

Monticello Nuclear Generating Plant 2807 W County Road 75 Monticello, MN 55362

May 12, 2016

L-MT-16-030 10 CFR 50, Appendix I

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Monticello Nuclear Generating Plant Docket 50-263 Renewed Facility Operating License No. DPR-22

2015 Annual Radiological Environmental Operating Report

Pursuant to 10 CFR 50, Appendix I, Section IV.B.2, IV.B.3, IV.C and, in accordance with Monticello Nuclear Generating Plant (MNGP) Technical Specifications 5.6.1, the Northern States Power Company, a Minnesota corporation (NSPM), d/b/a Xcel Energy, is submitting the Annual Radiological Environmental Operating Report, under MNGP's "Radiological Environmental Monitoring Program," for year 2015.

Summary of Commitments

This letter makes no new commitments and no revisions to existing commitments.

Theal

Peter A. Gardner Site Vice President, Monticello Nuclear Generating Plant Northern States Power Company – Minnesota

Enclosures (1)

cc: Administrator, Region III, USNRC Project Manager, Monticello, Resident Inspector, Monticello Minnesota Department of Commerce

ENCLOSURE 1

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM JANUARY 1 – DECEMBER 31, 2015

.

XCEL ENERGY CORPORATION

MONTICELLO NUCLEAR GENERATING PLANT DOCKET NO. 50-263 LICENSE NO. DPR-22

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION

Radiological Environmental Monitoring Program

January 1 to December 31, 2015

Prepared under Contract by

ENVIRONMENTAL, Inc. Midwest Laboratory

Project No. 8010

Bronia Głob, M.S. Laboratory Manager

Approved:

PREFACE

The staff of Environmental, Inc., Midwest Laboratory was responsible for the acquisition of data presented in this report. Samples were collected by personnel of the Monticello Nuclear Generating Plant, operated by Northern States Power Co., Minnesota for XCEL Energy Corporation. This report was prepared by Environmental, Inc., Midwest Laboratory.

TABLE OF CONTENTS

<u>No.</u>	Pag	<u>le</u>
	Prefaceii	
	List of Tablesiv	
	List of Figures	
1.0	INTRODUCTION1	
2.0	SUMMARY2	
3.1	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)	
	3.2Program Design and Data Interpretation33.3Program Description43.4Program Execution53.5Program Modifications53.6Laboratory Procedures63.7Land Use Census6	
4.1	RESULTS AND DISCUSSION	
	 4.2 Atmospheric Nuclear Detonations and Nuclear Accidents	
5.0	FIGURES AND TABLES	•
6.0	REFERENCES	ł

APPENDICES

А	Interlaboratory Comparison Program Results	A-1
В	Data Reporting Conventions	B-1
С	Maximum Permissible Concentrations of Radioactivity in Air and Water Above Natural Background in Unrestricted Area	C-1
D.	Sampling Location Maps	D-1
E	Ground Water Monitoring Well Samples	E-1

LIST OF TABLES

<u>No.</u>	Title	<u>Page</u>
5.1	Sample Collection and Analysis Program	13
5.2	Sampling Locations	14
5.3	Missed Collections and Analyses	17
5.4	Radiation Environmental Monitoring Program Summary	20

The following tables are in the Appendices:

Appendix A

A-1	Interlaboratory Comparison Program ResultsA1-1
A-2	Thermoluminescent dosimeters (TLDs)A2-1
A-3	In-house Spiked Samples
A-4	In-house "Blank" Samples
A-5	In-house "Duplicate" SamplesA5-1
A-6	Department of Energy MAPEP comparison results
A-7	Environmental Resources Associates, Crosscheck Program Results (EML study replacement)
	Attachment A: Acceptance criteria for spiked samplesA2
Appendix C	× .

C-1	Maximum Permissible Concentrations of Radioactivity in air and water	
	above background in unrestricted areas	C-2

Appendix E

E-1	Sample Collection and Analysis Program, Ground Water,	.E-6
E-2	Sampling Locations for Ground Water Monitoring Wells	.E-6
E-3	Ground Water Monitoring Program Summary	.E-7
E-4	Results of Analyses, Ground Water Monitoring Program	.E-9

LIST OF FIGURES

<u>No</u> .	Title	Page
5-1	Offsite Ambient Radiation (TLDs), inner versus outer ring locations	. 18
5-2	Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location	. 19

The following figures are located in the Appendices:

Appendix D

D-1	Sample collection and analysis program: TLD locations, Inner Ring	D-2
D-2	Sample collection and analysis program: TLD locations, Outer Ring	D-3
D-3	Sample collection and analysis program: TLD locations, Controls	D-4
D-4	Sample collection and analysis program: Radiation Environmental Monitoring Program, Well water and Shoreline sampling locations	D-5
D-5	Sample collection and analysis program: TLD locations, ISFSITLDLocations	D-6

<u>Appendix E</u>

E-1	Sample collection and analysis program:	
	Ground water, On-site monitoring well locations	E-8

1.0 INTRODUCTION

This report summarizes and interprets results of the Radiological Environmental Monitoring Program (REMP) conducted by Environmental, Inc., Midwest Laboratory for the Monticello Nuclear Generating Plant, Monticello, Minnesota, during the period January - December, 2015. This Program monitors the levels of radioactivity in the air, terrestrial, and aquatic environments in order to assess the impact of the Plant on its surroundings.

Tabulations of the individual analyses made during the year are included in Part II of this report.

1

The Monticello Nuclear Generating Plant is a boiling water reactor with a nominal generating capacity of 681 MWe. It is located on the Mississippi River in Wright County, Minnesota, owned by Xcel Energy Corporation and operated by Northern States Power Co. Minnesota. Initial criticality was achieved on December 10, 1970. Full power was achieved March 5, 1971 and commercial operation began on June 30, 1971.

2.0 SUMMARY

The Radiological Environmental Monitoring Program (REMP) is described; this program is required by the U.S. Nuclear Regulatory Commission (NRC) as well as Technical Specifications and the Offsite Dose Calculation Manual (ODCM) for the Monticello Nuclear Generating Plant. Results for the year 2015 are summarized and discussed.

Program findings show background levels of radioactivity in the environmental samples collected in the vicinity of the Monticello Nuclear Generating Plant.

3.1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

3.2 Program Design and Data Interpretation

The purpose of the Radiological Environmental Monitoring Program (REMP) at the Monticello Nuclear Generating Plant is to assess the impact of the Plant on its environment. For this purpose, samples are collected from the air, terrestrial, and aquatic environments and analyzed for radioactive content. In addition, ambient gamma radiation levels are monitored by thermoluminescent dosimeters (TLD's).

Sources of environmental radiation include the following:

- (1) Natural background radiation arising from cosmic rays and primordial radionuclides;
- (2) Fallout from atmospheric nuclear detonations;
- (3) Releases from nuclear power plants;
- (4) Industrial and medical radioactive waste; and
- (5) Fallout from nuclear accidents.

In interpreting the data, effects due to the Plant must be distinguished from those due to other sources.

A major interpretive aid in assessment of these effects is the design of the monitoring program at the Monticello Plant which is based on the indicator-control concept. Most types of samples are collected both at indicator locations (nearby, downwind, or downstream) and at control locations (distant, upwind, or upstream). A plant effect would be indicated if the radiation level at an indicator location was significantly larger than that at the control location. The difference would have to be greater than could be accounted for by typical fluctuations in radiation levels arising from other sources.

An additional interpretive technique involves analyses for specific radionuclides present in environmental samples collected from the Plant site. The Plant's monitoring program includes analyses for tritium and iodine-131. Most samples are also analyzed for gamma-emitting isotopes with results for the following groups quantified: zirconium-95, cesium-137, cerium-144, beryllium-7, and potassium-40. The first three gamma-emitting isotopes were selected as radiological impact indicators because of the different characteristic proportions in which they appear in the fission product mix produced by a nuclear reactor and that produced by a nuclear detonation. Each of the three isotopes is produced in roughly equivalent amounts by a reactor: each constitutes about 10% of the total activity of fission products 10 days after reactor shutdown. On the other hand, 10 days after a nuclear explosion, the contributions of zirconium-95, cerium-144, and cesium-137 to the activity of the resulting debris are in the approximate ratio 4:1:0.03 (Eisenbud, 1963). Beryllium-7 is of cosmogenic origin and potassium-40 is a naturally-occurring isotope. They were chosen as calibration monitors and should not be considered as radiological impact indicators. The other group quantified consists of niobium-95, ruthenium-103 and -106, cesium-134, barium-lanthanum-140, and cerium-141. These isotopes are released in small quantities by nuclear power plants, but to date their major source of injection into the general environment has been atmospheric nuclear testing. Nuclides of the final group, manganese-54, iron-59, cobalt-58 and -60, and zinc-65, are activation products and arise from activation of corrosion products. They are typical components of a nuclear power plant's effluents, but are not produced in significant quantities by nuclear detonations.

Other means of distinguishing sources of environmental radiation are employed in interpreting the data. Current radiation levels are compared with previous levels, including those measured before the plant became operational. Results of the Plant's Monitoring Program can be related to those obtained in other parts of the world. Finally, results can be related to events known to cause elevated levels of radiation in the environment, e.g., atmospheric nuclear detonations.

3.3 Program Description

The sampling and analysis schedule for the Radiological Environmental Monitoring Program (REMP) at the Monticello Plant is summarized in Table 5.1 and briefly reviewed below. Table 5.2 defines the sampling location codes used in Table 5.1 and specifies for each location its type (indicator or control) and its distance, direction, and sector relative to the plant site. To assure that sampling is carried out in a reproducible manner, detailed sampling procedures have been prescribed (Monticello Generating Plant REMP Surveillances, Current Revision). Maps of sampling locations are included in Appendix D.

To monitor the air environment, airborne particulates are collected on membrane filters by continuous pumping at five locations. Also, airborne iodine is collected by continuous pumping through charcoal filters at all of these locations. Filters are changed and counted weekly. Particulate filters are analyzed for gross beta activity and charcoal filters for iodine-131. Quarterly composites of particulate filters from each location are determined by gamma spectroscopy. One of the five locations is a control (M-1), and four are indicators (M-2, M-3, M-4, M-5). One of the indicators is located in the geographical sector expected to be most susceptible to any atmospheric emissions from the Plant (highest D/Q sector).

Ambient gamma radiation is monitored at forty locations, using CaSO₄:Dy dosimeters with four sensitive areas at each location: fourteen in an inner ring in the general area of the site boundary, sixteen in the outer ring within 4-5 mile radius, six at special interest locations and four control locations, outside a 10 mile radius from the plant. They are replaced and measured quarterly.

As substitute for dairy sampling, vegetation is collected from locations M-41, M-42 and M-43 (C). The samples are analyzed for iodine-131 and other gamma emitting isotopes.

Corn and potatoes are collected annually if fields are irrigated by water in which liquid radioactive effluent has been discharged. Analysis is done for gamma-emitting isotopes.

Well water is monitored by quarterly collections from three off-site locations (one control and two indicators) and one on-site Plant well. To detect possible groundwater contamination due to plant operations, samples from nineteen on-site monitoring wells are collected and analyzed for tritium and gamma emitting isotopes. The Ground Water Monitoring Program is further described in Appendix E.

Quarterly collections of storm water runoff were added to monitor another possible pathway to the groundwater aquifer. The samples are also analyzed for tritium and gamma emitting isotopes.

River water is collected weekly at two locations, one upstream of the plant and one downstream. Monthly composites are analyzed for gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

Drinking water is collected weekly from the City of Minneapolis water supply, which is taken from the Mississippi River downstream of the Plant. Monthly composites are analyzed for gross beta, iodine-131, and gamma-emitting isotopes. Quarterly composites are analyzed for tritium.

The aquatic environment is also monitored by semi-annual upstream and downstream collections of fish, invertebrates, and shoreline sediments. Shoreline sediment is also collected from one downstream recreational location. All samples are analyzed for gamma-emitting isotopes.

3.4 Program Execution

The Program was executed as described in the preceding section with the following exceptions:

(1) Air Particulates / Air Iodine:

M-05, No air particulate / air iodine sample was available for the week ending January 28, 2015, there was a power loss at the sample station.

M-02, No air particulate / air iodine sample was available for the week ending February 4, 2015, due to a malfunctioning switch on the air sampler. The air sampler was replaced.

M-02, No air particulate / air iodine sample was available for the week ending May 6, 2015, due to a malfunctioning switch on the air sampler. The air sampler was replaced.

M-04, Air sampler was found with GFCI tripped for the week ending June 10, 2015 and the GFCI was reset; the sample duration was determined to be approximately a full week and the analysis result is included in the Complete Data Analysis Tables for this report.

M-04, No air particulate / air iodine sample was available for the week ending June 24, 2015. The GFCI was tripped. The GFCI was reset.

(2) Surface Water:

Surface water was not collected at location M-08 for the months of January or February, 2015, or for the weeks of March 4, March 11, and December 30, 2015 due to unsafe ice conditions.

(3) <u>TLD's:</u>

One TLD samples was found missing for the second quarter at Outer Ring location M-06B.

Deviations from the program are summarized in Table 5.3.

3.5 Program Modifications

No modifications were made to the MNGP Radiological Environmental Monitoring Program in 2015.

3.6 Laboratory Procedures

The iodine-131 analyses in drinking water were made using a sensitive radiochemical procedure which involves separation of the iodine using an ion-exchange method and solvent extraction and subsequent beta counting.

Gamma-spectroscopic analyses are performed using high-purity germanium (HPGe) detectors. Levels of iodine-131 in natural vegetation and concentrations of airborne iodine-131 in charcoal samples were determined by gamma spectroscopy.

Tritium concentrations are determined by liquid scintillation.

Analytical Procedures used by Environmental, Inc. are on file and are available for inspection. Procedures are based on those prescribed by the Health and Safety Laboratory of the U.S. Dep't of Energy, Edition 28, 1997, U.S. Environmental Protection Agency for Measurement of Radioactivity in Drinking Water, 1980, and the U.S. Environmental Protection Agency, EERF, Radiochemical Procedures Manual, 1984.

Environmental, Inc., Midwest Laboratory has a comprehensive quality control/quality assurance program designed to assure the reliability of data obtained. Details of the QA Program are presented elsewhere (Environmental, Inc., Midwest Laboratory, 2012). The QA Program includes participation in Interlaboratory Comparison (crosscheck) Programs. Results obtained in the crosscheck programs are presented in Appendix A.

3.7 Land Use Census

In accordance with the MNGP Chemistry Manual, Procedure I.05.41, "Annual Land Use Census and Critical Receptor Identification", a land use census shall be conducted and shall identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 ft² producing fresh leafy vegetables, in each of the 16 meteorological sectors within a 5 mile radius. The census shall also identify the locations of all milk animals, meat animals and all gardens of greater than 500 ft² producing broad leaf vegetation in each of the meteorological sectors within a distance of three miles. This census shall be conducted at least once per year between the dates of May 1 and October 31. New locations shall be added to the radiation environmental monitoring program within 30 days and sampling locations having lower calculated doses or a lower dose commitment may be deleted from this monitoring program after October 31 of the year in which the land use census was conducted.

The 2015 land use census was conducted between September 14 and September 24, 2015.

This is the third year using improved GPS software. The GPS software provides more accurate distance and direction plotting for identified locations than previous methodologies.

There were three sectors in which the highest D/Q values for gardens increased by greater than 20%. The change in all three sectors was due to a closer residence planting a garden in 2015 where there was no garden in 2014. There were no sectors where the highest D/Q values for the nearest residence changed by more than 20%. Meat animals were identified during the performance of the 2015 census. There currently are no milking animals within a five mile radius of the plant. Vegetation sampling is currently being performed in lieu of milk sampling.

The Critical Receptor for 2015 remained the same as 2014 (Child, Thyroid located 1.15 mi SSE with exposure to Ground, Plume, Inhalation and Vegetable Pathways). Details of the land use census are contained in the Land Use Census and Critical Receptor Report, Monticello Nuclear Generating Plant, Chemistry and Radiation Protection Department.

4.1 RESULTS AND DISCUSSION

All of the scheduled collections and analyses were made except those listed in Table 5.3.

All results are summarized in Table 5.4 in a format recommended by the Nuclear Regulatory Commission in Regulatory Guide 4.8. For each type of analysis of each sampled medium, this table lists the mean and range for all indicator locations and for all control locations. The locations with the highest mean and range are also shown.

4.2 Atmospheric Nuclear Detonations and Nuclear Accidents

There were no reported accidents involving significant release to the environment at nuclear reactor facilities in 2015. The Fukushima Daiichi nuclear accident occurred March 11, 2011.

There were no reported atmospheric nuclear tests in 2015. The last reported test was conducted on October 16, 1980 by the People's Republic of China.

4.3 Summary of Preoperational Data

The following constitutes a summary of preoperational studies conducted at the Monticello Nuclear Generating Plant during the years 1968 to 1970, to determine background levels expected in the environment, and provided, where applicable, as a means for comparison with present day levels. Strict comparisons, however, are difficult to make, since background levels of radiation were much higher in these years due to radioactive fallout from the atmosphere. Gross beta measurements in fallout averaged 20,600 pCi/m³ in 1969 and 12,000 pCi/m³ in 1970. These levels are reflected throughout the various media tested.

In the air environment, ambient gamma radiation (TLDs) averaged 9.1 mRem/4 weeks during preoperational studies (1970). Gross beta in air particulates in 1969 and 1970 averaged 0.20 pCi/m³. Present day levels have stabilized at around 0.025 pCi/m³. Airborne radioiodine remained below detection levels of 0.03 pCi/m³

In the terrestrial environment of 1968 to 1970, milk, agricultural crops, and soil were monitored. In milk samples, low levels of Cs-137 and Sr-90 were detected. Cs-137 levels averaged 16.7 pCi/L. Soybean crop measurements in 1969 averaged 35.5 pCi/g for gross beta and 0.3 pCi/g for Cs-137. Gross beta measured in soil averaged 51.7 pCi/g. Present day measurements for cesium-137 are below detection levels in milk and agricultural crops.

The aqueous environment was monitored by testing of river water, bottom sediments, fish, aquatic vegetation, and periphyton. Specific location comparison of drinking, river, and well water concentrations for tritium and gross beta are not possible. However, tritium background levels, measured at seven separate locations from 1968 to 1970, averaged 970 pCi/L. Present day environmental samples measure below detection levels. Values for gross beta, measured from 1968 to 1970, averaged 9.8 pCi/L in upstream and downstream Mississippi River water, 4.4 pCi/L for well waters, and 18.6 pCi/L for lake waters. Gamma emitters were below the lower limit of detection (LLD). In shoreline sediments, gross beta background levels in 1970 averaged 49.8 pCi/g for both upstream and downstream samples. Cs-137 activity averaged 0.10 pCi/g for both upstream and downstream samples. Low levels of Cs-137, occasionally observed today can still be attributed to residual activity from atmospheric fallout. Gross beta levels in fish flesh averaged 5.3 pCi/g in 1968 and 1969. Cs-137, measured in 1969 and 1970, averaged 0.044 pCi/g. Gross beta background levels, in 1970, for aquatic vegetation, algae, and periphyton samples measured 86.7 pCi/g, 76.5 pCi/g, and 28.1 pCi/g respectively.

4.4 Program Findings

Results obtained show background levels of radioactivity in environmental samples collected outside of the Site Protected Area in 2015.

Tritium was identified in some groundwater samples collected within the site Protected Area, but not in offsite or domestic well samples.

Ambient Radiation (TLD's)

Ambient radiation was measured in the general area of the site boundary, at an outer ring 4 - 5 mi. distant from the Plant, at special interest areas and at four control locations. The means were similar for both inner and outer rings (14.8 and 14.2 mRem/91 days, respectively). The mean for special interest locations was 14.7 mRem/91 days and the mean for the control locations was 14.3 mRem/91 days. Dose rates measured at the inner and outer ring locations were similar to those observed from 1999 through 2014 and are tabulated below. No plant effect on ambient gamma radiation is indicated (Figure 5-1).

<u>Year</u>	Inner Ring	Outer Ring
	Dose rate (m	Rem/91 days)
1999	15.1	14.3
2000	15.1	14.5
2001	14.3	13.7
2002	15.9	14.8
2003	15.6	15.0
2004	16.0	15.4
2005	15.6	15.2
2006	16.5	15.6
2007	16.1	15.1
2008	15.2	14.6
2009	14.9	14.4
2010	14.7	14.3
2011	14.8	14.3
2012	16.2	15.5
2013	14.4	14.0
2014	13.5	12.9
2015	14.8	14.2

Ambient gamma radiation as measured by thermoluminescent dosimetry. Average quarterly dose rates, Inner vs. Outer Ring locations

Airborne Particulates

The average annual gross beta concentrations in airborne particulates were almost identical at both indicator and control locations (0.030 and 0.028 pCi/m³,respectively), similar to levels observed from 1999 through 2014. The results are tabulated below.

<u>Year</u>	Indicators	Control
	Concentrat	ion (pCi/m³)
1999	0.023	0.025
2000	0.027	0.026
2001	0.027	0.026
2002	0.028	0.028
2003	0.027	0.027
2004	0.024	0.024
2005	0.025	0.025
2006	0.024	0.025
2007	0.027	0.028
2008	0.028	0.029
2009	0.029	0.030
2010	0.026	0.026
2011	0.029	0.027
2012	0.032	0.031
2013	0.029	0.032
2014	0.027	0.028
2015	0.030	0.028

Average annual gross beta concentrations in airborne particulates.

Typically, the highest average readings occur during the months of January and December, and the first and fourth quarters, as observed in 1999 through 2015.

Gamma spectroscopic analysis of quarterly composites of air particulate filters yielded similar results for indicator and control locations. Beryllium-7, which is produced continuously in the upper atmosphere by cosmic radiation (Arnold and Al-Salih, 1955) was detected in all samples, with an average activity of 0.070 pCi/m³ for the indicator locations and 0.066 pCi/m³ for the control locations. All other gamma-emitting isotopes were below their respective LLD limits.

Airborne lodine

Weekly levels of airborne iodine-131 were below the lower limit of detection (LLD) of 0.03 pCi/m³ in all samples.

River Water and Drinking Water

Tritium activity measured below 500 pCi/L in all samples. Gamma isotopic results were all below detection limits. Gross beta activity in Minneapolis drinking water averaged 2.3 pCi/L and was similar to average levels observed from 1998 through 2012. Gross beta averages are tabulated below. No indication plant operational effects were indicated.

Year	Gross Beta (pCi/L)	<u>Year</u>	Gross Beta (pCi/L)
1999	2.2	2008	2.1
2000	2.5	2009	2.3
2001	2.5	2010	2.9
2002	2.9	2011	2.2
2003	3.0	2012	2.4
2004	2.7	2013	2.6
2005	2.8	2014	2.8
2006	2.1	2015	2.3
2007	2.8		

Average annual concentrations; Gross beta in drinking water.

Well Water

At the four indicator and control locations, tritium was below the detection limit for all samples. Gamma isotopic results were also below detection limits.

The data for 2015 were consistent with previous year's results and no plant operational effects were indicated.

Vegetation in lieu of Milk Sampling

Vegetation samples were collected in July, August and September, 2015. Iodine-131 concentrations measured below 0.043 pCi/g wet weight in all samples. These samples are required when milk samples are not available. With the exceptions of naturally-occurring beryllium-7 and potassium-40, no other gamma-emitting isotopes were detected.

<u>Crops</u>

A vegetation collection was not required for 2015. No crops within five miles of the plant were found using irrigation water from the Mississippi River, and the plant did not discharge radioactive liquid effluents.

Fish

Eight fish were analyzed in 2015 consisting of two fish collected from upstream locations and two collected from downstream locations in June and then again in September. Flesh was separated from the bones and analyzed by gamma spectroscopy. Only naturally-occurring potassium-40 was found with an average of 3.31 pCi/g wet for four upstream samples and 3.39 pCi/g wet weight for the four downstream samples. Other gamma-emitting isotopes remained below detection limits. There was no indication of a plant effect.

Invertebrates

Samples were collected in August and October, 2015, and analyzed by gamma spectroscopy. All gamma-emitting isotopes, with the exception of naturally-occurring potassium-40 were below detection limits. There was no indication of any plant effect.

Shoreline Sediments

Upstream, downstream and downstream recreational area shoreline sediment collections were made in August and October, 2015, and analyzed for gamma-emitting isotopes. Low levels of cesium-137 were detected in two downstream samples (M-9), at an average concentration of 0.029 pCi/g dry weight. Similar levels of activity have been observed since 1978, and are indicative of the influence of fallout deposition. Naturally-occurring beryllium-7 and potassium-40 were also detected. There was no indication of a plant effect.

Groundwater Monitoring Program (On-site monitoring wells)

Measurable tritium was detected in 47 of 118 samples collected from the nineteen on-site monitoring wells. The activities ranged from 144 to 6,493 pCi/L. Only six samples from MW-09A indicated tritium activity greater than 500 pCi/L. The highest level detected (6,493 pCi/l), is comparable to the highest level detected from 2014 (5,911 pCi/L), which also was collected from well MW-09A. The current results are consistent with those from previous years, indicating presence of a tritium plume under the Turbine Building that is considered to be remaining onsite. See Appendix E for full Groundwater monitoring well results and discussion.

Gamma isotopic measurements were below detection limits.

Starting in 2016, Onsite Groundwater Monitoring Program results will be published only in the Effluent report (ARERR). This is to align with guidelines of NEI 07-07 and industry practice.

Storm Water Run-off (on-site)

One of five storm water runoff samples indicated detectible tritium at 157 pCi/L; the remaining four samples were below detection limits. Gamma isotopic analysis results also measured below detection limits for all five samples analyzed in 2015.

ISFSI TLD Monitoring

Gamma and Neutron TLDs are located around the Independent Spent Fuel Storage Installation (ISFSI) to monitor direct radiation from stored fuel. Results for gamma monitoring are included in the Complete Data Analysis Tables. In addition, neutron TLDs are included at certain Special Interest locations and at the Control locations. Neutron TLD results were analyzed according to methodology presented at the 2009 RETS/REMP Workshop by Scannell, Giard, and Raimondi, and it was found that neutron TLDs surrounding the ISFSI do indicate a net signal due to neutron dose, but all neutron dosimeters at or beyond the site boundary do not indicate that neutron dose was detected. Neutron dosimetry uses the different responses from two lithium borate TLDs, one depleted of ⁶Li and ¹⁰B (gamma-sensitive only), with the other at natural abundances (neutron and gamma sensitive). The net response is scaled using a site-specific Neutron Correction Factor (NCF) to determine dose. The NCF is not available for Monticello's ISFSI at this time and it would not be correct, nor prudent, to report the neutron TLD results in the Complete Data Analysis Tables. It is intended that neutron results will be reported starting in 2016.

5.0 FIGURES AND TABLES

Medium	No.	Location Codes (and Type) ^a	Collection Type and Frequency ^b	Analysis Type and Frequency ^c
REMP Ambient radiation(TLDs)	40	M-01A - M-14A, M-01B - M-16B M-01S - M-06S, M-01C - M-04C	C/Q	Ambient gamma
ISFSI Ambient radiation (TLDs)	20	ISFSI-1 to ISFSI-16, Neutron Control A, B, C, D	C/Q C/Q	Neutron Dose
	13	I-01 to I-13	C/Q	Ambient Gamma
Airborne Particulates	5	M-1(C), M-2, M-3, M-4, M-5	CW	GB, GS (QC of each location)
Airborne lodine	5	M-1(C), M-2, M-3, M-4, M-5	CW	I-131
Pasture grass, Vegetation ^d	3	M-41, M-42, M-43(C)	3x/year	GS
Surface water	2	M-8(C), M-9	GAV	GS(MC), H-3(QC)
Drinking water	1	M-14	GW	GB(MC), I-131(MC) GS (MC), H-3 (QC)
Well water	4	M-11, M-12, M-55, M-43(C)	G/Q	H-3, GS
Fish (two species, edible portion)	2	M-8(C), M-9	G/SA	GS
Periphyton or invertebrates	2	M-8(C), M-9	G/SA	GS
Shoreline sediment	3	M-8(C), M-9, M-15	G/SA	GS

Table 5.1. Sample collection and analysis program, Monticello Nuclear Generating Plant.

^a Location codes are defined in Table 5.2. Control stations are indicated by (C). All other stations are indicators,

^b Collection type is coded as follows: C/ = continuous, G/ = grab. Collection frequency is coded as follows:

W= weekly, M = monthly, Q = quarterly, SA = semiannually, A = annually.

^c Analysis type is coded as follows: GB = gross beta, GS = gamma spectroscopy, H-3 = tritium, I-131 = iodine-131. Analysis frequency is coded as follows: MC = monthly composite, QC = quarterly composite.

^d Pasture grass and vegetation collections added to supplement dairy sampling.

