice versa, with time, resulting in the Di sign changing from 
positive to negative values and back. For some reason these changes were not seen in the 
TOUGH2 simulations, which produced Di values which were either consistently positive or 
negative during the entire simulation (Fig. 5-11). Common for the two models was the low 
sensitivity to modification in the SCL2 material boundary. A possible explanation for this is the 
location of SCL2 in the simulation domain. The SCL2 material was primarily located at depths of 
0.21 m and 0.41 m at locations 6 and 7. The ARS study team previously showed (section 5.1.1) 
that the tracer was transported from the irrigated plot towards wells 5-8 predominantly laterally in 
the upper layer of the saturated zone, while vertical water fluxes beyond the application area were 
insignificant. The SCL2 material was located far from the preferential fluxes and therefore did not 
affect their velocities and directions..  

5.1.5  Boundary Conditions 

The ARS study team previously examined the properties of the soil as a possible option for model 
simplification. Another possible way for model abstraction is simplification of the flow conditions on 
the boundaries of the simulation domain. The ARS study team used thus far daily-averaged 
precipitation and evapotranspiration rates for the top boundary of the entire, and daily-averaged 
irrigation rates less runoff in addition to the atmospheric boundary conditions within the irrigation 
plot. A zero flux boundary condition was imposed along the bottom of the domain. Spatially 
variable but constant in time pressure head profiles were specified along the lateral boundaries 
based on groundwater monitoring data obtained in the summers of 2006-2007. To evaluate the 
role of the boundary conditions in the model and to identify variables for model simplification, the 
LSA was applied separately to the top and lateral boundaries of the domain. For simplicity the 
ARS study team used the one-factor-at-a-time approach, thus excluding the combined effect of 
several factors on the LSA results. The Di index was used as a measure of model sensitivity. 
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Figure 5-10 Temporal variation of the sensitivity index Di obtained in HYDRUS-3D 
simulations with extended and truncated material boundaries. 
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Figure 5-11 Temporal variation of the sensitivity index Di obtained in the TOUGH2 
simulations with extended and truncated material boundaries. 
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The LSA was first applied to the runoff data. Runoff was experimentally estimated as 28% of 
irrigation and precipitation in our previous study (Pachepsky et al., 2011). For the LSA the ARS 
study team used 20% and 40% of irrigation and precipitation as estimates for runoff in both 
HYDRUS-3D and TOUGH2. Soil properties and the other boundary conditions were set similar to 
the HYDRUS-3D calibration simulation. The changes in runoff values dramatically affected the 
simulated Cl- BTCs. A decrease in runoff resulted in a general increase in Cl- concentrations and a 
decrease in the tracer arrival times at wells 1-9. An increase in runoff had the opposite effect on 
the simulated Cl- BTCs. Minor changes in Cl- concentrations were observed in well 11 and well 
12. These changes were less pronounced for the TOUGH2 simulations, particularly for wells 5-8. 
The difference between results of the HYDRUS-3D and TOUGH2 simulations was mostly a 
general underestimation of the measured Cl- concentrations in wells 5-7, which originated from 
omitting any calibration of TOUGH2. In spite of differences in their prediction accuracy, both 
models were sensitive to the runoff changes. The Di indices ranged from -2 to 1 and from -0.5 to 
0.6 for HYDRUS-3D and TOUGH2, respectively (Fig. 5-12a,b), thus indicating high model 
sensitivity to inflow along the upper boundary of the domain. The LSA was not conducted with 
precipitation and irrigation since the results would be essentially the same.  This is because the 
flux in both models was set as irrigation and precipitation less runoff. 

Next, the LSA was applied to the evapotranspiration data. Evapotranspiration ranged from 0 to 2.3 
mm with a variance of 63% during the observation period.  The goal of the LSA was to replace 

daily-averaged ET values with those averaged over the entire simulation period (i.e. ). The 

HYDRUS-3D and TOUGH2 simulations were run with daily- and long-term averaged and 
values using parameters and boundary conditions obtained with the HYDRUS-3D calibration. The 
Cl- breakthrough curves simulated with differently averaged ET were very close to each (data not 
further shown). Values of the sensitivity index Di were of the same order of magnitude in both 
models, except for well 2 in HYDRUS-3D simulations (Fig. 5-12c,d). For some reason the Di 

values for this well decreased in time, likely indicating the increase in Cl- concentrations at this 

location when daily-averaged ET were replaced with the longer-term values. Overall, small 
values of Di obtained in the simulations allowed model simplification using averaging 
evapotranspiration values over the full 132-day simulation period. 

Finally, the LSA was used also to estimate the effect of groundwater depth on the simulation 
results. The depth to groundwater as obtained with the HYDRUS-3D calibration was increased 
and decreased by 0.10 m.  Both HYDRUS-3D and TOUGH2 were run with the modified lateral 
boundary conditions and parameter sets resulting from the HYDRUS-3D calibration. The changes 
in the groundwater depth affected the Cl- BTCs differently at 12 locations using HYDRUS-3D. 
Within the irrigation plot the changes affected mostly the shapes of the BTCs. Simulated BTCs 
flattened when the depth to groundwater increased. This increase caused an increase in the Cl- 
concentrations of wells 5-8, most likely because of an increase in the hydraulic gradients 
controlling lateral flow from the irrigation plot towards the observation wells. Changes in Cl- were 
not significant in wells 10-12 since an increase in the gradient was not sufficient to deliver the 
tracer to these wells within the simulation period.  Results of the TOUGH2 simulations revealed 
similar tendencies, except for smaller changes in the Cl- concentrations of wells 5-8 as compared 
to HYDRUS-3D simulations. The Di indices computed for both models are shown in Fig. 5-12e,f.  
HYDRUS-3D was generally more sensitive to changes in the groundwater depth compared to 
TOUGH2. The Di indices ranged from -1.3 to 0.5 and from -0.4 to 0.4 for HYDRUS-3D and 
TOUGH2, respectively. In spite of different sensitivities, the effect of the boundary conditions on 
the simulation results was significant for both models.  This indicates that groundwater depth 
could not be subjected to model simplification.     
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5.1.6  Sampling Frequency 

The impact of different data collection frequencies on the modeling results was studied also using 
the HYDRUS-3D and TOUGH2 models. The sampling frequency in the field experiment ranged 
from twice a day during the first 37 days to once a day afterwards. Over 4,500 water samples 
were taken from 3 depths at 12 locations and analyzed for Cl- content during the 132-day 
experiment. The intensive sampling scheme provided detailed information about tracer transport 
within and beyond the irrigated plot at different depths. The tracer was found to be transported 
preferentially beyond the irrigated plot in the upper layer of the saturated zone due to relatively 
high hydraulic conductivity of the soil material composing this layer (Pachepsky et al., 2011). 
Unfortunately, the adopted intensive sampling scheme is impractical for most application. Our 
study hence aimed at reducing the sampling frequency without significantly affecting model 
performance.   

Alternative Cl- sampling intervals were selected within the range from 1 to 10 days, with 1 day 
increments. Since sampling always started at the beginning of the experiment, the number of 
samplings ranged from 131 to 13. Model performance was evaluated using the root mean 
squared error (RMSE) for both models, as well as errors in predicting peak Cl- concentrations 
(ΔCpeak) and peak times (ΔTpeak) using the HYDRUS-3D software. Both models were run using the 
HYDRUS-3D calibration parameters. Values of RMSE obtained with the simulations using the 
calibrated parameters (the zero sampling time intervals in Fig. 5-13) were compared with RMSEs 
computed for the reduced number of samplings (i.e. 131 and 13 sampling dates were used for the 
RMSE computations with 1-day and 10-day frequencies, respectively). The computed RMSE 
values did not change noticeably with an increase in the sampling time interval for wells 5-13. 
Changes were noticeable only for wells 1 and 4, which were located within the irrigated plot. The 
RMSE value decreased about two times for well 4 when the sampling interval became greater 
than 2 days. This occurred because the highest Cl- concentrations in this well 
were observed within the first 3 days since the beginning of the experiment, with the model failing 
to reproduce the experimental data. Similar results were obtained from an analysis of errors in 
predicting the Cl- peak concentrations and peak times using the HYDRUS-3D model.  

Noticeable changes in the errors occurred only for well 4 after the sampling time interval 
exceeded 2 and 4 days for ΔCpeak and ΔTpeak, respectively. The discrepancy between these two 
time intervals for this well was caused by a fast decline in the Cl- BTC during the first 37 days of 
the experiment, followed by a slow increase in the Cl- concentration during the next 60 days, with 
a second peak time occurring at 96th day from beginning of the experiment.  The increase in the 
sampling time interval caused a decrease in the peak concentration until this concentration 
became smaller than the second concentration peak. The sampling time interval was 5 days when 
the second peak became greater than the first peak (Fig. 5-13). 

Overall a sampling interval of 10 days was sufficient for collecting data in wells located beyond the 
irrigated plot. A 2-day sampling interval was more appropriate for wells within the irrigated plot 
where the higher water fluxes caused more rapid transport of the applied tracer. 
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Figure 5-12 Temporal variation of the sensitivity index Di obtained in the LSA of the 
HYDRUS-3D and TOUGH2 models to runoff (a,b), evaporation (c,d) and 
groundwater depth. 
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Figure 5-13 Errors of predicting Cl- concentrations (RMSE), peak Cl- concentrations 
(ΔCpeak) and peak times (ΔTpeak) obtained in the HYDRUS-3D and TOUGH2 
simulations for measurements taken at different time intervals. 
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5.1.7  Soil Material Elimination 

The LSA local sensitivity analysis revealed different model sensitivities to the 8 soil materials that 
represented the soil properties of the simulation domain. The very small values of the sensitivity 
indices Di and Si for material SCL2 suggest that the simulation domain perhaps could be 
simplified by using fewer soil materials, and consequently fewer transport parameters for the 
HYDRUS-3D and TOUGH2 simulations. 
 
Three soil materials (SL3, SCL1, L1) were considered as possible replacements for SCL2. These 
three materials were selected since they were the nearest neighbors among the textural classes 
as obtained with the cluster analysis in Task II.  The SL3, SCL1, L1 alternative soil materials (Fig. 
5-14) had DL and DT parameter values similar to SCL2, except for SL3 whose DL value was ten 
times smaller. The Ks values of the alternative materials were from 5 to 25 times higher than the 
Ks of SCL2 (Table 4-1). Three new simulations were carried out with the HYDRUS-3D and 
TOUGH2 models using the same initial and boundary conditions as for the calibration simulations, 
but with the modified parameters for SCL2.  
 
The BTCs computed using HYDRUS-3D were found to be very close to the original BTCs 
obtained for SCL2. The main difference was for the simulation using SL3 for well 2, which showed 
a BTC that was much closer to the observed Cl- curve. Unlike results of HYDRUS-3D simulations, 
the BTCs computed with TOUGH2 differed from the original curve of wells 1-8. The maximum and 
minimum differences were obtained with simulation using the SCL1 and L1soil materials, 
respectively (Fig. 5-15). 
 
In view of these findings, the transport domain could now be simplified based solely on results of 
the HYDRUS-3D and TOUGH2 simulations using the original (SCL2) and alternative materials 
(SL3, SCL1, and L1).  Both SCL1and L1 could replace the SCL2 material when using the 
HYDRUS-3D model, while L1 material was the best alternative to SCL2 for TOUGH2. The 
observed Cl- data could provide additional information for model simplification. This information 
may include RMSE values of the simulated Cl- concentrations and prediction errors in the peak 
concentrations and the times to peak concentrations. Based on the RMSEs (Fig. 5-15) all three 
materials could be selected for simplification of both models, provided the Cl- concentrations of 
wells 1 and well 2 are not a concern. The ARS study team showed earlier in section 5.1.1 that the 
cumulative tracer fluxes did not affect Cl- transport toward the other wells. However, if the 
concentrations in those wells are important for decision making, then SL3 for HYDRUS-3D and 
SL3 or L1 for TOUGH2 would be the best alternatives to the SCL2 soil material. 
 
The same conclusions can be derived for the HYDRUS-3D code using other performance 
indicators, specifically the peak concentration (Cpeak) and the time of the peak concentration (Tpeak) 
of the tracer time series. Figure 5-16 illustrates the accuracy of HYDRUS-3D model in predicting 
Cpeak and Tpeak in wells 1-7. The errors for both performance indicators were smaller for the 
SL3 material, thus confirming the results of the RMSE analysis. 
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Figure 5-14 Alternative soil texture for the HYDRUS-3D model simplification. 
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Figure 5-15 Root-mean-square errors (RMSE) of predicting Cl- concentrations obtained 
with two models using the original and modified properties for SCL2 soil 
material. 

  



5-28 

Figure 5-16 Errors of peak Cl- concentrations (ΔCpeak) and peak times (ΔTpeak) obtained 
with the HYDRUS-3D using the original and modified properties for SCL2 soil 
material. 



5-29 

5.2  Model Abstraction Applications 

The model abstraction methodology, developed in this study, is comprised of the following steps: 
(i) site conceptualization, (ii) analysis of hydrological conditions, (iii) specifying accidental release 
scenarios, (iv) selecting performance indicators, (v) simulating contaminant transport for the 
assumed scenarios, and (vi) model simplification based on the performance indicators. The 
adopted abstraction techniques may differ and be specific for licensing NRC sites, depending 
upon hydrological complexity of a particular site. For the OPE3 site in Beltsville, MD, the ARS 
study team evaluated the applicability of three model abstraction techniques: (i) parameter 
abstraction, (ii) profile aggregation, and (iii) ignoring the unsaturated zone.  To implement these 
three abstraction techniques and make the results transferable to other NRC sites the ARS study 
team assumed that: 

 The calibrated HYDRUS-3D model adequately reproduced subsurface contaminant
transport in the studied area.

 The hydrologic complexity of field B at the OPE3 site is commensurate with the complexity
of NRC sites.

 Variability in the ground water depths as measured in the observation wells during the
monitoring period (2006-2010) is similar to the variability at NRC sites.

 The irrigated area at the experimental site represents a decommissioning or licensing
NRC site; accidental release is equally probable at any point within the site area.

 The creek and observation wells at the eastern boundary of the OPE3 site represent
protected ground and surface water resources in the vicinity of the NRC site.

 Weather conditions at the decommissioning or licensing site are adequately represented
by the 60-year weather data collected by the Beltsville weather station.

The ARS study team realized that some these assumptions may not be applicable to all NRC 
sites, but believe that the proposed methodology can serve as a general guidance to simplify 
models predicting subsurface contaminant transport from a particular release point.   

5.2.1  Geometry of the Simulation Domain and Soil Material Distribution 

NRC regulation 10 CFR 100.20(3) specifies that factors important to hydrological radionuclide 
transport (such as soil, sediment, and rock characteristics, adsorption and retention coefficients, 
ground water velocities, and distance to the nearest surface body of water) must be obtained from 
on-site measurements (61 FR 65176, Dec. 11, 1996). These onsite measurements provide a 
basis for creating a conceptual site model that evaluates and provides a qualitative representation 
of the important features, events, and processes of the groundwater flow and transport system 
(Interim).  In this study all available information obtained from soil surveys, groundwater 
monitoring and modeling was integrated into the conceptual model of the decommissioning or 
licensing NRC site. 

A new simulation domain that mimics a NRC site was defined within the boundaries of the GPR 
survey conducted in 2006.  The domain included the tracer application plot, 44 old groundwater 
observation wells installed in 2000, and 12 new sampling wells installed in 2006 (Fig.5-17). The 
domain extended laterally for 190 m in the x (east-west) direction and for 118 m in the y (north-
south) direction, bordered by a first-order distributary in the eastern part. The thickness (z 
direction) of the domain varied from 2.60 m in the east to 8.73 m in the west and was set so that it 
included a flow restrictive layer along the bottom boundary. This difference in the thickness was 
caused by a slope of the soil surface.  The coordinate system in the HYDRUS-3D  
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simulation assumed the origin to be at the bottom of the domain (the z-axis was assumed to be 
positive upward).  

The domain was subdivided vertically into ten hydrological layers based on data from the GPR 
survey conducted in 2006 (Fig. 3-31). The material in each layer was distributed based on soil 
texture measured in logs during installation of the observation wells. Soil properties within the 
irrigated plot were assigned similar to those used for the HYDRUS-3D calibration, while soil 
textures measured in 44 logs during well installation in 2000 (Table 3-2) were used outside that 
area. In all 12 texture classes/subclasses were needed to represent the soil materials within the 
transport domain (Fig 5-18).  These classes included: Sand (S), Loamy sand (lS), two Sandy 
Loam classes (SL1, SL2), Sandy Clay Loam (SCL1), Clay Loam (CL), two Loam classes (L1 and 
L2), three Silt Clay Loam classes (SiCL1, SiCL2, SiCL3), and Silt Loam (SiL). Boundaries 
between different soil materials of each computational layer were set at approximately equal 
distances from the observation wells where the materials were measured. The soil below a depth 
of 4.03 m was considered to represent a flow restrictive layer, and was represented by the SiCL3 
texture which has a very low value of the saturated hydraulic conductivity (Ks=0.001 m day-1). 
Subdividing the soil hydraulic properties into 12 groups was expected to reflect hydrological 
complexity of the simulation domain, and to provide flexibility for model abstraction. 

Soil hydraulic parameters for the 12 materials are shown in Table 5-1. Within the irrigated area 
these properties were set equal to the parameters obtained in the HYDRUS-3D calibration. 
Beyond this area the ARS study team used ROSETTA estimated parameters of the van-
Genuchten water-retention equation and Ks values estimated using the PTFs of Rawls et al. 
(1998). The dispersivity parameters αL and αT of all materials were set to 1.0 m and 0.2, 
respectively.  

The unstructured (triangular prisms) finite element mesh consisted of 11,770 nodes and 20,380 
3D elements. The vertical size of the finite element prisms varied depending upon location, with 
the elements following the soil surface and the surface of the lower sub-layer. The vertical size of 
the finite elements for the upper 2-m soil layer ranged from 0.2 to 0.3 m, while the size below this 
depth was about 0.3 m and 2-m at the eastern and western boundaries of the domain, 
respectively (Fig. 3-19a). The horizontal mesh size increased from about 1.3 m within the 
irrigation plot where the fastest fluxes were observed, to 5 m outside of that area. Using this 
geometry and associated finite element mesh, a 10-year long simulation generally took between 6 
and 8 h with a Computech Intel Core™ i7 CPU 930 @2.80 GHz computer. Further refinement of 
the finite element mesh required longer simulation times. A total of 100 observation nodes (Fig. 5-
19b) spaced 10-m apart were used to record the simulated breakthrough curves at depths of 
approximately 2.3 m. Although the maximum lateral fluxes of the tracer during the sensitivity 
analysis of HYDRUS-3D were observed to occur at a depth of 1.1 m, the ARS study team 
increased the output depth since the 10-year simulations showed that the water table decreased 
to below 2 m during periods of low precipitation, which caused the long-term tracer fluxes to 
become larger at a depth of 2.3 m as compared to the 1.1 m depth. 
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Figure 5-17 Boundary of new simulation domain with old (brown circles) and new (green 
circles) groundwater wells. 
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Figure 5-18 Material distribution for the HYDRUS-3D mesh. 
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Table 5-1 Hydraulics conductivity values obtained by calibration, estimation with PTFs 
from Rawls et al. (1998) and scaling abstractions A1 through A6. 

