

Kelvin Henderson

Vice President Catawba Nuclear Station

Duke Energy

CN01VP I 4800 Concord Road York, SC 29745

> o: 803.701.4251 f: 803.701.3221

> > IEH8 NRR

CNS-16-029

April 28, 2016

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

Subject:

Duke Energy Carolinas, LLC

Catawba Nuclear Station, Units 1 and 2

Docket Nos. 50-413 and 50-414

2015 Annual Radioactive Effluent Release Report

Pursuant to Catawba Nuclear Station Technical Specification (TS) 5.6.3 and Selected Licensee Commitment 16.11-16, please find attached the Annual Radioactive Effluent Release Report for the period of January 1, 2015, through December 31, 2015. In accordance with Catawba TS 5.5.1, the Offsite Dose Calculation Manual (ODCM) is included in this submittal.

Attachment 1 Summary of Gaseous and Liquid Effluents

Attachment 2 Supplemental Information

Attachment 3 Solid Radioactive Waste Disposal

Attachment 4 Meteorological Data

Attachment 5 Unplanned Offsite Releases

Attachment 6 Assessment of Radiation Dose from Radioactive Effluents to Members of

the Public

Attachment 7 Information to Support the NEI Groundwater Protection Initiative

Attachment 8 Inoperable Equipment

Attachment 9 Summary of Changes to the Offsite Dose Calculation Manual

United States Nuclear Regulatory Commission Page 2 April 28, 2016

Attachment 10

Summary of Changes to the Process Control Program

Attachment 11

Summary of Major Modifications to the Radioactive Waste Treatment

Systems

Attachment 12

Errata to a Previous Year's ARERR

Enclosed:

2015 Offsite Dose Calculation Manual (Compact Disc)

Any questions concerning this report should be directed to Cecil A. Fletcher II, Nuclear Regulatory Affairs Manager, at (803) 701-3622.

Sincerely,

Kelvin Henderson

Vice President, Catawba Nuclear Station

Attachments and Enclosure (Offsite Dose Calculation Manual [ODCM] Compact Disc [CD])

United States Nuclear Regulatory Commission Page 3 April 28, 2016

xc (with attachments and enclosure):

C. Haney Regional Administrator U.S. Nuclear Regulatory Commission - Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, GA 30303

J.A. Whited NRC Project Manager (CNS) U.S. Nuclear Regulatory Commission One White Flint North, Mail Stop 8-B1A 11555 Rockville Pike Rockville, MD 20852

G. A. Hutto, III (without enclosure) NRC Senior Resident Inspector

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 1

Summary of Gaseous and Liquid Effluents

This attachment includes a summary of the quantities of radioactive liquid and gaseous effluents as outlined in Regulatory Guide 1.21, Appendix B.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Summation of All Releases

A. Fission and Activation Gases	<u>Units</u>	<u>Qtr 1</u>	<u>Qtr 2</u>	Qtr 3	<u>Qtr 4</u>	<u>Year</u>
 Total Release Avg. Release Rate 	Ci	5.08E+00	4.33E+00	3.36E+00	2.56E+01	3.84E+01
	µCi/sec	6.53E-01	5.51E-01	4.22E-01	3.23E+00	1.22E+00
B. lodine-1311. Total Release2. Avg. Release Rate	Ci	0.00E+00	0.00E+00	0.00E+00	5.56E-05	5.56E-05
	µCi/sec	0.00E+00	0.00E+00	0.00E+00	6.99E-06	1.76E-06
C. Particulates Half-Life ≥ 8 days1. Total Release2. Avg. Release Rate	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	µCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
D. Tritium 1. Total Release 2. Avg. Release Rate	Ci	5.49E+01	4.62E+01	4.31E+01	7.27E+01	2.17E+02
	µCi/sec	7.07E+00	5.88E+00	5.42E+00	9.15E+00	6.88E+00
E. Carbon-14 1. Total Release 2. Avg. Release Rate	Ci µCi/sec	4.44E+00 5.71E-01	5.25E+00 6.67E-01	5.41E+00 6.80E-01	4.64E+00 5.83E-01	1.97E+01 6.26E-01
F. Gross Alpha 1. Total Release 2. Avg. Release Rate	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	µCi/sec	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Elevated Releases - Continuous Mode *

A Finain and Antimation Conso	<u>Units</u>	<u>Qtr 1</u>	<u>Qtr 2</u>	Qtr 3	Qtr 4	<u>Year</u>
A. Fission and Activation Gases N/A	Ci	-	-	-	-	-
Total for Period	Ci	-	-	-	-	-
B. lodines N/A	Ci	-	-	-	-	-
Total for Period	Ci	-	-	-	-	-
C. Particulates Half-Life ≥ 8 days N/A	Ci	-	-	-	-	-
Total for Period	Ci	-	-	-	-	-
D. Tritium N/A	Ci	-	-	-	-	-
E. Carbon-14 N/A	Ci	-	-	-	-	-
F. Gross Alpha Total for Period	Ci	-	- -	-	-	. · -

^{*} Catawba Nuclear Station Units 1 and 2 do not have elevated releases.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Elevated Releases - Batch Mode *

A Final and Antication Cons	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	<u>Qtr 3</u>	<u>Qtr 4</u>	<u>Year</u>
A. Fission and Activation Gases N/A	Ci	~	-	-	-	-
Total for Period	Ci	-	-	-	.	-
B. lodines N/A	Ci	-	-	-	-	
Total for Period	Ci	-	-	-	-	-
C. Particulates Half-Life ≥ 8 days N/A	Ci	-	-	-	-	-
Total for Period	Ci	-	-	-	-	-
D. Tritium N/A	Ci	-	-		-	-
E. Carbon-14 N/A	Ci	-	-	-	· -	
F. Gross Alpha Total for Period	Ci	-	-	-	-	-

^{*} Catawba Nuclear Station Units 1 and 2 do not have elevated releases.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Ground Releases - Continuous Mode

	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	<u>Qtr 3</u>	<u>Qtr 4</u>	<u>Year</u>
A. Fission and Activation Gases None	Ci	-		-	-	-
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
B. lodines I-131 I-133	Ci Ci	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	5.56E-05 4.57E-05	5.56E-05 4.57E-05
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	1.01E-04	1.01E-04
C. Particulates Half-Life ≥ 8 days None	Ci	-	-	-	-	-
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
D. Tritium H-3	Ci	5.48E+01	4.61E+01	4.29E+01	7.25E+01	2.16E+02
E. Carbon-14 * C-14	Ci	1.33E+00	1.58E+00	1.62E+00	1.39E+00	5.91E+00
F. Gross Alpha Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

^{* 30%} of total C-14 released is assumed to be in continuous mode. See Attachment 2, Supplemental Information, of this report.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Ground Releases - Batch Mode

	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	<u>Qtr 3</u>	<u>Qtr 4</u>	<u>Year</u>
A. Fission and Activation Gases AR-41 KR-85 XE-131M XE-133 XE-133M XE-135	Ci Ci Ci Ci Ci	7.76E-01 0.00E+00 6.49E-02 4.22E+00 2.72E-03 1.32E-02	7.09E-01 0.00E+00 6.14E-04 3.62E+00 0.00E+00 3.73E-03	8.17E-01 0.00E+00 0.00E+00 2.53E+00 0.00E+00 6.85E-03	8.15E-01 5.38E-01 2.50E-01 2.38E+01 1.93E-01 5.66E-02	3.12E+00 5.38E-01 3.16E-01 3.42E+01 1.95E-01 8.04E-02
Total for Period	Ci	5.08E+00	4.33E+00	3.36E+00	2.56E+01	3.84E+01
B. lodines None	Ci	, -	-	-	-	-
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C. Particulates Half-Life ≥ 8 days None	Ci	-	-	-	-	-
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
D. Tritium H-3	Ci	1.14E-01	1.48E-01	1.83E-01	1.89E-01	6.34E-01
E. Carbon-14 * C-14	Ci	3.11E+00	3.68E+00	3.79E+00	3.25E+00	1.38E+01
F. Gross Alpha Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

^{* 70%} of total C-14 released is assumed to be in batch mode. See Attachment 2, Supplemental Information, of this report.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Mixed-Mode Releases - Continuous Mode *

A Finding and Adiabitan Occup	<u>Units</u>	<u>Qtr 1</u>	<u>Qtr 2</u>	Qtr 3	<u>Qtr 4</u>	<u>Year</u>
A. Fission and Activation Gases N/A	Ci		-	-	-	-
Total for Period	Ci	-	-	-	-	-
B. Iodines N/A	Ci	-	-	-	-	-
Total for Period	Ci	-	-	-	-	•
C. Particulates Half-Life ≥ 8 days N/A	Ci	-	-	-	-	-
Total for Period	Ci	-	-	-	-	-
D. Tritium N/A	Ci	-	-	-	-	-
E. Carbon-14 N/A	Ci	-	-	.	-	-
F. Gross Alpha Total for Period	Ci	-	-	-	-	-

^{*} Catawba Nuclear Station Units 1 and 2 do not have mixed-mode releases.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents - Mixed-Mode Releases - Batch Mode *

A. Fission and Activation Gases	<u>Units</u>	<u>Qtr 1</u>	<u>Qtr 2</u>	<u>Qtr 3</u>	<u>Qtr 4</u>	<u>Year</u>
N/A	Ci		-	-	-	_
Total for Period	Ci	-	-	-	-	_
B. Iodines N/A	Ci	-	-	_	-	-
Total for Period	Ci	-	-	-	-	-
C. Particulates Half-Life ≥ 8 days N/A	Ci	-	-	••	_	-
Total for Period	Ci	-	-	-	_	_
D. Tritium N/A	Ci	-	-	-	_	_
E. Carbon-14 N/A	·Ci	-	· <u>-</u>	- ;	-	_
F. Gross Alpha Total for Period	Ci	-	-	_	- •	-

^{*} Catawba Nuclear Station Units 1 and 2 do not have mixed-mode releases.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Effluents - Summation of All Releases

A. Fission and Activation Products *	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	<u>Qtr 3</u>	Qtr 4	Year
Total Release Avg. Diluted Conc. Batch Releases	Ci µCi/m! µCi/ml	6.80E-03 2.47E-10 2.47E-10	8.96E-03 3.62E-10 3.62E-10	7.34E-03 2.31E-10 2.31E-10	2.86E-03 1.06E-10 1.06E-10	2.60E-02 2.33E-10 2.33E-10
B. Tritium						
 Total Release Avg. Diluted Conc. Batch Releases 	Ci µCi/ml µCi/ml	1.66E+02 6.00E-06 6.00E-06	9.44E+01 3.81E-06 3.81E-06	1.55E+02 4.88E-06 4.88E-06	1.85E+02 6.85E-06 6.85E-06	6.00E+02 5.40E-06 5.40E-06
C. Dissolved & Entrained Gases	_					
 Total Release Avg. Diluted Conc. 	Ci µCi/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	1.54E-06 5.68E-14	1.54E-06 1.38E-14
3. Batch Releases	μCi/ml	0.00E+00	0.00E+00	0.00E+00	5.68E-14	1.38E-14
D. Gross Alpha						
Total Release Avg. Biluted Cons.	Ci µCi/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
 Avg. Diluted Conc. Batch Releases 	μCi/ml	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
E. Volume of Liquid Waste						
 Continuous Releases Batch Releases 	liters liters	0.00E+00 9.22E+05	0.00E+00 5.04E+05	0.00E+00 7.88E+05	0.00E+00 9.70E+05	0.00E+00 3.18E+06
F. Volume of Dilution Water		٠				
 Continuous Releases Batch Releases 	liters liters	2.76E+09 2.76E+10	2.48E+09 2.48E+10	3.18E+09 3.18E+10	2.71E+09 2.71E+10	1.11E+10 1.11E+11

^{*} Excludes tritium, dissolved and entrained noble gases, and gross alpha.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Effluents - Continuous Mode

A. Fission and Activation Products	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	<u>Qtr 3</u>	Qtr 4	<u>Year</u>
A. Fission and Activation Products None	Ci	-	-	-	-	
Total for Period	Ci	0.00+00	0.00+00	0.00+00	0.00+00	0.00+00
B. Tritium H-3	Ci	0.00+00	0.00+00	0.00+00	0.00+00	0.00+00
C. Dissolved & Entrained Gases None	Ci	<u>.</u>	-	-	-	-
Total for Period	Ci	0.00+00	0.00+00	0.00+00	0.00+00	0.00+00
D. Gross Alpha Total for Period	Ci	0.00+00	0.00+00	0.00+00	0.00+00	0.00+00

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Effluents - Batch Mode

	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	Qtr 3	<u>Qtr 4</u>	<u>Year</u>
A. Fission and Activation Products	٥.	0.005.00	0.005.00	0.00=.00	0.005.00	0.005.00
BE-7	Ci	6.63E-06	0.00E+00	0.00E+00	0.00E+00	6.63E-06
BI-214	Ci	0.00E+00	1.00E-06	0.00E+00	0.00E+00	1.00E-06
CO-57	Ci	6.56E-06	1.46E-05	5.61E-06	0.00E+00	2.68E-05
CO-58	Ci	2.44E-04	4.54E-03	2.49E-03	1.22E-03	8.49E-03
CO-60	Ci	1.90E-03	1.04E-03	1.69E-03	1.17E-03	5.79E-03
CS-137	Ci	5.09E-06	4.23E-06	9.55E-06	1.38E-05	3.27E-05
FE-55	Ci	2.01E-03	1.36E-03	1.25E-03	0.00E+00	4.62E-03
FE-59	Ci	1.86E-06	0.00E+00	0.00E+00	0.00E+00	1.86E-06
I-131	Ci	0.00E+00	0.00E+00	0.00E+00	2.73E-06	2.73E-06
K-40	Ci	5.03E-06	0.00E+00	0.00E+00	0.00E+00	5.03E-06
MN-54	Ci	9.12E-05	7.95E-06	4.05E-05	6.57E-07	1.40E-04
NI-63	Ci	2.34E-03	1.78E-03	1.50E-03	0.00E+00	5.62E-03
PB-214	Ci	1.55E-06	0.00E+00	0.00E+00	0.00E+00	1.55E-06
SB-124	Ci	0.00E+00	0.00E+00	0.00E+00	3.80E-05	3.80E-05
SB-125	Ci	1.93E-04	1.86E-04	3.48E-04	4.19E-04	1.15E-03
ZN-65	Ci	0.00E+00	1.87E-05	9.92E-06	0.00E+00	2.87E-05
Total for Period	Ci	6.80E-03	8.96E-03	7.34E-03	2.86E-03	2.60E-02
B. Tritium						
H-3	Ci	1.66E+02	9.44E+01	1.55E+02	1.85E+02	6.00E+02
C. Dissolved & Entrained Gases						
X-133	Ci	0.00E+00	0.00E+00	0.00E+00	1.54E-06	1.54E-06
Total for Period	· Ci	0.00E+00	0.00E+00	0.00E+00	1.54E-06	1.54E-06
		· · · · · · · · · · · · · · · ·				
D. Gross Alpha						
Total for Period	Ci	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 2

Supplemental Information

This attachment includes supplemental information to the gaseous and liquid effluents report.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

I. Regulatory Limits - Per Unit

A.	Noble Gases - Air Dose		
	 Calendar Quarter Gamma Dose Calendar Quarter Beta Dose Calendar Year Gamma Dose Calendar Year Beta Dose 	= 5 = 10 = 10 = 20	mRAD mRAD mRAD mRAD
В.	Liquid Effluents - Dose		
	 Calendar Quarter Total Body Dose Calendar Quarter Organ Dose Calendar Year Total Body Dose Calendar Year Organ Dose 	= 1.5 = 5 = 3 = 10	mREM mREM mREM

C. Gaseous Effluents - Iodine-131 & 133, Tritium, and Particulates with Half-lives > 8 days

4	O-landar O	100, Thuani, and Farticulati	es with L
ι.	Calendar Quarter Organ Dose	= 7.5	mREM
2	Calendar Year Organ Dose		MINTIN
۷.	Calcillat Teat Olgan Dose	= 15	mRFM

II. Maximum Permissible Effluent Concentrations

A. Gaseous Effluents

1. Information found in Offsite Dose Calculation Manual

B. Liquid Effluents

1. Information found in 10 CFR Part 20, Appendix B, Table 2, Column 2

III. <u>Average Energy</u>

(not applicable)

IV. Measurements and Approximations of Total Radioactivity

Analyses of specific radionuclides in selected or composited samples as described in the Selected Licensee Commitments are used to determine the radionuclide composition of the effluent. A summary description of the method used for estimating overall errors associated with radioactivity measurements is provided as part of this attachment.

V. <u>Batch Releases</u>

A. Liquid Effluents

1	Total Number of Batch Releases		
١.	Total Number of Batch Releases	=	7.40E+01
2	Total Time (min) for Batch Releases		
	rotal rime (min) for Batch Releases	=	4.53E+03
3.	Maximum Time (min) for a Batch Release		
	Maximum Fillic (mill) for a Balcii Release	=	1.14E+02
4.	Average Time (min) for Batch Releases		
	The Chilly for Batch Neleases	=	6.13E+01
5 .	Minimum Time (min) for a Batch Release		
	Time (min) for a pater Release	=	3.00E+01
6.	Average Dilution Water Flow During Release (gpm)		5.505
	The second water flow build Release (gpm)	=	5.58E+04

B. Gaseous Effluents

	Eiliging		
1.	. Star Italibor of Daton Meleases	=	6.40E+01
2	Total Times (sets) for the sets	_	0.405701
۷.	Total Time (min) for Batch Releases	=	1.03E+06
2	Mariana	_	1.03⊏+06
ა.	Maximum Time (min) for a Batch Release	=	4.49E+04
4	Avenue Time ())	_	4.495+04
4.	Average Time (min) for Batch Releases	=	1.61E+04
_	NAImine To The Control of the Contro	_	1.016+04
Ο.	Minimum Time (min) for a Batch Release	_	8 00F+00
	(The second record rec	_	0.000 ± 0.00

VI. <u>Abnormal Releases</u>

See Attachment 5, Unplanned Offsite Releases.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Carbon-14

Carbon-14 (C-14), with a half-life of 5730 years, is a naturally occurring isotope of carbon produced by cosmic ray interactions in the atmosphere. Nuclear weapons testing in the 1950s and 1960s significantly increased the amount of C-14 in the atmosphere. C-14 is also produced in commercial nuclear reactors, but the amounts produced are much less than those produced naturally or from weapons testing.

In Regulatory Guide 1.21, Revision 2, "Measuring, Evaluating, and Reporting Radioactive Material in Liquid and Gaseous Effluents and Solid Waste", the NRC recommends U.S. nuclear power plants evaluate whether C-14 is a "principal radionuclide", and if so, report the amount of C-14 released. Improvements over the years in effluent management practices and fuel performance have resulted in a decrease in gaseous radionuclide (non-C-14) concentrations, and a change in the distribution of gaseous radionuclides released to the environment. As a result, many sites show C-14 has become a "principal radionuclide" for the gaseous effluent pathway, as defined in Regulatory Guide 1.21, Rev. 2. Catawba Nuclear Station 2015 ARERR contains estimates of C-14 radioactivity released in 2015, and estimates of public dose resulting from the C-14 effluent.

Because the dose contribution of C-14 from liquid radioactive waste is much less than that contributed by gaseous radioactive waste, evaluation of C-14 in liquid radioactive waste is not required (Ref. Reg. Guide 1.21, Rev. 2). The quantity of gaseous C-14 released to the environment can be estimated by use of a C-14 source term scaling factor based on power generation (Ref. Reg. Guide 1.21, Rev. 2). Many documents provide information related to the magnitude of C-14 in typical effluents from commercial nuclear power plants. Those documents suggest that nominal annual releases of C-14 in gaseous effluents are approximately 5 to 7.3 curies from PWRs (Ref. Reg. Guide 1.21, Rev. 2). A more recent study recommends a higher C-14 gaseous source term scaling factor of approximately 9.0 to 9.8 Ci/GWe-yr for a PWR (Westinghouse) (Ref. EPRI 1021106). For the Catawba Nuclear Station 2015 ARERR a source term scaling factor of 9.4 Ci/GWe-yr is assumed. Using a source term scaling factor of 9.4 Ci/GWe-yr and actual electric generation (MWe-hrs) from Catawba Nuclear Station in 2015 results in a site total C-14 gaseous release estimate to the environment of 19.73 Curies. 70% of the C-14 gaseous effluent is assumed to be from batch releases (e.g. WGDTs), and 30% of C-14 gaseous effluent is assumed to be from continuous releases through the unit vents (ref. IAEA Technical Reports Series no. 421, "Management of Waste Containing Tritium and Carbon-14", 2004).

C-14 releases in PWRs occur primarily as a mix of organic carbon and carbon dioxide released from the waste gas system. Since the PWR operates with a reducing chemistry, most, if not all, of the C-14 species initially produced are organic (e.g., methane). As a general rule, C-14 in the primary coolant is essentially all organic with a large fraction as a gaseous species. Any time the RCS liquid or gas is exposed to an oxidizing environment (e.g. during shutdown or refueling), a slow transformation from an organic to an inorganic chemical form can occur. Various studies documenting measured C-14 releases from PWRs suggest a range of 70% to 95% organic with an average of 80% organic with the remainder being CO₂ (Ref. EPRI TR-105715). For the Catawba Nuclear Station 2015 ARERR a value of 80% organic C-14 is assumed.

