

Technical Specifications

NMP1L 3087 May 13, 2016

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

Nine Mile Point Nuclear Station, Units 1 and 2

Renewed Facility Operating License Nos. DPR-63 and NPF-69

Docket Nos. 50-220 and 50-410

Subject: 2015 Annual Radiological Environmental Operating Report

In accordance with the Technical Specifications for Nine Mile Point Nuclear Station, Units 1 and 2, attached is the 2015 Annual Radiological Environmental Operating Report for the period of January 1, 2015 through December 31, 2015.

This submittal does not contain any regulatory commitments.

Should you have questions regarding the information in this submittal, please contact Jeff Gerber, Site Chemistry Environmental & Radwaste Manager, at (315) 349-4264.

Sincerely,

Robert E. Kreider Jr.

Plant Manager - Nine Mile Point Nuclear Station

Exelon Generation Company, LLC

REK/JTR

Enclosure: Nine Mile Point Nuclear Station, LLC

2015 Annual Radiological Environmental Operating Report

cc: NRC Regional Administrator, Region I

NRC Project Manager NRC Resident Inspector

C. Graves, NRC

T. Rice, NYSDEC

C. Costello, NYSDOH

T. Bennett, Oswego County Emergency Management

TE25 NRR

Enclosure

Nine Mile Point Nuclear Station, LLC
2015 Annual Radiological Environmental Operating Report

NINE MILE POINT NUCLEAR STATION, LLC 2015 ANNUAL

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

NINE MILE POINT NUCLEAR STATION, LLC

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

January 1, 2015 – December 31, 2015

For

NINE MILE POINT NUCLEAR STATION UNIT 1

Facility Operating License DPR-63

Docket No. 50-220

And

NINE MILE POINT NUCLEAR STATION UNIT 2

Facility Operating License NPF-69

Docket No. 50-410

TABLE OF CONTENTS

			Page
1.0	EXE	CUTIVE SUMMARY	1-1
2.0	INTE	RODUCTION	2-1
	2.1	Program History	2-1
	2.2	Site Description	2-2
	2.3	Program Objectives	
3.0	PRO	GRAM DESCRIPTION	3-1
	3.1	Sample Collection Methodology	3-13
	3.2	Analyses Performed	3-19
	3.3	Sample Locations	3-19
	3.4	Land Use Census	3-32
	3.5	Changes to the REMP Program	3-33
	3.6	Deviation and Exceptions to the Program	3-33
	3.7	Statistical Methodology	3-35
	3.8	Compliance with Required Lower Limits of Detection (LLD)	3-39
	3.9	Regulatory Limits	3-39
4.0	SAM	IPLE SUMMARY TABLES IN BRANCH TECHNICAL POSITIO	ON FORMAT4-1
5.0	DAT	A EVALUATION AND DISCUSSION	5-1
	5.1	Aquatic Program	5-6
	5.2	Terrestrial Program.	5-16
•	5.3	Conclusion	5-35
	5.4	References	5-36
6.0	REP	ORT PERIOD ANALYTICAL RESULTS TABLES	6-1
7.0	HIST	TORICAL DATA TABLES	7-1
8.0	QUA	LITY ASSURANCE/QUALITY CONTROL PROGRAM	8-1
	8.1	Program Description	8-1
	8.2	Program Schedule	8-2
	8.3	Acceptance Criteria	8-2
	8.4	Program Results Summary	8-5
ğη	2014	Data Table Corrections	9_1

LIST OF TABLES

			<u>Page</u>
Table 3.0-1	Required Sample Collection	and Analysis	3-2
Table 3.3-1	Environmental Sample Loca	ations	3-21
Table 3.8-1	Required Detection Capabil Lower Limit of Detection (I	ities for Environmental Sample Analysis LLD)	3-38
Table 4.0-1	Radiological Environmenta	Monitoring Program Annual Summary	4-2
Table 6-1	Concentrations of Gamma	Emitters in Shoreline Sediment Samples	6-2
Table 6-2	Concentrations of Gamma	Emitters in Fish Samples	6-3
Table 6-3	Concentrations of Tritium	in Surface Water Samples	6-4
Table 6-4	Concentrations of Gamma	Emitters in Surface Water Samples	
	Oswego Steam Station.		6-5
	Oswego City Water		6-5
	FitzPatrick		6-6
	Nine Mile Point Unit 1		6-6
	Nine Mile Point Unit 2		6-7
Table 6-5	Environmental Airborne Pa	articulate Samples-Offsite Sample Locations	
	Gross Beta Activity	(Jan-Jun)	6-8
		(Jul-Dec)	6-9
Table 6-6	Environmental Airborne Pa	articulate Samples-Onsite Sample Locations	
	Gross Beta Activity	(Jan-Jun)	6-10
	•	(Jul-Dec)	6-11
Table 6-7	Environmental Charcoal C	artridge Samples-Offsite Sample Locations	
	I-131 Activity	(Jan-Jun)	6-12
	,	(Jul-Dec)	6-13
Table 6-8	Environmental Charcoal C	artridge Samples-Onsite Sample Locations	
	I-131 Activity	(Jan-Jun)	6-14
		(Jul-Dec)	6-15

LIST OF TABLES (Continued)

			Page
Table 6-9	Concentrations of Gamma I JAF/NMPNS Site Air Parti	Emitters in Quarterly Composites of culate Samples	
	Offsite Sample Location	ns - 1 st , 2 nd , 3 rd , 4 th Qtrs	6-16
	Onsite Sample Location	ns - 1 st , 2 nd , 3 rd , 4 th Qtrs	6-18
Table 6-10	Direct Radiation Measurem	ent Results	6-19
Table 6-11	Concentrations of Iodine-1	31 and Gamma Emitters in Milk	
	Sample Location No. 55	5	6-21
	Sample Location No. 77	7 (Control)	6-22
Table 6-12	Concentrations of Gamma	Emitters in Food Products	6-23
Table 6-13	Milk Animal Census		6-24
Table 6-14	Residence Census		6-25
Historical E	nvironmental Sample Data		
Table 7-1	Shoreline Sediment	Control	7 - 2
Table 7-2		Indicator	7-3
Table 7-3	Fish	Control	7-4
Table 7-4		Indicator	7-5
Table 7-5	Surface Water	Control	7-6
Table 7-6		Indicator	7-7
Table 7-7	Surface Water Tritium	Control	7-8
Table 7-8	·	Indicator	7-9
Table 7-9	Air Particulate Gross Beta	Control	7-10
Table 7-10		Indicator	7-11
Table 7-11	Air Particulates	Control	7-12
Table 7-12		Indicator	7-13

LIST OF TABLES (Continued)

		Page
Historical E	nvironmental Sample Data	(Continued)
Table 7-13	Air Radioiodine	Control
Table 7-14		Indicator7-15
Table 7-15	Environmental TLD	Control7-16
Table 7-16		Site Boundary7-17
Table 7-17		Offsite Sectors
Table 7-18		Special Interest7-19
Table 7-19		Onsite Indicator7-20
Table 7-20		Offsite Indicator7-21
Table 7-21	Milk	Control
Table 7-22		Indicator
Table 7-23	Food Products	Control
Table 7-24	•	Indicator
Table 7-25	Groundwater Tritium	Control7-26-
Table 7-26		Monitoring Wells7-27
Table 7-27		NMP2 Storm Drain7-28
Quality Ass	urance / Quality Control 1	<u>Program</u>
Interlaborat	tory Intercomparison Pro	gram ,
Table 8-1	Eckert & Ziegler Analyti	cs8-6
Table 8-2	DOE's Mixed Analyte P	erformance Evaluation Program (MAPEP)8-9
Table 8-3	ERA Environmental Rad	lioactivity Cross Check Program8-10
2014 Data T	able Corrections	
Table 6-4	Gamma Emitters in Surfa	ace Water9-2
Table 6-5	Air Particulate Gross Ber	ta9-4
Table 6-10	Direct Radiation Measure	ement Results9-5

LIST OF FIGURES

<u>Page</u>	,	•
Figure 3.3-1	New York State Map	3-26
Figure 3.3-2	Off-Site Environmental Station and TLD Locations Map	3-27
Figure 3.3-3	Onsite Environmental Station and TLD Locations Map	3-28
Figure 3.3-4	Milk and Surface Water Sample Locations Map	3-29
Figure 3.3-5	Nearest Residence, Food Product, Fish and Shoreline Sediment Sample Locations Map	3-30

1.0 EXECUTIVE SUMMARY

The Annual Radiological Environmental Operating Report is published pursuant to Section 6.6.2 of the Nine Mile Point Unit 1 (NMP1) Technical Specifications and Section 5.6.2 of the Nine Mile Point Unit 2 (NMP2) Technical Specifications.

This report describes the Radiological Environmental Monitoring Program (REMP), the implementation of the program, and the results obtained as required by the Offsite Dose Calculation Manuals (ODCM). The report also contains the analytical results tables, data evaluation, dose assessment, and data trends for each environmental sample media. Also included are results of the land use census, historical data, and the Environmental Laboratory's performance in the Interlaboratory Comparison Quality Assurance Program (ICQAP) required by the NMP1 and NMP2 ODCM's.

The REMP is a comprehensive surveillance program, which is implemented to assess the impact of site operations on the environment and compliance with 10 CFR 20, 10 CFR 72 and 40 CFR 190. Samples are collected from the aquatic and terrestrial pathways applicable to the site. The aquatic pathways include Lake Ontario fish, surface waters, and lakeshore sediment. The terrestrial pathways include airborne particulate and radioiodine, milk, food products, and direct radiation.

During 2015, there were 2048 analyses performed on environmental media collected as part of the REMP. The results demonstrate that there was no significant or measurable radiological impact from the operation of either the NMP1 or NMP2 facilities. The 2015 results for all pathways sampled were consistent with the previous five-year historical results and exhibited no adverse trends.

In summary, the analytical results from the 2015 REMP demonstrate that the routine operation of both facilities at the Nine Mile Point site had no significant or measurable radiological impact on the environment. The results of the REMP continue to demonstrate that the operation of the plants did not result in a significant measurable dose to a member of the general population, or adversely impact the environment as a result of radiological effluents. The program continues to demonstrate that the dose to a member of the public, as a result of the operation of NMP1 and NMP2, remains significantly below the federally required dose limits specified in 10 CFR 20, 10 CFR 72 and 40 CFR 190.

2.0 INTRODUCTION

Nine Mile Point Nuclear Station is owned by Nine Mile Point Nuclear Station, LLC and operated by the Nuclear Regulatory Commission (NRC) licensee, Exelon Generation Company, LLC. This report is submitted in accordance with Appendix A (Technical Specifications) Section 6.6.2 to License DPR-63, Docket No. 50-220 for Nine Mile Point Nuclear Station, Unit 1, and Appendix A (Technical Specifications) Section 5.6.2 to License NPF-69, Docket No. 50-410 for Nine Mile Point Nuclear Station, Unit 2, for the calendar year 2015.

Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2) Radiological Environmental Monitoring Program (REMP) requirements reside within the NMP1 Offsite Dose Calculation Manual (ODCM) and NMP2 ODCM, respectively. Throughout this report, references will be made to the ODCM. This refers to both the NMP1 ODCM and the NMP2 ODCM.

2.1 PROGRAM HISTORY

Environmental monitoring at the Nine Mile Point site has been ongoing since 1964. The program includes five years of pre-operational data, which was conducted prior to any reactor operations. In 1968, the Niagara Mohawk Power Company began the required pre-operational environmental site testing program. This pre-operational data serves as a reference point to compare later data obtained during reactor operation. In 1969, the Nine Mile Point Unit 1 reactor, a 1,850 megawatt-thermal (MWt) Boiling Water Reactor (BWR) began full power operation. In 1975, the James A. FitzPatrick Nuclear Power Plant, owned and operated at that time by the New York Power Authority, began full power operation. The FitzPatrick plant, a 2,536 MWt BWR, occupies the east sector of the Nine Mile Point site, approximately 0.57 miles east of Nine Mile Point Unit 1. In 1988, the Nine Mile Point Unit 2 reactor also owned and operated by Nine Mile Point Nuclear Station, LLC, began full power operation. This 3,988 MWt BWR is located between the Nine Mile Point Unit 1 and FitzPatrick sites.

In 1985, the individual Plant Effluent Technical Specifications were standardized to the generic Radiological Effluent Technical Specifications, much of which was common to the two reactors, and subsequently Nine Mile Point Unit 2. Subsequent Technical Specification amendments relocated the REMP requirements to the ODCM for all three plants. Data generated by the Radiological Environmental Monitoring Program (REMP) is shared, but each utility reviews and publishes their own annual report. On November 21, 2000 the ownership and operation of the James A. FitzPatrick Nuclear Power Plant was transferred from the New York Power Authority to Entergy Nuclear FitzPatrick, LLC and Entergy Nuclear Operations, Inc. On November 7, 2001, the ownership of the Nine Mile Point Unit 1 and 2 facilities was transferred to Constellation Energy Nuclear Group (CENG). In March 2012, Constellation Energy merged with Exelon Generation and prior to March 25, 2014, Exelon Generation was an intermediate 50.01 percent parent company of CENG, which is the parent company owner of Nine Mile Point Nuclear Station, LLC. Following the transfer, Exelon Generation remains an intermediate parent company and also

became the co-licensee of Nine Mile Point Nuclear Station, LLC and the operator of Nine Mile Point 1 and 2.

In summary, three Boiling Water Reactors, which together generate 8,374 MWt, have operated collectively at the Nine Mile Point site since 1988. A large database of environmental results from the exposure pathways have been collected and analyzed to evaluate the potential impact from reactor operations.

2.2 SITE DESCRIPTION

The NMP site is located on the southeast shore of Lake Ontario in the town of Scriba, approximately 6.2 miles northeast of the city of Oswego. The nearest metropolitan area is located approximately 36 miles south southeast of the site. The reactors and support buildings occupy a small shoreline portion of the 900-acre site. The land, soil of glacier deposits, rises gently from the lake in all directions. Oswego County is a rural environment, with about 15% of the land devoted to agriculture.

2.3 PROGRAM OBJECTIVES

The objectives of the Radiological Environmental Monitoring Program (REMP) are to:

- 1. Measure and evaluate the effects of plant operation on the environs and to verify the effectiveness of the controls on radioactive material sources.
- 2. Monitor natural radiation levels in the environs of the NMP site.
- 3. Demonstrate compliance with the requirements of applicable federal regulatory agencies, including Technical Specifications and the Offsite Dose Calculation Manual.

3.0 PROGRAM DESCRIPTION

To achieve the objectives listed in Section 2.3, an extensive sampling and analysis program is conducted every year. The Nine Mile Point Nuclear Station (NMPNS) Radiological Environmental Monitoring Program (REMP) consists of sampling and analysis of various media that include:

- Air
- Fish
- Food Products
- Milk
- Shoreline Sediment
- Surface Waters

In addition, direct radiation measurements are performed using thermoluminescent dosimeters (TLDs). These sampling programs are outlined in Table 3.0-1 and Table 3.0-2. The NMPNS REMP sampling locations are selected and verified by an annual Land Use Census. The accuracy and precision of the program is assured by participation in an Interlaboratory Comparison Quality Assurance Program (ICQAP). In addition to the participation in the ICQAP, sample splits are provided to the New York State Department of Health for cross-checking purposes.

Sample collections for the radiological program are accomplished by a dedicated site environmental staff from both the Nine Mile Point Nuclear Stations (NMPNS) and James A. FitzPatrick Nuclear Power Plant (JAFNPP). The site staff is assisted by a contracted environmental engineering company, EA Engineering, Science and Technology, Inc. (EA).

TABLE 3.0-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample	Number of Samples (a) and Locations	Sampling and Collection Frequency ^(a)	Type of Analysis and Frequency	
<u>AIRBORNE</u>				
a. Radioiodine and Particulates	Samples from 5 locations:	Continuous sampler operation with sample collection weekly or as required by dust loading, whichever is more frequent.	Radioiodine Canisters Analyze once per week for I-131.	
	 3 samples from offsite locations in different sectors of the highest calculated site average D/Q (based on all site licensed reactors). 		Particulate Samplers	
	 1 sample from the vicinity of an established year round community having the highest calculated site average D/Q (based on all site licensed reactors). 		Gross beta radioactivity following filter change (b).	
			Composite (by location) for gamma isotopic analysis (c) once per 3 months (as a	
	3) 1 sample from a control location 10-17 miles distant and in a least prevalent wind direction (d).		minimum).	
b. Direct Radiation (e)	32 stations with two or more dosimeters to be placed as follows: an inner ring of stations in the general area of the site boundary and an outer ring in the 4 to 5 mile range from the site with a station in each land based sector (*). The	Once per 3 months.	Gamma dose once per 3 months.	
	balance of the stations should be placed in special interest areas such as population centers, nearby residences, schools and in 2 or 3 areas to serve as control stations.			
(*)	At this distance, 8 wind rose sectors, (W, WNW, NW, NNW, N,	NNE, NE, and ENE) are over Lake	Ontario.	

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample	Number of Samples (a) and Locations	Sampling and Collection Frequency (a)	Type of Analysis and Frequency
WATERBORNE			
Surface ^(f)	 1) 1 sample upstream. 2) 1 sample from the site's downstream cooling water intake. 	Composite sample over 1 month period ^(g) .	Gamma isotopic analysis (c) once per month. Composite for once per 3 months tritium analysis.
Sediment from Shoreline	One sample from a downstream area with existing or potential recreational value.	Twice per year.	Gamma isotopic analysis ^(e) .
<u>INGESTION</u>		,	
a. Milk	1) Samples from milk sampling locations in three locations within 3.5 miles distance having the highest calculated site average D/Q. If there are none, then one sample from milking animals in each of 3 areas 3.5 – 5.0 miles distant having the highest calculated site average D/Q (based on all site licensed reactors).	Twice per month, April – December (samples will be collected in January – March if I-131 is detected in November and December of the preceding year).	Gamma isotopic ^(c) and I-131 analysis twice per month when animals are on pasture (April – December); once per month at other times (January – March) if required.
	2) One sample from a milk sampling location at a control location (9-20 miles distant and in a least prevalent wind direction) ^(d) .		

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample	Number of Samples (a) and Locations	Sampling and Collection Frequency (a)	Type of Analysis and Frequency
b. Fish	1) One sample each of two commercially or recreationally important species in the vicinity of a plant discharge area ^(h) .	Twice per year.	Gamma isotopic analysis ^(c) on edible portions twice per year.
	2) One sample each of the same species from an area at least 5 miles distant from the site ^(d) .		
c. Food Products	1) Samples of three different kinds of broad leaf vegetation (such as vegetables) grown nearest to each of two different off-site locations of highest calculated site average D/Q (based on all licensed site reactors).	Once per year during harvest season.	Gamma isotopic ^(c) analysis of edible portions (Isotopic to include I-131 or a separate I-131 analysis may be performed) once during the harvest season.
	 One sample of each of the similar broad leaf vegetation grown at least 9.3 – 20 miles distant in a least prevalent wind direction. 	·	

NOTES FOR TABLE 3.0-1

- (a) It is recognized that, at times, it may not be possible or practical to obtain samples of the media of choice at the most desired location or time. In these instances, suitable alternative media and locations may be chosen for the particular pathway in question and may be substituted. Actual locations (distance and directions) from the site shall be provided in the Annual Radiological Environmental Operating Report. Highest D/Q locations are based on historical meteorological data for all site licensed reactors.
- (b) Particulate sample filters should be analyzed for gross beta 24 hours or more after sampling to allow for radon and thoron daughter decay. If the gross beta activity in air is greater than 10 times a historical yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.
- (c) Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- (d) The purpose of these samples is to obtain background information. If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites, such as historical control locations which provide valid background data may be substituted.
- (e) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously, may be used in place of, or in addition to, integrating dosimeters. For the purpose of this table, a thermoluminescent dosimeter may be considered to be one phosphor, and two or more phosphors in a packet may be considered as two or more dosimeters. Film badges shall not be used for measuring direct radiation.
- (f) The "upstream sample" should be taken at a distance beyond significant influence of the discharge. The "downstream sample" should be taken in an area beyond but near the mixing zone, if possible.
- (g) Composite samples should be collected with equipment (or equivalent) which is capable of collecting an aliquot at time intervals which are very short (e.g. hourly) relative to the compositing period (e.g. monthly) in order to assure obtaining a representative sample.
- (h) In the event commercial or recreational important species are not available as a result of three attempts, then other species may be utilized as available.

TABLE 3.0-2

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
AIRBORNE			
a. Direct Radiation	32 routine monitoring stations (b), placed as follows:	Once per 3 months.	Gamma dose: once per 3 months.
	1) An inner ring of stations, one in each meteorological sector in the general area of the Site Boundary.		
	2) An outer ring of stations, one in each land base meteorological sector in the 4 to 5 mile ^(e) range from the site.		
	3) The balance of the stations should be placed in special interest areas such as population centers, nearby residences, schools, and in one of two areas to serve as control stations ^(d) .	•	

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
 3 samples from off-site locations close to the site boundary (within one mile) in different sectors of the highest calculated annual site average ground-level D/Q (based on all site licensed reactors)^(e). 1 sample from the vicinity of an established yearround community having the highest calculated annual site average ground-level D/Q (based on all site licensed reactors)^(e). 1 sample from a control location at least 10 miles distant and in a least prevalent wind direction ^(d). 	Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading.	 Radioiodine Canister: I-131 analysis weekly. Particulate Sampler: 1. Gross beta radioactivity analysis ≥ 24 hours following filter change^(f), 2. Gamma isotopic analysis on each sample where gross beta activity is >10 times the previous yearly mean of control samples, and 3. Gamma isotopic analysis ^(g) of composite sample (by location) once per 3 months.
 1 sample upstream (d) (h). 1 sample from the site's downstream cooling water intake (h). 	Composite sample over 1-month period ⁽ⁱ⁾ .	 Gamma isotopic analysis (g) once per month Tritium analysis of each compositeonce per 3 months.
	 3 samples from off-site locations close to the site boundary (within one mile) in different sectors of the highest calculated annual site average ground-level D/Q (based on all site licensed reactors)^(e). 1 sample from the vicinity of an established yearround community having the highest calculated annual site average ground-level D/Q (based on all site licensed reactors)^(e). 1 sample from a control location at least 10 miles distant and in a least prevalent wind direction ^(d). 1 sample upstream ^{(d) (h)}. 1 sample from the site's downstream cooling water 	Samples from 5 locations: 1. 3 samples from off-site locations close to the site boundary (within one mile) in different sectors of the highest calculated annual site average ground-level D/Q (based on all site licensed reactors) ^(e) . 2. 1 sample from the vicinity of an established yearround community having the highest calculated annual site average ground-level D/Q (based on all site licensed reactors) ^(e) . 3. 1 sample from a control location at least 10 miles distant and in a least prevalent wind direction ^(d) . 1. 1 sample upstream ^{(d) (h)} . Composite sample over 1-month period ⁽ⁱ⁾ . 2. 1 sample from the site's downstream cooling water

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
b. Ground	Samples from one or two sources if likely to be affected ^(j) .	Grab sample once per 3 months.	Gamma isotopic ^(g) and tritium analysis once per 3 months.
c. Drinking	One sample each of one to three of the nearest water supplies that could be affected by its discharge ^(k) .	When I-131 analysis is performed, a composite sample over a 2-week period ⁽ⁱ⁾ ; otherwise, a composite sample monthly.	 I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year⁽¹⁾. Composite for gross beta and gamma isotopic analyses ^(g) monthly. Composite for tritium analysis once per 3 months.
d. Sediment from Shoreline	One sample from a downstream area with existing or potential recreational value.	Twice per year.	Gamma isotopic analysis ^(g) .

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample	Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
INGESTION			
a. Milk	1. Samples from Milk Sampling Locations in 3 locations within 3.5 miles ^(e) distance having the highest calculated annual site average D/Q (based on all licensed site reactors).	Twice per month, April – December (samples will be collected January – March if I- 131 is detected in November and December of the preceding	1) Gamma isotopic ^(g) and I-131 analysis twice per month when animals are on pasture (April –
	2. If there are none, then 1 sample from Milk Sampling Locations in each of three areas 3.5 – 5.0 miles ^(e) distant having the highest calculated annual site average D/Q (based on all licensed site reactors).	year) ^(m) .	December); 2) Gamma isotopic (g) and I-131 analysis once per month at other times (January
	3. 1 sample from a Milk Sample Location at a control location 9 - 20 miles distant and in a least prevalent wind direction ^(d) .		 – March, if required).
b. Fish	1. 1 sample each of two commercially or recreationally important species in the vicinity of a plant discharge area ⁽ⁿ⁾ .	Twice per year.	Gamma isotopic analysis ^(g) on edible portions twice per year.
	2. 1 sample of the same species in areas not influenced by station discharge ^(d) .		

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIRED SAMPLE COLLECTION AND ANALYSIS

Exposure Pathway and/or Sample		Number of Samples and Sample Locations (a)	Sampling and Collection Frequency	Type of Analysis and Frequency
c. Food Products	1)	1 sample of each principal class of food products from any area that is irrigated by water in which liquid plant wastes have been discharged ^(o) .	At time of harvest ^(p) .	Gamma isotopic ^(g) and I-131 analysis of each sample of edible portions.
	2)	Samples of 3 different kinds of broad leaf vegetation (such as vegetables) grown nearest to each of 2 different off-site locations of highest calculated annual site average D/Q (based on all licensed site reactors) ^(e) .	Once per year during the harvest season.	
	3)	1 sample of each of the similar broad leaf vegetation grown at least 9.3 miles distant in a least prevalent wind direction.	Once per year during the harvest season.	

NOTES FOR TABLE 3.0-2

- (a) Specific parameters of distance and direction sector from the centerline of one reactor, and additional descriptions where pertinent, shall be provided for each and every sample location in Table 3.0-2. Refer to NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," October 1978, and to Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979. Deviations are permitted from the required sampling schedule if specimens are unobtainable because of such circumstances as hazardous conditions, seasonal unavailability (which includes theft and uncooperative residents), or malfunction of automatic sampling equipment.
- (b) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously, may be used in place of, or in addition to, integrating dosimeters. Each of the 32 routine monitoring stations shall be equipped with 2 or more dosimeters or with 1 instrument for measuring and recording dose rate continuously. For the purpose of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor, two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation.
- (c) At this distance, 8 wind rose sectors, (W, WNW, NW, NNW, N, NNE, NE, and ENE) are over Lake Ontario.
- (d) The purpose of these samples is to obtain background information. If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites, which provide valid background data, may be substituted.
- (e) Having the highest calculated annual site average ground-level D/Q based on all site licensed reactors.
- (f) Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay.
- (g) Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.
- (h) The "upstream" sample shall be taken at a distance beyond significant influence of the discharge. The "downstream" sample shall be taken in an area beyond but near the mixing zone.
- (i) In this program, representative composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.
- Groundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- (k) Drinking water samples shall be taken only when drinking water is a dose pathway.
- (I) Analysis for I-131 may be accomplished by Ge-Li analysis, provided that the lower limit of detection (LLD) for I-131 in water samples found on Table 3.7-1 can be met. Doses shall be calculated for the maximum organ and age group.
- (m) Samples will be collected January through March if I-131 is detected in November and December of the preceding year.

NOTES FOR TABLE 3.0-2 (continued)

- (n) In the event two commercially or recreationally important species are not available after three attempts of collection, then two samples of one species or other species not necessarily commercially or recreationally important may be utilized.
- (o) Applicable only to major irrigation projects within 9 miles of the site in the general down current direction.
- (p) If harvest occurs more than once/year, sampling shall be performed during each discrete harvest. If harvest occurs continuously, sampling shall be taken monthly. Attention shall be paid to including samples of tuberous and root food products.

3.1 SAMPLE COLLECTION METHODOLOGY

3.1.1 SHORELINE SEDIMENTS

Shoreline sediment is collected at one area of existing or potential recreational value. One sample is also collected from a location beyond the influence of the site. Samples are collected as surface scrapings to a depth of approximately one inch. The samples are placed in plastic bags, sealed and shipped to the lab for analysis. Sediment samples are analyzed for gamma emitting radionuclides.

Shoreline sediment sample locations are shown in Section 3.3, Figure 3.3-5.

3.1.2 FISH

Samples of available fish species that are commercially or recreationally important to Lake Ontario; such as Brown Trout, Chinook Salmon, Lake Trout, Smallmouth Bass, and Walleye, are collected twice per year, once in the spring and again in the fall. Indicator samples are collected from a combination of the two onsite sample transects located offshore from the site. One set of control samples are collected at an offsite sample transect located offshore 8-10 miles west of the site. Available species are selected using the following guidelines:

- 1. A minimum of two species that are commercially or recreationally important are to be collected from each sample location. Samples selected are limited to edible and/or sport species when available.
- 2. Samples are composed of the edible portion only.

Selected fish samples are frozen immediately after collection and segregated by species and location. Samples are shipped frozen in insulated containers for analysis. Edible portions of each sample are analyzed for gamma emitting radionuclides.

Fish collection locations are shown in Section 3.3, Figure 3.3-5.

3.1.3 SURFACE WATER

Surface water samples are taken from the respective inlet canals of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) and NRG's Oswego Steam Station. The JAFNPP facility draws water from Lake Ontario on a continuous basis. This is used for the "downstream" or indicator sampling point for the Nine Mile Point site. The Oswego Steam Station inlet canal removes water from Lake Ontario at a point approximately 7.6 miles west of the site. This "upstream" location is considered a control location because of the distance from the site, as well as the result of the lake current patterns and current patterns from the Oswego River located nearby.

Samples from the JAFNPP facility are composited from automatic sampling equipment which discharges into a compositing tank or bottles. Samples are collected monthly from the compositor and analyzed for gamma emitters. Samples from the Oswego Steam Station are also obtained using automatic sampling equipment and collected in a holding tank. Representative samples from this location are obtained weekly and are composited to form a monthly composite sample. The monthly samples are analyzed for gamma emitting radionuclides.

A portion of the monthly sample from each of the locations is saved and composited to form quarterly composite samples, which are analyzed for tritium.

In addition to the sample results for the JAFNPP and Oswego Steam Station collection sites, data is presented for the Nine Mile Point Unit 1 and Unit 2 facility inlet canal samples and from the City of Oswego drinking water supply. The latter three locations are not required by the ODCM. These locations are optional sample points, which are collected and analyzed to enhance the surface water sampling program. Monthly composite samples from these three locations are analyzed for gamma emitting nuclides, and quarterly composite samples are analyzed for tritium.

Surface water sample locations are shown in Section 3.3 on Figure 3.3-4.

3.1.4 AIR PARTICULATE / IODINE

The air sampling stations required by the ODCM are located in the general area of the site boundary. The sampling stations are sited within a distance of 0.2 miles of the site boundary in sectors with the highest calculated deposition factor (D/Q) based on historical meteorological data. These stations (R-1, R-2, R-3 and R-4) are located in the E, ESE, and SE sectors as measured from the center of the Nine Mile Point Nuclear Station Unit 2 Reactor Building. The ODCM also requires that a fourth air sampling station be located in the vicinity of a year-round community. This station is located in the SE sector at a distance of 1.8 miles and is designated as Station R-4. A fifth station required by the ODCM is a control location designated as Station R-5. Station R-5 is located 16.2 miles from the site in the NE meteorological sector.

In addition to the five ODCM required locations, there are ten additional sampling stations. Six of these sampling stations are located within the site boundary and are designated as Onsite Stations D1, G, H, I, J, and K. These locations are within the site boundary of the NMPNS and JAFNPP. One air sampling station is located offsite in the southwest sector in the vicinity of the City of Oswego and is designated as Station G Offsite. Three remaining air sampling stations are located in the ESE, SSE, and SSW sectors and range in distance from 7.1 to 9.0 miles. These are designated as Offsite Stations D2, E and F respectively.

Each station collects airborne particulates using glass fiber filters (47 millimeter diameter) and radioiodine using charcoal cartridges (2x1 inch). The samplers run continuously and the charcoal cartridges and particulate filters are changed on a weekly basis. Sample volume is determined by use of calibrated gas flow meters located at the sample discharge. Gross beta analysis is performed on each particulate filter. Charcoal cartridges are analyzed for radioiodine using gamma spectral analysis. The particulate filters are composited quarterly by location and analyzed for gamma emitting radionuclides.

Air sampling station locations are shown in Section 3.3, Figures 3.3-2 and 3.3-3.

3.1.5 TLD (DIRECT RADIATION)

Thermoluminescent dosimeters (TLDs) are used to measure direct radiation (gamma dose) in the environment. Environmental TLDs are supplied and processed quarterly by the AREVA NP Environmental Laboratory. The laboratory utilizes a Panasonic based system using UD-814 dosimeters, which are constructed of rectangular teflon wafers impregnated with 25% CaSO₄:Dy phosphor. Each dosimeter contains three calcium sulfate elements and one lithium borate element.

1. Environmental TLDs

Environmental TLDs are placed in five different geographical regions around site to evaluate effects of direct radiation as a result of plant operations. The following is a description of the five TLD geographical categories used in the NMPNS and JAFNPP Environmental Monitoring Program and the TLDs that make up each region:

TLD Geographical	TLD	Geograi	oh	ica	l
------------------	-----	---------	----	-----	---

Category	Description
Onsite	TLDs placed at various locations within the site boundary, with three exceptions, are not required by the ODCM. (TLD locations comprising this group are: 3, 4, 5, 6, 7*, 18*, 23*, 24, 25, 26, 27,
Site Boundary	28, 29, 30, 31, 39, 47, 103, 106 and 107) An inner ring of TLDs placed in the general area of the site
•	boundary in each of the sixteen meteorological sectors. This category is required by the ODCM. (TLD locations comprising this group are: 7*, 18*, 23*, 75*, 76*, 77*, 78*, 79*, 80*, 81*, 82*, 83*, 84*, 85*, 86*, and 87*)
Offsite	An outer ring of TLDs placed 4 to 5 miles from the site in each of the 8 land based meteorological sectors. This category is required by the ODCM. (TLD locations comprising this group are 88*, 89*, 90*, 91*, 92*, 93*, 94*, and 95*)
Special Interest	TLDs placed in special interest areas of high population density and use. These TLDs are located at or near large industrial sites, schools, or nearby towns or communities. This category is required by the ODCM. (TLD locations comprising this group are: 9, 10, 11, 12, 13, 15*, 19, 51, 52, 53, 54, 55, 56*, 58*, 96*, 97*, 98*, 99, 100, 101, 102, 108, and 109)
Control	TLDs placed in areas beyond significant influence of the site and plant operations. These TLDs are located to the SW, S and NE of the site at distances of 12.6 to 24.7 miles. This category is also required by the ODCM. (TLD locations comprising this group are 8, 14*, 49*, 111, 113)

^{*} TLD location required by the ODCM

Although the ODCM requires a total of 32 TLD stations; environmental TLDs are also placed at additional locations not required by the ODCM, within the Onsite, Special Interest and Control TLD categories to supplement the ODCM required Direct Radiation readings.

Two dosimeters are placed at each TLD monitoring location. The TLDs are sealed in polyethylene packages to ensure dosimeter integrity and placed in open webbed plastic holders and attached to supporting structures, such as utility poles.

Environmental TLD locations are shown in Section 3.3, Figures 3.3-2 and 3.3-3.

2. Independent Spent Fuel Storage Installation (ISFSI)

In order to provide adequate spent fuel storage capacity at NMP1 and NMP2, NMPNS constructed an ISFSI onsite west of NMP1. During 2012 the NMPNS ISFSI facility was placed into service.

TLDs are used to monitor direct radiation levels in the vicinity of the ISFSI facility. Sixteen (16) TLD locations were established around the site boundary. Background data has been collected from the initiation of the NMPNS REMP TLD program in 1985.

In addition, fourteen (14) Optically Stimulated Luminescence Dosimeters (OSDLs) are located around the ISFSI and in areas where personnel are assigned routine work activities. These locations are designated as optional locations. Background data was collected starting in June, 2011.

REMP TLD locations are shown in Section 3.3, Table 3.3-1 and Figures 3.3-2 & 3.3-3.

3.1.6 MILK

Milk samples are routinely collected from farms during the sampling year. These farms include one indicator location and one control location. Samples are normally collected April through December of the sample year. If plant related radionuclides are detected in samples in November and December of the previous year, milk collections are continued into the following year starting in January. If plant related radionuclides are not detected in the November and December samples, then milk collections do not commence until April of the following sampling year. Milk samples were not collected in January through March of 2015 as there were no positive detections of plant related radionuclides in samples collected during November and December of 2014.

The ODCM also requires that a sample be collected from a control location nine to twenty miles from the site and in a less prevalent wind direction. This location is in the south sector at a distance of 16 miles and serves as the control location.

Milk samples are collected in polyethylene bottles from a bulk storage tank at each sampled farm. Before the sample is drawn, the tank contents are agitated to assure a homogenous mixture of milk and butter fat. The samples are chilled, preserved, and shipped fresh to the analytical laboratory within thirty-six hours of collection in insulated shipping containers.

The milk sample locations are shown in Section 3.3, Figure 3.3-4. (Refer to Section 3.3, Table 3.3-1 for location designation and descriptions.)

3.1.7 FOOD PRODUCTS (VEGETATION)

Food products are collected once per year during the late summer harvest season. A minimum of three different kinds of broad leaf vegetation (edible or inedible) are collected from two different indicator garden locations. Sample locations are selected from available gardens identified in the annual census that have the highest estimated deposition values (D/Q) based on historical site meteorological data. Control samples are also collected from available locations greater than 9.3 miles distance from the site in a less prevalent wind direction. Control samples are of the same or similar type of vegetation when available.

Food product samples are analyzed for gamma emitters using gamma isotopic analysis.

Food product locations are shown in Section 3.3, Figure 3.3-5.

3.1.8 GROUND WATER MONITORING PROGRAM

The Nuclear Energy Institute (NEI) Groundwater Protection Initiative was established to determine the potential impact nuclear power plants may have on the surrounding environment due to unplanned releases of radioactive liquids. Under the NEI 07-07 Groundwater Protection Initiative (GPI) – Final Guidance Document, August 2007, groundwater monitoring is accomplished through sampling of the water table around the plant and analyzing for tritium. In addition to the groundwater monitoring requirements specified in the NMP2 ODCM, NMPNS started monitoring groundwater wells in October 2005 and has been monitoring the plant dewatering systems as part of the response to Generic Letter 80-10 for several years. Samples collected from these locations are analyzed for tritium, gamma emitters, and strontium.