Soil 
texture 

𝐿𝑠, m 0.05 0.2 

b 0.3 0.5 0.7 0.3 0.5 0.7 

Saturated  hydraulic conductivity, Ks, m d-1 

Calibrated Rawls 
et al. 
1998 

A1 A2 A3 A4 A5 A6 

SL1 2.50 1.339 5.331 13.390 33.634 3.517 6.695 12.745 

SL2 0.10 0.307 1.222 3.070 7.711 0.806 1.535 2.922 

SL3 2.50 1.339 5.331 13.390 33.634 3.517 6.695 12.745 

SCL1 0.45 0.067 0.267 0.670 1.683 0.176 0.335 0.638 

SCL2 0.11 0.017 0.068 0.170 0.427 0.045 0.085 0.162 

L1 2.00 0.149 0.593 1.490 3.743 0.391 0.745 1.418 

L2 0.70 0.149 0.593 1.490 3.743 0.391 0.745 1.418 

SiCL1 2.00 0.118 0.470 1.180 2.964 0.310 0.590 1.123 

SiCL2 0.15 0.118 0.470 1.180 2.964 0.310 0.590 1.123 
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Figure 5-19 Mesh generated for HYDRUS-3D simulations (a) with coordinates for 100 
output locations (b). 
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Figure 5-20 Probability distribution of the decade precipitation (a) and cumulative 
precipitation for decades with 25%, 50% and 75% probabilities (b). 
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5.2.2  Initial and Boundary Conditions 

In this part of our study the ARS study team examined the subsurface transport of the tracer 
leaked from the irrigated area. The assumed initial spatial distribution of Cl- was found to affect the 
breakthrough curves calculated using HYDRUS-3D. The ARS study team observed that relatively 
high initial Cl- concentrations of wells 9, 11 and 12 (Fig. 5-2) decreased partly due to inflow of low 
concentrated Cl- solution from locations wells 5 and 3. To eliminate the influence of the initial 
concentration on the tracer distribution, and to better follow the subsurface migration of the 
applied chemical, the initial tracer concentration was set equal to zero across the simulation 
domain. A third-type (Cauchy) boundary condition was used along the soil surface to simulate 
solute transport. The tracer concentrations of precipitation and groundwater along the lateral 
boundaries were set to zero. 

As initial condition for the water flow simulations the ARS study team used equilibrium pressure 
head distributions. These distributions were assigned to four groundwater depth scenarios defined 
later in section 5.2.3. Ten-day averaged atmospheric boundary conditions were used at the soil 
surface. Evapotranspiration rates were computed using the Penman-Monteith method as 
documented by FAO (Allen et al., 1998) for weather data of year 2006 and repeated for each 
simulation year. Based on the flow velocities obtained in section 5.1.1, a 10-year simulation period 
was considered to be sufficient for the tracer to arrive at the eastern boundary of the simulation 
domain. The ARS study team discarded extra days in leap years, which allowed us to fix the total 
simulation period at 3650 days. Three precipitation scenarios were considered in the 10-year 
HYDRUS-3D simulations. To generate these scenarios, the precipitation data collected in 
Beltsville from 1949 to 2006 were summed for each 10 consecutive years and ranked in an 
increasing order (Fig. 5-20a). Ten-year precipitation rates at probability levels of 25%, 50% and 
75% were subsequently selected for HYDRUS-3D simulations. The selected decades were 1992-
2001, 1984-1993 and 1976-1985, with total precipitation rates of 9527 mm, 10,339 mm and 
10,659 mm for the 25%, 50% and 75% probabilities, respectively. Since the interdecadal 
distributions of precipitation were relatively uniform (Fig 5-20b), the ARS study team did not 
expect that temporal variability in the upper boundary conditions would affect results of the 10-
year HYDRUS-3D calculations. Daily variability in rainfall values affected the numerical stability of 
HYDRUS-3D simulations, which could be avoided by using 10-day averaged precipitation values 
in our simulations. Total decadal evapotranspiration was 4237 mm, less than half of the 
precipitation. A zero flux boundary condition was imposed along the bottom of the domain. 

5.2.3  Simulation Scenarios 

To model the accidental release of a tracer from a single holding tank outside of a containment 
structure, the ARS study team considered four scenarios. In the first two scenarios the release 
points were set on the soil surface at locations of wells 3 and 4 within the irrigated plot. The 
accidental release of a 1000 ppm spill was assumed to occur at rate of 0.2 m day-1 through a 1-m2 
area within the first 10 days of the simulation. This translates to a total of 2 kg of tracer being 
released as a pulse with 2 m3 of water. The release points of the other two scenarios were in 
groundwater at depth of 2.3 m. The tracer fluxed for the third and fourth scenarios hence occurred 
in the saturated zone. The ARS study team expected much faster solute transport rates when 
released in the saturated zone as compared to the partly unsaturated conditions considered for 
the first two scenarios.  

Four different scenarios were developed also for the lateral boundary conditions. These conditions 
were set as equilibrium pressure head profiles for spatially variable, but constant in time, 
groundwater depths. The main reason for assuming a constant in time boundary condition 
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was the considerable complexity of the shape at the lateral boundary of the simulation domain. 
Whereas technically HYDRUS-3D allows the implementation of time-variable pressure head 
boundary conditions, the transition between the physical boundaries of the simulation domain and 
temporally changing variable groundwater levels creates a problem of conjunction and often 
results in abrupt changes in the boundary conditions which hamper rapid convergence of the slow 
that numerical solution of the Richards equation. Another reason for using different boundary 
scenarios is uncertainty due to limited information about the spatial and temporal variability of 
groundwater levels. Long-term hydrological data are not available at many newly designed NRC 
sites.  For these cases, indirect methods are recommended for determining annual average 
conditions (Interim SRP 2.412 and 2.4.13). Because of uncertainty in the indirect methods, it is 
necessary in these cases to conduct a consequence analysis assuming conservative hydrologic 
conditions and parameter estimates.  The groundwater depths measured in the wells at field B in 
2006-2007 (Fig. 3-11) and 2007-2008 (Fig. 3-27) provided general information about the spatial 
and temporal variability of the water table in the flow domain. The ARS study team realized that 
the 10-year variability in groundwater levels may differ from the observed values.  For this reason 
the ARS study team generated several scenarios with different slopes and depths to groundwater 
for HYDRUS-3D simulations. These were: (1) a slope in x direction (SlopeX) of 1.6%, a slope in 
the y direction (SlopeY) of 1%, and a groundwater level (GWD) of 5.5 m relative to the bottom of 
the simulation domain in Fig. 5-19, (2) the same slopes with GWD=6.0 m; (3) SlopeX=1.6%, 
SlopeY=0.4%,and  GWD=5.5 m; and (4) SlopeX=1.6%, SlopeY=0.4%, GWD=6.0 m. Note that 
GWD is the level above the zero vertical coordinate, which served as the bottom boundary of the 
flow domain. These GWD levels corresponded to groundwater depths varying from 3.5 m to 1.5 m 
for GWD=5.5 m, and from 3.0 m to 1 m for GWD=6.0 m in the western and eastern parts of the 
domain, respectively. These levels of the groundwater were also used for the initial pressure head 
distributions in the domain as was described in section 5.2.2. 

Overall, 48 different scenarios were simulated with HYDRUS-3D, comprising the four release 
scenarios, four groundwater scenarios and three precipitation scenarios. These scenarios 
provided input for the model abstraction process described in the following sections. 

5.2.4  Performance Indicators 

The LSA was performed using tracer concentrations representing the entire simulation period. In 
practice different performance indicators can be used for decision making based on the model 
results. The American National Standard for evaluation of subsurface radionuclide transport at 
commercial nuclear power plants (ANSI/ANS-2.17-2010) recommends using radionuclide 
concentrations (either volume- or flux averaged), mass fluxes, travel times and predicted doses as 
performance indicators. For these reasons the ARS study team used in this study simulated tracer 
concentrations and fluxes to characterize chemical transport from the assumed accidental release 
locations. To characterize the direction and velocity of contaminant migration the ARS study team 
used the simulated peak concentration (Cpeak) and times to peak concentration (Tpeak) at the 
observation nodes and along transects at different distances from the release points. The spatial 
distributions of Tpeak were used to estimate the velocities and directions of the contaminant plume 
for all simulation scenarios. 
 
To evaluate the accuracy of each model abstraction technique, several efficiency criteria were 
used in this study. Model efficiency criteria were defined by Beven (2001) as mathematical 
measures of how well a model simulation fits observations. In hydrological modeling, efficiency 
criteria are typically based on the ratio between the prediction error and variability in the 
observations. In spite of apparent simplicity, there is no general agreement on how to use the  
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error term and the observation variability. The simplest way to compute model efficiency was 
proposed by Nash and Sutcliffe (1970). They introduced the efficiency criterion E as the deviation 
from one of the absolute squared differences between the predicted and observed values, 
normalized by the variance of the observed values: 

𝐸𝑁𝑆 = 1 −
∑ (Oi−Pi)

2

∑(Oi-O̅)2 (5-8) 

where Oi and Pi are the measured and predicted values.  Values of the efficiency index E are 
within the range from 0 to -∞ and increase in absolute value when the deviations between 
predicted and measured values increase. A deficiency of this criterion is in its sensitivity to large 
measured or predicted values, since squared values are used in both the numerator and 
denominator. 

Another efficiency criterion is the index of agreement d proposed by Willmot (1981).  This criterion 
is defined as the ratio between the mean square error and the potential error as follows 

𝑑𝑊 = 1 −
∑ (Oi-Pi)

2

∑ (|Pi-O̅|+|Oi-O̅|)
2 (5-9) 

A third model efficiency index used in this study to evaluate model abstraction accuracy is the 
squared correlation coefficient: 

𝑟2 = (
∑(Oi-O̅)(Pi-P)̅̅ ̅

√∑ (Oi-O̅)
2√∑ (Pi-P̅)

2
)

2

(5-10) 

The power of the above efficiency indices for hydrological model assessment were examined by 
Krause et al. (2005). These authors showed that selection and use of specific efficiency criteria, 
as well as interpretation of the results, can be a challenge since each criterion places different 
emphasis on different types of simulated and observed results. The ARS study team believes that 
the use of multiple criteria for the abstracted models will reduce uncertainty in the result 
interpretation.  Therefore all three criteria were applied to the performance indicators discussed 
earlier in this section.  

To assess the performance of the selected indicators 48 HYDRUS-3D runs were carried out for 
the scenarios defined in section 5.2.3 using parameters obtained in the HYDRUS-3D calibration. 
Required hydraulic parameters for the new materials beyond the calibration domain were 
estimated using the ROSETTA software (Table 5-1). These simulations will be referred to 
hereafter as “calibrated” to distinguish them from the abstraction simulations. Results of the 
simulations for the three weather, two source and two groundwater scenarios are shown in Figs. 
5-21 through Fig. 5-23. The ARS study team selected these 12 cases as the most representative 
of the 48 HYDRUS-3D simulations. Results showed that the shape of the contaminant plume as 
represented by the peak concentration was influenced most by the location of the release point. 
Overall, the release from locations 1 and 3 produced considerably wider plumes with larger tracer 
concentrations as compared to locations 2 and 4 (only locations 1 and 2 are shown in Fig. 5-21). 
Weather scenarios and the slope of groundwater had minor effects on the plume shape and the 
concentrations. Tracer concentrations generally decreased exponentially with distance from the 
release point (Fig. 5-21). This decrease was more pronounced for releases from locations 2 and 4 
rather than from locations 1 and 3, and more pronounced for a groundwater level of 5.5 m as 
compared to the 6.0-m scenario. 
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The location of the release points also influenced the tracer peak concentration travel time, Tpeak. 
Spatial patterns of Tpeak were different for release locations 1 and 2, and were affected by 
groundwater depth scenario for location 1 (Fig. 5-22). The shapes of Tpeak distributions create an 
illusion of having preferential tracer pathways in x-direction from the source at locations 1 and 
location 2 for the 5.5-m groundwater level scenario. However, these pathways significantly differ 
from zones with high Cpeak values shown in Fig. 5-21 and no correlation was found between the 
simulated Tpeak and Cpeak values. Differences between the simulated Tpeak and Cpeak spatial 
patterns can be explained by flow diversity. Due to high heterogeneity of the simulation domain, 
the tracer arrived in many instances at the nodes within a short period of time, but in small 
concentrations. Soon after arrival, the tracer may become diluted by inflow from the upslope area 
and hence may not contribute further to plume propagation. The highly concentrated flux at other 
locations was moving slower than the less concentrated flux, which caused the Tpeak values to 
become smaller in the main flow path as to the branches. The Tpeak and Cpeak values were 
derived from the tracer breakthrough curves at each observation node and did not characterize 
the total mass of the transferred contaminant. Since the spatial pattern of mass is the only true 
measure of the migrating contaminant plume, the ARS study team supplemented the Tpeak and 
Cpeak analysis with the analysis of the contaminant mass distribution. 
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Standard HYDRUS-3D simulation results include time series of the tracer concentration C(t) and 
nodal water fluxes q(t). The ARS study team used these values to compute the tracer fluxes QC 
at the 100 output nodes according to Eq. 5-7. The flux values, shown in Fig. 5-23, represent the 
total tracer masses passing through a 1 m2 area during the simulations. The QC patterns closely 
resemble the Tpeak and especially the Cpeak patterns. The total tracer mass generally 
decreased more or less exponentially within the first 30-m travel distance from the release point.  
This shows that only a fraction of the total tracer mass passed through the observation wells and 
that this fraction decreased with distance due to the plume spreading beyond the monitoring 
network. Beyond the 30-m travel distance the total tracer mass remained somewhat constant. 
Similar to the Cpeak patterns, the QC spatial distribution was wider for the release from locations 
1 and 3 compared to locations 2 and 4, with considerably more mass being transported from 
locations 1 and 3 (Figs. 5-21 and 5-23). The major effects of source location and groundwater 
level on tracer transport, and the relatively minor effects of groundwater slope and the weather 
scenario, can be seen in Fig. 5-23. Different release locations produced different spatial 
distributions of the performance indicators, with the distributions being further altered by the flow 
conditions associated with the groundwater level. 
 
Overall, both release location and lateral boundary condition were major factors affecting the 
contaminant transport process in our study. The largest tracer concentrations and fluxes were 
observed when the tracer was released at locations 1 and 3 into shallow groundwater. Among the 
performance indicators, the total tracer flux QC was the most accurate, and the times to peak 
concentration Tpeak the least accurate, for assessing contaminant transport in this study. The 
ARS study team realized that the results may be site- and scenario-specific, and that further 
research may be needed to investigate the power of the performance indicators for different 
contaminant transport condition.
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5.2.5  Abstraction of Parameter Determination: Using Pedotransfer Functions 

The first model abstraction technique implemented in this study was abstraction of the soil hydraulic 
parameters. The purpose of this abstraction was to skip the time-consuming and computationally 
demanding model calibration process, but instead to work with estimated hydraulic parameters. 
The ARS study team showed earlier in section 4.2 that the calibrated parameters differed from the 
pedotransfer function (PTF) derived estimates. However, the obtained results could be scale and 
scenario-specific. The HYDRUS-3D calibration was based on application of the Cl- tracer to a 
relatively large plot (10x10m), followed by measurements in the vicinity (7 m) of the application area. 
A steady-state infiltration regime was artificially created and maintained within the application area. 
Water fluxes in reality are rarely at steady-state due to irregular rainfall events and groundwater 
fluctuations such that steady-state regimes may persist only for short periods of time. The ARS 
study team assumed that the model will be less sensitive to the hydraulic properties and boundary 
conditions if the release occurs over a small area (1 m2), and if the tracer is transported over a long 
distance with unsteady water flow.  The ARS study team expected to see a scale and time effect 
on propagation of the contaminant plume caused by tracer dilution and dispersion.  

To test the parameter abstraction technique, 48 HYDRUS-3D runs were carried out with 
scenarios defined in section 5.2.3, water retention parameters used in the calibrated model, and 
saturated hydraulic conductivities of the entire flow domain estimated using the PTFs of Rawls et 
al. (1998). The estimated Ks values were 4.37, 2.95, 0.31, 1.34, 0.07, 0.02, 0.15, 0.15, 0.12, 0.12, 
0.001 and 0.35 m day-1 for S, LS, SL1, SL2, SCL, CL, L1, L2, SiCL1, SiCL2, SiCL3 and SiL, 
respectively. The Ks value of the SiCL3 material was not altered in this abstraction since SiCL3 
served as a flow restrictive layer at the bottom of the profile. Thus only the saturated hydraulic 
conductivity was abstracted in this section, while soil water retention parameters were kept 
unchanged in all simulations. The performance indicators Cpeak, Tpeak, and QC were derived from 
the simulated concentration time series at 100 output nodes and along 11 transects passing 
through the observation nodes and crossing the simulation domain in the y-direction. 

Iso-contours of the peak concentration, the time to peak concentration and the total solute flux 
over the 3650-day simulation for the three weather, two groundwater and two source location 
scenarios are shown in Fig. 5-24 - Fig. 5-26. Substituting the calibrated Ks values with values 
determined using the PTF estimates of Rawls et al. (1998) affected the spatial distributions of 
Cpeak, Tpeak and QC in the transport domain. Values of Cpeak for the abstracted model were in 
general larger than those for the calibrated model, with the shapes of the plume being more 
elongated in the x-direction. These changes can be attributed to the almost threefold increase in 
Ks of the loamy sand material at depths of 1.77 m and 2.35 m (Fig.5-18), which must have 
facilitated tracer transport. Increased Ks values noticeably reduced the tracer arrival times (Fig. 5-
22 and Fig. 5-25). Tpeak values computed were from 1.1 to 1.9 times smaller for the abstracted 
model compared to the calibrated model. The flow acceleration was not proportional to the 
increase in Ks, most likely due to a change in the pressure head gradient between the release 
points and the lateral boundaries of the simulation domain. The pressure heads were set constant 
in time along the lateral boundaries, while in the central part of the domain the pressure heads 
changed over time and were controlled mostly by the Ks values of the materials above the flow 
restrictive layer. Small values of Ks in the calibrated model created conditions for temporary 
increases in the groundwater level during periods with high precipitation, leading to larger 
hydraulic gradients between the central and outlying parts of the domain. Since the flux is a 
product of the conductivity and pressure gradient, an increase in Ks  hence is partly compensated 
for by a lower pressure gradient in the abstracted model.
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Alteration of the soil hydraulic properties affected the sensitivity of the model to the upper 
boundary conditions. The spatial patterns of the performance indicators were different for years 
with 25%, 50% and 75% precipitation probabilities. The Cpeak and QC spatial distributions were 
narrower for the 50% probability in the source 1 release scenarios compared to 25% and 75% 
probability weather scenarios (Fig. 5-24 and Fig. 5-26).  A possible reason for this is the inter-
decadal precipitation distribution (Fig. 5-20). 

Larger Cpeak values for the abstracted model translated into the larger QC values (Fig. 5-23 and 
Fig. 5-26). The QC values computed for the 11 transects were from 2 to 10 times larger for the 
simulations with abstracted parameters than with the calibrated model.  The differences were 
found to increase with distance from the source of the release. The changes were relatively 
dramatic due to the strong nonlinearity of the advection-dispersion equation used to describe 
subsurface contaminant transport in this study. 

