

License Amendment Request:

Methodology for the Analysis of Concrete Seismic Category I Structures with Concrete Affected by Alkali Silica Reaction

Seabrook Station

June 15, 2016

NextEra Energy (NYSE: NEE) is comprised of two strong businesses supported by a common platform

• \$17B Consolidated Revenues (1)

4.8 MM customer accounts

25,100 MW in operation

- 44,900 MW in operation (1, 2)
- 13,800 employees

- U.S. leader in renewable generation
- Assets primarily in 25 states and Canada
- 19,800 MW in operation ^(1, 2)

World's largest generator of renewable energy from the wind and sun

Among *Fortune's* 2015 list of 'World's Most Admired Companies' and among top 10 companies in the world in both the categories of innovativeness and community responsibility

Named to 2015 World's Most Ethical Company list (Ethisphere Institute)

• One of the largest U.S. electric utilities

The foundation for everything we do are the Values and Core Principles of our Nuclear Excellence Model

Seabrook Attendees

- Ken Browne
- Mike Ossing
- Brian Brown
- Larry Nicholson

NEE Seabrook ASR Project Manager NEE Seabrook Licensing Manager NEE Seabrook Principal Engineer NEE Fleet Licensing Director

- John Simons
- Dr. Said Bolourchi
- Jim Moroney
- Phil Rush

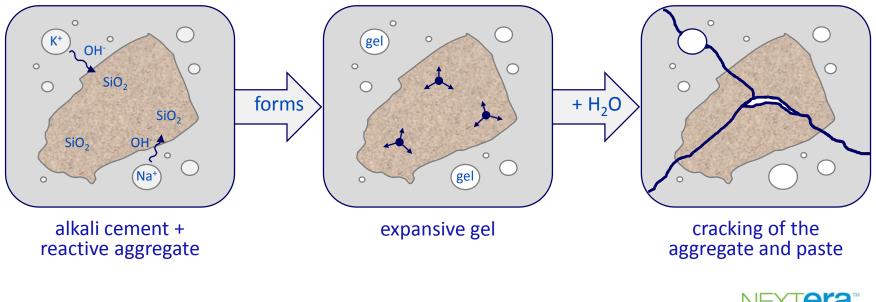
MPR Gen Manager Power Projects SG&H Senior Principal Engineer MPR ASR Test Program PM MPR Engineering Associate

Engineering of Structures and Building Enclosures

Presentation Outline

- Alkali-Silica Reaction
- Overview of License Amendment Request (LAR)
- Structural Capacity Testing of ASR-Affected Specimens
- Evaluation of Structural Deformation
- Monitoring of ASR Expansion and Structure Deformation
- Summary of LAR changes
- Closing Remarks

-Presentation describes Next Era current intent regarding License Amendment Application



Alkali-Silica Reaction

Alkali-Silica Reaction

- ASR (alkali-silica reaction) is a chemical reaction between silica from the aggregate (gravel and/or sand) and alkali constituents in the cement
- Reaction produces a gel that expands as it absorbs moisture and exerts a tensile stress from within the concrete

Overview of License Amendment Request

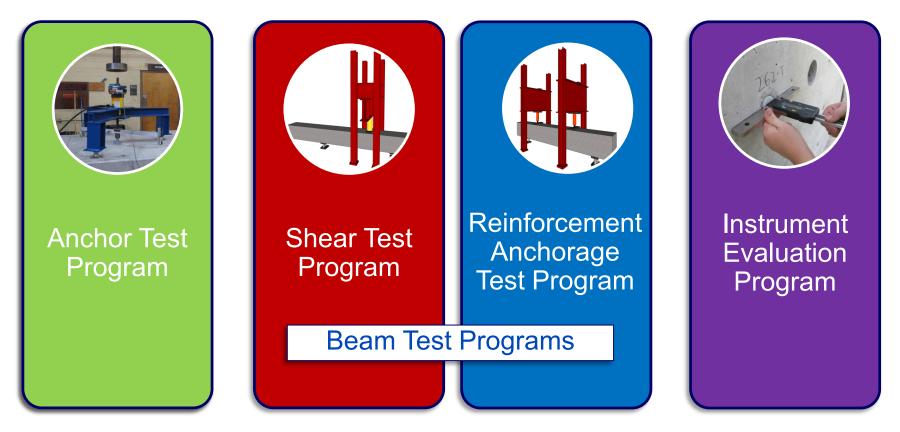
Overview of License Amendment Request

- Next Era proposes a change in the UFSAR methodology to address ASR concrete degradation at Seabrook Station
- ACI 318-71 and the ASME Code do not include provisions for addressing ASR and its effects
 - Incorporate loads imposed by ASR into the design basis
- Evaluate structures affected by ASR to demonstrate that they satisfy the acceptance criteria of the original construction code
 - ACI 318-71 for all seismic Category I structures other than containment
 - ASME Boiler & Pressure Vessel Code, Section III for containment