Code	Type ^a	Collection Site	Sample Type ^b	Distance and Direction from Reactor
M-1	C	Air Station M-1	AP, AI	11.0 mi @ 307°/NW
M-2		Air Station M-2	AP, AI	0.8 mi @ 140°/SE
M-3		Air Station M-3	AP, AI	0.6 mi @ 104°/ESE
M-4		Air Station M-4	AP, AI	0.8 mi @ 147°/SSE
M-5		Air Station M-5	AP, Al	2.6 mi @ 134°/SE
M-8	С	Upstream of Plant Intake	SW, SS, BO, F	< 1000' upstream
M-9		Downstream of Plant Discharge	SW, SS, BO, F	< 1000' downstream
M-11		City of Monticello	WW	3.3 mi @ 127°/SE
M-12		Plant Well #11	WW	0.26 mi @ 252°/WSW
M-14		City of Minneapolis	DW	37.0 mi @ 132°/SE
M-15		Montissippi Park	SS	1.27 mi @ 114°/ESE
M- 27		Highest D/Q garden		1.15 mi @ 148°/SSE
M-41	С	Training Center	VE	0.8 mi @ 151°/SSE
M-42		Biology Station Road	VE	0.6 mi @ 134°/SE
M-43		Imholte Farm	VE, WW	12.3 mi @ 313°/NW
M-55		Hasbrouck Residence	WW	1.60 mi @ 255°/WSW

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Code	Type ^a	Collection Site	Sample Type ^b	Distance and Direction from Reactor
General Ar	ea of the Site I	Boundary		
M-01A		Sherburne Ave. So.	TLD	0.75 mi @ 353°/N
M-02A		Sherburne Ave. So.	TLD	0.79 mi @ 23°/NNE
M-03A		Sherburne Ave. So.	TLD	1.29 mi @ 56°/NE
M-04A		Biology Station Road	TLD	0.5 mi @ 92°/E
M-05A		Biology Station Road	TLD	0.48 mi @ 122°/ESE
M-06A		Biology Station Road	TLD	0.54 mi @ 138°/SE
M-07A		County Road 75	TLD	0.47 mi @ 158°/SSE
M-08A		County Road 75	TLD	0.45 mi @ 175°/S
M-09A		County Road 75	TLD	0.38 mi @ 206°/SSW
M-10A		County Road 75	TLD	0.38 mi @ 224°/SW
M-11A		County Road 75	TLD	0.4 mi @ 237°/WSW
M-12A		County Road 75	TLD	0.5 mi @ 262°/W
M-13A		North Boundary Road	TLD	0.89 mi @ 322°/NW
M-14A		North Boundary Road	TLD	0.78 mi @ 335°/NNW
Approxima	tely 4 to 5 mile	s Distant from the Plant	······································	
M-01B		117 th Street	TLD	4.65 mi @ 01°/N
M-02B		County Road 11	TLD	4.4 mi @ 18°/NNE
M-03B		County Road 73 & 81	TLD	4.3 mi @ 51°/NE
M-04B		County Road 73 (196th St.)	TLD	4.2 mi @ 67°/ENE
M-05B		City of Big Lake	TLD	4.3 mi @ 89°/E
M-06B		County Road 14 and 196th St.	TLD	4.3 mi @ 117°/ESE
М-07В		Monticello Industrial Drive	TLD	4.3 mi @ 136°/SE
M-08B		Residence, Hwy 25 & Davidson Ave.	TLD	4.6 mi @ 162°/SSE
M-09B		Weinand Farm	TLD	4.7 mi @ 178°/S
M-10B		Reisewitz Farm, Acacia Ave.	TLD	4.2 mi @ 204°/SSW
M-11B		Vanlith Farm, 97th Ave.	TLD	4.0 mi @ 228°/SW
M-12B		Lake Maria State Park	TLD	4.2 mi @ 254°/WSW
M-13B		Bridgewater Station	TLD	4.1 mi @ 270°/W
M-14B		Anderson Residence, Cty Rd. 111	TLD	4.3 mi @ 289°/WNW
M-15B		Red Oak Wild Bird Farm	TLD	4.3 mi @ 309°/NW
M-16B		Sand Plain Research Farm	TLD	4.4 mi @ 341°/NNW

Table 5.2. Sampling locations, Monticello Nuclear Generating Plant.

Code	Type ^a	Collection Site	Sample	Туре ^ь	Distance and Direction from Reactor
Special Intere	st Location	S			
M-01S		Osowski Fun Market	TLD		0.66 mi @ 241°/WSW
M-02S		Krone Residence	TLD		0.5 mi @ 220°/SW
M-03S		Big Oaks Park	TLD		1.53 mi @ 103°/ESE
M-04S		Pinewood School	TLD		2.3 mi @ 131°/SE
M-05S		Rivercrest Christian Academy	TLD		3.0 mi @ 118°/ESE
M-06S		Monticello Public Works	TLD		2.6 mi @ 134°/SE
M-01C	С	Kirchenbauer Farm	TLD		11.5 mi @ 323°/NW
M-02C	С	County Roads 4 and 15	TLD		11.2 mi @ 47°/NE
M-03C	С	County Rd 19 and Jason Ave.	TLD		11.6 mi @ 130°/SE
M-04C	С	Maple Lake Water Tower	TLD		10.3 mi @ 226°/ SW
ISFSI TLD Lo	cations				
ISFSI-1		ISFSI-1 (neutron) and I-01 (gamma)	TLD		NE corner of ISFSI
ISFSI-2		ISFSI-2 (neutron) and I-02 (gamma)	TLD		North side of ISFSI, center
ISFSI-3		ISFSI-3 (neutron) and I-03 (gamma)	TLD		NW corner of ISFSI
ISFSI-4		ISFSI-4 (neutron) and I-04 (gamma)	TLD		West side of ISFSI, middle
ISFSI-5		ISFSI-5 (neutron) and I-05 (gamma)	TLD	West sid	le of ISFSI, at center of array
ISFSI-6		ISFSI-6 (neutron) and I-06 (gamma)	TLD		SW corner of ISFSI
ISFSI-7		ISFSI-7 (neutron) and I-07 (gamma)	TLD		South side of ISFSI, center
ISFSI-8		ISFSI-8 (neutron) and I-08 (gamma)	TLD		SE corner of ISFSI
ISFSI-9		ISFSI-9 (neutron) and I-09 (gamma)	TLD	East sid	de of ISFSI, at center of array
ISFSI-10		ISFSI-10 (neutron) and I-10 (gamma)	TLD		East side of ISFSI, middle
ISFSI-11		ISFSI-11 (neutron) and I-11 (gamma)	TLD	C	CA fence south, on exit road
ISFSI-12		ISFSI-12 (neutron) and I-12 (gamma)	TLD	0	CA fence middle, on exit road
ISFSI-13		ISFSI-13 (neutron) and I-13 (gamma)	TLD	(DCA fence north, on exit road
ISFSI-14		ISFSI-14 (neutron)	TLD		Posted with TLD M12A
ISFSI-15		ISFSI-15 (neutron)	TLD		Posted with TLD M10A
ISFSI-16		ISFSI-16 (neutron)	TLD		Posted with TLD M02S
Neutron Cont	rol A (C	TLD		Posted with TLD M03C
Neutron Cont	rol B (C	TLD		Posted with TLD M04C
Neutron Cont	rol C	C	TLD		Posted with TLD M02C
Neutron Cont	rol D (C	TLD		Posted with TLD M01C
^a "C" denotes	control loca	ation. All other locations are indicators.			
^b Sample Coo	les:	AP Airborne particulates	F	Fish	

Table 5.2.	Sampling locations.	Monticello Nuclear	Generating Plant.

b	Sam	ple	Code	s:
---	-----	-----	------	----

- Al Airborne lodine
- BS Bottom (river) sediments
- BO Bottom organisms
- DW Drinking Water

- F Fish
- SW **River** Water
- SS Shoreline Sediments
- TLD Thermoluminescent Dosimeter
- Vegetation / vegetables Well Water VE
- ww

^c Collected only if the plant discharges radioactive effluent into the river, then only from river irrigated fields.

Table 5.3 Missed Collections and Analyses.

All requi	All required samples were collected and analyzed as scheduled with the following exceptions:							
Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence			
AP/AI	Beta, I-131	M-005	1/28/2015	Power loss at sample station.	Power was reset			
SW	Gamma	M-008	January '15	Water frozen entire month; no composite.	None			
AP/AI	Beta, I-131	M-002	2/4/2015	Air sampler not running due to bad switch.	Replaced air sampler.			
SW	Gamma	M-008	February '15	Water frozen entire month; no composite.	None			
SW	Gamma	M-008	3/4/15	Water frozen	None			
SW	Gamma	M-008	3/11/15	Water frozen	None			
AP/AI	Beta, I-131	M-002	5/6/2015	Air sampler not running.	Replaced air sampler.			
TLD	Gamma	M-06B	2nd Qtr '15	TLD missing in field.	Replaced TLD			
AP/AI	Beta, I-131	M-004	6/10/15	GFCI tripped	Reset GFCI			
AP/AI	Beta, I-131	M- 004	6/24/2015	GFCI tripped	Reset GFCI			
SW	Gamma	M-008	12/30/15	Water frozen	None			

Figure 5-1. Offsite Ambient Radiation (TLDs); Inner Ring versus Outer Ring locations.

Figure 5-2. Airborne Particulates; analysis for gross beta, average mean of all indicator locations versus control location.

Table 5.4 Radiological Environmental Monitoring Program Summary

Name of

Facility	Monticello Nuclear Generating Plant
of Facility	Wright, Minnesota

Location of Facility

Docket No. Reporting Period

50-263 January-December, 2015

(County, State)

Sampla	Indicator Location with Highest		Highest	Control	Number		
Type	Number of	LLD⁵	Mean (F)°	Annuar Me	Mean (F)°	Mean (F)°	Routine
(Units)	Analyses ^a		Range⁰	Location ^d	Range ^e	Range	Results ^e
	•		Di	rect Radiation			
TLD (Inner Ring, General Area at Site Boundary) mRem/91 days)	Gamma 56	3.0	14.8 (56/56) (9.6-19.6)	M-11A, County Rd 75, 0.4 mi @ 250°/WSW	17.1 (4/4) (15.8-19.6)	(See Control bełow.)	0
TLD (Outer Ring, 4-5 mi. distant) mRem/91 days)	Gamma 63	3.0	14.2 (63/63) (11.0-19.6)	M-14B 4.5 mi @ 228°/NW	16.6 (4/4) (14.7-19.6)	(See Control below.)	0
TLD (Speciał Interest Areas) mRem/91 days)	Gamma 24	3.0	14.7 (24/24) (9.4-18.8)	M-04S 2.3 mi @ 132°/SE	16.4 (4/4) (14.4-17.6)	(See Control below.)	0
TLD (Control) mRem/91 days)	Gamma 16	3.0	None	M-02C 11.2 mi @ 47°/NE	17.5 (4/4) (15.9-20.3)	15.3 (16/16) (11.8-20.3)	0
		r	Air	borne Pathway			
Airborne Particulates (pCi/m³)	GB 256	0.002	0.030 (204/204) (0.007-0.088)	M-5, Air Station 2.6 mi @ 134°/SE	0.031 (51/51) (0.009-0.088)	0.028 (52/52) (0.008-0.062)	0
	GS 20 Be-7	0.015	0.070 (16/16) (0.049-0.087)	M-5, Air Station 2.6 mi @ 134°/SE	0.073 (4/4) (0.049-0.087)	0.066 (4/4) (0.043-0.077)	0
	Mn-54	0.0008	< LLD		-	< LLD	0
	Co-58	0.0008	< LLD	-	~	< LLD	0
	Co-60	0.0009	< LLD	-	-	< LLD	0
	Zn-65 Zr Nb 95	0.0019		-	-		0
	Ru-103	0.0014		-	-		0
	Ru-106	0.0085	< LLD	-		< LLD	0
	Cs-134	0.0010	< LLD	-	-	< LLD	0
	Cs-137	0.0010	< LLD	~	-	< LLD	0
	Ba-La-140	0.0026	< LLD	-	-	< LLD	0
	Ce-141 Ce-144	0.0020 0.0046	< LLD < LLD	- -	-	< LLD < LLD	0 0
Airborne lodine (pCi/m³)	l-131 256	0.03	< LLD	-	-	< LLD	0

Table 5.4 Radiological Environmental Monitoring Program Summary

Name of Facility Location of Facility Monticello Nuclear Generating Plant Wright, Minnesota -Docket No. Reporting Period 50-263 January-December,2015

(County, State)

Somelo	Tupe and		Indicator	Location with	Highest	Control	Number	
Sample	Number of		Mean /E) ^c	Annual Me	ean	Locations	Non-	
(Upite)	Analysesa		Rance ^c	Location ^d	Bango ^o	Range ^o	Routin	
(Onits)	Analyses		Wate	Prhome Pathway	- Nange	Nange	Result	
River Water							<u> </u>	
(pCi/L)	H-3 8	500	< 1.LD	-	_		0	
(po==)							, i	
	GG 22	10	< 11 D			110		
	1VI/1-04	20		-	-		0	
	Co 59	10		-	-			
	Co-58	10		-	-			
	CO-60 Zn 65	20		-	-			
	ZII-00 Zr Nb 05	30 15		-	-			
	ZI-IND-90	10		-	- ·	< LLD		
	Cs-134	10		-	-		0	
	CS-137	10		-	· -		0	
	Ba-La-140	15		-	-		0	
	Ce-144	39	< LLD	-	-		0	
Drinking Water	GB 12	1.0	2.3 (12/12)	M-14, Minneapolis	2.3 (12/12)	None	0	
(pCi/L)			(1.2-3.5)	37.0 mi. @ 132° /SE	(1.2-3.5)			
	I-131 12	1.0	< LLD	-	-	None	0	
	H-3 4	500	< LLD	-	-	None	0	
	GS 12					ļ	1	
	Mn-54	10	<11D	-		None		
	Fe-59	30	<11D	_	_	None		
	Co-58	10	<11D	_		None		
	Co-60	10	<110	_	_	None	0	
	Zn-65	30	<110	_		None	0	
	Zr-Nb-95	15		_		None		
	Cs-134	10		_		None		
	Cs-137	10				None		
	Ba-1 a-140	15			_	None		
	Ce-144	35		_	-	None		
						None		
Well Water	H-3 16	500	< LLD	-	-	< LLD	0	
(pCi/L)	GS 16							
	Mn-54	10	< LLD	-	-	< LLD	0	
	Fe-59	30	< LLD	-	-	< LLD	0	
	Co-58	10	< LLD		-	< LLD	0	
	Co-60	10	< LLD	-	-	< LLD	0	
	Zn-65	30	< LLD	~	-	< LLD	0	
	Zr-Nb-95	15	< LLD	-		< LLD	0	
	Cs-134	10	< LLD		-	< LLD	0	
	Ce.137	10	<11D	-	-	<11D	0	
	03-107		445				-	
	Ba-La-140	15	< LLD		-	< LLD	0	

Table 5.4 Radiological Environmental Monitoring Program Summary

Name of Facility	
Location of Facility	

cility	Monticello Nuclear Generating	Plant
Facility	Wright, Minnesota	~-

(County, State)

Docket No. Reporting Period 50-263 January-December, 2015

Sample	Type and		Indicator Locations	Location with I Annual Me	Control Locations	Number Non-			
Туре	Number of	LLD ^b	Mean (F)⁰	Mean (F)°		Mean (F)⁰	Routine		
(Units)	Analyses ^a		Range⁰	Location ^d	Range⁰	Range⁰	Results ^e		
	Waterborne Pathway								
Invertebrates	GS 4								
(pCi/g wet)	Be-7	1.49	< LLD	-	-	< LLD	0		
	K-40	1.91	< LLD	-	-	< LLD	0		
	Mn-54	0.088	< LLD -		-	< LLD	0		
	Fe-59	0.24	< LLD	LLD -		< LLD	0		
	Co-58	0,145	< LLD	_D - -		< LLD	0		
	Co-60	0.085	< LLD			< LLD	0		
	Zn-65	0.18	< LLD			< LLD	0		
	Zr-Nb-95	0.23	< LLD		-	< LLD	0		
	Ru-103	0.217	< LLD	-	-	< LLD	0		
	Ru-106	0.55	< LLD	-	-	< LLD	0		
	Cs-134	0.076	< LLD	-	-	< LLD	0		
	Cs-137	0.085	< LLD	- **	-	< LLD	0		
Ba-La-140 1		1.35	< LLD	-	-	< LLD	0		
Ce-144 0.3		0.39	< LLD	-	-	< LLD	0		
Shoreline	GS 6								
Sediments	Be-7	0.33	< LLD	-	-	< LLD	0		
(pCi/a drv)				-			-		
(13))	K-40	0,10	10.24 (4/4)	M-08, Upstream	11.55 (2/2)	11.55 (2/2)	0		
			(9.49-10.54)	< 1000' of discharge	(11.53-11.58)	(11.53-11.58)			
	Mn-54 0.02		< LLD	- [~]	- ´	、 < LLD	0		
	Fe-59	0.076	< LLD	-	-	< LLD	0		
Co-58 0.		0.026	< LLD	-	-	< LLD	0		
Co-60 0.0		0.017	< LLD	-	-	< LLD	0		
	Zn-65 0.04		< LLD	-	-	< LLD	0		
	Nb-95 0.05		< LLD	-	-	< LLD	0		
	Zr-95	0.052	< LLD	-	-	< LLD	0		
	Ru-103	0.041	< LLD	-	-	< LLD	0		
	Ru-106	0.13	< LLD		-	< LLD	0		
1	Cs-134 0.017		< LLD	-	-	< LLD	0		
	Cs-137	0,021	0.029 (2/4)	M-09, Downstream	-	< LLD	0		
			(0.024-0.034)	< 1000' of discharge	-				
	Ba-La-140	0.21	< LLD	-	-	< LLD	0		
	Ce-144 0.13 < LLD		< LLD	-	-	< LLD	0		
]								

Table 5.4 Radiological Environmental Monitoring Program Summary

Name of Facility	
Location of Facility	

Docket No. Reporting Period 50-263

January-December, 2015

(County, State)

Wright, Minnesota

Monticello Nuclear Generating Plant

Sample	Type and		Indicator Locations	Location with Highest Annual Mean		Control Locations	Number Non-
(Units)	Analyses ^a Range ^o		Location ^d	Range ^c	Range ^c	Results ^e	
Ingestion Pathway							
Vegetation	GS 9						
(Pasture Grass.	Mn-54	0.014	< LLD		_	< LĹD	0
Weeds, Leaves)	Fe-59	0.033	< LLD	-	-	< LLD	0
. ,	Co-58	0.014	< LLD	-	-	< LLD	0
(pCi/gwet)	Co-60	0.019	< LLD	-	-	< LLD	0
	Zn-65	0.029	< LLD	-	-	< LLD	0
	Nb-95	0.020	< LLD	-	-	< LLD	0
	I-131 0.		< LLD	-	-	< LLD	0
	Cs-134	0.015	< LLD	-	-	< LLD	0
	Cs-137	0.014	< LLD	-	-	< LLD	0
Fish	GS 8		· · · · · · · · · · · · · · · · · · ·				
(pCi/g wet)	K-40	0.10	3.39 (4/4)	M-09, Downstream	3.39 (4/4)	3.31 (4/4)	0
,			(3.08-3.71)	< 1000' of discharge	(3.08-3.71)	(2.56-3.65)	
	Mn-54		< LLD	-	-	< LLD	0
Fe-59		0.056	< LLD	-	-	< LLD	0
	Co-58	0.025	< LLD	-	-	< LLD	0
	Co-60	0.025	< LLD	-	-	< LLD	0
	Zn-65	0.070	< LLD	-	-	< LLD	0
	Zr-Nb-95	0.031	< LLD	-	-	< LLD	0
	Cs-134	0.025	< LLD	-	-	< LLD	0
	Cs-137	0.020	< LLD	-	-	< LLD	0
	Ba-La-140	0.122	< LLD	-	-	< LLD	0
	Ce-144	0.141	< LLD	-	-	< LLD	0

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^e Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code and (2) by distance (miles) and direction relative to reactor site.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

6.0 REFERENCES CITED

Arnold, J. R. and H. A. Al-Salih. 1955. Beryllium-7 Produced by Cosmic Rays. Science 121: 451-453.

Eisenbud, M. 1963. Environmental Radioactivity, McGraw-Hill, New York, New York, pp. 213, 275, 276.

ATI Environmental, Inc., Midwest Laboratory.

- 2001a through 2015a. Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January-December, 2000 through 2015.
- _____2001b through 2014b. Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 2000 through 2015.
 - ____1984a to 2000a. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.
- _____1984b to 2000b. (formerly Teledyne Brown Engineering Environmental Services, Midwest Laboratory) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1983 through 1999.
 - ____1979a to 1983a. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Monticello Nuclear Generating Plant, Complete Analysis Data Tables, January - December, 1978 through 1982.
 - ____1979b to 1983b. (formerly Hazleton Environmental Sciences Corporation) Radiation Environmental Monitoring for Prairie Island Nuclear Generating Plant, Complete Analysis Data Tables, January -December, 1978 through 1982.
- 2009. Quality Assurance Program Manual, Rev. 3, 14 November 2012.
- _____2009. Quality Control Procedures Manual, Rev. 2, 08 July 2009.
- _____2009. Quality Control Program, Rev. 2, 12 November 2009.
- Gold, S., H.W. Barkhau, B. Shlein, and B. Kahn, 1964. Measurement of Naturally Occurring Radionuclides in Air, in the Natural Environment, University of Chicago Press, Illinois, 369-382.

National Center for Radiological Health, 1968. Radiological Health and Data Reports, Vol. 9, Number 12, 730-746.

Northern States Power Company.

_____1969 through 1971. Monticello Nuclear Generating Plant, Environmental Radiation Monitoring Program, Annual Report, June 18, 1968 to December 31, 1968, 1969, 1970. Minneapolis, Minnesota.

____1978 through 2008. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1, to December 31, 1977 through 2007.

6.0 <u>REFERENCES CITED (continued)</u>

- Scannell, M. J., J. Giard, J. Raimondi. 2009. Environmental Neutron TLD Monitoring for ISFSI (Presentation and Report). 2009 RETS/REMP Workshop, South Bend, IN.
- U.S. Dep't of Energy 1997 HASL-300, Edition 28, Procedures Manual, Environmental Measurements Laboratory, New York, NY.

U.S. Environmental Protection Agency.

_____1980. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, Cincinnati, Ohio (EPA-600/4-80-032).

____1984. Eastern Environmental Radiation Facility, Radiochemistry Procedures Manual, Montgomery, Alabama (EPA-520/5-84-006).

Wilson, D. W., G. M. Ward and J. E. Johnson. 1969. In Environmental Contamination by Radioactive Materials, International Atomic Energy Agency. p.125.

Xcel Energy Corporation.

__2009 to 2014. Monticello Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 through 2012. Minneapolis, Minnesota.

__2009 to 2014. Prairie Island Nuclear Generating Plant, Annual Radiation Environmental Monitoring Report to the U.S. Nuclear Regulatory Commission, January 1 to December 31, 2008 through 2012. Minneapolis, Minnesota.

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2015 through December, 2015

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via internal laboratory testing and by irradiation and evaluation by the University of Wisconsin-Madison Radiation Calibration Laboratory at the University of Wisconsin Medical Radiation Research Center.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

Attachment A

ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES^a

Analysis	Level	One standard deviation for single determination		
<u> </u>				
Gamma Emitters	5 to 100 pCi/liter or kg	5.0 pCi/liter		
	> 100 pCi/liter or kg	5% of known value		
Strontium-89 ^b	5 to 50 pÇi/liter or kg	5.0 pCi/liter		
	> 50 pCi/liter or kg	10% of known value		
Strontium-90 ^b	2 to 30 pCi/liter or kg	5.0 pCi/liter		
	> 30 pCi/liter or kg	10% of known value		
Potassium-40	≥ 0.1 g/liter or kg	5% of known value		
Gross alpha	≤ 20 pCi/liter	5.0 pCi/liter		
	> 20 pCi/liter	25% of known value		
Gross beta	≤ 100 pCi/liter	5.0 pCi/liter		
	> 100 pCi/liter	5% of known value		
Tritium	≤ 4,000 pCi/liter	$\pm 1\sigma =$		
	> 4,000 pCi/liter	109.85 x (known) 10% of known value		
Radium-226,-228	2 U.1 pCI/liter	15% of known value		
Plutonium	\geq 0.1 pCi/liter, gram, or sample	10% of known value		
lodine-131,	≤ 55 pCi/liter	6 pCi/liter		
lodine-129 [⊳]	> 55 pCi/liter	10% of known value		
Uranium-238,	≤ 35 pCi/liter	6 pCi/liter		
Nickel-63 ^b	> 35 pCi/liter	15% of known value		
lechnetium-99"				
Iron-55 ^b	50 to 100 pCi/liter	10 pCi/liter		
	> 100 pCI/liter	10% of known value		
Other Analyses ^b		20% of known value		

^a From EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies

^b Laboratory limit.

,

Program, Fiscal Year, 1981-1982, EPA-600/4-81-004.

		Concentration (pCi/L)					
Lab Code	Date	Analysis	Laboratory	ERA	Control		
			Result ^b	Result ^c	Limits	Acceptance	
ERW-1444	4/6/2015	Sr-89	59.71 ± 5.44	63.20	51.10 - 71.20	Pass	
ERW-1444	4/6/2015	Sr-90	43.41 ± 2.43	41,90	30.80 - 48.10	Pass	
ERW-1448	4/6/2015	Ba-133	77.75 ± 4.69	82,50	69.30 - 90.80	Pass	
ERW-1448	4/6/2015	Cs-134	68.82 ± 3.08	75.70	61.80 - 83.30	Pass	
ERW-1448	4/6/2015	Cs-137	191.9 ± 5.9	189.0	170.0 - 210.0	Pass	
ERW-1448	4/6/2015	Co-60	85.05 ± 4.59	84.50	76.00 - 95.30	Pass	
ERW-1448	4/6/2015	Zn-65	196.0 ± 12.0	203.0	183.0 - 238.0	Pass	
ERW-1450	4/6/2015	Gr. Alpha	34.05 ± 1.90	42.60	22.10 - 54.00	Pass	
ERW-1450	4/6/2015	G. Beta	26.93 ± 1.12	32.90	21.30 - 40.60	Pass	
ERW-1453	4/6/2015	l-131	22.47 ± 0.83	23.80	19.70 - 28.30	Pass	
ERW-1456	4/6/2015	Ra-226	8.20 ± 0.56	8.43	6,33 - 9.90	Pass	
ERW-1456	4/6/2015	Ra-228	5.00 ± 0.67	4.39	2.56 - 6.01	Pass	
ERW-1456	4/6/2015	Uranium	5.98 ± 0.31	6.59	4.99 - 7.83	Pass	
ERW-1461	4/6/2015	H-3	3,254 ± 180	3280	2,770 - 3,620	Pass	
ERW-5528	10/5/2015	Sr-89	34.76 ± 0.06	35,70	26,70 - 42,50	Pass	
ERW-5528	10/5/2015	Sr-90	29.23 ± 0.06	31.10	22.70 - 36.10	Pass	
ERW-5531	10/5/2015	Ba-133	30.91 ± 0.53	32.50	25.90 - 36.70	Pass	
ERW-5531	10/5/2015	Cs-134	57.40 ± 2.57	62.30	50.69 - 68.50	Pass	
ERW-5531	10/5/2015	Cs-137	163.1 ± 4.8	157.0	141.0 - 175.0	Pass	
ERW-5531	10/5/2015	Co-60	73.41 ± 1.72	71.10	64.00 - 80.70	Pass	
ERW-5531	10/5/2015	Zn-65	138.9 ± 5.7	126.0	113.0 - 149.0	Pass	
ERW-5534	10/5/2015	Gr. Alpha	29.99 ± 0.08	51.60	26.90 - 64.70	Pass	
ERW-5534	10/5/2015	G. Beta	27.52 ± 0.04	36.60	24.10 - 44.20	Pass	
ERW-5537	10/5/2015	l-131	25.54 ± 0.60	26.30	21.90 - 31.00	Pass	
ERW-5540	10/5/2015	Ra-226	7.32 ± 0.37	7.29	5.49 - 8.63	Pass	
ERW-5540 ^d	10/5/2015	Ra-228	7.80 ± 0.02	4.25	2.46 - 5.85	Fail	
ERW-5540 °	10/5/2015	Ra-228	4.45 ± 0.96	4.25	2.46 - 5.85	Pass	
ERW-5540	10/5/2015	Uranium	53.30 ± 0.55	56.20	45.70 - 62.40	Pass	
ERW-5543	10/5/2015	H-3	21,260 ± 351	21,300	18,700 - 23,400	Pass	

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

- ^e Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.
- ^d Ra-228 spike was at a level close to the detection level. The high result was likely caused by interference from short-lived Rn-222 daughters.