Values of the performance indicators obtained with HYDRUS-3D using the calibrated and 
abstracted Ks values were used to assess the applicability of the parameter abstraction technique. 
The ARS study teamcomputed the Nash-Sutliffe and Willmot efficiency criteria and the coefficients 
of determination using Eqs. (5-8) – (5-10). The performance indicators Cpeak, Tpeak and QC as 
obtained with the calibrated and abstracted parameters served as measured (O) and predicted 
(P) values in these equations. Values of the efficiency criteria computed for 100 output nodes are 
shown in Fig. 5-27 a,c,e. Generally, values of the efficiency indices were highest for Cpeak and 
lowest for Tpeak and/or QC, indicating better performance of the abstracted model in predicting 
peak concentrations as compared to peak times and total fluxes. The E values of QC computed 
for all scenarios, and of Tpeak for most scenarios were negative (Fig. 5-27a), which indicates that 
the mean value of the performance indicator would be a better predictor than the simulated 
values. Values of the index d and coefficients of determination for Cpeak ranged from 0.74 to 0.99 
and from 0.39 to 0.97, respectively (Fig.5-27 c,e), reflecting a potentially good agreement between 
the abstracted and calibrated models. High values of the computed indices do not always provide 
reliable estimate of model accuracy since they are not sensitive to systematic model over- and 
under-predictions.  To test the abstraction results for the presence of systematic errors, the 
coefficients of linear regression P = a + bO were computed. The computed values of the intercept 
(a) and slope (b) ranged from -0.03 to 0.69 and from 0.67 to 1.79, respectively indicating the 
presence of  systematic errors and poor correspondence between the abstracted and calibrated 
models. Systematic errors were also obtained for predicted Tpeak and QC values, indicating failure 
of the abstracted model to reproduce the calibrated model. 

Values of the efficiency criteria of the performance indicators computed for the transects differed 
from those computed for the 100 observation nodes. Generally better agreement was found 
between the calibrated and abstracted simulations when the Cpeak and QC performance indicators 
were used for assessing the accuracy of the abstracted model as compared to the Tpeak indicators. 
The E values computed for all scenarios for Tpeak and approximately half of the scenarios for the 
QC indicators were again negative (Fig. 5-27b), indicating poor performance of the abstracted 
model. The large negative E values computed for QC  at the observation nodes became smaller 
along the transects, while small negative E values computed for Tpeak at the nodes became 
larger when computed for the transects (Fig. 5-27a and Fig.5-27b). This occurred due to bias of 
the Nash-Sutcliffe criterion towards large values. The tracer did not arrive at some locations or 
could arrive only in small amounts at distant nodes 5 to 10 years after the release event. Values of 
Tpeak for those locations were set to 3650 days or were close to this number. In the abstracted 
model the total number of nodes with large Tpeak values was less as compared



 
 

 

5-49 

 

F
ig

u
re

 5
-2

7
 

E
ff

ic
ie

n
c

y
 i
n

d
ic

e
s
 o

f 
th

e
 p

a
ra

m
e
te

r 
d

e
te

rm
in

a
ti

o
n

 a
b

s
tr

a
c
ti

o
n

. 



5-50 

to the calibrated model (Figs. 5-22 and 5-25). The difference (P-O) in the numerator of Eq. (5-2) 
was therefore significantly larger than the difference (O-) in the denominator, thus producing high 
negative E values. The Tpeak values for the transects were significantly smaller than at the 
observation nodes for both the calibrated and abstracted models since the tracer had passed 
through all 11 transects within the 10-year simulation period. Smaller Tpeak values produced 
smaller values of the E efficiency criterion shown in Fig. 5-27b.  

Similar to results obtained for the 100 observation nodes, values of the Willmot efficiency criteria 
and coefficients of determination for Cpeak were reasonably high along all transects, thus 
suggesting that the abstracted model adequately reproduced the original model (Fig. 5-27b,d,f). 
For instance, d values ranged from 0.805 to 0.995 and values of R2 were statistically significant 
(P<0.05) and ranged from 0.733 to 0.996. To confirm these statistics the ARS study team tested 
the results for the presence of systematic errors. Computed slope and intercept values varied 
from 0.76 to 1.86 and from 0.23 to 2.79, respectively, indicating the presence of a systematic error 
and poor performance of the abstracted model. 

Overall, the three performance indicators used in this study pointed to inappropriateness of the 
model parameter abstraction that would use PTF without the appropriate attention to scale effects. 
The high sensitivity of the HYDRUS-3D modeling results to the saturated hydraulic conductivity 
resulted in significant changes in flow velocities and concentrations, as well as in total mass fluxes 
of the tracer transported from the release points assuming different weather, groundwater and 
release scenarios. These changes were traced using the Cpeak , Tpeak and QC performance 
indicators and assessed using the Nash-Sutcliffe and Willmot efficiency criteria and the 
coefficients of determination for 100 output nodes and 11 transects. The Tpeak and QC 
performance indicators were better discriminators between the calibrated and abstracted models. 
Both efficiency criteria and the coefficients of determination failed to discriminate the models in 
terms of the Cpeak performance indicator due to insensitivity of these statistics to the systematic 
error. 

5.2.6  Abstraction of Profile Aggregation 

The second model abstraction technique implemented in this study was profile aggregation. A 
motivation for this abstraction was dominance of the SL2 material in the simulation domain. To 
assess the effect of soil profile aggregation on the simulation results, the ARS study team converted 
the heterogeneous profile of the upper sub-layer into an equivalent homogeneous medium having 
SL2 soil texture. Soil properties below the flow restrictive layer were kept unchanged. The transport 
parameters for both layers were taken from the calibrated HYDRUS-3D model. A total of 48 
scenarios were run again as described in section 5.2.5. Selected simulation results are presented 
in Figs. 5-28 - 5-30 

Profile aggregation was found to have a major effect on tracer transport. Introducing a 
homogeneous SL2 profile produced changes in the spatial distribution of the performance 
indicators. The tracer flux turned approximately 30° to the South, while the shape of the Cpeak 
distribution changed from infuser- to diffuser-like.  This caused the narrowest part of the tracer 
plume to occur in the vicinity of the release point (Fig. 5-28). The abstraction also affected 
concentrations and flow velocities. Generally, the peak concentrations were higher and the travel 
times towards the output nodes were shorter for the abstracted model as compared to the calibrated 
model (Fig. 5-28 and Fig. 5-29). The plume spread even faster than in simulations with parameter 
abstraction discussed in the previous section.  The main reason for this was the relatively high 
saturated hydraulic conductivity (Ks=2.5 m day-1) of material SL2, which provided conditions for fast 
flow in the entire simulation domain.  
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Based on visual comparisons of the spatial patterns of the three performance indicators obtained 
with the abstracted (Fig. 5-28 - Fig. 5-30) and calibrated (Fig. 5-21 - Fig. 5-23) models, one should 
not expect good agreement between the two models. Indeed the values of the efficiency criteria 
for profile aggregation (Fig. 5-31) were smaller than those computed for parameter abstraction 
(Fig. 5-27). Tests for the presence of systematic errors are therefore, not really needed to 
conclude inadequacy of the model assuming a more homogeneous profile as compared to the 
calibrated heterogeneous profile model. 

5.2.7  Abstraction by Ignoring Unsaturated Zone 

The third abstraction technique implemented in this study involved ignoring the unsaturated zone. 
To do this, the tracer release sources were moved from the soil surface to the saturated zone at 
2.1 m depth.  In general terms, unsaturated flow in the absence of preferential transport should 
retard water and chemical fluxes due to the nonlinear decrease in the hydraulic conductivity with 
decreasing of water content, and the associated long residence time in the vadose zone. 
Therefore, the ARS study team expected more rapid transport for the abstracted model compared 
to the original model. The 48 scenarios were run with parameters obtained in the HYDRUS-3D 
calibration. Results of the simulations are shown in Fig. 5-32 – Fig. 5-35. Surprisingly, ignoring the 
unsaturated zone did not lead to noticeable changes in the performance indicators. Values of 
Cpeak, Tpeak and QC obtained while ignoring of the unsaturated zone varied within the same ranges 
as the performance indicators in the original model. The plume shapes in Fig. 5-32 - Fig. 5-34 
closely resembled the shapes obtained in simulations with the calibrated parameters (Fig. 5-21 - 
Fig. 5-23). The similarities between two sets of simulations are quite remarkable, and were 
confirmed by the efficiency criteria. Values of the Nash and Sutcliffe efficiency coefficients ranged 
from 0.948 to 0.992, from 0.612 to 0.999, and from 0.956 to 0.994 for the peak concentration, time 
to peak concentration, and the total flux, respectively (Fig. 5-35). No negative values were 
obtained for this criterion. The Willmot efficiency coefficients and coefficients of determination 
were both close to one, which also indicates good agreement between the abstracted and original 
models. 
 
Values of the efficiency indices for both the observation nodes and the transects were greater for 
Cpeak and QC as compared to Tpeak for several scenarios.  For this reason the ARS study team 
tested all performance indicators for the presence or absence of systematic errors. The tests 
showed the presence of systematic errors only for the Tpeak indicator at probability level P<0.01. 
This led us to conclude that there was a delay in the tracer transport in some scenarios and that 
abstraction by ignoring the unsaturated zone is applicable if the key performance indicators are 
the peak concentration and the total contaminant flux passing through a transect or observation 
well. Model simplification by ignoring the unsaturated zone seemed possible in our study because 
of the presence of perched water and relatively shallow water tables.  However, eliminating the 
unsaturated zone should be done with caution at NRC sites having thicker unsaturated zones. 
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5.2.8  Abstraction of Parameter Determination: Pedotransfer Functions and Hydraulic 
Conductivity Scaling 

Systematic model abstraction can include the sequential or concurrent application of two or more 
categories of model abstraction. The ARS study team implemented this using pedotransfer 
functions and scaling, thus using two categories of parameter estimation abstraction (Fig. 2-1). 
Simulations were carried out for the smaller flow domain used for model calibration (Section 4.2). 
This enabled us to compare results of the parameter estimation abstraction with the model 
calibration results. 

Scaling abstraction strives to provide compatibility of the parameter estimation scale with the 
scale of model resolution. Neuman et al. (2003) suggested that this can be done by upscaling 
over computational grid cells.  Accordingly, scaling abstraction for parameter estimation was 
implemented by upscaling PTF-estimated hydraulic conductivity values to the computational grid 
cells. A relatively minor effect of scale on soil water retention was observed (Pachepsky et al., 
2001) for soils having similar textures as those in this study,  For this reason the ARS study team 
applied upscaling to the saturated hydraulic conductivity, Ks. 

Schulze-Makuch et al. (1999) suggested using a power-law relationship to correlate the 
increase in Ks with the volume Vm of tested aquifer material as follows 

𝐾𝑆 = 𝐴𝑉𝑠
𝐵  (5.11) 

in which A and B are empirical parameters. The ARS study team reviewed the literature of data 
sources used by Rawls et al. (1998) to develop pedotransfer functions to estimate Ks as a function 
of scale and volume.  The ARS study team noted a great variety of shapes of aquifer material. 
The shapes were also quite different from the shapes of computational cells in our numerical 
study. Direct application of the above volume-based scaling (5.11) was hence not possible. For 
this reason the ARS study team replaced the volume of affected media by the characteristic 
length of the medium and calculated the scaled hydraulic conductivity based on reference KsR 
values estimated using the PTFs of Rawls et al. (1998) using the following relationship  

𝐾𝑠
∗ = 𝐾𝑠𝑅 (

𝐿𝑔

𝐿𝑠
)

𝑏
 (5.12) 

where Lg is characteristic length of the numerical grid used to solve flow and transport problem, Ls 
represents the size of the soil cores used to determine KsR, and b is an exponent.  

Substantial uncertainty exists in Eq. (5.12) stemming from variations in the lengths of samples 
used to measure Ks in the Rawls et al. (1998) database. The lengths mostly varied from 0.05 to 
0.2 m. The value of the exponent b was also uncertain; Schulze-Makuch et al. (1999) 
encountered values of B in Eq. (5-11) from 0.40 to 0.95 for homogeneous porous media, from 
0.62 to 0.96 for heterogeneous dual- porosity media, and from 0.82 to 1.13 in heterogeneous, 
fractured media. The ARS study team assumed six abstraction scenarios (Table 5.2) based on a 
single value for KsR for each soil material, one value (5 m) for Lg, two values (0.05 and 0.2 m) for 
Ls, and three values (0.3, 0.5 and 0.7) for b. The Ks value in the SiCL3 material was not altered in 
this abstraction since SiCL3 served as the flow restrictive layer at the bottom of the flow domain. 
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Results of the simulations are presented in Fig. 5-36 as plots of simulated versus observed 
concentrations. The concurrent use of the PTF abstraction and scaling abstraction gave results 
that were very similar to those of the calibration. Visual inspection of Fig. 5-36 suggests that 
scaling cases A1, A4 and A5 produced relationships between the simulated and observed 
concentrations that were quite similar to the calibration (Fig. 5-36, CAL). The linear trend lines in 
Fig. 5-36 represent the correspondence between simulated and observed concentrations 

              Cobs=aCsim                                                                                                               (5.13) 
 
where a is the slope of linear fit. This slope differed most significantly from unity for scaling 
scenarios A2, A3, and A6. 
 
Figure 5-37 shows values of the determination coefficient (R2) of the regressions and values of the 
slopes a in (5.13). Values of R2 for scenarios A1, A4 and A5 were relatively close to the calibration 
scenario, with slopes closest to 1. The ARS study team concluded that the Ks values of Rawls et 
al. (1998) must be scaled using (Lg/Ls)

b from the soil core size for which hydraulic conductivity was 
determined to the representative numerical grid size, with the exponent b varying between 0.3 and 
0.5 for small to large soil core sizes. 
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Figure 5-36 Observed and simulated chloride concentrations in locations 5 through 9 with 
saturated hydraulic conductivity values obtained with different 
parameterization methods: CAL – manual calibration, PTF - using 
pedotransfer functions of Rawls et al. (1998), A1 through A6, PTF-estimated 
valued scaled to the size of the computational cells. 
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Figure 5-37 Root-mean-square errors (RMSE) and slopes of regressions ‘ simulated vs. 
observed chloride concentrations’ in locations 5 through 9 with saturated 
hydraulic conductivity values obtained with different parameterization 
methods: CAL – manual calibration, PTF - using pedotransfer functions of 
Rawls et al. (1998), A1 through A6 -  PTF-estimated valued scaled to the size of 
the computational cells. Regressions were computed with the intercept set to 
zero.
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6    APPLICATIONS OF MODEL ABSTRACTION IN 
MONITORING NETWORK DESIGN 

Models developed using abstractions based on model structure will have different underlying 
conceptual representations. Since a monitoring network is always designed based on a 
conceptual model, designs may be different for different abstracted models.  As evidence is 
growing that conceptually different models can provide similar accuracy, developments in 
environmental modeling technologies is moving in two directions: (a) multimodeling in which 
several models are used simultaneously, in particular using ensembles of models, and (b) ranking 
models and selecting the most plausible model or models. Systematic model abstraction enables 
one to provide sets of models and ensembles of models for both of these modeling strategies. 

Integrating model abstraction in monitoring network design follows the same two strategies.  
Monitoring network design can either jointly use designs resulting from several conceptual 
models, or develop a design to discriminate models with the goal of selecting the more plausible 
one. This section describes two methods that the ARS study team developed to implement both 
strategies. 

6.1  Selecting Monitoring Locations to Decrease Prediction Uncertainty 

6.1.1  A Linear Statistical Inference Method to Assess Data Importance to Model 
Predictions, Sensitivity and Model Abstraction 

The purpose of conducting sensitivity analyses for model calibration is to assess the value of the 
data collected from monitoring wells in terms of their usefulness for model calibration and to 
identify new locations that could improve the reliability of the calibration. Generally three- 
dimensional models require spatially distributed parameters that characterize transport properties 
of the materials composing the simulation domain. Ideally, the monitoring locations should be 
selected so as to provide sufficient and reliable information for determining the hydraulic and 
transport parameters of each soil material. To comply with these requirements, data collected at 
specific locations must vary temporally within a range that corresponds to the sensitivity of the 
model to the transport properties of the selected material, and have minimum interference with the 
parameters of other materials. Relatively small temporal variability typically can lead to high 
parameter uncertainty, while the interference produces correlation between the parameters of 
different soil materials. The best possible information therefore could be obtained from a dense 
monitoring network covering areas close to the tracer application point as well as wells and depths 
embracing all possible soil materials within the simulation domain. Unfortunately this implies a 
spatial density of the monitoring network that is impractical.  Monitoring data are normally 
collected from a limited number of locations with soil properties generally not well known at the 
time of data collection. In this case a sensitivity analysis can be used to assess the value of the 
collected data for model calibration and to identify new locations that are most likely to produce 
information necessary for improving the calibration process.   
To evaluate the importance of observations for improving model predictions, Draper and Smith 
(1981), and Hill (1998) proposed the use of a linear statistical inference equation for calculating 
prediction standard deviations: 

𝑆𝑌𝑙
′ = [𝑆2(𝐴𝑌 (𝐴𝑇𝜔𝐴)

−1
𝐴𝑌

𝑇)𝑙𝑙]
1/2

(6-1) 

where 
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𝑌𝑙
′ is the lth predicted value;

𝑆𝑌𝑙
′ is the standard deviation of 𝑌𝑙

′;

S2 is the calculated error variance from the model calibration; 
AY is the sensitivities of the predictions with respect to the model parameters; 
A is the matrix of sensitivities of the simulated equivalents of the observations (𝑌𝑖

′) with respect

to the model parameters; 
T indicates the transpose of the matrix; 

(𝐴𝑇𝑤𝐴)-1is a symmetric square linear approximation of the parameter variance-covariance matrix; 

Xj is the jth parameter; ω is the matrix of weights on observations used in the calibration. 

Equation (6-1) was used to evaluate the importance of existing hydraulic-head observation 
locations to advective-transport predictions for the Death Valley regional flow system in California 
and Nevada (Hill et al., 2001) for the stationary flow regime. Elements of the matrix of sensitivities 
AY  were calculated as derivatives: 

𝐴𝑌 =
𝜕𝑌𝑙

′

𝜕𝑋𝑗
 (6-2) 

Standard deviations describing the precision of the water level measurements were used to 
calculate the weights in ω in that study. 

To evaluate the effect of omitting an observation location on the prediction uncertainty, Hill et al. 
(2001) used a modified version of equation (6-1) as follows: 

𝑆𝑌𝑙(−𝑖)
′ = [𝑆2(𝐴𝑌 (𝐴(−𝑖)

𝑇 𝑤(−𝑖)𝐴(−𝑖))
−1

𝐴𝑌
𝑇)𝑙𝑙]

1

2
(6-3) 

in which 𝑆𝑌𝑙(−𝑖)
′ is the standard deviation of the l simulated value, 𝑌𝑙

′, calculated without the ith

observation location; (𝐴(−𝑖)
𝑇 𝑤(−𝑖)𝐴(−𝑖))

−1
 is a symmetric, square parameter variance-covariance

matrix calculated with the information for the ith observation omitted; 
AY(-i) is the matrix of sensitivities of the simulated equivalents of the observations (𝑌𝑖

′) with respect

to the model parameters, with the sensitivities for the ith observation omitted; 
ω(-i) is the diagonal matrix of weights on observations used in the calibration, with the value 
for the ith observation omitted. 

The relative importance of an observation for a prediction was defined as the percent increase in 
uncertainty caused by omitting an observation, and was termed the Observation-Prediction  
(OPR-) statistic:  

𝑂𝑃𝑅− = [(𝑆𝑌𝑙(−𝑖)
′ 𝑆𝑌𝑙

′⁄ ) − 1.0] × 100 (6-4) 

Similarly to equation (6-4) the relative importance of a new observation for a prediction can be 
calculated as: 

𝑂𝑃𝑅+ = [(𝑆𝑌𝑙(+𝑖)
′ 𝑆𝑌𝑙

′⁄ ) − 1.0] × 100 (6-5) 

where 𝑆𝑌𝑙(+𝑖)
′ is the standard deviation of the l simulated value, 𝑌𝑙

′, calculated with the ith

observation location added; 
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For the case of adding observations, 𝑆𝑌𝑙(+𝑖)
′  is calculated as: 

𝑆𝑌𝑙(+𝑖)
′ = [𝑆2(𝐴𝑌 (𝐴(+𝑖)

𝑇 𝑤(+𝑖)𝐴(+𝑖))
−1

𝐴𝑌
𝑇)𝑙𝑙]

1

2
(6-6) 

where index (+i) identifies the added location. 

