CNS-16-055

July 20, 2016
Attention: Document Control Desk
U. S. Nuclear Regulatory Commission

Washington, D. C. 20555-001
Duke Energy Carolinas, LLC (Duke Energy)
Catawba Nuclear Station (CNS), Units 1 and 2
Docket Numbers 50-413 and 50-414
Renewed License Nos. NPF-35 and NPF-52
Subject: Spent Fuel Pool Evaluation Supplemental Report, Response to NRC Request for Information Pursuant to 10 CFR 50.54(f) Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident

References:

1. NRC Letter, Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3, of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, dated March 12, 2012, ADAMS Accession No. ML12053A340
2. NRC Letter, Final Determination of Licensee Seismic Probabilistic Risk Assessments Under the Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1 "Seismic" of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, dated October 27, 2015, ADAMS Accession Number ML15194A015
3. NEI Letter, transmits EPRI 3002007148 for NRC endorsement, dated February 23, 2016, ADAMS Accession Number ML16055A017
4. EPRI 3002007148, Seismic Evaluation Guidance Spent Fuel Pool Integrity Evaluation, February 2016
5. NRC Letter, provides endorsement of EPRI 3002007148, dated March 17, 2016, ADAMS Accession Number ML15350A158
6. Catawba Nuclear Station Letter, Seismic Hazard and Screening Report (CEUS Sites), Response to NRC 10 CFR 50.54(f) Request for Additional Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) regarding Recommendations 2.1, 2.3, and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, Dated March 31, 2014 (ADAMS Accession Number ML14099A184)
7. NRC Letter, Catawba Nuclear Station, Units 1 and 2 - Staff Assessment of Information Provided Pursuant to Title 10 of The Code of Federal Regulations Part 50, Section 50.54(F), Seismic Hazard Reevaluations Relating to Recommendation 2.1 of the NearTerm Task Force Review of Insights from the Fukushima Dai-ichi Accident (TAC Nos. MF3965 and MF3966), dated April 27, 2015 (ADAMS Accession Number ML15096A513)
8. EPRI 1025287, Seismic Evaluation Guidance, Screening, Prioritization and Implementation Details [SPID] for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic, February 2013

Ladies and Gentlemen:
On March 12, 2012, the Nuclear Regulatory Commission (NRC) issued a Request for Information per 10 CFR 50.54(f) (Reference 1) to all power reactor licensees. Enclosure 1, Item (9) of the 50.54(f) letter requested addressees to provide limited scope Spent Fuel Pool (SFP) evaluations. By letter dated October 27, 2015 (Reference 2), the NRC transmitted final seismic information request tables which identified that Catawba Nuclear Station is to conduct a limited scope SFP Evaluation. By Reference 3, Nuclear Energy Institute (NEI) submitted an Electric Power Research Institute (EPRI) report entitled, Seismic Evaluation Guidance Spent Fuel Pool Integrity Evaluation (EPRI 3002007148) (Reference 4) for NRC review and endorsement. NRC endorsement was provided by Reference 5.

EPRI 3002007148 provides criteria for evaluating the seismic adequacy of a SFP to the reevaluated ground motion response spectrum (GMRS) hazard levels. This report supplements the guidance in the Seismic Evaluation Guidance, Screening, Prioritization, and Implementation Details (SPID) (Reference 8), for plants where the GMRS peak spectral acceleration is less than or equal to 0.8 g . Section 3.3 of EPRI 3002007148 lists the parameters to be verified to confirm that the results of the report are applicable to Catawba Nuclear Station and that the Catawba Nuclear Station SFP is seismically adequate in accordance with the Near-Term Task Force (NTTF) 2.1 Seismic evaluation criteria.

The attachment to this letter provides the data for Catawba Nuclear Station that confirms applicability of the EPRI 3002007148 criteria, confirms that the SFP is seismically adequate, and provides the requested information in response to Item (9) of the 50.54 (f) letter associated with NTTF Recommendation 2.1 Seismic evaluation criteria.

This letter contains no new Regulatory Commitments and no revision to existing Regulatory Commitments.

Should you have any questions regarding this submittal, please contact Sherry Andrews at 803-701-3424.

United States Nuclear Regulatory Commission

Page 3

July 20, 2016
I declare under penalty of perjury that the foregoing is true and correct. Executed on July 20, 2016.

