VIRGINIA ELECTRIC AND POWER COMPANY Richmond, Virginia 23261

April 20, 2016

United States Nuclear Regulatory Commission Attention: Document Control Desk Washington, D. C. 20555 Serial No. 16-110 NAPS/JHL Docket Nos. 50-338/339 72-16 72-56 License Nos. NPF-4/7 SNM-2507

VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION) NORTH ANNA POWER STATION UNIT NOS. 1 AND 2 INDEPENDENT SPENT FUEL STORAGE INSTALLATION (ISFSI) ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

In accordance with North Anna Units 1 and 2 Technical Specification 5.6.2 and the North Anna Independent Spent Fuel Storage Installation Technical Specification 5.5.2, enclosed is the 2015 Annual Radiological Environmental Operating Report. The Radiological Environmental Operating Report provides the details associated with the Radiological Environmental Monitoring Program.

If you have any questions or require additional information, please contact Robin Klearman at (540) 894-2436.

Very truly yours,

Gerald T. Bischof Site Vice President

Enclosure

Commitments made in this letter: None

IEZS NMSSZG NRR NRR NMSS

Serial No. 16-110 NAPS Annual Radiological Environmental Operating Report

cc: U. S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, Georgia 30303-1257

ĩ

Director, Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, D. C. 20555

NRC Senior Resident Inspector North Anna Power Station

Dominion

North Anna Power Station Radiological Environmental Monitoring Program January 1, 2015 to December 31, 2015

> Prepared by Dominion, North Anna Power Station

Annual Radiological Environmental Operating Report

North Anna Power Station

January 1, 2015 to December 31, 2015

Prepared by:

¹ Bradley T. Pleasants, Jr. Supervisor Radiological Analysis and Instrumentation Dominion North Anna Power Station

Reviewed by:

Aziz A. Maly Supervisor Health Physics Technical Services Dominion North Anna Power Station

Approved by:

Pohent B Sam fr.

Robert B. Evans, Jr.V Manager Radiological Protection and Chemistry Dominion North Anna Power Station

Table of Contents

t

1. EXECUTIVE SUMMARY	4
2. PROGRAM DESCRIPTION	7
2.1 Introduction	7
2.2 Sampling and Analysis Program	8
3. ANALYTICAL RESULTS	
3.1 Summary of Results	
3.2 Analytical Results of 2015 REMP Samples	
4. DISCUSSION OF RESULTS	60
4.1 Gamma Exposure Rate	60
4.2 Airborne Gross Beta	62
4.3 Airborne Radioiodine.	
4.4 Air Particulate Gamma	63
4.5 Air Particulate Strontium	64
4.6 Soil	64
4.7 Precipitation	64
4.8 Cow Milk	
4.9 Food Products and Vegetation	
4.10 Well Water	
4.11 River Water	
4.12 Surface Water	
4.13 Bottom Sediment	
4.14 Shoreline Soil	
4.15 Fish	
5. PROGRAM EXCEPTIONS	70
REFERENCES	71
APPENDICES	72
APPENDIX A: LAND USE CENSUS	
APPENDIX B: SUMMARY OF INTERLABORATORY COMPARISON	

1. EXECUTIVE SUMMARY

This document is a detailed report of the 2015 North Anna Nuclear Power Station Radiological Environmental Monitoring Program (REMP). It is submitted in accordance with North Anna Unit 1 and 2 Technical Specification 5.6.2 and North Anna Independent Spent Fuel Storage Installation (ISFSI) Technical Specification 5.5.2. Radioactivity levels from January 1 through December 31, 2015, in water, silt, shoreline sediment, milk, aquatic biota, food products, vegetation, and direct exposure pathways have been analyzed, evaluated and summarized. The REMP is designed to confirm that radiological effluent releases are As Low As Reasonably Achievable (ALARA), no undue environmental effects occur and the health and safety of the public are protected. The program also detects any unexpected environmental processes that could allow radiation accumulations in the environment or food pathway chains.

Radiation and radioactivity in the environment is monitored within a 25-mile radius of the station. North Anna Power Station (NAPS) personnel collect a variety of samples within this area. A number of sampling locations for each medium are selected using available meteorological, land use, and water use data. Two types of samples are obtained. Control samples are collected from areas that are beyond the measurable influence of North Anna Power Station (NAPS) or any other nuclear facility. These samples are used as reference data. Normal background radiation levels, or radiation present due to causes other than North Anna Power Station (NAPS), can be compared to the environment surrounding the station. Indicator samples are the second sample type obtained. These samples show how much radiation is contributed to the environment by the station. Indicator samples are taken from areas close to the station where any station contribution will be at the highest concentration.

Prior to station operation, samples were collected and analyzed to determine the amount of radioactivity present in the area. The resulting values are used as a "pre-operational baseline." Analysis results from the indicator samples are compared to both current control sample values and the pre-operational baseline to determine if changes in radioactivity levels are attributable to station operations, or causes such as the Chernobyl accident, Fukushima Daiichi or natural variation.

Global Dosimetry Solutions provided thermoluminescent dosimetry (TLD) services and Teledyne Brown Engineering Environmental Services provided radioanalytical services. Participation in an Interlaboratory Comparison Program provides an independent check of sample measurement precision and accuracy. Typically, radioactivity levels in the environment are so low that analysis values frequently fall below the minimum detection limits of state-of-the-art measurement methods.

Because of this, the Nuclear Regulatory Commission (NRC) requires that equipment used for radiological environmental monitoring must be able to detect specified minimum Lower Limits of Detection (LLDs). This ensures that analyses are as accurate as possible. The NRC also mandates a reporting level for certain radionuclides. Licensed nuclear facilities must report the radionuclide activities in those environmental samples that are equal to or greater than the specified reporting level. Environmental radiation levels are sometimes referred to as a percent of the reporting level.

Analytical results are reported for all possible radiation exposure pathways to man. These pathways include airborne, water, aquatic, terrestrial, and direct radiation exposure. The airborne exposure pathway includes radioactive airborne iodine and particulates, and precipitation. The 2015 airborne results were similar to previous years. Fallout or natural radioactivity levels remained at levels consistent with past years' results.

Water and aquatic exposure pathway samples include precipitation, surface, river and well water, silt and shoreline sediments, and fish. The average tritium activity in surface water for 2015 was 3450 pCi/liter. No other plant related isotopes were reported in any surface or river water. River water collected from the North Anna River, 5.8 miles downstream of the site had an average tritium level of 3350 pCi/liter. No plant related isotopes were detected in quarterly precipitation samples. Silt samples indicated the presence of naturally occurring potassium-40 and thorium and uranium decay daughters at levels consistent with the natural background. No plant related isotope was identified in any sample. Shoreline soil, which may provide a direct exposure pathway, indicated the presence of potassium-40 and thorium and uranium decay daughters also at levels consistent with natural levels. No plant related isotope was detected in the indicator or control locations in shoreline soil. No plant related isotope was detected in fish samples from either Lake Anna or the control location, Lake Orange.

Soil samples, which are collected every three years from twelve stations, were not collected in 2015.

The terrestrial exposure pathway includes milk and food/vegetation products. No plant related radioisotope was detected in any milk samples. Naturally occurring beryllium-7, potassium-40 and radionuclides associated with the uranium and thorium series were detected at environmental levels consistent with historical data. No plant related isotope was detected in any vegetation sample. Low levels of Cs-137 have been detected intermittently in past years.

The direct exposure pathway measures environmental radiation doses by use of thermoluminescent dosimeters (TLDs). TLD results have remained essentially constant over the years.

During 2015, as in previous years, operation of the North Anna Power Station and the Independent Spent Fuel Storage Installation (ISFSI) created no adverse environmental effects or health hazards. The maximum total body dose calculated for a hypothetical individual at the station site boundary due to liquid and gaseous effluents released from the station during 2015 was 0.24 millirem. For reference, this dose may be compared to the 620 millirem average annual exposure to every person in the United States from natural and man-made sources. Natural background sources in the environment provide approximately 50% of radiation exposure to man, while medical uses provide approximately 48%. By comparison, nuclear power contributes less than 0.1%. These results demonstrate not only compliance with federal and state regulations but also demonstrate the adequacy of radioactive effluent control at North Anna Power Station.

2. PROGRAM DESCRIPTION

2.1 Introduction

This report documents the 2015 North Anna Power Station operational Radiological Environmental Monitoring Program (REMP).

The North Anna Power Station of Virginia Electric and Power Company (Dominion) is located on Lake Anna in Mineral, Virginia, approximately 35 miles southwest of Fredericksburg, Virginia. The site consists of two units, each with a pressurized water reactor (PWR) nuclear steam supply system and turbine generator furnished by Westinghouse Electric Corporation. Each unit has a gross electrical output of 1029 megawatts electric (MWe). Unit 1 achieved commercial operation on June 6, 1978 and Unit 2 on December 14, 1980. An independent spent fuel storage facility was licensed for dry cask storage of spent fuel in 1998.

The United States Nuclear Regulatory Commission (USNRC) regulations require that nuclear power plants be designed, constructed, and operated to keep levels of radioactive material in effluents to unrestricted areas as low as reasonably achievable (ALARA). To ensure these criteria are met, the operating license for North Anna Power Station includes Technical Specifications which address the release of radioactive effluents. In-plant monitoring is used to ensure release limits are not exceeded. As a precaution against unexpected or undefined environmental processes which might allow undue accumulation of radioactivity in the environment, a program for monitoring the plant environs is also included in the North Anna Power Station Offsite Dose Calculation Manual (ODCM).

North Anna Power Station is responsible for collecting the various indicator and control environmental samples. Global Dosimetry Solutions is utilized for processing the TLDs. Teledyne Brown Engineering Environmental Services (TBE) is utilized for sample analyses. The results of the analyses are used to determine if changes in radioactivity levels may be attributable to station operations. Measured values are compared with control levels, which vary with time due to external events, such as cosmic ray bombardment, nuclear weapons test fallout and seasonal variations of naturally occurring radioisotopes. Data collected prior to station operation is used to indicate the degree of natural variation to be expected. The pre-operational data is compared with data collected during the operational phase to assist in evaluating any radiological impact of station operation.

Occasionally samples of environmental media show the presence of man-made isotopes. As a method of referencing the measured radionuclide concentrations in the sample media to a dose consequence to man, the data is compared to the reporting level concentrations listed in the USNRC Regulatory Guide 4.8 and North Anna's ODCM. These concentrations are based upon the annual dose commitment recommended by 10CFR50, Appendix I, to meet the criterion of "As Low As Is Reasonably Achievable".

This report documents the results of the Radiological Environmental Monitoring Program for 2015 and satisfies the following objectives of the program:

- > To provide measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of the maximum exposed member of the public resulting from station operations.
- > To supplement the radiological effluent monitoring program by verifying that radioactive effluents are within allowable limits.
- > To identify changes in radioactivity in the environment.
- > To verify that station operations have no detrimental effect on the health and safety of the public.