During the operating year 2015, there were no unplanned releases or spills of radioactive liquids on the NMPNS site.

Samples obtained from these wells are analyzed on a quarterly basis to determine gamma emitters and tritium concentrations. Ground water samples are analyzed for gamma emitters using gamma-spectrum analysis and tritium using liquid scintillation detector.

Groundwater tritium results are documented in the 2015 Annual Radiological Effluent Release Report.

Historical groundwater data is presented in Section 7, Historical Data Tables.

Groundwater sample locations are shown in Section 3.3, Figure 3.3-6.

3.2 ANALYSES PERFORMED

Environmental sample analyses are performed by contract laboratories. The following analyses were performed:

- 1. Air Particulate Filter Gross Beta
- 2. Air Particulate Filter Composites Gamma Spectral Analysis
- 3. Airborne Radioiodine Gamma Spectral Analysis
- 4. Direct Radiation using Thermoluminescent Dosimeters (TLDs)
- 5. Fish Gamma Spectral Analysis
- 6. Food Products (vegetation) Gamma Spectral Analysis
- 7. Milk Gamma Spectral Analysis and I-131
- 8. Shoreline Sediment Gamma Spectral Analysis
- 9. Special Samples (soil, food, bottom sediment, etc.) Gamma Spectral Analysis
- 10. Surface Water Monthly Composites Gamma Spectral Analysis, I-131
- 11. Surface Water Quarterly Composite Tritium
- 12. Ground Water Quarterly Samples Tritium, Gamma Spectral Analysis, and Strontium

3.3 SAMPLE LOCATIONS

This section provides maps illustrating sample locations. Sample locations referenced as letters and numbers on the report period data tables are consistent with designations plotted on the maps.

This section also contains an environmental sample location reference table (Table 3.3-1). This table contains the following information:

- 1. Sample Medium
- 2. Map Designation (this column contains the key for the sample location and is consistent with the designation on the sample location maps and on the sample results data tables)
- 3. Location Description
- 4. Degrees and Distance of the sample location from the site

3.3.1 LIST OF FIGURES

- Figure 3.3-1 New York State Map
 Figure 3.3-2 Off-Site Environmental Station and TLD Locations Map
 Figure 3.3-3 Onsite Environmental Station and TLD Locations Map
 Figure 3.3-4 Milk and Surface Water Sample Locations Map
 Figure 3.3-5 Nearest Residence, Food Product, Fish and Shoreline Sediment Sample Locations Map
- Figure 3.3-6 On-Site Ground Water Monitoring Wells Map

TABLE 3.3-1 ENVIRONMENTAL SAMPLE LOCATIONS

SAMPLE MEDIUM	MAP DESIGNATION	FIGURE NUMBER	LOCATION DESCRIPTION	DEGR	EES & (1) &	DISTANCE t (2)
Shoreline Sediment	05*	Figure 3.3-5	Sunset Bay	84°	at	1.2 miles
·	06	Figure 3.3-5	Langs Beach, Control	232°	at	4.8 miles
Fish	02*	Figure 3.3-5	Nine Mile Point Transect	290°	at	0.4 miles
	03*	Figure 3.3-5	FitzPatrick Transect	62°	at	0.8 miles
	00*	Figure 3.3-5	Oswego Transect	237°	at	5.9 miles
Surface Water	03*	Figure 3.3-4	FitzPatrick Inlet	71°	at	0.6 miles
	08*	Figure 3.3-4	Oswego Steam Station Inlet - Control	236°	at	7.6 miles
	09	Figure 3.3-4	NMP Unit 1 Inlet	319°	at	0.3 miles
	10	Figure 3.3-4	Oswego City Water	240°	at	7.8 miles
	11	Figure 3.3-4	NMP Unit 2 Inlet (Split intake with two locations)	336°	at	0.3 miles
				353°	at	0.3 miles
Air Radioiodine and	R-1*	Figure 3.3-2	R-1 Station, Nine Mile Point Road	92°	at	1.8 miles
Particulates	R-2*	Figure 3.3-3	R-2 Station, Lake Road	106°	at	1.1 miles
	R-3*	Figure 3.3-3	R-3 Station, Co. Rt. 29	134°	at	1.4 miles
	R-4*	Figure 3.3-3	R-4 Station, Village of Lycoming, Co. Rt. 29	145°	at	1.8 miles
	R-5*	Figure 3.3-2	R-5 Station, Montario Point Rd Control	42°	at	16.2 miles
	D-1	Figure 3.3-3	D1 Onsite Station	73°	at	0.3 miles
	G	Figure 3.3-3	G Onsite Station	244°	at	0.7 miles
	Н	Figure 3.3-3	H Onsite Station	74°	at	0.8 miles
	I	Figure 3.3-3	I Onsite Station	96°	at	0.8 miles
	J	Figure 3.3-3	J Onsite Station	110°	at	0.9 miles
	K	Figure 3.3-3	K Onsite Station	133°	at	0.5 miles
	G	Figure 3.3-2	G Offsite Station, Saint Paul Street	226°	at	5.4 miles
	D-2	Figure 3.3-2	D2 Offsite Station, Rt. 64	118°	at	9.0 miles
	Е	Figure 3.3-2	E Offsite Station, Rt. 4	162°	at	7.1 miles
	F	Figure 3.3-2	F Offsite Station, Dutch Ridge Road	192°	at	7.6 miles

TABLE 3.3-1 (Continued) ENVIRONMENTAL SAMPLE LOCATIONS

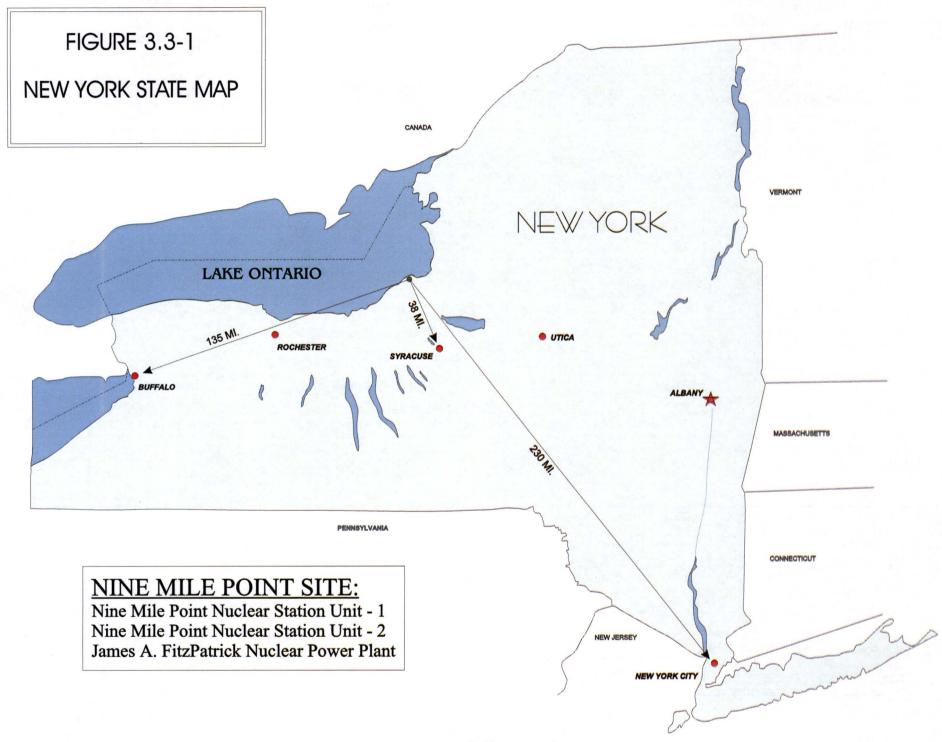
SAMPLE	MAP	FIGURE		DEGR	EES &	DISTANCE
MEDIUM	DESIGNATION	NUMBER	LOCATION DESCRIPTION		(1) &	t (2)
Thermoluminescent	3	Figure 3.3-3	D1 Onsite	73°	at	0.3 miles
Dosimeters (TLD)	4	Figure 3.3-3	D2 Onsite	143°	at	0.4 miles
	5	Figure 3.3-3	E Onsite	150°	at	0.4 miles
	6	Figure 3.3-3	F Onsite	213°	at	0.5 miles
	7*	Figure 3.3-3	G Onsite	244°	at	0.7 miles
	8	Figure 3.3-2	R-5 Offsite	42°	at	16.2 miles
	9	Figure 3.3-2	D1 Offsite – State Route 3	80°	at	11.4 miles
	10	Figure 3.3-2	D2 Offsite	118°	at	9.0 miles
	11	Figure 3.3-2	E Offsite	162°	at	7.1 miles
	12	Figure 3.3-2	F- Offsite	192°	at	7.7 miles
	13	Figure 3.3 - 2	G Offsite	226°	at	5.4 miles
	14*	Figure 3.3-2	DeMass Rd., SW Oswego - Control	227°	at	12.5 miles
	15*	Figure 3.3-2	Pole 66, W. Boundary - Bible Camp	240°	at	0.9 miles
	· 18*	Figure 3.3-3	Energy Info. Center - Lamp Post, SW	266°	at	0.5 miles
	19	Figure 3.3-2	East Boundary - JAF, Pole 9	83°	at	1.4 miles
	23*	Figure 3.3-3	H Onsite	74°	at	0.8 miles
	24	Figure 3.3-3	I Onsite	96°	at	0.8 miles
	25	Figure 3.3-3	J Onsite	110°	at	0.9 miles
	26	Figure 3.3-3	K Onsite	133°	at	0.5 miles
	27	Figure 3.3-3	N. Fence, N. of Switchyard, JAF	60°	at	0.4 miles
	28	Figure 3.3-3	N. Light Pole, N. of Screenhouse, JAF	68°	at	0.5 miles
	29	Figure 3.3-3	N. Fence, N. of W. Side	65°	at	0.5 miles
	30	Figure 3.3-3	N. Fence, (NW) JAF	57°	at	0.4 miles
	31	Figure 3.3-3	N. Fence, (NW) NMP-1	278°	at	0.2 miles
	39	Figure 3.3-3	N. Fence, Rad. Waste-NMP-1	296°	at	0.2 miles
	47	Figure 3.3-3	N. Fence, (NE) JAF	69°	at	0.6 miles
	49*	Figure 3.3-2	Phoenix, NY-Control	168°	at	19.7 miles
	51	Figure 3.3-2	Liberty & Bronson Sts., E of OSS	234°	at	7.3 miles
	52	Figure 3.3-2	E. 12th & Cayuga Sts., Oswego School	227°	at	5.9 miles
	53	Figure 3.3-2	Broadwell & Chestnut Sts. Fulton H.S.	183°	at	13.7 miles

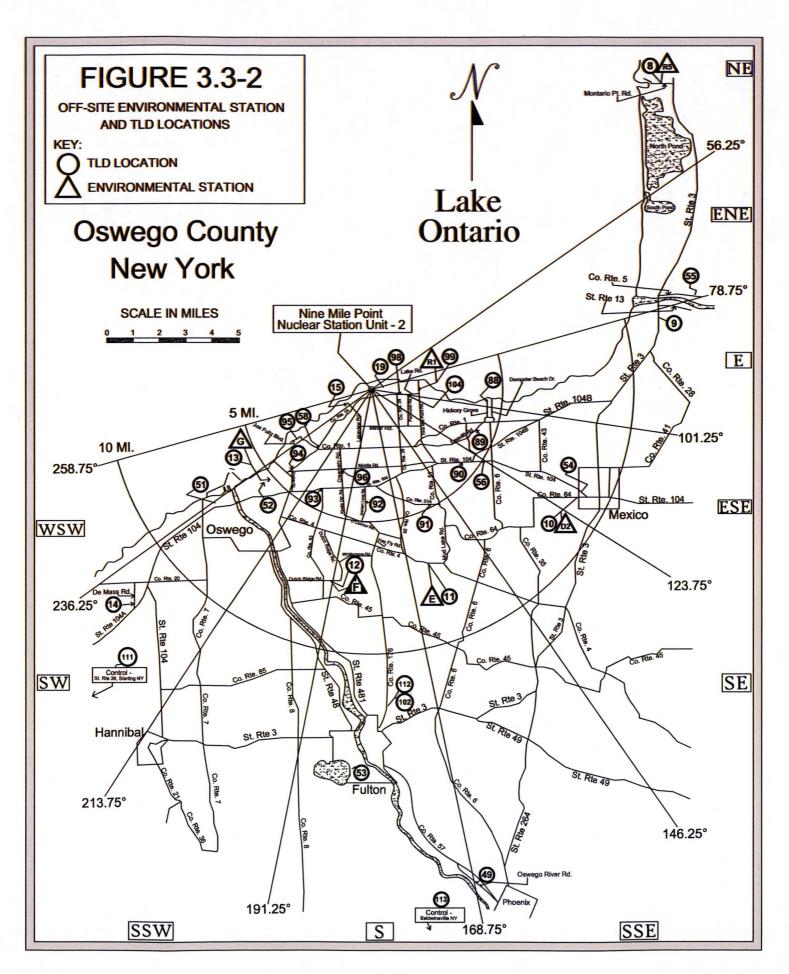
TABLE 3.3-1 (Continued) ENVIRONMENTAL SAMPLE LOCATIONS

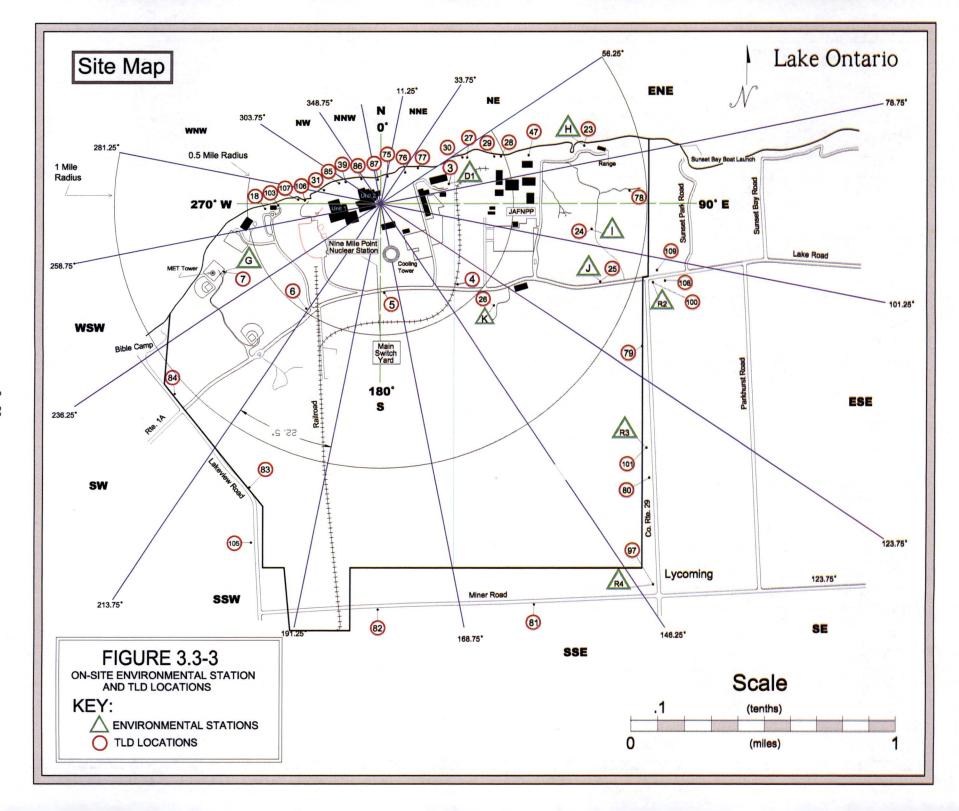
SAMPLE	MAP	FIGURE		DEGR	EES &	DISTANCE
MEDIUM	MEDIUM DESIGNATION		LOCATION DESCRIPTION	ON (1) & (2)		2 (2)
Thermoluminescent	54	Figure 3.3-2	Mexico High School	115°	at	9.4 miles
Dosimeters (TLD)	55	Figure 3.3-2	Gas Substation Co. Rt. 5-Pulaski	75°	at	13.0 miles
(Continued)	56*	Figure 3.3-2	Rt. 104-New Haven Sch. (SE Corner)	124°	at	5.2 miles
	58*	Figure 3.3-2	Co Rt. 1A-Novelis (E. of E. Entrance Rd.)	222°	at	3.0 miles
	75*	Figure 3.3-3	Unit 2, N. Fence, N. of Reactor Bldg.	354°	at	0.1 miles
	76*	Figure 3.3-3	Unit 2, N. Fence, N. of Change House	27°	at	0.1 miles
	77*	Figure 3.3-3	Unit 2, N. Fence, N. of Pipe Bldg.	37°	at	0.2 miles
	78*	Figure 3.3-3	JAF. E. of E. Old Lay Down Area	86°	at	1.0 miles
	79*	Figure 3.3-3	Co. Rt. 29, Pole #63, 0.2 mi. S. of Lake Rd.	121°	at	1.2 miles
	80*	Figure 3.3-3	Co. Rt. 29, Pole #54, 0.7 mi. S. of Lake Rd.	136°	at	1.5 miles
	81*	Figure 3.3-3	Miner Rd., Pole #16, 0.5 mi. W. of Rt. 29	160°	at	1.6 miles
	82*	Figure 3.3-3	Miner Rd., Pole # 1-1/2, 1.1 mi. W. of Rt. 29	180°	at	1.6 miles
	83*	Figure 3.3-3	Lakeview Rd., Tree 0.45 mi. N. of Miner Rd.	203°	at	1.2 miles
	84*	Figure 3.3-3	Lakeview Rd., N., Pole #6117, 200ft. N. of Lake Rd.	225°	at	1.1 miles
	85*	Figure 3.3-3	Unit 1, N. Fence, N. of W. Side of Screen House	290°	at	0.2 miles
	86*	Figure 3.3-3	Unit 2, N. Fence, N of W. Side of Screen House	310°	at	0.1 miles
	87*	Figure 3.3-3	Unit 2, N. Fence, N. of E. Side of Screen House	332°	at	0.1 miles
	88*	Figure 3.3-2	Hickory Grove Rd., Pole #2, 0.6 mi. N. of Rt. 1	97°	at	4.5 miles
	89*	Figure 3.3-2	Leavitt Rd., Pole #16, 0.4 mi. S. of Rt.1	112°	at	4.3 miles
	. 90*	Figure 3.3-2	Rt. 104, Pole #300, 150 ft. E. of Keefe Rd.	135°	at	4.2 miles
	91*	Figure 3.3-2	Rt 51A, Pole #59, 0.8 mi. W. of Rt. 51	157°	at	4.9 miles
	92*	Figure 3.3-2	Maiden Lane Rd., Power Pole, 0.6 mi. S. of Rt. 104	183°	at	4.5 miles
	93*	Figure 3.3-2	Rt. 53 Pole 1-1, 120 ft. S. of Rt. 104	206°	at	4.4 miles
	94*	Figure 3.3-2	Rt. 1, Pole #82, 250 ft. E. of Kocher Rd. (Co. Rt. 63)	224°	at	4.4 miles
	95*	Figure 3.3-2	Novelis W access Rd., Joe Fultz Blvd, Pole #21	239°	at	3.7 miles
	96*	Figure 3.3-2	Creamery Rd., 0.3 mi. S. of Middle Rd., Pole 1-1/2	199°	at	3.7 miles
	97*	Figure 3.3-3	Rt. 29, Pole #50, 200ft. N. of Miner Rd.	145°	at	1.8 miles
	98*	Figure 3.3-2	Lake Rd., Pole #145, 0.15 mi. E. of Rt 29	103°	at	1.2 miles

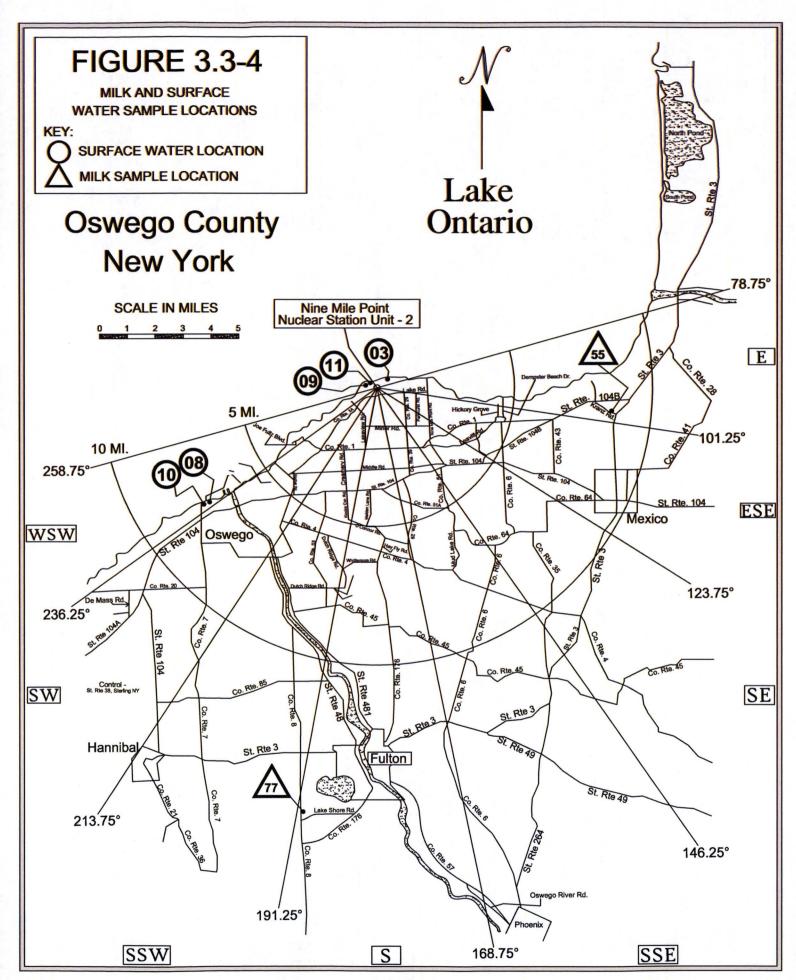
TABLE 3.3-1 (Continued) ENVIRONMENTAL SAMPLE LOCATIONS

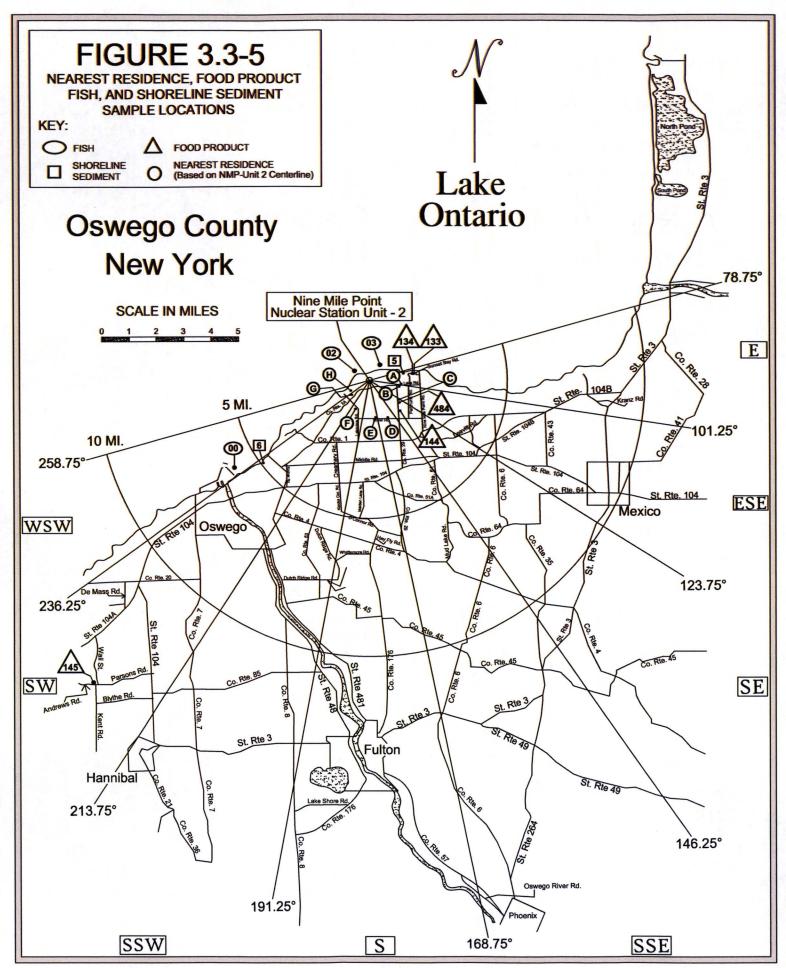
SAMPLE MEDIUM	MAP DESIGNATION	FIGURE NUMBER	LOCATION DESCRIPTION	DEGR	EES & (1) &	EDISTANCE
Thermoluminescent	. 99	Figure 3.3-2	NMP Rd., 0.4 mi. N. of Lake Rd., Env. Station R1	92°	at	1.8 miles
Dosimeters (TLD)	100	Figure 3.3-3	Rt. 29 & Lake Rd., Env. Station R2	106°	at	1.1 miles
(Continued)	101	Figure 3.3-3	Rt. 29, 0.7 mi. S. of Lake Rd., Env. Station R3	133°	at	1.4 miles
,	102	Figure 3.3-2	EOF/Env. Lab, Rt 176, E. Driveway, Lamp Post	175°	at	11.9 miles
	103	Figure 3.3-3	EIC, East Garage Rd., Lamp Post	268°	at	0.4 miles
	104	Figure 3.3-2	Parkhurst Rd., Pole #23, 0.1 mi. S. of Lake rd.	102°	at	1.4 miles
	105	Figure 3.3-3	Lake view Rd. Pole #36, 0.5 mi. S. of Lake Rd.	199°	at	1.4 miles
	106	Figure 3.3-3	Shoreline Cove, W. of NMP-1, Tree on W. Edge	272°	at	0.3 miles
	107	Figure 3.3-3	Shoreline Cove, W. of NMP-1, 30 ft SSW of #106	271°	at	0.3 miles
	108	Figure 3.3-3	Lake Rd., Pole #142, 300 ft E. of Rt. 29 S.	105°	at	1.1 miles
	109	Figure 3.3-3	Tree North of Lake Rd., 300 ft E. of Rt. 29 N	104°	at	1.1 miles
	111	Figure 3.3-2	Control, State Route 38, Sterling NY	214°	at	21.8 miles
	112	Figure 3.3-2	EOF/Env. Lab, Oswego County Airport	175°	at	11.9 miles
	112	C	, , ,	178°	at	24.7miles
	113	Figure 3.3-2	Control, Baldwinsville, NY			*
Cow's Milk	55*	Figure 3.3-4	Indicator Location	97°	at	8.7 miles
	77*	Figure 3.3-4	Control Location	190°	at	16.0 miles
	, ,	i iguic 3.5-4	Control Escation			
Food Products	134	Figure 3.3-5	Indicator Location	83°	at	1.5 miles
	144*	Figure 3.3-5	Indicator Location	139°	at	1.6 miles
	484*	Figure 3.3-5	Indicator Location	132°	at	1.4 miles
•	C2*	Figure 3.3-5	Control Location	222°	at	15.4 miles

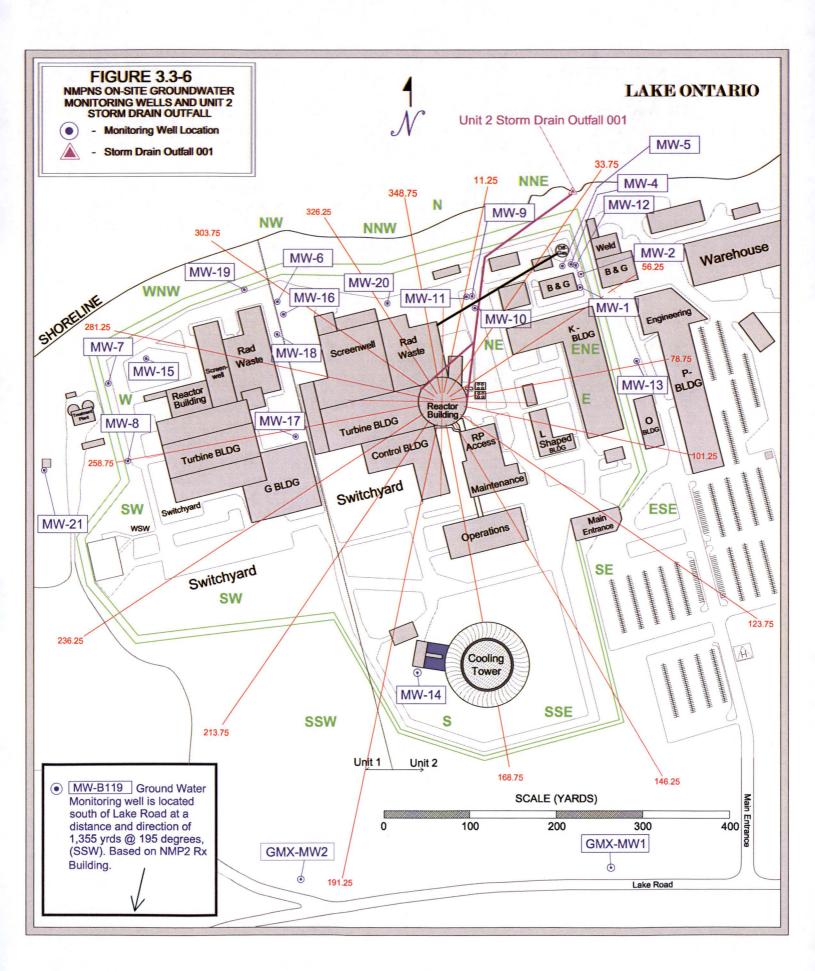

Nearest Residence (NMP)
Based on NMP Unit 2 Centerline – Refer to Figure 3.3-5


TABLE 3.3-1 (Continued) ENVIRONMENTAL SAMPLE LOCATIONS


SAMPLE MEDIUM	MAP DESIGNATION (a & b)	FIGURE NUMBER	LOCATION DESCRIPTION	DEGREES & DISTANCE
Groundwater	MW 1,2, 4-13, 15-21 GMX-MW-1 MW-14 Storm Drain	Figure 3.3-6 Figure 3.3-6 Figure 3.3-6	Down Gradient Wells - Indicators Upland Well - Control Upland Well - Control NMP2 Dewatering System - Indicator	258° to 78° at <0.3 miles 160° at 0.3 miles 187° at 0.2 miles 32° at <0.1 miles


Table Notes:


- (a) Sample Locations marked by an asterisk (*) are locations required by ODCM
- (b) Degrees and Distance based on Nine Mile Point Unit 2 Reactor Centerline
- (d) Degrees and Distances updated by Global Positioning System (GPS)



3.4 LAND USE CENSUS

The ODCM requires that a milch animal census and a residence census be conducted annually out to a distance of five miles. Milch animals are defined as any animal that is routinely used to provide milk for human consumption.

The milch animal census is an estimation of the number of cows and goats within an approximate ten mile radius of the Nine Mile Point site. The census is performed once per year in the summer by sending questionnaires to previous milch animal owners, and by road surveys to locate any possible new owners. In the event that questionnaires are not answered, the owners are contacted by telephone or in person. The Oswego County Cooperative Extension Service was also contacted to provide any additional information.

The residence census is conducted each year to identify the closest residence in each of the 22.5 degree meteorological sectors out to a distance of five miles. A residence, for the purposes of this census, is a residence that is occupied on a part time basis (such as a summer camp), or on a full time, year round basis. Several of the site meteorological sectors are over Lake Ontario; therefore, there are only eight sectors over land where residences are located within five miles.

In addition to the milch animal and residence census, a garden census is performed. The census is conducted each year to identify the gardens near the site that are to be used for the collection of food product samples The results of the garden census are not provided in this report. The results are used only to identify appropriate sample locations. The garden census is not required by the ODCMs if broadleaf vegetation sampling and analysis is performed.

3.5 CHANGES TO THE REMP PROGRAM

Based upon the results of the 2015 Land Use Census, there were no changes to the 2015 sampling program.

3.6 DEVIATION AND EXCEPTIONS TO THE PROGRAM

The noted exceptions to the 2015 sample program address only those samples or monitoring requirements which are required by the ODCM. This section satisfies the reporting requirements of Section D 6.9.1.d of the NMP1 ODCM and Section D 4.1.2 of the NMP2 ODCM.

3.6.1 ODCM Program Deviations

The following are deviations from the program specified by the ODCM:

- 1. 01/10/15 01/14/15; Air Station R-5 Offsite sample pump was inoperable for approximately 108 hours. Out of service time was determined based upon sample pump run time integrator. The inoperability was due to loss of power to the sample station. No corrective actions were required to restore power to the station.
- 2. 03/02/15 03/10/15; Air Station R-1 Offsite sample pump was inoperable for approximately 4 hours. Out of service time was determined based upon sample pump run time integrator. The inoperability was due to loss of power to the sample station. No corrective actions were required to restore power to the air station.
- 3. 03/02/15 03/10/15; Air Station R-2 Offsite sample pump was inoperable for approximately 4 hours Out of service time was determined based upon sample pump run time integrator. The inoperability was due to loss of power to the sample station. No corrective actions were required to restore power to the air station.
- 4. 10/27/15 11/03/15; Air Station R-2 Offsite sample pump was inoperable for approximately 10 hours Out of service time was determined based upon sample pump run time integrator. The inoperability was due to loss of power to the sample station. No corrective actions were required to restore power to the air station.
- 5. 10/27/15 11/03/15; Air Station R-3 Offsite sample pump was inoperable for approximately 2 hours Out of service time was determined based upon sample pump run time integrator. The inoperability was due to loss of power to the sample station. No corrective actions were required to restore power to the air station.
- 6. 10/27/15 11/03/15; Air Station R-4 Offsite sample pump was inoperable for approximately 2 hours Out of service time was determined based upon sample pump

run time integrator. The inoperability was due to loss of power to the sample station. No corrective actions were required to restore power to the air station.

- 7. The NMPNS 2014 Annual Radioactive Environmental Operating Report, Table 6-4, Oswego Steam Station, June 27, 2014 sample and the Nine Mile Point Unit 2, June 27, 2014 sample reported the incorrect Measurable Detection Amount (MDA). The revised tables are attached as Attachment 9.
- 8. The NMPNS 2014 Annual Radioactive Environmental Operating Report, Table 6-5, Gross Beta Activity, F Offsite, October 7, 2014 sample reported a gross beta activity of .099 +/- 0.019. The higher than normal result was due to low sample volume due to equipment failure. The revised table is attached as Attachment 9.
- 9. The NMPNS 2014 Annual Radioactive Environmental Operating Report, Table 6-10, Direct Radiation Measure Results 2014, Location Number 112, fourth quarter, was reported as 0, the TLD was lost and should have been report as a lost TLD. The revised table is attached as Attachment 9.

3.6.2 Air Sampling Station Operability Assessment

The ODCM required air sampling program consists of 5 individual sampling locations. The collective operable time period for the air monitoring stations was 43,670 hours out of a possible 43,800 hours. The air sampling availability factor for the report period was 99.7%.

3.7 STATISTICAL METODOLOGY

There are a number of statistical calculation methodologies used in evaluating the data from the environmental monitoring program. These methodologies include determination of standard deviation, the mean and associated error for the mean, and the lower limit of detection (LLD).

3.7.1 ESTIMATION OF THE MEAN AND STANDARD DEVIATION

The mean $\overline{(X)}$ and standard deviation(s) were used in the reduction of the data generated by the sampling and analysis of the various media in REMP. The following equations were utilized to compute the mean (X) and the standard deviation(s):

1. Mean

$$\overline{X} = \sum_{\substack{i=1\\N}}^{n} X_i$$

Where,

 \overline{X} = estimate of the mean

i = individual sample

N, n = total number of samples with positive indications

 X_i = value for sample i above the lower limit of detection.

2. Standard Deviation

$$\mathbf{s} = \begin{bmatrix} \sum_{\mathbf{i}=1}^{\mathbf{n}} (\mathbf{X}_{\mathbf{i}} - \overline{\mathbf{X}})^2 \\ \frac{\mathbf{N} - 1}{\mathbf{N}} \end{bmatrix}^{1/2}$$

Where,

 \overline{X} = mean for the values of X

s = standard deviation for the sample population

3.7.2 ESTIMATION OF THE MEAN & THE ESTIMATED ERROR FOR THE MEAN

In accordance with program policy, when the initial count indicates the presence of a plant related radionuclide(s) in a sample, two recounts of the sample may be required. When a radionuclide is positively identified in two or more counts, the analytical result for the radionuclide is reported as the mean of the positive detections and the associated propagated error for that mean. In cases where more than one positive sample result exists, the mean of the sample results and the estimated error for the mean are reported in the Annual Report.

The following equations were utilized to estimate the mean (\overline{X}) and the associated propagated error.

1. Mean

$$\overline{X} = \sum_{\substack{i=1\\N}}^{n} X_i$$

Where,

 \overline{X} = estimate of the mean

i = individual sample

N,n = total number of samples with positive indications X_i = value for sample i above the lower limit of detection

2. Error of the Mean

ERROR MEAN =
$$\frac{\sum_{i=1}^{n} (ERROR)^{2}}{i}$$
N

Where,

ERROR MEAN = propagated error i = individual sample

ERROR = 1 sigma* error of the individual analysis N, n = number of samples with positive indications

Sigma is the Greek letter used to represent the mathematical term <u>Standard Deviation</u>.

<u>Standard Deviation</u> is a measure of dispersion from the arithmetic mean of a set of numbers.

^{*} Sigma (σ)

3.7.3 LOWER LIMIT OF DETECTION (LLD)

The LLD is the predetermined concentration or activity level used to establish a detection limit for the analytical procedures.

The LLDs are specified by the ODCM for radionuclides in specific media and are determined by taking into account the overall measurement methods. The equation used to calculate the LLD is:

$$LLD = \frac{4.66 S_b}{(E)(V) (2.22) (Y) \exp (-\lambda \Delta t)}$$

Where:

LLD = the a priori lower limit of detection, as defined above (in picocuries per unit mass or volume)

S_b = the standard deviation of the background counting rate or of the counting rate of a blank sample, as appropriate (in counts per minute)

E = the counting efficiency (in counts per disintegration)

V = the sample size (in units of mass or volume)

2.22 = the number of disintegrations per minute per picocurie

Y = the fractional radiochemical yield (when applicable)

 λ = the radioactive decay constant for the particular radionuclide

 Δt = the elapsed time between sample collection (or end of the sample collection period) and time of counting

The ODCM LLD formula assumes that:

- 1. The counting times for the sample and background are equal
- 2. The count rate of the background is approximately equal to the count rate of the sample

In the ODCM program, LLDs are used to ensure that minimum acceptable detection capabilities are met with specified statistical confidence levels (95% detection probability with 5% probability of a false negative). Table 3.8-1 lists the ODCM program required LLDs for specific media and radionuclides as specified by the NRC. The LLDs actually achieved are routinely lower than those specified by the ODCM.

