

RS-16-175

10 CFR 50.54(f)

November 2, 2016

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk 11555 Rockville Pike Rockville, MD 20852

> Byron Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-37 and NPF-66 <u>NRC Docket Nos. STN 50-454 and STN 50-455</u>

Subject: High Frequency Supplement to Seismic Hazard Screening Report, Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident

References:

- NRC Letter, Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3, of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, dated March 12, 2012 (ML12053A340)
- NRC Letter, Electric Power Research Institute Report 3002000704, "Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," As An Acceptable Alternative to the March 12, 2012, Information Request for Seismic Reevaluations, dated May 7, 2013 (ML13106A331)
- NEI Letter, Final Draft of Industry Seismic Evaluation Guidance, Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic (EPRI 1025287), dated November 27, 2012 (ML12333A168 and ML12333A170)
- NRC Letter, Endorsement of Electric Power Research Institute Final Draft Report 1025287, Seismic Evaluation Guidance, Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic, dated February 15, 2013 (ML12319A074)
- Exelon Generation Company, LLC letter to NRC, Byron Station, Units 1 and 2 Seismic Hazard and Screening Report (CEUS Sites), Response to NRC Request for Information Pursuant to 10CFR50.54(f) Regarding Recommendation 2.1 of Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident, dated March 31, 2014 (RS-14-065) (ML14091A010)

U.S. Nuclear Regulatory Commission Seismic Hazard 2.1 High Frequency Supplement November 2, 2016 Page 2

- 6. NRC Letter, Screening and Prioritization Results Regarding Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Seismic Hazard Reevaluations for Recommendation 2.1 of the Near Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, dated May 9, 2014 (ML14111A147)
- 7. NRC Memorandum, Support Document for Screening and Prioritization Results Regarding Seismic Hazard Re-Evaluation for Operating Reactors in the Central and Eastern United States, dated May 21, 2014 (ML14136A126)
- 8. NEI Letter, Request for NRC Endorsement of High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation (EPRI 3002004396), dated July 30, 2015 (ML15223A100/ML15223A102)
- 9. NRC Letter to NEI: Endorsement of Electric Power Research Institute Final Draft Report 3002004396: "High Frequency Program: Application Guidance for Functional Confirmation and Fragility", dated September 17, 2015 (ML15218A569)
- NRC Letter, Final Determination of Licensee Seismic Probabilistic Risk Assessments Under the Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1 "Seismic" of the Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident, dated October 27, 2015 (ML15194A015)

On March 12, 2012, the Nuclear Regulatory Commission (NRC) issued a Request for Information per 10 CFR 50.54(f) (Reference 1) to all power reactor licensees. The required response section of Enclosure 1 of Reference 1 indicated that licensees should provide a Seismic Hazard Evaluation and Screening Report within 1.5 years from the date of the letter for Central and Eastern United States (CEUS) nuclear power plants. By NRC letter dated May 7, 2013 (Reference 2), the date to submit the report was extended to March 31, 2014.

By letter dated May 9, 2014 (Reference 6), the NRC transmitted the results of the screening and prioritization review of the seismic hazards reevaluation report for Byron Station, Units 1 and 2 submitted on March 31, 2014 (Reference 5). In accordance with the screening, prioritization, and implementation details report (SPID) (References 3 and 4), and Augmented Approach guidance (Reference 2), the reevaluated seismic hazard is used to determine if additional seismic risk evaluations are warranted for a plant. Specifically, the reevaluated horizontal ground motion response spectrum (GMRS) at the control point elevation is compared to the existing safe shutdown earthquake (SSE) or Individual Plant Examination for External Events (IPEEE) High Confidence of Low Probability of Failure (HCLPF) Spectrum (IHS) to determine if a plant is required to perform a high frequency confirmation evaluation. As noted in the May 9, 2014 letter from the NRC (Reference 6) on page 4 of Enclosure 2, Byron Station, Units 1 and 2 is to conduct a limited scope High Frequency Evaluation (Confirmation).

Within the May 9, 2014 letter (Reference 6), the NRC acknowledged that these limited scope evaluations will require additional development of the assessment process. By Reference 8, the Nuclear Energy Institute (NEI) submitted an Electric Power Research Institute (EPRI) report entitled, High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation (EPRI 3002004396) for NRC review and endorsement. NRC endorsement was provided by Reference 9. Reference 10 provided the NRC final seismic hazard evaluation

U.S. Nuclear Regulatory Commission Seismic Hazard 2.1 High Frequency Supplement November 2, 2016 Page 3

screening determination results and the associated schedules for submittal of the remaining seismic hazard evaluation activities.

The High Frequency Evaluation Confirmation Report for Byron Station, Units 1 and 2, provided in the enclosure to this letter, shows that all high frequency susceptible equipment evaluated within the scoping requirements and using evaluation criteria of Reference 8 for seismic demands and capacities, are acceptable. Therefore, no additional modifications or evaluations are necessary.

This letter closes Commitment No. 1 in Reference 5.

This letter contains no new regulatory commitments.

If you have any questions regarding this report, please contact Ronald Gaston at 630-657-3359.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 2nd day of November 2016.

Respectfully submitted,

For

Glen T. Kaegi Director - Licensing & Regulatory Affairs Exelon Generation Company, LLC

Enclosure: Byron Station, Units 1 and 2 - Seismic High Frequency Evaluation Confirmation Report

cc: NRC Regional Administrator - Region III NRC Project Manager, NRR – Byron Station NRC Senior Resident Inspector – Byron Station Mr. Brett A. Titus, NRR/JLD/JCBB, NRC Mr. Stephen M. Wyman, NRR/JLD/JHMB, NRC Mr. Frankie G. Vega, NRR/JLD/JHMB, NRC Illinois Emergency Management Agency – Division of Nuclear Safety

Enclosure

Byron Station, Units 1 and 2

Seismic High Frequency Evaluation Confirmation Report

(75 pages)

HIGH FREQUENCY CONFIRMATION REPORT

IN RESPONSE TO NEAR TERM TASK FORCE (NTTF) 2.1 RECOMMENDATION

for the

Byron Generating Station, Units 1 and 2 4450 North German Church Road Byron, Illinois 61010-9794 Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN 50-454 and STN 50-455 Correspondence No.: RS-16-175

Exelon Generation Company, LLC (Exelon) PO Box 805398 Chicago, IL 60680-5398

Prepared by: Stevenson & Associates 1661 Feehanville Drive, Suite 150 Mount Prospect, iL 60056

Report Number: 15C0346-RPT-002, Rev. 0

	Printed Name	Signature	Date
Preparer:	A. Broda	alla Broda	10/06/2016
Reviewer:	M. Delaney	Marline M Selary	10/06/2016
Approver:	M. Delaney	Mailere Marling	10/10/2016
Lead Responsible Engineer:	kelly zievor	Kellyzen	10/28/16
Branch Manager:	K. CKEUN PASSmore	2. Can	10/28/16
Senior Manager Design Engineering:	Harris Well	11-Under	10 28-16
Corporate Acceptance:	Jeffrey S. Clark	fifting & Clone	<u>10/28/16</u>
Lead Responsible Engineer: Branch Manager: Senior Manager Design Engineering: Corporate Acceptance:	Kelly Zlevor R. CKEUN PASSMORE Harns Well Jeffrey S. Clark	Kellyzen R. Can Harten Harten Alfong & Clark	10/28/16 10/28/16 10 28-16 10/28/16

Document ID: 15C0346-RPT-002 Title: High Frequency Confirmation Report for Byron Nuclear Power Station in Response to Near Term Task Force (NTTF) 2.1 Recommendation					
Document Ty Criteria 🗌	/pe: Interface 🗆	Report 🛛	Specification \Box	Other 🗆	Drawing 🗆
Project Nar Byron High Job No.: 15	ne: Frequency Con C0346	firmation			
Client:	Exel	on.			

This document has been prepared in accordance with the S&A <u>Quality Assurance</u> <u>Program Manual</u>, Revision 18 and project requirements:

11

Initial Issue (Rev. 0)		
Originated by: A. Broda	alla Bonda	Date: 10/06/2016
Checked by: M. Delaney	Marlene M Selary	Date: 10/06/2016
Approved by: M. Delaney	Marline M Selary	Date: 10/10/2016
	\rightarrow	

Revision Record:					
Revision No.	Originated by/ Date	Checked by/ Date	Approved by/ Date	Description of Revision	
Stevenson & Associates		DOCL APPROV Figu	JMENT AL SHEET re 2.8	PROJECT NO. 15C0346	

Executive Summary

The purpose of this report is to provide information as requested by the Nuclear Regulatory Commission (NRC) in its March 12, 2012 letter issued to all power reactor licensees and holders of construction permits in active or deferred status [1]. In particular, this report provides information requested to address the High Frequency Confirmation requirements of Item (4), Enclosure 1, Recommendation 2.1: Seismic, of the March 12, 2012 letter [1].

Following the accident at the Fukushima Dai-ichi nuclear power plant resulting from the March 11, 2011, Great Tohoku Earthquake and subsequent tsunami, the Nuclear Regulatory Commission (NRC) established a Near Term Task Force (NTTF) to conduct a systematic review of NRC processes and regulations and to determine if the agency should make additional improvements to its regulatory system. The NTTF developed a set of recommendations [15] intended to clarify and strengthen the regulatory framework for protection against natural phenomena. Subsequently, the NRC issued a 50.54(f) letter on March 12, 2012 [1], requesting information to assure that these recommendations are addressed by all U.S. nuclear power plants. The 50.54(f) letter requests that licensees and holders of construction permits under 10 CFR Part 50 reevaluate the seismic hazards at their sites against present-day NRC requirements and guidance. Included in the 50.54(f) letter was a request that licensees' perform a "confirmation, if necessary, that SSCs, which may be affected by high-frequency ground motion, will maintain their functions important to safety."

EPRI 1025287, "Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic" [6] provided screening, prioritization, and implementation details to the U.S. nuclear utility industry for responding to the NRC 50.54(f) letter. This report was developed with NRC participation and was subsequently endorsed by the NRC. The SPID included guidance for determining which plants should perform a High Frequency Confirmation and identified the types of components that should be evaluated in the evaluation.

Subsequent guidance for performing a High Frequency Confirmation was provided in EPRI 3002004396, "High Frequency Program, Application Guidance for Functional Confirmation and Fragility Evaluation," [8] and was endorsed by the NRC in a letter dated September 17, 2015 [3]. Final screening identifying plants needing to perform a High Frequency Confirmation was provided by NRC in a letter dated October 27, 2015 [2].

This report describes the High Frequency Confirmation evaluation performed for Byron Nuclear Power Station, Units 1 and 2 (BYR). The objective of this report is to provide summary information describing the High Frequency Confirmation evaluations and results. The level of detail provided in the report is intended to enable NRC to understand the inputs used, the evaluations performed, and the decisions made as a result of the evaluations.

EPRI 3002004396 [8] is used for the BYR evaluations described in this report. In accordance with Reference [8], the following topics are addressed in the subsequent sections of this report:

- Process of selecting components and a list of specific components for high-frequency confirmation
- Estimation of a vertical ground motion response spectrum (GMRS)
- Estimation of in-cabinet seismic demand for subject components
- Estimation of in-cabinet seismic capacity for subject components
- Summary of subject components' high-frequency evaluations

1 Introduction

1.1 PURPOSE

The purpose of this report is to provide information as requested by the NRC in its March 12, 2012 50.54(f) letter issued to all power reactor licensees and holders of construction permits in active or deferred status [1]. In particular, this report provides requested information to address the High Frequency Confirmation requirements of Item (4), Enclosure 1, Recommendation 2.1: Seismic, of the March 12, 2012 letter [1].

1.2 BACKGROUND

Following the accident at the Fukushima Dai-ichi nuclear power plant resulting from the March 11, 2011, Great Tohoku Earthquake and subsequent tsunami, the Nuclear Regulatory Commission (NRC) established a Near Term Task Force (NTTF) to conduct a systematic review of NRC processes and regulations and to determine if the agency should make additional improvements to its regulatory system. The NTTF developed a set of recommendations intended to clarify and strengthen the regulatory framework for protection against natural phenomena. Subsequently, the NRC issued a 50.54(f) letter on March 12, 2012 [1], requesting information to assure that these recommendations are addressed by all U.S. nuclear power plants. The 50.54(f) letter requests that licensees and holders of construction permits under 10 CFR Part 50 reevaluate the seismic hazards at their sites against present-day NRC requirements and guidance. Included in the 50.54(f) letter was a request that licensees perform a "confirmation, if necessary, that SSCs, which may be affected by high-frequency ground motion, will maintain their functions important to safety."

EPRI 1025287, "Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic" [6] provided screening, prioritization, and implementation details to the U.S. nuclear utility industry for responding to the NRC 50.54(f) letter. This report was developed with NRC participation and is endorsed by the NRC. The SPID included guidance for determining which plants should perform a High Frequency Confirmation and identified the types of components that should be evaluated in the evaluation.

Subsequent guidance for performing a High Frequency Confirmation was provided in EPRI 3002004396, "High Frequency Program, Application Guidance for Functional Confirmation and Fragility Evaluation," [8] and was endorsed by the NRC in a letter dated September 17, 2015 [3]. Final screening identifying plants needing to perform a High Frequency Confirmation was provided by NRC in a letter dated October 27, 2015 [2].

On March 31, 2014, BYR submitted a reevaluated seismic hazard to the NRC as a part of the Seismic Hazard and Screening Report [4]. By letter dated October 27, 2015 [2], the NRC transmitted the results of the screening and prioritization review of the seismic hazards reevaluation.

This report describes the High Frequency Confirmation evaluation undertaken for BYR using the methodologies in EPRI 3002004396, "High Frequency Program, Application Guidance for

Functional Confirmation and Fragility Evaluation," as endorsed by the NRC in a letter dated September 17, 2015 [3].

The objective of this report is to provide summary information describing the High Frequency Confirmation evaluations and results. The level of detail provided in the report is intended to enable NRC to understand the inputs used, the evaluations performed, and the conclusions made as a result of the evaluations.

1.3 APPROACH

EPRI 3002004396 [8] is used for the BYR evaluations described in this report. Section 4.1 of Reference [8] provided general steps to follow for the high frequency confirmation component evaluation. Accordingly, the following topics are addressed in the subsequent sections of this report:

- BYR SSE and GMRS Information
- Selection of components and a list of specific components for high-frequency confirmation
- Estimation of seismic demand for subject components
- Estimation of seismic capacity for subject components
- Summary of subject components' high-frequency evaluations
- Summary of Results

1.4 PLANT SCREENING

BYR submitted reevaluated seismic hazard information including GMRS and seismic hazard information to the NRC on March 31, 2014 [4]. In a letter dated February 17, 2016, the NRC staff concluded that the submitted GMRS adequately characterizes the reevaluated seismic hazard for the BYR site for 2.1 Seismic [14].

The NRC final screening determination letter concluded [2] that the BYR GMRS to SSE comparison resulted in a need to perform a High Frequency Confirmation in accordance with the screening criteria in the SPID [6].

1.5 REPORT DOCUMENTATION

Section 2 describes the selection of devices. The identified devices are evaluated in Reference [190] for the seismic demand specified in Section 3 using the evaluation criteria discussed in Section 4. The overall conclusion is discussed in Section 5.

Table B-1 lists the devices identified in Section 2 and provides the results of the evaluations performed in accordance with Section 3 and Section 4.

2 Selection of Components for High-Frequency Screening

The fundamental objective of the high frequency confirmation review is to determine whether the occurrence of a seismic event could cause credited FLEX/mitigating strategies equipment to fail to perform as necessary. An optimized evaluation process is applied that focuses on achieving a safe and stable plant state following a seismic event. As described in Reference [8], this state is achieved by confirming that key plant safety functions critical to immediate plant safety are preserved (reactor trip, reactor vessel inventory and pressure control, and core cooling) and that the plant operators have the necessary power available to achieve and maintain this state immediately following the seismic event (AC/DC power support systems).

Within the applicable functions, the components that would need a high frequency confirmation are contact control devices subject to intermittent states in seal-in or lockout circuits. Accordingly, the objective of the review as stated in Section 4.2.1 of Reference [8] is to determine if seismic induced high frequency relay chatter would prevent the completion of the following key functions.

2.1 REACTOR TRIP/SCRAM

The reactor trip/SCRAM function is identified as a key function in Reference [8] to be considered in the High Frequency Confirmation. The same report also states that "the design requirements preclude the application of seal-in or lockout circuits that prevent reactor trip/SCRAM functions" and that "No high-frequency review of the reactor trip/SCRAM systems is necessary."

2.2 REACTOR VESSEL INVENTORY CONTROL

The reactor coolant system/reactor vessel inventory control systems were reviewed for contact control devices in seal-in and lockout (SILO) circuits that would create a Loss of Coolant Accident (LOCA). The focus of the review was contact control devices that could lead to a significant leak path. Check valves in series with active valves would prevent significant leaks due to misoperation of the active valve; therefore, SILO circuit reviews were not required for those active valves.

The process/criteria for assessing potential reactor coolant leak path valves is to review all P&ID's attached to the Reactor Coolant System (RCS) and include all active isolation valves and any active second valve upstream or downstream that is assumed to be required to be closed during normal operation or close upon an initiating event (LOCA or Seismic). A table with the valves and associated P&ID is included in Table B-2 of this report.

Manual valves that are normally closed are assumed to remain closed and a second simple check valve is assumed to function and not be a Multiple Spurious Failure.

Active Function: A function that requires mechanical motion or a change of state (e.g., the closing of a valve or relay or the change in state of a transistor)

Simple Check Valve: A valve which closes upon reverse fluid flow only.

The Letdown and Purification System on PWRs is a normally in service system with the flowpath open and in operation. If an event isolated a downstream valve, there are pressure relief valves that would flow water out of the RC System. Letdown has auto isolation and abnormal operating procedure which isolate the flow. There are no auto open valves in this flowpath.

Table B-2 contains a list of valves analyzed and the resultant devices selected which are also identified in the section below. Based on the analysis detailed below, there are no moving contact control devices which could create a LOCA due to chatter-induced sustained valve misalignment, and thus no devices were selected for this category.

Reactor Coolant Loop Valves

Drain Line Valves 1RC8037A/B/C/D, 2RC8037A/B/C/D, Reactor Head Vent Valves 1RC014A/B/C/D, 2RC014A/B/C/D

Electrical control for the solenoid-operated pilot valves is via a rugged hand control switch. There are no chatter sensitive contact devices involved in the control of these valves [21, 22, 23, 24].

Pressurizer Power Operated Relief Valves 1RY455A, 1RY456, 2RY455A, 2RY456, Blocking Valves 1RY8000A/B, 2RY8000A/B

Electrical control for the solenoid-operated pilot valves is via relays which are energized from process control signals. There are no devices which could seal-in and cause a sustained undesirable opening of the Pressurizer Power Operated Relief Valves [25, 26, 27, 28, 29, 30]. For this reason, these valve controls can be credited in a high frequency event, and analysis of the Blocking Valve controls is unnecessary.

Residual Heat Removal Valves

Reactor Coolant Loop to Residual Heat Removal Pump Isolation Valves 1RH8701A-1/1B-2/2A-1/2B-2, 2RH8701A-1/1B-2/2A-1/2B-2

Both the P&ID and control schematic diagrams indicate 1RH8701B-2, 1RH8702A-1, 2RH8701B-2, and 2RH8702A-1 are closed and depowered during normal operation [31, 32, 33, 34, 35, 36]. Lacking electrical power, any SILO devices in the control for these valves would have no effect on valve position. Since these valves can be credited for remaining closed following a seismic event, analysis of the valve controls for 1RH8701A-1, 1RH8702B-2, 2RH8701A-1, and 2RH8702B-2 is unnecessary.

Process Sampling Valves

Hot Leg Loop 1&3 Sample Line Selector Valves 1PS9351A/B, 2PS9351A/B, Pressurizer Steam Sample Selector Valves 1PS9350A, 2PS9350A, Pressurizer Liquid Sample Selector Valves 1PS9350B, 2PS9350B, Cold Leg Loop 1/2/3/4 Sample Line Selector Valves 1PS9358A/B/C/D, 2PS9351A/B/C/D

Electrical control for the solenoid-operated pilot valves is via a rugged hand control switch and permissive relay. The P&ID indicates these valves are normally closed [37, 38, 39], and in this position the (rugged) hand control switch is normally open and blocks the effect of chatter in the series permissive relay. There are no other chatter sensitive contact devices involved in the control of these valves [40, 41, 42, 43].

Loop Sample Line Isolation Valves 1PS9356A, 2PS9356A, Pressurizer Steam Sample Isolation Valves 1PS9354A, 2PS9354A, Pressurizer Liquid Sample Isolation Valves 1PS9355A, 2PS9355A

Electrical control for the solenoid-operated pilot valves is via a rugged hand control switch and permissive relay. These valves are shown normally closed on the P&ID [37, 38, 39]. The only chatter sensitive device in the control circuit is the containment isolation permissive relay. When the valve is closed the valve position switch contacts are open and block the effect of chatter in the relay. There are no other chatter sensitive contact devices involved in the control of these valves [44, 45, 46, 47].

2.3 REACTOR VESSEL PRESSURE CONTROL

The reactor vessel pressure control function is identified as a key function in Reference [8] to be considered in the High Frequency Confirmation. The same report also states that "required post event pressure control is typically provided by passive devices" and that "no specific high frequency component chatter review is required for this function."