2.2 Sampling and Analysis Program

Table 2-1 summarizes the 2015 sampling program for North Anna Power Station. All samples listed in Table 2-1 are taken at indicator locations except those labeled "control." The North Anna Radiological Monitoring Locations maps denote sample locations for North Anna Power Station. The locations are color coded to designate sample types. Table 2-2 summarizes the analysis program conducted by TBE for North Anna Power Station during the year 2015.

TABLE 2-1

North Anna Power Station – 2015 RADIOLOGICAL SAMPLING STATION DISTANCE AND DIRECTION FROM UNIT NO. 1

.

· · ·						Collection	
ample Media	Location	Station	Distance		Degrees		Remarks
Environmental	NAPS Sewage Treatment Plant	01 .	0.20	NE	42°	Quarterly & Annually	
Thermoluminescent	Fredericks Hall	02	5.30	SSW	203°	Quarterly & Annually	
Dosimetry (TLD)	Mineral, Va	03	7.10	WSW	243°	Quarterly & Annually	
	Wares Crossroads	04	5.10	WNW	287°	Quarterly & Annually	
	Route 752	05	4.20	NNE	20°	Quarterly & Annually	
	Sturgeon's Creek Marina	05A	2.04	N	11°	Quarterly & Annually	
	Levy, VA	06	4.70	ESE	115°	Quarterly & Annually	
	Bumpass, VA	07	7.30	SSE	167°	Quarterly & Annually	
	End of Route 685	21	1.00	WNW	301°	Quarterly & Annually	`
	Route 700	22	1.00	WSW	242°	Quarterly & Annually	
	"Aspen Hills"	23	0.93	SSE	1 58°	Quarterly & Annually	
	Orange, VA	24	22.00	NW	.325°	Quarterly & Annually	Control
	Bearing Cooling Tower	N-1/33	0.06	N	10°	Quarterly	
1	Sturgeon's Creek Marina	N-2/3,4	2.04	N	11°	Quarterly	
	Parking Lot "C"	NNĘ ; 3/35	0.24	NNE	32°	Quarterly	
·	Good Hope Church	NNĘ-4/36	3.77	NNE	25°	Quarterly	
	Parking Lot "B"	NE-5/37	0.20	NE	42°	Quarterly	
,	Lake Anna Marina (Bogg's Dr)	NE-6/38	1.46	NE	34°	Quarterly	
	Weather Tower Fence	ENE-7/39	0.36	ENE	74°	Quarterly	
	Route 689	ENE-8/40	2.43	ENE	65°	Quarterly	
	Near Training Facility	E-9/41	0.30	E	91°	Quarterly	
,	"Morning Glory Hill"	E-10/42	2.85	. E	93°	Quarterly	
• .	Island Dike	ESE-11/43	0.12	ESE	103°	Quarterly	
	Route 622	ESE-12/44	4.70	ESE	115°	Quarterly	
,	DVP Biology Lab	SE-13/45	0.64	SE	138°	Quarterly	
	Route 701 (Dam Entrance)	SE-14/46	5.88	SE	137° [°]	Quarterly	•
	"Aspen Hills"	SSE-15/47	0.93	SSE	158°	Quarterly	;
	Elk Creek	SSE-16/48	2.33	SSE	165°	Quarterly	
	NAPS Access Rd.	S-17/49	0.36	S	173°	Quarterly	

TABLE 2-1North Anna Power Station – 2015RADIOLOGICAL SAMPLING STATIONDISTANCE AND DIRECTION FROM UNIT NO. 1

						Collection	
Sample Media	Location	Station	Distance	Direction	Degrees	Frequency	Remarks
Environmental	Elk Creek Church	S-18/50	1.55	S	178°	Quarterly	
Thermoluminescent	NAPS Access Rd.	SSW-19/51	0.24	SSW	197°	Quarterly	
Dosimetry (TLD)	Route 618	SSW-20/52	5.30	SSW	205°	Quarterly	
	500kv Tower	SW-21/53	0.60	SW	218°	Quarterly	
	Route 700	SW-22/54	3.96	SW	232°	Quarterly	
	NAPS Radio Tower	WSW-23/55	0.38	WSW	237°	Quarterly	
	Route 700 (Exclusion Boundary)	WSW-24/56	1.00	WSW	242°	Quarterly	
	South Gate Switchyard	W-25/57	0.32	W	279°	Quarterly	
	Route 685	W-26/58	1.55	W	274°	Quarterly	
•	End of Route 685	WNW-27/59	1.00	WNW	301°	Quarterly	
	Route 685	WNW-28/60	1.40	WNW	303°	Quarterly	
	North Gate - Laydown Area	NW-29/61	0.52	NW	321°	Quarterly	
	Lake Anna Campground	NW-30/62	2.54	NW	319°	Quarterly	
	#1/#2 Intake	NNW-31/63	0.07	NNW	349°	Quarterly	
	Route 208	NNW-32/64	2.21	NNW	344°	Quarterly	
	Bumpass Post Office	C-1/2	7.30	SSE	167°	Quarterly	
	Orange, VA	C-3/4	22.00	NW	325°	Quarterly	Control
	Mineral, VA	C-5/6	7.10	WSW	243°	Quarterly	
	Louisa, VA	C-7/8	11.54	WSW	257°	Quarterly	Control
Airborne Particulate	NAPS Sewage Treatment Plant	01	0.20	NE	42°	Weekly	•
and Radioiodine	Biology Lab	01A	0.64	SE	1 38°	Weekly	
	Mineral, VA	03	7.10	WSW	243°	Weekly	
	Wares Crossroads	04	5.10	WNW	2 87 °	Weekly	
	Route 752	05	4.20	NNE	20°	Weekly	
	Sturgeon's Creek Marina	05A	2.04	N	11°	Weekly	
	Levy, VA	06	4.70	ESE	115°	Weekly	
	Bumpass, VA	07	7.30	SSE	167°	Weekly	

2

.

TABLE 2-1

North Anna Power Station – 2015 RADIOLOGICAL SAMPLING STATION DISTANCE AND DIRECTION FROM UNIT NO. 1

~	·	-	— ••		_	Collection	
Sample Media	Location	Station	Distance	Direction	Degrees	Frequency	Remarks
Airborne Particulate	End of Route 685	21	1.00	WNW	301°	Weekly	
and Radioiodine	Route 700	22	1.00	WSW	242°	Weekly	
a.	"Aspen Hills"	23	0.93	SSE	158°	Weekly	
	Orange, VA	24	22.00	NW	325°	Weekly	Control
Surface Water	Waste Heat Treatment Facility	08	3.37	SSE	148°	Monthly	
	(Second Cooling Lagoon)						
	Lake Anna (upstream)	09A	12.90	WNW	295°	Monthly	Control
	(Route 669 Bridge)						
River Water	North Anna River (downstream)	11	5.80	SE	128°	Monthly	
Ground Water (Well Water)	Biology Lab	01A	0.64	SE	138°	Quarterly	
Precipitation	Biology Lab	01A	0.64	SE	1 38 °	Monthly	
Aquatic Sediment	Waste Heat Treatment Facility (Second Cooling Lagoon)	08	3.37	SSE	14 8 °	Semi-Annually	
	Lake Anna (upstream) (Route 669 Bridge)	09A	12.90	WNW	295°	Semi-Annually	Control
	North Anna River (downstream)	11	5.80	SE	1 28 °	Semi-Annually	
Shoreline Soil	Waste Heat Treatment Facility (Second Cooling Lagoon)	08	3.37	SSE	1 48 °	Semi-Annually	
Soil	NAPS Sewage Treatment Plant	01	0.20	NE	42°	Once/3 years	
	Fredericks Hall	02	5.30	SSW	203°	Once/3 years	
	Mineral, VA	03	7.10	WSW	243°	Once/3 years	
	Wares Crossroads	04	5.10	WNW	287°	Once/3 years	
						-	

TABLE 2-1North Anna Power Station – 2015RADIOLOGICAL SAMPLING STATIONDISTANCE AND DIRECTION FROM UNIT NO. 1

					Collection		
Sample Media	Location	Station	Distance	Direction	Degrees	Frequency	Remarks
Soil	Route 752	05	4.20	NNE	20°	Once/3 years	
	Sturgeon's Creek Marina	05A	2.04	Ν	11°	Once/3 years	
	Levy, VA	06	4.70	ESE	115°	Once/3 years	
	Bumpass, VA	07	7.30	SSE	167°	Once/3 years	
	End of Route 685	21	1.00	WNW	301°	Once/3 years	
	Route 700 (Exclusion Boundary)	22	1.00	WSW	242°	Once/3 years	
	"Aspen Hills"	23	0.93	SSE	1 58°	Once/3 years	
	Orange, VA	24	22.00	NW	325°	Once/3 years	Control
Milk	Lakeside Dairy	12A	7.50	NW	310°	Monthly	
Fish	Waste Heat Treatment Facility (Second Cooling Lagoon)	08	3.37	SSE	148°	Semi-Annually	
	Lake Orange	25	16.5	NW	312°	Semi-Annually	Control
Food Products							
(Vegetation)	Stagecoach Road	14B	1.22	NNE	40°	Monthly if available or at harvest	
	Route 614	15	1.37	SE	133°	Monthly if available or at harvest	
	Route 629/522	16	12.60	NW	314°	Monthly if available or at harvest	Control
	Aspen Hills	23	0.93	SSE	1 58°	Monthly if available or at harvest	
	"Historic Lane"	26	1.15	S	172 °	Monthly if available or at harvest	

,

TABLE 2-2North Anna Power StationSAMPLE ANALYSIS PROGRAM

SAMPLE MEDIA	FREOUENCY	ANALYSIS	LLD	REPORT UNITS	
Thermoluminescent					
Dosimetry (TLD)					
(84 TLDs)	Quarterly	Gamma Dose	2 mR <u>+</u> 2mR	mR/std. Month	
(12 TLDs)	Annually	Gamma Dose	2 mR <u>+</u> 2mR	mR/std. Month	
Airborne Radioiodine	Weekly	I-131	0.07	pCi/m ³	
Airborne Particulate	Weekly	Gross Beta	0.01	pCi/m ³	
	Opportorily (a)	Commo Inotonio		pCi/m ³	
	Quarterly (a)	Gamma Isotopic	0.05	perm	
		Cs-134	0.05		
	2 nd Quarter	Cs-137	0.06	·· C:/··· ³	
		Sr-89	(b)	pCi/m ³	
	Composite	Sr-90	(b)		
Surface Water	Monthly	I-131	1(c)	pCi/L	
	-	Gamma Isotopic		pCi/L	
		Mn-54	15	•	
		Fe-59	30		
		Co-58	15		
		Co-60	15		
		Zn-65	30		
	ι	Zr-95	30		
		Nb-95	15		
		Cs-134	15		
		Cs-137	18		
		Ba-140	60		
		La-140	15		
	Quarterly(a)	Tritium (H-3)	2000	pCi/L	
	2 nd Quarter	Sr-89	(b)	pCi/L	
	Composite	Sr-90	(b)	L	
River Water	Monthly	I-131	l(c)	pCi/L	
		Gamma Isotopic		pCi/L	
		Mn-54	15		
		Fe-59	30		
		Co-58	15		
		Co-60	15		
		Zn-65	30		
		Zr-95	30		
		Nb-95	15		
		Cs-134	15		
		Cs-137	18 ·		
		Ba-140	60		

*LLDs indicate those levels to which environmental samples are required to be analyzed. Actual analysis of samples may be lower than the listed values.

