Correlation Between Expansion and Elastic Modulus

This appendix includes MPR Calculation 0326-0062-CLC-03, Correlation Between
Through-Thickness Expansion and Elastic Modulus in Concrete Test Specimens Affected by Alkali-Silica Reaction (ASR), Revision 2.

Note: The revision number found on each individual page of the calculation carries the revision level of the calculation in effect at the time that page was last revised.

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.	Prepared By	Checked By	Page: 3
$0326-0062-C L C-03$	NMoMda Card	Nedt Mean_	Revision: 2

Table of Contents

1.0 Purpose. 4
2.0 Summary of Results 4
3.0 Background 5
4.0 Assumptions 5
4.1 Assumptions with a Basis 5
4.2 Unverified Assumptions 5
5.0 Discussion 5
5.1 Test Data 5
5.2 Selection of Elastic Modulus as the Property for the Correlation 6
5.3 Elastic Modulus Correlation 8
5.4 Comparison to Published Values. 9
6.0 References 12
A Test Data. A-1
B Least Squares Regression B-1

MPR
MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.	Prepared By	Checked By	Page: 5
0326-0062-CLC-03	MMoMda Card	Feath Mean_ Revision: 2	

3.0 BAckground

Published data show that the material properties of ASR-affected concrete change with increasing levels of ASR-related expansion. MPR will use the relationship between material properties and ASR-related expansion to determine the through-thickness expansion of concrete structures at Seabrook Station.

This relationship is defined using data from test programs that MPR sponsored at FSEL to investigate ASR in reinforced concrete elements. The test specimens were consistent with structures at Seabrook Station in terms of reinforcement details, depth of cover, and overall depth. In addition, the concrete used in the test specimens was representative of the concrete used at Seabrook Station, with some deviations to produce significant ASR-related expansion in a short timeframe.

4.0 Assumptions

4.1 Assumptions with a Basis

There are no assumptions with a basis.

4.2 Unverified Assumptions

There are no unverified assumptions.

5.0 Discussion

5.1 Test Data

The test data used herein are for test specimens from the Shear Test Program and the Reinforcement Anchorage Test Program, as well as the Instrumentation Test Program. Combining data from these three programs is appropriate as the same concrete mix was used in all test specimens. In addition, the test specimen configurations and reinforcement details were similar (Reference 6).

Data from all ASR-affected test specimens are used in this calculation. This includes data from \square test specimens: \square reinforcement anchorage specimens \quad shear specimens, and the instrumentation beam.

The baseline material properties are the 28-day tests performed on cylinders molded at the time of concrete placement. The material properties at various levels of ASR-related expansion are based on tests of cores removed from the test specimen prior to structural testing. The data include the following:

Figure 5-1. Normalized Compressive Strength and Modulus vs. Through-Thickness Expansion

 Test Data

5.4 Comparison to Published Values

Data on the elastic modulus as a function of ASR-related expansion are available in the literature. These data are for free expansion of small concrete specimens. Table 5-1 lists data from the sources considered in Reference 2.

MPR Associates, Inc.
320 King Street
Alexandria, VA 22314
Calculation No.
0326-0062-CLC-03

amanda Curd

Checked By
Watch ream-

Page: 10
Revision: 2

Table 5-1. Existing Data Showing Expansion and Corresponding Elastic Modulus

Note 1: Longitudinal prism expansion was selected as the most representative.
Note 2: Taken as elastic modulus at testing divided by elastic modulus at 28 days.

NHMP		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 0326-0062-CLC-03	Prepared By Cmonda Card	$\begin{gathered} \text { Checked By } \\ \text { Weath Meano } \end{gathered}$	Page: 11 Revision: 2

Figure 5-4 plots these data and compares them to the FSEL data and to the correlation based on the FSEL data.

Figure 5-4. Normalized Modulus vs. Through-Thickness Expansion: Published Literature

As shown in Figure 5-4, the data from published literature follow a trend that is consistent with the FSEL test data and the correlation determined using these data.

| Calculation No. | MPR Associates, Inc.
 320 King Street
 Alexandria, VA 22314 | |
| :---: | :---: | :---: | :---: |
| $0326-0062-C L C-03$ | | |