2.4 CORE COOLING

The core cooling systems were reviewed for contact control devices in seal-in and lockout circuits that would prevent at least a single train of non-AC power driven decay heat removal from functioning. For BYR, the credited decay heat removal system is the Diesel Driven Auxiliary Feedwater (DDAFW) Pump.

The selection of contact devices for the Diesel Driven Auxiliary Feedwater (DDAF) Pump was based on the premise that DDAF operation is desired, thus any SILO which would lead to DDAF operation is beneficial and thus does not meet the criteria for selection [17, 18]. Only contact devices which could render the DDAF system inoperable were considered.

Any chatter which could de-energize the normally-energized Engine Failure Lockout Relay K12 would prevent engine start [19, 20]. The lockout relay itself does not seal in, however the relays with contacts in K12's coil circuit do. The Overcrank Relay K7, High Water Temperature Relay K8, Overspeed Relay K9, and Low Lube Oil Pressure Relay K10 are normally energized and sealed-in. Chatter in the seal-in contacts of K7, K8, K9, K10, or in the contacts of the Overcrank Timer Relay K4 (input to K7), High Water Temperature Switch 1TSH-AF147 (input to K8), Speed Switch 1SS-AF8002 (input to K9), Low Oil Pressure Time Delay Relay K11 (input to K10), could trip the lockout relay and prevent engine start. The time delay associated with K4 and K11 prevents chatter in their coil circuits from affecting engine start. It is presumed that pump suction pressure is above the reset pressure setting of 1PSL-AF055 and therefore chatter in this pressure switch and the Low Suction Pressure Timer Relay K6 have only a temporary effect on engine start and thus do not meet selection criteria.

2.5 AC/DC POWER SUPPORT SYSTEMS

The AC and DC power support systems were reviewed for contact control devices in seal-in and lockout circuits that prevent the availability of DC and AC power sources. The following AC and DC power support systems were reviewed:

- Emergency Diesel Generators,
- Battery Chargers and Inverters,

- EDG Ancillary Systems, and
- Switchgear, Load Centers, and MCCs.

Electrical power, especially DC, is necessary to support achieving and maintaining a stable plant condition following a seismic event. DC power relies on the availability of AC power to recharge the batteries. The availability of AC power is dependent upon the Emergency Diesel Generators and their ancillary support systems. EPRI 3002004396 [8] requires confirmation that the supply of emergency power is not challenged by a SILO device. The tripping of lockout devices or . circuit breakers is expected to require some level of diagnosis to determine if the trip was spurious due to contact chatter or in response to an actual system fault. The actions taken to diagnose the fault condition could substantially delay the restoration of emergency power.

In order to ensure contact chatter cannot compromise the emergency power system, control circuits were analyzed for the Emergency Diesel Generators (EDG), Battery Chargers, Vital AC Inverters, and Switchgear/Load Centers/MCCs as necessary to distribute power from the EDGs to the Battery Chargers and EDG Ancillary Systems. General information on the arrangement of safety-related AC and DC systems, as well as operation of the EDGs, was obtained from the BYR UFSAR [48]. BYR has four (4) EDGs which provide emergency power for their two units. Each unit has two (2) divisions of Class 1E loads with one EDG for each division [48, pp. 8.3-8]. The overall power distribution, both AC and DC, is shown on the Station One-Line Diagram [49].

The analysis considers the reactor is operating at power with no equipment failures or LOCA prior to the seismic event. The Emergency Diesel Generators are not operating but are available. The seismic event is presumed to cause a Loss of Offsite Power (LOOP) and a normal reactor SCRAM.

In response to bus under voltage relaying detecting the LOOP, the Class 1E control systems must automatically shed loads, start the EDGs, and sequentially load the diesel generators as designed. Ancillary systems required for EDG operation as well as Class 1E battery chargers and inverters must function as necessary. The goal of this analysis is to identify any vulnerable contact devices which could chatter during the seismic event, seal-in or lock-out, and prevent these systems from performing their intended safety-related function of supplying electrical power during the LOOP.

The following sections contain a description of the analysis for each element of the AC/DC Support Systems. Contact devices are identified by description in this narrative and apply to all divisions.

Emergency Diesel Generators

The analysis of the Emergency Diesel Generators, DG1A, DG1B, DG2A, DG2B, is divided into two sections, generator protective relaying and diesel engine control. General descriptions of these systems and controls appear in the UFSAR [48, pp. 8.3-8].

Generator Protective Relaying

The control circuits for the DG1A circuit breaker [50] include ESF Bus Lockout Relays 486-1412 (Normal Feed), 486-1413 (EDG Feed), and 486-1414X (Reserve Feed). If any of these lockout relays are tripped the EDG breaker will not close automatically during the LOOP. Bus Lockout Relay 486-1412 may be tripped by chatter in Phase Overcurrent Relays PR30A-451 and PR30C-451 and Ground Overcurrent Protective Relay PR31-451N [51]. Bus Lockout Relay 486-1413 is tripped by a solid-state differential relay (non-vulnerable) on the EDG breaker[50]. Bus Lockout

Relay 486-1414X may be tripped by chatter in Phase Overcurrent Relays PR27A-451 and PR27C-451 and Ground Overcurrent Protective Relay PR28-451N [52].

The control circuits for the other three EDG circuit breakers are identical in design and sensitive to chatter in their equivalent devices: DG1B: 486-1422, 486-1423, 486-1424X, PR33A-451, PR33C-451, PR34-451N, PR30A-451 PR30C-451 and PR31-451N [53, 54, 55]; DG2A: 486-2412, 486-2413, 486-2414, PR9A-451, PR9C-451, PR10-451N, PR13A-451 PR13C-451 and PR14-451N [56, 57, 58]; DG2B: 486-2422, 486-2423, 486-2424, PR7A-451, PR7C-451, PR8-451N, PR3A-451 PR3C-451 and PR4-451N [59, 60, 61].

Diesel Engine Control

Chatter analysis for the diesel engine control was performed on the start and shutdown circuits of each EDG [62, 63, 64, 65, 66, 67] (DG1A), [68, 69, 70, 71, 72, 73] (DG1B), [74, 75, 76, 77, 78, 79] (DG2A), [80, 81, 82, 83, 84, 85] (DG2B) using the description of operation [86, 87, 88, 89], legends [90, 91, 92, 93], and switch development documents [94, 95, 96, 97] as necessary. Two conditions were considered for EDG Start, Emergency Start in response to a true LOOP, and Manual Start as a defense-in-depth response to situations where a bus undervoltage trip has not occurred but offsite power may be considered unreliable after a seismic event (e.g. brownout). SILO devices that only affect Manual Start availability are being considered based on the discussion below.

It is conservatively assumed that manual start of the EDGs may be desired in the absence of a LOOP-induced emergency start. SILO devices which may block manual start have been identified herein.

The SILO devices which may block EDG Emergency Start in response to a LOOP are the Generator Differential Shutdown Repeater Relays 87G1X and 87G2X, and Engine Overspeed Relays 12X1 and 12X2. 87G1X and 87G2X are both controlled by 486-1413 (already covered). 12X1 and 12X2 are controlled by 1PS-DG251A, 1PS-DG252A, and 1PS-DG108A. Chatter in any of these devices could prevent EDG Emergency Start.

In addition to the devices which could prevent Emergency Start, Manual Start may be blocked by the normally-energized Unit Shutdown Relay 86S2¹. Chatter of the seal-in contact of 86S2, or of the contacts of relays within the coil circuits of this relay, may prevent EDG manual start. Chatter in any other device in the start control circuit would only have a transient effect, delaying start by, at most, the period of strong shaking.

The Unit Shutdown Relay is normally energized and sealed-in. This relay is controlled by the Engine Shutdown Relay 86E, Generator Shutdown Relay 86G, Generator Differential Shutdown Repeater Relays 87G1X and 87G2X, Engine Overspeed Shutdown Relays 12X1 and 12X2, and Incomplete Starting Sequence Relay 48. Chatter in the contacts of these auxiliary relays may cause tripping of the engine shutdown relay. Once tripped this relay would need to be manually reset.

The Engine Shutdown Relay 86E is controlled by the Engine Lube Oil Low Pressure Shutdown Repeater Relay 63QELX, Turbo Low Lube Oil Pressure Shutdown Repeater Relay 63QTLX, Main and Connecting Rod High Bearing Temperature Shutdown Repeater Relay 26MBHTX, Turbo Thrust Bearing Failure Shutdown Repeater Relay 38TBFX, Jacket Water High Temperature Shutdown Repeater Relay 26JWSX, and Crankcase High Pressure Repeater Relay 63CX. Engine

¹ Note that the repeater (slave) relay 86S1 does not seal-in on its own; it merely mimics the state of 86S2.

trips (other than overspeed) are blocked when the diesel engine is not running by powering the associated auxiliary relay coil circuits via steering diodes. This design feature acts on the coils of these auxiliary relays, however the contacts of these relays are active in the engine fault circuits; and thus chatter in these auxiliary relays could prevent EDG manual start.

Generator Shutdown Relay 86G is controlled by Generator Overcurrent Relay 51X, Generator Neutral Ground Voltage Auxiliary Relay 59GX, Loss of Field Auxiliary Relay 40X, Reverse Power Auxiliary Relay 32X, and Under Frequency Auxiliary Relay 81UX. Generator faults are blocked when the EDG circuit breaker is open (the normal condition at the time of the seismic event) by depowering the coil circuits of these auxiliary relays. For this reason, chatter of the protection relays in these coil circuits would have no effect.

The Incomplete Starting Sequence Relay 48 is normally energized and sealed-in. Chatter in the Cranking Limit Time Delay Relay 62CL could break the seal-in and prevent EDG manual start. Other devices in the coil circuit of relay 48 are closed and arranged in parallel. This arrangement blocks the effect of chatter in any one of these other devices.

Note the device identifiers mentioned here are identical on all EDGs with the exception of the EDG Bus Lockout Relay: 486-1413 for DG1A; 486-1423 for DG1B; 486-2413 for DG2A; and 486-2423 for DG2B; and overspeed switches: 1PS-DG251A, 1PS-DG252A, and 1PS-DG108A for DG1A; 1PS-DG251B, 1PS-DG252B, and 1PS-DG108B for DG1B; 2PS-DG251A, 2PS-DG252A, and 2PS-DG108A for DG2A; and 2PS-DG251B, 2PS-DG252B, and 2PS-DG108B for DG2B.

Battery Chargers

Chatter analysis on the battery chargers was performed using information from the UFSAR [48] as well as plant schematic diagrams [98, 99, 100, 101, 102, 103]. Each battery charger has a high voltage shutdown circuit [48, pp. 8.3-46] which is intended to protect the batteries and DC loads from output overvoltage due to charger failure. The high voltage shutdown circuit has an output relay 1DC03E-DSH-K1 or 1DC04E-DSH-K1 (2DC03E-DSH-K1 or 2DC04E-DSH-K1), which shunt-trips the AC input circuit breaker, shutting the charger down. Chatter in the contacts of these output relays may disable the battery chargers, and for this reason meet the selection criteria.

The battery chargers for the Diesel Driven Auxiliary Feedwater Pump also have an overvoltage relay, 1AF01EA-1-DSH-K1 or 1AF01EB-1-DSH-K1 (2AF01EA-1-DSH-K1 or 2AF01EB-1-DSH-K1), that may shutdown these chargers [17, 19, 104, 18, 20, 105].

Inverters

Analysis of schematics for the Instrument Bus 111, 112, 113, and 114 (211, 212, 213, and 214) and Static Inverters as noted in the table below revealed no vulnerable contact devices in the control circuits and thus chatter analysis is unnecessary.

Static Inverters	1
Bus	Reference
111	106
112	107, 108, 109, 110
113	111
114	112, 113, 114, 115
211	116
212	117
213	118
214	119

EDG Ancillary Systems

In order to start and operate the Emergency Diesel Generators require a number of components and systems. For the purpose of identifying electrical contact devices, only systems and components which are electrically controlled are analyzed. Information in the UFSAR [48] was used as appropriate for this analysis.

Starting Air

Based on Diesel Generator availability as an initial condition the passive air reservoirs are presumed pressurized and the only active components in this system required to operate are the air start solenoids [48, pp. 9.5-21], which are covered under the EDG engine control analysis above.

Combustion Air Intake and Exhaust

The combustion air intake and exhaust for the Diesel Generators are passive systems [48, pp. 9.5-29, 120, 121, 122, 123] which do not rely on electrical control.

<u>Lube Oil</u>

The Diesel Generators utilize engine-driven mechanical lubrication oil pumps [48, pp. 9.5-23] which do not rely on electrical control.

<u>Fuel Oil</u>

The Diesel Generators utilize engine-driven mechanical pumps to supply fuel oil to the engines from the day tanks [48, pp. 9.5-6]. The day tanks are re-supplied using AC-powered Diesel Oil Transfer Pumps [124, 125, 120, 121, 122, 123]. Chatter analysis of the control circuits for the electrically-powered transfer pumps [126, 127, 128, 129] concluded they do not include SILO devices. The mechanical pumps do not rely on electrical control.

Cooling Water

The Diesel Generator Cooling Water System is described in the UFSAR [48, pp. 9.5-15]. This system consists of two cooling loops, jacket water and Essential Service Water (ESW). Engine driven pumps are credited for jacket water when the engine is operating. These mechanical pumps do not rely on electrical control. The electric jacket water pump is only used during shutdown periods and is thus not included in this analysis.

Four ESW pumps, 1A, 1B, 2A, and 2B, provide cooling water to the heat exchangers associated with the four EDGs [130, 131, 132, 133, 134, 135]. In automatic mode these pumps are started via a sequencing signal following EDG start. Chatter analysis of the EDG start signal is included in the Emergency Diesel Generator section above. A chatter analysis of the ESW pump circuit breaker control circuits [136, 137, 138, 139] indicates the Low Suction Pressure Relays SX1AX or SX1BX; the Phase Overcurrent Relays PR3A-450/451, PR3C-450/451, PR4A-450/451, or PR4C-450/451 (U2: PR36A-450/451, PR36C-450/451, PR13A-450/451, or PR13C-450/451); and the Ground Fault Relays PR4-450N or PR5-450N (U2: PR37-450N or PR14-450N) all could prevent automatic (sequential) breaker closure following the seismic event.

ESW valves necessary for EDG cooling are either locked out, depowered, or, in the case of valves 1SX169A and 1SX169B (2SX169A and 2SX169B), do not contain SILO devices [140, 141].

Ventilation

The Diesel Generator Enclosure Ventilation System is described in Section 9.4.5.2 of the UFSAR [48, pp. 9.4-25]. Ventilation for each Diesel Generator Enclosure is provided via intake and exhaust fans [142, 143]. In automatic mode the intake fans are started via the EDG Start Signal or high room temperature. Chatter analysis of the EDG start signal is included in the Emergency Diesel Generator section above. Apart from SILO devices identified for the EDG start signal, chatter analysis of the control circuits for the intake fans [144, 145, 146, 147, 148, 149, 150, 151] concluded they do not include SILO devices. Contact chatter on pressure switch 1PDS-VD044 (2PDS-VD044) may set the latching relay VD01CAX and interrupt fan operation, however a timing circuit would automatically reset this relay after 58 seconds. Since this effect is transient only, it does not meet the selection criteria.

Contact chatter on pressure switches 1PDS-VD103 or 1PDS-VD105 (2PDS-VD103 or 2PDS-VD105) may set latching relays VD03CAX or VD03CBX, respectively, which would lock out the exhaust fans and require a manual reset [152, 153].

Switchgear, Load Centers, and MCCs

Power distribution from the EDGs to the necessary electrical loads (Battery Chargers, Inverters, Fuel Oil Pumps, and EDG Ventilation Fans) was traced to identify any SILO devices which could lead to a circuit breaker trip and interruption in power. This effort excluded control circuits for the EDG circuit breakers, which are covered in the Emergency Diesel Generator section above, and the ESW Pump breakers which are covered in the EDG Ancillary Systems section above, as well as component-specific contactors and their control devices, which are covered in the analysis of each component above. Those medium- and low-voltage circuit breakers in 4160V ESF Busses and 480V AC Load Centers [154, 155, 156, 157] supplying power to loads identified in this section (battery chargers, EDG ancillary systems, etc.) have been identified for evaluation: 52 @ 1AP05EF/ACB 1413, 52 @ 1AP05EU/ACB 1415X, 52 @ 1AP05EB, 52 @ 1AP10EF, 52 @ 1AP10EJ, 52 @ 1AP10EL, 52 @ 1AP10EQ, 52 @ 1AP06EF/ACB 1423, 52 @ 1AP06EP/ACB 1425X, 52 @ 1AP06EB, 52 @ 1AP12EC, 52 @ 1AP12EF, 52 @ 1AP12EG, 52 @ 1AP12EJ, and 52 @

1AP12EL (U2: 52 @ 2AP05ES/ACB 2413, 52 @ 2AP05ED/ACB 2415X, 52 @ 2AP05EW, 52 @ 2AP10EF, 52 @ 2AP10EJ, 52 @ 2AP10EL, 52 @ 2AP10EQ, 52 @ 2AP06ER/ACB 2423, 52 @ 2AP06EH/ACB 2425X, 52 @ 2AP06EJ, 52 @ 2AP12EC, 52 @ 2AP12EF, 52 @ 2AP12EG, 52 @ 2AP12EJ, and 52 @ 2AP12EL). Per the UFSAR [48, pp. 8.3-44], DC Distribution [170, 171, 172, 173, 174, 175, 176, 177] uses Molded-Case Circuit Breakers (MCCBs) which are seismically rugged [4, pp. 2-11]. MCCBs in the low voltage Motor Control Center Buckets [158, 159, 160, 161, 162, 163] (U1), [164, 165, 166, 167, 168, 169] (U2), as well as the 120VAC Vital Instrument Buses [178, 179, 180, 181, 182, 183, 184, 185] were considered rugged as well. The only circuit breakers affected by external contact devices not already mentioned were those that distribute power from the 4160V ESF Busses to the 4160/480V step-down transformers. A chatter analysis of the control circuits for these circuit breakers [186, 187, 188, 189] indicates the transformer primary phase overcurrent relays PR37A-450/451, PR37B-450/451, PR37C-450/451, PR28A-450/451, PR28B-450/451, or PR28C-450/451 (U2: PR3A-450/451, PR3B-450/451, PR3C-450/451, PR11A-450/451, PR11B-450/451, or PR11C-450/451); primary and secondary ground fault relays PR38-450N, PR29-450N, or PR1-351N (U2: PR4-450N, PR12-450N, or PR1-351N); and lockout relays 486-1415X or 486-1425X (U2: 486-2415X or 486-2425X) all could trip the transformer primary circuit breaker following the seismic event.

2.6 SUMMARY OF SELECTED COMPONENTS

The investigation of high-frequency contact devices as described above was performed in Ref. [191]. A list of the contact devices requiring a high frequency confirmation is provided in Appendix B, Table B-1. The identified devices are evaluated in Ref. [190] per the methodology/description of Section 3 and 4. Results are presented in Section 5 and Table B-1.

3 Seismic Evaluation

3.1 HORIZONTAL SEISMIC DEMAND

Per Reference [8], Sect. 4.3, the basis for calculating high-frequency seismic demand on the subject components in the horizontal direction is the BYR horizontal ground motion response spectrum (GMRS), which was generated as part of the BYR Seismic Hazard and Screening Report [4] submitted to the NRC on March 31, 2014, and accepted by the NRC on February 17, 2016 [14].

It is noted in Reference [8] that a Foundation Input Response Spectrum (FIRS) may be necessary to evaluate buildings whose foundations are supported at elevations different than the Control Point elevation. However, for sites founded on rock, per Ref. [8], "The Control Point GMRS developed for these rock sites are typically appropriate for all rock-founded structures and additional FIRS estimates are not deemed necessary for the high frequency confirmation effort."

The applicable buildings at BYR are founded on rock; therefore, the Control Point GMRS is representative of the input at the building foundation.

The horizontal GMRS values are provided in Table 3-2.

3.2 VERTICAL SEISMIC DEMAND

As described in Section 3.2 of Reference. [8], the horizontal GMRS and site soil conditions are used to calculate the vertical GMRS (VGMRS), which is the basis for calculating high-frequency seismic demand on the subject components in the vertical direction.

The site's soil mean shear wave velocity vs. depth profile is provided in Reference. [4], Table 2.3.2-1 and reproduced below in Table 3-1.

Layer	Depth (ft)	Depth (m)	Thickness, d _i (ft)	Vs _i (ft/sec)	dı / Vsı	Σ[di/Vsi]	Vs30 (ft/s)
1	10.0	3.048	10.0	3,197	0.0031	0.0031	
2	20.0	6.096	10.0	3,197	0.0031	0.0063	
3	30.0	9.144	10.0	3,197	0.0031	0.0094	
4	40.0	12.192	10.0	3,197	0.0031	0.0125	
5	50.0	15.24	10.0	3,197	0.0031	0.0156	
6	60.0	18.288	10.0	3,197	0.0031	0.0188	3,145
7	70.0	21.336	10.0	3,197	0.0031	0.0219	
8	80.1	24.41448	10.0	3,197	0.0031	0.0250	
9	90.1	27.46248	10.0	3,197	0.0031	0.0282	
10	97.0	29.5656	7.0	3,197	0.0022	0.0303	
11	101.0	30.7848	4.0	4,242	0.0009	0.0313	

Table 3-1: Soil Mean Shear Wave Velocity Vs. Depth Profile

Using the shear wave velocity vs. depth profile, the velocity of a shear wave traveling from a depth of 30m (98.43ft) to the surface of the site (Vs30) is calculated per the methodology of Reference [8], Section 3.5.

