




NUREG-1350, Volume 28 Manuscript Completed: August 2016 Date Published: September 2016

U.S. Nuclear Regulatory Commission Office of Public Affairs Washington, DC 20555-0001

www.nrc.gov













Information Digest

### Section Photo Captions:

### Section 1: NRC: An Independent Regulatory Agency

- 1. The Prairie Island nuclear power plant in Minnesota.
- 2. The NRC Headquarters complex in Rockville, MD.
- An NRC inspector conducts routine inspections of plant equipment to ensure the plant is meeting NRC regulations.

### Section 2: Nuclear Energy in the U.S. and Worldwide

- 1. A satellite photograph captures the sunrise over the Earth.
- The NRC participates in the annual General Conference for the International Atomic Energy Agency in Vienna, Austria.
- 3. NRC Chairman Stephen Burns (center of the table on the right) meets with Japan's Chief Cabinet Secretary Yoshihide Suga (center of the table on the left) to discuss nuclear regulatory issues.

### Section 3: Nuclear Reactors

- 1. The St. Lucie nuclear power plant in Florida.
- An NRC inspector conducts routine inspections of plant equipment to ensure the plant is meeting NRC regulations.
- 3. Transmission lines distribute electricity generated by nuclear power plants to the power grid.

### Section 4: Nuclear Materials

- 1. Physicians use yttrium-90 (Y-90) microspheres to treat liver cancers.
- A moisture density gauge indicates whether a foundation is suitable for constructing a building or roadway.
- 3. A worker displays a small ceramic fuel pellet.

### Section 5: Radioactive Waste

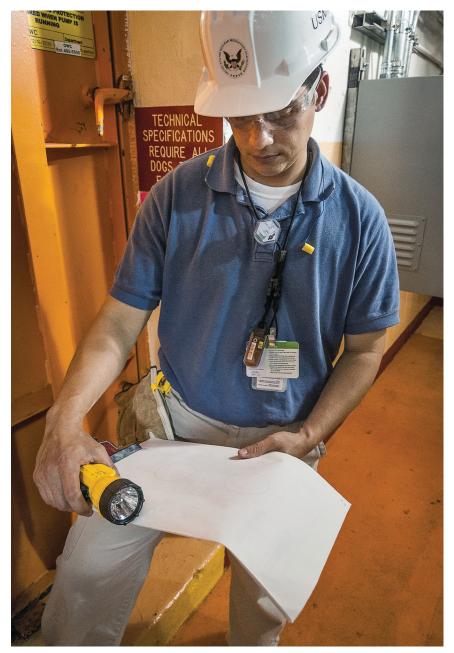
- 1. Dry casks are transported to a storage site.
- A transport package is placed inside a conveyance vehicle.
- 3. A worker inspects a dry cask storage facility.

### Section 6: Security and Emergency Preparedness

- 1. Biometric access control locks within a nuclear facility provide another layer of protection.
- Barbed wire provides an added layer of security while protecting a nuclear facility from intruders.
- 3. Security officers protect nuclear facilities from intruders.

### Sections 7, 8, and 9:

- 1. NRC Historian Thomas Wellock examines historical events and NRC actions.
- Social media enables the NRC to reach a broader audience and to better engage, inform, and educate the public—in real time, through multiple channels.
- NRC regulations are contained in Title 10, "Energy" of the Code of Federal Regulations, Chapter 1, Parts 1 to 199.


# **Abstract**

The U.S. Nuclear Regulatory Commission (NRC) has published the Information Digest annually since 1989. The Information Digest provides information about the agency and the industries it regulates. It describes the agency's responsibilities and activities and provides general information on nuclear-related topics. The Information Digest includes NRC and industry data in an easy-to-read format. Infographics help explain the information with visual aids.

The 2016–2017 Information Digest includes NRC data in the appendices and non-NRC data (i.e., International Atomic Energy Agency, Energy Information Administration, and U.S. Department of Energy data) throughout the publication that is from the August 2015 edition, with the exception of data associated with maps and graphics. The next Information Digest, scheduled for publication in August 2017, will reflect updated data. Going forward, the Digest will remain an annual publication, but data will only be updated every two years. Readers will be directed to the most current and updated information, which is available online.

The NRC reviews the information from industry and international sources but does not independently verify it. The Web Link Index provides sources for more information on major topics. The NRC is the source of all photographs, graphics, and tables unless otherwise noted. All information is final unless otherwise noted. Corrections and updates will appear in the digital version of the publication on the NRC Web site at http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/.

The NRC welcomes comments or suggestions on the Information Digest. To submit comments, write to the Office of Public Affairs at U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, or email at OPA.Resource@nrc.gov.



 $NRC\ resident\ inspectors\ perform\ routine\ inspection\ activities\ to\ ensure\ nuclear\ power\ plants\ operate\ according\ to\ NRC\ regulations.$ 

# Contents

| Abstract                                                              | iii |
|-----------------------------------------------------------------------|-----|
| NRC At-A-Glance                                                       | xi  |
| 2015–2016 Accomplishments and Highlights                              | xv  |
| 1. NRC: An Independent Regulatory Agency                              | 1   |
| Mission                                                               | 2   |
| Major Activities                                                      | 4   |
| Organizations and Functions                                           | 6   |
| Fiscal Year 2016 Budget                                               | 10  |
| 2. Nuclear Energy in the U.S. and Worldwide                           | 13  |
| Worldwide Electricity Generated by Commercial Nuclear Power           | 14  |
| International Activities                                              | 15  |
| 3. Nuclear Reactors                                                   | 21  |
| U.S. Electricity Generated by Commercial Nuclear Power                | 22  |
| U.S. Commercial Nuclear Power Reactors                                | 22  |
| Oversight of U.S. Commercial Nuclear Power Reactors                   | 30  |
| Reactor License Renewal                                               | 32  |
| Research and Test Reactors                                            | 35  |
| New Commercial Nonpower Production and Utilization Facility Licensing | 37  |
| New Commercial Nuclear Power Reactor Licensing                        | 38  |
| Nuclear Regulatory Research                                           | 42  |
| 4. Nuclear Materials                                                  | 47  |
| Materials Licenses                                                    | 48  |
| Medical and Academic                                                  | 49  |
| Industrial                                                            | 50  |
| Transportation                                                        | 52  |
| Material Security                                                     | 53  |
| Nuclear Fuel Cycle                                                    | 54  |
| Fuel Cycle Facilities                                                 | 58  |

| 5. Radioa        | ctive Waste                                                                                                         | 61  |
|------------------|---------------------------------------------------------------------------------------------------------------------|-----|
| Low-Level Rad    | dioactive Waste Disposal                                                                                            | 62  |
| High-Level Ra    | dioactive Waste Management                                                                                          | 64  |
| Transportation   |                                                                                                                     | 70  |
| Decommission     | ning                                                                                                                | 71  |
| 6. Securit       | y and Emergency Preparedness                                                                                        | 75  |
| Overview         |                                                                                                                     | 76  |
| Facility Securit | y .                                                                                                                 | 76  |
| Cyber Security   | y                                                                                                                   | 77  |
| Materials Secu   | urity                                                                                                               | 78  |
| Emergency Pr     | eparedness                                                                                                          | 78  |
| Incident Resp    | onse                                                                                                                | 81  |
| Emergency Cl     | assifications                                                                                                       | 82  |
| International E  | mergency Classifications                                                                                            | 83  |
| 7. Appen         | dices                                                                                                               | 85  |
| Abbreviatio      | ons                                                                                                                 | 86  |
| Quick-Refer      | rence Metric Conversion Tables                                                                                      | 88  |
| APPENDIX A:      | Commercial Nuclear Power Reactors                                                                                   | 90  |
| APPENDIX B:      | New Nuclear Power Plant Licensing Applications                                                                      | 106 |
| APPENDIX C:      | Commercial Nuclear Power Reactors Undergoing Decommissioning and Permanently Shut Down Formerly Licensed To Operate | 107 |
| APPENDIX D:      | Canceled U.S. Commercial Nuclear Power Reactors                                                                     | 110 |
| APPENDIX E:      | Commercial Nuclear Power Reactors by Parent Company                                                                 | 116 |
| APPENDIX F:      | Commercial Nuclear Power Reactor Operating Licenses—<br>Issued by Year                                              | 118 |
| APPENDIX G:      | Commercial Nuclear Power Reactor Operating Licenses—<br>Expiration by Year, 2013–2049                               | 118 |
| APPENDIX H:      | Industry Performance Indicators: Industry Averages, FYs 2006–2015                                                   | 119 |
| APPENDIX I:      | Operating Nuclear Research and Test Reactors<br>Regulated by the NRC                                                | 125 |
| APPENDIX J:      | Nuclear Research and Test Reactors under Decommissioning Regulated by the NRC                                       | 127 |
| APPENDIX K:      | Radiation Doses and Regulatory Limits                                                                               | 127 |

| 9. Web Link Index                                                                                                    | 185            |
|----------------------------------------------------------------------------------------------------------------------|----------------|
| Glossary (Abbreviations, Definitions, and Illustration                                                               | s) 152         |
| 8. Glossary                                                                                                          | 151            |
| APPENDIX Z: International Activities: List of Import and Export Li                                                   | icenses 148    |
| APPENDIX Y: International Activities: List of the NRC's Participati<br>Multilateral Organizations                    | on with<br>146 |
| APPENDIX X: International Activities: Conventions and Treaties P to Nuclear Safety, Security and International Safeg |                |
| APPENDIX W: Laws Governing the U.S. Nuclear Regulatory Con                                                           | nmission 144   |
| APPENDIX V: Significant Enforcement Actions Issued                                                                   | 141            |
| APPENDIX U: Regulatory Research Cooperative Agreements an                                                            | d Grants 140   |
| APPENDIX T: Native American Reservations and Trust Lands within a 50-Mile Radius of a Nuclear Power Plant            | 139            |
| APPENDIX S: Nuclear Power Units by Reactor Type, Worldwide                                                           | 138            |
| APPENDIX R: Nuclear Power Units by Nation                                                                            | 137            |
| APPENDIX Q: NRC-Regulated Complex Material Sites<br>Undergoing Decommissioning, 2015                                 | 136            |
| APPENDIX P: U.S. Low-Level Radioactive Waste Disposal Compact Membership                                             | 135            |
| APPENDIX O: Dry Cask Spent Fuel Storage Licensees                                                                    | 131            |
| APPENDIX N: Dry Spent Fuel Storage Designs:<br>NRC-Approved for Use by General Licensees                             | 130            |
| APPENDIX M: Major U.S. Fuel Cycle Facility Sites                                                                     | 129            |
| APPENDIX L: Materials Licenses by State                                                                              | 128            |

# **Figures**

| NRC: An Independent Regulatory Agency                                                       |    |
|---------------------------------------------------------------------------------------------|----|
| Figure 1. How We Regulate                                                                   | 3  |
| Figure 2. NRC Organizational Chart                                                          | 7  |
| Figure 3. NRC Regions                                                                       | 9  |
| Figure 4. NRC Budget Authority, FYs 2006–2016                                               | 10 |
| Figure 5. NRC FY 2016 Distribution of Budget Authority;<br>Recovery of NRC Budget           | 11 |
| Nuclear Energy in the U.S. and Worldwide                                                    |    |
| Figure 6. Nuclear Share of Electricity Generated by Country                                 | 14 |
| Nuclear Reactors                                                                            |    |
| Figure 7. U.S. Net Electric Generation by Energy Source, 2015                               | 23 |
| Figure 8. U.S. Net Electric Generation by Energy Source, 2005–2015                          | 23 |
| Figure 9. Net Electricity Generated in Each State by Nuclear Power                          | 24 |
| Figure 10. U.S. Operating Commercial Nuclear Power Reactors                                 | 26 |
| Figure 11. Day in the Life of an NRC Resident Inspector                                     | 27 |
| Figure 12. NRC Post-Fukushima Safety Enhancements                                           | 29 |
| Figure 13. Reactor Oversight Action Matrix Performance Indicators                           | 31 |
| Figure 14. Reactor Oversight Framework                                                      | 31 |
| Figure 15. License Renewals Granted for Operating Nuclear Power Reactors                    | 33 |
| Figure 16. U.S. Commercial Nuclear Power Reactors—<br>Years of Operation by the End of 2016 | 33 |
| Figure 17. License Renewal Process                                                          | 34 |
| Figure 18. Size Comparison of Commercial and Research Reactors                              | 35 |
| Figure 19. U.S. Nuclear Research and Test Reactors                                          | 36 |
| Figure 20. New Reactor Licensing Process                                                    | 39 |

39

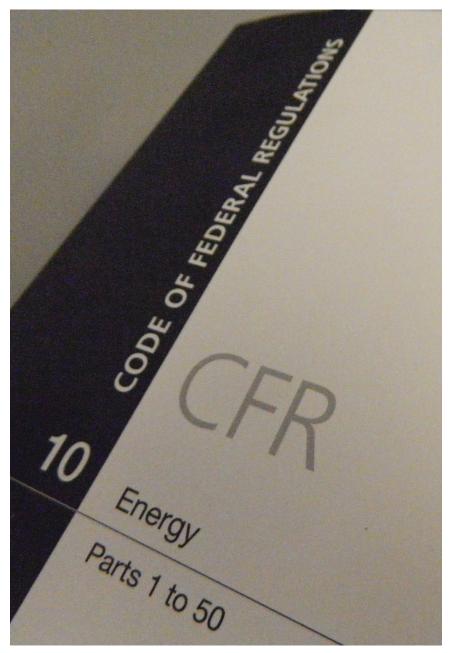

44

Figure 21. Locations of New Nuclear Power Reactor Applications

Figure 22. NRC Research Funding, FY 2016

### **Nuclear Materials**

| Figure 23. Agreement States                                                             | 48 |
|-----------------------------------------------------------------------------------------|----|
| Figure 24. Life-Cycle Approach to Source Security                                       | 53 |
| Figure 25. The Nuclear Fuel Cycle                                                       | 54 |
| Figure 26. The In Situ Uranium Recovery Process                                         | 56 |
| Figure 27. Locations of NRC-Licensed Uranium Recovery Facility Sites                    | 57 |
| Figure 28. Locations of Fuel Cycle Facilities                                           | 59 |
| Figure 29. Simplified Fuel Fabrication Process                                          | 59 |
| Radioactive Waste                                                                       |    |
| Figure 30. Low-Level Radioactive Waste Disposal                                         | 63 |
| Figure 31. Spent Fuel Generation and Storage After Use                                  | 66 |
| Figure 32. Dry Storage of Spent Nuclear Fuel                                            | 68 |
| Figure 33. Licensed and Operating Independent Spent Fuel Storage Installations by State | 69 |
| Figure 34. Ensuring Safe Spent Fuel Shipping Containers                                 | 70 |
| Figure 35. Decommissioning Overview Timeline                                            | 71 |
| Figure 36. Power Reactor Decommissioning Status                                         | 72 |
| Figure 37. Locations of NRC-Regulated Sites Undergoing Decommissioning                  | 73 |
| Security and Emergency Preparedness                                                     |    |
| Figure 38. Security Components                                                          | 77 |
| Figure 39. Emergency Planning Zones                                                     | 79 |
| Figure 40. The International Nuclear and Radiological Event Scale                       | 83 |



NRC regulations are contained in Title 10, "Energy," of the Code of Federal Regulations, Chapter 1, Parts 1 to 199.

### NRC AT A GLANCE

### **Mission**

The U.S. Nuclear Regulatory Commission (NRC) is an independent agency created by Congress. Its mission is to license and regulate the civilian use of radioactive materials in the United States to protect public health and safety, promote the common defense and security, and protect the environment.

The NRC regulates commercial nuclear power plants; research, test, and training reactors; nuclear fuel cycle facilities; and radioactive materials used in medicine, academia, and industry. The agency also regulates the transport, storage, and disposal of radioactive materials and waste, most Federal agencies' use and possession of radioactive materials, and the export and import of radioactive materials.

### Commission

Chairman Stephen G. Burns Commissioner Kristine L. Svinicki Commissioner Jeff Baran Vacant

Vacant

Term ends June 30, 2019 Term ends June 30, 2017 Term ends June 30, 2018

### Locations

### **Headquarters:**

U.S. Nuclear Regulatory Commission Rockville, MD, 301-415-7000, 1-800-368-5642

### **Regional Offices:**

Region I - King of Prussia, PA, 610-337-5000, 1-800-432-1156 Region II - Atlanta, GA, 404-997-4000, 1-800-577-8510

Region III - Lisle, IL, 630-829-9500, 1-800-522-3025

Region IV - Arlington, TX, 817-860-8100, 1-800-952-9677

### **Headquarters Operations Center:**

Rockville, MD, 301-816-5100

The NRC maintains a staffed, 24-hour Operations Center that coordinates incident response with State, local, and Federal agencies.

### **Training and Professional Development:**

Technical Training Center, Chattanooga, TN, 423-855-6500 Professional Development Center, Rockville, MD, 301-287-0556

### **Resident Sites:**

At least two NRC resident inspectors, who report to the appropriate regional office, are located at each nuclear power plant site.

### **NRC Fiscal Year 2016 Budget**

• Total authority: \$1,002.1 million

Total authorized staff: 3.595

- Estimated fees to be recovered: \$882.9 million
- The Office of the Inspector General received its own appropriation of \$12.1 million
- Total Research Budget: \$51 million with 217 full-time equivalents

Reactor Program: \$43 million

New/Advanced Reactor Licensing: \$6 million

Materials and Waste: \$2 million

### What Does the NRC Do?

- · Regulation and guidance-rulemaking
- Policymaking
- Licensing, decommissioning, and certification
- Research
- Oversight and enforcement
- Emergency preparedness and response
- Incident response

### **NRC Governing Legislation**

The NRC was established by the Energy Reorganization Act of 1974. The most significant laws that govern the regulatory process of the agency are in Appendix W. The NRC's regulations are found in Title 10 of the *Code of Federal Regulations*. The text of many laws may be found in NUREG-0980, "Nuclear Regulatory Legislation."

### NRC by the Numbers

### U.S. Electricity Generated by Commercial Nuclear Power

NRC-licensed nuclear reactors generate about 19 percent of U.S. net electricity, or about 771 billion kilowatt-hours.

### **Nuclear Reactors**

- 100 commercial nuclear power plants operating in 30 States at 61 sites
  - 66 pressurized-water reactors and 34 boiling-water reactors
- Four reactor fuel vendors
- 23 parent operating companies
- About 80 different designs
- About 6,500 total inspection hours at each operating reactor site in 2015

Licensees have announced via the media or letter their intent to either shut down or not renew licenses for the following:

- Omaha Public Power District will close Fort Calhoun by end of 2016.
- Entergy's will close Fitzpatrick in 2017 and Pilgrim Nuclear Power Station by end of 2018
- Exelon's Clinton Power Station and its Quad Cities Generating Station will close on June 1, 2017, and June 1, 2018, respectively; and Oyster Creek plans to shut down in December 2019.
- Pacific Gas & Electric, Diablo Canyon nuclear plants will close when their licenses expire by 2025.

### Reactor License Renewal

Commercial power reactor operating licenses are valid for 40 years and may be renewed for additional 20-year terms.

- 19 reactors operate under their original license.
- 50 sites comprising 83 reactors were issued renewal licenses.
- · Eight sites have license renewal applications in review.
- Four sites have submitted letters of intent to request renewal.

### Early Site Permits for New Reactors

- Five early site permits (ESPs) issued and one new application received:
  - System Energy Resources, Inc., for the Grand Gulf site in Mississippi
  - Exelon Generation Company, LLC, for the Clinton site in Illinois
  - Dominion Nuclear North Anna, LLC, for the North Anna site in Virginia
  - Southern Nuclear Operating Company, for the Vogtle site in Georgia
  - PSEG Power, LLC, and PSEG Nuclear, LLC, for the PSEG site in New Jersey
  - In May 2016, the NRC received an ESP application from the Tennessee Valley Authority (TVA) for two or more small modular reactor (SMR) modules at the Clinch River Nuclear Site in Roane County, Tennnessee.

### NRC AT A GLANCE

### Combined License—Construction and Operating for New Reactors

- Since June 2007, the NRC has received and docketed 18 combined license (COL) applications for 28 new, large light-water reactors.
- The NRC suspended or canceled 10 COL application reviews at the request of the applicants, because of changes to their business plans (Bell Bend, Bellefonte, Calvert Cliffs, Comanche Peak, Grand Gulf, Callaway, Nine Mile Point, River Bend, Shearon Harris, and Victoria County Station).
- The NRC has issued COLs for seven reactors at Vogtle, V.C. Summer, Fermi, and South Texas Project.
- As of June 2016, the NRC is actively reviewing four applications for seven new reactors: North Anna (VA), William States Lee III (SC), Levy County (FL), and Turkey Point (FL).

### Reactor Design Certification

- Five reactor design certifications (DCs) were issued:
  - General Electric Nuclear Energy's ABWR (Advanced Boiling-Water Reactor)
  - Westinghouse Electric Company's System 80+
  - Westinghouse Electric Company's AP600
  - Westinghouse Electric Company's AP1000
  - General Electric-Hitachi Nuclear Energy's ESBWR (Economic Simplified Boiling-Water Reactor)
- Two DC applications are currently under review for the APR1400 and US-APWR designs.
- One DC application is suspended at the request of the applicant (US EPR).
- One DC renewal application is under review for the ABWR design.

### Nuclear Research and Test Reactors

• 31 licensed research and test reactors are operating in 21 States.

# Nuclear Materials Materials Licensing

- The NRC and the Agreement States have approximately 20,000 licensees for medical, academic, industrial, and general users of nuclear materials.
  - The NRC administers approximately 2,700 licenses.
  - 37 Agreement States oversee approximately 17,300 licenses.
- Two States have letters of intent to become Agreement States: Vermont and Wyoming.
- The NRC issues approximately 2,000 new licenses, renewals, or amendments for existing materials licenses annually. The NRC conducts approximately 900 health, safety, and security inspections of materials licensees each year.

### **Nuclear Fuel Cycle**

- 10 uranium recovery sites licensed by the NRC:
  - Nine in situ recovery sites
  - One conventional mill in standby status with the potential to restart in the future
- One application for a new uranium recovery facility is under review.
- Two applications for renewal are under review; a third has been received.
- Seven applications for facility expansion have been received. Five of those applications are under review.
- 13 fuel cycle facilities:
  - One uranium hexafluoride conversion facility
  - Five uranium fuel fabrication facilities
  - Four gas centrifuge uranium enrichment facilities (one operating, one test and development, and two construction pending)
  - One mixed-oxide fuel fabrication facility (under construction and review)
  - One laser separation enrichment facility (construction decision pending)
  - One uranium hexafluoride deconversion facility (construction decision pending)
- The NRC issues about 75 fuel cycle facility licensing actions per year, including amendments; renewals; new licenses; and safety, environmental, and safeguards reviews.

### **National Source Tracking System**

The National Source Tracking System (NSTS) tracks more than 80,000 sources held by about 1,400 NRC and Agreement State licensees. Of those sources, about 46 percent are Category 1 sources and 54 percent are Category 2. The majority are cobalt-60, the most widely used isotope in large sources.

### **Domestic Safeguards**

The NRC has issued licenses authorizing some 180 facilities to possess special nuclear material in quantities ranging from a single kilogram to multiple tons.

### Radioactive Waste

### Low-Level Radioactive Waste

- 10 regional compacts
- · Four licensed disposal facilities

### High-Level Radioactive Waste Management

### **Spent Nuclear Fuel Storage**

- 75 licenses for independent spent fuel storage installations in 34 States:
  - 15 site-specific licenses
  - 60 general licenses

### Transportation-Principal Licensing and Inspection Activities

- 1,000 safety inspections of fuel, reactor, and materials licensees are conducted annually.
- 65 new, renewal, or amended container-design applications for the transport of nuclear materials are reviewed annually.
- 150 license applications for the import and export of nuclear materials from the United States are reviewed annually.
- More than 3 million packages of radioactive materials are shipped each year in the United States by road, rail, air, or water. This represents less than 1 percent of the Nation's yearly hazardous material shipments.

### Decommissioning

Approximately 150 materials licenses are terminated each year. The NRC's decommissioning program focuses on the termination of licenses that are not routine and that require complex activities

- 19 nuclear power reactors in various stages of decommissioning (DECON or SAFSTOR)
- Four research and test reactors permanently shut down and in various stages of decommissioning
- 13 complex material sites in various stages of decommissioning
- · Two fuel cycle facilities (partial decommissioning)
- 11 NRC-licensed uranium recovery facilities in various stages of decommissioning

### Security and Emergency Preparedness

- Once every 2 years, each operating nuclear power plant performs a full-scale emergency preparedness exercise inspected by the NRC and evaluated by the Federal Emergency Management Agency.
- Plants conduct additional emergency drills between full-scale exercises to maintain their preparedness and proficiency in responding to emergencies.
- Once every 3 years, each nuclear plant undergoes a force-on-force security inspection. These
  inspections include mock combat drills. The NRC spends about 16,000 hours a year scrutinizing
  security at nuclear power plants, including 8,000 hours of force-on-force inspections.

# 2015-2016 Accomplishments and Highlights

### **Nuclear Reactors**

### **Power Reactors**

- Made significant progress implementing lessons learned from the Fukushima accident in Japan, with a focus on the highest priority (Tier 1) activities.
- Completed over 799 licensing actions and other licensing tasks, including approving
  additional transitions to the National Fire Protection Association Standard NFPA-805,
  "Performance-Based Standard for Fire Protection for Light Water Reactor Electric
  Generation Plants," while also actively reviewing a number of nuclear power plant license
  renewal applications.
- Issued one early site permit for the PSEG site in New Jersey.
- Issued combined licenses for Fermi Unit 3 (Michigan) and for South Texas Project, Units 3 and 4 (Texas).
- Issued the final environment impact statement for the Bell Bend Nuclear Power Plant (Pennsylvania) combined license application.
- Continued oversight of construction at two new reactor construction sites.
- Issued the Tennessee Valley Authority's operating license for the Watts Bar Unit 2 reactor.
- Completed all required inspection and assessment activities of the Reactor Oversight Process, including initiating eight inspections in response to safety-significant events.
- Strengthened cyber security for nuclear facilities through new requirements and cooperation with industry.
- Participated in Southern Exposure 2015, a national exercise simulating response to and recovery from a nuclear power plant catastrophe.
- Collaborated with States, Federal agencies, and licensees in responding to natural events and extreme weather (such as tornadoes, floods, hurricanes, and earthquakes) affecting licensed facilities.
- Strengthened nuclear safety cooperation through more than 20 new international agreements, adding to the existing 100 active international agreements for cooperative research.
- Published extensive research results on a variety of topics that confirmed the safety of operating facilities, including analysis of power uprate thermal-hydraulic margins, fracture toughness of cast stainless steel under irradiated and thermal conditions, and improvements for fire probabilistic risk assessment.

### Nonpower Reactors

- Issued a construction permit for SHINE Medical Technologies, Inc., for a facility in Janesville, WI, to produce medical isotopes.
- Continued reviewing a construction permit application for Northwest Medical Isotopes, LLC, for a medical isotope production facility in Missouri.

### **Materials and Waste**

- Completed approximately 2,075 radioactive material licensing actions.
- Completed the technical safety review of the U.S. Department of Energy's application and released the final volumes of the Yucca Mountain safety evaluation report.
- Issued NUREG-2184, "Supplement to the U.S. Department of Energy's Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada."
- Published the final rule to make conforming changes to Title 10 of the Code of Federal Regulations, Part 71, "Packaging and Transportation of Radioactive Material," in order to maintain consistency with the U.S. Department of Transportation regulations, which are based on the International Atomic Energy Agency's 2009 standards for the interantional transportation of radioactive material.
- Published the Safety Culture Educational Resource, a training aid endorsed by the Agreement States, on the Safety Culture Policy Statement for licensees.

- Terminated the certificate of compliance for the Paducah Gaseous Diffusion facility.
- Completed a series of five Tribal training sessions at various Tribal colleges, with focuses on health physics, the National Environmental Policy Act, and the uranium recovery process.
- Completed seven Integrated Materials Performance Evaluation Program reviews of Agreement States, and all were found adequate to protect public health and safety.
- Approved a license amendment for the expansion of the Louisiana Energy Services Uranium Enrichment facility.
- Authorized Strata Energy, Inc., to operate a uranium recovery facility.
- Issued two independent spent fuel storage installations license renewals for Calvert Cliffs and Prairie Island.
- Terminated the research and test reactor operating licenses at Worchester Polytechnic Institute, the University of Michigan Ford Reactor and the Veterans Administration reactor in Omaha, NE.
- Worked with other Federal agencies (U.S. Department of Energy, U.S. Department of State, U.S. Environmental Protection Agency) to complete the fifth review meeting of Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

### Agencywide

- Initiated a rebaselining effort under Project Aim to reprioritize the agency's work, increase efficiency and effectiveness, and improve the agency's ability to adapt to a changing work environment.
- Pursued substantial rulemaking activities on topics including the standards for protection against radiation, the control and accounting of special nuclear material, the decommissioning of nuclear reactors, and the fee structure for small modular reactors.
- Issued the (FY) 2015 proposed fee rule, held a public meeting to support stakeholder outreach, and incorporated the comments received in the FY 2015 final fee rule.

### **International Activities**

- Participated in various U.S. Government nuclear safety and security initiatives in collaboration with U.S. Executive Branch agencies and non-U.S. regulatory counterparts through activities such as the 2016 Nuclear Security Summit in Washington, DC, and the 2016 International Regulators Conference on Nuclear Security in Spain.
- Participated as part of U.S. Government delegations to international meetings addressing
  implementation of treaties and conventions, including: a diplomatic conference to consider
  amending the Convention on Nuclear Safety, the Fifth Review Meeting of the Contracting Parties
  to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive
  Waste Management, and the technical meeting of points of contact for the Convention on the
  Physical Protection of Nuclear Material.
- Supported multiple International Atomic Energy Agency regulatory peer review missions, such as the Integrated Regulatory Review Service and the International Physical Protection Advisory Service
- Represented the U.S. Government on the Nuclear Security Guidance Committee, an International Atomic Energy Agency committee that will set the international guidance in this area for decades to come.
- Participated with U.S. Executive Branch agencies and others on the first ever United States-Republic of Korea High Level Bilateral Commission meeting to discuss civilian nuclear safety.
- Supported completion of verified national registries of radioactive sources, through the NRC's Radioactive Sources Regulatory Partnership, for six non-U.S. regulatory counterparts.
- Continued regulatory program development assistance, through the NRC's International Regulatory Development Partnership, for over 20 countries considering civilian nuclear power programs.

# 2015-2016 Accomplishments and Highlights

### Administration

- Closed approximately 600 Freedom of Information Act requests and appeals.
- By the end of FY 2015, reduced the number of backlogged Freedom of Information Act requests by 73 percent, from 27 to 8.
- Issued 80 escalated enforcement actions, 15 actions involving civil penalties, and 61 escalated notices of violation without a proposed civil penalty.
- Continued to conduct agency outreach to audiences interested in NRC activities, including through the use of social media.
- Awarded 46 grants to 32 institutes of higher education in 23 States and Puerto Rico, including six minority-serving institutions.
- In FY 2015, awarded \$2.4 million in grants to 11 minority-serving institutions of higher education.
- Further consolidated headquarters by relinquishing the 21 Church Street building (64,000 square feet) and four floors of the 3 White Flint North building (92,000 square feet), thereby reducing the overall footprint.

### **Public Meetings and Involvement**

- Hosted both the annual Regulatory Information Conference and the annual Fuel Cycle Information Exchange, where thousands of participants from around the world discussed the latest technical issues.
- Conducted approximately 1,000 public meetings in the Washington, DC, area and around the country addressing a full range of NRC issues.
- The Advisory Committee on Reactor Safeguards held 10 full committee meetings and 61 subcommittee meetings in calendar year 2015.
- The Advisory Committee on the Medical Uses of Isotopes held five public meetings in calendar year 2015.

### **News and Information**

- NRC news releases are posted on the Web site and available through a free listserv subscription at www.nrc.gov/public-involve/listserver.html.
- The NRC uses social media as a communication tool to allow the public to stay connected through the NRC Blog, Twitter, Flickr, YouTube, and Facebook.

For more information on the agency's accomplishments, find the reports to Congress on the NRC Web site at http://www.nrc.gov/reading-rm/doc-collections/congress-docs/.

### **Contact Us**

### U.S. Nuclear Regulatory Commission

1-800-368-5642, 301-415-7000, TTD: 301-415-5575

### **Public Affairs**

301-415-8200, Fax: 301-415-3716 e-mail: opa.resource@nrc.gov

### **Public Document Room**

1-800-397-4209, Fax: 301-415-3548

TDD: 1-800-635-4512

### **Employment**

Human Resources: 301-415-7400

General Counsel Intern Program, Honor Law Graduate Programs,

or 2-Year Judicial Clerkship Program: 301-415-1515

### **Contracting Opportunities**

Small Business: 1-800-903-7227

### **Mailing Address**

U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

### **Delivery Address**

11555 Rockville Pike, Rockville, MD 20852

### **Stay Connected**

### **NRC Blog**





https://public-blog. nrc-gateway.gov/

### YouTube





https://www.youtube. com/user/NRCgov

### Twitter





https://twitter.com/ /nrcgov

### GovDelivery







### Flickr





https://www.flickr. com/photos/nrcgov

### **Facebook**





https://www.facebook.com/ nrcgov/

### RSS





https://www.nrc.gov/public involve/listserver.html#rss

### Report a Concern

### **Emergency**

Report an emergency involving a nuclear facility or radioactive materials, including:

- any accident involving a nuclear reactor, nuclear fuel facility, or radioactive materials
- lost or damaged radioactive materials
- any threat, theft, smuggling, vandalism, or terrorist activity involving a nuclear facility or radioactive materials

### Call the NRC's 24-Hour Headquarters Operations Center: 301-816-5100

We accept collect calls. We record all calls to this number.

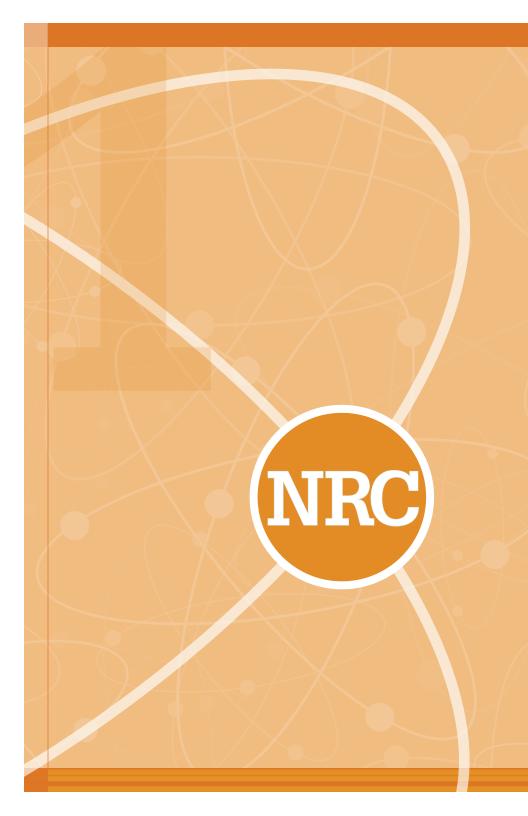
### Non-Emergency

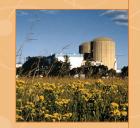
This includes any concern involving a nuclear reactor, nuclear fuel facility, or radioactive materials.

You may send an e-mail to allegations@nrc.gov. However, because e-mail transmission may not be completely secure, if you are concerned about protecting your identity, it is preferable that you contact us by telephone or in person. You may contact any NRC employee (including a resident inspector) or call:

# NRC's Toll-Free Safety Hotline: 800-695-7403

Calls to this number are not recorded between the hours of 7 a.m. and 5 p.m. Eastern Standard Time. However, calls received outside these hours are answered by the Incident Response Operations Center on a recorded line.


Some materials and activities are regulated by Agreement States, and concerns should be directed to the appropriate State radiation control program at https://scp.nrc.gov/allegations.html.


### The NRC's Office of the Inspector General

The Office of the Inspector General (OIG) at the NRC established the OIG Hotline to provide NRC employees, other government employees, licensee and utility employees, contractor employees, and the public with a confidential means of reporting incidences of suspicious activity to OIG concerning fraud, waste, abuse, and employee or management misconduct. Mismanagement of agency programs or danger to public health and safety may also be reported through the hotline.

It is not OIG policy to attempt to identify people contacting the OIG Hotline. People may contact OIG by telephone, through an online form, or by mail. There is no caller identification feature associated with the hotline or any other telephone line in the Inspector General's office. No identifying information is captured when you submit an online form. You may provide your name, address, or telephone number, if you wish.

Call the OIG Hotline: 1-800-233-3497, TDD: 1-800-270-2787 7 a.m.-4 p.m. (Eastern Standard Time) After hours, please leave a message.







# INRC An Independent Regulatory Agency

# NRC: An Independent Regulatory Agency

# Mission

The U.S. Nuclear Regulatory Commission (NRC) is an independent agency created by Congress. Its mission is to license and regulate the civilian use of radioactive materials in the United States to protect public health and safety, promote the common defense and security, and protect the environment.

The NRC regulates commercial nuclear power plants; research, test, and training reactors; nuclear fuel cycle facilities; and radioactive materials used in medicine, academia, and industry. The agency also regulates the transport, storage, and disposal of radioactive materials and waste; most Federal agencies' use and possession of radioactive materials; and the export and import of radioactive materials. The NRC regulates industries within the United States and works with agencies around the world to enhance global nuclear safety and security. To fulfill its responsibilities, the NRC performs five principal regulatory functions, as seen in Figure 1: How We Regulate.

### Vision and Values

A trusted, independent, transparent, and effective nuclear regulator

To be successful, the NRC must not only excel in carrying out its mission but must do so in a manner that engenders the trust of the public and stakeholders. This vision is an outgrowth of the NRC operating in a manner consistent with its longstanding Principles of Good Regulation—independence, openness, efficiency, clarity, and reliability—and its organizational values.

These principles guide the agency. They affect how the NRC reaches decisions on safety, security, and the environment; how the NRC performs administrative tasks; and how its employees interact with each other as well as external stakeholders. By adhering to these principles and values, the NRC maintains its regulatory competence, conveys that competence to the stakeholders, and promotes trust in the agency. The agency puts these principles into practice with effective, realistic, and timely actions.

### NRC Organizational Values

Integrity in our working relationships, practices, and decisions

Service to the public and others who are affected by our work

Openness in communications and decisionmaking

Commitment to public health and safety, security, and the environment

Cooperation in the planning, management, and performance of agency work

Excellence in our individual and collective actions

Respect for individuals' diversity, roles, beliefs, viewpoints, and work/life balance

### Figure 1. How We Regulate

**Regulations and Guidance**  Rulemaking • Guidance Development Generic Communications Standards Development **Support for Decisions** Licensing, Operational Decommissioning Research Activities Experience and Certification • Risk Assessment Events Assessment Licensing • Performance Assessment Generic Issues Decommissioning Advisory Committee Activities Certification Adjudication Oversight Inspection Assessment of Performance Enforcement Allegations Investigations Incident Response

- 1. Developing regulations and guidance for applicants and licensees.
- 2. Licensing or certifying applicants to use nuclear materials, operate nuclear facilities, and decommission facilities
- Inspecting and assessing licensee operations and facilities to ensure licensees comply with NRC requirements, responding to incidents, investigating allegations of wrongdoing, and taking appropriate followup or enforcement actions when necessary.
- 4. Evaluating operational experience of licensed facilities and activities.
- 5. Conducting research, holding hearings, and obtaining independent reviews to support regulatory decisions.



NRC staff members meet with stakeholders to discuss the agency's regulatory issues.

# NRC: An Independent Regulatory Agency

### Strategic Goals

**Safety:** Ensure the safe use of radioactive materials.

**Security:** Ensure the secure use of radioactive materials.

### **Statutory Authority**

The Energy Reorganization Act of 1974 created the NRC from a portion of the former Atomic Energy Commission. The new agency was to independently oversee—but not promote—the commercial nuclear industry so the United States could benefit from the use of radioactive materials while also protecting people and the environment. The agency began operations on January 18, 1975. The NRC's regulations can be found in Title 10, "Energy," of the *Code of Federal Regulations* (10 CFR). The principal statutory authorities that govern the NRC's work can be found on the NRC's Web site (see the Web Link Index for more information).

The NRC, its licensees (those licensed by the NRC to use radioactive materials), and the Agreement States (States that assume regulatory authority over certain nuclear materials) share responsibility for protecting public health and safety and the environment. Federal regulations and the NRC's regulatory program play a key role. Ultimately, however, the licensees bear the primary responsibility for safely handling and using radioactive materials.

# Major Activities

The NRC fulfills its responsibilities by:

- licensing the design, construction, operation, and decommissioning of commercial nuclear power plants and other nuclear facilities
- licensing the possession, use, processing, handling, exporting, and importing of nuclear materials
- licensing the siting, design, construction, operation, and closure of low-level radioactive waste (LLW) disposal sites in States under NRC jurisdiction
- certifying the design, construction, and operation of commercial transportation casks
- licensing the design, construction, and operation of spent fuel storage casks and interim storage facilities for spent fuel and high-level radioactive waste
- licensing nuclear reactor operators
- licensing uranium enrichment facilities

- conducting research to develop regulations and to anticipate potential reactor and other nuclear facility safety issues
- collecting, analyzing, and disseminating information about the safe operation of commercial nuclear power reactors and certain nonreactor activities
- issuing safety and security regulations, policies, goals, and orders that govern nuclear activities
- interacting with other Federal agencies, foreign governments, and international organizations on safety and security issues
- investigating nuclear incidents and allegations concerning any matter regulated by the NRC
- inspecting NRC licensees to ensure adequate performance of safety and security programs
- enforcing NRC regulations and the conditions of NRC licenses and imposing, when necessary, civil sanctions and penalties
- conducting public hearings on nuclear and radiological safety and security and on environmental concerns
- implementing international legal commitments made by the U.S. Government in treaties and conventions
- developing effective working relationships with State and Tribal governments
- maintaining an effective incident response program and overseeing required emergency response activities at NRC-licensed facilities

See the complete list of NRC's authorizing legislation in Appendix W.

- implementing lessons learned from the March 2011 nuclear accident in Japan to enhance safety at U.S. commercial nuclear facilities
- involving the public in the regulatory process through meetings, conferences, and workshops; providing opportunities for commenting on proposed new regulations, petitions, guidance documents, and technical reports; providing ways to report safety concerns; and providing documents under the Freedom of Information Act and through the NRC's Web site
- engaging and informing the public through social media platforms and by providing interactive, high-value data sets (data in a form that allows members of the public to search, filter, or repackage information)

# NRC: An Independent Regulatory Agency

# Organizations and Functions

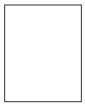
The NRC's Commission has five members nominated by the President and confirmed by the U.S. Senate for 5-year terms. The members' terms are staggered so one Commissioner's term expires on June 30 of each year. The President designates one member to serve as Chairman. The Chairman is the principal executive officer and spokesperson of the agency. No more than three Commissioners can belong to the same political party. The Commission as a whole formulates policies and regulations governing the safety and security of nuclear reactors and materials, issues orders to licensees, and adjudicates legal matters brought before it. The Executive Director for Operations carries out the policies and decisions of the Commission and directs the activities of the program and regional offices (see Figure 2: NRC Organizational Chart).

### **Commissioner Term Expiration\***



Stephen G. Burns Chairman June 30, 2019




Kristine L. Svinicki June 30, 2017



Jeff Baran June 30, 2018

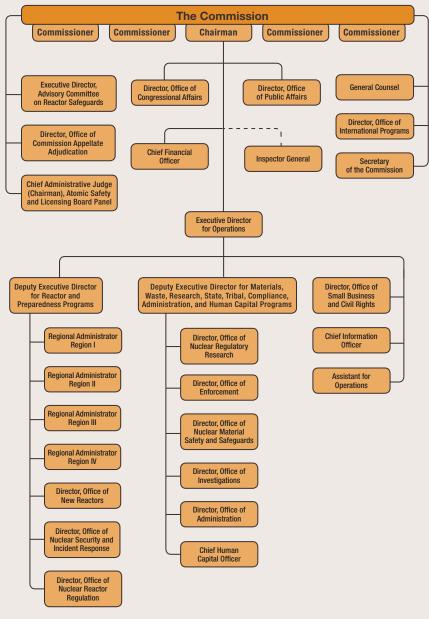


Vacant



Vacant

The NRC is headquartered in Rockville, MD, and has four regional offices. They are located in King of Prussia, PA; Atlanta, GA; Lisle, IL; and Arlington, TX. The major program offices within the NRC include:


The **Office of Nuclear Reactor Regulation** handles all licensing and inspection activities for existing nuclear power reactors and research and test reactors.

The **Office of New Reactors** oversees the design, siting, licensing, and construction of new commercial nuclear power reactors.

The **Office of Nuclear Regulatory Research** provides independent expertise and information for making timely regulatory judgments, anticipating potentially significant safety problems, and resolving safety issues. It helps develop technical regulations and standards, and collects, analyzes, and disseminates information about the safety of commercial nuclear power plants and certain nuclear materials activities.

<sup>\*</sup> Commissioners listed by seniority. There are two positions vacant.

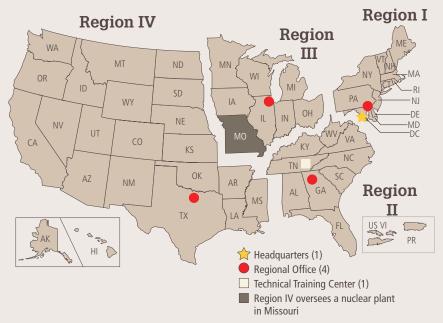
Figure 2. NRC Organizational Chart



Note: For the most recent information, go to NRC Organizational Chart at www.nrc.gov/about-nrc/organization.html

# NRC: An Independent Regulatory Agency

The **Office of Nuclear Material Safety and Safeguards** regulates the production of commercial nuclear fuel; uranium-recovery activities; decommissioning of nuclear facilities; and the use of radioactive materials in medical, industrial, academic, and commercial appplications. It regulates safe storage, transportation, and disposal of high- and low-level radioactive waste and spent nuclear fuel. The office also works with other Federal agencies, States, and Tribal and local governments on regulatory matters.


The **Office of Nuclear Security and Incident Response** initiates and oversees implementation of agency security policy for nuclear facilities and users of radioactive material and coordinates with other Federal agencies and international organizations on security issues. This office also maintains the NRC's emergency preparedness and incident response programs.

The **Regional Offices** conduct inspections and investigations, take enforcement actions (in coordination with the Office of Enforcement), and maintain emergency response programs for nuclear reactors, fuel facilities, and materials licensees. In addition, the regions carry out licensing for certain materials licensees (see Figure 3: NRC Regions).



The NRC headquarters complex is located in Rockville, MD.

Figure 3. NRC Regions



### **Nuclear Power Plants**

• Each regional office oversees the plants in its region—except for the Callaway plant in Missouri, which Region IV oversees.

### **Materials Licensees**

- Region I oversees licensees and Federal facilities located geographically in Region I and Region II.
- Region III oversees licensees and Federal facilities located geographically in Region III.
- Region IV oversees licensees and Federal facilities located geographically in Region IV.

### **Nuclear Fuel Processing Facilities**

- Region II oversees all the fuel processing facilities in all regions.
- Region II also handles all construction inspection activities for new nuclear power plants and fuel cycle facilities in all regions.

# NRC: An Independent Regulatory Agency

# Fiscal Year 2016 Budget

For fiscal year (FY) 2016 (October 1, 2015, through September 30, 2016), the NRC's budget is \$1,002.1 million. The NRC's FY 2016 full-time equivalents (FTE) are 3,595; this includes the Office of the Inspector General (see Figure 4: NRC Budget Authority, FYs 2006–2016). The Office of the Inspector General received its own appropriation of \$12.1 million. This amount is included in the total NRC budget.

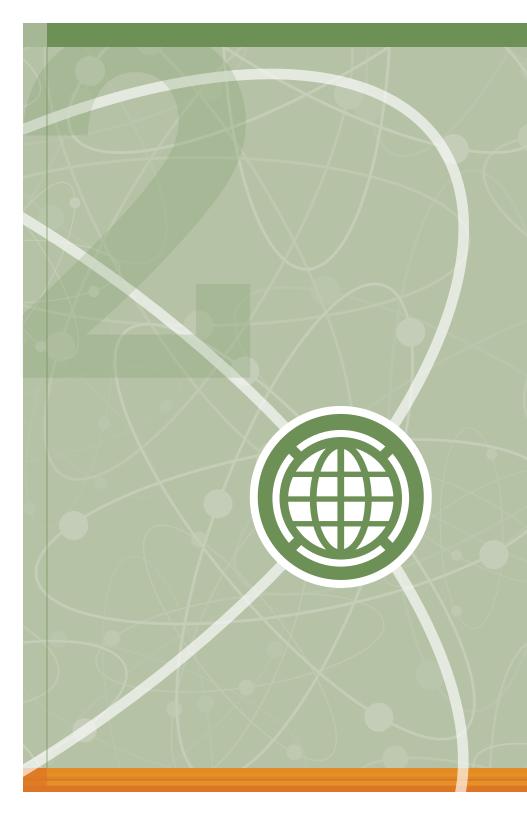

The breakdown of the budget is shown in Figure 5: NRC FY 2016 Distribution of Budget Authority; Recovery of NRC Budget. By law, the NRC must recover, through fees billed to licensees, approximately 90 percent of its budget authority, less the amounts appropriated from general funds for waste-incidental-to-reprocessing activities and generic homeland security activities. The NRC collects fees each year by September 30 and transfers them to the U.S. Treasury. Estimated fees to be recovered in FY 2016 are \$882.9 million.

Figure 4. NRC Budget Authority, FYs 2006-2016 1,067 1.056 1.054 1,046 1,038 1,015 1,002 986 926 825 742 3.992 3,961 3.953 3,931 3.848 3.815 3,779 3,707 3,434 06 09 10 12 13 07 08 16 **Budget Authority** Full-Time Equivalent (FTE) Dollars in Millions Note: Dollars are rounded to the nearest million.


Recovery of NRC Budget **Nuclear Reactor** Safety Program: 77% (\$772 Million) **Total Nuclear Materials and Budget:** Waste Safety Program: 22% (\$218 Million) \$1,002.1 Million **Inspector General:** 1% (\$12.1 Million) **Nuclear Reactor** Headquarters Safety Program: 2,509: 70% 77% (2,766 FTE) **Nuclear Materials and Total** Waste Safety Program: FTE: 21% (766 FTE) 3,595 **Inspector General:** 2% (63 FTE) Regions 1,086: 30% Reactor Fees: \$788.4 Million **Nuclear Materials** Recovery Fees: \$94.5 Million of Budget FY 2016: **Budget Not Recovered** \$1,002.1 By Fees: \$119.2 Million Million Estimated Fees To Be Recovered FY 2016: \$882.9 Million (90%)

Figure 5. NRC FY 2016 Distribution of Budget Authority;

Note: The NRC incorporates corporate and administrative costs proportionately within programs. Numbers are rounded. Budget for FY 2016.







Nuclear Energy in the U.S. and Worldwide

# Nuclear Energy in the U.S. and Worldwide

# Worldwide Electricity Generated by Commercial Nuclear Power

Nuclear technology was first developed in the 1940s initially for producing weapons, but President Dwight Eisenhower's Atoms for Peace program shifted the focus to power generation, scientific research, and the production of medical and industrial isotopes. Today, nuclear technology is global, and nuclear-generated power is a part of the worldwide energy portfolio.