Overview of License Amendment Request

- Applies to Seismic Cat 1 Structures and Containment Structure
- Establish ASR expansion limits from testing:
 - -- Shear capacity
 - -- Flexural capacity and reinforcement development length
 - -- Anchor bolts embedded in concrete with ASR
- 3 Stage Analysis process for Building Deformation Assessment:
 - -- Specify how ASR loads are combined with other design basis loads for analyzing structures including defining load factors
 - -- Include the effects of concrete creep, shrinkage and swelling in structure deformation analyses
 - -- Identify ANSYS as the computer code used for ASR building deformation analyses
 - -- Permit use of the 100-40-40 procedure from Regulatory Guide 1.92, Revision 3 for detailed evaluations ("Stage Three") analyses of ASR-affected structures.
 - -- Use of cracked section properties and redistribution of self-limiting loads for ASR-affected structures

- Attachments:


- -- UFSAR Markup and 'Clean' Pages
- -- MPR 4288, Rev 0 Seabrook Station: Impact of ASR on Structural Design Structural Design Evaluations
- -- MPR 4273, Rev 0 Seabrook Station: Implications of Large Scale Test Program Results on Reinforced Concrete Affected by ASR
- -- SGH (#TBD) Computation of Load Factors for ASR Demands

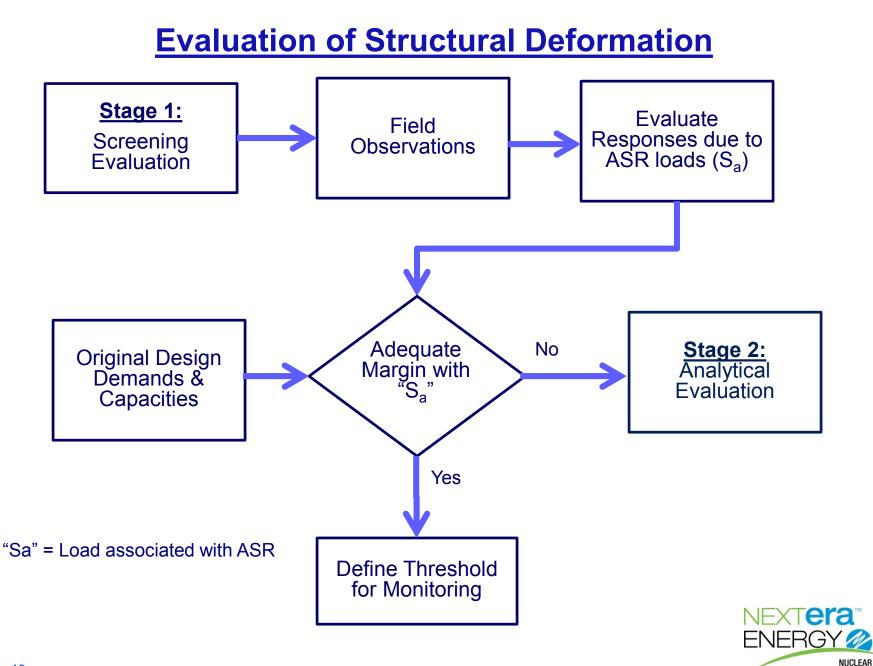
- MPR conducted large-scale test programs to investigate structural impact of ASR on reinforced concrete
 - Improve current understanding of ASR and its effects on reinforced concrete structures
 - Evaluate instruments for monitoring (measuring) the throughthickness (out-of-plane) expansion of concrete from ASR

Test Program	Results	Key Conclusion
Anchor Test Program	 Anchor performance insensitive to through-thickness expansion reduces at high levels of in-plane cracking No difference between performance of anchors installed before and after ASR expansion 	No impact on anchors at Seabrook based on expansion levels expected
Beam Test Programs	 Control specimens showed consistency with ACI 318 equations for shear capacity, flexural capacity and lap splice length ASR-affected specimens showed: No adverse impact of ASR on shear capacity, flexural capacity, reinforcement anchorage and lap splice performance Behavior indicative of pre-stressing due to ASR expansion 	Original design strength and code equations can be used for ASR- affected reinforced concrete structures • Shear capacity • Flexural capacity • Reinforcement development length
Instrumentation Evaluation Program	Snap ring borehole extensometers were accurate and reliable throughout duration of program	Snap ring borehole extensometers selected for use at Seabrook Station