TABLE 3.7-1
REQUIRED DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS
LOWER LIMIT OF DETECTION (LLD)

Analysis	Water (pCi/l)	Airborne Particulate or Gases (pCi/m³)	Fish (pCi/kg, wet)	Milk (pCi/l)	Food Products (pCi/kg, wet)	Sediment (pCi/kg, dry)
Gross Beta	4	0.01		•		
H-3	3000 (a)					
Mn-54	15		130			
Fe-59	30		260			
Co-58, Co-60	15		130			
Zn-65	30		260			
Zr-95, Nb-95	15					
I-131	15 (a)	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba/La - 140	15			15		-

⁽a) No drinking water pathway exists at the Nine Mile Point Site under normal operating conditions due to the direction and distance of the nearest drinking water intake. Therefore, an LLD value of 3000 pCi/liter is used for H-3, and an LLD value of 15 pCi/liter is used for I-131

3.8 COMPLIANCE WITH REQUIRED LOWER LIMITS OF DETECTION (LLD)

Tables D 4.6.20-1 and D 3.5.1-3 of the NMP1 ODCM and NMP2 ODCM, respectively, specify the detection capabilities for environmental sample analysis (See Table 3.7-1). The reporting requirements of NMP1 ODCM, Section D 6.9.1.d and NMP2 ODCM, Section D 4.1.2 require that a discussion of all analyses for which the LLDs required by Tables D 4.6.20-1 and D 3.5.1-3 were not achieved be included in the Annual Radiological Environmental Operating Report. This Section is provided pursuant to this requirement.

All sample analyses performed in 2015, as required by the ODCM, achieved the LLD specified by ODCM Tables D 4.6.20-1 and D 3.5.1-3.

3.9 REGULATORY LIMITS

Two federal agencies, the Nuclear Regulatory Commission and Environmental Protection Agency, have responsibility for regulations promulgated for protecting the public from radiation and radioactivity beyond the site boundary.

3.9.1 The Nuclear Regulatory Commission (NRC):

The NRC, in 10 CFR 20.1301, limits the levels of radiation in unrestricted areas resulting from the possession or use of radioactive materials such that they limit any individual to a dose of:

• less than or equal to 100 mrem per year to the total body

In addition to this dose limit, the NRC has established design objectives for nuclear plant licensees. Conformance to these guidelines ensures that nuclear power reactor effluents are maintained as far below the legal limits as is reasonably achievable.

The NRC, in 10CFR 50, Appendix I, establishes design objectives for the dose to a member of the general public from radioactive material in liquid effluents released to unrestricted areas to be limited to:

- less than or equal to 3 mrem per year to the total body, or
- less than or equal to 10 mrem per year to any organ

The air dose due to release of Noble gases in gaseous effluents is restricted to:

- less than or equal to 10 mrad per year for gamma radiation, or
- less than or equal to 20 mrad per year for beta radiation

The dose to a member of the general public from Iodine-131, tritium, and all particulate radionuclide's with half-lives greater than 8 days in gaseous effluents is limited to:

• less than or equal to 15 mrem per year to any organ

The NRC, in 10CFR72.104(a), establishes criteria for radioactive materials in effluents and direct radiation from an Independent Spent Fuel Storage Installation (ISFSI).

During normal operations and anticipated occurrences, the annual dose equivalent to any real individual who is located beyond the controlled area must not exceed:

- 25 mrem per year to the total body,
- 75 mrem per year to the thyroid, and
- 25 mrem per year to any other organ as a result of:
 - 1. Planned discharges of radioactive material, radon and its decay products excepted, to the environment
 - 2. Direct radiation from ISFSI
 - 3. Any other radiation from uranium fuel cycle operations in the region

3.9.2 Environmental Protection Agency (EPA)

The EPA, in 40CFR190.10, Subpart B, sets forth the environmental standards for the uranium fuel cycle. During normal operation, the annual dose to any member of the public from the entire uranium fuel cycle shall be limited to:

- less than or equal to 25 mrem per year to the total body,
- less than or equal to 75 mrem per year to the thyroid, and
- less than or equal to 25 mrem per year to any other organ

4.0 SAMPLE SUMMARY TABLES IN BRANCH TECHNICAL POSITION FORMAT

All sample data is summarized in table form. Table 4.0-1 is titled "Radiological Environmental Monitoring Program Annual Summary" and follows the specification outlined in the NRC Radiological Assessment Branch Technical Position (Rev. 1, November 1979), which is summarized below.

Column

- 1. Sample medium.
- 2. Type and number of analyses performed.
- 3. Required Lower Limits of Detection (LLD), see Section 3.7.3, Table 3.7-1. This wording indicates that inclusive data is based on $4.66 \, S_b$ (sigma) of background (See Section 3.7).
- 4. The mean and range of the positive measured values of the indicator locations.
- 5. The mean, range, and location of the highest indicator annual mean. Location designations are keyed to Table 3.3-1 in Section 3.3.
- 6. The mean and range of the positive measured values of the control locations.
- 7. The number of non-routine reports sent to the Nuclear Regulatory Commission.

NOTE: Only positive measured values are used in statistical calculations.

TABLE 4.0-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY
JANUARY – DECEMBER 2015*

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	ELD(a)	INDICATOR LOCATIONS: MEAN ^(b) / RANGE	LOCATION [©] OF HIGHEST ANNUAL MEAN: LOCATION & MEAN ^(b) / RANGE	CONTROL LOCATION: MEAN: ^(b) /RANGE	NUMBER OF NONROUTINE REPORTS
Shoreline	Gamma-Spectrum					
Sediment (pCi/kg-dry)	Analysis (GSA) (4): Cs-134	150	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	180	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Fish (pCi/kg-wet)	GSA (18) ^(d) : Mn-54	130	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
4 - 5	Fe-59	260	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Co-58	130	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Co-60	130	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Zn-65	260	<lļd< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lļd<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-134	130	<lld .<="" td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	150	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0

TABLE 4.0-1 (continued)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY JANUARY – DECEMBER 2015*

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	LLD ^(a)	INDICATOR LOCATIONS: MEAN ^(b) / RANGE	LOCATION ^(c) OF HIGHEST ANNUAL MEAN: LOCATION & MEAN ^(b) / RANGE	CONTROL LOCATION: MEAN ^(b) / RANGE	NUMBER OF NONROUTINE REPORTS
Surface Water (pCi/liter)	<u>H-3 (8)</u> :			•		
(permer)	H-3	3000 ^(e)	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	<u>GSA (24)</u> :					_
	Mn-54	15	<lld< td=""><td><llď< td=""><td><lld< td=""><td>0</td></lld<></td></llď<></td></lld<>	<llď< td=""><td><lld< td=""><td>0</td></lld<></td></llď<>	<lld< td=""><td>0</td></lld<>	0
	Fe-59	30	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
a.	Co-58	15	_ <lld< td=""><td><lld .<="" td=""><td><lld< td=""><td>0</td></lld<></td></lld></td></lld<>	<lld .<="" td=""><td><lld< td=""><td>0</td></lld<></td></lld>	<lld< td=""><td>0</td></lld<>	0
	Co-60	15	<lld< td=""><td>· <lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	· <lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Zn-65	30	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Zr-95	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Nb-95	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	I-131	15 ^(e)	≺LLD	· <lld< td=""><td><lld .<="" td=""><td>. 0</td></lld></td></lld<>	<lld .<="" td=""><td>. 0</td></lld>	. 0
	Cs-134	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	18	<lld< td=""><td><lld< td=""><td><lld< td=""><td>. 0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>. 0</td></lld<>	. 0
·	Ba/La-140	15	<lld< td=""><td><lld< td=""><td>≺LLD</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>≺LLD</td><td>0</td></lld<>	≺LLD	0

TABLE 4.0-1 (continued)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY JANUARY – DECEMBER 2015*

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	EED(a)	INDICATOR LOCATIONS: MEAN ^(b) / RANGE	LOCATION [©] OF HIGHEST ANNUAL MEAN: LOCATION & MEAN [©] / RANGE	CONTROL LOCATION: MEAN ^(b) / RANGE	NUMBER OF NONROUTINE REPORTS
TLD (mrem per standard month)	Gamma Dose (128)	(f)	4.6 (120/120) (g) 2.5 – 8.9	TLD #86 ^(h) : 7.9 (4/4) 0.1 miles at 310° 6.8 – 8.9	3.9 (8/8) 2.9 – 4.5	0
Air Particulates (10E-3 pCi/m³)	Gross Beta (260):	10	16.0 (208/208) 7.0 – 40.1	R-3 16.4 (52/52) 1.4 miles at134° 7.0 – 38.6	16.0 (52/52) 8.0 – 38.0	0
	<u>I-131 (260)</u> :	70	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	GSA (20): Cs-134	50	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
· · · · · · · · · · · · · · · · · · ·	Cs-137	60	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
Milk (pCi/liter)	GSA (18): (d) (i) Cs-134	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Cs-137	18	<lld td="" ·<=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	Ba/La-140	15	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
	<u>I-131 (18)</u> : I-131	1	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0

TABLE 4.0-1 (continued)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY JANUARY – DECEMBER 2015*

MEDIUM (UNITS)	TYPE AND NUMBER OF ANALYSES*	LLD®	INDICATOR LOCATIONS: MEAN ^(b) / RANGE	LOCATION ⁽⁶⁾ OF HIGHEST ANNUAL MEAN: LOCATION & MEAN ^(b) / RANGE	CONTROL LOCATION: MEAN ⁽⁶⁾ / RANGE	NUMBER OF NONROUTINE REPORTS
Food Products (pCi/kg-wet)	GSA (10): ^(d) I-131	60	<lld< td=""><td><lld< td=""><td>· <lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td>· <lld< td=""><td>0</td></lld<></td></lld<>	· <lld< td=""><td>0</td></lld<>	0
	Cs-134	60	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0
2333	Cs-137	80	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0

TABLE NOTES:

- * Data for Table 4.0-1 is based on NMP1 and NMP2 ODCM required samples unless otherwise indicated.
- (a) LLD values as required by the ODCM. LLD units are specified in the medium column.
- (b) Fraction of number of detectable measurements to total number of measurements. Mean and range results are based on detectable measurements only.
- (c) Location is distance in miles and direction in compass degrees based on NMP2 reactor center-line. Units in this column are specified in medium column.
- (d) Data includes results from optional samples in addition to samples required by the ODCM.
- (e) The ODCM specify an I-131 and tritium LLD value for surface water analysis (non-drinking water) of 15 pCi/liter and 3000 pCi/liter respectively.
- (f) The ODCM do not specify a particular LLD value for environmental TLDs. The NMP1 and NMP2 ODCM contain specifications for environmental TLD sensitivities.
- (g) Indicator TLD locations are: #7, 15, 18, 23, 56, 58, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, and 98. Control TLDs are all TLDs located beyond the influence of the site (TLD #14 and 49).
- (h) This dose is not representative of doses to a member of the public since this area is located near the north shoreline, which is in close proximity to the generating facility and is not accessible to members of the public (See Section 5.2.4, TLDs).
- (i) The ODCM criteria for indicator milk sample locations include locations within 5.0 miles of the site. There are no milk sample locations within 5.0 miles of the site. Therefore, the only sample location required by the ODCM is the control location. There was one optional location during 2015.

5.0 DATA EVALUATION AND DISCUSSION

Introduction

Each year the results of the annual Radiological Environmental Monitoring Program (REMP) are evaluated considering plant operations at the site, the natural processes in the environment, and the archive of historical environmental radiological data. A number of factors are considered in the course of evaluating and interpreting the annual environmental radiological data. This interpretation can be made using several methods including trend analysis, population dose estimates, risk estimates to the general population based on significance of environmental concentrations, effectiveness of plant effluent controls, and specific research areas. The report not only presents the data collected during the 2015 sample program but also assesses the significance of radionuclides detected in the environment. It is important to note that detection of a radionuclide is not, of itself, an indication of environmental significance. Evaluation of the impact of the radionuclide in terms of potential increased dose to man, in relation to natural background, is necessary to determine the true significance of any detection.

Units of Measure

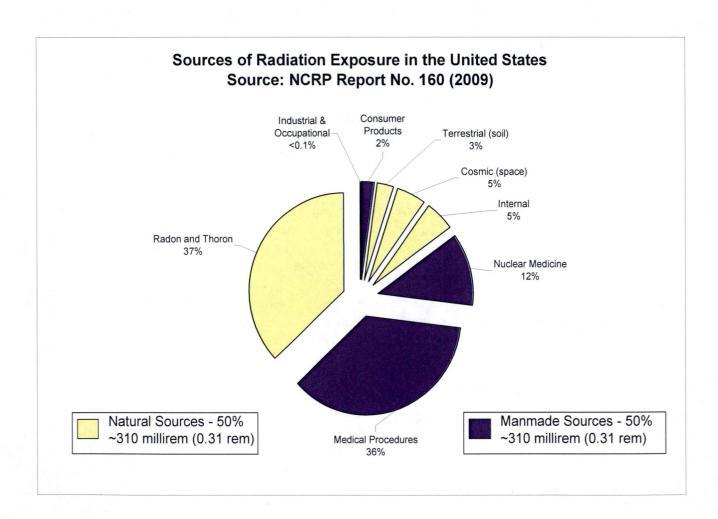
Some of the units of measure used in this report are explained below.

Radioactivity is the number of atoms in a material that decay per unit of time. Each time an atom decays, radiation is emitted. The *curie* (Ci) is the unit used to describe the activity of a material and indicates the rate at which the atoms are decaying. One curie of activity indicates the decay of 37 billion atoms per second.

The mass, or weight, of radioactive material that would result in one curie of activity depends on the disintegration rate or half-life. For example, one gram of radium-226 contains one curie of activity, but it would require about 1.5 million grams of natural uranium to equal one curie. Radium-226 is more radioactive than natural uranium on a weight or mass basis.

Smaller units of the curie are used in this report. Two common units are the *microcurie* (μ Ci), which is one millionth (0.000001) of a curie, and the *picocurie* (pCi), which is one trillionth (0.000000000001) of a curie. The picocurie (pCi) is the unit of radiation that is routinely used in this report.

Dose/Dose to Man


The dose or dose equivalent, simply put, is the amount of ionizing energy deposited or absorbed in living tissue. The amount of energy deposited or ionization caused is dependent on the type of radiation. For example, alpha radiation can cause dense localized ionization that can be up to 20 times the amount of ionization for the same energy imparted as from gamma or x-rays. Therefore, a quality factor must be applied to account for the different ionizing capabilities of various types of radiation. When the quality factor is multiplied by the absorbed dose, the result is the dose equivalent, which is an estimate of the possible biological damage resulting from exposure to any type of ionizing radiation. The dose equivalent is measured in rem (roentgen equivalent man). In terms of environmental radiation, the rem is a large unit. Therefore, a smaller unit, the millirem (mrem) is often used. One millirem (mrem) is equal to 0.001 of a rem.

The term "dose to man" refers to the dose or dose equivalent that is received by members of the general public at or beyond the site boundary. The dose is calculated based on concentrations of radioactive material measured in the environment. The primary pathways that contribute to the dose to man are; the inhalation pathway, the ingestion pathway, and direct radiation.

Discussion

In the United States, a person's average annual radiation dose is 620 mrem. About half that amount comes from naturally occurring radionuclides. Radon and thoron gases account for two-thirds of this exposure, while cosmic, terrestrial, and internal radiation account for the remainder. The other half comes from manmade sources and is mostly from diagnostic medical procedures.

The pie chart below shows a breakdown of radiation sources that contribute to the average annual U.S. radiation dose of 620 mrem. Nearly three-fourths of this dose is split between radon/thoron gas (naturally occurring) and diagnostic medical procedures (manmade).

There are three separate groups of radionuclides that were measured and analyzed for in the 2015 environmental sampling program.

1. The first of these groups consists of the radionuclides that are naturally occurring. The environment contains a significant inventory of naturally occurring radioactive elements. The components of natural or background radiation include the decay of radioactive elements in the earth's crust, a steady stream of high-energy particles from space called cosmic radiation and naturally-occurring radioactive isotopes in the human body like potassium-40.

A number of naturally occurring radionuclides are present in the environment. These are expected to be present in many of the environmental samples collected in the vicinity of the Nine Mile Point Site. Some of the radionuclides normally present include:

- *Beryllium-7*, present as a result of the interaction of cosmic radiation with the upper atmosphere
- *Potassium*-40 and *Radium*-226, naturally occurring radionuclides found in the human body and throughout the environment

Beryllium-7 and Potassium-40 are especially common in REMP samples. Since they are naturally occurring and are abundant, positive results for these radionuclides are reported in some cases in Section 6.0 of this report. Comparisons of program samples to naturally occurring radiation are made throughout this section to help put program results into perspective and to aid the reader in determining what, if any, significant impact is demonstrated by the REMP results.

2. The second group consists of radionuclides that may be detected in the environment as a result of the detonation of thermonuclear devices in the earth's atmosphere. Atmospheric nuclear testing during the early 1950's produced a measurable inventory of radionuclides presently found in the lower atmosphere, as well as in ecological systems. In 1963, an Atmospheric Test Ban Treaty was signed. Since the treaty, the global inventory of manmade radioactivity in the environment has been greatly reduced through the decay of short lived radionuclides and the removal of radionuclides from the food chain by such natural processes as weathering and sedimentation. This process is referred to in this report as ecological cycling. Since 1963, several atmospheric weapons tests have been conducted by the People's Republic of China and underground weapons testing by India, Pakistan and North Korea. In some cases, the usual radionuclides associated with nuclear detonations were detected for several months following the test, and then after a peak detection period, diminished to a point where most could not be detected. Although reduced in frequency, atmospheric testing continued into the 1980's. The resulting fallout or deposition from these most recent tests has influenced the background radiation in the vicinity of the site and was evident in many of the sample media analyzed over the years. Fallout radionuclides from nuclear weapons testing included Cesium-137 and Strontium-90. The highest weapons testing concentrations were noted in samples collected for the 1981 REMP. Cs-137 was the major byproduct of this testing and is still occasionally detected in a few select number of environmental media.

3. The third group consists of radionuclides that may be detected in the environment are related to nuclear power technology. These radionuclides are the byproduct of the operation of light water reactors. These byproduct radionuclides, the same as those produced in atmospheric weapons testing, are found in the Chernobyl and Fukushima Daiichi Nuclear Power Station fallout. This commonality makes a determination of the source of these radionuclides, which may be detected in environmental samples, difficult. During 2015, there were no plant-related radionuclides detected in the REMP sampling.

A number of factors must be considered in performing radiological sample data evaluation and interpretation. The evaluation is made using several approaches including trend analysis and dose to man. An attempt has been made not only to report the data collected during 2015, but also to assess the significance of the radionuclides detected in the environment as compared to naturally occurring and manmade radiation sources. It is important to note that detected concentrations of radionuclides in the local environment as a result of man's technology are very small and are of no, or little, significance from an environmental or dose to man perspective.

The 2009 per capita average dose was determined to be 620 mrem per year from all sources, as noted in National Council on Radiation Protection and Measurement (NCRP) Report No. 160. This average dose includes such exposure sources as industrial & occupational, consumer products, terrestrial, cosmic, internal, nuclear medicine, medical procedures, radon and thoron. The 2009 per capita dose rate due to naturally occurring sources was 310 mrem per year. The per capita radiation dose from nuclear power production nationwide is less than 1 mrem per year.

The naturally occurring gamma radiation in the environs of the Nine Mile Point site, resulting from radionuclides in the atmosphere and in the ground, accounts for approximately 56 mrem per year. This dose is a result of radionuclides of cosmic origin (for example, Be-7) and of primordial origin (Ra-226, K-40, and Th-232). A dose of 56 mrem per year, as a background dose, is significantly greater than any possible doses as a result of routine operations at the site during 2015.

The results of each sample medium are discussed in detail in Sections 5.1 and 5.2. This includes a summary of the results, the estimated environmental impact, a detailed review of any relevant findings with a dose to man estimate where appropriate, and an analysis of possible long-term and short-term trends.

During routine implementation of the REMP, additional or optional environmental pathway media are sampled and analyzed. These samples are obtained to:

- Expand the area covered by the program beyond that required by the ODCM
- Provide more comprehensive monitoring than is currently required
- Monitor the secondary dose to man pathways
- Maintain the analytical data base established when the plants began commercial operation

The optional samples that are collected will vary from year to year. In addition to the optional sample media, additional locations are sampled and analyzed for those pathways required by the ODCM. These additional sample locations are obtained to ensure that a variety of environmental pathways are monitored in a comprehensive manner. Data from additional sample locations that are associated with the required ODCM sample media are included in the data presentation and evaluation. When additional locations are included, the use of this data is specifically noted in Sections 5.1 and 5.2.

Section 6.0 contains the analytical results for the sample media addressed in the report. Tables are provided for each required sample medium analyzed during the 2015 program.

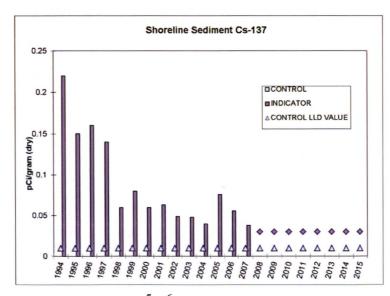
Section 7.0, titled Historical Data Tables, contains statistics from previous years' environmental sampling. The process of determining the impact of plant operation on the environment includes the evaluation of past analytical data to determine if trends are changing or developing. As state-of-the-art detection capabilities improve, data comparison is difficult in some cases. For example, Lower Limits of Detections (LLDs) have improved significantly since 1969 due to technological advances in laboratory procedures and analytical equipment.

5.1 AQUATIC PROGRAM

The aquatic program consists of samples collected from three environmental pathways. These pathways are:

- Shoreline Sediment
- Fish
- Surface Waters

Section 6.0, Tables 6-1 through 6-4 present the analytical results for the aquatic samples collected for the 2015 sampling period.


5.1.1 SHORELINE SEDIMENT RESULTS

A. Results Summary

Shoreline sediment samples were obtained in April and October of 2015 at one offsite control location (Lang's Beach located near Oswego Harbor) and at one indicator location (Sunset Bay) which is an area east of the site considered to have recreational value.

A total of four sediment samples were collected for the 2015 sample program, two indicator and two control. Cs-137 was not detected in samples collected from the Sunset Bay indicator location or the Lang's Beach control location during 2015. No plant-related radionuclides were detected in the 2015 shoreline sediment samples.

The following is a graph of the average Cs-137 concentration in shoreline sediment samples over 20 years. This graph illustrates a general downward trend in the Cs-137 concentrations since 1994. No Cs-137 has been detected in shoreline sediment samples since 2008.

B. Data Evaluation and Discussion

Shoreline sediment samples are routinely collected twice per year from the shoreline of Lake Ontario. Samples are collected from one indicator location (Sunset Bay), and one control location (Lang's Beach). Samples were collected from both the indicator and control locations in April and October 2015. The results of these sample collections are presented in Section 6.0, Table 6-1, "Concentrations of Gamma Emitters in Shoreline Sediment Samples – 2015". Potassium–40 (K-40) and Radium-226 (Ra-226), both naturally occurring isotopes, were the only radionuclides detected in the sediment samples.

C. Dose Evaluation

The calculated potential whole body and skin doses which may result from the measured Cs-137 concentrations in previous years are extremely small and are insignificant when compared to natural background doses.

The radiological impact of Cs-137 measured in the shoreline sediment can be evaluated on the basis of dose to man. In the case of shoreline sediments, the critical pathway is direct radiation to the whole body and skin. Using the parameters provided in Regulatory Guide 1.109, the potential dose to man in mrem per year can be calculated. The following regulatory guide values were used in calculating the dose to man:

- A teenager spends 67 hours per year at the beach area or on the shoreline,
- The sediment has a mass of 40 kg/m² (dry) to a depth of 2.5 cm,
- The shoreline width factor is 0.3, and
- The maximum 2015 LLD concentration of <0.075 pCi/g (dry).

Using these conservative parameters, the potential dose to the maximum exposed individual (teenager) would be 0.00025 mrem/year to the whole body and 0.00029 mrem/year to the skin. This calculated dose is very small and is insignificant when compared to the natural background annual exposure of approximately 49 mrem as measured by control TLDs in the vicinity of the site.

D. Data Trends

Cs-137 was not detected at the indicator and control sample locations from 2008 through 2015.

The previous eight years of data show that Cs-137 was not detected at the indicator location. Cesium-137 was not detected in the control location samples over this same eight year period.

The general absence of Cs-137 in the indicator and control samples can be attributed to changing lake levels and shoreline erosion. Recent soil samples, from locations beyond any expected influence from the site, have contained levels of Cs-137 equal to or greater than the concentrations found in shoreline samples collected in the past. Cs-137 is commonly found in soil samples and is attributed to weapons testing fallout.

The previous ten year data trend for indicator shoreline samples showed an overall downward trend in concentration measured at the indicator sample locations. Over the previous ten year period of 2006 through 2015, mean concentrations at the indicator location ranged from a maximum of 0.08 pCi/g (dry) in 2005 to a minimum of 0.04 pCi/g (dry) measured in 2004 and again in 2007. Cs-137 was not detected at the indicator location for 2009 through 2015. This continues to support the long term decreasing trend in Cs-137 concentration in shoreline sediment samples. Cs-137 was not detected in the control samples collected over the previous ten years.

Shoreline sediment sampling at the indicator location commenced in 1985. Prior to 1985, no data was available for long term trend analysis.

Section 7.0, Tables 7-1 and 7-2 illustrate historical environmental data for shoreline sediment samples.

5.1.2 FISH SAMPLE RESULTS

A. Results Summary

A total of 18 fish samples were collected for the 2015 sample program. Species collected were: Brown Trout, Lake Trout, Chinook Salmon, Smallmouth Bass and Walleye. The analytical results for the 2015 fish samples showed no detectable concentration of radionuclide that would be attributable to plant operations at the site or past atmospheric weapons testing. Since 2003, no Cs-137 has been measured in fish samples. Over the previous 20 years prior to 2003, Cs-137 has been detected at a combination of both the indicator and/or control locations. (Refer to Tables 7-3 and 7-4). These low levels of Cs-137 represented no significant dose to man or impact on the environment.

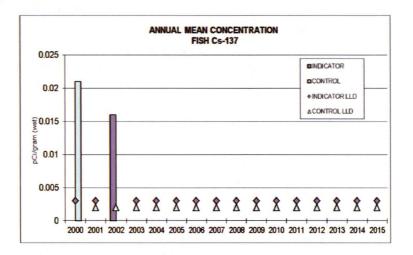
The 2015 fish sample results demonstrate that plant operations at the Nine Mile Point Site have no measurable radiological environmental impact on the upper levels of the Lake Ontario food chain. The 2015 results are consistent with previous year's results in that they continue to support the general long-term downward trend in fish Cs-137 concentrations over the last 25 years. Cs-137 was not detected in fish samples collected from 2003 to 2015 at indicator locations. The period of 2000 through 2015 as a group are the lowest results measured since the beginning of the Site Environmental Monitoring Program in 1969.

B. Data Evaluation and Discussion

Fish collections were made utilizing gill nets at one location greater than five miles from the site (Oswego Harbor area) and at two locations in the vicinity of the lake discharges for the NMPNS and the JAFNPP facilities. The Oswego Harbor samples served as control samples while the NMPNS and JAFNPP samples served as indicator samples. All samples were analyzed for gamma emitters. Section 6.0, Table 6-2 shows individual results for all the samples collected in 2015 in units of pCi/g (wet).

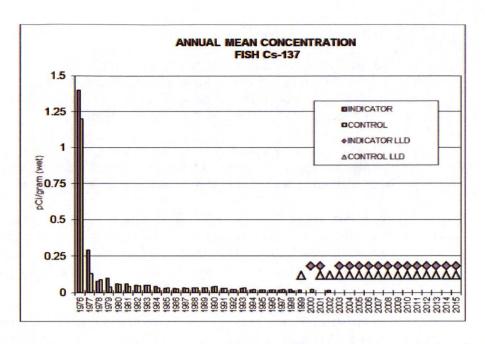
The spring fish collection was made up of 9 individual samples representing three separate species. Brown Trout, Smallmouth Bass, and Lake Trout were collected.

The fall fish collection was comprised of 9 individual samples representing three individual species. Brown Trout, Walleye, and Chinook Salmon were collected.


Cs-137 was not detected in any of the fish species collected for the 2015 sample program.

C. Dose Evaluation

Fish represent the highest level in the aquatic food chain and have the potential to be a contributor to the dose to man from the operations at the site. The lack of detectable concentrations of plant-related radionuclides in the 2015 fish samples demonstrates that there is no dose to man attributable from operations at the site through the aquatic pathway. Some Lake Ontario fish species may be considered an important food source due to the local sport fishing industry. Therefore, these fish are an integral part of the human food chain.


D. Data Trends

The positive detection of Cs-137 in fish samples ceased in 2003. The graph below illustrates the mean control and indicator Cs-137 concentrations for 2015 and the previous fifteen years.

The data trend shows a consistent level of Cs-137 measured in fish between 1997 and 1998. After 1998, the number of positive detections drops off as noted in the five year trend. The 1995 through 2015 results, as a group, are the lowest Cs-137 concentrations measured over the existence of the sample program.

The general long-term decreasing trend for Cs-137, illustrated in the graph below, is most probably a result of the cesium becoming unavailable to the ecosystem due to ion exchange with soils and sediments and radiological decay. The concentrations of Cs-137 detected in fish since 1976 are considered to be the result of weapons testing fallout. The general downward trend in concentrations will continue as a function of additional ecological cycling and radiological decay.

Section 7.0, Tables 7-3 and 7-4 show historical environmental sample data for fish.

5.1.3 SURFACE WATER (LAKE)

A. Results Summary

The ODCM requires that monthly surface water samples be taken from the respective inlet water supplies of the JAFNPP and NRG Energy's Oswego Steam Station. In conjunction with the required samples, three additional Lake Ontario surface water locations are sampled and analyzed. These additional locations are the Oswego City Water Intake, the NMP1 Intake and the NMP2 Intake. Gamma spectral analysis was performed on 24 monthly composite samples from the ODCM locations and on 36 monthly composite samples collected from the additional sample locations. The results of the gamma spectral analyses showed that only naturally-occurring radionuclides were detected in the 60 samples from the five locations collected for the 2015 Sampling Program. Monthly composite samples showed no presence of plant-related gamma emitting isotopes in the waters of Lake Ontario as a result of plant operations.

The monthly surface water samples are composited on a quarterly basis and are analyzed for tritium. A total of 20 samples were analyzed for tritium as part of the 2015 REMP program. The results for the 2015 samples showed no positive detection of tritium.

B. Data Evaluation and Discussion

Gamma spectral analysis was performed on monthly composite samples from five Lake Ontario sampling locations. No plant-related radionuclides were detected in 2015 samples. This is consistent with historical data, which has not shown the presence of plant-related radionuclides in surface water samples.

Tritium samples are quarterly samples that are a composite of the applicable monthly samples for a given location. Tritium samples analyzed for the 2015 sample program were analyzed to an instrument detection level of at least 500 pCi/l.

The tritium results for the JAFNPP inlet canal samples contained no positive detections. The 2015 results had LLD values that ranged from <304 pCi/l to <462 pCi/l. The ODCM Control location (Oswego Steam Station inlet canal) results showed no positive detections and the sample results had LLD values in the range of <303 pCi/l to <428 pCi/l.

Tritium was not detected in any of the twelve optional Lake Ontario samples collected in the 2015 program.

The Oswego City Water inlet is sampled to monitor drinking water quality and is representative of a control location due to its distance from the site. The city water inlet is located 7.8 miles west of the site in an "upstream" direction based on the current patterns in the lake.

The following is a summary of LLD results for the 2015 sample program:

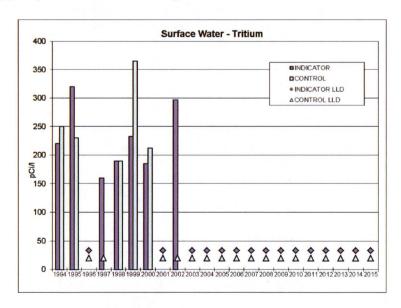
Sample	Tritium Concentration pCi/liter					
Location	Minimum	Maximum	Mean (Annual)			
JAF Inlet (Indicator)*	<304	<462	<384			
Oswego Steam Inlet (Control)*	<303	<428	<363			
NMP #1 Inlet	<340	<474	<404			
NMP #2 Inlet	<337	<463	<400			
Oswego City Water Supply	<295	<426	<358			

^{*} Sample location required by ODCM

The above LLD values are below the ODCM required LLD value of 3000 pCi/l.

Analytical results for surface water samples are found in Section 6.0, Tables 6-3 through 6-4.

C. Dose Evaluation


The radiological impact to members of the public from low levels of tritium in water is insignificant. This can be illustrated by calculating a dose to the whole body and maximum organ using the maximum LLD value and Regulatory Guide 1.109 methodology. Based on a water ingestion rate of 510 liters/yr and a maximum LLD concentration of <426 pCi/l, the calculated dose would be less than 0.044 mrem to the child whole body and less than 0.044 mrem to the child liver (critical age group/organ).

D. Data Trends

There are no data trends for gamma emitters such as Cs-137 and Co-60 as historically these radionuclides have not been detected in lake water samples.

Tritium results for the 2015 lake water samples were consistent with results from the previous five years for both the indicator and control locations. The mean 2015 tritium concentrations were <363 pCi/l for the control and <384 pCi/l for the indicator location. For the previous five years, there were no positive detections for the indicator and control locations. This previous five year data set is consistent with long term tritium results measured at the site. The indicator data from the previous ten year period, 2006 through 2015, tritium concentrations show no detectable levels of tritium measured. The 1999 mean control value of 365 pCi/l is the highest concentration measured since 1987 and is within the variability of results measured over the life of the program. The ten year historical results are consistent between the control and indicator locations with no detectable amounts of tritium.

The following graph illustrates the concentrations of tritium measured in Lake Ontario over the previous 20 years at both an indicator and control location. Prior to 1985, the Oswego City Water Supply results were used as control location data as this location closely approximates the Oswego Steam Station, the current control location. There is no existing preoperational data for comparison to recent data.

Historical data for Surface Water Tritium is presented in Section 7.0, Tables 7-7 and 7-8.

5.1.4 GROUNDWATER

A. Results Summary

A groundwater monitoring program is not required by the ODCM. The program is being implemented as the result of Nuclear Energy Institue (NEI) Ground Water Protection Initiative. Groundwater samples were collected from a number of locations shown in Section 3.3, Figure 3.3-6 and listed in Table 3.3-1.

A total of 116 tritium samples were collected for the 2015 sample program using twenty seven indicator locations and three control locations.

A total of 68 monitoring well samples were collected for plant-related gamma-emitters, and eight strontium-90 (Sr-90) samples were collected for the 2015 sample program using eighteen indicator locations and two control locations. All sample results for 2015 groundwater monitoring program were less than the LLD for plant-related gamma-emitters and Sr-90.

B. Data Evaluation and Discussion

Plant related gamma-emitters and strontium-89/90 analysis were performed on samples from the indicator and control locations. No plant-related radionuclides were detected in the 2015 samples. This is consistent with historical data, which has not shown the presence of plant-related radionuclides in groundwater samples.

Monitoring well tritium samples analyzed for the 2015 sample program were analyzed to an LLD of 200 pCi/l. The tritium results for the control locations and indicator locations ranged from <106 to 947 pCi/l.

The NMP2 storm drain system indicator location results ranged from <167 to <512 pCi/l tritium.

C. Dose Evaluation

Sampling for groundwater, as found in Section D 3.5.1 of the NMP2 ODCM, was not required during 2015. There were no groundwater sources in 2015 that were tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties support contaminant migration; therefore, drinking water was not a dose pathway during 2015.

To assess the dose associated with tritium, the highest value was used:

- Maximum tritium concentration 947 pCi/l (highest value)
- 510 liters of water consumed per year.

The theoretical dose to the whole body and maximum organ using the maximum value and Regulatory Guide 1.109 methodology were determined. The calculated dose would be 0.098 mrem to the child whole body and less than 0.098 mrem to the child liver (critical age group/organ.

D. Data Trends

There are no data trends for gamma-emitters or Strontium-90 as these radionuclides have not been detected in groundwater samples.

Groundwater tritium results are documented in the Annual Radiological Effluent Release Report for 2015. Historical data for groundwater tritium is presented in Section 7.0, Table 7-25, Historical Environmental Sample Data, Groundwater Tritium (Control), Table 7-26, Historical Environmental Sample Data, Groundwater Monitoring Wells Tritium (Indicator) and Table 7-27, Historical Environmental Sample Data, NMP2 Storm Drain Tritium (Indicator).

5.2 TERRESTRIAL PROGRAM

The terrestrial program consists of samples collected from four environmental pathways. These pathways are:

- Airborne particulate and radioiodine,
- Direct Radiation,
- · Milk, and
- Food Products

Section 6.0, Tables 6-5 through 6-12 present the analytical results for the terrestrial samples collected for the 2015 reporting period.