^e The result of reanalysis (Compare to original result, footnoted "e" above).
				mR		· .
Lab Code	Irradiation Date	Description	Known Value	Lab Result	Control Limits	Acceptance
Environmental	Inc		++++++++++++++++++++++++++++++++++++++	1991 - 1992 - 1993 - 1993 - 1993 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -		
	<u>, inc</u>					
2015-1	6/24/2015	30 cm.	98.81	103.67 ±6.05	69.20-128.50	Pass
2015-1	6/24/2015	30 cm.	98.81	111.32±15.97	69.20 - 128.50	Pass
2015-1	6/24/2015	60 cm.	24.70	27.23 ±1.33	17.30-32.10	Pass .
2015-1	6/24/2015	60 cm.	24.70	26.98 ±4.98	17.30-32.10	Pass
2015-1	6/24/2015	120 cm.	6.18	6.71 ±1.77	4.30 - 8.00	Pass
2015-1	6/24/2015	120 cm.	6.18	6.78 ±0.38	4.30 - 8.00	Pass
2015-1	6/24/2015	120 cm.	6.18	6.43 ±2.00	4.30 - 8.00	Pass
2015-1	6/24/2015	150 cm.	3.95	4.13 ±0.72	2.80 - 5.10	Pass
2015-1	6/24/2015	150 cm.	3.95	4.12 ±1.36	2.80 - 5.10	Pass
2015-1	6/24/2015	150 cm.	3.95	4.50 ±1.51	2.80 - 5.10	Pass
2015-1	6/24/2015	180 cm.	2.74	3.27 ±0.28	1.90 - 3.60	Pass
2015-1	6/24/2015	180 cm.	2.74	3.05 ±1.11	1.90 - 3.60	Pass
2015-1	6/24/2015	180 cm.	2.74	3.14 ±0.18	1.90 - 3.60	Pass

TABLE A-2.1. Thermoluminescent Dosimetry, (TLD, CaSO4: Dy Cards). a

				mrem		
Lab Code	Irradiation		Delivered	Reported	Performance ^c	
	Date	Description	Dose	Dose	Quotient (P)	Acceptance ^d
Environmenta	al, Inc.					
2015-2	12/15/2015	Spike 1	138.0	118.5 ± 2.1	-0.14	Pass
2015-2	12/15/2015	Spike 2	138.0	120.0 ± 1.6	-0.13	Pass
2015-2	12/15/2015	Spike 3	138.0	121.9 ± 1.9	-0.12	Pass
2015-2	12/15/2015	Spike 4	138.0	124.5 ± 3.3	-0.10	Pass
2015-2	12/15/2015	Spike 5	138.0	126.5 ± 3.2	-0.08	Pass
2015-2	12/15/2015	Spike 6	138.0	140.0 ± 4.2	0.01	Pass
2015-2	12/15/2015	Spike 7	138.0	128.2 ± 1.2	-0.07	Pass
2015-2	12/15/2015	Spike 8	138.0	128.0 ± 4.0	-0.07	Pass
2015-2	12/15/2015	Spike 9	138.0	124.9 ± 5.1	-0.09	Pass
2015-2	12/15/2015	Spike 10	138.0	122.9 ± 3.0	-0.11	Pass
2015-2	12/15/2015	Spike 11	138.0	123.3 ± 3.0	-0.11	Pass
2015-2	12/15/2015	Spike 12	138.0	119.0 ± 3.4	-0.14	Pass
2015-2	12/15/2015	Spike 13	138.0	123.0 ± 2.7	-0.11	Pass
2015-2	12/15/2015	Spike 14	138.0	125.4 ± 2.0	-0.09	Pass
2015-2	12/15/2015	Spike 15	138.0	122.0 ± 3.1	-0.12	Pass
2015-2	12/15/2015	Spike 16	138.0	120.8 ± 2.0	-0.12	Pass
2015-2	12/15/2015	Spike 17	138.0	118.8 ± 1.1	-0.14	Pass
2015-2	12/15/2015	Spike 18	138.0	117.0 ± 2.3	-0.15	Pass
2015-2	12/15/2015	Spike 19	138.0	120.8 ± 2.6	-0.12	Pass
2015-2	12/15/2015	Spike 20	138.0	122.6 ± 3.0	-0.11	Pass
Mean (Spike	1-20)	м. Т		123.4	0.11	Pass
Standard Deviation (Spike 1-20)				5.0	0.04	Pass

TABLE A-2.2 Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards). ^b

^a TLD's were irradiated at Environmental Inc. Midwest Laboratory. (Table A-2.1)

^b TLD's were irradiated by the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose.(Table A-2.2)

^c Performance Quotient (P) is calculated as ((reported dose - conventially true value) + conventially true value) where the conventially true value is the delivered dose.

^d Acceptance is achieved when neither the absolute value of mean of the P values, nor the standard deviation of the P values exceed 0.15.

e Tables A2.1 and A2.2 assume 1 roentgen = 1 rem (per NRC -Health Physics Positions Based on 10 CFR Part 20 - Question 96 - Page Last Reviewed/Updated Thursday, October 01, 2015).

TABLE A-3. In-House "Spiked" Samples

<u> </u>			Concentra	tion (pCi/L) ^a		
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control	
		,	2s, n=1 °	Activity	Limits ^d	Acceptance
			· · · · · · · · · · · · · · · · · · ·	·		·
W-020315	2/3/2015	Ra-226	16.19 ± 0.42	16.70	13.36 - 20.04	Pass
W-021215	2/12/2015	Gr. Alpha	18.38 ± 0.39	20.10	16.08 - 24.12	Pass
W-021215	2/12/2015	Gr. Beta	27,98 ± 0.32	30.90	24.72 - 37.08	Pass
SPW-687	2/27/2015	Ni-63	239.6 ± 3.5	202.4	161.9 - 242.9	Pass
SPAP-689	3/2/2015	Gr. Beta	42.37 ± 3.50	43.61	34.89 - 52.33	Pass
SPAP-691	3/2/2015	Cs-134	1.77 ± 0.61	1.90	1.52 - 2.28	Pass
SPAP-691	3/2/2015	Cs-137	83.02 ± 2.60	97.20	77.76 - 116.64	Pass
SPW-693	3/2/2015	Cs-134	44.30 ± 2.53	53.40	42.72 - 64.08	Pass
SPW-693	3/2/2015	Cs-137	74.82 ± 3.50	73.80	59.04 - 88.56	Pass
SPW-693	3/2/2015	Sr-89	87.45 ± 3.62	87.48	69.98 - 104.98	Pass
SPW-693	3/25/2015	Sr-90	37.22 ± 1.55	38.10	30.48 - 45.72	Pass
SPMI-697	3/2/2015	Cs-134	96.67 ± 7.74	107.00	85.60 - 128.40	Pass
SPMI-697	3/2/2015	Cs-137	78.51 ± 7.02	73.84	59.07 - 88.61	Pass
SPMI-697	3/2/2015	Sr-89	72.98 ± 4.86	87.48	69.98 - 104.98	Pass
SPMI-697	3/2/2015	Sr-90	39.17 ± 1.51	38.10	30.48 - 45.72	Pass
SPW-699	3/2/2015	H-3	59,592 ± 703	58,445	46,756 - 70,134	Pass
W-031115	3/11/2015	Ra-226	13.73 ± 0.35	16.70	13.36 - 20.04	Pass
W-030215	3/2/2015	Ra-228	32.79 ± 2.31	31.44	25.15 - 37.73	Pass
SPF-1040	3/16/2015	Cs-134	787.5 ± 9.2	840.0	672.0 - 1,008.0	Pass
SPF-1040	3/16/2015	Cs-137	2,599 ± 24	2,360	1,888 - 2,832	Pass
SPW-1036	3/25/2015	Fe-55	1,792 ± 63	1961	1,569 - 2,353	Pass
SPW-1374	4/6/2015	U-238	46.03 ± 2.25	41.70	25.02 - 58.38	Pass
W-040815	4/8/2015	Gr. Alpha	20.18 ± 0.42	20.10	16.08 - 24.12	Pass
W-040815	4/8/2015	Gr. Beta	29.70 ± 0.33	30,90	24.72 - 37.08	Pass
SPW-1038	4/13/2015	C-14	3,497 ± 9	4,734	2,840 - 6,628	Pass
W-2165	4/20/2015	H-3	5550 ± 226	5,780	3,468 - 8,092	Pass
W-2165	4/20/2015	Sr-89	90.70 ± 8.20	108.70	65.22 - 152.18	Pass
W-2165	4/20/2015	Sr-90	76.80 ± 2.00	75.90	45.54 - 106.26	Pass
W-2165	4/20/2015	Cs-134	62.40 ± 6.40	57.30	34.38 - 80.22	Pass
W-2165	4/20/2015	Cs-137	91.30 ± 7.70	84.00	50.40 - 117.60	Pass
W-2392	4/13/2015	H-3	5032 ± 214	5780	3468 - 8092	Pass
W-2392	4/13/2015	Ni-63	222.4 ± 3.8	202.0	121.2 - 282.8	Pass
W-2392	4/13/2015	Cs-134	53.26 ± 5.01	57.30	34.38 - 80.22	Pass
W-2392	4/13/2015	Cs-137	91.90 ± 7.76	84.20	50.52 - 117.88	Pass
W-042415	4/24/2015	Ra-226	12.52 ± 0.39	16.70	10.02 - 23.38	Pass
W-050715	5/7/2015	Gr. Alpha	19.05 ± 0.41	20.10	12.06 - 28.14	Pass
W-050715	5/7/2015	Gr. Beta	27.30 ± 0.32	30.90	18.54 - 43.26	Pass
W-061215	6/12/2015	Gr. Alpha	20.72 ± 0.44	20.10	12.06 - 28.14	Pass
W-061215	6/12/2015	Gr. Beta	28,51 ± 0.33	30.90	18.54 - 43.26	Pass
U-2982	6/9/2015	Gr. Beta	500.1 ± 5.1	604.0	362.4 - 845.6	Pass
U-3200	6/9/2015	H-3	2229 ± 424	2346	1408 - 3284	Pass
W-70915	7/9/2015	Gr. Alpha	18.76 ± 0.40	20.10	12.1 - 28.1	Pass
W-70915	7/9/2015	Gr. Beta	29.71 ± 0.33	30.90	18.5 - 43.3	Pass
SPAP-3859	7/21/2015	Gr. Beta	41.59 ± 0.12	43.61	26.17 - 61.05	Pass
SPAP-3861	7/21/2015	Cs-134	1.69 ± 0.60	1.69	1.0 - 2.4	Pass

A3-1

TABLE A-3, In-House "Spiked" Samples

Concentration (pCi/L) ^a								
Lab Code ^b	Date	Analysis	Laboratory results	Known	Control			
			2s, n=1 °	Activity	Limits	Acceptance		
SPAP-3861	7/21/2015	Cs-137	93.71 ± 2.64	96.45	57.87 - 135.03	Pass		
SPMI-3863	7/21/2015	Cs-134	38.21 + 5.12	47.02	28.21 - 65.83	Pass		
SPMI-3863	7/21/2015	Cs-137	78.65 ± 7.94	73.18	43.91 - 102.45	Pass		
SPMI-3863	7/21/2015	Sr-90	41.05 + 1.62	37.78	22.67 - 52.89	Pass		
SPW-3871	7/21/2015	Cs-134	45.59 + 6.39	47.02	28 21 - 65.83	Pass		
SPW-3871	7/21/2015	Cs-137	78,73 ± 7,03	73.18	43.91 - 102.45	Pass		
SPW-3871	7/21/2015	Sr-90	38.36 ± 1.58	37.78	22.67 - 52.89	Pass		
SPW-3873	7/21/2015	H-3	60,034 ± 671	57,199	34,319 - 80,079	Pass		
SPW-3875	7/21/2015	Ni-63	451.3 ± 3.3	403.7	242.2 - 565.2	Pass		
SPW-3877	7/21/2015	Tc-99	483.0 ± 8.3	539,1	323,5 - 754,7	Pass		
SPMI-3879	7/21/2015	C-14	4,921 ± 19	4,736	2,842 - 6,630	Pass		
SPSO-4037	7/21/2015	Ni-63	42,458 ± 309	40,370	24,222 - 56,518	Pass		
SPW-072515	7/17/2015	Ra-228	35.48 ± 3	31.44	18.86 - 44.02	Pass		
SPF-4104	7/29/2015	Cs-134	661.5 ± 115.9	740.0	444.0 - 1036.0	Pass		
SPF-4104	7/29/2015	Cs-137	2,469 ± 59	2,340	1,404 - 3,276	Pass		
SPW-81015	8/10/2015	Gr. Alpha	21.59 ± 0.46	20.10	12.06 - 28.14	Pass		
SPW-81015	8/10/2015	Gr. Beta	27.58 ± 0.32	30.90	18.54 - 43.26	Pass		
SPW-81315	8/13/2015	Ra-226	15.05 ± 0.36	16.70	10.02 - 23.38	Pass		
SPW-90615	9/6/2015	Gr. Alpha	18.32 ± 0.40	20.10	12.06 - 28.14	Pass		
SPW-90615	9/6/2015	Gr. Beta	29.43 ± 0.33	30.90	18.54 - 43.26	Pass		
W-091415	9/14/2015	Gr. Alpha	19.35 ± 0.51	20.10	12.06 - 28.14	Pass		
W-091415	9/14/2015	Gr. Beta	31.53 ± 0.35	30.90	18.54 - 43.26	Pass		
W-100815	10/8/2015	Ra-228	12.27 ± 0.33	16.70	10.02 - 23.38	Pass		
W-100615	10/6/2015	Gr. Alpha	20.62 ± 0.43	20.10	12.06 - 28.14	Pass		
W-100615	10/6/2015	Gr. Beta	29.35 ± 0.33	30.90	18.54 - 43.26	Pass		
W-5277	10/16/2015	H-3	5,224 ± 218	5,466	3,280 - 7,652	Pass		
W-5277	10/16/2015	Cs-134	99.40 ± 6.64	99.20	59.52 - 138.88	Pass		
W-5277	10/16/2015	Cs-137	89.60 ± 6.64	83.20	49.92 - 116.48	Pass		
W-110415	11/4/2015	Ra-226	12.27 ± 0.33	16.70	10.02 - 23.38	Pass		
W-111115	11/11/2015	Ra-228	31.78 ± 2.48	31.44	18.86 - 44.02	Pass		
W-6086,6087	11/18/2015	H-3	10,882 ± 309	11,231	6,738 - 15,723	Pass		
W-6086,6087	11/18/2015	Cs-134	92.98 ± 7.29	96.25	57.75 - 134.75	Pass		
W-6086,6087	11/18/2015	Cs-137	76.65 ± 7.81	82.94	49.76 - 116.12	Pass		
W-112515	11/25/2015	Gr. Alpha	20.91 ± 0.52	20.10	12.06 - 28.14	Pass		
W-112515	11/25/2015	Gr. Beta	31.59 ± 0.35	30.90	18.54 - 43.26	Pass		
W-120715	12/7/2015	Fe-55	2,431 ± 97	2,319	1,391 - 3,247	Pass		
W-120815	12/8/2015	Gr. Alpha	20.72 ± 0.43	20.10	12.06 - 28.14	Pass		
W-120815	12/8/2015	Gr. Beta	29.50 ± 0.33	30.90	18.54 - 43.26	Pass		
W-121515	12/15/2015	Ra-226	14.77 ± 0.42	16.70	10.02 - 23.38	Pass		

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b Laboratory codes : W (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine).

^c Results are based on single determinations.

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2s.

NOTE: For fish, Jello is used for the spike matrix. For vegetation, cabbage is used for the spike matrix.

				Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis ^b	Laborato	ry results (4.66σ)	Acceptance	
	Туре			LLD	Activity ^c	Criteria (4.66 σ)	
MI 000215	Mator	2/2/2015	Bo 226	0.03	0.03 + 0.02	1	
W-020315	Water	2/3/2013	Cr Alpha	0.03	0.03 ± 0.02	1	
VV-021215	Water	2/12/2015	Gr. Alpria	0.47	-0.37 ± 0.30	2	
W-021215 SPW-686	Water	2/12/2015	Ni-63	2.36	-0.62 ± 0.51 -0.74 ± 1.42	4 20	
0			111 00				
SPAP-688	Air Particulate	3/2/2015	Gr. Beta	0.003	-0.001 ± 0.002	0.01	
SPAP-690	Air Particulate	3/2/2015	Cs-134	0.006	0.428 ± 0.927	0.05	
SPAP-690	Air Particulate	3/2/2015	Cs-137	0,006	-0.785 ± 1.146	0.05	
W-030215	Water	3/2/2015	Ra-228	0,76	0.22 ± 0.38	2	
SPW-692	Water	3/2/2015	Cs-134	6.70	-1,57 ± 3,55	10	
SPW-692	Water	3/2/2015	Cs-137	6.18	-0.15 ± 3.20	10	
SPW-692	Water	3/2/2015	Sr-89	0.61	-0.51 ± 0.51	5	
SPW-692	Water	3/2/2015	Sr-90	0.60	0.38 ± 0.33	1	
SPMI-696	Milk	3/2/2015	Cs-134	3.75	-0.25 ± 2.24	10	
SPMI-696	Milk	3/2/2015	Cs-137	4,36	-0.25 ± 2.24	10	
SPMI-696	Milk	3/2/2015	Sr-89	0.80	-0.40 ± 0.84	5	
SPMI-696	Milk	3/2/2015	Sr-90	0.49	0.98 ± 0.32	1	
SPW-698	Water	3/2/2015	H-3	144.0	28.6 ± 88.9	200	
SPW-1035	Water	3/16/2015	Fe-55	599.7	72.6 ± 368.1	1000	
SPW-1037	Water	3/16/2015	C-14	8.94	2.16 + 5.47	200	
SPF-1039	Fish	3/16/2015	Cs-134	13.54	-1.00 ± 6.80	100	
SPF-1039	Fish	3/16/2015	Cs-137	9.80	4.87 ± 7.00	100	
			-			-	
W-040615	Water	4/6/2015	Ra-226	0.04	0.01 ± 0.03	2	
W-1373	Water	4/6/2015	U-238	0.08	0.01 ± 0.01	1	
W-1375	Water	4/6/2015	Pu-238	0.03	0.00 ± 0.01	1	
W-050715	Water	5/7/2015	Gr. Alpha	0.38	-0.10 ± 0.25	. 2	
W-050715	Water	5/7/2015	Gr. Beta	0.74	-0.14 ± 0.51	4	
W-061215	Water	6/12/2015	Gr. Alpha	0.42	-0.10 ± 0.29	2	
W-061215	Water	6/12/2015	Gr. Beta	0.75	-0.04 ± 0.53	4	
00111 0050		7/04/0045		0.000	0.004 + 0.000	2	
SPW-3858	vvater	7/21/2015	Gr. Beta	0.003	0.004 ± 0.002	2	
SPAP-3860	Air Particulate	7/21/2015	Cs-134	0.011	0.010 ± 0.005	0.05	
SPAP-3860	Air Particulate	7/21/2015	Cs-137	0.009	0.000 ± 0.005	0.05	
SPMI-3862	Milk	//21/2015	Cs-134	3.13	1.56 ± 1.74	10	
SPMI-3862	Milk	//21/2015	Cs-137	3.20	1.69 ± 1.89	. 10	
SPMI-3862	Milk	7/21/2015	Sr-89	2.17	-1.30 ± 2.05	5	
SPMI-3862	Milk	7/21/2015	Sr-90	0.90	0.74 ± 0.50	1	
SPW-3870	Water	7/21/2015	Cs-134	3.01	0.71 ± 1.66	10	
SPW-3870	Water	7/21/2015	Cs-137	3.94	0.81 ± 1.86	10	
SPW-3870	Water	7/21/2015	Sr-89	2.28	-0.42 ± 1.80	5	
SPW-3870	Water	7/21/2015	Sr-90	0.84	0.25 ± 0.42	1	

TABLE A-4. In-House "Blank" Samples

A4-1

TABLE A-4. In-House "Blank" Samples

				Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis ^b	Laborator	y results (4.66σ)	Acceptance	
	Туре			LLD	Activity ^c	 Criteria (4.66 σ)	
		•					
SPW-3872	Water	7/21/2015	H-3	142.6	82.7 ± 79.4	200	
SPW-3874	Water	7/21/2015	Ni-63	2.98	0.77 ± 1.82	20	
SPW-3876	Water	7/21/2015	Tc-99	5.49	-3.81 ± 3.26	10	
SPW-3878	Water	7/21/2015	C-14	17.06	8.52 ± 10.54	200	
SPSO-4036	Soil	7/21/2015	Ni-63	135.7	51.3 ± 83.0	1000	
SPF-4103	Fish	7/29/2015	Cs-134	14.17	-37.70 ± 9.67	100	
SPF-4103	Fish	7/29/2015	Cs-137	12.39	1.13 ± 8.06	100	
		0/10/00/5		0.40		0	
W-081015	Water	8/10/2015	Gr. Alpha	0.48	-0.10 ± 0.33	2	
W-081015	Water	8/10/2015	Gr. Beta	0.78	-0.18 ± 0.54	4	
W-081815	Water	8/18/2015	Ra-226	0,03	0.03 ± 0.02	2	
W-090615	Water	9/6/2015	Gr. Alpha	0.40	0.00 ± 0.28	2	
W-090615	Water	9/6/2015	Gr. Beta	0.77	0.22 ± 0.54	4	
W-091415	Water	9/14/2015	Gr. Alpha	0.41	0.10 ± 0.30	2	
W-091415	Water	9/14/2015	Gr. Beta	0.77	0.04 ± 0.54	4	
WI 100615	Mator	10/6/2015	Cr Alpha	0.41	0 15 ± 0 27	2	
W-100015	Water	10/0/2015	Gr. Alpha	0.41	-0.13 ± 0.27	2	
VV-100615	vvaler	10/0/2015	GI. Dela	0.75	-0.12 ± 0.52	4	
W-112515	Water	11/25/2015	Gr. Alpha	0.42	0.05 ± 0.30	2	
W-112515	Water	11/25/2015	Gr. Beta	0.78	-0.31 ± 0.54	4	
W-120815	Water	12/8/2015	Gr. Alpha	0.42	-0.08 ± 0.29	2	
W-120815	Water	12/8/2015	Gr. Beta	0,76	0.17 ± 0.54	4	
W-121515	Water	12/15/2015	Ra-226	0.01	0.01 ± 0.01	2	

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b 1-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result.

		_	Concentration (pCi/L) ^a				
					Averaged		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
CF-62,63	1/7/2015	Gr. Beta	5.72 ± 0.12	5.78 ± 0.12	5.75 ± 0.42	Pass	
CF-62,63	1/7/2015	Be-7	0.915 ± 0.135	0.919 ± 0.102	0.917 ± 0.15	Pass	
CF-62,63	1/7/2015	K-40	3.97 ± 0.28	3.88 ± 0.23	3.92 ± 0.33	Pass	
CF-62,63	1/7/2015	Sr-90	0.017 ± 0.006	0.011 ± 0.006	0.014 ± 0.004	Pass	
SG-83,84	1/12/2015	K-40	10.11 ± 1.42	9.69 ± 1.20	9.90 ± 1.16	Pass	
SG-83,84	1/12/2015	TI-208	0.57 ± 0.07	0.56 ± 0.06	0.57 ± 0.05	Pass	
SG-83,84	1/12/2015	Pb-212	1.73 ± 0.10	1.58 ± 0.09	1.65 ± 0.13	Pass	
SG-83,84	1/12/2015	Pb-214	13.33 ± 0.33	13.88 ± 0.28	13.61 ± 0.22	Pass	
SG-83,84	1/12/2015	Bi-214	13.48 ± 0.39	13.45 ± 0.29	13.47 ± 0.24	Pass	
SG-83,84	1/12/2015	Ra-226	25.68 ± 2.19	26.22 ± 1.53	25.95 ± 1.34	Pass	
SG-83,84	1/12/2015	Ac-228	13.33 ± 0.59	12.86 ± 0.43	13.09 ± 0.36	Pass	
AP-011215A/B	1/12/2015	Gr. Beta	0.025 ± 0.004	0.023 ± 0.004	0.024 ± 0.003	Pass	
WW-315,316	1/27/2015	H-3	1,961 ± 178	1,868 ± 174	1,915 ± 124	Pass	
DW-60010,60011	1/28/2015	Ra-226	1.25 ± 0.14	1.40 ± 0.15	1.33 ± 0.10	Pass	
DW-60010,60011	1/28/2015	Ra-228	2.00 ± 0.66	1.39 ± 0.60	1.70 ± 0.45	Pass	
SG-336,337	1/30/2015	Bi-214	6.63 ± 0.20	6.45 ± 0.45	6.54 ± 0.21	Pass	
SG-336,337	1/30/2015	Pb-214	6.45 ± 0.19	6.45 ± 0.37	6.45 ± 0.21	Pass	
SG-336,337	1/30/2015	Ac-228	4.43 ± 0.24	4.20 ± 0.58	4.32 ± 0.31	Pass	
AP-020415A/B	2/4/2015	Gr. Beta	0.021 ± 0.004	0.019 ± 0.035	0.035 ± 0.020	Pass	
AP-021115A/B	2/11/2015	Gr. Beta	0.034 ± 0.004	0.040 ± 0.047	0.037 ± 0.003	Pass	
DW-60023,60024	2/26/2015	Ra-226	1.52 ± 0.15	1.51 ± 0.15	1.52 ± 0.11	Pass	
DW-60023,60024	2/26/2015	Ra-228	0.97 ± 0.48	1.66 ± 0.58	1.32 ± 0.38	Pass	
S-799,800	2/26/2015	K-40	11.96 ± 0.98	11.49 ± 0.82	11.72 ± 0.64	Pass	
S-799,800	2/26/2015	TI-208	0.36 ± 0.04	0.31 ± 0.04	0.34 ± 0.03	Pass	
S-799,800	2/26/2015	Pb-212	0.92 ± 0.06	0.91 ± 0.06	0.91 ± 0.05	Pass	
S-799,800	2/26/2015	Bi-212	1.26 ± 0.45	1.50 ± 0.40	1.38 ± 0.30	Pass	
S-799,800	2/26/2015	Ac-228	1.35 ± 0.22	1.23 ± 0.17	1.29 ± 0.14	Pass	
SG-834,835	2/2/2015	Gr. Alpha	113.3 ± 6.3	117.2 ± 2.8	115.2 ± 3.4	Pass	
SG-834,835	2/2/2015	Gr. Beta	82.27 ± 2.79	84.33 ± 2.74	83.30 ± 1.96	Pass	
DW-60031,60032	3/4/2015	Gr. Alpha	185.4 ± 7.4	177.0 ± 7.2	181.2 ± 5.2	Pass	
DW-60036,60037	3/4/2015	Ra-226	6.89 ± 0.34	6.88 ± 0.32	6.89 ± 0.23	- Pass	
DW-60036,60037	3/4/2015	Ra-228	4.43 ± 0.73	4.41 ± 0.72	4.42 ± 0.51	Pass	
DW-60048,60049	3/4/2015	Ra-226	0.84 ± 0.10	0.94 ± 0.11	0.89 ± 0.07	Pass	
DW-60048,60049	3/4/2015	Ra-228	0.68 ± 0.41	1.42 ± 0.58	1.05 ± 0.36	Pass	
AP-1169,1170	3/19/2015	Be-7	0.20 ± 0.02	0.24 ± 0.10	0.22 ± 0.07	Pass	
DW-60069,60070	4/8/2015	Gr. Alpha	3.58 ± 0.88	3.92 ± 0.88	3.75 ± 0.62	Pass	
AP-040915	4/9/2015	Gr. Beta	0.027 ± 0.005	0.023 ± 0.005	0.025 ± 0.003	Pass	
WW-2394,2395	4/13/2015	H-3	1,628 ± 139	1,695 ± 141	1,662 ± 99	Pass	
SG-1847,1848	4/20/2015	K-40	3.24 ± 1.18	1.99 ± 0.76	2.62 ± 0.70	Pass	
SG-1847,1848	4/20/2015	Pb-214	5.80 ± 0.22	6.23 ± 0.76	6.02 ± 0.40	Pass	
SG-1847,1848	4/20/2015	Ac-228	5.26 ± 0.51	5.00 ± 0.42	5.13 ± 0.33	Pass	
XWW-2267,2268	4/23/2015	H-3	6,584 ± 244	6,164 ± 237	6,374 ± 170	Pass	
XWW-2078,2079	4/27/2015	H-3 .	359.0 ± 89.6	418.7 ± 92.3	388.9 ± 64.3	Pass	