The applicability of the linear statistic method (equations (6-1) through (6-6)) to evaluation of the 
importance of the existing and new water head and flow observations for a hypothetical 
groundwater flow system was demonstrated in Tonkin et al. (2007).  
The applicability of the linear statistic method given by equations (6-1) through (6-6) to evaluation 
of the importance of existing and new pressure head and flow observations for a hypothetical 
groundwater flow system was demonstrated in Tonkin et al. (2007). The approach could not be 
literally transferred to our work since it assumes flow stationarity, which is not the case in our 
study. Therefore, the ARS team used the first-order sensitivity coefficient (Eq. 6-3) as a substitute 
for the parametric sensitivity (6-2). Values of the first-order sensitivity coefficient were averaged 
over the observation period. 

6.1.2  Observation-Prediction Statistics Application 

The Observation-Prediction statistics (OPR) method described in section 6.1.1 was implemented 
to evaluate the importance of observations collected in the monitoring wells during the lateral flow 
experiment for the HYDRUS-3D calibration. HYDRUS-3D was run with the parameters and 
boundary conditions obtained with the model calibration. To evaluate the importance of the 
observation locations for the HYDRUS-3D calibration, and specifically for saturated hydraulic 
conductivity, values of Ks of 8 soil materials within the simulation domain were varied similarly as 
for the model sensitivity analysis in section 5.1.3. The only difference between the simulations in 
section 5.1.3 and the current HYDRUS-3D runs was the initial profile distribution of the tracer. 
Initial C0 values were set to zero to eliminate the influence of spatially variable initial 
concentrations on the sensitivity index values.  A total of 256 simulations were carried out 
assuming two combinations of the Ks parameters of 8 materials. The computed tracer 
concentrations were recorded at 100 observation nodes to provide input for the sensitivity and 
OPR statistics. The observation (output) nodes were placed on the regular rectangular grid within 
a 27x14 m rectangular area at depths z of 2.07 and 2.49 m (Fig. 6-1).  The eight locations (wells 5 
through 12) used for the model calibration and sensitivity analysis in section 5.1.3 constituted the 
existing observation network for the OPR analysis. 

Values of the sensitivity index Si(Ks) were found to be different for the same soil material at two 
depths and 50 locations, indicating different model sensitivities to Ks associated with the specific 
location of the observation node in the simulation domain. Generally, zero Si values were obtained 
for times smaller than the tracer arrival times at each location. For instance, nonzero Si values 
were observed starting from days 88 and 118 of the simulation in wells at distances of 3.5 and 14 
m from the irrigated plot, respectively (Fig. 6-2). This shows that the distance from the irrigated 
plot was the major factor influencing Si values at selected locations. Sensitivity values also 
changed with depth. Temporal persistence in the Si time series was observed at some locations. 
For example, the, Si values of well 38 decreased for 8 soil materials in the order L1, SiCL1, SCL2, 
SCL1, SL1, L2, SL1 and SL3 at both computational layers (i.e. z=2.07 and 2.49 m). Persistence 
with depth at other locations existed only for some materials.  For example, Si values were 
persistent for 6 out of 8 soil materials at well 5 (Fig. 6-2). 
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The effect of depth and distance can be clearly seen in Fig. 6-3. Generally, the number of 
simulation days with nonzero Si values, and Si values averaged among the materials, were 
greater for the computational layers at 2.49 m as compared to 2.07 m layer (Fig. 6-3). The number 
of nonzero Si days, the range and the average Si values tended to decrease with distance from 
the irrigated plot, reflecting a general decrease in the model sensitivity with tracer travel distance. 
Notwithstanding this tendency, several points among the observation wells located at equal 
distances from the irrigated plot showed consistently high and low Si values. Since locations with 
high Si values are more informative and more important compared to locations having low Si 
values, they could be included into the existing monitoring network for improvement of the model 
calibration. The potential locations selected solely based on the Si values are shown in Fig. 6-4. 

The importance of existing observation locations for the HYDRUS-3D calibration was evaluated 
using the OPR- statistic. Averaged over time, the Si values obtained with HYDRUS-3D were used 
to calculate the matrix of sensitivities AY in Eq. 6-1. The standard deviations were computed 
separately for each well used for the HYDRUS-3D calibration (wells 5 through 12) based on Eq. 6-
1. The matrix of weights ω on the observations was represented by the proportion of days
showing nonzero Si values during the 131 day simulation. Consequently, wells with fewer nonzero 
Si values had higher weights in the computations. To evaluate the effect of omitting an 
observation location on the prediction uncertainty, the deviations  𝑆𝑌𝑙(−𝑖)

′   were computed with

weights of the omitted location set equal to zero in Eq. (6-1). Finally, the ARS study team 
calculated the relative importance of each observation on the predictions using Eq. 6-4. 

The percent of increased uncertainty OPR- ranged from 0 to 28.7%, and was greater for z=2.49 m 
than for the z=2.07 m layer (Fig. 6-5). Relatively high OPR-values were obtained at the locations 
of wells 6, 11 and well 12 (z=2.49 m layer) and at well 6 (z=2.07 m layer), indicating the 
importance of data collected at those places for model calibration. Data collected near wells 7 and 
8, and at all locations of the z=2.07 m layer, except well 6, were the least important value for 
model calibration. This result implies that it is not necessary to collect data at two depths for the 
model calibration, and emphasizes the overall importance of monitoring at the depth 
corresponded to the 2.49 m computational layer. 
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Figure 6-1 Simulation domain with existing (red symbols) and new (hypothetical) 
observation wells. The numbers at the plot identify new well numbers. 
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Figure 6-3 Number of days with nonzero Si values for each material (a) and Si variations 
in 50 observation wells. 

(b)

New observation well

0 10 20 30 40 50

S
i 
(K

s
 )

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Z=2.49 m

Z=2.07 m

(a)

N
u
m

b
e

r 
o

f 
s
im

u
la

ti
o

n
 d

a
y
s

w
it
h
 n

o
n
z
e

ro
 S

i v
a
lu

e
s

0

10

20

30

40

50



6-8 

Figure 6-4 New observation locations selected based on maximum Si values (yellow 
triangles) and on averaged OPR statistics (green triangles). 
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The importance of the new observation locations for the HYDRUS-3D calibration was evaluated 
using the OPR+ statistic. The Si values computed for two depths at 50 locations shown in Fig. 6-1 
were averaged over time periods showing nonzero values and used to calculate the matrix of 
sensitivities AY in Eq. 6-6. The matrix of weights ω on the observations was represented by the 
proportion of simulation days with nonzero Si values over the total simulation period (131 days). 
The standard deviations computed for locations at wells 5 through 12 for the OPR- statistics were 
used for the denominator in Eq. 6-5. The numerators 𝑆𝑌𝑙(+𝑖)

′   in Eq. 6-5 were computed by adding

one output node at a time to the existing nodes. The OPR+ statistics computed for the added 
nodes for two computational layers at 50 locations ranged from 0% to 46.6% and from 0% to 
54.8% for the 2.49 m and 2.07 m computational layers, respectively (Fig. 6-1). The OPR+ values 
averaged across 8 existing observation wells did not change significantly with distance from the 
irrigated plot. However, they were noticeably smaller for some wells at z=2.49 m than at z=2.07 m, 
indicating that data collected from the z=2.49 m layer were less important. 

To identify new locations for improving the HYDRUS-3D calibration, the average OPR+ values 
were ranked in a descending order. The ranks of the new wells were different for the two 
computational layers (Fig. 6-7), with the percentage decrease in uncertainty generally being 
higher for the same rank for the z=2.07 m layer as compared to the 2.49 m layer. The locations of 
the new observations wells were therefor selected based on OPR+ values computed for z=2.07 m. 
The new monitoring locations selected on the basis of high Si values and using the OPR+ statistics 
along with the existing monitoring locations are shown in Fig. 6-4. The locations obtained using 
both methods were very close to each other and indicated the preferential flow direction of the 
tracer. Nevertheless, the locations selected using the OPR+ method were slightly northward from 
the locations having high Si values in the first three transects (wells 1-10, wells 11-20 and wells 
21-30) . These mismatches can be caused by differences in the approaches used in the two 
methods. The Si-based method analyses values of the sensitivity separately at each observation 
location and indicates the locations with the highest sensitivity. These locations were between 
wells 6 and 7 in the existing monitoring network, where the highest concentrations were calculated 
(Fig. 5-2). The OPR+ method examines the spatial distribution of Si values weighed by the number 
of nonzero values and selects the locations were Si values were not necessarily high, but were 
changing spatially. For instance, new observation location 16 between wells 7 (location 15) and 8 
(location 17) in the existing monitoring network was in a transitional zone from relatively high 
concentrations in well 7 to low concentrations in well 8, indicating considerable uncertainty in the 
Si values computed for location 17. 
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Figure 6-5 Percent of increased uncertainty caused by removal one existing observation 
well. New observation well numbers are shown in parenthesis on X-axis. 

Z = 2.49 m

-5

0

5

10

15

20

Z = 2.07 m

Existing observation wells

4 5 6 7 8 9 10 11 12 13

P
e

rc
e

n
t 
o

f 
in

c
re

a
s
e

d
 u

n
c
e

rt
a
in

ty

-5

0

5

10

15

20

(11)  (13)  (15)  (17)  (19)  (32)  (36)  (40) 



 

6-11 

 

Figure 6-6 Percent of decreased uncertainty caused by adding one new observation well. 

 

Z = 2.49 m

-10

0

10

20

30

40

50

Z = 2.07 m

New observation wells

0 10 20 30 40 50

P
e

rc
e

n
t 
o

f 
d

e
c
re

a
s
e

d
 u

n
c
e

rt
a

in
ty

-10

0

10

20

30

40

50



 

6-12 

 

Figure 6-7 Ranks of new observation wells at two depths computed based on the percent 
of decreased uncertainty caused by adding one new well. 
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Overall, both statistical methods provided useful additional information for optimization of the 
monitoring network, specifically for model calibration purposes.  The method using the 
observation-prediction (OPR) statistic accounts for both model sensitivity to the parameters and 
their spatial structure. Based on results of this study, the ARS study team recommend using the 
OPR+ method for selecting monitoring locations to improve model calibration. 

6.1.3  Selecting Monitoring Locations Based on Statistical Analysis of the Performance 
Indicators 

To identify optimal locations for monitoring propagation of the contaminant plume from the source, 
the ARS study team used the results of 48 simulations for different weather, groundwater level 
and release scenarios as described earlier in section 5.2.3. Plume propagation was evaluated 
using again three performance indicators: Cpeak, Tpeak and QC computed for each of the 100 output 
nodes. Two approaches were used to select the monitoring locations. The first approach was 
based on the frequencies of appearance of extreme values of the performance indicators 
evaluated at different distances from the release points, while the second approach used the 
probability analysis. 

To implement the first approach the minimum values of Tpeak (𝑇𝑝𝑒𝑎𝑘
𝑚𝑖𝑛 ), and maximum values of Cpeak 

(𝐶𝑝𝑒𝑎𝑘
𝑚𝑎𝑥 ) and QC (𝑄𝐶𝑝𝑒𝑎𝑘

𝑚𝑎𝑥 ) were computed for each transect passing through the output nodes 

located at the same distance from the release points. These values were computed using the 
results of HYDRUS-3D simulations with the calibrated parameters separately for each scenario. 

One location within each transect with the minimum value of 𝑇𝑝𝑒𝑎𝑘
𝑚𝑖𝑛  , and maximum value of 𝐶𝑝𝑒𝑎𝑘

𝑚𝑎𝑥   

or 𝑄𝐶𝑝𝑒𝑎𝑘
𝑚𝑎𝑥  was chosen as a potential monitoring location for this transect. Locations were selected 

in the same manner for each performance indicator at all 11 transects and for all 48 scenarios.  
The ARS study team next analyzed the frequency of appearance of the selected locations at each 
transect using results of the 48 simulations. The frequency distributions for the Cpeak performance 
indicator at 11 transects is shown in Fig. 6-8a. The distributions typically had a sharp peak at one 
of the locations. The maximum frequency values were 0.68±0.17, 0.78±0.13 and 0.65±0.21 for 
Cpeak, Tpeak and QC, respectively, which indicates high probabilities of detecting the contaminant 
plume using the selected locations. 

Monitoring locations identified based on the frequency approach are mapped in Fig. 6-8b. Overall, 
the locations selected using the QC indicator were in good agreement with those selected using 
the Cpeak performance indicator, while Tpeak-based locations were shifted from 10 to 20 m to the 
north from the Cpeak- and QC-based locations. The shift between the locations selected using 
different performance indicators increased with the tracer travel distance (Fig. 6-8b). The 20 m 
shift is significant for a 100 m travel distance, and can be even more pronounced for large-scale 
simulations. 

To implement the second approach for selecting new monitoring locations, now based a 
probability analysis, the ARS study team analyzed the spatial distributions of performance 
indicators obtained with the 48 simulations using the calibrated HYDRUS-3D model. The ARS 
study team mapped for this purpose  
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Figure 6-8 Frequency distributions for the 𝑪𝒑𝒆𝒂𝒌
𝒎𝒂𝒙  in 11 transects (a), and monitoring 

locations selected based on the frequency distributions of 3 performance 
indicators (b). 
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mapped the values of 3 performance indicators at 25%, 50% and 75% probability level. These 
levels will specify for each output node the probability that the performance indicator obtained with 
the 48 simulation scenarios will not exceed the value of the performance indicator at that 

probability level. For instance, 𝐶𝑝𝑒𝑎𝑘
75%   means that the Cpeak values computed for 36 scenarios at 

this node will be smaller than 𝐶𝑝𝑒𝑎𝑘
75% , while Cpeak values will be greater than 𝐶𝑝𝑒𝑎𝑘

75%  value at  this 

node only for 12 scenarios.  

The spatial distributions of log10(Cpeak), Tpeak and log10(QC) for three probability levels are shown in 
Fig. 6-9. The spatial variability generally decreased for Cpeak and QC, and increased for the Tpeak 
performance indicator with an increase in the probability level. For instance Cpeak varied within 7, 5 
and 4 orders of magnitude for the 25%, 59% and 75% probability levels, respectively (Fig. 6-9). 
High Cpeak variability translated into considerably variability in the QC values, which ranged within 
7.5, 6.5 and 5.5 orders of magnitude for the same probability levels. To identify potential locations 
for the monitoring network examined persistence of high PI values within each transect. The 

persistence was assessed as an interquartile range (𝑃𝐼𝑝𝑒𝑎𝑘
75% − 𝑃𝐼𝑝𝑒𝑎𝑘

25% ), while the values of the 

performance indicators were taken at 50% probability level.  

Generally, an increase in the interquartile range with the 𝑃𝐼𝑝𝑒𝑎𝑘
50%  increase was observed in this 

study, which indicates variation in the flow direction associated with the source location and 

groundwater scenarios. Therefore very few locations with PI values smaller than 𝑃𝐼𝑝𝑒𝑎𝑘
50%  were 

selected, while in most cases locations with maximum 𝑃𝐼𝑝𝑒𝑎𝑘
50%  were chosen for Cpeak and QC PI 

within each transect. The locations with the smallest travel times 𝑇𝑝𝑒𝑎𝑘
5𝑜%  were selected for Tpeak 

performance indicator. The selected locations are shown in Fig. 6-10b. The selected locations are 
shown in Fig. 6-10b. The spatial position of the observation network was very similar to that 
obtained using the frequency approach (Fig. 6-10a), which confirms the reliability of the 
implemented approaches. 

Overall, both the frequency and probability of peak performance indicators appear to be 
appropriate statistics to identify monitoring locations with the highest probability of contaminant 
plume detection. The observed differences between the time-based (Tpeak) and concentration 
(Cpeak) or flux-based (QC) performance indicators can be attributed to the different nature of these 
indicators. The arrival time is not always a good predictor of plume propagation in highly 
heterogeneous media due to combined effect of the contaminant dispersion and dilution, which 
may lead to very rapid transport of relatively small amounts of contaminant. As such, the Cpeak and 
QC performance indicators appear to be more reliable for identifying monitoring locations. 

6.1.4  Model Abstraction Applicability for Selection of Monitoring Locations 

The applicability of the model abstraction techniques described in sections 5.2.5-5.2.7 is tested in 
this section for selection of monitoring locations. To do this the ARS study team examined the 
spatial distributions of the performance indicators obtained with HYDRUS-3D using the abstracted 
parameters (section 5.2.5), using profile aggregation (section 5.2.6) and using the abstraction of 
ignoring the unsaturated zone (section 5.2.7). Similar to section 6.2.1, values of the performance 
indicators at probability levels of 25%, 50% and 75% were plotted as contour maps. Spatial 
distributions obtained for the three model abstractions were found to be different. Patterns of the 
Cpeak and QC indicators obtained with parameter abstraction (Fig. 6-11) in general resembled the 
patterns of the calibrated HYDRUS-3D model. However, the absolute values of the performance  
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Figure 6-9 Spatial distributions of the performance indicators at 3 probability levels 
obtained in HYDRUS-3D simulations with the calibrated parameters. 
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Figure 6-10 Monitoring locations selected using the frequency (a) and probability (b) 
approaches for 3 performance indicators. 
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indicators were somewhat different. Specifically the abstracted model systematically 
underestimated peak concentrations and overestimated total fluxes (Fig. 6-9 and Fig. 6-11). Little 
or no similarities were found between the travel times of the calibrated and abstracted models.  

Abstraction to a homogeneous soil profile produced even greater differences with the original 
model. The shapes of the plume and absolute values of the performance indicators for the 
homogeneous profile model significantly deviated from the calibrated heterogeneous model (Fig. 
6-8). The flow direction, viewed as a line with the smallest gradient in the performance indicator, 
was shifted towards south in the abstracted model compared to the original one. 

No differences in the spatial patterns of the performance indicators between the original and 
abstracted model were found when the abstraction of ignoring the unsaturation zone was 
implemented. The spatial distributions of the three performance indicators were reproduced by the 
abstracted model with high accuracy at the 25%, 50% and 75% probability levels (Fig. 6-13). This 
result was expected since this abstraction adequately reproduced predicted concentrations and 
fluxes as was shown in section 5.2.7. To test the applicability of the three abstraction techniques 
to selecting monitoring locations, both the frequency and probability approaches were 
implemented to the spatial distributions of performance indicators. Peak values of the 
performance indicators were used for the frequency approach, while the peak and inter quartile 
range values were used both in the probability approach as described in section 6.2.1.  

Monitoring locations for the two abstractions, along with the original model, are shown in Fig. 6-
14. The parameter abstraction generated similar monitoring networks for the Cpeak and QC 
performance indicators, while locations identified using Tpeak values were shifted 10 to 20 m to the 
north (Fig. 6-14b). This shift was not systematic, which indicates a weakness of the Tpeak indicator. 
Differences between the two approaches for location selection were minor for the Cpeak and QC 
indicators, but noticeable for Tpeak. This could be attributed to the different sensitivity of the 
different approaches to the shape of the performance indicator distributions. In spite of the 
observed differences between the absolute values of Cpeak and QC, the observation locations for 
the abstracted model were very close to those obtained with the calibrated model. For the 
frequency approach, 6 and 7 out of 10 locations for the Cpeak and QC indicators, respectively, 
were located 10 m to the north in the abstracted model as compared to the original model (Fig. 6-
14 a,b). These differences were even smaller for the probability approach. Only 3 and 4 out of 10 
locations for the abstraction model did not match the locations of the original model (Fig. 6-14 
d,e). The difference in all cases was 10 m, which is comparable with the output grid resolution. 
Interestingly, the locations selected on the basis of Tpeak values for the abstracted model were not 
systematically shifted from those of the calibrated model. The monitoring locations for the 
abstracted model oscillated around the network obtained for the calibrated model with a 10 m 
amplitude. Overall, in spite of inaccuracies in the parameter abstracted model for predicting 
contaminant concentrations and fluxes, this abstraction approach appeared to be appropriate for 
selecting monitoring location in our study. 