As of June 2016, there were 445 operating reactors in 30 countries with a total installed capacity of 387,441 megawatts electric (MWe). In addition, two nuclear

power plants were in long-term shutdown and 64 were under construction. Based on preliminary data from 2015, France had the highest portion (76 percent) of total domestic energy generated by nuclear power. (Figure 6: Nuclear Share of Electricity Generated by Country).

See Appendix R for the number of nuclear power reactor units by nation and Appendix S for nuclear power reactor units by reactor type, worldwide.

Figure 6. Nuclear Share of Electricity Generated by Country



Note: The country's short-form name is used.

Source: IAEA, Power Reactor Information System database, as of May 2016

In addition to generating electricity, nuclear materials and technology are used worldwide for many other peaceful purposes, such as:

- Radioactive isotopes diagnose and treat medical conditions.
- Irradiation makes food safer and last longer and assists in making pest-resistant seed varieties with higher yields.
- Nuclear gauges maintain quality control in industry.
- Radioactive isotopes date objects and identify elements.

The NRC engages in international activities to exchange regulatory information related to the safe and secure civilian use of nuclear materials and technologies.

# International Activities

The NRC aims its international efforts to meet needs identified by the Commission. The Office of International Programs oversees the regulatory framework for licensing exports and imports of nuclear materials and equipment. It also facilitates cooperation and assistance programs for other countries. Many NRC international activities are required by U.S. law, including international conventions and treaties.

The NRC works with multinational organizations, such as the International Atomic Energy Agency (IAEA), and directly with regulators in other countries through research and cooperation agreements.

See Appendices X, Y, and Z for lists of international activities.

These activities allow the NRC to share and learn the best regulatory safety and security practices. Joint research projects also give the NRC access to research facilities not available in the United States.

# **Conventions and Treaties**

Several conventions and treaties address nuclear safety and security. All countries that ratify such conventions and treaties must take action to implement them. These international agreements help ensure high levels of safety and security are given proper attention. The Treaty on the Non-Proliferation of Nuclear Weapons is one of the most important treaties obligating the U.S. Government to cooperate with and provide assistance to other treaty parties that seek the benefits of peaceful uses of nuclear energy.

# Nuclear Energy in the U.S. and Worldwide

The NRC works with other U.S. agencies to implement conventions and treaties by establishing and enforcing rules, regulations, and policies that address the following issues:

- nuclear nonproliferation
- · export and import licensing
- safety
- international safeguards
- physical protection
- emergency notification and assistance
- spent fuel and waste management
- liability

The NRC participates in international meetings related to conventions, and at these meetings, the U.S. Government presents national reports detailing how the United States meets its obligations. Each report is peer reviewed by participating nations with the goal of encouraging all countries to enhance their regulatory programs.

# **Export and Import Licensing**

The NRC conducts reviews to license exports and imports of nuclear materials and equipment. The NRC must determine that such exports and imports will not undermine common defense

See Appendix Z for a web link to a list of export and import licenses.

and security and will not pose an unreasonable risk to U.S. public health and safety. The NRC's export and import regulations are found in 10 CFR Part 110, "Export and Import of Nuclear Equipment and Material." The NRC participates in meetings of the Nuclear Suppliers Group, and the Code of Conduct on the Safety and Security of Radioactive Sources (see the Web Link Index for the Code of Conduct) to ensure that U.S. export and import controls are appropriate.



Photo courtesy of IAEA

The NRC participates in the annual General Conference for the International Atomic Energy Agency in Vienna, Austria.

# **Bilateral Cooperation and Assistance**

The NRC has information-sharing agreements with other countries, including Taiwan, and the European Atomic Energy Community (see Appendix Y for the list of countries that have bilateral information exchange and cooperation agreements with the NRC).

### Cooperation

There are a wide range of programs that enhance the safety and security of peaceful nuclear activities worldwide. With countries that have mature nuclear power or radioactive materials programs, the NRC focuses on sharing information and best practices. With countries that have new programs, the NRC

See Appendix Y for a list of the NRC's participation with multilateral organizations and a list of countries with bilateral information exchange and cooperation agreements with the NRC.

focuses on helping develop and improve their regulatory activities.

Some of the benefits of consulting with other countries include:

- awareness of reactor construction activities that could apply to new reactors being built in the United States
- prompt notification to foreign partners of U.S. safety issues
- sharing safety and security information

The NRC's Advisory Committee on Reactor Safeguards (ACRS) also works with advisory committees in other countries. The ACRS exchanges information with these committees through annual working group meetings. It holds plenary meetings every 4 years.

### Assistance

The NRC offers training, workshops, and peer review of regulatory documents to assist other countries as they develop or enhance their national nuclear regulatory infrastructures and programs. The agency also supports and participates in regional working group meetings to exchange technical information among specialists. If asked, the NRC will respond directly to countries looking for help to improve their controls of radioactive material.

# Nuclear Energy in the U.S. and Worldwide

### Foreign Assignee Program

The NRC provides on-the-job training to foreign nationals at NRC Headquarters and the regional offices. The NRC's Foreign Assignee Program allows the NRC staff to exchange information with regulators from around the world. This helps both agencies better understand the other's regulatory programs, capabilities, and commitments. It also helps enhance the expertise of both foreign assignees and the NRC staff. The program also fosters relationships between the NRC and key officials in other countries.

# **Multilateral Cooperation and Assistance**

The NRC plays an active role in the different programs and committee work of global organizations. The agency works with multiple regulatory counterparts through the IAEA, the Organisation for Economic Co-operation and Development's Nuclear Energy Agency, and other multilateral organizations on issues related to:

- safety research
- radiation protection
- risk assessment
- emergency preparedness
- waste management
- transportation
- safeguards
- physical protection
- security
- standards development
- training
- · technical assistance
- communications

# **International Cooperative Research**

The NRC participates in international cooperative research programs to share U.S. operating experience and to learn from the experiences of other countries. The NRC also participates in international efforts to improve the security of radioactive materials and the management of radioactive wastes.

The NRC participates in cooperative research programs with many countries and Taiwan. This helps leverage access to foreign test facilities otherwise unavailable to the United States.



 $NRC\ Chairman\ Stephen\ Burns,\ representing\ U.S.\ Secretary\ of\ State\ John\ Kerry,\ attends\ the\ 2015\ Nuclear\ Non-Proliferation\ Treaty\ Review\ Conference\ in\ the\ Council\ Chamber\ of\ the\ United\ Nations\ in\ New\ York.$ 









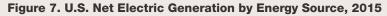
# U.S. Electricity Generated by Commercial Nuclear Power

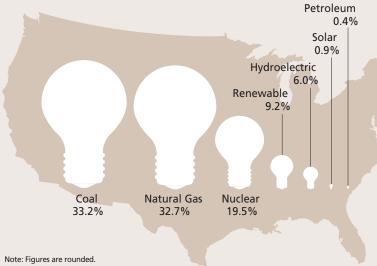
In 2015, NRC-licensed nuclear reactors generated about 19.5 percent of U.S. net electricity, or about 771 billion kilowatt-hours (see Figure 7: U.S. Net Electric Generation by Energy Source, 2015, and Figure 8: U.S. Net Electric Generation by Energy Source, 2005–2015).

Since the 1970s, the Nation's utilities have asked permission to generate more electricity from existing nuclear plants. The NRC regulates how much heat a commercial nuclear reactor may generate. This amount of heat, or power level, is used with other data in many analyses that demonstrate the safety of the nuclear power plant. This power level is included in the plant's license and technical specifications. The NRC must review any licensee's requested change to a license or technical specification, and the licensee may only make the change after the NRC approves it. Increasing a commercial nuclear power plant's maximum operational power level is called a power uprate.

The NRC has approved power uprates that have collectively added the equivalent of seven new reactors' worth of electrical generation to the power grid. The NRC expects a few more power uprate applications through 2017.

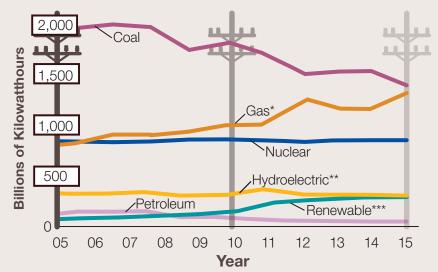



See Glossary for information on electric power grid.


According to the U.S. Energy Information Administration, in 2014, each of the following states generated more than 40 percent of their electricity from nuclear power: Conneticut, Illinois, New Hampshire, New Jersey, South Carolina, Vermont, and Virginia. The 2014 data cited reflect the percentages of the total net generation from nuclear sources in each of these States (see Figure 9: Net Electricity Generated in each State by Nuclear Power). As of June 2016, 30 of the 50 States generate electricity from nuclear power plants (Vermont's only nuclear plant shut down at the end of 2014).

# U.S. Commercial Nuclear Power Reactors

Power plants convert heat into electricity using steam. At nuclear power plants, the heat to make the steam is created when atoms split apart in a process called fission. When the process is repeated over and over, it is called a chain reaction. The heat from fission creates steam to turn a turbine. As the turbine spins, the generator turns and its magnetic field produces electricity.


Nuclear power plants are very complex. There are many buildings at the site and many different systems. Some of the systems work directly to make electricity. Some of the systems keep the plant working correctly and safely. All nuclear power plants have a containment structure with reinforced concrete about 1.2 meters thick that houses the reactor. To keep reactors performing efficiently, operators

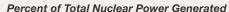


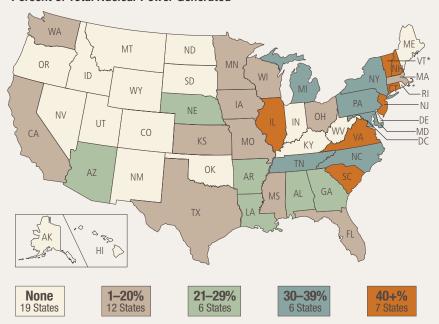


Source: DOE/EIA, May 2015, www.eia.doe.gov

Figure 8. U.S. Net Electric Generation by Energy Source, 2005–2015




<sup>\*</sup> Gas includes natural gas, blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuel.


Source: DOE/EIA, May 2015, www.eia.doe.gov

<sup>\*\*</sup> Hydroelectric includes conventional hydroelectric and hydroelectric pumped storage.

<sup>\*\*\*</sup> Renewable energy includes geothermal, wood and nonwood waste, wind, and solar energy.

Figure 9. Net Electricity Generated in Each State by Nuclear Power





### Total Nuclear Power Generated (in Megawatt-hours)

| Illinois     | 97,858 |
|--------------|--------|
| Pennsylvania | 78,715 |
| S. Carolina  | 52,419 |
| New York     | 43,039 |
| Alabama      | 41,244 |
| N. Carolina  | 40,967 |
| Texas        | 39,287 |
| Georgia      | 32,570 |
| Arizona      | 32,321 |
| New Jersey   | 31,507 |
| Virginia     | 30,221 |
| Michigan     | 31,246 |
| Florida      | 27,868 |
| Tennessee    | 27,670 |
| Louisiana    | 17,311 |
| California   | 16,986 |

| Ohio          | 16,284 |
|---------------|--------|
| Connecticut   | 15,841 |
| Arkansas      | 14,481 |
| Maryland      | 14,343 |
| Minnesota     | 12,707 |
| New Hampshire | 10,168 |
| Mississippi   | 10,151 |
| Nebraska      | 10,102 |
| Washington    | 9,497  |
| Wisconsin     | 9,447  |
| Missouri      | 9,276  |
| Kansas        | 8,558  |
| Massachusetts | 5,769  |
| Vermont*      | 5,061  |
| lowa          | 4,152  |

Note: \*Vermont's nuclear power plant, Vermont Yankee, shut down 12/28/2014 and no longer produces electricity. Source: DOE/EIA, "State Historical Electric Tables for 2014," data updated November 2015, www.eia.doe.gov.

remove about one-third or half of the fuel every year or two and replace it with fresh fuel. Used fuel is stored and cooled in deep pools onsite. The process of removing used fuel and adding fresh fuel is known as refueling.

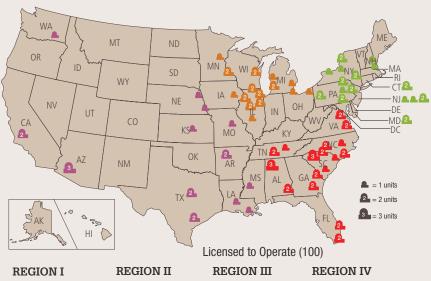
There are two types of commercial reactors in the United States. Pressurized-water reactors are known as PWRs. They keep water under pressure so it heats but does not boil. Water from the reactor and the water that is turned into steam are in separate pipes and never mix. In boiling-water reactors, or

See Appendix E for a list of parent companies of U.S. commercial operating nuclear power reactors, Appendix A for a list of reactors and their general licensing information, Appendix T for Native American Reservations and Trust lands near nuclear power plants, and Appendix K for radiation doses and regulatory limits.

BWRs, the water heated in the reactor actually boils and turns into steam to turn the generator. In both types of plants, the steam is turned back into water and can be used again in the process.

The NRC regulates commercial nuclear power plants that generate electricity. There are several operating companies and vendors and many different types of reactor designs. Of these designs, only pressurized-water reactors and boiling-water reactors are currently in commercial operation in the United States. Although commercial U.S. reactors have many similarities, each one is considered unique (see Figure 10: U.S. Operating Commercial Nuclear Power Reactors).




See Glossary for typical PWR and BWR design illustrations.

# **Resident Inspectors**

Since the late 1970s, the NRC has maintained its own sets of eyes and ears at the Nation's nuclear power plants. These onsite NRC staff are referred to as resident inspectors. Each plant has at least two such inspectors, and their work is at the core of the agency's reactor inspection program. On a daily basis, these highly trained and qualified professionals scrutinize activities at the plants and verify adherence to Federal safety requirements. Oversight includes inspectors visiting the control room and reviewing operator logbook entries, visually assessing areas of the plant, observing tests of (or repairs to) important systems or components, interacting with plant employees to see if they have any safety concerns, or checking corrective action documents to ensure that problems have been identified and appropriate fixes implemented.

Resident inspectors promptly notify plant operators of any safety-significant issues the inspectors find so they are corrected, if necessary, and communicated to NRC management. If problems are significant enough, the NRC will consider whether enforcement action is warranted. More information about the NRC's Reactor Oversight Process and the resident inspector program is available on the agency's Web site (see Figure 11: Day in the Life of an NRC Resident Inspector).

Figure 10. U.S. Operating Commercial Nuclear Power Reactors



### CONNECTICUT

Millstone 2 and 3

### MARYLAND

Calvert Cliffs 1 and 2

### MASSACHUSETTS

Pilgrim

### **NEW HAMPSHIRE**

### Seabrook

### **NEW JERSEY**

- Hope Creek Oyster Creek
- Salem 1 and 2

### NEW YORK FitzPatrick

- Ginna
- Indian Point 2 and 3
- Nine Mile Point 1
- and 2 PENNSYI VANIA

### Beaver Valley 1 and 2

- Limerick 1 and 2 Peach Bottom 2 and 3.
- Susquehanna 1 and 2
- Three Mile Island 1

### ALABAMA Browns Ferry 1, 2,

and 3

### Farley 1 and 2

- FLORIDA
- St. Lucie 1 and 2

Turkey Point 3 and 4

### **GEORGIA** Edwin I. Hatch 1

- and 2 Vogtle 1 and 2
- NORTH CAROLINA

### Brunswick 1 and 2

- McGuire 1 and 2
- Harris 1

### SOUTH CAROLINA Catawba 1 and 2

- Oconee 1, 2, and 3
- Robinson 2
- Summer

### TENNESSEE Seguovah 1 and 2

- Watts Bar 1 and 2\*

### VIRGINIA

- North Anna 1 and 2 Surry 1 and 2

### ILLINOIS

- Braidwood 1 and 2
- Byron 1 and 2
- Clinton
- Dresden 2 and 3
- LaSalle 1 and 2

### Quad Cities 1 and 2 IOWA

Duane Arnold MICHIGAN

### Cook 1 and 2

- Fermi 2
- Palisades

### MINNESOTA Monticello

- Prairie Island 1 and 2

- Davis-Besse
- Perry

Point Beach 1 and 2

### ARKANSAS

### Arkansas Nuclear 1 and 2

## ARIZONA

Palo Verde 1, 2, and 3

# CALIFORNIA

Diablo Canyon 1 and 2 KANSAS

### Molf Creek 1

LOUISIANA

### River Bend 1

- Waterford 3

### MISSISSIPPI

### Grand Gulf

### MISSOLIRI

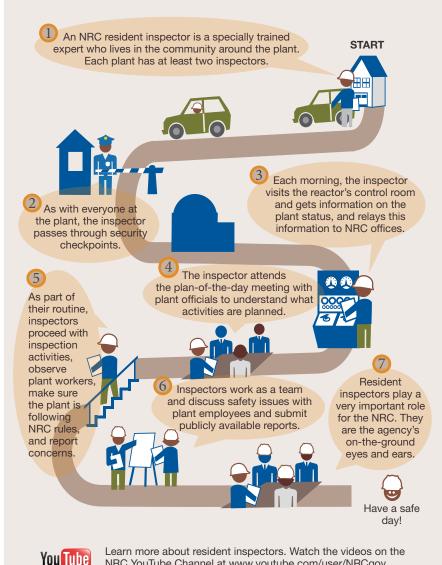
### Callaway

### NEBRASKA

- Cooper
- Fort Calhoun

# TFXAS

- Comanche Peak 1 and 2
- South Texas Project 1 and 2


### WASHINGTON

Columbia

Note: NRC-abbreviated reactor names listed. Data is as of July 2016. For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/

<sup>\*</sup> Watts Bar Unit 2 is currently performing startup testing, anticipated to begin commercial operation Fall 2016.

Figure 11. Day in the Life of an NRC Resident Inspector



NRC YouTube Channel at www.youtube.com/user/NRCgov.

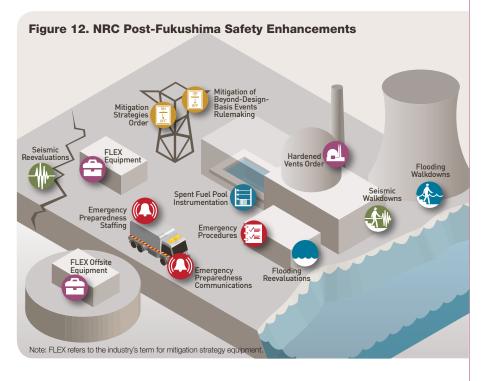
27

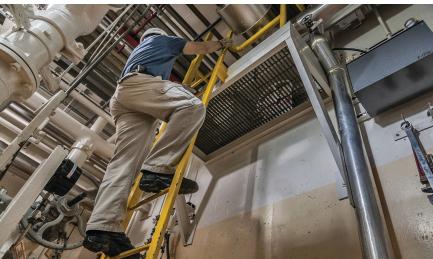
### Post-Fukushima Dai-ichi Nuclear Accident

On March 11, 2011, a 9.0-magnitude earthquake struck off the coast of Japan and created a 45-foot tsunami. The reactors at the Fukushima Dai-ichi facility survived the earthquake but were damaged by the tsunami that arrived almost an hour later. Without power from the grid and with the tsunami knocking out back-up power, one of the plants suffered catastrophic failures.

The NRC sent experts to Japan in the days and weeks after the accident, and other agency staff reviewed the lessons from the accident. The review concluded that U.S. plants can operate safely while NRC actions, based on those lessons, enhance safety at U.S. commercial nuclear power plants. At the front lines of this effort were the agency's resident inspectors and regional staff. They have inspected and monitored U.S. reactors as the plants work on these enhancements. This work will continue to ensure plants have the required resources, plans, and training (see Figure 12: NRC Post-Fukushima Safety Enhancements and the Web Link Index).

# Principal Licensing, Inspection, and Enforcement Activities


The NRC's commercial reactor licensing and inspection activities include:


- reviewing separate license change requests from power reactor licensees
- · performing inspection-related activities at each operating reactor site
- ensuring the qualifications of NRC-licensed reactor operators, who must requalify every 2 years and ask the NRC to renew their license every 6 years
- reviewing applications for proposed new reactors
- inspecting construction activities
- reviewing operating experience items each year and distributing lessons learned that could help licensed facilities operate more effectively
- issuing notices of violation, civil penalties, or orders to operating reactors for significant violations of NBC regulations regarding public has

NRC regulations regarding public health and safety

- investigating allegations of inadequacy or impropriety associated with NRC-regulated activities
- incorporating independent advice from the ACRS, which holds both full committee meetings and subcommittee meetings during each year to examine potential safety issues for existing or proposed reactors

See Appendix C for a list of reactors undergoing decommissioning and permanently shut down and Appendix V for a list of significant enforcement actions.





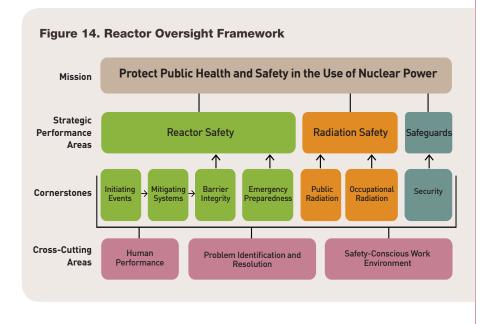
An NRC inspector conducts routine inspections of plant equipment to ensure the plant is meeting NRC regulations.

# Oversight of U.S. Commercial Nuclear Power Reactors

The NRC establishes requirements for the design, construction, operation, and security of U.S. commercial nuclear power plants. The agency ensures the plants operate safely and securely within these requirements by licensing the plants to operate, licensing control room personnel, establishing technical specifications for operating each plant, and inspecting plants daily.

# **Reactor Oversight Process**

The NRC's Reactor Oversight Process (ROP) verifies that U.S. reactors are operating in accordance with NRC rules, regulations, and license requirements. If reactor performance declines, the NRC increases its oversight to protect public health and the environment. This can range from conducting additional inspections to shutting a reactor down.


The NRC staff uses the ROP to evaluate NRC inspection findings and performance records for each reactor and uses this information to assess the reactor's safety performance and security measures.

See Appendix H for a list of industry performance indicator averages by year.

Every 3 months, through the ROP, the NRC places each reactor in one of five categories. The top category is "fully meeting all safety cornerstone objectives," while the bottom is "unacceptable performance" (see Figure 13: Reactor Oversight Action Matrix Performance Indicators). NRC inspections start with detailed baseline-level activities for every reactor. As the number of issues at a reactor increases, the NRC's inspections increase. The agency's supplemental inspections and other actions (if needed) ensure licensees promptly address significant performance issues. The latest reactor-specific inspection findings and historical performance information can be found on the NRC's Web site (see the Web Link Index).

The ROP is informed by 30 years of improvements in nuclear industry performance. The process continues to improve approaches to inspecting and evaluating the safety and security performance of NRC-licensed nuclear plants. More ROP information is available on the NRC's Web site and in NUREG-1649, Revision 5, "Reactor Oversight Process," issued February 2014 (see Figure 14: Reactor Oversight Framework). In addition to evaluating individual plant performance, the NRC compiles data on overall nuclear industry performance using industry-level statistics.





# Reactor License Renewal

The Atomic Energy Act of 1954 (as amended) authorizes the NRC to issue 40-year initial licenses for commercial power reactors. The Act also allows the NRC to renew licenses. Under the NRC's current regulations, the agency can renew reactor licenses for 20 years at a time. Congress set the original 40-year term after considering economic and antitrust issues, as opposed to nuclear technology issues. Some parts of a reactor, however, may have been engineered based on an expected 40-year service life. These parts must be maintained and monitored during the additional period of operation, and licensees may choose to replace some components (see Figure 15: License Renewals Granted for Operating Nuclear Power Reactors).

For current reactors grouped by how long they have operated (see Figure 16: U.S. Commercial Nuclear Power Reactors — Years of Operation by the End of 2016).

See Appendices F and G for power reactor operating licenses issued and expired by year.

Nuclear power plant owners typically seek license renewal based on a plant's economic situation and on whether it can continue to meet NRC requirements in the future.

The NRC's license renewal reviews determine whether a plant can continue to operate safely beyond its current license period. The NRC reviews renewal applications for both safety issues and environmental impacts (see Figure 17: License Renewal Process). A plant owner must evaluate how the plant will address the aging of plant systems not already covered by NRC inspection and maintenance rules.

The plant owner must also report on the potential environmental impacts if the plant operates for up to an additional 20 years. The regulations are contained in 10 CFR Part 54, "Requirements for Renewal of Operating Licenses for Nuclear Power Plants," while the NRC's environmental review requirements for license renewal are found in 10 CFR Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions." If the NRC concludes extended operation will be safe, the staff verifies that safety evaluation through onsite inspections as the plant continues to operate.

The NRC considered the environmental impacts of the continued storage of spent nuclear fuel during rulemaking activities and published its final Continued Storage Rule and supporting generic environmental impact statement in 2014. The rule addresses the environmental impacts of the continued storage of spent nuclear fuel beyond a reactor's licensed operating life before ultimate disposal (previously referred to as "waste confidence"). The environmental impacts of continued storage of spent nuclear fuel are incorporated into each environmental review for license renewal.

Figure 15. License Renewals Granted for Operating Nuclear Power Reactors

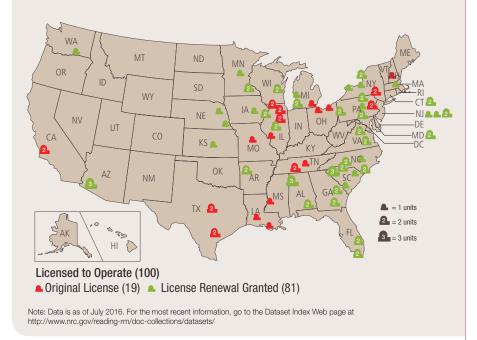
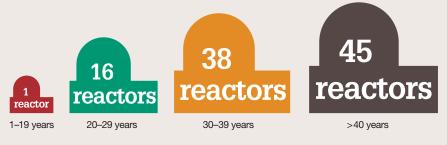
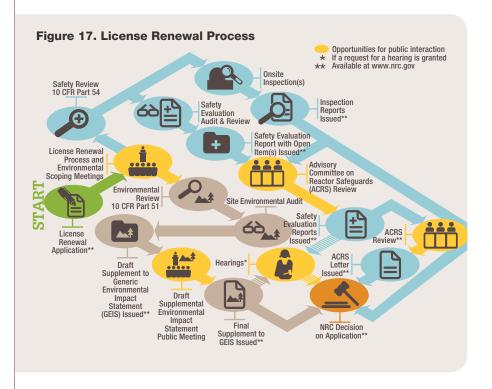





Figure 16. U.S. Commercial Nuclear Power Reactors—Years of Operation by the End of 2016



Note: Ages have been rounded up to the end of the year. For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/



## **Public Involvement**

The public plays an important role in the license renewal process. Members of the public have several opportunities to contribute to the environmental review. They can also discuss how aging will be managed if a plant operates beyond 40 years. The NRC shares information provided by the applicant and holds public meetings. The agency fully and publicly documents the results of its technical and environmental reviews. In addition, ACRS public meetings often discuss technical or safety issues related to reactor designs or a particular plant or site. Individuals or groups can raise legal arguments against a license renewal application in an Atomic Safety and Licensing Board (ASLB) hearing if they would be affected by the renewal and meet basic requirements for requesting a hearing. (For more information, see the Web Link Index.)

# Research and Test Reactors

Nuclear research and test reactors (RTRs) support science and education in nuclear engineering, physics, chemistry, biology, anthropology, medicine, materials sciences, and related fields. These reactors do not produce electricity. Most U.S. research and test reactors are at universities or colleges.

The largest U.S. RTR (which produces 20 megawatts thermal [MWt]) is one-75th the size of the smallest U.S. commercial power nuclear reactor (which produces 1,500 MWt). The NRC regulates currently operating research and test reactors (see Figure 18: Size Comparison of Commercial and Research Reactors and Figure 19: U.S. Nuclear Research and Test Reactors). The U.S. Department of Energy uses research reactors, but they are not regulated by the NRC.

NRC inspectors visit each RTR facility at least once a year to conduct varying levels of oversight. RTRs licensed to produce 2 MWt or more receive a full NRC inspection every year. Those licensed to produce less than 2 MWt receive a full inspection every 2 years.

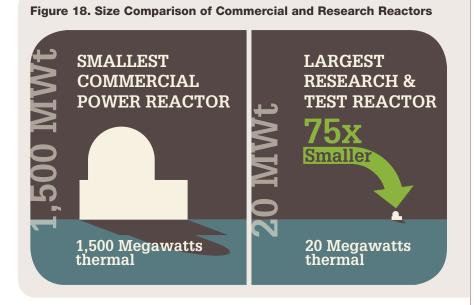
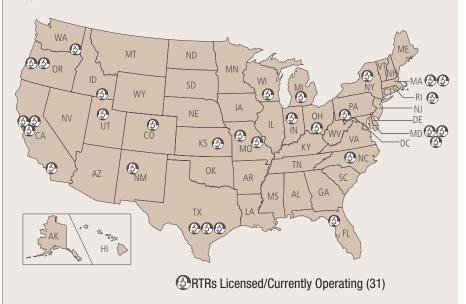




Figure 19. U.S. Nuclear Research and Test Reactors



Note: For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/

# **Principal Licensing and Inspection Activities**

The NRC's RTR licensing and inspection activities include:

- licensing the operating sites, including license renewals and license amendments
- overseeing decommissioning
- licensing operators
- overseeing operator relicensing programs
- overseeing security programs
- conducting inspections each year, based on inspection frequency and procedures for operating RTRs

See Appendices I and J for a list of research and test reactors regulated by the NRC that are operating or are in the process of decommissioning.

# New Commercial Nonpower Production and Utilization Facility Licensing

Doctors worldwide rely on a steady supply of molybdenum-99 (Mo-99), which is used in approximately 50,000 medical diagnostic procedures daily in the United States. The NRC supports the national policy objective of establishing a reliable, domestically available supply of this medical radioisotope by reviewing license applications for Mo-99 production facilities submitted in accordance with the provisions of Title 10 of the *Code of Federal Regulations*. Since 2013, the NRC staff has received two construction permit applications for nonpower production and utilization facilities from SHINE Medical Technologies, Inc. (SHINE) and Northwest Medical Isotopes, LLC. The proposed facilities would irradiate low-enriched uranium targets in utilization facilities, such as SHINE's proposed accelerator-driven subcritical operating assemblies, then separate Mo-99 from other fission products in hot cells contained within a production facility. The NRC approved the construction permit for SHINE in early 2016.

The NRC staff conducts safety and environmental reviews on these construction permit applications, which will also be the subject of both a mandatory hearing and an independent review by the Advisory Committee on Reactor Safeguards. If the NRC issues these construction permits, each facility must also submit an application for, and be granted, an operating license.

The NRC anticipates receiving additional construction permit applications, operating license applications, materials license applications, and license amendment requests in the coming years from other potential Mo-99 producers.

Ahead of the issuance of any permit or license, the NRC continues to develop necessary infrastructure programs for these facilities, including inspection procedures for construction and operation. The agency provides updates on the status of these licensing reviews through NRC-hosted public meetings, Commission meetings, and interactions with the White House Office of Science and Technology Policy Mo-99 Interagency Working Group.



A supply of molybdenum-99 (Mo-99), which is used in medical diagnostic procedures.

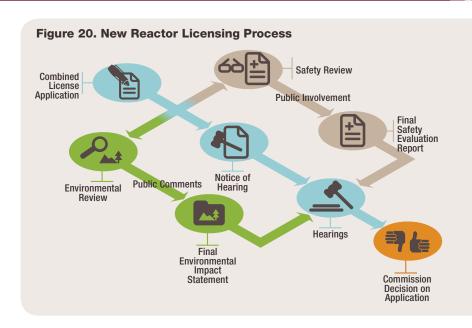
# New Commercial Nuclear Power Reactor Licensing

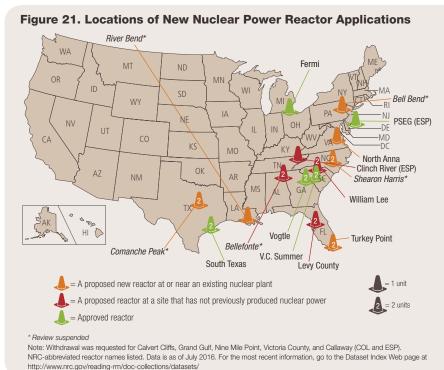
New reactors are often considered to be any reactors proposed in addition to the current fleet of operating reactors.

The NRC's current review of new power reactor license applications improves on the process used through the 1990s (see Figure 20: New Reactor Licensing

See Appendix B for a list of new nuclear power plant license applications in the United States.

Process). In 2012, the NRC issued the first combined construction permit and operating license (called a combined license or COL) under the new licensing process. The NRC continues to review applications submitted by prospective licensees, and (when appropriate) issues standard design certifications, early site permits (ESPs), limited work authorizations, construction permits, operating licenses, and combined licenses for facilities in a variety of projected locations throughout the United States. The NRC has implemented the Commission's policies on new reactor safety through rules, guidance, staff reviews, and inspection.





See Glossary for typical PWR and BWR design Illustrations.

The NRC's ongoing design certification, COL, and early site permit (ESP) reviews are incorporating lessons learned from the Fukushima accident. The environmental impacts of continued storage of spent nuclear fuel are incorporated into each environmental review for new reactor licensing. The NRC considered these impacts in a rulemaking and published its final Continued Storage Rule and supporting generic environmental impact statement in September 2014. The Continued Storage Rule is discussed in more detail in Section 5.

# Combined License Applications—Construction and Operating

By issuing a combined license, the NRC authorizes the licensee to construct and (with specified conditions) operate a nuclear power plant at a specific site, in accordance with established laws and regulations. A COL's operating license portion is valid for 40 years from the date the Commission finds the acceptance criteria in the combined license are met. A COL can be renewed for additional 20-year terms (see Figure 21: Locations of New Nuclear Power Reactor Applications). For the current review schedule for the active licensing applications, consult the NRC's Web site (see the Web Link Index).





### **Public Involvement**

Even before the NRC receives an application, the agency holds a public meeting to talk to the community near the proposed reactor location. The agency explains the review process and outlines how the public may participate in the process. After the application is submitted, the NRC asks the public to comment on which factors should be considered in the agency's environmental review conducted under the National Environmental Policy Act. The NRC later posts a draft environmental evaluation on the agency's Web site and asks for public input. There is no formal opportunity for public comment on the staff's safety evaluation, but members of the public are welcome to attend public meetings and make comments. Individuals or groups can raise legal arguments against a new reactor application in an ASLB hearing if they would be affected by the new reactor and meet basic requirements for requesting a hearing. The NRC announces opportunities to request these hearings in press releases, in the Federal Register, and on the NRC's Web site.

# **Early Site Permits**

An ESP review examines whether a piece of land is suitable for a nuclear power plant. The review covers site safety, environmental protection, and emergency preparedness. The ACRS reviews safety-related portions of an ESP application. As with COL reviews, the public participates in the environmental portion of the NRC's ESP review, and the public can challenge an application in a hearing.

# **Design Certifications**

The NRC issues certifications for reactor designs that meet basic requirements for ensuring safe operation. Utilities can cite a certified design when applying for a nuclear power plant COL. The certification is valid for 15 years from the date issued and can be renewed for an additional 15 years. The new reactor designs under review incorporate new elements such as passive safety systems and simplified system designs. The five certified designs are:

- General Electric Nuclear Energy's Advanced Boiling-Water Reactor (ABWR)
- Westinghouse Electric Company's System 80+
- Westinghouse Electric Company's AP600
- Westinghouse Electric Company's AP1000
- General Electric-Hitachi Nuclear Energy's (GEH's) Economic Simplified Boiling-Water Reactor

The NRC is reviewing two applications for design certifications for the APR1400 and U.S. Advanced Pressurized-Water Reactor (US-APWR) designs.

# **Design Certification Renewals**

The NRC is reviewing an application from General Electric-Hitachi (GEH) to renew the ABWR design certification. GEH submitted its application in 2010.

# **Advanced Reactor Designs**

Several companies are considering advanced reactor designs and technologies and are conducting preapplication activities with the NRC. These technologies include light-water reactors a fraction of the size of today's designs. Other potential reactor designs are cooled by liquid metals or high-temperature gas. The NRC's advanced reactor efforts will ensure the agency has the resources and expertise to address these new technologies. While developing the regulatory framework for advanced reactor licensing, the NRC is also examining policy issues in areas such as security and emergency preparedness.

# **New Reactor Construction Inspections**

NRC inspectors based in the agency's Region II office in Atlanta, GA, monitor reactor-construction activity. These expert staff members ensure licensees carry out construction according to NRC license specifications and related regulations.

The NRC staff examines the licensee's operational programs in areas such as security, radiation protection, and operator training and qualification. Inspections at a construction site verify a licensee has completed required inspections, tests, and analyses, and met associated acceptance criteria. The NRC's onsite resident construction inspectors oversee day-to-day licensee and contractor activities. In addition, specialists at NRC Region II's Center for Construction Inspection periodically visit the sites to ensure the facilities are being constructed using the approved design.

The NRC's Construction Reactor Oversight Process assesses all of these activities. Before the agency will allow a new reactor to start up, NRC inspectors must confirm the licensee has met all of the acceptance criteria in its COL.

The agency also inspects domestic and overseas factories and other vendor facilities. This ensures new U.S. reactors receive high-quality products and services that meet the NRC's regulatory requirements. The NRC's Web site has more information on new reactor licensing activities (see the Web Link Index).

# Nuclear Regulatory Research

The NRC's research supports the agency's mission by providing technical advice, tools, methods, data, and information. This research can identify, explore, and resolve safety issues, as well as provide information supporting licensing decisions and new regulations and guidance. The NRC's research includes:

- independently confirming other parties' work through experiments and analyses
- · developing technical support for agency safety decisions
- preparing for the future by evaluating the safety implications of new technologies and designs for nuclear reactors, materials, waste, and security

The research program focuses on the challenges of an evolving industry, as well as on retaining technical skills when experienced staff members retire. The NRC's research covers the light-water reactor technology developed in the 1960s and 1970s, today's advanced light-water reactor designs, and fuel cycle facilities. The agency has longer-term research plans for more exotic reactor concepts, such as those cooled by high-temperature gases or liquid metals. The NRC's research programs examine a broad range of subjects, such as:

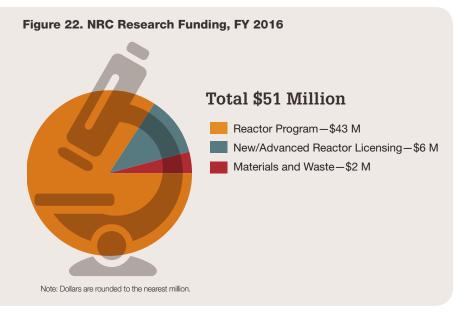
- material performance (such as environmentally assisted degradation and cracking
  of metallic alloys, aging management of reactor components and materials,
  boric-acid corrosion, radiation effects on concrete, alkali-silica reaction in
  concretes, the use of high-density polyethylene material for buried piping, and
  embrittlement of reactor pressure vessel steels)
- events disrupting heat transfer from a reactor core, criticality safety, severe reactor accidents, how radioactive material moves through the environment, and how that material could affect human health (sometimes using NRC-developed computer codes for realistic simulations)
- computer codes used to analyze fire conditions in nuclear facilities, to examine how reactor fuel performs, and to assess nuclear power plant risk
- new and evolving technologies (such as the performance of mixed uranium plutonium, computerized instrumentation and control, and safety-critical software)
- experience gained from operating reactors
- digital instrumentation and controls (such as analyzing digital system components, security aspects of digital systems, and probabilistic assessment of digital system performance)
- enhanced risk-assessment methods, tools, and models to support the increased use of probabilistic risk assessment in regulatory applications
- earthquake and flooding hazards
- equipment performance under extreme conditions (e.g., heat, radiation, or humidity)

- ultrasonic testing (UT) and other nondestructive means of inspecting reactor components and dry cask storage systems and developing and accessing UT simulation tools to optimize examination procedure variables
- the human side of reactor operations, including safety culture, and computerization and automation of control rooms

See Appendix U for a list of the NRC's cooperative research agreements.

The Office of Nuclear Regulatory Research also plans, develops, and manages research on fire safety and risk, including modeling, and evaluates potential security vulnerabilities and possible solutions (see the Web Link Index for more information on specific NRC research projects and activities).

The NRC's research program involves about 6 percent of the agency's personnel and uses about 14 percent of its contracting funds. The NRC's \$51 million research budget for (FY) 2016 includes contracts with national laboratories, universities, research organizations, and other Federal agencies (e.g., the National Institute of Standards and Technology, the U.S. Army Corps of Engineers, and the U.S. Geological Survey). NRC research funds support access to a broader group of experts and international research facilities. Figure 22: NRC Research Funding, FY 2016, illustrates the primary areas of research.

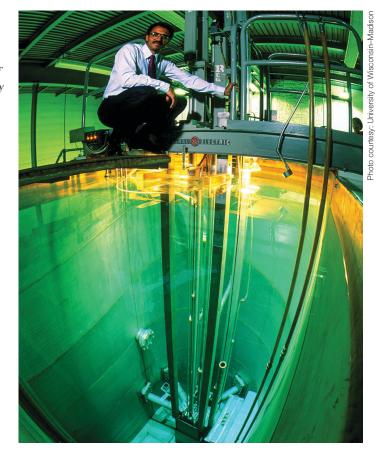



Universities and other academic institutions use nuclear materials in laboratory experiments while conducting research.

The majority of the NRC's research program supports maintaining operating reactor safety and security. The remaining research budget supports regulatory activities for new and advanced reactors, industrial and medical use of nuclear materials, and nuclear fuel cycle and radioactive waste programs. The NRC cooperates with universities and nonprofit organizations on research for the agency's specific interests.

The NRC's international cooperation in research areas leverages agency resources, facilitates work on advancing existing technologies, and determines any safety implications of new technologies. The NRC's leadership role in international organizations such as the International Atomic Energy Agency and the Nuclear Energy Agency helps guide the agency's collaborations.

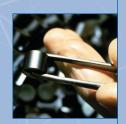
The NRC maintains international cooperative research agreements with more than two dozen foreign governments. This work covers technical areas from severe accident research and computer code development to materials degradation, nondestructive examination, fire risk, and human-factors research. Cooperation under these agreements is more efficient than conducting research independently.




44



Universities
and other
academic
institutions
use nuclear
materials in
laboratory
experiments
while
conducting
health physicsrelated
research.


Professor
Douglass
Henderson of
the University
of WisconsinMadison
standing
above the
pool of the
University's
TRIGA
research
reactor.







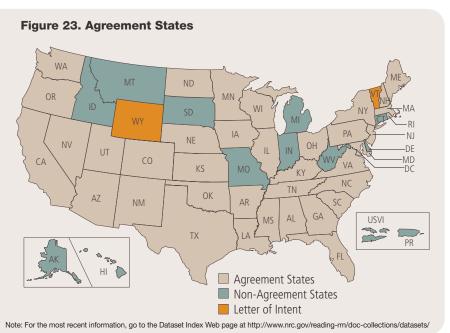




# Nuclear Materials

# NUCLEAR MATERIALS

The NRC regulates each phase of the nuclear fuel cycle—the steps needed to turn uranium ore into fuel for nuclear power plants—as well as storing and disposing of the fuel after it is used in a reactor. In some States, the NRC also regulates nuclear materials used for medical, industrial, and academic purposes. Our work includes reviewing applications for and issuing new licenses, license renewals, and amendments to existing licenses. The NRC also regularly


conducts health, safety, and security inspections.

See Appendix L for a list of the number of materials licenses by State.

# Materials Licenses

States have the option to regulate certain radioactive materials under agreements with the NRC. We call those that do Agreement States (see Figure 23: Agreement States). These States develop regulations and appoint officials to ensure nuclear materials are used safely and securely. Agreement States must adopt rules consistent with the NRC's. Only the NRC regulates nuclear reactors, fuel fabrication facilities, consumer product distribution, and certain amounts of what is called "special nuclear material"—that is, radioactive material that can fission or split apart.

Radioactive materials, or radionuclides, are used for many purposes. They are used in civilian and military industrial applications; basic and applied research; manufacture of consumer products; academic studies; and medical diagnosis, treatment, and research. They can be produced in a reactor or an accelerator—a machine that propels charged particles. The NRC does not regulate accelerators but does license the use of radioactive materials produced in accelerators.



# Medical and Academic

The NRC and Agreement States review the facilities, personnel, program controls, and equipment involved in using radioactive materials in medical and academic settings. These reviews ensure the safety of the public, patients, and workers who might be exposed to radiation from those materials. The NRC regulates only the use of radioactive material, which is why the NRC does not regulate x-ray machines or other devices that produce radiation without using radioactive materials.

### Medical

The NRC and Agreement States license hospitals and physicians to use radioactive materials in medical treatments and diagnoses. The NRC also develops guidance and regulations for licensees. These regulations require licensees to have experience and special training, focusing on operating equipment safely, controlling the radioactive material, and keeping accurate records. To help the NRC stay current, the agency sponsors an Advisory Committee on the Medical Uses of Isotopes. This expert committee includes scientists, physicians, and other health care professionals who have experience with medical radionuclides.

### **Nuclear Medicine**

Doctors use radioactive materials to diagnose or treat about one-third of all patients admitted to hospitals. This branch of medicine is known as nuclear medicine, and the radioactive materials are called radiopharmaceuticals.

Two types of radiopharmaceutical tests can diagnose medical problems. In vivo tests (within the living) administer radiopharmaceuticals directly to patients. In vitro tests (within the glass) add radioactive materials to lab samples taken from patients.





Samples from two manufacturers of yttrium-90 (Y-90), SIR-Spheres<sup>®</sup> (left) TheraSpheres<sup>®</sup> (right). Vial containing millions of Y-90 microspheres used to treat liver cancers.

# Nuclear Materials

### Radiation Therapy

Doctors also use radioactive materials and radiation-producing devices to treat medical conditions. They can treat hyperthyroidism and some cancers, for example, and can also ease the pain caused by bone cancer. Radiation therapy aims to deliver an accurate radiation dose to a target site while protecting surrounding healthy tissue. To be most effective, treatments often require several exposures over a period of time. When used to treat malignant cancers, radiation therapy is often combined with surgery or chemotherapy.

There are three main categories of radiation therapy:

- 1. External beam therapy (also called teletherapy) is a beam of radiation directed to the target tissue. Several different types of machines are used in external beam therapy. Treatment machines regulated by the NRC contain high-activity radioactive sources (usually cobalt-60) that emit photons to treat the target site.
- **2.** Brachytherapy treatments use sealed radioactive sources placed near or even directly in cancerous tissue. The radiation dose is delivered at a distance of up to an inch (up to 2.54 centimeters) from the target area.
- 3. Therapeutic radiopharmaceuticals deliver a large radiation dose inside the body. Different radioactive materials can be given to patients and will concentrate in different regions or organ systems.

## **Academic**

The NRC issues licenses to academic institutions for education and research. For example, qualified instructors may use radioactive materials in classroom demonstrations. Scientists in many disciplines use radioactive materials for laboratory research.

# Industrial

The NRC and Agreement States issue licenses that specify the type, quantity, and location of radioactive materials to be used. Radionuclides can be used in industrial radiography, gauges, well logging, and manufacturing. Radiography uses radiation sources to find structural defects in metal and welds. Gas chromatography uses low-energy radiation sources to identify the chemical elements in an unknown substance. This process can determine the components of complex mixtures, such as petroleum products, smog, and cigarette smoke. (It can also be used in biological and medical research to identify the parts that make up complex proteins and enzymes.) Well-logging devices use radioactive sources and detection equipment to make a record of geological formations from inside a well. This process is used extensively for oil, gas, coal, and mineral exploration.

#### **Nuclear Gauges**

Nuclear gauges are used to measure the physical properties of products and industrial processes nondestructively as a part of quality control. Gauges use radiation sources to determine the thickness of paper products, fluid levels in oil and chemical tanks, and the moisture and density of soils and material at construction sites. Gauges may be fixed or portable.



See Glossary for illustrations of fixed and portable gauges.

The radiation measurement indicates the thickness, density, moisture content, or some other property that is displayed on a gauge readout or on a computer monitor. The top of the gauge has shielding to protect the operator while the radioactive source is exposed. When the measuring process is completed, the source is retracted or a shutter closes, minimizing exposure from the source. A fixed gauge has a radioactive source shielded in a container. When the user opens the container's shutter, a beam of radiation hits the material or product being processed or controlled. A detector mounted opposite the source measures the radiation passing through the product. The gauge readout or computer monitor shows the measurement. The material and process being monitored dictate the type, energy, and strength of radiation used.

Fixed fluid gauges are used by the beverage, food, plastics, and chemical industries. Installed on a pipe or the side of a tank, these gauges measure the densities, flow rates, levels, thicknesses, and weights of a variety of materials and surfaces. A portable gauge uses both a shielded radioactive source and a detector. The gauge is placed on the object to be measured. Some gauges rely on radiation from the source to reflect back to the bottom of the gauge. Other gauges insert the source into the object. The detector in the gauge measures the radiation either directly from the inserted source or from the reflected radiation.

The moisture density gauge, shown at right, is a portable gauge that places a gamma source under the surface of the ground through a tube. Radiation is transmitted directly to the detector on the bottom of the gauge, allowing accurate measurements of compaction. Industry uses such gauges to monitor the structural integrity of roads, buildings, and bridges. Airport security uses nuclear gauges to detect explosives in luggage.



A moisture density gauge indicates whether a foundation is suitable for supporting a building or roadway.

## NUCLEAR MATERIALS

#### **Commercial Irradiators**

The U.S. Food and Drug Administration and other agencies have approved the irradiation of food. Commercial irradiators expose food and spices, as well as products such as medical supplies, blood, and wood flooring, to gamma radiation. This process can be used to eliminate harmful germs and insects or for hardening or other purposes. The gamma radiation does not leave radioactive residue or make the treated products radioactive. The radiation can come from radioactive materials (e.g., cobalt-60), an x-ray tube, or an electron beam.



See Glossary for information and illustrations of commercial irradiators.

The NRC and Agreement States license about 50 commercial irradiators. Up to 10 million curies of radioactive material can be used in these types of irradiators. NRC regulations protect workers and the public from this radiation. Two main types of commercial irradiators are used in the United States: underwater and wet-source-storage panoramic models. Underwater irradiators use sealed sources (radioactive material encased inside a capsule) that remain in the water at all times, providing shielding for workers and the public. The product to be irradiated is placed in a watertight container, lowered into the pool, irradiated, and then removed. Wet-source-storage panoramic irradiators also store radioactive sealed sources in water. However, the sources are raised into the air to irradiate products that are automatically moved in and out of the room on a conveyor system. Sources are then lowered back into the pool. For this type of irradiator, thick concrete walls and ceilings or steel barriers protect workers and the public when the sources are lifted from the pool.

## Transportation

More than 3 million packages of radioactive materials are shipped each year in the United States by road, rail, air, or water. This represents less than 1 percent of the Nation's yearly hazardous material shipments. The NRC and the U.S. Department

of Transportation (DOT) share responsibility for regulating the safety of radioactive material shipments. The vast majority of these shipments consist of small amounts of radioactive materials used in industry, research, and medicine. The NRC requires such materials to be shipped in accordance with DOT's safety regulations.



Truck carries NAC LWT transport package.

## Material Security

To monitor the manufacture, distribution, and ownership of the most high-risk sources, the NRC set up a National Source Tracking System (NSTS) in January 2009. Licensees use this secure Web-based system to enter information on the receipt or transfer of tracked radioactive sources (see Figure 24: Life-Cycle Approach to Source Security). The NRC and the Agreement States use the system to monitor where high-risk sources are made, shipped, and used.