			Concentration (pCi/L) ^a				
		Analysis			Averaged		
Lab Code	Date		First Result	Second Result	Result	Acceptance	
XWW-2162,2163	4/28/2015	H-3	4,408 ± 201	4,242 ± 198	4,325 ± 141	Pass	
SG-1868,1869	4/28/2015	Gr. Alpha	47.57 ± 3.63	43.61 ± 3.58	45.59 ± 2.55	Pass	
SG-1868,1869	4/28/2015	Gr. Beta	50.90 ± 1.94	51.90 ± 2.02	51.40 ± 1.40	Pass	
SG-1868,1869	4/28/2015	Pb-214	13.80 ± 0.52	13.54 ± 0.62	13.67 ± 0.40	Pass	
SG-1868,1869	4/28/2015	Ra-228	20.10 ± 0.92	22.10 ± 1.29	21.10 ± 0.79	Pass	
AP-042915	4/29/2015	Gr. Beta	0.014 ± 0.003	0.014 ± 0.003	0.014 ± 0.002	Pass	
DW-60076,60077	5/4/2015	Ra-228	2.89 ± 0.61	2.45 ± 0.57	2.67 ± 0.42	Pass	
AP-050515	5/5/2015	Gr. Beta	0.026 ± 0.004	0.025 ± 0.004	0.026 ± 0.003	Pass	
AP-051115	5/11/2015	Gr. Beta	0.006 ± 0.005	0.010 ± 0.005	0.008 ± 0.004	Pass	
DW-60087,60088	5/14/2015	Ra-226	1.58 ± 0.17	1.52 ± 0.17	1.55 ± 0.12	Pass	
DW-60087,60088	5/14/2015	Ra-228	0.94 ± 0.50	0.94 ± 0.50	0.94 ± 0.35	Pass	
SG-2436,2437	5/15/2015	Pb-214	22.90 ± 2.31	24.10 ± 2.43	23.50 ± 1.68	Pass	
SG-2436,2437	5/15/2015	Ra-228	47.95 ± 0.61	47.80 ± 0.71	47.88 ± 0.47	Pass	
SG-2436,2437	5/15/2015	Gr. Alpha	267.8 ± 7.9	254.6 ± 7.6	261.2 ± 5.5	Pass	
SG-2458,2459	5/19/2015	Pb-214	75.00 ± 1.66	77.70 ± 1.75	76.35 ± 1.21	Pass	
SG-2458,2459	5/19/2015	Ra-228	41.10 ± 0.92	40.80 ± 0.83	40.95 ± 0.62	Pass	
DW-60095,60096	5/26/2015	Gr. Alpha	1.34 ± 0.69	0.91 ± 0.62	1.13 ± 0.46	Pass	
AP-052715	5/27/2015	Gr. Beta	0.010 ± 0.003	0.010 ± 0.003	0.010 ± 0.002	Pass	
S-2627,2628	5/29/2015	Pb-214	0.85 ± 0.07	0.85 ± 0.07	0.85 ± 0.05	Pass	
S-2627,2628	5/29/2015	Ac-228	0.85 ± 0.14	1.08 ± 0.12	0.97 ± 0.09	Pass	
S-2627,2628	5/29/2015	Cs-137	0.07 ± 0.02	0.07 ± 0.02	0.07 ± 0.01	Pass	
S-2605,2606	6/1/2015	Ac-228	0.42 ± 0.06	0.38 ± 0.07	0.40 ± 0.05	Pass	
S-2605,2606	6/1/2015	Ra-226	0.44 ± 0.03	0.49 ± 0.03	0.47 ± 0.02	Pass	
S-2605,2606	6/1/2015	K-40	10.89 ± 0.51	11.40 ± 0.48	11.15 ± 0.35	Pass	
S-2605,2606	6/1/2015	Cs-137	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	Pass	
S-2858,2859	6/2/2015	Cs-137	34.30 ± 16.05	40.66 ± 17.79	37.48 ± 11.98	Pass	
S-2858,2859	6/2/2015	Be-7	1501 ± 264	1171 ± 214	1336 ± 170	Pass	
S-2858,2859	6/2/2015	K-40	22,122 ± 658	20,987 ± 600	21,555 ± 445	Pass	
AP-060315	6/3/2015	Gr. Beta	0.022 ± 0.004	0.021 ± 0.004	0.022 ± 0.003	Pass	
DW-30107,30108	6/8/2015	Gr. Alpha	1.34 ± 0.82	1.47 ± 0.85	1.41 ± 0.59	Pass	
SG-2900,2901	6/9/2015	Ac-228	10.22 ± 1.36	8.32 ± 1.07	9.27 ± 0.87	Pass	
SG-2900,2901	6/9/2015	Pb-214	7.55 ± 0.43	7.27 ± 0.41	7.41 ± 0.30	Pass	
AP-061515	6/15/2015	Gr. Beta	0.022 ± 0.004	0.021 ± 0.004	0.022 ± 0.003	Pass	
XWW-3173,3174	6/18/2015	H-3	841.9 ± 123.6	799.3 ± 122.4	820.6 ± 87.0	Pass	
AP-062215	6/22/2015	Gr. Beta	0.023 ± 0.004	0.018 ± 0.004	0.020 ± 0.003	Pass	
S-3216,3217	6/24/2015	K-40	10.38 ± 0.51	10.51 ± 0.53	10.45 ± 0.37	Pass	
S-3216,3217	6/24/2015	Be-7	3.65 ± 0.24	3.38 ± 0.27	3.52 ± 0.18	Pass	
VE-3300,3301	6/24/2015	Be-7	0.78 ± 0.15	0.83 ± 0.23	0.81 ± 0.14	Pass	
VE-3300,3301	6/24/2015	K-40	29.12 ± 0.62	29.36 ± 0.64	29.24 ± 0.45	Pass	
AP-062915	6/29/2015	Gr. Beta	0.023 ± 0.005	0.023 ± 0.005	0,023 ± 0.003	Pass	
WW-3632,3633	6/30/2015	H-3	5,169 ± 225	5,058 ± 223	5,114 ± 158	Pass	

		_	Concentration (pCi/L) ^a				
					Averaged		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
AP-3822, 3823	7/1/2015	Be-7	0.075 ± 0.011	0.068 ± 0.012	0.072 ± 0.008	Pass	
AP-3969, 3970	7/1/2015	Be-7	0.063 ± 0.008	0.064 ± 0.010	0.063 ± 0.006	Pass	
WW-3632, 3633	7/6/2015	H-3	5,169 ± 225	5,058 ± 223	5.114 ± 159	Pass	
W-4368, 4369	7/6/2015	Gr. Alpha	26.70 ± 4.00	24.10 ± 3.90	25,40 ± 2,79	Pass	
W-4368, 4369	7/6/2015	Gr. Beta	34.62 ± 2.10	33.30 ± 2.02	33.96 ± 1.46	Pass	
DW-60138, 60139	7/7/2015	Ra-226	0.07 ± 0.04	0.11 ± 0.05	0.09 ± 0.03	Pass	
DW-60138, 60139	7/7/2015	Ra-228	1.04 ± 0.41	1.15 ± 0.47	1.10 ± 0.31	Pass	
WW-4158, 4159	7/9/2015	Н-3	138.8 ± 82.4	174.0 ± 84.1	156.4 ± 58.9	Pass	
MI-2902, 2903	7/10/2015	K-40	1271 ± 118	1308 ± 115	1289 ± 82	Pass	
SG-3533, 3534	7/10/2015	Gr. Alpha	238.0 ± 8.2	249.5 ± 8,5	243.8 ± 5.9	Pass	
DW-60150, 60151	7/10/2015	Ra-226	1.53 ± 0.16	1.49 ± 0,12	1.51 ± 0.10	Pass	
DW-60150, 60151	7/10/2015	Ra-228	2.68 ± 0.68	1.89 ± 0.62	2.29 ± 0.46	Pass	
VE-3716, 3717	7/14/2015	K-40	3.85 ± 0.33	3.71 ± 0.31	3.78 ± 0.23	Pass	
MI-3759, 3760	7/15/2015	K-40	1819 ± 127	1764 ± 140	1791 ± 94	Pass	
MI-3759, 3760	7/15/2015	Sr-90	1.00 ± 0.36	0.61 ± 0,32	0.80 ± 0.24	Pass	
AP-072115	7/21/2015	Gr. Beta	0.022 ± 0.004	0.027 ± 0.004	0.024 ± 0.003	Pass	
VE-4053, 4054	7/21/2015	Be-7	0.52 ± 0.15	0.49 ± 0.11	0.50 ± 0.09	Pass	
VE-4053, 4054	7/21/2015	K-40	8.00 ± 0.42	7.61 ± 0.31	7.81 ± 0.26	Pass	
AP-4200, 4201	7/29/2015	Be-7	1.06 ± 0.12	0.96 ± 0.11	1.01 ± 0.08	Pass	
AP-4200, 4201	7/29/2015	K-40	5.03 ± 0.24	4.96 ± 0.23	4.99 ± 0.16	Pass	
W-4137, 4138	7/31/2015	Ra-226	0.58 ± 0.13	0.45 ± 0.14	0.52 ± 0.10	Pass	
XWW-4431, 4432	8/5/2015	H-3	4,773 ± 213	4,915 ± 216	4,844 ± 152	Pass	
SG-4305, 4306	8/6/2015	Ra-228	, 10.34 ± 0.58	11.46 ± 0.62	, 10.90 ± 0.42	Pass	
AP-081015	8/10/2015	Gr. Beta	0.038 ± 0.005	0.039 ± 0.005	0.039 0.004	Pass	
AP-081115	8/11/2015	Gr. Beta	0.024 ± 0.004	0.020 ± 0.004	0.022 0.003	Pass	
VE-4452, 4453	8/11/2015	K-40	3,77 ± 0,29	3,78 ± 0,26	3.77 ± 0.20	Pass	
AP-081715	8/17/2015	Gr. Beta	0.030 ± 0.005	0.030 ± 0.005	0.030 ± 0.003	Pass	
DW-60195, 60196	8/17/2015	Ra-226	0.39 ± 0.10	0.37 ± 0.10	0,38 ± 0.07	Pass	
DW-60195, 60196	8/17/2015	Ra-228	1.43 ± 0.51	1.97 ± 0.61	1.70 ± 0.40	Pass	
DW-60198, 60199	8/17/2015	Gr. Alpha	2.93 ± 0.94	2.11 ± 0.96	2.52 ± 0.67	Pass	
VE-4578, 4579	8/18/2015	K-40	4.14 ± 0.25	4.32 ± 0.24	4.23 ± 0.17	Pass	
SW-4662, 4663	8/25/2015	H-3	351.3 ± 89.8	415.6 ± 92.8	383.4 ± 64.6	Pass	
DW-60212, 60213	8/25/2015	Ra-226	0.09 ± 0.07	0.10 ± 0.08	0.10 ± 0.05	Pass	
LW-4788, 4789	8/27/2015	Gr. Beta	0.97 ± 0.51	1.68 ± 0.59	1.32 ± 0.39	Pass	
AP-083115	8/31/2015	Gr. Beta	0.032 ± 0.005	0.031 ± 0.005	0.031 ± 0.003	Pass	
AP-4875, 4876	9/3/2015	Be-7	0.294 ± 0.125	0.202 ± 0.109	0.248 ± 0.083	Pass	
VE-5083, 5084	9/14/2015	Be-7	0.47 ± 0.23	0.56 ± 0.19	0.52 ± 0.15	Pass	
VE-5083, 5084	9/14/2015	K-40	6.20 ± 0.51	6.36 ± 0.50	6.28 ± 0.36	Pass	
VE-5167, 5168	9/16/2015	Be-7	0.40 ± 0.11	0.41 ± 0.10	0.41 ± 0.07	Pass	
VE-5167, 5168	9/16/2015	K-40	3.56 ± 0.27	3.91 ± 0.24	3.74 ± 0.18	Pass	
BS-5188, 5189	9/16/2015	K-40	9.69 ± 0.51	10,51 ± 0,52	10,10 ± 0,36	Pass	
F-5419, 5420	9/17/2015	K-40	3.48 ± 0.47	3.49 ± 0.56	3.49 ± 0.36	Pass	
DW-60238, 60239	9/18/2015	Ra-226	1,93 ± 0,23	2.31 ± 0.26	2.12 ± 0.17	Pass	
DW-60238, 60239	9/18/2015	Ra-228	4.44 ± 0.78	5.61 ± 0.84	5.03 ± 0.57	Pass	
AP-092215A/B	9/22/2015	Gr. Beta	0.021 ± 0.004	0.025 ± 0.004	0.023 ± 0.00	Pass	
WW-5398, 5399	9/22/2015	H-3	1,857 ± 145	1,846 ± 144	1,852 ± 102	Pass	
AP-6007, 6008	9/28/2015	Be-7	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	Pass	

A5-3

a.

			Concentration (pCi/L) ^a					
					Averaged			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
XW-7490, 7491	9/29/2015	Ni-63	2,332 ± 233	2,108 ± 211	2,220 ± 157	Pass		
WW-5377, 5378	9/30/2015	H-3	220.0 ± 84.6	197.0 ± 83.5	208.5 ± 59.4	Pass		
AP-6028, 6029	9/30/2015	Be-7	0.073 ± 0.009	0.083 ± 0.012	0.078 ± 0.007	Pass		
0.5404.0	101110017					-		
G-5461,2	10/1/2015	Be-/	2.02 ± 0.32	1.98 ± 0.25	2.00 ± 0.20	Pass		
G-5461,2	10/1/2015	K-40	8.77 ± 0.66	9.31 ± 0.59	9.04 ± 0.44	Pass		
SO-5482, 5483	10/1/2015	Ac-228	0.76 ± 0.12	0.74 ± 0.30	0.75 ± 0.16	Pass		
SO-5482, 5483	10/1/2015	Bi-214	0.53 ± 0.04	0.52 ± 0.04	0.52 ± 0.03	Pass		
SO-5482, 5483	10/1/2015	Cs-137	0.12 ± 0.03	0.12 ± 0.03	0.12 ± 0.02	Pass		
SO-5482, 5483	10/1/2015	K-40	2.17 ± 0.73	2.10 ± 0.72	2.13 ± 0.51	Pass		
SO-5482, 5483	10/1/2015	Pb-214	0.57 ± 0.04	0.55 ± 0.04	0.56 ± 0.03	Pass		
SO-5482, 5483	10/1/2015	Ra-226	1.45 ± 0.27	1.46 ± 0.30	1.45 ± 0.20	Pass		
SO-5482, 5483	10/1/2015	TI-208	0.24 ± 0.03	0.25 ± 0.03	0.24 ± 0.02	Pass		
WW-5524, 5525	10/5/2015	H-3	1,192 ± 123	1,318 ± 127	1,255 ± 89	Pass		
AP-5881, 5882	10/5/2015	Be-7	0.078 ± 0.008	0.085 ± 0.011	0.082 ± 0.007	Pass		
AP-5881, 5882	10/5/2015	K-40	0.009 ± 0.004	0.010 ± 0.006	0.010 ± 0.004	Pass		
SG-6400,1	10/5/2015	Gr. Alpha	19.09 ± 3.14	19.45 ± 3.25	19.27 ± 2.26	Pass		
SG-6400,1	10/5/2015	Gr. Beta	31.36 ± 2.08	29.80 ± 2.13	30.58 ± 1.49	Pass		
VE-5923, 5924	10/12/2015	K-40	4.29 ± 0.29	4.13 ± 0.33	4.21 ± 0.22	Pass		
SS-5818, 5819	10/14/2015	Ac-228	0.20 ± 0.06	0.24 ± 0.06	0.22 ± 0.04	Pass		
SS-5818, 5819	10/14/2015	Cs-137	0.03 ± 0.02	0.02 ± 0.01	0.03 ± 0.01	Pass		
SS-5818, 5819	10/14/2015	Gr, Beta	8.10 ± 0.87	8.08 ± 0.96	8.09 ± 0.65	Pass		
SS-5818, 5819	10/14/2015	Pb-212	0.19 ± 0.03	0.17 ± 0.02	0.18 ± 0.02	Pass		
SS-5818, 5819	10/14/2015	Ra-226	0.47 ± 0.24	0.45 ± 0.19	0.46 ± 0.15	Pass		
SS-5818, 5819	10/14/2015	TI-208	0.06 ± 0.02	0.06 ± 0.02	0.06 ± 0.01	Pass		
DW-60251, 60252	10/15/2015	Ra-226	0.56 ± 0.12	0.50 ± 0.08	0.53 ± 0.07	Pass		
DW-60251, 60252	10/15/2015	Ra-228	0.79 ± 0.48	1.16 ± 0.59	0.98 ± 0.38	Pass		
SO-5944, 5945	10/21/2015	Ac-228	1.08 ± 0.15	1.14 ± 0.15	1.11 ± 0.10	Pass		
SO-5944, 5945	10/21/2015	Bi-214	0.89 ± 0.08	0.82 ± 0.06	0.85 ± 0.05	Pass		
SO-5944, 5945	10/21/2015	Cs-137	0.06 ± 0.02	0.08 ± 0.03	0.07 ± 0.02	Pass		
SO-5944, 5945	10/21/2015	Pb-212	1.06 ± 0.06	0.99 ± 0.05	1.03 ± 0.04	Pass		
SO-5944, 5945	10/21/2015	Pb-214	1.00 ± 0.09	0.89 ± 0.06	0.95 ± 0.05	Pass		
SO-5944, 5945	10/21/2015	Ra-226	2.13 ± 0.43	2.16 ± 0.37	2.14 ± 0.28	Pass		
SO-5944, 5945	10/21/2015	TI-208	0.36 ± 0.04	0.34 ± 0.04	0.35 ± 0.03	Pass		
S-6175, 6176	10/23/2015	K-40	16.86 ± 1.92	14.28 ± 1.66	15.57 ± 1.27	Pass		
XWW-6196, 6197	10/26/2015	H-3	2,856 ± 170	2,815 ± 169	2,836 ± 120	Pass		
SO-6259, 6260	10/28/2015	Ac-228	0.60 ± 0.10	0.53 ± 0.08	0.57 ± 0.07	Pass		
SO-6259, 6260	10/28/2015	Bi-214	0.40 ± 0.06	0.50 ± 0.05	0.45 ± 0.04	Pass		
SO-6259, 6260	10/28/2015	Cs-137	0.17 ± 0.03	0.19 ± 0.03	0.18 ± 0.02	Pass		
SO-6259, 6260	10/28/2015	Gr. Beta	21.6 ± 1.1	23.36 ± 1.21	22.48 ± 0.82	Pass		
SO-6259, 6260	10/28/2015	Pb-212	0.53 ± 0.04	0.49 ± 0.04	0.51 ± 0.03	Pass		
SO-6259, 6260	10/28/2015	TI-208	0.16 ± 0.03	0.19 ± 0.04	0.18 ± 0.02	Pass		

			Concentration (pCi/L) ^a					
					Averaged			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance		
1.10/-6280 6281	10/29/2015	Gr. Beta	2 03 + 0 91	1 97 + 0 97	2 00 + 0 67	Pass		
MI-6484, 6485	11/11/2015	K-40	$1,384 \pm 82$	$1,432 \pm 89$	$1,408 \pm 60$	Pass		
SO-6841, 6842	11/24/2015	Cs-137	0.18 ± 0.03	0.16 ± 0.03	0.17 ± 0.02	Pass		
SO-6841, 6842	11/24/2015	K-40	13.62 ± 0.76	13.67 ± 0.69	13.64 ± 0.51	Pass		
WW-6978, 6979	11/30/2015	H-3	569.0 ± 97.7	480.3 ± 93.9	524.7 ± 67.8	Pass		
SW-6936, 6937	12/10/2015	H-3	151.9 ± 80.0	176.2 ± 81.2	164.0 ± 57.0	Pass		
SW-7017, 7018	12/10/2015	H-3	584.3 ± 98.7	451.6 ± 93.9	518.0 ± 68.1	Pass		
LW-7020, 7021	12/10/2015	H-3	236.9 ± 84.2	285.6 ± 86.5	261.2 ± 60.3	Pass		
AP-7351, 7352	12/29/2015	Be-7	0.099 ± 0.020	0.084 ± 0.018	0.091 ± 0.014	Pass		
AP-7414, 7415	12/30/2015	Be-7	0.049 ± 0.013	0.048 ± 0.011	0.048 ± 0.008	Pass		

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

^a Results are reported in units of pCi/L, except for air filters (pCi/Filter or pCi/m3), food products, vegetation, soil, sediment (pCi/g).

				Concentration	a	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits °	Acceptance
MASO-975	2/1/2015	Ni-63	341 ± 18	448	314 - 582	Pass
MASO-975	2/1/2015	Sr-90	523 ± 12	653	457 - 849	Pass
MASO-975	2/1/2015	Tc-99	614 ± 12	867	607 - 1,127	Pass
MASO-975	2/1/2015	Cs-134	533 ± 6	678	475 - 881	Pass
MASO-975	2/1/2015	Cs-137	0.8 ± 2.5	0,0	NA ^c	Pass
MASO-975	2/1/2015	Co-57	0.5 ± 1.0	0.0	NA ^c	Pass
MASO-975	2/1/2015	Co-60	741 ± 8	817	572 - 1,062	Pass
MASO-975	2/1/2015	Mn-54	1,153 ± 9	1,198	839 - 1,557	Pass
MASO-975	2/1/2015	Zn-65	892 ± 18	1064	745 - 1,383	Pass
MAW-969	2/1/2015	Am-241	0.650 ± 0.078	0.654	0.458 - 0.850	Pass
MAW-969	2/1/2015	Cs-134	21.1 ± 0.3	23.5	16.5 - 30.6	Pass
MAW-969	2/1/2015	Cs-137	19.6 ± 0.3	19.1	13.4 - 24.8	Pass
MAW-969 d	2/1/2015	Co-57	10.2 ± 0.4	29.9	20.9 - 38.9	Fail
MAW-969	2/1/2015	Co-60	0.02 ± 0.05	0.00	NA °	Pass
MAW-969	2/1/2015	H-3	569 ± 13	563	394 - 732	Pass
MAW-969	2/1/2015	Fe-55	6.00 ± 6.60	6.88	4.82 - 8.94	Pass
MAW-969	2/1/2015	Mn-54	0.02 ± 0.07	0.00	NA °	Pass
MAW-969	2/1/2015	Ni-63	2.9 ± 3.0	0.00	NA °	Pass
MAW-969	2/1/2015	Zn-65	16.5 ± 0.9	18.3	12.8 - 23.8	Pass
MAW-969	2/1/2015	Tc-99	3.40 ± 0.60	3.18	2.23 - 4.13	Pass
MAW-969	2/1/2015	Pu-238	0.02 ± 0.03	0.01	NA ^e	Pass
MAW-969	2/1/2015	Pu-239/240	0.81 ± 0.10	0.83	0.58 - 1.08	Pass
MAW-969	2/1/2015	U-233/234	0.150 ± 0.040	0,148	0.104 - 0.192	Pass
MAW-969	2/1/2015	U-238	0.84 ± 0.09	0.97	0.68 - 1.26	Pass
MAW-969	2/1/2015	Sr-90	9.40 ± 1.30	9.48	6.64 - 12.32	Pass
MAW-950	2/1/2015	Gr. Alpha	0.66 ± 0.05	1.07	0.32 - 1.81	Pass
MAW-950	2/1/2015	Gr. Beta	2.72 ± 0.06	2.79	1.40 - 4.19	Pass
MAW-947	2/1/2015	I-129	1.26 ± 0.12	1.49	1.04 - 1.94	Pass
MAAP-978	2/1/2015	Am-241	0.069 ± 0.200	0.068	0.048 - 0.089	Pass
MAAP-978	2/1/2015	Cs-134	1.00 ± 0.04	1.15	0.81 - 1.50	Pass
MAAP-978	2/1/2015	Cs-137	0.004 ± 0.023	0.00	NA ^c	Pass
MAAP-978 ^f	2/1/2015	Co-57	0.04 ± 0.04	1.51	1.06 - 1.96	Fail
MAAP-978	2/1/2015	Co-60	0.01 ± 0.02	0.00	NA °	Pass
MAAP-978	2/1/2015	Mn-54	1.11 ± 0.08	1.02	0.71 - 1.33	Pass
MAAP-978	2/1/2015	Zn-65	0.83 ± 0.10	0.83	0.58 - 1.08	Pass
MAAP-978	2/1/2015	Pu-238	-0.003 ± 0.010	0.000	NA °	Pass
MAAP-978	2/1/2015	Pu-239/240	0.090 ± 0.022	0.085	0.059 - 0.110	Pass
MAAP-978	2/1/2015	U-233/234	0.020 ± 0.010	0.016	0.011 - 0.020	Pass
MAAP-978	2/1/2015	U-238	0.073 ± 0.018	0.099	0.069 - 0.129	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

				Concentration	a	
				Known	Control	· · · · · · · · · · · · · · · · · · ·
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits °	Acceptance
				<u></u>		
MAAP-981	2/1/2015	Sr-89	38.1 ± 1.0	47.5	33.3 - 61.8	Pass
MAAP-981	2/1/2015	Sr-90	1.22 ± 0.13	1.06	0.74 - 1.38	Pass
MAAP-984	2/1/2015	Gr. Alpha	0.59 ± 0.06	1.77	0.53 - 3.01	Pass
MAAP-984	2/1/2015	Gr. Beta	0.95 ± 0.07	0.75	0.38 - 1.13	Pass
MAVE-972	2/1/2015	Cs-134	6.98 ± 0.13	7.32	5.12 - 9.52	Pass
MAVE-972	2/1/2015	Cs-137	9,73 ± 0.21	9.18	6.43 - 11.93	Pass
MAVE-972	2/1/2015	Co-57	0.01 ± 0.04	0.00	NA ^c	Pass
MAVE-972	2/1/2015	Co-60	3.89 ± 0.20	5.55	3,89 - 7,22	Pass
MAVE-972	2/1/2015	Mn-54	0.04 ± 0.07	0.00	NA °	Pass
MAVE-972	2/1/2015	Zn-65	0.09 ± 0.12	0.00	NA °	Pass
MAAP-978	2/1/2015	Pu-238	-0.003 ± 0.010	0.000	NA °	Pass
MAAP-978	2/1/2015	Pu-239/240	0.090 ± 0.022	0.085	0.059 - 0.110	Pass
MAAP-978	2/1/2015	U-233/234	0.020 ± 0.010	0.016	0.011 - 0.020	Pass
MAAP-978	2/1/2015	U-238	0.073 ± 0.018	0.099	0.069 - 0.129	Pass
MAAP-981	2/1/2015	Sr-89	38.1 + 1.0	47.5	33.3 - 61.8	Pass
MAAP-981	2/1/2015	Sr-90	1.22 ± 0.13	1.06	0.74 - 1.38	Pass
	2/1/2015	Gr Alpha	0.59 + 0.06	1 77	0 53 - 3 01	Page
MAAD-98/	2/1/2015	Gr. Reta	0.95 ± 0.00	0.75	0.38 - 1.13	Page
	2/11/2010	OI. Deta	0.00 ± 0.07	0.70	0.00 - 1.10	1 435
MAVE-972	2/1/2015	Cs-134	6.98 ± 0.13	7.32	5.12 - 9.52	Pass
MAVE-972	2/1/2015	Cs-137	9.73 ± 0.21	9.18	6.43 - 11.93	Pass
MAVE-972	2/1/2015	Co-57	0.01 ± 0.04	0.00	NA °	Pass
MAVE-972	2/1/2015	Co-60	3.89 ± 0.20	5.55	3.89 - 7.22	Pass
MAVE-972	2/1/2015	Mn-54	0.04 ± 0.07	0.00	NA °	Pass
MAVE-972	2/1/2015	Zn-65	0.09 ± 0.12	0.00	NA °	Pass
MASO-4903	8/1/2015	Ni-63	556 ± 18	682	477 - 887	Pass
MASO-4903 ^g	8/1/2015	Sr-90	231 ± 7	425	298 - 553	Fail
MASO-4903 ^g	8/1/2015	Sr-90	352 ± 10	425	298 - 553	Pass
MASO-4903 h	8/1/2015	Tc-99	411 ± 11	631	442 - 820	Fail
MASO-4903	8/1/2015	Cs-134	833 ± 10	1,010	707 - 1,313	Pass
MASO-4903	8/1/2015	Cs-137	808 ± 11	809.00	566 - 1,052	Pass
MASO-4903	8/1/2015	Co-57	1,052 ± 10	1,180	826 - 1,534	Pass
MASO-4903	8/1/2015	Co-60	2 ± 2	1.3	NA ^e	Pass
MASO-4903	8/1/2015	Mn-54	1,331 ± 13	1,340	938 - 1,742	Pass
MASO-4903	8/1/2015	Zn-65	686 ± 15	662	463 - 861	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

				Concentration	a	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits °	Acceptance
MAW-5007	8/1/2015	Cs-134	16.7 ± 0.4	23.1	16.2 - 30.0	Pass
MAW-5007	8/1/2015	Cs-137	-0.4 ± 0.1	0.0	NA °	Pass
MAW-5007	8/1/2015	Co-57	21.8 ± 0.4	20,8	14.6 - 27.0	Pass
MAW-5007	8/1/2015	Co-60	17.3 ± 0.3	17.1	12.0 - 22.2	Pass
MAW-5007	8/1/2015	H-3	227.5 ± 8.9	216.0	151.0 - 281.0	Pass
MAW-5007 ⁱ	8/1/2015	Fe-55	4.2 ± 14.1	13.1	9.2 - 17.0	Fail
MAW-5007	8/1/2015	Mn-54	16.6 ± 0.5	15.6	10.9 - 20.3	Pass
MAW-5007	8/1/2015	Ni-63	9.1 ± 2.6	8.6	6.0 - 11.1	Pass
MAW-5007	8/1/2015	Zn-65	15.5 ± 0.9	13.9	9.7 - 18.1	Pass
MAW-5007	8/1/2015	Tc-99	6.80 ± 0.60	7.19	5.03 - 9.35	Pass
MAW-5007	8/1/2015	Sr-90	4.80 ± 0.50	4.80	3.36 - 6.24	Pass
MAW-5007	8/1/2015	Gr. Alpha	0.41 ± 0.04	0.43	0.13 - 0.73	Pass
MAW-5007	8/1/2015	Gr. Beta	3.45 ± 0.07	3.52	1.76 - 5.28	Pass
MAW-5007	8/1/2015	I-129	1.42 ± 0.13	1.49	1.04 - 1.94	Pass
MAAP-4911	8/1/2015	Sr-89	3.55 ± 0.67	3.98	2.79 - 5.17	Pass
MAAP-4911	8/1/2015	Sr-90	0.94 ± 0.16	1.05	0.74 - 1.37	Pass
MAAP-4907	8/1/2015	Gr. Alpha	0.30 ± 0.04	0.90	0.27 - 1.53	Pass
MAAP-4907	8/1/2015	Gr. Beta	1.85 ± 0.09	1.56	0.78 - 2.34	Pass
MAVE-4901	8/1/2015	Cs-134	5.56 ± 0.16	5.80	4.06 - 7.54	Pass
MAVE-4901	8/1/2015	Cs-137	-0.02 ± 0.06	0.00	NA ^c	Pass
MAVE-4901	8/1/2015	Co-57	7.74 ± 0.18	6.62	4.63 - 8.61	Pass
MAVE-4901	8/1/2015	Co-60	4.84 ± 0.15	4.56	3.19 - 5.93	Pass
MAVE-4901	8/1/2015	M n-54	8.25 ± 0.25	7.68	5.38 - 9.98	Pass
MAVE-4901	8/1/2015	Zn-65	5.78 ± 0.29	5.46	3.82 - 7.10	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

^d Lab result was 27.84. Data entry error resulted in a non-acceptable result.

^e Provided in the series for "sensitivity evaluation". MAPEP does not provide control limits.