- (a) Quarterly composite of each location's samples are used for the required analysis
- (b) There are no required LLDs for Sr-89/90

r

,

- (c) LLD for non-drinking water is 10 pCi/liter
- (d) LLD applied are those for water samples. However, since this is a semi-annual composite no LLD is applied for these nuclides due to their short half-lives.

TABLE 2-2North Anna Power StationSAMPLE ANALYSIS PROGRAM

SAMPLE MEDIA	FREOUENCY	ANALYSIS	LLD	<u>REPORT UNITS</u>
		La-140	15	
River Water	Quarterly(a)	Tritium (H-3)	2000	pCi/L
	2 nd Quarter	Sr-89	(b)	pCi/L
	Composite	Sr-90	(b)	
Ground Water	Quarterly	Gamma Isotopic		pCi/L
(Well Water)		Mn-54	15	
		Fe-59	30	
		Co-58	15	
		Co-60	15	
		Zn-65	30	
		Zr-95	30	
		Nb-95	15	
		I-131	10(c)	
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
,		La-140	15	
	Quarterly(a)	Tritium (H-3)	2000	pCi/L
	2 nd Quarter	Sr-89	(b)	pCi/L
		Sr-90	(b)	
Aquatic Sediment	Semi-Annually	Gamma Isotopic		pCi/kg (dry)
_		Cs-134	150	
	1	Cs-137	180	
	Annually	Sr-89	(b)	pCi/kg (dry)
		Sr-90	(b)	
Precipitation	Monthly	Gross Beta	4	pCi/L
	Semi-Annual	Gamma Isotopic		pCi/L
	Composite	Mn-54	15	
		Fe-59	30	
		Co-58	15	
		Co-60	15	
		Zn-65	30	
		Zr-95	30	
		Nb-95	15	
		I-131	(d)	
		Cs-134	15	
		Cs-137	18	
		Ba-140	(d)	
		La-140	(d)	
Shoreline Soil	Semi-Annually	Gamma Isotopic		pCi/kg (dry)
		Cs-134	150	
		Cs-137 '	180	

*LLDs indicate those levels to which environmental samples are required to be analyzed. Actual analysis of samples may be lower than the listed values.

- (a) Quarterly composite of each location's samples are used for the required analysis
- (b) There are no required LLDs for Sr-89/90
- (c) LLD for non-drinking water is 10 pCi/liter
- (d) LLD applied are those for water samples. However, since this is a semi-annual composite no LLD is applied for these nuclides due to their short half-lives.

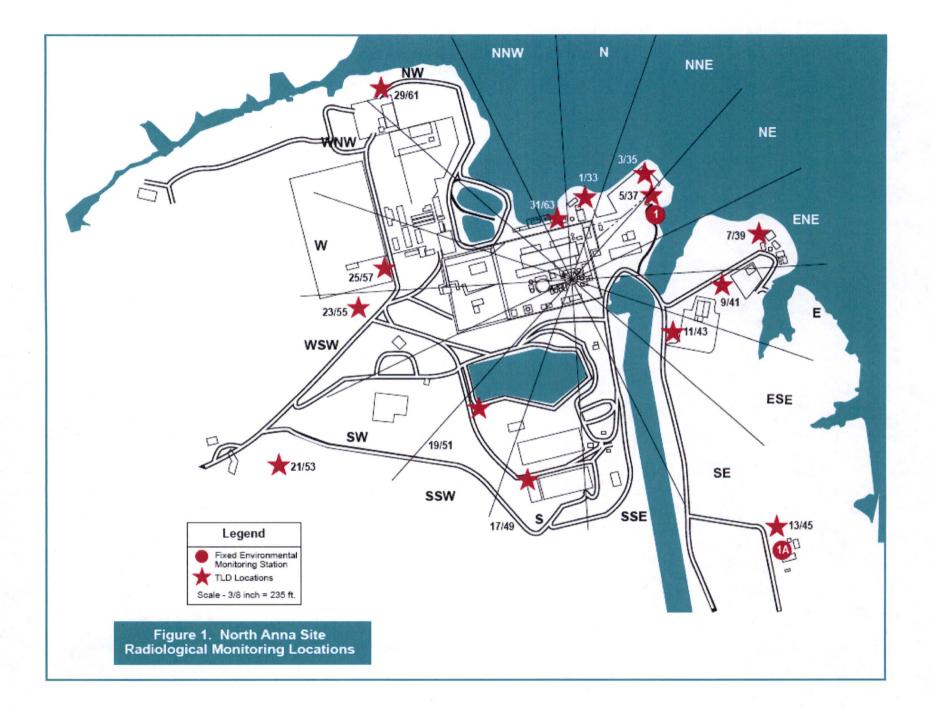
TABLE 2-2North Anna Power StationSAMPLE ANALYSIS PROGRAM

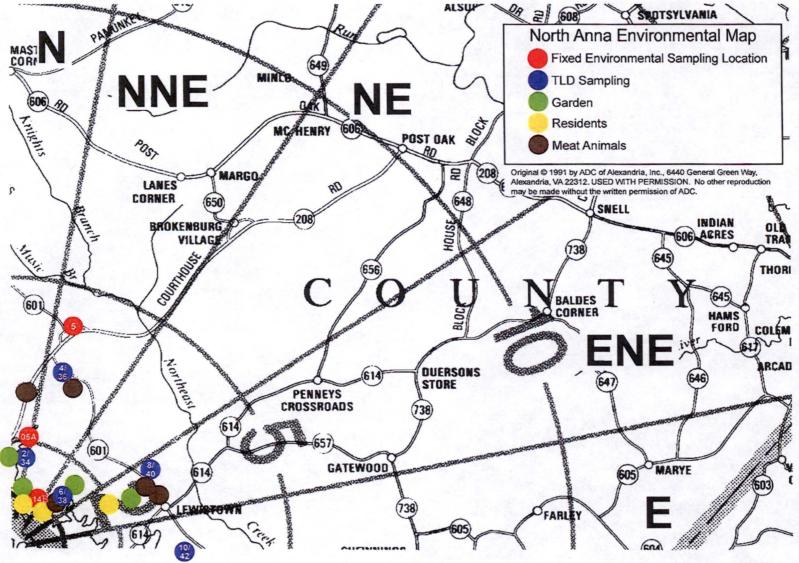
SAMPLE MEDIA	FREOUENCY	ANALYSIS	LLD	REPORT UNITS
	Annually	Sr-89	(b)	pCi/kg (dry)
		Sr-90	(b)	
Soil	Once per 3 years	Gamma Isotopic		pCi/kg (dry)
		Cs-134	150	
		Cs-137	180	
		Sr-89	(b)	pCi/kg (dry)
	•	Sr-90	(b)	
Milk	Monthly	I-131	1	pCi/L
	Monthly	Gamma Isotopic		-
		Cs-134	15	
		Cs-137	18	
		Ba-140	60	
		La-140	15	
	Quarterly	Sr-89	(b)	pCi/L
		Sr-90	(b)	*
Fish	Semi-Annually	Gamma Isotopic		pCi/kg (wet)
	·	Mn-54	130	
		Fe-59	260	
		Co-58	130	
		Co-60	130	
		Zn-65	260	
•		Cs-134	130	
		Cs-137	150	
Food Products	Monthly, if	Gamma Isotopic		pCi/kg (wet)
(Broadleaf	available, or	Cs-134	60	
Vegetation)	at harvest	Cs-137	80	
<i>c</i> ,		I-131	60	,

*LLDs indicate those levels to which environmental samples are required to be analyzed. Actual analysis of samples may be lower than the listed values.

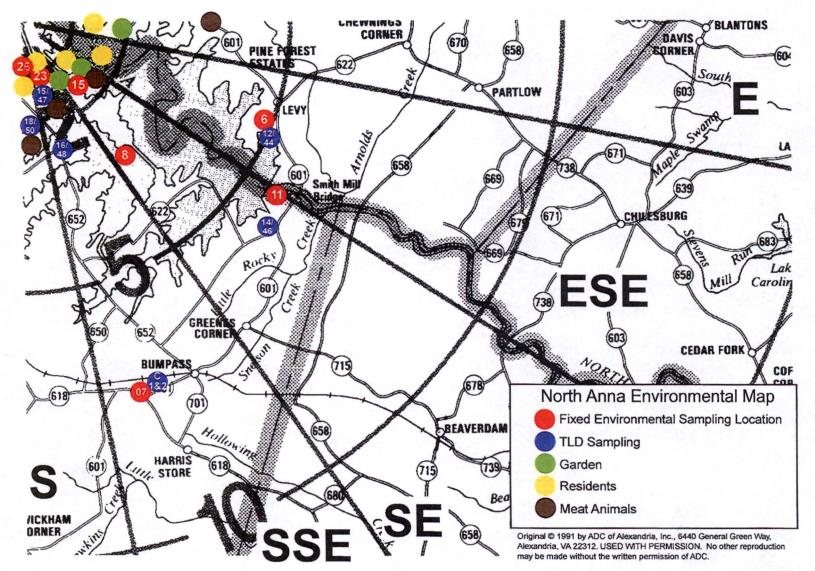
- (a) Quarterly composite of each location's samples are used for the required analysis
- (b) There are no required LLDs for Sr-89/90
- (c) LLD for non-drinking water is 10 pCi/liter
- (d) LLD applied are those for water samples. However, since this is a semi-annual composite no LLD is applied for these nuclides due to their short half-lives.