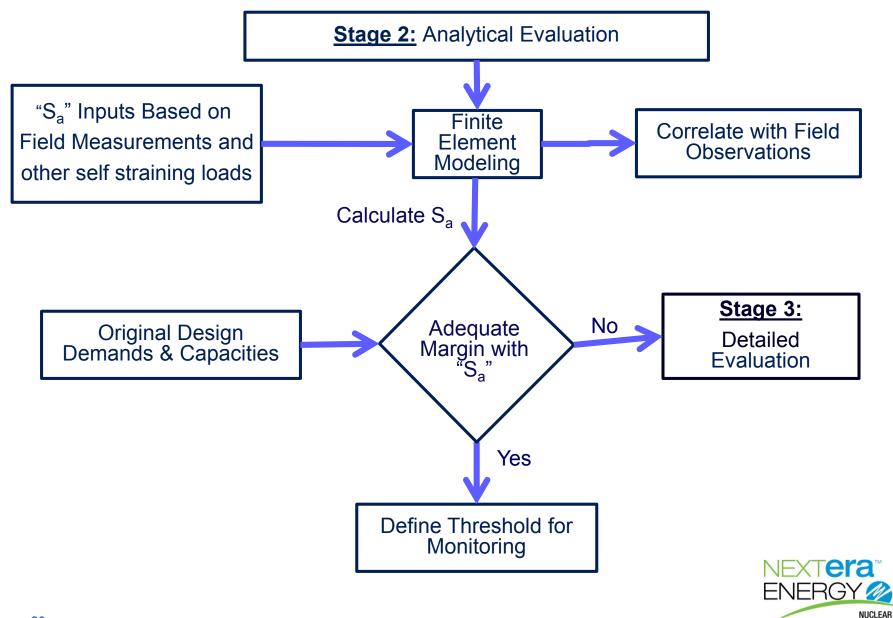
- Licensing Implications
 - Impact on UFSAR
 - -- Large-scale testing or reinforced-concrete beams showed
 - No adverse impact of ASR on shear capacity, flexural capacity or reinforcement development length
 - Use of Code equations and design compressive strength to determine capacity is conservative
 - -- No change to the UFSAR-described methodology is necessary for determining capacity provided ASR expansion is within limits from testing
 - ASR expansion limits
 - -- Expansion limits established based on range of expansion covered in testing
 - -- Limits to be controlled within Structural Monitoring Program

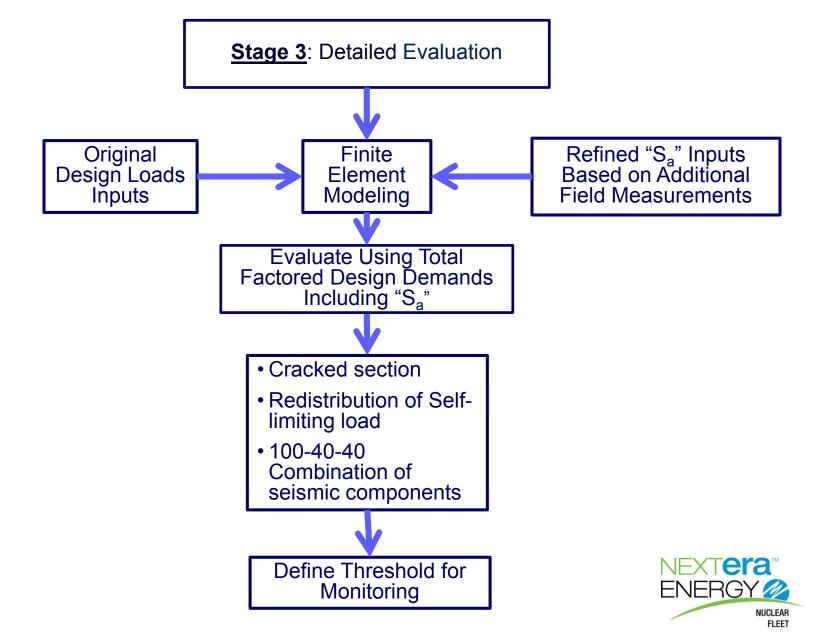
Evaluation of Structural Deformation

Evaluation of Structural Deformation


- Inspections of Seabrook structures have identified deformation due to ASR expansion effects
 - ASR-related expansion may impose an additional, internal load on reinforced concrete adjacent to ASR-affected areas
 - ASR-related expansion of concrete backfill can impose an external load on adjacent structures
 - Seismic gap widths and close clearances between structures and plant components may be reduced

Methodology for Analysis of Structural Deformation


- LAR describes progressive approach for evaluating structures with deformation
 - Stage One Screening Evaluation
 - Stage Two Analytical Evaluation
 - Stage Three Detailed Evaluation
- Structures require an analysis of all load combinations with ASR loads included