^f Lab result was 1.58. Data entry error resulted in a non-acceptable result.

⁹ The incomplete separation of calcium from strontium caused a failed low result. The result of reanalysis acceptable.

^h The complex sample matrix is interfering with yield calculations causing a failed low result. An investigation is in process to determine a more reliable yield determination.

¹ The known activity was below the routine laboratory detection limits for the available aliquot fraction.

	Concentration (pCi/L) ^b										
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control						
<u></u>			Result ^c	Result ^d	Limits	Acceptance					
ERAP-1001	3/16/2015	Δm-241	468+22	49.8	30.7 - 67.4	Pase					
ERAP-1091	3/16/2015	Co-60	40.0 ± 2.2 85.1 ± 2.9	49.0 79.1	61.2 - 98.8	Pass					
ERAP-1091	3/16/2015	Cs-134	825.6 + 34.7	909.0	578.0 - 1.130.0	Pass					
ERAP-1091	3/16/2015	Cs-137	1312 + 12	1 170	879 - 1 540	Pass					
ERAP-1091	3/16/2015	Ee-55	760.6 + 48.2	836.0	259.0 - 1630.0	Pass					
ERAP-1091	3/16/2015	Mn-54	<27	<50	0.0 - 50.0	Pase					
ERAP-1091	3/16/2015	Pu-238	510+39	52.1	357-685	Pass					
ERAP-1091	3/16/2015	Pu-239/240	383 ± 13	40.3	29.20 - 52.70	Pase					
ERAP-1091	3/16/2015	Sr-90	95.3 ± 11.4	96.6	47.2 - 145.0	Pase					
ERAP-1091	3/16/2015	11-233/234	29.0 ± 1.2	34.3	21.3 - 51.7	Pase					
ERAP-1091	3/16/2015	U-238	23.0 ± 1.2	34.0	22.0 - 47.0	Pase					
EDAD.1001	3/16/2015	0-230 Zn.65	10003 ± 146 5	986.0	706.0 1360.0	Pass					
LINAP-1091	5/10/2015	211-00	1099.0 ± 140.0	300.0	700.0 - 1300.0	1 435					
ERAP-1094	3/16/2015	Gr. Alpha	73.7 ± 0.7	62.2	20.8 - 96.6	Pass					
ERAP-1094	3/16/2015	Gr. Beta	69.6 ± 0.8	58.4	36,9 - 85,1	Pass					
ERSO-1098	3/16/2015	Am-241	1571.8 ± 209.6	1,500	878 - 1,950	Pass					
ERSO-1098	3/16/2015	Ac-228	1198.8 ± 140.4	1,250	802 - 1,730	Pass					
ERSO-1098	3/16/2015	Bi-212	1420.1 ± 455.7	1,780	474 - 2,620	Pass					
ERSO-1098	3/16/2015	Bi-214	3466.9 ± 86.9	4,430	2,670 - 6,380	Pass					
ERSO-1098	3/16/2015	Co-60	1779.8 ± 41.0	1,880	1,270 - 2,590	Pass					
ERSO-1098	3/16/2015	Cs-134	5204.6 ± 64.5	6,390	4,180 - 7,680	Pass					
ER\$O-1098	3/16/2015	Cs-137	1417.1 ± 41.9	1,490	1,140 - 1,920	Pass					
ERSO-1098	3/16/2015	K-40	10,597 ± 380	10,700	7,810 - 14,400	Pass					
ERSO-1098	3/16/2015	Mn-54	<62.2	< 1000	0.0 - 1,000	Pass					
ERSO-1098	3/16/2015	Pb-212	1,032 ± 41	1,230	806 - 1,710	Pass					
ERSO-1098	3/16/2015	Pb-214	3,629 ± 93	4,530	2,640 - 6,760	Pass					
ERSO-1098	3/16/2015	Pu-238	942.9 ± 128.8	998.0	600.0 - 1,380.0	Pass					
ERSO-1098	3/16/2015	Pu-239/240	1,185 ± 140	1,210	791 - 1,670	Pass					
ERSO-1098	3/16/2015	Sr-90	1,724 ± 125	1,940	740 - 3,060	Pass					
ERSO-1098	3/16/2015	Th-234	$3,666 \pm 948$	3,890	1,230 - 7,320	Pass					
ERSO-1098	3/16/2015	U-233/234	3,474 ± 226	3,920	2,400 - 5,020	Pass					
ERSO-1098	3/16/2015	U-238	$3,620 \pm 232$	3,890	2,410 - 4,930	Pass					
ERSO-1098	3/16/2015	Zn-65	7,362 ± 145	7,130	5,680 - 9,470	Pass					
				·							
ERW-1095	3/16/2015	Gr. Alpha	93.4 ± 11.5	119.0	42.2 - 184.0	Pass					
ERW-1095	3/16/2015	Gr. Beta	145.2 ± 4.8	158.0	90.5 - 234.0	Pass					
ERW-1110	3/16/2015	H-3	10,573 ± 78	10,300	6,900 - 14,700	Pass					
	0400045	Am 044	4 507 1 000	4.040		Dess					
ERVE-1100	3/16/2015	Am-241	$4,537 \pm 266$	4,340	2,000 - 5,770	Pass					
CRVE-1100	3/10/2015	UM-244	1,338 ± 146	1,360	UST, 2 - 000	rass					

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

A7-1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Concentration (pCi/L) ^b									
Result °Result °LimitsAcceptanceERVE-1100 °3/16/2015Co-601,030 ± 291,5401,060 - 2,150FailERVE-1100 °3/16/2015Cs-1341,615 ± 272,6501,700 - 3,440FailERVE-1100 °3/16/2015Cs-1342,554 ± 492,6501,700 - 3,440PassERVE-1100 °3/16/2015Cs-1371,248 ± 291,8101,310 - 2,520FailERVE-1100 °3/16/2015Cs-1372,078 ± 681,8101,310 - 2,520PassERVE-1100 °3/16/2015K-4022,037 ± 46330,90022,300 - 43,400PassERVE-1100 °3/16/2015Mn-54<13.8	Lab Code ^b	Date	Analysis	Laboratory	ERA	Control				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Reșult °	Result ^d	Limits	Acceptance			
ERVE-11003/16/2015Co-601,030 \pm 291,5401,060 - 2,150FailERVE-11003/16/2015Co-601,684 \pm 481,5401,060 - 2,150PassERVE-11003/16/2015Cs-1341,615 \pm 272,6501,700 - 3,440PassERVE-11003/16/2015Cs-1342,554 \pm 492,6501,700 - 3,440PassERVE-11003/16/2015Cs-1371,248 \pm 291,8101,310 - 2,520PasiERVE-11003/16/2015Cs-1372,078 \pm 681,8101,310 - 2,520PassERVE-11003/16/2015K-4022,037 \pm 46330,90022,300 - 43,400PassERVE-11003/16/2015K-4034,895 \pm 76430,90022,300 - 43,400PassERVE-11003/16/2015Mn-54<13.8										
ERVE-1100 $3/16/2015$ Co-60 $1,684 \pm 48$ $1,540$ $1,060 - 2,150$ PassERVE-1100 $3/16/2015$ Cs-134 $1,615 \pm 27$ $2,650$ $1,700 - 3,440$ FailERVE-1100 $3/16/2015$ Cs-134 $2,554 \pm 49$ $2,650$ $1,700 - 3,440$ PassERVE-1100 $3/16/2015$ Cs-137 $1,248 \pm 29$ $1,810$ $1,310 - 2,520$ FailERVE-1100 $3/16/2015$ K-40 $22,037 \pm 463$ $30,900$ $22,300 - 43,400$ FailERVE-1100 $3/16/2015$ K-40 $34,895 \pm 764$ $30,900$ $22,300 - 43,400$ PassERVE-1100 $3/16/2015$ Mn-54<13.8	ERVE-1100 °	3/16/2015	Co-60	1,030 ± 29	1,540	1,060 - 2,150	Fail			
ERVE-1100 $3/16/2015$ Cs-134 $1,615 \pm 27$ $2,650$ $1,700 - 3,440$ FailERVE-1100 $3/16/2015$ Cs-134 $2,554 \pm 49$ $2,650$ $1,700 - 3,440$ PassERVE-1100 $3/16/2015$ Cs-137 $1,248 \pm 29$ $1,810$ $1,310 - 2,520$ PassERVE-1100 $3/16/2015$ K-40 $22,037 \pm 463$ $30,900$ $22,300 - 43,400$ FailERVE-1100 $3/16/2015$ K-40 $34,895 \pm 764$ $30,900$ $22,300 - 43,400$ PassERVE-1100 $3/16/2015$ Mn-54 <13.8 <300 $0.0 - 300.0$ PassERVE-1100 $3/16/2015$ Mn-54 <24.4 <300 $0.0 - 300.0$ PassERVE-1100 $3/16/2015$ Pu-238 $3,232 \pm 232$ $3,680$ $2,190 - 5,040$ PassERVE-1100 $3/16/2015$ Pu-238/240 $3,606 \pm 240$ $4,180$ $2,570 - 5,760$ PassERVE-1100 $3/16/2015$ Pu-238/240 $3,606 \pm 240$ $4,180$ $2,570 - 5,760$ PassERVE-1100 $3/16/2015$ VI-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $3/16/2015$ Zn-65 <94.6 $1,090$ $786 - 1,530$ PassERVE-1100 $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Ca-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Ca-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ Pass	ERVE-1100 ^f	3/16/2015	Co-60	1,684 ± 48	1,540	1,060 - 2,150	Pass			
ERVE-1100 1 $3/16/2015$ Cs-134 $2,554 \pm 49$ $2,650$ $1,700 - 3,440$ PassERVE-1100 1 $3/16/2015$ Cs-137 $1,248 \pm 29$ $1,810$ $1,310 - 2,520$ FailERVE-1100 1 $3/16/2015$ Cs-137 $2,078 \pm 68$ $1,810$ $1,310 - 2,520$ PassERVE-1100 1 $3/16/2015$ K-40 $22,073 \pm 463$ $30,900$ $22,300 - 43,400$ PassERVE-1100 $^{3}/16/2015$ Mn-54 <13.8 <300 $0.0 - 300.0$ PassERVE-1100 $^{3}/16/2015$ Mn-54 <24.4 <300 $0.0 - 300.0$ PassERVE-1100 $^{3}/16/2015$ Mn-54 <24.4 <300 $0.0 - 300.0$ PassERVE-1100 $^{3}/16/2015$ Pu-238 $3,232 \pm 232$ $3,680$ $2,190 - 5,040$ PassERVE-1100 $^{3}/16/2015$ Pu-239/240 $3,606 \pm 240$ $4,180$ $2,570 - 5,760$ PassERVE-1100 $^{3}/16/2015$ Sr-90 $6,023 \pm 326$ $6,590$ $3,760 - 8,740$ PassERVE-1100 $^{3}/16/2015$ U-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $^{3}/16/2015$ Zn-65 $^{94.6}$ $1,090$ $786 - 1,530$ PassERV-1103 $^{3}/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $^{3}/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $^{3}/16/2015$ Nn-54 <3.7	ERVE-1100 °	3/16/2015	Cs-134	1,615 ± 27	2,650	1,700 - 3,440	Fail			
ERVE-11003/16/2015Cs-1371,248 \pm 291,8101,310 - 2,520FailERVE-11003/16/2015Cs-1372,078 \pm 681,8101,310 - 2,520PassERVE-11003/16/2015K-4022,037 \pm 46330,90022,300 - 43,400PassERVE-11003/16/2015K-4034,895 \pm 76430,90022,300 - 43,400PassERVE-11003/16/2015Mn-54<13.8	ERVE-1100 ^f	3/16/2015	Cs-134	2,554 ± 49	2,650	1,700 - 3,440	Pass			
ERVE-11003/16/2015Cs-1372,078 \pm 681,8101,310 - 2,520PassERVE-11003/16/2015K-4022,037 \pm 46330,90022,300 - 43,400FailERVE-11003/16/2015Mn-54<13.8	ERVE-1100 °	3/16/2015	Cs-137	1,248 ± 29	1,810	1,310 - 2,520	Fail			
ERVE-11003/16/2015K-4022,037 \pm 46330,90022,300 \pm 43,400FailERVE-11003/16/2015K-4034,895 \pm 76430,90022,300 \pm 43,400PassERVE-11003/16/2015Mn-54<13.8	ERVE-1100 ^f	3/16/2015	Cs-137	2,078 ± 68	1,810	1,310 - 2,520	Pass			
ERVE-1100'3/16/2015K-4034,895 ± 76430,90022,300 - 43,400PassERVE-1100'3/16/2015Mn-54<13.8	ERVE-1100 °	3/16/2015	K-40	22,037 ± 463	30,900	22,300 - 43,400	Fail			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ERVE-1100 ⁽	3/16/2015	K-40	34,895 ± 764	30,900	22,300 - 43,400	Pass			
ERVE-1100 $'$ $3/16/2015$ Mn-54 <24.4 <300 $0.0 - 300.0$ PassERVE-1100 $3/16/2015$ Pu-238 $3,232 \pm 232$ $3,680$ $2,190 - 5,040$ PassERVE-1100 $3/16/2015$ Pu-239/240 $3,606 \pm 240$ $4,180$ $2,570 - 5,760$ PassERVE-1100 $3/16/2015$ Sr-90 $6,023 \pm 326$ $6,590$ $3,760 - 8,740$ PassERVE-1100 $3/16/2015$ U-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $3/16/2015$ U-238 $2,717 \pm 163$ $3,130$ $2,090 - 3,980$ PassERVE-1100 $3/16/2015$ Zn-65 <94.6 $1,090$ $786 - 1,530$ FailERV-1103 $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-238/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.3 $46.7 - 75.2$ PassERW-1103<	ERVE-1100 °	3/16/2015	Mn-54	<13.8	<300	0.0 - 300.0	Pass			
ERVE-1100 $3/16/2015$ Pu-238 $3,232 \pm 232$ $3,680$ $2,190 - 5,040$ PassERVE-1100 $3/16/2015$ Pu-239/240 $3,606 \pm 240$ $4,180$ $2,570 - 5,760$ PassERVE-1100 $3/16/2015$ Sr-90 $6,023 \pm 326$ $6,590$ $3,760 - 8,740$ PassERVE-1100 $3/16/2015$ U-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $3/16/2015$ U-238 $2,717 \pm 163$ $3,130$ $2,090 - 3,980$ PassERVE-1100 $^{\circ}$ $3/16/2015$ Zn-65 -94.6 $1,090$ $786 - 1,530$ FailERV-1103 $^{\circ}$ $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 <td>ERVE-1100 ^f</td> <td>3/16/2015</td> <td>Mn-54</td> <td><24.4</td> <td><300</td> <td>0.0 - 300.0</td> <td>Pass</td>	ERVE-1100 ^f	3/16/2015	Mn-54	<24.4	<300	0.0 - 300.0	Pass			
ERVE-1100 $3/16/2015$ Pu-239/240 $3,606 \pm 240$ $4,180$ $2,570 - 5,760$ PassERVE-1100 $3/16/2015$ Sr-90 $6,023 \pm 326$ $6,590$ $3,760 - 8,740$ PassERVE-1100 $3/16/2015$ U-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $3/16/2015$ U-238 $2,717 \pm 163$ $3,130$ $2,090 - 3,980$ PassERVE-1100 $^{\circ}$ $3/16/2015$ Zn-65 <94.6 $1,090$ $786 - 1,530$ FailERVE-1100 $^{\circ}$ $3/16/2015$ Zn-65 <94.6 $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-1103 $3/16/2015$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ Pass <td>ERVE-1100</td> <td>3/16/2015</td> <td>Pu-238</td> <td>3,232 ± 232</td> <td>3,680</td> <td>2,190 - 5,040</td> <td>Pass</td>	ERVE-1100	3/16/2015	Pu-238	3,232 ± 232	3,680	2,190 - 5,040	Pass			
ERVE-1100 $3/16/2015$ Sr-90 $6,023 \pm 326$ $6,590$ $3,760 - 8,740$ PassERVE-1100 $3/16/2015$ U-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $3/16/2015$ U-238 $2,717 \pm 163$ $3,130$ $2,090 - 3,980$ PassERVE-1100 $3/16/2015$ Zn-65 94.6 $1,090$ $786 - 1,530$ FailERVE-1100 $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Am-241 47.1 ± 4.0 46.0 $31.0 - 61.7$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 40.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$	ERVE-1100	3/16/2015	Pu-239/240	3,606 ± 240	4,180	2,570 - 5,760	Pass			
ERVE-1100 $3/16/2015$ U-233/234 $2,653 \pm 153$ $3,150$ $2,070 - 4,050$ PassERVE-1100 $3/16/2015$ U-238 $2,717 \pm 163$ $3,130$ $2,090 - 3,980$ PassERVE-1100 $3/16/2015$ Zn-65 94.6 $1,090$ $786 - 1,530$ FailERVE-1100 $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Am-241 47.1 ± 4.0 46.0 $31.0 - 61.7$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ </td <td>ERVE-1100</td> <td>3/16/2015</td> <td>Sr-90</td> <td>6,023 ± 326</td> <td>6,590</td> <td>3,760 - 8,740</td> <td>Pass</td>	ERVE-1100	3/16/2015	Sr-90	6,023 ± 326	6,590	3,760 - 8,740	Pass			
ERVE-1100 $3/16/2015$ U-238 $2,717 \pm 163$ $3,130$ $2,090 - 3,980$ PassERVE-1100 * $3/16/2015$ Zn-65 <94.6 $1,090$ $786 - 1,530$ FailERVE-1100 * $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Am-241 47.1 ± 4.0 46.0 $31.0 - 61.7$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 h $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Zn-65 $1,149 \pm 144$ $1,070$ $638 - 1,450$ Pass	ERVE-1100	3/16/2015	U-233/234	2,653 ± 153	3,150	2,070 - 4,050	Pass			
ERVE-1100* $3/16/2015$ Zn-65<94.61,090786 - 1,530FailERVE-1100* $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ 786 - 1,530PassERW-1103 $3/16/2015$ Am-241 47.1 ± 4.0 46.0 $31.0 - 61.7$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100	ERVE-1100	3/16/2015	U-238	2,717 ± 163	3,130	2,090 - 3,980	Pass			
ERVE-1100 f $3/16/2015$ Zn-65 $1,306 \pm 75$ $1,090$ $786 - 1,530$ PassERW-1103 $3/16/2015$ Am-241 47.1 ± 4.0 46.0 $31.0 - 61.7$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Zn-65 $1,149 \pm 144$ 1.070 $638 - 1.450$ Pass	ERVE-1100 ^e	3/16/2015	Zn-65	<94.6	1,090	786 - 1,530	Fail			
ERW-1103 $3/16/2015$ Am-241 47.1 ± 4.0 46.0 $31.0 - 61.7$ PassERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 h $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Zn-65 $1,149 \pm 144$ 1.070 $638 - 1.450$ Pass	ERVE-1100 ^f	3/16/2015	Zn-65	1,306 ± 75	1,090	786 - 1,530	Pass			
ERW-1103 $3/16/2015$ Co-60 $1,217 \pm 17$ $1,250$ $1,090 - 1,460$ PassERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 h $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Zn-65 $1,149 \pm 144$ 1.070 $638 - 1.450$ Pass	ERW-1103	3/16/2015	Am-241	47.1 ± 4.0	46,0	31.0 - 61.7	Pass			
ERW-1103 $3/16/2015$ Cs-134 $1,121 \pm 18$ $1,260$ $925 - 1,450$ PassERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 h $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Zn-65 $1,149 \pm 144$ 1.070 $638 - 1.450$ Pass	ERW-1103	3/16/2015	Co-60	1.217 ± 17	1,250	1.090 - 1.460	Pass			
ERW-1103 $3/16/2015$ Cs-137 $1,332 \pm 31$ $1,360$ $1,150 - 1,630$ PassERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 h $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Eresting 51.4 ± 144 1.070 $638 - 1.450$ Pass	ERW-1103	3/16/2015	Cs-134	1.121 ± 18	1,260	925 - 1.450	Pass			
ERW-1103 $3/16/2015$ Mn-54 <3.7 <100 $0.00 - 100.00$ PassERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 ^h $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Fe-55 1.149 ± 144 1.070 $638 - 1.450$ Pass	ERW-1103	3/16/2015	Cs-137	1,332 ± 31	1,360	1,150 - 1,630	Pass			
ERW-1103 $3/16/2015$ Pu-238 54.5 ± 1.6 72.4 $53.6 - 90.1$ PassERW-1103 $3/16/2015$ Pu-239/240 140.2 ± 7.8 184.0 $143.0 - 232.0$ FailERW-3742 $9/27/2012$ Pu-239/240 89.3 ± 4.9 97.7 $66.6 - 108.0$ PassERW-1103 $3/16/2015$ U-233/234 56.5 ± 6.4 61.8 $46.4 - 79.7$ PassERW-1103 $3/16/2015$ U-238 58.4 ± 5.8 61.3 $46.7 - 75.2$ PassERW-1103 $3/16/2015$ Zn-65 $1,191 \pm 136$ $1,180$ $984 - 1,490$ PassERW-1103 $3/16/2015$ Fe-55 1.149 ± 144 1.070 $638 - 1.450$ Pass	ERW-1103	3/16/2015	Mn-54	<3.7	<100	0.00 - 100.00	Pass			
ERW-1103 ⁹ 3/16/2015 Pu-239/240 140.2 ± 7.8 184.0 143.0 - 232.0 Fail ERW-3742 ^h 9/27/2012 Pu-239/240 89.3 ± 4.9 97.7 66.6 - 108.0 Pass ERW-1103 3/16/2015 U-233/234 56.5 ± 6.4 61.8 46.4 - 79.7 Pass ERW-1103 3/16/2015 U-238 58.4 ± 5.8 61.3 46.7 - 75.2 Pass ERW-1103 3/16/2015 Zn-65 1,191 ± 136 1,180 984 - 1,490 Pass ERW-1103 3/16/2015 Fe-55 1.149 ± 144 1.070 638 - 1.450 Pass	ERW-1103	3/16/2015	Pu-238	54.5 ± 1.6	72.4	53.6 - 90.1	Pass			
ERW-3742 h9/27/2012Pu-239/24089.3 ± 4.997.766.6 - 108.0PassERW-11033/16/2015U-233/23456.5 ± 6.461.846.4 - 79.7PassERW-11033/16/2015U-23858.4 ± 5.861.346.7 - 75.2PassERW-11033/16/2015Zn-651,191 ± 1361,180984 - 1,490PassERW-11033/16/2015Fe-551.149 ± 1441.070638 - 1.450Pass	ERW-1103 ^g	3/16/2015	Pu-239/240	140.2 ± 7.8	184.0	143.0 - 232.0	Fail			
ERW-1103 3/16/2015 U-233/234 56.5 ± 6.4 61.8 46.4 - 79.7 Pass ERW-1103 3/16/2015 U-238 58.4 ± 5.8 61.3 46.7 - 75.2 Pass ERW-1103 3/16/2015 Zn-65 1,191 ± 136 1,180 984 - 1,490 Pass ERW-1103 3/16/2015 Fe-55 1.149 ± 144 1.070 638 - 1.450 Pass	ERW-3742 ^h	9/27/2012	Pu-239/240	89.3 ± 4.9	97.7	66.6 - 108.0	Pass			
ERW-1103 3/16/2015 U-238 58.4 ± 5.8 61.3 46.7 - 75.2 Pass ERW-1103 3/16/2015 Zn-65 1,191 ± 136 1,180 984 - 1,490 Pass ERW-1103 3/16/2015 Fe-55 1.149 ± 144 1.070 638 - 1.450 Pass	ERW-1103	3/16/2015	U-233/234	56.5 ± 6.4	61.8	46.4 - 79.7	Pass			
ERW-1103 3/16/2015 Zn-65 1,191 ± 136 1,180 984 - 1,490 Pass ERW-1103 3/16/2015 Fe-55 1,149 ± 144 1,070 638 - 1,450 Pass	ERW-1103	3/16/2015	U-238	58.4 ± 5.8	61.3	46.7 - 75.2	Pass			
ERW-1103 3/16/2015 Fe-55 1.149 ± 144 1.070 638 - 1.450 Pass	ERW-1103	3/16/2015	Zn-65	1,191 ± 136	1,180	984 - 1,490	Pass			
	ERW-1103	3/16/2015	Fe-55	1,149 ± 144	1,070	638 - 1,450	Pass			
ERW-1103 3/16/2015 Sr-90 860.0 ± 37.0 912.0 594.0 - 1,210.0 Pass	ERW-1103	3/16/2015	Sr-90	860.0 ± 37.0	912.0	594.0 - 1,210.0	Pass			

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation). Results are reported in units

of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA. A known value of "zero" indicates an analysis was included in the testing series as

a "false positive". Control limits are not provided.

^e Technician error weighing sample caused submitted gamma results to be understated and outside the control limits.(low)

^f The result of reanalysis with the correct sample volume (Compare to original result, footnoted "e" above).

^g The results of reanalysis were outside the control limits (low).

^h Sample ERW-3742 was ordered from ERA to determine why ERW-1103 results for Pu-239 were outside the acceptable range. The results for ERW-3742 were acceptable. No reason for the unacceptable results for ERW-3742 was determined.

DATA REPORTING CONVENTIONS APPENDIX B.

Data Reporting Conventions

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

where:

Each single measurement is reported as follows: x = value of the measurement; x±s

s = 2σ counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: < L, where L = the lower limit of detection based on 4.66 uncertainty for a background sample.

3.0. Duplicate analyses

If duplicate analyses are reported, the convention is as follows. :

3,1	Individual results:	For two analysis re	sults; $x_1 \pm s_1$ and $x_2 \pm s_1$: s ₂
	Reported result:	$x \pm s$; where $x =$	(1/2) $(x_1 + x_2)$ and s =	(1/2) $\sqrt{s_1^2 + s_2^2}$
3.2.	Individual results:	< L ₁ , < L ₂	<u>Reported result:</u> < L,	where L = lower of L_1 and L_2
3.3.	Individual results:	x ± s, < L	Reported result:	$x \pm s$ if $x \ge L$; < L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average x and standard deviation "s" of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum \mathbf{x}$$
 $\mathbf{s} = \sqrt{\frac{\sum (\bar{\mathbf{x}} \cdot \bar{\mathbf{x}})^2}{n-1}}$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained numbers are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45.

APPENDIX C

Table C-1.	Maximum	permissible	concentrations	of	radioactivity	in	air	and	water	above	natural
	backgroun	d in unrestric	ted areas ^ª .		-						

Air (pCi/m ^³)	Water (pCi/L)	ər (pCi/L)		
1 x 10 ⁻³	Strontium-89	8,000		
1	Strontium-90	500		
2.8×10^{-1}	Cesium-137	1,000		
	Barium-140	8,000		
	lodine-131	1,000		
	Potassium-40 ^c	4,000		
	Gross alpha	2		
	Gross beta	10		
	Tritium	1 x 10 ⁶		
	Air (pCi/m ³) 1×10^{-3} 1 2.8×10^{-1}	Air (pCi/m³)Water (pCi/L)1 x 10-3Strontium-891Strontium-902.8 x 10-1Cesium-137Barium-140Iodine-131Potassium-40°Gross alphaGross betaTritiumTritium		

^a Taken from Table 2 of Appendix B to Code of Federal Regulations Title 10, Part 20, and appropriate footnotes. Concentrations may be averaged over a period not greater than one year.

Value adjusted by a factor of 700 to reduce the dose resulting from the air-grass-cow-milk-child pathway.

A natural radionuclide.

APPENDIX D

Sampling Location Maps

Figure D-1, Sample Collection and Analysis Program: TLD locations, Inner Ring (Table 5.2)

Figure D-3, Sample Collection and Analysis Program: TLD locations, Controls. (Table 5.2)

Figure D-4, Sample Collection and Analysis Program: Radiological Environmental Monitoring Program, Well Water and Shoreline sampling locations. (Table 5.2)

APPENDIX E

Ground Water Monitoring Well Samples

1.0 INTRODUCTION

This appendix to the Radiological Environmental Monitoring Program Annual Report to the United States Nuclear Regulatory Commission summarizes and interprets results of the Ground Water Monitoring Program samples taken at the Monticello Nuclear Plant, Monticello, Minnesota, during the period January – December 2015. This sampling program was established in October of 2006 following the industry initiative on ground water monitoring.

2.0 SUMMARY

Onsite groundwater is monitored at MNGP in accordance with the guidance presented in NEI 07-07. This initiative was developed by the Nuclear Energy Institute (NEI) and nuclear industry stakeholders to address a gap in industry guidance and practices for monitoring groundwater and responding to inadvertent releases of radioactive material with the potential to contaminate groundwater. The initiative sets forth voluntary requirements for evaluating and monitoring Systems, Structures and Components (SSCs) with a high risk of contaminating groundwater. Additionally, the guidance specifies reporting requirements for onsite groundwater sample results that exceed REMP reporting thresholds and that all onsite groundwater results are reported in either the ARERR (Effluent) or AREOR (REMP) reports.

Previously, all groundwater sample results have been reported in the REMP report. It has been determined that onsite groundwater monitoring results are more appropriately reported in the Effluent report, while the true REMP well water sample results belong in the REMP report. For 2015, the results for onsite groundwater monitoring wells will be reported in both reports. Subsequent reports are planned to include only REMP well water samples in the REMP report and only onsite groundwater monitoring samples in the Effluent report.