Map Designation	Environmental Station Identification	Map Designation	Environmental Station Identification
1 (a)	01,NE-5/37	7/8	C-7/8
1A	01A,SE-13/45	1/33	N-1/33
2 (a)	02,SSW-20/52	31/63	NNW-31/63
3 (a)	03,C-5/6	29/61	NW-29/61
4 (a)	04	3/35	NNE-3/35
5 (a)	05	7/39	ENE-7/39
5A (a)	05A,N-2/34	9/41	E-9/41
6 (a)	06,ESE-12/44	11/43	ESE-11/43
7 (a)	07, C-1/2	17/49	S-17/49
8	08-Water, Fish, Sediment,	19/51	SSW-19/51
	Shoreline Soil	21/53	SW-21/53
9A	09A-Water sample, Sediment	23/55	WSW-23/55
11	11-River Water, Sediment		
12A	12A-Milk	25/57	W-25/57
14B	14B-Vegetation	16/48	SSE-16/48
15	15-Vegetation	14/46	SE-14/46
16	16-Vegetation	22/54	SW-22/54
21 (a)	21,WNW-27/59	26/58	W-26/58
22 (a)	22,WSW-24/56	28/60	WNW-28/60
23 (a)	23-SSE-15/47, Vegetation	32/64	NNW-32/64
24 (a)(b)	24,C-3/4	8/40	ENE-8/40
25 (c)	25-Fish	4/36	NNE-4/36
26	26-Vegetation	10/42	E-10/42

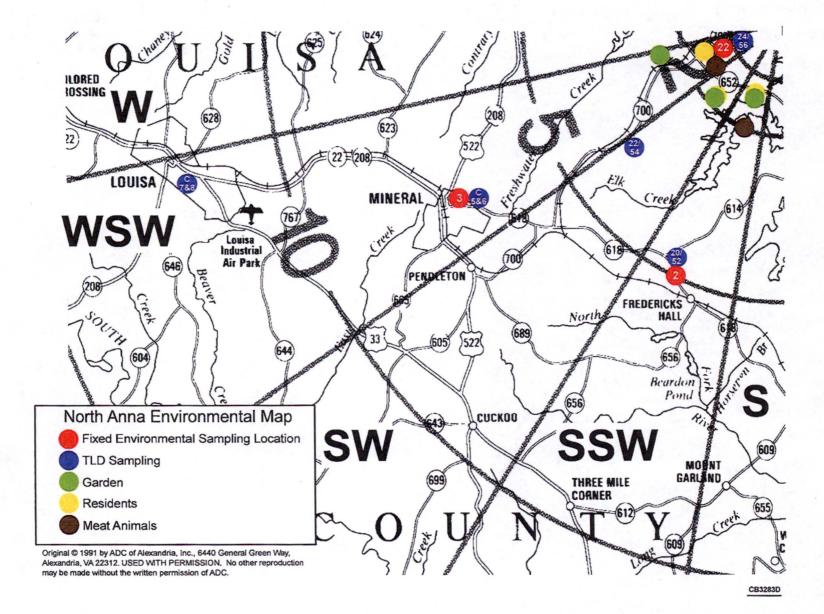

Legend For The North Anna Power Station Environmental Monitoring Stations Overview Maps

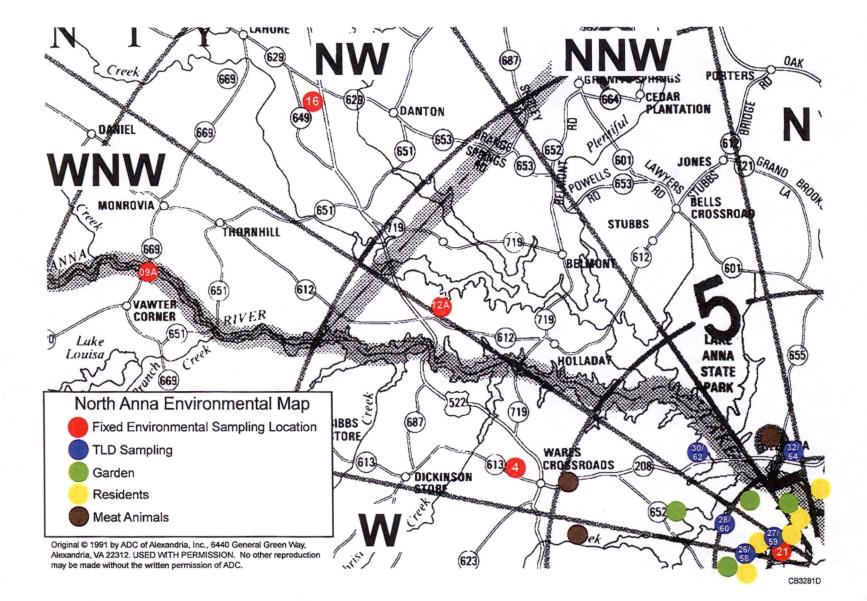

(a) Indicates air sample station, annual and quarterly TLD, Triennial soil.(b) In Orange(c) In Lake Orange

c


.

Ł





CB3280C

CB3282E

3. ANALYTICAL RESULTS

3.1 Summary of Results

In accordance with the North Anna Offsite Dose Calculation Manual (ODCM), a summary table of the analytical results has been prepared and is presented in Table 3-1. This data is presented in accordance with the format of the USNRC Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Rev. 1, November 1979. The LLD listed value is taken from the ODCM. For radioanalytic analyses, the values listed in the columns indicated as "Mean/Range" include any results above the Minimum Detectable Concentration, MDC. Results are considered true positives when the measured value exceeds both the MDC and the 2σ error. For TLDs the mean and range include all values.

A more detailed analysis of the data is given in Section 4 where a discussion of the variations in the data explains many aspects that are not evident in the Summary Table because of the basic limitation of data summaries.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 1 of 9

	_		NO. 30						
Madinum an	A m a le	!a		All Indicator		Indicator L		Control Location	Non-
Medium or Pathway	Analy	/\$15	LLD ⁽¹⁾	Locations Mean		with Highes	at iviean	Location	routine Reported
Sampled (Unit)	Туре	Total No.	(pCi/unit)	Range	Name	Distance Direction	Mean Range	Mean Range	Measure- ments
Direct Radiation	Gamma	256	2	4.2(254/256)	29/61	0.52 mi.	7.2(8/8)	3.0(16/16)*	0
(mR/std. Month) (Sector TLDs)	Dose			(1.0-9.8)		NW	(6.3-8.4)	(2.4-3.9)	
Direct Radiation	Gamma	32	2	2.6(16/16)	C-1/2	11.54 mi.	3.2 (8/8)	3.0(16/16)* (2.4-3.9)	0
(mR/std. Month) (Pre-operational TLDs)	Dose			(1.3-3.7)		WSW	(2.5-3.7)		
Direct Radiation (mR/std. Month) (Emergency Sector TLDs)	Gamma Dose	40	2	5.0(40/40) (2.8-9.0)	EPSP- 09/10	0.37 mi. ENE	7.4(8/8) (6.0-9.0)	3.0(16/16)* (2.4-3.9)	.0
Direct Radiation	Gamma	48	2	3.3(44/44)	23	0.93 mi.	5.1(4/4)	3.0(4/4)	0
(mR/std. month) (Environmental TLDs)	Dose			(0.9-6.2)		SSE	(4.5-6.2)	(2.0-4.1)	
Direct Radiation (mR/std. Month) (Annual TLDs)	Gamma Dose	12	2	2.8(11/11) (1.3-4.2)	06	4.70 mi. ESE	4.4(1/1) (4.4)	3.0(1/1) (3.0)	0
Airborne Particulates (1E-03 pCi/m ³)	Gross Beta	676	0.01	14.4(622/624) (3.05-31.7)	01A	0.64 mi. SE	16.5(52/52) (4.47-31.7)	15.6(52/52) (4.51-28.3)	0
Air Iodine (pCi/m ³)	I-131	676	0.07	(0/624)	N/A	N/A.	N/A	N/A	0
Airborne Particulates	Gamma	52			•				
(1E-03 pCi/m ³)	Be-7	52	-	117(48/48) _. (61.9-168)	01A	0.64 mi. SE	142(4/4) (101-159)	127.5(4/4) (96-157)	, 0
	Cs-134	52	0.05	(0/48)	N/A	N/A	N/A	(0/4)	0

(1) mR/std month for TLDs

è

1

* C-3/4, -7/8 used as control locations

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 2 of 9

	Do	cket N	lo. 50-33	8/339		Page	2 of 9		
Medium or	Analys	Analysis		All Indicator Locations		Indicator Lowith Highest		Control Location	Non- routine
Pathway Sampled (Unit) Type	Total No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure ments	
Airborne	Cs-137	52	0.06	(0/48)	N/A	N/A	N/A	(0/4)	0
Particulates								,	
(1E-03 pCi/m ³)	Sr-89	13	-	(0/12)	N/A	N/A	N/A	(0/1)	0
	Sr-90	13	. - '	(0/12)	N/A	N/A	N/A	(0/1)	0
Soil*	Triennial		· .					•	. •
(pCi/Kg) (dry)	Gamma	12	•						~
	K-40	12	-	N/A	N/A	N/A	N/A	N/A	· 0
· · · ·	Cs-134	12	150	N/A	N/A	N/A	N/A	N/A	. 0
	Cs-137	12	180	N/A	N/A	N/A	N/A	N/A	0
· · · · · · · · · · · · · · · · · · ·	Ra-226	12	· -	N/A	N/A	N/A	N/A	N/A	0
т · ·	Th-228	12		N/A	N/A	N/A	N/A	N/A	0
ü	Th-232	12	-	N/A	N/A	N/A	N/A	N/A	0
· -	Sr-89	12	-	N/A	N/A	N/A	N/A	N/A	0
	Sr-90	12	-	N/A	N/A	N/A	N/A	N/A	0
Precipitation	Monthly		•	$\epsilon = -1$				•	
(pCi/liter)	Gross Beta	. 12	4	6.81(10/12) (2.29-14.0)	01A	0.64 mi. SE	6.81(10/12) (2.29-14.0)	N/A	0
	H-3	2	2000	(0/2)	N/A	N/A	Ň/A	N/A	0
	Semiannual Gamma	2		•					۰ ^۰
	Be-7	2		(0/2)	N/A	N/A	N/A	N/A	0
	Mn-54	2	15	(0/2)	N/A	Ň/A	N/A	N/A	0
	Fe-59	2	30	(0/2)	N/A	N/A	N/A	N/Ą	0
	Co-58	2	15	(0/2)	N/A	N/A	N/A	N/A	0
	· ·						·		

* Soil Samples required triennially. Samples not obtained in 2015.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 3 of 9

Medium or	Analys	sis		All Indicator Locations		Indicator Lawrith Highes	Control Location	Non- routine	
Pathway Sampled (Unit)	Туре	Tot al No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
Precipitation	Co-60	2	15	(0/2)	N/A	N/A	N/A	N/A	0
(pCi/liter)	Zn-65	2	30	(0/2)	N/A	N/A	N/A	N/A	0
	Zr-95	2	30	(0/2)	N/A	N/A	N/A	N/A	0
	Nb-95	2	15	(0/2)	N/A	N/A	N/A	N/A	0
	I-131	2	10	(0/2)	N/A	N/A	N/A	N/A	O
	Cs-134	2	15	(0/2)	N/A	N/A	N/A	N/A	0
	Cs-137	2	18	(0/2)	N/A	N/A	N/A	N/A	0
	Ba-140	2	-	(0/2)	N/A	N/A	N/A	N/A	0
	La-140	2	-	(0/2)	N/A	N/A	N/A	N/A	0
	Th-228	2	-	(1/2)	01A	0.64mi SE	5.30 (1/2) (5.30)	N/A	0