Sincerely,

Kelvin Henderson,
Vice President, Catawba Nuclear Station

Attachment: Site-Specific Spent Fuel Pool Criteria for Catawba Nuclear Station, Units 1 and 2

United States Nuclear Regulatory Commission
Page 4
July 20, 2016
xc:
C. Haney, Regional Administrator
U.S. Nuclear Regulatory Commission, Region II Marquis One Tower
245 Peachtree Center Avenue NE, Suite 1200
Atlanta, GA 30303-1257
W. M. Dean, Director, Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission

One White Flint North, Mailstop 13 HI6M
11555 Rockville Pike
Rockville, MD 20852-2738
Michael D. Orenak, Project Manager
U.S. Nuclear Regulatory Commission

One White Flint North, Mailstop O-8G9A
11555 Rockville Pike
Rockville, MD 20852-2738
P.J. Bamford, Senior Project Manager
U.S. Nuclear Regulatory Commission

One White Flint North, Mailstop 13 F15
11555 Rockville Pike
Rockville, MD 20852-2738
J.D. Austin
U.S. NRC Senior Resident

Catawba Nuclear Station
Justin Folkwein
American Nuclear Insurers
95 Glastonbury Blvd., Suite 300
Glastonbury, CT 06033-4453

ATTACHMENT
 Duke Energy Carolinas, LLC (Duke Energy)
 Catawba Nuclear Station, Units 1 and 2 Docket Numbers 50-413 and 50-414
 Renewed License Numbers NPF-35 and NPF-52
 Site-Specific Spent Fuel Pool Criteria for Catawba Nuclear Station, Units 1 and 2

The 50.54(f) letter requested that, in conjunction with the response to Near-Term Task Force (NTTF) Recommendation 2.1, a seismic evaluation be made of the Spent Fuel Pool (SFP). More specifically, plants were asked to consider "all seismically induced failures that can lead to draining of the SFP." Such an evaluation would be needed for any plant in which the ground motion response spectrum (GMRS) exceeds the safe shutdown earthquake (SSE) in the 1 to 10 Hz frequency range. The staff confirmed through References 2 and 7 that the GMRS exceeds the SSE and concluded that a SFP evaluation is merited for the Catawba Nuclear Station. By letter dated March 17, 2016 (Reference 5), the staff determined that the Electric Power Research Institute (EPRI) 3002007148 was an acceptable approach for performing SFP evaluations for plants where the peak spectral acceleration is less than or equal to 0.8 g .

The table below lists the criteria from Section 3.3 of EPRI 3002007148 along with data for Catawba Nuclear Station that confirms applicability of the EPRI 3002007148 criteria and confirms that the SFP is seismically adequate and can retain adequate water inventory for 72 hours in accordance with NTTF 2.1 Seismic evaluation criteria.

SFP Criteria from EPR1 3002007148	Site-Specific Data
Site Parameters	
1. The site-specific GMRS peak spectral acceleration at any frequency should be less than or equal to 0.8 g .	The GMRS peak spectral acceleration in Catawba Nuclear Station Letter, Seismic Hazard and Screening Report (CEUS Sites), Response to NRC 10 CFR 50.54(f) Request for Additional Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) regarding Recommendations 2.1, 2.3 and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, Dated March 31, 2014 (ADAMS Accession Number ML14099A184) as accepted by the NRC in NRC Letter, Catawba Nuclear Station, Units 1 and 2 - Staff Assessment of Information Provided Pursuant to Title 10 of The Code of Federal Regulations Part 50, Section 50.54(F), Seismic Hazard Reevaluations Relating to Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident (TAC Nos. MF3965 and MF3966), dated April 27, 2015 (ADAMS Accession Number ML15096A513) is 0.748 g , which is $\leq 0.8 \mathrm{~g}$. Therefore, this criterion is met for Catawba Nuclear Station.

SFP Criteria from EPRI 3002007148	Site-Specific Data
Structural Parameters	The SFP is housed in the Spent Fuel Pool 2. The structure housing the SFP should be designed using an SSE with a peak ground acceleration (PGA) of at least 0.1g. Handling Building portion of the Auxiliary Building both of which are designed as Category I structures (Ref. CNS-1570.KF-00-0001 Rev. 21). Category I structures are seismically designed to the site SSE with a PGA of 0.15g (Ref. CNS UFSAR Sections 3.1, 3.2.1, 3.7.2, 3.8.4, and 9.1.2). The Catawba Nuclear Station PGA is greater than 0.1g. Therefore, this criterion is met for Catawba Nuclear Station.
3. The structural load path to the SFP	
should consist of some combination	
of reinforced concrete shear wall	
elements, reinforced concrete frame	
elements, post-tensioned concrete	For both the Unit 1 and Unit 2 SFP, the Structural load path from the foundation to the SFP consists elements and/or structural steel frame elements. founded on rock or fill concrete. The four foot thick concrete walls are rigidly connected to the 4 foot thick floor slab (Ref. CNS UFSAR Section 3.8.4.1 b). The location of the SFPs are shown on UFSAR Figures 1.4 through 1.7. Therefore, this criteria is
met for Catawba Nuclear Station.	