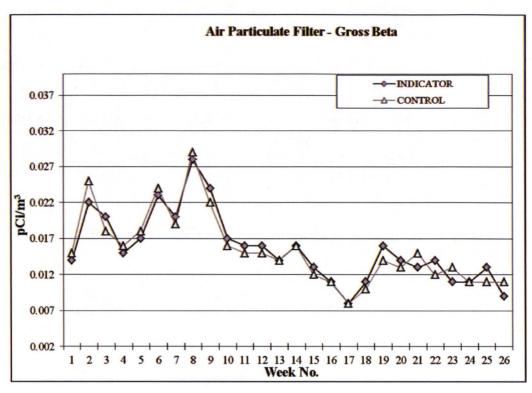
5.2.1 AIR PARTICULATE GROSS BETA

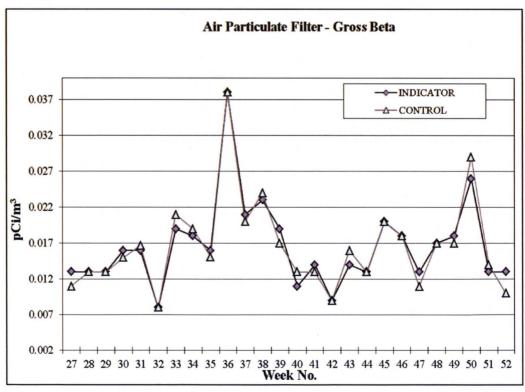
A. Results Summary

Weekly air samples were collected and analyzed for particulate gross beta activity. For the 2015 program, a total of 52 samples were collected from control location R-5 and 208 samples were collected from indicator locations R-1, R-2, R-3, and R-4. These five locations are required by the ODCM. Additional air sampling locations are maintained and are discussed in Section 5.2.1.B below. The mean gross beta concentration for samples collected from the control location (R-5) in 2015 was 0.016 pCi/m³. The mean gross beta concentration for the samples collected from the indicator locations (R-1, R-2, R-3, and R-4) in 2015 was 0.016 pCi/m³. The consistency between the indicator and control mean values, demonstrates that there are no increased airborne radioactivity levels in the general vicinity of the site from plant effluents.

B. Data Evaluation and Discussion

The air monitoring system consists of fifteen sample locations, six onsite and nine offsite. Each location is sampled weekly for particulate gross beta activity. A total of 779 samples were collected and analyzed as part of the 2015 program. Five of the nine offsite locations are required by the ODCM. These locations are designated as R-1, R-2, R-3, R-4, and R-5. R-5 is a control location required by the ODCM and is located beyond any local influence from the site. In addition, optional offsite and onsite air sample locations are maintained from which weekly samples are collected. The optional offsite locations are designated as D-2, E, F and G. The optional onsite locations are designated as D-1, G, H, I, J and K.


Gross beta analysis requires that the samples be counted no sooner than 24 hours after collection. This allows for the decay of short half-life naturally-occurring radionuclides, thereby increasing the sensitivity of the analysis for plant-related radionuclides.

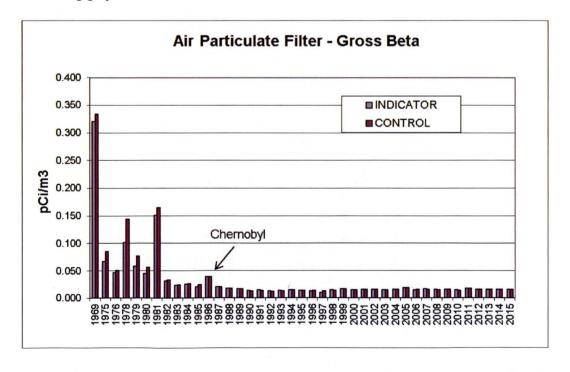

Section 6.0, Tables 6-5 and 6-6 present the weekly gross beta activity results for samples collected from the offsite and onsite locations.

The mean annual gross beta indicator concentrations for the ODCM indicator stations (R-1, R-2, R-3 and R-4) was 0.016 pCi/m³. The offsite ODCM control station (R-5) annual mean gross beta concentration was 0.016 pCi/m³. The minimum, maximum and average gross beta results for sample locations required by the ODCM were as follows:

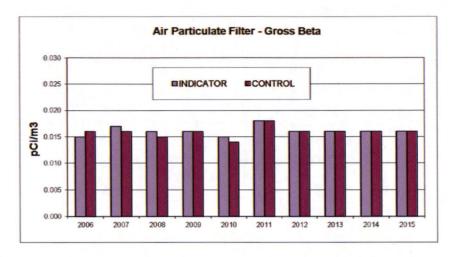
 Location	Minimum	Concentration pCi/m ³ Maximum	Mean
R-1	0.007	0.037	0.016
R-2	0.008	0.035	0.016
R-3	0.007	0.039	0.016
R-4	0.008	0.041	0.016
R-5 (control)	0.008	0.038	0.016

The mean weekly gross beta concentrations measured in 2015 are illustrated in the following graphs:

The fluctuations observed in the gross beta activity over the year can be attributed to changes in the environment, especially seasonal changes. The concentrations of naturally-occurring radionuclides in the lower levels of the atmosphere directly above the land are affected by time-related processes such as wind direction, precipitation, snow cover, soil temperature and soil moisture content.


C. Dose Evaluation

Dose calculations are not performed based on gross beta concentrations. Dose to man as a result of radioactivity in air is calculated using the specific radionuclide and the associated dose factor. See Section 5.2.2.C for dose calculations from air concentrations. The dose received by man from air gross beta concentration is a component of the natural background.


D. Data Trends

With the exception of the 1986 sample data, which was affected by the Chernobyl accident, the general trend in air particulate gross beta activity has been one of decreasing activity since 1981, when the mean control value was 0.165 pCi/m³. The 1981 samples were affected by fallout from a Chinese atmospheric nuclear test which was carried out in 1980.

The mean gross beta concentration measured in 1969 to 2015 are illustrated in the following graph:

The trend for the previous five years represents a base line concentration or natural background level for gross beta concentrations. This trend is stable with minor fluctuations due to natural variations. The change in concentrations over the period of 2006 through 2015 is very small. This is illustrated by the following graph.

The mean annual gross beta concentration at the control station (R-5) has remained steady with a narrow range of 0.014 pCi/m³ to 0.018 pCi/m³. The mean annual concentrations for the indicator stations for this same time period were similar to the control and ranged from a minimum of 0.015 pCi/m³ to a maximum mean of 0.018 pCi/m³ in 2011.

Historical data of air particulate gross beta activity are presented in Section 7.0, Tables 7-9 and 7-10.

5.2.2 QUARTERLY PARTICULATE COMPOSITES (GAMMA EMITTERS)

A. Results Summary

Fifteen air monitoring stations are maintained around the Nine Mile Point Site. Five of the 15 air monitoring stations are required by the ODCM and are located offsite near the site boundary and offsite as a control location. Ten additional air sampling stations are also maintained as part of the sampling program. Together, these fifteen continuous air sampling stations make up a comprehensive environmental monitoring network for measuring radioactive air particulate concentrations in the environs of the site. Annually, the air monitoring stations provide 780 individual air particulate samples which are assembled by location into 60 quarterly composite samples. The quarterly composites are analyzed using gamma spectroscopy.

No plant-related gamma emitting radionuclides were detected in any of the air particulate filter samples collected during 2015.

The gamma analysis results for the quarterly composite samples routinely showed positive detections of Be-7, K-40, and Ra-226. Each of these radionuclides is naturally occurring.

B. Data Evaluation Discussion

A total of fifteen air sampling stations are in continuous operation and located both onsite and in the offsite sectors surrounding the Nine Mile Point Site. Five of the fifteen monitoring stations are required by the ODCM and the remaining ten are optional to provide an effective monitoring network. Composite air filter samples are assembled for each of the fifteen sampling locations. Each of the weekly air particulate filters collected for the quarter is assembled by location to form quarterly composite samples. The quarterly composite samples required by the ODCM are composite samples assembled for R-1, R-2, R-3, R-4 and R-5. Other sample locations not required by the ODCM, for which analytical results have been provided, include six onsite locations and four offsite locations. The analytical results for the 60 air particulate filter composites in 2015 showed no detectable activity of plant related radionuclides.

The results of the quarterly composite samples are presented in Section 6.0, Table 6-9.

C. Dose Evaluation

The calculated dose as a result of plant effluents is not evaluated due to the fact that no plant related radionuclides were detected in 2015. The monthly air particulate sampling program demonstrated no offsite dose to man from this pathway as a result of operations of the plants located at the Nine Mile Point Site (NMP).

D. Data Trends

No plant related radionuclides were detected during 2015 at the offsite air monitoring locations.

The ten year database of air particulate composite analysis shows that there is no buildup or routine presence of plant related radionuclides in particulate form in the atmosphere around the site. Historically Co-60 was detected in each of the years from 1977 through 1984 at both the indicator and control locations, with the exception of 1980 when Co-60 was not detected at the control location. The presence of Co-60 in the air samples collected during these years was the result of atmospheric weapons testing. Co-60 was again detected in an offsite 2000 indicator sample and was the only positive detection of Co-60 since 1984. The detection of Co-60 in the one 2000 sample was an isolated event associated with effluents from the NMP1 facility. There have been no subsequent measurable concentrations of Co-60 in the environment surrounding the NMP site.

Historical data shows that Cs-137 is the fission product radionuclide most frequently detected in the air particulate filter composites. Cs-137 was detected in each of the years from 1977 through 1983 at both the control and indicator sampling locations. The presence of Cs-137 in the air samples collected during these years was the result of atmospheric weapons testing. Cs-137 was again detected in 1986 as a result of the Chernobyl accident. Since 1986 there have been no detections of Cs-137 in the environment surrounding the NMP site.

After 1986, no plant related or fallout radionuclides were detected in any of the offsite air particulate composite samples with the exception of the isolated detection of Co-60 in 2000 in a single sample. A review of the past five year's data for air particulate filter composites indicates no plant related radiological impact on the environment. All previous historical positive detections of fission product radionuclides were associated with atmospheric weapons testing or the Chernobyl accident, with the exception of the 2000 detection noted above.

Historical data for air particulate results are presented in Section 7.0, Tables 7-11 and 7-12.

5.2.3 AIRBORNE RADIOIODINE (I-131)

A. Results Summary

Iodine-131 was not detected in any of the 779 samples analyzed for the 2015 program.

B. Data Evaluation and Discussion

Airborne radioiodine (I-131) is monitored at the fifteen air sampling stations also used to collect air particulate samples. There are nine offsite locations, five of which are required by the ODCM. The offsite locations required by the ODCM are designated as R-1, R-2, R-3, R-4 and R-5. R-5 is a control station located beyond any local influence from the plant. Ten air sampling locations are also maintained in addition to those required by the ODCM. Six of these stations D-1, G, H, I, J and K are located onsite. D-2, E, F and G are the optional stations located offsite. Samples are collected using activated charcoal cartridges. They are analyzed weekly for I-131.

The analytical data for radioiodine are presented in Section 6.0, Tables 6-7 and 6-8.

C. Dose Evaluation

The calculated dose as a result of I-131 in plant effluents is not evaluated due to the fact that no I-131 was detected in 2015. The I-131 sampling program demonstrated no offsite dose to man from this pathway as a result of operation of the plants located at Nine Mile Point.

D. Data Trends

There was no I-131 detected in any of the samples, collected from the 15 sample stations, for 2012 through 2015.

In 2011, I-131 was detected at all 15 sampling locations over a three week period. The positive detections were the result of the Fukushima event. Prior to then, there had been no positive detection of I-131 in air samples collected from 2002 to 2010.

I-131 has previously been detected in samples collected in 1986 and 1987. The 1986 detection of I-131 was the result of the Chernobyl accident and the 1987 detection was the result of plant operations.

I-131 has been detected in the past at control locations. Control samples collected during 1976 had a mean I-131 concentration of 0.60 pCi/m³. During 1977 this mean decreased to 0.32 pCi/m³, and further decreased by a factor of ten to 0.03 pCi/m³ in 1978. I-131 was not detected in samples collected from the control location during 1979 – 1981 and 1983 to 1985. I-131 was detected once at the control location during 1982 at a concentration of 0.039 pCi/m³.

Historical data for I-131 are presented in Section 7.0, Tables 7-13 and 7-14.

5.2.4 DIRECT RADIATION THERMOLUMINESCENT DOSIMETERS (TLD)

A. Results Summary

Thermoluminescent dosimeters (TLDs) are used to measure direct radiation (gamma dose) in the environment. As part of the 2015 environmental monitoring program, TLDs were placed at a total of 72 different environmental TLD locations (32 required by the ODCM and 40 optional locations). These TLDs were placed, collected and read each quarter of 2015. As a result of placing two TLDs at each location, the results presented in this report are the average of two TLD readings obtained for a given location.

The TLDs were placed in the following five geographical locations around the site boundary:

- Onsite (areas within the site boundary, includes TLD #s: 3, 4, 5, 6, 7, 23, 24, 25, 26; TLD #s: 18, 27, 28, 29, 30, 31, 39, 47, 103, 106, 107 are excluded)
- Site Boundary (area of the site boundary in each of the 16 meteorological sectors: Only includes TLD results that are not affected by radwaste building direct shine, includes TLD #s: 7, 18, 78, 79, 80, 81, 82, 83, 84; TLD #s: 23, 75, 76, 77, 85, 86, 87 are excluded)
- Offsite Sector (area four to five miles from the site in each of the eight land based meteorological sectors, includes TLD #s: 88, 89, 90, 91, 92, 93, 94, 95)
- Special Interest (areas of high population density, includes TLD #s: 15, 56, 58, 96, 97, 98)
- Control (areas beyond significant influence of the site, includes TLD #s: 8, 14, 49)

All geographical locations are required by the ODCM with the exception of the Onsite area which was optional. Description of the five geograpical categories and the designation of specific TLD locations that make up each category is presented in Section 3.1.5, TLD (Direct Radiation) of this report.

A summary of the 2015 dose rates for each of the five geographical locations is as follows:

	Dose in mrem per standard month						
Geographic Category	Min	Max	Mean				
Onsite (Optional)	2.8	13.2	5.1				
Site Boundary (Inner Ring) *	2.9	5.1	4.0				
Offsite Sectors (Outer Ring) *	2.9	4.8	3.9				
Special Interest *	2.5	4.6	3.9				
Control *	2.9	5.4	4.1				

^{*} Geographical locations required by the ODCM

Comparison of annual mean dose rates associated with each geographical location indicate that there is no statistical difference in annual dose as a function of distance from the site boundary. The measured annual dose rate at the nearest resident to the site was consistent with the dose rates measured at the site boundary and control locations. The results for the Site Boundary, Offsite Sectors and Special Interest (Offsite) were well within expected normal variation when compared to the Control TLD results.

The results for the 2015 environmental TLD monitoring program indicate that there was no significant increase in dose rates as a result of operations at the site. The Hydrogen Water Chemistry system and the Independent Spent Fuel Storage Installation (ISFSI) in use at the Fitzpatrick plant and NMPNS did not measurably increase the ambient radiation exposure rate beyond the site boundary.

B. Data Evaluation and Discussion

Direct Radiation (Gamma Dose) measurements were taken at 72 different environmental locations during 2015, 32 of which are required by the ODCM. These locations are grouped into five geographical location categories for evaluation of results. The five categories include: Onsite, Site Boundary, Offsite Sector, Special Interest and Control locations. All categories are required by the ODCM with the exception of the Onsite TLDs. Onsite TLDs are placed at various locations within the site boundary to provide additional information on direct radiation levels at and around the NMP1, NMP2 and JAFNPP facilities.

Onsite TLD results ranged from 2.8 to 13.2 mrem per standard month resulting in an average dose rate of 5.1 mrem per standard month in 2015.

Site Boundary TLD results ranged from 2.9 to 5.1 mrem per standard month resulting in an average dose of 4.0 mrem per standard month in 2015. This range included all TLDs placed in each of the 16 meteorological sectors in the general area of the site boundary. The highest dose rate measured at a location required by the ODCM was 8.9 mrem per standard month. This TLD, (TLD 86) represents the site boundary maximum dose and is located in the NW sector along the lakeshore in close proximity to the Nine Mile Point 1 plant. The TLD locations along the lakeshore close to the plants (TLD #s: 23, 75, 76, 77, 85, 86 and 87) are influenced by radwaste buildings and radwaste shipping activities. These locations are not accessible to members of the public and the TLD results for these areas are not representative of dose rates measured at the remaining site boundary locations.

Offsite Sector TLDs, required by the ODCM, located 4 to 5 miles from the site in each of the 8 land based meteorological sectors ranged from 2.9 to 4.8 mrem per standard month with an average dose rate of 3.9 mrem per standard month.

Special Interest TLDs from all locations ranged from 2.5 to 4.6 mrem per standard month with a 2015 annual average dose rate of 3.9 mrem per standard month.

The Control TLD group required by the ODCM utilizes locations positioned well beyond the site. 2015 Control TLD results ranged from 2.9 to 5.4 mrem per standard month with an annual average dose rate of 4.1 mrem per standard month.

TLD analysis results are presented in Section 6.0, Table 6-10.

C. Dose Evaluation

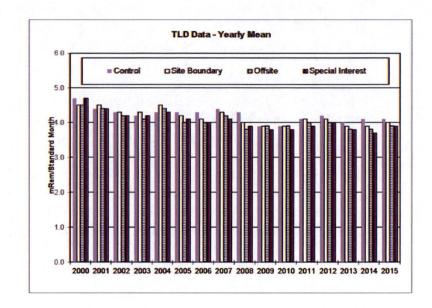
2015 annual mean dose rates for each geographic location required by the ODCM (excluding TLD #s: 23, 75, 76, 77, 85, 86, 87) are as follows:

Site Boundary: 4.0 mrem per standard month (TLD #s: 7,18, 78, 79, 80, 81, 82, 83, 84)

Offsite Sectors: 3.9 mrem per standard month (TLD #s: 88, 89, 90, 91, 92, 93, 94, 95)

Special Interest: 3.9 mrem per standard month (TLD #s: 15, 56, 58, 96, 97, 98)

Control: 4.1 mrem per standard month (TLD #s: 8, 14, 49)


The measured mean dose rate in the proximity of the closest resident was 4.1 mrem per standard month (TLD #s: 108, 109) which is consistent with the control measurements of 4.1 mrem per standard month.

The mean annual dose for each of the geographic location categories demonstrates that there is no statistical difference in the annual dose as a function of distance from the site. The TLD program verifies that operations at the site do not measurably contribute to the levels of direct radiation present in the offsite environment.

D. Data Trends

A comparison of historical TLD results can be made using the different geographical categories of measurement locations. These include Site Boundary TLDs located in each of the 16 meteorological sectors, TLDs located offsite in each land based sector at a distance of 4 to 5 miles from the site, TLDs located at special interest areas and TLDs located at control locations. Site Boundary, Offsite Sector and Special Interest TLD locations became effective in 1985; therefore, trends for these results can only be evaluated from 1985 to the present.

The following graph illustrates TLD results for the Control, Site Boundary, Offsite Sectors and Special Interest groups from 2000 through 2015:

TLDs located at the site boundary averaged 4.0 mrem per standard month during 2015 (Site Boundary average results do not include TLDs influenced by radwaste buildings and radwaste shipping activities: TLD#s: 23, 75, 76, 77, 85, 86, 87). This result is consistent with the previous five year average of 4.0 mrem per standard month.

Offsite Sector TLDs averaged 3.9 mrem per standard month during 2015. This result is also consistent with the previous five year average of 3.9 mrem per standard month for offsite sectors.

Special Interest TLD locations averaged 3.9 mrem per standard month during 2015 which is consistent with the previous five year average of 3.9 mrem per standard month.

The last group of TLD locations required by the ODCM is the Control Group. This group utilized TLD locations positioned well beyond the site. 2015 control TLD results averaged 4.1 mrem per standard month, consistent with the previous five year average of 4.1 mrem per standard month. The 2015 TLD program results, when compared to the previous ten years, showed no significant trends relative to increased dose rates in the environment.

Historical data for the various TLD groupings are presented in Section 7.0, Tables 7-15 through 7-20.

5.2.5 MILK

A. Results Summary

A total of 18 milk samples were collected during the 2015 program and analyzed for gamma emitting radionuclides using gamma spectroscopy. In addition, each sample undergoes an iodine extraction procedure to determine the presence of Iodine-131 (I-131).

I–131, a possible plant related radionuclide, is measured to evaluate the cow milk dose pathway to man. I-131 was not detected in any of the 18 milk samples collected in 2015 from the two milk sample locations.

Gamma spectral analyses of the milk samples showed only naturally occurring radionuclides, such as K-40, were detected in milk samples collected during 2015. K-40 was detected in all indicator and control samples. K-40 is a naturally occurring radionuclide and is found in many environmental sample media.

The 2015 results demonstrate that routine operations of the Nine Mile Point Site resulted in no measurable contribution to the dose to the public from the cow/milk pathway.

B. Sampling Overview

Milk samples were collected from one indicator location and one control location. The ODCM requires that three sample locations be within five miles of the site. Based on the milk animal census, there were no adequate milk sample locations within five miles of the site in 2015. Samples were collected from two farms located beyond the five-mile requirement to ensure the continued monitoring of this important pathway. The indicator location was located 8.8 miles from the site. The control samples were collected from a farm located 16.0 miles from the site and in a low frequency wind sector (upwind). The geographic location of each sample location is listed below:

Location No.	Direction From Site	Distance (Miles)	
55	E	8.8	
77 (Control)	S	16.0	

Indicator location #55 and Control location #77 were sampled from April through December. Sampling occurs during the first and second half of each month. Samples were not required to be collected during January through March of 2015 due to I-131 not having been detected in samples collected during November and December of 2014, as stipulated in the ODCM.

C. Data Evaluation and Discussion

Each milk sample is analyzed for gamma emitters using gamma spectral analysis. The I-131 analysis is performed using resin extraction followed by spectral analysis for each sample. I-131 and gamma analysis results for milk samples collected during 2015 are provided in Section 6.0, Table 6-11.

Iodine-131 was not detected in any indicator or control milk samples analyzed during 2015. All I-131 milk results were reported as Lower Limits of Detection (LLD). No plant-related radionuclides were detected in any milk sample collected in 2015. K-40 was the most abundant radionuclide detected, and found in every indicator and control sample collected. K-40 is a naturally-occurring radionuclide and is found in many of the environmental media samples. Cs-137 was not detected in any indicator or control milk sample collected in 2015.

D. Dose Evaluation

The calculated dose as a result of plant effluents is not evaluated due to the fact that no plant related radionuclides were detected.

The dose to man from naturally occurring concentrations of K-40 in milk and other environmental media can be calculated. This calculation illustrates that the dose received due to exposure from plant effluents is negligible compared to the dose received from naturally occurring radionuclides. Significant levels of K-40 have been measured in environmental samples. A 70 kilogram (154 pound) adult contains approximately 0.1 microcuries of K-40 as a result of normal life functions (inhalation, consumption, etc.). The dose to bone tissue is about 20 mrem per year as a result of internal deposition of naturally-occurring K-40.

E. Data Trends

Man-made radionuclides are not routinely detected in milk samples. In the past thirty years, Cs-137 was only detected in 1986, 1987, and 1988. The mean Cs-137 indicator activities for those years were 8.6, 7.4 and 10.0 pCi/liter, respectively. I-131 was measured in two milk samples collected in 1997 from a single sample location, having a mean concentration of 0.35 pCi/liter and was of undetermined origin. The previous detection was in 1986 with a mean concentration of 13.6 pCi/liter. The 1986 activity was a result of the Chernobyl accident.

The comparison of 2015 data to historical results over the operating life of the plants shows that Cs-137 and I-131 levels in milk dropped to less than the lower limit of detection since 1988.

Historical data of milk sample results for Cs-137 and I-131 are presented in Section 7.0, Tables 7-21 and 7-22.

5.2.6 FOOD PRODUCTS (VEGETATION)

A. Results Summary

There were no plant-related radionuclides detected in the 10 food product samples collected and analyzed for the 2015 program.

Detectable levels of naturally occurring K-40 were measured in the control and most of the indicator samples collected for the 2015 program. Be-7 a naturally-occurring radionuclide, was also detected intermittently in samples collected in 2015. These results are consistent with the levels measured in 2014 and previous years.

The results of the 2015 sampling program demonstrate that there is no measurable impact on the dose to the public from the garden pathway as a result of plant operations.

B. Data Analysis and Discussion

Food product samples were collected from three indicator locations and one control location. The indicator locations are represented by nearby gardens in areas of highest D/Q (deposition factor) values based on historical meteorology and an annual garden census. The control location was a garden 15 miles away in a predominately upwind direction.

Food product samples collected during 2015 included the edible vegetables: cabbage and squash. Non-edible vegetation consisting of grape leaves, horseradish leaves, rhubarb leaves, and bean leaves were also collected for the 2015 program. The leaves of these plants were sampled as representative of broadleaf vegetation which is a measurement of radionuclide deposition. Samples were collected during the late summer/fall harvest season. Each sample was analyzed for gamma emitters using gamma spectroscopy.

The analysis of food product samples collected during 2015 did not detect any plant-related radionuclides. Results for the past five years also demonstrate that there is no buildup of plant-related radionuclides in the garden food products grown in areas close to the site.

Naturally-occurring Be-7 and K-40 were detected in food product samples. The results for naturally-occurring radionuclides are consistent with the data of prior years.

Analytical results for food products are found in Section 6.0, Table 6-12.

C. Dose Evaluation

The calculated dose as a result of plant effluents is not evaluated due to the fact that no plant-related radionuclides were detected. The food product sampling program demonstrated no measurable offsite dose to man from this pathway as a result of operations of the plants located at Nine Mile Point.

D. Data Trends

Food product/vegetation sample results for the last five years demonstrate that there is no chronic deposition or buildup of plant-related radionuclides in the garden food products in the environs near the site.

The last positive indication was for Cs-137 which was detected at one indicator location in 1999 with a concentration of 0.007 pCi/g (wet).

Historically, Cs-137 had been detected in ten separate years since 1976 ranging from a maximum mean concentration of 0.047 pCi/g (wet) in 1985 to a minimum of 0.004 pCi/g (wet) in 1980. The trend for Cs-137 is a general reduction in concentration to non detectable levels in samples collected during the 2000 through 2015 sample programs.

Historical data of food product results are presented in Section 7.0, Tables 7-23 and 7-24.

5.2.7 LAND USE CENSUS RESULTS

A. Results Summary

The ODCM requires that an annual land use census be performed to identify potential new locations for milk sampling and for calculating the dose to man from plant effluents. In 2015 a milk animal census, a nearest resident census, and a garden survey were performed.

The results of the closest residence census conducted in 2015 required no change to ODCM's closest resident location.

A garden census, not required by the ODCM, is performed to identify appropriate garden sampling locations and dose calculation receptors. Garden samples were collected from three locations (134, 144 and 484) as well as a control location (C2) identified in the census as active for 2015. See Table 3.3-1 for 2015 sampling locations.

B. Data Evaluation and Discussion

A land use census is conducted each year to determine the utilization of land in the vicinity of the Nine Mile Point site. The land use census consists of two types of surveys. A milk animal census is conducted to identify all milk animals within a distance of 10 miles from the site. This census, covering areas out to a distance of 10 miles exceeds the 5 mile distance required by the ODCM. A resident census is conducted and is designed to identify the nearest resident in each meteorological sector out to a distance of 5 miles.

The milk animal census is an estimation of the number of cows and goats within an approximate 10 mile radius of the Nine Mile Point Site. The annual census is conducted during the first half of the grazing season by sending questionnaires to previous milk animal owners and also by road surveys to locate any possible new locations. In the event the questionnaires are not answered, the owners are contacted by telephone or in person. The local county agricultural extension service is also contacted as an additional source of information concerning new milk animal locations in the vicinity of the site.

The number of milk animals located within an approximate 10 mile radius of the site was estimated to be 270 cows and 21 goats based on the 2015 land use census. The milking/non-milking status of the 21 goats is currently unknown. One new milk location, location 80, was found in 2015 consisting of 20 milking cows and 15 heifers. The owner is currently shipping milk. There are no farms with milking animals within the 5 mile radius of the site. The farms currently participating in our active milk sampling program are the offsite control location and our indicator location with 53 and 65 milking cows, respectively. Both farms are currently shipping milk. The results of the milk animal census are found in Section 6.0, Table 6-13.

The second type of census conducted is a residence census. The census is conducted in order to identify the closest residence within 5 miles in each of the 22.5 degree land-based meteorological sectors. There are only eight sectors over land where residences are located within 5 miles. The water sectors include: N, NNE, NE, ENE, W, WNW, NW and NNW. The results of the residence census, showing the applicable sectors and direction and distance of each of the nearest residence, are found in Section 6.0, Table 6-14. There were no changes identified in the 2015 census for the closest resident in the land based meteorological sectors. The nearest resident locations are illustrated in Section 3.3, Figure 3.3-5.

5.2.8 DIRECT RADIATION, THERMOLUMINESCENT DOSIMETERS (TLD)

Independent Spent Fuel Storage Installation (ISFSI)

A. Results Summary

TLDs are used to measure direct radiation (gamma dose) at the site boundary and Optically Stimulated Luminescence Dosimeters (OSLDs) are used to measure direct radiation (gamma dose) in the localized environment of the ISFSI pad. Sixteen TLDs are located around the site, one in each of the sixteen compass sectors, and fourteen OSLDs are located around the perimeter of the ISFSI pad and specific areas of interest. OSLDs were placed at these locations prior to loading the first storage casks for baseline dose rate determination in the general area of the pad.

During 2015, four storage casks were moved to the storage facility. The total number of casks in storage is twenty four.

The implementation and loading of the ISFSI project has resulted in no increase in dose at the site boundary or to the public. The analysis of offsite doses from direct radiation measurements, presented in Section 5.2.4 of this report, concludes that there is no significant difference in annual dose to the public at or beyond the site boundary. The measured annual dose rate at the nearest residence to the site was consistent with the dose rates measured at the site boundary and the offsite control locations. The results for the Site Boundary, Offsite Sectors, and Special Interest (offsite) were well within expected normal variation when compared to the Control TLD results. The results for the 2015 environmental TLD monitoring program indicate that there is no significant increase in dose rates as a result of operations at the site. The implementation of the ISFSI at the NMPNS plant did not measurably increase the ambient radiation exposure rate at or beyond the site boundary. The lack of a dose rate increase at or beyond the site boundary is consistent with design calculations performed to evaluate compliance with 10 CFR72.104(a).

The measured results of the 2015 TLD monitoring program demonstrate compliance with the offsite dose limits to members of the public specified in 40CFR190 and 10CFR72.104(a).

B. Program Design

An array of ten OSLD locations was established around the perimeter of the ISFSI pad and four OSLD locations were placed in specific areas of interest twelve months prior to facility usage. These pre-operational OSLDs were used for baseline dose rate determination. The OSLDs are placed, collected and read each quarter. Two dosimeters are placed at each location and the average of the two dosimeters is reported. The quarterly results are compared to baseline data to assess the contribution to ambient dose rates in the vicinity of the storage facility from casks as they are placed on the storage pad.

C. Dose Evaluation

The pre-operation minimum and maximum dose rates were 2.9 and 6.3 mrem per standard month, respectively. During 2015, the maximum dose rate of 6.7 mrem per standard month was measured at OSLD location 241, north of the ISFSI. The lowest measured dose rate was 3.4 mrem per standard month was measured at OSLD location 237, southeast of the ISFSI.

The following table presents the pre-operation dose rate data and the operational dose rate data for 2015:

OSLD Number	Sector	Pre-Operation mrem per Standard	2015 mrem per Standard
222	WNW	Month	Month
233		3.5	4.4
234	WSW	2.9	3.5
235	S	4.2	4.1
236	SSE	3.8	3.4
237	SE	3.0	3.9
238	ESE	3.5	3.5
239	E	4.0	4.4
240	NE	3.6	5.4
241	N	5.1	6.7
242	NE	6.3	4.9
243	NNW	4.8	4.6
244	NE	4.6	4.3
245	NE	4.0	5.9
246	ENE	4.8	4.7

An evaluation of Site Boundary TLDs and Control TLDs results for 2015 shows that there is no increase in dose rate at or beyond the site boundary. A detailed discussion of this evaluation is found in Section 5.2.4. The Environmental TLD results for this period show no significant difference in control and site boundary dose rates compared to 2014 and preoperational data gathered in 2012.

2015 DOSE IN MREM PER STANDARD MONTH

·	Minimum	Maximum	Mean
Site Boundary	2.9	5.1	4.0
Control	2.9	5.4	4.1

5.3 CONCLUSION

The Radiological Environmental Monitoring Program (REMP) is an ongoing program implemented to measure and document the radiological impact of NMPNS operations on the local environment. The program is designed to detect and evaluate small changes in the radiological environment surrounding the site. Environmental media representing food sources consumed at the higher levels of the food chain, such as fish, food products and milk, are part of a comprehensive sampling program. Results of all samples are reviewed closely to determine any possible impact to the environment or to man. In addition, program results are evaluated for possible short-term and long-term historical trends.

The federal government has established dose limits to protect the public from radiation and radioactivity. The Nuclear Regulatory Commission (NRC) specifies a whole body dose limit of 100 mrem/yr to be received by the maximum exposed member of the general public. This limit is set forth in Section 1301, Part 20, Title 10 of the U.S. Code of Federal Regulations (10CFR20). The Environmental Protection Agency (EPA) limits the annual whole body dose to 25 mrem/yr, which is specified in Section 10, Part 190, Title 40, of the Code of Federal Regulations (40CFR190). Radiation exposure to members of the public, calculated based on the results of the REMP, is extremely small. The dose to members of the public from operations at the Nine Mile Point site, based on environmental measurement and calculations made from effluent releases, is determined to be a fraction of limits set forth by the NRC and EPA.

The REMP continues to demonstrate that the effluents from the site to the environment contribute no significant or even measurable radiation exposures to the general public as confirmed by the sampling and analysis of environmental media from recognized environmental pathways. Based on TLD results there was no measurable increase in radiation levels beyond the site boundary as a result of the hydrogen water chemistry and ISFSI programs. Environmental radiation levels measured at the nearest residence are at the background level based on control station TLD results. The only measurable radiological impact on the environment continues to be the result of atmospheric weapons testing conducted in the early 1980's, the 1986 accident at the Chernobyl Nuclear Power Plant, and the March 11, 2011 accident at the Fukushima Daiichi Nuclear Power Station.

The REMP did not detect any plant-related radionuclide in the sample media collected during 2015. Dose from man-made sources in the environment is very small when compared to the dose originating from naturally-occurring sources of radioactivity.

Radiation from naturally-occurring radionuclides such as K-40 and Ra-226 contributed the vast majority of the total annual dose to members of the general public. The dose to members of the public, resulting from plant operations, is extremely small in comparison to the dose contribution from natural background levels and sources other than the plants. The whole body dose in Oswego County due to natural sources is approximately 49 mrem per individual per year as demonstrated by control environmental TLDs. The fraction of the annual dose to man, attributable to site operation, remains insignificant.

Based upon the overall results of the 2015 Radiological Environmental Monitoring Program, it can be concluded that the levels and variation of radioactivity in the environment samples were consistent with background levels. Effluents from the site to the environment contribute no significant or even measurable radiation exposures to the general public.

5.4 REFERENCES

- 1. U.S. Nuclear Regulatory Commission Regulatory Guide 1.109, <u>Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, March 1976.</u>
- 2. U.S. Nuclear Regulatory Commission Regulatory Guide 1.109, <u>Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, October 1977 (Revision 1).</u>
- 3. U.S. Nuclear Regulatory Commission Regulatory Guide 4.8, <u>Environmental Technical</u> Specifications for Nuclear Power Plants, December, 1975.
- 4. U.S. Nuclear Regulatory Commission Branch Technical Position to Regulatory Guide 4.8, <u>An Acceptable Radiological Environmental Monitoring Program</u>, Revision 1, November 1979.
- 5. National Council on Radiation Protection and Measurements (NCRP), <u>Environmental</u> Radiation Measurements, NCRP Report No. 50, 1975.
- 6. National Council on Radiation Protection and Measurements (NCRP), <u>Natural Background</u>
 <u>Radiation in the United States</u>, NCRP Report No. 45, 1975.
- 7. National Council on Radiation Protection and Measurements (NCRP), <u>Cesium-137 from the Environment to Man: Metabolism and Dose</u>, NCRP Report No. 52, 1977.
- 8. National Council on Radiation Protection and Measurments (NCRP), <u>Radiation Exposure from Consumer Products and Miscellaneous Sources</u>, NCRP Report No. 56, 1977.
- 9. International Commission on Radiological Protection (ICRP), <u>Radionuclide Release into the</u> Environment: Assessment of Doses to Man, ICRP Publication 29, 1979.
- 10. Glasstone, Samuel and Jordan, Walter H., <u>Nuclear Power and Its Environmental Effects</u>, First Edition, American Nuclear Society, La Grange Park, Ill., 1980.
- 11. Schleien, Bernard. <u>The Health Physics and Radiological Health Handbook</u>. Scinta, Inc., Silver Spring, Maryland, 1992.
- U.S. Department of Health and Human Services. <u>Preparedness and Response in Radiation</u> <u>Accidents</u>, National Center for Devices and Radiological Health, Rockville, Maryland 20857, August 1983.
- 13. National Council on Radiation Protection and Measurments (NCRP), <u>Ionizing Radiation</u>
 <u>Exposure of the Population of the United States</u>, NCRP Report No. 93, 1987.
- National Council on Radiation Protection and Measurements (NCRP), <u>Exposure of the Population in the United States and Canada from National Background Radiation</u>, NCRP Report No. 94, 1987.
- 15. National Council on Radiation Protection and Measurements (NCRP), <u>Ionizing Radiation</u>
 <u>Exposure of the Population of the United States</u>, NCRP Report No. 160, 2009.
- 16. Institute of Nuclear Power Operations, <u>Special Report on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station</u>, INPO 11-005, November 2011.

6.0 REPORT PERIOD ANALYTICAL RESULTS TABLES

Environmental sample data is summarized in table format. Tables are provided for select sample media and contain data based on actual values obtained over the year. These values are comprised of both positive values and LLD (Lower Limit of Detection) values where applicable.

The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability and with 5% probability of falsely concluding that a blank observation represents a "real" signal (see Section 3.7.3 for detailed explanation).

When the initial count of a sample indicates the presence of radioactivity, two recounts are normally performed. When a radionuclide is positively identified in two or more counts, the analytical results for that radionuclide are reported as the mean of the positive detections and the associated error for that mean (see Section 3.7.2 for methodology).

Many of the tables are footnoted with the term "Plant Related Radionuclides". Plant Related Radionuclides are radionuclides that are produced in the reactor; as a result of plant operation, either through the activation or fission process.