Public dose estimates from airborne C-14 are performed using dose models in NUREG-0133 and Regulatory Guide 1.109. The dose models and assumptions used are documented in the Catawba ODCM. The estimated C-14 dose impact on the maximum organ dose from airborne effluents released from Catawba Nuclear Station in 2015 is well below the 10CFR50, Appendix I, ALARA design objective (i.e., 15 mrem/yr per unit).

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Overall Estimate of Error for Effluent Radioactivity Release Reported

The estimated percentage of overall error for both Liquid and Gaseous effluent release data at Catawba Nuclear Station has been determined to be \pm 30.3%. This value was derived by taking the square root of the sum of the squares of the following discrete individual estimates of error:

1.	Flow Rate Determining Devices	=	± 20%
2.	Counting Statistical Error	=	± 20%
3.	Calibration Error	=	± 10%
4.	Calibration Source Error	=	± 2.5%
5.	Sample Preparation Error	=	± 3%

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Summary of Changes in Land Use Census Affecting Effluent Dose Calculations

The 2015 Land Use Census was performed July 8-9, 2015, and the results were certified and made available for use on July 16, 2015. The following are changes to residences, gardens, and milk animals from the previous year.

Residences

The residence in the NW sector at 1.39 miles was replaced by a nearer residence at 1.27 miles.

Gardens

The non-irrigated garden in the N sector at 1.55 miles was replaced by a non-irrigated garden at 0.69 miles. The non-irrigated garden in the NNE sector at 4.47 miles was replaced by a non-irrigated garden at 2.39 miles. The non-irrigated garden in the ENE sector at 2.73 miles was replaced by an irrigated garden at 1.44 miles. The non-irrigated garden in the ENE sector at 3.52 miles was replaced by an irrigated garden at 2.26 miles. The non-irrigated garden in the ESE sector at 3.70 miles was replaced by a non-irrigated garden at 1.29 miles. The irrigated garden in the SE sector at 2.55 miles was replaced by a non-irrigated garden at 1.50 miles. The non-irrigated garden in the SSW sector at 1.34 miles was replaced by a non-irrigated garden at 0.89 miles. The non-irrigated garden in the SW sector at 2.02 miles was replaced by an irrigated garden at 0.78 miles. The non-irrigated garden in the WSW sector at 2.03 miles was replaced by a non-irrigated garden at 1.98 miles. The non-irrigated garden in the NNW sector at 2.13 miles was replaced by a non-irrigated garden at 1.19 miles.

Milk Animals

No changes to nearest milk animal in each sector.

Environmental Monitoring Locations

No changes to environmental monitoring locations in each sector.

Attachment 3 Solid Radioactive Waste Disposal

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 3

Solid Radioactive Waste Disposal

This attachment includes a summary of the solid waste shipped off-site for burial and/or disposal, including:

- Container volume
- Total Curie content
- Principal Radionuclides
- Source/Type of waste
- Solidification agent or absorbent
- Type of shipping container
- Number of shipments
- Other relevant information as necessary

Attachment 3 Solid Radioactive Waste Disposal

	Type of Waste Shipped	Number of Shipments	Number of Containers	Waste Class	Container Type	Solidification Agent	Burial Volume (m³)	Total Activity (Curies)
1.	Waste from Liquid Systems							
	a. Dewatered Secondary Resins	-	-	-	-	-	-	-
	b. Dewatered Primary Resins	2	2	1 B 1 A S	2 HIC	NA	9.24	83.960
	c. Evaporator Concentrates	-	-	-	-	-	-	-
	d. Dewatered Mechanical Filters	-	-	-	-	-	-	-
	e. Dewatered Demineralizers	-	-	-	-	-	-	-
	f. Solidified (cement) Acids, Oils, Sludge	-	-	-	-	-	-	-
2.	Dry Solid Waste							
	a. Dry Active Waste (compacted)	-	-	-	-	-		-
	b. Dry Active Waste (non- compacted)	-	-	-	-	-	-	-
	c. Dry Active Waste (brokered)	25	46	Α	GDP	NA	468.02	0.731
	d. Irradiated Components		- `	-	-	-	-	-
3.	Total Solid Waste	27	48		-		477.25	84.697

Attachment 3 Solid Radioactive Waste Disposal

		Type of Waste Shipped	Radionuclide	% Abundance
1.	W	aste from Liquid Systems		
	a.	Dewatered Secondary Resins	N/A	N/A
	b.	Dewatered Primary Resins	H-3 Mn-54 Co-57 Co-58 Co-60	0.02% 2.16% 0.07% 0.46% 16.97%
			Zn-65 Sb-125 Ba-133 Cs-137 Ce-144 C-14 Fe-55 Ni-59	0.35% 0.30% 0.01% 0.13% 0.02% 0.07% 15.86% 0.46%
		.	Ni-63	63.13%
	C.	Evaporator Concentrates	N/A	N/A
	d.	Dewatered Mechanical Filters	N/A	N/A
	e.	Dewatered Demineralizers	N/A	N/A
	f.	Solidified (cement) Acids, Oils, Sludge	N/A	N/A
2.	Dr	y Solid Waste		
	a.	Dry Active Waste (compacted)	N/A	N/A
	b.	Dry Active Waste (non-compacted)	N/A	N/A
	C.	Dry Active Waste (brokered)	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 Sn-113 Sb-125 Cs-137 Ce-144 C-14 Fe-55 Ni-63	0.19% 5.32% 0.16% 12.05% 0.07% 25.81% 0.43% 1.68% 1.66% 0.14% 1.26% 0.06% 0.14% 0.54% 43.57% 6.92%
	d.	Irradiated Components	N/A	N/A

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 4

Meteorological Data

This attachment includes a summary of meteorological joint frequency distributions of wind speed, wind direction, and atmospheric stability (hours of occurrence).

04 1 1114	Wind						-	He	ours of	Occu	rrence						.
Stability Class	Speed									ector							
ļ	(mph)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
]	0.46-0.75	0.	0	0	0	0_	00	0	0	0	0	0	0	0	0	0	0
]	0.76-1.00	0	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.01-1.25	0	0	0_	0	0	0	0_	0	0	0	0	0	0	0	0	0
[1.26-1.50	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.51-2.00	0	0_	0	0	0	11	2	1	1	11	2	5	1	0	0	0
	2.01-3.00	0	0	2	0	0	11	8	47	26	75	81	27	14	3	1	0_
Α .	3.01-4.00	14	5	11	0	0	_1	3	4	8_	35	39	8	6_	4	6	11
}	4.01-5.00	9	19	11	0	0	0	0	0	0_	13	7	1	0_	2	6	10
1	5.01-6.00	6	20	5	0	0	0_	0	0	0_	3	0	0	0	11	3	6
	6.01-8.00	1	5	_ 1	1	0	0_	0	0	0	0	0_	0_	_0	1	0	8
[]	8.01-10.00	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	10.01-max	0	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0
	0.46-0.75	0	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.76-1.00	0	0	_ 0 _	_0_	0	0	0	0	0	. 0	0	0	0	0	0	0
	1.01-1.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ļ.	1.26-1.50	0	0	0_	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1.51-2.00	1	0	0	0	2	3	4	6	3	10	7	11	4	0	1	0
ľ	2.01-3.00	3	2	1	1	3	2	7	40	24	43	37	6	12	6	4	3
В	3.01-4.00	15	14	3	1	0	0	3	4	1	7	8	1	3	6	7	8
	4.01-5.00	30	27	10	1	0	0	1	0	0	5	1	2	1	3	0	4
	5.01-6.00	4	13	5	0	0	0_	0	0	0	1	0	1	0	1	2	3
	6.01-8.00	2	2	1	0_	.0	0	0	0	0	0	0	0	0	0	1	6
ļ .	8.01-10.00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
ļ ,	10.01-max	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Stability	Wind							Н	ours of	Occu	rrence						
Class	Speed									ector							
	(mph)	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	wsw	W	WNW	NW	NNW
	0.46-0.75	0	0	0	Ò	0		0_	0	0	0	0	0	0	0	0	0
]	0.76-1.00	0	0	0_	00	0_	0	0	0	0	0	0_	0	.0	0	0	0
]	1.01-1.25	0	0	0	0	0	0	0	1_	0	1	0	0	0	0	0	0
1	1.26-1.50	0	0	1	0	0	0	0	0	2	3	3	1	1	2	0	0
l	1.51-2.00	7	2	2	1	5	5	13	17	15	24	19	10	7	2	2	5
	2.01-3.00	20	13	8	4	6	3	7	21	30	42	34	15	10	5	5	10
С	3.01-4.00	48	27	9	0	0	-1	2	1	3_	8	6	5	1	4	5	9
	4.01-5.00	20	41	16	1	0	0	1_	1	0	7	5	0	0	1	2_	4
	5.01-6.00	7	19	9_	0	0	0	0	0_	0	0	0_	_ 0	0	1	3	0
	6.01-8.00	0	9	5	0	0	0	0	0	0	0	0	0	0	11	0_	2
	8.01-10.00	0	1	0	00	0_	0	0	0	0	0	0	0	0	0	0	1_1_
	10.01-max	0	0	0_	. 0	0	0	0	0	0	0	0_	0	0	0	0	0
	0.46-0.75	0	0	0	0	0	0	2	0	0	2	1	1	2	0	0	0
	0.76-1.00	1	2	0	0	1_	_ 0	_2	5	9	15	6_	14	6	6	3	1
ļ	1.01-1.25	5	2	2	0	0	3	9	11	14	20	19	_15	11	8	9	3
}	1.26-1.50	8	9	1	3	4	_ 8_	14_	23	42	49	46	24	31_	11	9	18
	1.51-2.00	31	5	11	9	6	11	13	40	13 4.	126	.75	27	24	- 33	16	32
D	2.01-3.00	168	83	21	16	14	9	15	63	97	89	72	17	18	16	36	- 81
}	3.01-4.00	223	133	69	16	6	_ 2	10	11	37	34	14	11	3	5	20	33
	4.01-5.00	131	161	54	9	0	0	2	1_	5	5	5	2	1	6	13	14
	5.01-6.00	33	78	20	1	0	0	0	0	0	1	0	0	1	2	6	12
	6.01-8.00	4	29	6	0	0	0	0	0	0	0	0	0	0	1	3	12
]	8.01-10.00	1	2	0_	0	0	0	0	0	0	0	0	0	0	0	0	2
	10.01-max	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0

	Wind							Н	ours of	Occur	rence						
Stability Class	Speed									ector							
Class	(mph)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	s W	wsw	W	WNW	NW	NNW
1	0.46-0.75	1	0	0	0	1	1	0	2	4	7	10	1_1	6	2	0	2
	0.76-1.00	1	0	0	0	0	0	3	11	19	31	40	21	19	5	10	4
	1.01-1.25	1_1	0	0	0	2	2	2	8	38	60	53	31	28	17	23	11
1	1.26-1.50	0	1	0	0	0	5	7	13	89_	85	61	_14	21	17	_26_	20
	1.51-2.00	16	5	1	3	2	3	19	51	129	116	41	19	20	26_	35	54
E	2.01-3.00	71	7	4	3	6	11	24	58	107	68	15_	7	7	13	56_	68
-	3.01-4.00	38	7	5	1	4_	3	15	16	18	28	3_	11	1_	0	6_	14
	4.01-5.00	16	15	13	4	0	1	3	2	7	0	0	0	0	0	2_	0
	5.01-6.00	3	5	6	0	0_	0	0	0_	0_	1	0	0	0_	0	0	0
l i	6.01-8.00	0	0	0	0	0_	0	0	_1_	0	.0	0	0	0	0	0	0
ļ I	8.01-10.00	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	. 0_	0
	10.01-max	0	0	0	0	0	0	0	0	0	0	0_	0	0	0	0	0
	0.46-0.75	0_	0	0	1	0	0	0	1	6	4	6	4	10	2	2	0
Į i	0.76-1.00	1_	_1	0	0	0	0	1	5_	18_	24	30	17	11	11	9	3
ļ .	1.01-1.25	1	0	0	0	0_	0	3	2	32_	38	24	19	15	6	20_	3_
	1.26-1.50	1_	0	0	0	0	0	1	8	44	23	15_	17	10	16	25_	11
1	1.51-2.00	11	0	1	0	0_	0	1	5_	15	10	10	10	21	19	18_	_38_
F	2.01-3.00	44	0	0	0	0_	0	4	6	1	0	3_	11	2	6	11	77
	3.01-4.00	5	0	0	0	0	0	1	2	0	1	1_	0	0	1	0_	2
}	4.01-5.00	0	0	0	• 0	0	1	0	2	0	0	0	0	0	1	0_	0
l	5.01-6.00	0	0	0	0	0	0	0	0	0	0	0	0 :	0	0	0_	0
į l	6.01-8.00	0	0	0	0	0	0	0	0	0_	0	0	0	0	0	0_	0
}	8.01-10.00	0	0	0	_0_	_0_	0	. 0	0_	0_	0_	0_	0_	0_	0	0	0
	10.01-max	0	0	0	_0	0	0	0	0	0	0_	0	0	0	0	0_	0_

Stability	Wind																
Class	Speed									ector							
	(mph)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	sw	wsw	W	WNW	NW	NNW
1	0.46-0.75	0	0	0	0_	0	0	0	0	7_	6	19	10	14	9	6	0_
Í	0.76-1.00	0	0	0	0	0	0	0	1_	18	_15	19	29_	25	19	14	4
1	1.01-1.25	0_	0	0	0	0	0	0	2	30	18	15	10	18	16	10_	10
}	1.26-1.50	0	0.	0	0_	0	0	0	6	21	25	18	7	14	6	13	25
ł	1.51-2.00	6	0	0	0	0	0	0	3_	7_	3	4	11	11	8	11	43_
į .	2.01-3.00	11	0	0	0	0_	00	0	3	1	00	11	0	1	2	11	17
G	3.01-4.00	5	0	0	0	0	0	0	0_	0_	0	0_	0	0	0	0	1
}	4.01-5.00	0	0	0	_ o	o	00	0	0_	0_	_0_	0	0	0	0	0	0_
Į.	5.01-6.00	0	0	0	0	0	0	0	0	0_	0	0	0	0	0	0	0
1	6.01-8.00	0	0	0	0_	0_	_ 0_	0	o	0_	0_	0	0_	0	_0	0	0
1	8.01-10.00	0	0	0	0_	0	0	0	0	0	0_	0	0	0	0_	0	0
	10.01-max	0	0	0	0_	0_	0	0	0	0_	0_	0	0	0	_0_	0	0_

Attachment 5 Unplanned Offsite Releases

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 5

Unplanned Offsite Releases

This attachment includes a summary of the unplanned offsite releases of gaseous and liquid radioactive effluents.

Attachment 5 Unplanned Offsite Releases

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Catawba Nuclear Station had no unplanned liquid releases in 2015.

Catawba Nuclear Station had four (4) unplanned gaseous releases in 2015. Summaries below include:

- · Detailed description of event.
- Total Curies released.
- Anticipated dose consequences.

In November 2014, a fuel defect was identified in the Unit 1 reactor at CNS. The fuel defect resulted in higher than normal noble gas inventory (e.g. Xe-133, Xe-135, etc.) in the reactor coolant system. All four unplanned releases occurred during activities that interfaced with the Unit 1 reactor coolant system.

NCR 01945823

The first unplanned release occurred on August 20, 2015 when Unit 1 was online at full power (Mode 1). During sampling of the Unit 1 pressurizer in the nuclear sampling lab, a Trip 2 alarm (high radiation alarm) was received on the auxiliary building noble gas monitor accompanied by a Trip 1 alarm on the Unit 1 vent noble gas monitor. The fume hood exhaust fan in the sampling hood was inoperable during the sampling, which enabled buildup of noble gas concentrations in the lab and the auxiliary building.

NCR 01977533 and NCR 01977538

The second and third unplanned releases occurred on November 21, 2015 when Unit 1 was shut down and in cold shutdown (Mode 5) at the beginning of refueling outage 1EOC22. In both cases, Unit 1 pressurizer sampling was in progress and Trip 2 alarms were received on the Unit 1 vent noble gas monitor, but there were no alarms on the auxiliary building noble gas monitor. The auxiliary building noble gas monitor samples from 12 different sampling locations within the auxiliary building in sequence, and it was not sampling the point(s) within the vicinity of the sampling lab when these releases occurred.

NCR 01978081

The fourth release occurred on November 23, 2015 when Unit 1 was in Mode 5 during 1EOC22. This release was initiated inside the Unit 1 containment building when opening 1" reactor head motor operated vent valves. The Unit 1 vent noble gas monitor received a Trip 2 alarm. The Unit 1 containment noble gas monitor indicated an elevated count rate but did not exceed its alarm set-points.

Table 5-1. Unplanned release data_

Start	End	Reactor	Total Activity a		Projected Dos	e
Date/Time	Date/Time	Mode	(Xe-133 Equivalent, Ci)	Gamma Air (mrad)	Beta Air (mrad)	Max Organ ^b (mrem)
08/20/15 07:41	08/20/15 07:49	1	1.29E-01	5.05E-05	1.50E-04	0
11/21/15 11:06	11/21/15 11:31	5	1.85E+00	7.25E-04	2.16E-03	0
11/21/15 14:48	11/21/15 16:37	5	2.78E+00	1.09E-03	3.25E-03	0
11/23/15 16:13	11/23/15 19:37	5	4.77E+00	1.87E-03	5.58E-03	0
		Total	9.53E+00	3.74E-03	1.11E-02	0

- All unplanned releases were quantified using the monitor readings on the Unit 1 noble gas monitor (1EMF36) and the monitor's correlation factor to determine a Xe-133 equivalent activity. This methodology is consistent with the ODCM.
- b. There are no inhalation/ingestion dose pathways for radioactive noble gases, therefore the Max Organ dose is 0 mrem for each unplanned release.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 6

Assessment of Radiation Dose from Radioactive Effluents to Members of the Public (includes fuel cycle dose calculation results)

This attachment includes an assessment of radiation doses to the maximum exposed member of the public due to radioactive liquid and gaseous effluents released from the site for each calendar quarter for the calendar year of the report as well as the total dose for the calendar year.

This attachment also includes an assessment of radiation doses to the maximum exposed member of the public from all uranium fuel cycle sources within 8 km of the site for the calendar year of this report to show conformance with 40 CFR Part 190.

Methods for calculating the dose contribution from liquid and gaseous effluents are given in the Offsite Dose Calculation Manual (ODCM).

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents Dose Summary

A. Noble Gases	<u>Units</u>	<u>Qtr 1</u>	Qtr 2	Qtr 3	<u>Qtr 4</u>	<u>Year</u>
 Maximum Gamma Air (a) Limit (b) % of Limit 	mRAD mRAD	9.73E-03 1.00E+01 9.73E-02	8.76E-03 1.00E+01 8.76E-02	9.46E-03 1.00E+01 9.46E-02	1.80E-02 1.00E+01 1.80E-01	4.60E-02 2.00E+01 2.30E-01
 Maximum Beta Air (a) Limit (b) % of Limit 	mRAD mRAD	7.89E-03 2.00E+01 3.94E-02	6.82E-03 2.00E+01 3.41E-02	5.96E-03 2.00E+01 2.98E-02	3.27E-02 2.00E+01 1.64E-01	5.34E-02 4.00E+01 1.33E-01
Receptor Location 0.5 miles N	NE					
B. lodine, H-3, & Particulates 1. Maximum Organ Dose (a) Limit (b) % of Limit	mREM mREM	1.25E+00 1.50E+01	1.48E+00 1.50E+01	1.52E+00 1.50E+01	1.30E+00 1.50E+01	5.55E+00 3.00E+01
(b) 70 OI LIMIL		8.33E+00	9.84E+00	1.01E+01	8.70E+00	1.85E+01

Receptor Location 0.5 miles NNE
Critical Age CHILD
Critical Organ BONE

Critical Pathway VEGETATION

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Effluents Dose Summary

	<u>Units</u>	<u>Qtr 1</u>	<u>Qtr 2</u>	<u>Qtr 3</u>	Qtr 4	<u>Year</u>
A. Batch Mode	,					
 Maximum Organ Dose 	mREM	1.81E-02	1.19E-02	1.51E-02	2.08E-02	6.61E-01
(a) Limit	mREM	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01
(b) % of Limit		1.81E-01	1.19E-01	1.51E-01	2.08E-01	3.31E-01
2. Mayimum Total Body Doop	m DEM	4 705 00	1.17E-02	1.48E-02	2.03E-02	6.48E-02
 Maximum Total Body Dose (a) Limit 	mREM mREM	1.78E-02 3.00E+00	3.00E+00	1.46E-02 3.00E+00	3.00E+00	6.46E-02
(a) Limit (b) % of Limit	IIIKEW	5.94E-01	3.89E-01	4.93E-01	6.78E-01	1.08E+00
(b) 70 OI LITTIE		5.5 7 L-01	3.03E-01	4.55L-07	0.70L-01	1.002.00
Critical Age CHILD						
Critical Organ LIVER						
Critical Pathway POTABLE WA	TER					
B. Continuous Mode						
 Maximum Organ Dose 	mREM	0.00E-00	0.00E-00	0.00E-00	0,00E-00	0.00E-00
(a) Limit	mREM	1.00E+01	1.00E+01	1.00E+01	1.00E+01	2.00E+01
(b) % of Limit		0.00E-00	0.00E-00	0.00E-00	0.00E-00	0.00E-00
2 Mayimum Total Bady Daga	mREM	0.00E-00	0.00E-00	0.00E-00	0.00E-00	0.00E-00
Maximum Total Body Dose I imit	mREM	3.00E+00	3.00E+00	0.00E-00 3.00E+00	3.00E+00	6.00E+00
(a) Limit (b) % of Limit	HILZEIAL	0.00E-00	0.00E+00	0.00E-00	0.00E-00	0.00E+00
(b) 70 of Eithit		0.00L~00	0.00L-00	0.00L*00	0.00L-00	0.00L-00

Critical Age N/A
Critical Organ N/A
Critical Pathway N/A

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

40 CFR Part 190 Uranium Fuel Cycle Dose Calculation Results

In accordance with the requirements of 40 CFR Part 190, the annual dose commitment to any member of the general public shall be calculated to assure that doses are limited to 25 millirems to the total body or any organ with the exception of the thyroid which is limited to 75 millirems. The fuel cycle dose assessment for Catawba Nuclear Station includes liquid and gaseous effluent dose contributions from Catawba Nuclear Station and direct and air-scatter dose from the onsite ISFSI. No other uranium fuel cycle facility contributes significantly to the maximum exposed individual. Included in the gaseous effluent dose calculations is an estimate of the dose contributed by Carbon-14 (Ref. Attachment 2, Supplemental Information, of this report for further information). The combined dose to a maximum exposed individual from effluent releases and direct and air-scatter dose from the ISFSI is below 40 CFR Part 190 limits as shown by the following summary.