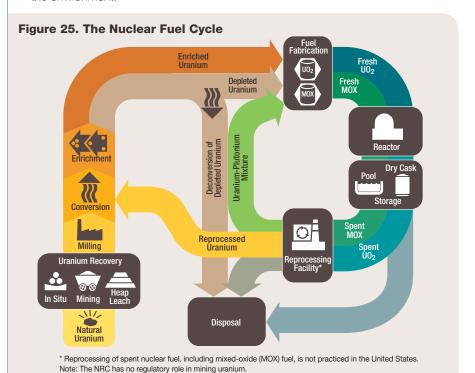
Sources tracked in the system are known as Category 1 and Category 2 sources. They have the potential to cause permanent injury and even death if they are not handled safely and securely, in compliance with NRC requirements. The majority of these sources are cobalt-60.



See Glossary for definitions of the categories of radioactive sources.

The NRC and the Agreement States have increased controls on the most sensitive radioactive materials. Stronger physical-security requirements and stricter limits on who can access the materials give the NRC and the Agreement States added confidence in their security. The NRC has also joined with other Federal agencies, such as the U.S. Department of Homeland Security and U.S. Department of Energy's National Nuclear Security Administration, to set up an additional layer of voluntary protection. Together, these activities help make potentially dangerous radioactive sources even more secure and less vulnerable to malevolent uses.




## Nuclear Materials

## Nuclear Fuel Cycle

The typical nuclear fuel cycle uses uranium in different chemical and physical forms. Figure 25: The Nuclear Fuel Cycle illustrates the stages, which include uranium recovery, conversion, enrichment, and fabrication, to produce fuel for nuclear power plants. Uranium is recovered or extracted from ore, converted, and enriched. Then the enriched uranium is manufactured into pellets. These pellets are placed into fuel assemblies to power nuclear reactors.

#### **Uranium Recovery**

The NRC does not regulate conventional mining but does regulate the processing of uranium ore, known as milling. This processing can be done at three types of uranium recovery facilities: conventional mills, in situ recovery (ISR) facilities, and heap leach facilities. Once this processing is done, the uranium is in a powder form known as yellowcake, which is packed into 55-gallon drums and transported to a fuel cycle facility for further processing. The NRC has a well-established regulatory framework for uranium recovery facilities. This framework ensures they are licensed, operated, decommissioned, and monitored to protect the public and the environment.



#### Conventional Uranium Mill

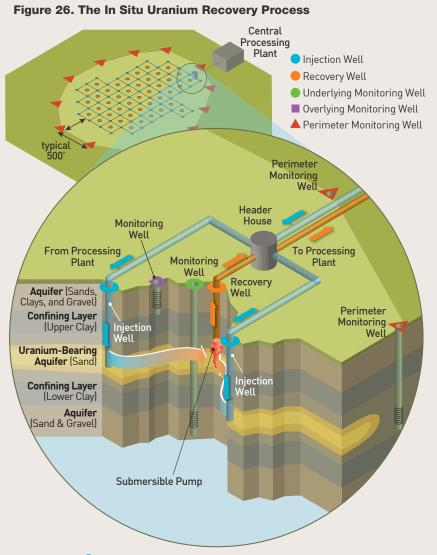
A conventional uranium mill is a chemical plant that extracts uranium from ore. Most conventional mills are located away from population centers and within about 30 miles (50 kilometers) of a uranium mine. In a conventional mill, the process of uranium extraction from ore begins when ore is hauled to the mill and crushed. Sulfuric acid dissolves and removes 90 to 95 percent of the uranium from the ore. The uranium is then separated from the solution, concentrated, and dried to form yellowcake.

#### In Situ Recovery

ISR is another way to extract uranium—in this case, directly from underground ore. In situ facilities recover uranium from ores that cannot be processed economically using other methods. In this process, a solution of native ground water, typically mixed with oxygen or hydrogen peroxide and sodium bicarbonate or carbon dioxide, is injected into the ore to dissolve the uranium. The solution is then pumped out of the rock and the uranium separated to form yellowcake (see Figure 26: The In Situ Uranium Recovery Process).

#### **Heap Leach Facility**

Heap leach facilities also extract uranium from ore. At these facilities, the ore is placed in piles or heaps on top of liners. The liners prevent uranium and other chemicals from moving into the ground. Sulfuric acid is dripped onto the heap and dissolves uranium as it moves through the ore. Uranium solution drains into collection basins, where it is piped to a processing plant. At the plant, uranium is extracted, concentrated, and dried to form yellowcake. The NRC does not currently license any heap leach facilities.




See Glossary for definition and illustration of heap leach recovery process.

#### **Licensing Uranium Recovery Facilities**

The NRC continues to receive applications to build new uranium recovery facilities and to expand or restart existing facilities. The current status of applications can be found on the NRC's Web site (see the Web Link Index on page 186). Existing facilities and new potential sites are located in Wyoming, New Mexico, Nebraska, South Dakota, and Oregon and in the Agreement States of Texas, Colorado, and Utah (see Figure 27: Locations of NRC-Licensed Uranium Recovery Facility Sites).

## Nuclear Materials



Injection wells pump a solution of native ground water, usually mixed with sodium bicarbonate and oxygen, into the aquifer (ground water) containing uranium ore. The solution dissolves the uranium from the deposit in the ground and is then pumped back to the surface through recovery wells , all controlled by the header house. From there, it is sent to the processing plant. Monitoring wells are checked regularly to ensure that injection solution is not escaping from the wellfield. Confining layers keep ground water from moving from one aquifer to another.

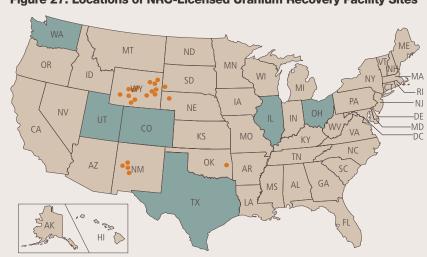



Figure 27. Locations of NRC-Licensed Uranium Recovery Facility Sites

- States with authority to license uranium recovery facility sites
- States where the NRC has retained authority to license uranium recovery facilities
- NRC-licensed uranium recovery facility sites (21)

Note: For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/

The NRC takes into account the views of stakeholders, including Native American Tribal governments, to address their concerns with licensing new uranium recovery facilities. The NRC is also responsible for the following actions:

- inspecting and overseeing both active and inactive uranium recovery facilities
- ensuring the safe management of mill tailings (waste) at facilities that the NRC requires to be located and designed to minimize radon release and disturbance by weather or seismic activity
- enforcing requirements to ensure cleanup of active and closed uranium recovery facilities
- applying stringent financial requirements to ensure funds are available for decommissioning
- making sure licensees follow requirements for underground disposal of mill tailings and provide liners for tailings impoundments
- monitoring to prevent ground water contamination
- monitoring and overseeing decommissioned facilities



See Glossary for more information on mill tailings.

## Nuclear Materials

## Fuel Cycle Facilities

The NRC licenses all commercial fuel cycle facilities involved in conversion, enrichment, and fuel fabrication (see Figure 28: Locations of Fuel Cycle Facilities, and Figure 29: Simplified Fuel Fabrication Process).



See Glossary for more information on enrichment processes.

The NRC reviews applications for licenses, license amendments, and renewals, as well as licensees' safety and safeguard programs. The agency also routinely inspects their safety, safeguards, security, and environmental protection programs.

These facilities turn the uranium that has been removed from ore and made into yellowcake into fuel for nuclear reactors. In this process, the conversion facility converts yellowcake into uranium hexafluoride (UF $_6$ ). Next, an enrichment facility heats the solid UF $_6$  enough to turn it into a gas, which is "enriched," or processed to increase the concentration of the isotope uranium-235.

The enriched uranium gas is mechanically and chemically processed back into a solid uranium dioxide ( $UO_2$ ) powder. The powder is blended, milled, pressed, and fused into ceramic fuel pellets about the size of a fingertip. The pellets are stacked into tubes or rods that are about 14 feet (4.3 meters) long and made of material such as zirconium alloys; this material is referred to as cladding. These fuel rods are made to maintain both their chemical and physical properties under the extreme conditions of heat and radiation present inside an operating reactor.

After careful inspection, the fuel rods are bundled into fuel assemblies for use in reactors. The assemblies are washed, inspected, and stored in a special rack until ready for shipment to a nuclear power plant. The NRC inspects this operation to ensure it is conducted safely.

#### **Domestic Safeguards Program**

See Appendix M for major U.S. fuel cycle facility sites.

The NRC's domestic safeguards program for fuel cycle facilities and transportation is aimed at ensuring that special nuclear material (such as plutonium or enriched uranium) is not stolen and does not pose a risk to the public from sabotage or terrorism. Through licensing and inspections, the NRC verifies that licensees apply safeguards to protect special nuclear material.

The NRC and DOE developed the Nuclear Materials Management and Safeguards System (NMMSS) to track transfers and inventories of special nuclear material, source material from abroad, and other material. The NRC has issued licenses authorizing facilities to possess special nuclear material in quantities ranging from a single kilogram to multiple tons. These licensees verify and document their inventories in the NMMSS database. The NRC or Agreement States have licensed several hundred additional sites that possess special nuclear material in smaller quantities. Licensees possessing small amounts of special nuclear material must confirm their inventory annually in the NMMSS database.

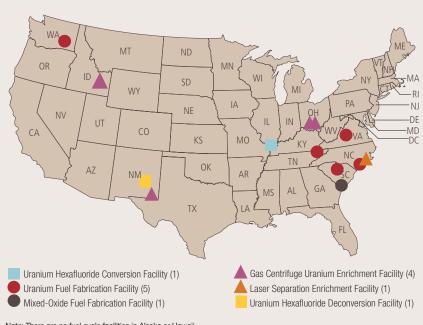



Figure 28. Locations of Fuel Cycle Facilities

Note: There are no fuel cycle facilities in Alaska or Hawaii.

For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/

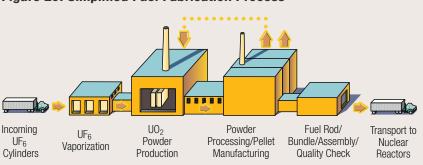
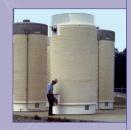




Figure 29. Simplified Fuel Fabrication Process

Fabrication of commercial light-water reactor fuel consists of the following three basic steps:


- (1) the chemical conversion of UF<sub>6</sub> to UO<sub>2</sub> powder
- (2) a ceramic process that converts UO<sub>2</sub> powder to small ceramic pellets
- (3) a mechanical process that loads the fuel pellets into rods and constructs finished fuel assemblies











## Radioactive Waste

## RADIOACTIVE WASTE

## Low-Level Radioactive Waste Disposal

Low-level radioactive waste (LLW) includes items contaminated with radioactive material or exposed to neutron radiation. This waste typically consists of contaminated protective shoe covers and clothing, wiping rags, mops, filters, reactor water treatment residues, equipment and tools, medical waste, and laboratory animal carcasses and tissue. Some LLW is quite low in radioactivity—even as low as just above background levels found in nature. Some licensees, notably hospitals, store such waste on site until it has decayed and lost most of its radioactivity. Then it can be disposed of as ordinary trash. Other LLW, such as parts of a reactor vessel from a nuclear power plant, is more radioactive and requires special handling. Waste that does not decay fairly quickly is stored until amounts are large enough for shipment to an LLW disposal site in containers approved by DOT and the NRC.

Commercial LLW can be disposed of in facilities licensed by either the NRC or Agreement States. The facilities are designed, constructed, and operated to meet NRC safety standards. The facility operator analyzes how the facility will perform in the future based on the environmental characteristics of the site. Current LLW disposal uses shallow land disposal sites with or without concrete vaults (see Figure 30: Low-Level Radioactive Waste Disposal).

The NRC classifies LLW based on its potential hazards. It has specified disposal and waste requirements for three classes of waste—Class A, B, and C—with progressively higher concentrations of radioactive material. Class A waste, the least radioactive, accounts for approximately 96 percent of the total volume of LLW. Determination of the classification of waste is a complex process. A fourth class of LLW, called "greater-than-Class-C," is not generally acceptable for near-surface disposal. Under the LLW Policy Amendments Act, DOE is responsible for disposal of greater-than-Class-C waste.

The volume and radioactivity of waste varies from year to year. Waste volumes currently include several million cubic feet each year from reactor facilities undergoing decommissioning and from cleanup of contaminated sites.

The Low-Level Radioactive Waste Policy Amendments Act of 1985 gave the States responsibility for LLW disposal. The Act authorized States to:

- form regional compacts, with each compact to provide for LLW disposal site access
- manage LLW import to, and export from, a compact
- exclude waste generated outside a compact

See Appendix P for regional compacts and closed LLW sites.

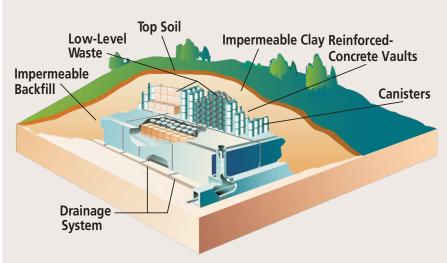



Figure 30. Low-Level Radioactive Waste Disposal

This LLW disposal site accepts waste from States participating in a regional disposal agreement.

The States have licensed four active LLW disposal facilities:

- EnergySolutions' Barnwell facility, located in Barnwell, SC—Previously, Barnwell accepted LLW waste from all U.S. generators of LLW. Barnwell now accepts waste only from the Atlantic Compact States of Connecticut, New Jersey, and South Carolina. The State of South Carolina licensed Barnwell to receive Class A, B, and C waste.
- EnergySolutions' Clive facility, located in Clive, UT—Clive accepts waste from all regions of the United States. The State of Utah licensed Clive for Class A waste only.
- US Ecology's Richland facility, located in Richland, WA, on the Hanford Nuclear Reservation—Richland accepts waste from the Northwest Compact States (Alaska, Hawaii, Idaho, Montana, Oregon, Utah, Washington, and Wyoming) and the Rocky Mountain Compact States (Colorado, Nevada, and New Mexico). The State of Washington licensed Richland to receive Class A, B, and C waste.
- Waste Control Specialists' Andrews facility, located in Andrews, TX—Andrews
  accepts waste from the Texas Compact, which consists of Texas and Vermont. It
  also accepts waste from out-of-the-compact generators on a case-by-case basis.
   The State of Texas licensed Andrews to receive Class A, B, and C waste.

## RADIOACTIVE WASTE

## High-Level Radioactive Waste Management

#### **Spent Nuclear Fuel Storage**

Commercial spent nuclear fuel, although highly radioactive, is stored safely and securely throughout the United States. Spent fuel is stored in pools and in dry casks at sites with operating nuclear power reactors. Several storage facilities do not have operating power reactors but are safely storing spent fuel. Waste can be stored safely in pools or casks for 100 years or more. The NRC licenses and regulates the storage of spent fuel, both at commercial nuclear power plants and at separate storage facilities.

Most reactor facilities were not designed to store the full amount of spent fuel that the reactors would generate during their operational lives. Facilities originally planned See Appendices N and O for information about dry spent fuel storage and licensees.

to store spent fuel temporarily in deep pools of continuously circulating water, which cools the spent fuel assemblies. After a few years, the facilities were expected to send the spent fuel to a reprocessing plant. However, in 1977, the Government declared a moratorium on reprocessing spent fuel in the United States. Although the Government later lifted the restriction, reprocessing has not resumed in the United States.



See Glossary for fuel reprocessing (recycling).

As a result, facilities expanded their storage capacity by using high-density storage racks in their spent fuel pools. To provide supplemental storage, some fuel assemblies are stored in dry casks on site (see Figure 31: Spent Fuel Generation and Storage after Use). These facilities are called independent spent fuel storage installations (ISFSIs) and are licensed by the NRC. These large casks are typically made of leak-tight, welded, and bolted steel and concrete surrounded by another layer of steel or concrete. The spent fuel sits in the center of the cask in an inert gas. Dry cask storage shields people and the environment from radiation and keeps the spent fuel inside dry and nonreactive (see Figure 32: Dry Storage of Spent Nuclear Fuel).

The NRC regulates facilities that store spent fuel in two different ways. The NRC may grant site-specific licenses after a safety review of the technical requirements and operating conditions for an ISFSI. The NRC has issued a general license authorizing nuclear power reactor licensees to store spent fuel on site in dry storage casks that the NRC has certified. Following a similar safety review, the NRC may issue a Certificate of Compliance and add the cask to a list of approved systems through a rulemaking. The agency issues licenses and certificates for terms not to exceed 40 years and that can be renewed for up to



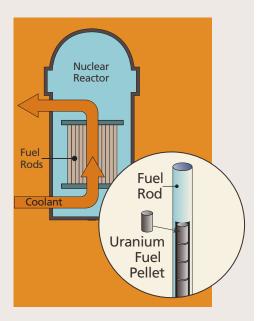
The NRC holds public meetings around the country where NRC staff members provide information about the agency's role and mission and about the performance of area nuclear power plants.

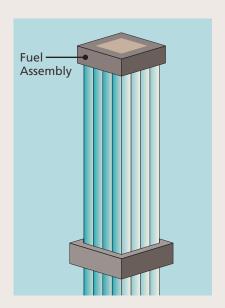
an additional 40 years. (See Figure 33: Licensed and Operating Independent Spent Fuel Storage Installations by State.)

#### **Public Involvement**

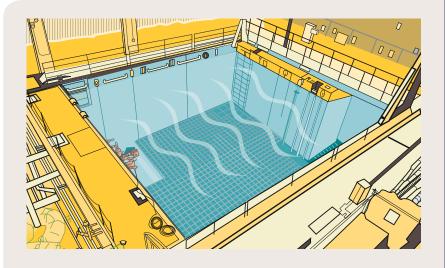
The public can participate in decisions about spent fuel storage, as it can in many licensing and rulemaking decisions. The Atomic Energy Act of 1954, as amended, and the NRC's own regulations call for public hearings about site-specific licensing actions and allow the public to comment on certificate of compliance rulemakings. Members of the public may also file petitions for rulemaking. Additional information on ISFSIs is available on the NRC's Web site (see the Web Link Index).

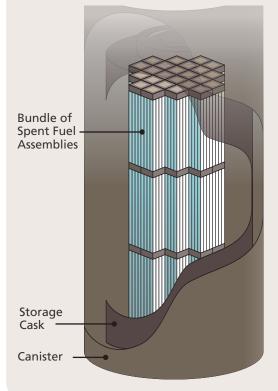
#### **Spent Nuclear Fuel Disposal**


The current U.S. policy governing permanent disposal of high-level radioactive waste is defined by the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992. These acts specify that high-level radioactive waste will be disposed of underground in a deep geologic repository licensed by the NRC. Because the timing of repository availability is uncertain, the NRC looked at potential environmental impacts of storing spent fuel over three possible timeframes: the short term, which includes 60 years of continued storage after a reactor's operating license has expired; the medium term, or 160 years after license expiration; and indefinite, which assumes a repository never becomes available. The NRC's findings—that any environmental impacts can be managed—appear in the 2014 report NUREG-2157, "Generic Environmental Impact Statement for Continued Storage of Spent Nuclear Fuel."


The NRC adopted those findings into NRC regulations in a continued storage rule. This rule provides an important basis for issuing new or renewed licenses for nuclear power plants and spent fuel storage facilities.

## RADIOACTIVE WASTE


#### Figure 31. Spent Fuel Generation and Storage After Use


A nuclear reactor is powered by enriched uranium-235 fuel. Fission (splitting of atoms) generates heat, which produces steam that turns turbines to produce electricity. A reactor rated at several hundred megawatts may contain 100 or more tons of fuel in the form of bulletsized pellets loaded into long metal rods that are bundled together into fuel assemblies. Pressurized-water reactors (PWRs) contain between 150 and 200 fuel assemblies. Boiling-water reactors (BWRs) contain between 370 and 800 fuel assemblies.





After 5-6 years, spent fuel assemblies (which are typically 14 feet [4.3 meters] long and which contain nearly 200 fuel rods for PWRs and 30–100 fuel rods for BWRs) are removed from the reactor and allowed to cool in storage pools. At this point, the 900-pound (409-kilogram) assemblies contain only about one-fifth the original amount of uranium-235.





 $Commercial\ light-water$ nuclear reactors store spent radioactive fuel in a steel-lined, seismically designed concrete pool under about 40 feet (12.2 meters) of water that provides shielding from radiation. Water pumps supply continuously flowing water to cool the spent fuel. Extra water for the pool is provided by other pumps that can be powered from an onsite emergency diesel generator. Support features, such as water-level monitors and radiation detectors, are also in the pool. Spent fuel is stored in the pool until it is transferred to dry casks on site (as shown in Figure 32) or transported off site for interim storage or disposal.

## RADIOACTIVE WASTE

#### Figure 32. Dry Storage of Spent Nuclear Fuel

At nuclear reactors across the country, spent fuel is kept on site, typically above ground, in systems basically similar to the ones shown here.

The NRC reviews and approves the designs of these spent fuel storage systems before they can be used.

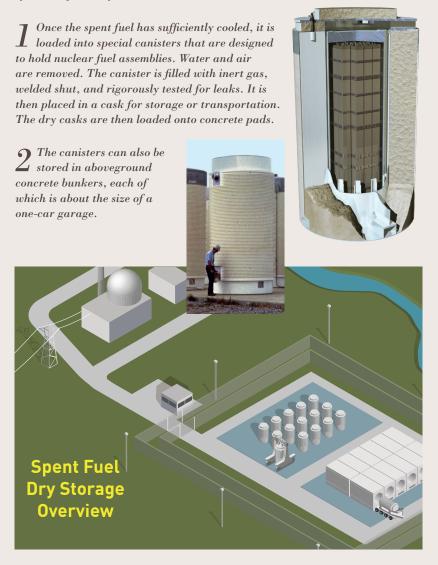
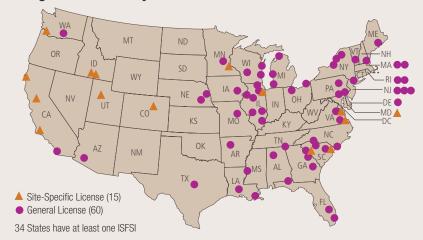




Figure 33. Licensed and Operating Independent Spent Fuel Storage Installations by State



#### AI ARAMA

- Browns Ferry
- Farley

#### ARIZONA

Palo Verde

#### ARKANSAS

Arkansas Nuclear

#### **CALIFORNIA**

- ▲ Diablo Canyon
- A Rancho Seco
- San Onofre
- ▲ Humboldt Bay

#### COLORADO

Fort St. Vrain

#### CONNECTICUT

- Haddam Neck
- Millstone

#### FLORIDA

- St. Lucie
- Turkey Point

#### GEORGIA

- Hatch
- Vogtle

#### **IDAHO**

- ▲ DOE: TMI-2 (Fuel Debris)
- ▲ DOE: Idaho Spent Fuel Facility

#### ILLINOIS

- Braidwood
- Byron
- ▲ GE Hitachi Morris (Wet)
- Dresden
- La Salle
- Quad Cities

## ZionIOWA

#### Duane Arnold

#### LOUISIANA

- River Bend
- Waterford

#### MAINE

Maine Yankee

#### MARYLAND

Calvert Cliffs

#### MASSACHUSETTS

- Yankee Rowe
- Pilgrim

#### MICHIGAN

- Big Rock Point
- Palisades
- Cook
- Fermi

#### MINNESOTA

- Monticello
- Prairie Island

#### MISSISSIPPI

- Grand Gulf
- MISSOURI

  Callaway

#### NEBRASKA

- Cooper
- Ft. Calhoun

#### **NEW HAMPSHIRE**

Seabrook

#### **NEW JERSEY**

- Hope Creek
- Hope Gree
- SalemOyster Creek
- .

#### NEW YORK

- Indian Point
- IIIulaii i oiii
- FitzPatrick
- Ginna
- Nine Mile Point
- NORTH CAROLINA

#### Brunswick

- McGuire
- Wicduile

#### 0HI0

- Davis-Besse
- Perry
- OREGON
- ▲ Trojan

#### PENNSYLVANIA

- Limerick
- Susquehanna
- Peach Bottom
- Beaver Valley

#### SOUTH CAROLINA

#### Oconee

- COUNCE
- A Robinson

#### Catawba

#### TENNESSEE

#### Sequoyah

#### TEXAS

Comanche Peak

#### UTAH

▲ Private Fuel Storage

#### VERMONT

Vermont Yankee

#### VIRGINIA

- ▲ Surry
- North Anna

#### WASHINGTON

Columbia

#### WISCONSIN

Point Beach

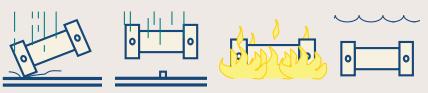
- Kewaunee
- LaCrosse

Data as of July 2015. NRC-abbreviated site names listed. For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/

## Radioactive Waste

## Transportation

The NRC is also involved in the transportation of spent nuclear fuel. The NRC establishes safety and security requirements in collaboration with DOT, certifies transportation cask designs, and conducts inspections to ensure that requirements are being met. Spent fuel transportation casks are designed to meet the following safety criteria under both normal and accident conditions:


- prevent the loss or dispersion of radioactive contents
- shield everything outside the cask from the radioactivity of the contents
- dissipate the heat from the contents
- prevent nuclear criticality (a self-sustaining nuclear chain reaction) from occurring inside the cask

Transportation casks must be designed to survive a sequence of tests, including a 30-foot (9-meter) drop onto an unyielding surface, a puncture test, a fully engulfing fire at 1,475 degrees Fahrenheit (802 degrees Celsius) for 30 minutes, and immersion under water. This very severe test sequence, akin to the cask striking a concrete pillar along a highway at high speed and being engulfed in a severe and long-lasting fire, and then falling into a river, simulates conditions more severe than 99 percent of vehicle accidents (see Figure 34: Ensuring Safe Spent Fuel Shipping Containers).

To ensure the safe transportation of spent fuel and other nuclear materials, each year the NRC:

- conducts transportation safety inspections of fuel, reactor, and materials licensees
- reviews, evaluates, and certifies new, renewed, or amended transportation package design applications

Figure 34. Ensuring Safe Spent Fuel Shipping Containers



The impact (free drop and puncture), fire, and water immersion tests are considered in sequence to determine their cumulative effects on a given package.

- conducts inspections of cask vendors and manufacturers to ensure the quality of dry cask design and fabrication
- reviews and evaluates license applications for the export or import of nuclear materials

Additional information on materials transportation is available on the NRC's Web site (see the Web Link Index).

## Decommissioning

Decommissioning is the safe removal of a nuclear facility from service and the reduction of residual radioactivity to a level that permits See Appendices C, J, and Q for licensees undergoing decommissioning.

release of the property and termination of the license. NRC rules establish site-release criteria and provide for unrestricted and (under certain conditions) restricted release of a site. The NRC also requires all licensees to maintain financial assurance that funds will be available when needed for decommissioning.

The NRC regulates the decontamination and decommissioning of nuclear power plants, materials and fuel cycle facilities, research and test reactors, and uranium recovery facilities, with the ultimate goal of license termination (see Figure 35: Decommissioning Overview Timeline).

Figure 35. Decommissioning Overview Timeline

Figure 36. Power Reactor Decommissioning Status



I) ISFSI (Independent Spent Fuel Storage Installation only)

T License Terminated

Decommissioning Completed

#### **CALIFORNIA**

- S GF FVFSR
- S GE VBWR
- Humboldt Bay 3
- Rancho Seco
- San Onofre 1
- San Onofre 2 and 3

#### **COLORADO**

Fort St. Vrain (DOE License)

#### CONNECTICUT

- S Millstone 1
- Haddam Neck

#### **FLORIDA**

S Crystal River 3

#### **ILLINOIS**

- S Dresden 1
- D Zion 1 and 2

#### MARYLAND

S N.S. Savannah

#### **MASSACHUSETTS**

1 Yankee Rowe

#### MAINF

Maine Yankee

#### MICHIGAN

S Fermi 1

#### Big Rock Point

#### NFW YORK

S Indian Point 1

#### Shoreham

OREGON

#### Trojan

#### PENNSYLVANIA

- Saxton
- S Peach Bottom 1
- S Three Mile Island 2

#### SOUTH DAKOTA

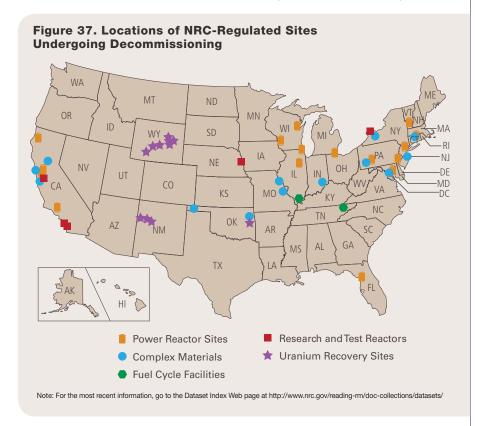
Pathfinder

#### VERMONT

S Vermont Yankee

#### WISCONSIN

I aCrosse


S Kewaunee

Notes: GE Bonus, Hallam, and Piqua decommissioned reactor sites are part of the DOE nuclear legacy. For more information, visit DOE's Office of Legacy Management LM Sites Web page at http://energy.gov/lm/sites/lm-sites. CVTR, Elk River, and Shippingport decommissioned reactor sites were either decommissioned before the formation of the NRC or were not licensed by the NRC. NRC-abbreviated reactor names are listed. For the most recent information, go to the Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/

For commercial power reactors that have ceased operations, the decommissioning process may take up to 60 years. This may include extended periods of inactivity (called SAFSTOR), during which residual radioactivity is allowed to decay, making eventual cleanup easier and more efficient. A facility is said to be in DECON when active demolition and decontamination is underway. Active decommissioning of a nuclear power plant takes about 10 years on average.

The NRC terminates approximately 150 materials licenses each year. Most of these license terminations are routine, and the sites require little or no cleanup to meet the NRC's criteria for unrestricted access. The decommissioning program focuses on the termination of licenses for sites involving more complex decommissioning activities. (See Figure 36: Power Reactor Decommissioning Status, and Figure 37: Locations of NRC-Regulated Sites Undergoing Decommissioning.)

The "Status of the Decommissioning Program 2015 Annual Report" contains additional information on the decommissioning programs of the NRC and Agreement States. More information is on the NRC's Web site (see the Web Link Index).









Security and Emergency Preparedness

## Security and Emergency Preparedness

## Overview

Nuclear security is a high priority for the NRC. For decades, effective NRC regulation and strong partnerships with Federal, State, Tribal, and local authorities have ensured effective implementation of security programs at nuclear facilities and radioactive materials sites across the country. In fact, nuclear power plants are likely the best-protected private sector facilities in the United States. However, given today's threat environment, the agency recognizes the need for continued vigilance and high levels of security.

In recent years, the NRC has made many enhancements to the security of nuclear power plants. Because nuclear power plants are inherently robust structures, these additional security upgrades (see Figure 38: Security Components) largely focus on:

- · well-trained and armed security officers
- high-tech equipment and physical barriers
- greater standoff distances for vehicle checks
- intrusion detection and surveillance systems
- tested emergency preparedness and response plans
- restrictive site-access control, including background checks and fingerprinting of workers

The NRC also coordinates and shares threat information with the U.S. Departments of Homeland Security and Defense, the Federal Bureau of Investigation, intelligence agencies, and local law enforcement.


## Facility Security

Under NRC regulations, nuclear power plants and fuel facilities that handle highly enriched uranium must be able to defend successfully against a set of threats the agency calls the design-basis threat (DBT). This includes threats to a plant's or facility's physical security, personnel security, and cyber security. The NRC does not make details of the DBT public because of security concerns. However, the agency continuously evaluates this set of threats against real-world intelligence to ensure the DBT remains current. To test the adequacy of a facility's defenses against the DBT, the NRC conducts rigorous force-on-force inspections at each facility every 3 years.



See Glossary for definitions of the categories of special nuclear material.

During these inspections, a highly trained mock adversary force "attacks" a nuclear facility. Beginning in 2004, the NRC made these exercises more realistic, more challenging, and more frequent.



The NRC inspects security at nuclear power plants and fuel fabrication facilities every year and conducts force-on-force inspections every 3 years. Publicly available portions of security-related inspection reports are on the NRC's Web site (see the Web Link Index). For security reasons, inspection reports are not available for the NRC-licensed fuel facilities that handle highly enriched uranium.

## Cyber Security

Nuclear facilities use digital and analog systems to monitor, control, and run various types of equipment, as well as to obtain and store vital information. Protecting these systems and the information they contain from sabotage or malicious use is called cyber security. The reactor control systems of nuclear plants are isolated from the Internet, but for added security, all nuclear power plants licensed by the NRC must have a cyber security program.

In 2013, the NRC began regular cyber security inspections of nuclear power plants under new regulations designed to guard against the cyber threat. The experience that the NRC gained in developing the cyber security requirements for nuclear power plants provided a basis for developing similar cyber security requirements for nonreactor licensees and other nuclear facilities.

## SECURITY AND EMERGENCY PREPAREDNESS

The NRC's cyber security team includes technology and threat experts who constantly evaluate and identify emerging cyber-related issues that could possibly endanger plant systems. The team also makes recommendations to other NRC offices and programs on cyber security issues. In October 2014, the NRC joined other independent regulatory agencies to create the Cyber Security Forum for Independent and Executive Branch Regulators. According to its mission statement, the forum aims to "increase the overall effectiveness and consistency of regulatory authorities' cyber security efforts pertaining to U.S. critical infrastructure, much of which is operated by industry and overseen by a number of federal regulatory authorities."

## Materials Security

Radioactive materials must be secured to reduce the possibility that terrorists could use them to make a radiological dispersal device, sometimes called an RDD or a dirty bomb. The NRC has established rules to provide the requirements for the physical protection of certain types and quantities of radioactive material. Additionally, the NRC works with the Agreement States, other Federal agencies, the IAEA, and licensees to protect radioactive materials from theft and malicious use. In 2009, the NRC deployed the National Source Tracking System, designed to track the most risk-sensitive radioactive materials in sources. Other improvements allow U.S. Customs and Border Protection agents to promptly validate whether radioactive materials coming into the United States are properly licensed by the NRC or an Agreement State. In addition, the agency improved and upgraded the joint NRC-DOE database tracking the movement and location of certain forms and quantities of special nuclear material.

## **Emergency Preparedness**

Operators of nuclear facilities are required to develop and maintain effective emergency plans and procedures to protect the public in the unlikely event of an emergency. Emergency preparedness plans include public information, preparations for evacuation, instructions for sheltering, and other actions to protect the residents near nuclear power plants in the event of a serious incident. The NRC includes emergency preparedness in its inspections and monitors performance indicators associated with emergency preparedness. Nuclear power plant operators must conduct full-scale exercises with the NRC, the Federal Emergency Management Agency (FEMA), and State and local officials at least once every 2 years. Some of these exercises include security and terrorism-based scenarios. These exercises test and maintain the skills of the emergency responders and identify any areas that need to be addressed. Nuclear power plant operators also conduct their own emergency response drills.

#### **Emergency Planning Zones**

The NRC defines two emergency planning zones (EPZs) around each nuclear power plant. The exact size and configuration of the zones vary from plant to plant, based on local emergency response needs and capabilities, population, land characteristics, access routes, and jurisdictional boundaries. The zone boundaries are flexible, and the NRC may expand these zones during an emergency if circumstances warrant. For a typical EPZ around a nuclear plant, see Figure 39: Emergency Planning Zones. The two types of EPZs are the plume-exposure pathway and ingestion pathway. The plume-exposure pathway covers a radius of about 10 miles (16 kilometers) from the plant and is the area of greatest concern about the public's exposure to and inhalation of airborne radioactive contamination. Research has shown the most significant impacts of an accident would be expected in the immediate vicinity of a plant, and any initial protective actions, such as evacuations or sheltering in place, should be focused there. The ingestion pathway, or food safety sampling area, extends to a radius of about 50 miles (80 kilometers) from the plant and is the area of greatest concern about the ingestion of food and liquid contaminated by radioactivity.

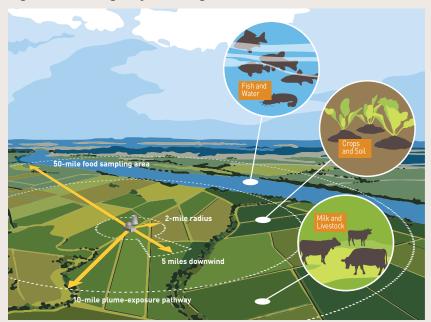



Figure 39. Emergency Planning Zones

Note: A 2-mile ring around the plant is identified for evacuation, along with a 5-mile zone downwind of the projected release path.

## Security and Emergency Preparedness

#### **Protective Actions**

During an actual nuclear power plant accident, the NRC would use radiation-dose projection models to predict the nature and extent of a radiation release. The dose calculations would account for weather conditions to project the extent of radiation exposure to the nearby population. The NRC would confer with appropriate State and county governments on its assessment results. Plant personnel would also provide assessments. State and local officials in communities within the EPZ have detailed plans to protect the public during a radiation release. These officials make their protective action decisions, including decisions to order evacuations, based on these and other assessments.

## **Evacuation, Sheltering, and the Use of Potassium Iodide**

Protective actions considered for a radiological emergency include evacuation, sheltering, and the preventive use of potassium iodide (KI) supplements to protect the thyroid from radioactive iodine, which can cause thyroid cancer.

Under certain conditions, it may be preferable to evacuate the public away from further exposure to radioactive material. However, a complete evacuation of the 10-mile (16-kilometer) zone around a nuclear power plant is not likely to be needed in most cases. The release of radioactive material from a plant during a major incident would move with the wind, not in all directions surrounding the plant. The release would also expand and become less concentrated as it traveled away from a plant. For these reasons, evacuations can be planned based on the anticipated path of the release. Under some conditions, people may be instructed to take shelter in their homes, schools, or office buildings. Depending on the type of structure, sheltering can significantly reduce someone's dose when compared to staying outside. In certain situations, KI may be used as a supplement to sheltering. It may be appropriate to shelter when the release of radioactive material is known to be short term or is controlled by the nuclear power plant operator.

The risk of an offsite radiological release is significantly lower and the types of possible accidents significantly fewer at a nuclear power reactor that has permanently ceased operations and removed fuel from the reactor vessel.

Nuclear power plants that have begun decommissioning may therefore apply for exemptions from these FEMA and NRC emergency planning requirements. Once the exemptions are granted, State and local agencies may apply their comprehensive emergency plans—known as all-hazard plans—to respond to incidents at the plant. Additional information on emergency preparedness is available on the NRC's Web site (see Web Link Index).



During an exercise in the agency's Headquarters Operations Center, NRC protective measures team members look at simulated projected radiation doses to the public.

## Incident Response

Quick communication among the NRC, other Federal and State agencies, and the nuclear industry is critical when responding to any incident. The NRC staff supports several Federal incident response centers where officials can coordinate assessments of event-related information. The NRC Headquarters Operations Center, located in the agency's headquarters in Rockville, MD, is staffed around the clock to disseminate information and coordinate response activities. The NRC also reviews intelligence reports and assesses suspicious activity to keep licensees and other agencies up to date on current threats. The NRC works within the National Response Framework to respond to events. The framework quides the Nation in its response to complex events that might involve a variety of agencies and hazards. Under this framework, the NRC retains its independent authority and ability to respond to emergencies involving NRC-licensed facilities or materials. The NRC may request support from DHS in responding to an emergency at an NRC-licensed facility or involving NRC-licensed materials. DHS may lead and manage the overall Federal response to an event, according to Homeland Security Presidential Directive 5, "Management of Domestic Incidents." In this case, the NRC would provide technical expertise and help share information among the various organizations and licensees. In response to an incident involving possible radiation releases, the NRC activates its incident response program at its Headquarters Operations Center and one of its four Regional Incident Response Centers. Teams of specialists at these centers evaluate event information, independently assess the potential impact on public health and safety, and evaluate possible recovery strategies.

## Security and Emergency Preparedness

The NRC staff provides expert consultation, support, and assistance to State and local public safety officials and keeps the public informed of agency actions. Meanwhile, other NRC experts evaluate the effectiveness of protective actions the licensee has recommended to State and local officials. If needed, the NRC will dispatch a team of technical experts from the responsible regional office to the site. This team would assist the NRC's resident inspectors, who work at the plant. The Headquarters Operations Center would continue to provide around-the-clock communications, logistical support, and technical analysis throughout the response.

## **Emergency Classifications**

Emergencies at nuclear facilities are classified according to the risk posed to the public. These classifications help guide first responders on the actions necessary to protect the population near the site. Nuclear power plants use these four emergency classifications:

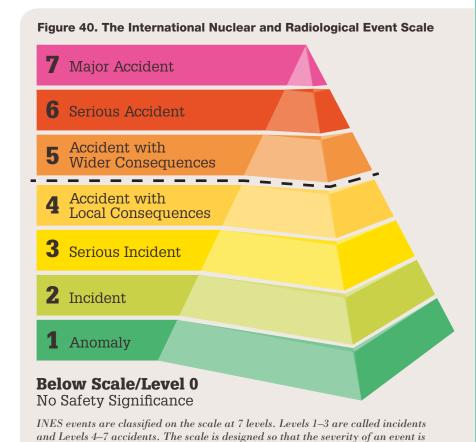
**Notification of Unusual Event:** Events that indicate a potential degradation in the level of safety of the plant are in progress or have occurred. No release of radioactive material requiring offsite response or monitoring is expected unless further degradation occurs.

**Alert:** Events that involve an actual or potential substantial degradation in the level of plant safety are in progress or have occurred. Any releases of radioactive material are expected to be limited to a small fraction of the limits set forth by the U.S. Environmental Protection Agency (EPA).

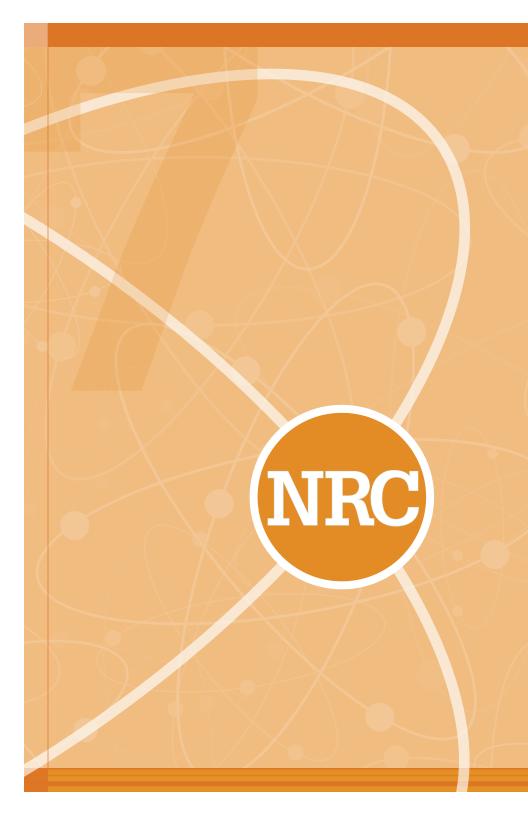
**Site Area Emergency:** Events that may result in actual or likely major failures of plant functions needed to protect the public are in progress or have occurred. Any releases of radioactive material are not expected to exceed the limits set forth by the EPA except near the site boundary.

**General Emergency:** Events that involve actual or imminent substantial core damage or melting of reactor fuel with the potential for loss of containment integrity are in progress or have occurred. Radioactive releases can be expected to exceed the limits set forth by the EPA for more than the immediate site area.

Nuclear materials and fuel cycle facility licensees use these emergency classifications:


**Alert:** Events that could lead to a release of radioactive materials are in progress or have occurred. The release is not expected to require a response by an offsite response organization to protect residents near the site.

**Site Area Emergency:** Events that could lead to a significant release of radioactive materials are in progress or have occurred. The release could require a response by offsite response organizations to protect residents near the site.


## International Emergency Classifications

The IAEA uses the International Nuclear and Radiological Event Scale (INES) as a tool for promptly and consistently communicating to the public the safety significance of reported nuclear and radiological incidents and accidents worldwide (see Figure 40: The International Nuclear and Radiological Event Scale).

The scale can be applied to any event associated with nuclear facilities, as well as to the transport, storage, and use of radioactive material and radiation sources. Licensees are not required to classify events or provide offsite notifications using the INES scale. But the NRC has a commitment to transmit to the IAEA an INES-based rating for an applicable event occurring in the United States rated at Level 2 or above, or events attracting international public interest.



about 10 times greater for each increase in level on the scale. Events without safety significance are called deviations and are classified as Below Scale or at Level 0.









# Appendices

This edition of the Digest provides a snapshot of data; for the most current information and data collection, please visit the NRC Web site Dataset Index Web page at http://www.nrc.gov/reading-rm/doc-collections/datasets/.