TABLE 6-1
CONCENTRATIONS OF GAMMA EMITTERS IN SHORELINE SEDIMENT SAMPLES - 2015

Results in Units of pCi/kg (dry) ± 1 Sigma

Sample Location**	COLLECTION DATE	K-40	Co-60	Zn-65	Cs-134	Cs-137	Others †
Sunset Bay (05) *	04/21/15	17590 ± 658	< 54	< 119	< 47	< 62	<lld< td=""></lld<>
	10/19/15	17290 ± 915	< 65	< 148	< 53	< 75	<lld< td=""></lld<>
	MEAN	17440 ± 212					
Lang's Beach (06 Control)	04/21/15	12410 ± 632	< 48	< 118	< 42	< 57	<lld< td=""></lld<>
	10/19/15	9771 ± 610	< 61	< 116	< 42	< 47	<lld< td=""></lld<>
	MEAN	11091 ± 1866					

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-2
CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES - 2015

Results in Units of pCi/kg (wet) ± 1 Sigma

SAMPLE LOCATION	COLLECTION DATE	DESCRIPTION	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137	Others †
FITZPATRICK * (03)**											
	05/05/15	Brown Trout	2123 ± 478	< 60	< 63	< 156	< 74	< 115	< 54	< 54	<lld< td=""></lld<>
	05/05/15	Lake Trout	4123 ± 450	< 53	< 58	< 161	< 54	< 130	< 54	< 65	<lld< td=""></lld<>
	05/05/15	Smallmouth Bass	3864 ± 452	< 83	< 104	< 177	< 75	< 178	< 89	< 98	<lld< td=""></lld<>
	09/17/15	Brown Trout	3434 ± 468	< 60	< 75	< 156	< 59	< 123	< 72	< 66	<lld< td=""></lld<>
	09/17/15	Walleye	3066 ± 416	< 32	< 32	< 72	< 45	< 78	< 24	< 43	<lld< td=""></lld<>
	09/17/15	Chinook Salmon	3503 ± 527	< 45	< 74	< 132	< 41	< 102	< 52	< 67	<lld< td=""></lld<>
NINE MILE POINT * (02)	**										
•	05/05/15	Brown Trout	3855 ± 512	< 58	< 80	< 164	< 59	< 148	< 70	< 74	<lld< td=""></lld<>
	05/05/15	Lake Trout	3958 ± 428	< 54	< 48	< 105	< 50	< 108	< 42	< 53	<lld< td=""></lld<>
	05/07/15	Smallmouth Bass	3137 ± 469	< 46	< 63	< 100	< 43	< 111	< 42	< 54	<lld< td=""></lld<>
	09/17/15	Brown Trout	2784 ± 362	< 50	< 51	< 96	< 57	< 109	< 50	< 53	<lld< td=""></lld<>
4	09/17/15	Walleye	4231 ± 655.5	< 86	< 79	< 205	< 90	< 161	< 74	< 94	<lld< td=""></lld<>
	09/17/15	Chinook Salmon	4438 ± 533	< 51	< 46	< 106	< 55	< 98	< 55	< 48	<lld< td=""></lld<>
OSWEGO HARBOR (CO	NTROL) * (00)**										•
	05/05/15	Brown Trout	4319 ± 531	< 68	< 90	< 171	< 4.4	< 128	< 65	< 61	<lld< td=""></lld<>
	05/05/15	Lake Trout	3072 ± 393	< 65	< 57	< 146	< 59	< 134	< 56	< 65	<lld< td=""></lld<>
	05/05/15	Smallmouth Bass	4622 ± 484	< 58	< 60	< 140	< 60	< 109	< 56	< 63	<lld< td=""></lld<>
-	09/17/15	Brown Trout	3637 ± 422	< 38	< 42	< 103	< 45	< 104	< 45	< 49	<lld< td=""></lld<>
	09/17/15	Walleye	4174 ± 459	< 49	< 47	< 108	< 51	< 106	< 52	< 52	<lld< td=""></lld<>
	09/17/15	Chinook Salmon	4098 ± 471	< 51	< 49	< 136	< 54	< 116	< 50	< 65	<lld< td=""></lld<>

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-3 **CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES - 2015**

SAMPLE		LECT		DESCRIPTION	H-3	
LOCATION		DATE				
FITZPATRICK * (03, II	•				,	
	12/29/14	-	03/27/15	First Quarter	< 304	
	03/27/15	-	06/29/15	Second Quarter	< 314	
	06/29/15	-	09/28/15	Third Quarter	< 455	
	09/28/15	-	12/29/15	Fourth Quarter ,	< 462	
OSWEGO STEAM ST	ATION* (08, 0	CONT	ROL)**			
1	01/02/15	_	03/27/15	First Quarter	< 303	
	03/27/15	-	06/26/15	Second Quarter	< 337	
	06/26/15	-	10/02/15	Third Quarter	< 428	
	10/02/15	-	12/31/15	Fourth Quarter	< 384	
NINE MILE POINT UN	IT 1 (09. INLE	ET)**				
	01/02/15	_	03/27/15	First Quarter	< 474	
	03/27/15	_	06/26/15	Second Quarter	< 340	
	06/26/15	_	10/02/15	Third Quarter	< 419	
	10/02/15	-	12/31/15	Fourth Quarter	< 384	
NINE MILE POINT UN	IT 2 (11, INLE	ET)**		-		
	01/02/15	-	03/27/15	First Quarter	< 463	
	03/27/15	-	06/26/15	Second Quarter	< 337	
	06/26/15	-	10/02/15	Third Quarter	< 424	
	10/02/15	-	12/31/15	Fourth Quarter	< 377	
OSWEGO CITY WATE	ED (10)**		•			
COVEGO GIRT WATE	01/02/15	_	03/27/15	First Quarter	< 295	
	03/27/15	_	06/26/15	Second Quarter	< 334	
	06/26/15	_	10/02/15	Third Quarter	< 426	
	10/02/15	_	12/31/15	Fourth Quarter	< 376	
	10/02/10	_	12/01/10	i outili Qualtel	~ 570	

^{*} Sample required by the ODCM
** Corresponds to sample location noted on Figure 3.3-5

TABLE 6-4
CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES - 2015

SAMPLE LOCATION	COLLECTION DATE	I-131	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-La-140
OSWEGO S	TEAM STATION* (08 CONTRO	L)**								-	
	01/30/15	< 0.5	´ < 2	< 2	< 6	< 2	< 4	< 2	< 4	< 2	< 2	< 7
	02/27/15	< 0.4	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 7
	03/27/15	< 0.6	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 6
	05/01/15	< 0.7	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 1	< 1	< 5
,	05/29/15	< 0.3	< 2	< 2	< 5	< 2	< 4	< 2 ·	< 4	< 2	< 2	< 7
	06/26/15	< 0.3	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 6
	07/31/15	< 0.5	< 2	< 2	< 6	< 2	< 4	< 2	< 4	< 2	< 2	< 9
•	08/28/15	< 0.2	< 3	< 3⁻	< 8	< 3	< 6	< 3	< 6	< 2	< 3	< 10
	10/02/15	< 0.7	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 2	< 2	< 6
	10/30/15	< 0.4	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 2	< 2	< 5
	12/04/15	< 0.1	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 6
•	12/31/15	< 1.0	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 7
OSWEGO C	ITY WATER (10)**											
	01/30/15	< 9	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 2	< 4
	02/27/15	< 14	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 6
	03/27/15	< 12	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 6
	05/01/15	< 11	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 1	< 1	< 5
	05/29/15	< 14	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 6
	06/26/15	< 14	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 6
	07/31/15	< 12	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1 .	< 1	< 6
	08/28/15	< 15	< 3	< 3	< 7	< 2	< 6	< 4	< 6	< 3	< 3	< 9
	10/02/15	< 12	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 2	< 6
	10/30/15	< 11	< 2	< 2	< 6	< 2	< 5	< 3	< 4	< 2	< 2	< 7
	12/04/15	< 13	< 2	< 2	< 4	< 1	< 3	< 2	< 4	< 2	< 2	< 4
	12/31/15	< 14	< 2	< 2	< 5	< 2	< 3	< 2	< 4	< 2	< 2	< 7

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

TABLE 6-4
CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES - 2015

SAMPLE LOCATION	COLLECTION DATE	I-131	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-La-140
FITZPATRIC	K* (03, INLET)**					•						
	02/02/15	< 0.3	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 7
•	02/27/15	< 0.2	< 3	< 3	< 7	< 3	< 5	< 3	< 6	< 3	< 3	< 9
	03/27/15	< 0.5	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 1	< 5
	04/30/15	< 0.4	< 2	< 2	< 4	< 1	< 3	< 2	< 4	< 2	< 2	< 7
	06/01/15	< 0.2	< 2	< 2	< 5	< 2	< 4	< 3	< 4	< 2	< 2	< 8
	06/29/15	< 0.2	< 2	< 2	< 5	< 2	< 4	< 3	< 4	< 2	< 2	< 8
	07/30/15	< 0.6	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 7
	08/31/15	< 0.2	< 3	< 3	< 7	< 3	< 6	< 4	< 6	< 3	< 3	< 9
	09/28/15	< 0.5	< 3	< 3	< 7	< 3	< 6	< 3	< 5	< 3	< 3	< 7
	11/02/15	< 0.3	< 2 `	< 2	< 4	< 2	< 4	< 2	< 3	< 2	< 2	< 6
	11/30/15	< 0.6	< 3	< 4	< 8	< 3	< 7	< 4	< 6	< 4	< 4	< 11
	12/29/15	< 0.4	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 4
NINE MILE F	POINT UNIT 1 (09,	INLET)**										
	01/30/15	< 7	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 4
	02/27/15	< 12	< 1	< 2	< 3	< 1	< 2	< 2	< 3	< 1	< 1	< 5
	03/27/15	< 11	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 5
	05/01/15	< 13	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 1	< 1	< 5
	05/29/15	< 9	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 5
	06/26/15	< 13	< 1	< 1	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 6
	07/31/15	< 9	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 1	< 1	< 4
	08/28/15	< 15	< 3	< 3	< 8	< 3	< 6	< 3	< 6	< 2	< 3	< 9
	10/02/15	< 14	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 8
	10/30/15	< 7	< 1	< 1	< 3	< 1	< 3	< 1	< 3	< 1	< 1	< 4
	12/04/15	< 9	< 1	< 1	< 3	< 1	< 3	< 2	< 3	< 1	< 1	< 4
	12/31/15	< 9	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 2	< 2	< 6

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

TABLE 6-4
CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES - 2015

SAMPLE LOCATION	COLLECTION DATE	I-131	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-La-140
NINE MILE	POINT UNIT 2 (11,	INLET)**			_			_				
	01/30/15	< 12	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 6
	02/27/15	< 13	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 6
	03/27/15	< 13	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 5
	05/01/15	< 14	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 1	< 7
	05/29/15	< 10	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 6
	06/26/15	< 13	< 1	< 2	< 4	< 1	< 2	< 1	< 3	< 1	< 1	< 5
	07/31/15	< 13	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 1	< 1	< 6
	08/28/15	< 15	< 3	< 3	< 6	< 4	< 6	< 4	< 6	< 3	< 3	< 11
	10/02/15	< 13	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 5
	10/30/15	< 11	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 2	< 2	< 5
	12/04/15	< 12	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 7
	12/31/15	< 11	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 6

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

TABLE 6-5
ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - OFFSITE SAMPLE LOCATIONS - 2015
GROSS BETA ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION									
DATE	R-1*	R-2*	R-3*	R-4*	R-5*	D-2	E	F	G
12/30/14 - 01/06/15	13 ± 1	15 ± 1	14 ± 1	13 ± 1	15 ± 1	15 ± 1	16 ± 1	11 ± 1	14 ± 1
01/06/15 - 01/13/15	24 ± 1	22 ± 1	23 ± 1	20 ± 1	25 ± 2	18 ± 1	23 ± 1	16 ± 1	21 ± 1
01/13/15 - 01/20/15	20 ± 1	20 ± 1	18 ± 1	20 ± 1	18 ± 1	20 ± 1	23 ± 1	21 ± 1	23 ± 1
01/20/15 - 01/27/15	15 ± 1	15 ± 1	15 ± 1	15 ± 1	16 ± 1	13 ± 1	17 ± 1	13 ± 1	14 ± 1
01/27/15 - 02/03/15	18 ± 1	17 ± 1	19 ± 1	15 ± 1	18 ± 1	16 ± 1	20 ± 1	17 ± 1	20 ± 1
02/03/15 - 02/10/15	23 ± 1	20 ± 1	22 ± 1	25 ± 1	24 ± 1	21 ± 1	23 ± 1	20 ± 1	22 ± 1
02/10/15 - 02/17/15	20 ± 1	21 ± 1	20 ± 1	19 ± 1	19 ± 1	21 ± 1	20 ± 1	18 ± 1	24 ± 1
02/17/15 - 02/24/15	27 ± 2	29 ± 2	28 ± 2	27 ± 2	29 ± 2	25 ± 1	30 ± 2	26 ± 1	28 ± 2
02/24/15 - 03/03/15	28 ± 2	20 ± 1	27 ± 2	20 ± 1	22 ± 1	21 ± 1	25 ± 2	19 ± 1	23 ± 2
03/03/15 - 03/10/15	16 ± 1	17 ± 1	17 ± 1	17 ± 1	16 ± 1	16 ± 1	16 ± 1	15 ± 1	16 ± 1
03/10/15 - 03/17/15	16 ± 1	15 ± 1	16 ± 1	16 ± 1	15 ± 1	16 ± 1	16 ± 1	14 ± 1	16 ± 1
03/17/15 - 03/24/15	17 ± 1	16 ± 1	17 ± 1	14 ± 1	15 ± 1	14 ± 1	17 ± 1	17 ± 1	14 ± 1
03/24/15 - 03/31/15	12 ± 1	13 ± 1	15 ± 1	14 ± 1	14 ± 1	15 ± 1	15 ± 1	11 ± 1	13 ± 1
03/31/15 - 04/07/15	17 ± 1	15 ± 1	17 ± 1	16 ± 1	16 ± 1	14 ± 1	17 ± 1	14 ± 1	16 ± 1
04/07/15 - 04/14/15	15 ± 1	13 ± 1	12 ± 1	12 ± 1	12 ± 1	10 ± 1	10 ± 1	11 ± 1	(1)
04/14/15 - 04/21/15	13 ± 1	12 ± 1	10 ± 1	9 ± 1	11 ± 1	8 ± 1	12 ± 1	11 ± 1	12 ± 1
04/21/15 - 04/28/15	7 ± 1	8 ± 1	7 ± 1	9 ± 1	8 ± 1	8 ± 1	10 ± 1	7 ± 1	7 ± 1
04/28/15 - 05/05/15	11 ± 1	10 ± 1	12 ± 1	10 ± 1	10 ± 1	11 ± 1	11 ± 1	12 ± 1	11 ± 1
05/05/15 - 05/12/15	17 ± 1	17 ± 1	15 ± 1	14 ± 1	14 ± 1	15 ± 1	12 ± 1	13 ± 1	15 ± 1
05/12/15 - 05/19/15	14 ± 1	15 ± 1	13 ± 1	14 ± 1	13 ± 1	14 ± 1	17 ± 1	15 ± 1	14 ± 1
05/19/15 - 05/27/15	14 ± 1	13 ± 1	14 ± 1	12 ± 1	15 ± 1	14 ± 1	14 ± 1	14 ± 1	15 ± 1
05/27/15 - 06/02/15	12 ± 1	13 ± 1	14 ± 1	15 ± 1	12 ± 1	13 ± 1	11 ± 1	10 ± 1	13 ± 1
06/02/15 - 06/09/15	10 ± 1	9 ± 1	12 ± 1	14 ± 1	13. ± 1	13 ± 1	12 ± 1	12 ± 1	10 ± 1
06/09/15 - 06/16/15	12 ± 1	9 ± 1	10 ± 1	12 ± 1	11 ± 1	12 ± 1	8 ± 1	9 ± 1	13 ± 1
06/16/15 - 06/23/15	13 ± 1	13 ± 1	15 ± 1	10 ± 1	11 ± 1	12 ± 1	13 ± 1	12 ± 1	12 ± 1
06/23/15 - 06/30/15	10 ± 1	9 ± 1	9 ± 1	8 ± 1	11 ± 1	10 ± 1	9 ± 1	9 ± 1	10 ± 1

^{*} Sample required by the ODCM

⁽¹⁾ Low sample volume due to pump failure rendered data non viable.

TABLE 6-5
ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - OFFSITE SAMPLE LOCATIONS - 2015
GROSS BETA ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION				•					
DATE	R-1*	R-2*	R-3*	R-4*	R-5*	D-2	E _.	F	G
06/30/15 - 07/07/15	12 ± 1	15 ± 1	13 ± 1	12 ± 1	11 ± 1	11 ± 1	12 ± 1	14 ± 1	14 ± 1
07/07/15 - 07/14/15	14 ± 1	14 ± 1	13 ± 1	12 ± 1	13 ± 1	13 ± 1	13 ± 1	14 ± 1	14 ± 1
07/14/15 - 07/21/15	12 ± 1	13 ± 1	14 ± 1	14 ± 1	13 ± 1	13 ± 1	13 ± 1	12 ± 1	13 ± 1
07/21/15 - 07/28/15	13 ± 1	17 ± 1	18 ± 1	17 ± 1	15 ± 1	< 2	16 ± 1	14 ± 1	13 ± 1
07/28/15 ~ 08/04/15	16 ± 1	16 ± 1	17 ± 1	16 ± 1	17 ± 1	17 ± 1	17 ± 1	16 ± 1	18 ± 1
08/04/15 - 08/11/15	8 ± 1	8 ± 1	7 ± 1	8 ± 1	8 ± 1	9 ± 1	9 ± 1	9 ± 1	12 ± 1
08/11/15 - 08/18/15	18 ± 1	18 ± 1	19 ± 1	20 ± 1	21 ± 1	17 ± 1	18 ± 1	18 ± 1	18 ± 1
08/18/15 - 08/25/15	17 ± 1	18 ± 1	17 ± 1	21 ± 1	19 ± 1	16 ± 1	18 ± 1	14 ± 1	17 ± 1
08/25/15 - 09/01/15	15 ± 1	16 ± 1	18 ± 1	15 ± 1	15 ± 1	16 ± 1	16 ± 1	15 ± 1	19 ± 1
09/01/15 - 09/08/15	37 ± 2	35 ± 2	39 ± 2	41 ± 2	38 ± 2	35 ± 2	40 ± 2	34 ± 2	40 ± 2
09/08/15 - 09/15/15	20 ± 1	22 ± 1	20 ± 1	22 ± 1	20 ± 1	16 ± 1	20 ± 1	16 ± 1	23 ± 1
09/15/15 - 09/22/15	23 ± 1	23 ± 1	25 ± 2	19 ± 1	24 ± 2	23 ± 1	22 ± 1	21 ± 1	23 ± 1
09/22/15 - 09/29/15	20 ± 1	19 ± 1	21 ± 1	19 ± 1	17 ± 1	18 ± 1	20 ± 1	17 ± 1	·20 ± 1
09/29/15 - 10/06/15	12 ± 1	12 ± 1	11 ± 1	10 ± 1	13 ± 1	11 ± 1	12 ± 1	13 ± 1	′ 11 ± 1
10/06/15 - 10/13/15	14 ± 1	14 ± 1	12 ± 1	16 ± 1	13 ± 1	16 ± 1	16 ± 1	14 ± 1	13 ± 1
10/13/15 - 10/20/15	9 ± 1	8 ± 1	9 ± 1	11 ± 1	9 ± 1	9 ± 1	7 ± 1	8 ± 1	10 ± 1
10/20/15 - 10/27/15	8 ± 1	16 ± 1	17 ± 1	15 ± 1	16 ± 1	18 ± 1	17 ± 1	16 ± 1	16 ± 1
10/27/15 - 11/03/15	13 ± 1	12 ± 1	· 13 ± 1	15 ± 1	13 ± 1	11 ± 1	15 ± 1	11 ± 1	12 ± 1
11 <u>/</u> 03/15 - 11/10/15	18 ± 1	20 ± 1	22 ± 2	21 ± 2	20 ± 1	21 ± 2	25 ± 2	17 ± 1	21 ± 2
11/10/15 11/17/15	16 ± 1	18 ± 1	17 ± 1	20 ± 1	18 ± 1	18 ± 1	17 ± 1	17 ± 1	16 ± 1
11/17/15 - 11/24/15	13 ± 1	12 ± 1	12 ± 1	13 ± 1	11 ± 1	12 ± 1	12 ± 1	13 ± 1	12 ± 1
11/24/15 - 12/01/15	17 ± 1	16 ± 1	20 ± 1	17 ± 1	17 ± 1	16 ± 1	16 ± 1	17 ± 1	18 ± 1
12/01/15 - 12/08/15	17 ± 1	17 ± 1	20 ± 1	17 ± 1	17 ± 1	17 ± 1	18 ± 1	17 ± 1	18 ± 1
12/08/15 - 12/15/15	26 ± 1	27 ± 2	26 ± 2	27 ± 2	29 ± 2	25 ± 2	27 ± 2	27 ± 2	30 ± 2
12/15/15 - 12/22/15	13 ± 1	14 ± 1 ·	11 ± 1	13 ± 1	14 ± 1	10 ± 1	14 ± 1	14 ± 1	13 ± 1
12/22/15 - 12/29/15	16 ± 1	13 ± 1	12 ± 1	12 ± 1	10 ± 1	9 ± 1	12 ± 1	14 ± 1	14 ± 1

^{*} Sample required by the ODCM

TABLE 6-6
ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - ONSITE SAMPLE LOCATIONS - 2015
GROSS-BETA ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION						
DATE	D-1	G	H		J	K
12/29/14 - 01/05/15	14 ± 1	15 ± 1	13 ± 1	15 ± 1	14 ± 1	14 ± 1
01/05/15 - 01/12/15	18 ± 1	19 ± 1	16 ± 1	18 ± 1	18 ± 1	19 ± 1
01/12/15 - 01/19/15	22 ± 1	23 ± 1	23 ± 1	22 ± 1	19 ± 1	23-± 1
01/19/15 - 01/26/15	17 ± 1	16 ± 1	15 ± 1	16 ± 1	18 ± 1	16 ± 1
01/26/15 - 02/02/15	19 ± 1	20 ± 1	19 ± 1	17 ± 1	16 ± 1	20 ± 1
02/02/15 - 02/09/15	24 ± 1	23 ± 2	20 ± 1	26 ± 1	. 23 ± 1	17 ± 1
02/09/15 - 02/16/15	19 ± 1	23 ± 1	19 ± 1	19 ± 1	22 ± 2	19 ± 1
02/16/15 - 02/23/15	26 ± 2	25 ± 1	28 ± 2	28 ± 2	27 ± 2	25 ± 1
02/23/15 - 03/02/15	24 ± 2	27 ± 1	25 ± 2	25 ± 2	24 ± 1	24 ± 2
03/02/15 - 03/09/15	17 ± 1	17 ± 1	18 ± 1	16 ± 1	19 ± 1	19 ± 1
03/09/15 - 03/16/15	14 ± 1	15 ± 1	17 ± 1	16 ± 1	16 ± 1	16 ± 1
03/16/15 - 03/23/15	15 ± 1	16 ± 1	15 ± 1	15 ± 1	15 ± 1	15 ± 1
03/23/15 - 03/30/15	16 ± 1	15 ± 1	16 ± 1	15 ± 1	16 ± 1	16 ± 1
03/30/15 - 04/06/15	14 ± 1	13 ± 1	13 ± 1	16 ± 1	15° ± 1	16 ± 1
04/06/15 - 04/13/15	12 ± 1	13 ± 1	13 ± 1	14 ± 1	12 ± 1	12 ± 1
04/13/15 - 04/20/15	14 ± 1	14 ± 1	11 ± 1	13 ± 1	16 ± 1	12 ± 1
04/20/15 - 04/27/15	8 ± 1	7 ± 1	9 ± 1	8 ± 1	8 ± 1	9 ± 1
04/27/15 - 05/04/15	7 ± 1	9 ± 1	9 ± 1	7 ± 1	8 ± 1	9 ± 1
05/04/15 - 05/11/15	17 ± 1	14 ± 1	15 ± 1	17 ± 1	16 ± 1	16 ± 1
05/11/15 - 05/18/15	16 ± 1	13 ± 1	15 ± 1	17 ± 1	14 ± 1	14 ± 1
05/18/15 - 05/26/15	13 ± 1	14 ± 1	14 ± 1	14 ± 1	15 ± 1	13 ± 1
05/26/15 - 06/01/15	14 ± 1	16 ± 1	17 ± 1	15 ± 1	17 ± 1	20 ± 1
06/01/15 - 06/08/15	10 ± 1	10 ± 1	12 ± 1	12 ± 1	11 ± 1	8 ± 1
06/08/15 - 06/15/15	12 ± 1	14 ± 1	13 ± 1	12 ± 1	14 ± 1	12 ± 1
06/15/15 - 06/22/15	11 ± 1	10 ± 1	10 ± 1	12 ± 1	9 ± 1	12 ± 1
06/22/15 - 06/29/15	9 ± 1	12 ± 1	11 ± 1	10 ± 1	10 ± 1	12 ± 1

TABLE 6-6
ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - ONSITE SAMPLE LOCATIONS - 2015
GROSS BETA ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION						
DATE	D-1	G	Н	1	J	K
06/29/15 - 07/06/15	13 ± 1	13 ± 1	11 ± 1	13 ± 1	12 ± 1	12 ± 1
07/06/15 - 07/13/15	16 ± 1	18 ± 1	17 ± 1	15 ± 1	15 ± 1	13 ± 1
07/13/15 - 07/20/15	16 ± 1	15 ± 1	17 ± 1	16 ± 1	15 ± 1	15 ± 1
07/20/15 - 07/27/15	14 ± 1	13 ± 1	15 ± 1	14 ± 1	17 ± 1	14 ± 1
07/27/15 - 08/03/15	16 ± 1	16 ± 1 '	19 ± 1	20 ± 1	22 ± 1	18 ± 1
08/03/15 - 08/10/15	10 ± 1	9 ± 1	12 ± 1	11 ± 1	10 ± 1	8 ± 1
08/10/15 - 08/17/15	18 ± 1	16 ± 1	18 ± 1	18 ± 1	19 ± 1	18 ± 1
08/17/15 - 08/24/15	21 ± 1	22 ± 1	21 ± 1	21 ± 1	21 ± 1	21 ± 1
08/24/15 - 08/31/15	12 ± 1	14 ± 1	14 ± 1	12 ± 1	11 ± 1	13 ± 1
08/31/15 - 09/08/15	38 ± 2	38 ± 2	42 ± 2	37 ± 2	34 ± 2	40 ± 2
09/08/15 - 09/15/15	22 ± 2	20 ± 1	23 ± 2	22 ± 2	21 ± 1	20 ± 2
09/15/15 - 09/21/15	26 ± 1	29 ± 2	28 ± 2	26 ± 1	25 ± 1	24 ± 1
09/21/15 - 09/28/15	16 ± 1	20 ± 1	18 ± 1	19 ± 1	20 ± 1	19 ± 1
09/28/15 - 10/05/15	12 ± 1	11 ± 1	15 ± 1	14 ± 1	13 ± 1	12 ± 1
10/05/15 - 10/12/15	14 ± 1	12 ± 1	15 ± 1	14 ± 1	14 ± 1	14 ± 1
10/12/15 - 10/19/15	11 ± 1	10 ± 1	9 ± 1	9 ± 1	8 ± 1	10 ± 1
10/19/15 - 10/26/15	19 ± 1	18 ± 1	17 ± 1	16 ± 1	17 ± 1	19 ± 1
10/26/15 - 11/02/15	11 ± 1	12 ± 1	12 ± 1	12 ± 1	12 ± 1	12 ± 1
11/02/15 - 11/09/15	20 ± 1	21 ± 1	19 ± 1	20 ± 2	19 ± 1	18 ± 1
11/09/15 - 11/16/15	15 ± 1	20 ± 1	14 ± 1	13 ± 1	15 ± 1	15 ± 1
11/16/15 - 11/23/15	14 ± 1	14 ± 1	13 ± 1	15 ± 1	13 ± 1	19 ± 1
11/23/15 - 11/30/15	13 ± 1	19 ± 1	17 ± 1	17 ± 1	17 ± 1	16 ± 1
11/30/15 - 12/07/15	17 ± 1	22 ± 1	16 ± 1	18 ± 1	19 ± 1	20 ± 1
12/07/15 - 12/14/15	28 ± 2	27 ± 2	27 ± 2	26 ± 1	31 ± 2	31 ± 2
12/14/15 - 12/21/15	15 ± 1	14 ± 1	13 ± 1	11 ± 1	15 ± 1	14 ± 1
12/21/15 - 12/28/15	11 ± 1	16 ± 1	14 ± 1	15 ± 1	16 ± 1	13 ± 1

TABLE 6-7
ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - OFFSITE SAMPLE LOCATIONS - 2015

I-131 ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION									
DATE	R-1*	R-2*	R-3*	R-4*	R-5*	D-2	· E	F	G
12/30/14 - 01/06/15	< 24	< 24	< 26	< 17	< 40	< 39	< 40	< 40	< 25
01/06/15 - 01/13/15	< 29	< 30	< 31	< 23	< 22	< 45	< 45	< 45	< 30
01/13/15 - 01/20/15	< 31	< 31	< 31	< 21	< 47	< 38	< 39	< 39	< 32
01/20/15 - 01/27/15	, < 25	< 25	< 25	< 17	< 31	< 30	< 31	< 31	< 26
01/27/15 - 02/03/15	< 22	< 22	< 23	< 17	< 31	< 30	< 33	< 33	< 21
02/03/15 - 02/10/15	< 29	< 30	< 29	< 19	< 36	< 35	< 38	< 36	< 26
02/10/15 - 02/17/15	< 38	< 36	< 38	< 12	< 31	< 30	< 29	< 31	< 40
02/17/15 - 02/24/15	< 34	< 32	< 37	< 21	< 39	< 37	< 35	< 38	< 34
02/24/15 - 03/03/15	< 30	< 28	< 31	< 18	< 34	< 32	< 34	< 34	< 31
03/03/15 - 03/10/15	< 17	< 17	< 15	< 12	< 22	< 21	< 21	< 22	< 16
03/10/15 - 03/17/15	< 32	< 32	< 32	< 22	< 39	< 39	< 39	< 41	< 31
03/17/15 - 03/24/15	< 28	< 27	< 28	< 11	< 20	< 20	< 21	< 21	< 27
03/24/15 - 03/31/15	< 29	< 30	< 29	< 12	< 30	< 29	< 30	< 29	< 30
03/31/15 - 04/07/15	< 28	< 29	< 28	· < 11	< 21	< 21	< 21	< 20	< 29
04/07/15 - 04/14/15	< 20	< 20	< 20	< 8	< 18	< 18	< 19	< 18	(1)
04/14/15 - 04/21/15	< 19	< 20	< 8	< 25	< 26	< 26	< 11	< 26	< 20
04/21/15 - 04/28/15	< 49	< 49	< 50	< 15	< 38	< 38	< 39	< 38	< 50
04/28/15 - 05/05/15	< 32	< 31	< 32	< 12	< 22	< 21	< 22	< 22	< 32
05/05/15 - 05/12/15	< 42	< 39	< 40	< 13	< 31	< 31	< 30	< 31	< 16
05/12/15 - 05/19/15	< 22	< 24	< 24	< 11	< 29	< 29	< 30	< 29	< 24
05/19/15 - 05/27/15	< 16 _.	< 38	< 39	< 11	< 27	< 27	< 27	< 29	< 38
05/27/15 - 06/02/15	< 14	< 25	< 24	< 24	< 24	< 24	< 9	< 24	< 24
06/02/15 - 06/09/15	< 31	< 14	< 30	< 28	< 27	< 27	< 29	< 10	< 30
06/09/15 - 06/16/15	< 29	< 19	< 19	< 20	< 19	< 30	< 31	< 30	< 29
06/16/15 - 06/23/15	< 28	< 28	< 11	< 32	< 29	< 29	< 31	< 13	< 28
06/23/15 - 06/30/15	< 40	< 41	< 42	< 15	< 47	< 45	< 46	< 45	< 50

^{*} Sample required by the ODCM

⁽¹⁾ Low sample volume due to pump failure rendered data non viable.

TABLE 6-7
ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - OFFSITE SAMPLE LOCATIONS - 2015

I-131 ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION									
DATE	R-1*	R-2*	R-3*	R-4*	R-5*	D-2	E	F	<u>G</u>
06/30/15 - 07/07/15	< 24	< 24	< 23	< 9	< 23	< 23	< 24	< 23	< 24
07/07/15 - 07/14/15	< 30	< 30	< 16	< 36	< 34	< 34	< 18	< .35	< 30
07/14/15 - 07/21/15	< 26	< 26	< 11	< 14	< 28	< 27	< 28	< 27	< 26
07/21/15 - 07/28/15	< 16	< 16	< 16	< 11	< 22	< 22	< 23	< 22	< 16
07/28/15 - 08/04/15	< 23	< 36	< 37	< 37	< 36	< 32	< 30	< 28	< 21
08/04/15 - 08/11/15	< 33	< 33	< 26	< 36	< 19	< 34	< 34	< 37	< 39
08/11/15 - 08/18/15	< 28	< 28	< 33	< 36	< 37	< 15	< 35	< 37	< 30
08/18/15 - 08/25/15	< 24	< 24	< 25	< 18	< 18	< 10	< 17	< 18	< 24
08/25/15 - 09/01/15	< 63	< 64	< 28	< 42	< 42	< 40	< 16	< 42	< 66
09/01/15 - 09/08/15	< 25	< 26	< 11	< 23	< 23	< 22	< 22	< 13	< 26
09/08/15 - 09/15/15	< 35	< 36	< 38	< 42	< 44	< 42	< 17	< 42	< 37
09/15/15 - 09/22/15	< 21	< 8	< 22	< 14	< 34	< 33	< 33	< 33	< 22
09/22/15 - 09/29/15	< 28	< 28	< 29	< 26	< 26	< 26	< 26	< 10	< 29
09/29/15 - 10/06/15	< 52	< 53	< 54	< 17	< 39	< 40	< 40	< 40	< 53
10/06/15 - 10/13/15	< 19	< 20	< 20	< 27	< 11	< 28	< 28	< 28	< 8
10/13/15 - 10/20/15	< 34	< 35	< 35	< 12	< 31	< 31	< 31	< 31	< 35
10/20/15 - 10/27/15	< 48	< 51	< 48	< 18	< 33	< 33	< 34	< 33	< 47
10/27/15 - 11/03/15	< 22	< 24	< 23	< 37	< 36	< 36	< 37	< 15	< 23
11/03/15 - 11/10/15	< 45	< 49	< 48	< 19	< 47	< 47	< 48	< 49	< 48
11/10/15 - 11/17/15	< 16	< 42	< 41	< 34	< 59	< 59	< 60	< 29	< 41
11/17/15 - 11/24/15	< 25	< 67	< 65	< 41	< 16	< 38	< 39	< 49	< 65
11/24/15 - 12/01/15	< 27	< 29	< 29	< 19	< 19	< 7	< 19	< 22	< 28
12/01/15 - 12/08/15	< 42	< 46	< 46	< 40	< 21	< 39	< 40	< 42	< 47
12/08/15 - 12/15/15	< 37	< 40	< 40	< 18	< 43	< 43	< 44	< 44	< 40
12/15/15 - 12/22/15	< 39	< 39	< 40	< 45	< 47	< 23	< 44	< 45	< 39
12/22/15 - 12/29/15	< 22	< 23	< 23	< 17	< 40	< 38	< 39	< 38	< 23

^{*} Sample required by the ODCM

TABLE 6-8
ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - ONSITE SAMPLE LOCATIONS - 2015
I-131 ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION						
DATE	D-1	G	<u> </u>	1	J	K
12/29/14 - 01/05/15	< 39	< 14	< 16	< 41	< 41	< 40
01/05/15 - 01/12/15	< 31	< 11	< 13	< 32	< 32	< 32
01/12/15 - 01/19/15	< 44	< 15	< 18	< 46	< 45	< 45
01/19/15 - 01/26/15	< 28	< 11	< 11	< 28	< 30	< 30
01/26/15 - 02/02/15	< 30	< 10	< 12	< 31	< 31	< 29
02/02/15 - 02/09/15	< 22	< 16	< 19	< 7	< 19	< 17
02/09/15 - 02/16/15	< 33	< 18	< 28	< 11	< 37	< 37
02/16/15 - 02/23/15	< 37	< 13	< 17	< 42	< 39	< 37
02/23/15 - 03/02/15	< 30	< 12	< 31	< 30	< 28	< 12
03/02/15 - 03/09/15	< 19	< 8	< 8	< 21	< 21	< 20
03/09/15 - 03/16/15	< 32	< 15	< 33	< 32	< 13	< 32
03/16/15 - 03/23/15	< 36	< 13⊦	< 13	< 36	< 35	< 34
03/23/15 - 03/30/15	< 36	< 18	< 35	< 35	< 15	< 36
03/30/15 - 04/06/15	< 34	< 13	< 13	< 34	< 31	< 33
04/06/15 - 04/13/15	< 9	< 8	< 21	< 21	< 20	< 19
04/13/15 - 04/20/15	< 7	< 21	< 17	< 19	< 17	< 18
04/20/15 - 04/27/15	< 67	< 22	< 29	< 68	< 69	< 70
04/27/15 - 05/04/15	< 32	< 13	< 12	< 32	< 31	< 33
05/04/15 - 05/11/15	< 34	< 44	< 13	< 34	< 33	< 35
05/11/15 - 05/18/15	< 31	< 15	< 14	< 33	< 32	< 31
05/18/15 - 05/26/15	< 31	< 40	< 12	< 31	< 30	< 31
05/26/15 - 06/01/15	< 24	< 25	< 23	< 23	< 24	< 13
06/01/15 - 06/08/15	< 23	< 34	< 46	< 47	< 46	< 46
06/08/15 - 06/15/15	< 32	< 31	< 27	< 28	< 29	< 29
06/15/15 - 06/22/15	< 13	< 31	< 31	< 31	< 30	< 31
06/22/15 - 06/29/15	< 53	< 53	< 49	< 49	< 47	< 50

TABLE 6-8
ENVIRONMENTAL CHARCOAL CARTRIDGE SAMPLES - ONSITE SAMPLE LOCATIONS - 2015
I-131 ACTIVITY 10E-3 pCi/m³ ± 1 Sigma