FLEET

Evaluation of Structural Deformation

FLEET

Evaluation of Stage 3 Structural Deformation

Evaluation of Structural Deformation

- Including ASR loads with other design basis loads requires definition of load factors for each loading combination
 - ACI 318-71 and 1975 Edition of ASME B&PV Section III Division 2 does not include load factors for ASR
 - SGH developed load factors consistent with ACI 318-71 and ASME 1975 Edition load factor development
 - Load factors for ASR will be used in the analysis of Seabrook structures and included in Tables 3.8-1 and 3.8-16 of the UFSAR

Structures evaluated to demonstrate that additional ASR expansion is permissible

- Margin is included in the acceptance criteria for each stage to ensure that additional deformation does not challenge design limits
- A higher level of deformation is analyzed relative to current measurements to set the threshold for monitoring

Evaluation of Structural Deformation

• Stage 2 or Stage 3 evaluation will use an ANSYS finite element model

- Alternate computer codes were used in the original analyses of Seabrook structures
- ANSYS has been used for analyzing safety-related structures in other plant designs (e.g., AP1000, ESBWR)
- NRC has previously accepted the use of ANSYS for structural analysis at other facilities
- Effects of creep, shrinkage, and swelling of concrete must be accounted for in the structure deformation analyses
 - Creep, shrinkage and swelling loads are discussed in the Seabrook UFSAR but they were considered negligible in the original design analyses
 - ACI 318-71 includes load factors for loads caused by creep, shrinkage and swelling

Review of ASR Expansion and Structure Deformation Monitoring

Review of ASR Expansion and Structure Deformation Monitoring

- Continued monitoring of ASR and its effects is necessary
 - Expansion caused by ASR must be measured and remain bounded by limits established from the large-scale test program
 - Periodic measurements of structure deformation are necessary to ensure limits from deformation analyses are satisfied
- Separate monitoring requirements will be included in the Structural Monitoring Program (SMP) for ASR expansion and structure deformation
- SMP uses a three-tiered approach to classify the results of inspections
 - ASR expansion levels and structure deformation measurements will be evaluated using classification levels
 - Increased monitoring and analysis are necessary for progressively higher levels of ASR expansion and structure deformation

Review of ASR Expansion and Structure Deformation Monitoring

Typical methods used to measure ASR expansion at Seabrook

Combined Cracking Index Measurement of crack widths over a defined area on structure surface. Used at Seabrook since 2011.

Expansion Measurements In-plane measurement to

determine changes in length between embedded pins.

Snap Ring Borehole Extensometers Measure changes in through-thickness expansion using gauge rod affixed to anchor

Review of ASR Expansion and Structures Monitoring

Tiers for classifying ASR cracking

Tier	Structural Monitoring Program Category	Recommendation for Individual Concrete Components	CRITERIA Combined Cracking Index (CCI)
3	Unacceptable (requires further evaluation)	Structural Evaluation	1.0 mm/m or greater
2	Acceptable with Deficiencies	Quantitative Monitoring and Trending	0.5 mm/m or greater
		Qualitative Monitoring	Any area with visual presence of ASR (as defined in FHWA-HIF- 12-022) accompanied an estimated summation of crack widths not supporting a 0.5 mm/m CI in the vertical or horizontal direction.
1	Acceptable	Routine inspection as prescribed by the Structural Monitoring Program	Area has no indications of pattern cracking or water ingress- No visual presence of ASR

Limits established in the large-scale test program will be included in the Structural Monitoring Program

Review of ASR Expansion and Deformation Monitoring

• Inspection requirements for structures with ASR-induced deformation

Stage	Deformation Evaluation Stage	Monitoring Interval
1D	Screening	3 years
2D	Analytical	18 months
3D	Detailed	6 months

- Parameters that are measured are specific to each structure
 - Parameters will be defined in the structure deformation evaluation
 - Limits established from deformation evaluation

Summary of LAR Changes

- NextEra will submit the following changes to the Seabrook UFSAR:
 - ASR expansion loads are taken into account for seismic Category I structures
 - Load factors for ASR loads are included in the design load combinations
 - Creep, shrinkage and swelling effects are evaluated in the process of analyzing structures with ASR-related deformation
 - ANSYS is used for deformation evaluations
 - Stage Three deformation evaluations may use 100-40-40 method from NRC Regulatory Guide 1.92, Revision 3, for combining seismic loads instead of the SRSS method in Revision 1 of this regulatory guide.

Closing Remarks

- License Amendment Request Represents multiple years
 of research and learning about ASR
- Third Party Reviews in progress
- Submit to NRC by July 31st