## APPENDICES

#### **Abbreviations**

| ABWR                                                                    | advanced boiling-water reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>ESBWR</b>                                                                          | Economic Simplified Boiling-                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC                                                                      | Allis Chalmers                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       | Water Reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ACRS                                                                    | Advisory Committee on Reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESP                                                                                   | early site permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AONO                                                                    | Safeguards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EVESR                                                                                 | ESADA (Empire States                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADAMS                                                                   | Agencywide Documents Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | Atomic Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ADAMS                                                                   | and Management System                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       | Associates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ADR                                                                     | Alternative Dispute Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       | Vallecitos Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AEC                                                                     | Atomic Energy Commission (U.S.)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | Superheat Reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AEP                                                                     | American Electric Power Company                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Exp. Date                                                                             | expiration date of operating                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AGN                                                                     | solid homogeneous core (Aerojet-                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       | license                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AGN                                                                     | General Nucleonics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FBR                                                                                   | fast breeder reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASLB                                                                    | Atomic Safety and Licensing Board                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FEMA                                                                                  | Federal Emergency Management                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B&R                                                                     | Burns & Roe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B&W                                                                     | Babcock & Wilcox                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FERC                                                                                  | Federal Energy Regulatory                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BALD                                                                    | Baldwin Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       | Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BECH                                                                    | Bechtel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FLUR                                                                                  | Fluor Pioneer                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BRRT                                                                    | Brown & Root                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FOIA                                                                                  | Freedom of Information Act                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BWR                                                                     | boiling-water reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FTE                                                                                   | full-time equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CE                                                                      | Combustion Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FW                                                                                    | Foster Wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CFR                                                                     | Code of Federal Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FY                                                                                    | fiscal year                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CO                                                                      | Commission order                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G&H                                                                                   | Gibbs & Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Co                                                                      | company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GA                                                                                    | General Atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| COL                                                                     | combined license                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCR                                                                                   | gas-cooled reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Comm. Op.                                                               | date of commercial operation                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GE                                                                                    | General Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Con Type                                                                | containment type                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEH                                                                                   | General Electric-Hitachi Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DRYAMB                                                                  | dry, ambient pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DRYSUB                                                                  | dry, subatmospheric                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GEIS                                                                                  | generic environmental impact                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ICECND                                                                  | wet. ice condenser                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       | statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MARK 1                                                                  | wet. Mark I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GETR                                                                                  | General Electric Test Reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MARK 2                                                                  | wet, Mark II                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GHDR                                                                                  | Gibbs & Hill & Durham &                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MARK 3                                                                  | wet, Mark III                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       | Richardson                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CP                                                                      | civil penalty                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GIL                                                                                   | Gilbert Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP Issued                                                               | date of construction permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GL                                                                                    | general license                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         | issuance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GPC                                                                                   | Georgia Power Company                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CRGR                                                                    | Committee To Review Generic                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW                                                                                    | gigawatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                         | Committee to neview deficite                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GWh                                                                                   | gigawatts hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CVP                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GWh<br>HTG                                                                            | gigawatts hours<br>high-temperature gas                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CVP<br>CVTR                                                             | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HTG                                                                                   | gigawatts hours<br>high-temperature gas<br>(reactor)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CVTR                                                                    | Requirements<br>civil penalties<br>Carolinas-Virginia Tube<br>Reactor                                                                                                                                                                                                                                                                                                                                                                                                                      | HTG<br>HWR                                                                            | gigawatts hours<br>high-temperature gas<br>(reactor)<br>heavy-water reactor                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         | Requirements<br>civil penalties<br>Carolinas-Virginia Tube                                                                                                                                                                                                                                                                                                                                                                                                                                 | HTG                                                                                   | gigawatts hours<br>high-temperature gas<br>(reactor)<br>heavy-water reactor<br>International Atomic Energy                                                                                                                                                                                                                                                                                                                                                                          |
| CVTR                                                                    | Requirements<br>civil penalties<br>Carolinas-Virginia Tube<br>Reactor                                                                                                                                                                                                                                                                                                                                                                                                                      | HTG<br>HWR<br>IAEA                                                                    | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency                                                                                                                                                                                                                                                                                                                                                                               |
| CVTR                                                                    | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International                                                                                                                                                                                                                                                                                                                                                                              | HTG<br>HWR<br>IAEA<br>INES                                                            | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale                                                                                                                                                                                                                                                                                                                                             |
| CVTR CWE DANI DBDB                                                      | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel                                                                                                                                                                                                                                                                                                                                                               | HTG<br>HWR<br>IAEA                                                                    | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel                                                                                                                                                                                                                                                                                                                      |
| CVTR CWE DANI DBDB DBT                                                  | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat                                                                                                                                                                                                                                                                                                                                           | HTG<br>HWR<br>IAEA<br>INES<br>ISFSI                                                   | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation                                                                                                                                                                                                                                                                                                 |
| CVTR  CWE  DANI  DBDB  DBT  DC                                          | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification                                                                                                                                                                                                                                                                                                                      | HTG HWR IAEA INES ISFSI ISR                                                           | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery                                                                                                                                                                                                                                                                                |
| CVTR CWE DANI DBDB DBT                                                  | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security                                                                                                                                                                                                                                                                                      | HTG HWR IAEA INES ISFSI ISR KAIS                                                      | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers                                                                                                                                                                                                                                                               |
| CVTR  CWE  DANI  DBDB  DBT  DC  DHS                                     | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.)                                                                                                                                                                                                                                                                               | HTG HWR IAEA INES ISFSI ISR KAIS KI                                                   | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide                                                                                                                                                                                                                                              |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE                                    | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.)                                                                                                                                                                                                                                                   | HTG HWR IAEA INES ISFSI ISR KAIS KI kW                                                | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s)                                                                                                                                                                                                                                  |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT                                | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.)                                                                                                                                                                                                               | HTG HWR IAEA INES ISFSI ISR KAIS KI KW LLP                                            | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop                                                                                                                                                                                                                 |
| CVTR  CWE  DANI  DBDB  DBT  DC  DHS  DOE  DOT  DUKE                     | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company                                                                                                                                                                                            | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW                                        | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste                                                                                                                                                                                     |
| CVTR  CWE  DANI  DBDB  DBT  DC  DHS  DOE  DOT  DUKE  EBSO               | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco                                                                                                                                                                                     | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB                                   | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor)                                                                                                                                                 |
| CVTR  CWE  DANI  DBDB  DBT  DC  DHS  DOE  DOT  DUKE                     | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information                                                                                                                                                                  | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued                         | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued                                                                                                                          |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA                  | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE)                                                                                                                                             | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB                                   | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite-                                                                                             |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA  EIS             | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement                                                                                                              | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR                    | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor                                                                           |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA                  | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement Environmental Protection Agency                                                                              | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR                    | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor mixed-oxide                                                               |
| CVTR  CWE  DANI  DBDB  DBT  DC  DHS  DOE  DOT  DUKE  EBSO EIA  EIS  EPA | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement Environmental Protection Agency (U.S.)                                                                       | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR MOX MW             | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor mixed-oxide megawatt(s)                                                   |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA  EIS EPA  EPR    | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement Environmental Protection Agency (U.S.) Evolutionary Power Reactor                                            | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR MOX MW MWe         | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor mixed-oxide megawatt(s) megawatt(s) electric                              |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA EIS EPA  EPR EPZ | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement Environmental Protection Agency (U.S.) Evolutionary Power Reactor emergency planning zone                    | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR MOX MW MWe MWh     | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor mixed-oxide megawatt(s) megawatt(s) electric megawatt-hour(s)             |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA  EIS EPA  EPR    | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement Environmental Protection Agency (U.S.) Evolutionary Power Reactor emergency planning zone emergency response | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR MOX MW MWE MWH MWH | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor mixed-oxide megawatt(s) electric megawatt(s) electric megawatt(s) thermal |
| CVTR  CWE  DANI DBDB DBT DC DHS  DOE DOT DUKE EBSO EIA EIS EPA  EPR EPZ | Requirements civil penalties Carolinas-Virginia Tube Reactor Commonwealth Edison Company Daniel International Duke & Bechtel design-basis threat design certification Department of Homeland Security (U.S.) Department of Energy (U.S.) Department of Transportation (U.S.) Duke Power Company Ebasco Energy Information Administration (DOE) environmental impact statement Environmental Protection Agency (U.S.) Evolutionary Power Reactor emergency planning zone                    | HTG HWR IAEA INES ISFSI ISR KAIS KI kW LLP LLW LMFB LR Issued LWGR MOX MW MWe MWh     | gigawatts hours high-temperature gas (reactor) heavy-water reactor International Atomic Energy Agency International Nuclear Event Scale independent spent fuel storage installation in situ recovery Kaiser Engineers potassium iodide kilowatt(s) B&W lowered loop low-level radioactive waste liquid metal fast breeder (reactor) license renewal issued light-water-cooled graphite- moderated reactor mixed-oxide megawatt(s) megawatt(s) electric megawatt-hour(s)             |

| NEA       | Nuclear Energy Agency               | ROP            | Reactor Oversight Process        |
|-----------|-------------------------------------|----------------|----------------------------------|
| NMMSS     | Nuclear Material Management and     | RTR            | research and test reactor        |
|           | Safeguards System                   | S&L            | Sargent & Lundy                  |
| NOV       | notice(s) of violation              | S&W            | Stone & Webster                  |
| NOVF      | notice(s) of violation associated   | SAMG           | Severe Accident Management       |
|           | with inspection findings            | 0,11,10        | Guidance                         |
| NOVSL     | notice(s) of violation for severity | SCF            | sodium-cooled fast (reactor)     |
|           | level                               | SDP            | significance determination       |
| NRC       | Nuclear Regulatory                  |                | process                          |
|           | Commission (U.S.)                   | SGEC           | architect for Vogtle             |
| NSP       | Northern States Power               | SHINE          | SHINE Medical Technologies, Inc. |
|           | Company                             | SI             | système internationale           |
| NSSS      | nuclear steam system                |                | (d'unités) (International        |
|           | supplier and design type            |                | System of Units)                 |
| GE 2      | GE Type 2                           | SL             | severity level                   |
| GE 3      | GE Type 3                           | SOARCA         | State-of-the-Art Reactor         |
| GE 4      | GE Type 4                           |                | Consequence Analysis             |
| GE 5      | GE Type 5                           | SSI            | Southern Services                |
| GE 6      | GE Type 6                           |                | Incorporated                     |
| WEST 2LP  | Westinghouse Two-Loop               | STARS          | Strategic Teaming and Resource   |
| WEST 3LP  | Westinghouse Three-Loop             |                | Sharing Group                    |
| WEST 4LP  | Westinghouse Four-Loop              | STP            | South Texas Project              |
| NSTS      | National Source Tracking System     | TMI-2          | Three Mile Island Unit 2         |
| OECD      | Organisation for Economic           | Sv             | sievert                          |
|           | Co-operation and Development        | TRIGA          | Training Reactor and             |
| OL        | operating license                   |                | Isotopes Production,             |
| OL Issued | date of latest full power           |                | General Atomics                  |
|           | operating license                   | TVA            | Tennessee Valley Authority       |
| PG&E      | Pacific Gas & Electric              | UE&C           | United Engineers & Constructors  |
|           | Company                             | USEC           | U.S. Enrichment Corporation      |
| PRA       | probabilistic risk assessment       | <b>US-APWR</b> | United States [version of]       |
| PRIS      | Power Reactor Information           |                | Advanced Pressurized-Water       |
|           | System                              |                | Reactor                          |
| PSEG      | Public Service Electric and         | VBWR           | Vallecitos Boiling-Water         |
|           | Gas Company                         |                | Reactor                          |
| PHWR      | pressurized heavy water reactor     | WDCO           | Westinghouse Development         |
| PWR       | pressurized-water reactor           |                | Corporation                      |
| RIC       | Regulatory Information              | WEST           | Westinghouse Electric            |
|           | Conference                          | WNA            | World Nuclear Association        |
| RLP       | B&W raised loop                     |                |                                  |

| Alabama              | AL | Kentucky       | KY | Ohio           | ОН |
|----------------------|----|----------------|----|----------------|----|
| Alaska               | AK | Louisiana      | LA | Oklahoma       | OK |
| Arizona              | AZ | Maine          | ME | Oregon         | OR |
| Arkansas             | AR | Maryland       | MD | Pennsylvania   | PA |
| California           | CA | Massachusetts  | MA | Puerto Rico    | PR |
| Colorado             | CO | Michigan       | MI | Rhode Island   | RI |
| Connecticut          | CT | Minnesota      | MN | South Carolina | SC |
| Delaware             | DE | Mississippi    | MS | South Dakota   | SD |
| District of Columbia | DC | Missouri       | MO | Tennessee      | TN |
| Florida              | FL | Montana        | MT | Texas          | TX |
| Georgia              | GA | Nebraska       | NE | Utah           | UT |
| Guam                 | GU | Nevada         | NV | Vermont        | VT |
| Hawaii               | HI | New Hampshire  | NH | Virgin Islands | VI |
| Idaho                | ID | New Jersey     | NJ | Virginia       | VA |
| Illinois             | IL | New Mexico     | NM | Washington     | WA |
| Indiana              | IN | New York       | NY | West Virginia  | WV |
| lowa                 | IA | North Carolina | NC | Wisconsin      | WI |
| Kansas               | KS | North Dakota   | ND | Wyoming        | WY |

### **QUICK-REFERENCE METRIC CONVERSION TABLES**

#### **SPACE AND TIME**

| Quantity     | From Inch-Pound Units | To Metric Units  | Multiply by |
|--------------|-----------------------|------------------|-------------|
| Length       | mi (statute)          | km               | 1.609347    |
|              | yd                    | m                | *0.9144     |
|              | ft (int)              | m                | *0.3048     |
|              | in                    | cm               | *2.54       |
| Area         | mi²                   | km²              | 2.589998    |
|              | acre                  | m <sup>2</sup>   | 4,046.873   |
|              | yd²                   | m <sup>2</sup>   | 0.8361274   |
|              | ft²                   | m <sup>2</sup>   | *0.09290304 |
|              | in²                   | cm <sup>2</sup>  | *6.4516     |
| Volume       | acre foot             | m³               | 1,233.489   |
|              | yd³                   | $m^3$            | 0.7645549   |
|              | ft <sup>3</sup>       | $m^3$            | 0.02831685  |
|              | ft³                   | L                | 28.31685    |
|              | gal                   | L                | 3.785412    |
|              | fl oz                 | mL               | 29.57353    |
|              | in³                   | cm <sup>3</sup>  | 16.38706    |
| Velocity     | mi/h                  | km/h             | 1.609347    |
|              | ft/s                  | m/s              | *0.3048     |
| Acceleration | ft/s²                 | m/s <sup>2</sup> | *0.3048     |
|              |                       |                  |             |

#### **NUCLEAR REACTION AND IONIZING RADIATION**

| Quantity                     | From Inch-Pound Units | To Metric Units   | Multiply by |
|------------------------------|-----------------------|-------------------|-------------|
| Activity (of a radionuclide) | curie (Ci)            | MBq               | *37,000.0   |
|                              | dpm                   | becquerel (Bq)    | 0.016667    |
| Absorbed dose                | rad                   | gray (Gy)         | *0.01       |
|                              | rad                   | cGy (centigray)   | *1.0        |
| Dose equivalent              | rem                   | sievert (Sv)      | *0.01       |
|                              | rem                   | mSv               | *10.0       |
|                              | mrem                  | mSv               | *0.01       |
|                              | mrem                  | μSv (microsivert) | *10.0       |
| Exposure                     | roentgen (R)          | C/kg (coulomb)    | 0.000258    |
| (X-rays and gamma rays)      |                       |                   |             |

#### HEAT

| Quantity               | From Inch-Pound Units     | To Metric Units | Multiply by            |
|------------------------|---------------------------|-----------------|------------------------|
| Thermodynamic          | °F                        | K               | *K = (°F + 459.67)/1.8 |
| temperature            |                           |                 |                        |
| Celsius temperature    | °F                        | °C              | *°C = (°F-32)/1.8      |
| Linear expansion       | 1/°F                      | 1/K or 1/°C     | *1.8                   |
| coefficient            |                           |                 |                        |
| Thermal conductivity   | (Btu • in)/(ft² • h • °F) | W/(m • °C)      | 0.1442279              |
| Coefficient of heat    | Btu / (ft² • h • °F)      | W/(m² • °C)     | 5.678263               |
| transfer               |                           |                 |                        |
| Heat capacity          | Btu/°F                    | kJ/°C           | 1.899108               |
| Specific heat capacity | Btu/(lb • °F)             | kJ/(kg • °C)    | *4.1868                |

#### **OUICK-REFERENCE METRIC CONVERSION TABLES**

#### **HEAT** (continued)

| Entropy           | Btu/°F        | kJ/°C        | 1.899108 |  |
|-------------------|---------------|--------------|----------|--|
| Specific entropy  | Btu/(lb • °F) | kJ/(kg • °C) | *4.1868  |  |
| Specific internal | Btu/lb        | kJ/kg        | *2.326   |  |
| enerav            |               |              |          |  |

#### MECHANICS

|                         | MECHANIC                     |                  |             |
|-------------------------|------------------------------|------------------|-------------|
| Quantity                | From Inch-Pound Units        | To Metric Units  | Multiply by |
| Mass (weight)           | ton (short)                  | t (metric ton)   | *0.90718474 |
|                         | lb (avdp)                    | kg               | *0.45359237 |
| Moment of mass          | lb • ft                      | kg • m           | 0.138255    |
| Density                 | ton (short)/yd3              | t/m³             | 1.186553    |
|                         | lb/ft³                       | g/m³             | 16.01846    |
| Concentration (mass)    | lb/gal                       | g/L              | 119.8264    |
| Momentum                | lb • ft/s                    | kg • m/s         | 0.138255    |
| Angular momentum        | lb • ft²/s                   | kg • m²/s        | 0.04214011  |
| Moment of inertia       | lb • ft²                     | kg • m²          | 0.04214011  |
| Force                   | kip (kilopound)              | kN (kilonewton)  | 4.448222    |
|                         | lbf                          | N (newton)       | 4.448222    |
| Moment of force, torque | lbf • ft                     | N • m            | 1.355818    |
|                         | lbf • in                     | N • m            | 0.1229848   |
| Pressure                | atm (std)                    | kPa (kilopascal) | *101.325    |
|                         | bar                          | kPa              | *100.0      |
|                         | lbf/in2 (formerly psi)       | kPa              | 6.894757    |
|                         | inHg (32 °F)                 | kPa              | 3.38638     |
|                         | ftH <sub>2</sub> O (39.2 °F) | kPa              | 2.98898     |
|                         | inH <sub>2</sub> O (60 °F)   | kPa              | 0.24884     |
|                         | mmHg (0 °C)                  | kPa              | 0.133322    |
| Stress                  | kip/in² (formerly ksi)       | MPa              | 6.894757    |
|                         | lbf/in2 (formerly psi)       | MPa              | 0.006894757 |
|                         | lbf/in2 (formerly psi)       | kPa              | 6.894757    |
|                         | lbf/ft2                      | kPa              | 0.04788026  |
| Energy, work            | kWh                          | MJ               | *3.6        |
|                         | cal <sup>th</sup>            | J (joule)        | *4.184      |
|                         | Btu                          | kJ               | 1.055056    |
|                         | ft • lbf                     | J                | 1.355818    |
|                         | therm (US)                   | MJ               | 105.4804    |
| Power                   | Btu/s                        | kW               | 1.055056    |
|                         | hp (electric)                | kW               | *0.746      |
|                         | Btu/h                        | W                | 0.2930711   |

<sup>\*</sup> Exact conversion factors

Note: The information contained in this table is intended to familiarize readers with commonly used International System of Units (SI) units and provide a quick reference to aid understanding of documents containing SI units. The conversion factors listed here have not been approved as NRC guidelines for the development of licensing actions, regulations, or policy.

To convert from metric units to inch-pound units, divide the metric unit by the conversion factor.

Sources: Federal Standard 376B, "Preferred Metric Units for General Use by the Federal Government," and International Commission on Radiation Units and Measurements, ICRU Report 33, "Radiation Quantities and Units," issued 1980.

## APPENDIX A

# Commercial Nuclear Power Reactors Operating Reactors

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                      | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Arkansas Nuclear One, Unit 1 Entergy Operations, Inc. London, AR (6 miles NW of Russellville, AR) 05000313 www.nrc.gov/info-finder/reactors/ano1.html                         | IV            | PWR-DRYAMB<br>B&W LLP<br>BECH<br>BECH                 | 2,568           | 12/06/1968<br>05/21/1974<br>12/19/1974<br>06/20/2001<br>05/20/2034 | 99<br>90<br>87<br>102<br>56<br>98                 |
| Arkansas Nuclear One, Unit 2 Entergy Operations, Inc. London, AR (6 miles NW of Russellville, AR) 05000368 www.nrc.gov/info-finder/reactors/ano2.html                         | IV            | PWR-DRYAMB<br>CE<br>BECH<br>BECH                      | 3,026           | 12/06/1972<br>09/01/1978<br>03/26/1980<br>06/30/2005<br>07/17/2038 | 90<br>97<br>90<br>93<br>91<br>85                  |
| Beaver Valley Power Station, Unit 1 FirstEnergy Nuclear Operating Co. Shippingport, PA (17 miles W of McCandless, PA) 05000334 www.nrc.gov/info-finder/reactors/bv1.html      | I             | PWR-DRYAMB<br>WEST 3LP<br>S&W<br>S&W                  | 2,900           | 06/26/1970<br>07/02/1976<br>10/01/1976<br>11/05/2009<br>01/29/2036 | 92<br>91<br>101<br>92<br>86<br>86                 |
| Beaver Valley Power Station, Unit 2 FirstEnergy Nuclear Operating Co. Shippingport, PA (17 miles W of McCandless, PA) 05000412 www.nrc.gov/info-finder/reactors/bv2.html      | I             | PWR-DRYAMB<br>WEST 3LP<br>S&W<br>S&W                  | 2,900           | 05/03/1974<br>08/14/1987<br>11/17/1987<br>11/05/2009<br>05/27/2047 | 87<br>84<br>102<br>91<br>97<br>98                 |
| Braidwood Station, Unit 1 Exelon Generation Co., LLC Braceville, IL (20 miles SW of Joliet, IL) 05000456 www.nrc.gov/info-finder/reactors/brai1.html                          | III           | PWR-DRYAMB<br>WEST 4LP<br>S&L<br>CWE                  | 3,645           | 12/31/1975<br>07/02/1987<br>07/29/1988<br>N/A<br>10/17/2026        | 95<br>89<br>101<br>91<br>95<br>103                |
| Braidwood Station, Unit 2<br>Exelon Generation Co., LLC<br>Braceville, IL<br>(20 miles SW of Joliet, IL)<br>05000457<br>www.nrc.gov/info-finder/reactors/brai2.html           | III           | PWR-DRYAMB<br>WEST 4LP<br>S&L<br>CWE                  | 3,645           | 12/31/1975<br>05/20/1988<br>10/17/1988<br>N/A<br>12/18/2027        | 93<br>99<br>93<br>93<br>98<br>96                  |
| Browns Ferry Nuclear Plant, Unit 1 Tennessee Valley Authority Athens (Limestone County), AL (32 miles W of Huntsville, AL) 05000259 www.nrc.gov/info-finder/reactors/bf1.html | II            | BWR-MARK 1<br>GE 4<br>TVA<br>TVA                      | 3,458           | 05/10/1967<br>12/20/1973<br>08/01/1974<br>05/04/2006<br>12/20/2033 | 94<br>86<br>91<br>88<br>94<br>90                  |



## APPENDIX A

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|---------------------------------------------------------------|---------------------------------------------------|
| Browns Ferry Nuclear Plant, Unit 2<br>Tennessee Valley Authority                         | II            | BWR-MARK 1<br>GE 4                                    | 3,458           | 05/10/1967<br>06/28/1974                                      | 94<br>91                                          |
| Athens (Limestone County), AL                                                            |               | TVA                                                   |                 | 03/01/1975                                                    | 80                                                |
| (32 miles W of Huntsville, AL)                                                           |               | TVA                                                   |                 | 05/04/2006                                                    | 99                                                |
| 05000260                                                                                 |               | 1 47 (                                                |                 | 06/28/2034                                                    | 79                                                |
| www.nrc.gov/info-finder/reactors/bf2.html                                                |               |                                                       |                 | 00, 20, 200 .                                                 | 98                                                |
| Browns Ferry Nuclear Plant, Unit 3                                                       | II            | BWR-MARK 1                                            | 3,458           | 07/31/1968                                                    | 95                                                |
| Tennessee Valley Authority                                                               |               | GE 4                                                  |                 | 07/02/1976                                                    | 81                                                |
| Athens (Limestone County), AL                                                            |               | TVA                                                   |                 | 03/01/1977                                                    | 87                                                |
| (32 miles W of Huntsville, AL)                                                           |               | TVA                                                   |                 | 05/04/2006                                                    | 83                                                |
| 05000296                                                                                 |               |                                                       |                 | 07/02/2036                                                    | 89<br>88                                          |
| www.nrc.gov/info-finder/reactors/bf3.html  Brunswick Steam Electric Plant, Unit 1        | II.           | BWR-MARK 1                                            | 2,923           | 02/07/1970                                                    | 98                                                |
| Duke Energy Progress, Inc.                                                               | 11            | GE 4                                                  | 2,923           | 09/08/1976                                                    | 83                                                |
| Southport, NC                                                                            |               | UE&C                                                  |                 | 03/18/1977                                                    | 100                                               |
| (30 miles S of Wilmington, NC)                                                           |               | BRRT                                                  |                 | 06/26/2006                                                    | 77                                                |
| 05000325                                                                                 |               | Bran                                                  |                 | 09/08/2036                                                    | 92                                                |
| www.nrc.gov/info-finder/reactors/bru1.html                                               |               |                                                       |                 | 00,00,2000                                                    | 89                                                |
| Brunswick Steam Electric Plant, Unit 2                                                   | II            | BWR-MARK 1                                            | 2,923           | 02/07/1970                                                    | 80                                                |
| Duke Energy Progress, Inc.                                                               |               | GE 4                                                  |                 | 12/27/1974                                                    | 99                                                |
| Southport, NC                                                                            |               | UE&C                                                  |                 | 11/03/1975                                                    | 79                                                |
| (30 miles S of Wilmington, NC)                                                           |               | BRRT                                                  |                 | 06/26/2006                                                    | 98                                                |
| 05000324                                                                                 |               |                                                       |                 | 12/27/2034                                                    | 73                                                |
| www.nrc.gov/info-finder/reactors/bru2.html                                               |               | DIA/D DDI/AAAD                                        | 0.045           | 10/01/1075                                                    | 98                                                |
| Byron Station, Unit 1                                                                    | Ш             | PWR-DRYAMB<br>WEST 4LP                                | 3,645           | 12/31/1975                                                    | 94<br>101                                         |
| Exelon Generation Co., LLC                                                               |               | S&L                                                   |                 | 02/14/1985<br>09/16/1985                                      | 88                                                |
| Byron, IL<br>(17 miles SW of Rockford, IL)                                               |               | CWE                                                   |                 | N/A                                                           | 88                                                |
| 05000454                                                                                 |               | OVVL                                                  |                 | 10/31/2024                                                    | 96                                                |
| www.nrc.gov/info-finder/reactors/byro1.html                                              |               |                                                       |                 | 10/01/2024                                                    | 97                                                |
| Byron Station, Unit 2                                                                    | Ш             | PWR-DRYAMB                                            | 3,645           | 12/31/1975                                                    | 102                                               |
| Exelon Generation Co., LLC                                                               |               | WEST 4LP                                              |                 | 01/30/1987                                                    | 96                                                |
| Byron, IL                                                                                |               | S&L                                                   |                 | 08/02/1987                                                    | 93                                                |
| (17 miles SW of Rockford, IL)                                                            |               | CWE                                                   |                 | N/A                                                           | 94                                                |
| 05000455                                                                                 |               |                                                       |                 | 11/06/2026                                                    | 86                                                |
| www.nrc.gov/info-finder/reactors/byro2.html                                              |               |                                                       | 2 - 2 -         | 0.1/10/1070                                                   | 94                                                |
| Callaway Plant                                                                           | IV            | PWR-DRYAMB                                            | 3,565           | 04/16/1976                                                    | 98                                                |
| Union Electric Co.<br>Fulton, MO                                                         |               | WEST 4LP<br>BECH                                      |                 | 10/18/1984<br>12/19/1984                                      | 86<br>90                                          |
| (25 miles NE of Jefferson City, MO)                                                      |               | DANI                                                  |                 | 03/06/2015                                                    | 103                                               |
| 05000483                                                                                 |               | DAM                                                   |                 | 10/18/2044                                                    | 77                                                |
| www.nrc.gov/info-finder/reactors/call.html                                               |               |                                                       |                 | 10/10/2077                                                    | 89                                                |
|                                                                                          |               |                                                       |                 |                                                               |                                                   |

## Appendices.

## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                                   | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Calvert Cliffs Nuclear Power Plant, Unit 1 Calvert Cliffs Nuclear Power Plant, LLC Exelon Generation Co., LLC Lusby, MD (40 miles S of Annapolis, MD) 05000317 www.nrc.gov/info-finder/reactors/calv1.html | I             | PWR-DRYAMB<br>CE<br>BECH<br>BECH                      | 2,737           | 07/07/1969<br>07/31/1974<br>05/08/1975<br>03/23/2000<br>07/31/2034 | 98<br>90<br>101<br>81<br>97<br>91                 |
| Calvert Cliffs Nuclear Power Plant, Unit 2 Calvert Cliffs Nuclear Power Plant, LLC Exelon Generation Co., LLC Lusby, MD (40 miles S of Annapolis, MD) 05000318 www.nrc.gov/info-finder/reactors/calv2.html | I             | PWR-DRYAMB<br>CE<br>BECH<br>BECH                      | 2,737           | 07/07/1969<br>08/13/1976<br>04/01/1977<br>03/23/2000<br>08/13/2036 | 93<br>97<br>92<br>101<br>81<br>100                |
| Catawba Nuclear Station, Unit 1 Duke Energy Carolinas, LLC York, SC (18 miles S of Charlotte, NC) 05000413 www.nrc.gov/info-finder/reactors/cat1.html                                                      | II            | PWR-ICECND<br>WEST 4LP<br>DUKE<br>DUKE                | 3,411           | 08/07/1975<br>01/17/1985<br>06/29/1985<br>12/05/2003<br>12/05/2043 | 91<br>100<br>89<br>89<br>96<br>86                 |
| Catawba Nuclear Station, Unit 2 Duke Energy Carolinas, LLC York, SC (18 miles S of Charlotte, NC) 05000414 www.nrc.gov/info-finder/reactors/cat2.html                                                      | II            | PWR-ICECND<br>WEST 4LP<br>DUKE<br>DUKE                | 3,411           | 08/07/1975<br>05/15/1986<br>08/19/1986<br>12/05/2003<br>12/05/2043 | 90<br>92<br>101<br>92<br>86<br>100                |
| Clinton Power Station, Unit 1 Exelon Generation Co., LLC Clinton, IL (23 miles SSE of Bloomington, IL) 05000461 www.nrc.gov/info-finder/reactors/clin.html                                                 | III           | BWR-MARK 3<br>GE 6<br>S&L<br>BALD                     | 3,473           | 02/24/1976<br>04/17/1987<br>11/24/1987<br>N/A<br>09/29/2026        | 97<br>92<br>93<br>100<br>82<br>97                 |
| Columbia Generating Station Energy Northwest Benton County, WA (12 miles NW of Richland, WA) 05000397 www.nrc.gov/info-finder/reactors/wash2.htm                                                           | IV<br>nl      | BWR-MARK 2<br>GE 5<br>B&R<br>BECH                     | 3,486           | 03/19/1973<br>04/13/1984<br>12/13/1984<br>05/22/2012<br>12/20/2043 | 67<br>95<br>50<br>97<br>80<br>98                  |
| Comanche Peak Nuclear Power Plant, Unit 1<br>Luminant Generation Co., LLC<br>Glen Rose, TX<br>(40 miles SW of Fort Worth, TX)<br>05000445<br>www.nrc.gov/info-finder/reactors/cp1.html                     | IV            | PWR-DRYAMB<br>WEST 4LP<br>G&H<br>BRRT                 | 3,612           | 12/19/1974<br>04/17/1990<br>08/13/1990<br>N/A<br>02/08/2030        | 100<br>91<br>91<br>98<br>94<br>85                 |



## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                     | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Comanche Peak Nuclear Power Plant, Unit 2<br>Luminant Generation Company, LLC<br>Glen Rose, TX<br>(40 miles SW of Fort Worth, TX)<br>05000446<br>www.nrc.gov/info-finder/reactors/cp2.html   | IV            | PWR-DRYAMB<br>WEST 4LP<br>BECH<br>BRRT                | 3,612           | 12/19/1974<br>04/06/1993<br>08/03/1993<br>N/A<br>02/02/2033        | 94<br>104<br>92<br>91<br>99<br>93                 |
| Cooper Nuclear Station Nebraska Public Power District Brownville, NE (23 miles S of Nebraska City, NE) 05000298 www.nrc.gov/info-finder/reactors/cns.html                                    | IV            | BWR-MARK 1<br>GE 4<br>B&R<br>B&R                      | 2,419           | 06/04/1968<br>01/18/1974<br>07/01/1974<br>11/29/2010<br>01/18/2034 | 72<br>100<br>86<br>87<br>97<br>88                 |
| Davis-Besse Nuclear Power Station, Unit 1 FirstEnergy Nuclear Operating Co. Oak Harbor, OH (21 miles ESE of Toledo, OH) 05000346 www.nrc.gov/info-finder/reactors/davi.html                  | III           | PWR-DRYAMB<br>B&W RLP<br>BECH<br>B&W                  | 2,817           | 03/24/1971<br>04/22/1977<br>07/31/1978<br>N/A<br>04/22/2017        | 99<br>66<br>81<br>91<br>95<br>74                  |
| Diablo Canyon Nuclear Power Plant, Unit 1<br>Pacific Gas & Electric Co.<br>Avila Beach, CA<br>(12 miles SW of San Luis Obispo, CA)<br>05000275<br>www.nrc.gov/info-finder/reactors/diab1.htm | IV<br>I       | PWR-DRYAMB<br>WEST 4LP<br>PG&E<br>PG&E                | 3,411           | 4/23/1968<br>11/02/1984<br>05/07/1985<br>N/A<br>11/02/2024         | 84<br>88<br>100<br>84<br>95<br>87                 |
| Diablo Canyon Nuclear Power Plant, Unit 2<br>Pacific Gas & Electric Co.<br>Avila Beach, CA<br>(12 miles SW of San Luis Obispo, CA)<br>05000323<br>www.nrc.gov/info-finder/reactors/diab2.htm | IV<br>I       | PWR-DRYAMB<br>WEST 4LP<br>PG&E<br>PG&E                | 3,411           | 12/09/1970<br>08/26/1985<br>03/13/1986<br>N/A<br>08/26/2025        | 84<br>100<br>89<br>97<br>82<br>86                 |
| Donald C. Cook Nuclear Plant, Unit 1 Indiana Michigan Power Co. Bridgman, MI (13 miles S of Benton Harbor, MI) 05000315 www.nrc.gov/info-finder/reactors/cook1.htm                           | III<br>nl     | PWR-ICECND<br>WEST 4LP<br>AEP<br>AEP                  | 3,304           | 03/25/1969<br>10/25/1974<br>08/28/1975<br>08/30/2005<br>10/25/2034 | 3<br>88<br>87<br>104<br>78<br>94                  |
| Donald C. Cook Nuclear Plant, Unit 2<br>Indiana Michigan Power Co.<br>Bridgman, MI<br>(13 miles S of Benton Harbor, MI)<br>05000316<br>www.nrc.gov/info-finder/reactors/cook2.htm            | III<br>nl     | PWR-ICECND<br>WEST 4LP<br>AEP<br>AEP                  | 3,468           | 03/25/1969<br>12/23/1977<br>07/01/1978<br>08/30/2005<br>12/23/2037 | 87<br>84<br>104<br>91<br>85<br>101                |

### APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                            | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date                   | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---------------------------------------------------|
| Dresden Nuclear Power Station, Unit 2<br>Exelon Generation Co., LLC<br>Morris, IL<br>(25 miles SW of Joliet, IL)<br>05000237<br>www.nrc.gov/info-finder/reactors/dres2.htm          | III           | BWR-MARK 1<br>GE 3<br>S&L<br>UE&C                     | 2,957           | 01/10/1966<br>02/20/1991 <sup>A</sup><br>06/09/1970<br>10/28/2004<br>12/22/2029 | 91<br>102<br>95<br>104<br>85<br>98                |
| Dresden Nuclear Power Station, Unit 3 Exelon Generation Co., LLC Morris, IL (25 miles SW of Joliet, IL) 05000249 www.nrc.gov/info-finder/reactors/dres3.htm                         | III           | BWR-MARK 1<br>GE 3<br>S&L<br>UE&C                     | 2,957           | 10/14/1966<br>01/12/1971<br>11/16/1971<br>10/28/2004<br>01/12/2031              | 97<br>90<br>99<br>91<br>89<br>95                  |
| Duane Arnold Energy Center<br>NextEra Energy Duane Arnold, LLC<br>Palo, IA<br>(8 miles NW of Cedar Rapids, IA)<br>05000331<br>www.nrc.gov/info-finder/reactors/duan.html            | III           | BWR-MARK 1<br>GE 4<br>BECH<br>BECH                    | 1,912           | 06/22/1970<br>02/22/1974<br>02/01/1975<br>12/16/2010<br>02/21/2034              | 92<br>89<br>99<br>83<br>89<br>79                  |
| Edwin I. Hatch Nuclear Plant, Unit 1<br>Southern Nuclear Operating Co.<br>Baxley, GA<br>(20 miles S of Vidalia, GA)<br>05000321<br>www.nrc.gov/info-finder/reactors/hat1.html       | II            | BWR-MARK 1<br>GE 4<br>BECH<br>GPC                     | 2,804           | 09/30/1969<br>10/13/1974<br>12/31/1975<br>01/15/2002<br>08/06/2034              | 94<br>85<br>98<br>89<br>94<br>89                  |
| Edwin I. Hatch Nuclear Plant, Unit 2<br>Southern Nuclear Operating Co., Inc.<br>Baxley, GA<br>(20 miles S of Vidalia, GA)<br>05000366<br>www.nrc.gov/info-finder/reactors/hat2.html | II            | BWR-MARK 1<br>GE 4<br>BECH<br>GPC                     | 2,804           | 12/27/1972<br>06/13/1978<br>09/05/1979<br>01/15/2002<br>06/13/2038              | 67<br>96<br>78<br>98<br>89<br>99                  |
| Fermi, Unit 2 DTE Electric Company Newport, MI (25 miles NE of Toledo, OH) 05000341 www.nrc.gov/info-finder/reactors/ferm2.htm                                                      | III           | BWR-MARK 1<br>GE 4<br>S&L<br>DANI                     | 3,486           | 09/26/1972<br>07/15/1985<br>01/23/1988<br>N/A<br>03/20/2025                     | 75<br>80<br>94<br>54<br>62<br>82                  |
| Fort Calhoun Station, Unit 1<br>Omaha Public Power District<br>Ft. Calhoun, NE<br>(19 miles N of Omaha, NE)<br>05000285<br>www.nrc.gov/info-finder/reactors/fcs.html                | IV            | PWR-DRYAMB<br>CE<br>GHDR<br>GHDR                      | 1,500           | 06/07/1968<br>08/09/1973<br>09/26/1973<br>11/04/2003<br>08/09/2033              | 100<br>102<br>28<br>0<br>1                        |

A: The Atomic Energy Commission (AEC) issued a provisional Operating License (OL) on 12/22/1969, allowing commercial operation. The NRC issued a full-term OL on 02/20/1991.



### APPENDIX A 🦃

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Grand Gulf Nuclear Station, Unit 1 Entergy Operations, Inc. Port Gibson, MS (20 miles S of Vicksburg, MS) 05000416 www.nrc.gov/info-finder/reactors/gg1.html                            | IV            | BWR-MARK 3<br>GE 6<br>BECH<br>BECH                    | 4,408           | 09/04/1974<br>11/01/1984<br>07/01/1985<br>N/A<br>11/01/2024        | 100<br>88<br>94<br>70<br>86<br>82                 |
| H.B. Robinson Steam Electric Plant, Unit 2<br>Duke Energy Progress, Inc.<br>Hartsville, SC<br>(26 miles NW of Florence, SC)<br>05000261<br>www.nrc.gov/info-finder/reactors/rob2.html   | II            | PWR-DRYAMB<br>WEST 3LP<br>EBSO<br>EBSO                | 2,339           | 04/13/1967<br>07/31/1970<br>03/07/1971<br>04/19/2004<br>07/31/2030 | 104<br>57<br>100<br>85<br>85<br>86                |
| Hope Creek Generating Station, Unit 1<br>PSEG Nuclear, LLC<br>Hancocks Bridge, NJ<br>(18 miles SE of Wilmington, DE)<br>05000354<br>www.nrc.gov/info-finder/reactors/hope.html          | I             | BWR-MARK 1<br>GE 4<br>BECH<br>BECH                    | 3,840           | 11/04/1974<br>07/25/1986<br>12/20/1986<br>07/20/2011<br>04/11/2046 | 95<br>93<br>103<br>93<br>80<br>102                |
| Indian Point Nuclear Generating, Unit 2<br>Entergy Nuclear Indian Point 2, LLC<br>Buchanan, NY<br>(24 miles N of New York, NY)<br>05000247<br>www.nrc.gov/info-finder/reactors/ip2.html | I             | PWR-DRYAMB<br>WEST 4LP<br>UE&C<br>WDCO                | 3,216           | 10/14/1966<br>09/28/1973<br>08/01/1974<br>N/A<br>09/28/2013        | 98<br>82<br>98<br>90<br>77<br>93                  |
| Indian Point Nuclear Generating, Unit 3 Entergy Nuclear Indian Point 3, LLC Buchanan, NY (24 miles N of New York, NY) 05000286 www.nrc.gov/info-finder/reactors/ip3.html                | I             | PWR-DRYAMB<br>WEST 4LP<br>UE&C<br>WDCO                | 3,216           | 08/13/1969<br>12/12/1975<br>08/30/1976<br>N/A<br>12/12/2015        | 85<br>99<br>90<br>100<br>94<br>98                 |
| James A. FitzPatrick Nuclear Power Plant<br>Entergy Nuclear FitzPatrick, LLC<br>Scriba, NY<br>(6 miles NE of Oswego, NY)<br>05000333<br>www.nrc.gov/info-finder/reactors/fitz.html      | I             | BWR-MARK 1<br>GE 4<br>S&W<br>S&W                      | 2,536           | 05/20/1970<br>10/17/1974<br>07/28/1975<br>09/08/2008<br>10/17/2034 | 99<br>85<br>97<br>84<br>89<br>79                  |
| Joseph M. Farley Nuclear Plant, Unit 1<br>Southern Nuclear Operating Co.<br>Columbia, AL<br>(18 miles E of Dothan, AL)<br>05000348<br>www.nrc.gov/info-finder/reactors/far1.html        | II            | PWR-DRYAMB<br>WEST 3LP<br>SSI<br>DANI                 | 2,775           | 08/16/1972<br>06/25/1977<br>12/01/1977<br>05/12/2005<br>06/25/2037 | 90<br>88<br>101<br>91<br>90<br>102                |

## APPENDICES

## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                         | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Joseph M. Farley Nuclear Plant, Unit 2<br>Southern Nuclear Operating Co.<br>Columbia, AL<br>(18 miles E of Dothan, AL)<br>05000364<br>www.nrc.gov/info-finder/reactors/far2.html | II            | PWR-DRYAMB<br>WEST 3LP<br>SSI<br>BECH                 | 2,775           | 08/16/1972<br>03/31/1981<br>07/30/1981<br>05/12/2005<br>03/31/2041 | 96<br>88<br>89<br>104<br>91<br>89                 |
| LaSalle County Station, Unit 1 Exelon Generation Co., LLC Marseilles, IL (11 miles SE of Ottawa, IL) 05000373 www.nrc.gov/info-finder/reactors/lasa1.html                        | III           | BWR-MARK 2<br>GE 5<br>S&L<br>CWE                      | 3,546           | 09/10/1973<br>04/17/1982<br>01/01/1984<br>N/A<br>04/17/2022        | 99<br>94<br>101<br>97<br>95<br>93                 |
| LaSalle County Station, Unit 2 Exelon Generation Co., LLC Marseilles, IL (11 miles SE of Ottawa, IL) 05000374 www.nrc.gov/info-finder/reactors/lasa2.html                        | III           | BWR-MARK 2<br>GE 5<br>S&L<br>CWE                      | 3,546           | 09/10/1973<br>12/16/1983<br>10/19/1984<br>N/A<br>12/16/2023        | 93<br>101<br>96<br>103<br>88<br>95                |
| Limerick Generating Station, Unit 1 Exelon Generation Co., LLC Limerick, PA (21 miles NW of Philadelphia, PA) 05000352 www.nrc.gov/info-finder/reactors/lim1.html                | I             | BWR-MARK 2<br>GE 4<br>BECH<br>BECH                    | 3,515           | 06/19/1974<br>08/08/1985<br>02/01/1986<br>N/A<br>10/26/2024        | 101<br>91<br>96<br>85<br>101<br>91                |
| Limerick Generating Station, Unit 2<br>Exelon Generation Co., LLC<br>Limerick, PA<br>(21 miles NW of Philadelphia, PA)<br>05000353<br>www.nrc.gov/info-finder/reactors/lim2.html | I             | BWR-MARK 2<br>GE 4<br>BECH<br>BECH                    | 3,515           | 06/19/1974<br>08/25/1989<br>01/08/1990<br>N/A<br>06/22/2029        | 94<br>99<br>90<br>95<br>94<br>99                  |
| McGuire Nuclear Station, Unit 1 Duke Energy Carolinas, LLC Huntersville, NC (17 miles N of Charlotte, NC) 05000369 www.nrc.gov/info-finder/reactors/mcg1.htm                     | II            | PWR-ICECND<br>WEST 4LP<br>DUKE<br>DUKE                | 3,411           | 02/23/1973<br>07/08/1981<br>12/01/1981<br>12/05/2003<br>06/12/2041 | 104<br>92<br>94<br>105<br>82<br>82                |
| McGuire Nuclear Station, Unit 2 Duke Energy Carolinas, LLC Huntersville, NC (17 miles N of Charlotte, NC) 05000370 www.nrc.gov/info-finder/reactors/mcg2.htm                     | II            | PWR-ICECND<br>WEST 4LP<br>DUKE<br>DUKE                | 3,411           | 02/23/1973<br>05/27/1983<br>03/01/1984<br>12/05/2003<br>03/03/2043 | 94<br>104<br>91<br>82<br>95<br>94                 |



## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                               | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date                   | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---------------------------------------------------|
| Millstone Power Station, Unit 2<br>Dominion Nuclear Connecticut, Inc.<br>Waterford, CT<br>(3.2 miles SW of New London, CT)<br>05000336<br>www.nrc.gov/info-finder/reactors/mill2.html                  | I             | PWR-DRYAMB<br>CE<br>BECH<br>BECH                      | 2,700           | 12/11/1970<br>09/26/1975<br>12/26/1975<br>11/28/2005<br>07/31/2035              | 81<br>97<br>87<br>83<br>95<br>85                  |
| Millstone Power Station, Unit 3<br>Dominion Nuclear Connecticut, Inc.<br>Waterford, CT<br>(3.2 miles SW of New London, CT)<br>05000423<br>www.nrc.gov/info-finder/reactors/mill3.html                  | I             | PWR-DRYSUB<br>WEST 4LP<br>S&W<br>S&W                  | 3,650           | 08/09/1974<br>01/31/1986<br>04/23/1986<br>11/28/2005<br>11/25/2045              | 105<br>86<br>87<br>100<br>87<br>87                |
| Monticello Nuclear Generating Plant, Unit 1<br>Northern States Power Company-Minnesota<br>Monticello, MN<br>(30 miles NW of Minneapolis, MN)<br>05000263<br>www.nrc.gov/info-finder/reactors/mont.html | III           | BWR-MARK 1<br>GE 3<br>BECH<br>BECH                    | 2,004           | 06/19/1967<br>01/09/1981 <sup>B</sup><br>06/30/1971<br>11/08/2006<br>09/08/2030 | 83<br>94<br>69<br>101<br>50<br>78                 |
| Nine Mile Point Nuclear Station, Unit 1 Nine Mile Point Nuclear Station, LLC Scriba, NY (6 miles NE of Oswego, NY) 05000220 www.nrc.gov/info-finder/reactors/nmp1.html                                 | I             | BWR-MARK 1<br>GE 2<br>NIAG<br>S&W                     | 1,850           | 04/12/1965<br>12/26/1974 <sup>o</sup><br>12/01/1969<br>10/31/2006<br>08/22/2029 | 92<br>97<br>84<br>87<br>88<br>98                  |
| Nine Mile Point Nuclear Station, Unit 2<br>Nine Mile Point Nuclear Station, LLC<br>Scriba, NY<br>(6 miles NE of Oswego, NY)<br>05000410<br>www.nrc.gov/info-finder/reactors/nmp2.html                  | I             | BWR-MARK 2<br>GE 5<br>S&W<br>S&W                      | 3,988           | 06/24/1974<br>07/02/1987<br>03/11/1988<br>10/31/2006<br>10/31/2046              | 99<br>89<br>95<br>83<br>99                        |
| North Anna Power Station, Unit 1<br>Virginia Electric & Power Co.<br>Mineral (Louisa County), VA<br>(40 miles NW of Richmond, VA)<br>05000338<br>www.nrc.gov/info-finder/reactors/na1.html             | II            | PWR-DRYSUB<br>WEST 3LP<br>S&W<br>S&W                  | 2,940           | 02/19/1971<br>04/01/1978<br>06/06/1978<br>03/20/2003<br>04/01/2038              | 92<br>86<br>78<br>89<br>89<br>100                 |

B: The AEC issued a provisional OL on 09/08/1970, allowing commercial operation. The NRC issued a full-term OL on 01/09/1981.

C: The AEC issued a provisional OL on 08/22/1969, allowing commercial operation. The NRC issued a full-term OL on 12/26/1974.

## APPENDIX A 🥞

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                    | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date                   | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---------------------------------------------------|
| North Anna Power Station, Unit 2<br>Virginia Electric & Power Co.<br>Mineral (Louisa County), VA<br>(40 miles NW of Richmond, VA)<br>05000339<br>www.nrc.gov/info-finder/reactors/na2.html  | II            | PWR-DRYSUB<br>WEST 3LP<br>S&W<br>S&W                  | 2,940           | 02/19/1971<br>08/21/1980<br>12/14/1980<br>03/20/2003<br>08/21/2040              | 100<br>100<br>76<br>99<br>85<br>92                |
| Oconee Nuclear Station, Unit 1 Duke Energy Carolinas, LLC Seneca, SC (30 miles W of Greenville, SC) 05000269 www.nrc.gov/info-finder/reactors/oco1.html                                     | II            | PWR-DRYAMB<br>B&W LLP<br>DBDB<br>DUKE                 | 2,568           | 11/06/1967<br>02/06/1973<br>07/15/1973<br>05/23/2000<br>02/06/2033              | 85<br>100<br>79<br>90<br>91<br>91                 |
| Oconee Nuclear Station, Unit 2 Duke Energy Carolinas, LLC Seneca, SC (30 miles W of Greenville, SC) 05000270 www.nrc.gov/info-finder/reactors/oco2.html                                     | II            | PWR-DRYAMB<br>B&W LLP<br>DBDB<br>DUKE                 | 2,568           | 11/06/1967<br>10/06/1973<br>09/09/1974<br>05/23/2000<br>10/06/2033              | 103<br>91<br>93<br>102<br>82<br>101               |
| Oconee Nuclear Station, Unit 3 Duke Energy Carolinas, LLC Seneca, SC (30 miles W of Greenville, SC) 05000287 www.nrc.gov/info-finder/reactors/oco3.html                                     | II            | PWR-DRYAMB<br>B&W LLP<br>DBDB<br>DUKE                 | 2,568           | 11/06/1967<br>07/19/1974<br>12/16/1974<br>05/23/2000<br>07/19/2034              | 94<br>91<br>103<br>86<br>97<br>92                 |
| Oyster Creek Nuclear Generating Station<br>Exelon Generation Co., LLC<br>Forked River, NJ<br>(9 miles S of Toms River, NJ)<br>05000219<br>www.nrc.gov/info-finder/reactors/oc.html          | l             | BWR-MARK 1<br>GE 2<br>B&R<br>B&R                      | 1,930           | 12/15/1964<br>07/02/1991 <sup>D</sup><br>12/23/1969<br>04/08/2009<br>04/09/2029 | 92<br>85<br>98<br>88<br>106<br>90                 |
| Palisades Nuclear Plant Entergy Nuclear Operations, Inc. Covert, MI (5 miles S of South Haven, MI) 05000255 www.nrc.gov/info-finder/reactors/pali.html                                      | III           | PWR-DRYAMB<br>CE<br>BECH<br>BECH                      | 2,565.4         | 03/14/1967<br>02/21/1991 <sup>E</sup><br>12/31/1971<br>01/17/2007<br>03/24/2031 | 90<br>92<br>96<br>74<br>85<br>86                  |
| Palo Verde Nuclear Generating Station, Unit 1<br>Arizona Public Service Company<br>Wintersburg, AZ<br>(50 miles W of Phoenix, AZ)<br>05000528<br>www.nrc.gov/info-finder/reactors/palo1.htm | IV<br>I       | PWR-DRYAMB<br>CE 80-2L<br>BECH<br>BECH                | 3,990           | 05/25/1976<br>06/01/1985<br>01/28/1986<br>04/21/2011<br>06/01/2045              | 101<br>81<br>83<br>100<br>85<br>90                |

D: The AEC issued a provisional OL on 04/09/1969, allowing commercial operation. The NRC issued a full-term OL on 07/02/1991.

E: The AEC issued a provisional OL on 03/24/1971, allowing commercial operation. The NRC issued a full-term OL on 02/21/1991.



## APPENDIX A 🥞

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                    | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009-<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Palo Verde Nuclear Generating Station, Unit 2<br>Arizona Public Service Company<br>Wintersburg, AZ<br>(50 miles W of Phoenix, AZ)<br>05000529<br>www.nrc.gov/info-finder/reactors/palo2.htm | IV<br>I       | PWR-DRYAMB<br>CE80-2L<br>BECH<br>BECH                 | 3,990           | 05/25/1976<br>04/24/1986<br>09/19/1986<br>04/21/2011<br>04/24/2046 | 83<br>101<br>91<br>90<br>91<br>90                 |
| Palo Verde Nuclear Generating Station, Unit 3<br>Arizona Public Service Company<br>Wintersburg, AZ<br>(50 miles W of Phoenix, AZ)<br>05000530<br>www.nrc.gov/info-finder/reactors/palo3.htm | IV<br>I       | PWR-DRYAMB<br>CE80-2L<br>BECH<br>BECH                 | 3,990           | 05/25/1976<br>11/25/1987<br>01/08/1988<br>04/21/2011<br>11/25/2047 | 83<br>89<br>97<br>88<br>79<br>101                 |
| Peach Bottom Atomic Power Station, Unit 2<br>Exelon Generation Co., LLC<br>Delta, PA<br>(17.9 miles S of Lancaster, PA)<br>05000277<br>www.nrc.gov/info-finder/reactors/pb2.html            | I             | BWR-MARK 1<br>GE 4<br>BECH<br>BECH                    | 3,514           | 01/31/1968<br>10/25/1973<br>07/05/1974<br>05/07/2003<br>08/08/2033 | 102<br>92<br>101<br>88<br>100<br>88               |
| Peach Bottom Atomic Power Station, Unit 3 Exelon Generation Co., LLC Delta, PA (17.9 miles S of Lancaster, PA) 05000278 www.nrc.gov/info-finder/reactors/pb3.html                           | I             | BWR-MARK 1<br>GE 4<br>BECH<br>BECH                    | 3,514           | 01/31/1968<br>07/02/1974<br>12/23/1974<br>05/07/2003<br>07/02/2034 | 89<br>100<br>90<br>103<br>85<br>103               |
| Perry Nuclear Power Plant, Unit 1<br>FirstEnergy Nuclear Operating Co.<br>Perry, OH<br>(35 miles NE of Cleveland, OH)<br>05000440<br>www.nrc.gov/info-finder/reactors/perr1.html            | III           | BWR-MARK 3<br>GE 6<br>GIL<br>KAIS                     | 3,758           | 05/03/1977<br>11/13/1986<br>11/18/1987<br>N/A<br>03/18/2026        | 67<br>98<br>79<br>92<br>73<br>96                  |
| Pilgrim Nuclear Power Station<br>Entergy Nuclear Operations, Inc.<br>Plymouth, MA<br>(38 miles SE of Boston, MA)<br>05000293<br>www.nrc.gov/info-finder/reactors/pilg.html                  | I             | BWR-MARK 1<br>GE 3<br>BECH<br>BECH                    | 2,028           | 08/26/1968<br>06/08/1972<br>12/01/1972<br>05/29/2012<br>06/08/2032 | 90<br>99<br>85<br>98<br>74<br>97                  |
| Point Beach Nuclear Plant, Unit 1<br>NextEra Energy Point Beach, LLC<br>Two Rivers, WI<br>(13 miles NW of Manitowoc, WI)<br>05000266<br>www.nrc.gov/info-finder/reactors/poin1.htm          | III<br>I      | PWR-DRYAMB<br>WEST 2LP<br>BECH<br>BECH                | 1,800           | 07/19/1967<br>10/05/1970<br>12/21/1970<br>12/22/2005<br>10/05/2030 | 98<br>88<br>79<br>100<br>84<br>90                 |

## Appendices

## APPENDIX A 🤻

|                                                                                                                                                                                                    | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt |                                                                                 | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---------------------------------------------------|
| Point Beach Nuclear Plant, Unit 2<br>NextEra Energy Point Beach, LLC<br>Two Rivers, WI<br>(13 miles NW of Manitowoc, WI)<br>05000301<br>www.nrc.gov/info-finder/reactors/poin2.html                | III           | PWR-DRYAMB<br>WEST 2LP<br>BECH<br>BECH                | 1,800           | 07/25/1968<br>03/08/1973 <sup>F</sup><br>10/01/1972<br>12/22/2005<br>03/08/2033 | 84<br>96<br>67<br>89<br>93                        |
| Prairie Island Nuclear Generating Plant, Unit 1<br>Northern States Power Co.—Minnesota<br>Welch, MN<br>(28 miles SE of Minneapolis, MN)<br>05000282<br>www.nrc.gov/info-finder/reactors/prai1.html | III           | PWR-DRYAMB<br>WEST 2LP<br>FLUR<br>NSP                 | 1,677           | 06/25/1968<br>04/05/1974 <sup>G</sup><br>12/16/1973<br>06/27/2011<br>08/09/2033 | 97<br>96<br>91<br>81<br>90<br>84                  |
| Prairie Island Nuclear Generating Plant, Unit 2<br>Northern States Power Co.—Minnesota<br>Welch, MN<br>(28 miles SE of Minneapolis, MN)<br>05000306<br>www.nrc.gov/info-finder/reactors/prai2.html | III           | PWR-DRYAMB<br>WEST 2LP<br>FLUR<br>NSP                 | 1,677           | 06/25/1968<br>10/29/1974<br>12/21/1974<br>06/27/2011<br>10/29/2034              | 75<br>86<br>99<br>74<br>59<br>101                 |
| Quad Cities Nuclear Power Station, Unit 1<br>Exelon Generation Co., LLC<br>Cordova, IL<br>(20 miles NE of Moline, IL)<br>05000254<br>www.nrc.gov/info-finder/reactors/quad1.htm                    | III<br>I      | BWR-MARK 1<br>GE 3<br>S&L<br>UE&C                     | 2,957           | 02/15/1967<br>12/14/1972<br>02/18/1973<br>10/28/2004<br>12/14/2032              | 82<br>99<br>92<br>102<br>85<br>103                |
| Quad Cities Nuclear Power Station, Unit 2<br>Exelon Generation Co., LLC<br>Cordova, IL<br>(20 miles NE of Moline, IL)<br>05000265<br>www.nrc.gov/info-finder/reactors/quad2.htm                    | III<br>I      | BWR-MARK 1<br>GE 3<br>S&L<br>UE&C                     | 2,957           | 02/15/1967<br>12/14/1972<br>03/10/1973<br>10/28/2004<br>12/14/2032              | 91<br>92<br>104<br>92<br>91<br>90                 |
| River Bend Station, Unit 1 Entergy Nuclear Operations, Inc. St. Francisville, LA (24 miles NW of Baton Rouge, LA) 05000458 www.nrc.gov/info-finder/reactors/rbs1.html                              | IV            | BWR-MARK 3<br>GE 6<br>S&W<br>S&W                      | 3,091           | 03/25/1977<br>11/20/1985<br>06/16/1986<br>N/A<br>08/29/2025                     | 113<br>98<br>90<br>91<br>84<br>96                 |

F: AEC issued a provisional OL on 11/18/1971. The NRC issued a full-term OL on 03/08/1973.