The abstraction by ignoring the unsaturated zone appeared to be the most accurate in predicting 
the tracer concentrations and fluxes, leading to essentially the same monitoring network as the 
calibrated model. Monitoring locations obtained using both the frequency and probability 
approaches for the abstracted model matches for 100% the locations generated by the original 
model (Fig. 6-14 c,f). As discussed in section 6.2.7, this was possible since the unsaturated zone 
was very thin in this study and since spatial heterogeneity in the soil properties caused vertical 
transport to dominate at the release points. These hydrologic conditions created a specific flow 
regime in which the tracer was transported preferentially in the vertical direction before reaching  
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Figure 6-11 Spatial distributions of the performance indicators at 3 probability levels 
obtained in HYDRUS-3D simulations with the abstracted parameters. 
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Figure 6-12 Spatial distributions of the performance indicators at 3 probability levels 
obtained in HYDRUS-3D simulations with the abstracted soil profile. 
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Figure 6-13 Spatial distributions of the performance indicators at 3 probability levels 
obtained in HYDRUS-3D simulations with the discarded unsaturated zone. 
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groundwater. The results of this abstraction may differ when a thicker vadose zone is present, or 
when horizontal lenses may slow down vertical transport. 

Using a homogeneous soil profile was the only abstraction technique that generated a monitoring 
network dissimilar to the network obtained with the calibrated HYDRUS model. The selected 
monitoring locations were systematically shifted to the south from those of the calibrated model, 
with the difference increasing with the distance from the source of release (data not further 
shown). This occurred primarily due to existence of preferential lateral flow within the 
heterogeneous simulation domain.  These preferential flow path were completely discarded in the 
homogeneous profile abstraction process.  Homogeneous soil profile abstraction generally may 
be more appropriate for small scale applications or for situations where vertical soil stratification is 
not important. The natural succession of soil genetic horizons of large scale field projects may 
produce different hydrological regimes at different depths that cannot be ignored when water and 
chemical transport is modeled. The results of this study provide a very remarkable illustration of 
this general concept. 

6.2  Selecting Monitoring Locations for Model Discrimination 

6.2.1  Kullback-Himmelblau Sequential Design Method  

Coupling of modeling and monitoring can be conducted for various purposes. One of the 
purposes can be selection of a better model from a set of models originating, for instance, from 
different conceptualizations of subsurface, from different levels of model complexity, from different 
lists of processes included, etc. The model comparison and discrimination can be improved if 
additional observations will be included. A new observaPtion points can be selected at the 
location where the maximum difference between model predictions is achieved.  
 
A fruitful approach to evaluate the usefulness of a measurement for distinguishing between two 
hypotheses was proposed in the seminal paper (Kullback and Leibler, 1951) in which the 
information in a measurement for discrimination between two hypotheses was first defined. The 
mean value of this Kullback-Leibler information represented the information gain that could be 
encountered if the true hypothesis were accepted rather than the wrong one. This mean value 
eventually was termed Kullback-Leibler divergence, information gain, relative entropy, or 
information divergence, and was computed for model predictions an estimate of the information 
loss when full truth is approximated by the model (Poeter and Anderson, 2005). This measure 
was proven to be useful in (a) evaluation of predictive capabilities of hydrological models when 
observations presented the ‘true’ distribution that was approximated by model predictions (Weijs 
et al., 2010) , (b) improving inverse solutions of groundwater flow models (Szucs et al, 2006), and  
(c) assessment of improvement in modeling results with data assimilation (Bulygina and Gupta, 
2009). Various approximations of the Kullback-Leibler divergence resulted in development of the 
family of model discrimination criteria, such as Akaike criterion AIC, and later AICc, (Burnham and 
Anderson, 2004) that were used in groundwater modeling to rank calibrated models (Poeter and 
Anderson, 2005; Foglia et al., 2007; Ye et al., 2008;), and in inverse groundwater modeling for 
hydraulic conductivity estimation using Bayesian model averaging (Tsai and Li, 2008). All 
applications of the Kullback-Leibler divergence to model discrimination, however, relied on the 
existing set of observations and did not attempt to seek additional measurements. 
 
Kullback (1959) showed that Kullback-Leibler information could be also applied for the selection of 
a new observation location to better discriminate between models without making an assumption 
that one of models generates the ‘true’ distribution whereas another one does not.  
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Himmelblau (1970) implemented this suggestion for the case of non-linear models. The method is 
as follows: 

Let Y be a random variable that is distributed with a probability density 𝑝1(𝑦 ) when hypothesis H1 
is true (Model 1) and distributed with a probability density 𝑝2(𝑦 ) when hypothesis H2 (Model 2) is 

true. Then in some sense the quantity  𝑙𝑛[𝑝1(𝑦 ) 𝑝2(𝑦 )⁄ ] can be said to be a measure of the odds 
in favor of choosing H1 over H2 or, from the information theory viewpoint, of the information in 
favor of hypothesis H1 as opposed to hypothesis H2. The expected information in favor of choosing 
either H1 or H2 respectively is given by Kullback-Leibler divergences 

 𝐼(1: 2) = ∫ 𝑝1(𝑦 )
∞

−∞
𝑙𝑛

𝑝1(𝑦 )

𝑝2(𝑦 )
𝑑𝑦        (6-7) 

 𝐼(2: 1) = ∫ 𝑝2(𝑦 )
∞

−∞
𝑙𝑛

𝑝2(𝑦 )

𝑝1(𝑦 )
𝑑𝑦        (6-8) 

 
Kullback (1959) proposed that the total information gain due to selecting one model instead of 
another, i.e. value 
 

 𝐽(1,2) = 𝐼(1: 2) + 𝐼(2: 1) = ∫ [𝑝1(𝑦 ) − 𝑝2(𝑦 )]
∞

−∞
𝑙𝑛

𝑝1(𝑦 )

𝑝2(𝑦 )
𝑑𝑦     (6-9) 

 
be maximized to distinguish between two states of nature. It means that the new monitoring point 
has to be selected where the J(1,2) value reaches maximum.  
 
From the linearized analysis, one can assume that the (n+1)st observation is normally distributed 

about the expected value for the model, ℰ {𝑌𝑟
(𝑛+1)

} = 𝑦𝑟
(𝑛+1)

, with a variance of 𝜎𝑌
2 (Himmelblau, 

1970). Furthermore, 𝑦𝑟
(𝑛+1)

 is distributed in a local (linearized) region about a predicted value, 

�̂�𝑟
(𝑛+1)

, with a variance of 𝜎𝑟
2. Consequently, 𝑌(𝑛+1) is distributed about �̂�𝑟

(𝑛+1)
 with a variance of  

𝜎𝑌
2 + 𝜎𝑟

2. Thus the probability density of 𝑌(𝑛+1)  for the rth model is 
 

 𝑝𝑟(𝑦(𝑛+1) ) =
1

𝜎𝑌
2+𝜎𝑟

2 𝑒𝑥𝑝 [−
1

2

(𝑌(𝑛+1)−�̂�𝑟
(𝑛+1)

)
2

𝜎𝑌
2+𝜎𝑟

2 ] , r=1, 2     (6-10) 

 

The quantities �̂�r and 𝜎𝑟
2 represent the mean and variance of Y for the rth model. Kullback (1959) 

showed that substituting (6) into (3) and (4), after completing the integrations yields 
 

 𝐼(1: 2) =
1

2
𝑙𝑛

𝜎𝑌
2+𝜎2

2

𝜎𝑌
2+𝜎1

2 +
1

2
𝑙𝑛

𝜎𝑌
2+𝜎1

2

𝜎𝑌
2+𝜎2

2 −
1

2
+

1

2

(�̂�1
(𝑛+1)

−�̂�2
(𝑛+1)

)
2

𝜎𝑌
2+𝜎2

2      (6-11) 

 𝐼(2: 1) =
1

2
𝑙𝑛

𝜎𝑌
2+𝜎1

2

𝜎𝑌
2+𝜎2

2 +
1

2
𝑙𝑛

𝜎𝑌
2+𝜎1

2

𝜎𝑌
2+𝜎1

2 −
1

2
+

1

2

(�̂�1
(𝑛+1)

−�̂�2
(𝑛+1)

)
2

𝜎𝑌
2+𝜎1

2      (6-12) 

 𝐽(1,2) =
1

2
(𝜎1

2 − 𝜎2
2) (

1

𝜎𝑌
2+𝜎2

2 −
1

𝜎𝑌
2+𝜎1

2) (�̂�𝑟
(𝑛+1)

− �̂�𝑠
(𝑛+1)

)
2
    (6-13) 

 
Box and Hill (1967) described an improved version of Kullback (1959) discriminant function in 
which the prior probabilities are included. To make full use of prior information available about the 

validity of each model, in addition to computing the estimation coefficients used in �̂�𝑟
(𝑛+1)

, it would 

seem reasonable to weight  𝐼(1: 2) and 𝐼(2: 1)  by the respective prior probabilities of Model 1 or 

Model 2 being the correct model, 𝑃1
(𝑛)

 and  𝑃2
(𝑛)

, respectively. 
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Himmelblau (1970) extended the previous approach by assuming that several competing models 
exist, among which the (n+1)st experiment is to discriminate. A scalar discriminant function can be 
formed using the matrix of relative likelihoods and a vector of prior probabilities as follows: 

 𝐾𝑣 = [𝑃1
(𝑛)

 …  𝑃𝑣
(𝑛)

 ] ∙ [
𝐼(1: 1) ⋯ 𝐼(1: 𝑣)

⋮ ⋱ ⋮
𝐼(𝑣: 1) ⋯ 𝐼(𝑣: 𝑣)

] [
𝑃1

(𝑛)

⋮

𝑃𝑣
(𝑛)

]     (6-14) 

Each element on the main diagonal of the 𝐼(𝑟: 𝑠) a matrix is zero so the discriminant function 
becomes: 
 

𝐾𝑣 =
1

2
∑ ∑ 𝑃𝑟

(𝑛)
𝑃𝑠

(𝑛)
[

(𝜎𝑟
2−𝜎𝑠

2)
2

(𝜎𝑌
2+𝜎𝑟

2)(𝜎𝑌
2+𝜎𝑠

2)
+ (�̂�𝑟

(𝑛+1)
− �̂�𝑠

(𝑛+1)
)

2
(

1

𝜎𝑌
2+𝜎𝑟

2 +
1

𝜎𝑌
2+𝜎𝑠

2)]𝑣
𝑠=𝑟+1

𝑣
𝑟=1    (6-15) 

 
One way to obtain the posterior probability that model r is correct after taking n observations is to 
apply successively for each model Bayes’ theorem in the following form: 
 

 𝑃𝑟
(𝑛)

=
𝑃𝑟(𝑦(𝑛))

∑ 𝑃𝑟
(𝑛−1)

𝑝𝑟(𝑦(𝑛))𝑣
𝑟=1

        (6-16) 

 

where 𝑝𝑟
(𝑛−1)

 is the prior probability associated with the rth model. The initial probabilities 𝑝𝑟
(0)

 can 

be set equal to 1/v if not known. 
 

In general, neither 𝜎𝑌
2 nor 𝜎𝑟

2, r=1,…v, will be known; hence the values of these variances must be 

estimated. Himmelblau (1970) suggests obtaining the variance of �̂�𝑟 for a model, by using the 
intermediate values (variances and co-variances at the optimal point) obtained in least square 
estimates of the models’ parameters.  
 
The sequential procedure to discriminate among v models is summarized as follows (Himmelblau, 
1970): 

1. Based on experimental design selected in some arbitrary or suboptimal way, collect n data 
points.  

2. Estimate the parameters in the v models by linear or nonlinear regressions; estimate 𝜎𝑌
2 

and calculate each 𝜎𝑟
2. 

3. Calculate the prior probabilities for the (n+1)st run which are equal to the posterior 
probabilities for the nth run by using equations (6) and (12) with n substituted for (n+1) in 
the latter. The initial P’s can all be equal to 1/v if no better choice is available. 

4. Select the vector of experimental conditions for the (n+1)st run (the vector x(n+1) by 
maximizing Kv using a numerical optimization routine. 

5. Run an experiment at x(n+1) and repeat starting with step 2.  

The sequential procedure continues until one (or more) 𝑃𝑟
(𝑛)

 reaches a value acceptance of the 
model by some criterion. Or the experimenter can just observe the trend of the changes in the Pr  
as the number of experiments increases, drop models with low values of Pr, and add models, if he 
wishes, terminating the experiments when he feels satisfied with the discrimination actually 
achieved. 

Limitations of applying the above procedures to subsurface flow and transport problems are that 
(1) the data are rarely sufficient to calibrate models, and (2) few if any numerical codes are  
available for calibrating 3D models if a variably-saturated subsurface is simulated (even if such 
codes exist, calibration procedure can consume enormous time). As mentioned above, the 
calibration is needed to estimate values of the means and variances for the simulated variables. 
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The latter problem can be overcome by using the assumptions of the ensemble Kalman filter 
(EnKF) methodology. The centerpiece of the EnKF methodology is the hypothesis that the 
covariance matrix of predictions can be obtained by running an ensemble of models and 
computing statistics, including variances and covariances on the predictions.  Models in the 
ensemble have the same system of equations (as such it is a single model) but differ in the initial 
conditions, parameter values, and forcings, which may vary in feasible ranges with realistic 
probability distributions to form an ensemble. Using this postulate, one can run ensembles for 

each model to obtain the required values of �̂�r and 𝜎𝑟
2. 

6.2.2  Applications of the Kullback-Himmelblau Method 

 
In this section the ARS study team presents two examples to demonstrate using the Kullback-
Himmelblau sequential design (KHSD) method for augmentation of a monitoring network for a 
contaminated aquifer based on data of (1) synthetic simulations, and (2) the OPE3 field tracer 
experiment carried out in 2008. It is assumed that n (≥1) observation locations are available where 
concentrations are measured to obtain breakthrough curves (BTCs) to be used for the model 
calibration. As independent variable, the ARS team selected coordinates (xi, i=n+1,..,N) of 
“imaginary” observation points that compose a grid covering some area downstream to the 
contaminant source location. As response function (Y), the ARS team selected the maximum 

concentration that can be reached at each observation point. The variance (𝜎𝑟
2) and mean (�̂�) for 

the rth model at each point is calculated by running models using randomly varying parameters 
within a certain range and computing statistics. The value of the discriminant function (Kv, Eq. (6-
17)) is subsequently calculated at each location. The maximum value of Kv specifies the location of 
the new observation point. 
 
6.2.2.1  Example of Synthetic Simulations 

Consider the aquifer to be composed of relatively homogeneous sediment characterized by a 
loamy sand texture. The simulation domain is presented by a rectangular parallelepiped having 
the size of 50x30x10 m in the x, y and z directions, respectively (Figure 6-15). Flow in the 
saturated zone is essentially one-dimensional in the x-direction. Groundwater is very shallow.  
Constant total hydraulic head values of 9.5 m and 9 m are prescribed along the boundaries at x=0  
and x=50 m respectively; thus creating a hydraulic head gradient of 0.01 in the saturated zone.  
Hydraulic heads along the boundaries y=0 and y=50 m decrease linearly from 9.5 to 9.0 m with 
increasing x. The boundaries at z=0 and z=50 m were subjected to no flux conditions. Initially at 
t=0, the contaminant concentration in the aquifer is assumed to be zero. 
 
A total of 20 L of contaminated water with a concentration C0 of 100 mg L-1 was injected at the 
location of x0=5, y0=15 and z0=8 m during 0.01 day.  Two observation wells were installed at 
Wo1(x=10m, y=13m) and Wo1(x=10m, y=18m) where groundwater was sampled from a depth of 
7.5 m. To create synthetic BTCs, the ARS study team performed simulations with the HYDRUS-
3D model by imposing the above initial and boundary conditions, as well as the contaminant 
injection. The porous medium hydraulic parameters characterizing loamy sand were taken from 
the HYDRUS database as: θs=0.41, θr=0.057, α=12.4 m-1, n=2.28, and Ks=3.5 m day-1. The 
longitudinal (aL) and transverse (aT) dispersivities were assumed to be 0.75 and 0.15 m, 
respectively. The hydraulic parameters of most or all field problems exhibit spatial variability. To 
account for this the ARS study team generated a lognormally distributed hydraulic conductivity 
field using by using linear scaling transformations (Simunek, et al. 2011) with a scaling parameter 
of 0.25 (Fig. 6-16).  
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The finite element mesh consisted of 33,201 nodes and 60,000 3D elements with mesh sizes of 1 
m in the x- and y-directions, and 0.5 m in the z-direction. Contaminant transport was simulated 
with HYDRUS-3D for a time period of 60 days (the initial observation period). Simulated 
concentration distribution is shown in Figure 6-17. 

To apply the KHSD method for augmentation of the monitoring network, one needs at least two 
models. As our first model the ARS study team used the same HYDRUS-3D model; however, 
unlike the synthetic forward simulation, the random hydraulic conductivity field was not introduced 
and the saturated hydraulic conductivity was assumed to be constant. The second model was 
selected based on the assumption that flow in the saturated zone is essentially one dimensional 
and uniform. Solute transport for such conditions can be described with the linear advection-
dispersion equation 

𝑅
𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐷𝑦

𝜕2𝐶

𝜕𝑦2
+ 𝐷𝑧

𝜕2𝐶

𝜕𝑧2
− 𝑣

𝜕𝐶

𝜕𝑥
− 𝑅𝜆𝐶 

 +
𝑀

𝜃
𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)𝛿(𝑧 − 𝑧0)𝛿(𝑡 − 𝑡0)     (6-17) 

 
subject to initial condition 
 
 𝐶(𝑥, 𝑦, 𝑧, 0) = 0         (6-18) 
 
and boundary conditions 
 

 𝐶(±∞, 𝑦, 𝑧, 𝑡) = 𝐶(𝑥, ±∞, 𝑧, 𝑡) = 𝐶(𝑥, 𝑦, ±∞, 𝑡) = 0     (6-19) 
 
where C is contaminant concentration, R is retardation factor, Dx, Dy, Dz and are hydrodynamic 
dispersion coefficients in x, y and z directions, respectively, v is groundwater flow velocity, 𝜆 is  
the first order decay rate, M is the contaminant mass released instantaneously at point (x0, y0, z0) 
at time 𝑡0, 𝜃 is aquifer porosity and 𝛿 is the Dirac delta function.  

 The analytical solution for the problem (6-17) - (6-19) is (Lenda and Zuber, 1970): 

 𝐶(𝑥, 𝑦, 𝑧, 𝑡) =
𝑀

𝜃

1

8𝜋3 2⁄

1

√𝐷𝑥𝐷𝑦𝐷𝑧 𝑅⁄

1

𝑡𝜋3 2⁄ 𝑒𝑥𝑝[−𝜆(𝑡 − 𝑡0)] 

∙ 𝑒𝑥𝑝 [−
{(𝑥−𝑥0)−𝑣(𝑡−𝑡0) 𝑅⁄ }2

4𝐷𝑥(𝑡−𝑡0) 𝑅⁄
] ∙ 𝑒𝑥𝑝 [−

(𝑦−𝑦0)2

4𝐷𝑦(𝑡−𝑡0) 𝑅⁄
] ∙ 𝑒𝑥𝑝 [−

(𝑦−𝑦0)2

4𝐷𝑦(𝑡−𝑡0) 𝑅⁄
]  (6-20) 
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Figure 6-15 Simulation setup for synthetic example. 