SFP Criteria from EPRI 3002007148	Site-Specific Data
6. Anti-siphoning devices should be installed on any piping that could lead to siphoning water from the SFP. In addition, for any cases where active anti-siphoning devices are attached to 2 -inch or smaller piping and have extremely large extended operators, the valves should be walked down to confirm adequate lateral support.	Catawba Nuclear Station, Unit 1 and Unit 2, each have passive features providing vacuum/antisiphon protection at every Spent Fuel Cooling (KF) system piping interface with the Spent Fuel Pool. Neither of the two Spent Fuel Pools has an active device providing a vacuum breaker/anti-siphon function. The passive vacuum breaker/anti-siphon features at each interface with the Spent Fuel Pool are: 1) The Spent Fuel Pool Cooling loop suction piping penetrates the pool wall and terminates within 2 to 4 feet below normal pool level (Ref. CN-157001.00 Rev. 26 and CN-2570-01.00 Rev. 17). 2) The Spent Fuel Pool Cooling loop discharge piping has a 0.5 inch diameter hole in the pipe wall located approximately 2 feet below normal pool level on both of the discharge return piping branches (Ref. CN-1570-01.00 Rev. 26 and CN-2570-01.00 Rev. 17). 3) The Spent Fuel Pool makeup header piping terminates 2 feet below normal pool level (Ref. CN-1570-01.00 Rev. 26 and CN-2570-01.00 Rev. 17). 4) The Spent Fuel Pool Skimmer loop suction piping penetrates the pool wall and terminates within 2 to 4 feet below normal pool level (Ref. CN-1570-01.00 Rev. 26 and CN-2570-01.00 Rev. 17). 5) The Spent Fuel Pool Skimmer discharge piping terminates 2 feet below normal pool level (Ref. CN-1570-01.00 Rev. 26 and CN-2570-01.00 Rev. 17.). 6) The Standby Makeup Pump (RCP Alternate Seal Injection) suction supply is via piping connected to the fuel-transfer tube (Ref. CN-157001.00 Rev. 26 and CN-2570-01.00 Rev. 17). This is isolated procedurally via a manual isolation valve in the event of loss of spent fuel pool level (Ref. AP/1/A/5500/041 Rev. 11 and AP/2/A/5500/041 Rev. 13). As described, anti-siphoning devices are installed on all SFP piping that could lead to siphoning. Therefore, this criterion is met for Catawba Nuclear Station. As documented above there are no anti-siphoning devices attached to 2 "-inch or smaller piping with extremely large extended operators. Therefore, this criterion is met for Catawba Nuclear Station.

SFP Criteria from EPRI 3002007148	Site-Specific Data
7. To confirm applicability of the sloshing evaluation in Section 3.2 of EPRI 3002007148, the maximum SFP horizontal dimension (length or width) should be less than 125 ft , the SFP depth should be greater than 36 ft , and the GMRS peak Sa should be $<0.1 \mathrm{~g}$ at frequencies equal to or less than 0.3 Hz .	The SFP has a length of approximately 120 feet, a width of approximately 21.5 feet, and a depth of approximately 40 feet based on UFSAR Section 3.8.4.1. Therefore, this criterion is met for Catawba Nuclear Station. The Catawba Nuclear Station GMRS maximum spectral acceleration in the frequency range less than 0.3 Hz is 0.0344 g from Catawba Nuclear Station Letter, Seismic Hazard and Screening Report (CEUS Sites), Response to NRC 10 CFR 50.54(f) Request for Additional Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) regarding Recommendations 2.1, 2.3 and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, Dated March 31, 2014 (ADAMS Accession Number ML14099A184) which is less than 0.1 g . Therefore, this criterion is met for Catawba Nuclear Station.
8. To confirm applicability of the evaporation loss evaluation in Section 3.2 of EPRI 3002007148, the SFP surface area should be greater than $500 \mathrm{ft}^{2}$ and the licensed reactor core thermal power should be less than $4,000 \mathrm{MWt}$ per unit.	The surface area of the Catawba Nuclear Station SFP is $2176 \mathrm{ft}^{2}$,excluding the fuel transfer canal area (Ref. CNC-1201.3,0-00-0010 Rev. 0), which is greater than $500 \mathrm{ft}^{2}$; and licensed reactor thermal power for Catawba Nuclear Station is 3469 MWt for Unit 1 and 3411 MWt for Unit 2 which is less than 4,000 MWt per unit (Ref. latest issue of the Catawba Facility Operating License). Therefore, these criteria are met for Catawba Nuclear Station.