G: AEC issued a provisional OL on 08/09/1973. The NRC issued a full-term OL on 04/05/1974.

## APPENDIX A 🤻

|                                                                                                                                                                                     | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| R.E. Ginna Nuclear Power Plant R.E. Ginna Nuclear Power Plant, LLC Ontario, NY (20 miles NE of Rochester, NY) 05000244 www.nrc.gov/info-finder/reactors/ginn.html                   | I             | PWR-DRYAMB<br>WEST 2LP<br>GIL<br>BECH                 | 1,775           | 04/25/1966<br>09/19/1969<br>07/01/1970<br>05/19/2004<br>09/18/2029 | 91<br>97<br>84<br>90<br>93<br>91                  |
| St. Lucie Plant, Unit 1 Florida Power & Light Co. Jensen Beach, FL (10 miles SE of Ft. Pierce, FL) 05000335 www.nrc.gov/info-finder/reactors/stl1.html                              | II            | PWR-DRYAMB<br>CE<br>EBSO<br>EBSO                      | 3,020           | 07/01/1970<br>03/01/1976<br>12/21/1976<br>10/02/2003<br>03/01/2036 | 100<br>72<br>85<br>72<br>74<br>101                |
| St. Lucie Plant, Unit 2 Florida Power & Light Co. Jensen Beach, FL (10 miles SE of Ft. Pierce, FL) 05000389 www.nrc.gov/info-finder/reactors/stl2.html                              | II            | PWR-DRYAMB<br>CE<br>EBSO<br>EBSO                      | 3,020           | 05/02/1977<br>06/10/1983<br>08/08/1983<br>10/02/2003<br>04/06/2043 | 80<br>100<br>66<br>68<br>91<br>82                 |
| Salem Nuclear Generating Station, Unit 1<br>PSE&G Nuclear, LLC<br>Hancocks Bridge, NJ<br>(18 miles SE of Wilmington, DE)<br>05000272<br>www.nrc.gov/info-finder/reactors/salm1.html | I             | PWR-DRYAMB<br>WEST 4LP<br>PSEG<br>UE&C                | 3,459           | 09/25/1968<br>12/01/1976<br>06/30/1977<br>06/30/2011<br>08/13/2036 | 99<br>85<br>86<br>97<br>88<br>86                  |
| Salem Nuclear Generating Station, Unit 2<br>PSE&G Nuclear, LLC<br>Hancocks Bridge, NJ<br>(18 miles SE of Wilmington, DE)<br>05000311<br>www.nrc.gov/info-finder/reactors/salm2.html | I             | PWR-DRYAMB<br>WEST 4LP<br>PSEG<br>UE&C                | 3,459           | 09/25/1968<br>05/20/1981<br>10/13/1981<br>06/30/2011<br>04/18/2040 | 93<br>98<br>89<br>88<br>100<br>73                 |
| Seabrook Station, Unit 1 NextEra Energy Seabrook, LLC Seabrook, NH (13 miles S of Portsmouth, NH) 05000443 www.nrc.gov/info-finder/reactors/seab1.html                              | I             | PWR-DRYAMB<br>WEST 4LP<br>UE&C<br>UE&C                | 3,648           | 07/07/1976<br>03/15/1990<br>08/19/1990<br>N/A<br>03/15/2030        | 81<br>100<br>77<br>75<br>100<br>93                |
| Sequoyah Nuclear Plant, Unit 1 Tennessee Valley Authority Soddy-Daisy, TN (16 miles NE of Chattanooga, TN) 05000327 www.nrc.gov/info-finder/reactors/seq1.html                      | II            | PWR-ICECND<br>WEST 4LP<br>TVA<br>TVA                  | 3,455           | 05/27/1970<br>09/17/1980<br>07/01/1981<br>N/A<br>09/17/2020        | 89<br>84<br>98<br>89<br>83<br>100                 |

## APPENDICES

## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                           | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Sequoyah Nuclear Plant, Unit 2<br>Tennessee Valley Authority<br>Soddy-Daisy, TN<br>(16 miles NE of Chattanooga, TN)<br>05000328<br>www.nrc.gov/info-finder/reactors/seq2.html      | II            | PWR-ICECND<br>WEST 4LP<br>TVA<br>TVA                  | 3,455           | 05/27/1970<br>09/15/1981<br>06/01/1982<br>N/A<br>09/15/2021        | 89<br>97<br>89<br>77<br>90                        |
| Shearon Harris Nuclear Power Plant, Unit 1<br>Duke Energy Progress, Inc.<br>New Hill, NC<br>(20 miles SW of Raleigh, NC)<br>05000400<br>www.nrc.gov/info-finder/reactors/har1.html | II            | PWR-DRYAMB<br>WEST 3LP<br>EBSO<br>DANI                | 2,900           | 01/27/1978<br>10/24/1986<br>05/02/1987<br>12/17/2008<br>10/24/2046 | 94<br>90<br>103<br>90<br>83<br>99                 |
| South Texas Project, Unit 1<br>STP Nuclear Operating Co.<br>Bay City, TX<br>(90 miles SW of Houston, TX)<br>05000498<br>www.nrc.gov/info-finder/reactors/stp1.html                 | IV            | PWR-DRYAMB<br>WEST 4LP<br>BECH<br>EBSO                | 3,853           | 12/22/1975<br>03/22/1988<br>08/25/1988<br>N/A<br>08/20/2027        | 90<br>101<br>94<br>93<br>91<br>81                 |
| South Texas Project, Unit 2<br>STP Nuclear Operating Co.<br>Bay City, TX<br>(90 miles SW of Houston, TX)<br>05000499<br>www.nrc.gov/info-finder/reactors/stp2.html                 | IV            | PWR-DRYAMB<br>WEST 4LP<br>BECH<br>EBSO                | 3,853           | 12/22/1975<br>03/28/1989<br>06/19/1989<br>N/A<br>12/15/2028        | 101<br>88<br>88<br>72<br>59<br>103                |
| Surry Power Station, Unit 1<br>Virginia Electric and Power Co.<br>Surry, VA<br>(17 miles NW of Newport News, VA)<br>05000280<br>www.nrc.gov/info-finder/reactors/sur1.html         | II            | PWR-DRYSUB<br>WEST 3LP<br>S&W<br>S&W                  | 2,587           | 06/25/1968<br>05/25/1972<br>12/22/1972<br>03/20/2003<br>05/25/2032 | 94<br>89<br>101<br>92<br>91<br>99                 |
| Surry Power Station, Unit 2<br>Virginia Electric and Power Co.<br>Surry, VA<br>(17 miles NW of Newport News, VA)<br>05000281<br>www.nrc.gov/info-finder/reactors/sur2.html         | II            | PWR-DRYSUB<br>WEST 3LP<br>S&W<br>S&W                  | 2,587           | 06/25/1968<br>01/29/1973<br>05/01/1973<br>03/20/2003<br>01/29/2033 | 92<br>100<br>76<br>91<br>101<br>95                |
| Susquehanna Steam Electric Station, Unit 1<br>Susquehanna Nuclear, LLC<br>Berwick, PA<br>(70 miles NE of Harrisburg, PA)<br>05000387<br>www.nrc.gov/info-finder/reactors/susq1.htm |               | BWR-MARK 2<br>GE 4<br>BECH<br>BECH                    | 3,952           | 11/03/1973<br>07/17/1982<br>06/08/1983<br>11/24/2009<br>07/17/2042 | 101<br>80<br>86<br>70<br>87<br>83                 |



## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                     | NRC<br>Region | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>OL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date      | 2009–<br>2014*<br>Capacity<br>Factor<br>(Percent) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Susquehanna Steam Electric Station, Unit 2<br>PPL Susquehanna, LLC<br>Berwick, PA<br>(70 miles NE of Harrisburg, PA)<br>05000388<br>www.nrc.gov/info-finder/reactors/susq2.htm               |               | BWR-MARK 2<br>GE 4<br>BECH<br>BECH                    | 3,952           | 11/03/1973<br>03/23/1984<br>02/12/1985<br>11/24/2009<br>03/23/2044 | 90<br>96<br>72<br>83<br>80<br>88                  |
| Three Mile Island Nuclear Station, Unit 1 Exelon Generation Co., LLC Middletown, PA (10 miles SE of Harrisburg, PA) 05000289 www.nrc.gov/info-finder/reactors/tmi1.html                      | ı             | PWR-DRYAMB<br>B&W LLP<br>GIL<br>UE&C                  | 2,568           | 05/18/1968<br>04/19/1974<br>09/02/1974<br>10/22/2009<br>04/19/2034 | 86<br>94<br>92<br>100<br>78<br>104                |
| Turkey Point Nuclear Generating, Unit 3<br>Florida Power & Light Co.<br>Homestead, FL<br>(20 miles S of Miami, FL)<br>05000250<br>www.nrc.gov/info-finder/reactors/tp3.html                  | II            | PWR-DRYAMB<br>WEST 3LP<br>BECH<br>BECH                | 2,644           | 04/27/1967<br>07/19/1972<br>12/14/1972<br>06/06/2002<br>07/19/2032 | 86<br>88<br>96<br>40<br>81<br>84                  |
| Turkey Point Nuclear Generating, Unit 4 Florida Power & Light Co. Homestead, FL (20 miles S of Miami, FL) 05000251 www.nrc.gov/info-finder/reactors/tp4.html                                 | II            | PWR-DRYAMB<br>WEST 3LP<br>BECH<br>BECH                | 2,644           | 04/27/1967<br>04/10/1973<br>09/07/1973<br>06/06/2002<br>04/10/2033 | 99<br>98<br>84<br>85<br>70<br>88                  |
| Virgil C. Summer Nuclear Station, Unit 1<br>South Carolina Electric & Gas Co.<br>Jenkinsville, SC<br>(26 miles NW of Columbia, SC)<br>05000395<br>www.nrc.gov/info-finder/reactors/sum.html  | II            | PWR-DRYAMB<br>WEST 3LP<br>GIL<br>DANI                 | 2,900           | 03/21/1973<br>11/12/1982<br>01/01/1984<br>04/23/2004<br>08/06/2042 | 81<br>100<br>88<br>86<br>93<br>81                 |
| Vogtle Electric Generating Plant, Unit 1<br>Southern Nuclear Operating Co., Inc.<br>Waynesboro, GA<br>(26 miles SE of Augusta, GA)<br>05000424<br>www.nrc.gov/info-finder/reactors/vog1.html | II            | PWR-DRYAMB<br>WEST 4LP<br>SBEC<br>GPC                 | 3,625.6         | 06/28/1974<br>03/16/1987<br>06/01/1987<br>06/03/2009<br>01/16/2047 | 91<br>102<br>92<br>91<br>101<br>87                |
| Vogtle Electric Generating Plant, Unit 2<br>Southern Nuclear Operating Co., Inc.<br>Waynesboro, GA<br>(26 miles SE of Augusta, GA)<br>05000425<br>www.nrc.gov/info-finder/reactors/vog2.html | II            | PWR-DRYAMB<br>WEST 4LP<br>SBEC<br>GPC                 | 3,625.6         | 06/28/1974<br>03/31/1989<br>05/20/1989<br>06/03/2009<br>02/09/2049 | 101<br>93<br>94<br>102<br>87<br>92                |

## Appendices

## APPENDIX A 🤻

| Plant Name, Unit Number<br>Licensee<br>Location |        | Con Type<br>NSSS   |       | CP Issued<br>OL Issued<br>Comm. Op. | 2009-<br>2014*<br>Capacity |
|-------------------------------------------------|--------|--------------------|-------|-------------------------------------|----------------------------|
| Docket Number                                   | NRC    | Architect Engineer |       |                                     | Factor                     |
| NRC Web Page Address                            | Region | Constructor        | MWt   | Exp. Date                           | (Percent)                  |
| Waterford Steam Electric Station, Unit 3        | IV     | PWR-DRYAMB         | 3,716 | 11/14/1974                          | 87                         |
| Entergy Operations, Inc.                        |        | COMB CE            |       | 03/16/1985                          | 100                        |
| Killona, LA                                     |        | EBSO               |       | 09/24/1985                          | 82                         |
| (25 miles W of New Orleans, LA)                 |        | EBSO               |       | N/A                                 | 77                         |
| 05000382                                        |        |                    |       | 12/18/2024                          | 89                         |
| www.nrc.gov/info-finder/reactors/wat3.html      |        |                    |       |                                     | 90                         |
| Watts Bar Nuclear Plant, Unit 1                 | II     | PWR-ICECND         | 3,459 | 01/23/1973                          | 94                         |
| Tennessee Valley Authority                      |        | WEST 4LP           |       | 02/07/1996                          | 99                         |
| Spring City, TN                                 |        | TVA                |       | 05/27/1996                          | 84                         |
| (60 miles SW of Knoxville, TN)                  |        | TVA                |       | N/A                                 | 87                         |
| 05000390                                        |        |                    |       | 11/09/2035                          | 90                         |
| www.nrc.gov/info-finder/reactors/wb1.html       |        |                    |       |                                     | 89                         |
| Wolf Creek Generating Station, Unit 1           | IV     | PWR-DRYAMB         | 3,565 | 05/17/1977                          | 86                         |
| Wolf Creek Nuclear Operating Corp.              |        | WEST 4LP           |       | 06/04/1985 <sup>h</sup>             | 86                         |
| Burlington (Coffey County), KS                  |        | BECH               |       | 09/03/1985                          | 72                         |
| (28 miles SE of Emporia, KS)                    |        | DANI               |       | 11/20/2008                          | 80                         |
| 05000482                                        |        |                    |       | 03/11/2045                          | 65                         |
| www.nrc.gov/info-finder/reactors/wc.html        |        |                    |       |                                     | 83                         |

H: The original OL (NPF-32) was issued on 03/11/1985. The license was superseded by OL (NPF-42), issued on 06/04/1985.

### **APPENDIX A**

# Commercial Nuclear Power Reactors Operating Reactors Under Active Construction or Deferred Policy

| Plant Name, Unit Number<br>Licensee<br>Location<br>Docket Number<br>NRC Web Page Address                                                                                                                 | NRC<br>Region    | Con Type<br>NSSS<br>Architect Engineer<br>Constructor | Licensed<br>MWt | CP Issued<br>COL Issued<br>Comm. Op.<br>LR Issued<br>Exp. Date |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|-----------------|----------------------------------------------------------------|-----|
| Bellefonte Nuclear Power Station, Unit 1** Tennessee Valley Authority (6 miles NE of Scottsboro, AL) 05000438                                                                                            | II               | PWR-DRYAMB<br>B&W 205<br>TVA<br>TVA                   | 3,763           | 12/24/1974                                                     | N/A |
| Bellefonte Nuclear Power Station, Unit 2** Tennessee Valley Authority (6 miles NE of Scottsboro, AL) 05000439                                                                                            | II               | PWR-DRYAMB<br>B&W 205<br>TVA<br>TVA                   | 3,763           | 12/24/1974                                                     | N/A |
| Watts Bar Nuclear Plant, Unit 2*** Tennessee Valley Authority Spring City, TN (60 miles SW of Knoxville, TN) 05000391 www.nrc.gov/info-finder/reactors/wb/watts                                          | II<br>s-bar.html | PWR-ICECND<br>WEST 4LP<br>TVA<br>TVA                  | 3,411           | 01/23/1973                                                     | N/A |
| Virgil C. Summer Nuclear Station, Unit 2<br>South Carolina Electric & Gas Co.<br>South Carolina Public Service Auth.<br>Jenkinsville (Fairfield County), SC<br>(26 miles NW of Columbia, SC)<br>0500027  | II               | PWR<br>AP1000<br>WEST<br>SHAW                         | 3,400           | 03/30/2012                                                     | N/A |
| Virgil C. Summer Nuclear Station, Unit 3<br>South Carolina Electric & Gas Co.<br>South Carolina Public Service Auth.<br>Jenkinsville (Fairfield County), SC<br>(26 miles NW of Columbia, SC)<br>05200028 | II               | PWR<br>AP1000<br>WEST<br>SHAW                         | 3,400           | 03/30/2012                                                     | N/A |
| Vogtle Electric Generating Plant, Unit 3<br>Southern Nuclear Operating Co., Inc.<br>Waynesboro (Burke County), GA<br>(26 miles SE of Augusta, GA)<br>05200025                                            | II               | PWR<br>AP1000<br>WEST<br>SHAW                         | 3,400           | 02/10/2012                                                     | N/A |
| Vogtle Electric Generating Plant, Unit 4<br>Southern Nuclear Operating Co., Inc.<br>Waynesboro, (Burke County), GA<br>(26 miles SE of Augusta, GA)<br>05200026                                           | II               | PWR<br>AP1000<br>WEST<br>SHAW                         | 3,400           | 02/10/2012                                                     | N/A |
| Fermi, Unit 3<br>DTE Electric Company<br>Newport, MI<br>(25 miles NE of Toledo, OH)<br>05200033                                                                                                          | III              | ESBWR<br>GEH                                          | 4,500           | 05/01/2015                                                     | N/A |

<sup>\*</sup> Average capacity factor is listed in year order starting with 2009.

Note: Plant names and data are as identified on the license as of August 2015, and the next printed update will be August 2017. Source: NRC, with some data compiled from EIA/DOE.



<sup>\*\*</sup> Bellefonte Units 1 and 2 are under the Commission Policy Statement on Deferred Plants (52 FR 38077; October 14, 1987).

<sup>\*\*\*</sup> Watts Bar Unit 2 is currently performing startup testing, anticipated to begin commercial operation Fall 2016.

### APPENDIX B

## **New Nuclear Power Plant Licensing Applications**

| Applicant                                                               | Docket<br>Number        | Туре | Submittal<br>Date | Design               | Site                                     | State | Existing Plant? | Date<br>Accepted | Status                                                           |
|-------------------------------------------------------------------------|-------------------------|------|-------------------|----------------------|------------------------------------------|-------|-----------------|------------------|------------------------------------------------------------------|
|                                                                         |                         |      | Combi             | ined Oper            | ating License                            |       |                 |                  |                                                                  |
| Nuclear Innovation<br>North America,<br>LLC (NINA)                      | 05200012 &<br>05200013  | COL  | 9/20/07           | ABWR                 | South Texas<br>Project,<br>Units 3 and 4 | TX    | Yes             | 11/29/07         | Scheduled                                                        |
| Tennessee Valley<br>Authority (TVA)                                     | 05200014 &<br>05200015  | COL  | 10/30/07          | AP1000               | Bellefonte,<br>Units 3 and 4             | AL    | No              | 1/18/08          | Suspended-<br>09/29/2010                                         |
| Dominion Virginia<br>Power                                              | 05200017                | COL  | 11/27/07          | ESBWR                | North Anna,<br>Unit 3                    | VA    | Yes             | 01/28//08        | Scheduled                                                        |
| Duke Energy<br>Carolinas                                                | 05200018 &<br>05200019  | COL  | 12/13/07          | AP1000               | Lee Nuclear<br>Station,<br>Units 3 and 4 | SC    | No              | 2/25/08          | Scheduled                                                        |
| Progressive<br>Energy                                                   | 05200022 &<br>05200023  | COL  | 2/19/08           | AP1000               | Shearon Harris,<br>Units 2 and 3         | NC    | Yes             | 4/17/08          | Suspended-<br>05/02/2013                                         |
| Southern Nuclear<br>Operating Co.                                       | 05200025 &<br>05200026  | COL  | 3/31/08           | AP1000               | Vogtle,<br>Units 3 and 4                 | GA    | Yes             | 5/30/08          | COL Issued<br>02/10/2012                                         |
| South Carolina<br>Electric and Gas                                      | 05200027 &<br>05200028  | COL  | 3/31/08           | AP1000               | V.C. Summer,<br>Units 2 and 3            | SC    | Yes             | 7/31/08          | COL Issued<br>03/30/2012                                         |
| AmerenUE                                                                | 05200037                | COL  | 7/24/08           | U.S. EPR             | Callaway, Unit 2                         | MO    | Yes             | 12/12/08         | Suspended                                                        |
| Duke Energy<br>Florida                                                  | 05200029 &<br>05200030  | COL  | 7/30/08           | AP1000               | Levy County,<br>Units 1 and 2            | FL    | No              | 10/6/08          | Scheduled                                                        |
| DTE Electric<br>Company                                                 | 05200033                | COL  | 9/18/08           | ESBWR                | Fermi, Unit 3                            | MI    | Yes             | 11/25/08         | COL Issued<br>05/01/2015                                         |
| Luminant<br>Generation Co.                                              | 05200034 &<br>'05200035 | COL  | 9/19/08           | US-APWR              | Comanche Peak,<br>Units 3 and 4          | TX    | Yes             | 12/2/08          | Suspended-<br>03/31/2014                                         |
| Entergy                                                                 | 05200036                | COL  | 9/25/08           | ESBWR                | River Bend,<br>Unit 3                    | LA    | Yes             | 12/4/08          | Suspended-<br>01/09/2009                                         |
| PPL Bell Bend                                                           | 05200039                | COL  | 10/10/08          | U.S. EPR             | Bell Bend<br>(1 Unit)                    | PA    | Yes             | 12/19/08         | Safety Review<br>On Hold; Environ-<br>mental Review<br>Scheduled |
| Florida Power and Light                                                 | 05200040 &<br>05200041  | COL  | 6/30/09           | AP1000               | Turkey Point,<br>Units 6 and 7           | FL    | Yes             | 9/4/09           | Scheduled                                                        |
|                                                                         |                         |      | D                 | esign Cer            | tification                               |       |                 |                  |                                                                  |
| AREVA NP                                                                | 05200020                | DC   | 12/11/07          | U.S. EPR             | N/A                                      | N/A   | N/A             | 2/25/08          | Suspended –<br>03/27/2015                                        |
| Mitsubishi Heavy<br>Industries                                          | 05200021                | DC   | 12/31/07          | US-APWR              | N/A                                      | N/A   | N/A             | 2/29/08          | Applicant Delayed<br>-Not Scheduled                              |
| Korea Electric<br>Power Company and<br>Korea Hydro and<br>Nuclear Power | 05200046                | DC   | 12/23/14          | APR 1400             | N/A                                      | N/A   | N/A             | 3/4/15           | Scheduled                                                        |
| Toshiba<br>Corporation                                                  | 05200044                | DC   | 10/27/10          | ABWR                 | N/A                                      | N/A   | N/A             | 12/14/10         | Applicant Delayed<br>-Not Scheduled                              |
| GE-Hitachi<br>Nuclear Energy                                            | 05200045                | DC   | 12/7/10           | ABWR                 | N/A                                      | N/A   | N/A             | 2/14/11          | Applicant Delayed<br>-Not Scheduled                              |
|                                                                         |                         |      |                   | Early Site           | Permit                                   |       |                 |                  |                                                                  |
| PSEG Site                                                               | 05200043                | ESP  | 5/25/10           | Not yet<br>announced | PSEG Site                                | NJ    | Yes             | 8/4/10           | Scheduled                                                        |

Note: Data as of July 2015, and the next printed update will be August 2017.

Withdrawal was requested for Calvert Cliffs, Grand Gulf, Nine Mile Point, Victoria County, and Callaway (COL and ESP). NRC-abbreviated reactor names listed.



### APPENDIX C

## Commercial Nuclear Power Reactors Undergoing Decommissioning and Permanently Shut Down Formerly Licensed To Operate

| Unit<br>Location<br>Docket Number                | Reactor<br>Type<br>MWt                  | NSSS<br>Vendor | OL Issued<br>Shut Down<br>OL Terminated<br>Closure Date Est. | Decommissioning<br>Alternative Selected<br>Current License Status |
|--------------------------------------------------|-----------------------------------------|----------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| Big Rock Point<br>Charlevoix, MI<br>05000155     | BWR<br>240                              | GE             | 05/01/1964<br>08/29/1997<br>01/08/2007                       | DECON<br>DECON Completed                                          |
| Crystal River 3<br>Crystal River, FL<br>05000302 | PWR<br>2,609                            | B&W LLP        | 12/03/1976<br>02/20/2013                                     | SAFSTOR<br>SAFSTOR in Progress                                    |
|                                                  |                                         |                | 2074                                                         |                                                                   |
| Dresden 1<br>Morris, IL<br>05000010              | BWR<br>700                              | GE             | 09/28/1959<br>10/31/1978                                     | SAFSTOR<br>SAFSTOR                                                |
|                                                  |                                         |                | 2036                                                         |                                                                   |
| GE EVESR<br>Sunol, CA<br>05000183                | Experimental<br>Superheat React<br>12.5 | GE<br>tor      | 11/12/1963<br>2/1/1967<br>4/15/1970<br>1/1/2019              | SAFSTOR<br>Possession-only<br>License Expires<br>1/2016           |
| GE VBWR (Vallecitos)<br>Sunol, CA<br>05000018    | BWR<br>50                               | GE             | 08/31/1957<br>12/09/1963<br>2019                             | SAFSTOR<br>SAFSTOR                                                |
| Fermi 1<br>Newport, MI<br>05000016               | SCF<br>200                              | CE             | 05/10/1963<br>09/22/1972<br>2032                             | SAFSTOR<br>DECON                                                  |
| Fort St. Vrain<br>Platteville, CO<br>05000267    | HTG<br>842                              | GA             | 12/21/1973<br>08/18/1989<br>08/08/1997                       | DECON<br>DECON Completed                                          |
| Haddam Neck<br>Meriden, CT<br>05000213           | PWR<br>1,825                            | WEST           | 12/27/1974<br>12/05/1996<br>11/26/2007                       | DECON<br>DECON Completed                                          |
| Humboldt Bay 3<br>Eureka, CA<br>05000133         | BWR<br>200                              | GE             | 08/28/1962<br>07/02/1976<br>2015                             | DECON<br>DECON in Progress                                        |
| Indian Point 1<br>Buchanan, NY<br>05000003       | PWR<br>615                              | B&W            | 03/26/1962<br>10/31/1974<br>2026                             | SAFSTOR<br>SAFSTOR                                                |

### APPENDIX C

## Commercial Nuclear Power Reactors Undergoing Decommissioning and Permanently Shut Down Formerly Licensed To Operate (continued)

| Unit<br>Location<br>Docket Number             | Reactor<br>Type<br>MWt | NSSS<br>Vendor | OL Issued<br>Shut Down<br>OL Terminated<br>Closure Date Est. | Decommissioning<br>Alternative Selected<br>Current License Status |
|-----------------------------------------------|------------------------|----------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| Kewaunee<br>Carlton, WI<br>05000305           | PWR<br>1,772           | WEST 2LP       | 12/21/1973<br>05/07/2013                                     | SAFSTOR<br>SAFSTOR                                                |
|                                               |                        |                | 2073                                                         |                                                                   |
| La Crosse<br>Genoa, WI<br>05000409            | BWR<br>165             | AC             | 07/03/1967<br>04/30/1987<br>TBD                              | DECON<br>DECON in Progress                                        |
| Maine Yankee<br>Wiscasset, ME<br>05000309     | PWR<br>2,700           | CE             | 06/29/1973<br>12/06/1996<br>09/30/2005                       | DECON<br>DECON Completed                                          |
| Millstone 1<br>Waterford, CT<br>05000245      | BWR<br>2,011           | GE             | 10/31/1970<br>07/21/1998<br>12/31/2056                       | SAFSTOR<br>SAFSTOR                                                |
| Pathfinder<br>Sioux Falls, SD<br>05000130     | BWR<br>190             | AC             | 03/12/1964<br>09/16/1967<br>07/27/2007                       | DECON<br>DECON Completed                                          |
| Peach Bottom 1<br>Delta, PA<br>05000171       | HTG<br>115             | GA             | 01/24/1966<br>10/31/1974<br>12/31/2034                       | SAFSTOR<br>SAFSTOR                                                |
| Rancho Seco<br>Herald, CA<br>05000312         | PWR<br>2,772           | B&W            | 08/16/1974<br>06/07/1989<br>09/25/2009                       | DECON<br>DECON Completed                                          |
| San Onofre 1*<br>San Clemente, CA<br>05000206 | PWR<br>1,347           | WEST           | 03/27/1967<br>11/30/1992<br>12/30/2030                       | DECON<br>SAFSTOR                                                  |
| San Onofre 2*<br>San Clemente, CA<br>05000361 | PWR CE<br>3,438        | CE             | 02/16/1982<br>06/12/2013                                     | DECON<br>DECON in Progress                                        |
|                                               |                        |                | 2030                                                         |                                                                   |
| San Onofre 3<br>San Clemente, CA<br>05000362  | PWR CE<br>3,438        | CE             | 11/15/1982<br>06/12/2013                                     | DECON<br>DECON in Progress                                        |
|                                               |                        |                | 2030                                                         |                                                                   |



#### APPENDIX C

### Commercial Nuclear Power Reactors Undergoing Decommissioning and Permanently Shut Down Formerly Licensed To Operate (continued)

| Unit<br>Location<br>Docket Number                 | Reactor<br>Type<br>MWt | NSSS<br>Vendor | OL Issued<br>Shut Down<br>OL Terminated<br>Closure Date Est. | Decommissioning<br>Alternative Selected<br>Current License Status |
|---------------------------------------------------|------------------------|----------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| Savannah, N.S.<br>Baltimore, MD<br>05000238       | PWR<br>74              | B&W            | 08/1965<br>11/1970<br>12/01/2031                             | SAFSTOR<br>SAFSTOR                                                |
| Saxton<br>Saxton, PA<br>05000146                  | PWR<br>23.5            | WEST           | 11/15/1961<br>05/01/1972<br>11/07/2005                       | DECON<br>DECON Completed                                          |
| Shoreham<br>Wading River, NY<br>05000322          | BWR<br>2,436           | GE             | 04/21/1989<br>06/28/1989<br>04/11/1995                       | DECON<br>DECON Completed                                          |
| Three Mile Island 2<br>Middletown, PA<br>05000320 | PWR<br>2,770           | B&W            | 02/08/1978<br>03/28/1979<br>12/31/2036                       | (1)                                                               |
| Trojan<br>Rainier, OR<br>05000344                 | PWR<br>3,411           | WEST           | 11/21/1975<br>11/09/1992<br>05/23/2005                       | DECON<br>DECON Completed                                          |
| Yankee-Rowe<br>Rowe, MA<br>05000029               | PWR<br>600             | WEST           | 12/24/1963<br>10/01/1991<br>08/10/2007                       | DECON<br>DECON Completed                                          |
| Vermont Yankee<br>Vernon, VT<br>05000271          | BWR-Mark 1<br>1,912    | GE 4           | 03/21/1972<br>12/29/2014<br>2073                             | SAFSTOR<br>SAFSTOR in Progress                                    |
| Zion 1<br>Zion, IL<br>05000295                    | PWR<br>3,250           | WEST           | 10/19/1973<br>02/21/1997                                     | DECON<br>DECON in Progress                                        |
| Zion 2<br>Zion, IL<br>05000304                    | PWR<br>3,250           | WEST           | 11/14/1973<br>09/19/1996                                     | DECON<br>DECON in Progress                                        |

 $<sup>^{\</sup>star}$  Site has been dismantled and decontaminated with the exception of the reactor vessel in long-term storage.

2020

Source: DOE "Integrated Database for 1990, U.S. Spent Fuel and Radioactive Waste, Inventories, Projections, and Characteristics" (DOE/RW-0006, Rev. 6), and NRC, "Nuclear Power Plants in the World," Edition 6.

Data as of July 2015. Next publish release date August 2017.



Notes: GE Bonus, Hallam, and Piqua decommissioned reactor sites are part of the DOE nuclear legacy. For more information, visit DOE's Legacy Management Web site at http://energy.gov/lm/sites/lm-sites. CVTR, Elk River, and Shippingport decommissioned reactor sites were either decommissioned prior to the formation of the NRC or were not licensed by the NRC. See the Glossary for definitions of decommissioning alternatives (DECON, SAFSTOR).

<sup>(1)</sup> Three Mile Island Unit 2 has been placed in a postdefueling monitored storage mode until Unit 1 permanently ceases operation, at which time both units are planned to be decommissioned.

## **A**PPENDICES

## APPENDIX D 🥞

| Unit<br>Utility<br>Location                                                                     | Con Type<br>MWe per Unit | Canceled Date<br>Status<br>Docket Number  |
|-------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Allens Creek 1<br>Houston Lighting & Power Company<br>4 miles NW of Wallis, TX                  | BWR<br>1,150             | 1982<br>Under CP Review<br>05000466       |
| Allens Creek 2<br>Houston Lighting & Power Company<br>4 miles NW of Wallis, TX                  | BWR<br>1,150             | 1976<br>Under CP Review<br>05000467       |
| Atlantic 1 & 2 Public Service Electric & Gas Company Floating plants off the coast of NJ        | PWR<br>1,150             | 1978<br>Under CP Review<br>05000477 & 478 |
| Bailly 1<br>Northern Indiana Public Service Company<br>12 miles NNE of Gary, IN                 | BWR<br>645               | 1981<br>With CP<br>05000367               |
| Barton 1 & 2<br>Alabama Power & Light<br>15 miles SE of Clanton, AL                             | BWR<br>1,159             | 1977<br>Under CP Review<br>05000524 & 525 |
| Barton 3 & 4<br>Alabama Power & Light<br>15 miles SE of Clanton, AL                             | BWR<br>1,159             | 1975<br>Under CP Review<br>05000526 & 527 |
| Black Fox 1 & 2<br>Public Service Company of Oklahoma<br>3.5 miles S of Inola, OK               | BWR<br>1,150             | 1982<br>Under CP Review<br>05000556 & 557 |
| Blue Hills 1 & 2 Gulf States Utilities Company SW tip of Toledo Bend Reservoir, TX              | PWR<br>918               | 1978<br>Under CP Review<br>05000510 & 511 |
| Callaway 2<br>Union Electric Company<br>25 miles ENE of Jefferson City, MO                      | PWR<br>1,150             | 1981<br>With CP<br>05000486               |
| Cherokee 1<br>Duke Power Company<br>6 miles SSW of Blacksburg, SC                               | PWR<br>1,280             | 1983<br>With CP<br>05000491               |
| Cherokee 2 & 3<br>Duke Power Company<br>6 miles SSW of Blacksburg, SC                           | PWR<br>1,280             | 1982<br>With CP<br>05000492 & 493         |
| Clinch River<br>Project Management Corp., DOE, TVA<br>23 miles W of Knoxville, in Oak Ridge, TN | LMFB<br>350              | 1983<br>Under CP Review<br>05000537       |
| Clinton 2<br>Illinois Power Company<br>6 miles E of Clinton, IL                                 | BWR<br>933               | 1983<br>With CP<br>05000462               |



### APPENDIX D 🦃

| Unit<br>Utility<br>Location                                                                       | Con Type<br>MWe per Unit | Canceled Date<br>Status<br>Docket Number  |
|---------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Davis-Besse 2 & 3<br>Toledo Edison Company<br>21 miles ESE of Toledo, OH                          | PWR<br>906               | 1981<br>Under CP Review<br>05000500 & 501 |
| Douglas Point 1 & 2<br>Potomac Electric Power Company<br>Charles County, MD                       | BWR<br>1,146             | 1977<br>Under CP Review<br>05000448 & 449 |
| Erie 1 & 2<br>Ohio Edison Company<br>Berlin, OH                                                   | PWR<br>1,260             | 1980<br>Under CP Review<br>05000580 & 581 |
| Forked River 1<br>Jersey Central Power & Light Company<br>2 miles S of Forked River, NJ           | PWR<br>1,070             | 1980<br>With CP<br>05000363               |
| Fort Calhoun 2<br>Omaha Public Power District<br>19 miles N of Omaha, NE                          | PWR<br>1,136             | 1977<br>Under CP Review<br>05000548       |
| Fulton 1 & 2<br>Philadelphia Electric Company<br>17 miles S of Lancaster, PA                      | HTG<br>1,160             | 1975<br>Under CP Review<br>05000463 & 464 |
| Grand Gulf 2 Entergy Nuclear Operations, Inc. 20 miles SW of Vicksburg, MS                        | BWR<br>1,250             | 1990<br>With CP<br>05000417               |
| Greene County Power Authority of the State of NY 20 miles N of Kingston, NY                       | PWR<br>1,191             | 1980<br>Under CP Review<br>05000549       |
| Greenwood 2 & 3 Detroit Edison Company Greenwood Township, MI                                     | PWR<br>1,200             | 1980<br>Under CP Review<br>05000452 & 453 |
| Hartsville A1 & A2 Tennessee Valley Authority 5 miles SE of Hartsville, TN                        | BWR<br>1,233             | 1984<br>With CP<br>05000518 & 519         |
| Hartsville B1 & B2<br>Tennessee Valley Authority<br>5 miles SE of Hartsville, TN                  | BWR<br>1,233             | 1982<br>With CP<br>05000520 & 521         |
| Haven 1 (formerly Koshkonong) Wisconsin Electric Power Company 4.2 miles SSW of Fort Atkinson, WI | PWR<br>900               | 1980<br>Under CP Review<br>05000502       |
| Haven 2 (formerly Koshkonong) Wisconsin Electric Power Company 4.2 miles SSW of Fort Atkinson, WI | PWR<br>900               | 1978<br>Under CP Review<br>05000503       |

## <u>Ap</u>pendices,

### APPENDIX D

| Unit<br>Utility<br>Location                                                                                         | Con Type<br>MWe per Unit | Canceled Date<br>Status<br>Docket Number  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Hope Creek 2<br>Public Service Electric & Gas Company<br>18 miles SE of Wilmington, DE                              | BWR<br>1,067             | 1981<br>With CP<br>05000355               |
| Jamesport 1 & 2<br>Long Island Lighting Company<br>65 miles E of New York City, NY                                  | PWR<br>1,150             | 1980<br>With CP<br>05000516 & 517         |
| Marble Hill 1 & 2<br>Public Service of Indiana<br>6 miles NE of New Washington, IN                                  | PWR<br>1,130             | 1985<br>With CP<br>05000546 & 547         |
| Midland 1<br>Consumers Power Company<br>S of City of Midland, MI                                                    | PWR<br>492               | 1986<br>With CP<br>05000329               |
| Midland 2<br>Consumers Power Company<br>S of City of Midland, MI                                                    | PWR<br>818               | 1986<br>With CP<br>05000330               |
| Montague 1 & 2<br>Northeast Nuclear Energy Company<br>1.2 miles SSE of Turners Falls, MA                            | BWR<br>1,150             | 1980<br>Under CP Review<br>05000496 & 497 |
| New England 1 & 2<br>New England Power Company<br>8.5 miles E of Westerly, RI                                       | PWR<br>1,194             | 1979<br>Under CP Review<br>05000568 & 569 |
| New Haven 1 & 2<br>New York State Electric & Gas Corporation<br>3 miles NW of New Haven, NY                         | PWR<br>1,250             | 1980<br>Under CP Review<br>05000596 & 597 |
| North Anna 3<br>Virginia Electric & Power Company<br>40 miles NW of Richmond, VA                                    | PWR<br>907               | 1982<br>With CP<br>05000404               |
| North Anna 4<br>Virginia Electric & Power Company<br>40 miles NW of Richmond, VA                                    | PWR<br>907               | 1980<br>With CP<br>05000405               |
| North Coast 1 Puerto Rico Water Resources Authority 4.7 miles ESE of Salinas, PR                                    | PWR<br>583               | 1978<br>Under CP Review<br>05000376       |
| Palo Verde 4 & 5<br>Arizona Public Service Company<br>36 miles W of Phoenix, AZ                                     | PWR<br>1,270             | 1979<br>Under CP Review<br>05000592 & 593 |
| Pebble Springs 1 & 2 Portland General Electric Company 55 miles WSW of Tri-Cities (Kenewick-Pasco-Richland, WA), OR | PWR<br>1,260             | 1982<br>Under CP Review<br>05000514 & 515 |



### APPENDIX D 🤻

| Unit<br>Utility<br>Location                                                                | Con Type<br>MWe per Unit | Canceled Date<br>Status<br>Docket Number        |
|--------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|
| Perkins 1, 2, & 3<br>Duke Power Company<br>10 miles N of Salisbury, NC                     | PWR<br>1,280             | 1982<br>Under CP Review<br>05000488 & 489 & 490 |
| Perry 2<br>Cleveland Electric Illuminating Co.<br>35 miles NE of Cleveland, OH             | BWR<br>1,205             | 1994<br>Under CP Review<br>05000441             |
| Phipps Bend 1 & 2<br>Tennessee Valley Authority<br>15 miles SW of Kingsport, TN            | BWR<br>1,220             | 1982<br>With CP<br>05000553 & 554               |
| Pilgrim 2<br>Boston Edison Company<br>4 miles SE of Plymouth, MA                           | PWR<br>1,180             | 1981<br>Under CP Review<br>05000471             |
| Pilgrim 3 Boston Edison Company 4 miles SE of Plymouth, MA                                 | PWR<br>1,180             | 1974<br>Under CP Review<br>05000472             |
| Quanicassee 1 & 2<br>Consumers Power Company<br>6 miles E of Essexville, MI                | PWR<br>1,150             | 1974<br>Under CP Review<br>05000475 & 476       |
| River Bend 2 Gulf States Utilities Company 24 miles NNW of Baton Rouge, LA                 | BWR<br>934               | 1984<br>With CP<br>05000459                     |
| Seabrook 2 Public Service Co. of New Hampshire 13 miles S of Portsmouth, NH                | PWR<br>1,198             | 1988<br>With CP<br>05000444                     |
| Shearon Harris 2<br>Carolina Power & Light Company<br>20 miles SW of Raleigh, NC           | PWR<br>900               | 1983<br>With CP<br>05000401                     |
| Shearon Harris 3 & 4<br>Carolina Power & Light Company<br>20 miles SW of Raleigh, NC       | PWR<br>900               | 1981<br>With CP<br>05000402 & 403               |
| Skagit/Hanford 1 & 2<br>Puget Sound Power & Light Company<br>23 miles SE of Bellingham, WA | PWR<br>1,277             | 1983<br>Under CP Review<br>05000522 & 523       |
| Sterling Rochester Gas & Electric Corporation 50 miles E of Rochester, NY                  | PWR<br>1,150             | 1980<br>With CP<br>05000485                     |
| Summit 1 & 2 Delmarva Power & Light Company 15 miles SSW of Wilmington, DE                 | HTG<br>1,200             | 1975<br>Under CP Review<br>05000450 & 451       |

## Appendices

### APPENDIX D 🤻

| Unit<br>Utility<br>Location                                                         | Con Type<br>MWe per Unit | Canceled Date<br>Status<br>Docket Number  |
|-------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Sundesert 1 & 2<br>San Diego Gas & Electric Company<br>16 miles SW of Blythe, CA    | PWR<br>974               | 1978<br>Under CP Review<br>05000582 & 583 |
| Surry 3 & 4<br>Virginia Electric & Power Company<br>17 miles NW of Newport News, VA | PWR<br>882               | 1977<br>With CP<br>05000434 & 435         |
| Tyrone 1<br>Northern States Power Company<br>8 miles NE of Durond, WI               | PWR<br>1,150             | 1981<br>Under CP Review<br>05000484       |
| Tyrone 2<br>Northern States Power Company<br>8 miles NE of Durond, WI               | PWR<br>1,150             | 1974<br>With CP<br>05000487               |
| Vogtle 3 & 4<br>Georgia Power Company<br>26 miles SE of Augusta, GA                 | PWR<br>1,113             | 1974<br>With CP<br>050000426 & 427        |
| Washington Nuclear 1 (WPPSS)<br>Energy Northwest<br>10 miles E of Aberdeen, WA      | PWR<br>1,266             | 1995<br>With CP<br>05000460               |
| Washington Nuclear 3 (WPPSS)<br>Energy Northwest<br>16 miles E of Aberdeen, WA      | PWR<br>1,242             | 1995<br>With CP<br>05000508               |
| Washington Nuclear 4 (WPPSS)<br>Energy Northwest<br>10 miles E of Aberdeen, WA      | PWR<br>1,218             | 1982<br>With CP<br>05000513               |
| Washington Nuclear 5 (WPPSS) Energy Northwest 16 miles E of Aberdeen, WA            | PWR<br>1,242             | 1982<br>With CP<br>05000509               |
| Yellow Creek 1 & 2 Tennessee Valley Authority 15 miles E of Corinth, MS             | BWR<br>1,285             | 1984<br>With CP<br>05000566 & 567         |
| Zimmer 1<br>Cincinnati Gas & Electric Company<br>25 miles SE of Cincinnati, OH      | BWR<br>810               | 1984<br>With CP<br>05000358               |

### APPENDIX D @

## Canceled Commercial Nuclear Power Reactors Part 50—Domestic Licensing of Production and Utilization Facilities (continued)

| Unit<br>Utility<br>Location                                                                                                  | Con Type<br>MWe per Unit | Canceled Date<br>Status<br>Docket Number                               |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|
| Calvert Cliffs, Unit 3<br>LLC and UniStar Nuclear Operating Services, LLC<br>Near Lusby in Calvert County, Maryland          | U.S. EPR<br>4,500        | July 17, 2015<br>Withdrawn during COL<br>Review<br>05200016            |
| Victoria County Station, Units 1 and 2<br>Exelon Nuclear Texas Holdings, LLC<br>near Victoria City in Victoria County, Texas | ESBWR<br>4,500           | June 11, 2010<br>Withdrawn during COL<br>Review<br>05200031 & 05200032 |
| Grand Gulf, Unit 3<br>Entergy Operations, Inc. (EOI)<br>near Port Gibson in Claiborne County, Mississippi                    | ESBWR<br>4,500           | January 9, 2009<br>Withdrawn during COL<br>Review<br>05200024          |
| Nine Mile Point, Unit 3<br>LLC and UniStar Nuclear Operating Services, LLC<br>25 miles SE of Cincinnati, OH                  | ESBWR<br>4,500           | January 9, 2009<br>Withdrawn during COL<br>Review<br>05000358          |

#### Notes:

Cancelation is defined as public announcement of cancellation or written notification to the NRC. Only NRC-docketed applications are included. "Status" is the status of the application at the time of cancellation.

Data as of July 2015, and the next printed update will be August 2017.

Withdrawal was requested for Calvert Cliffs, Grand Gulf, Nine Mile Point, Victoria County, and Callaway (COL and ESP). NRC-abbreviated reactor names listed.

Source: DOE/EIA Commercial Nuclear Power 1991 (DOE/EIA-0438), Appendix E (page 105), and the NRC.

### APPENDIX E



#### **Commercial Nuclear Power Reactors by Parent Company** Utility **NRC-Abbreviated Reactor Unit Name AmerenUF** Callaway\* www.ameren.com Arizona Public Service Company Palo Verde 1, 2, & 3\* www.aps.com DTE Electric Company Fermi 2 www.dteenergy.com **Dominion Generation** Millstone 2 & 3 www.dom.com North Anna 1 & 2 Surry 1 & 2 Brunswick 1 & 2 **Duke Energy** www.duke-energy.com Catawba 1 & 2 Harris 1 McGuire 1 & 2 Oconee 1, 2, & 3 Robinson 2 Columbia **Energy Northwest** www.energy-northwest.com Arkansas Nuclear One 1 & 2 Entergy Nuclear Operations, Inc. FitzPatrick www.entergy-nuclear.com Grand Gulf 1 Indian Point 2 & 3 **Palisades** Pilarim 1 River Bend 1 Waterford 3 Exelon Corporation, LLC Braidwood 1 & 2 Byron 1 & 2 www.exeloncorp.com Calvert Cliffs 1 & 2 Clinton Dresden 2 & 3 Ginna

| First Energy Nuclear Operating Company |
|----------------------------------------|
| www.firstenergycorp.com                |

Beaver Valley 1 & 2 Davis-Besse

Perry 1

LaSalle 1 & 2 Limerick 1 & 2 Nine Mile Point 1 & 2 Oyster Creek Peach Bottom 2 & 3 Quad Cities 1 & 2 Three Mile Island 1



### APPENDIX E 🦃

### Commercial Nuclear Power Reactors by Parent Company (continued)

| Utility                                                                                                                                | NRC-Abbreviated Reactor Unit Name                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| NextEra Energy, Inc. with principal subsidiaries<br>Florida Power & Light Co. and<br>NextEra Energy Resources, LLC<br>www.fplgroup.com | Duane Arnold<br>Point Beach 1 & 2<br>Seabrook 1<br>St. Lucie 1 & 2<br>Turkey Point 3 & 4 |
| Indiana Michigan Power Company www.indianamichiganpower.com                                                                            | Cook 1 & 2                                                                               |
| Luminant Generation Company, LLC www.luminant.com                                                                                      | Comanche Peak 1 & 2*                                                                     |
| Nebraska Public Power District<br>www.nppd.com                                                                                         | Cooper                                                                                   |
| Northern States Power Company<br>Minnesota doing business as Xcel Energy<br>www.xcelenergy.com                                         | Monticello<br>Prairie Island 1 & 2                                                       |
| Omaha Public Power District<br>www.oppd.com                                                                                            | Fort Calhoun                                                                             |
| Pacific Gas & Electric Company www.pge.com                                                                                             | Diablo Canyon 1 & 2*                                                                     |
| Talen Energy Corp.<br>www.talenenergy.com                                                                                              | Susquehanna 1 & 2                                                                        |
| PSEG Nuclear, LLC<br>www.pseg.com                                                                                                      | Hope Creek 1<br>Salem 1 & 2                                                              |
| South Carolina Electric & Gas Company www.sceg.com                                                                                     | Summer                                                                                   |
| Southern Nuclear Operating Company www.southerncompany.com                                                                             | Hatch 1 & 2<br>Farley 1 & 2<br>Vogtle 1 & 2                                              |
| STP Nuclear Operating Company www.stpegs.com                                                                                           | South Texas Project 1 & 2*                                                               |
| Tennessee Valley Authority www.tva.gov                                                                                                 | Browns Ferry 1, 2, & 3<br>Sequoyah 1 & 2<br>Watts Bar 1                                  |
| Wolf Creek Nuclear Operating Corporation                                                                                               | Wolf Creek 1*                                                                            |

<sup>\*</sup> These plants have a joint program called the Strategic Teaming and Resource Sharing group. They share resources for refueling outages and develop some shared licensing applications.