- The time for a shear wave to travel through each soil layer is calculated by dividing the layer depth (d_i) by the shear wave velocity of the layer (Vs_i).
- The total time for a wave to travel from a depth of 30m to the surface is calculated by adding the travel time through each layer from depths of 0m to 30m (Σ[d_i/Vs_i]).
- The velocity of a shear wave traveling from a depth of 30m to the surface is therefore the total distance (30m) divided by the total time;
 i.e., Vs30 = (30m)/Σ[d_i/Vs_i].
- Note: The shear wave velocity is calculated based on time it takes for the shear wave to travel 30.78m (101.0ft) instead of 30m (98.43ft). This small change in travel distance will have no impact on identifying soil class type.

The site's soil class is determined by using the site's shear wave velocity (Vs30) and the peak ground acceleration (PGA) of the GMRS and comparing them to the values within Reference [8], Table 3-1. Based on the PGA of 0.270g and the shear wave velocity of 3145ft/s, the site soil class is C-Hard.

Once a site soil class is determined, the mean vertical vs. horizontal GMRS ratios (V/H) at each frequency are determined by using the site soil class and its associated V/H values in Reference [8], Table 3-2.

The vertical GMRS is then calculated by multiplying the mean V/H ratio at each frequency by the horizontal GMRS acceleration at the corresponding frequency. It is noted that Reference [8], Table 3-2 values are constant between 0.1Hz and 20Hz.

The V/H ratios and VGMRS values are provided in Table 3-2 of this report.

Figure 3-1 below provides a plot of the horizontal GMRS, V/H ratios, and vertical GMRS for BYR.

Frequency (Hz)	HGMRS (g)	V/H Ratio	VGMRS (g)
100	0.270	0.81	0.219
90	0.272	0.84	0.228
80	0.275	0.88	0.242
70	0.284	0.93	0.264
60	0.307	0.94	0.289
50	0.365	0.92	0.336
45	0.400	0.91	0.364
40	0.435	0.87	0.378
35	0.467	0.82	0.383
30	0.497	0.77	0.383
25	0.508	0.71	0.361
20	0.514	0.7	0.360
15	0.488	0.7	0.342
12.5	0.508	0.7	0.356
10	0.568	0.7	0.398
9	0.581	0.7	0.407
8	0.583	0.7	0.408
7	0.551	0.7	0.386
6	0.477	0.7	0.334
5	0.385	0.7	0.270
4	0.269	0.7	0.188
3.5	0.218	0.7	0.153
3	0.172	0.7	0.120
2.5	0.129	0.7	0.090
2	0.113	0.7	0.079
1.5	0.090	0.7	0.063
1.25	0.081	0.7	0.057
1	0.070	0.7	0.049
0.9	0.066	0.7	0.046
0.8	0.062	0.7	0.043
0.7	0.058	0.7	0.040
0.6	0.054	0.7	0.038
0.5	0.051	0.7	0.035
0.4	0.040	0.7	0.028
0.35	0.035	0.7	0.025
0.3	0.030	0.7	0.021
0.25	0.025	0.7	0.018
0.2	0.020	0.7	0.014
0.15	0.015	0.7	0.011
0.125	0.013	0.7	0.009
0.1	0.010	0.7	0.007

Table 3-2: Horizontal and Vertical Ground Motions Response Spectra

Figure 3-1 Plot of the Horizontal and Vertical Ground Motions Response Spectra and V/H Ratios

3.3 COMPONENT HORIZONTAL SEISMIC DEMAND

Per Reference [8] the peak horizontal acceleration is amplified using the following two factors to determine the horizontal in-cabinet response spectrum:

- Horizontal in-structure amplification factor AF_{SH} to account for seismic amplification at floor elevations above the host building's foundation
- Horizontal in-cabinet amplification factor AF_c to account for seismic amplification within the host equipment (cabinet, switchgear, motor control center, etc.)

The in-structure amplification factor AF_{SH} is derived from Figure 4-3 in Reference [8]. The incabinet horizontal amplification factor, AF_c is associated with a given type of cabinet construction. The three general cabinet types are identified in Reference [8] and Appendix I of EPRI NP-7148 [13] assuming 5% in-cabinet response spectrum damping. EPRI NP-7148 [13] classified the cabinet types as high amplification structures such as switchgear panels and other similar large flexible panels, medium amplification structures such as control panels and control room benchboard panels and low amplification structures such as motor control centers.

All of the electrical cabinets containing the components subject to high frequency confirmation (see Table B-1 in Appendix B) can be categorized into one of the in-cabinet amplification categories in Reference [8] as follows:

- BYR Motor Control Centers are typical motor control center cabinets consisting of a lineup of several interconnected sections. Each section is a relatively narrow cabinet structure with height-to-depth ratios of about 4.5 that allow the cabinet framing to be efficiently used in flexure for the dynamic response loading, primarily in the front-to-back direction. This results in higher frame stresses and hence more damping which lowers the cabinet response. In addition, the subject components are not located on large unstiffened panels that could exhibit high local amplifications. These cabinets qualify as low amplification cabinets.
- BYR Switchgear cabinets are large cabinets consisting of a lineup of several interconnected sections typical of the high amplification cabinet category. Each section is a wide box-type structure with height-to-depth ratios of about 1.5 and may include wide stiffened panels. This results in lower stresses and hence less damping which increases the enclosure response. Components can be mounted on the wide panels, which results in the higher in-cabinet amplification factors.
- BYR Control cabinets are in a lineup of several interconnected sections with moderate width. Each section consists of structures with height-to-depth ratios of about 3 which results in moderate frame stresses and damping. The response levels are mid-range between MCCs and switchgear and therefore these cabinets can be considered in the medium amplification category.

3.4 COMPONENT VERTICAL SEISMIC DEMAND

The component vertical demand is determined using the peak acceleration of the VGMRS between 15 Hz and 40 Hz and amplifying it using the following two factors:

- Vertical in-structure amplification factor AF_{sv} to account for seismic amplification at floor elevations above the host building's foundation
- Vertical in-cabinet amplification factor AF_c to account for seismic amplification within the host equipment (cabinet, switchgear, motor control center, etc.)

The in-structure amplification factor AF_{sv} is derived from Figure 4-4 in Reference [8]. The incabinet vertical amplification factor, AF_c is derived in Reference [8] and is 4.7 for all cabinet types.

4 Contact Device Evaluations

Per Reference [8], seismic capacities (the highest seismic test level reached by the contact device without chatter or other malfunction) for each subject contact device are determined by the following procedures:

- (1) If a contact device was tested as part of the EPRI High Frequency Testing program [7], then the component seismic capacity from this program is used.
- (2) If a contact device was not tested as part of [7], then one or more of the following means to determine the component capacity were used:
 - (a) Device-specific seismic test reports (either from the station or from the SQURTS testing program.
 - (b) Generic Equipment Ruggedness Spectra (GERS) capacities per [9], [10], [11], and [12].
 - (c) Assembly (e.g. electrical cabinet) tests where the component functional performance was monitored.

The high-frequency capacity of each device was evaluated with the component mounting point demand from Section 3 using the criteria in Section 4.5 of Reference [8]

A summary of the high-frequency evaluation conclusions is provided in Table B-1 in Appendix B of this report.

5 Conclusions

5.1 GENERAL CONCLUSIONS

BYR has performed a High Frequency Confirmation evaluation in response to the NRC's 50.54(f) letter [1] using the methods in EPRI report 3002004396 [8].

The evaluation identified a total of 226 components that required seismic high frequency evaluation. As summarized in Table B-1 in Appendix B, all of the devices have adequate seismic capacity for the reevaluated seismic hazard [4].

5.2 IDENTIFICATION OF FOLLOW-UP ACTIONS

No follow-up actions were identified.

6 References

- 1 NRC (E. Leeds and M. Johnson) Letter to All Power Reactor Licensees et al., "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3 and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident," March 12, 2012, ADAMS Accession Number ML12053A340
- 2 NRC (W. Dean) Letter to the Power Reactor Licensees on the Enclosed List. "Final Determination of Licensee Seismic Probabilistic Risk Assessments Under the Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1 "Seismic" of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident." October 27, 2015, ADAMS Accession Number ML15194A015
- 3 NRC (J. Davis) Letter to Nuclear Energy Institute (A. Mauer). "Endorsement of Electric Power Research Institute Final Draft Report 3002004396, 'High Frequency Program: Application Guidance for Functional Confirmation and Fragility.'" September 17, 2015, ADAMS Accession Number ML15218A569
- 4 Seismic Hazard and Screening Report in Response to the 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.1: Seismic for BYR dated March 31, 2014, ADAMS Accession Number ML14091A010
- 5 EPRI 1015109. "Program on Technology Innovation: Seismic Screening of Components Sensitive to High-Frequency Vibratory Motions." October 2007
- 6 EPRI 1025287. "Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic." February 2013
- 7 EPRI 3002002997. "High Frequency Program: High Frequency Testing Summary." September 2014
- 8 EPRI 3002004396. "High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation." July 2015
- 9 EPRI NP-7147-SL. "Seismic Ruggedness of Relays." August 1991
- 10 EPRI NP-7147-SLV2, Addendum 1, "Seismic Ruggedness of Relays", September 1993
- 11 EPRI NP-7147-SLV2, Addendum 2, "Seismic Ruggedness of Relays", April 1995
- 12 EPRI NP-7147 SQUG Advisory 2004-02. "Relay GERS Corrections." September 10, 2004
- 13 EPRI NP-7148, "Procedure for Evaluating Nuclear Power Plant Relay Seismic Functionality", 1990
- 14 NRC (F. Vega) Letter to Exelon Generation Company, LLC (B. Hanson). "Byron Station, Units 1 and 2 – Staff Assessment of Information Provided Pursuant to Title 10 of the Code of Federal Regulations Part 50, Section 50.54(f), Seismic Hazard Reevaluations for Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima

Dai-ichi Accident (CAC NOS. MF3884 and MF3885)." February 17, 2016, ADAMS Accession Number ML16027A045

- 15 Recommendations For Enhancing Reactor Safety in the 21st Century, "The Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident" July 12, 2011, ADAMS Accession Number ML111861807
- 16 NEI 12-06, Rev. 2. "Diverse and Flexible Coping Strategies (FLEX) Implementation Guide"
- 17 Byron Drawing 6E-1-4030AF02 Rev. AE, Schematic Diagram Auxiliary Feedwater Pump 1B -Diesel Driven 1AF01PB
- 18 Byron Drawing 6E-2-4030AF02 Rev. Z, Schematic Diagram Auxiliary Feedwater Pump 2B Diesel Driven 2AF01PB
- 19 Byron Drawing 6E-1-4030AF12 Rev. AH, Schematic Diagram Auxiliary Feedwater Pump 1B (Diesel-Driven) Engine Startup Panel 1AF01J
- 20 Byron Drawing 6E-2-4030AF12 Rev. AH, Schematic Diagram Auxiliary Building Pump 2B (Diesel-Driven) Engine Startup Panel 2AF01J
- 21 Byron Drawing 6E-1-4030RC14 Rev. E, Schematic Diagram Loop 1A, 1B, 1C and 1D Drain Line Valves 1RC8037A, B, C and D (AOV)
- 22 Byron Drawing 6E-1-4030RC32 Rev. C, Schematic Diagram Reactor Head Vent Valves 1RC014A, B, C and D
- 23 Byron Drawing 6E-2-4030RC14 Rev. B, Schematic Diagram Loop 2A, 2B, 2C and 2D Drain Valves 2RC8037A, B, C and D (AOV)
- 24 Byron Drawing 6E-2-4030RC32 Rev. C, Schematic Diagram Reactor Head Vent Valves 2RC014A, B, C and D
- 25 Byron Drawing 6E-1-4030RY17 Rev. V, Schematic Diagram Nitrogen Supply Isolation Valves 1RY079A and B Pressurizer Power Relief Valves 1RY455A and 456, Pressurizer Relief Tank Primary Water Supply Isolation Valve 1RY8030
- 26 Byron Drawing 6E-1-4030RY13 Rev. G, Schematic Diagram Pressurizer Pressure and Level Control Non-Safety Related (Division 11).
- 27 Byron Drawing 6E-1-4030RY14 Rev. F, Schematic Diagram Pressurizer Pressure and Level Control Non-Safety Related (Division 12)
- 28 Byron Drawing 6E-2-4030RY17 Rev. L, Schematic Diagram Pressurizer Power Relief Valves 2RY455A and 2RY456, Pressurizer Relief Tank Primary Water Supply Isolation Valve 2RY8030
- 29 Byron Drawing 6E-2-4030RY13 Rev. E, Schematic Diagram Pressurizer Pressure and Level Control Non-Safety Related (Division 21)
- 30 Byron Drawing 6E-2-4030RY14 Rev. D, Schematic Diagram Pressurizer Pressure and Level Control Non-Safety Related (Division 22)
- 31 Byron Drawing M-62 Rev. BF, Diagram Of Residual Heat Removal Unit 1
- 32 Byron Drawing 6E-1-4030RH04 Rev. O, Schematic Diagram RC Loop 1A to RHR Pump Isolation Valves 1RH8701A and 1RH8701B

- 33 Byron Drawing 6E-1-4030RH05 Rev. O, Schematic Diagram RC Loop 1C to RHR Pump Isolation Valves 1RH8702A and 1RH8702B
- 34 Byron Drawing M-137 Rev. BH, Diagram Of Residual Heat Removal
- 35 Byron Drawing 6E-2-4030RH04 Rev. M, Schematic Diagram RC Loop 2A to RHR Pump Isolation Valves 2RH8701A and 2RH8701B
- 36 Byron Drawing 6E-2-4030RH05 Rev. P, Schematic Diagram Reactor Coolant Loop 2C to RHR Pump Isolation Valves - 2RH8702A 2RH8702B
- 37 Byron Drawing M-68 Sheet 1A Rev. D, Diagram of Process Sampling (Primary and Secondary) Unit 1
- 38 Byron Drawing M-68 Sheet 1B Rev. G, Diagram of Process Sampling Primary and Secondary
- 39 Byron Drawing M-140 Sheet 1 Rev. AQ, Diagram of Process Sampling Primary and Secondary
- 40 Byron Drawing 6E-1-4030PS03 Rev. J, Schematic Diagram Press Steam and Liquid Sample Isolation Valve 1PS9350A and 1PS9350B Hot Leg Loops 2 and 3 Sample Line Isolation Valves 1PS9351A and 1PS9351B
- 41 Byron Drawing 6E-1-4030PS06 Rev. K, Schematic Diagram Cold Legs Loop 1, 2, 3 and 4 Sample Line Isolation Valves 1PS9358A, B, C and D (AOV)
- 42 Byron Drawing 6E-2-4030PS03 Rev. F, Schematic Diagram Pressurizer Steam and Liquid Sample Isolation Valves 2PS9350A 2PS9350B; Hot Leg Loops 2 and 3 Sample Line Isolation Valves
- 43 Byron Drawing 6E-2-4030PS06 Rev. F, Schematic Diagram Cold Leg Loops 1, 2, 3 and 4 Sample Line Isolation Valves - 2PS9358A 2PS9358B 2PS9358C 2PS9358D
- 44 Byron Drawing 6E-1-4030PS01 Rev. E, Schematic Diagram Pressurizer Steam and Liquid Sample Isolation Valves 1PS9354A and B, 1PS9355A and B
- 45 Byron Drawing 6E-1-4030PS02 Rev. E, Schematic Diagram Loop Sample Line Isolation Valves - 1PS9356A and B Accumulator Sample Line Isolation Valves 1PS9357A and B
- 46 Byron Drawing 6E-2-4030PS01 Rev. C, Schematic Diagram Pressurizer Steam and Liquid Sample Isolation Valves 2PS9354A and B, 2PS9355A and B
- 47 Byron Drawing 6E-2-4030PS02 Rev. C, Schematic Diagram Loop Sample Line Isolation Valves 2PS9356A and B Accumulator Sample Line Isolation Valves 2PS9357A and B
- 48 Byron Report, "Updated Final Safety Analysis Report (UFSAR)," Revision 16, December 2015
- 49 Byron Drawing 6E-0-4001 Rev. N, Station One Line Diagram.
- 50 Byron Drawing 6E-1-4030DG01 Rev. AA, Schematic Diagram Diesel Generator 1A Feed to 4.16KV ESF Switchgear Bus 141 - ACB 1413
- 51 Byron Drawing 6E-1-4030AP23 Rev. X, Schematic Diagram System Auxiliary Transformer 142-1 Feed to 4.16KV ESF Switchgear Bus 141 - ACB 1412

- 52 Byron Drawing 6E-1-4030AP25 Rev. AF, Schematic Diagram Reserve Feed from 4.16KV ESF Switchgear Bus 241 to 4.16KV ESF Switchgear Bus 141 - ACB 1414
- 53 Byron Drawing 6E-1-4030DG02 Rev. X, Schematic Diagram Diesel Generator 1B Feed TO 4.16KV ESF Switchgear Bus 142 - ACB 1423
- 54 Byron Drawing 6E-1-4030AP32 Rev. W, Schematic Diagram System Auxiliary Transformer 142-2 Feed to 4.16KV ESF Switchgear Bus 142 - ACB 1422
- 55 Byron Drawing 6E-1-4030AP34 Rev. Z, Schematic Diagram Reserved Feed from 4.16KV ESF Switchgear Bus 242 to 4.16KV ESF Switchgear Bus 142 - ACB 1424
- 56 Byron Drawing 6E-2-4030DG01 Rev. T, Schematic Diagram Diesel Generator 2A Feed to 4.16KV ESF Switchgear Bus 241 - ACB 2413
- 57 Byron Drawing 6E-2-4030AP23 Rev. X, Schematic Diagram System Auxiliary Transformer 242-1 Feed to 4.16KV ESF Switchgear Bus 241 - ACB 2412
- 58 Byron Drawing 6E-2-4030AP25 Rev. X, Schematic Diagram Reserve Feed from 4.16KV ESF Switchgear Bus 141 to 4.16KV ESF Switchgear Bus 241 - ACB 2414
- 59 Byron Drawing 6E-2-4030DG02 Rev. T, Schematic Diagram Diesel Generator 2B Feed to 4.16KV ESF Switchgear Bus 242 - ACB 2423
- 60 Byron Drawing 6E-2-4030AP32 Rev. V, Schematic Diagram System Auxiliary Transformer 242-2 Feed to 4.16KV ESF Switchgear Bus 242 ACB 2422
- 61 Byron Drawing 6E-2-4030AP34 Rev. V, Schematic Diagram Reserve Feed from 4.16KV Switchgear Bus 142 to 4.16KV ESF Switchgear Bus 242 - ACB 2424
- 62 Byron Drawing 6E-1-4030DG31 Rev. AO, Schematic Diagram Diesel Generator 1A Starting Sequence Control 1DG01KA Part 1
- 63 Byron Drawing 6E-1-4030DG32 Rev. AH, Schematic Diagram Diesel Generator 1A Starting Sequence Control 1DG01KA Part 2
- 64 Byron Drawing 6E-1-4030DG33 Rev. T, Schematic Diagram Diesel Generator 1A Starting Sequence Control 1DG01KA (Part 3)
- 65 Byron Drawing 6E-1-4030DG35 Rev. L, Schematic Diagram Diesel Generator 1A Generator Control 1DG01KA
- 66 Byron Drawing 6E-1-4030DG36 Rev. O, Schematic Diagram Diesel Generator 1A Generator and Engine Governor Control 1DG01KA
- 67 Byron Drawing 6E-1-4030DG40 Rev. U, Schematic Diagram Diesel Generator 1A Shutdown and Alarm System 1DG01KA
- 68 Byron Drawing 6E-1-4030DG51 Rev. AO, Schematic Diagram Diesel Generator 1B Starting Sequence Control 1DG01KB Part 1
- 69 Byron Drawing 6E-1-4030DG52 Rev. AG, Schematic Diagram Diesel Generator 1B Starting Sequence Control 1DG01KB Part 2
- 70 Byron Drawing 6E-1-4030DG53 Rev. X, Schematic Diagram Diesel Generator 1B Starting Sequence Control 1DG01KB (Part 3)