 

 

Figure 6-16 Distribution of scaling factor of saturated hydraulic conductivity in the 
simulation domain. 
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Figure 6-17 Simulated contaminant distribution after 60 days, at the layer of z=7.5 m. 
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Parameters of HYDRUS-3D and the above analytical model must be calibrated using the 
observed BTCs at the observation wells. A manual trial and error calibration procedure was used 
for HYDRUS-3D, while the Levenberg-Marquardt nonlinear optimization method (Marquardt, 
1963) was used to calibrate the analytical model.  

Parameters obtained for the HYDRUS 3D model were Ks=3.2 m day-1, aL=1.0 m and aT=0.17 m. 
These values were not much different from those used to generate the BTCs at observation wells, 
mostly because relatively moderate values of the scaling parameter for log(Ks) was used. Results 
of the HYDRUS trial and error fit for BTCs at the two wells are shown in Figure 6-18a.  Transport 
parameters found for analytical solution (6-20) were v=0.123 m/day, Dx=0.202 m2 day-1, Dy=0.015 
m2 day-1 and Dz=0.002 m2 day-1. Results obtained with the analytical model are shown in Figure 6-
18b. 

Ninety six imaginary observation wells at z=7.5 m, in the rectangular area bounded by (x,y) 
coordinates: (12,8) m and (34,22) m were chosen to calculate the discriminant function values, Kv 
(equation (6-16). The distance between nodes was 2 m in both x- and y-directions (Fig. 6-15). To 

estimate variance (𝜎𝑟
2) and mean (�̂�𝑟) of the maximum concentrations in those nodes, the ARS 

study team performed 25 runs for each model using randomly varying parameters within a range 
20% from the values found by the inversion. Simulations were executed for a period of 365 days.  

To calculate the Kv values, the ARS study team used the variance and mean of the concentrations 
of the first observation well (Wo1), i.e. =8.4 and =16.1, respectively, as a starting point (the nth 
experiment). The initial values of prior probability were 0.5. Calculated distribution of the 
discriminant function presented in Figure 6-19 indicate a clear maximum at x=22 m and y=16 m, 
which is supposed to become the location of a new observation point. 

Calculation of Kv using data from the second well (Wo2) with =0.85 and =3.4 as the starting point 
did not provide an apparent maximum value within the area of imaginary wells. The ARS team 
assumed that was because of the use of the maximum concentration in the response function. 
The mean maximum concentration in well Wo2 (3.4 µg L-1) was approximately 5 times smaller than 
in Wo1 (16.1 µg L-1). 
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Figure 6-18 Comparison of the BTCs obtained in the HYDRUS simulations (a) and using 
the analytical model (b) with the observed in two observation wells. 
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Figure 6-19 Distribution of the calculated values of discriminant function, Kv. 
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6.2.2.2  Application to the OPE3 Field Experiment 

The Kullback-Himmelblau sequential design (KHSD) methodology was tested using data from the 
tracer experiment carried out in 2008 at the USDA-ARS OPE3 integrated research site (Fig. 3-18). 
A pulse of KCl solution was applied to an irrigation plot, and chloride concentrations were 
measured in groundwater at three sampling depths with 12 observations wells.  
 
The spatial distribution of soil materials was obtained from cores taken from depths of 0-200 cm at 
20 cm increment during installation of the observation wells. Soil texture measured at 12 locations 
between depths of 0.2 m and 2.0 m at 0.2 m increments was grouped into 9 clusters such that 
each class was represented by soil texture averaged over the samples belonging to this class 
texture (Fig. 4-3). These classes included: three sandy loam classes (SL1, SL2 and SL3), two 
sandy clay loam classes (SCL1 and SCL2), two loam classes (L1 and L2), and two silty clay loam 
classes (SiCL1 and SiCL2). 
 
A 3D conceptual flow and transport model was developed to simulate water flow and chloride 
transport for the tracer experiment at the OPE3 site. The ARS team considered a 3-D layered 
domain that extended laterally for 60 m in the x (east-west) direction and for 50 m in the y (north-
south) direction. The thickness (z direction) of the domain varied from 2.5 m to 4.3 m (Fig. 6-20). 
The finite-element mesh was composed of 6670 nodes and 11088 3D elements.   
 
The KHSD method was used to search for the optimal location of the augmentation wells on a 2D 
grid including 120 imaginary wells (Fig. 6-20). For the response function the ARS study team 
calculated the maximum observed concentration (Cmax) in each observation well during the 120 
day simulation using HYDRUS-3D.  The initial and boundary conditions were prescribed as 
follows: 

- Equilibrium pressure head distributions relative to the groundwater levels measured in 
the observation wells at the beginning of the tracer experiment; 

- Spatially variable, but constant in time, pressure head profiles specified along the lateral 
boundary; 

- Variable initial Cl- distribution as measured in observation wells prior to the experiment; 
- Third type (Cauchy) boundary conditions for transport along the soil surface; 
- Cl- concentrations of groundwater along the lateral boundaries were set to the initial 

concentrations observed before the tracer experiment; 
- Daily-averaged atmospheric boundary conditions at the soil surface beyond the irrigated 

plot, and daily-averaged irrigation depth less runoff at the soil surface within the 
irrigated plot (Fig. 4-7); 

- A zero flux boundary condition along the bottom of the simulated domain; 
- Cl- concentrations of 4940 mg L-1 and 8 mg L-1 in the irrigation water during and after the 

tracer application, respectively. 
 
The ARS team considered discrimination between two models differing in terms of their 
subsurface structure lithology as follows (see also Fig. 6-21): Model 1 involving a layered medium 
containing 10 layers and 5 materials (every layer was assumed to be homogeneous), and Model 
2 involving a medium with 10 layers and lenses, and 7 soil materials. Locations of lenses were 
delineated manually.  
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Figure 6-20 Modeling domain with finite element mesh and observation locations. 

 
 
 

 

 
Figure 6-21 Soil materials in two subsurface structure models: a) Model 1 - Layered media,  

b) Model 2 - Layers and lenses media (shown layers 4-10) 
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The hydraulic conductivities and dispersivities were calibrated manually, while pedotransfer 
functions were used to condition the calibration results to produce an ensemble of models. Model 
parameters are presented in Table 6-1.  The ensemble modeling was used to estimate variances 
of the means of model response (Cmax) distributions. The ensembles of 25 realizations for each 
model were simulated by generating a lognormally distributed saturated hydraulic conductivity 
field with a prescribed standard deviation of log10(Ks) equal to 0.25.  An example stochastic 
realization of the hydraulic conductivity scaling factor is shown in Fig. 6-22).  

Figure 6-23 shows the spatial distribution of the tracer concentration at the end of the simulation 
time. The ARS team noted that the distribution simulated using Model 2 exhibited a more definite 
preferential flow and transport patterns as compared to Model 1. Simulated BTCs at eight existing 
monitoring well (L5-L12) are presented in Fig. 6-24 for the two models.  Values of the discriminant 
function, Kv, were evaluated at 120 locations of the imaginary monitoring wells (Fig. 6-20) on the 
5th grid layer. 

Five simulation scenarios were carried out by assuming that the nth experiment was performed in 
different existing monitoring well (those at locations L5 to L9).  When using Bayesian estimates to 
calculate the discriminant function (Eq. 6-17), specific locations of max(Kv) were very different in 
each of the five simulations. The ARS team suggests that this was because of a lack of a good 
calibration of the model affecting the calculation of prior and posterior probabilities. Applying the 
simpler equation (6-13), which disregards Bayesian estimates, provided similar results for all five 
simulations as shown in Fig. 6-25. The maximum of Kv was located at x=498-500 m and y=370 m, 
east of well L8. The distinction between the BTCs simulated with two models was most significant 
at L8 (Fig. 6-17).  Another local maximum was found between wells L6 and L10. The difference 
between the two BTCs was also considerable at well L6 (Fig. 6-24). 

 
Table 6-1 Model parameters found by trial-and error method. 

Parameter 
Texture 

r  s   , 

m-1 

n Ks 

m/day 
aL 
m 

aT 
m 

Material 1 0.049 0.361 2.31 1.37 0.3 0.25 0.05 

Material 2 0.046 0.331 3.06 1.26 0.3 0.25 0.05 

Material 3 0.0422 0.317 3.54 1.24 1.0 0.25 0.05 

Material 4 0.044 0.313 3.30 1.22 0.2 0.25 0.05 

Material 5 0.047 0.314 2.51 1.23 0.1 0.25 0.05 

Material 6 0.060 0.328 1.22 1.32 0.01 0.25 0.05 

Material 7 0.060 0.328 1.22 1.32 0.0001 0.25 0.05 
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Figure 6-22 Example of a stochastic realization for the hydraulic conductivity scaling 

factor (SF). 

 

 

 
Figure 6-23 Spatial distribution of tracer concentration after 120 days in 5th layer (z=2.75 

m):  a) Model 1, b) Model 2. 
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Figure 6-24 Simulations of the tracer BTCs in locations 5-12: a) Model 1; b) Model 2. 
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Figure 6-25 Discriminant function (Kv) distribution in five simulations: (a)-(e) scenarios of 
the nth experiment was performed in wells L5-L9, respectively. 
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7    SUMMMARY AND CONCLUSIONS 
 
The objective of this project was to demonstrate applicability of model abstraction techniques for 
optimization of monitoring networks at US NRC licensing sites. The study focused on two aspects 
of network optimization: (1) identification of performance indicators providing reliable information 
about subsurface contaminant transport, and (b) defining monitoring locations that would improve 
model calibration and reduce risk of incorrect detection of contaminant releases. 
 
To accomplish the project goal, the ARS study team used data from the OPE3 experimental field 
site near Beltsville, MD. This site has been extensively studied for more than 10 years using 
physical, geophysical, biophysical, remote sensing, and groundwater monitoring methods. All 
available data were analyzed in a systematic way and used to construct a conceptual site model 
and simulation domain. Special attention was paid to the spatial heterogeneity and organization of 
soil structural units composing the OPE3 site. 
 
A complex set of methods was employed to study the heterogeneity. A ground penetrating radar 
survey was conducted with 2x2 m spatial resolution and a scanning depth of approximately 3 m.  
Results of the survey were analyzed jointly with the water content monitoring data to delineate soil 
hydrologic layers. Results of the soil surveys conducted within the 10-year study period revealed 
considerable heterogeneity at the site, and provided detailed information about spatial 
organization of the soil structural units. The spatial heterogeneity was confirmed by direct and 
remote measurements at different scales. At the soil core scale these methods included soil 
chemical analysis, soil texture analysis, and measurements of the soil bulk density, soil water 
retention and saturated hydraulic conductivity. At the soil profile scale the ARS team used soil 
water content, pressure head and groundwater monitoring. At the field scale, methods of 
electromagnetic induction, electrical resistivity, color infrared imaging and direct measurements of 
corn biomass were implemented.  
 
At the soil core scale laboratory water retention data clearly indicated the presence of soil 
macroporosity that potentially could cause fine-scale high-conductivities in parts of the soil pore 
space. Hydraulic conductivity measurements at the same scale showed that, in actuality, such 
high conductivity regions would require not only the presence of macropores but also of a 
connectivity between these pores, which could be found only in a relatively small percentage of 
locations.  
 
At the soil profile scale soil moisture and soil pressure head monitoring data provided the required 
information about field hydraulic properties of unsaturated soils. Field water retention was well 
defined by those measurements. This indicated that the Richards model would be an appropriate 
conceptualization of the flow processes in the soils under study. 
 
Soil electrical resistivity monitoring at the field scale further revealed the existence of narrow 
hydrologically active vertical zones. The obtained data indicated that some parts of the subsurface 
did not fully participate in the prevailing flow and transport processes. Biophysical monitoring of 
the research area allowed delineation of relatively large structural units in the soil cover that 
provided distinctly different conditions for plant growth. The size of those units exceeded the scale 
of investigation of this project.  
 
To validate applicability of the model abstraction techniques for model calibration, a field 
experimental study was designed and carried out. The experiment involved the application of a 
pulse of conservative tracer on a 10x10 m plot equipped to monitor soil water contents,  
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pressure heads, groundwater depths and runoff. The tracer concentrations were monitored at 3 
depths in 5 and 3 wells installed at distances of 7 m and 14 m from the irrigated plot, respectively. 
The concentration measurements were supplemented with water content and groundwater depth 
data for all wells. The data collected within the 130-day monitoring period provided information for 
model calibration. The collected dataset included 28 breakthrough curves measured at 12 
locations (involving a total of 7,280 tracer concentrations).  The data indicated the presence of a 
fine-textured, low-permeability layer diverting the tracer according to the topography of the layer. 
There were no indications that the Buckingham-Darcy flow model and corresponding Richards 
equations were inapplicable at the larger scale, likely because flow and transport at that scale 
seemed to be driven mostly by the hydraulic gradients in groundwater. The complexity of the flow 
and transport domain required the use of a full 3D model. For this reason, the ARS study team 
used the HYDRUS-3D and TOUGH2 software packages to simulate flow and transport in the 
lateral flow experiment. For the TOUGH2 simulations, the radionuclide/tracer transport module 
T2R3D was coupled with the EOS9 module describing a saturated-unsaturated water flow in a 
porous medium. 

Since both models do not have a calibration option, trial and error calibration was applied in this 
study. The calibration objective functions consisted of deviations of simulated groundwater depths 
and measured concentrations. The calibrated parameters were the saturated hydraulic 
conductivity and the longitudinal dispersivity of 8 soil materials composing the simulation domain.  
The ratio of longitudinal to transversal dispersivity was set to 5 in all simulations to reduce the 
number of fitting parameters. The water retention parameters were estimated from basic soil 
properties using the ROSETTA software for all materials. The trial-and-error calibration was 
reasonably successful for HYDRUS-3D, yielding satisfactory description of the peak 
concentrations and their arrival times. However, both models failed to reproduce accurately the 
shape of the breakthrough curves, while the peaks in concentration could not be predicted with 
the TOUGH2 simulations.   

A sensitivity analysis was conducted to evaluate applicability of the different abstraction 
techniques to simplify the calibrated model. Using modeling results, the ARS team examined the 
combination of the simulation domain composition with specific transport properties and fluxes on 
the domain boundaries. The variance-based first order sensitivity coefficient (Si) and the 
derivative-based sensitivity index (Di) were used in the sensitivity analysis. Four abstraction 
techniques were tested using HYDRUS-3D and TOUGH2: (1) parameter abstraction, (2) 
subsurface textural units, (3) boundary conditions, and (4) time influence. The accuracies of the 
abstraction techniques were evaluated in terms of three performance indicators: (1) the tracer 
time series, (2) the peak concentrations (Cpeak), and (3) the times to peak concentration (Tpeak). 
Results of the sensitivity analysis showed that introducing the peak concentration and the time to 
peak concentration as performance indicators for the LSA allowed a significant reduction in the 
input information for the sensitivity analysis, and definition of the soil material that could be used 
for model simplification. The results also revealed a limitation of the Cpeak and Tpeak performance 
indicators in that they needed having peaks on the simulated BTCs. Both parameter abstraction 
and alteration of the boundary between soil materials (abstraction of subsurface textural units) 
identified the same material as a candidate for model simplification. Further analysis showed that 
this material could be replaced with another material with similar soil texture.  

Among the boundary conditions, averaging evapotranspiration rates did not affect the 
performance indicators, while runoff and groundwater depth did have an effect and therefore were 
not a subjected to model simplification. The sampling time influenced the performance indicators 
when the sampling intervals were longer than 2 and 10 days within and beyond the irrigated plot,   
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respectively.  Overall, the sensitivity analysis appeared to be a useful tool to identify the directions 
for model abstraction. 

Results of the sensitivity analysis were also used to evaluate the importance of observations 
collected in the monitoring wells during the lateral flow experiment, and to identify new locations to 
improve the HYDRUS-3D calibration. To do this, the ARS study team implemented the 
Observation-Prediction statistics (OPR) method, which computes the percent of changed 
uncertainty OPR caused by omitting or adding one observation node. The OPR method indicated 
that there was no need for data collection at two depths for model calibration, and emphasized the 
overall importance of monitoring at a depth corresponding to the z=2.49 m computational layer. 
The OPR method also appeared to be sensitive to values of the sensitivity parameters and their 
spatial structure. New monitoring wells identified using the OPR method were located in zones of 
transition from relatively high to low concentrations where the maximum model predicting 
uncertainty can be expected. Based on results of this study, the OPR method is recommended for 
selecting monitoring locations to improve model calibration.  

The applicability of different abstraction approaches was also evaluated at the scale of a 
decommissioning or license NRC site. The size of the simulation domain for this purpose was 
increased to 118x190 m to mimic the scale of a NRC site. Soil properties and boundary conditions 
of the extended domain were set based on a 10-year soil survey and groundwater monitoring 
data.  Three precipitation scenarios were generated based on 60-year weather data in Beltsville, 
MD. These scenarios included decades with 25%, 50% and 75% probabilities of the precipitation. 
The ARS study team assumed that the 10-year simulation period was sufficient for the tracer 
travel distance between the irrigation plot and the eastern edge of the simulation domain, and that 
the three selected probabilities adequately represent the temporal variability of precipitation.  

Four release scenarios and four groundwater scenarios represented uncertainties associated with 
the source of the contaminant release and the subsurface flow conditions. The release was 
simulated as a 10-day contaminant pulse from either the east-north or east-south points within the 
irrigated plot located on the surface or at the depth of 2.3 m. A total of 48 different scenarios were 
generated for HYDRUS-3D simulations, which included: 4 release scenarios x 4 groundwater 
scenarios x 3 precipitation scenarios. These scenarios provided input for the model abstraction 
techniques.  

The simulated tracer concentrations and fluxes were chosen in this study to characterize the 
tracer spread from the potential points of accidental release, while the simulated peak 
concentration (Cpeak) and time to peak concentration (Tpeak) at the observation nodes and 
transects at different distances from the release points characterized the direction and velocity of 
the contaminant plume. The accuracy of the model abstraction techniques was evaluated using 
the Nash and Sutcliffe efficiency criterion, the Willmot efficiency criterion and the coefficient of 
determination.  

Three abstraction techniques were validated for this scale. They were: (1) abstraction using 
pedotransfer functions, (2) profile aggregation, and (3) abstraction by ignoring the unsaturated 
zone. In abstraction (1) the calibrated values of the saturated hydraulic conductivities were 
replaced by their PTF estimates, in abstraction (2) the heterogeneous soil profile was replaced 
with a homogeneous profile composed of the dominant soil material in the domain, while in 
abstraction (3) unsaturated contaminant transport was discarded by placing the release source on 
the groundwater table.  Techniques (1) and (2) were found to be inappropriate for model 
abstraction. This was confirmed by all performance indicators. Technique (1) altered significantly  
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the contaminant concentrations, flow velocities and total mass transported, while technique (2) 
altered the flow direction. Ignoring the unsaturated zone appeared to be the only abstraction 
applicable for model simplification in our study. This result was attributed to the presence of 
perched water in our study and should be used cautiously at NRC sites with thick unsaturated 
zones.  

The same abstraction techniques were used to identify monitoring locations that had high 
probability to detect contaminant release and transport from a NRC decommissioning or licensing 
site. Results of HYDRUS-3D simulations for 48 scenarios were used to identify locations at 
different distances from the release points with (a) more frequent, and (b) more probable and 
persistent appearance of extreme values of the performance indicators, while the second 
approach involved a probability analysis. Overall, both the frequency and probability of the peak 
performance indicators appeared to provide appropriate statistics to identify monitoring locations 
with highest probability of contaminant plume detection. The observed difference between the 
time-based (Tpeak) and concentration- (Cpeak) or flux- (QC) based performance indicators were 
attributed to the different nature of the indicators. Arrival time did not appear to be a good 
predictor of plume propagation in high heterogeneous media due to the combined effect of 
contaminant dispersion and dilution on contaminant transport. The Cpeak and QC indicators were 
more reliable to identify the monitoring locations in this study. 