The current groundwater monitoring program includes wells at 15 locations with four of those locations in a "nested" configuration, where one sample is taken at the level of the water table (locations ending with an 'A') while a second sample can be taken from deeper water (locations ending with a 'B'). Sample Frequency for Groundwater Wells is summarized in Table E-1, locations relative to the plant stack are provided in Table E-2, and a map of monitoring well locations is provided in Figure E-1. Several wells are considered sentinel wells that would indicate if radioactive material were migrating offsite into the Mississippi River; wells MW-2, -3, -4, -14, -15A & -15B fit into the sentinel well category.

Additional sampling performed under the guidance of the Groundwater Protection Program includes sampling water from storm drains. These samples periodically indicate elevated tritium activities due to recapture of tritium from gaseous effluents.

The GWPP includes an LLD requirement of 300 pCi/L for tritium, which is significantly lower than the REMP LLD of 2000 pCi/L. The LLD was set conservatively lower in order to ensure that any indication of potential leaks or spills would be quickly identified and to ensure that concentrations of tritium are well characterized. In practice, samples were counted to an even lower level, approximately 150 pCi/L.

Program findings for 2015 detected low levels of tritium in monitoring wells located on the plant property. Monitoring well MW-9A results indicate tritium activities ranging from 6,493 pCi/L to less than 147 pCi/L; this peak concentration is comparable to the 2014 peak concentration 5,911 pCi/L. Monitoring well MW-10 results indicate tritium activities ranging from 453 pCi/L down to 155 pCi/L and is also consistent with 2014 results for this well. All other monitoring well and storm water runoff samples indicated tritium activities that were less than 300 pCi/L. All GWPP tritium results for 2015 were below the Environmental Protection Agency's drinking water standard of 20,000 pCi/L and present no harm to members of the public.

No gamma emitting isotopes were identified in groundwater or storm water runoff samples in 2015.

A summation of the 2015 analytical results for groundwater monitoring well and storm water runoff samples is provided in Table E-3, and complete results are available in Table E-4.

3.0 Ground Water Sampling Program

3.1 <u>Program Design and Data Interpretation</u>

The purpose of this sampling program is to ensure timely detection of inadvertent radiological releases to ground water at MNGP. For this purpose, water samples are collected and analyzed for tritium content and presence of gamma-emitting radionuclides.

3.2 <u>Program Description</u>

The sampling and analysis schedule for the Ground Water Monitoring Program is summarized in Table E-1 and briefly reviewed below. Table E-2 defines the additional sample locations and codes for the Ground Water Sampling Program.

Sampling from the groundwater monitoring wells was conducted monthly at fourteen locations and quarterly for five locations.

3.3 Program Execution

Groundwater sample results are summarized in Table E-3. Results of individual analyses are reported in Table E-4. The Program was executed as described with the following exceptions:

Two groundwater samples were missed in 2015. The July sample for MW-13B was missed due to a broken sample pump. The March sample for MW-14 was missed due to a frozen column of water blocking the monitoring well cavity.

Additional analyses for gamma emitting isotopes were performed on samples from each of the nineteen monitoring wells.

3.4 Program Modifications

There were no additional on-site monitoring wells added to the ground water program and no changes to sampling frequency or other GWPP requirements in 2015.

3.5 Results and Discussions

Results for 2015 indicate that no gamma emitting isotopes were identified in groundwater samples. Monitoring well MW-9A results indicate activities ranging from 6,493 \pm 237 pCi/l to <147 pCi/l; this peak concentration is comparable to the 2014 peak concentration 5,911 \pm 279 pCi/l. Monitoring well MW-10 results indicate tritium activities ranging from 453 \pm 98 pCi/l to 155 \pm 79 pCi/l and is also consistent with 2014 results for this well. All other monitoring well and storm water samples indicated activities that were less than 300 pCi/l.

Historically, monitoring Well MW-9A has indicated elevated tritium levels that vary seasonally since 2009. It is understood that there is likely a plume of water containing tritium under the Turbine Building that moves tritium activity into, and out from, the monitoring well depending upon the hydraulic gradient at the time of sampling; the plume is considered to be stagnant under the turbine building, based on results from surrounding wells. Evidence indicates that the activity in the plume originated from process water containing tritium that leached through the turbine building concrete base mat. Potential sources of tritium were thoroughly evaluated in the Corrective Action Program and all identified sources that were potentially contributing tritium to the turbine building base mat were corrected during the 2011 refueling outage. Corrective actions taken included lining sumps and discontinuing use of embedded piping that were identified as potential sources of the tritium found in the plume.

Tritium is also regularly identified in samples from MW-10. Levels of tritium activity in this well are more consistent throughout the year and at a significantly lower level than the levels of activity observed in MW-9A.

The Lower Limit of Detection (LLD) for groundwater monitoring of tritium at MNGP during 2015 was less than 300 pCi/l, in accordance with station processes and procedures; this LLD is far below the required REMP LLD (2,000 pCi/l) and very far below the REMP reporting threshold for water samples (20,000 pCi/l). The site has chosen to use this low LLD in order to quickly identify and characterize any potential contamination sources. The LLD as reported represents the activity at which there is a 95% chance that a sample containing that level of activity would be characterized as detected with only a 5% chance that the sample would be characterized as a blank.

The Xcel Energy Groundwater Protection Program has established a Baseline Threshold Level for tritium, defined as the 95% Confidence Level determined using Student's t and a statistical mean of ten or more sample results; at this level the a sample would be considered to be statistically different from background, based on analytical results. For wells that consistently indicate near or below LLD, the Baseline Threshold Level is 400 pCi/l. The program also provides an Action Level of 3-times the Baseline Threshold Level, or 1200 pCi/l for these wells; at this level, additional action is taken to evaluate the cause of the change in activity and work through the Corrective Action process to address the concern. Note that this Action Level is still below the required REMP LLD of 2000 pCi/l. No statistically significant concentrations of tritium were identified in sentinel wells in 2015; therefore no tritium discharge to ground water is reported.

Medium	Number	Sample Codes	Collection type	Analysis Type
Ground Water Quarterly	32	MW-1, MW-2, MW-3, MW-4, MW-9B, MW-11, MW-12A, MW-12B,	Grab	H-3
Ground Water Monthly	82ª	MW-9A, MW-10, MW-13A, MW-13B, MW-14, MW-15A MW-15B,	Grab	H-3
Ground Water Annual	4	MW-5, MW-6, MW-7, MW-8	Grab	H-3

Table E-1. Sample Collection and Analysis Program, Ground Water.

^a Two ground water samples were missed in 2015. The July sample for MW-13B was missed due to a broken sampling pump. The March sample for MW-14 was missed due to ice plugging the well.

Sample Type	Vendor Code	Well Number	Distance from Stack (miles)	Compass Heading from Stack	Sector
Ground Water	M-33	MW-1	0.11	299	WNW
Ground Water	M-34	MW-2	0.14	301	WNW
Ground Water	M-35	MW-3	0.15	305	NW
Ground Water	M-36	MW-4	0.1	25	NNE
Ground Water	M-37	MW-5	0.1	253	WSW
Ground Water	M-38	MW-6	229 Feet	228	SW
Ground Water	M-39	MW-7	0.2	66	ENE
Ground Water	M-40	MW-8	0.3	150	SSE
Ground Water	M-44	MW-9A	0.1	310	NW
Ground Water	M-51	MW-9B	0.1	310	NW
Ground Water	M-45	MW-10	0.1	292	WNW
Ground Water	M-46	MW-11	0.1	283	WNW
Ground Water	M-47	MW-12A	0.1	330	NW
Ground Water	M-48	MW-12B	0.1	326	NW
Ground Water	M-49	MW-13A	0.12	316	NW
Ground Water	M-50	MW-13B	0.12	316	NW
Ground Water	M-52	MW-14	0.17	306	NW
Ground Water	M-53	MW-15A	0.14	14	NNE
Ground Water	M-54	MW-15B	0.14	14	NNE

Table E-2. Sampling locations for Ground Water Monitoring Wells.

Table E-3. Ground Water Monitoring Program Summary.

Name	of Facility	Monticello Nuclea	ar Generating Plan	t Docket N	o. <u>-</u>	50-263		
Locatio	on of Facility	vvright, Minnesota	a (Osumbu Obata	Reporting	Penod	January-December, 2015		
			(County, State)				
			Indicator	Locatio	n with High	est		
Sample	Type and	0	Locations	An	nual Mean			
Туре	Number of	LLD⁵	Mean (F) [°]			Mean (F)°		
(Units)	Analyses ^a		Range⁰	Location ^d		Range ^c		
Groundwator	LI2 119	200	602 (171119)	MIALOA On aita		1095 (10/12)		
Monitoring Wolls	n-3 110	500	(144 6402)	$0.1 \text{ mi} \oplus 310^{\circ}/\text{NM}$		(182 6402)		
			(144-0495)	0.1111 @ 310 /1404		(102-0455)		
(poirc)					}			
Stormwater	H-3 4	300	157(1/4)	SD-006		157(1/4)		
Runoff				On-site				
(pCi/L)	GS 4							
	Mn-54	10	< LLD	-		-		
	Fe-59	30	< LLD	-		-		
	Co-58	10	< LLD			-		
	Co-60	10	< LLD	-		-		
	Zn-65	30	< LLD	-		-		
	Zr-Nb-95	. 15 ·	< LLD	-		-		
	I-131	30	< LLD	-		-		
	Cs-134	10	< LLD	-		-		
	Cs-137	10	< LLD	-		-		
	Ba-La-140	15	< LLD	-		-		
	Ce-144	43	< LLD	-		-		
·····								
SewerLift	Н-3 2	300	<110	-		_		
Station	11-0 2	000		_		_		
(nCi/L)	GS 2							
(poi/c)	Mn-54	10	<11.0	_		_		
	1011-54	10				-		
I	Fe-59	30	< LLD	- 1		-		
	Co-58	. 10	< LLD	-		-		
	Co-60	10	< LLD	-		-		
	Zn-65	30	< LLD	-		-		
	Zr-Nb-95	15	< LLD	-		-		
	I-131	30	< LLD	-		-		
	Cs-134	10	< LLD	· –		-		
	Cs-137	10	< LLD	-		-		
	Ba-La-140	15	< LLD	-	1	-		
	Ce-144	43	< LLD	-		-		

^a GB = gross beta, GS = gamma scan.

^b LLD = nominal lower limit of detection based on a 4.66 sigma counting error for background sample.

^c Mean and range are based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (F).

^d Locations are specified: (1) by name, and/or station code and (2) by distance (miles) and direction relative to reactor site.

^e Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds ten time the typical preoperational value for the medium or location.

	Collection	Concentration (pCi/L)										
Lab Code	Date	³ Н	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	⁶⁵ Zn	⁹⁵ ZrNb	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁰ BaLa	¹⁴⁴ Ce
			M	lonitorir	ng Well	#1 (M-	<u>33)</u>					
MWW- 705	02/24/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
MWW- 2562	05/21/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 22
MWW- 4755	08/24/15	< 150	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26
MWW- 6609	11/18/15	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 15
		•										
N			M	lonitorir	ng Well	#2 (M-	<u>34)</u>					
MWW- 706	02/24/15	169 ± 80	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 25
MWW- 2563	05/21/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 33
MWW- 4756	08/24/15	< 150	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
MWW- 6610	11/18/15	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 47
		· · · · · · · · · · · · · · · · · · ·	<u>M</u>	lonitorir	ng Well	#3 (M-	- <u></u> 35)					
MWW- 707	02/24/15	218 + 82	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 33
MWW- 2565	05/21/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 16
MWW- 4757	08/24/15	< 150	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 35
MWW- 6612	11/18/15	248 ± 90	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 46
		Monitoring Well #4 (M-36)										
MWW- 708	02/20/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 37
MWW- 2566	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 34
MWW- 5243	09/23/15	< 144	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 56
MWW- 6613	11/18/15	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 29
			N	lonitorir	ng Well	#5 (M-	 37)					
MWW- 4758	08/24/15	< 150	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 22
			<u></u>	lonitorir	ng Well	#6 (M-	 38)					
MWW- 4759	08/24/15	< 150	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 10
··· ·· ·· · ·			N	Ionitorii	ng Well	#7 (M-	<u>39)</u>					
MWW- 4760	08/24/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 18
		· · · · · · · · · · · · · · · · · · ·	N	lonitorii	ng Well	#8 (M-	40 <u>)</u> .					
MWW- 4761	08/24/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26

Table E-4. Ground water, analyses for tritium and gamma-emitting isotopes.

	Collection				Conce	entratio	n (pCi/	L)				
Lab Code	Date	³ H	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	⁶⁵ Zn	.95 ZrNb	¹³⁴ Cs	¹³⁷ Cs	140BaLa	¹⁴⁴ Ce
			M	onitorin	a Well i	#9A (M-	-44)					
MWW- 250	01/21/15	2556 ± 199										a
MWW- 709	02/20/15	667 ± 103	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 23
MWW- 1199	03/17/15	282 ± 85										
MWW- 1896	04/22/15	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 22
MWW- 2567	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26
MWW- 3147	06/18/15	361 + 89				, -						
MWW- 4087	07/21/15	5443 + 226										
MWW- 4772	08/21/15	6493 + 237	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 31
MWW- 5398	09/22/15	1857 + 145										
MWW- 6096	10/20/15	353 ± 95										
MWW- 6614	11/17/15	182 + 87	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 27
MWW- 7260	12/15/15	1652 ± 0.7	. 10		10	10		10	10	10	10	
	12,10,10											
			M	onitorin	<u>g Well i</u>	#9B (M	- <u>51)</u>					
MWW- 710	02/20/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 23
MWW- 2568	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 18
MWW- 4773	08/21/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 20
MWW- 6615	11/17/15	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 18
			M	onitorin	a Well	#10 (M-	-45)					
NNANA 050	04/04/45	054 1 440										
MVVV- 252	01/21/15	251 ± 110								. 10		. 04
MWW- 711	02/24/15	381 ± 90	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 31
MVVVV- 1138	03/17/15	453 ± 98										
WWWW- 1097	04/22/15	203 ± 00 252 ± 106	< 10	< 20	- 10	~ 10	< 30	< 15	~ 10	< 10	~ 15	< 20
MMMM/ 3148	06/18/15	352 ± 100 250 + 84	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	× 15	~ 20
M\\\\\\- 4273	07/23/15	180 + 88										
MWW- 4762	08/24/15	236 ± 100	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 31
MWW- 5244	09/23/15	293 ± 86										
MWW- 5938	10/20/15	270 ± 90										
MWW- 6616	11/18/15	258 ± 91	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 34
MWW- 7061	12/15/15	155 ± 79										
				onitorin		 #11 /NA	46)					
MMANAL 712	02/24/15	< 1/6	<u>IVI</u> < 10	<u>ر ۱۱۱۵ میں در الارمان میں میں میں میں میں میں میں میں میں میں</u>	< 10	<u> </u>	< 30	< 15	< 10	< 10	< 15	< 17
MINANAL 2570	05/21/15	< 140	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26
MINNN 4763	08/24/45	260 ± 101	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	~ 33
MAAA/ 6617	11/19/15	200 ± 101	< 10	< 30	< 10	< 10	< 30	~ 15	< 10	< 10	< 15	< 26
1010000-0017	11/10/15	× 149	< 10	< 30	< 10	< 10	< 30	× 15	< 10	< 10	< 15	< 20
						404 /	1 1 7					
M\AAAL 713	02/20/15	< 116	<u>Mo</u> < 10	onitoring	<u> Well #</u> < 10	F12A (N	<u>1-4/)</u> < 20	< 15	< 10	< 10	< 15	< 27
MANA/- 2571	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 16
NANAL 1761	08/25/15	< 1/A	~ 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 22
NANAL 6619	11/17/15	> 140	~ 10	~ 30	~ 10	~ 10	~ 30	~ 15	~ 10	~ 10	> 10 < 15	~ 20
8100 - 7777171	11/1/15	S 149	< 10	< 3U	< 10	5 10	< 30	< 10	< 10	5 10	5 10	- JU

Table E-4. Ground water, analyses for tritium and gamma-emitting isotopes (continued).

^a Station duplicate sent. MWW-251 result = 2523±198 pCi/L.

	Collection	Concentration (pCi/L)										
Lab Code	Date	з _Н	⁵⁴ Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	⁶⁵ Zn	⁹⁵ ZrNb	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁰ BaLa	¹⁴⁴ Ce
	240		Ma	nitorino		100 (1)	49)					
MINANA/_ 71A	02/20/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 25
	05/20/15	< 140	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26
MINAN/ 1765	08/25/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 32
MWWW- 4703	11/17/15	< 1/9	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 28
1010000-0010	11/1/10	140	10	• 00	10	10	• 00	10	10	- 10	10	. 20
		Monitoring Well #13A (M-49)										
MWW- 254	01/21/15	< 182										
MWW- 715	02/24/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 31
MWW- 1139	03/17/15	< 153										
MWW- 1898	04/22/15	< 147										
MWW- 2573	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 27
MWW- 3149	06/18/15	< 143										
MWW- 4274	07/27/15	153 ± 87										
MWW- 4766	08/25/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 31
MWW- 5245	09/23/15	255 ± 84										
MWW- 5939	10/20/15	161 ± 85										
MWW- 6620	11/18/15	182 ± 87	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 22
MWW- 7062	12/15/15	< 146										
		Monitoring Well #13B (M-50)										
MWW- 255	01/21/15	< 182										
MWW- 717	02/24/15	203 ± 81	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 33
MWW- 1140	03/17/15	220 ± 87										
MWW- 1899	04/22/15	240 ± 85										
MWW- 2574	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 18
MWW- 3893	06/18/15	215 ± 88										
MWW- 4767	08/25/15	172 ± 83	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 28
MWW- 5246	09/23/15	184 ± 81										
MVVVV- 5940	10/20/15	169 ± 86	< 10	< 20	- 10	< 10	< 20	~ 1E	- 10	- 10	< 1E	< 20
MWW- 7064	12/15/15	< 149 < 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	× 15	< 20
		Monitoring Well #14 (M-52)										
MWW- 256	01/21/15	< 182										
MWW- 718	02/16/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 45
MWW- 1900	04/21/15	< 147										
MWW- 2575	05/19/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 18
MWW- 3150	06/16/15	< 143										
MWW- 4275	07/20/15	< 151										
MWW- 4769	08/17/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 27
MWW- 5247	09/23/15	< 142							•			
MWW- 5941	10/20/15	< 147										
MWW- 6622	11/16/15	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
MVVV- 7065	12/14/15	< 146										

Table E-4. Ground water, analyses for tritium and gamma-emitting isotopes (continued).

	Collection	Concentration (pCi/L)										
Lab Code	Date	³ Н	⁵⁴Mn	⁵⁹ Fe	⁵⁸ Co	⁶⁰ Co	⁶⁵ Zn	⁹⁵ ZrNb	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁰ BaLa	¹⁴⁴ Ce
			Mo	nitoring	Well #	15A (M	-53)					
MWW- 257	01/21/15	< 182										
MWW- 719	02/20/15	< 146	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 32
MWW- 1141	03/17/15	< 153										
MWW- 1901	04/22/15	< 147										
MWW- 2576	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
MWW- 3151	06/18/15	< 143										
MWW- 4276	07/23/15	< 151										
MWW- 4770	08/25/15	< 173	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 22
MWW- 5248	09/23/15	< 142										
MWW- 5942	10/20/15	< 147										
MWW- 6623	11/18/15	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 28
MWW- 7066	12/15/15	< 146										
	Monitoring Well #15B (M-54)											
MWW- 258	01/21/15	206 ± 108										
MWW- 720	02/20/15	180 ± 80	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
MWW- 1142	03/17/15	203 ± 87										
MWW- 1902	04/22/15	228 ± 85										
MWW- 2577	05/20/15	< 151	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 27
MWW- 3152	06/18/15	144 ± 79										
MWW- 4277	07/24/15	275 ± 92										
MWW- 4771	08/25/15	199 ± 99	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26
MWW- 5249	09/23/15	249 ± 84										
MWW- 5943	10/20/15	161 ± 85										
MWW- 6624	11/18/15	217 ± 89	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 28
MWW- 7067	12/15/15	< 146										
		Storm Water Run-off (SD-006)										
MXW- 2384	04/24/15	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 8
MXW- 2385	04/24/15	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 10 '
MXW- 4163	07/28/15	157 ± 85	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 17
MXW- 6250	10/23/15	< 143	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 32
			Storm	Water	Run-off	(Sewe	r Lift St	ation)				
MXW- 2001	04/27/15	< 140	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 16
MXW- 6887	12/03/15	< 145	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 15
	12/00/10		. 10	- 00	- 10	. 10	- 00	\$ 10	10	10	- 10	10

Table E-4. Ground water, analyses for tritium and gamma-emitting isotopes (continued).

^a Station duplicate.
Collection			Concentration (pCi/L)						
Lab Code	Date	Location	Gross Alpha	⁸⁹ Sr	⁹⁰ Sr	⁵⁵ Fe	⁶³ Ni		
MWW- 1896	04/22/15	MW-9a	< 1.6	< 4.1	< 3,3	< 674	< 101		

Table E-4. Ground water, analyses for hard to detect isotopes.

XCEL ENERGY CORPORATION

MONTICELLO NUCLEAR GENERATING PLANT DOCKET NO 50-263 LICENSE NO DPR-22

ANNUAL REPORT TO THE UNITED STATES NUCLEAR REGULATORY COMMISSION PART II

Radiological Environmental Monitoring Program Complete Analyses Data Tables

January - December, 2015

Prepared under contract by

ENVIRONMENTAL, INC MIDWEST LABORATORY

PROJECT NO 8010

Reviewed and Approved

Bronia Grob, MS Laboratory Manager

MNGP

TABLE OF CONTENTS

<u>Section</u>

Page

	List of Tables	iii
10	INTRODUCTION	iv
20	LISTING OF MISSED SAMPLES	v
30	DATA TABLES	vi

MNGP

LIST OF TABLES

<u>No</u>	Title	<u>Page</u>
1	Ambient radiation as measured by thermoluminescent dosimeters (TLDs)	1-1
2	Airborne particulates and iodine collected at Location M-1(C), analysis for gross beta and iodine-131	2-1
3	Airborne particulates and iodine collected at Location M-2, analysis for gross beta and iodine-131	3-1
4	Airborne particulates and iodine collected at Location M-3, analysis for gross beta and iodine-131	4-1
5	Airborne particulates and iodine collected at Location M-4, analysis for gross beta and iodine-131	5-1
6	Airborne particulates and iodine collected at Location M-5, analysis for gross beta and iodine-131	6-1
7	Airborne particulates, analysis for gross beta, monthly averages	7-1
8	Airborne particulate samples, quarterly composites from each location, analysis for gamma-emitting isotopes	8-1
9	Pasture Grass, vegetation, analysis for iodine-131 and gamma emitting isotopes	9-1
10	River water, upstream, M-8 (C) and M-9, analysis of monthly composites for gamma- emitting isotopes	10-1
11	Drinking water, City of Minneapolis, M-14, analysis of monthly composites for gross beta, iodine-131 and gamma-emitting isotopes	11-1
12	River water and drinking water, analysis of quarterly composites for tritium	12-1
13	Well water, analysis for tritium and gamma-emitting isotopes	13-1
14	Fish, analysis of edible portions for gamma-emitting isotopes	14-1
15	Aquatic Invertebrates, analysis for gamma-emitting isotopes	15-1
16	Shoreline sediments, analysis for gamma-emitting isotopes	16-1

10 INTRODUCTION

The following constitutes the final 2015 report for the Environmental Radiological Monitoring Program conducted at the Monticello Nuclear Generating Plant in Monticello, Minnesota Results of completed analyses are presented in the attached tables

All concentrations, except gross beta, are decay corrected to the time of collection

All samples were collected within the scheduled period unless noted otherwise in the Listing of Missed Samples

20 LISTING OF MISSED SAMPLES

All required samples were collected and analyzed as scheduled with the following exceptions:								
Sample Type	Analysis	Location	Collection Date or Period	Reason for not conducting REMP as required	Plans for Preventing Recurrence			
AP/AI	Beta, I-131	M-005	1/28/2015	Power loss at sample station	Power was reset			
sw	Gamma	M-008	January '15	Water frozen entire month; no composite	None			
AP/AI	Beta, I-131	M-002	2/4/2015	Air sampler not running due to bad switch	Replaced air sampler			
sw	Gamma	M-008	February '15	Water frozen entire month; no composite	None			
sw	Gamma	M-008	3/4/15	Water frozen	None			
sw	Gamma	M-008	3/11/15	Water frozen	None			
AP/AI	Beta, I-131	M-002	5/6/2015	Air sampler not running	Replaced air sampler			
TLD	Gamma	M-06B	2nd Qtr '15	TLD missing in field	Replaced TLD			
AP/AI	Beta, I-131	M-004	6/10/15	GFCI tripped	Reset GFCI			
AP/AI	Beta, I-131	M-004	6/24/2015	GFCI tripped	Reset GFC			
SW	Gamma	M-008	12/30/15	Water frozen	None			

۷

MNGP

30 DATA TABLES

·

		mRem/91 da	ays		Cumulative	Previous Annual
Location -	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	Average	Average
<u></u>						
	Indicators	s (Inner Ring, Gene	eral Area of Site Bo	oundary)		
M-01A	15.6 ± 0.8	14.3 ± 1.2	16.7 ± 1.5	16.6 ± 2.1	15.8	13.7
M-02A	13.4 ± 1.2	13.8 ± 0.5	13.9 ± 1.2	15.3 ± 1.0	14.1	14.2
M-03A	14.8 ± 1.3	13.2 ± 1.0	13.3 ± 1.3	16.4 ± 1.7	14.4	13.4
M-04A	9.6 ± 0.9	15.3 ± 0.7	10.9 ± 1.5	17.9 ± 1.8	13.4	13.5
M-05A	14.2 ± 0.6	12.2 ± 0.5	15.2 ± 0.8	13.2 ± 1.0	13.7	12.6
M-06A	15.3 ± 0.5	16.5 ± 0.5	15.7 ± 1.1	18.9 ± 1.1	16.6	14.0
M-07A	9.8 ± 0.6	13.7 ± 0.5	11.1 ± 0.9	15.3 ± 1.0	12.5	11.6
M-08A	12.1 ± 0.7	15.1 ± 0.5	14.9 ± 0.9	17.4 ± 0.9	14.9	13.4
M-09A	14.3 ± 0.5	12.4 ± 0.8	13.7 ± 0.9	16.0 ± 1.2	14.1	12.4
M-10A	12.9 ± 1.0	13.7 ± 0.6	13.9 ± 0.9	16.2 ± 1.3	14.2	13.4
M-11A	15.8 ± 0.8	16.3 ± 0.9	16.8 ± 1.1	19.6 ± 1.4	17.1	14.5
M-12A	14.7 ± 0.8	15.9 ± 0.5	15.7 ± 1.3	19.3 ± 1.0	16.4	`13.9
M-13A	13.8 ± 0.9	14.6 ± 0.9	15.0 ± 1.2	16.8 ± 1.2	15.1	14.5
M-14A	15.2 ± 0.8	13.4 ± 0.5	15.4 ± 0.8	15.1 ± 1.1	<u>14.8</u>	<u>13.7</u>
Mean ± s.d.	13.7 ± 2.0	14.3 ± 1.4	14.4 ± 1.8	16.7 ± 1.8	14.8	13.5
	Indicators	s (Outer Ring, 4-5	<u>Miles Distant)</u>			
M-01B	12.2 ± 1.2	14.9 ± 0.9	15.1 ± 1.0	16.9 ± 1.5	14.8	12.2
M-02B	11.7 ± 0.7	15.6 ± 1.0	13.0 ± 0.9	16.3 ± 1.1	14.2	12.8
M-03B	11.1 ± 0.8	11.0 ± 0.6	11.2 ± 0.9	13.5 ± 1.2	11.7	11.1
M-04B	12.4 ± 0.7	12.1 ± 0.4	15.0 ± 0.9	14.8 ± 1.0	13.6	11.9
M-05B	11.9 ± 0.5	12.6 ± 0.6	12.7 ± 0.9	14.7 ± 1.1	13.0	12.4
M-06B	13.0 ± 1.2	ND^{a}	15.3 ± 1.2	17.0 ± 0.9	15.1	13.3
M-07B	14.2 ± 0.7	13.0 ± 0.7	15.9 ± 1.2	16.1 ± 1.2	14.8	13.7
M-08B	12.5 ± 0.7	13.3 ± 0.7	14.2 ± 1.1	15.6 ± 1.4	13.9	14.2
M-09B	12.4 ± 0.7	15.1 ± 1.1	12.7 ± 1.2	17.8 ± 1.1	14.5	13.0
M-10B	14.4 ± 1.0	13.2 ± 0.8	16.0 ± 0.9	15.6 ± 1.4	14.8	13.6
M-11B	14.3 ± 1.3	13.9 ± 0.7	15.2 ± 1.5	15.7 ± 1.2	14.8	13.4
M-12B	13.7 ± 1.0	14.9 ± 0.6	15.2 ± 1.9	17.2 ± 1.1	15.3	14.2
M-13B	11.1 ± 0.7	11.9 ± 0.5	12.6 ± 1.2	13.5 ± 1.1	12.3	11.8
M-14B	14.7 ± 1.3	16.7 ± 0.6	15.3 ± 1.6	19.6 ± 1.1	16.6	14.4
M-15B	12.2 ± 0.5	12.7 ± 0.9	13.5 ± 1.0	16.3 ± 1.3	13.7	12.1
M-16B	14.3 ± 0.6	11.7 ± 0.8	14.8 ± 0.8	13.4 ± 1.2	<u>13.5</u>	<u>12.2</u>
Mean ± s.d.	12.9 ± 1.2	13.5 ± 1.6	14.2 ± 1.4	15.9 ± 1.7	14.2	12.9

Table 1. Ambient gamma radiation as measured by thermoluminescent dosimeters (TLD's).