Note: The 40 CFR Part 190 effluent dose analysis to the maximum exposed individual from liquid and gas releases includes the dose from noble gases (i.e., total body and skin).

40 CFR Part 190 Effluent Dose Summary

 A. Maximum Organ Dose (other than TB) 1. Location 2. Critical Age 3. Critical Organ 4. Gas Contribution % 5. Liquid Contribution % 	5.57E+00 mREM 0.5 miles NNE CHILD BONE 99.60% 0.40%
B. Maximum Total Body Dose	2.45E+00 mREM
1. Location	0.5 miles NNE
Critical Age	CHILD
Gas non-NG Contribution %	95.63%
4. Gas Contribution %	1.72%
5. Liquid Contribution %	2.65%

Direct and air-scatter radiation dose contributions from the onsite ISFSI have been determined from the 10 CFR 72.212 Evaluation Report, MAGNASTOR®, Revision 0. The maximum dose rate to the nearest real individual from the ISFSI is conservatively calculated to be less than 14.7 mrem/yr.

The attached excerpt from the 10 CFR 72.212 Evaluation Report, MAGNASTOR®, Revision 0 is provided to document the method used to calculate the dose from ISFSI as less than 14.7 mrem/yr to the nearest real individual.

Total dose from liquid and gaseous effluents from Catawba Nuclear Station and direct and air-scatter dose from the onsite ISFSI is conservatively estimated to be less than 21 mrem/yr to the nearest real individual. This meets the 40 CFR Part 190 requirements of an annual dose commitment to any member of the general public of less than 25 mrem total body or any organ and 75 mrem to the thyroid.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

10 CFR 72.212 Evaluation Report, MAGNASTOR®, Revision 0

6.0 10 CFR 72.212(b)(5)(iii)- Radioactive Materials in Effluents and Direct Radiation

6.1 Purpose

10 CFR 72.212(b)(5)(iii) requires the general licensee to perform written evaluations, before use and before applying the changes authorized by an amended CoC to a cask loaded under the initial CoC or an earlier amended CoC, that establish that the requirements of 10 CFR 72.104 have been met. A copy of this record shall be retained until spent fuel is no longer stored under the general license issued under 10 CFR 72.210.

10 CFR 72.104 provides the regulatory criteria for radioactive materials in effluents and direct radiation from an ISFSI during normal operation and anticipated occurrences. Specifically, 10 CFR 72.104(a) limits the annual dose equivalent to any real individual who is located beyond the controlled area to 25 mrem to the whole body, 75 mrem to the thyroid, and 25 mrem to any other critical organ. This dose equivalent must include contributions from (1) planned discharges of radioactive materials (radon and its decay products excepted) to the general environment, (2) direct radiation from ISFSI operations, and (3) any other radiation from uranium fuel cycle operations within the region. In addition, 10 CFR 72.104(b) requires that operational restrictions be established to meet As Low As is Reasonably Achievable (ALARA) objectives for radioactive materials in effluents and direct radiation levels associated with ISFSI operations. Also, 10 CFR 72.104(c) requires that operational limits be established for radioactive materials in effluents and direct radiation levels associated with ISFSI operations to meet the above-mentioned dose limits.

This section provides the written evaluation required by 10 CFR 72.212(b)(5)(iii), demonstrating Duke Energy's compliance with the requirements of 10 CFR 72.104 for the CNS ISFSI.

6.2 Evaluation

This evaluation addresses the radiological dose rate from a composite population of all CNS ISFSI cask types.

6.2.1 §72.104(a) - Dose Limits

Duke Energy Calculation DPC-1229.00-00-0011, "Distance Measurements from ISFSI to Nearest Residents" determined that the nearest residence to the ISFSI is 0.35 miles (563.27 meters).

Calculation CNC-1229.00-00-0061, "UMS Cask Array Dose Analysis for Duke Catawba (NAC International Calculation 12418-5004, Revision 1)" determined the annual total dose (gamma plus neutron) at a distance of 495 meters from a 2x12 array of NAC-UMS® casks to be approximately 6.7 mrem. The evaluation was conservatively based on full cask loads of 24 bounding fuel assemblies (52,000 MWD/MTU, 3.45 wt% U-235, and 8 years cooling) as well as bounding activated components. The cask decay heat load was conservatively assumed to be 20 kW. The distance at which this dose was calculated (495 meters) is conservative compared to the distance to the closest real individual.

Calculation CNC-1229.00-00-0067, "MAGNASTOR Cask Array Dose Analysis for Duke Catawba" determined the annual total dose (gamma plus neutron) at a distance of 535 meters from a (future) 2x12 array of MAGNASTOR® casks to be approximately 7.97 mrem. The evaluation was conservatively based on full cask loads of 37 bounding fuel assemblies at a decay heat load of 35.5 kW. The distance at which this dose is calculated (535 meters) is conservative compared to the distance to the closest real individual.

The total calculated annual public dose from liquid and gaseous effluent pathways reviewed over the past 10 years is bounded by 5 mrem. No other uranium fuel cycle facility contributes significantly to the dose received by the closest real individual.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Based on the above, the calculated annual dose to the closest real individual due to the ISFSI, which is comprised of the currently existing 24 NAC-UMS® casks, and up to one 2x12 array of MAGNASTOR® casks, is determined to be less than 14.7 mrem, and the estimated annual dose due to Catawba power generation is less than 5 mrem. Hence, the total annual dose to the closest real individual (less than 19.7 mrem) is within the 10 CFR 72.104(a) limit.

Attachment 7 Information to Support the NEI Ground Water Protection Initiative

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 7

Information to Support the NEI Ground Water Protection Initiative

This attachment includes a summary of voluntary reports made in accordance with the NEI Ground Water Protection Initiative and a summary of ground water well sample data.

Attachment 7 Information to Support the NEI Ground Water Protection Initiative

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Duke Energy implemented a Ground Water Protection program in 2007. This initiative was developed to ensure timely and effective management of situations involving inadvertent releases of licensed material to ground water. As part of this program, Catawba Nuclear Station monitored 49 wells and 1 outfall from the Conventional Wastewater Treatment Ponds in 2015.

Wells are typically sampled quarterly or semi-annually. Ground water samples are regularly analyzed for tritium and gamma emitters, with select wells being analyzed for difficult-to-detect radionuclides. No gamma or difficult-to-detect radionuclides, other than naturally occurring radionuclides, were identified in well samples during 2015. Results from sampling during 2015 confirmed existing knowledge of tritium concentrations in site ground water.

Results from sampling during 2015 are shown in the table below.

No events meeting the criteria for voluntary notification per NEI 07-07, Industry Ground Water Protection Initiative, occurred at Catawba Nuclear Station in 2015.

Key to below table.

NS	-	Not scheduled to be sampled, not sampled due to insufficient volume in well, or well inaccessible during outage.
ρCi/l	-	picocuries per liter.
< MDA	-	less than minimum detectable activity, typically 250 pCi/l.
20,000 ρCi/I	-	the Environmental Protection Agency drinking water standard for tritium. This standard applies only to water used for drinking.
1,000,000 pCi/l	_	the 10 CFR Part 20, Appendix B, Table 2, Column 2, Effluent Concentration Limit for tritium.

Attachment 7 Information to Support the NEI Ground Water Protection Initiative

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Well	Location (Description	Tritiu	m Conce	ntration (pCi/l)	# of
Name	Location / Description		2nd Qtr			Samples
C-100DR	CNS GWPL/ C-100DR / U-1 SFP	<mda< td=""><td><mda< td=""><td><mda< td=""><td>NS</td><td>3</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>NS</td><td>3</td></mda<></td></mda<>	<mda< td=""><td>NS</td><td>3</td></mda<>	NS	3
C-101DR	CNS GWPI / C-101DR / U-1 SFP	3.37E+02	3.35E+02	3.74E+02	3.47E+02	4
C-101R	CNS GWPI / C-101R / U-1 SFP	5.84E+02	5.57E+02	4.62E+02	5.01E+02	4
C-102	CNS GWPI / C-102 / E of U1 SFP O/S protected area	4.07E+02	4.39E+02	4.11E+02	3.84E+02	4
C-103	CNS GWPI / C-103 / E of U1 SFP @ Cooling Towers	3.93E+02	3.73E+02	3.61E+02	2.48E+02	. 4
C-104	CNS GWPI / C-104 / U-1 RMWST	5.65E+02	4.19E+02	3.35E+02	NS	3
C-105	CNS GWPI / C-105 / Engr. Bldg.	6.92E+02	<mda< td=""><td><mda< td=""><td>1.25E+03</td><td>4</td></mda<></td></mda<>	<mda< td=""><td>1.25E+03</td><td>4</td></mda<>	1.25E+03	4
C-105R	CNS GWPI / C-105R / Engr. Bldg.	5.73E+02	4.59E+02	4.40E+02	5.76E+02	4
C-106	CNS GWPI / C-106 / W Parking Lot	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-106R	CNS GWPI / C-106R / W Parking Lot	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-107	CNS GWPI / C-107 / MET Tower Hill	8.25E+02	7.43E+02	5.97E+02	7.33E+02	4
C-108	CNS GWPI / C-108 /	NS	NS	NS	<mda< td=""><td>1</td></mda<>	1
C-109	CNS GWPI / C-109 /	NS	NS	NS	6.95E+02	11
C-110	CNS GWPI / C-110 /	NS	NS	NS	2.38E+03	1
C-200DR	CNS GWPI / C-200DR / U-2 SFP	NS	4.76E+02	4.05E+02	3.45E+02	3
C-200R	CNS GWPI / C-200R / U-2 SFP	NS	5.15E+02	6.27E+02	5.50E+02	3
C-201DR	CNS GWPI / C-201DR / U-2 SFP	6.02E+02	5.48E+02	4.55E+02	5.83E+02	4
C-201R	CNS GWPI / C-201R / U-2 SFP	4.61E+03	4.06E+03	4.95E+03	2.94E+03	4
C-202	CNS GWPI / C-202 / S of RMC Tent	5.14E+02	4.90E+02	4.61E+02	5.82E+02	4
C-203	CNS GWPI / C-203 / E of RMC Tent @ Cooling Towers	4.97E+02	2.50E+02	2.99E+02	4.99E+02	4
C-204	CNS GWPI / C-204 / S of RMC Tent	2.20E+02	2.08E+02	<mda< td=""><td>2.02E+02</td><td>4</td></mda<>	2.02E+02	4
C-205	CNS GWPI / C-205 / Adm. Parking	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-205R	CNS GWPI / C-205R / Adm. Parking	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-206	CNS GWPI / C-206 / W Parking Lot	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-207	CNS GWPI / C-207 / Mon. Tank B	4.14E+02	2.75E+02	4.16E+02	3.81E+02	4
C-207R	CNS GWPI / C-207R / Mon. Tank B	<mda< td=""><td><mda< td=""><td>2.71E+02</td><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td>2.71E+02</td><td><mda< td=""><td>4</td></mda<></td></mda<>	2.71E+02	<mda< td=""><td>4</td></mda<>	4
C-208	CNS GWPI / C-208 / N of MTB	<mda< td=""><td><mda< td=""><td><mda< td=""><td>2.01E+03</td><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>2.01E+03</td><td>4</td></mda<></td></mda<>	<mda< td=""><td>2.01E+03</td><td>4</td></mda<>	2.01E+03	4
C-209	CNS GWPI / C-209 / MTUville S of light pole 23A	2.04E+02	<mda< td=""><td>1.91E+02</td><td><mda< td=""><td>4</td></mda<></td></mda<>	1.91E+02	<mda< td=""><td>4</td></mda<>	4
C-210	CNS GWPI / C-210 / N of U2 Mech Equip Bldg	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-211	CNS GWPI / C-211 / W of RL Intake O/S Protected Area	8.93E+02	4.48E+02	7.00E+02	1.06E+03	4
C-212	CNS GWPI / C-212 / Behind Aquatic Center	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4
C-213	CNS GWPI / C-213 / Mon. Tank B	5.61E+03	4.19E+03	3.84E+03	4.19E+03	4
C-213R	CNS GWPI / C-213R / Mon. Tank B	<mda< td=""><td><mda< td=""><td>1.93E+02</td><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td>1.93E+02</td><td><mda< td=""><td>4</td></mda<></td></mda<>	1.93E+02	<mda< td=""><td>4</td></mda<>	4
C-214	CNS GWPI / C-214 / N of U2 TB	9.57E+02	9.73E+02	8.77E+02	8.82E+02	4
C-215	CNS GWPI / C-215 / N of U2 TB	3.78E+02	4.49E+02	3.83E+02	2.48E+02	4
C-217	CNS GWPI / C-217 / N of U2 TB	7.57E+02	8.50E+02	6.43E+02	7.50E+02	4
C-218	CNS GWPI / C-218 / N of U2 TB	<mda< td=""><td>1.52E+03</td><td>6.86E+02</td><td>3.67E+02</td><td>4</td></mda<>	1.52E+03	6.86E+02	3.67E+02	4
C-220	CNS GWPI / C-220 / N of U2 TB	2.68E+03	1.99E+03	2.44E+03	2.08E+03	4
C-221	CNS GWPI / C-221 / N of U2 TB	4.11E+02	5.06E+02	3.93E+02	3.98E+02	4
LMW-1B	CNS Landfill / LMW-1B / Landfill	NS	<mda< td=""><td>NS</td><td><mda< td=""><td>2</td></mda<></td></mda<>	NS	<mda< td=""><td>2</td></mda<>	2
LMW-2A	CNS Landfill / LMW-2A / Landfill	NS	<mda< td=""><td>NS</td><td><mda< td=""><td>2</td></mda<></td></mda<>	NS	<mda< td=""><td>2</td></mda<>	2
LMW-3A	CNS Landfill / LMW-3A / Landfill	NS	<mda< td=""><td>NS</td><td><mda< td=""><td>2</td></mda<></td></mda<>	NS	<mda< td=""><td>2</td></mda<>	2
LMW-4	CNS Landfill / LMW-4 / Landfill	NS	<mda< td=""><td>NS</td><td><mda< td=""><td>2</td></mda<></td></mda<>	NS	<mda< td=""><td>2</td></mda<>	2
LMW-5D	CNS Landfill / LMW-5D / Landfill	NS	<mda< td=""><td>NS</td><td><mda< td=""><td>2</td></mda<></td></mda<>	NS	<mda< td=""><td>2</td></mda<>	2

Attachment 7 Information to Support the NEI Ground Water Protection Initiative

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Well	Location / Depositation	Tritium Concentration (pCi/l)				# of
Name	Location / Description	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Samples
LMW-5S	CNS Landfill / LMW-5S / Landfill	NS	<mda< td=""><td>NS</td><td><mda< td=""><td>2</td></mda<></td></mda<>	NS	<mda< td=""><td>2</td></mda<>	2
OUTFALL017	CNS WC Ponds / OUTFALL-017 / WC Ponds	7.86E+02	7.77E+02	8.08E+02	7.42E+02	4
WCMW-3	CNS WC Ponds / WCMW-3 / WC Ponds	9.80E+02	1.29E+03	1.06E+03	8.56E+02	4
WCMW-4	CNS WC Ponds / WCMW-4 / WC Ponds	7.14E+02	5.23E+02	5.74E+02	5.27E+02	4
WCMW-5	CNS WC Ponds / WCMW-5 / WC Ponds	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>4</td></mda<></td></mda<>	<mda< td=""><td>4</td></mda<>	4

Well Description		Tritium (# of		
Name	Location / Description	Min	Avg	Max	Samples
WCMW-2 ⁽¹⁾	CNS WC Ponds / WCMW-2 / WC Ponds	5.68E+03	6.69E+03	7.48E+03	8

⁽¹⁾ Quarterly sampling through 6/17/2015, monthly thereafter. Sampling through 12/16/2015 indicated (NCR # 01939441, NCR # 01948296)

Attachment 8 Inoperable Equipment

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 8

Inoperable Equipment

This attachment includes an explanation of inoperable instruments related to effluent monitoring in excess of allowed time defined by licensing bases and an explanation of permanent or temporary outside liquid storage tanks exceeding 10 Curies total activity (excluding tritium and dissolved or entrained noble gases).

Attachment 8 Inoperable Equipment

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Catawba Nuclear Station experienced six (6) instances of inoperable equipment relevant to effluent monitoring in excess of SLC 16.11 limits during 2015. Details of each are described below.

Catawba Nuclear Station did not experience permanent or temporary unprotected outside liquid storage tanks exceeding 10 Curies total activity (excluding tritium and dissolved or entrained noble gases) during 2015.

SLC # from Table 16.11-7-1	Title	Completion Time	Determination and Data Reviewed
1.a	0EMF 50 (L)	14 Days	For 0EMF50(L), out of service time for 2015 is 37.59 days (11/16/2015 to 12/24/2015 TSAIL A-0-15-00661

For 2015, 0EMF-50 was non-functional from 11/16/2015 to 12/24/2015 due to a spurious Trip 2 condition. Troubleshooting determined valve leak by was causing the increase in counts seen by 0EMF50 and no issues existed with the detector. Calibration check was performed with no issues identified with 0EMF50L.

• WO 20013584-01

١				
	SLC # from Table 16.11-2-1	Title	Completion Time	Determination and Data Reviewed
	1.c	0EMF 57	14 Days	For 0EMF57, out of service time for 2015 was 21.71 days (11/25/2015 to 12/17/2015 TSAIL A-0-15-00754.

For year 2015, 0EMF57 was non-functional from 11/25/2015 to 12/17/2015 due to low flow indications on 0WLFS8250. Low flow issues were corrected under WO 20041271 and 0EMF57 was returned to service.

WO 20041271-01

SLC # from Table 16.11-2-1	Title	Completion Time	Determination and Data Reviewed
3.c	RL Minimum Flow Interlock	30 Days	For 0RLFT5930, out of service time for 2015 was 182.15 days (4/24/2015 to 10/23/2015 TSAIL C0-15-01133 and A-0-15-00001.

For year 2015, RL Min Flow Interlock was non-functional from 4/24/2015 to 10/23/2015 due to 0RLFT5930 being removed for pipe cleaning and carbon wrapping of RL piping per EC 105540. As part of the EC, 0RLFT5930 was replaced and restored under WO 02027933 following RL piping improvements.

WO 02027933

Attachment 8 Inoperable Equipment

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ſ				
ł	SLC # from Table 16.11-2-1	Title	Completion Time	Determination and Data Reviewed
	4.a	1EMF-45A	30 Days	For 1EMF-45A Low Range, out of service time for year 2015 is 340.34 days (1/24/2015 to 12/31/2015 TSAIL C1-15-00233 and T-1-15-00039).

For year 2015, 1EMF-45A was non-functional from 1/24/2015 to 12/31/2015 and has been rolled over to 2016. 1EMF-45A has been entered in LCO tracking due to "Loss of Flow" alarms while aligned to NS Heat Exchanger 1A and issues with 1RNFT4980. Work is in the schedule to work associated flow transmitter prior to NS/RN Clam Flush on each unit. Channel calibrations of 1EMF-45a have been completed successfully under WO 02204145-01.

- WO 02196697-01
- WO 20053500-01
- WO 02204145-02

SLC # from Table 16.11-2-1	Title	Completion Time	Determination and Data Reviewed
4.a	1EMF-45B	30 Days	For 1EMF-45B Low Range, out of service time for year 2015 is 238.87 days (5/6/2015 to 12/31/2015 TSAIL C1-15-01221 and T-1-15-00040).

For year 2015, 1EMF-45B was non-functional from 5/6/2015 to 12/31/2015 and has been rolled over to 2016. 1EMF-45B has been entered in LCO tracking due to failed "Loss of Flow" alarm during testing. Work is in the schedule to work associated flow transmitter prior to NS/RN Clam Flush on each unit.

• WO 20011310-01

SLC # from Table 16.11-2-1	Title	Completion Time	Determination and Data Reviewed
4.a	2EMF-45A	30 Days	For 2EMF-45A Low Range, out of service time for year 2015 is 340.34 days (1/24/2015 to 12/31/2015 TSAIL C2-15-00234 and T-2-15-00041).