COLLECTION DATE	D-1	G	Н		J	K
						:
06/29/15 - 07/06/15	< 31	< 11	< 31	< 31	< 33	< 31
07/06/15 - 07/13/15	< 54	< 33	< 24	< 54	< 54	< 54
07/13/15 - 07/20/15	< 14	< 29	< 26	< 26	< 27	< 27
07/20/15 - 07/27/15	< 9	< 10	< 22	< 22	< 22	< 22
07/27/15 - 08/03/15	< 38	< 22	< 25	< 38	< 38	< 38
08/03/15 - 08/10/15	< 13	< 16	< 33	< 32	< 32	< 33
08/10/15 - 08/17/15	< 10	< 13	< 25	< 25	< 24	< 25
08/17/15 - 08/24/15	< 25	< 11	< 9	< 24	< 24	< 25
08/24/15 - 08/31/15	< 44	< 66	< 44	< 43	< 17	< 45
08/31/15 = 09/08/15	< 24	< 22	< 24	< 24	< 23	< 10
09/08/15 - 09/15/15	< 37	< 18	< 14	< 35	< 35	< 37
09/14/15 - 09/21/15	< 27	< 23	< 15	< 27	< 27	< 28
09/21/15 - 09/28/15	< 21	< 12	< 21	< 8	< 20	< 21
09/28/15 - 10/05/15	< 68	< 23	< 26	< 67	< 67	< 67
10/05/15 - 10/12/15	< 32	< 20	< 14	< 32	< 32	< 32
10/12/15 - 10/19/15	< 26	< 15	< 27	<·26	< 25	< 9
10/19/15 - 10/26/15	< 46	< 20	< 17	< 46	< 45	< 48
10/26/15 - 11/02/15	< 51	< 9	< 21	< 54	< 53	< 52
11/02/15 - 11/09/15	< 49	< 21	< 47	< 50	< 48	< 20
11/09/15 - 11/16/15	< 31	< 42	< 12	< 31	< 3.1	< 32
11/16/15 - 11/23/15	< 52	< 67	< 20	< 54	< 55	< 58
11/23/15 - 11/30/15	< 31	< 12	< 30	< 31	< 31	< 13
11/30/15 - 12/07/15	< 42	< 26	< 22	< 42	< 42	< 44
12/07/15 - 12/14/15	< 32	< 18	< 32	< 33	< 13	< 36
12/14/15 - 12/21/15	< 45	< 18	< 17	< 46	< 46	< 48
12/21/15 - 12/28/15	< 21	< 10	< 8	< 21	< 21	< 21

^{**} Optional sample location

TABLE 6-9 CONCENTRATION OF GAMMA EMITTERS IN QUARTERLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2015

Results in Units of 10E-3 pCi/m³ ± 1 Sigma

OFFSITE SAMPLE LOCATIONS

SAMPLE LOCATION	COLLECTION DATE	Be-7	K-40	Mn-54	Co-58	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137
R-1*	12/30/14 - 03/31/15	115 ± 12	< 29	< 2	< 3	< 1	< 3	< 2	< 4	< 1	< 1
	03/31/15 - 06/30/15	81 ± 15	< 40	< 1	< 3	< 3	< 4	< 4 .	< 6	< 2	< 2
	06/30/15 - 09/29/15	141 ± 14	15 ± 7	< 1	< 2	< 1	< 2	< 2	< 4	< 1	< 1
	09/29/15 - 12/29/15	64 ± 15	< 36	< 2	< 3	< 2	< 6	< 4	< 5	< 2	< 2 _.
R-2*	12/30/14 - 03/31/15	76 ± 13	< 18	< 1	< 2	< 1	< 4	< 2	< 4	< 2	< 1
	03/31/15 - 06/30/15	87 ± 11	< 14	< 1	< 3	< 2	< 3	< 2	< 4	< 1	< 1
	06/30/15 - 09/29/15	97 ± 15	< 29	< 2	< 4	< 1	< 4	< 3	< 7	< 2	< 1
	09/29/15 12/29/15	91 ± 14	< 32	< 2	< 3	< 2	< 4	< 3	< 5	< 2	< 1
R-3*	12/30/14 - 03/31/15	90 ± 12	< 23	< 1	< 3	< 1	< 4	< 3	< 4	< 1	< 1
	03/31/15 - 06/30/15	108 ± 15	< 22	< 2	< 2	< 2	< 3	< 3	< 4	< 1	< 1
	06/30/15 - 09/29/15	87 ± 11	< 15	< 2	< 3	< 2	< 5	< 3	< 6	< 2	< 1
	09/29/15 - 12/29/15	90 ± 10	< 28	< 2	< 2	< 1	< 3	< 2	< 4	< 1	< 2
R-4*	12/30/14 - 03/31/15	78 ± 8	< 14	< 1	< 2	< 1	< 3	< 2	< 3	< 1	< 1
	03/31/15 - 06/30/15	78 ± 13	< 30 `	< 2	< 3	< 1	< 5	< 4	< 6	< 1	< 2
	06/30/15 - 09/29/15	106 ± 9	< 17	< 1	< 2	< 1	< 2	< 2	< 2	< 1	< 1
	09/29/15 - 12/29/15	76 ± 11	32 ± 6	< 1	< 2	< 2	< 5	< 2	< 4	< 1	< 1
R-5*	. 12/30/14 - 03/31/15	60 ± 16	< 26	< 1	< 2	< 1	< 3	< 2	< 5	< 1	< 1
	03/31/15 - 06/30/15	78 ± 13	< 30	< 1	< 3	< 1	< 4	< 3	< 4	< 1	< 2
	06/30/15 - 09/29/15	146 ± 13	< 23	< 1	< 2	< 1	< 3	< 2	< 4	< 1	< 1
	09/29/15 - 12/29/15	77 ± 13	< 37	< 2	< 4	< 2	< 6	< 4	< 7	< 3	< 2

^{*} Sample required by the ODCM

TABLE 6-9 (Continued) CONCENTRATION OF GAMMA EMITTERS IN QUARTERLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2015

Results in Units of 10E-3 pCi/m³ ± 1 Sigma

OFFSITE SAMPLE LOCATIONS

SAMPLE LOCATION	COLLECTION DATE	Be-7	K-40	Mn-54	Co-58	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137
D-2	12/30/14 - 03/31/15	67 ± 11	< 10	< 1	< 2	< 1	< 4	< 2	< 4	< 1	< 1
	03/31/15 - 06/30/15	84 ± 14	19 ± 7	< 2	< 2	< 1	< 5	< 4	< 5	< 1	< 1
	06/30/15 - 09/29/15	111 ± 13	17 ± 6	< 1	< 3	< 1	< 5	< 3	< 4	< 2	< 1
	09/29/15 - 12/29/15	76 ± 11	< 27	< 1	< 2	< 1	< 4	< 3	< 4	< 2	< 1
.E	12/30/14 - 03/31/15	121 ± 16	24 ± 7	< 1	< 2	< 1	< 4	< 3	< 5	< 1	< 1
	03/31/15 - 06/30/15	89 ± 13	< 25	< 1	< 2	< 1	< 3	< 2	< 2	< 1	< 1
	06/30/15 - 09/29/15	97 ± 14	26 ± 5	< 1	< 2	< 1	< 4	< 2	< 4	< 1	< 1
	09/29/15 - 12/29/15	71 ± 10	31 ± 6	< 2	< 2	< 1	< 4	< 2	< 3	< 2	< 1
·F	12/30/14 - 03/31/15	67 ± 10	< 10	< 1	< 2	< 1	< 3	< 2	< 4	< 1	< 1
	03/31/15 - 06/30/15	88 ± 15	17 ± 8	< 2	< 3	< 2	< 4	< 4	< 7	< 2	< 2
	06/30/15 - 09/29/15	109 ± 16	< 18	< 2	< 3	< 3	< 5	< 4	< 7	< 2	< 2
	09/29/15 - 12/29/15	60 ± 10	< 29	< 2	< 2	< 2	< 4	< 2	< 4	< 2	< 1 ,
G	12/30/14 - 03/31/15	.83 ± 11	12 ± 5	< 1	< 2	< 1	< 3	< 2	< 4	< 1	< 1
	03/31/15 - 06/30/15	103 ± 13	< 26	< 2	< 3	< 1	< 3	< 2	< 5	< 1	< 1
	06/30/15 - 09/29/15	125 ± 16	28 ± 9	< 2	< 4	< 2	< 5	< 3	< 8	< 2	< 2
	09/29/15 - 12/29/15	88 ± 9	31 ± 6	< 2	< 2	< 2	< 4	< 2	< 3	< 1	< 1

TABLE 6-9 (Continued) CONCENTRATION OF GAMMA EMITTERS IN QUARTERLY COMPOSITES OF JAF/NMPNS SITE AIR PARTICULATE SAMPLES - 2015

Results in Units of 10E-3 pCi/m³ ± 1 Sigma

ONSITE SAMPLE LOCATIONS

SAMPLE LOCATION	COLLECTION DATE	Be-7	K-40	Mn-54	Co-58	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-13
D-1	12/29/14 - 03/30/15	83 ± 9	< 12	< 1	< 2	< 1	< 2	< 2	< 3	< 1	< 1
	03/30/15 - 06/29/15	121 ± 17	< 16	< 1	< 2	< 1	< 3	< 3	< 5	< 1	< 1
	06/29/15 - 09/28/15	152 ± 14	< 17	< 1	< 1	< 1	< 4	< 2	< 4	< 1	< 1
	09/28/15 - 12/28/15	69 ± 15	< 35	< 3	< 5	< 2	< 6	< 3	< 6	< 3	< 2
G	12/29/14 - 03/30/15	83 ± 11	< 21	< 2	< 2	< 1	< 4	< 3	< 4	< 1	< 1
	03/30/15 - 06/29/15	84 ± 13	< 32	< 2	< 2	< 2	< 6	< 2	< 6	< 2	< 2
	06/29/15 - 09/28/15	97 ± 12	< 30	< 1	< 2	< 1	< 4	< 3	< 4	< 2	< 2
	09/28/15 - 12/28/15	98 ± 11	< 24	< 1	< 2	< 1	< 3	< 2	< 3	< 1	< 1
Н	12/29/14 - 03/30/15	89 ± 9	< 17	< 1	< 2	< 1	< 2	< 1	< 3	< 1	< 1
	03/30/15 - 06/29/15	68 ± 12	< 29	< 1	< 3	< 2	< 5	< 4	< 5	< 2	< 1
	06/29/15 - 09/28/15	125 ± 12	< 16	< 1	< 2	< 1	< 3	< 2	< 4	< 1	< 1
	09/28/15 - 12/28/15	53 ± 11	< 31	< 2	< 3	< 2	< 6	< 3	< 4	< 2	< 2
1	12/29/14 - 03/30/15	73 ± 11	< 21	< 1	< 2	< 1	< 3	< 2	< 4	< 1	< 1
	03/30/15 - 06/29/15	77 ± 11	< 30	< 3	< 4	< 2	< 5	< 3	< 5	< 2	< 2
	06/29/15 - 09/28/15	135 ± 20	18 ± 7	< 2	< 4	< 2	< 5	< 4	< 7	< 2	< 2
	09/28/15 - 12/28/15	89 ± 15	< 31	< 2	< 3	< 2	< 6	< 3	< 6	< 2	< 2
J	12/29/14 - 03/30/15	106 ± 12	< 16	< 2	< 2	< 1	< 2	< 3	< 4	< 1	< 1
	03/30/15 - 06/29/15	80 ± 16	< 34	< 2	< 3	< 2	< 4	< 2	< 5	< 2	< 2
	06/29/15 - 09/28/15	117 ± 14	< 11	< 2	< 3	< 2	< 5	< 4	< 5	< 2	< 2
	09/28/15 - 12/28/15	68 ± 12	< 18	< 1	< 2	< 2	< 3	< 3	< 4	< 2	< 1
К	12/29/2014 - 3/30/2015	85 ± 13	< 25	< 1	< 2	< 1	< 3	< 3	< 5	< 2	< 1
	03/30/15 - 6/29/2015	100 ± 14	< 35	< 1	< 2	< 2	< 4	< 4	< 4	< 1	< 1
	6/29/2015 - 9/28/2015	153 ± 13	< 21	< 1	< 2	< 1	< 2	< 3	< 4	< 1	< 1
	9/28/2015 - 12/28/2015	96 ± 10	< 29	< 2	< 2	< 2	< 4	< 2	< 4	< 2	< 1

Optional sample location

TABLE 6-10
DIRECT RADIATION MEASUREMENT RESULTS - 2015

Results in mrem/std. Month ± 1 Sigma

LOCATIO	ON	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC	DEGREES & DISTANCE
NO.	DESCRIPTION					(1) & (2)
3	D1 Onsite	11.2	12.8	11.0	13.2	73° at 0.3 miles
4	D2 Onsite	3.4	5.1	4.2	4.9	143° at 0.4 miles
5	E Onsite	3.4	5.1	4.3	5.0	150° at 0.4 miles
6	F Onsite	2.8	4.3	3.7	4.4	213° at 0.5 miles
7*	G Onsite	3.0	4.4	3.4	4.2	244° at 0.7 miles
8*	R-5 Offsite Control	3.6	5.1	4.8	5.4	42° at 16.2 miles
.9	D1 Offsite - State Route 3	3.2	4.3	· 4.1	4.4	80° at 11.4 miles
10	D2 Offsite	3.0	4.2	3.7	4.3	118° at 9.0 miles
11	E Offsite	3.0	4.2	3.8	4.3	162° at 7.1 miles
12	F Offsite	3.3	4.3	3.9	4.5	192° at 7.7 miles
13	G Offsite	3.5	4.3	3.9	4.5	226° at 5.4 miles
14*	DeMass Rd., SW Oswego - Control	3.3	4.4	4.1	4.5	227° at 12.5 miles
15*	Pole 66, W. Boundary - Bible Camp	3.2	4.2	3.5	4.2	240° at 0.9 miles
18*	Energy Info. Center - Lamp Post, SW	3.5	5.1	4.2	5.0	266° at 0.5 miles
19	East Boundary - JAF, Pole 9	3.5	4.7	4.6	4.9	83° at 1.4 miles
23*	H Onsite	3.9	5.6	4.8	5.6	74° at 0.8 miles
24	l Onsite	3.5	4.8	4.2	4.7	96° at 0.8 miles
25	J Onsite	3.3	4.8	4.1	4.7	110° at 0.9 miles
26	K Onsite	3.2	4.8	4.0	4.6	133° at 0.5 miles
27	N. Fence, N. of Switchyard, JAF	20.1	19.3	19.4	21.9	60° at 0.4 miles
28	N. Light Pole, N. of Screenhouse, JAF	21.0	22.8	23.6	28.8	68° at 0.5 miles
29	N. Fence, N. of W. Side	21.0	22.1	20.6	23.7	65° at 0.5 miles
30	N. Fence, (NW) JAF	10.9	12.3	11.0	11.6	57° at 0.4 miles
31	N. Fence, (NW) NMP-1	5.8	7.2	6.5	7.0	278° at 0.2 miles
39	N. Fence, Rad Waste-NMP-1	7.7	10.0	8.7	10.3	296° at 0.2 miles
47	N. Fence, (NE) JAF	5.7	7.1	6.1	6.9	69° at 0.6 miles
49*	Phoenix, NY - Control	3.0	4.0	3.6	4.0	168° at 19.7 miles
51	Liberty & Bronson Sts., E. of OSS	3.3	4.5	4.0	4.3	234° at 7.3 miles
52	E. 12th & Cayuga Sts., Oswego School	3.3	4.3	3.8	4.2	227° at 5.9 miles
53	Broadwell & Chestnut Sts., Fulton H.S.	3.3	4.6	4.4	4.5	183° at 13.7 miles
54	Mexico High School	3.1	4.1	3.8	4.3	115° at 9.4 miles
55	Gas Substation Co. Rt. 5 - Pulaski	3.1	4.2	4.0	4.2	75° at 13.0 miles
56*	Rt. 104 - New Haven Sch. (SE Corner)	2.5	4.2	3.8	4.2	124° at 5.2 miles
58*	Co. Rt. 1A - Novelis (E. of E. Entrance Rd.)	3.2	4.6	4.2	4.6	222° at 3.0 miles
75*	Unit 2, N. Fence, N. of Reactor Bldg.	6.3	8.3	7.0	7.6	354° at 0.1 miles
76*	Unit 2, N. Fence, N. of Change House	4.9	6.4	5.4	6.2	27° at 0.1 miles

⁽¹⁾ Direction and distance based on NMP-2 reactor centerline

⁽²⁾ Degrees and distances updated by Global PositioningSystem (GPS) in 2006.

^{*} TLD required by ODCM

TABLE 6-10
DIRECT RADIATION MEASUREMENT RESULTS - 2015

Results in mrem/std. Month ± 1 Sigma

LOCATION	ON	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC	DEGREES & DISTANCE
NO.	DESCRIPTION					(1) & (2)
77*	Unit 2, N. Fence, N. of Pipe Bldg.	5.4	6.9	6.0	6.8	37° at 0.2 miles
78*	JAF E. of E. Old Lay Down Area	3.3	4.8	4.3	4.9	86° at 1.0 miles
79*	Co. Rt. 29, Pole #63, 0.2 mi. S. of Lake Rd.	2.9	4.4	3.6	4.2	121° at 1.2 miles
80*	Co. Rt. 29, Pole #54, 0.7 mi. S. of Lake Rd.	3.0	4.5	3.8	4.4	136° at 1.5 miles
81*	Miner Rd., Pole # 16, 0.5 mi. W. of Rt. 29	3.1	4.5	3.7	4.3	160° at 1.6 miles
82*	Miner Rd., Pole # 1-1/2, 11 mi. W. of Rt. 29	3.0	4.5	3.7	4.2	180° at 1.6 miles
83*	Lakeview Rd., Tree 0.45 mi. N. of Miner Rd.	3.0	4.5	3.6	4.2	203° at 1.2 miles
84*	Lakeview Rd., N., Pole #6117, 200ft. N. of Lake Rd.	3.2	4.5	3.9	4.5	225° at 1.1 miles
85*	Unit 1, N. Fence, N. of W. Side of Screen House	7.2	8.5	7.1	8.2	290° at 0.2 miles
86*	Unit 2, N. Fence, N. of W. Side of Screen House	6.8	8.9	7.5	8.5	310° at 0.1 miles
87*	Unit 2, N. Fence, N. of E. Side of Screen House	6.9	8.9	7.5	8.4	332° at 0.1 miles
88*	Hickory Grove Rd., Pole #2, 0.6 mi. N. of Rt. 1	3.1	4.3	3.9	4.3	97° at 4.5 miles
89*	Leavitt Rd., Pole # 16, 0.4 mi. S. of Rt. 1	3.3	4.6	4.4	4.6	112° at 4.3 miles
90*	Rt. 104, Pole #300, 150ft. E. of Keefe Rd.	2.9	4.4	3.9	4.4	135° at 4.2 miles
91*	Rt. 51A, Pole #59, 0.8 mi. W. of Rt. 51	2.9	4.1	3.8	4.1	157° at 4.9 miles
92*	Maiden Lane Rd., Power Pole, 0.6 mi. S. of Rt. 104	3.2	4.8	4.3	4.8	183° at 4.5 miles
93*	Rt. 53, Pole 1-1, 120ft. S. of Rt. 104	3.4	4.4	3.9	4.4	206° at 4.4 miles
94*	Rt. 1, Pole #82, 250ft. E. of Kocher Rd. (Co. Rt. 63)	3.0	4.3	3.7	4.3	224° at 4.4 miles
95*	Novelis W. Access Rd., Joe Fultz Blvd., Pole #21	3.0	3.9	3.3	4.0	239° at 3.7 miles
96*	Creamery Rd., 0.3 mi. S. of Middle Rd., Pole 1-1/2	3.1	4.2	3.8	4.2	199° at 3.7 miles
97*	Rt. 29, Pole # 50, 200ft. N. of Miner Rd.	2.8	4.6	3.8	4.4	145° at 1.8 miles
98*	Lake Rd., Pole #145, 0.15 mi. E. of Rt. 29	3.2	4.5	4.1	4.3	103° at 1.2 miles
99	NMP Rd., 0.4 mi. N. of Lake Rd., Env. Station R1	3.2	4.6	4.3	4.7	92° at 1.8 miles
100	Rt. 29 & Lale Rd. Env. Station R2	3.3	4.8	3.9	4.7	106° at 1.1 miles
101	Rt. 29, 0.7 mi. S. of Lake Rd. Env. Station R3	2.8	4.2	3.5	4.0	133° at 1.4 miles
102	EOF/Env. Lab, Rt. 176, E. Driveway, Lamp Post	3.1	4.4	3.9	4.3	175° at 11.9 miles
103	EIC, East Garage Rd., Lamp Post	3.7	5.0	4.3	5.0	268° at 0.4 miles
104	Parkhurst Rd., Pole #23, 0.1 mi. S. of Lake Rd.	3.0	4.3	4.0	4.4	102° at 1.4 miles
105	Lakeview Rd., Pole #36, 0.5 mi. S. of Lake Rd.	3.1	4.5	3.8	4.3	199° at 1.4 miles
106	Shoreline Cove, W. of NMP-1, Tree on W. Edge	3.8	5.3	4.8	5.4	272° at 0.3 miles
107	Shoreline Cove, W. of NMP-1, 30ft. SSW of #106	3.9	5.5	4.6	5.4	271° at 0.3 miles
108	Lake Rd., Pole #142, 300ft. E. of Rt. 29 S.	3.2	4.5	4.0	4.5	105° at 1.1 miles
109	Tree North of Lake Rd., 300ft. E. of Rt. 29 N.	3.3	4.5	4.1	4.4	104° at 1.1 miles
111	Control, State Route 38, Sterling, NY	2.9	4.1	3.6	4.0	214° at 21.8 miles
112	EOF/Env. Lab, Oswego County Airport	3.2	4.1	3.5	4.0	175° at 11.9 miles
113	Control, Baldwinsville, NY	3.0	4.0	3.5	4.0	178° at 24.7 miles

⁽¹⁾ Direction and distance based on NMP-2 reactor centerline

⁽²⁾ Degrees and distances updated by Global PositioningSystem (GPS) in 2006.

^{*} TLD required by ODCM

TABLE 6-11
CONCENTRATIONS OF IODINE-131 AND GAMMA EMITTERS IN MILK - 2015

Results in Units of pCi/liter ± 1 Sigma

SAMPLE LOCATION	COLLECTION DATE	I-131	K-40	Cs-134	Cs-137	Ba-La-140	Others †
Sample Loca	ation 55**					•	
	04/06/15	< 0.3	1408 ± 86	< 9	< 9	< 10 ·	<lld< td=""></lld<>
	04/20/15	< 0.6	1423 ± 75	< 5	< 6 `	< 7	<lld< td=""></lld<>
	05/04/15	< 0.3	1278 ± 97	< 6	< 8	< 15	<lld< td=""></lld<>
	05/18/15	< 0.5	1341 ± 79	< 11	< 10	< 12	<lld< td=""></lld<>
	06/01/15	· < 0.3	1426 ± 95	< 6	< 8	< 14	<lld< td=""></lld<>
	06/22/15	< 0.6	1438 ± 75	< 5	< 6	< 8°	<lld< td=""></lld<>
	07/06/15	< 0.5	1480 ± 92	< 6	< 7	< 11	<lld< td=""></lld<>
*	07/20/15	< 0.3	1324 ± 97	< 8	< 9	< 12	<lld< td=""></lld<>
	08/03/15	< 0.7	1688 ± 99	< 9	< 8	< 11	<lld< td=""></lld<>
	08/17/15	< 0.3	1197 ± 95	< 7	< 8	< 6	<lld< td=""></lld<>
	09/08/15	< 0.5	1322 ± 120	< 9	< 10	< 15	<lld< td=""></lld<>
	09/21/15	< 0.6	1378 ± 69	< 5	< 6	< 8	<lld< td=""></lld<>
٠.	10/05/15	< 0.4	1253 ± 129	< 11	< 13	< 14	<lld< td=""></lld<>
	10/19/15	< 0.7	1337 ± 97	< 7	< 8	< 13	<lld< td=""></lld<>
	11/02/15	< 0.6	1467 ± 93	. < 4	< 6	< 8	<lld< td=""></lld<>
	11/16/15	< 0.4	1379 ± 66	< 5	< 5	< 4	<lld< td=""></lld<>
	12/01/15	< 0.7	1458 ± 109	< 9	< 8	< 15	<lld< td=""></lld<>
	12/16/15	< 0.7	1173 ± 116	< 10	< 10	< 9	<lld< td=""></lld<>

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-11
CONCENTRATIONS OF IODINE-131 AND GAMMA EMITTERS IN MILK - 2015

Results in Units of pCi/liter ± 1 Sigma

SAMPLE LOCATION	COLLECTION DATE	I-131	K-40	Cs-134	Cs-137	Ba-La-140	Others †
Sample Loca	ation 77(Control)**						
	04/06/15	< 0.3	1339 ± 95	< 5.8	< 7.4	< 9.2	<lld< td=""></lld<>
	04/20/15	< 0.5	1483 ± 91	< 7.8	< 8.8	< 8.6	<lld< td=""></lld<>
	05/04/15	< 0.5	1385 ± 68	< 4.9	< 5.7	< 11	<lld< td=""></lld<>
	05/18/15	< 0.5	1153 ± 74	< 8.2	< 8.8	< 11	<lld< td=""></lld<>
	06/01/15	< 0.3	1440 ± 87	< 6.7	< 10	< 9.6 [`]	<lld< td=""></lld<>
	06/22/15	< 0.5	1169 ± 94	< 9.2	< 10	< 10	<lld< td=""></lld<>
	07/06/15	< 0.4	1424 ± 62	< 6	< 6	< 8	<lld< td=""></lld<>
	07/20/15	< 0.3	1473 ± 103	< 8	< 10	< 10	<lld< td=""></lld<>
	08/03/15	< 0.6	1328 ± 87	< 6	< 7	< 9	<lld< td=""></lld<>
	08/17/15	< 0.4	1209 ± 103	< 8	< 9	< 10	<lld< td=""></lld<>
	09/08/15	< 0.7	1366 ± 129	< 9	< 6	< 8	<lld< td=""></lld<>
	09/21/15	< 0.4	1339 ± 74	< 6	< 8	< 7	<lld< td=""></lld<>
	10/05/15	< 0.4	1547 ± 136	< 11	< 11	< 7	<lld< td=""></lld<>
•	10/19/15	< 0.9	1316 ± 148	< 10	< 13	< 14	<lld< td=""></lld<>
	11/02/15	< 0.5	1291 ± 75	< 6	< 8	< 11	<lld< td=""></lld<>
	11/16/15	< 0.4	1470 ± 71	< 6	< 6	< 7	<lld< td=""></lld<>
	12/01/15	< 0.7	1169 ± 111	< 10	< 12	< 12	<lld< td=""></lld<>
	12/16/15	< 0.6	1379 ± 83	< 6	< 7	< 11	<lld< td=""></lld<>

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-12 CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCTS - 2015

Results in Units of pCi/kg (wet) ± 1 Sigma

SAMPLE LOCATION**	COLLECTION DATE	•	Be-7	K-40	Zn-65	I-131	Cs-134	Cs-137	Others †
CONTROL (C2*)		4 - 1							
	09/23/15	GRAPE LEAVES	883 ± 136	2881 ± 351	< 85	< 51	< 35	< 32	<lld< td=""></lld<>
	09/23/15	HORSERADISH LEAVES	< 390	4890 ± 405	< 106	< 51	< 32	< 41	<lld< td=""></lld<>
	09/23/15	CABBAGE	1490 ± 192	3770 ± 294	< 79	< 53	< 27	< 33	<lld< td=""></lld<>
INDICATOR (144*)									
	09/09/15	HORSERADISH LEAVES	458 ± 104	4793 ± 269	< 55	< 34	< 21	< 20	<lld< td=""></lld<>
	09/09/15	CABBAGE	322 ± 97	2271 ± 257	< 61	< 40	< 29	< 26	<lld< td=""></lld<>
	09/09/15	SQUASH	858 ± 157	2465 ± 228	< ·53	< 44	< 22	< 28	<lld .<="" td=""></lld>
INDICATOR (134**)									
	09/09/15	GRAPE LEAVES	969 ± 106	2615 ± 208	< 47	< 38	< 16	< 23	<lld .<="" td=""></lld>
INDICATOR (484**)	•				•				
*	09/09/15	RHUBARB LEAVES	229 ± 90	4897 ± 255	< 44	< 38.	< 18	< 21	<lld< td=""></lld<>
	09/09/15	BEAN LEAVES	925 ± 110	1487 ± 163	< 39	< 31	< 20	< 23	<lld< td=""></lld<>
	09/09/15	HORSERADISH LEAVES	411 ± 116	3759 ± 275	< 45	< 37	< 27	< 26	<lld< td=""></lld<>

^{*} Sample required by the ODCM

^{**} Corresponds to sample location noted on Figure 3.3-5

[†] Plant related radionuclides

TABLE 6-13 MILK ANIMAL CENSUS 2015

Town or Area ^(a)	Location Designation ⁽¹⁾	Degrees ⁽²⁾	Distance ⁽²⁾ (Miles)	Number of Milk Animals (Cows)
Richland	80	89°	9.7	20
New Haven	64	108°	7.8	48
Mexico	14 55* 72	125° 97° 100°	9.1 8.8 9.6	54 65 30 ···
Granby (Control)	77**	190°	16.0	· 53

MILKING ANIMAL TOTALS:

270

(including control locations)

MILKING ANIMAL TOTALS:

217

(excluding control locations)

NOTES:

- * Milk sample location
- ** Milk sample control location
- (1) Reference Figure 3.3-4
- (2) Degrees and distance are based on NMP-2 Reactor Building centerline
- (a) Census performed out to a distance of approximately 10 miles

TABLE 6-14 RESIDENCE CENSUS 2015

Meteorological Sector	Location	Map Location ⁽¹⁾	Direction ⁽²⁾	Distance ⁽²⁾
N	»k	<u>.</u>	-	-
NNE	*	-	-	-
NE	*	-	-	-
ENE	. *	-		-
E	116 Lake Road	A	100°	1.3 miles
ESE	161 Lake Road	В	104°	1.11 miles
SE	1216 County Route 29	С	125°	1.4 miles
SSE	268 Miner Road	D	158°	1.7 miles
S	356 Miner Road	Е	171°	1.6 miles
SSW	281 Lakeview Road	F	208°	1.2 miles
SW	319 Lakeview Road	G	217°	1.1 miles
WSW	Bayshore Drive	Н	237°	1.4 miles
W	*	_		·
WNW	*	<u>-</u>	-	-
NW	*	-	-	-
NNW	*	-	-	/ -

NOTES:

- * This meteorological sector is over Lake Ontario. There is no residence within five miles
 (1) Corresponds to Figure 3.3-6
 (2) Direction and distance are based on NMPNS Reactor Building centerline

7.0 HISTORICAL DATA TABLES

Sample Statistics from Previous Environmental Sampling

The mean, minimum value and maximum value were calculated for selected sample mediums and isotopes.

Special Considerations:

- 1. Sample data listed as 1969 was taken from the <u>NINE MILE POINT</u>, <u>PREOPERATION SURVEY</u>, 1969 and <u>ENVIRONMENTAL MONITORING REPORT FOR NIAGARA MOHAWK POWER CORPORATION NINE MILE POINT NUCLEAR STATION</u>, <u>NOVEMBER</u>, 1970.
- 2. Sample results listed as 1974 and 1975 were taken from the respective Annual Radiological Environmental Operating Reports for Nine Mile Point Unit 1 Nuclear Station. Sample results listed as 1986 through the current year were taken from the respective Nine Mile Point Nuclear Power Station Annual Radiological Environmental Operating Reports.
- 3. Only measured values were used for statistical calculations.

TABLE 7-1 HISTORICAL ENVIRONMENTAL SAMPLE DATA SHORELINE SEDIMENT (CONTROL) $^{(a)}$

	Cs-	-137 (pCi/g (dı	ry))	Co	o-60 (pCi/g (dr	y))
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1979 ^(b) 1980 1981 1982 1983 1984	0.22 0.07 LLD 0.05 LLD LLD	0.22 0.09 LLD 0.05 LLD LLD	0.22 0.08 LLD 0.05 LLD LLD	LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD
1984 1985 1986 1987 1988 1989	LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD
1991 1992 1993 1994 1995	LLD LLD 0.03 LLD LLD	LLD LLD 0.03 LLD LLD	LLD LLD 0.03 LLD LLD LLD	LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD
1996 1997 1998 1999 2000 2001	LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD
2002 2003 2004 2005 2006 2007 2008	LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD
2008 2009 2010 2011 2012 2013 2014 2015	LLD LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD LLD	LLD LLD LLD LLD LLD LLD LLD LLD LLD

⁽a) Control location was at an area beyond the influence of the site (westerly direction).(b) Sampling was initiated in 1979. Sampling was not required prior to 1979.

TABLE 7-2 HISTORICAL ENVIRONMENTAL SAMPLE DATA SHORELINE SEDIMENT (INDICATOR) (a)

	Cs	-137 (pCi/g (dı	Ci/g (dry))		y))	
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1985 ^(b)	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	0.25	0.34	0.30	LLD	LLD	LLD
1990	0.28	0.28	0.28	LLD	LLD	LLD
1991	0.11	0.16	0.14	LLD	LLD	LLD
1992	0.10	0.16	0.13	LLD	LLD	LLD
1993	0.17	0.49	0.33	LLD	LLD	LLD
1994	0.08	0.39	0.24	LLD	LLD `	LLD
1995	0.16	0.17	0.16	LLD	LLD	LLD
1996	0.13	0.18	0.16	LLD	LLD	LLD
1997	0.13	0.18	0.16	LLD	LLD	LLD
1998	0.07	0.07	0.07	LLD	LLD	LLD
1999	0.06	0.09	0.08	LLD	LLD	LLD
2000	0.06	0.08	0.07	LLD	LLD	LLD
2001	0.06	0.07	0.07	LLD	LLD	LLD
2002	0.05	0.05	0.05	LLD	LLD	LLD
2003	0.04	0.05	0.05	LLD	LLD	LLD
2004	0.04	0.04	0.04	LLD	LLD	LLD
2005	0.06	0.09	0.08	LLD	LLD	LLD
2006	0.06	0.06	0.06	LLD	LLD	LLD
2007	0.04	0.04	0.04	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD	LLD
2015	LLD	LLD	LLD	LLD	LLD	LLD

⁽a) Location was offsite at Sunset Beach (closest location with recreational value).(b) Sampling initiated in 1985 as required by Technical Specifications requirements.

TABLE 7-3
HISTORICAL ENVIRONMENTAL SAMPLE DATA
FISH (CONTROL) (a)

	Cs-137	Cs-137 (pCi/g (wet))				
YEAR	MIN.	MAX.	MEAN			
1976	1.2	1.2	1.2			
1977	0.13	0.13	0.13			
1978	0.04	0.20	0.09			
1979	0.03	0.06	0.04			
1980	0.03	0.11	0.06			
1981	0.028	0.062	0.043			
1982	0.027	0.055	0.046			
1983	0.041	0.057	0.049			
1984	0.015	0.038	0.032			
1985	0.026	0.047	0.034			
1986	0.021	0.032	0.025			
1987	0.017	0.040	0.031			
1988	0.023	0.053	0.033			
1989	0.020	0.033	0.029			
1990	0.025	0.079	0.043			
1991	0.016	0.045	0.030			
1992	0.019	0.024	0.022			
1993	0.023	0.041	0.032			
.1994	0.012	0.035	0.024			
1995	0.014	0.020	0.016			
1996	0.014	0.018	0.016,			
1997	0.019	0.043	0.031			
1998	0.013	0.013	0.013			
1999	LLD	LLD	LLD			
2000	0.021	0.021	0.021			
2001	LLD	LLD	LLD			
2002	LLD	LLD	LLD			
2003	LLD	LLD	LLD			
2004	LLD	LLD	LLD			
2005	LLD	LLD	LLD			
2006	LLD	LLD	LLD			
2007	LLD	LLD	LLD			
2008	LLD	LLD	LLD			
2009	LLD	LLD	LLD			
2010	LLD	LLD	LLD			
2011	LLD	LLD	LLD			
2012	LLD	LLD	LLD			
2013	LLD	LLD	LLD			
2014	LLD	LLD .	LLD			
2015	LLD	LLD	LLD			

⁽a) Control location was at an area beyond the influence of the site (westerly direction).

TABLE 7-4
HISTORICAL ENVIRONMENTAL SAMPLE DATA FISH (INDICATOR) (a)

	Cs-137 (pCi/g (wet))			
YEAR	MÍN.	MAX.	MEAN	
1976	0.5	3.9	1.4	
1977	0.13	0.79	0.29	
1978	0.03	0.10	0.08	
1979	0.02	0.55	0.10	
1980	0.03	0.10	0.06	
1981	0.03	0.10	0.06	
1982	0.034	0.064	0.048	
1983	0.033	0.056	0.045	
1984	0.033	0.061	0.043	
1985	0.018	0.044	0.030	
1986	0.009	0.051	0.028	
1987	0.024	0.063	0.033	
1988	0.020	0.074	0.034	
1989	0.020	0.043	0.035	
1990	0.024	0.115	0.044	
1991	0.021	0.035	0.027	
1992	0.013	0.034	0.026	
1993	0.021	0.038	0.030	
1994	0.011	0.028	0.020	
1995	0.016	0.019	0.018	
1996	0.014	0.016	0.015	
1997	0.015	0.017	0.016	
1998	0.021	0.021	0.021	
1999	0.016	0.018	0.017	
2000	LLD	LLD	LLD	
2001	LLD	LLD	LLD	
2002	0.016	0.016	0.016	
2003	LLD	LLD	LLD	
2004	LLD	LLD	LLD	
2005	LLD	LLD	LLD	
2006	LLD	LLD	LLD	
2007	LLD	LLD	LLD	
2008	LLD	LLD	LLD	
2009	LLD	LLD	LLD	
2010	LLD	LLD	LLD	
2011	LLD	LLD	LLD	
2012	LLD	LLD	LLD	
2013	LLD	LLD	LLD	
2014	LLD	LLD	LLD	
2015	LLD	LLD	LLD	

⁽a) Indicator locations are in the general area of the NMP1 and J. A. FitzPatrick cooling water discharge structures.

TABLE 7-5 HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER (CONTROL) (a)

	C	Cs-137 (pCi/liter)			Co-60 (pCi/liter)	
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	(b)	(b)	(b)	(b)	(b)	(b)
1977	(c)	(c)	(c)	(c)	(c)	(c)
1978	LĽĎ	LĽĎ	LĽĎ	(c)	(c)	(c)
1979	2.5	2.5	2.5	LĽĎ	LĽĎ	LĽĎ
1980	LLD	LLD	LLD	LLD	LLD	LLD
1981	LLD	LLD	LLD	1.4	1.4	1.4
1982	LLD	LLD	LLD	LLD	LLD	LLD
1983	LLD	LLD	-LLD	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	ĽLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	ĹLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD '	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD
2007	LLD	LLD	LLD	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD	LLD
2015	LLD	LLD	LLD	LLD	LLD	LLD

Location was the City of Oswego Water Supply for 1976 – 1984, and the Oswego Steam Station inlet canal for 1985 – 2014.