^a "ND" = No data; see Table 2.0, Listing of Missed Samples.

		mRem/91 da	ays		Cumulative	Previous Annual
Location	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	Average	Average
		<u>Control</u>				
M-01C M-02C M-03C M-04C Mean ± s.d.	$11.8 \pm 1.5 \\ 15.9 \pm 0.8 \\ 13.2 \pm 0.4 \\ 14.7 \pm 1.7 \\ 13.9 \pm 1.8 \\$	$13.2 \pm 0.8 \\ 16.6 \pm 1.4 \\ 14.8 \pm 0.6 \\ 14.0 \pm 0.5 \\ 14.6 \pm 1.5 \\ 14.$	$12.5 \pm 1.5 \\ 17.4 \pm 0.9 \\ 15.2 \pm 0.9 \\ 15.1 \pm 1.6 \\ 15.1 \pm 2.0 \\ 15.1 \pm 2.0 \\ 15.1 \pm 2.0 \\ 15.1 \pm 2.0 \\ 1000 \\ 1$	16.0 ± 1.3 20.3 ± 1.1 17.6 ± 1.1 16.6 ± 1.0 17.6 ± 1.9	13.4 17.5 15.2 <u>15.1</u> 15.3	14.4 14.1 14.3 <u>14.2</u> 14.3
	Indicators	s (Special Interest .	<u>Areas)</u>			
M-01S M-02S M-03S M-04S M-05S M-06S	$10.4 \pm 1.0 \\ 13.5 \pm 1.0 \\ 12.2 \pm 0.7 \\ 16.6 \pm 1.1 \\ 14.5 \pm 0.6 \\ 15.2 \pm 0.7 \\ 15.2 \pm 0.7 \\ 15.2 \pm 0.7 \\ 10.4 \\ 1$	$12.5 \pm 0.5 \\ 13.2 \pm 0.6 \\ 14.7 \pm 0.7 \\ 14.4 \pm 0.8 \\ 14.9 \pm 0.8 \\ 15.5 \pm 0.5$	9.4 ± 1.4 14.5 ± 1.5 13.2 ± 1.1 17.6 ± 1.2 15.3 ± 1.1 15.2 ± 1.1	$\begin{array}{c} 13.9 \pm 0.9 \\ 15.9 \pm 1.1 \\ 17.0 \pm 1.2 \\ 17.0 \pm 1.1 \\ 17.9 \pm 1.3 \\ 18.8 \pm 1.1 \end{array}$	11.6 14.3 14.3 16.4 15.6 <u>16.2</u>	10.3 11.7 13.0 14.6 14.1 <u>15.6</u>
Mean ± s.d.	13.7 ± 2.2	14.2 ± 1.1	14.2 ± 2.8	16.7 ± 1.7	14.7	13.2

Table 1. Ambient gamma radiation as measured by thermoluminescent dosimeters (TLD's),

(continued).

		ISFSI TLDs				
M-I-01	39.4 ± 1.2	26.7 ± 2.0	42.8 ± 2.0	41.7 ± 2.4	37.7	36.1
M-I-02	36.4 ± 1.2	24.3 ± 0.6	38.1 ± 1.2	36.9 ± 1.1	33.9	29.8
M-I-03	29.6 ± 1.0	23.2 ± 1.1	32.4 ± 1.3	31.9 ± 1.3	29.3	25.6
M-I-04	36.7 ± 2.6	34.4 ± 2.4	29,2 ± 2.6	37.7 ± 2.7	34.5	35.6
M-I-05	80.3 ± 5.0	67.3 ± 3.1	68.3 ± 4.6	79.5 ± 2.1	73.9	65.9
M-I-06	30.3 ± 2.4	21.6 ± 0.8	30.0 ± 2.2	25.4 ± 1.3	26.8	25.0
M-I- 07	30.3 ± 1.4	27.5 ± 1.7	31.1 ± 2.7	32.8 ± 1.6	30.4	27.7
M-I-08	28.9 ± 2.9	24.1 ± 0.5	29.6 ± 3.0	28.7 ± 2.7	27.9	26.6
M-I-09	234.8 ± 12.1	220.1 ± 3,7	70.5 ± 4.1	61.3 ± 2.7	146.6	170.5
M-I- 10	43.3 ± 1.7	28.6 ± 1.3	41.6 ± 1.2	35.3 ± 1.6	37.2	33.2
M-I-11	12.4 ± 1.7	15.1 ± 0.5	13.1 ± 1.7	16.7 ± 1.2	14.3	13.9
M-I-12	14.1 ± 0.7	14.3 ± 0.6	15.2 ± 0.9	15.4 ± 1.3	14.7	13.9
M-I-13	17.1 ± 1.3	12.8 ± 0.8	15.6 ± 2.0	16.6 ± 1.6	<u>15.5</u>	<u>13.5</u>
Mean ± s.d.	48.7 ± 58.4	41.5 ± 55.4	35.2 ± 17.9	35.4 ± 18.1	40.2	39.8

1-2

Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131^a.

Location: M-1 (C)

Units: pCi/m³

Collection: Continuous, weekly exchange.

Date	Volume		Date	Volume	
Collected	(m°)	Gross Beta	Collected	(m°)	Gross Beta
Required LLD		0.010	Required LLD		<u>0.010</u>
01-07-15	319	0.041 ± 0.004	07-08-15	443	0.022 ± 0.003
01-14-15	321	0.042 ± 0.004	07-15-15	443	0.024 ± 0.003
01-21-15	323	0.036 ± 0.004	07-22-15	441	0.018 ± 0.002
01-28-15	315	0.021 ± 0.003	07-29-15	439	0.026 ± 0.003
02-04-15	357	0.029 ± 0.003	08-05-15	440	0.019 ± 0.003
02-11-15	389	0.033 ± 0.003	08-12-15	305	0.027 ± 0.004
02-18-15	354	0.044 ± 0.004	08-19-15	353	0.031 ± 0.004
02-25-15	354	0.062 ± 0.004	08-26-15	337	0.022 ± 0.003
			09-02-15	353	0.038 ± 0.004
03-04-15	352	0.036 ± 0.004			
03-11-15	353	0.025 ± 0.004	09-09-15	352	0.028 ± 0.003
03-18-15	392	0.019 ± 0.003	09-16-15	302	0.033 ± 0.004
03-25-15	352	0.024 ± 0.003	09-23-15	352	0.025 ± 0.003
04-01-15	354	0.018 ± 0.003	09-30-15	326	0.039 ± 0.004
1st Quarter M	lean ± s.d.	0.033 ± 0.012	3rd Quarter M	lean ± s.d.	0.027 ± 0.007
04-08-15	357	0.023 ± 0.003	10-07-15	325	0.023 ± 0.003
04-15-15	351	0.021 ± 0.003	10-14-15	324	0.031 ± 0.004
04-22-15	355	0.014 ± 0.003	10-21-15	301	0.035 ± 0.004
04-29-15	355	0.021 ± 0.003	10-28-15	336	0.022 ± 0.003
05-06-15	443	0.021 ± 0.003	11-04-15	397	0.025 ± 0.003
05-13-15	440	0.008 ± 0.002	11-11-15	351	0.039 ± 0.004
05-20-15	447	0.010 ± 0.002	11-18-15	353	0.033 ± 0.004
05-27-15	435	0.018 ± 0.003	11-25-15	387	0.022 ± 0.003
06-03-15	442	0.018 ± 0.002	12-02-15	382	0.044 ± 0.004
06-10-15	441	0.016 ± 0.002	12-09-15	350	0.061 ± 0.005
06-17-15	441	0.013 ± 0.002	12-16-15	353	0.016 ± 0.003
06-24-15	351	0.021 ± 0.003	12-23-15	354	0.044 ± 0.004
07-01-15	441	0.019 ± 0.003	12-30-15	384	0.040 ± 0.004
2nd Quarter N	<i>l</i> ean ± s.d.	0.017 ± 0.005	4th Quarter N	lean ± s.d.	0.034 ± 0.012
			Cumulative Avera	ige	0.028
· ·			Previous Annual	Average	0.032

^a lodine-131 concentrations are < 0.03 pCi/m³ unless otherwise noted.

Table 3. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131^a.

Location: M-2

Units: pCi/m³

Collection: Continuous, weekly exchange.

Date	Volume		Date	Volume	
Collected	(m³)	Gross Beta	Collected	(m³)	Gross Beta
Required LLD		<u>0.010</u>			<u>0.010</u>
01-07-15	352	0.038 ± 0.004	07-08-15	341	0.025 ± 0.003
01-14-15	326	0.038 ± 0.004	07-15-15	341	0.023 ± 0.003
01-21-15	329	0.031 ± 0.003	07-22-15	325	0.019 ± 0.003
01-28-15	321	0.021 ± 0.003	07-29-15	350	0.024 ± 0.003
02-04-15		ND ^b	08-05-15	353	0.017 ± 0.003
02-11-15	322	0.040 ± 0.004	08-12-15	330	0.025 ± 0.003
02-18-15	325	0.048 ± 0.004	08-19-15	342	0.031 ± 0.004
02-25-15	326	0.073 ± 0.005	08-26-15	326	0.025 ± 0.003
			09-02-15	342	0.038 ± 0.004
03-04-15	324	0.035 ± 0.004			
03-11-15	351	0.027 ± 0.004	09-09-15	348	0.027 ± 0.003
03-18-15	328	0.025 ± 0.004	09-16-15	318	0.033 ± 0.004
03-25-15	323	0.027 ± 0.004	09-23-15	337	0.024 ± 0.003
04-01-15	352	0.019 ± 0.003	09-30-15	318	0.037 ± 0.004
1st Quarter N	lean±s.d.	0.035 ± 0.015	3rd Quarter N	Mean±s.d.	0.027 ± 0.006
04-08-15	330	0.023 ± 0.003	10-07-15	314	0.023 ± 0.003
04-15-15	349	0.027 ± 0.003	10-14-15	315	0.027 ± 0.004
04-22-15	325	0.017 ± 0.003	10-21-15	314	0.029 ± 0.004
04-29-15	329	0.021 ± 0.003	10-28-15	263	0.028 ± 0.004
05-06-15		ND ^b	11-04-15	353	0.027 ± 0.003
05-13-15	351	0.010 ± 0.002	11-11-15	352	0.045 ± 0.004
05-20-15	358	0.011 ± 0.002	11-18-15	326	0.037 ± 0.004
05-27-15	347	0.019 ± 0.003	11-25-15	327	0.025 ± 0.004
06-03-15	351	0.019 ± 0.003	12-02-15	327	0.051 ± 0.005
06-10-15	353	0.019 ± 0.003	12-09-15	328	0.066 ± 0.005
06-17-15	352	0.014 ± 0.003	12-16-15	326	0.021 ± 0.003
06-24-15	354	0.018 ± 0.003	12-23-15	304	0.051 ± 0.005
07-01-15	340	0.020 ± 0.003	12-30-15	324	0.050 ± 0.005
2nd Quarter M	lean + s d	0.018 + 0.005	Ath Quarter	Mean + s d	0.037 + 0.014
	noan 2 3.u.	0.010 ± 0.000		woan 1 5.0.	0.007 ± 0.014
			Cumulative Aver Previous Annual	age Average	0.029 0.028

^a lodine-131 concentrations are < 0.03 pCi/m³ unless otherwise noted.

^b "ND" = No data, see Table 2.0, Listing of Missed Samples.

Table 4. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131^a.

Location: M-3

Units: pCi/m³

Collection: Continuous, weekly exchange.

Date	Volume	, ,	Date	Volume	
Collected	(m ³)	Gross Beta	Collected	(m ³)	Gross Beta
Required LLD		<u>0.010</u>			<u>0.010</u>
01-07-15	326	0.041 ± 0.004	07-08-15	409	0.019 ± 0.003
01-14-15	353	0.042 ± 0.004	07-15-15	409	0.019 ± 0.003
01-21-15	357	0.034 ± 0.003	07-22-15	380	0.021 ± 0.003
01-28-15	348	0.020 ± 0.003	07-29-15	324	0.030 ± 0.004
02-04-15	357	0.029 ± 0.003	08-05-15	407	0.021 ± 0.003
02-11-15	351	0.057 ± 0.004	08-12-15	369	0.027 ± 0.003
02-18-15	353	0.048 ± 0.004	08-19-15	342	0.033 ± 0.004
02-25-15	353	0.066 ± 0.004	08-26-15	339	0.022 ± 0.003
			09-02-15	342	0.044 ± 0.004
03-04-15	378	0.035 ± 0.004			
03-11-15	379	0.024 ± 0.003	09-09-15	342	0.028 ± 0.003
03-18-15	383	0.022 ± 0.003	09-16-15	344	0.031 ± 0.004
03-25-15	350	0.028 ± 0.004	09-23-15	337	0.025 ± 0.003
04-01-15	352	0.020 ± 0.003	09-30-15	346	0.037 ± 0.004
1st Quarter M	ean±s.d.	0.036 ± 0.015	3rd Quarter N	Mean ± s.d.	0.027 ± 0.007
04-08-15	358	0.023 ± 0.003	10-07-15	340	0.025 ± 0.003
04-15-15	349	0.024 ± 0.003	10-14-15	315	0.035 ± 0.004
04-22-15	352	0.015 ± 0.003	10-21-15	314	0.031 ± 0.004
04-29-15	357	0.020 ± 0.003	10-28-15	316	0.028 ± 0.004
05-06-15	350	0.025 ± 0.003	11-04-15	329	0.030 ± 0.004
05-13-15	380	0.007 ± 0.002	11-11-15	329	0.047 ± 0.004
05-20-15	385	0.012 ± 0.002	11-18-15	304	0.041 ± 0.004
05-27-15	400	0.018 ± 0.003	11-25-15	328	0.025 ± 0.004
06-03-15	378	0.017 ± 0.003	12-02-15	328	0.053 ± 0.005
06-10-15	380	0.019 ± 0.003	12-09-15	306	0.082 ± 0.006
06-17-15	352	0.013 ± 0.003	12-16-15	331	0.019 ± 0.003
06-24-15	382	0.018 ± 0.003	12-23-15	387	0.041 ± 0.004
07-01-15	340	0.021 ± 0.003	12-30-15	301	0.057 ± 0.005
2nd Quarter N	lean ± s.d.	0.018 ± 0.005	4th Quarter I	Mean±s.d.	0.040 ± 0.017
			Cumulative Aver	age	0.030
			Previous Annual	Average	0.027

^a lodine-131 concentrations are < 0.03 pCi/m³ unless otherwise noted.

Table 5. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131^a.

Units: pCi/m³

Collection: Continuous, weekly exchange.

Date	Volume	· · · · · ·	Date	Volume	
Collected	(m ³)	Gross Beta	Collected	(m ³)	Gross Beta
Required LLD		<u>0.010</u>			<u>0.010</u>
01-07-15	352	0.035 ± 0.003	07-08-15	409	0.021 ± 0.003
01-14-15	353	0.040 ± 0.004	07-15-15	406	0.024 ± 0.003
01-21-15	356	0.033 ± 0.003	07-22-15	383	0.018 ± 0.003
01-28-15	347	0.021 ± 0.003	07-29-15	405	0.027 ± 0.003
02-04-15	355	0.034 ± 0.003	08-05-15	407	0.018 ± 0.003
02-11-15	350	0.042 ± 0.004	08-12-15	329	0.027 ± 0.003
02-18-15	326	0.047 ± 0.004	08-19-15	328	0.039 ± 0.004
02-25-15	327	0.070 ± 0.005	08-26-15	326	0.024 ± 0.003
			09-02-15	352	0.044 ± 0.004
03-04-15	350	0.039 ± 0.004			
03-11-15	350	0.023 ± 0.003	09-09-15	351	0.030 ± 0.003
03-18-15	330	0.028 ± 0.004	09-16-15	331	0.037 ± 0.004
03-25-15	324	0.029 ± 0.004	09-23-15	350	0.027 ± 0.003
04-01-15	326	0.021 ± 0.003	09-30-15	329	0.044 ± 0.004
1st Quarter M	lean ± s.d.	0.036 ± 0.013	3rd Quarter I	Mean ± s.d.	0.029 ± 0.009
04-08-15	331	0.024 ± 0.003	10-07-15	327	0.026 ± 0.003
04-15-15	323	0.025 ± 0.003	10-14-15	327	0.040 ± 0.004
04-22-15	327	0.014 ± 0.003	10-21-15	327	0.033 ± 0.004
04-29-15	329	0.023 ± 0.003	10-28-15	329	0.031 ± 0.004
05-06-15	407	0.023 ± 0.003	11-04-15	356	0.032 ± 0.004
05-13-15	405	0.009 ± 0.002	11-11-15	350	0.038 ± 0.004
05-20-15	413	0.011 ± 0.002	11-18-15	352	0.039 ± 0.004
05-27-15	401	0.019 ± 0.003	11-25-15	352	0.024 ± 0.003
06-03-15	407	0.018 ± 0.003	12-02-15	352	0.050 ± 0.004
06-10-15	391	0.017 ± 0.003	12-09-15	352	0.068 ± 0.005
06-17-15	404	0.014 ± 0.002	12-16-15	351	0.022 ± 0.003
06-24-15		ND ^b	12-23-15	328	0.051 ± 0.005
07-01-15	397	0.019 ± 0.003	12-30-15	350	0.054 ± 0.004
2nd Quarter N	lean tsd	0.018 ± 0.005	4th Quarter I	Mean±sd	0.039 + 0.013
		0.010 2 0.000			0.000 1 0.010
			Cumulative Aver	age	0.03
			Previous Annual	Average	0.02

^a lodine-131 concentrations are < 0.03 pCi/m³ unless otherwise noted.

^b "ND" No data; see Table 2.0, Listing of Missed Samples.

Location: M-4

Table 6. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131^a.

Location: M-5

Units: pCi/m³

Collection: Continuous, weekly exchange.

Date	Volume		Date	Volume	
Collected	(m ³)	Gross Beta	Collected	(m ³)	Gross Beta
Required LLD		0.010			0.010
01-07-15	323	0.046 + 0.004	07-08-15	370	0 023 + 0 003
01-14-15	324	0.042 + 0.004	07-15-15	370	0.021 + 0.003
01-21-15	323	0.038 ± 0.004	07-13-15	352	0.021 ± 0.003
01-21-15	525	0.000 ± 0.004	07-22-15	351	0.013 ± 0.003
01-20-13		ND	07-23-13	001	0.027 ± 0.005
02-04-15	356	0.031 ± 0.003	08-05-15	382	0.021 ± 0.003
02-11-15	352	0.038 ± 0.004	08-12-15	341	0.024 ± 0.003
02-18-15	294	0.054 ± 0.005	08-19-15	352	0.032 ± 0.004
02-25-15	324	0.071 ± 0.005	08-26-15	324	0.022 ± 0.003
			09-02-15	326	0.047 ± 0.004
03-04-15	351	0.034 ± 0.004			
03-11-15	352	0,023 ± 0.003	09-09-15	271	0.037 ± 0.004
03-18-15	326	0.024 ± 0.004	09-16-15	301	0.035 ± 0.004
03-25-15	292	0.030 ± 0.004	09-23-15	325	0.028 ± 0.004
04-01-15	352	0.018 ± 0.003	09-30-15	298	0.045 ± 0.005
1st Quarter M	lean ± s.d.	0.038 ± 0.015	3rd Quarter M	∕lean ± s.d.	0.029 ± 0.009
04-08-15	298	0.024 ± 0.004	10-07-15	298	0.025 ± 0.004
04-15-15	291	0.027 ± 0.004	10-14-15	298	0.039 ± 0.004
04-22-15	324	0.016 ± 0.003	10-21-15	297	0.036 ± 0.004
04-29-15	326	0.022 ± 0.003	10-28-15	326	0.025 ± 0.004
05-06-15	384	0.022 ± 0.003	11-04-15	359	0.029 ± 0.003
05-13-15	381	0.009 ± 0.002	11-11-15	367	0,043 ± 0,004
05-20-15	387	0.011 ± 0.002	11-18-15	252	0.032 ± 0.005
05-27-15	378	0.016 ± 0.003	11-25-15	354	0.025 ± 0.003
06-03-15	382	0.019 ± 0.003	12-02 - 15	323	0.050 ± 0.005
06-10-15	382	0.017 + 0.003	12-09-15	323	0.088 + 0.006
06-17-15	380	0.012 + 0.002	12-16-15	353	0.015 ± 0.003
06-24-15	353	0.020 + 0.002	12-23-15	295	0.048 ± 0.005
07-01-15	368	0.019 + 0.003	12-20-15	352	0.050 ± 0.000
07-01-13	500	0.010 ± 0.000	12-00-10	002	0.000 ± 0.004
and Outerters	loopied	0.019.1.0.005	Ath Orrantan B	loop to d	
2na Quarter N	nean ± s.a.	0.018 ± 0.005	4th Quarter N	viean ± s.d.	0.039 ± 0.018
			Cumulative Aver	age	0.031
			Previous Annual	Average	0.031

^a lodine-131 concentrations are < 0.03 pCi/m³ unless otherwise noted.

^b "ND" = No data, see Table 2.0, Listing of Missed Samples.

January						
Location	Average	Minima	Maxima			
Control	0.035	0.021	0.042			
M-1	0.035	0.021	0.042			
Indicators	0.035	0.020	0.046			
M-2	0.032	0.021	0.038			
M-3	0.034	0.020	0.042			
M-4	0.032	0.021	0.040			
M-5	0.042	0.038	0.046			

	April							
Location	Average	Minima	Maxima					
Control	0.020	0.014	0.023					
M-1	0.020	0.014	0.023					
Indicators	0.022	0.014	0.027					
M-2	0.022	0.017	0.027					
M-3	0.020	0.015	0.024					
M-4	0.022	0.014	0.025					
M-5	0.022	0.016	0.027					

	February						
Location	Average	Minima	Maxima				
Control	0.042	0.029	0.062				
M-1	0.042	0.029	0.062				
Indicators	0.050	0.029	0.073				
M-2	0.054	0.040	0.073				
M-3	0,050	0.029	0.066				
M-4	0.048	0.034	0.070				
M-5	0.049	0.031	0.071				

Мау						
Location	Average	Minima	Maxima			
Control	0.015	0.008	0.021			
M-1	0.015	0.008	0.021			
Indicators	0.015	0.007	0.025			
M-2	0.015	0.010	0.019			
M-3	0.016	0.007	0.025			
M-4	0.016	0.009	0.023			
M-5	0.016	0.009	0.022			

March				June			
Location	Average	Minima	Maxima	Location	Average	Minima	Maxima
Control	0.024	0.018	0.036	Control	0.017	0.013	0.021
M-1	0.024	0.018	0.036	M-1	0.017	0.013	0.021
Indicators	0.027	0.018	0.039	Indicators	0.017	0.012	0.021
M-2	0.027	0.019	0.035	M-2	0.018	0.014	0.020
M-3	0.026	0.020	0.035	M-3	. 0.018	0.013	0.021
M-4	0.028	0.021	0.039	M-4	0.017	0.014	0.019
M-5	0.026	0.018	0.034	M-5	0.017	0.012	0.020

Note: unless otherwise specified, samples collected on the first, second or third day of the month are grouped with data of the previous month.

July						
Location	Average	Minima	Maxima			
Control	0.023	0.018	0.026			
M-1	0.023	0.018	0.026			
Indicators	0.022	0.018	0.030			
M-2	0.023	0.019	0.025			
M-3	0.022	0.019	0.030			
M-4	0.022	0.018	0.027			
M-5	0.022	0.019	0.026			

Table 7.	Airborne	particulate da	ata, gross	i beta anah	vses, mo	nthiv averages	s, minima and	1 maxima.
	/ (1.501110	paraouiaco ac	ia, grooc	bota anal	,000,1110	nang aronagoe	, manna and	, maxima,

October						
Location	Average	Minima	Maxima			
Control	0.028	0.022	0.035			
M-1	0.028	0.022	0.035			
Indicators	0.030	0.023	0.040			
M-2	0.027	0.023	0.029			
M-3	0.030	0.025	0.035			
[•] M-4	0.032	0.026	0.040			
M-5	0.031	0.025	0.039			

	August						
Location	Average	Minima	Maxima				
Control							
M-1	0.027	0.019	0.038				
Indicators	0.029	0.017	0.047				
M-2	0.027	0.017	0.038				
M-3	0.029	0.021	0.044				
M-4	0.031	0.018	0.044				
M-5	0.029	0.021	0.047				

November						
Location	Average	Minima	Maxima			
Control	0.033	0.022	0.044			
M-1	0.033	0.022	0.044			
Indicators	0.037	0.024	0.053			
M-2	0.037	0.025	0.051			
M-3	0.039	0.025	0.053			
M-4	0.037	0.024	0.050			
M-5	0.036	0.025	0.050			

September			December				
Location	Average	Minima	Maxima	Location	Average	Minima	Maxima
Control				Control	0.040	0.016	0.061
M-1	0.031	0.025	0.039	M-1	0.040	0.016	0.061
Indicators	0.033	0.024	0.045	Indicators	0.049	0.015	0.088
M-2	0.030	0.024	0.037	M-2	0.048	0.021	0.066
M-3	0.030	0.025	0.037	M-3	0.050	0.019	0,082
M-4	0.034	0.027	0.044	M-4	0.048	0.022	0.068
M-5	0.036	0.028	0.045	M-5	0.050	0.015	0.088

Note: unless otherwise specified, samples collected on the first, second or third day of the month are grouped with data of the previous month.

		Activity (pCi/	'm ³)			
	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	Cumulative Average	Previous Average
		M-1	(C)			
Lab Code	MAP- 1842	MAP- 3819	MAP- 6030	MAP- 7410		
Volume(m³)	4534	5299	4884	4597		
Be-7	0.065 ± 0.013	0.077 ± 0.010	0.077 ± 0.012	0.043 ± 0.010	0.066	0,068
Mn-54	< 0.0005	< 0.0004	< 0.0005	< 0.0003	<0.0005	<0.0008
Co-58	< 0.0007	< 0.0004	< 0.0005	< 0.0004	<0.0007	<0.0010
Co-60	< 0.0009	< 0.0004	< 0.0005	< 0.0002	<0.0009	<0.0006
Zn-65	< 0.0011	< 0.0005	< 0.0012	< 0.0010	<0.0012	<0.001
Zr-Nb-95	< 0.0007	< 0.0006	< 0.0008	< 0.0008	<0.0008	<0.0015
Ru-103	< 0.0008	< 0.0008	< 0.0008	< 0.0005	<0.0008	<0.0008
Ru-106	< 0.0049	< 0.0027	< 0.0036	< 0.0043	<0.0049	<0.0063
Cs-134	< 0.0006	< 0.0006	< 0.0005	< 0.0006	<0.0006	<0.001
Cs-137	< 0.0006	< 0.0005	< 0.0006	< 0.0004	<0.0006	<0.0007
Ba-La-140	< 0.0017	< 0.0017	< 0.0015	< 0.0014	<0.0017	< 0.002
Ce-141	< 0.0010	< 0.0008	< 0.0015	< 0.0010	<0.0015	<0.0016
Ce-144	< 0.0033	< 0.0034	< 0.0028	< 0.0022	<0.0034	<0.0046

Table 8. Airborne particulates, quarterly composites from each location, analysis for gamma-emitting isotopes.

M-2									
Lab Code	MAP- 1843	MAP- 3820	MAP- 6031	MAP- 7411					
Volume(m³)	4338	4138	4370	4173					
Be-7	0.070 ± 0.011	0.079 ± 0.013	0.072 ± 0.013	0.051 ± 0.012	0.068	0.064			
Mn-54	< 0.0006	< 0.0008	< 0.0008	< 0.0011	<0,0008	<0.0008			
Co-58	< 0.0004	< 0.0005	< 0.0008	< 0.0006	<0,0008	<0.0010			
Co-60	< 0.0004	< 0.0005	< 0.0007	< 0.0004	<0.0007	<0.0008			
Zn-65	< 0.0017	< 0.0007	< 0.0008	< 0.0014	<0.0017	<0.0015			
Zr-Nb-95	< 0.0009	< 0.0011	< 0.0007	< 0.0010	<0.0011	<0.0010			
Ru-103	< 0.0007	< 0.0006	< 0.0012	< 0.0010	<0.0012	<0.0014			
Ru-106	< 0.0061	< 0.0085	< 0.0074	< 0.0046	<0.0085	<0.0077			
Cs-134	< 0.0007	< 0.0009	< 0.0008	< 0.0008	<0.0009	<0.0010			
Cs-137	< 0.0006	< 0.0006	< 0.0010	< 0.0005	<0.0010	<0.0008			
Ba-La-140	< 0.0015	< 0.0019	< 0.0024	< 0.0021	<0.0024	<0.0042			
Ce-141	< 0.0017	< 0.0010	< 0.0018	< 0.0011	<0.0018	<0.0015			
Ce-144	< 0.0033	< 0.0026	< 0.0046	< 0.0048	<0.0046	<0.0040			

Activity (pCi/m ³)									
	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	Cumulative Average	Previous Average			
	····	M	-3						
Lab Code	MAP- 1844	MAP- 3821	MAP- 6032	MAP- 7412					
Volume(m ³)	4636	4761	4689	4227					
Be-7	0.064 ± 0.016	0.077 ± 0.013	0.075 ± 0.011	0.052 ± 0.012	0.067	0.068			
Mn-54	< 0.0007	< 0.0005	< 0.0004	< 0.0008	<0.0007	<0.000			
Co-58	< 0.0006	< 0.0004	< 0.0004	< 0.0009	<0.0006	<0.0008			
Co-60	< 0.0006	< 0.0003	< 0.0005	< 0.0006	<0.0006	<0.0007			
Zn-65	< 0.0006	< 0.0006	< 0.0014	< 0.0010	<0.0014	<0.000			
Zr-Nb-95	< 0,0007	< 0.0008	< 0.0010	< 0.0007	<0.0010	<0.0008			
Ru-103	< 0.0004	< 0.0006	< 0.0009	< 0.0009	<0.0009	<0.0011			
Ru-106	< 0.0061	< 0.0061	< 0.0041	< 0.0082	<0.0061	<0.0068			
Cs-134	< 0.0007	< 0.0006	< 0.0006	< 0.0009	<0.0007	<0.0009			
Cs-137	< 0.0006	< 0.0004	< 0.0004	< 0.0007	<0.0006	<0.0006			
Ba-La-140	< 0.0018	< 0.0012	< 0.0013	< 0.0043	<0.0018	<0.0016			
Ce-141	< 0.0010	< 0.0011	< 0.0013	< 0.0018	<0.0013	<0.0018			
Ce-144	< 0.0022	< 0.0035	< 0.0025	< 0.0035	<0.0035	<0.005			

Table 8. Airborne particulates, quarterly composites from each location, analysis for gamma-emitting isotopes.