For year 2015, 2EMF-45A was non-functional from 1/24/2015 to 12/31/2015 and has been rolled over to 2016. 2EMF-45A has been entered in LCO tracking due to "Loss of Flow" alarms while aligned to NS Heat Exchanger 1A and issues with 2RNFT4980. Work is in the schedule to work associated flow transmitter prior to NS/RN Clam Flush on each unit. COT of 2EMF-45a have been completed successfully under WO 02198286-01.

WO 02196696-01

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 9

Summary of Changes to the Offsite Dose Calculation Manual Example

This attachment includes a summary of changes to the ODCM and Radiological Effluent Controls.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ODCM Revision 59

ODCM Revision 59 is provided in entirety on the enclosed CD.

All ODCM changes are reviewed by knowledgeable individual(s), and approved by either the Station Manager or Radiation Protection Manager. The below changes do not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.

ODCM Revision 59 was approved by the Radiation Protection Manager on February 17, 2016. Some changes reflected in ODCM Revision 59 were implemented prior to February 17, 2016 under a different change and approval process (e.g., land use census), and in those cases the implementation date is noted below.

Section 6 - Page 4

Changed title of Table 6.0-3 to: "Catawba 2015 Land Use Census Results."

Land use census dates were changed to reflect 2015 census dates. The 2015 land use census was performed July 8-9, 2015, and the results were certified and made available for use on July 16, 2015.

The distance (miles) for the NW sector residence was changed from 1.39 to 1.27.

The distance (miles) for the N sector garden was changed from 1.55 to 1.38. Deleted "irrigated" as the N sector garden is not irrigated with waters receiving plant discharges.

The distance (miles) for the NNE sector garden was changed from 4.47 to 0.69.

The distance (miles) for the NE sector garden was changed from 0.68 to 2.39.

The distance (miles) for the ENE sector garden was changed from 2.73 to 1.44. Added "irrigated" as the ENE sector garden is irrigated with waters receiving plant discharges.

The distance (miles) for the E sector garden was changed from 3.52 to 2.26.

The distance (miles) for the ESE sector garden was changed from 3.70 to 1.29.

The distance (miles) for the SE sector garden was changed from 2.55 to 1.50.

The distance (miles) for the SSW sector garden was changed from 1.34 to 0.89.

The distance (miles) for the SW sector garden was changed from 2.02 to 0.78. Added "irrigated" as the SW sector garden is irrigated with waters receiving plant discharges.

The distance (miles) for the WSW sector garden was changed from 2.03 to 1.98.

The distance (miles) for the NNW sector garden was changed from 2.13 to 1.19.

Reformatted notes into table.

Changes made to reflect 2015 Land Use Census results and provide better accuracy and clarity of receptor data.

Section 6 - Page 7

Changed title of Figure 6.0-3 to "CNS 2015 Land Use Census Map."

Figure 6.0-3 was regenerated using ESRI ArcGIS Version 9.3.1 software by Orbis, Incorporated, Charlotte, NC, to update map symbology.

Changes made to reflect 2015 Land Use Census results and provide better accuracy and clarity of receptor data.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radiological Effluent Controls (SLC 16.11)

The Catawba Nuclear Station Radiological Effluent Controls are contained in SLC 16.11 as follows.

Three revisions were made to the Catawba Nuclear Station Updated Final Safety Analysis Report, Section 16.11, Radiological Controls, in 2015:

- Section 16.11-2, "Radioactive Gaseous Effluent Monitoring Instrumentation," was changed on 02/10/15.
- Section 16.11-6, "Radioactive Gaseous Effluent Monitoring Instrumentation," was changed on 08/03/15.
- Section 16.11-7, "Radioactive Gaseous Effluent Monitoring Instrumentation," was changed on 02/10/15.

As per TS 5.5.5.b, "Licensee initiated changes to the Radiological Effluent Controls of the UFSAR," Catawba is attaching the entire Section 16.11 of the UFSAR and the List of Effective Sections which will demonstrate when each section was revised.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

SECTION	REVISION NUMBER	REVISION DATE
TABLE OF CONTENTS	14	02/10/15
16.1	1	08/27/08
16.2	2 .	08/21/09
16.3	1	08/21/09
16.5-1	3	08/19/15
16.5-2	Deleted	
16.5-3	1	02/20/04
16.5-4	0	10/09/02
16.5-5	1	01/28/10
16.5-6	1	08/21/09
16.5-7	2	02/06/15
16.5-8	2	12/22/08
16.5-9	1	02/20/12
16.5-10	Deleted	
16.6-1	0	10/09/02
16.6-2	Deleted	•
16.6-3	1	08/21/09
16.6-4	1	08/21/09
16.6-5	2	01/09/13
16.7-1	1	08/21/09
16.7-2	4	02/03/11
16.7-3	4	07/27/13
16.7-4	2	08/21/09
16.7-5	2	08/21/09

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

SECTION	REVISION NUMBER	REVISION DATE
16.7-6	2	08/21/09
16.7-7	1	08/21/09
16.7-8	2	08/21/09
16.7-9	9	06/06/13
16.7-10	6	04/11/14
16.7-11	1	08/21/09
16.7-12	1	08/21/09
16.7-13	2	08/21/09
16.7-14	1	08/21/09
16.7-15	1	08/21/09
16.7-16	0	06/08/09
16.7-17	0	02/10/15
16.8-1	6	12/10/15
16.8-2	2	02/20/12
16.8-3	1	10/24/06
16.8-4	2	11/05/07
16.8-5	3	08/21/09
16.9-1	7	10/24/11
16.9-2	5	10/24/11
16.9-3	3	02/03/11
16.9-4	3	08/21/09
16.9-5	6	06/23/10
16.9-6	10	02/10/15
16.9-7	4	08/21/09

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

SECTION	REVISION NUMBER	REVISION DATE
16.9-8	5	08/21/09
16.9-9	3	08/21/09
16.9-10	5	08/21/09
16.9-11	3	08/21/09
16.9-12	3	02/10/15
16.9-13	3	08/21/09
16.9-14	1	09/25/06
16.9-15	2	08/21/09
16.9-16	2 .	08/21/09
16.9-17	0	10/09/02
16.9-18	0	10/09/02
16.9-19	3	02/20/12
16.9-20	0 .	10/09/02
16.9-21	0	10/09/02
16.9-22	1	08/21/09
16.9-23	4 .	10/24/11
16.9-24	2 .	10/24/06
16.9-25	2	08/21/09
16.9-26	0	03/05/12
16.10-1	1	08/21/09
16.10-2	1 .	10/24/06
16.10-3	1	08/21/09
16.11-1	1 .	07/27/13
16.11-2	4	02/10/15

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

SECTION	REVISION NUMBER	REVISION DATE
16.11-3	0	10/09/02
16.11-4	1	08/21/09
16.11-5	0	10/09/02
16.11-6	3	08/03/15
16.11-7	9	02/10/15
16.11-8	0	10/09/02
16.11-9	0	10/09/02
16.11-10	1	08/21/09
16.11-11	1	03/20/03
16.11-12	0	10/09/02
16.11-13	1	07/27/13
16.11-14	0	10/09/02
16.11-15	0	10/09/02
16.11-16	1	10/24/11
16.11-17	0	10/09/02
16.11-18	1	08/21/09
16.11-19	0	10/09/02
16.11-20	1	08/21/09
16.11-21	0	10/09/02
16.12-1	0	10/09/02
16.13-1	0	10/09/02
16.13-2	Deleted	
16.13-3	Deleted	
16.13-4	0	10/09/02

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Effluents 16.11-1

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-1 Liquid Effluents

COMMITMENT:

The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (see Figure 16.11-16-1 in SLC 16.11-16) shall be limited to:

- For radionuclides other than dissolved or entrained noble gases, 10 times the effluent concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2, and
- b. For dissolved or entrained noble gases, the concentration shall be limited to 2 x 10⁻⁴ microCurie/ml total activity.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME		
A. Concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS not within limits.	A.1 Restore the concentrat to within limits.	ion Immediately		

TESTING REQUIREMENTS

	TEST	FREQUENCY
TR 16.11-1-1	The results of the radioactivity analyses shall be used in accordance with the methodology and parameters in the ODCM to assure that the concentrations at the point of release are maintained within the limits.	
	Sample and analyze radioactive liquid wastes according to Table 16.11-1-1.	According to Table 16.11-1-1

Catawba Units 1 and 2

16.11-1-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Effluents 16.11-1

Table 16.11-1-1

Radioactive Liquid Waste Sampling and Analysis Program (page 1 of 3)

LIQUID RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS	TYPE OF ACTIVITY	LOWER LIMIT OF
RELEASE TYPE	PREQUENCY	FREQUENCY	ANALYSIS	DETECTION
		INLQUENCT	ANALIOIO	(LLD) ⁽¹⁾
				(µCi/ml)
1. Batch Waste	Prior to each	Prior to each	Principal Gamma	5x10 ⁻⁷
Release	release	release	Emitters ⁽³⁾	
Tanks ⁽²⁾	Each Batch	Each Batch		1.55
A 1 1.	5: : :		I-131	1x10 ⁻⁶
Any tank which	Prior to each release	31 days	Dissolved and Entrained Gases	1x10 ⁻⁵
discharges	One Batch/31		(Gamma Emitters)	
liquid wastes	days		(Camina Emiliors)	
by either liquid	•			
effluent	٠			
monitor, EMF-		ļ		
49 or EMF-57	Prior to each	31 days	H-3	1x10 ⁻⁵
	release	Composite ⁽⁴⁾	11-5	1210
	Each Batch	Composito		
			Gross Alpha	1x10 ⁻⁷
	Prior to each	92 days	Sr-89, Sr-90	5x10 ⁻⁸
	release	Composite ⁽⁴⁾		
2. Continuous	Each Batch Continuous ⁽⁶⁾	7 days	Dringing! Commo	5x10 ⁻⁷
Releases ⁽⁵⁾	Continuous	7 days Composite ⁽⁶⁾	Principal Gamma Emitters ⁽³⁾	SXIU
Noicases		Composite	Linkers	
Conventional				
Waste Water		l		
Treatment		1		
Line		ı	I-131	1x10 ⁻⁶
	31 days	31 days	Dissolved and	1x10 1x10
	Grab Sample	Jidays	Entrained Gases	1210
			(Gamma Emitters)	
	Continuous ⁽⁶⁾	31 days	H-3	1x10 ⁻⁵
		Composite ⁽⁶⁾		
		1	Gross Alpha	1x10 ⁻⁷
	Continuous ⁽⁶⁾	92 days	Sr-89, Sr-90	5x10 ⁻⁸
	23.11	Composite ⁽⁶⁾		0.7.0
				

Catawba Units 1 and 2

16.11-1-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Effluents 16.11-1

Table 16.11-1-1

Radioactive Liquid Waste Sampling and Analysis Program (page 2 of 3)

NOTES:

(1) The LLD is defined, for purposes of these commitments, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{(2.71/T) + 4.65 s_b}{E \cdot V \cdot 2.22 \times 10^6 \cdot Y \cdot \exp(-\lambda \Delta t)}$$

Where:

LLD = the "a priori" lower limit of detection (microCurie per unit mass or volume),

 s_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute),

E = the counting efficiency (counts per disintegration),

V = the sample size (units of mass or volume),

 2.22×10^6 = the number of disintegrations per minute per microCurie,

Y = the fractional radiochemical yield, when applicable,

 λ = the radioactive decay constant for the particular radionuclide (sec⁻¹),

 Δt = the elapsed time between midpoint of sample collection and time of counting (sec), and

T =the sample counting time (min).

Typical values of E, V, Y and Δt shall be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

(2) A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.

Catawba Units 1 and 2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Effluents 16.11-1

Table 16.11-1-1

Radioactive Liquid Waste Sampling and Analysis Program (page 3 of 3)

- (3) The principal gamma emitters for which the LLD specification applies include the following radionuclides:
 - Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, and Ce-141. The LLD for Ce-144 is $5x10^6$ μ Ci/ml. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Radioactive Effluent Release Report pursuant to Technical Specification 5.6.3 in the format outlined in Regulatory Guide 1.21, Appendix B, Revision 1, June 1974.
- (4) A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.
- (5) A continuous release is the discharge of liquid wastes of a non-discrete volume, e.g., from a volume of a system that has an input flow during the continuous release.
- (6) To be representative of the quantities and concentrations of radioactive materials in liquid effluents, samples shall be collected continuously in proportion to the rate of flow of the effluent stream. Prior to analyses, all samples taken for the composite shall be thoroughly mixed in order for the composite sample to be representative of the effluent release.

Catawba Units 1 and 2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Effluents 16.11-1

BASES

The basic requirements for SLCs concerning effluents from nuclear power reactors are stated in 10 CFR 50.36a. These requirements indicate that compliance with effluent SLCs will keep average annual releases of radioactive material in effluents to small percentages of the limits specified in the old 10 CFR 20.106 (new 10 CFR 20.1302). These requirements further indicate that operational flexibility is allowed, compatible with considerations of health and safety, which may temporarily result in releases higher than such small percentages, but still within the limits specified in the old 10 CFR 20.106 which references Appendix B, Table II concentrations (MPCs). These referenced concentrations are specific values which relate to an annual dose of 500 mrem. It is further indicated in 10 CFR 50.36a that when using operational flexibility, best efforts shall be exerted to keep levels of radioactive materials in effluents as low as is reasonably achievable (ALARA) as set forth in 10 CFR 50, Appendix I.

As stated in the Introduction to Appendix B of the new 10 CFR 20, the liquid effluent concentration (EC) limits given in Appendix B, Table 2, Column 2, are based on an annual dose of 50 mrem. Since a release concentration corresponding to a limiting dose rate of 500 mrem/year has been acceptable as a SLC limit for liquid effluents, which applies at all times as an assurance that the limits of 10 CFR 50, Appendix I are not likely to be exceeded, it should not be necessary to reduce this limit by a factor of 10.

Operational history at Catawba has demonstrated that the use of the concentration values associated with the old 10 CFR 20.106 as SLC limits has resulted in calculated maximum individual doses to a MEMBER OF THE PUBLIC that are small percentages of the limits of 10 CFR 50, Appendix I. Therefore, the use of concentration values which correspond to an annual dose of 500 mrem (ten times the concentration values stated in the new 10 CFR 20, Appendix B, Table 2, Column 2) should not have a negative impact on the ability to continue to operate within the limits of 10 CFR 50, Appendix I and 40 CFR 190.

Having sufficient operational flexibility is especially important in establishing a basis for effluent monitor setpoint calculations. As discussed above, the concentrations stated in the new 10 CFR 20, Appendix B, Table 2, Column 2, relate to a dose of 50 mrem in a year. When applied on an instantaneous basis, this corresponds to a dose rate of 50 mrem/year. This low value is impractical upon which to base effluent monitor setpoint calculations for many liquid effluent release situations when monitor background, monitor sensitivity, and monitor performance must be taken into account.

Therefore, to accommodate operational flexibility needed for effluent releases, the limits associated with SLC 16.11-1 are based on ten times the concentrations stated in the new 10 CFR 20, Appendix B, Table 2, Column 2, to apply at all times. The multiplier of ten is proposed because the annual dose of 500 mrem, upon which the concentrations in the old 10 CFR 20, Appendix B, Table II, Column 2, are based, is a factor of 10 higher than annual dose of 50 mrem, upon which the concentrations in the new 10 CFR

Catawba Units 1 and 2

16.11-1-5

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Effluents 16.11-1

BASES (continued)

20, Appendix B, Table 2, Column 2, are based. Compliance with the limits of the new 10 CFR 20.1301 will be demonstrated by operating within the limits of 10 CFR 50, Appendix I and 40 CFR 190. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

This commitment applies to the release of radioactive materials in liquid effluents from all units at the site.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually), Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination – Application to Radiochemistry," <u>Annal. Chem. 40</u>, 586-93 (1968), and Hartwell, J. K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report <u>ARH-SA-215</u> (June 1975).

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 20, Appendix B.

Catawba Units 1 and 2

16.11-1-6

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16.11-2

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-2 Radioactive Liquid Effluent Monitoring Instrumentation

COMMITMENT

The Radioactive Liquid Effluent Monitoring Instrumentation channels shown in Table 16.11-2-1 shall be FUNCTIONAL with their Alarm/Trip Setpoints set to ensure that the limits of SLC 16.11-1 are not exceeded.

AND

The Alarm/Trip Setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY:

At all times, except when the effluent pathway is mechanically isolated; thus, a release to the environment is not possible.

REMEDIAL ACTIONS

Separate Condition entry is allowed for each Function.

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	One or more Radioactive Liquid Effluent Monitoring Instrumentation channel(s) Alarm/Trip Setpoint less conservative than	A.1	Suspend the release of radioactive liquid effluents monitored by the affected channel(s).	Immediately
	required.	A.2	Declare the channel(s) non-functional.	Immediately
В.	One or more Radioactive Liquid Effluent Monitoring Instrumentation channel(s) non- functional.	B.1	Enter the applicable Conditions and Required Actions specified in Table 16.11-2-1 for the channel(s).	Immediately

(continued)

Catawba Units 1 and 2

16.11-2-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16.11-2

REMEDIAL ACTIONS (continued)

REME	REMEDIAL ACTIONS (continued)				
	CONDITION		REQUIRED ACTION	COMPLETION TIME	
C.	One channel non- functional.	C.1.1	Analyze two independent samples per Testing Requirement 16.11-1-1.	Prior to initiating a release	
			AND		
		C.1.2	Perform independent verification of the discharge line valving.	Prior to initiating a release	
			AND		
		C.1.3.	1Perform independent verification of manual portion of the computer input for release rate calculations performed by computer.	Prior to initiating a release	
			<u>OR</u>		
		C.1.3.	2Perform independent verification of entire calculations for release rate calculations performed manually.	Prior to initiating a release	
			AND	·	
		C.1.4	Restore channel to FUNCTIONAL status.	14 days	
		<u>OR</u>			
		C.2	Suspend release of radioactive effluents via this pathway.	Immediately	

(continued)

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16.11-2

REMEDIAL ACTIONS (continued)

IZEIAIE	DIAL ACTIONS (continued)			,
	CONDITION		REQUIRED ACTION	COMPLETION TIME
D.	One flow rate measurement device channel non-functional.	D.1	Pump performance curves generated in place may be used to estimate flow.	
			Estimate the flow rate of the release.	Once per 4 hours during releases
		AND		
		D.2	Restore channel to FUNCTIONAL status.	30 days
E.	One channel non- functional.	E.1	Perform an analysis of grab samples for radioactivity at a lower limit of detection of 10 ⁻⁷ microCurie/ml.	Once per 12 hours during releases when secondary specific activity is > 0.01 microCurie/gm DOSE EQUIVALENT I-131
				<u>AND</u>
				Once per 24 hours during releases when secondary specific activity is ≤ 0.01 microCurie/gm DOSE EQUIVALENT I-131
		AND		
		E.2	Restore channel to FUNCTIONAL status.	30 days

(continued)

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16 11-2

REMEDIAL ACTIONS (continued)

	CONDITION		REQUIRED ACTION	COMPLETION TIME
F.	One channel non- functional.	F.1	Collect and analyze grab samples for principal gamma emitters (listed in Table 16.11-1-1, NOTE 3) at a lower limit of detection of no more than 5x10 ⁻⁷ microCurie/ml.	Once per 12 hours
		AND		•
		F.2	Restore non-functional channel to FUNCTIONAL status.	30 days
G.	Required Action and associated Completion Time of Condition C, D, E, or F not met.	G.1	Explain why the non- functionality was not corrected within the specified Completion Time.	In the next scheduled Radioactive Effluent Release Report pursuant to Technical Specification 5.6.3

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation **TESTING REQUIREMENTS** ---NOTE-----Refer to Table 16.11-2-1 to determine which TRs apply for each Radioactive Liquid Effluent Monitoring Instrumentation channel. TEST **FREQUENCY** TR 16.11-2-1 Perform CHANNEL CHECK. 24 hours -----NOTE-----TR 16.11-2-2 ---The CHANNEL CHECK shall consist of verifying indication of flow. Perform CHANNEL CHECK. 24 hours during periods of release TR 16.11-2-3 Perform SOURCE CHECK. Prior to each release TR 16.11-2-4 Perform SOURCE CHECK. 31 days TR 16.11-2-5 Perform COT. 92 days TR 16.11-2-6 -----NOTE-----NOTE-----For Instrument 1, the COT shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation (for EMF-57, alarm annunciation is in the Monitor Tank Building control room and on the Monitor Tank Building control panel remote annunciator panel) occur if any of the following conditions exist: Instrument indicates measured levels above the Alarm/Trip Setpoint, or Circuit failure/instrument downscale failure (alarm Perform COT. 9 months (continued)

Catawba Units 1 and 2

16.11-2-5

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16.11-2

TESTING REQUIREMENTS (continued)					
TEST	FREQUENCY				
TR 16.11-2-7 For Instrument 1, the initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Bureau of Standards (NBS) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.					
Perform CHANNEL CALIBRATION.	18 months				

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16.11-2

Table 16.11-2-1

Radioactive Liquid Effluent Monitoring Instrumentation

INS	TRUMENT	REQUIRED CHANNELS	CONDITIONS	TESTING REQUIREMENTS
1.	Radioactivity Monitors Providing Alarm and Automatic Termination of Release			
1.a	Waste Liquid Discharge Monitor (EMF-49 Low Range)	1 per station	A, C, G	TR 16.11-2-1 TR 16.11-2-3 TR 16.11-2-6 TR 16.11-2-7
1.b	Turbine Building Sump Monitor (EMF-31)	1	A, E, G	TR 16.11-2-1 TR 16.11-2-4 TR 16.11-2-6 TR 16.11-2-7
1.c	Monitor Tank Building Liquid Discharge Monitor (EMF-57 – Low Range)	1 per station	A, C, G	TR 16.11-2-1 TR 16.11-2-3 TR 16.11-2-6 TR 16.11-2-7
2.	Continuous Composite Samplers and Sampler Flow Monitor			
2.a	Conventional Waste Water Treatment Line (no alarm/trip function)	1 per station	E, G	TR 16.11-2-2 TR 16.11-2-7
3.	Flow Rate Measurement Devices			
3.a	Waste Liquid Effluent Line (no alarm/trip function)	1 per station	D, G	TR 16.11-2-2 TR 16.11-2-7
3.b	Conventional Waste Water Treatment Line (no alarm/trip function)	1 per station	D, G	TR 16.11-2-2 TR 16.11-2-7
3.c	Low Pressure Service Water Minimum Flow Interlock	1 per station	D, G	TR 16.11-2-2 TR 16.11-2-5 TR 16.11-2-7
3.d	Monitor Tank Building Waste Liquid Effluent Line (no alarm/trip function)	1 per station	D, G	TR 16.11-2-2 TR 16.11-2-7
4.	Radioactivity Monitors Providing Alarm			
4.a	Service Water Monitor on Containment Spray Heat Exchanger (EMF-45 A & B – Low Range)	1 per heat exchanger	A, F, G	TR 16.11-2-1 TR 16.11-2-4 TR 16.11-2-6 TR 16.11-2-7

Catawba Units 1 and 2

16.11-2-7

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Liquid Effluent Monitoring Instrumentation 16.11-2

BASES

The Radioactive Liquid Effluent Monitoring Instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the Alarm/Trip will occur prior to exceeding the limits of 10 CFR Part 20. The FUNCTIONALITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50.