- 71 Byron Drawing 6E-1-4030DG55 Rev. L, Schematic Diagram Diesel Generator 1B Generator Control 1DG01KB
- 72 Byron Drawing 6E-1-4030DG56 Rev. Q, Schematic Diagram Diesel Generator 1B Generator and Engine Governor Control 1DG01KB
- 73 Byron Drawing 6E-1-4030DG60 Rev. S, Schematic Diagram Diesel Generator 1B Shutdown and Alarm System 1DG01KB
- 74 Byron Drawing 6E-2-4030DG31 Rev. AO, Schematic Diagram Diesel Generator 2A Starting Sequence Control 2DG01KA Part 1
- 75 Byron Drawing 6E-2-4030DG32 Rev. AG, Schematic Diagram Diesel Generator 2A Starting Sequence Control 2DG01KA Part 2
- 76 Byron Drawing 6E-2-4030DG33 Rev. T, Schematic Diagram Diesel Generator 2A Starting Sequence Control 2DG01KA (Part 3)
- 77 Byron Drawing 6E-2-4030DG35 Rev. J, Schematic Diagram Diesel Generator 2A Generator Control 2DG01KA Unit 2
- 78 Byron Drawing 6E-2-4030DG36 Rev. L, Schematic Diagram Diesel Generator 2A Generator and Engine Governor Control 2DG01KA Unit 2
- 79 Byron Drawing 6E-2-4030DG40 Rev. P, Schematic Diagram Diesel Generator 2A Shutdown and Alarm System 2DG01KA
- 80 Byron Drawing 6E-2-4030DG51 Rev. AJ, Schematic Diagram Diesel Generator 2B Starting Sequence Control 2DG01KB Part 1
- 81 Byron Drawing 6E-2-4030DG52 Rev. AG, Schematic Diagram Diesel Generator 2B Starting Sequence Control 2DG01KB Part 2
- 82 Byron Drawing 6E-2-4030DG53 Rev. S, Schematic Diagram Diesel Generator 2B Starting Sequence Control 2DG01KB (Part 3)
- 83 Byron Drawing 6E-2-4030DG55 Rev. L, Schematic Diagram Diesel Generator 2B Generator Control 2DG01KB
- 84 Byron Drawing 6E-2-4030DG56 Rev. N, Schematic Diagram Diesel Generator 2B Generator and Engine Governor Control 2DG01KB Unit 2
- 85 Byron Drawing 6E-2-4030DG60 Rev. N, Schematic Diagram Diesel Generator 2B Shutdown and Alarm System 2DG01KB (Part 2)
- 86 Byron Drawing 6E-1-4030DG34 Rev. F, Schematic Diagram Diesel Generator 1A Starting Sequence Control (Description of Operation) 1DG01KA Part 4 Unit 1
- 87 Byron Drawing 6E-1-4030DG54 Rev. F, Schematic Diagram Diesel Generator 1B Starting Sequence Control (Description of Operation) 1DG01KB Part 4 Unit 1
- 88 Byron Drawing 6E-2-4030DG34 Rev. D, Schematic Diagram-Diesel Generator 2A Starting Sequence Control (Description of Operation) 2DG01KA Part 4 Unit 2
- 89 Byron Drawing 6E-2-4030DG54 Rev. D, Schematic Diagram Diesel Generator 2B Start Sequence Control (Description Of Operation) 2DG01KB Part 4 Unit 2

- 90 Byron Drawing 6E-1-4030DG41 Rev. L, Schematic Diagram Diesel Generator 1A Legends 1DG01KA
- 91 Byron Drawing 6E-1-4030DG61 Rev. M, Schematic Diagram Diesel Generator 1B Legends 1DG01KB
- 92 Byron Drawing 6E-2-4030DG41 Rev. J, Schematic Diagram Diesel Generator 2A Legends 2DG01KA Unit 2
- 93 Byron Drawing 6E-2-4030DG61 Rev. H, Schematic Diagram Diesel Generator 2B Legends 2DG01KB Unit 2
- 94 Byron Drawing 6E-1-4030DG44 Rev. V, Schematic Diagram Diesel Generator 1A Control Cabinet Switches Development 1DG01KA
- 95 Byron Drawing 6E-1-4030DG64 Rev. U, Schematic Diagram Diesel Generator 1B Control Cabinet Switches Development 1DG01KB
- 96 Byron Drawing 6E-2-4030DG44 Rev. N, Schematic Diagram Diesel Generator 2A Control Cab Switches Development 2DG01KA Unit 2
- 97 Byron Drawing 6E-2-4030DG64 Rev. N, Schematic Diagram Diesel Generator 2B Control Cab Switches Development 2DG01KB Unit 2
- 98 Byron Drawing 6E-1-4030DC01 Rev. N, Schematic Diagram 125V DC Battery Charger 111 1DC03E
- Byron Drawing 6E-1-4030DC02 Rev. N, Schematic Diagram 125V DC Battery Charger 112 1DC04E
- 100 Byron Drawing 6E-1-4030DC04 Rev. B, Schematic Diagram Firing Amplifier and Miscellaneous Alarm Modules 125V DC and 250V DC Battery Chargers
- 101 Byron Drawing 6E-2-4030DC01 Rev. K, Schematic Diagram 125V DC Battery Charger 211 2DC03E
- 102 Byron Drawing 6E-2-4030DC02 Rev. M, Schematic Diagram 125V DC Battery Charger 212 2DC04E
- 103 Byron Drawing 6E-2-4030DC04 Rev. B, Schematic Diagram Firing Amplifier and Miscellaneous Alarm Modules 125V DC and 250V DC Battery Chargers
- 104 Byron Drawing 6E-1-4030AF19 Rev. C, Schematic Diagram 32V DC Battery Charger 1AF01EA-1 and 1AF01EB-1
- 105 Byron Drawing 6E-2-4030AF19 Rev. E, Schematic Diagram 32V DC Battery Charger 2AF01EA-1 and 2AF01EB-1
- 106 Byron Drawing 6E-1-4030IP01 Rev. Q, Schematic Diagram 7.5KVA Fixed Frequency Inverter for Instrument Bus 111 - 1IP05E
- 107 Byron Drawing 6E-1-4030IP02 Sheet 1 Rev. A, Schematic Diagram 10 KVA Inverter for Instrument Bus 112 1IP06E Part 1
- 108 Byron Drawing 6E-1-4030IP02 Sheet 2 Rev. A, Schematic Diagram 10 KVA Inverter for Instrument Bus 112 1IP06E Part 2

- 109 Byron Drawing 6E-1-4030IP02 Sheet 3 Rev. A, Schematic Diagram 10 KVA Inverter Static Switch for Instrument Bus 112 1IP06E Part 3
- 110 Byron Drawing 6E-1-4030IP02 Sheet 4 Rev. A, Schematic Diagram 10 KVA Inverter for Instrument Bus 112 1IP06E Part 4
- 111 Byron Drawing 6E-1-4030IP03 Rev. S, Schematic Diagram 7.5KVA Fixed Frequency Inverter for Instrument Bus 113 IP07E
- 112 Byron Drawing 6E-1-4030IP04 Sheet 1 Rev. A, Schematic Diagram 10 KVA Inverter for Instrument Bus 114 - 1IP08E Part 1
- 113 Byron Drawing 6E-1-4030IP04 Sheet 2 Rev. A, Schematic Diagram 10 KVA Inverter for Instrument Bus 114 - 1IP08E Part 2
- 114 Byron Drawing 6E-1-4030IP04 Sheet 3 Rev. A, Schematic Diagram 10 KVA Inverter Static Switch for Instrument Bus 114 - 1IP08E Part 3
- 115 Byron Drawing 6E-1-4030IP04 Sheet 4 Rev. A, Schematic Diagram 10 KVA Inverter for Instrument Bus 114 - 1IP08E Part 4
- 116 Byron Drawing 6E-2-4030IP01 Rev. K, Schematic Diagram 7.5KVA Fixed Frequency Inverter for Instrument Bus 211 - 2IP05E
- 117 Byron Drawing 6E-2-4030IP02 Rev. K, Schematic Diagram 7.5KVA Fixed Frequency Inverter for Instrument Bus 212 - 2IP06E
- 118 Byron Drawing 6E-2-4030IP03 Rev. L, Schematic Diagram 7.5KVA Fixed Frequency Inverter for Instrument Bus 213 - 2IP07E
- 119 Byron Drawing 6E-2-4030IP04 Rev. L, Schematic Diagram 7.5KVA Fixed Frequency Inverter for Instrument Bus 214 - 2IP08E
- 120 Byron Drawing M-50 Sheet 1C Rev. AN, Diagram of Diesel Fuel Oil Unit 1
- 121 Byron Drawing M-50 Sheet 1D Rev. AP, Diagram of Diesel Fuel Oil Unit 1
- 122 Byron Drawing M-130 Sheet 1A Rev. BH, Diagram of Diesel Oil and Fuel Oil Supply
- 123 Byron Drawing M-130 Sheet 1B Rev. BE, Diagram of Diesel Oil and Fuel Oil Supply
- 124 Byron Drawing M-50 Sheet 1A Rev. AS, Diagram of Diesel Fuel Oil Unit 1
- 125 Byron Drawing M-50 Sheet 1B Rev. AP, Diagram of Diesel Fuel Oil
- 126 Byron Drawing 6E-1-4030DO02 Rev. H, Schematic Diagram Diesel Generator 1A Fuel Oil Transfer Pumps 1D001PA and 1D001PC
- 127 Byron Drawing 6E-1-4030DO03 Rev. J, Schematic Diagram Diesel Gen 1B Fuel Oil Transfer Pumps 1DO01PB and 1DO01PD Unit 1
- 128 Byron Drawing 6E-2-4030DO02 Rev. G, Schematic Diagram Diesel Gen 2A Fuel Oil Transfer Pumps 2D001PA and 2D001PC
- 129 Byron Drawing 6E-2-4030DO03 Rev. G, Schematic Diagram Diesel Gen 2B Fuel Oil Transfer Pumps 2D001PB and 2D001PD Unit 2
- 130 Byron Drawing M-42 Sheet 1A Rev. AQ, Diagram of Essential Service Water Critical Control Room Drawing

- 131 Byron Drawing M-42 Sheet 2A Rev. BC, Diagram of Essential Service Water Units 1 and 2
- 132 Byron Drawing M-42 Sheet 2B Rev. BC, Diagram of Essential Service Water Units 1 and 2
- 133 Byron Drawing M-42 Sheet 3 Rev. BD, Diagram of Essential Service Water Unit 1 Critical Control Room Drawing
- 134 Byron Drawing M-42 Sheet 6 Rev. BC, Diagram of Essential Service Water Critical Control Room Drawing
- 135 Byron Drawing M-126 Sheet 1 Rev. BG, Diagram Of Essential Service Water Unit 2
- 136 Byron Drawing 6E-1-4030SX01 Rev. W, Schematic Diagram Essential Service Water Pump 1A 1SX01PA
- 137 Byron Drawing 6E-1-4030SX02 Rev. X, Schematic Diagram Essential Service Water Pump 1B 1SX01PB
- 138 Byron Drawing 6E-2-4030SX01 Rev. T, Schematic Diagram Essential Service Water Pump 2A 2SX01PA
- 139 Byron Drawing 6E-2-4030SX02 Rev. Q, Schematic Diagram Essential Service Water Pump 2B 2SX01PB
- 140 Byron Drawing 6E-1-4030SX17 Rev. M, Schematic Diagram Diesel Gen 1A and 1B ESS Service Water Valves 1SX169A and 1SX169B
- 141 Byron Drawing 6E-2-4030SX17 Rev. M, Schematic Diagram Diesel Generator 2A and 2B ESS Service Water Valves 2SX169A and 2SX169B
- 142 Byron Drawing M-97 Rev. S, Diagram Of Diesel Generator Room 1A And 1B Ventilation System
- 143 Byron Drawing M-98 Rev. P, Diagram Of Diesel Generator Room 2A And 2B Ventilation System
- 144 Byron Drawing 6E-1-4030VD01 Rev. L, Schematic Diagram Diesel Generator Room 1A HVAC System Ventilation Fan 1A 1VD01CA
- Byron Drawing 6E-1-4030VD02 Rev. K, Schematic Diagram Diesel Generator Room 1B
 HVAC System Ventilation Fan 1B 1VD01CB
- 146 Byron Drawing 6E-1-4030VD03 Rev. S, Schematic Diagram Diesel Generator Room 1A HVAC System Ventilation and Exhaust Fans Auxiliary Relays Switches and Alarm - Part I
- 147 Byron Drawing 6E-1-4030VD04 Rev. N, Schematic Diagram Diesel Generator Room 1A HVAC System Ventilation and Exhaust Fans Auxiliary Relays Switches and Alarms Part II
- 148 Byron Drawing 6E-2-4030VD01 Rev. M, Schematic Diagram Diesel Generator Room 2A HVAC System Ventilation Fan 2A 2VD01CA
- Byron Drawing 6E-2-4030VD02 Rev. M, Schematic Diagram Diesel Generator Room 2B
 HVAC System Ventilation Fan 2B 2VD01CB
- 150 Byron Drawing 6E-2-4030VD03 Rev. S, Schematic Diagram Diesel Generator Room 2A HVAC System Ventilation and Exhaust Fans Auxiliary Relays, Switches and Alarms Part I

- 151 Byron Drawing 6E-2-4030VD04 Rev. M, Schematic Diagram Diesel Generator Room 2A HVAC System Ventilation and Exhaust Fans Auxiliary Relays, Switches and Alarms Part II
- 152 Byron Drawing 6E-1-4030VD07 Rev. L, Schematic Diagram Diesel Generator Room 1A and 1B HVAC System Exhaust Fans 1A and 1B - 1VD03CA and 1VD03CB
- 153 Byron Drawing 6E-2-4030VD07 Rev. L, Schematic Diagram Diesel Generator Room 2A and 2B HVAC System Exhaust Fans 2A and 2B 2VD03CA and 2VD03CB
- 154 Byron Drawing 6E-1-4007A Rev. M, Key Diagram 480V ESF Substation Bus 131X (1AP10E)
- 155 Byron Drawing 6E-1-4007D Rev. O, Key Diagram 480V ESF Substation Bus 132X (1AP12E)
- 156 Byron Drawing 6E-2-4007A Rev. J, Key Diagram 480V ESF Substation Bus 231X (2AP10E) Critical Control Room Drawing
- 157 Byron Drawing 6E-2-4007D Rev. L, Key Diagram 480V ESF Substation Bus 232X (2AP12E) Critical Control Room Drawing
- 158 Byron Drawing 6E-1-4008A Rev. AE, Key Diagram 480V Auxiliary Building ESF MCC 131X1 -1AP21E - Part 1
- 159 Byron Drawing 6E-1-4008B Rev. Z, Key Diagram 480V Auxiliary Building ESF MCC 131X1 and 131X1A - 1AP21E and 1AP21EA - Part 2
- 160 Byron Drawing 6E-1-4008J Rev. AJ, Key Diagram 480V Auxiliary Building ESF MCC 132X1 (1AP23E)
- 161 Byron Drawing 6E-1-4008L Rev. AQ, Key Diagram 480V Auxiliary Building ESF MCC 132X2 and A (1AP27E and 1AP27A)
- 162 Byron Drawing 6E-1-4008Q Rev. S, Key Diagram 480V Auxiliary Building ESF MCC 131X3 (1AP22E)
- 163 Byron Drawing 6E-1-4008Y Rev. AG, Key Diagram 480V Auxiliary Building ESF MCC 132X3 1AP24E
- 164 Byron Drawing 6E-2-4008A Rev. N, Key Diagram 480V Auxiliary Building ESF MCC 231X1 2AP21E Part 1
- 165 Byron Drawing 6E-2-4008B Rev. O, Key Diagram 480V Auxiliary Building ESF MCC 231X1-A 2AP21E-A Part 2
- Byron Drawing 6E-2-4008J Rev. Y, Key Diagram 480V Auxiliary Building ESF MCC 232X1 (2AP23E)
- 167 Byron Drawing 6E-2-4008L Rev. AE, Key Diagram 480V Auxiliary Building ESF MCC 232X2 and A (2AP27E and 2AP27A)
- 168 Byron Drawing 6E-2-4008Q Rev. R, Key Diagram 480V Auxiliary Building ESF MCC 231X3 2AP22E
- Byron Drawing 6E-2-4008Y Rev. U, Key Diagram 480V Auxiliary Building ESF MCC 232X3
 2AP24E
- 170 Byron Drawing 6E-1-4010A Rev. M, Key Diagram 125V DC ESF Distribution Center Bus 111 (1DC05E) Part 1

- 171 Byron Drawing 6E-1-4010B Rev. G, Key Diagram 125V DC ESF Distribution Center Bus 111 (1DC05E) Part 2
- 172 Byron Drawing 6E-1-4010D Rev. N, Key Diagram 125V DC ESF Distribution Center Bus 112 (1DC06E) Part 1
- 173 Byron Drawing 6E-1-4010E Rev. G, Key Diagram 125V DC ESF Distribution Center Bus 112 (1DC06E) Part 2
- 174 Byron Drawing 6E-2-4010A Rev. L, Key Diagram 125V DC ESF Distribution Center Bus 211 (2DC05E) Part 1
- 175 Byron Drawing 6E-2-4010B Rev. F, Key Diagram 125V DC ESF Distribution Center Bus 211 (2DC05E) Part 2
- 176 Byron Drawing 6E-2-4010D Rev. L, Key Diagram 125V DC ESF Distribution Center Bus 212 (2DC06E) Part 1
- 177 Byron Drawing 6E-2-4010E Rev. E, Key Diagram 125V DC ESF Distribution Center Bus 212 (2DC06E) Part 2
- 178 Byron Drawing 6E-1-4012A Rev. W, Key Diagram 120V AC Instrument Bus 111 1IP01J ESF Division 11 Channel I
- 179 Byron Drawing 6E-1-4012B Rev. T, Key Diagram 120V AC Instrument Bus 112 1IP02J ESF Division 12 Channel II
- 180 Byron Drawing 6E-1-4012C Rev. V, Key Diagram 120V AC Instrument Bus 113 1IP03J ESF Division 11 Channel III
- 181 Byron Drawing 6E-1-4012D Rev. Z, Key Diagram 120V AC Instrument Bus 114 1IP04J ESF Division 12 Channel IV
- 182 Byron Drawing 6E-2-4012A Rev. K, Key Diagram 120V AC Instrument Bus 211 2IP01J ESF Division 21 Channel I
- 183 Byron Drawing 6E-2-4012B Rev. J, Key Diagram 120V AC Instrument Bus 212 2IP02J ESF Division 22 Channel II
- 184 Byron Drawing 6E-2-4012C Rev. K, Key Diagram 120V AC Instrument Bus 213 2IP03J ESF Division 21 Channel III
- 185 Byron Drawing 6E-2-4012D Rev. M, Key Diagram 120V AC Instrument Bus 214 2IP04J ESF Division 22 Channel IV
- 186 Byron Drawing 6E-1-4030AP27 Rev. J, Schematic Diagram 4.16KV ESF Switchgear Bus 141 Feed to 480V Auxiliary Transformer 131X - ACB 1415X
- 187 Byron Drawing 6E-1-4030AP36 Rev. H, Schematic Diagram 4.16KV ESF Switchgear Bus 142 Feed to 480V Auxiliary Transformer 132X - ACB 1425X
- 188 Byron Drawing 6E-2-4030AP27 Rev. J, Schematic Diagram 4.16KV ESF Switchgear Bus 241 Feed to 480V Auxiliary Transformer 231X - ACB 2415X
- 189 Byron Drawing 6E-2-4030AP36 Rev. G, Schematic Diagram 4.16KV ESF Switchgear Bus 242 Feed to 480V Auxiliary
- 190 15C0346-CAL-001, Rev. 1, High Frequency Functional Confirmation and Fragility Evaluation of Relays
- 191 15C0346-RPT-001, Rev. 1, Selection of Relays and Switches for High Frequency Seismic Evaluation

A Representative Sample Component Evaluations

The following sample calculation is extracted from Reference [190].

Notes:

- 1. Reference citations within the sample calculation are per Ref. [190] reference section shown on the following page.
- 2. This sample calculation contains evaluations of sample high-frequency sensitive components per the methodologies of both the EPRI high-frequency guidance [8] and the flexible coping strategies guidance document NEI 12-06 [16].