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 4 of 9

Medium or	Analy	nalysis		All Indicator Locations		Indicator Low with Highes		Control Location	Non- routine
Pathway Sampled (Unit)_	Туре	Total No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
Milk (pCi/liter)	Gamma	12							
(permer)	K-40	12	-	1260(12/12) (1140-1390)	12A	7.50 mi. NW	1260(12/12) (1140-1390)	N/A	0
	I-131	12	1	(0/12)	N/A	N/A.	N/A	N/A	0
	Cs-137	12	18	(0/12)	N/A	N/A	N/A	N/A	0
	Ba-140	12	60	(0/12)	N/A	N/A	N/A	N/A	0
	La-140	12	15	(0/12)	N/A	N/A	N/A	N/A	0
	Sr-89 (Quarterly)	4	-	(0/4)	N/A	N/A	N/A	N/A	0
	Sr-90 (Quarterly)	4	-	(0/4)	N/A	N/A	N/A	N/A	0

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 5 of 9

Medium or	Analysis			All Indicator Locations		Indicator Lo with Highes		Control Location	Non- routine
Pathway Sampled (Unit)	Туре	Total No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
				•					
Food	Gamma	35							<u>بن</u>
Vegetation	7 7	25		1.570 (0.4/0.4)			1050(6/6)	1000(010)	0
(pCi/kg) (wet)	Be-7	35	-	1570(24/24) (210-5040)	23	0.93mi SSE	1950(6/6) (525-5040)	1070(6/6) (475-1550)	0
	K-40	35	-	6290(24/24) (3500-8570)	14 <u>B</u>	1.22mi NNE	6730(6/6) (4850-7680)	6140(6/6) (3130-8910)	0
	I-131	35	60	(0/24)	N/A	N/A	N/A	(0/6)	0
	Cs-134	35	60	(0/24)	N/A	N/A	N/A	(0/6)	0
	Cs-137	35	80	(0/24)	N/A	N/A	N/A	.(0/6)	0
Ground Well Water	Tritium	4	2000	(0/4)	N/A	N/A	N/A	N/A	0
(pCi/liter)	Gamma	4		* .					
	Mn-54	4	15	(0/4)	N/A	N/A	N/A	N/A	0
	Fe-59	4	30	(0/4)	N/A	N/A	N/A	N/A	0
	Co-58	• 4	.15	(0/4)	N/A	N/A	N/A	N/A	0
	Co-60	4	15	(0/4)	N/A	N/A	N/A	N/A	0
	Zn-65	4	30	(0/4)	N/A	N/A	N/A	N/A	0
	Zr-95	4	30	(0/4)	N/A	N/A	N/A	N/A	0
	Nb-95	4	15	(0/4)	N/A	N/A	N/A	N/A	0
	I-131	4	10	(0/4)	N/A	N/A	N/A	N/A	0

J.

.

ι

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 6 of 9

r	-			-22022				-1	
Medium or	Analy	sis		All Indicator Locations		Indicator L with Highe		Control Location	Non- routine
Pathway Sampled (Unit)	Туре	Total No.	LLD (pCi/un it)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
Ground	Cs-134	4	15	(0/4)	N/A	N/A	N/A	N/A	0
Well Water									
(pCi/liter)	Cs-137	4	18	(0/4)	N/A	N/A	N/A	N/A	0
	Ba-140	4	60	(0/4)	N/A	N/A	N/A	N/A	0
	La-140	4	15	(0/4)	N/A	N/A	N/A	N/A	0
	Sr-89	1	-	(0/1)	N/A	N/A	N/A	N/A	0
	Sr-90	1	-	(0/1)	N/A	N/A	N/A	N/A	0
River Water (pCi/liter)	Tritium	4	2000	3350(4/4) (2150-4840)	11	5.80 mi. SE	3350(4/4) (2150-4840)	(0/4)*	0
	Gamma	12							
	Mn-54	12	15	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Fe-59	12	30	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Co-58	12	15	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Co-60	12	15	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Zn-65	12	30	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Zr-95	12	30	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Nb-95	12	15	(0/12)	N/A	N/A	N/A	(0/12)*	0
	I-131	12	1	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Cs-134	12	15	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Cs-137	12	18	(0/12)	N/A	N/A	N/A	(0/12)*	0

*Results of surface water taken at Location 09A used as control value for river water

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 7 of 9

	r		NU, 30-3.			·			
Mediumor	Analysis			All Indicator Locations		Indicator Lo with Highes		Control Location	Non- routine
Pathway Sampled (Unit)	Туре	Total No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
River Water	Ba-140	12	60	(0/12)	N/A	N/A	N/A	(0/12)*	0
(pCi/liter)	Ļa-140	12	15	(0/12)	N/A	N/A	N/A	(0/12)*	0
	Sr-89	1	-	(0/1)	N/A	N/A	N/A	(0/1)*	0
	Sr-90	1	-	(0/1)	N/A	N/A	N/A	(0/1)*	0
Surface	Tritium	8	2000	3450(4/4)	08	3.37 mi.	3450(4/4)	(0/4)	0
Water (pCi/L)	Gamma	24		(2110-6730)		SSE	(2110-6730)		
	Mn-54	24	15	(0/12)	N/A	N/A	N/A	(0/12)	0
	Fe-59	24	30	(0/12)	N/A	N/A	N/A	(0/12)	0
	Co-58	24	15	(0/12)	N/A	N/A	N/A	(0/12)	0
	Co-60	24	. 15	(0/12)	N/A	N/A	N/A	(0/12)	0
	Zn-65	24	30	(0/12)	N/A	N/A	N/A	(0/12)	0
-	Zr-95	24	30	(0/12)	N/A	N/A	N/A	(0/12)	0
	Nb-95	24	30	(0/12)	N/A	N/A	N/A	(0/12)	0
	I-131	24	1	(0/12)	N/A	N/A	N/A	(0/12)	0
	Cs-134	24	. 15	(0/12)	N/A	N/A	N/A	(0/12)	0
	Cs-137	24	18	(0/12)	N/A	N/A	N/A	(0/12)	0
	Ba-140	24	60	(0/12)	. N/A	N/A	N/A	(0/12)	0 .
	La-140	24	15	(0/12)	N/A	N/A	N/A	(0/12)	-0

*Results of surface water taken at Location 09A used as control value for river water

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 8 of 9

								T ~	<u> </u>
Medium or	Analy	sis		All Indicator Locations		Indicator L with Highes		Control Location	Non- routine
Pathway Sampled (Unit)	Туре	Total No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
Surface Water (pCi/liter)	Sr-89	1	-	(0/1)	N/A	N/A	N/A	(0/1)	0
	Sr-90	1	-	(0/1)	N/A	N/A	N/A	(0/1)	0
Sediment Silt	Gamma	6							
(pCi/kg)	K-40	6	-	11200 (4/4) (1210-25600)	11	5.80 mi. SE	21000 (2/2) (16400- 25600)	27200(2/2) (26800-27600)	0 `
	Cs-134	6	150	(0/4)	N/A	N/A	23000) N/A	(0/2)	0
	Cs-137	6	180	(0/4)	N/A	N/A.	N/A	(0/2)	0
	Ra-226	6	-	1490(4/4) (972-2430)	11	5.80 mi. SE	1490(2/2) (972-2430)	2090(1/2) (2090)	0
	Th-228	6	-	422(4/4) (91.1-822)	11	5.80 mi. SE	708(2/2) (593-822)	566(2/2) (529-602)	0
	Th-232	6	-	632 (2/4) (528-736)	11	5.80 mi. SE	632(2/2) (528-736)	561(2/2) (479-642)	0
	(Annually)	1							
	Sr-89	3	-	(0/2)	N/A	N/A	N/A	(0/1)	0
	Sr-90	3	-	(0/2)	N/A	N/A	N/A	(0/1)	0
Shoreline Soil	Gamma	2							
(pCi/kg) (dry)	K-40	2	-	523(2/2) (507-539)	08	3.37 mi. SSE	523(2/2) (507-539)	N/A	0
,	Cs-134	2	150	(0/2)	N/A	NA	(0/2)	N/A	0
	Cs-137	2	180	(0/2)	N/A	ŅA	(0/2)	N/A	0
	Ra-226	2	-	(0/2)	N/A	N/A	(0/2)	N/A	0

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

North Anna Nuclear Power Station, Louisa County, Virginia – 2015 Docket No. 50-338/339 Page 9 of 9

Medium or	Analysis			All Indicator Locations	Indicator Location with Highest Mean			Control Location	Non- routine
Pathway Sampled (Unit)	Туре	Total No.	LLD (pCi/unit)	Mean Range	Name	Distance Direction	Mean Range	Mean Range	Reported Measure- ments
Shoreline Soil									
pCi/kg) (dry)									
	Th-228	2	-	51.8(1/2)	08	3.37 mi.	51.8(1/2)	N/A	0
	ч			(51.8)		SSE	(51.8)	-	
	Th-232	2	·- *.	(0/2)	N/A	N/A	N/A	N/A	0
	(Annually)			·				• • .	
	Sr-89	1	-	(0/1)	N/A	N⁄A	N/A	N/A	• 0
	Sr-90	1	-	(0/1)	N/A	NA	N/A	N/A	0

Fish	Gamma	8	·						
(pCi/kg) (wet)	K-40	8	-	1450(4/4) (1200-1660)	8	3.37 mi. SSE	1450(4/4) (1200-1660)	2100(4/4) (1980-2290)	0
•	Mn-54	8	130	(0/4)	N/A	NA	N/A	(0/4)	0
	Fe-59	8	260	. (0/4)	N/A	N/A .	N/A	(0/4)	0
	Co-58	8	130	(0/4)	N/A	NA	N/A	(0/4)	0
	Co-60	8	130	(0/4)	N/A	NA	N/A	(0/4)	0
	Zn-65	8	260	(0/4)	N/A	NA	N/A	(0/4)	0
	Cs-134	8	130	(0/4)	N/A	NA	N/A	(0/4)	0
	Cs-137	8	150	(0/4)	N/A	NA	N/A	(0/4)	0

3.2 Analytical Results of 2015 REMP Samples

Radiological analyses of environmental media characteristically approach and frequently fall below the detection limits of state-of-the-art measurement methods. The data reported in the following tables are strictly counting statistics. The reported error is two times the standard deviation (2σ) of the net activity. Unless otherwise noted, the overall error (counting, sample size, chemistry, errors, etc.) is estimated to be 2 to 5 times that listed. Results are considered true positives when the measured value exceeds both the MDC and the 2σ error.

Because of counting statistics, negative values, zeros and numbers below the Minimum Detectable Level (MDL) are statistically valid pieces of data¹. For clarity of this report only detectable results are presented. TBE's analytical methods meet the Lower Limit of Detection (LLD) requirements given in Table 2 of the USNRC Branch Technical Position, "An Acceptable Radiological Environmental Monitoring Program", (November 1979, Revision 1) and the North Anna ODCM.

Data are given according to sample type as indicated below.