Validation of the three model abstraction techniques to identify monitoring locations confirmed 
applicability of the abstraction by ignoring the unsaturated zone for contaminant transport 
monitoring. However, the results of this abstraction may differ when a thicker vadose zone is 
present, or when horizontal lenses may slow down vertical transport. Monitoring locations 
obtained using the abstracted model matched the network identified by the calibrated model. In 
case of parameter abstraction, the abstracted model systematically underestimated peak 
concentrations and overestimated total fluxes. Little or no similarities were found between the 
travel times of the calibrated and abstracted models. Surprisingly, in spite of inaccuracies in the 
parameter abstracted model, the parameter abstraction approach appeared to be appropriate for 
monitoring location selection in this study. The homogeneous soil profile was the only abstraction 
technique which generated a monitoring network dissimilar to the network obtained with the 
calibrated HYDRUS model. The selected monitoring locations were systematically shifted to the 
south from the calibrated model, with the difference increasing with the distance from the source 
of release. This occurred primarily due to existence of the preferential lateral flow in the 
heterogeneous simulation domain, which was entirely discarded using homogeneous profile 
abstraction.   

Overall, this study demonstrated that model abstraction is an important component for 
development of monitoring strategies at NRC decommissioning or licensing sites. At the stage of 
data collection and analysis, model abstraction can identify sources of predictive uncertainty and 
optimize monitoring networks for the model calibration specific for the selected performance 
indicators. At the monitoring stage, model abstraction serves as a tool for model conceptualization 
and calibration. The calibrated model in turn provides most probable directions and velocities of 
contaminant transport from a potential release point under different scenarios, even when the 
source and the released mass are not well defined. Based on the model predictions some old 
locations can be excluded and new locations can be included into the monitoring network to 
provide more reliable information about potential contaminant transport from the release points. 
This multistep approach can be iterative since new monitoring data can provide important 
information for model conceptualization and improvement of the model calibration.  
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The Kullback-Himmelblau sequential design method was used for augmentation of the monitoring 
well network assuming that comparison and discrimination of models can be improved if additional 
observations are included. The method is based on (1) generalization of Kullback’s discriminant 
function and “weights of evidence” for the case of available prior probabilities, and (2) ensemble 
modeling to estimate the variance of the predicted values. The method was tested using data from 
(1) a synthetic example generated with HYDRUS-3D by simulating pulse injection of a 
conservative pollutant into an aquifer composed of relatively uniform sediments, and (2) the tracer 
experiment at the USDA-ARS OPE3 integrated research site, carried out in 2008. In each case 
two models were used for the simulations: a complex and an abstracted model. Models used for 
the synthetic example were the HYDRUS-3D model, and an analytical solution of Lenda and 
Zuber (1970) for 1D uniform flow and 3D transport.   

To simulate flow and chloride transport for the tracer experiment at the OPE3 site two three-
dimensional flow and transport models were used based on the HYDRUS-3D code: a model 
representing a layered medium; and a model accounting for many layers and lenses.  Calibration 
of hydraulic conductivities and dispersivities was performed, and pedotransfer functions were 
conditioned to calibration results to build an ensemble of models. A search of the optimal location 
for augmentation wells was carried out on a 2D grid downstream of the tracer injection. A single 
response function of the maximum observed concentration was used to discriminate between the 
models. Results indicate that the KHSD method can be used to find the optimum location of 
additional observation wells. Well-calibrated models provide a single optimal location, but if 
models are not well calibrated the Bayesian estimates strongly depend on the sequence of 
observation wells. Generalization of the method is possible for multiple response cases, such as 
maximum concentrations and arrival times. The information theory-based KHSD method to 
augment the observation network shows promise for improving the monitoring of flow and 
transport for discrimination of conceptual models of the subsurface. Outcomes of this study can 
provide information for future data collection and monitoring efforts that further reduce the 
uncertainty. 
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APPENDIX A    REVIEWING ASSUMPTIONS MADE DURING DEVELOPMENT 
 OF THE BASE MODEL ANDJUSTIFICATIONS FOR 

 THOSE ASSUMPTIONS 

Subsurface structural units 
The vadose zone typically consists of various horizons and connected or disconnected lenses. 
The profile may contain massive, cross-bedded, and horizontally-bedded units, both poorly and 
well sorted. All of these structural units may conduct water differently, with chemical transport and 
transformation similarly varying among the different units. Even with significant advances recently 
in hydrogeophysical techniques, precise delineation of the various units remains a challenge in 
many practical situations. Borehole-based stratification often cannot provide the type of 
exhaustive coverage generally needed for the simulation domain. Measurements of pollutant 
concentrations are point based and depend upon the interaction of the measurement device (e.g. 
suction lysimeters) with the soil at different levels of the water content.  

Because of great uncertainty in characterization, many often question the feasibility of performing 
vadose zone flow and transport simulations. While uncertainty definitely is an issue, such 
simulations are likely to become increasingly more popular, and essential, because of the 
importance of the vadose zone in terms of storing, transforming and redirecting pollutants entering 
this zone from the soil surface. In such simulations, the pertinent challenge is not to obtain a full-
fledged three-dimensional description of the locations and properties of structural units. The 
relevant challenges are answers to such questions as: 

 Does a specific site have subsurface structural units and features that may
drastically change the fate and transport of pollutants in the vadose zone along the
projected trajectory of a contaminant plume?

 If a restrictive fine-material layer is expected, does it have dikes or faults; can the
layer have gaps?

 If a restrictive layer is expected, can it have a topography causing flow and transport
via preferential pathways along it upper surface?

 Are there natural capillary barriers (i.e., boundaries between finer material overlaying
the coarse sediments)? If yes, are gaps in these barriers expected?

 Can funnel flow in coarse-textural soils develop due to presence of a layer of coarse
materials between two fine-textured layers?

 Can geochemical conditions of saturated or perched zones in the vadose zone
cause changes in pollutant transformations or retention?

 Can well-conducting layers contain fine-scale high-conductivity parts of the pore
space that will facilitate transport through large pores during episodic infiltration
events?

 Is the lateral conductivity of the capillary fringe large enough to allow substantial
contribution of the capillary fringe to lateral transport above the water table?

An essential condition here is to obtain answers to these questions from an available database 
that is as broad as possible. The database has to include information from public and private 
sources, cover both quantitative and qualitative (expert) information, and encompass both site-
specific and generic information. The geological, hydrogeologic, and hydrogeophysical 
assessment could benefit greatly from complementary sources such as types of stream 
hydrographs, the presence and hydrology of springs, the presence of paleosoils, documented 
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fragipans, experience during well construction, occurrence and concentrations of agricultural 
chemicals in well water, and crop yield variability in dry years.  

Dimension of the problem 

Most vadose zone flow and transport simulations are currently carried out in only one dimension 
(i.e., only vertical transport is considered). This is not sufficient for sites where unsaturated flow 
and transport pathways may be altered substantially due to the presence of redirecting structural 
units mentioned in the previous section.  

A two-dimensional representation is needed when: 

 lateral transport can be substantial

 restrictive layers, if present, are well defined

 flow in the vadose zone is controlled by infiltration

A three-dimensional representation is needed when: 

 the contaminant release source is providing also a substantial amount of
infiltration

 substantial lateral transport in the vadose zone is expected, both along and
across the main groundwater flow direction

Simulation domain, initial and boundary conditions 

The simulation domain must be selected such that it reflects the dimension of the problem and 
allows one to set justifiable boundary conditions along all boundaries.  One-dimensional (1D) 
problems require boundary conditions along the soil surface and the bottom of the vadose zone. 
Either a free drainage condition, or a zero pressure head condition at the ground water level (if the 
latter is monitored in time), is generally sufficient to simulate flow in this case.  

1D simulations likely will not provide correct simulations if substantial transport in the capillary 
fringe is expected, or if a restrictive layer exist that not only can cause perched water to develop 
but also may contain gaps that allows rising groundwater to move upward through gaps in the 
restrictive layer. In such cases 2D or 3D simulations are necessary.  Multi-dimensional vadose 
zone flow and transport simulations are best simulated when: 

 the simulation domain includes both a vadose zone and an aquifer

 flow and transport need to be considered jointly, without assuming some rule of
fluid and mass exchange between the vadose zone and groundwater

Boundary conditions in the groundwater subdomain have to be established according to existing 
guidelines for groundwater modeling. Boundary conditions for flow in the vadose zone must be 
established either from vadose zone monitoring data, or from preliminary 1D simulations of the 
vadose zone at the lateral boundaries of the flow domain.  Alternatively, they can be defined in a 
more arbitrary fashion to provide continuity in the pressure head along a vertical direction from the 
water table to the soil surface. In the latter case, however, the boundaries should be placed far 
enough from the contaminant plume, so that the boundary conditions would not affect flow and 
transport within the domain of interest. This has to be verified by preliminary simulations using 
realistic values for the flow and transport parameters.  
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Daylight surface boundary conditions have to be: 

 harmonized with the time step accepted in the model

 set with proper attention to runoff from and run-on to the soil surface simulation
domain

 reflect water and chemical uptake

The representation of initial conditions depends on the purpose of the modeling. For exploratory 
and forecast purposes it is customary to run the model with realistic boundary conditions for 
relatively long simulation periods (e.g., up to one year), and to use the results of this run as initial 
conditions for the flow model. For parameter estimation and understanding the current situation at 
the field site, measured initial values of the vadose zone state variables should be used.  

Estimated model parameters 

Estimated parameter values must be obtained and reviewed whether or now calibration is applied. 
The estimated parameters for flow and transport either:  

 are used directly in the simulations

 serve as initial estimates for model calibration

 are used in evaluations of the results of a calibration

A list of estimated flow and transport parameters for each subsurface structural unit typically 
includes: 

 soil water retention parameters

 unsaturated soil hydraulic conductivity parameters

 molecular diffusion coefficient of the contaminant

 dispersivity

 dual-porosity parameters

 chemical transformation parameters

 biological transformation parameters

Additional parameters are used if the pollutant experiences colloid-facilitated transport, 
volatilization, or is represented by nanoparticles.  

General requirements of the parameter estimation include: 

 using several sources,

 matching scales

 correcting for field conditions

 defining uncertainty

Using several sources is recommended since a similarity in soil type (e.g., soil texture) by no 
means guarantees a comparable similarity in the flow and transport parameters. For example, 
soils of similar texture may exhibit up to two orders of magnitude differences in hydraulic 
conductivity. A compendium of literature flow and transport parameters in soils is given by 
Pachepsky and Rawls (2004).  
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A match in the scale of an experiment is important when selecting literature values of the 
hydraulic conductivity and dispersivity parameters since they are known to depend on the support 
or extent of the experiment in which they have been measured. A rule of thumb recommendation 
is to use parameters from experiments in which the support or extent is close to the vertical size of 
the cell used in numerical simulations.  

A correction is often needed when relying on laboratory-measurements of the hydraulic 
conductivity, the dispersivity, and dual-porosity parameters since they depend on the spatial scale 
of an experiment.  Methods to account for this change in scale can be found in both the soils 
(Pachepsky et al., 2003) and groundwater (Neuman, 1990, 1995) literature. Corrections to field 
conditions are more difficult for chemical and biological transformation because they are specific 
to the type of pollutant. However, the anticipated differences in adsorption, dissolution, and 
transformation rates have to be articulated and taken into account in uncertainty-based modeling 
projects.  

Defining uncertainty in the estimated parameters is necessary for: 

 performing multiple simulations to evaluate the prediction uncertainty if no
calibration is envisaged

 determining the prior distributions of parameters to determine the posterior
distributions of calibrated parameters if Bayesian methods are used in the
calibrations

 evaluating the calibration results

Obtaining parameter estimates from multiple sources provides the necessary information for 
uncertainty characterization. It is imperative to use estimates not only of average values found in 
the literature, but also of the uncertainty in the average values that are reported in many (but not 
all) literature sources. An alternative method is to use probability distributions developed for soils 
from a large international database (Meyer et al., 1997).  

Data available for calibration 

Data needed for calibration of a vadose zone flow and transport model may include, in particular, 
monitoring data of: 

 the soil water content

 the soil pressure head

 soil water fluxes

 concentrations of pollutants in soils

 tracer concentrations if a tracer test has been run

 hydrogeophysical data from cross-borehole monitoring of infiltration events

 hydrogeophysical data from surface monitoring of soil water contents

 groundwater levels

 concentrations of pollutant or tracers in groundwater

In spite of the fact that flow and transport processes in the vadose zone are slow, tracer tests are 
desirable for evaluating the possibility of rapid pollutant transport in dual-porosity soils.  Calibration 
data must be available if the purpose of modeling is to analyze results of current or future 
management scenarios of contingencies. One may argue that running a model with all 
parameters within their variability ranges may provide an exhaustive characterization of the 
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uncertainty in predictions. This is true provided the structural units are conceptualized in a correct 
way, but that cannot be guaranteed in absolute terms. The credibility of a model increases if the 
calibration returns physically meaningful parameter values.  

All vadose zone measurements are to some extent indirect, and are affected by interactions 
between the measuring device and the medium being studied. Therefore, all data used for 
calibration have to be reported with expertly or directly estimated errors. This is needed to 
evaluate the calibration results in terms of their accuracy.  

The type of data, number of data points, and the frequency of data collection for reliable 
calibration is site-specific and depends on the method of calibration (see below). An optimal 
methodology of defining the best monitoring strategy for calibrating a vadose zone model presents 
an avenue of future research.  

Calibration procedure and results  

Two calibration methods are used most often in vadose zone flow and transport modeling: trial-
and-error (manual) calibration and automated calibration. Automated calibration does not change 
locations and dimensions of structural units; it only varies material properties within these units to 
match simulated and measured values. Trial-and-error calibrations usually change both the 
locations and the dimensions of the structural units until a better fit is obtained.  

An advantage of automated calibration is the objectivity in which the parameters are obtained. A 
disadvantage is that it may end up supporting an incorrect conceptualization of the flow and 
transport processes embedded in the model. Trial-and-error methods mirror automated calibration 
in terms of these advantages and disadvantages.  If automated calibration is used, the statistics of 
parameters should be analyzed in the same way as recommended in groundwater modeling 
projects (Hill and Tiedeman, 2007).  

Vadose zone simulations are notoriously slow because of the nonlinearity in the governing flow 
equations. Therefore, automated calibration is usually implemented only for one-dimensional 
simulations. Calibration in two- and three-dimensional simulations is usually achieved using trial-
and-error process.  

The calibration process should include: 

 normalization of measurements to exclude the effect of the measurement unit on 
the calibration results 

 justified removal of non-sensitive parameters from calibration 

 assignment of different and explicable weights to measurements of different types 
 
Software properties 

Because of the nonlinearities involved, numerical solutions of coupled vadose zone and 
groundwater problems often show unstable behavior, or produce unacceptable errors in the mass 
balances for water and solutes. This behavior, including the software used for the simulations, has 
to be documented and reported.  
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Model documentation 

Reviewing the documentation of a model is an essential component of the base model review. 
Reilly and Harbaugh (2004) indicate in their guidelines for evaluation of groundwater models that 
“because models are embodiments of scientific hypotheses, a clear and complete documentation 
of the model development is required for individuals to understand the hypotheses, to understand 
the methods used to represent the actual system with a mathematical counterpart, and to 
determine if the model is sufficiently accurate for the objectives of the investigation”. The same is 
true for vadose zone modeling. Clarifications on all of the topics addressed in this appendix have 
to be included in the documentation. 
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APPENDIX B       THE QUASI-3D CODE BENCHMARKING 

B.1  Model Evaluation Procedure 

The QUASI-3D model described in section 4.3.1 was tested and benchmarked against the 
corresponding full numerical code, FULL-3D. At a first stage, the performance of the FULL-3D and 
the QUASI-3D codes were assessed against measured and simulated water flow through a sandy 
soil using the laboratory setup of Vauclin (1979). This experiment was simulated earlier with the 
VSF model (Thoms et al., 2006) and the HYDRUS-1D-MODFLOW model (Twarakavi et al., 
2008). At a second stage, the performance of FULL-3D and QUASI-3D was compared against 
simulations with synthetic data of 3D problems addressing infiltration, pumping and groundwater 
mound dissipation through soils with different hydraulic properties. Benchmarking against 
available analytical solutions was also performed. Comparisons were made with reference to the 
following metrics.   

 The maximum difference between simulated groundwater levels with the QUASI-3D           

( DQZ 3 ) and the FULL3D (
DFZ 3

) codes, at the end of the simulation period: 

 

)max( 33max DFDQ ZZdZ       (B1) 

 

 The maximum relative difference between simulated groundwater levels at the end of the 
simulation period 

 

 ]/)max[( 333max DFDFDQ

rel ZZZdZ       (B2) 

 

 Mass balance error, Merr, assessed by 

%100*/)( sinifinerr QQWWM 
     (B3) 

where Wini  and Wfin are the initial and final water storage in the investigated 
domain, Q is the difference between total amounts of injected and pumped water, 

and 
sQ  is the sum of the absolute values of injected and pumped water volume. 

 The number of time steps, Nt, required for the simulation.  

 The total computation time, CPU. 

 The average number of iterations (accounting for the nonlinearity) within a time step, niter. 
This refers to the total number of iterations Niter during a specific simulation divided by the 
number of time steps needed for this simulation. It characterizes the computations load 
needed to build the linearized matrix of the algebraic equations. 

 The average number of iterations per solution of the linear system of equations at one 
iteration, nlin, commencing from the original nonlinear system. This addresses the total 
number of iterations needed to solve the linear system of (8), for which Nlin, is divided by 
the total number of iteration Niter. This characterizes the proportion of computations needed 
to solve the linearized system of the FD equations, (8), using the PCG2-MODFLOW 
routines based on the modified incomplete Cholesky Preconditioned  Conjugate Gradients 
method (Hill, 1990)  

  

http://www.google.co.il/url?sa=t&rct=j&q=modified%20incomplete%20cholesky%20pre-conditional%20conjugate%20gradient%20method&source=web&cd=2&ved=0CCEQFjAB&url=http%3A%2F%2Fwww.mathworks.com%2Fhelp%2Ftechdoc%2Fref%2Fpcg.html&ei=bz6yTsbHFJDAtAaB5PRA&usg=AFQjCNHJY24YpLLWvCIHgRcy2okra-W8Sg
http://www.google.co.il/url?sa=t&rct=j&q=modified%20incomplete%20cholesky%20pre-conditional%20conjugate%20gradient%20method&source=web&cd=2&ved=0CCEQFjAB&url=http%3A%2F%2Fwww.mathworks.com%2Fhelp%2Ftechdoc%2Fref%2Fpcg.html&ei=bz6yTsbHFJDAtAaB5PRA&usg=AFQjCNHJY24YpLLWvCIHgRcy2okra-W8Sg
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B.1.1  2-D Variably Saturated Transient Infiltration Observed in Laboratory Experiments 

Results obtained with several models are compared in this section, including against observed 
laboratory data by Vauclin et al. (1979),  The laboratory experiment was conducted using a 6 m 
long, 2 m high box was filled with sandy soil. Two drainage outlets were set at the box walls at 
0.65 m from its bottom. Each outlet was connected to a reservoir in which a level of 0.65 m above 
the bottom of the box was maintained during the entire experiment. At the beginning, the 
experimental system was maintained in hydraulic equilibrium with soil in full saturation at and 
below the levels of the drainage outlets. Water was applied for 8 hours at a 2x1 m2 strip in the 
center of the soil surface at a rate Q of 3.55 m day-1. The remainder of the soil surface was sealed 
to prevent evaporation. The simulation was carried out using the following soil hydraulic 
parameters: θs=0.30 m3 m-3, θr = 0.01 m3 m-3, α= 3. 3 m-1, n = 4.1, and Ks=8.50 m day-1. 
 