6.0 References

1. Not Used.
2. Bayrak, Oguzhan, Structural Implications of ASR: State of the Art, July 28, 2014, transmitted to Seabrook Station in MPR Letter 0326-0058-200, dated July 29, 2014.
3. Clark, L.A., Critical Review of the Structural Implications of the Alkali Silica Reaction in Concrete, Transport and Road Research Laboratory Contractor Report 169, July 1989.
4. Smaoui, N. et al., Mechanical Properties of ASR-Affected Concrete Containing Fine or Coarse Reactive Aggregates, Journal of ASTM International, Vol. 3, No. 3, March 2006.
5. Ahmed, T. et al., The effect of Alkali Reactivity on the Mechanical Properties of Concrete, Construction and Building Materials, 17 (2003) 123-144, January 9, 2002.
6. MPR-4262, "Shear and Reinforcement Anchorage Testing of Concrete Affected by AlkaliSilica Reaction," Volume I, Revision 1 \& Volume II, Revision 0. (Seabrook FP\#100994)
7. MPR-4259, "Commercial Grade Dedication Report for Seabrook ASR Shear, Reinforcement Anchorage and Instrumentation Testing," Revision 0.
(Seabrook FP \# 100995)
8. Special Test and Inspection Reports (STIRs) as accepted by CGAR-0326-0062-43-2 Revision 0, CGAR-0326-0062-43-5 Revision 1, and CGAR-0326-0062-43-7 Revision 0.
a) STIR-0326-24-103
b) STIR-0326-24-104
c) STIR-0326-24-105
d) STIR-0326-24-147
e) STIR-0326-24-204
f) STIR-0326-24-228
9. MPR-4286, "Supplemental Commercial Grade Dedication Report for Seabrook Test Programs," Revision 0. (Seabrook FP\# 101003)

This Appendix includes tables of summarized test data originally from FSEL. Table A-1 contains data from tests conducted 28 days after casting. The data are used to normalize the post-ASR data. Table A-2 contains data from tests that were conducted after ASR had occurred (i.e., post-ASR data). Table A-3 contains the through-thickness expansion values. Test data are taken from Reference 6 or the main body of this calculation unless otherwise noted. Applicable Special Test Inspection Records (STIRs) are listed for reference.

NMPR
 MPR Associates, Inc.
 320 King Street
 Alexandria, VA 22314
 Calculation No.
 0326-0062-CLC-03
 Page: A-2
 Revision: 2

Table A-1. FSEL 28-Day Compressive Strength, Elastic Modulus, and Splitting Tensile Strength Test Data

												\square
\square	-				$\underline{ }$				\square		$\underline{-1}$	\square
$\underline{\square}$	\square		-		\square		$\underline{\square}$		-		-	$\underline{\square}$
\square	\square		-		\square				\square			\square
\square	-		1		\cdots		$\underline{-}$		$\underline{\square}$		$\underline{1}$	$\underline{1}$
-	-		-		\cdots		$\underline{\square}$		\cdots		$\underline{1}$	\square
					\square							$\underline{1}$
\cdots	-		-		\cdots		-		-		$\underline{1}$	$\underline{\square}$
\cdots	-		-		\cdots		$\underline{\square}$		-		$\underline{1}$	$\underline{\square}$
\cdots	\square				\square							
$\underline{\square}$	-		1		\square		$\underline{\square}$		-		$\underline{1}$	\cdots
-	-		-		\cdots		\cdots		\square		$\underline{1}$	
-	-				\square							$\underline{1}$
\square	$\underline{1}$		1		\square		$\underline{\square}$		\cdots		$\underline{1}$	\cdots
$\underline{\square}$	\square				\square		$\underline{\square}$		-		$\underline{1}$	$\underline{\square}$
-	\cdots				-				-			
-	\square				\square		$\underline{1}$		\cdots		$\underline{1}$	$\underline{0}$
$\underline{\square}$	$\underline{1}$				\square		\underline{T}		$\underline{\square}$		$\underline{1}$	\square
$\underline{\square}$	-				\square		$\underline{\square}$		\cdots			\cdots
-	$\underline{\square}$		1		\underline{T}				\cdots		$\underline{1}$	\square
\square	\square				\square		\square		\square			\square
-	\cdots				\square		\underline{T}		\cdots		1	-
$\underline{\square}$	-				\square				\square		\underline{T}	
$\underline{\square}$	\square				\square		\square		\square			
$\underline{\square}$	\square				\square		$\underline{\square}$		-		$\underline{1}$	$\underline{\square}$
\square	\square				1		\square		\square		1	$\underline{0}$
\square	\cdots				\square		\square		\square		$\underline{1}$	$\underline{\square}$
\square	$!$				1		$\underline{\square}$		\square			$\underline{\square}$
-	-				\square		\underline{T}		\square		1	
\square	1		\underline{T}		$\underline{1}$		\square		\square		1	

NMR

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.
0326-0062-CLC-03

Prepared By
amanda Cord

Checked By
Sa tc Team

Page: A-3
Revision: 2

Table A-1. FSEL 28-Day Compressive Strength, Elastic Modulus, and Splitting Tensile Strength Test Data

VMPR

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.
0326-0062-CLC-03

Prepared By
amanda Cord

Checked By
Page: A-4
Revision: 2

Table A-2. FSEL Average Expansion, Compressive Strength, and Elastic Modulus: Test Data After ASR

MPR QA Form: QA-3.1-3, Rev. 0

NMR
 MPR Associates, Inc.
 320 King Street
 Alexandria, VA 22314

Calculation No.
0326-0062-CLC-03

Prepared By
 amanda Card
 Checked By
 Revision: 2

Table A-2. FSEL Average Expansion, Compressive Strength, and Elastic Modulus: Test Data After ASR