- 1. Gamma Exposure Rate
- 2. Air Particulates, Gross Beta Radioactivity
- 3. Air Particulates, Weekly I-131
- 4. Air Particulates, Quantitative Gamma Spectra
- 5. Air Particulate Strontium
- 6. Soil
- 7. Precipitation
- 8. Cow Milk
- 9. Food Products and Vegetation
- 10. Well Water
- 11. River Water
- 12. Surface Water
- 13. Bottom Sediment/Silt
- 14. Shoreline Soil
- 15. Fish

¹ Analytical results are handled as recommended by HASL ("Reporting of Analytical Results from HASL," letter by Leo B. Higginbotham) and NUREG/CR-4007 (Sept. 1984).

			T	ABLE 3-2									
	DIRECT F	RADIATION MEA	SURMENTS - S	ECTOR QUAR	TERLY TLD RESI	ULTS		Page					
mR/Std. Month (30.4 days) ± 2 Sigma													
		First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Qua	rterly*						
	Station	12/30/2014	3/31/2015	6/30/2015	9/30/2015	Ave	erage						
		3/31/2015	6/30/2015	9/30/2015	12/29/2015	+/-	2 s.d.						
								в,					
	N-1	6.4	5.2	4.7	4.3	5.0	+/- 1.7						
	N-33	5.3	4.0	4.0	5.8								
	N-2	2.9	2.3	1.9	2.9	2.7	+/- 0.8						
	N-34	3.0	2.9	2.5	3.1								
	NNE-3	8.4	7.6	6.1	6.5	7.0	+/- 1.9						
	NNE-35	8.1	6.0	6.1	7.0								
	NNE-4	5.0	4.6	4.3	4.3	4.2	+/- 0.9						
	NNE 36	4.3	3.5	3.9	3.9		*						
	NE-5	5.2	4.1	3.2	3.4	4.1	+/- 2.1						
	NE-37	6.1	3.7	3,1	3.6								
	NE-6	3.5	3.3	3.2	3.4	3.3	+/- 0.6						
	NE-38	3.5	3.8	2.9	2.9								
	ENE-7	5.5	4.8	4.7	5.2	5.1	+/- 1.4						
	ENE-39	6,5	4.4	4.6	4.7								
	ENE-8	2.7	2.2	2.5	2.6	2.4	+/- 0.5						
	ENE-40	2.7	2.0	2.5	2.2								
	E-9	9.8	5.2	4.4	5.6	5.6	+/- 3.7						
	E-41	6.4	3.9	4.7	4.7								
	E-10	4.4	5.0		3.1	4.2	+/- 1.6						
	E-42	4.2	3.4		4.9								
	ESE-11	4.2	5.2	4.1	4.3	4.2	+/- 1.5						
	ESE-43	5.3	4.1	3.5	3.1								
	ESE-12	4.9	3.9	3.7	4.8	4.5	+/- 1.2						
	ESE-44	5.5 ·	4.7	3.9	4.4								
	SE-13	5.2	4.9	3.1	3.9	4.1	+/- 1.4						
	SE-45	4.5	3.9	4.1	3.5		14						
	SE-14	7.5	5.4	5.6	5.6	6.0	+/- 1.9						
	SE-46	7.3	4.8	5.8	5.8								
	SSE-15	5.6	4.5	4.9	5.8	4.9	+/- 1.3						
	SSE-47	5.6	4.1	4.4	4.5	-							
	SSE-16	.3.0	2.4	3.1	2.3	2.8	+/- 1.3						
	SSE-48	4.1	2.0	2.7	3.1								

*Average of collocated TLDs.

TABLE 3-2

DIRECT F		ASURMENTS - S R/Std. Month (30		TERLY TLD RESU gma	JLTS		Page 2 of 4
	First Quarter	Second Quarter		Fourth Quarter	Quarterl	у*	
Station	12/30/2014	3/31/2015	6/30/2015	9/30/2015	Average	е	
	3/31/2015	6/30/2015	9/30/2015	12/29/2015	+/- 2 s.c	ł.	
S-17	6.2	3.8	4.5	4.7	4.7 +/-	1.5	
S-49	4.7	4.8	4.0	5.0	•		
S-18	2.4	2.3	1.3	2.4	2.2 +/-	0.8	
S-50	2.7	2.2	1.9	2.0			
SSW-19	6.2	7.0	6.1	5.6	6.4 +/-	1.1	
SSW-51	6.4	7.3	6.3	5.9			
SSW-20	2.5	1.9	2.2	1.8	2.0 +/-	0.7	
SSW-52	2.4	1.4	2.3	1.8			
SW-21	5.6	4.7	3.5	4.2	4.4 +/-	1.6	
SW-53	5.2	3.4	3.7	4.8			
SW-22	5.3	3.6	3.6	3.7	4.0 +/-	1.8	
SW-54	5.5	3.9	2.9	3.6			
WSW-23	4.9	3.9	4.0	5.2	4.4 +/-	1.4	
WSW-55	5.3	3.6	3.7	4.9			• •
WSW-24	5.1	4.0	3.9	4.3	4.3 +/-	1.2	
WSW-56	5.2	3.5	3.9	4.2			
W-25	7.9	7.7	4.9	6.4	7.1 +/-	2.3	
W-57	7.6	7.1	6.7	8.7			
W-26	3.2	3.0	2.6	2.7	2.7 +/-	0.9	
W-58	3.2	1.9	2.2	2.9			
WNW-27	3.2	3.4	3.4	3.1	3.1 +/-	0.5	
WNW-59	3.0	2.7	3.1	2.7			
WNW-28	3.0	2.4	3.0	3.2	3.0 +/-	0.7	
WNW-60	. 3.6	3.0	2.6	3.1			
NW-29	7.8	6.3	7.2	6.3	7.2 +/-	1.6	
NW-61	8.4	7.7	6.5	7.7			
NW-30	2.8	1.7	2.0	1.7	2.0 +/-	1.1	
NW-62	2.3	2.4	1.0	1.8			
NNW-31	3.9 [.]	2.5	3.3	3.5	3.1 +/-	1.2	•
NNW-63	3.9	2.6	2.3	3.1			
NNW-32	4.5	2.6	3.5	3.5	3.7 +/-	1.3	
NNW-64	4.6	3.8	3.5	3.2			

Mean

4.2 +/- 1.6

*Average of collocated TLDs.

34

ł

e.

TABLE 3-2

DIRECT RAD	IATION MEASU			RLY TLD RESUL	тѕ		Page
		R/Std. Month (30					3 of 4
		Second Quarter		-	Qua	arterly*	
Station	12/30/2014	3/31/2015	6/30/2015	9/30/2015	Av	erage	
	3/31/2015	6/30/2015	9/30/2015	12/29/2015	+/-	2 s.d.	
C-1	2.8	3.5	3.1	· 3.0	3.2	+/- 0.9	
C-2	3.7	2.5	3.1	3.7			
C-3**	3.1	2.5	2.4	3.1	3.0	+/- 1.0	•
C-4**	3.9	2.6	3.1	3.0			
C-5	2.4	1.9	1.3	1.8	1.9	+/- 1.0	
C-6	2.1	2.8	1.6	1.5	-		
C-7**	4.1	3.1	3.6	4.6	4.0	+/- 1.4	
C-8**	5.2	3.7	3.5	4.5			
					2.6	+/- 1.6	
					3.5	+/- 1.6	
EPSA-01***	6.0	3.9	4.1	,5.7	4.7	+/- 1.9	
EPSA-02***	4.8	4.3	3.4	5.4	.*		
EPSF-03***	4.2	4.5	2.9	3.4	4.0	+/- 1.3	
EPSF-04***	4.7	3.8	3.6	4.7			
EPSR-05***	6.0	5.3	4.4	5.1	5.4	+/- 1.6	
EPSR-06***	6.8	5.4	4.5	5.4			
EPSJ-07***	4.6	3.5	3.8	3.9	3.7	+/- 1.0	
EPSJ-08***	3.8	3.8	2.8	3.6			
EPSP-09***	6.0	7.6	7.2	7.1	7.4	+/- 1.9	
EPSP-10***	9.0	6.8	7.3	6.4			
,							

Mean

5.0 +/- 3.1

*Average of collocated TLDs. ** Control Station *** Emergency Plan TLDs.

TABLE 3-2

DIRECT RADIATION MEASURMENTS - SECTOR QUARTERLY TLD RESULTS mR/Std. Month (30.4 days) ± 2 Sigma

Page 4 of 4

Station	First Quarter 12/30/2014 3/31/2015	Second Quarter 3/31/2015 6/30/2015	Third Quarter 6/30/2015 9/30/2015	Fourth Quarter 9/30/2015 12/29/2015	Ave	arterly erage 2 s.d.		Annual T	LD	
STA-01	5.0	4.1	4.1	3.6	4.2	+/-	1.2	4.1		
STA-02	2.4	2.3	2.1	2.4	2.3	+/-	0.3	1.6		
STA-03	2.9	2.6	0.9	2.5	2.2	+/-	1.8	1.3		
STA-04	2.4	2.0	2.2	2.5	2.3	+/-	0.4	1.8		
STA-05	4.2	2.5	3.1	2.4	3.1	+/-	1.7	2.4		
STA-05A	3.1	3.5	1.9	2.8	2.8	+/-	1.4	3.0		
STA-06	5.3	3.4	3.8	5.0	4.4	+/-	1.8	3.5		
STA-07	3.9	2.5	2.9	3.7	3.3	+/-	1.3	2.4		
STA-21	3.6	2.8	2.4	2.7	2.9	+/-	1.0	2.2		
STA-22	4.7	3.1	4.9	3.7	4.1	+/-	1.7	4.2		
STA-23	6.2	4.9	4.5	4.6	5.1	+/-	1.6	3.9		
STA-24*	4.1	2.6	2.0	3.4	3.0	+/-	0.9	2.7		
			Indicator Loca	tions	3.3	+/-	1.1	2.8	+/-	2.1

*Control

Air Particulate Gross Beta Radioactivity [10⁻³ pCi/m³]

.