 Check: MD 10/5/201 REFERENCES Codes, Guidance, and Standards 1.1. EPRI 3002004396, "High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation." July 2015. I.2. EPRI 3002002997, "High Frequency Program: High Frequency Testing Summary." September 2014. EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatic Guide." EPRI NP-7247-SL, "Seismic Ruggedness of Relays", August 1991. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatic Guide." EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." Nuclear Regulatory Commission Documents Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 4555, Correspondence No. RS-14-065. Station Documents BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation ERD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation CBM-05094-E, Rev. 1, "Seismic Qualification of Mestinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation CBM-050974-E, Rev. 0, "Review of Seismic Qualification fet hav. Feedwater Diesel Drive		S		S&A Calc. No.: 15C0346-CAL-001, Rev. 1 Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays	By:	Sł FG	neet 32 of 44 10/5/2016
 REFERENCES <u>Codes, Guidance, and Standards</u> 1. EPRI 3002004396, "High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation." July 2015. 1.2. EPRI 3002002997, "High Frequency Program: High Frequency Testing Summary." September 2014. 1.3. EPRI NP.7147-SL, "Seismic Ruggedness of Relays", August 1991. 1.4. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatic Guide." 1.5. EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." Nuclear Regulatory Commission Documents 2.1. Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. R5-14-065. <u>Station Documents</u> 3.1. BYRON-UFSAR, Rev. 14 3.2. Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." 3.3. DC-ST-04-BR, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. 0, "Review of Seismic Qualification report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.5. Calculation EMD-020714, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation BMV-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01]." 3.7. Calculation CQD-0012815 (EMD) (Wyle Report 4389-2), Rev. 0, "Review of Seismic Q		Stevenborn			Check:	MD	10/5/2016
 <u>Codes, Guidance, and Standards</u> EPRI 3002004396, "High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation." July 2015. EPRI 3002002997, "High Frequency Program: High Frequency Testing Summary." September 2014. EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatii Guide." EPRI NP-7223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." <u>Nuclear Regulatory Commission Documents</u> Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. <u>Station Documents</u> BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." Dc-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)18 Diesel Engine Oil Pressure Switch." Calculation COD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation CQD-012527, Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Keview of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Keview of Seismic Qualification Test Report for Battery Charger," 0SX02EA-1 thru 0SX02ED-1, 1	6	REF	ERENC	ES			
 EPRI 3002004396, "High Frequency Program: Application Guidance for Functional Confirmation and Fragility Evaluation." July 2015. EPRI 3002002997, "High Frequency Program: High Frequency Testing Summary." September 2014. EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatit Guide." EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." <u>Nuclear Regulatory Commission Documents</u> Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. Rs-14-065. <u>Station Documents</u> BYRON-UESAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." Dc-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Sety-Related)." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 KV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation CQD-012527, Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-0146 (Wyle Report 47393-1), "Seismic Qualification Test Report for Battery Charger, 05X02EA-1 thru 05X02ED-1, 1, 2AF01EA-1, 1, 2AF01EB-1 (Model #32-50),"<!--</th--><th></th><th>1.</th><th><u>Code</u></th><th>s, Guidance, and Standards</th><th></th><th></th><th></th>		1.	<u>Code</u>	s, Guidance, and Standards			
 Lontrmation and Fragility Evaluation." July 2015. EPRI 300202997, "High Frequency Program: High Frequency Testing Summary." September 2014. EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991. M El 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatik Guide." EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." Nuclear Regulatory Commission Documents Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. <u>Station Documents</u> Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification s(WCAP-16451-P, Revision 01)." Calculation 13815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualifications. (WCAP-16451-P, Revision 01)." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-020154, Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-020164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA			1.1.	EPRI 3002004396, "High Frequency Program: Application Guida	ance for Fu	nction	al
 September 2014. September 2014. September 2014. SPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatii Guide." EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." <u>Nuclear Regulatory Commission Documents</u> Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. <u>Station Documents</u> BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation BBW-05-0094-E, Rev. 1, "Seismic Qualification of AB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Gualification Test Program on a 130-VDC Battery Charger." Calculation CQD-020154 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Charger." Calculation CQD-012527, Rev. 0, "Seismic Gualification			12	Confirmation and Fragility Evaluation." July 2015. EPRI 3002002997 "High Ereguency Program: High Ereguency T	osting Sun	many	"
 EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991. NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatik Guide." EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." Nuclear Regulatory Commission Documents Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. Station Documents BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-020527, Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-02054-E, thru 0SX02ED-1, 1, 2AF01EA-1, 1, 2AF01EB-1 (Model #32-50)." Calculation CQD-07074, Rev. 0, "Review of Seismic Cualification Test Report for Battery Charger." Calculation CQD-070749, Rev. 0, % Seismic Qualification Review for HVAC Control Instrumentation." Actioulation CQD-070799, Rev. 1, "Seismic Qualification			1.2.	September 2014.	esting Sun	innary.	
 NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Strategies (FLEX) Implementatic Guide." EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." <u>Nuclear Regulatory Commission Documents</u> Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. <u>Station Documents</u> Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-B8, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation D88U-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation D18815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." Calculation D12527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-012527, Rev. 0, "Seismic Simulation Review for HVAC Control mattery Charger." Calculation CQD-012527, Rev. 0, "Seismic Cualification Review for HA2001E-1, 1,2AF01E8-1 (Model #32-50)." Calculation CQD-007041, Rev. 0, % Seismic Cualification Review for HVAC Control nestrey Charger." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation."<th></th><td></td><td>1.3.</td><td>EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991</td><td>•</td><td></td><td></td>			1.3.	EPRI NP-7147-SL, "Seismic Ruggedness of Relays", August 1991	•		
 Guide." 1.5. EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Power Plant Equipment." Nuclear Regulatory Commission Documents 2.1. Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. 3. Station Documents 3.1. BYRON-UFSAR, Rev. 14 3.2. Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." 3.3. DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020734, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-020164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Charger." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007099, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgear (1&2AP10E, 1&2AP01E, 1&2AP01E, 1&2AP01E, 1&2AP01E, 1&2AP01E, 1&2AP01E, 1&2AP			1.4.	NEI 12-06, Appendix H, Rev. 2, "Diverse and Flexible Coping Stra	ategies (FL	EX) Im	plementation
 EPRI NP-3223-SL, ReV. 1, "Generic Seismic Ruggedness of Power Plant Equipment." Nuclear Regulatory Commission Documents Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 5(455, Correspondence No. RS-14-065. Station Documents Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification. (WCAP-16451-P, Revision 01)." Calculation CQD-015527, Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-020156, Nev. 0, "Review of Seismic Cualification Test Reports for various Control Components." Calculation CQD-01527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-020156, Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 05X02EA-1 thru 05X02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-00794, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP98E)."			4 5	Guide."		•	
 Nuclear Regulatory Commission Documents Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. Station Documents BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation BMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation BW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 			1.5.	EPRI NP-5223-SL, Rev. 1, "Generic Seismic Ruggedness of Powe	r Plant Equ	lipmer	IT."
 Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docket No. STN 50-454 and STN 50 455, Correspondence No. RS-14-065. <u>Station Documents</u> BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." Calculation CQD-2012527, Rev. 0, "Seismic Simulation Test Reports for various Control Components." Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Charger." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (182AP10E, 182AP12E, 182AP9E)." 		2.	Nucle	ar Regulatory Commission Documents			
 455, Correspondence No. RS-14-065. 3. <u>Station Documents</u> 3.1. BYRON-UFSAR, Rev. 14 3.2. Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." 3.3. DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation CQD-2012527, Rev. 0, "Seismic Simulation Test Reports for various Control Components." 3.10. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Charger." 3.11. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (182AP10E, 182AP12E, 182AP98E, 182AP99E)." 			2.1.	Byron Seismic Hazard and Screening Report, Rev. 0, NRC Docke	t No. STN	50-454	and STN 50-
 Station Documents BYRON-UFSAR, Rev. 14 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. FeedWater Diesel Drive and Control Panel (Safety-Related)." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." Calculation CQD-200164 (Wyle Report 47969-2), Rev. 0, "Review of Seismic Cualification for Components." Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgee (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 				455, Correspondence No. RS-14-065.			
 Statution Documents 3.1. BYRON-UFSAR, Rev. 14 3.2. Calculation BYRO8-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." 3.3. DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-0200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (182AP10E, 182AP12E, 182AP98E, 182AP99E)." 		2	Statio	n Documents			
 Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc. (ESI) Seismic Qualification Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-0200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Not Used 		5.	3.1.	BYRON-UFSAR, Rev. 14			
 Report No. ES-SR-08-106, Revision 0, For a Replacement Speed Circuit for the Auxiliary Feedwater Diesel Driven Pump at Byron Station." 3.3. DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgear (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.2.	Calculation BYR08-091, Rev. 0, "Review of Engine Systems, Inc.	(ESI) Seisn	nic Qua	alification
 Feedwater Diesel Driven Pump at Byron Station." 3.3. DC-ST-04-BB, Rev. 2, "Development of Seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 05X02EA-1 thru 05X02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgear (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP98E)." 				Report No. ES-SR-08-106, Revision 0, For a Replacement Speed	Circuit for	the Au	uxiliary
 5.3. DC-51-04-BB, ReV. 2, "Development of seismic Subsystem (or Equipment) Design Criteria (Horizontal and Vertical) and Response Spectra." 3.4. Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 				Feedwater Diesel Driven Pump at Byron Station."		Desta	. Cultural -
 Galculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Diesel Engine Oil Pressure Switch." Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Calculation CQD-07999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			5.5.	UC-51-04-BB, Rev. 2, "Development of Seismic Subsystem (or Ed	quipment)	Desigi	n Criteria
 3.5. Calculation CQD-200156, Rev. 0, "Seismic Qualification of Westinghouse 7300 Series Proces Control and Protection System, Spec. No. F/L-2812." 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.4.	Calculation SM-AF143, Rev. C, "Calcs. For Aux Feed Pump (2)1B Switch."	Diesel Eng	gine Oi	l Pressure
 3.6. Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification Report for the Aux. Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.5.	Calculation CQD-200156, Rev. 0, "Seismic Qualification of West Control and Protection System, Spec. No. F/L-2812."	inghouse 7	7300 Se	eries Process
 Feedwater Diesel Drive and Control Panel (Safety-Related)." 3.7. Calculation BRW-05-0094-E, Rev. 1, "Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." 3.8. Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." 3.9. Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.6.	Calculation EMD-020714, Rev. 0, "Review of Seismic Qualification	on Report	for the	e Aux.
 Calculation BRW-05-0094-E, Rev. 1, Seismic Qualification of ABB Protective Relays for the 480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood Stations. (WCAP-16451-P, Revision 01)." Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification for Engine/Generator Panel of Cooper Energy Services." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgeau (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			27	Feedwater Diesel Drive and Control Panel (Safety-Related)."			6
 Calculation 01815 (EMD) (Wyle Report 44369-2), Rev. 0, "Review of Seismic Qualification fu Engine/Generator Panel of Cooper Energy Services." Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			5.7.	480V, 4.16 kV and 6.9 kV Switchgear at Byron and Braidwood St Pevision 011	tations. (W	Ve Rei /CAP-1	6451-P,
 Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Reports for various Control Components." Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." Not Used Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.8.	Calculation 018815(EMD) (Wyle Report 44369-2), Rev. 0, "Revie Engine/Generator Panel of Cooper Energy Services."	ew of Seisr	nic Qu	alification for
 3.10. Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Program on a 130-VDC Battery Charger." 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.9.	Calculation 012617 (CQD), Rev. 0, "Review of Seismic Test Repo Components."	orts for var	ious Co	ontrol
 3.11. Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Qualification Test Report for Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2AF01EB-1 (Model #32-50)." 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.10.	Calculation CQD-012527, Rev. 0, "Seismic Simulation Test Progr Charger."	ram on a 1	30-VD	C Battery
 3.12. Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Review for HVAC Control Instrumentation." 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.11.	Calculation CQD-200164 (Wyle Report 47993-1), "Seismic Quali Battery Chargers, 0SX02EA-1 thru 0SX02ED-1, 1,2AF01EA-1, 1,2	ification Te AF01EB-1	st Rep (Mode	ort for I #32-50)."
 3.13. Not Used 3.14. Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)." 			3.12.	Calculation CQD-007041, Rev. 0 & 1, "Seismic Qualification Revi Instrumentation."	iew for HV	AC Coi	ntrol
3.14. Calculation CQD-00/999, Rev. 1, "Seismic Qualification of Westinghouse 480 Volt Switchgea (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)."			3.13.	Not Used			
			3.14.	Calculation CQD-007999, Rev. 1, "Seismic Qualification of Westi (1&2AP10E, 1&2AP12E, 1&2AP98E, 1&2AP99E)."	Inghouse 4	180 Vo	It Switchgear

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 33 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

4. <u>Station Drawing</u>

- 4.1. Drawing 6E-1-4031AF14, Rev. D, "Loop Schematic Diagram Aux. Feedwater Pump Suction Pressure Cab. 1PA34J."
- 4.2. Drawing 6E-2-4031AF14, Rev. E, "Loop Schematic Diagram Aux. Feedwater Pump Suction Pressure Cab. 2PA34J."
- 4.3. Drawing 6E-1-4468, Rev. Y, "Elevation Auxiliary Feedwater Pump 1B Startup Panel 1AF01J."
- 4.4. Drawing 6E-2-4468, Rev. W, "Elevation Auxiliary Feedwater Pump 2B Startup Panel 2AF01J."
- 4.5. Drawing 6E-1-4234B, Rev. H, "Bill of Material & Nameplate 125V DC Battery Chargers 111 & 112 (1DC03E, 1DC04E)."
- 4.6. Drawing 6E-2-4234B, Rev. H, "Bill of Material & Nameplate 125V DC Battery Chargers 211 & 212 (2DC03E, 2DC04E)."
- 4.7. Drawing 6E-1-4030VD07, Rev. L, "Schematic Diagram Diesel Generator Room 1A & 1B HVAC System Exhaust Fans 1A & 1B 1VD03CA & B."
- 4.8. Drawing 6E-2-4030VD07, Rev. L, "Schematic Diagram Diesel Generator Room 2A & 2B HVAC System Exhaust Fans 2A & 2B 2VD03CA & B."
- 4.9. Drawing 6E-1-4468, Rev. Y, "Elevation Auxiliary Feedwater Pump 1B Startup Panel 1AF01J."
- 4.10. Drawing 6E-2-4468, Rev. W, "Elevation Auxiliary Feedwater Pump 2B Startup Panel 2AF01J."

5. <u>S&A Documents</u>

5.1. 15C0346-RPT-001, Rev. 1, "Selection of Relays and Switches for High Frequency Seismic Evaluation."

6. Miscellaneous Documents

- 6.1. Test Report ES-1000, "Nuclear Environmental Qualification Test Report On Agastat E7000 Series Timing Relays." (See Attachment E)
- 6.2. Report 60967, Rev. 0, "Nuclear Environmental Qualification Report for a Microswitch, P/N BZLN-LH." (See Attachment H)
- 6.3. Solon Manufacturing Company Catalog, "Model Series 7PS Pressure Switch Diaphragm Sensing Element." (See Attachment J)
- 6.4. Ashcroft Data Sheet, "B Series Switches Pressure, Differential Pressure & Hydraulics." (See Attachment K)
- 6.5. Report S9025.0, Rev. 2, "Seismic Test Report for Parker Regulator & Gauge, Durabla Check Valve and Square D Pressure Switch." (See Attachment M)

S&A Calc. No.: 15C0346-CAL-001, Rev. 1 Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays
Sheet 34 of 44
By: FG 10/5/2016 Check: MD 10/5/2016

7 INPUTS

Inputs are provided as necessary within Section 8 of this calculation.

S&A Calc. No.: 15C0346-CAL-001, Rev. 1 Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays

 Sheet 35 of 44

 By:
 FG
 10/5/2016

 Check:
 MD
 10/5/2016

8 ANALYSIS

8.1 Equipment Scope

The list of essential relays at BYR is per Ref. 5.1 and can be found in Section 1, Table 1.1 of this calculation.

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 36 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.2 High-Frequency Seismic Demand

Calculate the high-frequency seismic demand on the relays per the methodology from Ref. 1.1.

Sample calculation for the high-frequency seismic demand of relay components 1AF01J-K4 and 1AF01J-K10 is presented below. A table that calculates the high-frequency seismic demand for all of the subject relays listed in Section 1, Table 1.1 of this calculation is provided in Attachment A of this calculation.

8.2.1 Horizontal Seismic Demand

The horizontal site-specific GMRS for Byron Nuclear Generating Station (BYR) is per Ref. 2.1. GMRS data can be found in Attachment B of this calculation. A plot of GMRS can be found in Attachment C of this calculation.

Determine the peak acceleration of the horizontal GMRS between 15 Hz and 40 Hz.

Peak acceleration of horizontal GMRS	$SA_{GMRS} := 0.514g$	(at 20 Hz)
between 15 Hz and 40 Hz (Ref. 2.1; see	GWING	
Attachment B of this calculation):		

Calculate the horizontal in-structure amplification factor based on the distance between the plant foundation elevation and the subject floor elevation.

Grade Elevation (Ref. 3.1):	ELgrade := 400ft
	^L grade ^{:=} '

Per Ref. 3.1, Table 3.7-3, the embedment depth of the foundation varies between 0' to 70'. Conservatively use 70' as the Auxiliary Building embedment depth.

Auxiliary Building Embedment Depth (Ref. 3.1, Table 3.7-3)	embed _{ab} := 70ft
Foundation Elevation (Auxiliary Building):	$El_{found.ab} := EL_{grade} - embed_{ab} = 330.00 \cdot ft$
Relay floor elevation (Table 1.1):	EL _{relay} := 383ft
Relay components 1AF01J-K4 and 1AF01J-K10 are both	located in the Auxiliary Building at elevation 383'-0".
Distance between relay floor and foundation:	$h_{relay} := EL_{relay} - El_{found.ab} = 53.00 \cdot ft$

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 37 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.2 High-Frequency Seismic Demand (cont'd)

8.2.1 Horizontal Seismic Demand (cont'd)

Work the distance between the relay floor and foundation with Ref. 1.1, Fig. 4-3 to calculate the horizontal in-structure amplification factor.

Horizontal in-structure amplification factor:

$$AF_{SH}(h_{relay}) := \begin{cases} (m_h \cdot h_{relay} + b_h) & \text{if } h_{relay} \le 40 \text{ft} \\ 2.1 & \text{otherwise} \end{cases}$$

 $AF_{SH}(h_{relay}) = 2.10$

Calculate the horizontal in-cabinet amplification factor based on the type of cabinet that contains the subject relay.

Type of cabinet (per Table 1.1) (enter "MCC", "Switchgear", "Control Cabinet", or "Rigid"): cab := "Control Cabinet"

Horizontal in-cabinet amplification factor	AF _{c.h} (cab) :=	3.6	if	cab = "MCC"
(Ref. 1.1, p. 4-13):		7.2	if	cab = "Switchgear"
		4.5	if	cab = "Control Cabinet"
		1.0	if	cab = "Rigid"

 $AF_{c,h}(cab) = 4.5$

Multiply the peak horizontal GMRS acceleration by the horizontal in-structure and in-cabinet amplification factors to determine the in-cabinet response spectrum demand on the relays.

Horizontal in-cabinet response spectrum (Ref. 1.1, p. 4-12, Eq. 4-1a and p. 4-15, Eq. 4-4):

$$ICRS_{c.h} := AF_{SH}(h_{relay}) \cdot AF_{c.h}(cab) \cdot SA_{GMRS} = 4.857 \cdot g_{SHS}$$

Note that the horizontal seismic demand is same for both relay components 1AF01J-K4 and 1AF01J-K10.

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 38 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.2 High-Frequency Seismic Demand (cont'd)

8.2.2 Vertical Seismic Demand

Determine the peak acceleration of the horizontal GMRS between 15 Hz and 40 Hz.

Peak acceleration of horizontal GMRS between 15 Hz and 40 Hz (see Sect. 8.2.1 of this calculation)

 $SA_{GMRS} = 0.514 \cdot g$ (at 20 Hz)

Obtain the peak ground acceleration (PGA) of the horizontal GMRS from Ref. 2.1 (see Attachment B of this calculation).

PGAGMRS := 0.270g

Calculate the shear wave velocity traveling from a depth of 30m to the surface of the site (V_{s30}) from Ref. 1.1, p. 3-5 and Attachment D.

Shear Wave Velocity:

$$V_{s30} = \frac{(30m)}{\Sigma \left(\frac{d_i}{V_{si}}\right)}$$

where, d_i: Thickness of the layer (ft)

V_{si}: Shear wave velocity of the layer (ft/s)

Per Attachment D, the sum of thickness of the layer over shear wave velocity of the layer is 0.0313 sec.

		ft
Shear Wave Velocity:	$V_{c20} :== =$	3145
•	550 0.0313sec	sec

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 39 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.2 High-Frequency Seismic Demand (cont'd)

8.2.2 Vertical Seismic Demand (cont'd)

Work the PGA and shear wave velocity with Ref. 1.1, Table 3-1 to determine the soil class of the site. Based on the PGA of 0.270g and shear wave velocity of 3145ft/sec at BYR, the site soil class is conservatively taken as C-Hard.

Work the site soil class with Ref. 1.1, Table 3-2 to determine the mean vertical vs. horizontal GMRS ratios (V/H) at each spectral frequency. Multiply the V/H ratio at each frequency between 15Hz and 40Hz by the corresponding horizontal GMRS acceleration at each frequency between 15Hz and 40Hz to calculate the vertical GMRS.

See Attachment B for a table that calculates the vertical GMRS (equal to (V/H) x horizontal GMRS) between 15Hz and 40Hz.

Determine the peak acceleration of the vertical GMRS (SA_{VGMRS}) between frequencies of 15Hz and 40Hz. (By inspection of Attachment B, the peak SA_{VGMRS} occurs at 35Hz.)

V/H ratio at 35HzVH := 0.82(See Attachment B of this calculation):Horizontal GMRS at frequency of peak
vertical GMRS (at 35Hz)HGMRS := 0.467g(See Attachment B of this calculation):HGMRS := 0.467g

Peak acceleration of vertical GMRS between $SA_{VGMRS} := VH \cdot HGMRS = 0.383 \cdot g$ (at 35 Hz) 15 Hz and 40 Hz:

A plot of horizontal and vertical GMRS is provided in Attachment C of this calculation.

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 40 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.2 High-Frequency Seismic Demand (cont'd)

8.2.2 Vertical Seismic Demand (cont'd)

Calculate the vertical in-structure amplification factor based on the distance between the plant foundation elevation and the subject floor elevation.

Distance between relay floor and foundation $h_{relay} = 53.00 \cdot ft$ (see Sect. 8.2.1 of this calculation):

Work the distance between the relay floor and foundation with Ref. 1.1, Fig. 4-4 to calculate the vertical in-structure amplification factor.

Slope of amplification factor line:	$m_{V} := \frac{2.7 - 1.0}{100 ft - 0 ft} = 0.017 \cdot \frac{1}{ft}$
Intercept of amplification factor line:	b _v := 1.0
Vertical in-structure amplification factor:	$AF_{SV} := m_v \cdot h_{relay} + b_v = 1.901$

The sample relay components 1AF01J-K4 and 1AF01J-K10 are mounted within host 1AF01J. Therefore, the vertical in-cabinet amplification for sample relay components is 4.7 per Ref. 1.1, Eq. 4-3.

Vertical in-cabinet amplification factor: $AF_{C,V} := 4.7$

Multiply the peak vertical GMRS acceleration by the vertical in-structure and in-cabinet amplification factors to determine the in-cabinet response spectrum demand on the relay.