~

M-4									
Lab Code	MAP- 1845	MAP- 3822	MAP- 6033	MAP- 7413					
Volume(m ³)	4447	4534	4703	4452					
Be-7	0.062 ± 0.013	0.075 ± 0.011	0.086 ± 0.011	0.058 ± 0.012	0.070	0.058			
Mn-54	< 0.0007	< 0.0008	< 0.0005	< 0.0006	<0.0008	<0.0008			
Co-58	< 0.0008	< 0.0007	< 0.0005	< 0.0005	<0.0008	<0.0011			
Co-60	< 0.0006	< 0.0008	< 0.0004	< 0.0005	<0.0008	<0.0008			
Zn-65	< 0.0019	< 0.0019	< 0.0005	< 0.0013	<0.0019	<0.0009			
Zr-Nb-95	< 0.0014	< 0.0011	< 0.0008	< 0.0012	<0.0014	<0.0010			
Ru-103	< 0.0013	< 0.0007	< 0.0008	< 0.0008	<0.0013	<0.0009			
Ru-106	< 0.0062	< 0.0073	< 0.0026	< 0.0062	<0.0073	<0.0060			
Cs-134	< 0.0010	< 0.0007	< 0.0006	< 0.0007	<0.0010	<0.0008			
Cs-137	< 0.0010	< 0.0005	< 0.0005	< 0.0006	<0.0010	<0.0010			
Ba-La-140	< 0.0017	< 0.0026	< 0.0010	< 0.0015	<0.0026	<0.0030			
Ce-141	< 0.0013	< 0.0012	< 0.0009	< 0.0015	<0.0013	<0.0017			
Ce-144	< 0.0040	< 0.0034	< 0.0019	< 0.0046	<0.0040	<0,0035			

<u></u>		Activity (pCi/	m ³)	·		
	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	Cumulative Average	Previous Average
		M	-5			
Lab Code	MAP~ 1846	MAP- 3824	MAP- 6034	MAP- 7414		
Volume(m ³)	3969	4632	4363	4197		
Be-7	0.086 ± 0.014	0.070 ± 0.011	0.087 ± 0.012	0.049 ± 0.013	0.073	0.072
Mn-54	< 0.0005	< 0.0005	< 0.0008	< 0.0006	<0.0008	<0.0009
Co-58	< 0.0007	< 0.0002	< 0.0006	< 0.0004	<0.0007	<0.0006
Co-60	< 0.0004	< 0.0005	< 0.0005	< 0.0006	<0.0005	<0.0006
Zn-65	< 0.0009	< 0.0007	< 0.0007	< 0.0008	<0.0009	<0.0008
Zr-Nb-95	< 0.0014	< 0.0006	< 0.0007	< 0.0013	<0.0014	<0.0011
Ru-103	< 0.0012	< 0.0006	< 0.0009	< 0.0008	<0.0012	<0.0011
Ru-106	< 0.0040	< 0.0042	< 0.0072	< 0.0062	<0.0072	<0.0065
Cs-134	< 0.0009	< 0.0006	< 0.0007	< 0.0008	<0.0009	<0.0008
Cs-137	< 0.0006	< 0.0004	< 0.0007	< 0.0007	<0.0007	<0.0007
Ba-La-140	< 0.0016	< 0.0010	< 0.0023	< 0.0015	<0.0023	<0.0019
Ce-141	< 0.0020	< 0.0013	< 0.0015	< 0.0014	<0.0020	<0.0023
Ce-144	< 0.0038	< 0.0031	< 0.0041	< 0.0026	<0.0041	<0.0047

Table 8. Airborne particulates, quarterly composites from each location, analysis for gamma-emitting isotopes.

Table 9. Pasture grass, vegetation, analysis for gamma-emitting isotopes.Collection: 3x per year

	Sample Descrip	otion and Concentratio	on (pCi/g wet)	Annual Average	Previous Annual Average
Location:	M	-41 (Training Center)	ц		-
Date Collected	07-15-15	08-12-15	09-09-15		
Lab Code	MVE- 3772	MVE- 4464	MVE- 4966		
Mn-54	< 0.009	< 0.007	< 0.006	< 0.009	< 0.010
Fe-59	< 0.024	< 0.020	< 0.020	< 0.024	< 0.031
Co-58	< 0.008	< 0.010	< 0.014	< 0.014	< 0.009
Co-60	< 0.010	< 0.008	< 0.006	< 0.010	< 0.009
Zn-65	< 0.024	< 0.017	< 0.016	< 0.024	< 0.024
Nb-95	< 0.007	< 0.005	< 0.006	< 0.007	< 0.011
I-131	< 0.026	< 0.021	< 0.025	< 0.026	< 0.038
Cs-134	< 0.013	< 0.010	< 0.010	< 0.013	< 0.011
Cs-137	< 0.009	< 0.014	< 0.010	< 0.014	< 0.011
Location:	M-42	2 (Biology Station Roa	ad)		
Date Collected	07-15-15	08-12-15	09-09-15		
Lab Code	MVE- 3773	MVE- 4465	MVE- 4967		
Mn-54	< 0.009	< 0.014	< 0.009	< 0.014	< 0.008
Fe-59	< 0.017	< 0.026	< 0.023	< 0.026	< 0.022
Co-58	< 0.009	< 0.011	< 0.011	< 0.011	< 0.008
Co-60	< 0.006	< 0.007	< 0.007	< 0.007	< 0.008
Zn-65	< 0.022	< 0.018	< 0.020	< 0.022	< 0.024
Nb-95	< 0.009	< 0.012	< 0.009	< 0.012	< 0.012
I-131	< 0.029	< 0.027	< 0.041	< 0.041	< 0.030
Cs-134	< 0.011	< 0.012	< 0.011	< 0.012	< 0.011
Cs-137	< 0.012	< 0.013	< 0.013	< 0.013	< 0.010
Location:	M-43	(Imholte Farm, Cont	rol)		
Date Collected	07-15-15	08-12-15	09-09-15		
Lab Code	MVE- 3894	MVE- 4466	MVE- 4968		
Mn-54	< 0.012	< 0.009	< 0.009	< 0.012	< 0.012
Fe-59	< 0.021	< 0.033	< 0.027	< 0.033	< 0.030
Co-58	< 0.008	< 0.012	< 0.006	< 0.012	< 0.013
Co-60	< 0.019	< 0.007	< 0.010	< 0.019	< 0.014
Zn-65	< 0.029	< 0.014	< 0.016	< 0.029	< 0.029
Nb-95	< 0.020	< 0.013	< 0.010	< 0.020	< 0.015
I-131	< 0.032	< 0.029	< 0.043	< 0.043	< 0.037
Cs-134	< 0.015	< 0.014	< 0.012	< 0.015	< 0.014
Cs-137	< 0.013	< 0.010	< 0.013	< 0.013	< 0.013
		0,0,0	5.5.5	5.5.5	0,010

9-1

	VVEEKIY								
Sample Description and Concentration (pCi/L)									
Period Collected Lab Code	January NS ^a	February NS ^a	March MSW-1766	April MSW-2440	May MSW-2952				
Non Ed			< 10	- 10	- 10				
W0-54	-	-	< 10	< 10	< 10				
Co 59	-	-	< 10	< 30	< 30				
Co-58	-	-	< 10	< 10	< 10				
7n-65	-	-	< 30	< 30	< 30				
Zn-00 Zr-Nh-95	_	_	< 15	< 15	< 15				
Cs-134	-	_	< 10	< 10	< 10				
Cs-137	_	_	< 10	< 10	< 10				
Ba-La-140	-	_	< 15	< 15	< 15				
Ce-144	-	-	< 10	< 10	< 24				
				• • •					
Period Collected	June	July	August	September	October				
Lab Code	MSW-3660	MSW-4496	MSW-5158	MSW-5669	MSW-6328				
Mn-54	< 10	< 10	< 10	< 10	< 10				
Fe-59	< 30	< 30	< 30	< 30	< 30				
Co-58	< 10	< 10	< 10	< 10	< 10				
Co-60	< 10	< 10	< 10	< 10	< 10				
Zn-65	< 30	< 30	< 30	< 30	< 30				
Zr-Nb-95	< 15	< 15	< 15	< 15	< 15				
Cs-134	< 10	< 10	< 10	< 10	< 10				
Cs-137	< 10	< 10	< 10	< 10	< 10				
Ba-La-140	< 15	< 15	< 15	< 15	< 15				
Ce-144	< 22	< 22	< 12	< 39	< 23				
					Previous				
Period Collected	November	December)	Cumulative	Annual				
Lab Code	MSW-6947	MSW-7322		Average	Average				
Mn-54	< 10	< 10		< 10	< 10				
Fe-59	< 30	< 30		< 30	< 30				
Co-58	< 10	< 10		< 10	< 10				
Co-60	< 10	< 10		< 10	< 10				
Zn-65	< 30	< 30		< 30	< 30				
Zr-Nb-95	< 15	< 15		< 15	< 15				
Cs-134	< 10	< 10		< 10	< 10				
Cs-137	< 10	< 10		< 10	< 10				
Ba-La-140	< 15	< 15		< 15	< 15				
Ce-144	< 25	< 17		< 39	< 30				

Table 10. River water, analysis of monthly composites for gamma-emitting isotopes. Location: M-8 (C) Collection: Weekly ١

^a "NS" = No sample; see Table 2.0, Listing of Missed Samples.

^b Water frozen 12-30-15.

Collection:	Weekly								
Sample Description and Concentration (pCi/L)									
Period Collected	January	February	March	April	May				
Lab Code	MSW-326	MSW-1130	MSW-1767	MSW-2441	MSW-2953				
Mn-54	< 10	< 10	< 10	< 10	< 10				
Fe-59	< 30	< 30	< 30	< 30	< 30				
Co-58	< 10	< 10	< 10	< 10	< 10				
Co-60	< 10	< 10	< 10	< 10	< 10				
Zn-65	< 30	< 30	< 30	< 30	< 30				
Zr-Nb-95	< 15	< 15	< 15	< 15	< 15				
Cs-134	< 10	< 10	< 10	< 10	< 10				
Cs-137	< 10	< 10	< 10	< 10	< 10				
Ba-La-140	< 15	< 15	< 15	< 15	< 15				
Ce-144	< 12	< 20	< 11	< 11	< 19				
Period Collected	June	July	August	September	October				
Lab Code	MSW-3661	MSW-4497	MSW-5159	MSW-5670	MSW-6329				
Mn-54	< 10	< 10	< 10	< 10	< 10				
Fe-59	< 30	< 30	< 30	< 30	< 30				
Co-58	< 10	< 10	< 10	< 10	< 10				
Co-60	< 10	< 10	< 10	< 10	< 10				
Zn-65	< 30	< 30	< 30	< 30	< 30				
Zr-Nb-95	< 15	< 15	< 15	< 15	< 15				
Cs-134	< 10	< 10	< 10	< 10	< 10				
Cs-137	< 10	< 10	< 10	< 10	< 10				
Ba-La-140	< 15	< 15	< 15	< 15	< 15				
Ce-144	< 23	< 29	< 15	< 30	< 25				
					Previous				
Period Collected	November	December		Cumulative	Annual				
Lab Code	MSW-6948	MSW-7323		· Average	Average				
Mn-54	< 10	< 10		< 10	< 10				
Fe-59	< 30	< 30		< 30	< 30				
Co-58	< 10	< 10		< 10	< 10				
Co-60	< 10	< 10		< 10	< 10				
Zn-65	< 30	< 30		< 30	< 30				
Zr-Nb-95	< 15	< 15		< 15	< 15				
Cs-134	< 10	< 10		< 10	< 10				
Cs-137	< 10	< 10		< 10	< 10				
Ba-La-140	< 15	< 15		< 15	< 15				
Ce-144	< 24	< 33		< 33	< 33				

Table 10.	River water,	analysis of	f monthly	composites	for ga	amma-emitt	ing isotopes.	
	Location:	M-9						

10-2

Collection: Weekly								
Sample Description and Concentration (pCi/L)								
Period Collected Lab Code	January MDW-523	February MDW-871	March MDW-1502	April MDW-2354	May MDW-2777			
Gross beta	3.2 ± 1.1	3.3 ± 1.0	2.5 ± 0.9	2.3 ± 0.8	3.5 ± 0.7			
I-131	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Mn-54 Fe-59 Co-58	< 10 < 30 < 10	< 10 < 30 < 10						
Co-60 Zn-65	< 10 < 30	< 10 < 30	< 10 < 30	< 10 < 30	< 10 < 30			
Zr-Nb-95 Cs-134 Cs-137	< 15 < 10 < 10	< 15 < 10 < 10						
Ba-La-140 Ce-144	< 15 < 16	< 15 < 29	< 15 < 9	< 15 < 11	< 15 < 24			
Period Collected Lab Code	June MDW-3662	July MDW-4346	August MDW-5010	September MDW-5678	October MDW-6447			
Gross beta	1.5 ± 0.6	1.2 ± 0.5	1.4 ± 0.6	1.3 ± 0.6	3.2 ± 1.0			
I-131	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-Nb-95 Cs-134 Cs-137 Ba-La-140 Co-144	< 10 < 30 < 10 < 10 < 30 < 15 < 10 < 10 < 15 < 20	< 10 < 30 < 10 < 10 < 30 < 15 < 10 < 10 < 15 < 23	< 10 < 30 < 10 < 10 < 30 < 15 < 10 < 10 < 15 < 27	< 10 < 30 < 10 < 10 < 30 < 15 < 10 < 10 < 15 < 25	< 10 < 30 < 10 < 30 < 15 < 10 < 10 < 15 < 14			
Period Collected Lab Code	< 29 November MDW-6946	< 23 December MDW-7269	~ 21	< 35 Cumulative Average	Previous Average			
Gross beta	2.2 ± 0.6	1.4 ± 0.9		2.3	2.8			
I-131	< 1.0	< 1.0		< 1.0	< 1.0			
Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-Nb-95 Cs-134 Cs-137	< 10 < 30 < 10 < 30 < 30 < 15 < 10 < 10	< 10 < 30 < 10 < 30 < 15 < 10 < 10		< 10 < 30 < 10 < 30 < 15 < 10 < 10	< 10 < 30 < 10 < 30 < 15 < 10 < 10			
Ba-La-140 Ce-144	< 15 < 26	< 15 < 16		< 15 < 35	< 15 < 46			

Table 11. Drinking water, City of Minneapolis, M-14, analysis of monthly composites for gross beta, iodine-131, and gamma-emitting isotopes.

11-1

Lab Code	H-	.3
	Required LLD	
MSW - 1770	< 500	< 152
MSW - 3663	< 500	< 154
MSW - 5675	< 500	< 152
MSW - 7326	< 500	< 146
	< 500	< 151
	< 500	< 165
MSW - 7326	< 500 < 500 < 500	

< 500

< 500

< 500

< 500

< 500

< 500

< 500

< 500

< 500

< 152

< 154

< 152

< 146

< 151

< 157

< 152

< 154

< 152

Table 12.	River water and drinking water, analysis of quarterly composites for tritium.
	Collection: Quarterly composites of weekly collections.

Sample Type, Location and Collection Period

River Water Upstream, M-8 (C)

1st Quarter^a 2nd Quarter 3rd Quarter 4th Quarter^b

River Water Downstream, M-9

1st Quarter

2nd Quarter

3rd Quarter

4th Quarter

Drinking Water Minneapolis, M-14

1st Quarter 2nd Quarter

3rd Quarter

Cumulative Average Previous Annual Average

Cumulative Average

Previous Annual Average

4th Quarter	MDW - 7339	< 500	< 146
Cumulative Average		< 500	< 151
Previous Annual Average		< 500	< 157

MDW - 1768

MDW - 3665

MDW - 5677

MSW - 1771

MSW - 3664

MSW - 5676

MSW - 7327

^a Composite of two samples for quarter - 03-18 and 03-25-15. Water frozen remainder of quarter.

^bWater frozen 12-30-15.

Sample Description and Concentration (pCi/L)												
Date Collected	Lab Code	H-3 (< 500 pCi/L)	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Zr-Nb-95	Cs-134	Cs-137	Ba-La-140	Ce-144
			Montic	ello (M-	11)							
1/21/2015	M\\\/\\/- 240	< 182	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 45
4/15/2015	MWW- 1703	< 152	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 29
7/22/2015	MWW- 4031	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 34
10/21/2015	MWW- 5964	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 26
Cumulative Averages		< 500	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 45
		P	lant Wel	I No. 1	<u>(M-12)</u>		<u>.</u>					
1/21/2015	MWW- 241	< 182	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 31
4/15/2015	MWW- 1704	< 152	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
7/22/2015	MWW- 4032	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 35
10/22/2015	MWW- 6097	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 28
Cumulative Aver	ages	< 500	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 35
<u></u>			Hasbro	uck (M	-55)							
1/21/2015	MWW- 242	< 182	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 38
4/15/2015	MWW- 1705	< 152	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 21
7/22/2015	MWW-4034	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 38
10/21/2015	MWW- 5965	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 28
Cumulative Aver	ages	< 500	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 38
* <u>***</u> **	Imholte (M-43C)											
1/21/2015	MWW- 243	< 182	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 36
4/15/2015	MWW- 1706	< 152	< 10	·< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 39
7/22/2015	MWW- 4035	< 147	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 49
10/21/2015	MWW- 5967	< 149	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 17
Cumulative Averages		< 500	< 10	< 30	< 10	< 10	< 30	< 15	< 10	< 10	< 15	< 49

Table 13. Well water, analysis for tritium and gamma-emitting isotopes.

Table 14. Fish, analysis of edible portions for gamma-emitting isotopes.Collection: Semiannually

Sample Description and Concentration (pCi/g wet)

<u>Upstream 1000' M-8 (C)</u>						
Date Collected	05-26-15 ME- 2724	05-26-15 ME- 2725	09-22-15 ME- 5239	09-22-15 ME- 5240		
		WII - 2720	Wii - 0200	WI - 5240		
Sample Type	Shorthead	Smallmouth	Shorthead	Smallmouth		
	Redhorse	Bass	Redhorse	Bass		
K-40	2.56 ± 0.35	3.46 ± 0.44	3.58 ± 0.42	3.65 ± 0.46		
Mn-54	< 0.013	< 0.017	< 0.017	< 0.016		
Fe-59	< 0.043	< 0.041	< 0.031	< 0.056		
Co-58	< 0.016	< 0.018	< 0.017	< 0.019		
Co-60	< 0.012	< 0.018	< 0.011	< 0.010		
Zn-65	< 0.029	< 0.026	< 0.018	< 0.033		
Nb-95	< 0,022	< 0.031	< 0.027	< 0.030		
Zr-95	< 0.024	< 0.025	< 0.043	< 0.043		
Cs-134	< 0.015	< 0.016	< 0.014	< 0.020		
Cs-137	< 0.015	< 0.018	< 0.011	< 0.017		
Ba-La-140	< 0.045	< 0.035	< 0.045	< 0.073		
Ce-144	< 0.130	< 0.127	< 0.105	< 0.119		
	Cumulative	Previous				
	Average	Average				
K-40	3.31	2.72				
Mn-54	< 0.017	< 0.019				
Fe-59	< 0.056	< 0.059				
Co-58	< 0.019	< 0.023				
Co-60	< 0.018	< 0.020				
Zn-65	< 0.033	< 0.034				
Nb-95	< 0.031	< 0.057				
Zr-95	< 0.043	< 0.055				
Cs-134	< 0.020	< 0.019				
Cs-137	< 0.018	< 0.020				
Ba-La-140	< 0.073	< 0.272				
Ce-144	< 0.130	< 0.150				

.14-1

Table 14. Fish, analysis of edible portions for gamma-emitting isotopes.Collection: Semiannually

Sample Description and Concentration (pCi/g wet)

Downstream 1000' M-9						
Date Collected	05-26-15	05-26-15	09-22-15	09-22-15		
Lab Code	MF- 2726	MF- 2727	MF- 5241	MF- 5242		
Sample Type	Shorthead	Smallmouth	Shorthead	Smallmouth		
	Redhorse	Bass	Redhorse	Bass		
K-40	3.08 ± 0.45	3.20 ± 0.64	3.56 ± 0.42	3.71 ± 0.43		
Mn-54	< 0.016	< 0.025	< 0.015	< 0.015		
Fe-59	< 0.043	< 0.019	< 0.046	< 0.033		
Co-58	< 0.020	< 0.025	< 0.013	< 0.021		
Co-60	< 0.014	< 0.025	< 0.013	< 0.008		
Zn-65	< 0.029	< 0.070	< 0.031	< 0.050		
Nb-95	< 0.021	< 0.030	< 0.018	< 0.029		
Zr-95	< 0.031	< 0.058	< 0.039	< 0.032		
Cs-134	< 0.018	< 0.025	< 0.014	< 0.017		
Cs-137	< 0.014	< 0.020	< 0.010	< 0.017		
Ba-La-140	< 0.031	< 0.122	< 0.057	< 0.056		
Ce-144	< 0.102	< 0.141	< 0.108	< 0.068		
Date Collected	Cumulative	Previous				
Lab Code	Average	Average				
Sample Type						
K-40	3.39	3.03				
Mn-54	< 0.025	< 0.018				
Fe-59	< 0.046	< 0.059				
Co-58	< 0.025	< 0.028				
Co-60	< 0.025	< 0.021				
Zn-65	< 0.070	< 0.035				
Nb-95	< 0.030	< 0.043				
Zr-95	< 0.058	< 0.046				
Cs-134	< 0.025	< 0.020				
Cs-137	< 0.020	< 0.017				
Ba-La-140	· < 0.122	< 0.217				
				U		

	······································		909	<u> </u>
Sample	Description and Concentra	Cumulative Average	Previous Average	
	<u>Upstream 1000' M-8 (</u>	<u>C)^a</u>		
Date Collected	08-06-15	10-07-15		
Lab Code	MBO- 4344	MBO- 5607		
Be-7	< 1.49	< 0.36	< 1.49	< 0.57
K-40	< 1.91	< 0.66	< 1.91	< 0.84
Mn-54	< 0.088	< 0.042	< 0.088	< 0.024
Fe-59	< 0.24	< 0.090	< 0.24	< 0.13
Co-58	< 0.15	< 0.031	< 0.15	< 0.068
Co-60	< 0.085	< 0.029	< 0.085	< 0.052
Zn-65	< 0.18	< 0.059	< 0.18	< 0.094
Zr-Nb-95	< 0.23	< 0.062	< 0.23	< 0.064
Ru-103	< 0.22	< 0.072	< 0.22	< 0.075
Ru-106	< 0.55	< 0.30	< 0.55	< 0.39
Cs-134	< 0.076	< 0.033	< 0.076	< 0.040
Cs-137	< 0.085	< 0.023	< 0.085	< 0,049
Ba-La-140	< 1.35	< 0.14	< 1.35	< 0.41
Ce-144	< 0.39	< 0.22	· < 0.39	< 0.20
	Downstream 1000' M	-9		
Date Collected	08-06-15	10-07-15		
Lab Code	MBO- 4345	MBO- 5608		
Be-7	< 0.67	< 0.60	< 0.67	< 0.55
K-40	< 0.95	< 1.24	< 1.24	< 0.91
Mn-54	< 0.053	< 0.044	< 0.053	< 0.046
Fe-59	< 0.22	< 0.12	< 0.22	< 0.13
Co-58	< 0.078	< 0.064	< 0.078	< 0.046
Co-60	< 0.039	< 0.047	< 0.047	< 0.041
Zn-65	< 0.079	< 0.097	< 0.097	< 0.077
Zr-Nb-95	< 0.13	< 0.11	< 0.13	< 0.067
Ru-103	< 0.13	< 0.087	< 0.13	< 0.070
Ru-106	< 0.48	< 0.33	< 0.48	< 0.38
Cs-134	< 0.050	< 0.043	< 0.050	< 0.041
Cs-137	< 0.039	< 0.038	< 0.039	< 0.040
Ba-La-140	< 1.15	< 0.32	< 1,15	< 0.22
Ce-144	< 0.25	< 0.23	< 0.25	< 0.24

Table 15. Aquatic invertebrates, analysis for gamma-emitting isotopes.Collection: Semiannually

Sample (Cumulative Average	Previous Average						
<u>Upstream 1000' M-8 (C)</u>								
Date Collected Lab Code	08-06-15 MSS- 4416	10-07-15 MSS- 5604						
Be-7 K-40 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Nb-95 Zr-95 Ru-103 Ru-106 Cs-134 Cs-137 Ba-La-140	< 0.29 11.58 ± 0.54 < 0.017 < 0.073 < 0.022 < 0.016 < 0.044 < 0.024 < 0.048 < 0.039 < 0.083 < 0.013 < 0.017 < 0.21	< 0.27 11.53 ± 0.51 < 0.014 < 0.068 < 0.011 < 0.032 < 0.035 < 0.046 < 0.018 < 0.014 < 0.015 < 0.085	< 0.29 11.55 < 0.017 < 0.073 < 0.022 < 0.016 < 0.044 < 0.035 < 0.048 < 0.039 < 0.13 < 0.014 < 0.017 < 0.21	< 0.16 9.12 < 0.016 < 0.052 < 0.016 < 0.014 < 0.034 < 0.015 < 0.028 < 0.018 < 0.075 < 0.012 < 0.012 < 0.012 < 0.081				
66-144	< 0.12 Downs	stream 1000' M-9	~0,12	< 0.061				
Date Collected Lab Code	08-06-15 MSS- 4417	10-07-15 MSS- 5605						
Be-7 K-40 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Nb-95 Zr-95 Ru-103 Ru-106 Cs-134 Cs-137 Ba-La-140 Ce-144	< 0.26 10.51 ± 0.54 < 0.018 < 0.041 < 0.021 < 0.039 < 0.030 < 0.052 < 0.036 < 0.12 < 0.012 0.034 ± 0.016 < 0.10 < 0.11	$< 0.30 \\ 10.41 \pm 0.54 \\ < 0.016 \\ < 0.076 \\ < 0.026 \\ < 0.013 \\ < 0.039 \\ < 0.051 \\ < 0.027 \\ < 0.032 \\ < 0.11 \\ < 0.017 \\ 0.024 \pm 0.014 \\ < 0.14 \\ < 0.13 \end{aligned}$	< 0.30 10.46 < 0.018 < 0.076 < 0.026 < 0.017 < 0.039 < 0.051 < 0.052 < 0.036 < 0.12 < 0.017 0.029 < 0.14 < 0.13	< 0.27 10.58 < 0.018 < 0.068 < 0.027 < 0.016 < 0.040 < 0.044 < 0.042 < 0.030 < 0.16 < 0.015 0.035 < 0.11 < 0.12				

Table 16. Shoreline (SS) sediments, analysis for gamma-emitting isotopes.Collection: Semiannually

Sample D	Cumulative Average	Previous Average		
	Montis	ssippi Park M-15		
Date Collected Lab Code	08-06-15 MSS- 4418	10-07-15 MSS- 5606		
Be-7	< 0.33	< 0.22	< 0.33	< 0.22
K-40	9.49 ± 0.51	10.54 ± 0.54	10.01	10.89
Mn-54	< 0.021	< 0.018	< 0.021	< 0.017
Fe-59	< 0.068	< 0.050	< 0.068	< 0.040
Co-58	< 0.022	< 0,019	< 0.022	< 0.017
Co-60	< 0.014	< 0.011	< 0.014	< 0.013
Zn-65	< 0.041	< 0.038	< 0.041	< 0.045
Nb-95	< 0.031	< 0,028	< 0.031	< 0.025
Zr-95	< 0.046	< 0.026	< 0.046	< 0.039
Ru-103	< 0.041	< 0.016	< 0.041	< 0.026
Ru-106	< 0.13	< 0.13	< 0.13	< 0.102
Cs-134	< 0.014	< 0.016	< 0.016	< 0.014
Cs-137	< 0.017	< 0.021	< 0.021	0.059
Ba-La-140	< 0.20	< 0.11	< 0.20	< 0.092
Ce-144	< 0.11	< 0.11	< 0.11	< 0.088

Table 16. Shoreline (SS) sediments, analysis for gamma-emitting isotopes (continued).