Note: Data as of July 2015, and the next printed update will be August 2017.



www.wcnoc.com

### APPENDIX F

## Commercial Nuclear Power Reactor Operating Licenses – Issued by Year

| 1969 | Ginna<br>Nine Mile Point 1<br>Oyster Creek                                                                                                  |              | Calvert Cliffs 1 Cooper Cook 1 Duane Arnold FitzPatrick Hatch 1                              | 1980<br>1981 | North Anna 2<br>Sequoyah 1<br>Farley 2<br>McGuire 1<br>Salem 2<br>Sequoyah 2                            | 1986                 | Catawba 2<br>Hope Creek 1<br>Millstone 3<br>Palo Verde 2<br>Perry 1<br>Beaver Valley 2 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|
| 1971 | Dresden 3<br>Monticello                                                                                                                     |              | Oconee 3<br>Peach Bottom 3                                                                   | 1982         | LaSalle 1<br>Summer                                                                                     | 1907                 | Braidwood 1 Byron 2                                                                    |
| 1972 | Pilgrim<br>Quad Cities 1<br>Quad Cities 2<br>Surry 1                                                                                        | 1975<br>1976 | Prairie Island 1 Prairie Island 2 Three Mile Island 1 Millstone 2 Beaver Valley 1            | 1983<br>1984 | Columbia                                                                                                | -<br>-<br>           | Clinton<br>Harris 1<br>Nine Mile Point 2<br>Palo Verde 3<br>Vogtle 1                   |
| 1973 | Turkey Point 3 Browns Ferry 1 Fort Calhoun Indian Point 2                                                                                   |              | Browns Ferry 3<br>Brunswick 1<br>Calvert Cliffs 2<br>Indian Point 3                          |              | Diablo Canyon 1<br>Grand Gulf 1<br>LaSalle 2<br>Susquehanna 2                                           | 1988                 | Braidwood 2<br>South Texas Project 1<br>Limerick 2<br>South Texas Project 2            |
| 1974 | Oconee 1<br>Oconee 2<br>Peach Bottom 2<br>Point Beach 2<br>Surry 2<br>Turkey Point 4<br>Arkansas Nuclear 1<br>Browns Ferry 2<br>Brunswick 2 | 1977         | Salem 1 St. Lucie 1 Davis-Besse D.C. Cook 2 Farley 1 Arkansas Nuclear 2 Hatch 2 North Anna 1 | 1985         | Byron 1 Catawba 1 Diablo Canyon 2 Fermi 2 Limerick 1 Palo Verde 1 River Bend 1 Waterford 3 Wolf Creek 1 | 1990<br>1993<br>1996 | Vogtle 2<br>Comanche Peak 1<br>Seabrook 1<br>Comanche Peak 2<br>Watts Bar 1            |

Note: This list is limited to reactors licensed to operate. Year is based on the date the initial full-power operating license was issued. NRC-abbreviated reactor names are listed. Data as of July 2015, and the next printed update will be August 2017.

### APPENDIX G

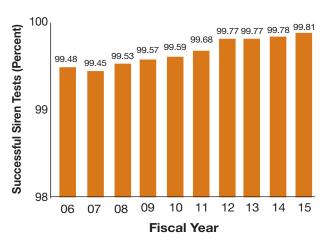
## Commercial Nuclear Power Reactor Operating Licenses — Expiration by Year, 2013–2049

| 2013<br>2015<br>2017<br>2020<br>2021 | Indian Point 2<br>Indian Point 3<br>Davis-Besse<br>Sequoyah 1<br>Seguoyah 2 | 2030 | Comanche Peak 1<br>Monticello<br>Point Beach 1<br>Robinson 2<br>Seabrook                                               | _    | Calvert Cliffs 1<br>Cook 1<br>Cooper<br>Duane Arnold<br>Hatch 1 | 2042 | Farley 2<br>McGuire 1<br>Summer<br>Susquehanna 1<br>Catawba 1 |
|--------------------------------------|-----------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------|------|---------------------------------------------------------------|
| 2022<br>2023                         | LaSalle 1<br>LaSalle 2                                                      | 2031 | Dresden 3<br>Palisades                                                                                                 | _    | FitzPatrick<br>Oconee 3                                         |      | Catawba 2<br>Columbia                                         |
| 2024                                 | Byron 1<br>Diablo Canyon 1<br>Grand Gulf 1                                  | 2032 | Pilgrim<br>Quad Cities 1<br>Quad Cities 2                                                                              |      | Peach Bottom 3 Prairie Island 2 Three Mile Island 1             | 2044 | McGuire 2<br>St. Lucie 2<br>Susquehanna 2                     |
|                                      | Limerick 1<br>Waterford 3                                                   |      | Surry 1 Turkey Point 3                                                                                                 | 2035 |                                                                 | 2044 | Callaway                                                      |
| 2025                                 | Diablo Canyon 2<br>Fermi 2                                                  | 2033 | Comanche Peak 2                                                                                                        | 2036 | Browns Ferry 3                                                  |      | Palo Verde 1<br>Wolf Creek 1                                  |
| 2026                                 | River Bend 1 Braidwood 1 Byron 2 Clinton                                    |      | Fort Calhoun Oconee 1 Oconee 2 Peach Bottom 2 Point Beach 2 Prairie Island 1 Surry 2 Turkey Point 4 Arkansas Nuclear 1 |      | Brunswick 1<br>Calvert Cliffs 2<br>St. Lucie 1<br>Salem 1       | 2046 | Nine Mile Point 2<br>Harris 1<br>Hope Creek<br>Palo Verde 2   |
| 2027                                 | Perry Braidwood 2 South Texas Project 1                                     |      |                                                                                                                        | 2037 | Cook 2<br>Farley 1<br>Arkansas Nuclear 2                        | 2047 | Beaver Valley 2 Palo Verde 3 Vogtle 1                         |
| 2028<br>2029                         | South Texas Project 2<br>Dresden 2                                          | 2034 |                                                                                                                        |      | Hatch 2<br>North Anna 1                                         | 2049 |                                                               |
| 2323                                 | Ginna<br>Limerick 2<br>Nine Mile Point 1                                    | 2004 | Browns Ferry 2<br>Brunswick 2                                                                                          | 2040 | North Anna 2<br>Salem 2                                         | _    |                                                               |

Note: This list includes Indian Point 2, which entered timely renewal on Sept. 29, 2013. Limited to reactors licensed to operate. NRC-abbreviated reactor names listed. Data as of July 2015, and the next printed update will be August 2017.



Oyster Creek


### APPENDIX H @

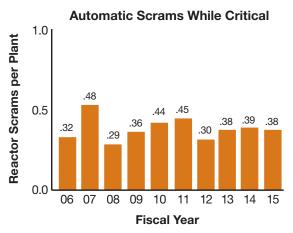
## Industry Performance Indicators: Industry Averages, FYs 2006–2015

| Indicator                        | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Alert and Notification           | 99.48 | 99.45 | 99.53 | 99.57 | 99.59 | 99.68 | 99.77 | 99.77 | 99.78 | 99.81 |
| Automatic<br>Scrams              | 0.32  | 0.48  | 0.29  | 0.36  | 0.44  | 0.45  | 0.30  | 0.38  | 0.39  | 0.38  |
| Collective Radiation<br>Exposure | 93    | 109   | 96    | 87    | 91    | 90    | 72    | 77    | 70    | 68    |
| Drill/Exercise<br>Performance    | 96.06 | 96.19 | 96.22 | 97.06 | 96.89 | 97.30 | 97.51 | 97.47 | 97.86 | 98.21 |
| Equipment-Forced<br>Outage Rate  | 0.10  | 0.11  | 0.08  | 0.09  | 0.10  | 0.09  | 0.09  | 0.08  | 0.10  | 0.08  |
| ERO Drill<br>Participation       | 97.89 | 97.55 | 98.16 | 98.65 | 98.77 | 99.43 | 99.33 | 99.46 | 99.71 | 99.84 |
| Forced Outage<br>Rate            | 1.47  | 1.41  | 1.34  | 2.21  | 1.74  | 1.80  | 2.77  | 2.98  | 1.27  | 1.1   |
| Safety System<br>Actuations      | 0.22  | 0.25  | 0.14  | 0.23  | 0.18  | 0.19  | 0.17  | 0.29  | 0.20  | 0.15  |
| Safety System<br>Failures        | 0.60  | 0.66  | 0.71  | 0.71  | 0.88  | 0.90  | 0.85  | 0.93  | 0.85  | 0.92  |
| Significant<br>Events            | 0.03  | 0.02  | 0.03  | 0.02  | 0.10  | 0.13  | 0.10  | 0.07  | 0.03  | 0.01  |

Note: Data as of July 2015, and the next printed update will be August 2017.

### Alert and Notification System (ANS) Reliability

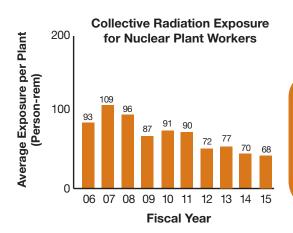



This figure shows the percentage of ANS sirens that successfully operated during periodic tests in the previous year. The result is an indicator of the reliability of the ANS to alert the public in an emergency.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.



### APPENDIX H


## Industry Performance Indicators: Industry Averages, FYs 2006–2015 (continued)



A reactor is considered "critical" when it achieves a self-sustaining nuclear chain reaction, such as when the reactor is operating. The sudden shutting down of a nuclear reactor by the rapid insertion of control rods, either automatically or manually by the reactor operator, is referred to as a "scram." This indicator measures the number of unplanned automatic scrams that occurred while the reactor was critical.

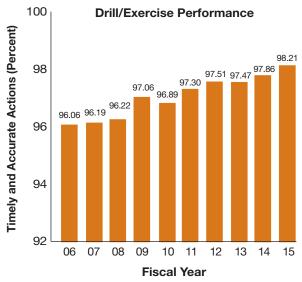
Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.

Source: Licensee data as compiled by the NRC



This indicator monitors the total radiation dose accumulated by plant personnel.

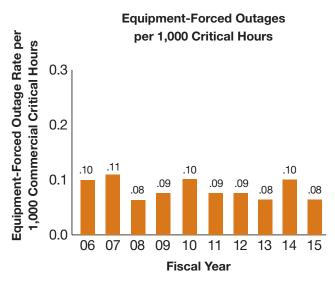
### Further Explanation:


In 2015, those workers receiving a measurable dose of radiation received an average of about 0.1 rem. For comparison purposes, the average U.S. citizen receives 0.3 rem of radiation each year from natural sources (i.e., the everyday environment). See the definition of "exposure" in the Glossary.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.



### APPENDIX H


# Industry Performance Indicators: Industry Averages, FYs 2006–2015 (continued)

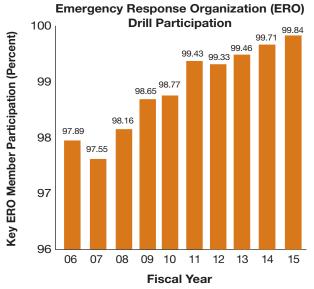


This indicator is the percentage of timely and accurate actions taken by plant personnel (emergency classifications, protective action recommendations, and notification to offsite authorities) in drills and actual events during the previous 2 years.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.

Source: Licensee data as compiled by the NRC

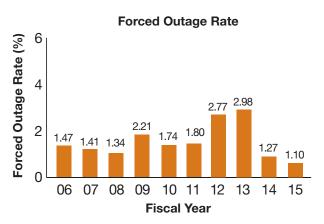



This indicator is the number of times the plant is forced to shut down because of equipment failures for every 1,000 hours that the plant is in operation and transmitting electricity.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.



### APPENDIX H


## Industry Performance Indicators: Industry Averages, FYs 2006–2015 (continued)

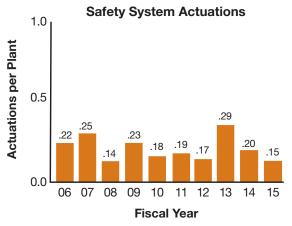


This indicator is the percentage of participation by key plant personnel in drills or actual events in the previous 2 years, indicating proficiency and readiness to respond to emergencies.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.

Source: Licensee data as compiled by the NRC




The forced outage rate is the number of hours that the plant is unable to operate (forced outage hours) divided by the sum of the hours that the plant is generating and transmitting electricity (unit service hours) and the hours that the plant is unable to operate (forced outage hours).

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.



## APPENDIX H 🤻


# Industry Performance Indicators: Industry Averages, FYs 2006–2015 (continued)



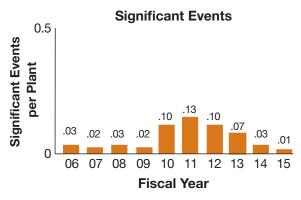
Safety system actuations are certain manual or automatic actions taken to start emergency core cooling systems or emergency power systems. These systems are specifically designed to either remove heat from the reactor fuel rods if the normal core cooling system fails or to provide emergency electrical power if the normal electrical systems fail.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.

Source: Licensee data as compiled by the NRC



Safety system failures are any actual failures, events, or conditions that could prevent a system from performing its required safety function.


Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.

Source: Licensee data as compiled by the NRC



## APPENDIX H 🤻

## Industry Performance Indicators: Industry Averages, FYs 2006–2015 (continued)



Significant events are events that meet specific NRC criteria—for example, degradation of safety equipment, a sudden reactor shutdown with complications, or an unexpected response to a sudden degradation of fuel or pressure boundaries. The NRC staff identifies significant events through detailed screening and evaluation of operating experience.

Note: Data represents annual industry averages for operating reactors. The data is continuously updated to incorporate recent information and any subsequent changes in the analysis.

Source: Licensee data as compiled by the NRC

## APPENDIX I 🤏

## Operating Nuclear Research and Test Reactors Regulated by the NRC

| Licensee                                                            | Reactor Type OL Issued     | Power Level | Licensee Number   |
|---------------------------------------------------------------------|----------------------------|-------------|-------------------|
| Location                                                            |                            | (kW)        | Docket Number     |
| Aerotest*                                                           | TRIGA (Indus)              | 250         | R-98              |
| San Ramon, CA                                                       | 07/02/1965                 |             | 05000228          |
| Armed Forces Radiobiology<br>Research Institute<br>Bethesda, MD     | TRIGA<br>06/26/1962        | 1,100       | R-84<br>05000170  |
| Dow Chemical Company                                                | TRIGA                      | 300         | R-108             |
| Midland, MI                                                         | 07/03/1967                 |             | 05000264          |
| GE-Hitachi                                                          | Tank                       | 100         | R-33              |
| Sunol, CA                                                           | 10/31/1957                 |             | 05000073          |
| Idaho State University                                              | AGN-201 #103               | 0.005       | R-110             |
| Pocatello, ID                                                       | 10/11/1967                 |             | 05000284          |
| Kansas State University                                             | TRIGA                      | 250         | R-88              |
| Manhattan, KS                                                       | 10/16/1962                 |             | 05000188          |
| Massachusetts Institute of Technology Cambridge, MA                 | HWR Reflected 06/09/1958   | 6,000       | R-37<br>05000020  |
| Missouri University of Science<br>and Technology<br>Rolla, MO       | Pool<br>11/21/1961         | 200         | R-79<br>05000123  |
| National Institute of<br>Standards & Technology<br>Gaithersburg, MD | Nuclear Test<br>05/21/1970 | 20,000      | TR-5<br>05000184  |
| North Carolina State University Raleigh, NC                         | Pulstar<br>08/25/1972      | 1,000       | R-120<br>05000297 |
| Ohio State University                                               | Pool                       | 500         | R-75              |
| Columbus, OH                                                        | 02/24/1961                 |             | 05000150          |
| Oregon State University                                             | TRIGA Mark II              | 1,100       | R-106             |
| Corvallis, OR                                                       | 03/07/1967                 |             | 05000243          |
| Pennsylvania State University                                       | TRIGA                      | 1,100       | R-2               |
| State College, PA                                                   | 07/08/1955                 |             | 05000005          |
| Purdue University                                                   | Lockheed                   | 1           | R-87              |
| West Lafayette, IN                                                  | 08/16/1962                 |             | 05000182          |
| Reed College                                                        | TRIGA Mark I               | 250         | R-112             |
| Portland, OR                                                        | 07/02/1968                 |             | 05000288          |

<sup>\*</sup> Permanent shutdown ordered July 24, 2013.



## **APPENDIX I**

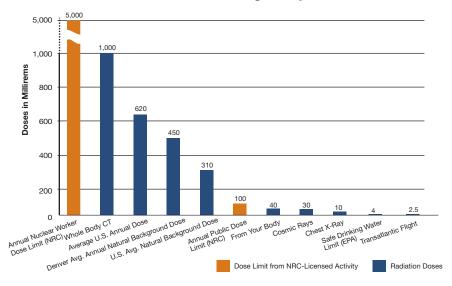
# Operating Nuclear Research and Test Reactors Regulated by the NRC (continued)

| Licensee                                                     | Reactor Type                | Power Level (kW) | Licensee Number   |
|--------------------------------------------------------------|-----------------------------|------------------|-------------------|
| Location                                                     | OL Issued                   |                  | Docket Number     |
| Rensselaer Polytechnic Institute                             | Critical Assembly           | 0.1              | CX-22             |
| Troy, NY                                                     | 07/03/1964                  |                  | 05000225          |
| Rhode Island Atomic<br>Energy Commission<br>Narragansett, RI | GE Pool<br>07/23/1964       | 2,000            | R-95<br>05000193  |
| Texas A&M University College Station, TX                     | AGN-201M #106<br>08/26/1957 | 0.005            | R-23<br>05000059  |
| Texas A&M University College Station, TX                     | TRIGA<br>12/07/1961         | 1,000            | R-83<br>05000128  |
| U.S. Geological Survey                                       | TRIGA Mark I                | 1,000            | R-113             |
| Denver, CO                                                   | 02/24/1969                  |                  | 05000274          |
| University of California/Davis                               | TRIGA                       | 2,300            | R-130             |
| Sacramento, CA                                               | 08/13/1998                  |                  | 05000607          |
| University of California/Irvine Irvine, CA                   | TRIGA Mark I<br>11/24/1969  | 250              | R-116<br>05000326 |
| University of Florida                                        | Argonaut                    | 100              | R-56              |
| Gainesville, FL                                              | 05/21/1959                  |                  | 05000083          |
| University of Maryland                                       | TRIGA                       | 250              | R-70              |
| College Park, MD                                             | 10/14/1960                  |                  | 05000166          |
| University of Massachusetts/Lowell Lowell, MA                | GE Pool<br>12/24/1974       | 1,000            | R-125<br>05000223 |
| University of Missouri/Columbia                              | Tank                        | 10,000           | R-103             |
| Columbia, MO                                                 | 10/11/1966                  |                  | 05000186          |
| University of New Mexico                                     | AGN-201M #112               | 0.005            | R-102             |
| Albuquerque, NM                                              | 09/17/1966                  |                  | 05000252          |
| University of Texas                                          | TRIGA Mark II               | 1,100            | R-129             |
| Austin, TX                                                   | 01/17/1992                  |                  | 05000602          |
| University of Utah                                           | TRIGA Mark I                | 100              | R-126             |
| Salt Lake City, UT                                           | 09/30/1975                  |                  | 05000407          |
| University of Wisconsin                                      | TRIGA                       | 1,000            | R-74              |
| Madison, WI                                                  | 11/23/1960                  |                  | 05000156          |
| Washington State University Pullman, WA                      | TRIGA<br>03/06/1961         | 1,000            | R-76<br>05000027  |

Note: Data as of July 2015, and the next printed update will be August 2017.



## APPENDIX J


## Nuclear Research and Test Reactors under Decommissioning Regulated by the NRC

| Licensee                           | Reactor Type     | OL Issued            |
|------------------------------------|------------------|----------------------|
| Location                           | Power Level (kW) | Shutdown             |
| General Atomics                    | TRIGA Mark F     | 07/01/60             |
| San Diego, CA                      | 1,500            | 09/07/94             |
| General Atomics                    | TRIGA Mark I     | 05/03/58             |
| San Diego, CA                      | 250              | 12/17/96             |
| General Electric Company           | GETR (Tank)      | 01/07/59             |
| Sunol, CA                          | 50,000           | 06/26/85             |
| University of Buffalo              | Pulstar          | 03/24/61             |
| Buffalo, NY                        | 2,000            | 07/23/96             |
| Veterans Administration* Omaha, NE | TRIGA<br>20      | 06/26/59<br>11/05/01 |

<sup>\*</sup> License terminated as of August 1, 2016.

Note: Data as of July 2015, and the next printed update will be August 2017.

APPENDIX K
Radiation Doses and Regulatory Limits



## APPENDIX L

## **Materials Licenses by State**

|                      | Number of Licenses |           |  |
|----------------------|--------------------|-----------|--|
|                      |                    | Agreement |  |
| State                | NRC                | States    |  |
| Alabama              | 16                 | 425       |  |
| Alaska               | 69                 | 0         |  |
| Arizona              | 10                 | 358       |  |
| Arkansas             | 9                  | 192       |  |
| California           | 72                 | 1,789     |  |
| Colorado             | 17                 | 335       |  |
| Connecticut          | 157                | 0         |  |
| Delaware             | 49                 | 0         |  |
| District of Columbia | 37                 | 0         |  |
| Florida              | 25                 | 1,648     |  |
| Georgia              | 24                 | 465       |  |
| Hawaii               | 55                 | 0         |  |
| Idaho                | 71                 | 0         |  |
| Illinois             | 31                 | 647       |  |
| Indiana              | 252                | 0         |  |
| Iowa                 | 2                  | 162       |  |
| Kansas               | 15                 | 280       |  |
| Kentucky             | 12                 | 388       |  |
| Louisiana            | 11                 | 509       |  |
| Maine                | 3                  | 111       |  |
| Maryland             | 85                 | 539       |  |
| Massachusetts        | 35                 | 444       |  |
| Michigan             | 466                | 0         |  |
| Minnesota            | 15                 | 166       |  |
| Mississippi          | 9                  | 307       |  |
| Missouri             | 256                | 0         |  |
| Montana              | 86                 | 0         |  |
| Nebraska             | 10                 | 145       |  |
| Nevada               | 2                  | 244       |  |
| New Hampshire        | 8                  | 80        |  |
| New Jersey           | 37                 | 637       |  |
|                      |                    |           |  |

|                                    | Number of Licenses |           |  |  |
|------------------------------------|--------------------|-----------|--|--|
|                                    |                    | Agreement |  |  |
| State                              | NRC                | States    |  |  |
| New Mexico                         | 11                 | 202       |  |  |
| New York                           | 28                 | 1,341     |  |  |
| North Carolina                     | 24                 | 615       |  |  |
| North Dakota                       | 6                  | 102       |  |  |
| Ohio                               | 44                 | 610       |  |  |
| Oklahoma                           | 19                 | 224       |  |  |
| Oregon                             | 6                  | 396       |  |  |
| Pennsylvania                       | 50                 | 665       |  |  |
| Rhode Island                       | 1                  | 43        |  |  |
| South Carolina                     | 15                 | 396       |  |  |
| South Dakota                       | 39                 | 0         |  |  |
| Tennessee                          | 25                 | 553       |  |  |
| Texas                              | 49                 | 1,571     |  |  |
| Utah                               | 10                 | 185       |  |  |
| Vermont                            | 33                 | 0         |  |  |
| Virginia                           | 61                 | 401       |  |  |
| Washington                         | 17                 | 357       |  |  |
| West Virginia                      | 172                | 0         |  |  |
| Wisconsin                          | 11                 | 305       |  |  |
| Wyoming                            | 88                 | 0         |  |  |
| Puerto Rico                        | 131                | 0         |  |  |
| Virgin Islands                     | 9                  | 0         |  |  |
| Guam                               | 5                  | 0         |  |  |
|                                    |                    |           |  |  |
| Total number of materials licenses |                    |           |  |  |

| Total number of materials licenses in Agreement State jurisdiction | 17,837 |
|--------------------------------------------------------------------|--------|
| Total number of materials licenses in NRC jurisdiction             | 2,800  |
| Total number of materials licenses in the United States            | 20,637 |

Agreement State Letter of intent

Note: The NRC and Agreement State data is as of November 2014. These totals represent an estimate because the number of specific radioactive materials licenses per State may change on a daily basis. Data as of July 2015. Next publish release date August 2017.

The NRC licenses Federal agencies in Agreement States.

## APPENDIX M 🤻

## Major U.S. Fuel Cycle Facility Sites

| Licensee                                                                                  | Location                  | Status                                                    | Docket # |
|-------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|----------|
| Uranium Hexafluoride Conversion Facility                                                  |                           |                                                           |          |
| Honeywell International, Inc.                                                             | Metropolis, IL            | active                                                    | 04003392 |
| Uranium Fuel Fabrication Facilities                                                       |                           |                                                           |          |
| Global Nuclear Fuel-Americas, LLC                                                         | Wilmington, NC            | active                                                    | 07001139 |
| Westinghouse Electric Company, LLC Columbia Fuel Fabrication Facility                     | Columbia, SC              | active                                                    | 07109239 |
| Nuclear Fuel Services, Inc.                                                               | Erwin, TN                 | active                                                    | 07000143 |
| Babcock & Wilcox Nuclear Operations Group                                                 | Lynchburg, VA             | active                                                    | 07000027 |
| AREVA, Inc.                                                                               | Richland, WA              | active                                                    | 07001257 |
| Mixed Oxide Fuel Fabrication Facility                                                     |                           |                                                           |          |
| Shaw AREVA MOX Services, LLC                                                              | Aiken, SC                 | under construction<br>(operating license<br>under review) | 07003098 |
| Gaseous Diffusion Uranium Enrichment Facilit                                              | ties                      |                                                           |          |
| USEC, United States Enrichment Corp.<br>Paducah Gaseous Diffusion Plant                   | Paducah, KY               | shut down, certificate termination pending                | 07007001 |
| Gas Centrifuge Uranium Enrichment Facilities                                              | s                         |                                                           |          |
| USEC, American Centrifuge Operating, LLC<br>Lead Cascade: Test and Demonstration Facility | Piketon, OH               | active                                                    | 07007003 |
| USEC, American Centrifuge Operating, LLC<br>American Centrifuge Plant                     | Piketon, OH               | license issued,<br>construction halted                    | 07007004 |
| Louisiana Energy Services (URENCO-USA)                                                    | Eunice, NM                | active*                                                   | 07003103 |
| AREVA Enrichment Services, LLC<br>Eagle Rock Enrichment Facilities                        | Idaho Falls, ID           | license issued, construction not started                  | 07007015 |
| Laser Separation Enrichment Facility                                                      |                           |                                                           |          |
| GE-Hitachi                                                                                | Wilmington, NC            | license issued, construction not started                  | 07007016 |
| Uranium Hexafluoride Deconversion Facility                                                | у                         |                                                           |          |
| International Isotopes                                                                    | Hobbs, NM<br>(Lea County) | license issued, construction not started                  | 04009086 |
|                                                                                           |                           |                                                           |          |

<sup>\*</sup> Operating and producing enriched uranium while undergoing further phases of construction. Note: Data as of July 2015, and the next printed update will be August 2017.

## APPENDIX N

# Dry Spent Fuel Storage Designs: NRC-Approved for Use by General Licensees

| Vendor                        | Docket #                                                                         | Storage Design Model                                                                                                                                                                              |
|-------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Nuclear Systems, Inc. | 07201000                                                                         | CASTOR V/21<br>CASTOR X/33                                                                                                                                                                        |
| NAC International, Inc.       | 07201002<br>07201003<br>07201015<br>07201025<br>07201031<br>07201013             | NAC S/T<br>NAC-C28 S/T<br>NAC-UMS<br>NAC-MPC<br>Magnastor<br>NAC-STC                                                                                                                              |
| Holtec International          | 07201008<br>07201014<br>07201032<br>07201040                                     | HI-STAR 100<br>HI-STORM 100<br>HI-STORM FW<br>HI-STORM UMAX                                                                                                                                       |
| EnergySolutions, Inc.         | 07201007<br>07201026                                                             | VSC-24 Fuel Solutions™ (WSNF-220, -221, -223) W-150 Storage Cask W-100 Transfer Cask W-21, W-74 Canisters                                                                                         |
| Transnuclear, Inc.            | 07201005<br>07201027<br>07201021<br>07201004<br>07201029<br>07201030<br>07201022 | TN-24 TN-68 TN-32, 32A, 32B Standardized NUHOMS®-24P, -24PHB, -24PTH, -32PT, -32PTH1, -37PTH, -52B, -61BT, -61BTH, -69BTH Standardized Advanced NUHOMS®-24PT1, -24PT4 NUHOMS® HD-32PTH NUHOMS®-7P |

Note: Data as of July 2015, and the next printed update will be August 2017. (See latest list on the NRC Web site at www.nrc.gov/waste/spent-fuel-storage/designs.html.)

## **APPENDIX O**

## **Dry Cask Spent Fuel Storage Licensees**

| Name<br>Licensee                                        | License<br>Type | Vendor                                         | Storage<br>Model            | Docket<br>Number |
|---------------------------------------------------------|-----------------|------------------------------------------------|-----------------------------|------------------|
| Arkansas Nuclear<br>Entergy Nuclear<br>Operations, Inc. | GL              | Energy Solutions, Inc.<br>Holtec International | VSC-24<br>HI-STORM 100      | 07200013         |
| Beaver Valley                                           | GL              | Transnuclear, Inc                              | NUHOMS®-37PTH               | 07201043         |
| Big Rock Point<br>Entergy Nuclear<br>Operations, Inc.   | GL              | Energy Solutions, Inc.                         | Fuel Solutions <sup>™</sup> | 07200043<br>W74  |
| Braidwood<br>Exelon Generation<br>Co., LLC              | GL              | Holtec International                           | HI-STORM 100                | 07200073         |
| Browns Ferry Tennessee Valley Authorit                  | GL              | Holtec International                           | HI-STORM 100S               | 07200052         |
| Brunswick Carolina Power Co.                            | GL              | Transnuclear, Inc.                             | NUHOMS®-HD-61BTH            | 07200006         |
| Byron<br>Exelon Generation Co., L                       | GL<br>LC        | Holtec International                           | HI-STORM 100                | 07200068         |
| Callaway                                                | GL              | Holtec International                           | HI-STORM UMAX               | 07201045         |
| Calvert Cliffs Calvert Cliffs Nuclear Power Plant, Inc. | SL              | Transnuclear, Inc.                             | NUHOMS®-24P<br>NUHOMS®-32P  | 07200008         |
| Catawba<br>Duke Energy Carolinas, L                     | GL<br>LC        | NAC International, Inc.                        | NAC-UMS                     | 07200045         |
| Columbia Generating<br>Station<br>Energy Northwest      | GL              | Holtec International                           | HI-STORM 100                | 07200035         |
| Comanche Peak<br>Luminant Generation<br>Company, LLC    | GL              | Holtec International                           | HI-STORM 100                | 07200074         |
| Cook<br>Indiana/Michigan Power                          | GL              | Holtec International                           | HI-STORM                    | 07200072         |
| Cooper Nuclear Station<br>Nebraska Public Power D       | GL<br>District  | Transnuclear, Inc.                             | NUHOMS®-61BT                | 07200066         |
| Davis-Besse<br>FirstEnergy Nuclear<br>Operating Company | GL              | Transnuclear, Inc.                             | NUHOMS®-24P                 | 07200014         |
| Diablo Canyon Pacific Gas & Electric Co.                | SL              | Holtec International                           | HI-STORM 100                | 07200026         |
| Dresden<br>Exelon Generation<br>Company, LLC            | GL              | Holtec International                           | HI-STAR 100<br>HI-STORM 100 | 07200037         |
| Duane Arnold<br>Next Era Energy<br>Duane Arnold, LLC.   | GL              | Transnuclear, Inc.                             | NUHOMS®-61BT                | 07200032         |
| Fermi                                                   | GL              | Holtec International                           | HI-STORM 100                | 07200071         |

## Appendices

## APPENDIX O

## **Dry Cask Spent Fuel Storage Licensees (continued)**

| Name<br>Licensee                                                      | License<br>Type | Vendor                                   | Storage<br>Model           | Docket<br>Number     |
|-----------------------------------------------------------------------|-----------------|------------------------------------------|----------------------------|----------------------|
| Fort Calhoun<br>Omaha Public<br>Power District                        | GL              | Transnuclear, Inc.                       | NUHOMS®-32PT               | 07200054             |
| Fort St. Vrain* U.S. Department of Energy                             | SL              | FW Energy Applications, Inc.             | Modular Vault<br>Dry Store | 07200009             |
| Ginna<br>Constellation Energy                                         | GL              | Transnuclear, Inc.                       | NUHOMS®-32PT               | 07200067             |
| Grand Gulf<br>Entergy Nuclear<br>Operations, Inc.                     | GL              | Holtec International                     | HI-STORM 100S              | 07200050             |
| H.B. Robinson<br>Carolina Power &<br>Light Company                    | SL<br>GL        | Transnuclear, Inc.<br>Transnuclear, Inc. | NUHOMS®-7P<br>NUHOMS®-24P  | 07200003<br>07200060 |
| Haddam Neck<br>CT Yankee Atomic Power                                 | GL              | NAC International, Inc.                  | NAC-MPC                    | 07200039             |
| Hatch<br>Southern Nuclear<br>Operating, Inc.                          | GL              | Holtec International                     | HI-STAR 100<br>HI-STAR 100 | 07200036             |
| Hope Creek/Salem<br>PSEG Nuclear, LLC                                 | GL              | Holtec International                     | HI-STORM 100               | 07200048             |
| Humboldt Bay<br>Pacific Gas & Electric Co.                            | SL              | Holtec International                     | HI-STORM 100HB             | 07200027             |
| Idaho National Lab<br>TMI-2 Fuel Debris,<br>U.S. Department of Energy | SL              | Transnuclear, Inc.                       | NUHOMS®-12T                | 07200020             |
| Idaho Spent Fuel Facility Environmental Corp.                         | SL              | Foster Wheeler                           | Concrete Vault             | 07200025             |
| Indian Point Entergy Nuclear Operations, Inc.                         | GL              | Holtec International                     | HI-STORM 100               | 07200051             |
| James A. FitzPatrick<br>Entergy Nuclear<br>Operations, Inc.           | GL              | Holtec International                     | HI-STORM 100               | 07200012             |
| Joseph M. Farley<br>Southern Nuclear<br>Operating Co.                 | GL              | Transnuclear, Inc.                       | NUHOMS®-32PT               | 07200042             |
| Kewaunee<br>Northern States Power<br>Co., Minnesota                   | GL              | Transnuclear, Inc.                       | NUHOMS®-39PT               | 07200064             |
| La Salle<br>Exelon Generation<br>Co., LLC                             | GL              | Holtec International                     | HI-STORM100                | 07200070             |
| Lacrosse<br>Dairyland Power                                           | GL              | NAC International, Inc.                  | NAC-MPC                    | 07200046             |
| Limerick<br>Exelon Generation Co., LLC                                | GL<br>C         | Transnuclear, Inc.                       | NUHOMS®-61BT               | 07200065             |



## **APPENDIX O**

## **Dry Cask Spent Fuel Storage Licensees (continued)**

| Name<br>Licensee                                                      | License<br>Type | Vendor                                   | Storage<br>Model              | Docket<br>Number     |
|-----------------------------------------------------------------------|-----------------|------------------------------------------|-------------------------------|----------------------|
| Maine Yankee<br>Maine Yankee Atomic<br>Power Company                  | GL              | NAC International, Inc.                  | NAC-UMS                       | 07200030             |
| McGuire Duke Energy, LLC                                              | GL              | Transnuclear, Inc.                       | TN-32                         | 07200038             |
| Millstone Dominion Generation                                         | GL              | Transnuclear, Inc.                       | NUHOMS®-32PT                  | 07200047             |
| Monticello<br>Northern States Power<br>Co., Minnesota                 | GL              | Transnuclear, Inc.                       | NUHOMS®-61BT<br>NUHOMS®-61BTH | 07200058             |
| Nine Mile Point<br>Constellation Energy                               | GL              | Transnuclear, Inc                        | NUHOMS®-61BT                  | 07201036             |
| North Anna<br>Virginia Electric &<br>Power Company<br>(Dominion Gen.) | SL<br>GL        | Transnuclear, Inc.<br>Transnuclear, Inc. | TN-32<br>NUHOMS®HD32PTH       | 07200016<br>07200056 |
| Oconee                                                                | SL<br>GL        | Transnuclear, Inc. Transnuclear, Inc.    | NUHOMS®-24P<br>NUHOMS®-24P    | 07200004<br>07200040 |
| Oyster Creek AmerGen Energy Company, LLC.                             | GL              | Transnuclear, Inc.                       | NUHOMS®-61BT                  | 07200040             |
| Palisades<br>Entergy Nuclear<br>Operations, Inc.                      | GL              | EnergySolutions, Inc.                    | VSC-24<br>NUHOMS®-32PT        | 07200007             |
| Palo Verde<br>Arizona Public Service Co.                              | GL              | NAC International, Inc.                  | NAC-UMS                       | 07200044             |
| Peach Bottom Exelon Generation Company, LLC                           | GL              | Transnuclear, Inc.                       | TN-68                         | 07200029             |
| Perry<br>FirstEnergy                                                  | GL              | Holtec International                     | HI-STORM                      | 07200069             |
| Pilgrim                                                               | GL              | Holtec International                     | HI-STORM 100                  | 07201044             |
| Point Beach<br>FLP Energy<br>Point Beach, LLC                         | GL              | EnergySolutions, Inc.                    | VSC-24<br>NUHOMS®-32PT        | 07200005             |
| Prairie Island<br>Northern States Power<br>Co., Minnesota             | SL              | Transnuclear, Inc.                       | TN-40 HT<br>TN-40             | 07200010             |
| Private Fuel Storage<br>Facility                                      | SL              | Holtec International                     | HI-STORM 100                  | 07200022             |
| Quad Cities<br>Exelon Generation<br>Company, LLC                      | GL              | Holtec International                     | HI-STORM 100S                 | 07200053             |
| Rancho Seco<br>Sacramento Municipal<br>Utility District               | SL              | Transnuclear, Inc.                       | NUHOMS®-24P                   | 07200011             |

## **A**PPENDICES

## APPENDIX O

## **Dry Cask Spent Fuel Storage Licensees (continued)**

| Name<br>Licensee                                                           | License<br>Type | Vendor                                                                                                 | Storage<br>Model                                                          | Docket<br>Number     |
|----------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|
| River Bend<br>Entergy Nuclear<br>Operations, Inc.                          | GL              | Holtec International                                                                                   | HI-STORM 100S                                                             | 07200049             |
| Salem<br>PSEG Nuclear                                                      | GL              | Holtec International                                                                                   | HI-STORM                                                                  | 07200048             |
| San Onofre<br>Southern California<br>Edison Company                        | GL              | Transnuclear, Inc.                                                                                     | NUHOMS®-24PT                                                              | 07200041             |
| Seabrook<br>FPL Energy                                                     | GL              | Transnuclear, Inc.                                                                                     | NUHOMS®-HD-32PTH                                                          | 07200061             |
| Sequoyah<br>Tennessee Valley Authority                                     | GL              | Holtec International                                                                                   | HI-STORM 100                                                              | 07200034             |
| St. Lucie<br>Florida Power and<br>Light Company                            | GL              | Transnuclear, Inc.                                                                                     | NUHOMS®-HD-32PTH                                                          | 07200061             |
| Surry<br>Virginia Electric &<br>Power Company<br>(Dominion Gen.)           | SL<br>GL        | General Nuclear Systems, Inc. Transnuclear, Inc. General Nuclear Westinghouse, Inc. Transnuclear, Inc. | CASTOR V/21<br>TN-32<br>NAC-128<br>CASTOR X/33<br>MC-10<br>NUHOMS®HD32PTH | 07200002<br>07200055 |
| Susquehanna<br>Susquehanna Nuclear, LLC                                    | GL              | Transnuclear, Inc.                                                                                     | NUHOMS®-52B<br>NUHOMS®-61BT<br>NUHOMS®-61BTH                              | 07200033             |
| Trojan Portland General Electric Corp.                                     | SL              | Holtec International                                                                                   | HI-STORM 100                                                              | 07200017             |
| Turkey Point ISFSI<br>Florida Power and<br>Light Company                   | GL              | Transnuclear, Inc.                                                                                     | NUHOMS®-HD-32PTH                                                          | 07200062             |
| Vermont Yankee<br>Entergy Nuclear<br>Operations, Inc.                      | GL              | Holtec International                                                                                   | HI-STORM100                                                               | 07200059             |
| Vogtle<br>Southern Company                                                 | GL              | Holtec International                                                                                   | HI-STORM 100S                                                             | 07201039             |
| Waterford Steam<br>Electric Station<br>Entergy Nuclear<br>Operations, Inc. | GL              | Holtec International                                                                                   | HI-STORM 100                                                              | 07200075             |
| Yankee Rowe<br>Yankee Atomic Electric                                      | GL              | NAC International, Inc.                                                                                | NAC-MPC                                                                   | 07200031             |
| Zion<br>Zion Solutions, LLC                                                | GL              | NAC International, Inc.                                                                                | Magnastor                                                                 | 07201037             |

<sup>\*</sup> Fort St. Vrain is undergoing decommissioning and was transferred to DOE on June 4, 1999.

Note: NRC-abbreviated unit names. Data as of July 2015, and the next printed update will be August 2017.



## APPENDIX P 🥞

## U.S. Low-Level Radioactive Waste Disposal Compact Membership

#### **Appalachian Compact**

Delaware Maryland Pennsylvania West Virginia

#### **Atlantic Compact**

Connecticut New Jersey South Carolina\*

## **Central Compact**

Arkansas Kansas Louisiana Oklahoma

## **Central Midwest Compact**

Illinois Kentucky

#### **Midwest Compact**

Indiana Iowa Minnesota Missouri Ohio Wisconsin

#### **Northwest Compact**

Alaska
Hawaii
Idaho
Montana
Oregon
Utah\*
Washington\*
Wyoming

## **Rocky Mountain Compact**

Colorado Nevada New Mexico (Northwest accepts Rocky Mountain waste as agreed between compacts.)

#### **Southeast Compact**

Alabama Florida Georgia Mississippi Tennessee Virginia

#### **Southwestern Compact**

Arizona California North Dakota South Dakota

## **Texas Compact**

Texas\* Vermont

#### Unaffiliated

District of Columbia
Maine
Massachusetts
Michigan
Nebraska
New Hampshire
New York
North Carolina
Puerto Rico
Rhode Island

## Closed Low-Level Radioactive Waste Disposal Facility Sites Licensed by the NRC or Agreement States

Beatty, NV, closed 1993 Sheffield, IL, closed 1978 Maxey Flats, KY, closed 1977 West Valley, NY, closed 1975

Note: Data as of July 2015, and the next printed update will be August 2017.

<sup>\*</sup> Site of an active low-level waste disposal facility.

## APPENDIX Q

## NRC-Regulated Complex Material Sites Undergoing Decommissioning, 2015



NRC-regulated complex material sites (13)

| Company                                       | Location             |
|-----------------------------------------------|----------------------|
| Alameda Naval Air Station                     | Alameda, CA          |
| Babcock & Wilcox SLDA                         | Vandergrift, PA      |
| Beltsville Agricultural Research Center       | Beltsville, MD       |
| Cimarron Environmental Trust                  | Cimarron, OK         |
| Department of Army, Jefferson Proving Ground  | Madison, IN          |
| Department of Army, Picatinny Arsenal (ARDEC) | Picatinny, NJ        |
| FMRI, Inc. (Fansteel)                         | Muskogee, OK         |
| Hunter's Point Naval Shipyard                 | San Francisco, CA    |
| McClellan Air Force Base                      | Sacramento, CA       |
| Sigma Aldrich                                 | Maryland Heights, MO |
| UNC Naval Products                            | New Haven, CT        |
| West Valley Demonstration Project             | West Valley, NY      |
| Westinghouse Electric Corporation—Hematite    | Festus, MO           |

Note: Data as of July 2016. Next publish release date August 2017 Picatinny Arsenal in New Jersey is managed by Region I.

## APPENDIX R @

## **Nuclear Power Units by Nation**

0

2

1

3

2

34

4

1

2

7

10

1.330

482

690

1.300

24,654

1.814

688

1,860

7,121

9.470

9.312

3,874

4.610

10,754

169,049

14.420

6.061

14,749

54,832

62,270

Country

Argentina

Armenia

Belarus

Belgium

Bulgaria

Canada

Czech Republic

China

Finland

France

India

Iran

Italy

Japan

Kazakhstan

Rep. Korea

Netherlands

Lithuania

Mexico

Pakistan

Romania

Russia

Slovakia

Slovenia

Spain

Sweden

South Africa

Germany Hungary

Brazil

In Operation or on Order **Nuclear Power** Number Capacity Number Capacity of Units Net MWe Shutdown Production GWh\* of Units Net MWe 5,257 3 1,625 25 0 **1**P 2.266 1 376 0 2 0 0 0 2.218 0 7 1<sup>P</sup> 33,093 5,927 0 0 2 1 1.245 0 15,385 1,884 2 4<sup>P</sup> 15.014 1.926 0 100,921 19 6<sup>P</sup> 13.500 0 0 27 24 23.738 0 130,580 23.025 28.636 6 3.904 0 Λ 0 22.654 4 2.752 1 1.600 0 58 12<sup>P</sup> 415,900 63,130 1,600 91,783 9 12,074 0 27<sup>P</sup> 14.778 4 1.889 0 0 21 6 0 33,231 5,308 3,990 4,140 1 915 0 0 0 **4**P 0 0 0 0 0 43 40,290 2.650 11P&1L **1**P 0 0 0 0 149,165 24 21,667 4 5,420 0

0

0

0

2

0

9

2

0

0

0

0

**Under Construction** 

2P

0

1P

0

0

5<sup>P</sup>

3<sup>P</sup>

O

0

14

3P

0

0

630

7,371

880

0

## APPENDIX R

## **Nuclear Power Units by Nation (continued)**

|                     | <u>lr</u>                        | In Operation or on Order |                     |                 |                     |                 |
|---------------------|----------------------------------|--------------------------|---------------------|-----------------|---------------------|-----------------|
| Country             | Nuclear Power<br>Production GWh* | Number of Units          | Capacity<br>Net MWe | Number of Units | Capacity<br>Net MWe | Shutdown        |
| Switzerland         | 26,370                           | 5                        | 3,333               | 0               | 0                   | 1 <sup>P</sup>  |
| Ukraine             | 83,123                           | 15                       | 13,107              | 2               | 1,900               | 4 <sup>P</sup>  |
| United Arab Emirate | s 0                              | 0                        | 0                   | 3               | 4,035               | 0 <sup>p</sup>  |
| United Kingdom      | 57,918                           | 16                       | 9,373               | 0               | 0                   | 29 <sup>p</sup> |
| United States       | 797,067                          | 99                       | 98,639              | 5               | 5,633               | 33 <sup>P</sup> |
| Total               | 2,410,373*                       | 438                      | 379,261             | 67              | 65,482              | 150° & 2L       |

<sup>\*</sup> Annual electrical power production for 2014. Total includes information on Taiwan.

Note: Totals include reactors that are operable, under construction, or on order; country's short-form name used; rounded to the nearest whole number.

Sources: IAEA Power Reactor Information System Database; analysis compiled by the NRC. Data as of July 2015, and the next printed update will be August 2017.

## APPENDIX S

## **Nuclear Power Units by Reactor Type, Worldwide**

In Operation

**Under Construction** 

|                                                     | Number   |         |
|-----------------------------------------------------|----------|---------|
| Reactor Type                                        | of Units | Net MWe |
| Pressurized light-water reactors (PWR)              | 279      | 261,052 |
| Boiling light-water reactors (BWR)                  | 78       | 74,686  |
| Heavy-water reactors, all types (HWR, PHWR)         | 49       | 24,549  |
| Light-water-cooled graphite-moderated reactor (LWGF | R) 15    | 10,219  |
| Gas-cooled reactors, all types (GCR)                | 15       | 8,175   |
| Liquid-metal-cooled fast breeder reactors (FBR)     | 2        | 580     |
| Total                                               | 438      | 379,261 |

Note: MWe values rounded to the nearest whole number.

Source: IAEA Power Reactor Information System Database, www.iaea.org

Compiled by the NRC from data as of April 2015. Next publish release date August 2017.

P = Permanent Shutdown

L = Long-Term Shutdown

## APPENDIX T

Native American Reservations and Trust Lands within a 50-Mile Radius of a Nuclear Power Plant



#### ARIZONA

#### Palo Verde

Ak-Chin Indian Community Tohono O'odham Trust Land Gila River Reservation

#### CONNECTICUT

#### Millstone

Mohegan Reservation Mashantucket Pequot Reservation

Narragansett Reservation

## Shinnecock Indian Nation

## FI.ORIDA

#### St. Lucie

Brighton Reservation (Seminole Tribes of Florida) Fort Pierce Reservation

#### **Turkey Point**

Hollywood Reservation (Seminole Tribes of Florida)

Miccosukee Reservation Miccosukee Trust Land

#### IOWA

#### **Duane Arnold**

Sac & Fox Trust Land Sac & Fox Reservation

#### KANSAS

Iowa Reservation Iowa Trust Land

#### LOUISIANA

#### River Bend

Tunica-Biloxi Reservation

### MASSACHUSETTS

#### Pilarim

Wampanoag Tribe of Gay Head

(Aguinnah) Trust Land

#### MICHIGAN

#### **Palisades**

Pottawatomi Reservation Matchebenashshewish Rand

Pokagon Reservation Pokagon Trust Land\*

#### DC Cook

Pokagon Reservation Pokagon Trust Land

#### MINNESOTA

#### Monticello

Shakopee Community Shakopee Trust Land Mille Lacs Reservation

## Prairie Island

Prairie Island Community\* Prairie Island Trust Land\* Shakopee Community Shakopee Trust Land

#### NEBRASKA

#### Cooper

Sac & Fox Trust Land Sac & Fox Reservation Iowa Reservation Iowa Trust Land Kickapoo

#### Fort Calhoun

Omaha Reservation Winnebago Reservation Winnebago Trust Land

#### **NEW YORK**

FitzPatrick

Onondaga Reservation Oneida Reservation

## Nine Mile Point

Onondaga Reservation Oneida Reservation

#### NORTH CAROLINA

#### McGuire

Catawba Reservation

#### SOUTH CAROLINA

#### Catawba

Catawba Reservation

#### Oconee

Eastern Cherokee Reservation

#### Summer

Catawba Reservation

#### Virginia

Surry

Pamunkev Reservation

### WASHINGTON

#### Columbia

Yakama Reservation Yakama Trust Land

#### WISCONSIN

#### Point Reach

Oneida Trust Land Oneida Reservation

NRC-abbreviated reactor names listed. Data as of July 2015, and the next printed update will be August 2017.