Period	S	tation	i -	5	Station	n	s	itatio	п	S	statio	n	s	tatio	n	S	Statio	n	5	Statio	า
Ending		01			02			03			04			05			06			07	
01/06/15	1.52E+01	+/-	2.75E+00	2.06E+01	+/-	3.02E+00	1.91E+01	+/-	2.92E+00	1.49E+01	+/-	2.71E+00	1.95E+01	+/-	2.95E+00	1.88E+01	+/-	2.92E+00	1.95E+01	+/-	2.96E+00
01/13/15	1.70E+01	+/-	2.91E+00	1.80E+01	+/-	2.96E+00	1.63E+01	+/-	2.88E+00	1.89E+01	+/-	3.01E+00	1.39E+01	+/-	2.75E+00	1.99E+01	+/-	3.06E+00	1.79E+01	+/-	2.96E+00
01/20/15	1.44E+01	+/-	2.81E+00	1.29E+01	+/-	2.72E+00	1.80E+01	+/-	2.99E+00	1.53E+01	÷/-	2.85E+00	1.40E+01	+/-	2.78E+00	1.52E+01	+/-	2.84E+00	1.77E+01	+/-	2.97E+00
01/28/15	1.30E+01	+/-	2.34E+00	9.55E+00	+/-	2.14E+00	1.00E+01	+/-	2.17E+00	1.02E+01	+/-	2.18E+00	7.93E+00	+/-	2:04E+00	1.04E+01	+/-	2.20E+00	1.02E+01	+/-	2.18E+00
02/03/15	1.12E+01	+/-	2.98E+00	9.12E+00	+/-	2.75E+00	6.53E+00	+/-	2.59E+00	1.27E+01	+/-	3.01E+00	1.05E+01	+/-	2.84E+00	8.51E+00	+/-	2.71E+00	1.13E+01	+/-	2.89E+00
02/10/15	2.00E+01	+/-	2.89E+00	2.05E+01	+/-	2.99E+00	1.61E+01	+/-	2.75E+00	1.22E+01	+/-	2.51E+00	1.96E+01	+/-	2.95E+00	1.81E+01	+/-	2.86E+00	2.16E+01	+/-	3.04E+00
02/18/15	1.71E+01	+/-	2.72E+00	1.29E+01	+/-	2.50E+00	1.05E+01	+/-	2.40E+00	9.91E+00	+/-	2.34E+00	1.26E+01	+/-	2.48E+00	1.42E+01	+/-	2.58E+00	1.46E+01	+/-	2.59E+00
02/24/15	2.59E+01	+/-	3.71E+00	3.47E+01	+/-	4.09E+00	2.62E+01	+/-	3.73E+00	2.71E+01	+/	3.76E+00	1.45E+01	+/-	3.14E+00	2.69E+01	+/-	3.76E+00	2.70E+01	+/-	3.76E+00
03/04/15	7.69E+00	+/-	2.28E+00	2.04E+01	+/-	2.86E+00	2.04E+01	+/-	2.93E+00	1.95E+01	+/-	2.81E+00	1.91E+01	+/-	2.80E+00	1.46E+01	+/-	2.57E+00	1.76E+01	+/-	2.72E+00
03/10/15	2.14E+01	+/-	3.40E+00	1.26E+01	+/-	2.90E+00	1.80E+01	+/-	3.23E+00	1.68E+01	+/	3.15E+00	1.87E+01	+/-	3.26E+00	1.64E+01	+/-	3.13E+00	1.25E+01	+/-	2.90E+00
03/17/15	8.52E+00	+/-	2.41E+00	5.24E+00	+/-	2.21E+00	1.12E+01	+/-	2.54E+00	1.00E+01	+/-	2.50E+00	6.36E+00	+/-	2.26E+00	1.14E+01	+/-	2.57E+00	1.00E+01	+/-	2.50E+00
03/24/15	1.20E+01	+/-	2.80E+00	1.26E+01	+/-	2.58E+00	1.54E+01	+/-	2.77E+00	1.10E+01	+/-	2.49E+00	1.30E+01	+/-	2.62E+00	1.35E+01	+/-	2.64E+00	8.63E+00	+/-	2.34E+00
03/31/15	9.61E+00	+/-	2.31E+00	8.24E+00	+/-	2.24E+00	1.19E+01	+/-	2.47E+00	1.24E+01	+/-	2.51E+00	7.90E+00	+/-	2.23E+00	1.13E+01	+/-	2.43E+00	1.20E+01	+/-	2.48E+00
04/08/15	1.38E+01	+/-	2.42E+00	1.12E+01	+/-	2.26E+00	1.18E+01	+/-	2.32E+00	1.07E+01	+/-	2.22E+00	1.25E+01	+/-	2.33E+00	9.91E+00	+/-	2.18E+00	1.08E+01	+/-	2.23E+00
04/14/15	1.03E+01	+/-	2.78E+00	1.03E+01	+/-	2.78E+00	8.72E+00	+/-	2.68E+00	8.72E+00	+/-	2.68E+00	9.83E+00	+/-	2.75E+00	1.01E+01	+/-	2.77E+00	8.12E+00	+/-	2.64E+00
04/21/15	8.55E+00	+/-	2.20E+00	6.93E+00	+/-	2.09E+00	1.14E+01	+/-	2.39E+00	9.44E+00	+/-	2.26E+00	8.41E+00	+/-	2.19E+00	7.96E+00	+/-	2.16E+00	8.63E+00	+/-	2.20E+00
04/28/15	9.08E+00	+/-	2.24E+00	1.13E+01	+/-	2.38E+00	8.33E+00	+/-	2.19E+00	9.08E+00	+/-	2.24E+00	9.08E+00	+/-	2.24E+00	9.66E+00	+/-	2.28E+00	1.00E+01	+/-	2.30E+00
05/06/15	1.13E+01	+/-	2.33E+00	1.09E+01	+/-	2.30E+00	1.14E+01	+/-	2.33E+00	1.06E+01	+/-	2.29E+00	7.97E+00	+/-	2.12E+00	1.10E+01	+/-`	2.31E+00	1.02E+01	+/-	2.26E+00
05/12/15	1.68E+01	+/-	2.86E+01	1.37E+01	+/-	2.84E+00	9.98E+00	+/-	2.60E+00	1.33E+01	+/-	2.81E+00	1.53E+01	+/-	2.93E+00	1.34E+01	+/-	2.82E+00	1.14E+01	+/-	2.70E+00
05/19/15	1.97E+01	+/-	3.04E+00	1.41E+01	+/-	2.72E+00	1.53E+01	+/-	2.79E+00	1.17E+01	+/-	2.58E+00	1.40E+01	+/-	2.71E+00	1.19E+01	+/-	2.60E+00	1.43E+01	+/-	2.73E+00
05/26/15	1.32E+01	+/-	2.65E+00	1.13E+01	+/-	2.49E+00	1.31E+01	+/-	2.59E+00	1.26E+01	+/-	2.58E+00	1.36E+01	+/-	2.62E+00	1.08E+01	+/-	2.46E+00	1.40E+01	+/-	2.65E+00
06/02/15	1.43E+01	+/-	2.71E+00	1.13E+01	+/-	2.59E+00	1.37E+01	+/-	2.74E+00	1.23E+01	+/-	2.64E+00	1.15E+01	+/-	2.60E+00	1.05E+01	+/-	2.54E+00	8.37E+00	+/-	2.41E+00
06/09/15	7.71E+00	+/-	2.23E+00	4.76E+00	+/-	2.03E+00	3.06E+00	+/-	1.90E+00	5.52E+00	+/-	2.09E+00	4.99E+00	+/-	2.05E+00		<	3.04E+00	5.51E+00	+/-	2.08E+00
06/16/15	1,70E+01	+/-	2.81E+00	1.11E+01	+/-	2.48E+00	1.45E+01	+/-	2.67E+00	1.36E+01	+/-	2.62E+00	1.14E+01	+/-	2.49E+00	1.33E+01	+/-	2.60E+00	1.33E+01	+/-	2.60E+00
06/23/15	1.21E+01	+/-	2.44E+00	1.26E+01	+/-	2.47E+00	1.44E+01	+/-	2.58E+00	9.97E+00	+/-	2.31E+00	1.00E+01	+/-	2.31E+00	1.41E+01	+/-	2.56E+00	8.18E+00	+/-	2.19E+00
06/30/15	1.10E+01	+/-	2.68E+00	5.56E+00	+/-	2.38E+00	8.78E+00	+/-	2.57E+00	1.04E+01	+/-	2.66E+00	1.09E+01	+/-	2.69E+00	1.20E+01	+/-	2.75E+00	3.81E+00	+/-	2.57E+00

page 1 of 4

Air Particulate Gross Beta Radioactivity

[10⁻³ pCi/m³]