Regarding the COMMITMENT APPLICABILITY, isolation of the effluent pathway is to be by mechanical means (e.g., valve closure). Electrical or pneumatic isolation is not required, unless the isolation is designed to receive an automatic signal to open.

REFERENCES

- Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 20.
- 3. 10 CFR Part 50, Appendix A.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Dose 16.11-3

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-3 Dose

COMMITMENT

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each unit, to UNRESTRICTED AREAS (see Figure 16.11-16-1 in SLC 16.11-16) shall be limited:

- a. During any calendar quarter to \leq 1.5 mrem to the whole body and to \leq 5 mrem to any organ, and
- b. During any calendar year to ≤ 3 mrem to the whole body and to ≤ 10 mrem to any organ.

APPLICABILITY: At all times.

REMEDIAL ACTIONS

	CONDITION	REQUIRED ACTION	COMPLETION TIME
A	Calculated dose from release of radioactive materials in liquid effluents exceeding above limits.	A.1NOTE If drinking water supply is taken from receiving water body within 3 miles downstream of plant discharge, the Special Report shall also include the results of radiological analyses of the drinking water source and the radiological impact on finished drinking water supplies with regard to 40 CFR 141, Safe Drinking Water Act. Prepare and submit a Special Report to the NRC which identifies the causes for exceeding the limits, corrective actions taken to reduce releases, and actions taken to ensure that subsequent releases are within limits.	30 days

Catawba Units 1 and 2

16.11-3-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Dose 16,11-3

TESTING REQUIREMENTS

	FREQUENCY	
TR 16.11-3-1	Determine cumulative dose contributions from liquid effluents for current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM.	31 days

BASES

This SLC is provided to implement the requirements of Sections II.A. III.A and IV.A of Appendix I. 10 CFR Part 50. The COMMITMENT implements the guides set forth in Section II.A of Appendix I. The REMEDIAL ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable". Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

This SLC applies to the release of radioactive materials in liquid effluents from each unit at the site. When shared radwaste treatment systems are used by more than one unit on a site, the wastes from all units are mixed for shared treatment; by such mixing, the effluent releases cannot accurately be ascribed to a specific unit. An estimate should be made of the contributions from each unit based on input conditions, e.g., flow rates and radioactivity concentrations, or, if not practicable, the treated effluent releases may be allocated equally to each of the radioactive waste producing units sharing the radwaste treatment system. For determining conformance to COMMITMENTS, these allocations from shared radwaste treatment systems are to be added to the releases specifically attributed to each unit to obtain the total releases per unit.

Catawba Units 1 and 2

16.11-3-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Dose 16.11-3

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 40 CFR Part 141.
- 3. 10 CFR Part 50, Appendix I.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Radwaste Treatment System 16.11-4

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-4 Liquid Radwaste Treatment System

COMMITMENT

The Liquid Radwaste Treatment System shall be FUNCTIONAL and appropriate portions of the system shall be used to reduce releases of radioactivity when the projected doses due to the liquid effluent, from each unit, to UNRESTRICTED AREAS (see Figure 16.11-16-1 in SLC 16.11-16) would exceed 0.06 mrem to the whole body or 0.2 mrem to any organ in a 31-day period.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
Α.	Radioactive liquid waste being discharged without treatment and in excess of above limits. AND Any portion of Liquid Radwaste Treatment System not in operation.	A.1	Prepare and submit a Special Report to the NRC which identifies the reasons liquid radwaste was discharged without treatment, identification of non-functional equipment and reasons for non- functionality, corrective actions taken to restore the equipment to FUNCTIONAL status, and actions taken to prevent recurrence.	30 days

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Radwaste Treatment System 16.11-4

BASES

The FUNCTIONALITY of the Liquid Radwaste Treatment System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable". This COMMITMENT implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the Liquid Radwaste Treatment System were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents.

This SLC applies to the release of radioactive materials in liquid effluents from each unit at the site. When shared radwaste treatment systems are used by more than one unit on a site, the wastes from all units are mixed for shared treatment; by such mixing, the effluent releases cannot accurately be ascribed to a specific unit. An estimate should be made of the contributions from each unit based on input conditions, e.g., flow rates and radioactivity concentrations, or, if not practicable, the treated effluent releases may be allocated equally to each of the radioactive waste producing units sharing the radwaste treatment system. For determining conformance to COMMITMENTS, these allocations from shared radwaste treatment systems are to be added to the releases specifically attributed to each unit to obtain the total releases per unit.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 50, Appendix A.

Catawba Units 1 and 2

16.11-4-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Liquid Radwaste Treatment System 16.11-4

REFERENCES (continued)

10 CFR Part 50, Appendix I.

Catawba Units 1 and 2

16.11-4-3

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Chemical Treatment Ponds 16.11-5

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-5 Chemical Treatment Ponds

COMMITMENT

The quantity of radioactive material contained in each Chemical Treatment Pond (CTP) shall be limited by the following expression:

$$\frac{264}{V} \cdot \frac{\sum A_j}{j \left(C_j \ x \, 10\right)} < 1.0$$

excluding tritium and dissolved or entrained noble gases,

where:

A i = CTP inventory limit for single radionuclide "j", in Curies;

C_j = 10 CFR 20, Appendix B, Table 2, Column 2, concentration for single radionuclide "j", microCuries/milliliter;

V = design volume of liquid and slurry in the CTP, in gallons;

264 = conversion unit, microCuries/Curie per milliliter/gallon.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
Α.	Quantity of radioactive material in any CTP exceeding above limit.	A.1	Suspend all additions of radioactive material to the CTP.	Immediately
		AND		
		A.2	Initiate corrective action to reduce the CTP contents to within limits.	Immediately

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Chemical Treatment Ponds 16.11-5

TESTING REQUIREMENTS

	TEST	FREQUENCY
TR 16.11-5-1	Verify that the quantity of radioactive material contained in each batch of resin/water slurry to be transferred to the CTPs is within limits by analyzing a representative sample of the batch to be transferred. Each batch to be transferred to the CTPs shall be limited by:	Prior to each transfer
	$\frac{\sum_{j} \frac{c_{j}}{(C_{j} \times 10)} < 0.006,$	
	where:	
	c _j = radioactive resin/water slurry concentration for radionuclide "j" entering the UNRESTRICTED AREA CTPs, in microCuries/milliliter; and	
	C _j = 10 CFR 20, Appendix B, Table 2, Column 2, concentration for single radionuclide "j", in microCuries/milliliter.	

BASES

The inventory limits of the CTPs are based on limiting the consequences of an uncontrolled release of the pond inventory. The expression in this SLC assumes the pond inventory is uniformly mixed, that the pond is located in an uncontrolled area as defined in 10 CFR Part 20, and that the concentration limit in Note 1 to Appendix B of 10 CFR Part 20 applies.

The batch limits of resin/water slurry transferred to the CTP assure that radioactive material transferred to the CTP are "as low as is reasonably achievable" in accordance with 10 CFR 50.36a. The expression in SLC 16.11-5 assures no batch will be transferred to the CTP unless the sum of the ratios of the activity of the radionuclides to their respective concentration limitation is less than the ratio of the 10 CFR Part 50, Appendix I, Section II.A, total body dose level to the instantaneous whole body dose rate limitation, or that:

$$\sum_{j} \frac{c_{j}}{(C_{j} \times 10)} < \frac{3 \text{ mrem/yr}}{500 \text{ mrem/yr}} = 0.006$$
,

where:

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Chemical Treatment Ponds 16.11-5

BASES (continued)

- c $_{\rm j}$ = radioactive resin/water slurry concentration for radionuclide "j" entering the UNRESTRICTED AREA CTP, in microCuries/milliliter; and
- C_j = 10 CFR Part 20, Appendix B, Table 2, Column 2, concentration for single radionuclide "j", in microCuries/milliliter.

The filter/demineralizers using powdered resin and the blowdown demineralizer are backwashed or sluiced to a holding tank. The tank will be agitated to obtain a representative sample of the resin inventory in the tank. A known weight of the wet, drained resin (moisture content approximately 55 to 60%, bulk density of about 58 pounds per cubic foot) will then be counted. The concentration of the resin slurry to be pumped to the CTPs will then be determined by the formula:

$$c_j = \frac{Q_j W_R}{V_T}$$

where:

- Q_j = concentration of radioactive materials in wet, drained resin for radionuclide "j", excluding tritium, dissolved or entrained noble gases, and radionuclides with less than an 8-day half-life. The analysis shall include at least Ce-144, Cs-134, Cs-137, Co-58, and Co-60, in microCuries/gram. Estimates of the Sr-89 and Sr-90 batch concentration shall be included based on the most recent monthly composite analysis (within 3 months);
- W_R = total weight of resin in the storage tank in grams (determined from chemistry logs procedures); and,
- V_T = total volume of resin water mixture in storage tank to be transferred to the CTPs in milliliters.

The batch limits provide assurance that activity input to the CTP will be minimized, and a means of identifying radioactive material in the inventory limitation of this SLC.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 20, Appendix B.
- 3. 10 CFR Part 50, Appendix I.

Catawba Units 1 and 2

16.11-5-3

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Gaseous Effluents 16.11-6

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-6 Gaseous Effluents

COMMITMENT

The dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the SITE BOUNDARY (see Figure 16.11-16-1 in SLC 16.11-16) shall be limited to the following:

- a. For noble gases: \leq 500 mrem/yr to the whole body and \leq 3000 mrem/yr to the skin; and,
- b. For lodine-131, for lodine-133, for tritium, and for all radionuclides in particulate form with half-lives > 8 days: ≤ 1500 mrem/yr to any organ.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	Dose rate not within limit.	A.1	Restore the release rate to within limits.	Immediately

TESTING REQUIREMENTS

TEGINO NEG	1ESTING REQUIREMENTS						
	TEST	FREQUENCY					
TR 16.11-6-1	Verify that the dose rate due to noble gases in gaseous effluents is within limits in accordance with the methodology and parameters in the ODCM.	In accordance with the methodology and parameters in the ODCM					
TR 16.11-6-2	Verify that the dose rate due to lodine-131, lodine-133, tritium, and all radionuclides in particulate form with half-lives > 8 days in gaseous effluents is within limits in accordance with the methodology and parameters in the ODCM by obtaining representative samples and performing analyses according to Table 16.11-6-1.	According to Table 16.11-6-1					

Catawba Units 1 and 2

16.11-6-1

Table 16.11-6-1

Radioactive Gaseous Waste Sampling and Analysis Program (page 1 of 4)

	GASEOUS RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) ⁽¹⁾ (µCi/ml)
1.	Waste Gas Storage Tank	Prior to each release Each Tank Grab Sample	Prior to each release Each Tank	Principal Gamma Emitters ⁽²⁾	1x10 ⁻⁴
2.	Containment Purge	Prior to each release Each PURGE ⁽³⁾ Grab Sample	Prior to each release Each PURGE ⁽³⁾	Principal Gamma Emitters ⁽²⁾	1x10 ⁻⁴
			31 days	H-3 (oxide)	1x10 ⁻⁶
3.	Unit Vent	7 days ⁽³⁾⁽⁴⁾ Grab Sample	7 days ⁽³⁾	Principal Gamma Emitters ⁽²⁾	1x10 ⁻⁴
		•		H-3 (oxide)	1x10 ⁻⁶
4.	Containment Air Release and Addition System	24 hours ⁽³⁾⁽⁵⁾ Grab Sample	24 hours (3)(5)	Principal Gamma Emitters ⁽²⁾	1x10 ⁻⁴
		•	31 days	H-3 (oxide)	1x10 ⁻⁶
5.	All Release Types as Listed in 3. Above	Continuous ⁽⁶⁾	7 days ⁽⁷⁾ Charcoal Sample	I-131	1x10 ⁻¹²
				I-133	1x10 ⁻¹⁰
		Continuous ⁽⁵⁾	7 days ^(/) Particulate Sample	Principal Gamma Emitters ⁽²⁾	1x10 ⁻¹¹
		Continuous ⁽⁶⁾	31 days Composite Particulate Sample	Gross Alpha ⁽⁸⁾	1x10 ⁻¹¹
		Continuous ⁽⁶⁾	92 days Composite Particulate Sample	Sr-89, Sr-90	1x10 ⁻¹¹

(continued)

Page 9-32

Table 16.11-6-1

Radioactive Gaseous Waste Sampling and Analysis Program (page 2 of 4)

GASEOUS RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) ⁽¹⁾ (µCi/ml)
Waste Monitor Tank Building Ventilation Exhaust	7 days Grab Sample	7 days	Principal Gamma Emitters ⁽²⁾	1x10 ⁻⁴
			H-3 (oxide)	1x10 ⁻⁶
	Continuous ⁽⁶⁾	7 days ⁽⁹⁾ Charcoal Sample	I-131	1x10 ⁻¹²
			I-133	1x10 ⁻¹⁰
	Continuous ⁽⁶⁾	7 days ⁽⁹⁾ Particulate Sample	Principal Gamma Emitters ⁽²⁾	1x10 ⁻¹¹
	Continuous ⁽⁶⁾	31 days Composite Particulate Sample	Gross Alpha	1x10 ⁻¹¹
	Continuous ⁽⁶⁾	92 days Composite Particulate Sample	Sr-89, Sr-90	1x10 ⁻¹¹

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Gaseous Effluents 16.11-6

Table 16.11-6-1

Radioactive Gaseous Waste Sampling and Analysis Program (page 3 of 4)

NOTES:

(1) The LLD is defined, for purposes of these commitments, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

LLD =
$$\frac{(2.71/T) + 4.65 s_b}{E \cdot V \cdot 2.22 \times 10^6 \cdot Y \cdot \exp(-\lambda \Delta t)}$$

Where:

LLD = the "a priori" lower limit of detection (microCurie per unit mass or volume);

 S_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute);

E = the counting efficiency (counts per disintegration);

V = the sample size (units of mass or volume);

2.22 x 10⁶ = the number of disintegrations per minute per microCurie;

Y = the fractional radiochemical yield, when applicable;

 λ = the radioactive decay constant for the particular radionuclide (sec⁻¹);

 Δt = the elapsed time between midpoint of sample collection and time of counting (sec); and

T =the sample counting time (min).

Typical values of E, V, Y and ∆t shall be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Gaseous Effluents 16.11-6

Table 16.11-6-1

Radioactive Gaseous Waste Sampling and Analysis Program (page 4 of 4)

- (2) The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 in noble gas releases based on grab samples and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, I-131, Cs-134, Cs-137, and Ce-141 in Iodine and particulate releases based on continuous samples. The LLD for Ce-144 is 5x10⁻⁹ μCi/ml and is based on continuous samples. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Radioactive Effluent Release Report, pursuant to Technical Specification 5.6.3 in the format outlined in Regulatory Guide 1.21, Appendix B, Revision 1, June 1974.
- (3) Sampling and analysis shall also be performed following shutdown, startup, or a THERMAL POWER stabilization (power level constant at desired power level) after a THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1-hour period, for at least one of the three gaseous release types with this notation.
- (4) Tritium grab samples shall be taken at least once per 24 hours when the refueling canal is flooded.
- (5) Required sampling and analysis frequency during effluent release via this pathway.
- (6) The ratio of the sample flow volume to the sampled stream flow volume shall be known for the time period covered by each dose or dose rate calculation made in accordance with SLCs 16.11-6, 16.11-8, and 16.11-9.
- (7) Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing, or after removal from sampler. Sampling shall also be performed at least once per 24 hours for at least 7 days following each shutdown, startup, or THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1-hour period and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement does not apply if: (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the reactor coolant has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.
- (8) The composite filter(s) will be analyzed for alpha activity by analyzing one filter per week to ensure that at least four filters are analyzed per collection period.
- (9) Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours to meet LLDs after changing, or after removal from sampler. If the particulate and charcoal sample frequency is changed to a 24-hour frequency, the corresponding LLDs may be increased by a factor of 10 (e.g., LLD for I-131 from 1x10⁻¹² to 1x10⁻¹¹ μCi/ml).

Catawba Units 1 and 2

16.11-6-5

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Gaseous Effluents 16.11-6

BASES

The basic requirements for SLCs concerning effluents from nuclear power reactors are stated in 10 CFR 50.36a. These requirements indicate that compliance with effluent SLCs will keep average annual releases of radioactive material in effluents to small percentages of the limits specified in the old 10 CFR 20.106 (new 10 CFR 20.1301). These requirements further indicate that operational flexibility is allowed, compatible with considerations of health and safety, which may temporarily result in releases higher than such small percentages, but still within the limits specified in the old 10 CFR 20.106 which references Appendix B, Table II concentrations (MPCs). These referenced concentrations are specific values which relate to an annual dose of 500 mrems. It is further indicated in 10 CFR 50.36a that when using operational flexibility, best efforts shall be exerted to keep levels of radioactive materials in effluents as low as is reasonably achievable (ALARA) as set forth in 10 CFR 50, Appendix I.

As stated in the Introduction to Appendix B of the new 10 CFR 20, the gaseous effluent concentration (EC) limits given in Appendix B, Table 2, Column 1, are based on an annual dose of 50 mrems for isotopes for which inhalation or ingestion is limiting or 100 mrems for isotopes for which submersion (noble gases) is limiting. Since release concentrations corresponding to limiting dose rates less than or equal to 500 mrems/year to the whole body, 3000 mrems/year to the skin from noble gases, and 1500 mrems/year to any organ from Iodine-131, Iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days at the site boundary has been acceptable as a SLC limit for gaseous effluents to assure that the limits of 10 CFR 50, Appendix I and 40 CFR 190 are not likely to be exceeded, it should not be necessary to restrict the operational flexibility by incorporating the dose rate associated with the EC value for isotopes based on inhalation/ingestion (50 mrems/year) or the dose rate associated with the EC value for isotopes based on submersion (100 mrems/year).

Having sufficient operational flexibility is especially important in establishing a basis for effluent monitor setpoint calculations. As discussed above, the concentrations stated in the new 10 CFR 20, Appendix B, Table 2, Column 1, relate to a dose of 50 or 100 mrems in a year. When applied on an instantaneous basis, this corresponds to a dose rate of 50 or 100 mrems/year.

These low values are impractical upon which to base effluent monitor setpoint calculations for many gaseous effluent release situations when monitor background, monitor sensitivity, and monitor performance must be taken into account.

Therefore, to accommodate operational flexibility needed for effluent releases, the limits associated with gaseous release rate SLCs will be maintained at the current instantaneous dose rate limit for noble gases of 500 mrems/year to the whole body and 3000 mrems/year to the skin; and for lodine-131, for lodine-133, for tritium, and for all radionuclides in particulate

Catawba Units 1 and 2

16.11-6-6

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Gaseous Effluents 16.11-6

BASES (continued)

DEEEDENCES

form with half-lives greater than 8 days, an instantaneous dose rate limit of 1500 mrems/year to any organ.

Compliance with the limits of the new 10 CFR 20.1301 will be demonstrated by operating within the limits of 10 CFR 50, Appendix I and 40 CFR 190. Operational history at Catawba has demonstrated that the use of the dose rate values listed above (i.e., 500 mrems/year, 3000 mrems/year, and 1500 mrems/year) as SLC limits has resulted in calculated maximum individual doses to MEMBERS OF THE PUBLIC that are small percentages of the limits of 10 CFR 50, Appendix I and 40 CFR 190.

The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrem/year to the whole body and to less than or equal to 3000 mrem/year to the skin from noble gases, and to less than or equal to 1500 mrem/year to any organ from Iodine-131, Iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than eight days.

This commitment applies to the release of radioactive materials in gaseous effluents from all units at the site.