No gamma analyses performed (not required).

Data showed instrument background results. (a)

⁽b)

TABLE 7-6 HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER (INDICATOR) (a)

	C	s-137 (pCi/lite	r)	Co-60 (pCi/liter))
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	(b)	(b)	(b)	(b)	(b)	(b)
1977	(c)	(c)	(c)	(c)	(c)	(c)
1978	LLD	LLD	LLD	(c)	(c)	(c)
1979	LLD	LLD	LLD	LLD	LLD	LLD
1980	LLD	LLD	LLD	LLD	LLD	LLD
1981	LLD	LLD	LLD	LLD	LLD	LLD
1982	0.43	0.43	0.43	1.6	2.4	1.9
1983	LLD	LLD	LLD	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	LLD	LLD	LLD	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LĹD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD .	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	ĻLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD
2007	LLD	LLD	LLD	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD	LLD
2015	LLD	LLD	LLD	LLD	LLD	LLD

⁽a)

Location was the J. A. FitzPatrick inlet canal. No gamma analyses performed (not required). Data showed instrument background results. (b)

⁽c)

TABLE 7-7

HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER TRITIUM (CONTROL) (a)

	TRITIUM (pCi/liter)				
YEAR	MIN.	MAX.	MEAN		
1976	440	929	652		
1977	300	530	408		
1978	215	490	304		
1979	174	308	259		
1980	211	290	257		
1981	211	328	276		
1982	112	307	165		
1983	230	280	250		
1984	190	220	205		
1985	230	370	278		
1986	250	550	373		
1987	140	270	210		
1988	240	460	320		
1989	180	660	373		
1990	260	320	290		
1991	180	200	190		
1992	190	310	242		
1993	160	230	188		
1994	-250	250	250		
1995	230 ·	230	230		
1996	LLD	LLD	LLD		
1997	LLD	LLD	LLD		
1998	190	190	190		
1999	220	510	337		
2000	196	237	- 212		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		
2007	LLD	ĹLD	LLD .		
2008	LLD	LLD	LLD		
2009	LLD	LLD	LLD		
2010	LLD	LLD	LLD		
2011	LLD	LLD	LLD		
2012	LLD	LLD	LLD		
2013	LLD	LLD	LLD		
2014	LLD	LLD	LLD		
2015	LLD	LLD	· LLD		

⁽a) Control location is the City of Oswego drinking water for 1976 – 1984, and the Oswego Steam Station inlet canal for 1985 – Present.

TABLE 7-8 HISTORICAL ENVIRONMENTAL SAMPLE DATA SURFACE WATER TRITIUM (INDICATOR) (a)

	TRITIUM (pCi/liter)				
YEAR	MIN.	MAX.	MEAN		
1976	365	889	627		
1977	380	530	455		
1978	377	560	476		
1979	176	276	228		
1980	150	306	227		
1981	212	388	285		
1982	194	311	266		
1983	249	560	347		
1984	110	370	280		
1985	250	1200 ^(b)	530		
1986	260	500	380		
1987	160	410	322		
1988	430	480	460		
1989	210	350	280		
1990	220	290	250		
1991	250	390	310		
1992	240	300	273		
1993	200	. 280	242		
1994	180	260	220		
1995	320	320	320		
1996	LLD	LLD	, LLD		
1997	160	160	160		
1998	190	190	190		
1999	180	270	233		
2000	161	198	185		
2001	LLD	LLD	LLD		
2002	297	297	297		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD ,	LLD	LLD		
2007	LLD	LLD	LLD		
2008	LLD	LLD	LLD		
2009	LLD	LLD	LLD		
2010	LLD	LLD	LLD		
2011	LLD	LLD	LLD		
2012	LLD	LLD	LLD		
2013	LLD	LLD	LLD		
2014	LLD	LLD	LLD		
2015	LLD	LLD	LLD		

⁽a) Indicator location is the FitzPatrick inlet canal.(b) Suspect sample contamination. Recollected samples showed normal levels of tritium.

TABLE 7-9
HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATE GROSS BETA (CONTROL) (a)

	GROSS BETA (pCi/m³)				
YEAR	MIN.	MAX.	MEAN		
1977	0.001	0.484	0.125		
1978	0.01	0.66	0.16		
1979	0.010	0.703	0.077		
1980	0.009	0.291	0.056		
1981	0.016	0.549	0.165		
1982	0.011	0.078	0.033		
1983	0.007	0.085	0.024		
1984	0.013	0.051	0.026		
1985	0.013	0.043	0.024		
1986	0.008	0.272	0.039		
1987	0.009	0.037	0.021		
1988	0.008	0.039	0.018		
1989	0.007	0.039	0.017		
1990	0.003	0.027	0.013		
1991	0.006	0.028	0.014		
1992	0.006	0.020	0.012		
1993	0.007	0.022	0.013		
1994	0.008	0.025	0.015		
1995	0.006	0.023	0.014		
1996	0.008	0.023	0.014		
1997	0.006	0.025	0.013		
1998	0.004	0.034	0.014		
1999	0.010	0.032	0.017		
2000	0.006	0.027	0.015		
2001	0.006	0.034	0.016		
2002	0.008	0.027	0.016		
2003	0.004	0.032	0.015		
2004	0.008	0.032	0.016		
2005	0.008	0.034	0.019		
2006	0.007	0.033	0.016		
2007	0.008	0.028	0.016		
2008	0.007	0.031	0.015		
. 2009	0.006	0.032	0.016		
2010	0.004	0.026	0.014		
2011	0.008	0.034	0.018		
. 2012	0.005	0.025	0.016		
2013	0.006	0.031	0.016		
2014	0.005	0.030	0.016		
2015	0.008	0.038	0.016		

⁽a) Locations used for 1977 - 1984 were C off-site, D1 off-site, D2 off-site, E off-site, F off-site, and G off-site. Control location R-5 off-site was used for 1985 – 2014 (formerly C offsite location).

TABLE 7-10

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATE GROSS BETA (INDICATOR) (a)

		GROSS BETA (pCi/m³)	
YEAR	MIN.	MAX.	MEAN
1977	0.002	0.326	0.106
1978	0.01	0.34	0.11
1979	0.001	0.271	0.058
1980	0.002	0.207	0.044
1981	0.004	0.528	0.151
1982	0.001	0.113	0.031
1983	0.002	0.062	0.023
1984	0.002	0.058	0.025
1985	0.010	0.044	0.023
1986	0.007	0.289	0.039
1987	0.009	0.040	0.021
1988	0.007	0.040	0.018
1989	0.007	0.041	0.017
1990	0.005	0.023	0.014
1991	0.007	0.033	0.015
1992	0.005	0.024	0.013
1993	0.005	0.025	0.014
1994	0.006	0.025	0.015
1995	0.004	0.031	0.014
1996	0.006	0.025	0.013
1997	0.001	0.018	0.010
1998	0.002	0.040	0.015
1999	0.009	0.039	0.017
2000	0.005	0.033	0.015
2001	0.004	0.037	0.016
2002	0.006	0.026	0.016
2003	0.005	0.035	0.015
2004	0.003	0.037	0.016
2005	0.007	0.040	0.018
2006	0.005	0.035	0.015
2007	0.007	0.028	0.016
2008	0.004	0.030	0.016
2009	0.006	0.032	0.016
2010	0.005	0.030	0.016
2011	0.007	0.034	0.018
2012	0.004	0.031	0.016
2013	0.006	0.032	0.016
2014	0.005	0.030	0.016
2015	0.007	0.041	0.016

⁽a) Locations used for 1977 - 1984 were D1 onsite, D2 onsite, E onsite, F onsite, G onsite, H onsite, I onsite, J onsite, and K onsite as applicable. 1985 – 2013 locations were R-1 offsite, R-2 offsite, R-3 offsite, and R-4 offsite.

TABLE 7-11

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATES (CONTROL) (a)

	(Cs-137 (pCi/m³)			Co-60 (pCi/m ³)
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1977	0.0002	0.0112	0.0034	0.0034	0.0347	0.0172
1978	0.0008	0.0042	0.0018	0.0003	0.0056	0.0020
1979	0.0008	0.0047	0.0016	0.0005	0.0014	0.0009
1980	0.0015	0.0018	0.0016	LLD	LLD	LLD
1981	0.0003	0.0042	0.0017	0.0003	0.0012	0.0008
1982	0.0002	0.0009	0.0004	0.0004	0.0007	0.0006
1983	0.0002	0.0002	0.0002	0.0007	0.0007	0.0007
1984	LLD	LLD	LLD	0.0004	0.0012	0.0008
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	0.0075	0.0311	0.0193	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLÐ
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD ·	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	, LTD	LLD	LLD
2007	LLD	LLD	LLD	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD .	LLD
2015	LLD	LLD	LLD	LLD	LLD	LLD

⁽a) Locations included composites of C, D1, E, F, and G offsite air monitoring locations for 1977 - 1984. Sample location included only R-5 air monitoring location for 1985 - 2013.

TABLE 7-12

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR PARTICULATES (INDICATOR) (a)

					<u>-</u>	
r a vister .	C	Cs-137 (pCi/m ³)	(Co-60 (pCi/m ³))
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1977	0.0001	0.0105	0.0043	0.0003	0.0711	0.0179
1978	0.0003	0.0026	0.0016	0.0003	0.0153	0.0023
1979	0.0003	0.0020	0.0010	0.0003	0.0007	0.0005
1980	0.0005	0.0019	0.0011	0.0016	0.0016	0.0016
1981	0.0002	0.0045	0.0014	0.0002	0.0017	0.0006
1982	0.0001	0.0006	0.0004	0.0003	0.0010	0.0005
1983	0.0002	0.0003	0.0002	0.0003	0.0017	. 0.0007
1984	LLD	LLD	LLD	0.0007	0.0017	0.0012
1985	, LLD	LLD	LLD	LLD	LLD	LLD
1986	0.0069	0.0364	0.0183	LLD	LLD	LLD
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LĻD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	0.0048	0.0048	0.0048
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD
2007	LLD	LLD	LLD	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD ·	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD	LLD
20.15	LLD	LLD	LLD	LLD	LLD	LLD

⁽a) Locations included composites of D1, D2, E, F, G, H, I, J, and K onsite air monitoring locations for 1977 - 1984. Locations included R-1 through R-4 air monitoring locations for 1985 - 2013.

TABLE 7-13

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR RADIOIODINE (CONTROL) (a)

	IODINE-131 (pCi/m³)				
YEAR	MIN.	MAX.	MEAN		
1976	0.01	5.88	0.60		
1977	0.02	0.82	0.32		
1978	0.03	0.04	0.03		
1979	LLD	LLD	LLD		
1980	LLD	LLD	LLD		
1981	LLD	LLD	LLD		
1982	0.039	0.039	0.039		
1983	LLD	LLD	LLD		
1984	LLD	LLD	LLD		
1985	LLD	LLD	LLD		
1986	0.041	0.332	0.151		
1987	LLD	LLD	LLD		
1988 .	LLD	LLD	LLD		
1989	LLD	LLD	LLD		
1990	LLD	LLD	LLD		
1991	LLD	LLD	LLD .		
1992	LLD	LLD -	LLD		
1993	LLD	LLD	LLD		
1994	LLD	LLD	LLD		
1995	LLD	LLD	LLD .		
1996	LLD	LLD	, LTD		
1997	LLD	LĹD	LLD		
1998	LLD	LLD	LLD		
1999	LLD	LLD	LLD		
2000	LLD	LLD	LLD		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		
2007	LLD	LLD	LLD		
2008	LLD	LLD	LLD		
2009	LLD	LLD	LLD		
2010	LLD	LLD	LLD		
2011	0.034 ^(b)	0.093 ^(b)	0.055 ^(b)		
2012	LLD	LLD	LLD		
2013	LLD	LLD	LLD		
2014	. LLD	LLD	LLD		
2015	LLD	LLD	LLD		

⁽a) Locations D1 off-site, D2 off-site, E off-site, F off-site, and G off-site used for 1976 - 1984. Location R-5 off-site used for 1985 – 2013.

⁽b) I-131 concentration attributed to fallout from the Fukushima Daiichi Nuclear Station accident.

TABLE 7-14

HISTORICAL ENVIRONMENTAL SAMPLE DATA
AIR RADIOIODINE (INDICATOR) (a)

	IODINE-131 (pCi/m³)				
YEAR	MIN.	MAX.	MEAN		
1976	0.01	2.09	0.33		
1977	0.02	0.73	0.31		
1978	0.02	0.07	0.04		
1979	LLĎ	LLD	LLD		
1980	0.013	0.013	0.013		
1981	0.016	0.042	0.029		
1982	0.002	0.042	0.016		
1983	0.022	0.035	0.028		
. 1984	LLD	LLD	LLD		
1985	LLD	LLD	LLD		
1986	0.023	0.360	0.119		
1987	0.011	0.018	0.014		
1988	LLD	LLD	LLD		
1989	LLD	LLD	LLD		
1990 .	LLD	LLD	LLD		
1991	LLD	LLD	LLD		
1992	LLD	LLD	LLD		
1993	LLD	LLD	LLD		
1994	LLD	LLD	LLD		
1995	LLD	LLD	LLD		
1996	LLD	LLD	LLD `		
1997	LLD	LLD	LLD		
1998	LLD	LLD	LLD		
1999	LLD	LLD	LLD		
2000 .	LLD	LLD	LLD		
2001	LLD	LLD	LLD		
2002	LLD	LLD	LLD		
2003	LLD	LLD	LLD		
2004	LLD	LLD	LLD		
2005	LLD	LLD	LLD		
2006	LLD	LLD	LLD		
2007	LLD	LLD	LLD		
2008	LLD	LLD	LLD		
2009	LLD	LLD	LLD		
2010	LLD	LLD	LLD		
2011	0.021(6)	0.11 ^(b)	0.055 ^(b)		
2012	LLD	LLD	LLD		
2013	LLD	LLD	LLD		
2014	LLD	LLD	LLD		
2015	LLD	LLD	LLD		

⁽a) Locations used for 1976 - 1984 were D1 on-site, D2 on-site, E on-site, F on-site, G on-site, H on-site, I on-site, J on-site, and K on-site, as applicable. Locations used for 1985 - 2013 were R1 off-site, R-2 off-site, R-3 off-site, and R-4 off-site.

⁽b) I-131 concentration attributed to fallout from the Fukushima Daiichi Nuclear Station accident.

TABLE 7-15 HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (CONTROL) (a)

·	DOSE (mrem per standard month)			
YEAR	MIN.	MAX.	MEAN	
1969	(b)	(b)	(b)	
1970	è.ó	7.3	6. 7	
1971	2.0	6.7	4.3	
1972	2.2	6.2	4.4	
1973	2.2	6.9	4.7	
1974	2.7	8.9	5.6	
1975	4.8	6.0	5.5	
1976	3.2	7.2	5.4	
1977	4.0	8.0	5.3	
1978	3.3	4.7	4.3	
1979	3.3	5.7	4.7	
1980	3.8	5.8	4.9	
1981	3.5	5.9	4.8	
1982	3.8	6.1	5.1	
1983	4.9	7.2	5.8	
1984	4.7	8.2	6.2	
1985	4.5 (4.4)*	7.6 (6.8)*	5.6 (5.4)*	
1986	5.3 (5.5)*	7.5 (7.2)*	6.3 (6.3)*	
19 8 7 19 88	4.6 (4.6)* 4.4 (4.8)*	6.6 (5.8)*	5.4 (5.2)*	
1989	2.9 (2.9)*	6.8 (6.8)* 6.4 (5.6)*	5.6 (5.4)* 4.7 (4.6)*	
1990	3.7 (3.7)*	6.0 (5.9)*	4.8 (4.6)*	
1991	3.8 (3.8)*	5.4 (5.3)*	4.5 (4.3)*	
1992	2.6 (2.6)*	5.0 (4.7)*	4.1 (3.9)*	
1993	3.4 (3.4)*	5.6 (5.2)*	4.4 (4.3)*	
1994	3.1 (3.1)*	5.0 (4.6)*	4.1 (3.9)*	
1995	3.4 (3.4)*	5.7 (4.9)*	4.4 (4.2)*	
1996	3.4 (3.4)*	5.6 (5.6)*	4.3 (4.2)*	
1997	3.7 (3.9)*	6.2 (5.2)*	4.7 (4.6)*	
1998	3.7 (3.7)*	5.6 (4.8)*	4.4 (4.2)*	
1999	3.6 (3.7)*	7.1 (4.7)*	4.6 (4.4)*	
2000	3.7 (3.7)*	7.3 (5.5)*	4.7 (4.3)*	
2001	3.6 (3.9)*	5.4 (5.0)*	4.4 (4.4)*	
2002	3.4 (3.4)*	5.5 (5.2)*	4.3 (4.1)*	
2003	3.4 (3.4)*	5.5 (4.8)*	4.2 (4.2)*	
2004	3.3 (3.3)*	5.9 (5.9)*	4.3 (4.5)*	
2005	3.3 (3.4)*	5.1 (4.5)*	4.1 (4.0)*	
2006	3.3 (3.3)*	5.3 (4.4)*	4.1 (4.0)*	
2007	3.2 (3.2)*	5.8 (5.3)*	4.4 (4.3)*	
2008	3.3(3.3)*	5.1(4.8)*	4.1(4.0)*	
2009	3.2(3.2)*	4.8(4.2)*	3.9(3.7)*	
2010	2.7(2.7)*	4.6(4.1)*	3.9(3.6)*	
2011	2.6(2.6)*	5.5(4.7)* 5.0(4.3)*	4.0(3.8)* 4.0(3.9)*	
2012 2013	3.6(3.6)*	5.0(4.3)* 4.9(4.4)*	4.0(3.9)* 3.9(3.9)*	
2013	3.2(3.2)* 3.1(3.3)*	5.0(4.1)*	3.8(3.8)*	
2015 ^(C)	2.9(2.9)*	5.4(4.5)*	4.1(3.9)*	

- (a) TLD #8, 14, 49, 111 and 113 where applicable (1985 to 2014).
 (b) Data not available.
 (C) Starting in 2015, Control Locations TLD #8, 14 & 49
 (*) TLD result based on the ODCM required locations (TLD #14 and 49).

TABLE 7-16

HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (SITE BOUNDARY) (a)

	DOSE (mrem per standard month)			
YEAR	MIN.	MAX.	MEAN	
1985 ^(b)	4.1	12.6	6.2	
1986	4.4	18.7	7.0	
1987	4.4	14.3	6.1	
1988	3.4	. 17.9	6.4	
1989	2.8	15.4	5.9	
1990	3.6	14.8	5.8	
1991	3.2	16.7	5.7	
1992	3.2	10.4	4.8	
1993	3.3	11.6	` 5.3	
1994	2.8	12.4	5.2	
1995	3.5	9.6	5.4	
1996	3.2	9.1	5.2	
1997	3.5	10.2	5.9	
1998	3.7	9.4	5.4	
1999	3.3	12.3	5.8	
2000	3.6	10.0	5.5	
2001	3.6	10.3	5.7	
2002	3.5	9.4	5.4	
2003	3.2	8.9	5.4	
2004	3.3	10.8	5.6	
2005	3.4	9.2	5.5	
2006	3.5	9.2	5.4	
2007	3.2	9.0	5.6	
2008	3.2	8.8	5.2	
. 2009	3.1	1.1.7	5.4	
2010	3.3	12.1	5.4	
2011	3.1	11.6	5.5	
.2012	3.6	10.6	5.5	
2013	3.5	10.4	5.4	
2014	3.3	9.9	5.2	
2015	2.9	5.1	4.0	

⁽a) TLD locations initiated in 1985 as required by the new Technical Specifications. Includes TLD numbers 7, 18, 23, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, and 87.

⁽b) Not required prior to 1985.

TABLE 7-17 HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (OFF-SITE SECTORS) (a)

	DOSE (mrem per standard month)			
YEAR	MIN.	MAX.	MEAN	
1985 ^(b)	4.0	7.1	5.0	
1986	4.6	8.6	6.0	
1987	4.3	6.0	5.2	
1988	3.8	7.0	5.3	
1989	2.5	6.8	4.9	
1990	3.6	6.3	4.7	
1991	3.6	5.6	4.5	
1992	2.9	5.0	4.1	
1993	3.4	6.3	4.5	
1994	3.0	5.1	4.0	
1995	3.2	5.2	4.2	
1996	3.2	5.3	4.2	
1997	3.5	5.8	4.5	
1998	3.5	5.0	4.2	
1999	3.6	5.6	4.4	
· 2000	3.4	6.6	4.5	
2001	3.6	5.4	4.4	
2002	3.1	5.3 .	4.2	
2003	3.4	4.8	4.1	
2004	3.2	6.7	4.4	
2005	3.2	4.7	4.0	
2006	3.3	4.4	4.0	
2007	3.1	5.1	4.2	
2008	3.2	4.5	3.8	
2009	3.3	4.5	3.9	
2010	3.0	4.4	3.9	
2011	3.0	5.2	4.0	
2012	3.5	4.6	4.0	
2013	3.2	4.5	3.8	
2014	3.2	4.4	3.8	
2015	2.9	4.8	3.9	

TLD locations initiated in 1985 as required by the new Technical Specifications. Includes TLD (a) numbers 88, 89, 90, 91, 92, 93, 94, and 95. Not required prior to 1985.

TABLE 7-18 HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (SPECIAL INTEREST) (a) (b)

DOSE (mrem per standard month)				
MIN.	MAX.	MEAN		
3.9	6.8	5.3		
4.8	8.2	6.1		
3.5	6.0	5.1		
3.9		5.3		
2.1	7.0	4.8		
3.2		4.7		
		4.4		
		4.1		
3.2		4.5		
		4.0		
3.4		4.3		
3.2		4.2		
3.5		4.5		
3.7	4.9	4.3		
3.6	5.5	4.4		
		4.5		
3.8	5.0	4.3		
3.5	4.7	4.1		
3.4		4.2		
3.0		4.2		
3.4	4.7	3.9		
3.5	4.6	4.0		
3.0		4.2		
3.1		3.9		
3.1		3.8		
3.2	4.7	3.8		
2.9		4.0		
3.4	4.7	4.0		
3.2	4.5	3.8		
2.9		3.8		
		3.9		
	MIN. 3.9 4.8 3.5 3.9 2.1 3.2 2.9 3.0 3.2 2.9 3.4 3.2 3.5 3.7 3.6 3.6 3.8 3.5 3.7 3.6 3.1 3.1 3.2 2.9 3.4 3.2 3.5 3.4 3.0 3.4 3.5 3.0 3.1 3.1 3.2 2.9 3.4 3.2	MIN. MAX. 3.9 6.8 4.8 8.2 3.5 6.0 3.9 6.6 2.1 7.0 3.2 6.3 2.9 5.6 3.0 4.8 3.2 5.8 2.9 4.8 3.4 4.9 3.2 5.3 3.5 5.4 3.7 4.9 3.6 6.3 3.8 5.0 3.8 5.0 3.8 5.0 3.1 4.7 3.5 4.6 3.0 5.9 3.4 4.7 3.5 4.6 3.0 5.1 3.1 4.6 3.1 4.5 3.2 4.7 2.9 4.9 3.4 4.7 3.2 4.5 3.2 4.7 3.2 4.5 3.2 4.7		

TLD locations initiated in 1985 as required by the new Technical Specifications. TLD's included are numbers 15, 56, 58, 96, 97 and 98.
TLD locations include critical residences and populated areas near the site. (a)

⁽b)

Not required prior to 1985.

TABLE 7-19 HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (ON-SITE INDICATOR) (a)

	DOSE (mrem per standard month)			
YEAR	MIN.	MAX.	MEAN	
1969	(b)	(b)	(b)	
1970	(b) 4.7	9.0	6.0	
1971	1.5	7.7	4.7	
1972	2.3	8.2	4.9	
1973	3.0	24.4	6.6	
1974	3.1	10.6	5.7	
1975	4.6	16.0	7.3	
1976	3.7	18.8	6.9	
1977	3.0	15.3	5.7	
1978	3.0	9.0	4.3	
1979	2.7	8.3	4.3	
1980	3.9	12.0	5.3	
1981	4.1	11.8	5.8	
1982	3.9	13.0	6.3	
1983	5.0	16.5	6.9	
1984	4.6	13.2	7.0	
1985	4.7	15.9	6.3	
1986	4.7	16.1	7.0	
1987	4.0	11.4	5.8	
1988	4.4	11.9	6.0	
1989	2.7	14.5	6.0	
1990	3.6	12.9	5.5	
1991	3.2	11.6	5.1	
1992	3.2	5.6	4.3	
1993	3.1	13.6	5.2	
1994	2.8	14.3	5.1	
1995	3.5	28.6	6.2	
1996	3.1	32.6	6.4	
1997	3.5	28.8	7.7	
1998	3.6	28.8	6.2	
1999	3.3	28.4	6.6	
2000	3.7	16.5	5.6	
2001	3.8	14.5	5.6	
2002	3.5	13.6	5.3	
2003	3.2	12.9	5.3	
2004	3.3	13.2	5.4	
2005	3.4	14.1	5.4	
2006	3.5	14.4	5.3	
2007	3.2	14.8	5.6	
2008	3.2	13.8	5.2	
2009	3.1	13.6	4.9	
2010	3.3	13.3	4.8	
2011	3.1	13.0	5.1	
2012	3.5	11.8	4.9	
2013	. 3.3	12.2	5.0	
2014	3.3	12.9	4.9	
2015	2.8	13.2	5.1	

⁽a) Includes TLD numbers 3, 4, 5, 6, and 7 (1970 - 1973). Includes TLD numbers 3, 4, 5, 6, 7, 23, 24, 25, and 26 (1974 - 2011). Locations are existing or previous on-site environmental air monitoring locations.

⁽b) No data available.

TABLE 7-20 HISTORICAL ENVIRONMENTAL SAMPLE DATA ENVIRONMENTAL TLD (OFF-SITE INDICATOR) (a)

	DOSE (mrem per standard month)		
YEAR	MIN.	MAX.	MEAN
1969	(b)	(b)	(b)
1970	5.0	8. 0	6.7
1971	1.1	7.7	4.5
1972	1.8	6.6	4.4
1973	2.2	6.9	4.1
1974	2.4	8.9	5.3
. 1975	4.5	7.1	5.5
1976	3.4	7.2	5.2
1977	3.7	8.0	5.3
1978	2.7	4.7	3.7
1979	3.0	5.7	4.0
1980	3.1	5.8	4.6
1981	3.6	5.9	4.7
1982	4.0	6.2	5.2
1983	4.6	7.2	5.6
		7.2	3.0
1984	4.6	8.2	6.1
1985	4.6	7.7	5.5
1986	5.0	7.6	6.1
1987	4.4	6.6	5.2
1988	4.2	6.6	5.4
1989	2.8	6.4	4.6
1990	3.8	6.0	4.8
1991	3.4	5.4	4.3
1992	3.1	5.2	4.1
1993	3.2	5.6	4.3
1994	3.0	5.0	4.1
1995	3.9	5.7	4.4
1996	3.3	5.5	4.1
1997	3.7	6.2	4.7
1998	3.9	5.6	4.4
1999	3.8	7.1	4.6
2000	3.8	7.3	4.6
2001	3.7	5.9	4.5
2002	3.6	5.5	4.4
2003	3.1	5.5	4.4
2004	3.2	6.5	4.5
2005	3.6	5.1	42
2006	3.9	5.3	4.2 4.2
2007	3.4	5.8	4.5
2008	3.4	5.1	4.1
2009	3.3	4.8	3.9
2019	3.5		
2010		4.6	3.8
	3.2	5.5	4.1
2012	3.6	5.0	4.1
2013	3.5	4.9	4.0
2014	3.3	5.0	3.9
2015	3.0	4.5	3.9

Includes TLD numbers 8, 9, 10, 11, 12, and 13 (off-site environmental air monitoring locations). No data available. (a) (b)

TABLE 7-21

HISTORICAL ENVIRONMENTAL SAMPLE DATA
MILK (CONTROL) (a)

	C	s-137 (pCi/lite	er)	I	-131 (pCi/liter)
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	(b)	(b)	(b)	(b)	(b)	(b)
1977	(b)	(b)	(b)	(b)	(b)	(b)
1978	2.4	7.8	5.8	LĽĎ	LĽĎ	LĽĎ
1979	LLD	LLD	LLD	LLD	LLD	LLD
1980	3.6	5.6	4.5	1.4	1.4	1.4
1981	3.9	3.9	3.9	LLD	LLD	LLD
1982	LLD	LLD	LLD	LLD	LLD	LLD
1983	LLD	LLD	LLD	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD	LLD	LLD	LLD	LLD
1986	5.3	12.4	8.4	0.8	29.0	13.6
1987	LLD	LLD	LLD	LLD	LLD	LLD
1988	LLD ·	LLD	LLD	LLD	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLD	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	LLD	LLD	LLD
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	.LLD	LLD	LLD	LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD	LLD	LLD	LLD	LLD	LLD
2007	LLD	LLD	LLD	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD .	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD	LLD
2015	LLD	LLD	LLD	LLD	LLD	LLD

⁽a) Location used was an available milk sample location in a least prevalent wind direction greater than ten miles from the site.

⁽b) No data available (samples not required).

TABLE 7-22
HISTORICAL ENVIRONMENTAL SAMPLE DATA
MILK (INDICATOR) (a)

	C	Cs-137 (pCi/lite	er)	I-	131 (pCi/liter)	
YEAR	MIN.	MAX.	MEAN	MIN.	MAX.	MEAN
1976	4.0	15.0	9.3	0.02	45.00	3.20
1977	11.0	22.0	17.1	0.01	49.00	6.88
1978	3.4	33.0	9.9	0.19	0.19	0.19
1979	3.2	53.0	9.4	LLD	LLD	LLD
1980	3.2	21.0	8.1	0.3	8.8	3.8
1981	3.5	29.0	8.6	LLD	LLD	LLD
1982	3.5	14.0	5.7	LLD	LLD	LLD
1983	3.3	10.9	7.2	LLD	LLD	LLD
1984	LLD	LLD	LLD	LLD	LLD	LLD
1985	LLD	LLD.	LLD	LLD	LLD	LLD
1986	6.1	11.1	8.6	0.3	30.0	5.2
1987	5.5	8.1	6.8	LLD	LLD	LLD
1988	10.0	10.0	10.0	LLD.	LLD	LLD
1989	LLD	LLD	LLD	LLD	LLD	LLD
1990	LLD	LLD	LLÐ	LLD	LLD	LLD
1991	LLD	LLD	LLD	LLD	LLD	LLD
1992	LLD	LLD	LLD	LLD	LLD	LLD
1993	LLD	LLD	LLD	LLD	LLD	LLD
1994	LLD	LLD	LLD	LLD	LLD	LLD
1995	LLD	LLD	LLD	LLD	LLD	LLD
1996	LLD	LLD	LLD	LLD	LLD	LLD
1997	LLD	LLD	LLD	0.50	0.50	0.50
1998	LLD	LLD	LLD	LLD	LLD	LLD
1999	LLD	LLD	LLD	LLD	LLD	LLD
2000	LLD	LLD	LLD	LLD	LLD	LLD
2001	LLD	LLD	LLD	LLD	LLD	LLD
2002	LLD	LLD	LLD	LLD	LLD	LLD
2003	LLD	LLD	ĹLD	LLD	LLD	·LLD
2004	LLD	LLD	LLD	LLD	LLD	LLD
2005	LLD	LLD	LLD	LLD	LLD	LLD
2006	LLD ,	LLD	LLD	LLD	LLD	LLD
2007	LLD	LLD	LLD	LLD	LLD	LLD
2008	LLD	LLD	LLD	LLD	LLD	LLD
2009	LLD	LLD	LLD	LLD	LLD	LLD
2010	LLD	LLD	LLD	LLD	LLD	LLD
2011	LLD	LLD	LLD	LLD	LLD	LLD .
2012	LLD	LLD	LLD	LLD	LLD	LLD
2013	LLD	LLD	LLD	LLD	LLD	LLD
2014	LLD	LLD	LLD	LLD	LLD	LLD
2015	LLD	LLD	LLD	LLD	LLD	LLD

⁽a) Locations sampled were available downwind locations within ten miles with high radionuclide deposition potential.

TABLE 7-23

HISTORICAL ENVIRONMENTAL SAMPLE DATA FOOD PRODUCTS (CONTROL) (a)

	Cs-137 (pCi/g (wet))			
YEAR ^{(b)(c)}	_MIN.	MAX.	MEAN	
1980	0.02	0.02	0.02	
1981	LLD	LLD	LLD	
1982	LLD	LLD	LLD	
1983	LLD	LLD	LLD	
1984	LLD	LLD	LLD	
1985	LLD	LLD	LLD	
1986	LLD	LLD	LLD	
1987	LLD	LLD	LLD .	
1988	LLD	LLD	LLD	
1989	LLD	LLD	LLD	
1990	LLD	LLD	LLD	
1991	LLD	LLD	LLD	
1992	LLD	LLD	LLD	
1993	0.007	0.007	0.007	
1994	LLD	LLD	LLD	
1995	LLD	LLD	LLD	
1996	LLD	LLD	LLD	
1997	LLD	LLD	LLD	
1998	LLD	LLD	LLD	
1999	LLD	LLD	LLD	
2000	LLD	LLD	LLD	
2001	LLD	LLD	LLD	
2002	LLD	LLD	LLD	
2003	LLD	LLD	LLD	
2004	LLD	LLD	LLD	
2005	LLD	LLD	LLD	
2006	LLD	LLD	LLD	
2007	LLD	LLD	LLD	
2008	LLD	LLD	LLD	
2009	LLD	LLD	LLD	
2010	LLD	LLD	LLD	
2011	LLD	LLD	LLD	
2012	LLD	LLD	LLD	
2013	LLD	LLD	LLD	
2014	LLD	LLD	LLD	
2015	LLD	LLD	\mathbf{LLD}	

⁽a) Location was an available food product sample location in a least prevalent wind direction greater than ten miles from the site.

⁽b) Data comprised of broadleaf and non-broadleaf vegetation (1980 – 1984, 2007 – 2009, 2011, 2012 & 2014).

⁽c) Data comprised of broadleaf vegetation only (1985 – 2006, 2010 & 2013).

TABLE 7-24
HISTORICAL ENVIRONMENTAL SAMPLE DATA FOOD PRODUCTS (INDICATOR) (a)

	Cs-137 (pCi/g (wet))			
YEAR ^{(b)(c)}	MIN.	MAX.	MEAN	
1976 - 1978	LLD	LLD	LLD	
1979	0.004	0.004	0.004	
1980	0.004	0.060	0.036	
1981	LLD	LLD	LLD	
1982	LLD	LLD	LLD	
1983	LLD	LLD	LLD	
1984	LLD	LLD	LLD	
1985	0.047	0.047	0.047	
1986	LLD	LLD	LLD	
1987	LLD	LLD	LLD	
1988	0.008	0.008	0.008	
1989	0.009	0.009	0.009	
1990	LLD	LLD	LLD	
1991	0.040	0.040	0.040	
1992	LLD	LLD	LLD	
1993	LLD	LLD	LLD	
1994	0.004	0.011	0.008	
1995	0.010	0.012	0.011	
1996	LLD	LLD	LLD	
1997	0.012	0.012	0.012	
1998	LLD	LLD	LLD	
1999	0.008	0.008	0.008	
2000	LLD	LLD	LLD	
2001	LLD	LLD	LLD	
2002	LLD	LLD	LLD	
2003	LLD	LLD	LLD	
2004	LLD	LLD	LLD	
2005	LLD	LLD	LLD	
2006	LLD	LLD	LLD	
2007	LLD	LLD	LLD	
2008	LLD	LLD	LLD	
2009	LLD	LLD	LLD	
2010	LLD	LLD	LLD	
2011	LLD	LLD	LLD	
2012	LLD	LLD	LLD	
2013	LLD	LLD	LLD	
2014	LLD	LLD	LLD	
2015	LLD	LLD	LLD	

⁽a) Indicator locations were available downwind locations within ten miles of the site and with high radionuclide deposition potential.

⁽b) Data comprised of broadleaf and non-broadleaf vegetation (1976 – 1984, 2007 – 2009, 2011, 2012 &2014).

⁽c) Data comprised of broadleaf vegetation only (1985 – 2006, 2010 & 2013).

TABLE 7-25
HISTORICAL ENVIRONMENTAL SAMPLE DATA
GROUNDWATER TRITIUM (CONTROL) (a)

		TRITIUM (pCi/liter)	
YEAR	MIN.	MAX.	MEAN
2005	<854	<854	<854
2006 ^(b)	<447	<825	<636
2007	<442	<445	<444
2008	<427	<439	<431
2009	<411	<418	<415
2010	<172	<410	<341
2011	<408	<424	<415
2012	<363	<499	<420
2013	<365	<381	<374
2014	<404	<493	<433
2015 ^(c)	<108	215	<151

- (a) Control well locations (2) are upland wells located south of protected area.
- (b) Required LLD changed to 500 pCi/l from 1000 pCi/l
- (c) Required LLD changed to 200 pCi/l

TABLE 7-26 HISTORICAL ENVIRONMENTAL SAMPLE DATA GROUNDWATER MONITORING WELLS TRITIUM (INDICATOR) (a)

		TRITIUM (pCi/liter)	Ci/liter)					
YEAR	MIN.	MAX.	MEAN					
2005	<854	<871	<863					
2006 ^(b)	<462	<933	<823					
2007	<440	<461	<445					
2008	<427	<439	<433					
2009	<406	<424	<413					
2010	<287	611	<384					
2011 .	<407	<428	<414					
2012	<314	<499	<395					
2013	<365	820 ^(c)	<382					
2014 ^(d)	<106	947	<196					

- (a) Indicator locations are down gradient wells located in the owner control area.(b) Required LLD changed to 500 pCi/l from 1000 pCi/l
- (c) Re-sample tritium concentration = <459 pCi/l
- (d) Required LLD changed to 200 pCi/l

TABLE 7-27 HISTORICAL ENVIRONMENTAL SAMPLE DATA NMP2 STORM DRAIN TRITIUM (INDICATOR) (a)

	· · · · · · · · · · · · · · · · · · ·	TRITIUM (pCi/liter)	
YEAR	MIN.	MAX.	MEAN
2005	<854	<871	<863
2006 ^(b)	<667	<933	<850
2007	<440	<461	<447
2008	<415	<446	<432
2009	<406	<424	<413
2010	<289	446	<408
2011	<407	<428	<414
2012	<298	908	<417
2013	<366	403 ^(c)	<385
2014	<368	<488	<401
2015	<167	<512	<338

- (a) NMP2 depression cone system.(b) Required LLD changed to 500 pCi/l from 1000 pCi/l
- (c) Re-sample tritium concentration = <393 pCi/l

8.0 QUALITY ASSURANCE / QUALITY CONTROL PROGRAM

8.1 PROGRAM DESCRIPTION

The Offsite Dose Calculation Manual (ODCM), for Nine Mile Point Unit 1 (NMP1) and Nine Mile Point Unit 2 (NMP2), Part II, Section 4.0 requires that the licensee participate in an Interlaboratory Comparison Program. The Interlaboratory Comparison Program shall include sample media for which samples are routinely collected and for which comparison samples are commercially available. Participation in an Interlaboratory Comparison Program ensures that independent checks on the precision and accuracy of the measurement of radioactive material in the environmental samples are performed as part of the Quality Assurance Program for environmental monitoring. To fulfill the requirement for an Interlaboratory Comparison Program, the Teledyne Brown Engineering (TBE) Environmental Services laboratory has engaged the services of Eckert & Ziegler Analytics, Incorporated in Atlanta, Georgia, The Department of Energy's (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) located in Idaho Falls, Idaho, and Environmental Resource Associates (ERA) in Golden, Co.