<sup>\*</sup> Tribe is located within the 10-mile emergency preparedness zone of operating reactors.

Note: This table uses NRC-abbreviated reactor names and Native American Reservation and Trust land names. There are no reservations or Trust lands within 50 miles of a reactor in Alaska or Hawaii. For more information on other Tribal concerns, go to the NRC Web site at www.nrc.gov.

## APPENDIX U 🤏

## **Regulatory Research Cooperative Agreements and Grants**

| American Nuclear Society                                          | Support for the development and maintenance of probabilistic risk assessment (PRA)-related standards                                                                                                                                             |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| American Society of Mechanical<br>Engineers                       | Support in the following areas: Committee on Nuclear Risk Management on PRA standards, nuclear risk management, code comparison for the Multinational Design Evaluation Program, and harmonization of codes                                      |
| Electric Power Research Institute                                 | Research on irradiation-assisted stress-corrosion cracking and irradiation-assisted degradation of vessel internals materials                                                                                                                    |
| International Commission on Radiological Protection               | Research on radiological protection standards                                                                                                                                                                                                    |
| Kansas State University                                           | Development of a High-Fidelity Model with Depleted Fuel for the Kansas State TRIGA Mark II Reactor                                                                                                                                               |
| National Academy of Sciences                                      | Support in the following areas: The Committee on Geological and Geotechnical Engineering, research to develop a consensus on the assessment of soil liquefaction potential and the related infrastructure consequences, research on porous rocks |
| National Council on Radiation<br>Protection and Measurements Inc. | Radiation Protection Guidance for the United States: SC 1-23,<br>Guidance on Radiation Dose Limits for the Lens of the Eye, and<br>radiation protection guidance for the United States                                                           |
| Northwestern University                                           | Service Lifetime Extension of Nuclear Power Plants: Prediction of Concrete Aging and Deterioration Through Accelerated Tests, Nondestructive Evaluation, and Stochastic Multiscale Computations                                                  |
| Ohio State University                                             | Severe Accident Management Guidelines (SAMG) Validation within the Context of Severe Accident Uncertainties                                                                                                                                      |
| Pennsylvania State University                                     | Research on the minimum film boiling temperature for nuclear fuel rods with different types of fouling layers and experiments on scalability of horizontal two-phase flow in small and large diameter pipes                                      |
| Purdue University                                                 | Steel Plate Composite Walls: Behavior, Analysis, and Design for Missile Impact                                                                                                                                                                   |
| Texas A&M University                                              | Research on bypass flow in prismatic reactor blocks and prolonged station blackout conditions                                                                                                                                                    |
| The Regents of the University of Colorado                         | Experimental and Numerical Investigation of Alkali Silica<br>Reaction in Nuclear Reactors                                                                                                                                                        |
| University of California, Los Angeles                             | Methodological and Software Enhancements of Dynamic PRA Platforms for Event Assessment Applications                                                                                                                                              |
| University of California-Berkeley                                 | Work on ground motion prediction models for central and eastern North America and postliquefaction residual strength                                                                                                                             |
| University of Florida                                             | Synergistic Effect of Thermal Aging and Low-Dose Irradiation on the Cast Stainless Steels and Stainless Steel Welds                                                                                                                              |
| University of Illinois                                            | Validation of the PARCS/PATHS/SCALE for PWR Depletion Using the BEAVRS Benchmark                                                                                                                                                                 |
| University of Maryland                                            | Study of the Implications of Multi-Unit Accidents in the Context of NRC's Quantitative Health Objectives                                                                                                                                         |
| University of Michigan                                            | Multiscale thermal hydraulic tool for nuclear power plant safety analyses and assessment of Trace interfacial area transport equations against high-resolution experiments of two-phase vertical flows                                           |
| University of Tennessee                                           | Research on seismic hazards and associated ground motion for the East Tennessee Seismic Zone                                                                                                                                                     |
| University of Toronto, Ontario                                    | Research to develop a tool to confirm safety margins for modula                                                                                                                                                                                  |



## APPENDIX V 🎕

## **Significant Enforcement Actions Issued**

Significant (escalated) enforcement actions include notices of violation (NOVs) for severity level (SL) I, II, or III violations; NOVs associated with inspection findings that the significance determination process (SDP) categorizes as white, yellow, or red; civil penalties (CPs); and enforcement-related orders. The NRC Enforcement Policy also allows related violations to be categorized collectively as a single problem. Escalated enforcement actions are issued to reactor, materials, and individual licensees; nonlicensees; and fuel cycle facility licensees.

| Action #  | Name                                                  | Туре      | Issue Date               | Enforcement Action                                                                                 |
|-----------|-------------------------------------------------------|-----------|--------------------------|----------------------------------------------------------------------------------------------------|
| EA-12-140 | South Carolina Electric & Gas Co.<br>(Summer)         | Reactor   | 03/10/2014               | Confirmatory order result of an ADR mediation                                                      |
| EA-13-026 | University Nuclear and Diagnostics                    | Materials | 05/13/2014               | NOV SL III                                                                                         |
| EA-13-059 | Centro De Medicina Nuclear CE                         | Materials | 04/08/2014               | Order imposing CP of \$7,000                                                                       |
| EA-13-076 | Entergy Nuclear IP2 LLC (Indian Point)                | Reactor   | 04/29/2014               | NOV SL III                                                                                         |
| EA-13-078 | Entergy Nuclear IP2 LLC (Indian Point)                | Reactor   | 04/29/2014               | NOV SL III                                                                                         |
| EA-13-105 | Geisser Engineering Corporation                       | Materials | 03/20/2014               | NOV/CP SL II - \$11,200 (CP<br>subsequently reduced)<br>Order imposing CP of \$8,400               |
|           |                                                       |           | 07/31/2014               |                                                                                                    |
| EA-13-136 | Geisser Engineering Corporation                       | Materials | 03/20/2014               | NOV SL II                                                                                          |
| EA-13-196 | Chicago Bridge and Iron Company (Lake<br>Charles, LA) | Reactor   | 09/25/2014               | Confirmatory order result of an ADR mediation                                                      |
| EA-13-215 | Valley Quarries, Inc.                                 | Materials | 02/06/2014               | Problem/CP SL III - \$3,500                                                                        |
| EA-13-222 | Omaha Public Power District (Fort Calhoun)            | ) Reactor | 04/25/2014               | NOV White SDP finding resulting in plant inspections                                               |
| EA-13-223 | FPL Energy Duane Arnold, LLC (Duane<br>Arnold)        | Reactor   | 02/11/2014               | NOV White SDP finding resulting in plant inspections                                               |
| EA-13-227 | Tetra Tech, Inc.                                      | Materials | 02/24/2014               | NOV SL III                                                                                         |
| EA-13-233 | Entergy Operations, Inc. (Waterford 3)                | Reactor   | 03/28/2014               | NOV White SDP finding resulting in plant inspections                                               |
| EA-13-240 | Wittnauer Worldwide, LP                               | Materials | 10/24/2014               | NOV SL III                                                                                         |
| EA-13-244 | Kuehne Company                                        | Materials | 03/20/2014               | NOV SL III                                                                                         |
| EA-13-247 | R.E. Ginna Nuclear Power Plant, LLC                   | Reactor   | 04/17/2014               | NOV White SDP finding resulting in plant inspections                                               |
| EA-13-251 | ATC Group Services, Inc., d/b/a Car                   | Materials | 11/19/2014               | NOV/CP SL III - \$3,500                                                                            |
| EA-14-001 | City of Kirksville, MO                                | Materials | 03/17/2014               | NOV SL III                                                                                         |
| EA-14-005 | Tennessee Valley Authority (Browns Ferry)             | ) Reactor | 04/30/2014<br>05/01/2014 | NOV White SDP finding resulting in plant inspections Confirmatory order result of an ADR mediation |

## APPENDIX V 🥞

## **Significant Enforcement Actions Issued (continued)**

| Action #       | Name                                                              | Туре      | Issue Date | Enforcement Action                                                 |
|----------------|-------------------------------------------------------------------|-----------|------------|--------------------------------------------------------------------|
| EA-14-008      | Entergy Operations, Inc. (Arkansas<br>Nuclear One, Units 1 and 2) | Reactor   | 06/23/2014 | 2 NOV Yellow SDP findings resulting in plant inspections           |
| EA-14-009      | Entergy Operations, Inc. (River Bend)                             | Reactor   | 12/03/2014 | Confirmatory order, with a CP of \$70,000, result of ADR mediation |
| EA-14-013      | Entergy Nuclear Operations, Inc. (Palisades)                      | Reactor   | 07/21/2014 | Confirmatory order result of an ADR mediation                      |
| EA-14-017      | Southern Nuclear Operating Co., Inc. (Farley)                     | Reactor   | 02/14/2014 | NOV White SDP finding resulting in plant inspections               |
| EA-14-024      | Wolf Creek Nuclear Operating Corp.<br>(Wolf Creek)                | Reactor   | 07/01/2014 | NOV White SDP finding resulting in plant inspections               |
| EA-14-026      | Dominion NDT Services, Inc.                                       | Materials | 04/02/2014 | NOV SL III                                                         |
| EA-14-028      | IUPUI/Indiana University Medical Center                           | Materials | 04/03/2014 | NOV SL III                                                         |
| EA-14-029      | ECS Carolinas, LLP                                                | Materials | 04/23/2014 | Problem SL III                                                     |
| EA-14-030      | Dominion Engineering Associates, Inc.                             | Materials | 12/18/2014 | NOV/CP SL III - \$3,500                                            |
| EA-14-072      | Metro Cardiovascular Diagnostics                                  | Materials | 09/30/2014 | NOV/CP SL III - \$3,500                                            |
| Problem SL III | Agreement State-Illinois<br>GeoLog Well Services, Inc.            | Materials | 6/11/13    | NOV SL III                                                         |
| EA-14-075      | ConAgra Foods                                                     | Materials | 08/01/2014 | Problem SL III                                                     |
| EA-14-089      | Idahoan Foods                                                     | Materials | 10/16/2014 | Problem SL III                                                     |
| EA-14-091      | Duke Energy Corp. (Oconee 1)                                      | Reactor   | 08/12/2014 | NOV White SDP finding resulting in plant inspections               |
| EA-14-092      | Dominion Nuclear Connecticut, Inc. (Millstone 3)                  | Reactor   | 10/20/2014 | NOV White SDP finding resulting in plant inspections               |
| EA-14-094      | FirstEnergy Nuclear Operating Co. (Davis-Besse)                   | Reactor   | 06/30/2014 | Confirmatory order                                                 |
| EA-14-100      | Calvert Cliffs Nuclear Power Plant, Inc. (Calvert Cliffs)         | Reactor   | 10/27/2014 | NOV White SDP finding resulting in plant inspections               |
| EA-14-106      | City of St. Peters, MO                                            | Materials | 08/19/2014 | NOV SL III                                                         |
| EA-14-108      | Diagnostic Imaging Centers, PA                                    | Materials | 08/26/2014 | NOV SL III                                                         |
| EA-14-112      | Southern Nuclear Operating Co., Inc. (Vogtle)                     | Reactor   | 08/06/2014 | NOV White SDP finding resulting in plant inspections               |
| EA-14-113      | Kruger Technologies Inc.                                          | Materials | 10/28/2014 | Confirmatory order result of an ADR mediation                      |



## APPENDIX V 🥞

## **Significant Enforcement Actions Issued (continued)**

| Action #  | Name                                       | Туре      | Issue Date | <b>Enforcement Action</b>                            |
|-----------|--------------------------------------------|-----------|------------|------------------------------------------------------|
| EA-14-115 | Truman Medical Center                      | Materials | 10/08/2014 | NOV SL III                                           |
| EA-14-116 | Bradley D. Bastow, D.O.                    | Materials | 11/06/2014 | Problem/CP SL III - \$7,000                          |
| EA-14-167 | Kim Engineering                            | Materials | 12/23/2014 | NOV SL III                                           |
| EA-14-187 | Omaha Public Power District (Fort Calhoun) | Reactor   | 11/25/2014 | NOV White SDP finding resulting in plant inspections |
| IA-12-045 | Mr. Michael P. Cooley                      | Reactor   | 03/10/2014 | Prohibition order                                    |
| IA-13-012 | Mr. Armando N. Clavero                     | Materials | 05/13/2014 | Prohibition order                                    |
| IA-13-033 | Mr. George Geisser, III                    | Materials | 07/17/2014 | Prohibition order                                    |
| IA-13-055 | Mr. John Amburgey                          | Reactor   | 01/13/2014 | NOV SL III                                           |
| IA-13-059 | Mr. Richard B. Smith                       | Reactor   | 05/14/2014 | Prohibition order                                    |
| IA-13-064 | Mr. Daniel L. Wilson                       | Reactor   | 04/29/2014 | Prohibition order                                    |
| IA-14-002 | Mr. Lane McHugh                            | Reactor   | 02/24/2014 | NOV SL III                                           |
| IA-14-004 | Mr. Douglas D. Stouffer                    | Reactor   | 04/14/2014 | NOV SL III                                           |
| IA-14-007 | Mr. Trey Brattin                           | Materials | 07/24/2014 | NOV SL III                                           |
| IA-14-014 | Mr. Donald K. Brown                        | Reactor   | 07/09/2014 | NOV SL III                                           |
| IA-14-021 | Mr. Gary Meekins                           | Reactor   | 07/09/2014 | NOV SL III                                           |
| IA-14-025 | Mr. James Chaisson                         | Materials | 07/11/2014 | Prohibition order                                    |

Note: Reactor facilities in a decommissioning status are listed as materials licensees. The NRC report on issued significant enforcement actions can be found on the NRC Web site at www.nrc.gov/about-nrc/regulatory/enforcement/current.html.

Note: Data as of July 2015, and the next printed update will be August 2017.

## APPENDIX W 🥞

## Laws Governing the U.S. Nuclear Regulatory Commission

- 1. Atomic Energy Act of 1954, as amended (Pub. L. 83–703)
- 2. Energy Reorganization Act of 1974, as amended (Pub. L. 93-438)
- 3. Reorganization Plan No. 1 of 1980, 5 U.S.C., App 1.
- Uranium Mill Tailings Radiation Control Act of 1978, as amended (Pub. L. 95–604)
- 5. Nuclear Non-Proliferation Act of 1978 (Pub. L. 95–242)
- 6. West Valley Demonstration Project Act of 1980 (Pub. L. 96–368)
- 7. Nuclear Waste Policy Act of 1982, as amended (Pub. L. 97-425)
- 8. Low-Level Radioactive Waste Policy Amendments Act of 1985 (Pub. L. 99-240)
- 9. Energy Policy Act of 1992 (Pub. L. 102-486)
- 10. Energy Policy Act of 2005 (Pub. L. 109-58)

## **Fundamental Laws Governing Civilian Uses of Radioactive Materials**

#### Nuclear Materials and Facilities

- 1. Atomic Energy Act of 1954, as amended
- 2. Energy Reorganization Act of 1974, as amended
- 3. Reorganization Plan No. 1 of 1980

#### Radioactive Waste

- 1. Nuclear Waste Policy Act of 1982, as amended
- Low-Level Radioactive Waste Policy Amendments Act of 1985
- Uranium Mill Tailings Radiation Control Act of 1978

#### Nonproliferation

Nuclear Non-Proliferation Act of 1978

#### **Fundamental Laws Governing the Processes of Regulatory Agencies**

- 1. Administrative Procedure Act (5 U.S.C. Chapters 5 through 8)
- 2. National Environmental Policy Act

## APPENDIX X 🦃

## **International Activities**

## CONVENTIONS AND TREATIES PERTAINING TO NUCLEAR SAFETY, SECURITY, AND INTERNATIONAL SAFEGAURDS\*

- Treaty on the Non-Proliferation of Nuclear Weapons, entry into force on March 5, 1970, United States (U.S.) is a party to the Treaty
- Treaty for the Prohibition of Nuclear Weapons in Latin America (Tlatelolco Treaty), entry into force for each government individually, United States is a party to the specific protocols appended to the Treaty
- Three to four other treaties specifying nuclear weapons-free zones in Africa, the South Pacific (Rarotonga), and Southeast Asia, including one being negotiated on the Middle East, the United States is only bound by specific protocols
- 4. Convention on Early Notification of a Nuclear Accident, entry into force October 27, 1986, United States is a party
- Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, entry into force February 26, 1987, U.S. is a party
- 6. Convention on Nuclear Safety, entry into force October 24, 1996, U.S. is a party
- 7. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, entry into force June 18, 2001, U.S. is a party
- 8. Convention on the Physical Protection of Nuclear Material (CPPNM), entry into force February 8, 1987, U.S. is a party
- 9. Amendment to the CPPNM, entry into force May 8, 2016, U.S. is a party
- 10. Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, entry into force August 30, 1975, U.S. is a party (also to amendments in 1978 (incineration), 1978 (disputes), 1980 (list of substances), 1989 (procedures), 1993 (banning dumping into sea of low-level radioactive wastes), 1996 (protocol to replace the 1972 Convention with a more restrictive text regulating the use of the sea as a depository for waste materials)
- 11. Convention on Supplementary Compensation for Nuclear Damage
- Agreement between the United States of America and the Agency for the Application of Safeguards in the United States of America (INFCIRC/288), entry into force December 9, 1980
- Model Protocol Additional to the Agreement Between State(s) and the IAEA for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America (INFCIRC/366), entry into force April 6, 1989, U.S. is a party
- Protocol Additional to the Agreement between the United States of America and the Agency for the Application of Safeguards in the United States of America (INFCIRC/288/Add. 1), entry into force January 6, 2009

Note: Data as of July 2015, and the next printed update will be August 2017.



<sup>\*</sup> This excludes arms control agreements.

## APPENDIX Y

## International Activities

#### LIST OF THE NRC'S PARTICIPATION WITH MULTILATERAL ORGANIZATIONS

## **International Commission on Radiological Protection**

## **International Atomic Energy Agency**

- · Commission on Safety Standards
  - · Nuclear Safety Standards Committee
  - Radiation Safety Standards Committee
  - · Transport Safety Standards Committee
  - · Waste Safety Standards Committee
- Nuclear Security Guidance Committee

## **International Nuclear Regulators Association**

## **Multinational Design Evaluation Program**

## **Nuclear Energy Agency (NEA)**

- NEA Steering Committee for Nuclear Energy
- Committee on Nuclear Regulatory Activities
  - · Working Group on Inspection Practices
  - Working Group on Operating Experience
  - · Working Group on Public Communication of Nuclear Regulatory Organisations
  - · Working Group on the Regulation of New Reactors
  - · Safety of Research Reactors Task Group
  - · Senior-Level Task Group on Impacts of the Fukushima Accident
  - · Task Group on Nonconforming, Counterfeit, Fraudulent, and Suspect Items
  - · Task Group on Accident Management
- Committee on Radiation Protection and Public Health
  - · Expert Group on the Implications of ICRP Recommendations
  - · Expert Group on Occupational Exposure
  - Expert Group on the Public Health Perspective in Radiological Protection
  - · Expert Group on the Radiological Protection Aspects of the Fukushima Accident
  - · Expert Group on Radiological Protection Science
  - Working Party on Nuclear Emergency Matters



## APPENDIX Y

## **International Activities**

## LIST OF THE NRC'S PARTICIPATION WITH MULTILATERAL ORGANIZATIONS (CONTINUED)

- Committee on the Safety of Nuclear Installations (CSNI)
  - · CSNI Program Review Group
  - · Working Group on Integrity and Ageing of Components and Structures
  - · Working Group on Analysis and Management of Accidents
  - · Working Group on Risk Assessment
  - · Working Group on Human and Organisational Factors
  - · Working Group on Fuel Safety
  - · Working Group on Fuel Cycle Safety
- Radioactive Waste Management Committee
  - · Forum on Stakeholder Confidence
  - · Integration Group for the Safety Case of Radioactive Waste Repositories
  - · Regulators' Forum
  - · Working Party on Decommissioning and Dismantling

## United Nations Scientific Committee on the Effects of Atomic Radiation

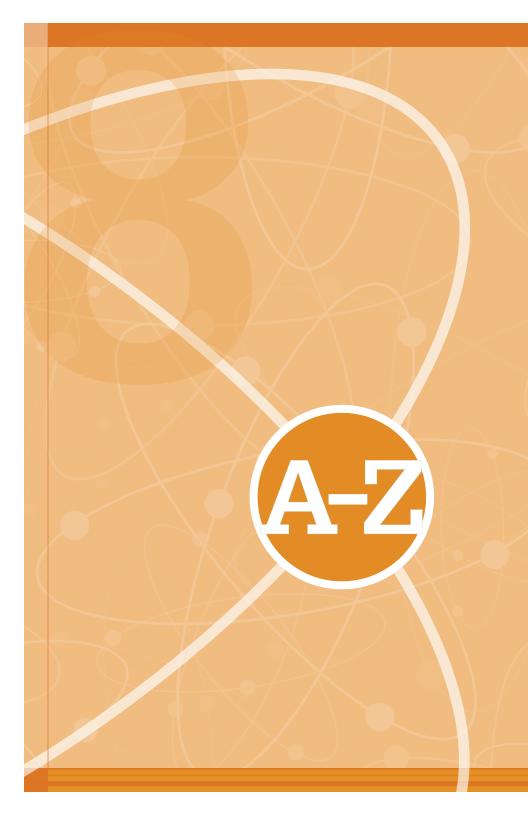
#### BILATERAL INFORMATION EXCHANGE AND COOPERATION AGREEMENTS WITH THE NRC

| Agreement Country |                                                                                 |                                                                                                                                                               |  |  |  |
|-------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Finland           | Korea, Rep. of                                                                  | Spain                                                                                                                                                         |  |  |  |
| France            | Lithuania                                                                       | Sweden                                                                                                                                                        |  |  |  |
| Germany           | Mexico                                                                          | Switzerland                                                                                                                                                   |  |  |  |
| Greece            | Netherlands                                                                     | Tecro (Taiwan)                                                                                                                                                |  |  |  |
| Hungary           | Peru                                                                            | Thailand                                                                                                                                                      |  |  |  |
| India             | Philippines                                                                     | Turkey                                                                                                                                                        |  |  |  |
| Indonesia         | Poland                                                                          | Ukraine                                                                                                                                                       |  |  |  |
| Israel            | Romania                                                                         | United Arab Emirates                                                                                                                                          |  |  |  |
| Italy             | Russia                                                                          | United Kingdom                                                                                                                                                |  |  |  |
| Japan             | Slovakia                                                                        | Vietnam                                                                                                                                                       |  |  |  |
| Jordan            | Slovenia                                                                        |                                                                                                                                                               |  |  |  |
| Kazakhstan        | South Africa                                                                    |                                                                                                                                                               |  |  |  |
|                   | Finland France Germany Greece Hungary India Indonesia Israel Italy Japan Jordan | France Lithuania Germany Mexico Greece Netherlands Hungary Peru India Philippines Indonesia Poland Israel Romania Italy Russia Japan Slovakia Jordan Slovenia |  |  |  |

Note: The country's short-form name is used. NRC's technical arrangements are initiated and renewed for 5-year terms. Data as of July 2015, and the next printed update will be August 2017.

EURATOM-The European Atomic Energy Community

Tecro (Taiwan) is the Taipei Economic and Cultural Representative Office in the United States.


## APPENDIX Z 🥞



#### LIST OF IMPORT AND EXPORT LICENSES

List of NRC Import and Export Licenses by Applicant and Docket Number issued can now be found at the Dataset Index Web page online at: http://www.nrc.gov/reading-rm/doc-collections/datasets













# Glossary

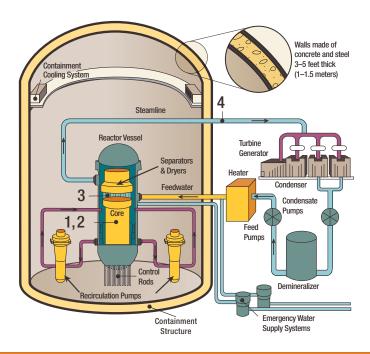
## GLOSSARY

## Glossary (Abbreviations, Definitions, and Illustrations)

## **Agreement State**

A U.S. State that has signed an agreement with the U.S. Nuclear Regulatory Commission authorizing the State to regulate certain uses of radioactive materials within the State.

## Atomic energy


The energy that is released through a nuclear reaction or radioactive decay process. One kind of nuclear reaction is fission, which occurs in a nuclear reactor and releases energy, usually in the form of heat and radiation. In a nuclear power plant, this heat is used to boil water to produce steam that can be used to drive large turbines. The turbines drive generators to produce electrical power.

## **Background radiation**

The natural radiation that is always present in the environment. It includes cosmic radiation that comes from the sun and stars, terrestrial radiation that comes from the Earth, and internal radiation that exists in all living things and enters organisms by ingestion or inhalation. The typical average individual exposure in the United States from natural background sources is about 310 millirems per year.

## **Boiling-water reactor (BWR)**

A nuclear reactor in which water is boiled using heat released from fission. The steam released by boiling then drives turbines and generators to produce electrical power. BWRs operate similarly to electrical plants using fossil fuel, except that the BWRs are heated by nuclear fission in the reactor core.



#### **How Nuclear Reactors Work**

In a typical design concept of a commercial BWR, the following process occurs:

- 1. The nuclear fuel core inside the reactor vessel creates heat from nuclear fission.
- 2. A steam-water mixture is produced when very pure water (reactor coolant) moves upward through the core, absorbing heat.
- The steam-water mixture leaves the top of the core and enters the two stages of moisture separation where water droplets are removed before the steam is allowed to enter the steamline.
- 4. The steam is piped to the main turbine, causing it to turn the turbine generator, which produces electricity.
- 5. The steam is exhausted to the condenser, where it is condensed into water. The resulting water is pumped out of the condenser with a series of pumps and pumped back to the reactor vessel.

The reactor's core contains fuel assemblies that are cooled by water circulated using electrically powered pumps. These pumps and other operating systems in the plant receive their power from the electrical grid. If offsite power is lost, emergency cooling water is supplied by other pumps, which can be powered by onsite diesel generators. Other safety systems, such as the containment cooling system, also need electric power. BWRs contain between 370–800 fuel assemblies.

## **Brachytherapy**

A medical procedure during which a sealed radioactive source (or sources) is implanted directly into a person being treated for cancer (usually of the mouth, breast, lung, prostate, ovaries, or uterus). The radioactive implant may be temporary or permanent, and the radiation kills cells in the tumor as long as the device remains in place and emits radiation. Brachytherapy uses radioisotopes, such as iridium-192 or iodine-125, which are regulated by the NRC and Agreement States.

## **Byproduct material**

As defined by NRC regulations, byproduct material includes any radioactive material (except enriched uranium or plutonium) produced by a nuclear reactor, through the use of a particle accelerator, or any discrete source of radium-226 used for a commercial, medical, or research activity. It also includes the tailings or wastes produced by the extraction or concentration of uranium or thorium or the fabrication of fuel for nuclear reactors. In addition, the NRC, in consultation with the U.S. Environmental Protection Agency, U.S. Department of Energy, U.S. Department of Homeland Security, and others, can designate as byproduct material any source of naturally occurring radioactive material, other than source material, that it determines would pose a threat to public health and safety or the common defense and security of the United States.

#### Canister

See Dry cask storage.

## GLOSSARY

## Capability

The maximum load that a generating unit, generating station, or other electrical apparatus can carry under specified conditions for a given period of time without exceeding approved limits of temperature and stress.

## Capacity

The amount of electric power that a generator, turbine transformer, transmission, circuit, or system is able to produce, as rated by the manufacturer.

## Capacity factor

The ratio of the available capacity (the amount of electrical power actually produced by a generating unit) to the theoretical capacity (the amount of electrical power that could theoretically have been produced if the generating unit had operated continuously at full power) during a given time period.

## Capacity utilization

A percentage that a generating unit fulfilled its capacity in generating electric power over a given time period. This percentage is defined as the margin between the unit's available capacity (the amount of electrical power the unit actually produced) and its theoretical capacity (the amount of electrical power that could have been produced if the unit had operated continuously at full power) during a certain time period. Capacity utilization is computed by dividing the amount of power actually produced by the theoretical capacity and multiplying by 100.

#### Cask

A heavily shielded container used for the dry storage or shipment (or both) of radioactive materials such as spent nuclear fuel or other high-level radioactive waste (HLW). Casks are often made from lead, concrete, and/or steel. Casks must meet regulatory requirements.

## Categories of radiation sources

The categories for radiation sources are defined by NRC requirements and the IAEA's Code of Conduct on the Safety and Security of Radioactive Sources. This helps ensure that sufficient controls are being used to achieve safety and security.

- Category 1 sources, if not safely or securely managed, would be likely to cause permanent injury to a person who handled them or was otherwise in contact with them for more than a few minutes. It would probably be fatal to be close to this amount of unshielded material for a period of a few minutes to an hour. These sources are typically used in radiothermal generators, irradiators, and radiation teletherapy.
- Category 2 sources, if not safely or securely managed, could cause permanent
  injury to a person who handled them or was otherwise in contact with them for a
  short time (minutes to hours). It could possibly be fatal to be close to this amount
  of unshielded radioactive material for a period of hours to days. These sources
  are typically used in industrial gamma radiography, high- and medium-dose rate
  brachytherapy, and radiography.

Category 3 sources, if not safely or securely managed, could cause permanent
injury to a person who handled them or was otherwise in contact with them for
hours. It could possibly—although it is unlikely—be fatal to be close to this amount
of unshielded radioactive material for a period of days to weeks. These sources
are typically used in fixed industrial gauges such as level gauges, dredger gauges,
conveyor gauges, spinning pipe gauges, and well logging.

## Categories of special nuclear material

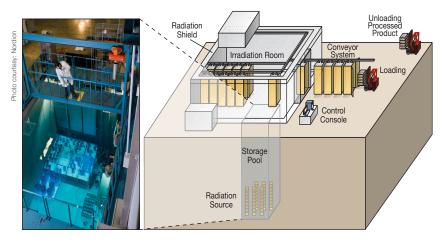
The NRC categorizes special nuclear materials and the facilities that possess them into three categories based upon the materials' potential for use in nuclear weapons, or their "strategic significance." The three categories are:

- · Category I, high strategic significance
- Category II, moderate strategic significance
- Category III, low strategic significance

The NRC's physical security and safeguards requirements differ by category, with Category I facilities subject to more stringent requirements because they pose greater security and safeguards risks.

#### Classified information

Information that has been determined pursuant to Executive Order to require protection against unauthorized disclosure and is marked to indicate its classified status when in documentary form. The NRC has two types of classified information. The first type, known as national security information, is information that is classified by an Executive Order. Its release would damage national security. The second type, known as restricted data, would assist individuals or organizations in designing, manufacturing, or using nuclear weapons. Access to both types of information is restricted to authorized persons who have been properly cleared and have a "need to know" the information to accomplish their official duties.


#### Combined license (COL)

An NRC-issued license that authorizes a licensee to construct and (with certain specified conditions) operate a nuclear power facility, such as a nuclear plant at a specific site.

## GLOSSARY

#### **Commercial Irradiator**

A facility that uses high doses of radiation to sterilize or treat products, such as food and spices, medical supplies, and wood flooring. Irradiation can be used to eliminate harmful bacteria, germs, and insects or for hardening or other purposes. The radiation does not leave radioactive residue or make the treated products radioactive. Radiation sources include radioactive materials (e.g., cobalt-60), an x-ray machine, or an electron beam.



## Compact

A group of two or more U.S. States that have formed alliances to dispose of low-level radioactive waste (LLW).

## Construction recapture

The maximum number of years that could be added to a nuclear power plant's license expiration date to recapture the period between the date the NRC issued the plant's construction permit and the date it granted an operating license. A licensee must submit an application to request this extension.

#### Containment structure

A resilient gas-tight shell or other enclosure around a nuclear reactor to confine fission products that otherwise might be released to the atmosphere in the event of a severe reactor accident. Such enclosures are usually dome-shaped and made of steel-reinforced concrete.

#### Contamination

Undesirable radiological, chemical, or biological material (with a potentially harmful effect) that is either airborne or deposited in (or on the surface of) structures, objects, soil, water, or living organisms.

## Criticality

The condition involving fission of nuclear materials when the number of neutrons produced equals or exceeds the nuclear containment. During normal reactor operations, nuclear fuel sustains a fission chain reaction or criticality. A reactor achieves criticality (and is said to be critical) when each fission event releases a sufficient number of neutrons to sustain an ongoing series of reactions.

## Decommissioning

The process of safely closing a nuclear power plant (or other facility where nuclear materials are handled) to retire it from service after its useful life has ended. This process primarily involves decontaminating the facility to reduce residual radioactivity and then releasing the property for unrestricted or (under certain conditions) restricted use. This often includes dismantling the facility or dedicating it to other purposes. See ENTOMB and SAFSTOR.

### **DECON**

A phase of reactor decommissioning in which structures, systems, and components that contain radioactive contamination are removed from a site and safely disposed of at a commercially operated low-level waste (LLW) disposal facility or decontaminated to a level that permits the site to be released for unrestricted use.

#### Decontamination

A process used to reduce, remove, or neutralize radiological, chemical, or biological contamination to reduce the risk of exposure. Decontamination may be accomplished by cleaning or treating surfaces to reduce or remove the contamination, filtering contaminated air or water, or subjecting contamination to evaporation and precipitation. The process can also simply allow adequate time for radioactive decay to decrease the radioactivity.

#### Defense-in-depth

An approach to designing and operating nuclear facilities that prevents and mitigates accidents that release radiation or hazardous materials. The key is creating multiple independent and redundant layers of controls or design features to compensate for potential human and mechanical failures so that no single control, no matter how robust, is exclusively relied upon to achieve safety or security. Defense-in-depth includes the use of access controls, physical barriers, redundant and diverse key safety functions, and emergency response measures.

## Depleted uranium

Uranium with a percentage of uranium-235 lower than the 0.7 percent (by mass) contained in natural uranium. Depleted uranium is the byproduct of the uranium enrichment process. Depleted uranium can be blended with highly enriched uranium, such as that from weapons, to make reactor fuel.

## Design-basis threat (DBT)

A description of the type, composition, and capabilities of an adversary that a security system is designed to protect against. The NRC uses the DBT as a basis for designing safeguards systems to protect against acts of radiological sabotage and to prevent the theft of special nuclear material. Certain nuclear facility licensees are required to defend against the DBT.

## GLOSSARY

## Design certification

Certification and approval by the NRC of a standard nuclear power plant design independent of a specific site or an application to construct or operate a plant. A design certification is valid for 15 years from the date of issuance but can be renewed for an additional 10 to 15 years.

## Dose (radiation)

The National Council on Radiation Protection and Measurements estimates that an average person in the United States receives a total annual dose of about 0.62 rem (620 millirem) from all radiation sources, a level that has not been shown to cause humans any harm. Of this total, natural background sources of radiation—including radon and thoron gas, natural radiation from soil and rocks, radiation from space, and radiation sources that are found naturally within the human body—account for about 50 percent. Medical procedures such as computed tomography (CT) scans and nuclear medicine account for about another 48 percent. Other small contributors of exposure to the U.S. population include consumer products and activities, industrial and research uses, and occupational tasks. The maximum permissible yearly dose for a person working with or around nuclear material is 5 rem.

## Dry cask storage

A method for storing spent nuclear fuel in special containers known as dry casks. After fuel has been cooled in a spent fuel pool, dry cask storage allows spent fuel assemblies to be sealed in casks and surrounded by inert gas. They are welded or bolted closed, and each cask includes steel, concrete, lead, or other material to provide leak-tight containment and radiation shielding. The casks may store fuel horizontally or vertically.



#### Early site permit (ESP)

A permit granted by the NRC to approve one or more proposed sites for a nuclear power facility, independent of a specific nuclear plant design or an application for a construction permit or COL. An ESP is valid for 10 to 20 years but can be renewed for an additional 10 to 20 years.

## Economic Simplified Boiling-Water Reactor (ESBWR)

A 4,500-megawatt thermal nuclear reactor design, which has passive safety features and uses natural circulation (with no recirculation pumps or associated piping) for normal operation. The NRC certified the ESWBR standard design submitted by GE-Hitachi Nuclear Energy (GEH) on October 15, 2014.

## Efficiency, plant

The percentage of the total energy content of a power plant's thermal energy that is converted into electricity. The remaining energy is lost to the environment as heat.

### Electric power grid

A system of synchronized power providers and consumers, connected by transmission and distribution lines and operated by one or more control centers. In the continental United States, the electric power grid consists of three systems—the Eastern Interconnect, the Western Interconnect, and the Texas Interconnect. In Alaska and Hawaii, several systems encompass areas smaller than the State.

#### **Electric utility**

A corporation, agency, authority, person, or other legal entity that owns or operates facilities within the United States, its territories, or Puerto Rico for the generation, transmission, distribution, or sale of electric power (primarily for use by the public). Facilities that qualify as cogenerators or small power producers under the Public Utility Regulatory Policies Act are not considered electric utilities.

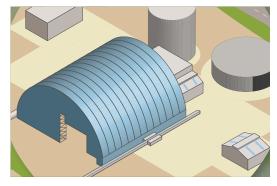
#### **Emergency classifications**

Sets of plant conditions that indicate various levels of risk to the public and that might require response by an offsite emergency response organization to protect citizens near the site.

# **Emergency preparedness (EP)**

The programs, plans, training, exercises, and resources used to prepare for and rapidly identify, evaluate, and respond to emergencies, including those arising from terrorism or natural events such as hurricanes. EP strives to ensure that operators of nuclear power plants and certain fuel cycle facilities can implement measures to protect public health and safety in the event of a radiological emergency. Licensees who operate certain nuclear facilities, such as nuclear power plants, must develop and maintain EP plans that meet NRC requirements.

#### **Energy Information Administration (EIA)**


The agency, within the U.S. Department of Energy, that provides policy-neutral statistical data, forecasts, and analyses to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment.

#### Enrichment

See Uranium enrichment.

#### **ENTOMB**

A method of decommissioning a nuclear power plant, in which radioactive contaminants are encased in a structurally long-lived material, such as concrete. The entombed structure is maintained and surveillance is continued until the radioactive waste decays to a level permitting termination of the license and unrestricted release of the property.



#### **Event Notification System**

An automated system used by the NRC to document incoming notifications of significant nuclear events with an actual or potential effect on the health and safety of the public and the environment. Significant events are reported to the NRC by licensees, Agreement States, other Federal agencies, the public, and other countries.

# **Exposure (radiation)**

Absorption of ionizing radiation or the amount of a hazardous substance that has been ingested, inhaled, or contacted the skin. Acute exposure occurs over a short period of time. Chronic exposure is exposure received over a long period of time, such as during a lifetime. See Occupational dose.

### Federal Emergency Management Agency (FEMA)

A component of the U.S. Department of Homeland Security responsible for protecting the Nation and reducing the loss of life and property from all hazards such as natural disasters and acts of terrorism. FEMA leads and supports a risk-based, comprehensive emergency management system of preparedness, protection, response, recovery, and mitigation.

# **Federal Energy Regulatory Commission (FERC)**

An independent agency that regulates the interstate transmission of electricity, natural gas, and oil. FERC also regulates and oversees hydropower projects and the construction of liquefied natural gas terminals and interstate natural gas pipelines. FERC protects the economic, environmental, and safety interests of the American public, while working to ensure abundant, reliable energy in a fair, competitive market.

#### Fiscal year (FY)

The 12-month period from October 1 through September 30 used by the Federal Government for budget formulation and execution. The FY is designated by the calendar year in which it ends; for example, FY 2016 runs from October 1, 2015, through September 30, 2016.

#### Fissile material

A nuclide that is capable of undergoing fission after capturing neutrons. Although sometimes used as a synonym for fissionable material, this term has acquired its more restrictive interpretation with the limitation that the nuclide must be fissionable by thermal neutrons. With that interpretation, the three primary fissile materials are uranium-233, uranium-235, and plutonium-239. This definition excludes natural uranium and depleted uranium that have not been irradiated or have only been irradiated in thermal reactors.

#### Fission

The splitting of an atom, which releases a considerable amount of energy (usually in the form of heat). Fission may be spontaneous but is usually caused by the nucleus of an atom becoming unstable (or "heavy") after capturing or absorbing a neutron. During fission, the nucleus splits into roughly equal parts, producing the nuclei of at least two lighter elements. In addition to energy, this reaction usually releases gamma radiation and two or more daughter neutrons.

#### Force-on-force

A type of security exercise designed to evaluate and improve the effectiveness of a security system. For the NRC, force-on-force exercises are used to assess the ability of the licensee to defend a nuclear power plant and other nuclear facilities against a design-basis threat (DBT).

# Foreign Assignee Program

An on-the-job training program sponsored by the NRC for assignees from other countries, usually under bilateral information exchange arrangements with their respective regulatory organizations. The assignees' regulatory authorities generally identify the individuals participating and pay their salaries.

#### Freedom of Information Act (FOIA)

A Federal law that requires Federal agencies to provide, upon written request, access to records or information. Some material is exempt from FOIA, and FOIA does not apply to records that are maintained by State and local governments, Federal contractors, grantees, or private organizations or businesses.

#### Fuel assembly (fuel bundle, fuel element)

A structured group of fuel rods (long, slender, metal tubes containing pellets of fissionable material, which provide fuel for nuclear reactors). Depending on the design, each reactor core may have dozens of fuel assemblies (also known as fuel bundles), each of which contains dozens of fuel rods.

#### Fuel cycle

The series of steps involved in supplying fuel for nuclear power reactors. The uranium fuel cycle includes the following:

- uranium recovery to extract and concentrate the uranium to produce yellowcake
- conversion of yellowcake into uranium hexafluoride (UF<sub>6</sub>)
- enrichment to increase the concentration of uranium in UF<sub>6</sub>
- fuel fabrication to convert enriched UF<sub>6</sub> into fuel for nuclear reactors
- use of the fuel in reactors (nuclear power research or naval propulsion)
- interim storage of spent nuclear fuel
- reprocessing of spent fuel to recover the fissionable material remaining in the spent fuel (currently not done in the United States)
- final disposition disposal of high-level radioactive waste
- transportation of the uranium in all forms including spent fuel

The NRC regulates these processes, as well as the fabrication of mixed-oxide (MOX) nuclear fuel, which is a combination of uranium and plutonium oxides.

## Fuel reprocessing (recycling)

The processing of reactor fuel to separate the unused fissionable material from waste material. Reprocessing extracts uranium and plutonium from spent nuclear fuel so they can be used again as reactor fuel. Commercial reprocessing is not practiced in the United States, although it has been in the past. However, the U.S. Department of Energy operates reprocessing facilities such as in Hanford, WA, and Savannah River, SC, for national defense purposes.

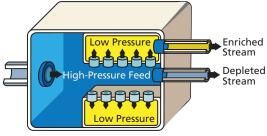
#### Fuel rod

A long, slender, zirconium metal tube containing pellets of fissionable material, which provide fuel for nuclear reactors. Fuel rods are assembled into bundles called fuel assemblies, which are loaded individually into the reactor core.

#### Full-time equivalent (FTE)

A human resources measurement equal to one person working full time for 1 year.

#### Gas centrifuge


Uranium enrichment technology that uses many rotating cylinders that are connected in long lines to increase the concentration of uranium-235. Gas is placed in the cylinder, which spins at a high speed, creating a strong centrifugal force. Heavier gas molecules move to the cylinder wall, while lighter molecules collect near the center. The stream, slightly enriched, is fed into the next cylinder. The depleted stream is recycled back into the previous cylinder.

# Gas chromatography

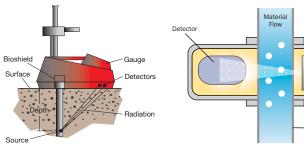
An analytical technique for separating chemical substances from a mixed sample by passing the sample, carried by a moving stream of gas, through a tube packed with a finely divided solid that may be coated with a liquid film. Gas chromatography devices are used to analyze air pollutants, blood alcohol content, essential oils, and food products.

#### **Gaseous diffusion**

A uranium enrichment process used to increase the concentration of uranium-235 in uranium for use in fuel for nuclear reactors by separating its isotopes (as gases) based on their slight difference in mass. (Lighter isotopes diffuse faster through a porous



membrane or vessel than do heavier isotopes.) This process involves filtering UF $_6$  gas to separate uranium-234 and uranium-235 from uranium-238, increasing the percentage of uranium-235.


In May 2013, the last remaining gaseous diffusion plant in operation in the United States in Paducah, KY, shut down. A similar plant near Piketon, OH, was closed in March 2001. Another plant in Oak Ridge, TN. closed years ago and was not regulated by the NRC.

#### **Gauging devices**

Devices used to measure, monitor, and control the thickness of sheet metal, textiles, paper napkins, newspaper, plastics, photographic film, and other products as they are manufactured. Gauges mounted in fixed locations are designed for measuring or controlling material density, flow, level, thickness, or weight. The gauges contain sealed sources that radiate through the substance being measured to a readout or controlling device. Portable gauging devices, such as moisture density gauges, are used at field locations. These gauges contain a gamma-emitting sealed source, usually cesium-137, or a sealed neutron source, usually americium-241 and beryllium.

#### **Moisture Density Gauge**

# Fixed Fluid Gauge



## Generation (gross)

The total amount of electric energy produced by a power generating station, as measured at the generator terminals.

Shutter

Source

Shielding

Pipe

#### Generation (net)

The gross amount of electric energy produced by a generating station, minus the amount used to operate the station. Net generation is usually measured in watthours.

# Generator capacity

The maximum amount of electric energy that a generator can produce (from the mechanical energy of the turbine), adjusted for ambient conditions. Generator capacity is commonly expressed in megawatts (MW).

#### Geological repository

An excavated, underground facility that is designed, constructed, and operated for safe and secure permanent disposal of high-level radioactive waste (HLW). A geological repository uses an engineered barrier system and a portion of the site's natural geology, hydrology, and geochemical systems to isolate the radioactivity of the waste.

#### Gigawatt (GW)

A unit of power equivalent to one billion (1,000,000,000) watts.

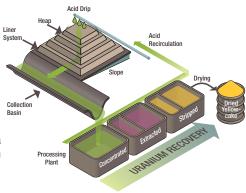
#### Gigawatthour (GWh)

One billion (1,000,000,000) watthours.

#### Grid

See Electric power grid.

#### Half-life (radiological)


The time required for half the atoms of a particular radioactive material to decay. A specific half-life is a characteristic property of each radioisotope. Measured half-lives range from millionths of a second to billions of years, depending on the stability of the nucleus. Radiological half-life is related to, but different from, biological half-life and effective half-life.

#### Health physics

The science concerned with recognizing and evaluating the effects of ionizing radiation on the health and safety of people and the environment, monitoring radiation exposure, and controlling the associated health risks and environmental hazards to permit the safe use of technologies that produce ionizing radiation.

#### Heap leach recovery process

A method for extracting uranium from ore. The ore is placed in piles or heaps on top of liners. The liners prevent uranium and other chemicals from moving into the ground. Sulfuric acid is dripped onto the heap and dissolves uranium as it moves through the ore. Uranium solution drains into collection basins, where it is piped to a processing plant. At the plant, uranium is extracted, concentrated, and dried to form yellowcake.



# **High-level radioactive waste (HLW)**

The highly radioactive materials produced as byproducts of fuel reprocessing or of the reactions that occur inside nuclear reactors. HLW includes the following:

- irradiated spent nuclear fuel discharged from commercial nuclear power reactors
- highly radioactive liquid and solid materials resulting from the reprocessing of spent nuclear fuel, which contains fission products in concentration including some reprocessed HLW from defense activities and a small quantity of reprocessed commercial HLW
- other highly radioactive materials that the Commission may determine require permanent isolation

# Highly (or high-) enriched uranium

Uranium enriched to at least 20 percent uranium-235 (a higher concentration than exists in natural uranium ore).

#### In situ recovery (ISR)

A common method currently used to extract uranium from ore bodies without physical excavation of the ore. ISR is also known as "solution mining" or in situ leaching.

#### Incident response

Activities that address the short-term, direct effects of a natural or human-caused event and require an emergency response to protect life or property.

# Independent spent fuel storage installation (ISFSI)

A complex designed and constructed for the interim storage of spent nuclear fuel; solid, reactor-related, greater-than-Class-C waste; and other associated radioactive materials. A spent fuel storage facility may be considered independent, even if it is located on the site of another NRC-licensed facility.

# **International Atomic Energy Agency (IAEA)**

A United Nations agency established in 1957 to serve as a world center of cooperation in the nuclear field. The agency works with nearly 170 member States and multiple partners worldwide to promote safe, secure, and peaceful nuclear technology.

## **International Nuclear Regulators Association**

An association established in January 1997 to give national nuclear regulators with mature civilian nuclear reactor and materials programs a forum to discuss nuclear safety and security issues of mutual interest. Canada, France, Japan, the Republic of South Korea, Spain, Sweden, the United Kingdom, and the United States are members.

#### Irradiation

Exposure to ionizing radiation. Irradiation may be intentional, such as in cancer treatments or in sterilizing medical instruments. Irradiation may also be accidental, such as from exposure to an unshielded source. Irradiation does not usually result in radioactive contamination, but damage can occur, depending on the dose received.

# **Isotope**

Two or more forms (or atomic configurations) of a given element that have identical atomic numbers (the same number of protons in their nuclei) and the same or very similar chemical properties but different atomic masses (different numbers of neutrons in their nuclei) and distinct physical properties. Thus, carbon-12, carbon-13, and carbon-14 are isotopes of the element carbon, and the numbers denote the approximate atomic masses. Among their distinct physical properties, some isotopes (known as radioisotopes) are radioactive, because their nuclei are unstable and emit radiation as they decay spontaneously toward a more stable nuclear configuration. For example, carbon-12 and carbon-13 are stable, but carbon-14 is unstable and radioactive.

#### Kilowatt (kW)

A unit of power equivalent to 1,000 watts.

#### Licensed material

Source material, byproduct material, or special nuclear material that is received, possessed, used, transferred, or disposed of under a general or specific license issued by the NRC or Agreement States and is not otherwise exempt from regulation.

#### Licensee

A company, organization, institution, or other entity to which the NRC or an Agreement State has granted a general or specific license to construct or operate a nuclear facility, or to receive, possess, use, transfer, or dispose of source, byproduct, or special nuclear material.

# Licensing basis

The collection of documents or technical criteria that provides the basis upon which the NRC issues a license to construct or operate a nuclear facility; to conduct operations involving the emission of radiation; or to receive, possess, use, transfer, or dispose of source, byproduct, or special nuclear material.

# Light-water reactor

A term used to describe reactors using ordinary water as a moderated coolant, including boiling-water reactors (BWRs) and pressurized-water reactors (PWRs), the most common types used in the United States.

#### Low-level radioactive waste (LLW)

A general term for a wide range of waste that is contaminated with radioactive material or has become radioactive through exposure to neutron radiation. A variety of industries, hospitals and medical institutions, educational and research institutions, private or government laboratories, and nuclear fuel cycle facilities generate LLW. Some examples include radioactively contaminated protective shoe covers and clothing; cleaning rags, mops, filters, and reactor water treatment residues; equipment and tools; medical tubes, swabs, and hypodermic syringes; and carcasses and tissues from laboratory animals.

#### Loss-of-coolant accident (LOCA)

A potential accident in which a breach in a reactor's pressure boundary causes the coolant water to rush out of the reactor faster than makeup water can be added back in. Without sufficient coolant, the reactor core could heat up and potentially melt the zirconium fuel cladding, causing a major release of radioactivity.

#### Megawatt (MW)

A unit of power equivalent to 1,000,000 watts.

#### Megawatt-hour (MWh)

A unit equals 1,000 kilowatts of electricity used continuously for 1 hour.

#### Metric ton

About 2,200 pounds.