The required detection capabilities for radioactive material in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Based on NUREG-1301 and Regulatory Guide 1.21, the LLD value of 1x10⁻⁴ μCi/ml for grab samples is only applicable to noble gases grab samples and the LLD values for particulate and iodine radionuclides are applicable to continuous charcoal and particulate samples. The Table 16.11-6-1 Gaseous Release Type Number 5 (All Release Types as Listed in 3. Above) and Type Number 6 (Waste Monitor Tank Building Ventilation Exhaust) LLDs are based on weekly samples per NUREG-1301. There are two isotopes with associated LLDs that do not agree directly with NUREG-1301: Ce-144, LLD of 5x10⁻⁹ μCi/ml, which has historically been applied and achieved for analytical results, and I-133, LLD of 1x10⁻¹⁰ µCi/ml, which again has been historically listed, as 1x10⁻⁹ μCi/ml, for Radioactive Gaseous Waste Sampling but changed to be in agreement with I-131 for weekly (7-day) samples and is not specified in NUREG-1301. Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, HASL-300 (revised annually), Currie, L.A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," Anal. Chem. 40, 586-93 (1968), and Hartwell, J.K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report ARH-SA-215 (June 1975).

		datawba Offsite Dose Calculation Mariba.		
	÷			
			-	
Catawba Units 1 and	2	16.11-6-7	Revision 3	

Catawha Offeita Dose Calculation Manual

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Effluents 16.11-6

REFERENCES (continued)

- 2. 10 CFR Part 20, Appendix B.
- 3. 10 CFR Part 20.
- 4. 10 CFR Part 50.
- 5. 40 CFR Part 190.
- 6. NUREG-1301.
- 7. Regulatory Guide 1.21.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-7 Radioactive Gaseous Effluent Monitoring Instrumentation

COMMITMENT

The Radioactive Gaseous Effluent Monitoring Instrumentation channels shown in Table 16.11-7-1 shall be FUNCTIONAL with their Alarm/Trip Setpoints set to ensure that the limits of SLC 16.11-6 are not exceeded.

<u>AND</u>

The Alarm/Trip Setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY:

As shown in Table 16.11-7-1.

REMEDIAL ACTIONS

Separate Condition entry is allowed for each Function.

CONDITION		REQUIRED ACTION		COMPLETION TIME
Effluent Moni Instrumentati channel(s) Al Setpoint less	Radioactive Gaseous Effluent Monitoring Instrumentation channel(s) Alarm/Trip	A.1 <u>OR</u>	Suspend the release of radioactive gaseous effluents monitored by the affected channel(s).	Immediately
_	required.	A.2	Declare the channel(s) non-functional.	Immediately
В.	One or more Radioactive Gaseous Effluent Monitoring Instrumentation channel(s) non- functional.	B.1	Enter the applicable Conditions and Required Actions specified in Table 16.11-7-1 for the channel(s).	Immediately

(continued)

Catawba Units 1 and 2

16.11-7-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

REMEDIAL ACTIONS (continued)

	CONDITION		REQUIRED ACTION	COMPLETION TIME
С.	One channel non- functional.	C.1	Verify that EMF-36 (Low Range) is FUNCTIONAL.	Prior to initiating a release
		<u>OR</u>		
		C.2.1	Analyze two independent samples of the tank's contents.	Prior to initiating a release
			AND	
		C.2.2	Perform independent verification of the discharge line valving.	Prior to initiating a release
			AND	
		C.2.3.	1Perform independent verification of manual portion of the computer input for release rate calculations performed by computer.	Prior to initiating a release
			<u>OR</u>	
		C.2.3.	2Perform independent verification of entire calculations for release rate calculations performed manually.	Prior to initiating a release
			AND	
		C.2.4	Restore channel to FUNCTIONAL status.	14 days
		<u>OR</u>		
		C.3	Suspend release of radioactive effluents via this pathway.	Immediately

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation

REMEDIAL ACTIONS (continued)

	The rie we (continued)				
	CONDITION		REQUIRED ACTION	COMPLETION TIME	
D.	One or more flow rate measurement device channel(s) non-functional.	D.1	Estimate the flow rate of the release.	Once per 4 hours during releases	
	Turiotional.	AND			
		D.2	Restore channel to FUNCTIONAL status.	30 days	
E.	One or more Noble Gas Activity Monitor channel(s) non-	E.1	Obtain grab samples from effluent pathway.	Once per 12 hours during releases	
	functional.	AND			
		E.2	Perform an analysis of grab samples for radioactivity.	Within 24 hours of obtaining the sample	
		AND			
_		E.3	Restore channel to FUNCTIONAL status.	30 days	

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

REMEDIAL ACTIONS (continued)

REMEDIAL ACTIONS (continued)		
CONDITION	REQUIRED A	CTION COMPLETION TIME
F. Noble Gas Activity Monitor (EMF-39 – Low Range) providing automatic termination of release via the Containment Purge Exhaust System (CPES) non-functional.	service for unit. 3. The React System for unit has be 4. Either the vessel hear (bolts are ror if it is not the lifting of loads over vessel and movement fuel assem	lize Required e following ust be ted unit is in i or 6. NAL and in r the affected tor Coolant r the affected een vented. reactor ad is in place not required), of in place, of heavy the reactor I the of irradiated ablies within nt have been I.
	channel to FUN status.	on-functional 12 hours NCTIONAL
G. Required Action and associated Completion Time of Condition F not met. OR Required Action F.1 not	i.1 Suspend PUR(radioactive effli this pathway.	GING of Immediately uents via
utilized.		

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

REMEDIAL ACTIONS (continued)

KEIVIE	REMEDIAL ACTIONS (continued)				
	CONDITION		REQUIRED ACTION	COMPLETION TIME	
Н.	One or more sampler channel(s) non-functional.	H.1	Perform sampling with auxiliary sampling equipment as required by Table 16.11-6-1.	Continuously	
		AND			
		H.2	Restore channel to FUNCTIONAL status.	30 days	
I.	One Condenser Evacuation System Noble Gas Activity Monitor (EMF-33) channel non-functional.	l.1	Applicable to effluent releases via the Condenser Steam Air Ejector (ZJ) System.		
			Obtain grab samples from effluent pathway.	Once per 12 hours during releases	
		AND			
		1.2	Applicable to effluent releases via the Condenser Steam Air Ejector (ZJ) System.		
			Perform an analysis of grab samples for radioactivity.	Within 24 hours of obtaining the sample	
		AND			
		1		(continued)	

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

REMEDIAL ACTIONS

REME	DIAL ACTIONS			
	CONDITION		REQUIRED ACTION	COMPLETION TIME
1.	(continued)	1.3	Applicable to effluent releases via the Steam Generator Blowdown (BB) System atmospheric vent valve (BB-27) in the offnormal mode.	
			Perform an analysis of grab samples for radioactivity at a lower limit of detection of 10 ⁻⁷ microCurie/ml.	Once per 12 hours during releases when secondary specific activity is > 0.01 microCurie/gm DOSE EQUIVALENT I-131
				AND
			•	Once per 24 hours during releases when secondary specific activity is ≤ 0.01 microCurie/gm DOSE EQUIVALENT I-131
		AND		
		1.4	Restore channel to FUNCTIONAL status.	30 days
J.	Noble Gas Activity Monitor (EMF-39 – Low Range) providing automatic termination of	J.1 <u>OR</u>	Verify that EMF-36 is FUNCTIONAL.	Prior to initiating a release
	release via the Containment Air Release and Addition System non-functional.	J.2.1	Analyze two independent samples of the containment atmosphere.	Prior to initiating a release
			AND	
	·			(continued)

Catawba Units 1 and 2

16.11-7-6

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

REME	EDIAL ACTIONS			
	CONDITION		REQUIRED ACTION	COMPLETION TIME
J.	(continued)	J.2.2	Perform independent verification of the discharge line valving.	Prior to initiating a release
			AND	
		J.2.3.	Perform independent verification of manual portion of the computer input for release rate calculations performed by computer.	Prior to initiating a release
			<u>OR</u>	
		J.2.3.	2 Perform independent verification of entire calculations for release rate calculations performed manually.	Prior to initiating a release
		,	AND	
		J.2.4	If channel remains or is anticipated to remain nonfunctional for ≥ 90 days, re-evaluate the configuration of the affected unit in accordance with the applicable portions of 10 CFR 50.65(a)(4) prior to expiration of the 90-day period.	
			Restore channel to FUNCTIONAL status.	30 days

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

REMEDIAL	ACTIONS (continued)			
	CONDITION		REQUIRED ACTION	COMPLETION TIME
as: Tir	equired Action and sociated Completion ne of Condition C, D, F, H, I, or J not met.	K.1	Explain why the non- functionality was not corrected within the specified Completion Time.	In the next scheduled Radioactive Effluent Release Report pursuant to Technical Specification 5.6.3
	REQUIREMENTS		NOTE	
Refer to Ta		ine wh	nich TRs apply for each Radioa	
		TEST		FREQUENCY
TR 16.11-	7-1 Perform CHANNE	L CHE	СК.	Prior to each release
TR 16.11-	For Instruments 1a these channels sh	a, 4, ar all be t when t	NOTEnd 5, a SOURCE CHECK for he qualitative assessment of the channel sensor is exposed	-
	Perform SOURCE	CHEC	čK.	Prior to each release
TR 16.11-	TR 16.11-7-3 Perform CHANNEL CHECK.			12 hours
TR 16.11-	TR 16.11-7-4 Perform CHANNEL CHECK.			24 hours
TR 16.11-	7-5 Perform CHANNE	L CHE	CK.	7 days

Catawba Units 1 and 2

16.11-7-8

Revision 9

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

ESTING REC	UIREMENTS (continued)	
	TEST	FREQUENCY
TR 16.11-7-6	For Instruments 2 and 3a, a SOURCE CHECK for these channels shall be the qualitative assessment of channel response when the channel sensor is exposed to a light-emitting diode.	
	Perform SOURCE CHECK.	31 days
TR 16.11-7-7	For Instruments 1a, 2, 3a, 3c, 5, and 6a, the COT shall also demonstrate, as applicable, that automatic isolation of this pathway and control room alarm annunciation (for EMF-58, alarm annunciation is in the Monitor Tank Building control room and on the Monitor Tank Building control panel remote annunciator panel) occur if any of the following conditions exist:	
	a. Instrument indicates measured levels above the Alarm/Trip Setpoint, or	
÷	b. Circuit failure/instrument downscale failure (alarm only)	
	Perform COT.	9 months
TR 16.11-7-8	For Instrument 4, the COT shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation occur if any of the following conditions exist:	
	a. Instrument indicates measured levels above the Alarm/Trip Setpoint, or	
	b. Circuit failure/instrument downscale failure (alarm only)	
	Perform COT.	18 months
		(continue

Catawba Units 1 and 2

16.11-7-9

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

TESTING REQUIREMENTS (continued)	
TEST	FREQUENCY
TR 16.11-7-9 For Instruments 1a, 2, 3a, 3c, 4, 5, and 6a, the initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Bureau of Standards (NBS) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.	
Perform CHANNEL CALIBRATION.	18 months

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

Table 16.11-7-1

Radioactive Gaseous Effluent Monitoring Instrumentation (page 1 of 2)

INSTRUMENT	REQUIRED CHANNELS	CONDITIONS	APPLICABLE MODES	TESTING REQUIREMENTS
1. Waste Gas Holdup System				
1.a Noble Gas Activity Monitor – Providing Alarm and Automatic Termination of Release (EMF-50 – Low Range)	1 per station	A, C, K	At all times except when the isolation valve is closed and locked	TR 16.11-7-1 TR 16.11-7-2 TR 16.11-7-7 TR 16.11-7-9
Effluent System Flow Rate Measuring Device	1 per station	D, K	At all times except when the isolation valve is closed and locked	TR 16.11-7-1 TR 16.11-7-9
Condenser Evacuation System Noble Gas Activity Monitor (EMF-33) (BB-27 is only isolation function required) (Note 1)	1	A, I, K	When air ejectors are in operation (Apply Required Action I.3 when air ejectors are not in operation)	TR 16.11-7-3 TR 16.11-7-6 TR 16.11-7-7 TR 16.11-7-9
3. Vent System				
3.a Noble Gas Activity Monitor (EMF-36 – Low Range)	1	A, E, K	At all times	TR 16.11-7-4 TR 16.11-7-6 TR 16.11-7-7 TR 16.11-7-9
3.b Deleted.				
3.c Particulate Sampler (EMF-35)	1	A, H, K	At all times (Note 2)	TR 16.11-7-4 TR 16.11-7-6 TR 16.11-7-7 TR 16.11-7-9
3.d Unit Vent Stack Flow Rate Meter (no alarm/trip function)	1	D, K	At all times (Note 2)	TR 16.11-7-4 TR 16.11-7-9
3.e Unit Vent Radiation Monitor Flow Meter	· 1	E, K	At all times (Note 2)	TR 16.11-7-4 TR 16.11-7-9
Containment Purge System Noble Gas Activity Monitor – Providing Alarm and Automatic Termination of Release (EMF-39 – Low Range)	1	A, F, G, K	5, 6	TR 16.11-7-2 TR 16.11-7-3 TR 16.11-7-8 TR 16.11-7-9
				(contin

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

Table 16.11-7-1

Radioactive Gaseous Effluent Monitoring Instrumentation (page 2 of 2)

INS	TRUMENT	REQUIRED CHANNELS	CONDITIONS	APPLICABLE MODES	TESTING REQUIREMENTS
5.	Containment Air Release and Addition System Noble Gas Activity Monitor – Providing Alarm and Automatic Termination of Release (EMF-39 – Low Range)	1	A, J, K	1, 2, 3, 4, 5, 6	TR 16.11-7-2 TR 16.11-7-3 TR 16.11-7-7 TR 16.11-7-9
6.	Monitor Tank Building HVAC				
6.a	Noble Gas Activity Monitor – Providing Alarm (EMF-58 – Low Range)	1 per station	A, E, K	At all times (Note 2)	TR 16.11-7-4 TR 16.11-7-6 TR 16.11-7-7 TR 16.11-7-9
6.b	Effluent Flow Rate Measuring Device	1 per station	D, K	At all times (Note 2)	TR 16.11-7-4 TR 16.11-7-9

Note 1: The setpoint is as required by the primary to secondary leak rate monitoring program.

Note 2: Except when the effluent pathway is mechanically isolated; thus, a release to the environment is not possible.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

BASES

The Radioactive Gaseous Effluent Monitoring Instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the Alarm/Trip will occur prior to exceeding the limits of 10 CFR Part 20. The FUNCTIONALITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50. The sensitivity of any noble gas activity monitor used to show compliance with the gaseous effluent release requirements of SLC 16.11-8 shall be such that concentrations as low as 1 x 10⁻⁶ μCi/cc are measurable.

Regarding Note 2 of Table 16.11-7-1, isolation of the effluent pathway is to be by mechanical means (e.g., valve closure). Electrical or pneumatic isolation is not required, unless the isolation is designed to receive an automatic signal to open.

In MODES 5 and 6, initiation of the Containment Purge Exhaust System (CPES) with EMF-39 non-functional is not permissible. The basis for Required Action F.1 is to allow the continued operation of the CPES with EMF-39 initially FUNCTIONAL. Continued operation of the CPES is contingent upon the ability of the affected unit to meet the requirements as noted in Required Action F.1.

TR 16.11-7-7 requires the performance of a COT on the applicable Radioactive Gaseous Effluent Radiation Monitors. The test ensures that a signal from the control room module can generate the appropriate alarm and actuations. The required actuations/isolations for a High Radiation condition (i.e., radiation level above its Trip 2 setpoint) are listed below for each monitor.

0EMF-50 - Waste Gas Discharge Monitor 1WG160 closes when EMF-50 detects radiation level above its setpoint.

1/2EMF-33 - Condensate Steam Air Ejector Exhaust Monitor The following actuations occur when EMF-33 detects radiation level above its setpoint:

- 1. Closure of BB27 is required in order to isolate the Blowdown Tank from the environment. Because of plant limitations/restrictions:
 - a. Opening the valve (in order to verify it goes closed on a High Radiation signal) is only possible during outages due to the negative effects on the Blowdown System with the unit at power.
 - b. Testing during innages will be by verification of relay contacts opening in the valve circuit.
- Closure of BB24, BB65, BB69, and BB73 is required to minimize the amount of potentially contaminated material being delivered to the Blowdown Tank.
- Closure of NM269, NM270, NM271, and NM272 is required to minimize the amount of potentially contaminated material being delivered to the Conventional Sampling System.
- Closure of NM267 is required to minimize the amount of potentially contaminated material being delivered to the Condensate Storage Tank by isolating flow through EMF-34.

Catawba Units 1 and 2

16.11-7-13

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

BASES (continued)

 Closure of BB48 is required to minimize the amount of potentially contaminated material being delivered from the Blowdown System discharge to the Turbine Building sump.

1/2EMF-36 - Unit Vent Noble Gas Monitor

The following actuations occur when EMF-36 detects radiation level above its setpoint:

- Containment Air Release and Addition System fans discharge to unit vent valve VQ10 closes.
- 2. Auxiliary Building unfiltered ventilation exhaust fans A and B stop.
- Fuel Handling Ventilation Exhaust System (FHVES) exhaust trains align to the filter units.
- 4. (For 1EMF-36 only) 1WG160 closes.

1/2EMF-35 - Unit Vent Particulate Monitor (Sampler)

The following actuations occur when EMF-35 detects radiation level above its setpoint:

- Containment Air Release and Addition System fans discharge to unit vent valve VQ10 closes.
- 2. Auxiliary Building unfiltered ventilation exhaust fans A and B stop.
- Fuel Handling Ventilation Exhaust System (FHVES) exhaust trains align to the filter units.
- 4. ((For 1EMF-35 only) 1WG160 closes.

1/2EMF-39 - Containment Noble Gas Monitor

The following actuations occur when EMF-39 detects radiation level above its setpoint:

- Signals are provided to both trains of the Solid State Protection System (SSPS) to initiate a CPES isolation. This is verified by observing that Relays K615 in the SSPS A output cabinet and the SSPS B output cabinet are latched.
- 2. EMF-39 isolates the CPES without going through the SSPS by stopping CPES supply fans A and B, CPES exhaust fans A and B, and by closing the appropriate valves and dampers.
- 3. Containment Evacuation Alarm, unless the source range trip is blocked.

0EMF-58

This monitor provides no control function.

TR 16.11-7-8 requires the performance of a COT on the Containment Noble Gas Monitor, 1/2EMF-39. The test ensures that a signal from the control room module can generate the appropriate alarm and actuations. The required actuations/isolations for a High Radiation condition (i.e., radiation level above its Trip 2 setpoint) are listed below.

1/2EMF-39 - Containment Noble Gas Monitor

The following actuations occur when EMF-39 detects radiation level above its setpoint:

Catawba Units 1 and 2

16.11-7-14

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Radioactive Gaseous Effluent Monitoring Instrumentation 16.11-7

BASES (continued)

- Signals are provided to both trains of the Solid State Protection System (SSPS) to initiate a Containment Air Release and Addition System isolation. This is verified by observing that relays K615 in the SSPS Train A output cabinet and the SSPS Train B output cabinet are latched.
- 2. Containment Evacuation Alarm, unless the source range trip is blocked.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 20.

Catawba Units 1 and 2

16.11-7-15

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Dose – Noble Gases 16.11-8

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-8 Dose - Noble Gases

COMMITMENT

The air dose due to noble gases released in gaseous effluents, from each unit, to areas at and beyond the SITE BOUNDARY (see Figure 16.11-16-1 in SLC 16.11-16) shall be limited to the following:

- a. During any calendar quarter: ≤ 5 mrad for gamma radiation and ≤ 10 mrad for beta radiation, and
- b. During any calendar year: ≤ 10 mrad for gamma radiation and
 ≤ 20 mrad for beta radiation.

APPLICABILITY: At all times.

REMEDIAL ACTIONS

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. Calculated air dose from radioactive noble gases in gaseous effluents exceeding any of above limits.	A.1 Prepare and submit a Special Report to the NRC which identifies the causes for exceeding the limits, corrective actions taken to reduce releases, and actions taken to ensure that subsequent releases are within limits.	30 days

TESTING REQUIREMENTS

TEST	FREQUENCY
TR 16.11-8-1 Determine cumulative dose contributions from noble gases in gaseous effluents for current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM.	31 days

Catawba Units 1 and 2

16.11-8-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Dose – Noble Gases 16.11-8

BASES

This SLC is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The COMMITMENT implements the guides set forth in Section II.B of Appendix I. The REMEDIAL ACTION statement provides the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable". The TESTING REQUIREMENTS implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This commitment applies to the release of radioactive materials in gaseous effluents from each unit at the site. When shared radwaste treatment systems are used by more than one unit on a site, the wastes from all units are mixed for shared treatment; by such mixing, the effluent releases cannot accurately be ascribed to a specific unit. An estimate should be made of the contributions from each unit based on input conditions, e.g., flow rates and radioactivity concentrations, or, if not practicable, the treated effluent releases may be allocated equally to each of the radioactives waste producing units sharing the radwaste treatment system. For determining conformance to COMMITMENTS, these allocations from shared radwaste treatment systems are to be added to the releases specifically attributed to each unit to obtain the total releases per unit.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 50, Appendix I.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Dose – Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form 16.11-9

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-9 Dose - Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form

COMMITMENT

The dose to a MEMBER OF THE PUBLIC from lodine-131, lodine-133, tritium, and all radionuclides in particulate form with half-lives > 8 days in gaseous effluents released, from each unit, to areas at and beyond the SITE BOUNDARY (see Figure 16.11-16-1 in SLC 16.11-16) shall be limited to the following:

- a. During any calendar quarter: ≤ 7.5 mrem to any organ, and
- b. During any calendar year: ≤ 15 mrem to any organ.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
A.	Calculated dose from the release of Iodine-131, Iodine-133, tritium, and radioactive material in particulate form with half-lives > 8 days in gaseous effluents exceeding any of above limits.	A.1	Prepare and submit a Special Report to the NRC which identifies the causes for exceeding the limits, corrective actions taken to reduce releases, and actions taken to ensure that subsequent releases are within limits.	30 days

TESTING REQUIREMENTS

	TEST	FREQUENCY
TR 16.11-9-1	Determine cumulative dose contributions from Iodine- 131, Iodine-133, tritium, and radioactive material in particulate form with half-lives > 8 days in gaseous effluents for current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM.	31 days

Catawba Units 1 and 2

16.11-9-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Dose – Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form 16.11-9

BASES

This SLC is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50, and are the guides set forth in Section II.C of Appendix I. The REMEDIAL ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable". The ODCM calculational methods specified in the TESTING REQUIREMENTS implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate COMMITMENTS for Iodine-131, Iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of the calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat-producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure of man.