Vertical in-cabinet response spectrum (Ref. 1.1, p. 4-12, Eq. 4-1b and p. 4-15, Eq. 4-4):

 $ICRS_{c.v} := AF_{SV} \cdot AF_{c.v} \cdot SA_{VGMRS} = 3.421 \cdot g$

Note that the vertical seismic demand is same for both relay components 1AF01J-K4 and 1AF01J-K10.

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 41 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.3 High-Frequency Seismic Capacity for Ref. 1.1 Relays

A sample calculation for the high-frequency seismic capacity of 1AF01J-K4 and 1AF01J-K10 relay components are presented here. A table that calculates the high-frequency seismic capacities for all of the Ref. 1.1 subject relays listed in Section 1, Table 1.1 of this calculation is provided in Attachment A of this calculation.

8.3.1 Seismic Test Capacity

The high frequency seismic capacity of a relay can be determined from the Ref. 1.2 high-frequency testing program or other broad banded low frequency capacity data such as the Generic Equipment Ruggedness Spectra (GERS). Per Ref. 1.1, Sect. 4.5.2, a conservative estimate of the high-frequency (i.e., 20Hz to 40Hz) capacity can be made by extending the low frequency GERS capacity into the high frequency range to a roll off frequency of about 40Hz. Therefore, if the high frequency capacity was not available for a component, a SA_T value equal to

the GERS spectral acceleration from 4 to 16 Hz could be used.

For the relay component 1AF01J-K4 (Model #: E7012OEL) and 1AF01J-K10 (Model #: KHS17D11), the GERS spectral acceleration from Ref. 1.3 is used as the seismic test capacity.

Seismic test capacity (SA*):

$$SA' := \begin{pmatrix} 12.5 \\ 10 \end{pmatrix} g \qquad \begin{pmatrix} 1AF01J-K4 \ (Ref. 1.3, Page B-8) \\ 1AF01J-K10 \ (Ref. 1.3, Page B-29) \end{pmatrix}$$

8.3.2 Effective Spectral Test Capacity

GERS spectral acceleration for the relay components 1AF01J-K4 and 1AF01J-K10 is used as the seismic test capacity. Therefore for the relay components 1AF01J-K4 and 1AF01J-K10 there is no spectral acceleration increase.

Effective spectral test capacity (Ref. 1.1, p. 4-16):

$$SA_{T} := \begin{pmatrix} SA'_{1} \\ SA'_{2} \end{pmatrix} = \begin{pmatrix} 12.50 \\ 10.00 \end{pmatrix} \cdot g \qquad \qquad \begin{pmatrix} 1AF01J-K4 \\ 1AF01J-K10 \end{pmatrix}$$

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 42 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.3 High-Frequency Seismic Capacity for Ref. 1.1 Relays (cont'd)

8.3.3 Seismic Capacity Knockdown Factor

Determine the seismic capacity knockdown factor for the subject relay based on the type of testing used to determine the seismic capacity of the relay.

The knockdown factor for relay components 1AF01J-K4 and 1AF01J-K10 is obtained per Ref. 1.1, Table 4-2.

Seismic canacity knockdown factor:	$\left(1.50\right)$	(1AF01J-K4 (Ref. 1.1, Table 4-2)
Seismic capacity knockdown ractor.	$r_{k} = \left(1.50\right)$	(1AF01J-K10 (Ref. 1.1, Table 4-2)

8.3.4 Seismic Testing Single-Axis Correction Factor

Determine the seismic testing single-axis correction factor of the subject relay, which is based on whether the equipment housing to which the relay is mounted has well-separated horizontal and vertical motion or not.

Per Ref. 1.1, pp. 4-17 to 4-18, relays mounted within cabinets that are braced, bolted together in a row, mounted to both floor and wall, etc. will have a correction factor of 1.00. Relays mounted within cabinets that are bolted only to the floor or otherwise not well-braced will have a correction factor of 1.2.

The sample relay components 1AF01J-K4 and 1AF01J-K10 are mounted within host 1AF01J. Per Ref. 1.1, pp. 4-18, conservatively take the F_{MS} value as 1.0.

Single-axis correction factor	$F_{MS} := 1.0$
(Ref. 1.1, pp. 4-17 to 4-18):	1VIS

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 43 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.3 High-Frequency Seismic Capacity for Ref. 1.1 Relays (cont'd)

8.3.5 Effective Wide-Band Component Capacity Acceleration

Calculate the effective wide-band component capacity acceleration of relay components 1AF01J-K4 and 1AF01J-K10 per Ref. 1.1, Eq. 4-5.

Effective wide-band component capacity	TPS	(SAT)	- -	(8.333)		(1AF01J-K4)
acceleration (Ref. 1.1, Eq. 4-5)	185 :=	$\overline{F_k}$	· MS =	(6.667)).g	(1AF01J-K10)

8.4 High-Frequency Seismic Capacity for Ref. 1.4, Appendix H Relays

8.4.1 Effective Wide-Band Component Capacity Acceleration

Per a review of the capacity generation methodologies of Ref. 1.1 and Ref. 1.4, App. H, Section H.5, the capacity of a Ref. 1.4 relay is equal to the Ref. 1.1 effective wide-band component capacity multiplied by a factor accounting for the difference between a 1% probability of failure ($C_{1\%}$, Ref. 1.1) and a 10% probability of failure ($C_{10\%}$, Ref. 1.4).

Per Ref. 1.4, App. H, Table H.1, use the $C_{10\%}$ vs. $C_{1\%}$ ratio from the Realistic Lower Bound Case for relays.

C10% vs. C1% ratio

C₁₀ := 1.36

Effective wide-band component capacity acceleration (Ref. 1.4, App. H, Sect. H.5)

$$TRS_{1.4} := TRS \cdot C_{10} = \begin{pmatrix} 11.333 \\ 9.067 \end{pmatrix} \cdot g \qquad \begin{pmatrix} 1AF01J-K4 \\ 1AF01J-K10 \end{pmatrix}$$

Title: High Frequency Functional Confirmation and Fragility Evaluation of Relays Sheet 44 of 44 By: FG 10/5/2016 Check: MD 10/5/2016

8 ANALYSIS (cont'd)

8.5 Relay (Ref. 1.1) High-Frequency Margin

Calculate the high-frequency seismic margin for Ref. 1.1 relays per Ref. 1.1, Eq. 4-6.

A sample calculation for the high-frequency seismic demand of relay components 1AF01J-K4 and 1AF01J-K10 is presented here. A table that calculates the high-frequency seismic margin for all of the subject relays listed in Section 1, Table 1.1 of this calculation is provided in Attachment A of this calculation.

Horizontal seismic margin (Ref. 1.1, Eq. 4-6):	$\frac{\text{TRS}}{\text{ICRS}_{\text{c.h}}} = \begin{pmatrix} 1.716\\ 1.373 \end{pmatrix}$	> 1.0, O.K. > 1.0, O.K.	(14F01J-K4 14F01J-K10)
Vertical seismic margin (Ref. 1.1, Eq. 4-6):	$\frac{\text{TRS}}{\text{ICRS}_{\text{C.V}}} = \begin{pmatrix} 2.436\\ 1.948 \end{pmatrix}$	> 1.0, O.K. > 1.0, O.K.	(1AF01J-K4 1AF01J-K10)

Both the horizontal and vertical seismic margins for the relay components 1AF01J-K4 and 1AF01J-K10 are greater than 1.00. The sample relays are adequate for high-frequency seismic spectral ground motion. The sample relays are adequate for high-frequency seismic spectral ground motion for their Ref. 1.1 functions.

8.6 Relay (Ref. 1.4) High-Frequency Margin

Calculate the high-frequency seismic margin for Ref. 1.4 relays per Ref. 1.1, Eq. 4-6.

A sample calculation for the high-frequency seismic demand of relay components 1AF01J-K4 and 1AF01J-K10 is presented here. A table that calculates the high-frequency seismic margin for all of the subject relays listed in Section 1, Table 1.1 of this calculation is provided in Attachment A of this calculation.

Horizontal seismic margin (Ref. 1.1, Eq. 4-6):	$\frac{TRS_{1.4}}{ICRS_{c,h}} = \begin{pmatrix} 2.333\\ 1.867 \end{pmatrix}$	> 1.0, O.K. > 1.0, O.K.	(1AF01J-K4 (1AF01J-K10)
Vertical seismic margin (Ref. 1.1, Eq. 4-6):	$\frac{TRS_{1.4}}{ICRS_{C,V}} = \begin{pmatrix} 3.312\\ 2.650 \end{pmatrix}$	> 1.0, O.K. > 1.0, O.K.	(1AF01J-K4 (1AF01J-K10)

Both the horizontal and vertical seismic margins for the relay components 1AF01J-K4 and 1AF01J-K10 are greater than 1.00. The sample relays are adequate for high-frequency seismic spectral ground motion for their Ref. 1.4 functions.

No. U				C	omponent		Encl	osure		Floor	Componen	t Evaluation	
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
1	1	1AF01J-K10	Control Relay	Core Cooling	Lo w Lube Oil Pressure Relay	Potter Brumfield	KHS-17D11	1AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
2	1	1AF01J-K11	Control Relay	Core Cooling	Low Oil Pressure Time Delay Relay	Agastat	7022OC	1AF01J	Control Cabinet	Auxiliary Building	383	EPRI HF Test	Cap > Dem
3	1	1AF01J-K4	Control Relay	Core Cooling	Overcrank Timer Relay	Agastat	E7012OEL004	1AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
4	1	1AF01J-K7	Control Relay	Core Cooling	Overcrank relay	Potter Brumfield	KHS-17D11- 24VDC	1AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
5	1	1AF01J-K8	Control Relay	Core Cooling	High water temperature relay	Potter Brumfield	KHS-17D11- 24VDC	1AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
6	1	1AF01J-K9	Control Relay	Core Cooling	Overspeed relay	Potter Brumfield	KHS-17D11- 24VDC	1AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
7	1	1SS-AF8002 "S1"	Process Switch	Core Cooling	Speed switch	Dynalco	SST-2400A	1AF01J	Control Cabinet	Auxiliary Building	383	BYR Report	Cap > Dem
		1TSH-4F147	Process	Core	High water	United Electric	F400-6BS- 20S-20S		Control	Auxiliary		BYR	Cap > Dem
8	1	"S10"	Switch	Cooling	temperature switch	Square D	9025-BCW-32	1AF01PB	Cabinet	Building	383	Report	Cap > Dem
9	1	486-1413 @ 1AP05EF	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 656A830G01	1AP05E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem

Table B-1: Components Identified for High Frequency Confirmation

Page 48 of 75

No.			Component						losure		Floor	Component Evaluation	
NO.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
10	1	486-1412 @	Control Relay	AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01	1AP05F	Switchgear	Auxiliary	426	GERS	Cap > Dem
		1AP05ER		Support System	Lockout Relay	Electroswitch	793A389G01F		Switchgeur	Building	420	GENS	Cap > Dem
11	1	PR30A-451 @ 1AP05ER	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
12	1	PR30C-451 @ 1AP05ER	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
13	1	PR31-451N @ 1AP05ER	Protective Relay	AC/DC Po w er Support System	Ground Fault Relay	Westinghouse	CO-6B 1456C05A16	1AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
14	1	486-1414X	Control Bolow	AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01	140055		Auxiliary	426	CEDE	Cap > Dem
14		@ 1AP05EP	Control Kelay	Support System	Lockout Relay	Electroswitch	793A389G01F	IAPUSE	Switchgear	Building	426	GERS	Cap > Dem
15	1	PR27A-451 @ 1AP05EP	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
16	1	PR27C-451 @ 1AP05EP	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
17	1	PR28-451N @ 1AP05EP	Protective Relay	AC/DC Power Support System	Ground Fault Relay	Westinghouse	CO-6 1456C05A16	1AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
18	1	62CL @ 1PL07J	Control Relay	AC/DC Power Support System	Cranking Limit Time Delay Relay	Тусо	E7012PDL004	1PLO7J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
19	1	48 @	Control Bolow	AC/DC Power	Incomplete	Agastat	EGPDR- C2017-004	10107	Control	Auxiliary	404	BYR	Cap > Dem
		1PL07J	Control Kelay	Support System	Relay	Agastat	GPDR-C740	1PL07J	Cabinet	Building	401	Report	Cap > Dem

Table B-1: Components Identified for High Frequency Confirmation

Page 49 of 75

No. Unit		Component						osure		Floor	Componen	t Evaluation	
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
20	1	86E @	Control Pelay	AC/DC Power	Engine Shutdown	Agastat	EGPDR- C2017-004	191071	Control	Auxiliary	401	BYR	Cap > Dem
20		1PLO7J	Control Kelay	Support System	Relay	Agastat	GPDR-C740	11 2073	Cabinet	Building	101	Report	Cap > Dem
		63QELX @		AC/DC Power	Engine Lube Oil Low Pressure	Agastat	EGPDR- C2017-004	451.071	Control	Auxiliary	401	BYR	Cap > Dem
21	1	1PL07J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	10/1	Cabinet	Building	401	Report	Cap > Dem
		63QTLX @		AC/DC Power	Turbo Low Lube Oil Pressure	Agastat	EGPDR- C2017-004		Control	Auxiliary	404	BYR	Cap > Dem
22		1PL07J	Control Relay	Support System	Shutdo w n Repeater Relay	Agastat	GPDR-C740	10/1	Cabinet	Building	401	Report	Cap > Dem
				AC/DC	Main and Connecting Rod	Agastat	EGPDR- C2017-004						Cap > Dem
23 1	1	26MBHTX @ 1PL07J	Control Relay	Power Support System	High Bearing Temperature Shutdown Repeater Relay	Agastat	GPDR-C740	1PLO7J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				AC/DC	Turbo Thrust	Agastat	EGPDR- C2017-004		Control	Auxiliany		BVR	Cap > Dem
24	1	1PL07J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	1PL07J	Cabinet	Building	401	Report	Cap > Dem
		26JWSX @	Castral Dalar	AC/DC Po w er	Jacket Water High Temperature	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
25		1PL07J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	191073	Cabinet	Building	401	Report	Cap > Dem
26	1	63CX @	Control Bolov	AC/DC Power	Crankcase High	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
20		1PL07J	Control Relay	Support System	Relay	Agastat	GPDR-C740	IPLO7J	Cabinet	Building	401	Report	Cap > Dem
27	1	86G @	Control Bolay	AC/DC Power	Generator	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
21		1PL07J		Support System	Shutdown Relay	Agastat	GPDR-C740	1510/1	Cabinet	Building	401	Report	Cap > Dem
		51X @	Protective	AC/DC Power	Generator	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
28		51X @ 1PL07J	Protective Relay	Support System	Overcurrent Relay	Agastat	stat C2017-004 stat GPDR-C740	19107]	Cabinet	Building	401	Report	Cap > Dem

Page 50 of 75

				C	omponent			Encl	osure		Floor	Componen	t Evaluation
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
		59GX @		AC/DC Power	Generator Neutral	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
29		1PL07J	Control Relay	Support System	Ground Voltage Auxiliary Relay	Agastat	GPDR-C740	1PL07J	Cabinet	Building	401	Report	Cap > Dem
30	1	40X @	Control Relay	AC/DC Power	Loss of Field Auxiliary Relay	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
30		1PL07J	Control Relay	Support System	Loss of Field Auxiliary Relay	Agastat	GPDR-C740	191073	Cabinet	Building	401	Report	Cap > Dem
31	1	32X @	Control Relay	AC/DC Power	Reverse Power	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
51	-	1PL07J	Control Kelay	Support System	Auxiliary Relay	Agastat	GPDR-C740	1, 10,1	Cabinet	Building		Report	Cap > Dem
32	1	81UX @	Control Relay	AC/DC Power	Under Frequency	Agastat	EGPDR- C2017-004	1071	Control	Auxiliary	401	BYR	Cap > Dem
		1PL07J		Support System	Auxiliary Relay	Agastat	GPDR-C740		Cabinet	Building		Report	Cap > Dem
33	1	87G1X @	Control Relay	AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004	1071	Control	Auxiliary	401	BYR	Cap > Dem
		1PL07J	control heray	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740		Cabinet	Building	.01	Report	Cap > Dem
34	1	87G2X @	Control Relay	AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
		1PL07J	Control Nelay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	11 2073	Cabinet	Building		Report	Cap > Dem
35	1	12X1 @	Control Relay	AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
		1PL07J		Support System	Shutdown Relay	Agastat	GPDR-C740		Cabinet	Building		Report	Cap > Dem
36		12X2 @	Control Belay	AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
50		1PL07J	Control Nelay	Support System	Shutdown Relay	Agastat	GPDR-C740	1/2073	Cabinet	Building	-01	Report	Cap > Dem
27	1	86S2 @	Control Bolow	AC/DC Power	Unit Shutdown	Agastat	EGPDR- C2017-004	101071	Control	Auxiliary	401	BYR	Cap > Dem
3/		1PL07J	Control Kelay	Support System	Relay	Agastat	GPDR-C740	1910/]	Cabinet	Building	401	Report	Cap > Dem

Page 51 of 75

					Enclosure			Floor	Componen	t Evaluation			
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
38	1	1PS- DG108A	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Square D	9012-GAW- 24	1DG01KA	Diesel Generator	Auxiliary Building	401	BYR Report	Cap > Dem
39	1	1PS- DG251A	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Honeywell	BZLN-LH	1PLO7J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
40	1	1PS- DG252A	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Honeywell	BZLN-LH	1PLO7J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
41	1	52 @ 1AP05EF	Medium Circuit Breaker	AC/DC Power Support System	DG1A Circuit Breaker (ACB 1413)	Westinghouse	50 DHP 350	1AP05E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
42	1	52 @ 1AP05EU	Medium Circuit Breaker	AC/DC Power Support System	Transformer 131X Primary Circuit Breaker (ACB 1415X)	Westinghouse	50 DHP 350	1AP05E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
43	1	52 @ 1AP05EB	Medium Circuit Breaker	AC/DC Power Support System	ESW Pump 1A Circuit Breaker	Westinghouse	50 DHP 350	1AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
44	1	52 @ 1AP10EF	Low Circuit Breaker	AC/DC Power Support System	MCC 131X1 Feeder Circuit Breaker	Westinghouse	DS 206	1AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
45	1	52 @ 1AP10EJ	Low Circuit Breaker	AC/DC Power Support System	DG Room Vent Fan 1A Circuit Breaker	Westinghouse	DS 206	1AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
46	1	52 @ 1AP10EL	Low Circuit Breaker	AC/DC Power Support System	Battery Charger 111 Circuit Breaker	Westinghouse	DS 206	1AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
47	1	52 @ 1AP10EQ	Low Circuit Breaker	AC/DC Power Support System	MCC 131X3 Feeder Circuit Breaker	Westinghouse	DS 206	1AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem

Page 52 of 75

No. Unit			Component								Floor	Component Evaluation	
NO.	Unit	D	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev, (ft)	Basis for Capacity	Evaluation Result
48	1	486-1415X @ 1AP05EU	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 503A804G01	1AP05E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
		PR37A-	Protective	AC/DC Power	Phase A	Westinghouse	CO-9A			Auxiliary		BYR	Cap > Dem
49	1	450/451 @ 1AP05EU	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	1AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR37B-	Protective	AC/DC Power	Phase B	Westinghouse	CO-9A			Auxiliary		BYR	Cap > Dem
50	1	450/451 @ 1AP05EU	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	1AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR37C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-9A			Auxiliary		BYR	Cap > Dem
51	1	450/451 @ 1AP05EU	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	1AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR38-450N	Protective	AC/DC Power	Neutral	Westinghouse	SSC-T			Auxiliary		BYR	Cap > Dem
52	1	1 PR38-450N @ 1AP05EU	Relay	Support System	Overcurrent Relay	Westinghouse	1321D79A03	1AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR1-351N	Protective	AC/DC Power	Ground Fault	Westinghouse	CO-6			Auxiliary		BYR	Cap > Dem
53	1	@ 1AP10EA	Relay	Support System	Relay	Westinghouse	1456C05A08	1AP10E	Switchgear	Building	426	Report	Cap > Dem
		PR3A-	Protective	AC/DC Power	Phase A	Westinghouse	CO-5A			Auxiliary		BYR	Cap > Dem
54	1	450/451 @ 1AP05EB	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	1AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR3C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-5A			Auxiliary		BYR	Cap > Dem
55	1	450/451 @ 1AP05EB	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	1AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR4-450N	Protective	AC/DC Power	Ground Fault	Westinghouse	SSC-T			Auxiliany		BYR	Cap > Dem
56	1	@ 1AP05EB	Relay	Support System	Relay	Westinghouse	1321D79A03	1AP05E	Switchgear	Building	426	Report	Cap > Dem
57	1	SX1AX @ 1AP05EB	Protective Relay	AC/DC Power Support System	Low Suction Pressure Time Delay Relay	Тусо	E7012PD004	1AP05E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem

No. Unit			Component						osure		Floor	Componen	t Evaluation
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
58	1	1PDS- VD103	Process Switch	AC/DC Power Support System	High DG 1A Exhaust Fan 1A Delta Pressure	Solon	7PS/7P2A	1VD03CA	Diesel Generator Vent Fan	Auxiliary Building	401	GERS	Cap > Dem
59	1	1DC03E- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	1DC03E	Battery Charger	Auxiliary Building	451	BYR Report	Cap > Dem
60	1	486-1423 @ 1AP06EF	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 656A830G01	1AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
	_	486-1422 @		AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01	440000		Auxiliary	125	CEDE	Cap > Dem
61	1	1AP06ES	Control Relay	Support System	Lockout Relay	Electroswitch	793A389G01F	1AP06E	Switchgear	Building	426	GERS	Cap > Dem
62	1	PR33A-451 @ 1AP06ES	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
63	1	PR33C-451 @ 1AP06ES	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
64	1	PR34-451N @ 1AP06ES	Protective Relay	AC/DC Power Support System	Ground Fault Relay	Westinghouse	SSC-T 1321D79A02	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
65		486-1424X		AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01			Auxiliary	425	CEDC.	Cap > Dem
65		@ 1AP06EQ	Control Relay	Support System	Lockout Relay	Electroswitch	793A389G01F	1AP06E	Switchgear	Building	426	GERS	Cap > Dem
66	1	PR30A-451 @ 1AP06EQ	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
67	1	PR30C-451 @ 1AP06EQ	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem

Page 54 of 75

No.			Component								Floor	Componen	t Evaluation
NO.	Unit	D	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building.	Elev. (ft)	Basis for Capacity	Evaluation Result
68	1	PR31-451N @ 1AP06EQ	Protective Relay	AC/DC Power Support System	Ground Fault Relay	Westinghouse	CO-6 1456C05A08	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
69	1	62CL @ 1PL08J	Control Relay	AC/DC Power Support System	Cranking Limit Time Delay Relay	Тусо	E7012PDL004	1PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
70	1	48 @ 1PL08J	Control Relay	AC/DC Power Support System	Incomplete Starting Sequence Relay	Agastat Agastat	EGPDR- C2017-004 GPDR-C740	1PLO8J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem Cap > Dem
71	1	86E @ 1PL08J	Control Relay	AC/DC Power Support	Engine Shutdown Relay	Agastat Agastat	EGPDR- C2017-004 GPDR-C740	1PLO8J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem Cap > Dem
72	1	63QELX @ 1PL08J	Control Relay	AC/DC Power Support	Engine Lube Oil Low Pressure Shutdown	Agastat	EGPDR- C2017-004 GPDR-C740	1PLO8J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
73	1	63QTLX @ 1PL08J	Control Relay	AC/DC Power Support	Repeater Relay Turbo Low Lube Oil Pressure Shutdown	Agastat	EGPDR- C2017-004 GPDR-C740	1PLO8J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem Cap > Dem
74	1	26MBHTX @ 1PL08J	Control Relay	AC/DC Power Support	Repeater Relay Main and Connecting Rod High Bearing Temperature	Agastat	EGPDR- C2017-004	1PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				System AC/DC	Shutdown Repeater Relay Turbo Thrust	Agastat	GPDR-C740 EGPDR-						Cap > Dem
75	1	38TBFX @ 1PL08J	Control Relay	Power Support System	Bearing Failure Shutdo w n Repeater Relay	Agastat	C2017-004 GPDR-C740	1PLO8J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
76	1	26JWSX @ 1PL08J	Control Relay	AC/DC Power Support	Jacket Water High Temperature Shutdown	Agastat	EGPDR- C2017-004	1PLO8J	Control	Auxiliary Building	401	BYR Report	Cap > Dem
				System	Temperature C2 Shutdown Agastat GP Repeater Relay Agastat GP	GPDR-C740	- 1PL08J	Cabinet	Dunung		hepore	Cap > Dem	

No. Unit			Component						osure		Floor	oor Component Evaluation	
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
		63CX @		AC/DC Power	Crankcase High	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
		1PLO8J	Control Relay	Support System	Pressure Repeater Relay	Agastat	GPDR-C740	1PL08J	Cabinet	Building	401	Report	Cap > Dem
78	1	86G @	Control Relay	AC/DC Power	Generator	Agastat	EGPDR- C2017-004	10081	Control	Auxiliary	401	BYR	Cap > Dem
		1PL08J		Support System	Shutdown Relay	Agastat	GPDR-C740	1, 5003	Cabinet	Building		Report	Cap > Dem
79	1	51X @	Protective	AC/DC Power	Generator	Agastat	EGPDR- C2017-004	101091	Control	Auxiliary	401	BYR	Cap > Dem
		1PL08J	Relay	Support System	Overcurrent Relay	Agastat	GPDR-C740	1,500	Cabinet	Building	401	Report	Cap > Dem
80	1	59GX @	Control Relay	AC/DC Po w er	Generator Neutral	Agastat	EGPDR- C2017-004	101081	Control	Auxiliary	401	BYR	Cap > Dem
		1PL08J	control helay	Support System	Auxiliary Relay	Agastat	GPDR-C740	11 1000	Cabinet	Building	401	Report	Cap > Dem
81	1	40X @	Control Belay	AC/DC Power	Loss of Field	Agastat	EGPDR- C2017-004	101081	Control	Auxiliary	401	BYR	Cap > Dem
		1PL08J		Support System	Auxiliary Relay	Agastat	GPDR-C740	11 2005	Cabinet	Building		Report	Cap > Dem
82	1	32X @	Control Relay	AC/DC Po w er	Reverse Power	Agastat	EGPDR- C2017-004	101081	Control	Auxiliary	401	BYR	Cap > Dem
		1PL08J		Support System	Auxiliary Relay	Agastat	GPDR-C740	11 2000	Cabinet	Building	-01	Report	Cap > Dem
0.2	-	81UX @	Cashad Balan	AC/DC Power	Under Frequency	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
83		1PL08J	Control Relay	Support System	Auxiliary Relay	Agastat	GPDR-C740	19108)	Cabinet	Building	401	Report	Cap > Dem
		87G1X @		AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
64		1PL08J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	19108)	Cabinet	Building	401	Report	Cap > Dem
0.5		87G2X @	Cantan Dal	AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004		Control Auxilian	Auxiliary		BYR	Cap > Dem
85 1	87G2X @ 1PL08J	Control Relay	Support System	t Shutdown Repeater Relay	Agastat	GPDR-C740	1PLO8J	Cabinet	Building	401	Report	Cap > Dem	

Page 56 of 75

No. Uni	10.000		Component						osure		Floor	Component Evaluation	
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
86	1	12X1 @	Control Belay	AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	101081	Control	Auxiliary	401	BYR	Cap > Dem
	-	1PL08J	control heldy	Support System	Shutdown Relay	Agastat	GPDR-C740	11 2005	Cabinet	Building	.01	Report	Cap > Dem
07		12X2 @		AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	4.51.001	Control	Auxiliary	401	BYR	Cap > Dem
8/		1PL08J	Control Relay	Support System	Shutdown Relay	Agastat	GPDR-C740	1 19108)	Cabinet	Building	401	Report	Cap > Dem
		86S2 @		AC/DC Power	Unit Shutdown	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
88	1	1PL08J	Control Relay	Support System	Relay	Agastat	GPDR-C740	1PLO8J	Cabinet	Building	401	Report	Cap > Dem
89	1	1PS- DG108B	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Square D	9012-GAW- 24	1DG01KB	Diesel Generator	Auxiliary Building	401	BYR Report	Cap > Dem
90	1	1PS- DG251B	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Honeywell	BZLN-LH	1PLO8J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
91	1	1PS- DG252B	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Honeywell	BZLN-LH	1PLO8J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
92	1	52 @ 1AP06EF	Medium Voltage Circuit Breaker	AC/DC Power Support System	DG 1B Circuit Breaker (ACB 1423)	Westinghouse	50 DHP 350	1AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
93	1	52 @ 1AP06EP	Medium Voltage Circuit Breaker	AC/DC Power Support System	Transformer 132X Primary Circuit Breaker (ACB 1425X)	Westinghouse	50 DHP 350	1AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
94	1	52 @ 1AP06EB	Medium Voltage Circuit Breaker	AC/DC Power Support System	ESW Pump 1B Circuit Breaker	Westinghouse	50 DHP 350	1AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
95	1	52 @ 1AP12EC	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 132X3 Feeder Circuit Breaker	Westinghouse	DS 206	1AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem

Page 57 of 75

				C	Enclosure			Floor	Componen	t Evaluation			
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
96	1	52 @ 1AP12EF	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 132X1 Feeder Circuit Breaker	Westinghouse	DS 206	1AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
97	1	52 @ 1AP12EG	Lo w Voltage Circuit Breaker	AC/DC Power Support System	MCC 132X2 Feeder Circuit Breaker	Westinghouse	DS 206	1AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
98	1	52 @ 1AP12EJ	Low Voltage Circuit Breaker	AC/DC Po w er Support System	DG Room Vent Fan 1B Circuit Breaker	Westinghouse	DS 206	1AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
99	1	52 @ 1AP12EL	Low Voltage Circuit Breaker	AC/DC Power Support System	Battery Charger 112 Circuit Breaker	Westinghouse	DS 206	1AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
100	1	486-1425X @ 1AP06EP	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 503A804G01	1AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
101	1	PR28A- 450/451 @ 1AP06EP	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse Westinghouse	CO-9 1456C05A05	1AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem Cap > Dem
		PR28B-	Drotostivo	AC/DC	Dhaca P	Westinghouse	CO-9			Auxiliany		BYR	Cap > Dem
102	1	450/451 @ 1AP06EP	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	1AP06E	Switchgear	Building	426	Report	Cap > Dem
		PR28C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-9			Auxiliary		BYR	Cap > Dem
103		450/451 @ 1AP06EP	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	1AP06E	Switchgear	Building	426	Report	Cap > Dem
	_	PR29-450N	Protective	AC/DC Power	Neutral	Westinghouse	SSC-T			Auxiliary		BYR	Cap > Dem
104		@ 1AP06EP	Relay	Support System	Overcurrent Relay	Westinghouse	1321D79A03	1AP06E	Switchgear	Building	426	Report	Cap > Dem
		PR1-351N	Protective	AC/DC Power	Ground Fault	Westinghouse	CO-6			Auxiliarv		BYR	Cap > Dem
105	1	@ 1AP12EA	Relay	Support System	Relay	Westinghouse	1456C05A08	1AP12E	Switchgear	Building	426	Report	Cap > Dem

Page 58 of 75

No. Linit			C	Enclosure			Floor	Componen	t Evaluation				
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
100		PR4A-	Protective	AC/DC Power	Phase A	Westinghouse	CO-5A	140000	Cuitabasar	Auxiliary	426	BYR	Cap > Dem
106	1	450/451 @ 1AP06EB	Relay	 Support System 	Overcurrent Relay	Westinghouse	1456C05A04		Switchgear	Building	420	Report	Cap > Dem
		PR4C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-5A			Auxiliary		BYR	Cap > Dem
107	1	450/451 @ 1AP06EB	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	1AP06E	Switchgear	Building	426	Report	Cap > Dem
		PR5-	Protective	AC/DC Power	Ground Fault	Westinghouse	SSC-T			Auxiliary		BYR	Cap > Dem
108	1	450/451 @ 1AP06EB	Relay	Support System	Relay	Westinghouse	1321D79A03	1AP06E	Switchgear	Building	426	Report	Cap > Dem
109	1	SX1BX @ 1AP06EB	Control Relay	AC/DC Power Support System	Low Suction Pressure Time Delay Relay	Тусо	E7012PD004	1AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
110	1	1PDS- VD105	Process Switch	AC/DC Power Support System	High DG 1B Exhaust Fan 1B Delta Pressure	Solon	7PS/7P2A	1VD03CB	Diesel Generator Vent Fan	Auxiliary Building	401	GERS	Cap > Dem
111	1	1DC04E- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	1DC04E	Battery Charger	Auxiliary Building	451	BYR Report	Cap > Dem
112	1	1AF01EA-1- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	1AF01EA- 1	Battery Charger	Auxiliary Building	386.17	BYR Report	Cap > Dem
113	1	1AF01EB-1- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	1AF01EB- 1	Battery Charger	Auxiliary Building	389.42	BYR Report	Cap > Dem
114	2	2AF01J-K10	Control Relay	Core Cooling	Low Lube Oil Pressure Relay	Potter Brumfield	KHS-17D11	2AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
115	2	2AF01J-K11	Control Relay	Core Cooling	Low Oil Pressure Time Delay Relay	Agastat	7022OC	2AF01J	Control Cabinet	Auxiliary Building	383	EPRI HF Test	Cap > Dem
116	2	2AF01J-K4	Control Relay	Core Cooling	Overcrank Timer Relay	Agastat	7012OEL	2AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
117	2	2AF01J-K7	Control Relay	Core Cooling	Overcrank relay	Potter Brumfield	KHS-17D11	2AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem

Page 59 of 75

			Component								Floor	Componen	t Evaluation
NO.	Unit	ID	Type	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
118	2	2AF01J-K8	Control Relay	Core Cooling	High water temperature relay	Potter Brumfield	KHS-17D11	2AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
119	2	2AF01J-K9	Control Relay	Core Cooling	Overspeed relay	Potter Brumfield	KHS-17D11	2AF01J	Control Cabinet	Auxiliary Building	383	GERS	Cap > Dem
120	2	2SS-AF8002 "S1"	Process Switch	Core Cooling	Speed switch	Dynalco	SST-2400A	2AF01J	Control Cabinet	Auxiliary Building	383	BYR Report	Cap > Dem
		2TSH-AF147	Process	Core	High water	Square D	9025-BCW-32		Control	Auxiliany		BVD	Cap > Dem
121	2	"S10"	Switch	Cooling	temperature switch	United Electric	F400-6BS- 20S-20S	2AF01PB	Cabinet	Building	383	Report	Cap > Dem
122	2	486-2413 @ 2AP05ES	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 656A830G01	2AP05E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
122	2	486-2412 @	Control Dolour	AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01	240055	C. Haberry	Auxiliary	425	CERC	Cap > Dem
125	2	2AP05EG	Control Kelay	Support System	Lockout Relay	Electroswitch	793A389G01F	ZAPUSE	Switchgear	Building	420	GERS	Cap > Dem
124	2	PR9A-451 @ 2AP05EG	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
125	2	PR9C-451 @ 2AP05EG	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
126	2	PR10-451N @ 2AP05EG	Protective Relay	AC/DC Power Support System	Ground Fault Relay	Westinghouse	CO-6 1456CO5A16	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
127	2	486-2414 @	Control Polov	AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01	240055	Switzhaooz	Auxiliary	176	CERS	Cap > Dem
14/		2AP05EJ	Control Keldy	Support System	Lockout Relay	Electroswitch	793A389G01F		Switchgear	Building	420	GENJ	Cap > Dem
128	2	PR13A-451 @ 2AP05EJ	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem

No. Unit				C	Enclosure			Floor	Componen	t Evaluation			
NO.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
129	2	PR13C-451 @ 2AP05EJ	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
130	2	PR14-451N @ 2AP05EJ	Protective Relay	AC/DC Po w er Support System	Ground Fault Relay	Westinghouse	CO-6 1456C05A08	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
131	2	62CL @ 2PL07J	Control Relay	AC/DC Power Support System	Cranking Limit Time Delay Relay	Westinghouse	E7012PDL004	2PL07J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
132	2	48 @ 2PL07J	Control Relay	AC/DC Power Support	Incomplete Starting Sequence	Agastat	EGPDR- C2017-004	2PL07J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				System	кеіау	Agastat	GPDR-C740						Cap > Dem
133	2	86E @	Control Belay	Power	Engine Shutdown	Agastat	C2017-004	201071	Control	Auxiliary	401	BYR	Cap > Dem
		2PL07J	control newy	Support System	Relay	Agastat	GPDR-C740	21 2073	Cabinet	Building	401	Report	Cap > Dem
		63QELX @		AC/DC Power	Engine Lube Oil Low Pressure	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
134	2	2PL07J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
135	2	63QTLX @	Controi Relav	AC/DC Power	Turbo Low Lube Oil Pressure	Agastat	EGPDR- C2017-004	291071	Control	Auxiliary	401	BYR	Cap > Dem
		2PL07J	,	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	2.2075	Cabinet	Building	101	Report	Cap > Dem
				AC/DC	Main and Connecting Rod	Agastat	EGPDR- C2017-004						Cap > Dem
136	2	26MBHTX @ 2PL07J	Control Relay	Power Support System	High Bearing Temperature Shutdown Repeater Relay	Agastat	GPDR-C740	2PL07J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
		38TBFX @		AC/DC Power	Turbo Thrust Bearing Failure	Agastat	EGPDR-		Control	Auvilian		BVR	Cap > Dem
137	2	2PL07J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem

		Component							Enclosure		Floor	Componen	t Evaluation
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
138	2	26JWSX @	Control Relay	AC/DC Power	Jacket Water High Temperature	Agastat	EGPDR- C2017-004	291071	Control	Auxiliary	401	BYR	Cap > Dem
		2PL07J		Support System	Shutdown Repeater Relay	Agastat	GPDR-C740		Cabinet	Building		Report	Cap > Dem
139	2	63CX @	Control Belay	AC/DC Power	Crankcase High	Agastat	EGPDR- C2017-004	201071	Control	Auxiliary	401	BYR	Cap > Dem
		2PL07J	control helay	Support System	Relay	Agastat	GPDR-C740	21073	Cabinet	Building	401	Report	Cap > Dem
		86G @		AC/DC Power	Generator	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
140		2PL07J	Control Relay	Support System	Shutdown Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
		51X @	Protective	AC/DC Power	Generator	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
141		2PL07J	Relay	Support System	Overcurrent Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
142	2	59GX @	Control Bolov	AC/DC Power	Generator Neutral	Agastat	EGPDR- C2017-004	201071	Control	Auxiliary	401	BYR	Cap > Dem
142	2	2PL07J	Control Nelay	Support System	Auxiliary Relay	Agastat	GPDR-C740	2FL073	Cabinet	Building	401	Report	Cap > Dem
142	2	40X @	Control Polov	AC/DC Power	Loss of Field	Agastat	EGPDR- C2017-004	201071	Control	Auxiliary	401	BYR	Cap > Dem
143	2	2PL07J	Control Relay	Support System	Auxiliary Relay	Agastat	GPDR-C740	260013	Cabinet	Building	401	Report	Cap > Dem
		32X @		AC/DC Power	Reverse Power	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
144	2	2PL07J	Control Relay	Support System	Auxiliary Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
		81UX @		AC/DC Power	Under Frequency	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
145	2	2PL07J	Control Relay	Support System	Auxiliary Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
		87G1X @		AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004		Control	Auxiliary	401	BYR	Cap > Dem
146	2	2PL07J	Control Relay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740		Cabinet	Building	401	Report	Cap > Dem

				c	Enclosure			Floor	Componen	t Evaluation			
NO.	Unit	di	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev, (ft)	Basis for Capacity	Evaluation Result
147	2	87G2X @	Control Belay	AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004	201071	Control	Auxiliary	401	BYR	Cap > Dem
147		2PL07J	Control Nelay	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	21 2073	Cabinet	Building	401	Report	Cap > Dem
140	2	12X1 @	Control Bolow	AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	201071	Control	Auxiliary	401	BYR	Cap > Dem
140	2	2PL07J	Control Relay	Support System	Shutdown Relay	Agastat	GPDR-C740		Cabinet	Building	401	Report	Cap > Dem
		12X2 @		AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
149	2	2PL07J	Control Relay	Support System	Shutdown Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
		86S2 @		AC/DC Power	Unit Shutdown	Agastat	EGPDR- C2017-004		Control	Auxiliary		BYR	Cap > Dem
150	2	2PL07J	Control Relay	Support System	Relay	Agastat	GPDR-C740	2PL07J	Cabinet	Building	401	Report	Cap > Dem
151	2	2PS- DG108A	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Square D	9012-GAW- 24	2DG01KA	Diesel Generator	Auxiliary Building	401	BYR Report	Cap > Dem
152	2	2PS- DG251A	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Honeywell	BZLN-LH	2PL07J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
153	2	2PS- DG252A	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Hone yw ell	BZLN-LH	2PL07J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
154	2	52 @ 2AP05ES	Medium Voltage Circuit Breaker	AC/DC Power Support System	DG2A Circuit Breaker (ACB 2413)	Westinghouse	50 DHP 350	2AP05E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
155	2	52 @ 2AP05ED	Medium Voltage Circuit Breaker	AC/DC Power Support System	Transformer 231X Primary Circuit Breaker (ACB 2415X)	Westinghouse	50 DHP 350	2AP05E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
156	2	52 @ 2AP05EW	Medium Voltage Circuit Breaker	AC/DC Power Support System	ESW Pump 2A Circuit Breaker	Westinghouse	50 DHP 350	2AP05E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem

Page 63 of 75

	Unit	and the second		C	Enclosure			Floor	Componen	t Evaluation			
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
157	2	52 @ 2AP10EF	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 231X1 Feeder Circuit Breaker	Westinghouse	DS 206	2AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
158	2	52 @ 2AP10EJ	Low Voltage Circuit Breaker	AC/DC Power Support System	DG Room Vent Fan 2A Circuit Breaker	Westinghouse	DS 206	2AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
159	2	52 @ 2AP10EL	Low Voltage Circuit Breaker	AC/DC Power Support System	Battery Charger 211 Circuit Breaker	Westinghouse	DS 206	2AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
160	2	52 @ 2AP10EQ	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 231X3 Feeder Circuit Breaker	Westinghouse	DS 206	2AP10E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
161	2	486-2415X @ 2AP05ED	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 503A804G01	2AP05E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
162	2	PR3A- 450/451 @ 2AP05ED	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse Westinghouse	CO-9A 1456C05A05	2AP05E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem Cap > Dem
		PR3B-	Protective	AC/DC Power	Phase B	Westinghouse	CO-9A			Auvilian		BVR	Cap > Dem
163	2	450/451 @ 2AP05ED	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	2AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR3C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-9A			Auxiliary		BYR	Cap > Dem
164	2	450/451 @ 2AP05ED	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	2AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR4-450N	Protective	AC/DC Power	Neutral	Westinghouse	SSC-T			Auxiliary		BYR	Cap > Dem
165	2	@ 2AP05ED	Relay	Support System	Overcurrent Relay	Westinghouse	1321D79A03	1 2AP05E	Switchgear	Building	426	Report	Cap > Dem
		PR1-351N	Protective	AC/DC Power	Ground Fault	Westinghouse	CO-6		_	Auxiliary		BYR	Cap > Dem
166	2	@ 2AP10EA	Relay	Support System	Relay	Westinghouse	1456C05A08	2AP10E	Switchgear	Building	426	Report	Cap > Dem