#### Mill tailings

Primarily, the solid residue from a conventional uranium recovery facility in which uranium or thorium ore is crushed and processed mechanically or chemically to recover the uranium, thorium, or other valuable materials. This naturally radioactive ore residue contains the radioactive decay products from the uranium chains (mainly the uranium-238 chain). Although the milling process recovers about 93 percent of the uranium, the "tailings" contain several naturally occurring radioactive elements, including uranium, thorium, radium, polonium, and radon as well as heavy metals and other constituents.

#### Mixed-oxide (MOX) fuel

A type of nuclear reactor fuel that contains plutonium oxide mixed with either natural or depleted uranium oxide, in ceramic pellet form. This differs from conventional nuclear fuel, which is made of uranium oxide before it is irradiated in a reactor. Using plutonium reduces the amount of enriched uranium needed to produce a controlled reaction in commercial light-water reactors. However, plutonium exists only in trace amounts in nature and, therefore, must be produced by neutron irradiation of uranium-238 or obtained from other manufactured sources. As directed by Congress, the NRC regulates the fabrication of MOX fuel by DOE, a program that is intended to dispose of plutonium from excess nuclear weapons.

#### Monitoring of radiation

Periodic or continuous determination of the amount of ionizing radiation or radioactive contamination in a region. Radiation monitoring is a safety measure to protect the health and safety of the public and the environment through the use of bioassay, alpha scans, and other radiological survey methods to monitor air, surface water and ground water, soil and sediment, equipment surfaces, and personnel.

#### **National Response Framework**

The guiding principles, roles, and structures that enable all domestic incident response partners to prepare for and provide a unified national response to disasters and emergencies. It describes how the Federal Government, States, Tribes, communities, and the private sector work together to coordinate a national response. The framework, which became effective March 22, 2008, builds upon the National Incident Management System, which provides a template for managing incidents.

#### **National Source Tracking System (NSTS)**

A secure, Web-based data system that helps the NRC and its Agreement States track and regulate the medical, industrial, and academic uses of certain nuclear materials, from the time they are manufactured or imported to the time of their disposal or exportation. This information enhances the ability of the NRC and Agreement States to conduct inspections and investigations, communicate information to other government agencies, and verify the ownership and use of nationally tracked sources.

#### Natural uranium

Uranium containing the relative concentrations of isotopes found in nature: 0.7 percent uranium-235, 99.3 percent uranium-238, and a trace amount of uranium-234 by mass. In terms of radioactivity, however, natural uranium contains about 2.2 percent uranium-235, 48.6 percent uranium-238, and 49.2 percent uranium-234. Natural uranium can be used as fuel in nuclear reactors or as feedstock for uranium enrichment facilities.

#### Net electric generation

The gross amount of electric energy produced by a generating station, minus the amount used to operate the station. Note: Electricity required for pumping at pumped-storage plants is regarded as electricity for station operation and is deducted from gross generation. Net electric generation is measured in watthours, except as otherwise noted.

# Nonpower reactor (research and test reactor)

A nuclear reactor that is used for research, training, or development purposes (which may include producing radioisotopes for medical and industrial uses) but has no role in producing electrical power. These reactors, which are also known as research and test reactors, contribute to almost every field of science, including physics, chemistry, biology, medicine, geology, archeology, and ecology.

# NRC Headquarters Operations Center

The primary center of communication and coordination among the NRC, its licensees, State and Tribal agencies, and other Federal agencies regarding operating events involving nuclear reactors or materials. Located in Rockville, MD, the Headquarters Operations Center is staffed 24 hours a day by employees trained to receive and evaluate event reports and coordinate incident response activities.

#### **Nuclear energy**

See Atomic energy.

#### Nuclear Energy Agency (NEA)

A specialized agency within the Organisation for Economic Co-operation and Development (OECD), which was created to assist its member countries in maintaining and further developing the scientific, technological, and legal bases for safe, environmentally friendly, and economical use of nuclear energy for peaceful purposes. The NEA's current membership consists of 31 countries in Europe, North America, and the Asia-Pacific region, which account for about 86 percent of the world's installed nuclear capacity.

#### **Nuclear fuel**

Fissionable material that has been enriched to a composition that will support a self-sustaining fission chain reaction when used to fuel a nuclear reactor, thereby releasing energy (usually in the form of heat or useful radiation) for use in other processes.

#### **Nuclear materials**

See Special nuclear material, Source material, and Byproduct material.

#### **Nuclear Material Management and Safeguards System (NMMSS)**

A centralized U.S. Government database used to track and account for source and special nuclear material. The system contains current and historical data on the possession, use, and shipment of source and special nuclear material within the United States, as well as all exports and imports of such material. The database is jointly funded by the NRC and DOE and is operated under a DOE contract.

#### Nuclear poison (or neutron poison)

In reactor physics, a substance (other than fissionable material) that has a large capacity for absorbing neutrons in the vicinity of the reactor core. This effect may be undesirable in some reactor applications, because it may prevent or disrupt the fission chain reaction, thereby affecting normal operation. However, neutron-absorbing materials (commonly known as "poisons") are intentionally inserted into some types of reactors to decrease the reactivity of their initial fresh fuel load for fuel intended to achieve higher burnup levels during the fuel cycle. Adding poisons, such as control rods or boron, is described as adding "negative reactivity" to the reactor.

# Nuclear power plant

A thermal power plant, in which the energy (heat) released by the fissioning of nuclear fuel is used to boil water to produce steam. The steam spins the propeller-like blades of a turbine that turns the shaft of a generator to produce electricity. Of the various nuclear power plant designs, pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are in commercial operation in the United States. These facilities generate about 20 percent of U.S. electrical power.

#### **Nuclear and Radiological Incident Annex**

An annex to the National Response Framework, which provides for a timely, coordinated response by Federal agencies to nuclear or radiological accidents or incidents within the United States. This annex covers radiological dispersal devices and improvised nuclear devices, as well as accidents involving commercial reactors or weapons production facilities, lost radioactive sources, transportation accidents involving radioactive material, and foreign accidents involving nuclear or radioactive material.

#### **Nuclear reactor**

The heart of a nuclear power plant or nonpower reactor, in which nuclear fission may be initiated and controlled in a self-sustaining chain reaction to generate energy or produce useful radiation. Although there are many types of nuclear reactors, they all incorporate certain essential features, including the use of fissionable material as fuel, a moderator (such as water) to increase the likelihood of fission (unless reactor operation relies on fast neutrons), a reflector to conserve escaping neutrons, coolant provisions for heat removal, instruments for monitoring and controlling reactor operation, and protective devices (such as control rods and shielding).

#### **Nuclear** waste

A subset of radioactive waste that includes unusable byproducts produced during the various stages of the nuclear fuel cycle, including extraction, conversion, and enrichment of uranium; fuel fabrication; and use of the fuel in nuclear reactors. Specifically, these stages produce a variety of nuclear waste materials, including uranium mill tailings, depleted uranium, and spent (depleted) fuel, all of which are regulated by the NRC. (By contrast, "radioactive waste" is a broader term, which includes all wastes that contain radioactivity, regardless of how they are produced. It is not considered "nuclear waste," because it is not produced through the nuclear fuel cycle and is generally not regulated by the NRC.)

# Occupational dose

The internal and external dose of ionizing radiation received by workers in the course of employment in such areas as fuel cycle facilities, industrial radiography, nuclear medicine, and nuclear power plants. These workers are exposed to varying amounts of radiation, depending on their jobs and the sources with which they work. The NRC requires its licensees to limit occupational exposure to 5,000 mrem (50 millisieverts) per year. Occupational dose does not include the dose received from natural background sources, doses received as a medical patient or participant in medical research programs, or "second-hand doses" to members of the public received through exposure to patients treated with radioactive materials.

#### Organisation for Economic Co-operation and Development (OECD)

An intergovernmental organization (based in Paris, France) that provides a forum for discussion and cooperation among the governments of industrialized countries committed to democracy and the market economy. The primary goal of OECD and its member countries is to support sustainable economic growth, boost employment, raise living standards, maintain financial stability, assist other countries' economic development, and contribute to growth in world trade. In addition, OECD is a reliable source of comparable statistics and economic and social data. OECD also monitors trends, analyzes and forecasts economic developments, and researches social changes and evolving patterns in trade, environment, agriculture, technology, taxation, and other areas.

# Orphan sources (unwanted radioactive material)

Sealed sources of radioactive material contained in a small volume (but not radioactively contaminated soils and bulk metals) in any one or more of the following conditions:

- an uncontrolled condition that requires removal to protect public health and safety from a radiological threat
- a controlled or uncontrolled condition, for which a responsible party cannot be readily identified
- a controlled condition, compromised by an inability to ensure the continued safety
  of the material (e.g., the licensee may have few or no options to provide for safe
  disposition of the material)
- an uncontrolled condition, in which the material is in the possession of a person who did not seek, and is not licensed, to possess it
- an uncontrolled condition, in which the material is in the possession of a State radiological protection program solely to mitigate a radiological threat resulting from one of the above conditions, and for which the State does not have the necessary means to provide for the appropriate disposition of the material

#### Outage

The period during which a generating unit, transmission line, or other facility is out of service. Outages may be forced or scheduled and full or partial.

#### Outage (forced)

The shutdown of a generating unit, transmission line, or other facility for emergency reasons, or a condition in which the equipment is unavailable as a result of an unanticipated breakdown. An outage (whether full, partial, or attributable to a failed start) is considered "forced" if it could not reasonably be delayed beyond 48 hours from identification of the problem, if there had been a strong commercial desire to do so. In particular, the following problems may result in forced outages:

- any failure of mechanical, fuel handling, or electrical equipment or controls within the generator's ownership or direct responsibility (i.e., from the point the generator is responsible for the fuel through to the electrical connection point)
- a failure of a mine or fuel transport system dedicated to that power station with a resulting fuel shortage that cannot be economically managed
- inadvertent or operator error
- limitations caused by fuel quality

Forced outages do not include scheduled outages for inspection, maintenance, or refueling.

# Outage (full forced)

A forced outage that causes a generating unit to be removed from the committed state (when the unit is electrically connected and generating or pumping) or the available state (when the unit is available for dispatch as a generator or pump but is not electrically connected and not generating or pumping). Full-forced outages do not include failed starts.

# Outage (scheduled)

The shutdown of a generating unit, transmission line, or other facility for inspection, maintenance, or refueling, which is scheduled well in advance (even if the schedule changes). Scheduled outages do not include forced outages and could be deferred if there were a strong commercial reason to do so.

#### Pellet, fuel

A thimble-sized ceramic cylinder (about 3/8-inch in diameter and 5/8-inch in length), consisting of uranium (typically uranium oxide), which has been enriched to increase the concentration of uranium-235 (U-235) to fuel a nuclear reactor. Modern reactor cores in PWRs and BWRs may contain up to 10 million pellets, stacked in the fuel rods that form fuel assemblies.



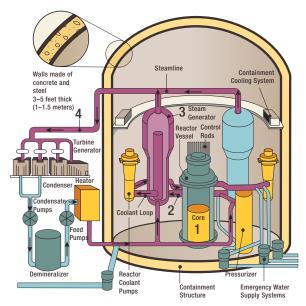
# Performance-based regulation

A regulatory approach that focuses on desired, measurable outcomes, rather than prescriptive processes, techniques, or procedures. Performance-based regulation leads to defined results without specific direction regarding how those results are to be obtained. At the NRC, performance-based regulatory actions focus on identifying performance measures that ensure an adequate safety margin and offer incentives for licensees to improve safety without formal regulatory intervention by the agency.

#### Performance indicator

A quantitative measure of a particular attribute of licensee performance that shows how well a plant is performing when measured against established thresholds. Licensees submit their data quarterly; the NRC regularly conducts inspections to verify the submittals and then uses its own inspection data plus the licensees' submittals to assess each plant's performance.

#### Possession-only license


A license, issued by the NRC, that authorizes the licensee to possess specific nuclear material but does not authorize its use or the operation of a nuclear facility.

## Power uprate

The process of increasing the maximum power level at which a commercial nuclear power plant may operate. This power level, regulated by the NRC, is included in the plant's operating license and technical specifications. A licensee may only change its maximum power output after the NRC approves an uprate application. The NRC analyses must demonstrate that the plant could continue to operate safely with its proposed new configuration. When all requisite conditions are fulfilled, the NRC may grant the power uprate by amending the plant's operating license and technical specifications.

#### Pressurized-water reactor (PWR)

A common nuclear power reactor design in which very pure water is heated to a very high temperature by fission, kept under high pressure (to prevent it from boiling), and converted to steam by a steam generator (rather than by boiling, as in a BWR). The resulting steam is used to drive turbines, which activate generators to produce electrical power. A PWR essentially operates like a pressure cooker, where a lid is tightly placed over a pot of heated water, causing the pressure inside to increase as the temperature increases (because the steam cannot escape) but keeping the water from boiling at the usual 212 degrees Fahrenheit (100 degrees Celsius). About two-thirds of the operating nuclear reactor power plants in the United States are PWRs.



#### **How Nuclear Reactors Work**

In a typical design concept of a commercial PWR, the following process occurs:

- 1. The core inside the reactor vessel creates heat.
- 2. Pressurized water in the primary coolant loop carries the heat to the steam generator.
- 3. Inside the steam generator, heat from the primary coolant loop vaporizes the water in a secondary loop, producing steam.
- 4. The steamline directs the steam to the main turbine, causing it to turn the turbine generator, which produces electricity.

The unused steam is exhausted to the condenser, where it is condensed into water. The resulting water is pumped out of the condenser with a series of pumps, reheated, and pumped back to the steam generator. The reactor's core contains fuel assemblies that are cooled by water circulated using electrically powered pumps. These pumps and other operating systems in the plant receive their power from the electrical grid. If offsite power is lost, emergency cooling water is supplied by other pumps, which can be powered by onsite diesel generators. Other safety systems, such as the containment cooling system, also need electric power. PWRs contain between 150–200 fuel assemblies.

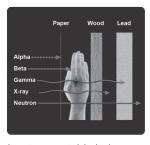
#### Probabilistic risk assessment (PRA)

A systematic method for assessing three questions that the NRC uses to define "risk." These questions consider (1) what can go wrong, (2) how likely it is to happen, and (3) what the consequences might be. These questions allow the NRC to understand likely outcomes, sensitivities, areas of importance, system interactions, and areas of uncertainty, which the staff can use to identify risk-significant scenarios. The NRC uses PRA to determine a numeric estimate of risk to provide insights into the strengths and weaknesses of the design and operation of a nuclear power plant.

#### Production expense

Production expense is one component of the cost of generating electric power, which includes costs associated with fuel, as well as plant operation and maintenance.

#### Rad (radiation-absorbed dose)


One of the two units used to measure the amount of radiation absorbed by an object or person, known as the "absorbed dose," which reflects the amount of energy that radioactive sources deposit in materials through which they pass. The radiation-absorbed dose (rad) is the amount of energy (from any type of ionizing radiation) deposited in any medium (e.g., water, tissue, air). An absorbed dose of 1 rad means that 1 gram of material absorbed 100 ergs of energy (a small but measurable amount) as a result of exposure to radiation. The related international system unit is the gray (Gy), where 1 Gy is equivalent to 100 rad.

### Radiation, ionizing

A form of radiation, which includes alpha particles, beta particles, gamma rays, and x-rays, neutrons, high-speed electrons, and high-speed protons. Compared to nonionizing radiation, such as found in ultraviolet light or microwaves, ionizing radiation is considerably more energetic. When ionizing radiation passes through material such as air, water, or living tissue, it deposits enough energy to break molecular bonds and displace (or remove) electrons. This electron displacement may lead to changes in living cells. Given this ability, ionizing radiation has a number of beneficial uses, including treating cancer or sterilizing medical equipment. However, ionizing radiation is potentially harmful if not used correctly, and high doses may result in severe skin or tissue damage. It is for this reason that the NRC strictly regulates commercial and institutional uses of the various types of ionizing radiation.

#### Radiation, nuclear

Energy given off by matter in the form of tiny, fast-moving particles (alpha particles, beta particles, and neutrons) or pulsating electromagnetic rays or waves (gamma rays) emitted from the nuclei of unstable radioactive atoms. All matter is composed of atoms, which are made up of various parts; the nucleus contains minute particles called protons and neutrons, and the atom's outer shell contains other particles called electrons. The nucleus carries a positive electrical charge, while the electrons



carry a negative electrical charge. These forces work toward a strong, stable balance by getting rid of excess atomic energy (radioactivity). In that process, unstable radioactive nuclei may emit energy, and this spontaneous emission is called nuclear radiation. All types of nuclear radiation are also ionizing radiation, but the reverse is not necessarily true; for example, x-rays are a type of ionizing radiation, but they are not nuclear radiation, because they do not originate from atomic nuclei. In addition, some elements are naturally radioactive, as their nuclei emit nuclear radiation as a result of radioactive decay, but others become radioactive by being irradiated in a reactor. Naturally occurring nuclear radiation is indistinguishable from induced radiation.

#### Radiation source

A radioactive material or byproduct that is specifically manufactured or obtained for the purpose of using the emitted radiation. Such sources are commonly used in teletherapy or industrial radiography; in various types of industrial gauges, irradiators, and gamma knives; and as power sources for batteries (such as those used in spacecraft). These sources usually consist of a known quantity of radioactive material, which is encased in a manmade capsule, sealed between layers of nonradioactive material, or firmly bonded to a nonradioactive substrate to prevent radiation leakage. Other radiation sources include devices such as accelerators and x-ray generators.

#### Radiation standards

Exposure limits; permissible concentrations; rules for safe handling; and regulations regarding receipt, possession, use, transportation, storage, disposal, and industrial control of radioactive material.

# Radiation therapy (radiotherapy)

The therapeutic use of ionizing radiation to treat disease in patients. Although most radiotherapy procedures are intended to kill cancerous tissue or reduce the size of a tumor, therapeutic doses may also be used to reduce pain or treat benign conditions. For example, intervascular brachytherapy uses radiation to treat clogged blood vessels. Other common radiotherapy procedures include gamma stereotactic radiosurgery (gamma knife), teletherapy, and iodine treatment to correct an overactive thyroid gland. These procedures use radiation sources, regulated by the NRC and its Agreement States, that may be applied either inside or outside the body. In either case, the goal of radiotherapy is to deliver the required therapeutic or pain-relieving dose of radiation with high precision and for the required length of time, while preserving the surrounding healthy tissue.

# Radiation warning symbol

An officially prescribed magenta or black trefoil on a yellow background, which must be displayed where certain quantities of radioactive materials are present or where certain doses of radiation could be received.



#### Radioactive contamination

Undesirable radioactive material (with a potentially harmful effect) that is either airborne or deposited in (or on the surface of) structures, objects, soil, water, or living organisms (people, animals, or plants) in a concentration that may harm people, equipment, or the environment.

# Radioactive decay

The spontaneous transformation of one radioisotope into one or more different isotopes (known as "decay products" or "daughter products"), accompanied by a decrease in radioactivity (compared to the parent material). This transformation takes place over a defined period of time (known as a "half-life"), as a result of electron capture; fission; or the emission of alpha particles, beta particles, or photons (gamma radiation or x-rays) from the nucleus of an unstable atom. Each isotope in the sequence (known as a "decay chain") decays to the next until it forms a stable, less energetic end product. In addition, radioactive decay may refer to gamma-ray and conversion electron emission, which only reduces the excitation energy of the nucleus.

# Radioactivity

The property possessed by some elements (such as uranium) of spontaneously emitting energy in the form of radiation as a result of the decay (or disintegration) of an unstable atom. Radioactivity is also the term used to describe the rate at which radioactive material emits radiation. Radioactivity is measured in units of becquerels or disintegrations per second.

# Radiography

The use of sealed sources of ionizing radiation for nondestructive examination of the structure of materials. When the radiation penetrates the material, it produces a shadow image by blackening a sheet of photographic film that has been placed behind the material, and the differences in blackening suggest flaws and unevenness in the material.

# Radioisotope (radionuclide)

An unstable isotope of an element that decays or disintegrates spontaneously, thereby emitting radiation. About 5,000 natural and artificial radioisotopes have been identified.

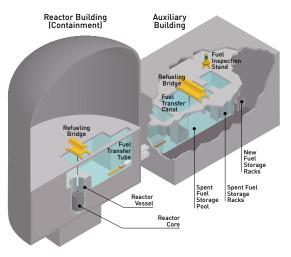
# Radiopharmaceutical

A pharmaceutical drug that emits radiation and is used in diagnostic or therapeutic medical procedures. Radioisotopes that have short half-lives are generally preferred to minimize the radiation dose to the patient and the risk of prolonged exposure. In most cases, these short-lived radioisotopes decay to stable elements within minutes, hours, or days, allowing patients to be released from the hospital in a relatively short time.

#### Reactor core

The central portion of a nuclear reactor, which contains the fuel assemblies, water, and control mechanisms, as well as the supporting structure. The reactor core is where fission takes place.

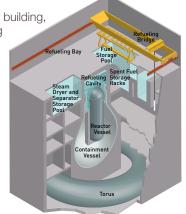
#### Reactor Oversight Process (ROP)


The process by which the NRC monitors and evaluates the performance of commercial nuclear power plants. Designed to focus on those plant activities that are most important to safety, the ROP uses inspection findings and performance indicators to assess each plant's safety performance.

#### Refueling

The process of removing older fuel and loading new fuel.

#### **PWR Refueling**


As new fuel shipping canisters arrive in the reactor building, the reactor building crane (not shown) lifts them to the refueling floor, where the fuel is removed from the canister and inspected for defects. The fuel can then be stored in either the new fuel storage racks (which are drv), or in the refueling pool, depending upon the needs of the site. Fuel in the new fuel storage area is moved into the fuel pool using the reactor building crane prior to refueling activities. To refuel the reactor, the vessel head is removed, the fuel transfer



canals and transfer tube areas are flooded, and removable gates are opened in order to connect the refueling canal to the fuel pool. The reactor building refueling bridge is used to remove a fuel assembly from the reactor vessel and transfer it to the "up-ender" basket, which is then tilted until it is horizontal, sent through the transfer tube into the auxiliary building, and returned upright. The refueling bridge then moves the fuel assembly into the spent fuel storage racks. This process is reversed when fuel is loaded into the reactor.

#### **BWR Refueling**

As new fuel shipping canisters arrive in the reactor building, the reactor building crane lifts them to the refueling floor, where the fuel is removed from the canister and inspected for defects. The fuel can then be stored in either the new fuel storage area (which is dry), or in the refueling pool, depending upon the needs of the site. To refuel the reactor, the containment vessel lid and the reactor vessel head are removed, the refueling cavity above the reactor vessel is flooded, and the gates between the reactor cavity and fuel pool are removed. The refueling bridge (not shown) removes one fuel bundle at a time from the reactor and transfers it to the spent fuel storage racks until about a third of the fuel is removed. These actions are all performed underwater in order to provide



continuous cooling for the fuel, and provide shielding from the radioactive spent fuel. The process is reversed when fuel is removed from the fuel pool and placed in the reactor. In BWRs the fuel remains in a vertical position throughout the process.

#### Regulation

The governmental function of controlling or directing economic entities through the process of rulemaking and adjudication.

# **Regulatory Information Conference**

An annual NRC conference that brings together NRC staff, regulated utilities, materials users, and other interested stakeholders to discuss nuclear safety topics and significant and timely regulatory activities through informal dialogue to ensure an open regulatory process.

# Rem (roentgen equivalent man)

One of the two standard units used to measure the dose equivalent (or effective dose), which combines the amount of energy (from any type of ionizing radiation) that is deposited in human tissue with the biological effects of the given type of radiation. For beta and gamma radiation, the dose equivalent is the same as the absorbed dose. By contrast, the dose equivalent is larger than the absorbed dose for alpha and neutron radiation, because these types of radiation are more damaging to the human body. Thus, the dose equivalent (in rems) is equal to the absorbed dose (in rads) multiplied by the quality factor of the type of radiation (Title 10 of the *Code of Federal Regulations* (10 CFR) 20.1004, "Units of Radiation Dose"). The related international system unit is the sievert (SV), where 100 rem is equivalent to 1 Sv.

#### Renewable resources

Natural, but limited, energy resources that can be replenished, including biomass, hydro, geothermal, solar, and wind. These resources are virtually inexhaustible but limited in the amount of energy that is available per unit of time. In the future, renewable resources could also include the use of ocean thermal, wave, and tidal action technologies. Utility renewable resource applications include bulk electricity generation, onsite electricity generation, distributed electricity generation, nongrid- connected generation, and demand-reduction (energy efficiency) technologies.

#### Risk

The combined answer to three questions that consider (1) what can go wrong, (2) how likely it is to occur, and (3) what the consequences might be. These three questions allow the NRC to understand likely outcomes, sensitivities, areas of importance, system interactions, and areas of uncertainty, which can be used to identify risk-significant scenarios.

#### Risk-based decisionmaking

An approach to regulatory decisionmaking that considers only the results of a probabilistic risk assessment.

#### Risk-informed decisionmaking

An approach to regulatory decisionmaking in which insights from probabilistic risk assessment are considered with other engineering insights.

#### Risk-informed regulation

An approach to regulation taken by the NRC that incorporates an assessment of safety significance or relative risk. This approach ensures that the regulatory burden imposed by an individual regulation or process is appropriate to its importance in protecting the health and safety of the public and the environment.

#### Risk significant

Risk significant can refer to a facility's system, structure, component, or accident sequence that exceeds a predetermined limit for contributing to the risk associated with the facility. The term also describes a level of risk exceeding a predetermined significance level.

#### Safeguards

The use of material control and accounting programs to verify that all special nuclear material is properly controlled and accounted for, as well as the physical protection (or physical security) equipment and security forces. As used by the IAEA, this term also means verifying that the peaceful use commitments made in binding nonproliferation agreements, both bilateral and multilateral, are honored.

### **Safeguards Information**

A special category of sensitive unclassified information that must be protected. Safeguards Information concerns the physical protection of operating power reactors, spent fuel shipments, strategic special nuclear material, or other radioactive material.

# Safety related

In the regulatory arena, this term applies to systems, structures, components, procedures, and controls (of a facility or process) that are relied upon to remain functional during and following design-basis events. Their functionality ensures that key regulatory criteria, such as levels of radioactivity released, are met. Examples of safety-related functions include shutting down a nuclear reactor and maintaining it in a safe-shutdown condition.

# Safety significant

When used to qualify an object, such as a system, structure, component, or accident sequence, this term identifies that object as having an impact on safety, whether determined through risk analysis or other means, that exceeds a predetermined significance criterion.

#### SAFSTOR

A long-term storage condition for a permanently shutdown nuclear power plant. During SAFSTOR, radioactive contamination decreases substantially, making subsequent decontamination and demolition easier and reducing the amount of low-level waste (LLW) requiring disposal.

#### Scram

The sudden shutting down of a nuclear reactor, usually by rapid insertion of control rods, either automatically or manually by the reactor operator (also known as a "reactor trip").

#### Sensitive unclassified nonsafeguards information

Information that is generally not publicly available and that encompasses a wide variety of categories, such as proprietary information, personal and private information, or information subject to attorney-client privilege.

#### Shutdown

A decrease in the rate of fission (and heat or energy production) in a reactor (usually by the insertion of control rods into the core).

#### Source material

Uranium or thorium, or any combination thereof, in any physical or chemical form, or ores that contain, by weight, 1/20 of 1 percent (0.05 percent) or more of (1) uranium, (2) thorium, or (3) any combination thereof. Source material does not include special nuclear material.

## Special nuclear material

Plutonium, uranium-233, or uranium enriched in the isotopes uranium-233 or uranium-235.

#### Spent fuel pool

An underwater storage and cooling facility for spent (depleted) fuel assemblies that have been removed from a reactor.

# Spent (depleted or used) nuclear fuel

Nuclear reactor fuel that has been used to the extent that it can no longer effectively sustain a chain reaction.

# Subcriticality

The condition of a nuclear reactor system in which nuclear fuel no longer sustains a fission chain reaction (i.e., the reaction fails to initiate its own repetition, as it would in a reactor's normal operating condition). A reactor becomes subcritical when its fission events fail to release a sufficient number of neutrons to sustain an ongoing series of reactions, possibly as a result of increased neutron leakage or poisons.

#### **Teletherapy**

Treatment in which the source of the therapeutic radiation is at a distance from the body. Because teletherapy is often used to treat malignant tumors deep within the body by bombarding them with a high-energy beam of gamma rays (from a radioisotope such as cobalt-60) projected from outside the body, it is often called "external beam radiotherapy."

# Title 10 of the Code of Federal Regulations (10 CFR)

The Code of Federal Regulations (CFR) addresses energy-related topics. Chapter I, Parts 1 to 199 contain the regulations (or rules) established by the NRC. These regulations govern the transportation and storage of nuclear materials; use of radioactive materials at nuclear power plants, research and test reactors, uranium recovery facilities, fuel cycle facilities, waste repositories, and other nuclear facilities; and use of nuclear materials for medical, industrial, and academic purposes.

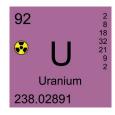
#### **Transient**

A change in the reactor coolant system temperature, pressure, or both, attributed to a change in the reactor's power output. Transients can be caused by (1) adding or removing neutron poisons, (2) increasing or decreasing electrical load on the turbine generator, or (3) accident conditions.

#### Transuranic waste

Material contaminated with transuranic elements—artificially made radioactive elements, such as neptunium, plutonium, americium, and others—that have atomic numbers higher than uranium in the periodic table of elements. Transuranic waste is primarily produced from recycling spent fuel or using plutonium to fabricate nuclear weapons.

#### **Tritium**


A radioactive isotope of hydrogen. Because it is chemically identical to natural hydrogen, tritium can easily be taken into the body by any ingestion path. It decays by emitting beta particles and has a half-life of about 12.5 years.

#### **Uprate**

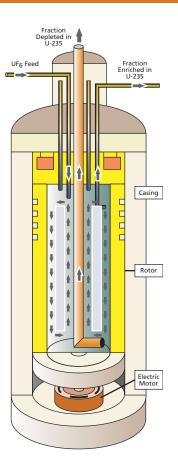
See Power uprate.

#### **Uranium**

A radioactive element with the atomic number 92 and, as found in natural ores, an atomic weight of about 238. The two principal natural isotopes are uranium-235 and uranium-238. Uranium-235 is composed of 0.7 percent natural uranium and is fissile. Uranium-238 is composed of 99.3 percent natural uranium and is fissionable by fast neutrons and is fertile. This means that it becomes fissile after absorbing one neutron. Natural uranium also includes a minute amount of uranium-234.



A piece of natural uranium ore




#### **Uranium enrichment process**

The process of increasing the percentage of uranium-235 (U-235) from 0.7 percent in natural uranium to about 3 to 5 percent for use in fuel for nuclear reactors. Enrichment can be done through gaseous diffusion, gas centrifuges, or laser isotope separation.

#### **Gas Centrifuge Process**

The gas centrifuge process uses many rotating cylinders that are connected in long lines. Gas is placed in the cylinder, which spins at a high speed, creating a strong centrifugal force. Heavier gas molecules move to the cylinder wall, while lighter molecules collect near the center. The stream, now slightly enriched, is fed into the next cylinder. The depleted stream is recycled back into the previous cylinder.



# Uranium fuel fabrication facility

A facility that converts enriched  $UF_6$  into fuel for commercial light-water power reactors, research and test reactors, and other nuclear reactors. The  $UF_6$ , in solid form in containers, is heated to a gaseous form and then chemically processed to form uranium dioxide ( $UO_2$ ) powder. This powder is then processed into ceramic pellets and loaded into metal tubes, which are subsequently bundled into fuel assemblies. Fabrication can also involve MOX fuel that contains plutonium oxide mixed with either natural or depleted uranium oxide in ceramic pellet form.

# Uranium hexafluoride production facility (or uranium conversion facility)

A facility that receives natural uranium in the form of ore concentrate (known as yellowcake) and converts it into  ${\sf UF}_6$ , in preparation for fabricating fuel for nuclear reactors.

# **U.S. Department of Energy (DOE)**

The Federal agency established by Congress to advance the national, economic, and energy security of the United States, among other missions.

#### **U.S. Department of Homeland Security (DHS)**

The Federal agency responsible for leading the unified national effort to secure the United States against those who seek to disrupt the American way of life. DHS is also responsible for preparing for and responding to all hazards and disasters and includes the formerly separate FEMA, the Coast Guard, and the Secret Service.

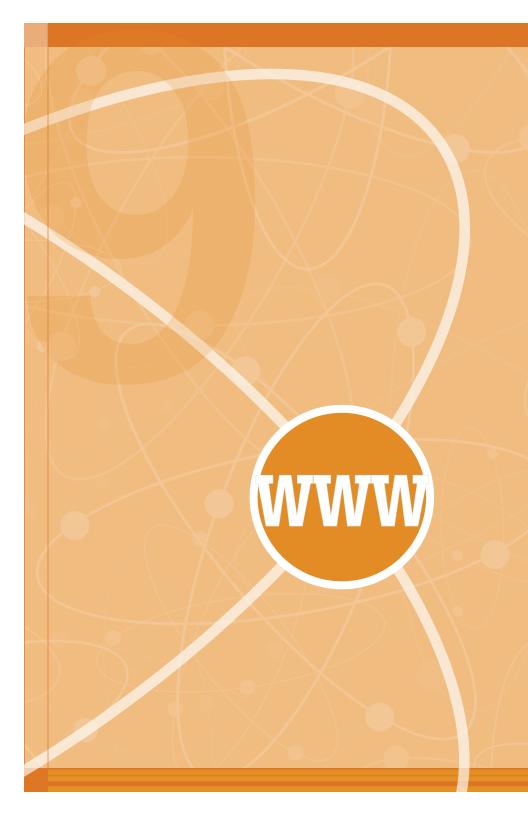
#### U.S. Environmental Protection Agency (EPA)

The Federal agency responsible for protecting human health and safeguarding the environment. The EPA leads the Nation's environmental science, research, education, and assessment efforts to ensure that attempts to reduce environmental risk are based on the best available scientific information. The EPA also ensures that environmental protection is an integral consideration in U.S. policies.

#### Viability assessment

A decisionmaking process used by DOE to assess the prospects for safe and secure permanent disposal of high-level waste (HLW) in an excavated, underground facility known as a geologic repository. This decisionmaking process is based on (1) specific design work on the critical elements of the repository and waste package, (2) a total system performance assessment that will describe the probable behavior of the repository, (3) a plan and cost estimate for the work required to complete the license application, and (4) an estimate of the costs to construct and operate the repository.

#### Waste, radioactive


Radioactive materials at the end of their useful life or in a product that is no longer useful and requires proper disposal (see high-level waste, low-level waste, and spent nuclear fuel).

#### Waste classification (classes of waste)

Classification of low-level waste (LLW) according to its radiological hazard. The classes include Class A, B, and C, with Class A being the least hazardous and accounting for 96 percent of LLW. As the waste class and hazard increase, the regulations established by the NRC require progressively greater controls to protect the health and safety of the public and the environment.

#### Watt

A unit of power (in the International System of Units) defined as the consumption or conversion of 1 joule of energy per second. In electricity, a watt is equal to current (in amperes) multiplied by voltage (in volts).











# Web Link Index

# WEB LINK INDEX

# Web Link Index

# NRC: An Independent Regulatory Agency Mission, Goals, and Statutory Authority

Strategic Plan (NUREG-1614)

www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1614/

Statutory Authority

www.nrc.gov/about-nrc/governing-laws.html

# **Major Activities**

Public Involvement

www.nrc.gov/public-involve.html

Freedom of Information Act (FOIA) and Privacy Act

www.nrc.gov/reading-rm/foia/foia-privacy.html

Regulatory Guides

www.nrc.gov/reading-rm/doc-collections/reg-guides/

Title 10, Code of Federal Regulations

www.nrc.gov/reading-rm/doc-collections/cfr/

Rulemaking Actions

www.regulations.gov

Significant Enforcement Actions

www.nrc.gov/reading-rm/doc-collections/enforcement/actions/

# **Organizations and Functions**

Organization Chart

www.nrc.gov/about-nrc/organization/nrcorg.pdf

The Commission

www.nrc.gov/about-nrc/organization/commfuncdesc.html

Commission Direction-Setting and Policymaking Activities

www.nrc.gov/about-nrc/policymaking.html

**NRC** Regions

www.nrc.gov/about-nrc/locations.html

# **NRC Budget**

Performance Budget: Fiscal Year 2016 (NUREG-1100)

www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1100

# **U.S. and Worldwide Nuclear Energy**

#### U.S. Electricity

**Energy Information Administration** 

Official Energy Statistics from the U.S. Government

www.eia.doe.gov

# Worldwide Electricity Generated by Commercial Nuclear Power

International Atomic Energy Agency (IAEA)

www.iaea.org

IAEA Power Reactor Information System (PRIS)

www.iaea.org/programmes/a2

Nuclear Energy Agency (NEA)

www.oecd-nea.org

World Nuclear Association (WNA)

www.world-nuclear.org/

World Nuclear Power Reactors and Uranium Requirements

www.world-nuclear.org/info/reactors.html

WNA Reactor Database

www.world-nuclear.org/nucleardatabase/default.aspx

NRC Office of International Programs

www.nrc.gov/about-nrc/organization/oipfuncdesc.html

NRC Regulatory Information Conference (RIC)

www.nrc.gov/public-involve/conference-symposia/ric/index.html

#### **International Activities**

Treaties and Conventions

www.nrc.gov/about-nrc/ip/treaties-conventions.html

Code of Conduct on the Safety and Security of Radioactive Sources

www-ns.iaea.org/tech-areas/radiation-safety/code-of-conduct.asp

Radiation Sources Regulatory Partnership

http://rsrp-online.org

International Regulatory Development Partnership

http://irdp-online.org

# **Operating Nuclear Reactors**

# **U.S. Commercial Nuclear Power Reactors**

Commercial Reactors

www.nrc.gov/info-finder/reactor/

# Oversight of U.S. Commercial Nuclear Power Reactors

Reactor Oversight Process (ROP)

www.nrc.gov/NRR/OVERSIGHT/ASSESS/index.html

NUREG/BR-0508, "Reactor Oversight Process"

www.nrc.gov/reading-rm/doc-collections/nuregs/brochures/br0508/

NUREG-1649, "Reactor Oversight Process"

www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1649

**ROP Performance Indicators Summary** 

www.nrc.gov/NRR/OVERSIGHT/ASSESS/pi\_summary.html

**ROP Contact Us Form** 

www.nrc.gov/NRR/OVERSIGHT/ASSESS/contactus.html

## Future U.S. Commercial Nuclear Power Reactor Licensing

New Reactor Licensing Process

www.nrc.gov/reactors/new-reactor-op-lic/licensing-process.html#licensing

#### **New Reactors**

New Reactor Licensing

www.nrc.gov/reactors/new-reactors.html

# WEB LINK INDEX

#### Reactor License Renewal

Reactor License Renewal Process

#### www.nrc.gov/reactors/operating/licensing/renewal/process.html

10 CFR Part 51, "Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions"

#### www.nrc.gov/reading-rm/doc-collections/cfr/part051/

10 CFR Part 54, "Requirements for Renewal of Operating Licenses for Nuclear Power Plants"

#### www.nrc.gov/reading-rm/doc-collections/cfr/part054/

Status of License Renewal Applications and Industry Activities

www.nrc.gov/reactors/operating/licensing/renewal/applications.html

#### U.S. Nuclear Research and Test Reactors

Research and Test Reactors

www.nrc.gov/reactors/non-power.html

#### **Nuclear Regulatory Research**

Nuclear Reactor Safety Research

#### www.nrc.gov/about-nrc/regulatory/research/reactor-rsch.html

State-of-the-Art Reactor Consequence Analyses (SOARCA)

www.nrc.gov/about-nrc/regulatory/research/soar.html

Risk Assessment in Regulation

#### www.nrc.gov/about-nrc/regulatory/risk-informed.html

Digital Instrumentation and Controls

#### www.nrc.gov/about-nrc/regulatory/research/digital.html

Computer Codes

# www.nrc.gov/about-nrc/regulatory/research/safetycodes.html

Generic Issues Program

#### www.nrc.gov/about-nrc/regulatory/gen-issues.html

The Committee To Review Generic Requirements (CRGR)

#### www.nrc.gov/about-nrc/regulatory/crgr.html

Probabilistic Flood Hazard Assessment

# www.nrc.gov/public-involve/public-meetings/meeting-archives/research-

# wkshps.html

Cancer Study

# www.nrc.gov/reading-rm/doc-collections/fact-sheets/bg-analys-cancer-riskstudy.html

NUREG-1925, Revision 3, "Research Activities"

www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1925/r3/

#### **Nuclear Materials**

#### **U.S. Fuel Cycle Facilities**

U.S. Fuel Cycle Facilities

www.nrc.gov/info-finder/materials/fuel-cycle/

# **Uranium Recovery**

Uranium Milling/Recovery

www.nrc.gov/info-finder/materials/uranium/

#### **U.S. Materials Licenses**

Materials Licensees Toolkits

www.nrc.gov/materials/miau/mat-toolkits.html

Domestic Licensing of Special Nuclear Material-Part 70

www.nrc.gov/reading-rm/doc-collections/cfr/part70/

# **Medical Applications and Others**

Medical Applications and Others

www.nrc.gov/materials/medical.html

#### **Medical Uses**

Medical Uses

www.nrc.gov/materials/miau/med-use.html

# **Nuclear Gauges and Commercial Product Irradiators**

General License Uses

www.nrc.gov/materials/miau/general-use.html

#### **Industrial Uses of Nuclear Materials**

Industrial Applications

www.nrc.gov/materials/miau/industrial.html

**Exempt Consumer Product Uses** 

www.nrc.gov/materials/miau/consumer-pdts.html

#### Radioactive Waste

# U.S. Low-Level Radioactive Waste Disposal

Low-Level Radioactive Waste

www.nrc.gov/waste/low-level-waste.html

# U.S. High-Level Radioactive Waste Management:

# Disposal and Storage

High-Level Radioactive Waste

www.nrc.gov/waste/high-level-waste.html

# **Spent Nuclear Fuel Storage**

Spent Nuclear Fuel Storage

www.nrc.gov/waste/spent-fuel-storage.html

# U.S. Nuclear Materials Transportation

**Nuclear Materials Transportation** 

www.nrc.gov/materials/transportation.html

# Decommissioning

Decommissioning

www.nrc.gov/about-nrc/regulatory/decommissioning.html

Status of the Decommissioning Program 2015 Annual Report

www.nrc.gov/docs/ML1530/ML15302A432.pdf

# Web Link Index

# Nuclear Security and Emergency Preparedness Nuclear Security Nuclear Security

**Nuclear Security** 

www.nrc.gov/security.html

# **Domestic Safeguards**

Domestic Safeguards

www.nrc.gov/security/domestic.html

# **Information Security**

Information Security

www.nrc.gov/security/info-security.html

Ensuring the Security of Radioactive Material

www.nrc.gov/security/byproduct.html

# **Emergency Preparedness and Response**

**Emergency Preparedness and Response** 

www.nrc.gov/about-nrc/emerg-preparedness.html

Research and Test Reactors Security

www.nrc.gov/reactors/non-power.html

Emergency Preparedness Stakeholder Meetings and Workshops

www.nrc.gov/public-involve/public-meetings/stakeholder-mtngs-wksps.html

**Emergency Action Level Development** 

www.nrc.gov/about-nrc/emerg-preparedness/about-emerg-preparedness/ emerg-action-level-dev.html

Hostile-Action-Based Emergency Preparedness Drills

www.nrc.gov/about-nrc/emerg-preparedness/respond-to-emerg/hostile-action. html

NRC Participation Exercise Schedule

www.nrc.gov/about-nrc/emerg-preparedness/about-emerg-preparedness/exercise-schedules.html

#### Other Web Links

#### **Datasets**

Spreadsheets of NRC-regulated information

http://www.nrc.gov/reading-rm/doc-collections/datasets/

# **Employment Opportunities**

NRC-A Great Place to Work

www.nrc.gov/about-nrc/employment.html

#### Glossary

NRC Basic References

www.nrc.gov/reading-rm/basic-ref/glossary/full-text.html

#### **Glossary of Electricity Terms**

www.eia.gov/tools/glossary

#### **Glossary of Security Terms**

www.dhs.gov/definition-terms

#### **Public Involvement**

**NRC** Library

www.nrc.gov/reading-rm.html

Freedom of Information and Privacy Acts

www.nrc.gov/reading-rm/foia/foia-privacy.html

Agencywide Documents Access and Management System (ADAMS)

www.nrc.gov/reading-rm/adams.html

Public Document Room

www.nrc.gov/reading-rm/pdr.html

Public Meeting Schedule

http://Meetings.nrc.gov/pmns/mtg

**Documents for Comment** 

www.nrc.gov/public-involve/doc-comment.html

# **Small Business and Civil Rights**

Contracting Opportunities for Small Businesses

www.nrc.gov/about-nrc/contracting/small-business.html

Workplace Diversity

www.nrc.gov/about-nrc/employment/workingatnrc.html

Discrimination Complaint Activity

www.nrc.gov/about-nrc/civil-rights.html

Equal Employment Opportunity Policy

www.nrc.gov/about-nrc/civil-rights/crp/eeo.html

Limited English Proficiency

www.nrc.gov/about-nrc/civil-rights/limited-english.html

Minority Serving Institutions Program

www.nrc.gov/about-nrc/grants.html#msip

NRC Comprehensive Diversity Management Plan brochure

www.nrc.gov/reading-rm/doc-collections/nuregs/brochures/br0316

#### Social Media Platforms

NRC Blog

https://public-blog.nrc-gateway.gov/

Twitter

https://twitter.com/nrcgov

YouTube

https://www.youtube.com/user/NRCgov

Flickr

https://www.flickr.com/photos/nrcgov

Facebook

https://www.facebook.com/nrcgov

GovDeliverv

http://www.nrc.gov/public-involve/listserver.html#gov

**RSS** 

http://www.nrc.gov/public-involve/listserver.html#rss

| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

| NRC FORM 335<br>(2-89)                                                | U.S. NUCLEAR REGULATORY COMMISSION                                                                                                                                                                                            | (Assig                      | REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, If any.)  NUREG-1350, Vol. 28 |                     |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|---------------------|--|
| NRCM 1102,<br>3201,3202                                               | BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)                                                                                                                                                                    | ١                           |                                                                                                            |                     |  |
| 2. TITLE AND SUBTITLE                                                 |                                                                                                                                                                                                                               | 3.                          | DATE REPO                                                                                                  | RT PUBLISHED        |  |
| U.S. Nuclear Regulatory Commission<br>Information Digest              |                                                                                                                                                                                                                               |                             | ionth<br>uaust                                                                                             | YEAR 2016           |  |
| 2016-2017                                                             |                                                                                                                                                                                                                               | +                           | R GRANT NU                                                                                                 | MBER                |  |
| 5. AUTHOR(S)                                                          | AUTHOR(S) 6                                                                                                                                                                                                                   |                             |                                                                                                            | 6. TYPE OF REPORT   |  |
| Ivonne Couret, et al.                                                 |                                                                                                                                                                                                                               |                             | Annual                                                                                                     |                     |  |
|                                                                       |                                                                                                                                                                                                                               | 7. PERIO                    | 7. PERIOD COVERED (Inclusive Dates)                                                                        |                     |  |
|                                                                       |                                                                                                                                                                                                                               |                             | 2016–2017                                                                                                  |                     |  |
| PERFORMING ORGANIZATION provide name and mailing address.)            | - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Co.                                                                                                                                   | mmission, and               | mailing address,                                                                                           | ; if contractor,    |  |
| Public Affairs Staff                                                  |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| Office of Public Affairs                                              |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| U.S. Nuclear Regulatory 0                                             |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| Washington, DC 20555-00                                               |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| <ol> <li>SPONSORING ORGANIZATION<br/>and mailing address.)</li> </ol> | <ul> <li>NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office</li> </ul>                                                                                                               | or Region, U.               | S. Nuclear Regu                                                                                            | ılatory Commission, |  |
| Same as 8, above                                                      |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
|                                                                       |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
|                                                                       |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| 10. SUPPLEMENTARY NOTES There may be a supplement                     | tary document produced reflecting specific sections of the document.                                                                                                                                                          |                             |                                                                                                            |                     |  |
| 11. ABSTRACT (200 words or less)                                      |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| l                                                                     |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| ľ                                                                     | ulatory Commission (NRC) 2016–2017 Information Digest pro                                                                                                                                                                     |                             |                                                                                                            |                     |  |
| , ,                                                                   | ries it regulates. It describes the agency's responsibilities and                                                                                                                                                             |                             |                                                                                                            |                     |  |
| ľ                                                                     | n nuclear-related topics. The 2016-2017 Information Digest in                                                                                                                                                                 |                             |                                                                                                            |                     |  |
|                                                                       | NRC data (i.e., IAEA, EIA, and DOE data) throughout the publication of data associated with several and application.                                                                                                          |                             |                                                                                                            | -                   |  |
| •                                                                     | exception of data associated with maps and graphics. The n                                                                                                                                                                    |                             |                                                                                                            |                     |  |
|                                                                       | tion in August 2017, will reflect updated data. Going forward,<br>t data will only be updated every 2 years. Readers will be dir                                                                                              | -                           |                                                                                                            |                     |  |
|                                                                       | which is available online. The NRC is the source of all photog                                                                                                                                                                |                             |                                                                                                            |                     |  |
| 1 '                                                                   |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| 1                                                                     | unless otherwise noted. All information is final unless otherwise noted. Corrections and updates will appear in the digital version of the publication on the NRC Web site. Comments or suggestions on the Information Digest |                             |                                                                                                            |                     |  |
| 1 -                                                                   | are welcomed. To submit comments, write to the Office of Public Affairs at U.S. Nuclear Regulatory Commission,                                                                                                                |                             |                                                                                                            |                     |  |
| Washington, DC 20555-0001, or at OPA.Resource@nrc.gov.                |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
|                                                                       |                                                                                                                                                                                                                               |                             |                                                                                                            |                     |  |
| 12. KEY WORDS/DESCRIPTORS (                                           | List words or phrases that will assist researchers in locating the report.)                                                                                                                                                   |                             | 13. AVAILABII                                                                                              | LITY STATEMENT      |  |
| Information Digest                                                    |                                                                                                                                                                                                                               |                             | unlimited                                                                                                  |                     |  |
| 2016–2017 Edition                                                     |                                                                                                                                                                                                                               | 14. SECURITY CLASSIFICATION |                                                                                                            |                     |  |

NRC FORM 335 (9-2004) PRINTED ON RECYCLED PAPER

NRC Facts Nuclear Regulatory Commission 10CFR

(This Page) unclassified (This Report) unclassified 15. NUMBER OF PAGES 16. PRICE

#### AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

#### NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at the NRC's Public Electronic Reading Room at <a href="https://www.nrc.gov/reading-rm.html">http://www.nrc.gov/reading-rm.html</a>. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the Code of Federal Regulations may also be purchased from one of these two sources.

#### 1. The Superintendent of Documents

U.S. Government Printing Office Mail Stop SSOP

Washington, DC 20402-0001 Internet: http://bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250

#### The National Technical Information Service Springfield, VA 22161-0002

www.ntis.gov

1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

#### Address: U.S. Nuclear Regulatory Commission

Office of Administration Publications Branch Washington, DC 20555-0001

E-mail: distribution.resource@nrc.qov Facsimile: 301-415-2289

Some publications in the NUREG series that are posted at the NRC's Web site address

http://www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

#### Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

#### The NRC Technical Library

Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

#### American National Standards Institute 11 West 42<sup>nd</sup> Street

11 West 42<sup>nd</sup> Street New York, NY 10036-8002 http://www.ansi.org 212-642-4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/GR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: This report was prepared as an account of wrk sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.



U.S. Nuclear Regulatory Commission NUREG-1350, Volume 28 August 2016