This commitment applies to the release of radioactive materials in gaseous effluents from each unit at the site. When shared radwaste treatment systems are used by more than one unit on a site, the wastes from all units are mixed for shared treatment; by such mixing, the effluent releases cannot accurately be ascribed to a specific unit. An estimate should be made of the contributions from each unit based on input conditions, e.g., flow rates and radioactivity concentrations, or, if not practicable, the treated effluent releases may be allocated equally to each of the radioactive waste producing units sharing the radwaste treatment system. For determining conformance to COMMITMENTS, these allocations from shared radwaste treatment systems are to be added to the releases specifically attributed to each unit to obtain the total releases per unit.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 50, Appendix I.

Catawba Units 1 and 2

16.11-9-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Radwaste Treatment System 16.11-10

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-10 Gaseous Radwaste Treatment System

COMMITMENT

The VENTILATION EXHAUST TREATMENT SYSTEM and the WASTE GAS HOLDUP SYSTEM shall be FUNCTIONAL and appropriate portions of these systems shall be used to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases, from each unit, to areas at and beyond the SITE BOUNDARY (see Figure 16.11-16-1 in SLC 16.11-16) would exceed either:

- a. 0.2 mrad to air from gamma radiation, or
- b. 0.4 mrad to air from beta radiation, or
- c. 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	Radioactive gaseous waste being discharged without treatment and in excess of above limits.	A.1	Prepare and submit a Special Report to the NRC which identifies non- functional equipment and reasons for non- functionality, actions taken to restore the equipment to FUNCTIONAL status, and actions taken to prevent recurrence.	30 days

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Radwaste Treatment System 16.11-10

BASES

The FUNCTIONALITY of the WASTE GAS HOLDUP SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable". This COMMITMENT implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

This SLC applies to the release of radioactive materials in gaseous effluents from each unit at the site. When shared radwaste treatment systems are used by more than one unit on a site, the wastes from all units are mixed for shared treatment; by such mixing, the effluent releases cannot accurately be ascribed to a specific unit. An estimate should be made of the contributions from each unit based on input conditions, e.g., flow rates and radioactivity concentrations, or, if not practicable, the treated effluent releases may be allocated equally to each of the radioactive waste producing units sharing the radwaste treatment system. For determining conformance to COMMITMENTS, these allocations from shared radwaste treatment systems are to be added to the releases specifically attributed to each unit to obtain the total releases per unit.

Catawba Units 1 and 2

16.11-10-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gaseous Radwaste Treatment System 16.11-10

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 50, Appendix I.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Solid Radioactive Wastes 16.11-11

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-11 Solid Radioactive Wastes

COMMITMENT

Radioactive wastes shall be processed and packaged to ensure compliance with the applicable requirements of 10 CFR Part 20, 10 CFR Part 61, 10 CFR Part 71, and state regulations governing the transportation and disposal of radioactive wastes.

The Solid Radwaste System or an approved alternative process shall be used in accordance with the PROCESS CONTROL PROGRAM for the solidification of liquid or wet radioactive wastes or the dewatering of wet radioactive wastes to be shipped for direct disposal at a 10 CFR Part 61 licensed disposal site. Wastes shipped for offsite processing in accordance with the processor's specifications and transportation requirements are not required to be solidified or dewatered to meet disposal requirements.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	Applicable regulatory requirements for solidified or dewatered wastes not satisfied.	A.1	Suspend shipment of inadequately processed waste.	Immediately
		A.2	Take action to correct the PROCESS CONTROL PROGRAM, procedures, or solid waste equipment as necessary to prevent recurrence.	Prior to next shipment for disposal of solidified or dewatered wastes

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Solid Radioactive Wastes 16.11-11

REMEDIAL A	CTIONS	(continued)
------------	--------	-------------

REMEDIAL ACTIONS (continue	,u)		
CONDITION		REQUIRED ACTION	COMPLETION TIME
B. Solidification test as described in the PROCESS CONTROL PROGRAM fails to verify solidification.	B.1	Suspend solidification of the batch under test and follow PROCESS CONTROL PROGRAM guidance for test failures.	Immediately
	AND		
	B.2	Once a subsequent test verifies solidification, solidification of the batch may be resumed as directed by the PROCESS CONTROL PROGRAM.	
		Modify the PROCESS CONTROL PROGRAM as required to assure solidification of subsequent batches of waste.	Prior to next solidification for shipment of waste for disposal at a 10 CFR Part 61 disposal site
C. Solidification or dewatering for disposa not performed in accordance with the PROCESS CONTROL PROGRAM.		Reprocess the waste in accordance with PROCESS CONTROL PROGRAM requirements.	Prior to shipment for disposal of the inadequately processed waste that requires solidification or dewatering
	C.2	Follow PROCESS CONTROL PROGRAM or procedure guidance for alternative free-standing liquid verification to ensure the waste in each container meets disposal requirements and take appropriate administrative action to prevent recurrence.	Prior to shipment for disposal of the inadequately processed waste that requires solidification or dewatering

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Solid Radioactive Wastes 16.11-11

REMEDIAL ACTIONS (continued)

CONDITION		REQUIRED ACTION		COMPLETION TIME
D.	Solid waste equipment incapable of supporting COMMITMENT.	D.1	Restore the equipment to a status capable of supporting COMMITMENT.	In a time frame supporting COMMITMENT
		<u>OR</u>		
		D.2	Provide for alternative capability to process wastes as necessary to satisfy all applicable transportation and disposal requirements.	In a time frame supporting COMMITMENT

TESTING REQUIREMENTS

TEST	FREQUENCY
TR 16.11-11-1Verify, using the PROCESS CONTROL PROGRAM, the solidification of at least one representative test specimen from at least every tenth batch of each type of radioactive waste to be solidified for disposal at a 10 CFR Part 61 disposal site.	Every tenth batch of each type of radioactive waste to be solidified

BASES

This SLC implements the requirements of 10 CFR Part 50.36a and General Design Criterion 60 of Appendix A to 10 CFR Part 50 and requirements to use a PROCESS CONTROL PROGRAM to meet applicable 10 CFR Part 61 waste form criteria for solidified and dewatered radioactive wastes.

- The PROCESS CONTROL PROGRAM describes administrative and operational controls used for the solidification of liquid or wet solid radioactive wastes in order to meet applicable 10 CFR Part 61 waste form requirements.
- The PROCESS CONTROL PROGRAM describes the administrative and operational controls used for the dewatering of wet radioactive wastes to meet 10 CFR Part 61 free-standing water requirements.
- The process parameters used in establishing the PROCESS CONTROL PROGRAM shall be based on demonstrated processing of actual or simulated liquid or wet solid wastes and must adequately verify that the final product of solidification or dewatering meets all applicable federal, state, and disposal site requirements.

Catawba Units 1 and 2

16.11-11-3

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Solid Radioactive Wastes 16.11-11

REFERENCES

- 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities."
- 2. 10 CFR Part 50, Appendix A.
- 3. 10 CFR Part 20, "Standards for Protection Against Radiation."
- 4. 10 CFR Part 61, "Licensing Requirements for Land Disposal of Radioactive Waste."
- 5. 10 CFR Part 71, "Packaging and Transportation of Radioactive Materials."
- 6. PROCESS CONTROL PROGRAM Manual.
- 7. Generic Letter 84-12, "Compliance with 10 CFR Part 61 and Implementation of the Radiological Effluent Technical Specifications (RETS) and Attendant Process Control Program (PCP)."
- 8. Generic Letter 89-01, "Implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program."

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Total Dose 16.11-12

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-12 Total Dose

COMMITMENT

The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to ≤ 25 mrem to the whole body or any organ, except the thyroid, which shall be limited to ≤ 75 mrem.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	Calculated doses from releases exceeding twice the specified limits of SLC 16.11-3, SLC 16.11-8, or SLC 16.11-9.	A.1	Verify, by calculation, that the cumulative dose from direct radiation contributions and outside storage tanks and radioactivity releases are within the total dose limit.	Immediately
		<u>AND</u>		
		A.2	Only required to be performed if the total dose limit is exceeded.	
			Prepare and submit a Special Report to the NRC which identifies corrective actions to be taken to reduce subsequent releases to prevent recurrence and schedule for achieving conformance with specified limits.	30 days

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Total Dose 16.11-12 **TESTING REQUIREMENTS** -----NOTF-----Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with SLC 16.11-3, SLC 16.11-8, and SLC 16.11-9, and in accordance with the methodology and parameters specified in the ODCM. TEST FREQUENCY TR 16.11-12-1 Determine cumulative dose contributions from direct When calculated radiation from the units and from radwaste storage tanks doses from in accordance with the methodology and parameters effluent releases specified in the ODCM. exceed twice the limits of SLC 16.11-3, SLC 16.11-8, or SLC 16.11-9

BASES

This SLC is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The SLC requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrem to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrem. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units and from outside storage tanks are kept small.

This Special Report, as defined in 10 CFR 20.2203(a)(4), shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered.

Catawba Units 1 and 2

16.11-12-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Total Dose 16.11-12

BASES (continued)

If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and 10 CFR 20.2203(a)(4), is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 and a variance is granted until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in SLC 16.11-1 and SLC 16.11-6.

An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 20.
- 3. 40 CFR Part 190.

Catawba Units 1 and 2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16.11-13

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-13 Monitoring Program

COMMITMENT

The Radiological Environmental Monitoring Program shall be conducted

as specified in Table 16.11-13-1.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	Radiological Environmental Monitoring Program not being conducted as specified in Table 16.11- 13-1.	A.1	Identify the reasons for not conducting the program as required and the plans for preventing a recurrence in the Annual Radiological Environmental Operating Report.	In the next scheduled Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2
В.	Radioactivity level resulting from plant effluents of environmental sampling medium at a specified location in excess of reporting limits of Table 16.11-13-2 when averaged over any calendar quarter.	B.1	Prepare and submit a Special Report that identifies the cause(s) for exceeding the limits and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a MEMBER OF THE PUBLIC is less than the calendar year limits of SLC 16.11-3, SLC 16.11-8, and SLC 16.11-9.	30 days

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16.11-13

REMEDIAL ACTIONS (continued)					
	CONDITION		REQUIRED ACTION	C	COMPLETION TIME
ve un mo rec	ilk or fresh leafy getation samples lavailable from one or ore sample location(s) quired by Table 16.11-	C.1	Specific location(s) from which samples were unavailable may be deleted from the program.		
			Revise the Radiological Environmental Monitoring Program to identify location(s) for obtaining replacement samples.	3	0 days
	I	<u>AND</u>	•		
		C.2	Identify the cause of the unavailability of samples and identify and justify new location(s) for obtaining replacement samples in the Annual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).	s R R p	n the next cheduled Annual cadioactive Effluent celease Report ursuant to echnical pecification 5.5.1
TESTING I	REQUIREMENTS				
		TEST			FREQUENCY
TR 16.11-13-1NOTENOTE The maximum values for the lower limits of detection shall be as specified in Table 16.11-13-3.		-			
Collect and analyze radiological environmental monitoring samples pursuant to Table 16.11-13-1 from the specific locations given in the table and figure(s) in the ODCM.				In accordance with Table 16.11-13-1	

Catawba Units 1 and 2

16.11-13-2

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 1 of 7)

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY	TYPE AND FREQUENCY OF ANALYSIS
1. Direct Radiation ⁽²⁾	Forty routine monitoring stations either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously, placed as follows: An inner ring of stations, one in each meteorological sector in the general area of the SITE BOUNDARY; An outer ring of stations, one in each meteorological sector in the 6- to 8-km range from the site; and The balance of the stations to be placed in special interest areas such as population centers, nearby residences, schools, and in one or two areas to serve as control stations.	Quarterly	Gamma dose quarterly

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 2 of 7)

	 	, 	
EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY	TYPE AND FREQUENCY OF ANALYSIS
Airborne Radioiodine and Particulates	Samples from five locations. Three samples from close to the three SITE BOUNDARY locations, in different sectors, of the highest calculated annual average ground-level D/Q; One sample from the vicinity of a community having the highest calculated annual average ground-level D/Q; and One sample from a control location, as for example 15 to 30 km distant and in the least prevalent wind direction.	Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading.	Radioiodine Canister: I-131 analysis weekly. Particulate Sampler: Gross beta radioactivity analysis following filter change; (3) and gamma isotopic analysis (4) of composite (by location) quarterly.

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 3 of 7)

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY	TYPE AND FREQUENCY OF ANALYSIS
3. Waterborne			
a. Surface ⁽⁵⁾	One sample upstream. One sample downstream.	Composite sample over 1-month period ⁽⁶⁾ .	Gamma isotopic analysis ⁽⁴⁾ monthly. Composite for tritium analysis quarterly.
b. Ground	Samples from one or two sources only if likely to be affected ⁽⁷⁾ .	Quarterly	Gamma isotopic ⁽⁴⁾ and tritium analysis quarterly.
c. Drinking	One sample of each of one to three of the nearest water supplies that could be affected by its discharge. One sample from a control location.	Composite sample over 2-week period ⁽⁶⁾ when I-131 analysis is performed; monthly composite otherwise.	I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year ⁽⁶⁾ . Composite for gross beta and gamma isotopic analyses ⁽⁴⁾ monthly. Composite for tritium analysis quarterly.
d. Sediment from Shoreline	One sample from downstream area with existing or potential recreational value.	Semiannually	Gamma isotopic analysis ⁽⁴⁾ semiannually.

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 4 of 7)

ΕX	KPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY	TYPE AND FREQUENCY OF ANALYSIS
4.	Ingestion			
	a. Milk	Samples from milking animals in three locations within 5-km distance having the highest dose potential. If there are none, then one sample from milking animals in each of three areas between 5 to 8 km distant where doses are calculated to be greater than 1 mrem per year ⁽⁸⁾ . One sample from milking animals at a control location 15 to 30 km distant and in the least prevalent wind direction.	Semimonthly when animals are on pasture; monthly at other times.	Gamma isotopic ⁽⁴⁾ and I-131 analysis semi-monthly when animals are on pasture; monthly at other times.
	b. Fish and Invertebrates	One sample each of a predatory species, a bottom feeder and a forage species in vicinity of plant discharge area. One sample each of a predatory species, a bottom feeder and a forage species in areas not influenced by plant discharge.	Sample in season, or semiannually if they are not seasonal.	Gamma isotopic analysis ⁽⁴⁾ on edible portions.

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 5 of 7)

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS ⁽¹⁾	SAMPLING AND COLLECTION FREQUENCY	TYPE AND FREQUENCY OF ANALYSIS
4. Ingestion (Continued)			
c. Food Products	One sample of each principal class of food products from any area that is irrigated by water in which liquid plant wastes have been discharged.	At time of harvest ⁽⁹⁾ .	Gamma isotopic analyses ⁽⁴⁾ on edible portion.
	Samples of three different kinds of broad leaf vegetation grown nearest each of two different offsite locations of highest predicted annual average ground level D/Q if milk sampling is not performed.	Monthly, when available.	Gamma isotopic ⁽⁴⁾ and I-131 analysis.
	One sample of each of the similar broad leaf vegetation grown 15 to 30 km distant in the least prevalent wind direction if milk sampling is not performed.	Monthly, when available.	Gamma isotopic ⁽⁴⁾ and I-131 analysis.
	I .	1	I .

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16.11-13

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 6 of 7)

NOTES:

- (1) Specific parameters of distance and direction sector from the centerline of the station, and additional description where pertinent, shall be provided for each and every sample location in Table 16.11-13-1 in a table and figure(s) in the ODCM. Refer to NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," October 1978, and to Radiological Assessment Branch Technical Position, Revision 1, November 1979. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to circumstances such as hazardous conditions, seasonal unavailability, and malfunction of automatic sampling equipment. If specimens are unobtainable due to sampling equipment malfunction, effort shall be made to complete corrective action prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2. It is recognized that, at times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the Radiological Environmental Monitoring Program. In lieu of any Licensee Event Report required by 10 CFR 50.73 and pursuant to Technical Specification 5.6.3, identify the cause of the unavailability of samples for that pathway and identify the new location(s) for obtaining replacement samples in the next Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).
- (2) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation. (The 40 stations is not an absolute number. The number of direct radiation monitoring stations may be reduced according to geographical limitations; e.g., at an ocean site, some sectors will be over water so that the number of dosimeters may be reduced accordingly. The frequency of analysis or readout for TLD systems will depend upon the characteristics of the specific system used and should be selected to obtain optimum dose information within minimal fading.)
- (3) Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than 10 times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.

Catawba Units 1 and 2

16.11-13-8

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16.11-13

Table 16.11-13-1

Radiological Environmental Monitoring Program (page 7 of 7)

- (4) Gamma isotopic analysis means the identification and quantification of gammaemitting radionuclides that may be attributable to the effluents from the facility.
- (5) The "upstream sample" shall be taken at a distance beyond significant influence of the discharge. The "downstream" sample shall be taken in an area beyond but near the mixing zone. "Upstream" samples in an estuary must be taken far enough upstream to be beyond the plant influence. Salt water shall be sampled only when the receiving water is utilized for recreational activities.
- (6) A composite sample is one in which the rate at which the liquid sampled is uniform and in which the method of sampling employed results in a specimen that is representative of the time-averaged concentration at the location being sampled. In this program composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.
- (7) Groundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.
- (8) The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.
- (9) If harvest occurs more than once a year, sampling shall be performed during each discrete harvest. If harvest occurs continuously, sampling shall be monthly. Attention shall be paid to including samples of tuberous and root food products.

Catawba Units 1 and 2

Table 16.11-13-2

Reporting Levels for Radioactivity Concentrations in Environmental Samples

ANALYSIS	WATER (pCi/l)	AIRBORNE PARTICULATE OR GASES (pCi/m³)	FISH (pCi/kg, wet)	MILK (pCi/l)	FOOD PRODUCTS (pCi/kg, wet)
H-3	20,000(1)	-			
Mn-54	1,000		30,000		
Fe-59	400	 	10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000	_ 	
Zr-Nb-95	400				
I-131	2	0.9		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200	 		300	

⁽¹⁾ For drinking water samples. This is 40 CFR Part 141 value. If no drinking water pathway exists, a value of 30,000 pCi/l may be used.

Table 16.11-13-3

Lower Limit of Detection (LLD)⁽³⁾ (page 1 of 3)

ANALYSIS	WATER (pCi/l)	AIRBORNE PARTICULATE OR GASES (pCi/m³)	FISH (pCi/kg, wet)	MILK (pCi/l)	FOOD PRODUCTS (pCi/kg, wet)	SEDIMENT (pCi/kg, dry)
Gross Beta	4	0.01				
H-3	2000 ⁽⁵⁾	<u> </u>				
Mn-54	15	 	130			
Fe-59	30		260		 	
Co-58, 60	15		130		 	
Zn-65	30	1	260		 	
Zr-Nb-95	15				 	
I-131	1 ⁽⁴⁾	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-La-140	15	 		15		

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Monitoring Program 16.11-13

Table 16.11-13-3

Lower Limit of Detection (LLD)(3) (page 2 of 3)

NOTES:

- (1) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2.
- (2) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements shall be in accordance with the recommendations of Regulatory Guide 4.13.
- (3) The LLD is defined, for purposes of these commitments, as the smallest concentrations of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, which may include radiochemical separation:

$$LLD = \frac{(2.71/T) + 4.65 s_b}{E \cdot V \cdot 2.22 \cdot Y \cdot \exp(-\lambda \Delta t)}$$

Where:

LLD = the "a priori" lower limit of detection (picoCuries per unit mass or volume);

 s_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute);

E = the counting efficiency (counts per disintegration);

V = the sample size (units of mass or volume);

2.22 = the number of disintegrations per minute per picoCurie;

Y = the fractional radiochemical yield, when applicable;

 λ = the radioactive decay constant for the particular radionuclide (sec⁻¹);

 Δt = the elapsed time between environmental collection, or end of the sample collection period, and time of counting (sec). and

T = the sample counting time (min).

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16.11-13

Table 16.11-13-3

Lower Limit of Detection (LLD)(3) (page 3 of 3)

Typical values of E, V, Y and Δt shall be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2.

- (4) LLD for drinking water samples. If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used.
- (5) If no drinking water pathway exists, a value of 3000 pCi/l may be used.