To compare the performance of the FULL-3D code with VSF, The ARS team followed the same 
spatial discretization cited in Thoms et al. (2006), i.e. a grid spacing of 0.1 m laterally and 0.06 m 
vertically. The time step was 1 min. A domain of 3 m by 2 m was considered due to symmetry of 
the flow process.  
 
Results of the water table simulations with the VSF and FULL-3D codes (both were developed by 
modifying MODFLOW) are compared in Fig. B1a, which also shows the experimentally measured 
water table. Simulation results for VSF and FULL-3D codes coincides and yielded an acceptable 
fit with the measured data. This provided confidence about the FULL-3D code to serve as 
appropriate benchmark for evaluating the performance of the QUASI-3D code. Fig. B1b shows 
results of the water table simulations conducted with two quasi 3D models: HYDRUS-1D - 
MODFLOW (Twarakavi et al. 2008) and our QUASI-3D code which did not consider the capillary 
fringe. Both codes underestimates the water table depth. The most significant discrepancies 
occurred below the water application area. HYDRUS-1D - MODFLOW created a smoother water 
table profile as compared with QUASI-3D. The latter produced a flatter groundwater table under 
the irrigated area and a sharp decrease in the water level outside of the irrigated area. Differences 
between the two codes relative to the groundwater level are attributed to the constant specific 
yield term in HYDRUS-1D - MODFLOW, which appears to be a fitting parameter. Using the 
constant specific yield provides a smoothing of the solution close to the infiltration source. Unlike 
HYDRUS-MODFLOW, the specific yield is not used in QUASI-3D where the water table is 
considered to be a moving boundary with its position estimated by the coupled solution of the 
Laplace equation in the saturated domain and a series of 1D equations for vertical flow in the 
unsaturated zone. Xu et al. (2012) simulated the same experiment using the SWAP-MODFLOW-
2000 package. Results showed that the simulated water table elevations closely matched the 
observed levels, except during the first 2 hours when they were slightly higher than the observed 
levels, probably due to neglecting lateral flow in the unsaturated zone.   
 
The effect of introducing a capillary fringe is shown in Fig B1c. The increase in the thickness of the 
capillary fringe (a decrease in the value of hcf) leads to smaller differences between simulations 
with QUASI-3D and the observed elevation of the water table. Decreasing hcf to -0.5 m, improves 
the agreement between the QUASI-3D and FULL-3D simulations. The position of the specific 
surface was not affected by hcf for values of hcf<-1 m. At the beginning of the simulation, the water 
table rise in the center of the box strongly depended upon lateral flow in the unsaturated zone. At 
later stages, accounting for the capillary fringe with hcf < -0.5 m provided satisfactory 
correspondence between the benchmark solution using FULL-3D and the QUASI-3D codes 
across the entire simulation domain. 
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Figure B-1  A comparison of water table elevation calculated using the (a) VSF and FULL-

3D codes, (b) HYDRUS-MODFLOW and QUASI-3D (with hcf=0 m) codes, (c) 
QUASI-3D code (with hcf=-0.25 m and -0.50 m), with the experimental data of 
Vauclin et al. (1979). 
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B.1.2  3-D Transient Infiltration, Pumping and Groundwater Mound Dissipation Simulations. 

A comparison of the FULL-3D and QUASI-3D codes was carried out for simulations of 
infiltration/pumping events with synthetic data. The flow domain consisted of a rectangular 
parallelepiped with lengths L in both horizontal directions, and thickness D (Fig. B2). Simulations 
were performed for two sets of hydraulic parameters for a homogeneous porous medium at three 
scales: small (L=100 m, D=1 m), medium (L=1000 m, D=10 m), and large (L=10,000 m, D=100 
m). The initial water table depth was D/2. A uniform grid was introduced in the simulation domain. 
The number of grid points was 100 in each direction, with the total number of nodes being 106. 

Hydraulic properties of the three sediments (sand, sandy loam and silt loam), expressed as in 
terms of the van Genuchten-Mualem model (Eqs. 4-3, 4-4), are presented in Table B1.  
 
Four simulation setups were considered. 
 
Simulation setup 1: Infiltration from the soil surface. Infiltration from square areas at the soil 
surface (10x10 m, 100x100 m, and 1000x1000 m for the small, medium and large spatial scales, 
respectively) located at the center of the surface domain would cause the water tables to rise. The 
bottom and lateral boundaries of the domain were subjected to no-flow conditions. An infiltration 
rate of 0.01 m day-1 during 15, 150 and 1500 days were ascribed to the spatial scales. Since 
simulations were performed for the aquifer composed of sandy material (Table B1), no capillary 
fringe was considered. 
 
Simulation setup 2: Groundwater pumping. A vertical well was located in the center of the 
simulation domain, with the well screen reaching the bottom of the aquifer bottom.  The lengths 
were 0.2, 2.0 and 20 m for the small, medium and large scales, respectively.  Constant pumping 
rates of 0.5, 50, and 5000 m3d-1 during 15, 150 and 1500 days were assumed for the three space 
scales, respectively. All boundaries were subject no-flow conditions. Similar simulations with the 
same soil (Table B1) were also performed for the case of having constant head at the lateral 
boundary of the domain. Results for this latter case could be compared with the analytical solution 
of Neuman (1975) for pumping from an isotropic unconfined aquifer. Again, no capillary fringe was 
considered. 
 
Simulation setup 3: Sequential infiltration, redistribution (groundwater mound dissipation), 
and pumping. Infiltration over a square area 100x100 m at a rate of 0.01 m day-1 during 365 
days, was followed by a pause of 365 days allowing redistribution of the water (all boundary fluxes 
and internal sinks were set to zero), after which pumping occurred during 365 days at a rate of 50 
m3d-1. Simulations were performed for the medium scale with parameters for sediment 2 (Table 
B1) corresponding to sandy loam, and for two hcf values (0 and -0.15 m). 
 
Simulation setup 4: Groundwater mound dissipation  
The mathematical formulation and analytical solution of the problem are presented in 
Poubarinova-Kochina (1977). The groundwater level at the initial time, t0, is given as a rectangular 

parallelepiped (height h ) on top of flat surface (elevation h0) 
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Figure B-2  A sketch of the domain for synthetic simulations of infiltration/pumping 

stresses. 
 

 
Table B-1  Hydraulic properties of porous media used in numerical experiments 
 

Setup Texture θr θs α, (m-1) n Ks , (m/day) 

1 and 2 Sand 0.070 0.400 0.145 2.68 5.0 

3 Sandy loam 0.065 0.410 0.075 1.89 1.06 

4 Silt loam 0.131 0.369 0.423 2.06 0.0496 

  

Initial water table

Infiltration area

Pumping well

L

D
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where R1 and R2 are initial extensions of the groundwater mound in x and y directions, 
respectively. The analytical solution of the linearized 2-D Boussinesq equation for this case is 
given by 
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where  ys ShKa
~

 , yS  is the specific yield and 2
~

0 hhh   is the average groundwater 

level. 

The ARS study team carried out simulations for a silty loam soil (Table B1) at the medium spatial 

scale. The size of the initial groundwater mound was: R1=R2=55m, h =1 m. Specific yield for the 

analytical solution was taken to be yS =0.136.   

 
Fig. B3 compares results obtained with the QUASI-3D and FULL-3D models for the infiltration 
example (simulation setup 1). While Table B2 and Fig. B3 compares results for simulation setups 
1 (infiltration) and 2 (pumping). Overall, results of the simulated water table elevation with the 

FULL-3D and QUASI-3D codes are very close, showing a maximum relative difference (
reldZmax ) 

that did not exceed the value of 0.004 for the infiltration simulations and 0.053 for pumping 
simulations. The maximum relative difference in groundwater levels for the two codes was larger 
for the small-scale experiments as compared to the larger domain.  

In the infiltration simulations, the QUASI-3D code formed a slightly taller and steeper groundwater 
mound as compared to the one simulated by the FULL-3D at all scales (Figure B3a, b, and c). 

The largest difference (
maxdZ ) in groundwater levels simulated by the two codes was 0.02 m at 

the large scale, while the smallest 
maxdZ =0.002 m was obtained at the small scale. 

For the second setup (pumping) with no flow boundary conditions along the lateral boundaries, 
the cone of depression simulated with QUASI-3D code was shallower than that simulated with 

FULL-3D (Fig. B3a, b, and c). The largest absolute difference (
maxdZ ) between the groundwater 

levels obtained with the two codes was 0.529 m for the larger scale. The smallest value at
maxdZ

=0.019 m was for the small-scale simulated pumping with a constant head boundary condition at 
the lateral boundary.  This exhibited practically identical solutions for the QUASI-3D and FULL-3D 
codes. The absolute maximum deviation in groundwater levels was 0.0016 m. Comparison of the 
QUASI-3D solution with the analytical solution of Neuman (1975), assuming a value of 0.3 for the 
specific yield of sand, provided a very good agreement between the simulated groundwater levels 
(not further shown here). Maximum absolute errors in the vicinity of the pumping well were 0.18, 
0.08 and 0.002 m for the large, medium and small scales, respectively. 

The mass balance of all simulations was satisfactory for all soil textures. For both models the 
mass balance errors did not exceed values of 0.21%, 0.06% and 0.04% for the small, medium 
and large scales, respectively. 

Results of simulations for setup 3 (sequential infiltration, mound dissipation, and pumping) are 
presented in Fig. B4 and Table B2. Simulations with the FULL-3D and QUASI-3D codes for  
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groundwater levels with hcf=-0.15 m were practically identical, with the maximum difference being 
less than 0.1 m. The maximum difference obtained for groundwater levels between the FULL-3D 
and QUASI-3D codes without a capillary fringe (hcf=0) varied from 0.07 m during infiltration to 0.7 
m during pumping. 

Figure B-3  Results of simulations of examples considering infiltration (setup 1) and 
pumping (setup 2) for (a) small, (b) middle and (c) large scales, with the 
QUASI-3D and FULL-3D codes. 
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The mass balance error was less than 0.01% in all simulations.. 

Results of the simulations of groundwater mound dissipation (setup 4) are shown in Fig. B5 and 
Table B2. The simulation with QUASI-3D for a groundwater level of hcf=0, was actually closer to 
the analytical solution of the linearized Boussinesq equation as compared to the FULL-3D 
solution. This is due to the fact that the QUASI-3D code accounts both for the specific features of 
the variably-saturated flow model and for the limitations of the Dupuit assumption. The maximum 
difference was 0.042 m at the groundwater mound summit, where QUASI-3D predicted higher 
groundwater levels than FULL-3D which did not account for horizontal flow in the capillary fringe. 
Introducing the capillary fringe into QUASI-3D with a value of -3.4 for hcf provided very good 
agreement between the QUASI-3D and FULL-3D models. The maximum deviation of the 
simulated groundwater levels was only 0.004 m. 

B.2  Computational Efficiency Of The Quasi-3d Code 

The numerical efficiency was expressed in terms of CPU time, the number of time steps Nt, the 
number of nonlinear iterations Niter, and the number of iterations to solve the linearized set of finite 
difference (FD) equations Nlin (Table B2).  In all simulations for setups 1 and 2 (infiltration and 
pumping, respectively), the CPU time for QUASI-3D code less than that of the FULL-3D code. 
However, only in two cases out of six simulations was the computational efficiency of QUASI-3D 
significantly higher (up to 300%) than that of the FULL-3D. For the infiltration simulations at the 
medium and large scales, the number of time steps and the number of nonlinear iterations were 
larger for QUASI-3D as compared FULL-3D (Table B2).  For all other simulations, Nt and Niter 
were approximately the same for both codes, which means a very similar rate of convergence 
(niter) when solving the set of non-linear FD equations. Yet, for setup 1 (infiltration), convergence 
was slower for the QUASI-3D code in comparison to FULL-3D, while the opposite was true for the 
setup 2 (pumping) simulations (Table B2). The number of iterations to solve the linearized set of 
the FD equations (Nlin) using the PCG2-MODFLOW code was smaller for QUASI-3D as compared 
to the FULL-3D code at the small scale. The number of iterations for QUADI-3D were, however, 
larger for the medium and large scales.  

For setup 3, the computations with QUASI-3D  in terms of CPU time and the number of iterations 
were about 30% faster than those of the FULL-3D code. The better numerical efficiency of the 
QUASI-3D code was not only due to a decrease in the computations to form the matrix of FD 
equations and its solution, but also because of a lower total number of iterations by about 30%. 
For setup 4, the computational efficiency of QUASI-3D was only slightly better than that of FULL-
3D. 

The total computation time was partitioned between (1) the time needed to compose the FD 
matrix equations, including calculations of the non-linear soil hydraulic properties and various 
terms in the FD equations, and (2) the time needed to solve the final set of matrix equations. To 
assess this partitioning, the ARS study team built a linear regression relation for the total CPU 
time (TCPU) as a function of total number of nonlinear iterations (Niter) and total number of iterations 
to solve the linearized set of equations using PCG2-MODFLOW (Nlin): 

linliniteriterCPU NmNmT  (B6) 
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Table B-2  Performance of the benchmark of FULL-3D and QUASI-3D models for the 
 setups 1, 2*, 3 and 4. 

Scale Setup Model Merr 

% 
CPU 
min 

Nt Niter Nlin 

m 

S
m

a
ll 1. Infiltration

QUASI-3D 0.06 3.29 138 311 359 0.002 0.004 

FULL-3D 0.05 4.02 136 290 523 

2. Pumping
QUASI-3D 0.21 3.11 136 272 407 0.019 0.053 

FULL-3D 0.05 3.39 136 272 408 

M
e

d
iu

m
 

1. Infiltration
QUASI-3D 0.06 20.0 543 1743 6199 0.006 0.001 

FULL-3D 0.02 23.33 535 1735 5028 

2. Pumping
QUASI-3D 0.04 6.58 183 486 3224 0.067 0.020 

FULL-3D 0.00 22.07 378 1315 7395 

L
a
rg

e
 1. Infiltration

QUASI-3D 0.01 75.12 1220 4984 43388 0.020 0.000 

FULL-3D 0.02 78.15 1094 4329 29408 

2. Pumping
QUASI-3D 0.00 24.5 521 1454 15585 0.529 0.016 

FULL-3D 0.04 63.05 887 2788 29387 

M
e

d
iu

m
 

3.Infiltration,
pause, 
pumping 

QUASI-3D 
hcf=0 m 

0.01 27.16 694 2450 6824 0.7 0.029 

QUASI-3D 
hcf=-0.15 m 

0.01 27.35 697 2493 6535 0.01 0.002 

FULL-3D 0.01 43.11 930 3342 8151 

M
e

d
iu

m
 

4.Groundwater
mound 
dissipation 

QUASI-3D 
hcf=0 m 

0.00 
13.41 603 1206 1635 0.042 0.007 

QUASI-3D 
hcf=-3.4 m 

0.00 
14.43 603 1206 1639 0.004 0 

FULL-3D 
0.00 

15.14 603 1206 1640 

*Pumping simulations with no flow boundary condition at the lateral boundary.

maxdZ reldZmax
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Figure B-4  Results of simulations of the setup 3 example: (a) infiltration and mound 
dissipation and (b) pumping, with the QUASI-3D and FULL-3D codes. 
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Figure B-5  Results of simulations with the analytical solution, QUASI-3D and FULL-3D 
codes of groundwater mound dissipation, for the setup 4 example. 
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where 
iterm  and 

linm  are the specific CPU times required to build matrices and to solve the 

linearized set of equations for one iteration, respectively. 

The ARS study team used the results presented in Table B2 to obtain estimated of the coefficients 
in Eq. (B6). Table B3 presents parameters of the linear regression. For setups 1 and 2, when 
using the QUASI-3D code, the number of nodes for the FD grid associated with 1D flow in the 
unsaturated zone was about half of the total number of nodes.  When using FULL-3D, all FD grid 
nodes were associated with 3D flow process. The CPU time of the QUASI-3D code for one linear 
iteration (i.e., to solve linearized FD equation set using the PCG2-MODFLOW code) was found to 
be almost half of that of FULL-3D for both infiltration and pumping.  This because of the 
significantly smaller number of nodes associated with the 3D flow process. Note that the 
computational expense to perform one iteration for solving the linear set of equations with positive 
definite matrix PGG2, is proportional to the total number of nodes.  Most of the CPU time was 
spent to compute matrices of the FD equations, while the time required to solve this set of 
equations depended on the rate of convergence speed (10-40% of total CPU time).  

Table B-3  Linear regression parameters of (B6) to assess time performance efficiency of 
the FULL-3D and QUASI-3D codes. 

Code QUASI-3D FULL-3D 

Coefficients iterm

min 

linm

min 

iterm

min 

linm

min 

Values 0.0086 0.00073 0.0097 0.0013 

R2 0.999 0.999 

B.3  Effect of Capillary Fringe 

The QUASI-3D code was found to be efficient and accurate in comparisons with the benchmark 
FULL-3D code when the capillary fringe was considered. Numerical experiments presented in the 
sections 4.1 and 4.2 showed that horizontal flow of water in the unsaturated zone can have a 
noticeable effect on groundwater level in the vicinity of sources and sinks. Assigning a value of the 
pressure head (hcf) to define the position of the specific surface representing the capillary fringe, 
which is accounted for by a moving boundary between 1D flow in the unsaturated zone and 3D 
flow in groundwater, allows one to expand the zone of 3D flow to the capillary fringe and increase 
the accuracy of groundwater table simulations. The value of hcf can be estimated from the soil 
water curve or by comparing the QUASI-3D solution with the more accurate FULL-3D solution for 
prescribed conditions.  The effect of the capillary fringe on water flow and solute transport is 
controversial. Experiments by Abit et al. (2008) showed that when Br was introduced in the 
capillary fringe, it was moving laterally above the water table. The role of the capillary fringe 
should depend on dependency of the hydraulic conductivity on the pressure head near saturation. 
The pore-connectivity parameter l in the van Genuchten-Mualem model (Eq. 4-4) and properties 
of the soil water retention curve both affect this dependency. The parameter l (median value of 0.5 
derived by Mualem, 1976) describes the tortuosity of the pore space and can significantly affect 
the rate at which the hydraulic conductivity decreases with the pressure head.  However, values of 
l from a range of -10 to 10 have been encountered (van Genuchten et al. 1989). Yates et al. 
(1992) and Schaap and Leij (2000) reported an even wider range of l values. When this 
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parameter is negative and has a large absolute value, the hydraulic conductivity of unsaturated 
soils in the capillary fringe remain close to the value of the saturated hydraulic conductivity as soil 
dries out (Pachepsky et al., 2000). On the other hand, if the parameter l is a large and positive, the 
hydraulic conductivity decreases fast as soil loses water, which happens most often in fine-
textured soils or in soils with well-developed macroporosity (Wösten and van Genuchten, 1988). 
The effect of the parameter l on the efficiency of accounting for the capillary fringe presents an 
interesting avenue for further research. 

The 1D approximation for flow in the unsaturated zone to estimating risks of groundwater 
contamination has been employed for various contaminants, e.g. PEARL (Leistra et al, 2001) for 
pesticides and RESRAD for radionuclides (Yu et al., 2001). No capillary fringe is considered in 
these codes. The QUASI-3D code may be used to assess potential errors caused by ignoring the 
capillary fringe. The code may be useful also for assessing the role of vertical heterogeneities that 
can cause accumulation of perched water. Approximation with and without a capillary fringe can 
also be applied to the QUASI-3D and with FULL-3D codes. This can facilitate further evaluation of 
the conceptual model behind the QUASI-3D approximations. 
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