Page 64 of 75

				C	Enclosure			Floor	Componen	t Evaluation			
No.	Unit	D	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
167	0	PR36A-	Protective	AC/DC Power	Phase A	Westinghouse	CO-5A	340055	Cuitabasar	Auxiliary	476	BYR	Cap > Dem
107	2	2AP05EW	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	ZAPUSE	Switchgear	Building	420	Report	Cap > Dem
4.60		PR36C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-5A			Auxiliary	125	BYR	Cap > Dem
168	2	450/451@ 2AP05EW	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	ZAPUSE	Switchgear	Building	420	Report	Cap > Dem
		PR37-450N	Protective	AC/DC Power	Ground Fault	Westinghouse	SSC-T			Auxiliary	125	BYR	Cap > Dem
169	2	@ 2AP05EW	Relay	Support System	Relay	Westinghouse	1321D79A03	ZAPUSE	Switchgear	Building	426	Report	Cap > Dem
170	2	SX1AX @ 2AP05EW	Control Relay	AC/DC Power Support System	Low Suction Pressure Time Delay Relay	Тусо	E7012PD004	2AP05E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
171	2	2PDS- VD103	Process Switch	AC/DC Power Support System	High DG 2A Exhaust Fan 2A Delta Pressure	Solon	7PS/7P2A	2VD03CA	Diesel Generator Vent Fan	Auxiliary Building	401	GERS	Cap > Dem
172	2	2DC03E- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	2DC03E	Battery Charger	Auxiliary Building	451	BYR Report	Cap > Dem
173	2	486-2423 @ 2AP06ER	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 656A830G01	2AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
174	_	486-2422 @	Castral Dalar	AC/DC Power	Circuit Breaker	Westinghouse	Type WL 501A817G01	240005	Guitabasaa	Auxiliary	426	CERS	Cap > Dem
1/4		2AP06EF	Control Relay	Support System	Lockout Relay	Electroswitch	793A389G01F	ZAPUBE	Switchgear	Building	420	GERS	Cap > Dem
175	2	PR7A-451 @ 2AP06EF	Protective Relay	AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
176	2	PR7C-451 @ 2AP06EF	Protective Relay	AC/DC Power Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem

Page 65 of 75

No. Unit		an a		Enclosure			Floor	Componen	t Evaluation				
NO.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
177	2	PR8-451N @ 2AP06EF	Protective Relay	AC/DC Power Support System	Ground Fault Relay	Westinghouse	CO-6 1456CO5A08	2AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
178	2	486-2424 @ 2AP06ED	Control Relay	AC/DC Power Support	Circuit Breaker Lockout Relay	Westinghouse	Type WL 501A817G01	2AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
179	2	PR3A-451 @ 2AP06ED	Protective Relay	System AC/DC Power Support System	Phase A Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
180	2	PR3C-451 @ 2AP06ED	Protective Relay	AC/DC Po w er Support System	Phase C Overcurrent Relay	Westinghouse	CO-7 1456C05A09	2AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
181	2	PR4-451N @ 2AP06ED	Protective Relay	AC/DC Po w er Support System	Ground Fault Relay	Westinghouse	CO-6 1456CO5A08	2AP06E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
182	2	62CL @ 2PL08J	Control Relay	AC/DC Po w er Support System	Cranking Limit Time Delay Relay	Westinghouse	E7012PDL004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
183	2	48 @ 2PL08J	Control Relay	AC/DC Power Support	Incomplete Starting Sequence	Agastat	EGPDR- C2017-004	2PL08J	Control	Auxiliary Building	401	BYR Beport	Cap > Dem
				System	Relay	Agastat	GPDR-C740		Cabinet	Dunung		Report	Cap > Dem
184	2	86E @ 2PL081	Control Relay	AC/DC Power	Engine Shutdown	Agastat	EGPDR- C2017-004	2PL08J	Control	Auxiliary	401	BYR	Cap > Dem
		21 1005		System	Neidy	Agastat	GPDR-C740		Cabinet	Building		Report	Cap > Dem
185	2	63QELX @	Control Relay	AC/DC Power	Engine Lube Oil Low Pressure	Agastat	EGPDR- C2017-004	2PL08J	Control	Auxiliary	401	BYR	Cap > Dem
		201083	,	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740		Cabinet	Building		Report	Cap > Dem
186	2	63QTLX @	Control Below	AC/DC Power	Turbo Low Lube Oil Pressure	Agastat	EGPDR- C2017-004	201001	Control	Auxiliary	401	BYR	Cap > Dem
	-	2PL08J	control heldy	Support System	Shutdown Repeater Relay	Agastat	GPDR-C740	ZPLUOJ	Cabinet	Building		Report	Cap > Dem

Page 66 of 75

.

No.	Unit	Component						Enclosure			Floor	Component Evaluation	
		ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
187	2	26MBHTX @ 2PL08J	Control Relay	AC/DC Power Support System	Main and Connecting Rod High Bearing Temperature Shutdown Repeater Relay	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
						Agastat	GPDR-C740						Cap > Dem
188	2	38TBFX @ 2PL08J	Control Relay	AC/DC Power	Turbo Thrust Bearing Failure Shutdown Repeater Relay	Agastat	EGPDR- C2017-004	2PLO8J C	Control	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System		Agastat	GPDR-C740		Cabinet				Cap > Dem
189	2	26JWSX @ 2PL08J	Control Relay	AC/DC Power Support System	Jacket Water High Temperature Shutdown Repeater Relay	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
						Agastat	GPDR-C740						Cap > Dem
190	2	63CX @ 2PL08J	Control Relay	AC/DC Power Support System	Crankcase High Pressure Repeater Relay	Agastat	EGPDR- C2017-004	2PLO8J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
						Agastat	GPDR-C740						Cap > Dem
191	2	86G @ 2PL08J	Control Relay	AC/DC Power	Generator	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System	Shutdown Relay	ay Agastat	GPDR-C740						Cap > Dem
192	2	51X @ 2PL08J	Protective Relay	AC/DC Po w er	Generator Overcurrent Relay	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System		Agastat	GPDR-C740						Cap > Dem
193	2	59GX @ 2PL08J	Control Relay	AC/DC Po we r	Generator Neutral	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System	Auxiliary Relay	Agastat	GPDR-C740						Cap > Dem
194	2	40X @ 2PL08J	Control Relay	AC/DC Power	C/DC Loss of Field pport Auxiliary Relay stem	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System		Agastat	GPDR-C740						Cap > Dem
195	2	32X @ 2PL08J	Control Relay	AC/DC Po w er	r Reverse Power r Auxiliary Relay	Agastat	EGPDR- C2017-004	04 2PL08J 40	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System		Agastat	GPDR-C740						Cap > Dem

Page 67 of 75

No.	Unit	Component						Enclosure			Floor	Component Evaluation	
		ID	Туре	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
196	2	81UX @ 2PL08J	Control Relay	AC/DC Power	Under Frequency Auxiliary Relay	Agastat	EGPDR- C2017-004	- 2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System		Agastat	GPDR-C740						Cap > Dem
197	2	87G1X @ 2PL08J	Control Relay	AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004	2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System	Shutdown Repeater Relay	Agastat	GPDR-C740						Cap > Dem
198	2	87G2X @ 2PL08J	Control Relay	AC/DC Power	Generator Differential	Agastat	EGPDR- C2017-004	- 2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System	Shutdown Repeater Relay	Agastat	GPDR-C740						Cap > Dem
199	2	12X1 @ 2PL08J	Control Relay	AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	- 2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System	Shutdown Relay	Agastat	GPDR-C740						Cap > Dem
200	2	12X2 @ 2PL08J	Control Relay	AC/DC Power	Engine Overspeed	Agastat	EGPDR- C2017-004	- 2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System	Shutdown Relay	Agastat	GPDR-C740						Cap > Dem
201	2	86S2 @ 2PL08J	Control Relay	AC/DC Power	Unit Shutdown Relay	Agastat	EGPDR- C2017-004	- 2PL08J	Control Cabinet	Auxiliary Building	401	BYR Report	Cap > Dem
				Support System		Agastat	GPDR-C740						Cap > Dem
202	2	2PS- DG108B	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Square D	9012-GAW- 24	2DG01KB	Diesel Generator	Auxiliary Building	401	BYR Report	Cap > Dem
203	2	2PS- DG251B	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Honeywell	BZLN-LH	2PL08J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
204	2	2PS- DG252B	Process Switch	AC/DC Power Support System	Engine Overspeed Switch	Hone yw ell	BZLN-LH	2PL08J	Control Cabinet	Auxiliary Building	401	SQURTS Report	Cap > Dem
205	2	52 @ 2AP06ER	Medium Voltage Circuit Breaker	AC/DC Power Support System	DG 2B Circuit Breaker (ACB 2423)	Westinghouse	50 DHP 350	2AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem

Page 68 of 75
			Component								Floor	Component Evaluation	
NO.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Type	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
206	2	52 @ 2AP06EH	Medium Voltage Circuit Breaker	AC/DC Power Support System	Transformer 232X Primary Circuit Breaker (ACB 2425X)	Westinghouse	50 DHP 350	2AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
207	2	52 @ 2AP06EJ	Medium Voltage Circuit Breaker	AC/DC Power Support System	ESW Pump 2B Circuit Breaker	Westinghouse	50 DHP 350	2AP06E	Switchgear	Auxiliary Building	426	EPRI HF Test	Cap > Dem
208	2	52 @ 2AP12EC	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 232X3 Feeder Circuit Breaker	Westinghouse	DS 206	2AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
209	2	52 @ 2AP12EF	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 232X1 Feeder Circuit Breaker	Westinghouse	DS 206	2AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
210	2	52 @ 2AP12EG	Low Voltage Circuit Breaker	AC/DC Power Support System	MCC 232X2 Feeder Circuit Breaker	Westinghouse	DS 206	2AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
211	2	52 @ 2AP12EJ	Low Voltage Circuit Breaker	AC/DC Power Support System	DG Room Vent Fan 2B Circuit Breaker	Westinghouse	DS 206	2AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
212	2	52 @ 2AP12EL	Low Voltage Circuit Breaker	AC/DC Power Support System	Battery Charger 212 Circuit Breaker	Westinghouse	DS 206	2AP12E	Switchgear	Auxiliary Building	426	BYR Report	Cap > Dem
213	2	486-2425X @ 2AP06EH	Control Relay	AC/DC Power Support System	Circuit Breaker Lockout Relay	Westinghouse	Type WL 503A804G01	2AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem
		PR11A-	Protective	AC/DC Power	Phase A	Westinghouse	CO-9A		206E Switchgear	Auxiliary Building	426	BYR	Cap > Dem
214	2	450/451 @ 2AP06EH	1 @ Relay EH	Support System	Overcurrent Relay	Westinghouse	1456C05A05	2AP06E				Report	Cap > Dem
		PR11B-	Protective	AC/DC Power	Phase B	Westinghouse	CO-9A			Auxiliarv		BYR	Cap > Dem
215	2	450/451 @ 2AP06EH	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	2AP06E	Switchgear	Building	426	Report	Cap > Dem

.

Table B-1: Components Identified for High Frequency Confirmation

Page 69 of 75

		Component						Enclosure			Floor	Component Evaluation		
No.	Unit	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result	
216	2	PR11C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-9A	240065	Switchgoor	Auxiliary	426	BYR Report	Cap > Dem	
210	2	2AP06EH	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A05	ZAPUOE	Switchgear	Building			Cap > Dem	
247		PR12-450N	Protective	AC/DC Power	Neutral	Westinghouse	SSC-T			Auxiliary	125	BYR	Cap > Dem	
217	2	@ 2AP06EH	Relay	Support System	Overcurrent Relay	Westinghouse	1321D79A03	ZAPU6E	Switchgear	Building	426	Report	Cap > Dem	
		PR1-351N	Protective	AC/DC Power	Ground Fault	Westinghouse	CO-6			Auxiliary		BYR	Cap > Dem	
218	2	@ 2AP12EA	Relay	Support System	Relay	Westinghouse	1456C05A08	2AP12E	Switchgear	Building	426	426 Report Cap :	Cap > Dem	
		PR13A-	Protective	AC/DC Power	Phase A	Westinghouse	CO-5A			Auxiliary		BYR	Cap > Dem	
219	2	450/451 @ 2AP06EJ	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	2AP06E	Switchgear	Building	Building	426	Report	ort Cap > Dem
		PR13C-	Protective	AC/DC Power	Phase C	Westinghouse	CO-5A			Auxiliary		BYR	Cap > Dem	
220	2	450/451 @ 2AP06EJ	Relay	Support System	Overcurrent Relay	Westinghouse	1456C05A04	2AP06E	Switchgear	Building	426	Ilev. (ft)Basis for CapacityC F Capacity426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426BYR ReportC C C426GERSC C C427BYR ReportC C C428BYR 	Cap > Dem	
		PR14-450N	Protective	AC/DC Power	Ground Fault	Westinghouse	SSC-T			Auxiliary		BYR Cap	Cap > Dem	
221	2	@ 2AP06EJ	Relay	Support System	Relay	Westinghouse	1321D79A03	2AP06E	Switchgear	Building	Auxiliary 426 Report	Cap > Dem		
222	2	SX1BX @ 2AP06EJ	Control Relay	AC/DC Power Support System	Low Suction Pressure Time Delay Relay	Тусо	E7012PD004	2AP06E	Switchgear	Auxiliary Building	426	GERS	Cap > Dem	
223	2	2PDS- VD105	Control Switch	AC/DC Power Support System	High DG 1B Exhaust Fan 1B Delta Pressure	Solon	7PS/7P2A	2VD03CB	Diesel Generator Vent Fan	Auxiliary Building	401	GERS	Cap > Dem	
224	2	2DC04E- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoitage Relay	N/A	N/A	2DC04E	Battery Charger	Auxiliary Building	451	BYR Report	Cap > Dem	
225	2	2AF01EA-1- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	2AF01EA- 1	Battery Charger	Auxiliary Building	389.25	BYR Report	Cap > Dem	

Table B-1: Components Identified for High Frequency Confirmation

.

Page 70 of 75

		Component							Enclosure		Floor	Component Evaluation	
no,	UNIC	ID	Туре	System	Function	Manufacturer	Model No.	ID	Туре	Building	Elev. (ft)	Basis for Capacity	Evaluation Result
226	2	2AF01EB-1- DSH-K1	Protective Relay	AC/DC Power Support System	Overvoltage Relay	N/A	N/A	2AF01EB- 1	Battery Charger	Auxiliary Building	385.92	BYR Report	Cap > Dem

Table B-1: Components Identified for High Frequency Confirmation

VALVE	P&ID	SHEET	UNIT	NOTE
1RC8037A	M-60	1A	1	
1RC8037B	M-60	2	1	
1RC8037C	M-60	3	1	
1RC8037D	M-60	4	1	
1RC014A	M-60	1B	1	
1RC014B	M-60	1B	1	
1RC014C	M-60	1B	1	
1RC014D	M-60	1B	1	
1RY8000A	M-60	5	1	May be excluded provided 1RY455A is closed
1RY455A	M-60	5	1	
1RY8000B	M-60	5	1	May be excluded provided 1RY456 is closed
1RY456	M-60	5	1	
1SI8900A	M-61	2	1	Simple Check Valve (no need to be included)
1SI8900B	M-61	2	1	Simple Check Valve (no need to be included)
1SI8900C	M-61	2	1	Simple Check Valve (no need to be included)
1SI8900D	M-61	2	1	Simple Check Valve (no need to be included)
1SI8949A	M-61	3	1	Simple Check Valve (no need to be included)
1SI8949B	M-61	3	1	Simple Check Valve (no need to be included)
1SI8949C	M-61	3	1	Simple Check Valve (no need to be included)
1SI8949D	M-61	3	1	Simple Check Valve (no need to be included)
1SI8819A	M-61	3	1	Simple Check Valve (no need to be included)
1SI8819B	M-61	3	1	Simple Check Valve (no need to be included)
1SI8819C	M-61	3	1	Simple Check Valve (no need to be included)
1SI8819D	M-61	3	1	Simple Check Valve (no need to be included)
1SI8948A	M-61	5	1	Simple Check Valve (no need to be included)
1SI8948B	M-61	5	1	Simple Check Valve (no need to be included)
1SI8948C	M-61	6	1	Simple Check Valve (no need to be included)

Table B-2: Reactor Coolant Leak Path Valve Identified for High Frequency Confirmation

VALVE	P&ID	SHEET	UNIT	NOTE
1SI8948D	M-61	6	1	Simple Check Valve (no need to be included)
1RH8701A-1	M-62	1	1	May be excluded provided 1RH8701B-2 is closed
1RH8701B-2	M-62	1	1	EC 384171 to isolate flowpath
1RH8702A-1	M-62	1	1	EC 384171 to isolate flowpath
1RH8702B-2	M-62	1	1	May be excluded provided 1RH8702A-1 is closed
1CV8377	M-64	5	1	Simple Check Valve (no need to be included)
1CV8378A	M-64	5	1	Simple Check Valve (no need to be included)
1CV8379A	M-64	5	1	Simple Check Valve (no need to be included)
1PS9351A	M-68	1A	1	
1PS9351B	M-68	1A	1	
1PS9358A	M-68	1A	1	
1PS9358B	M-68	1A	1	
1PS9358C	M-68	1A	1	
1PS9358D	M-68	1A	1	
1PS9356A	M-68	1A	1	
1PS9350A	M-68	1B	1	
1PS9350B	M-68	1B	1	
1PS9354A	M-68	1B	1	May be excluded provided 1PS9350A is closed
1PS9355A	M-68	1B	1	May be excluded provided 1PS9350B is closed
		Uni	t 2 Byron R	CS leakage valves
2RC8037A	M-135	1A	2	
2RC8037B	M-135	2	2	
2RC8037C	M-135	3	2	
2RC8037D	M-135	4	2	
2RC014A	M-135	1B	2	
2RC014B	M-135	1B	2	
2RC014C	M-135	1B	2	
2RC014D	M-135	1B	2	

VALVE	P&ID	SHEET	UNIT	NOTE
2RY8000A	M-135	5	2	May be excluded provided 2RY455A is closed
2RY455A	M-135	5	2	
2RY8000B	M-135	5	2	May be excluded provided 2RY456 has is closed
2RY456	M-135	5	2	
2SI8900A	M-136	2	2	Simple Check Valve (no need to be included)
2SI8900B	M-136	2	2	Simple Check Valve (no need to be included)
2SI8900C	M-136	2	2	Simple Check Valve (no need to be included)
2SI8900D	M-136	2	2	Simple Check Valve (no need to be included)
2SI8949A	M-136	3	2	Simple Check Valve (no need to be included)
2SI8949B	M-136	3	2	Simple Check Valve (no need to be included)
2SI8949C	M-136	3	2	Simple Check Valve (no need to be included)
2SI8949D	M-136	3	2	Simple Check Valve (no need to be included)
2SI8819A	M-136	3	2	Simple Check Valve (no need to be included)
2SI8819B	M-136	3	2	Simple Check Valve (no need to be included)
2SI8819C	M-136	3	2	Simple Check Valve (no need to be included)
2SI8819D	M-136	3	2	Simple Check Valve (no need to be included)
2SI8948A	M-136	5	2	Simple Check Valve (no need to be included)
2SI8948B	M-136	5	2	Simple Check Valve (no need to be included)
2SI8948C	M-136	6	2	Simple Check Valve (no need to be included)
2SI8948D	M-136	6	2	Simple Check Valve (no need to be included)
2RH8701A-1	M-137	1	2	May be excluded provided 2RH8701B-2 is closed
2RH8701B-2	M-137	1	2	EC 385243 to isolate flowpath
2RH8702A-1	M-137	1	2	EC 385243 to isolate flowpath
2RH8702B-2	M-137	1	2	May be excluded provided 2RH8702A-1 is closed
2CV8377	M-138	5C	2	Simple Check Valve (no need to be included)
2CV8378A	M-138	5C	2	Simple Check Valve (no need to be included)
2CV8379A	M-138	5C	2	Simple Check Valve (no need to be included)
2PS9351A	M-140	1A	2	

Table B-2: Reactor Coolant Leak Path Valve Identified for High Frequency Confirmation

VALVE	P&ID	SHEET	UNIT	NOTE
2PS9351B	M-140	1A	2	
2PS9358A	M-140	1A	2	
2PS9358B	M-140	1A	2	
2PS9358C	M-140	1A	2	
2PS9358D	M-140	1A	2	
2PS9356A	M-140	1A	2	
2PS9350A	M-140	1B	2	
2PS9350B	M-140	1B	2	
2PS9354A	M-140	1B	2	May be excluded provided 2PS9350A is closed
2PS9355A	M-140	1B	2	May be excluded provided 2PS9350B is closed

Table B-2: Reactor Coolant Leak Path Valve Identified for High Frequency Confirmation