Catawba Units 1 and 2

16.11-13-13

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16,11-13

BASES

The Radiological Environmental Monitoring Program required by this SLC provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the plant operation. This Monitoring Program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this Monitoring Program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. The initially specified Monitoring Program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 16.11-13-3 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

With the level of radioactivity in an environmental sampling medium at a specified location exceeding the reporting levels of Table 16.11-13-2 when averaged over any calendar quarter, in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days a Special Report that defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a MEMBER OF THE PUBLIC is less than the calendar year limits of SLC 16.11-3, SLC 16.11-8, and SLC 16.11-9. When more than one of the radionuclides in Table 16.11-13-2 are detected in the sampling medium, this report shall be submitted if:

$$\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + \dots \ge 1.0$$

When radionuclides other than those in Table 16.11-13-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose to a MEMBER OF THE PUBLIC from all radionuclides is equal to or greater than the calendar year limits of SLC 16.11-3, SLC 16.11-8, and SLC 16.11-9. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report required by Technical Specification 5.6.2. The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in the 30-day Special Report.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Monitoring Program 16.11-13

BASES (continued)

Detailed discussion of the LLD, and other detection limits, can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually), Currie, L.A., "Limits for Qualitative Detection and Quantitative Determination – Application to Radiochemistry," <u>Anal. Chem. 40</u>, 586-93 (1968), and Hartwell, J.K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report <u>ARH-SA-215</u> (June 1975).

REFERENCES

- Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 50, Appendix I.

Catawba Units 1 and 2

16.11-13-15

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Land Use Census 16.11-14

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-14 Land Use Census

COMMITMENT

Broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Requirements for broad leaf vegetation sampling in Table 16.11-13-1 (Item 4c) shall be followed, including analysis of control samples.

A Land Use Census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence, and the nearest garden of > 50 m² (500 ft²) producing broad leaf vegetation.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	Location(s) identified which yield a calculated dose or dose commitment greater than values currently calculated in SLC 16.11-9.	A.1	Identify the new location(s) in the Annual Radioactive Effluent Release Report.	In the next scheduled Annual Radioactive Effluent Release Report pursuant to Technical Specification 5.6.3
B.	Location(s) identified which yield a calculated dose or dose commitment (via same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with SLC 16.11-13.	B.1	Add the new location(s) to the Radiological Environmental Monitoring Program.	30 days
				(continued)

Catawba Units 1 and 2

16.11-14-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Land Use Census 16.11-14

REMEDIAL ACTIONS

KEMEDIAL ACTIONS		
CONDITION	REQUIRED ACTION	COMPLETION TIME
B. (continued)	B.2 Identify the new location(s), revised figure(s) and table(s) for the ODCM, and information supporting the change in sampling location(s) in the Annual Radioactive Effluent Release Report.	In the next scheduled Annual Radioactive Effluent Release Report pursuant to Technical Specification 5.5.1
	I .	I

TESTING REQUIREMENTS

TEOTING REGUITEINEITIE	
TEST	FREQUENCY
TR 16.11-14-1 The results of the Land Use Census shall be included in the Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2. Conduct a Land Use Census during the growing season using the information which will provide the best results such as a door-to-door survey, aerial survey, or consultation with local agricultural authorities.	12 months

BASES

This SLC is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey, or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m² provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantify (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/m².

Catawba Units 1 and 2

16.11-14-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Land Use Census 16.11-14

BASES (continued)

With a Land Use Census identifying a location(s) which yield a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with SLC 16.11-13, add the new location(s) within 30 days to the Radiological Environmental Monitoring Program given in the ODCM. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment, via the same exposure pathway, may be deleted from this monitoring program after October 31 of the year in which this Land Use Census was conducted.

REFERENCES

- 1. Catawba Offsite Dose Calculation Manual.
- 2. 10 CFR Part 50, Appendix I.

Catawba Units 1 and 2

16.11-14-3

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Interlaboratory Comparison Program 16.11-15

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-15 Interlaboratory Comparison Program

COMMITMENT

Analyses shall be performed on all radioactive materials, supplied as part of an Interlaboratory Comparison Program, that correspond to

samples required by SLC 16.11-13.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME	
A.	Analyses not being performed as required.	A.1	Report corrective actions taken to prevent recurrence in the Annual Radiological Environmental Operating Report.	In the next scheduled Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2	

TESTING REQUIREMENTS

TEST	FREQUENCY
TR 16.11-15-1Report a summary of the results of the Interlaboratory Comparison Program in the Annual Radiological Environmental Operating Report.	In the Annual Radiological Environmental Operating Report pursuant to Technical Specification 5.6.2

BASES

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

Catawba Units 1 and 2

16.11-15-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Interlaboratory Comparison Program 16.11-15

BASES (continued)

The Interlaboratory Comparison Program shall be described in the Annual Radiological Environmental Operating Report.

REFERENCES

1. 10 CFR Part 50, Appendix I.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Annual Radiological Environmental Operating Report And Radioactive Effluent Release Report 16.11-16

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-16 Annual Radiological Environmental Operating Report and Radioactive Effluent Release Report

COMMITMENT

Annual Radiological Environmental Operating Report

Routine Annual Radiological Environmental Operating Reports covering the operation of the unit during the previous calendar year shall be submitted prior to May 15 of each year.

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison with preoperational studies, with operational controls as appropriate, and with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of the Land Use Census.

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the table and figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The reports shall also include the following: a summary description of the Radiological Environmental Monitoring Program; at least two legible maps (one map shall cover stations near the SITE BOUNDARY, and a second map shall include the more distant stations) covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactor; the results of licensee participation in the Interlaboratory Comparison Program, required by SLC 16.11-15; discussion of all deviations from the sampling schedule of Table 16.11-13-1; and discussion of all analyses in which the LLD required by Table 16.11-13-3 was not achievable.

A single submittal may be made for the station.

(continued)	

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Annual Radiological Environmental Operating Report And Radioactive Effluent Release Report 16.11-16

COMMITMENT (continued)

Radioactive Effluent Release Report

The Radioactive Effluent Release Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit.

The Radioactive Effluent Release Report shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-byhour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability. (In lieu of submission with the Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.) This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. A five-year average of representative onsite meteorological data shall be used in the gaseous effluent dose pathway calculations. Dispersion factors (X/Qs) and deposition factors (D/Qs) shall be generated using the computer code XOQDOQ (NUREG/CR-2919) which implements NRC Regulatory Guide 1.111. The meteorological conditions concurrent with the time of release shall be reviewed annually to determine if the five-year average values should be revised. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the

The Radioactive Effluent Release Report shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR Part 190, "Environmental Radiation Protection Standards for Nuclear Power Operation." Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109, Rev. 1, October 1977.

The Radioactive Effluent Release Reports shall include the following information for each type of solid waste shipped offsite during the report period:

/	4:	!\
ıco	חוזת	ıued)

Catawba Units 1 and 2

16.11-16-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Annual Radiological Environmental Operating Report And Radioactive Effluent Release Report 16.11-16

COMMITMENT (continued)

- a. Total container volume, in cubic meters.
- b. Total Curie quantity (determined by measurement or estimate).
- Principal radionuclides (determined by measurement or estimate),
- Type of waste (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
- e. Number of shipments, and
- f. Solidification agent or absorbent (e.g., cement or other approved agents (media)).

The Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.

The Radioactive Effluent Release Reports shall include any changes made during the reporting period to the PROCESS CONTROL PROGRAM (PCP) and to the ODCM, as well as a listing of new locations for dose calculations and/or environmental monitoring identified by the Land Use Census pursuant to SLC 16.11-14.

A single submittal may be made for the station. The submittal should combine those sections that are common to both units.

APPLICABILITY:	At all times.
REMEDIAL ACTIONS	S None
TESTING REQUIRE	MENTS None
BASES	None
REFERENCES	None

Catawba Units 1 and 2

16,11-16-3

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Annual Radiological Environmental Operating Report And Radioactive Effluent Release Report 16.11-16

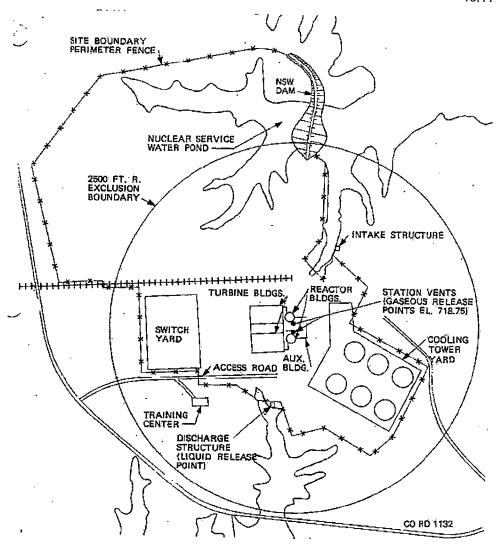


Figure 16.11-16-1

UNRESTRICTED AREA and SITE BOUNDARY for Radioactive Effluents

Catawba Units 1 and 2

16.11-16-4

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Holdup Tanks 16.11-17

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-17 Liquid Holdup Tanks

COMMITMENT

The quantity of radioactive material contained in each temporary unprotected outdoor tank shall be limited to \leq 10 Curies, excluding

tritium and dissolved or entrained noble gases.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	Quantity of radioactive material in tank(s) exceeding limit.	A.1	Suspend all additions of radioactive material to the tank(s).	Immediately
		AND		
		A.2	Reduce tank(s) contents to within limit.	48 hours
		AND		
		A.3	Describe the events leading to this condition in the Radioactive Effluent Release Report.	In the next scheduled Radioactive Effluent Release Report pursuant to Technical Specification 5.6.3

TESTING REQUIREMENTS

	
TEST .	FREQUENCY
TR 16.11-17-1 Verify that the quantity of radioactive material contained in each tank is within limits by analyzing a representative sample of the tank(s) contents when radioactive materials are being added to the tank(s).	7 days
	1

Catawba Units 1 and 2

16.11-17-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Liquid Holdup Tanks 16.11-17

BASES

The tanks included in this SLC are all those outdoor radwaste tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and that do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tank's contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table II, Column 2, at the nearest potable water supply and the nearest surface water supply in an UNRESTRICTED AREA.

REFERENCES

- 1. Letter from NRC to Gary R. Peterson, Duke, Issuance of Improved Technical Specifications Amendments for Catawba, September 30, 1998.
- 2. Technical Specification 5.5.12, Explosive Gas and Storage Tank Radioactivity Monitoring Program.

Catawba Units 1 and 2

16,11-17-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Mixture 16.11-18

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-18 **Explosive Gas Mixture**

COMMITMENT

The concentration of oxygen in the WASTE GAS HOLDUP SYSTEM

shall be limited to \leq 2% by volume whenever the hydrogen concentration is > 4% by volume.

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
Α.	Concentration of oxygen in the WASTE GAS HOLDUP SYSTEM > 2% but ≤ 4% by volume and hydrogen concentration > 4% by volume.	A.1	Reduce oxygen concentration to within limits.	48 hours
В.	Concentration of oxygen in the WASTE GAS HOLDUP SYSTEM > 4% by volume and hydrogen concentration > 4% by volume.	B.1	Suspend all additions of waste gases to the system.	Immediately
		B.2	Reduce the concentration of oxygen to ≤ 4% by volume.	Immediately
		AND		
		B.3	Reduce oxygen concentration to within limits.	48 hours

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Mixture 16.11-18

TESTING REQUIREMENTS

TEST	FREQUENCY
TR 16.11-18-1 Verify that the concentrations of hydrogen and oxygen in the WASTE GAS HOLDUP SYSTEM are within limits by continuously monitoring the waste gases in the WASTE GAS HOLDUP SYSTEM with the hydrogen and oxygen monitors required FUNCTIONAL by SLC 16.11-20.	During WASTE GAS HOLDUP SYSTEM operation

BASES

This SLC is provided to ensure that the concentration of potentially explosive gas mixtures contained in the WASTE GAS HOLDUP SYSTEM is maintained below the flammability limits of hydrogen and oxygen. Automatic control features are included in the system to prevent the hydrogen and oxygen concentrations from reaching these flammability limits. These automatic control features include isolation of the source of hydrogen and/or oxygen, automatic diversion to recombiners, or injection of dilutants to reduce the concentration below the flammability limits. Maintaining the concentration of hydrogen and oxygen below their flammability limits provides assurance that the releases of radioactive materials will be controlled in conformance with the requirements of General Design Criterion 60 of Appendix A to 10 CFR Part 50.

REFERENCES

- Letter from NRC to Gary R. Peterson, Duke, Issuance of Improved Technical Specifications Amendments for Catawba, September 30, 1998.
- 2. Technical Specification 5.5.12, Explosive Gas and Storage Tank Radioactivity Monitoring Program.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Gas Storage Tanks 16.11-19

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-19 Gas Storage Tanks

COMMITMENT

The quantity of radioactivity contained in each gas storage tank shall be limited to \leq 97,000 Curies of noble gases (considered as Xe-133

equivalent).

APPLICABILITY:

At all times.

REMEDIAL ACTIONS

CONDITION		REQUIRED ACTION		COMPLETION TIME
A.	Quantity of radioactive material in tank(s) exceeding limit.	A.1	Suspend all additions of radioactive material to the tank(s).	Immediately
		AND	•	
		A.2	Reduce tank(s) contents to within limit.	48 hours
		AND		
		A.3	Describe the events leading to this condition in the Radioactive Effluent Release Report.	In the next scheduled Radioactive Effluent Release Report pursuant to Technical Specification 5.6.3

TESTING REQUIREMENTS

TEST	FREQUENCY
TR 16.11-19-1Verify that the quantity of radioactive material contained in each tank is within limits when radioactive materials are being added to the tank(s).	24 hours

Catawba Units 1 and 2

16.11-19-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

> Gas Storage Tanks 16.11-19

BASES

The tanks included in this SLC are those tanks for which the quantity of radioactivity contained is not limited directly or indirectly by another SLC. Restricting the quantity of radioactivity contained in each gas storage tank provides assurance that in the event of an uncontrolled release of the tank's contents, the resulting whole body exposure to a MEMBER OF THE PUBLIC at the nearest SITE BOUNDARY will not exceed 0.5 rem. This is consistent with Standard Review Plan 11.3, Branch Technical Position ETSB 11-5, "Postulated Radioactive Releases Due to a Waste Gas System Leak or Failure," in NUREG-0800, July 1981.

REFERENCES

- Letter from NRC to Gary R. Peterson, Duke, Issuance of Improved Technical Specifications Amendments for Catawba, September 30, 1998.
- 2. Technical Specification 5.5.12, Explosive Gas and Storage Tank Radioactivity Monitoring Program.

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Monitoring Instrumentation 16.11-20

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-20 Explosive Gas Monitoring Instrumentation

COMMITMENT

The Explosive Gas Monitoring Instrumentation channels shown in Table 16.11-20-1 shall be FUNCTIONAL with their Alarm/Trip Setpoints set to ensure that the limits of SLC 16.11-18 are not

exceeded.

APPLICABILITY:

During WASTE GAS HOLDUP SYSTEM operation.

REMEDIAL ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	One or more required Explosive Gas Monitoring Instrumentation channel(s) Alarm/Trip Setpoint less conservative than required.	A.1	Declare the channel(s) non-functional.	Immediately
В.	One required hydrogen monitor channel non-functional.	B.1 <u>AND</u> B.2	Suspend oxygen supply to the recombiner. Restore channel to FUNCTIONAL status.	Immediately 30 days
C.	One required oxygen monitor channel non-functional.	C.1 <u>AND</u> C.2	Obtain and analyze grab samples. Restore channel to FUNCTIONAL status.	24 hours

(continued)

Catawba Units 1 and 2

16.11-20-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Monitoring Instrumentation 16.11-20

REME	DIAL ACTIONS (continued)				
CONDITION		REQUIRED ACTION		COMPLETION TIME	
D.	Two required oxygen monitor channels non-functional.	D.1	Obtain and analyze grab samples.	Once per 4 hours during degassing operations	
				AND	
				Once per 24 hours during other operations	
		AND			
		D.2	Restore channels to FUNCTIONAL status.	30 days	
E.	Required Action and associated Completion Time of Condition B, C, or D not met.	E.1	Prepare and submit a Special Report to the NRC to explain why the non- functionality was not corrected within the time specified.	30 days	
Refer			NOTEhich TRs apply for each Explo		
		TEST		FREQUENCY	
TR 1	6.11-20-1 Perform CHANNE	24 hours			
TR 1	6.11-20-2Perform COT.	31 days			
				(continued)	

Catawba Units 1 and 2

16.11-20-2

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Monitoring Instrumentation 16.11-20

TESTING REQUIREMENTS (continued)					
TEST	FREQUENCY				
TR 16.11-20-3NOTE The CHANNEL CALIBRATION shall include the use of standard gas samples in accordance with the manufacturer's recommendations. In addition, a standard gas sample of nominal four volume percent hydrogen (for the hydrogen monitors) and four volume percent oxygen (for the oxygen monitors), with the balance nitrogen, shall be used in the calibration to check linearity of the analyzer.					
Perform CHANNEL CALIBRATION.	92 days				

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Monitoring Instrumentation 16.11-20

Table 16.11-20-1

Explosive Gas Monitoring Instrumentation

INSTRUMENT		REQUIRED CHANNELS	TESTING REQUIREMENTS		
WASTE GAS HOLDUP SYSTEM Explosive Gas Monitoring Instrumentation					
1.	Hydrogen Monitors	1/inservice train per station	TR 16.11-20-1 TR 16.11-20-2 TR 16.11-20-3		
2.	Oxygen Monitors	2/inservice train per station	TR 16.11-20-1 TR 16.11-20-2 TR 16.11-20-3		

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Explosive Gas Monitoring Instrumentation 16.11-20

BASES

The Explosive Gas Monitoring Instrumentation is provided for monitoring and controlling the concentrations of potentially explosive gas mixtures in the WASTE GAS HOLDUP SYSTEM.

REFERENCES

 Letter from NRC to Gary R. Peterson, Duke, Issuance of Improved Technical Specifications Amendments for Catawba, September 30, 1998.

Catawba Units 1 and 2

16.11-20-5

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Major Changes to Liquid, Gaseous, and Solid Radwaste Treatment Systems 16.11-21

16.11 RADIOLOGICAL EFFLUENTS CONTROLS

16.11-21 Major Changes to Liquid, Gaseous, and Solid Radwaste Treatment Systems

COMMITMENT

Licensee-initiated major changes to the Radwaste Treatment Systems (liquid, gaseous, and solid):

- Shall be reported to the NRC in the Radioactive Effluent Release Report for the period in which the evaluation was reviewed by the Station Manager. Licensees may choose to submit the information called for in this SLC as part of the periodic Updated Final Safety Analysis Report update. The discussion of each change shall contain:
 - A summary of the evaluation that led to the determination that the change could be made in accordance with 10 CFR 50.59;
 - Sufficient detailed information to totally support the reason for the change without benefit of additional or supplemental information;
 - A detailed description of the equipment, components, and processes involved and the interfaces with other plant systems;
 - An evaluation of the change, which shows the predicted releases of radioactive materials in liquid and gaseous effluents and/or quantity of solid waste that differ from those previously predicted in the license application and amendments thereto;
 - e. An evaluation of the change, which shows the expected maximum exposures to a MEMBER OF THE PUBLIC in the UNRESTRICTED AREA and to the general population that differ from those previously estimated in the license application and amendments thereto;
 - f. A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents and in solid waste, to the actual releases for the period prior to when the changes are to be made:
 - g. An estimate of the exposure to plant operating personnel as a result of the change; and

(co	<u>4:</u>	. .		الہ
l CO	nti	nι	ıe	a i

Catawba Units 1 and 2

16.11-21-1

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

Major Changes to Liquid, Gaseous, and Solid Radwaste Treatment Systems 16.11-21

COMMITMENT (continued)

- h. Documentation of the fact that the change was reviewed and found acceptable by the Station Manager or the Chemistry Manager.
- Shall become effective upon review and acceptance by a qualified individual/organization.

APPLICABILITY: At all times.

REMEDIAL ACTIONS None

TESTING REQUIREMENTS None

BASES None

REFERENCES 1. Letter from NRC to Gary R. Peterson, Duke, Issuance of Improved Technical Specifications Amendments for Catawba, September 30, 1998.

Attachment 10 Summary of Changes to the Process Control Program

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 10

Summary of Changes to the Process Control Program

This attachment includes a summary of changes to the PCP.

Attachment 10 Summary of Changes to the Process Control Program

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

The Catawba Nuclear Station PCP was not revised in 2015. The most recent revision was provided with the Catawba Nuclear Station 2014 ARERR.

Attachment 11 Summary of Major Modifications to the Radioactive Waste Treatment Systems

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 11

Summary of Major Modifications to the Radioactive Waste Treatment Systems

This attachment includes a description of major modifications to the radioactive waste treatment systems that are anticipated to affect effluent releases.

Attachment 11 Summary of Major Modifications to the Radioactive Waste Treatment Systems

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

No major modifications to the Catawba Nuclear Station liquid, gaseous, solid, or mobile radioactive waste treatment systems occurred in 2015.

Attachment 12 Errata to a Previous Year's ARERR Example

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

ATTACHMENT 12

Errata to a Previous Year's ARERR

This attachment includes any amended pages from a previous year's ARERR.

Attachment 12 Errata to a Previous Year's ARERR Example

Catawba Nuclear Station Units 1 & 2 Period 1/1/2015 - 12/31/2015

There are no changes to a previous year's ARERR.