MPR QA Form: QA-3.1-3, Rev. 0

NMPD		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
$\begin{gathered} \text { Calculation No. } \\ 0326-0062-\mathrm{CLC}-03 \end{gathered}$	Prepared By amanda Card	$\begin{gathered} \text { Checked By } \\ \text { Wexth Meano } \end{gathered}$	Page: A-6 Revision: 2

Table A-2. FSEL Average Expansion, Compressive Strength, and Elastic Modulus: Test Data After ASR

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.	Prepared By	Checked By	Page: A-7
0326-0062-CLC-03	Gmanda Coucd	Neith Meamm	Revision: 2

Table A-3. FSEL Expansion Test Data With Correction Factor

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No. $0326-0062-C L C-03$	Prepared By	Checked By	Page: B-1
	Rext Mean-	Omanda Card	Revision: 2

B

Least Squares Regression

Purpose

This appendix explains the methodology used to perform the Least Squares Regression Analysis. A brief description of the fit statistic R^{2} is also given. After the method of Least Squares is explained, the method is applied to the correlation between the FSEL test data for normalized elastic modulus and corrected through thickness expansion.

Discussion

Least Squares Regression is a commonly accepted method of fitting a curve to a set of scattered data. This is done by minimizing the sum of squares error term. This is a common statistical method that is documented in textbooks such as "Applied Data Analysis and Modeling for Energy Engineers and Scientists" by T.A. Reddy. The sum of squares is given by:

$$
S=\sum_{i=1}^{m} r_{i}^{2}
$$

Where:
S is the error term,
m is the number of known values, and
r_{i} is the residual of the i th value, as given by:

$$
r_{i}=y_{i}-f\left(x_{i}, C\right)
$$

Where:
y_{i} and x_{i} are a known value pair,
f is the regressed or fit function, and
C is the set of constants used to fit the model.
By combining the above equations with a known set of values, S is minimized by varying C . In some cases, this can be accomplished analytically, but is often accomplished numerically. The values of C that minimize S are said to be the fitting parameters, and the function $f\left(x_{i}, C\right)$ is the curve of best fit in the least squares sense.

MR
MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.
0326-0062-CLC-03

Page: B-2
Revision: 2

Prepared By
Tate Dream-

Checked By amanda Card

It is often desirable to determine how well a given curve fits a set of data. A commonly used statistic to determine this is the coefficient of determination, $\mathrm{R}^{2} . \mathrm{R}^{2}$ is defined as:

$$
\begin{gathered}
R^{2}=1-\frac{S S_{\text {res }}}{S S_{\text {tot }}} \\
S S_{\text {res }}=\sum_{i=1}^{m}\left(y_{i}-f\left(x_{i}, C\right)\right)^{2}=S \\
S S_{t o t}=\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}
\end{gathered}
$$

Calculation

The least squares regression performed in the main body of this calculation is described in detail below. The set of points is listed in Table B-1 and plotted in Figure B-1.

Table B-1. Known Values

Table B-1. Known Values

Figure B-1. Plot of Known Values

NMPPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No.	Prepared By	Checked By	Page: B-5
0326-0062-CLC-03	Wexth Meano-	Cmanda Card	Revision: 2

It appears that a natural log fit is reasonable. Therefore, it can be fit to an equation of form:

Where:
x is the set of values of X as shown in Table B-1.
A and B are a set of constants (C) used to fit the model.
To begin, we will guess at the values of A and B. In this example, our first guess will be that $A=-0.1$ and $B=-0.5$. Using the model given above, we compute a value for y at each given x. For each computed value, the residual is also computed. These values are shown in Table B-2.

Table B-2. Example Values With Computed Residuals

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.
0326-0062-CLC-03

Prepared By Death Mean o

Checked By amanda Card

Page: B-7
Revision: 2

Table B-2. Example Values With Computed Residuals

Taking the sum of squares of the residuals, we find a value of approximately However, this can be improved on. To do so, we iteratively adjust the values A and B to minimize S.
result in S being minimal and provide a good estimate of the solution. The fitted curve is plotted against the data in Figure B-2. The newly computed values are shown in Table B-3. The regressed equation is:

Table B-3. Example Values With Computed Residuals - Updated

\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.
0326-0062-CLC-03
Peath Meano

Checked By	Page: $\mathrm{B}-8$ Revision: 2

Table B-3. Example Values With Computed Residuals - Updated

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.	Prepared By	Checked By	Page: B-9
0326-0062-CLC-03	Neth Meam-	GMowna corol	Revision: 2

Table B-3. Example Values With Computed Residuals - Updated

Figure B-2. Regressed Curve
R^{2} can now be computed using the regressed curve. The sum of squared residuals is ($S S_{\text {res }}$). The mean of y is Therefore, the sum of squared totals is $\left(S S_{t o t}\right) \cdot \mathrm{R}^{2}$ can now be computed.

$$
R^{2}=1-S S_{r e s} / S S_{t o t}
$$