The Interlaboratory Comparison providers supply sample media as blind sample spikes, which contain certified levels of radioactivity unknown to the analysis laboratory. These samples are prepared and analyzed by the Teledyne Brown Engineering Environmental Services laboratory using standard laboratory procedures.

8.2 PROGRAM SCHEDULE

SAMPLE MEDIA	LABORATORY ANALYSIS	SAMPLE PROVIDER ECKERT & ZIEGLER ANALYTICS		
Milk	I-131	4		
Milk	Mixed Gamma	4		
Air	I-131	4		
Air	Mixed Gamma	4		
Soil	Mixed Gamma	2		
SAMPLE MEDIA	LABORATORY ANALYSIS	SAMPLE PROVIDER DOE MAPEP		
Air	Gr-Beta	2		
Vegetation	Mixed Gamma	2		
SAMPLE MEDIA	LABORATORY ANALYSIS	SAMPLE PROVIDER ERA		
Water	I-131	2		
Water	Mixed Gamma	2		
Water	H-3	2		
TOTAL	SAMPLE INVENTORY	28		

8.3 ACCEPTANCE CRITERIA

Each sample result is evaluated to determine the accuracy and precision of the laboratory's analysis result. The sample evaluation method is discussed below.

8.3.1 SAMPLE RESULTS EVALUATION

Analytics:

Analytics evaluation report provides a ratio of TBE's result and Analytics' known value.

Since flag values are not assigned, TBE evaluates the reported ratios based on internal QC requirements, which are based on the DOE/MAPEP criteria. The ratio of 0.80 to 1.20 is evaluated as acceptable. The ratios of 0.70 to 0.79 and 1.21 to 1.30 are evaluated as acceptable with warning.

DOE Evaluation Criteria (Handbook for the Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP), Revision 13 (June 2012), pp 37-38, retrieved from http://www.id.energy.gov/resl/mapep/handbookv13.pdf)

MAPEP:

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is \pm 20% of the reference value. Performance is acceptable with warning when a mean result falls in the range from \pm 20% to \pm 30% of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

False positive/negative testing and sensitivity evaluations are used in radiological performance evaluations. The specific analytes used for testing vary among performance evaluation test sessions.

The MAPEP program uses false positive testing to identify laboratory results that indicate the presence of a particular radionuclide in a MAPEP sample when, in fact, the actual activity of the radionuclide is far below the detection limit of the measurement. Not acceptable ("N") performance, and hence a false positive result, is indicated when the range encompassing the result, plus or minus the total uncertainty at three standard deviations, does not include zero (e.g. 2.5 ± 0.2 ; range of 1.9 - 3.1). Statistically, the probability that a result can exceed the absolute value of its total uncertainty at three standard deviations by chance alone is less than 1%. The MAPEP uses a three standard deviation criterion for the false positive test to ensure confidence about issuing a false positive performance evaluation. A result that is greater than three times the total uncertainty of the measurement represents a statistically positive detection with over 99% confidence.

Sensitivity evaluations are routinely performed to complement the false positive tests. In a sensitivity evaluation the radionuclide is present at or near the detection limit, and the difference between the report result and the MAPEP reference value is compared to the propagated combined total uncertainties. The results are evaluated at three standard deviations. If the observed difference is greater than three time the combined total uncertainty, the sensitivity evaluation in "Not Acceptable". The probability that such a difference can occur by chance alone is less than 1%. If the participant did not report a statistically positive result, a "Not Detected" is noted in the text field of the MAPEP performance report. A non-detect is potentially a false negative result, dependent upon the laboratory's detection limit for the radionuclide.

False negative tests are also performed in combination with the sensitivity evaluations. In this scenario, the sensitivity of the reported measurement indicates that the known specific activity of the targeted radionuclide in the performance evaluation sample should have been detected, but was not, and a "Not Acceptable" performance evaluation is issued. The uncertainty of the MAPEP reference value and of the reported result at three standard deviations is used for the false negative test.

The false positive/negative and sensitivity evaluation tests are conducted in a manner that assists the participants with their measurement uncertainty estimates and helps ensure they are not under estimating or over inflating their total uncertainties. If the total uncertainty is over inflated to try to pass a false positive test, it will result in a "Not Detected" if the test is actually a sensitivity evaluation, and vice versa for a false positive test. False negatives and failed sensitivity evaluations can also result from under estimating the total uncertainty. An accurate estimate of measurement uncertainty is required for consistent performance at the acceptable level.

ERA:

The ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. The ERA's acceptance limits are established per the USEPA, NELAC, state specific performance testing program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

8.4 PROGRAM RESULTS SUMMARY

The Interlaboratory Comparison Program numerical results for the TBE Environmental Services laboratory are provided on Table 8-1 to 8-3.

8.4.1 ECKERT & ZIEGLER ANALYTICS, DOE MAPEP, and ERA QA SAMPLES RESULTS

For the TBE laboratory, 123 out of 124 analyses performed met the specified acceptance criteria, for a 99.2 agreement ratio. One analysis (AP - Cr-51) did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program:

1. Teledyne Brown Engineering's Analytics' June 2015 air particulate Cr-51 result of 323 ± 45.5 pCi was higher than the known value of 233 pCi with a ratio of 1.39. The upper ratio of 1.30 (acceptable with warning) was exceeded. The air particulate sample is counted at a distance above the surface of the detector to avoid detector summing which could alter the results. Chromium-51 has the shortest half-life (27.7 days) and the lowest gamma energy (320.08 keV) of this mixed nuclide sample. Additionally, Cr-51 has only one gamma energy and also has a low intensity (9.38 gamma photons produced per 100 disintegrations). This geometry produces a larger error for the Cr-51 and other gamma emitters as any distance from the detector decreases the counting rate and the probability of accurately detecting the nuclide energy. Taking into consideration the uncertainty, the activity of Cr-51 overlaps with the known value at a ratio of 1.19, which would statistically be considered acceptable. NCR 15-18

TABLE 8-1
INTERLABORATORY INTERCOMPARISON PROGRAM
ECKERT & ZIEGLER ANALYTICS
TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES
(PAGE 1 OF 3)

	Identification		<u> </u>		Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
March 2015	E11182	Milk	I-131	pCi/L	61.3	6 5.1	0.94	Α
MAICH 2013	LITIOZ	IVIIIK	Ce-141	pCi/L	· 104	113	0.92	A
			Cr-51	pCi/L	265	276	0.96	A
			Cs-134	pCi/L	138	154	0.90	A
			Cs-137	pCi/L	205	207	0.99	A
			Co-58	pCi/L	178	183	0.97	A
		•	Mn-54	pCi/L	187	188	0.99	A
			Fe-59	pCi/L	182	177	1.03	A
		•	Zn-65	pCi/L	345	351	0.98	A
			Co-60	pCi/L	3 7 5	405	0.94	
			C0-00	port	3/9	405	0.94	Α
	E11184	AP	Ce-141	pCi	107	85.0	1.26	W
			Cr-51	pCi	261	224	1.17	Α
			Cs-134	pCi	74.6	77.0	0.97	Α
			Cs-137	pCi	99.6	102	0.98	Α
			Co-58	pCi	99.8	110	0.91	Α
			Mn-54	pCi	99.2	96.9	1.02	Α
			Fe-59	pCi	109	119	0.92	Α
			Zn-65	pCi	188	183	1.03	Α
			Co-60	pCi	200	201	1.00	. A
	E11183	Charcoal	I-131	pCi	82.9	85.4	0.97	Α
June 2015	E11238	Milk	I-131	pCi/L	93.2	95.9	0.97	Α
			Ce-141	pCi/L		ed for this s		
			Cr-51	pCi/L	349	276	1.26	W
			Cs-134	pCi/L	165	163	1.01	Α
			Cs-137	pCi/L	143.0	125	1.14	Α
			Co-58	pCi/L	82.0	68.4	1.20	Α
			Mn-54	pCi/L	113	101	1.12	A
			Fe-59	pCi/L	184	151	1.22	W
			Zn-65	pCi/L	269	248	1.08	A
			Co-60	pCi/L	208	193	1.08	A
	E11237	AP	Ce-141	pCi	Not provid	ed for this s	study	
	,		Cr-51	pCi	323	233	1.39	N (1)
			Cs-134	pCi	139	138	1.01	Α΄
			Cs-137	рСі	111	106	1.05	Ä
			Co-58	pCi	54.0	57.8	0.93	Ä
			Mn-54	рСі	96.8	84.9	1.14	Ä
			Fe-59	pCi pCi	162	128	1.27	ŵ
			Zn-65	pCi pCi	198	210	0.94	A
			Co-60	pCi pCi	178	163	1.09	A

TABLE 8-1 (Continued) INTERLABORATORY INTERCOMPARISON PROGRAM ECKERT & ZIEGLER ANALYTICS TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 2 OF 3)

	Identification				Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
C	E44000	Milk	1.404	O:#	040	00.0	0.05	
September 2015	E11290	IMIK	I-131	pCi/L pCi/L	94 <u>.</u> 9 228	99.9 213	0.95	A
			Ce-141 Cr-51	pCi/L pCi/L	499	538	1.07	A
				pCi/L pCi/L			0.93	A
			Cs-134 Cs-137		208	212	0.98	A
				pCi/L	270	255	1.06	A
			Co-58	pCi/L	275	263	1.05	A
			Mn-54	pCi/L	320	290	1.10	A
			Fe-59	pCi/L	255	226	1.13	A
			Zn-65	pCi/L	392	353	1.11	A
			Co-60	pCi/L	350	330	1.06	Α
	E11292	AP	Ce-141	pCi	104	85.1	1.22	w
			Сг-51	pCi	262	215	1.22	W
			Cs-134	pCi	86.1	84.6	1.02	Α
			Cs-137	pCi	93.0	102	0.91	Α
•			Co-58	pCi	106	105	1.01	Α
			Mn-54	pCi	117	116	1.01	Α
			Fe-59	pCi	94.8	90.2	1.05	A
			Zn-65	pCi	160	141	1.13	A
			Co-60	pCi	146	132	1.11	Α
·	E11291	Charcoal	I-131	pCi	85.9	81.7	1.05	Α
	E11294	Soil	Ce-141	pCi/kg	209	222	0.94	Α
			Cr-51	pCi/kg	463	560	0.83	Â
			Cs-134	pCi/kg	231	221	1.05	Ä
			Cs-137	pCi/kg	311	344	0.90	Ä
			Co-58	pCi/kg	245	274	0.89	Ä
			Mn-54	pCi/kg	297	302	0.98	Ä
			Fe-59	pCi/kg	248	235	1.06	Ä
			Zn-65	pCi/kg	347	368	0.94	Ä
			Co-60	pCi/kg	328	344	0.95	Ä
			00-00	pointy.	320	J-1-1	0.55	^
December 2015	E11355	Milk	I-131	pCi/L	95.1	91.2	1.04	Α
			Ce-141	pCi/L	117	129	0.91	Α
			Cr-51	pCi/L	265	281	0.94	Α
			Cs-134	pCi/L	153	160	0.96	Α
			Cs-137	pCi/L	119	115	1.03	Α
	,		Co-58	pCi/L	107	110	0.97	Α
			Mn-54	pCi/L	153	145	1.06	Α
			Fe-59	pCi/L	117	108	1.08	Α
			Zn-65	pCi/L	261	248	1.05	Α
			Co-60	pCi/L	212	213	1.00	A

TABLE 8-1 (Continued) INTERLABORATORY INTERCOMPARISON PROGRAM ECKERT & ZIEGLER ANALYTICS TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

(PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2015	E11357	AP	Ce-141	pCi	89.9	84.0	1.07	Α
200011201 2010		<i>-</i>	Cr-51	pCi	215	184	1.17	A
			Cs-134	pCi	103	105	0.98	A
			Cs-137	pCi	76.6	74.8	1.02	A
			Co-58	pCi	76.2	71.9	1.06	A
			Mn-54	pCi	91.4	94.4	0.97	Α
			Fe-59	pCi	78.6	70.3	1.12	Α
			Zn-65	pCi	173	162	1.07	Α
			Co-60	pCi	138	139	0.99	Α
December 2015	E11356	Charcoal	I-131	pCi ,	74.9	75.2	1.00	Α
	E11353	Soil	Ce-141	pCi/kg	252	222	1.14	Α
		٠	Cr-51	pCi/kg	485	485	1.00	Α
			Cs-134	pCi/kg	319	277	1.15	Α
			Cs-137	pCi/kg	292	276	1.06	Α
			Co-58	pCi/kg	193	190	1.02	Α
			Mn-54	pCi/kg	258	250	1.03	Α
	•		Fe-59	pCi/kg	218	186	1.17	Α
			Zn-65	pCi/kg	457	429	1.07	Α
			Co-60	pCi/kg	381	368	1.04	Α

⁽¹⁾ AP Cr-51 - Cr-51 has the shortest half-life and the weakest gamma energy of the mixed nuclide sample, which produces a large error. Taking into account the error, the lowest value would be 119% of the reference value, which would be considered acceptable. NCR 15-18

⁽a) Teledyne Brown Engineering reported result.

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric amd/or volumetric measurements made during standard preparation.

⁽c) Ratio of Teledyne Brown Engineering to Analytics results.

⁽d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

TABLE 8-2 INTERLABORATORY INTERCOMPARISON PROGRAM DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) **TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES** (PAGE 1 OF 1)

Month/Year	Identification Number	Media	Nuclide*	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
March 2015	15-GrF32	AP	Gr-B	Bq/sample	0.7580	0.75	0.38 - 1.13	Α
	15-RdV32	Vegetation	Cs-134	Bq/sample	8.08	7.32	5.12 - 9.52	Α
		•	Cs-137	Bq/sample	11.6	9.18	6.43 - 11.93	w
			Co-57	Bq/sample	-0.0096		(1)	Α
			Co-60	Bg/sample	6.53	5.55	3.89 - 7.22	Α
		•	Mn-54	Bq/sample	0.0058		(1)	Α
			Zn-65	Bq/sample	-0.108		(1)	Α
September 2015	15-GrF33	AP	Gr-B	Bq/sample	1.34	1.56	0.78 - 2.34	Α
	15-RdV33	Vegetation	Cs-134	Bg/sample	6.10	5.80	4.06 - 7.54	Α
			Cs-137	Bq/sample	0.0002		(1)	Α
			Co-57	Bq/sample	8.01	6.62	4.63 - 8.61	W
			Co-60	Bq/sample	4.97	4.56	3.19 - 5.93	Α
			Mn-54	Bq/sample	8.33	7.68	5.38 - 9.98	Α
			Zn-65	Bq/sample	6.07	5.46	3.82 - 7.10	Α

⁽¹⁾ False positive test.

 ⁽a) Teledyne Brown Engineering reported result.
 (b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

TABLE 8-3
INTERLABORATORY INTERCOMPARISON PROGRAM
ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM
TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES
(PAGE 1 OF 1)

Montin/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c)
May 2015	RAD-101	Water	Ba-133	pCi/L	80.6	82.5	63.9 - 90.8	Α
•			Cs-134	pCi/L	71.7	75.7	61.8 - 83.3	Α
			Cs-137	pCi/L	187	189	170 - 210	Α
			Co-60	pCi/L	85.7	84.5	76.0 - 95.3	Α
			Zn-65	pCi/L	197	203	183 - 238	Α
			I-131	pCi/L	23.5	23.8	19.7 - 28.3	Α
			H-3	pCi/L	3145	3280	2770 - 3620	Α
November 2015	RAD-103	Water	Ba-133	pCi/L	31.5	32.5	25.9 - 36.7	A
			Cs-134	pCi/L	59.65	62.3	50.6 - 68.5	A
			Cs-137	pCi/L	156	157	141 - 175	Α
			Co-60	pCi/L	70.6	71.1	64.0 - 80.7	Α
		•	Zn-65	pCi/L	145	126	113 - 149	Α
			I-131	pCi/L	24.8	26.3	21.9 - 31.0	A
4			H-3	pCi/L	21100	21300	18700 - 23400	Α .

⁽a) Teledyne Brown Engineering reported result.

⁽b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

9.0 2014 DATA TABLE CORRECTIONS

TABLE 6-4
CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES - 2014
Results in Units of pCi/liter ± 1 Sigma

OSWEGO STEAM STATION * (08, CONTROL)***

Date	1/31/2014	2/28/2014	3/28/2014	5/2/2014	5/30/2014	6/27/2014
NUCLIDE						
I-131	< 0.87	< 1.0	< 0.62	< 0.75	< 0.72	< 0.98
Cs-134	< 1.71	< 1.73	< 2.12	< 1.66	< 1.59	< 2.93
Cs-137	< 2.42	< 2.28	< 2.79	< 2.24	< 2.05	< 2.41
Zr-95	< 5.00	< 4.73	< 5.02	< 4.52	< 4.37	< 4.79
Nb-95	< 3.28	< 2.95	< 3.44	< 3.27	< 2.86	< 3.18
Co-58	< 2.97	< 2.34	< 2.91	< 2.21	< 2.22	< 2.97
Mn-54	< 2.53	< 1.99	< 3.06	< 2.36	< 2.20	< 2.47
Fe-59	< 9.90	< 6.72	< 8.86	< 6.87	< 6.77	< 7.86
Zn-65	< 6.55	< 4.99	< 6.55	< 2.95	< 4.35	< 5.96
Co-60	< 3.15	< 2.13	< 2.28	< 1.97	< 2.33	< 2.37
Ba/La-140	< 10.5	< 7.26	< 7.96	< 7.12	< 6.02	< 8.50
Date	8/1/2014	8/29/2014	9/26/2014	10/31/2014	11/26/2014	1/2/2015
NUCLIDE						
I-131	< 0.59	< 0.96	< 0.82	< 0.38	< 0.42	< 0.73
Cs-134	< 1.72	< 1.88	< 0.94	< 0.57	< 0.64	< 0.83
Cs-137	< 2.04	< 2.36	< 0.94	< 0.62	< 0.81	< 0.86
Zr-95	< 3.79	< 4.66	< 2.23	< 1.26	< 1.43	< 2.17
Nb-95	< 2.69	< 3.23	< 1.09	< 0.85	< 0.81	< 1.39
Co-58	< 2.30	< 2.56	< 1.18	< 0.74	< 0.82	< 1.19
Mn-54	< 1.93	< 2.36	< 1.07	< 0.66	< 0.78	< 0.88
Fe-59	< 6.73	< 7.59	< 3.18	< 1.95	< 1.65	< 2.89
Zn-65	< 2.62	< 3.01	< 2.12	< 1.32	< 1.23	< 2.16
Co-60	< 2.18	< 2.40	< 1.27	< 0.80	< 0.72	< 1.00
Ba/La-140	< 6.54	< 7.16	< 6.58	< 3.7	< 2.27	< 8.51

^{*} Sample location required by ODCM

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-4 (Continued) CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES - 2014 Results in Units of pCi/liter ± 1 Sigma

NINE MILE POINT UNIT 2 ** (11, INLET)***

Date	1/31/2014	2/28/2014	3/28/2014	5/2/2014	5/30/2014	6/27/2014
NUCLIDE						
I-131	< 14.4	< 12.8	< 8.99	< 13.0	< 9.48	< 13.7
Cs-134	< 3.35	< 3.23	< 2.00	< 2.10	< 1.95	< 1.32
Cs-137	< 2.38	< 2.58	< 2.89	< 2.76	< 2.84	< 1.87
Zr-95	< 5.36	< 5.73	< 5.72	< 5.16	< 4.42	< 3.93
Nb-95	< 3.68	< 3.50	< 3.50	< 3.51	< 3.20	< 3.01
Co-58	< 2.68	< 3.52	< 2.84	< 2.82	< 2.79	< 2.41
Mn-54	< 2.54	< 2.44	< 3.18	< 2.44	< 2.74	< 2.09
Fe-59	< 10.4	< 7.13	< 7.74	< 8.15	< 7.40	< 7.54
Zn-65	< 5.55	< 7.04	< 6.64	< 5.98	< 6.01	< 4.66
Co-60	< 3.11	< 2.76	< 2.80	< 2.46	< 2.62	< 2.32
Ba/La-140	< 10.3	< 7.57	< 7.18	< 7.02	< 6.68	< 9.66
Date	8/1/2014	8/29/2014	9/26/2014	10/31/2014	11/26/2014	1/2/2015
NUCLIDE						
I-131	< 14.3	< 13.9	< 10.5	< 12.4	< 9.85	< 1.83
Cs-134	< 2.18	< 2.41	< 0.64	< 0.92	< 1.03	< 0.60
Cs-137	< 2.81	< 2.81	< 0.66	< 1.03	< 1.05	< 0.63
Zr-95	< 6.01	< 4.81	< 1.40	< 2.73	< 2.27	< 1.38
Nb-95	< 4.06	< 3.52	< 0.97	< 1.18	< 1.19	< 0.85
Co-58	< 3.31	< 3.11	< 0.80	< 1.22	< 1.25	< 0.84
Mn-54	< 2.96	< 2.71	< 0.61	< 1.19	< 1.13	< 0.60
Fe-59	< 9.08	< 7.67	< 1.71	< 3.32	< 2.54	< 1.90
Zn-65	< 3.53	< 6.92	< 1.30	< 2.25	< 1.81	< 1.33
Co-60	< 2.54	< 2.63	< 0.60	< 1.20	< 1.19	< 0.60
Ba/La-140	< 9.38	< 8.42	< 4.05	< 4.49	< 3.37	< 4.82

^{**} Optional sample location

^{***} Corresponds to sample location noted on Figure 3.3-4

TABLE 6-5 (Continued)

ENVIRONMENTAL AIRBORNE PARTICULATE SAMPLES - OFFSITE SAMPLE LOCATIONS - 2014

GROSS BETA ACTIVITY pCi/ m³ ± 1 Sigma

Week End Date	R-1 *	R-2 *	R-3 *	R-4 *	R-5 *	D-2 **	E **	F **	G **
07/08/14	$0.016 \ \pm \ 0.001$	$0.016 \ \pm \ 0.001$	$0.016 \ \pm \ 0.001$	$0.017 \;\pm\; 0.001$	$0.017 \;\pm\; 0.001$	$0.014 \;\pm\; 0.001$	$0.013 \; \pm \; 0.001$	$0.016 \ \pm \ 0.001$	0.017 ± 0.001
07/15/14	$0.014 \ \pm \ 0.001$	$0.017 \ \pm \ 0.001$	$0.013 \ \pm \ 0.001$	$0.016 \; \pm \; 0.001$	$0.014 \;\pm\; 0.001$	$0.014 \;\pm\; 0.001$	0.015 ± 0.001	$0.015 \;\pm\; 0.001$	0.018 ± 0.001
07/22/14	0.015 ± 0.001	0.014 ± 0.001	0.015 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	$0.015 \;\pm\; 0.001$	$0.014 \;\pm\; 0.001$	0.015 ± 0.001
07/29/14	$0.015 \ \pm \ 0.001$	0.014 ± 0.001	0.015 ± 0.001	0.015 ± 0.001	$0.013 \;\pm\; 0.001$	$0.012 \;\pm\; 0.001$	$0.013 \; \pm \; 0.001$	$0.014 \;\pm\; 0.001$	0.015 ± 0.001
08/05/14	$0.018 \ \pm \ 0.001$	$0.020 \ \pm \ 0.001$	$0.018 \;\pm\; 0.001$	$0.018 \;\pm\; 0.001$	$0.017 \ \pm \ 0.001$	$0.013 \;\pm\; 0.001$	$0.016 \;\pm\; 0.001$	$0.017 \;\pm\; 0.001$	0.016 ± 0.001
08/12/14	0.015 ± 0.001	0.011 ± 0.001	0.013 ± 0.001	0.013 ± 0.001	0.015 ± 0.001	0.011 ± 0.001	0.015 ± 0.001	$0.013 \;\pm\; 0.001$	0.014 ± 0.001
08/19/14	0.010 ± 0.001	0.008 ± 0.001	0.011 ± 0.001	0.010 ± 0.001	0.010 ± 0.001	0.013 ± 0.001	0.008 ± 0.001	0.010 ± 0.001	0.011 ± 0.001
08/26/14	0.015 ± 0.001	0.016 ± 0.001	0.015 ± 0.001	0.018 ± 0.001	$0.017 \;\pm\; 0.001$	0.009 ± 0.001	$0.015 \;\pm\; 0.001$	$0.015 \;\pm\; 0.001$	0.017 ± 0.001
09/03/14	0.018 ± 0.001	0.014 ± 0.001	0.017 ± 0.001	0.016 ± 0.001	0.015 ± 0.001	0.012 ± 0.001	0.014 ± 0.001	0.013 ± 0.001	0.017 ± 0.001
09/09/14	0.016 ± 0.001	0.021 ± 0.002	0.017 ± 0.002	0.021 ± 0.002	0.016 ± 0.001	0.015 ± 0.001	0.018 ± 0.002	0.019 ± 0.001	0.021 ± 0.002
09/16/14	0.009 ± 0.001	0.009 ± 0.001	0.008 ± 0.001	0.009 ± 0.001	0.011 ± 0.001	$0.008 \;\pm\; 0.001$	0.010 ± 0.001	$0.008 \;\pm\; 0.001$	0.011 ± 0.001
09/23/14	0.018 ± 0.001	0.018 ± 0.001	0.015 ± 0.002	0.017 ± 0.002	0.017 ± 0.001	0.017 ± 0.001	0.015 ± 0.001	$0.014 \;\pm\; 0.001$	0.019 ± 0.001
09/30/14	0.022 ± 0.001	0.021 ± 0.001	0.020 ± 0.001	0.018 ± 0.001	0.021 ± 0.001	$0.020 \;\pm\; 0.001$	0.020 ± 0.001	$0.020 \; \pm \; 0.001$	0.023 ± 0.001
10/07/14	$0.017 \;\pm\; 0.003$	0.015 ± 0.003	$0.016 \;\pm\; 0.003$	0.016 ± 0.002	$0.014 \;\pm\; 0.002$	$0.014 \;\pm\; 0.002$	0.017 ± 0.003	No Sample	0.019 ± 0.003
10/14/14	$0.014 \;\pm\; 0.002$	0.016 ± 0.002	$0.015 \;\pm\; 0.003$	0.016 ± 0.003	0.014 ± 0.002	$0.013 \; \pm \; 0.002$	$0.015 \; \pm \; 0.003$	$0.015 \; \pm \; 0.003$	0.016 ± 0.002
10/21/14	0.023 ± 0.003	0.026 ± 0.003	$0.025 \;\pm\; 0.003$	0.024 ± 0.003	0.022 ± 0.003	$0.024 \;\pm\; 0.003$	$0.028 \;\pm\; 0.003$	0.028 ± 0.003	0.026 ± 0.003
10/28/14	0.011 ± 0.002	0.013 ± 0.002	0.013 ± 0.002	0.015 ± 0.002	0.015 ± 0.002	0.012 ± 0.002	0.014 ± 0.002	$0.013 \;\pm\; 0.003$	0.015 ± 0.002
11/04/14	$0.015 \;\pm\; 0.002$	0.016 ± 0.002	0.016 ± 0.003	0.015 ± 0.002	0.015 ± 0.002	$0.014 \;\pm\; 0.002$	$0.014 \;\pm\; 0.002$	$0.015 \;\pm\; 0.002$	0.015 ± 0.002
11/12/14	0.016 ± 0.002	0.016 ± 0.002	0.016 ± 0.002	0.016 ± 0.002	0.016 ± 0.002	0.016 ± 0.002	0.017 ± 0.002	$0.016 \ \pm \ 0.002$	0.018 ± 0.002
11/18/14	0.014 ± 0.003	0.016 ± 0.003	0.012 ± 0.003	0.011 ± 0.002	0.013 ± 0.002	0.014 ± 0.003	0.014 ± 0.003	0.016 ± 0.003	0.014 ± 0.003
11/25/14	0.018 ± 0.003	0.018 ± 0.003	0.018 ± 0.003	0.014 ± 0.002	0.015 ± 0.003	0.022 ± 0.003	0.019 ± 0.003	0.018 ± 0.003	0.017 ± 0.002
12/02/14	0.016 ± 0.003	0.014 ± 0.002	0.013 ± 0.002	0.017 ± 0.002	0.013 ± 0.002	0.015 ± 0.002	0.014 ± 0.002	0.013 ± 0.002	0.015 ± 0.002
12/09/14	0.022 ± 0.003	0.020 ± 0.003	0.018 ± 0.003	0.018 ± 0.003	0.018 ± 0.002	0.018 ± 0.003	0.019 ± 0.003	0.020 ± 0.003	0.019 ± 0.003
12/16/14	0.012 ± 0.002	0.014 ± 0.002	0.010 ± 0.002	0.015 ± 0.002	0.012 ± 0.002	0.012 ± 0.002	0.014 ± 0.002	0.013 ± 0.002	0.012 ± 0.002
12/23/14	0.012 ± 0.002	0.012 ± 0.002	0.011 ± 0.002	0.013 ± 0.002	0.012 ± 0.002	0.011 ± 0.002	0.012 ± 0.002	0.013 ± 0.002	0.012 ± 0.002
12/30/14	0.013 ± 0.002	0.013 ± 0.002	0.012 ± 0.002	0.012 ± 0.002	0.013 ± 0.002	0.012 ± 0.002	0.017 ± 0.002	0.012 ± 0.002	0.013 ± 0.002

^{*} Sample location required by ODCM
** Optional sample location

TABLE 6-10 (Continued) DIRECT RADIATION MEASUREMENT RESULTS - 2014 Results in Units of mrem/std. Month +/- 1 Sigma

LOCATION NUMBER	DESCRIPTION	FIRST QUARTER			SECOND QUARTER			THIRD QUARTER			FOURTH QUARTER			DEGREES & DISTANCE (1)
78*	JAF E of Old Lay Down Area	3.90	+/-	0.22	4.30	+/-	0.21	4.30	+/-	0.18	4.39	+/-	0.21	86° at 1.0 miles
79*	Co Rt 29 Pole #63 0.2 mi S of Lake Rd	3.37	+/-	0.20	3.91	+/-	0.16	3.74	+/-	0.24	3.91	+/-	0.17	121° at 1.2 miles
80*	Co Rt 29 Pole #54 0.7 mi S of Lake Rd	3.36	+/-	0.17	4.06	+/-	0.17	3.85	+/-	0.19	4.00	+/-	0.18	136° at 1.5 miles
81*	Miner Rd Pole #16 0.5 mi W of Rt 29	3.36	+/-	0.23	3.97	+/-	0.21	3.67	+/-	0.17	3.87	+/-	0.16	160° at 1.7 miles
82*	Miner Rd Pole # 1-1/2 11 mi W of Rt 29	3.34	+/-	0.18	4.01	+/-	0.17	3.66	+/-	0.28	3.95	+/-	0.16	180° at 1.6 miles
83*	Lakeview Rd Tree 0.45 mi N of Miner Rd	3.44	+/-	0.22	3.84	+/-	0.18	3.68	+/-	0.18	3.81	+/-	0.19	203° at 1.2 miles
84*	Lakeview Rd N Pole #6117 200ft N of Lake Rd	3.55	+/-	0.19	4.09	+/-	0.27	3.87	+/-	0.24	4.14	+/-	0.20	225° at 1.1 miles
85*	Unit 1 N Fence N of W Side of Screen House	9.00	+/-	0.43	9.44	+/-	0.47	8.50	+/-	0.49	9.95	+/-	0.56	290° at 0.2 miles
86*	Unit 2 N Fence N of W Side of Screen House	7.12	+/-	0.40	7.79	+/-	0.49	7.50	+/-	0.47	8.12	+/-	0.42	310° at 0.1 miles
87*	Unit 2 N Fence N of E Side of Screen House	7.13	+/-	0.38	8.04	+/-	0.48	7.37	+/-	0.50	8.15	+/-	0.27	332° at 0.1 miles
88*	Hickory Grove Rd Pole #2 0.6 mi N of Rt 1	3.40	+/-	0.16	4.00	+/-	0.17	3.73	+/-	0.28	4.17	+/-	0.20	97° at 4.5 miles
89*	Leavitt Rd Pole #16 0.4 mi S of Rt 1	3.63	+/-	0.20	4.35	+/-	0.22	4.07	+/-	0.22	4.25	+/-	0.20	112° at 4.3 miles
90*	Rt 104 Pole #300 150ft E of Keefe Rd	3.15	+/-	0.20	4.00	+/-	0.20	3.73	+/-	0.16	4.03	+/-	0.21	135° at 4.2 miles
91*	Rt 51A Pole #59 0.8 mi W of Rt 51	3.22	+/-	0.22	3.83	+/-	0.20	3.62	+/-	0.23	3.88	+/-	0.17	157° at 4.9 miles
92*	Maiden Lane Rd Power Pole 0.6 mi S of Rt 104	3.37	+/-	0.20	4.38	+/-	0.23	4.43	+/-	0.45	4.26	+/-	0.18	183° at 4.5 miles
93*	Rt 53 Pole 1-1 120ft S of Rt 104	3.64	+/-	0.19	3.99	+/-	0.16	3.70	+/-	0.18	4.11	+/-	0.32	206° at 4.4 miles
94*	Rt 1 Pole #82 250ft E of Kocher Rd (Co Rt 63)	3.17	+/-	0.17	3.63	+/-	0.26	3.48	+/-	0.14	3.69	+/-	0.19	224° at 4.4 miles
95*	Alcan W Access Rd Joe Fultz Blvd Pole #21	3.16	+/-	0.18	3.47	+/-	0.16	3.19	+/-	0.19	3.55	+/-	0.20	239° at 3.7 miles
96*	Creamery Rd 0.3 mi S of Middle Rd Pole 1-1/2	3.35	+/-	0.20	3.95	+/-	0.18	3.60	+/-	0.23	3.82	+/-	0.18	199° at 3.7 miles
97*	Rt 29 Pole #50 200ft N of Miner Rd	3.26	+/-	0.22	3.93	+/-	0.25	3.82	+/-	0.22	3.90	+/-	0.16	145° at 1.8 miles
98	Lake Rd Pole #145 0.15 mi E of Rt 29	3.51	+/-	0.18	4.07	+/-	0.21	3.87	+/-	0.20	4.21	+/-	0.22	103° at 1.2 miles
99	NMP Rd .04 mi N of Lake Rd Env Station R1	3.56	+/-	0.18	4.41	+/-	0.21	4.25	+/-	0.26	4.23	+/-	0.17	88° at 1.8 miles
100	Rt 29 & Lake Rd Env Station R2	3.61	+/-	0.21	4.23	+/-	0.23	3.96	+/-	0.17	4.19	+/-	0.24	104° at 1.1 miles
101	Rt 29 0.7 mi S of Lake Rd Env Station R3	3.12	+/-	0.19	3.54	+/-	0.24	3.65	+/-	0.21	3.79	+/-	0.17	132° at 1.5 miles
102	EOF/Env Lab Rt 176 E Driveway Lamp Post	3.42	+/-	0.21	3.74	+/-	0.15	3.63	+/-	0.21	3.68	+/-	0.17	175° at 11.9 miles
103	EIC East Garage Rd Lamp Post	4.05	+/-	0.23	4.47	+/-	0.20	4.31	+/-	0.19	4.63	+/-	0.18	267° at 0.4 miles
104	Parkhurst Rd Pole #23 0.1 mi S of Lake Rd	3.49	+/-	0.21	3.96	+/-	0.17	3.93	+/-	0.21	3.87	+/-	0.15	102° at 1.4 miles
105	Lakeview Rd Pole #36 0.5 mi S of Lake Rd	3.55	+/-	0.20	4.10	+/-	0.17	3.83	+/-	0.17	3.89	+/-	0.21	198° at 1.4 miles
106	Shoreline Cove W of NMP-1 Tree on W Edge	4.41	+/-	0.22	5.07	+/-	0.27	4.88	+/-	0.24	5.33	+/-	0.26	274° at 0.3 miles
107	Shoreline Cove W of NMP-1 30ft SSW of #106	4.24	+/-	0.23	4.98	+/-	0.25	4.70	+/-	0.26	5.17	+/-	0.24	272° at 0.3 miles
108	Lake Rd Pole #142 300ft E of Rt 29 S	3.56	+/-	0.21	4.23	+/-	0.21	3.92	+/-	0.19	4.06	+/-	0.18	104° at 1.1 miles
109	Tree North of Lake Rd 300ft E of Rt 29 N	3.62	+/-	0.18	4.07	+/-	0.22	3.96	+/-	0.17	4.30	+/-	0.39	103° at 1.1 miles
111	State Route 38 Sterling NY - Control	3.12	+/-	0.23	3.72	+/-	0.21	3.47	+/-	0.17	3.60	+/-	0.16	166° at 26.4 miles
112	EOF/Env Lab Oswego County Airport	3.62	+/-	0.23	3.69	+/-	0.17	3.64	+/-	0.19		Lost TLD		175° at 11.9 miles
113	Baldwinsville NY - Control	3.27	+/-	0.18	3.76	+/-	0.21	3.42	+/-	0.17	3.75	+/-	0.20	214° at 21.8 miles

⁽¹⁾ Degrees and distance based on NMP-2 reactor centerline.

^{*} TLD required by ODCM