Period	S	Statio	n	5	Statio	n	S	Station	1	5	Statio	n	S	Statio	n	5	Statio	n
Ending		21			_22			23			24**			01A			05A	
01/06/15	1.04E+01	+/-	2.45E+00	1.88E+01	+/-	2.91E+00	1.39E+01	+/-	2.67E+00	2.02E+01	+/-	2.98E+00	2.03E+01	+/-	3.02E+00	1.66E+01	+/-	2.80E+00
01/13/15	1.96E+01	+/-	3.05E+00	1.74E+01	+/-	2.93E+00	1.54E+01	+/-	2.83E+00	1.65E+01	+/-	2.89E+00	1.37E+01	+/-	2.73E+00	1.86E+01	+/-	2.99E+00
01/20/15	1.39E+01	+/-	2.78E+00	1.01E+01	+/-	2.57E+00	1.81E+01	+/-	3.00E+00	1.42E+01	+/-	2.79E+00	1.64E+01	+/-	2.91E+00	1.62E+01	+/-	2.89E+00
01/28/15	6.12E+00	+/-	1.92E+00	1.08E+01	+/-	2.23E+00	1.30E+01	+/-	2.34E+00	1.23E+01	+/-	2.30E+00	*		*	1.02E+01	+/-	2.18E+00
02/03/15	1.32E+01	+/-	3.02E+00	8.58E+00	+/-	2.71E+00	1.32E+01	+/-	3.00E+00	1.75E+01	+/-	3.25E+00	1.55E+01	+/-	3.22E+00	9.23E+00	+/-	2.78E+00
02/10/15	1.45E+01	+/-	2.66E+00	1.89E+01	+/-	2.90E+00	2.04E+01	+/-	2.98E+00	2.60E+01	+/-	3.25E+00	2.36E+01	+/-	3.07E+00	1.64E+01	+/-	2.76E+00
02/18/15	1.51E+01	+/-	2.61E+00	1.63E+01	+/-	2.67E+00	1.44E+01	+/-	2.59E+00	1.77E+01	+/-	2.74E+00	1.32E+01	+/-	2.52E+00	1.24E+01	+/-	2.48E+00
02/24/15	2.65E+01	+/-	3.74E+00	2.67E+01	+/-	3.75E+00	3.09E+01	+/-	3.94E+00	2.31E+01	+/-	3.58E+00	2.95E+01	+/-	3.88E+00	2.72E+01	+/-	3.77E+00
03/04/15	2.66E+01	+/-	3.14E+00	2.41E+01	+/-	3.03E+00	2.11E+01	+/-	2.89E+00	2.55E+01	+/-	3.09E+00	2.31E+01	+/-	2.98E+00	1.79E+01	+/-	2.74E+00
03/10/15	2.02E+01	+/-	3.35E+00	1.65E+01	+/-	3.15E+00	1.61E+01	+/-	3.10E+00	1.97E+01	+/-	3.33E+00	1.86E+01	+/-	3.24E+00	1.47E+01	+/-	3.03E+00
03/17/15	1.10E+01	+/-	2.50E+00	9.72E+00	+/-	2.43E+00	1.11E+01	+/-	2.58E+00	1.36E+01	+/-	2.69E+00	1.18E+01	+/-	2.60E+00	1.06E+01	+/-	2.51E+00
03/24/15	1.59E+01	+/-	3.07E+00	9.26E+00	+/-	2.44E+00	1.42E+01	+/-	2.66E+00	1.47E+01	+/-	2.73E+00	1.21E+01	+/-	2.57E+00	7.97E+00	+/-	2.32E+00
03/31/15	9.58E+00	+/-	2.33E+00	9.75E+00	+/-	2.34E+00	1.01E+01	· +/-	2.36E+00	1.43E+01	+/-	2.61E+00	1.57E+01	+/-	2.68E+00	1.10E+01	+/-	2.42E+00
04/08/15	9.84E+00	+/-	2.18E+00	3.06E+00	+/-	1.72E+00	8.88E+00	+/-	2.12E+00	1.16E+01	+/-	2.28E+00	9.52E+00	+/-	2.17E+00	1.25E+01	+/-	2.33E+00
04/14/15	8.55E+00	+/-	2.67E+00	1.02E+01	+/-	2.77E+00	1.22E+01	+/-	2.90E+00	1.00E+01	+/-	2.76E+00	1.20E+01	+/-	2.88E+00	1.02E+01	+/-	2.77E+00
04/21/15	9.84E+00	+/-	2.29E+00	1.14E+01	+/-	2.39E+00	1.00E+01	+/-	2.29E+00	1.04E+01	+/-	2.33E+00	1.09E+01	+/-	2.41E+00	9.51E+00	+/-	2.26E+00
04/28/15	1.05E+01	+/-	2.33E+00	9.65E+00	+/-	2.27E+00	1.02E+01	+/-	2.31E+00	1.12E+01	+/-	2.37E+00	1.17E+01	+/-	2.41E+00	9.00E+00	+/-	2.23E+00
05/06/15	1.15E+01	+/-	2.34E+00	9.65E+00	+/-	2.23E+00	1.23E+01	+/-	2.39E+00	1.08E+01	+/-	2.30E+00	1.16E+01	+/-	2.35E+00	1.06E+01	+/-	2.28E+00
05/12/15	1.29E+01	+/-	2.79E+00	1.76E+01	+/-	3.06E+00	1.34E+01	+/-	2.81E+00	1.64E+01	+/-	2.99E+00	1.64E+01	+/-	3.16E+00	1.34E+01	+/-	2.82E+00
05/19/15	1.52E+01	+/-	2.78E+00	1.35E+01	+/-	2.69E+00	1.48E+01	+/-	2.76E+00	1.48E+01	+/-	2.76E+00	1.75E+01	+/-	2,98E+00	1.55E+01	+/-	2.79E+00
05/26/15	1.03E+01	+/-	2.42E+00	1.24E+01	+/-	2.55E+00	1.33E+01	+/-	2.60E+00	1.11E+01	. +/-	2.46E+00	1.72E+01	+/-	2.94E+00	1.23E+01	+/-	2.55E+00
06/02/15	1.15E+01	+/-	2.61E+00	1.54E+01	+/-	2.84E+00	1.06E+01	+/-	2.56E+00	1.25E+01	+/-	2.68E+00	1.54E+01	+/-	2.85E+00	7.44E+00	+/-	2.35E+00
06/09/15	6.63E+00	+/-	2.17E+00	5.14E+00	+/-	2.06E+00	7.34E+00	+/-	2.20E+00	7.07E+00	+/-	2.19E+00	8.38E+00	+/-	2.27E+00	5.14E+00	+/-	2.06E+00
06/16/15	1.36E+01	+/-	2.62E+00	1.43E+01	+/-	2.66E+00	1.52E+01	+/-	2.71E+00	1.42E+01	+/-	2.65E+00	1.70E+01	+/-	2.81E+00	1.17E+01	+/-	2.51E+00
06/23/15	1.21E+01	+/-	2.44E+00	1.49E+01	+/-	2.60E+00	1.61E+01	+/-	2.68E+00	1.32E+01	+/-	2.50E+00	1.54E+01	+/-	2.64E+00	1.18E+01	+/-	2.42E+00
06/30/15	8.87E+00	+/-	2.58E+00	1.10E+01	+/-	2.70E+00	9.48E+00	+/-	2.60E+00	9.83E+00	+/-	2.63E+00	9.26E+00	+/-	2.59E+00	8.61E+00	+/-	2.56E+00

* Sample not obtained due to sampler not operating.

.

4

** Control Station

38

page 2 of 4

.

.

.

.....

page

3 of 4

Air Particulate Gross Beta Radioactivity

[10⁻³ pCi/m³]

Period	S	tatior	1	S	Static	n	s	itatio	n	S	Station	ı		Statio	ก	5	Station		5	Statior	۱ _
Ending		01			02			03			04			05			06			07	
07/08/15	1.55E+01	+/-	2.45E+00	1.12E+01	+/-	2.21E+00	1.44E+01	+/-	2.38E+00	1.43E+01	+/-	2.38E+00	1.26E+01	+/-	2.29E+00	1.94E+01	+/-	2.65E+00	1.43E+01	+/-	2.39E+00
07/14/15	1.46E+01	+/-	3.08E+00	1.12E+01	+/-	2.90E+00	1.04E+01	+/-	2.86E+00	1.35E+01	+/-	3.04E+00	1.20E+01	+/-	2.96E+00	1.37E+01	+/-	3.05E+00	1.39E+01	+/-	3.06E+00
07/21/15	1.47E+01	+/-	2.56E+00	1.32E+01	+/-	2.46E+00	1.20E+01	+/-	2.39E+00	1.70E+01	+/-	2.67E+00	1.42E+01	+/-	2.52E+00	1.64E+01	+/-	2.65E+00	1.50E+01	+/-	2.56E+00
07/28/15	1.25E+01	+/-	2.49E+00	1.06E+01	+/-	2.38E+00	1.45E+01	+/-	2.60E+00	1.17E+01	+/-	2.45E+00	1.38E+01	+/-	2.57E+00	1.59E+01	+/-	2.69E+00	1.26E+01	+/-	2.50E+00
08/05/15	1.69E+01	+/-	2.54E+00	1.77E+01	+/-	2.58E+00	1.71E+01	+/-	2.55E+00	1.69E+01	+/-	2.54E+00	2.00E+01	+/-	2.69E+00	1.58E+01	+/-	2.48E+00	2.07E+01	+/-	2.72E+00
08/11/15	1.50E+01	+/-	2.99E+00	1.01E+01	+/-	2.70E+00	1.26E+01	+/-	2.85E+00	1.31E+01	+/-	2.89E+00	1.11E+01	+/-	2.76E+00	1.40E+01	+/-	2.94E+00	1.43E+01	+/-	2.96E+00
08/18/15	1.34E+01	+/-	2.62E+00	1.61E+01	+/	2.76E+00	1.54E+01	+/-	2.75E+00	1.33E+01	+/-	2.61E+00	1.34E+01	+/-	2.62E+00	1.59E+01	+/-	2.75E+00	1.57E+01	+/-	2.74E+00
08/26/15	1.46E+01	+/-	2.46E+00	1.53E+01	+/-	2.50E+00	1.13E+01	+/-	2.28E+00	1.79E+01	+/-	2.63E+00	1.35E+01	+/-	2.40E+00	1.69E+01	+/-	2.58E+00	1.70E+01	+/-	2.58E+00
09/01/15	1.68E+01	+/-	3.03E+00	1.47E+01	+/-	2.90E+00	2.10E+01	+/-	3.26E+00	1.81E+01	+/-	3.10E+00	1.62E+01	+/ .	2.99E+00	2.42E+01	+/-	3.42E+00	1.63E+01	+/-	3.00E+00
09/08/15	2.71E+01	+/-	3.22E+00	2.30E+01	+/-	3.03E+00	2.71E+01	+/-	3.23E+00	2.32E+01	+/-	3.04E+00	2.48E+01	+/-	3.12E+00	2.75E+01	+/-	3.24E+00	2.79E+01	+/-	3.26E+00
09/16/15	1.58E+01	+/-	2.45E+00	1.35E+01	+/-	2.32E+00	1.06E+01	+/-	2.15E+00	1.24E+01	+/-	2.26E+00	1.31E+01	+/-	2.30E+00	1.70E+01	+/-	2.52E+00	1.36E+01	+/-	2.33E+00
09/22/15	2.03E+01	+/-	3.51E+00	2.13E+01	+/-	3.56E+00	2.12E+01	+/-	3.55E+00	1.95E+01	+/-	3.47E+00	1.87E+01	+/-	3.42E+00	1.73E+01	+/-	3.67E+00	2.30E+01	+/-	3.64E+00
. 09/29/15	9.63E+00	+/-	2.23E+00	9.85Ę+00	+/-	2.26E+00	1.05E+01	+/-	2.30E+00	1.23E+01	+/-	2.42E+00	1.14E+01	+/-	2.36E+00	1.23E+01	+/-	2.41E+00	1.09E+01	+/-	2.32E+00
10/06/15	3.79E+00	+/-	2.02E+00	*	<	2.71E+00	3.18E+00	+/-	1.90E+00	4.63E+00	+/~	2.03E+00	3.64E+00	+/-	1.94E+00	5.57E+00	+/-	2.09E+00	3.05E+00	+/-	1.90E+00
10/14/15	1.22E+01	+/-	2.43E+00	1.93E+01	+/-	2.83E+00	1.74E+01	+/-	2.75E+00	1.88E+01	+/-	2.79E+00	1.47E+01	+/-	2.61E+00	2.02E+01	+/-	2.87E+00	1.75E+01	+/-	2.75E+00
10/21/15	1.73E+01	+/-	2.89E+00	1.56E+01	+/-	2.80E+00	1.69E+01	+/-	2.87E+00	1.73E+01	+/-	2.90E+00	1.48E+01	+/-	2.75E+00	2.13E+01	+/-	3.09E+00	2.14E+01	+/-	3.10E+00
10/27/15	2.06E+01	+/-	3.55E+00	2.08E+01	+/-	3.56E+00	2.11E+01	+/-	3.55E+00	2.69E+01	+/-	3.84E+00	.2.49E+01	+/-	3.75E+00	1.57E+01	+/-	3.27E+00	2.28E+01	+/-	3.65E+00
11/04/15	1.26E+01	+/-	2.27E+00	1.93E+01	+/-	2.65E+00	1.45E+01	+/-	2.44E+00	2.04E+01	+/-	2.67E+00	1.81E+01	+/-	2.56E+00	1.53E+01	+/-	2.42E+00	1.62E+01	+/-	2.46E+00
11/12/15	8.74E+00	+/-	2.16E+00	1.13E+01	+/-	2.22E+00	1.18E+01	+/-	2.27E+00	9.23E+00	+/-	2.16E+00	9.46E+00	+/-	2.15E+00	1.03E+01	+/-	2.20E+00	1.04E+01	+/-	2.21E+00
11/18/15	1.08E+01	+/-	2.71E+00	1.74E+01	+/-	3.19E+00	1.71E+01	+/-	3.20E+00	1.83E+01	+/-	3.21E+00	1.82E+01	+/-	3.23E+00	1.98E+01	+/-	3.30E+00	1.96E+01	+/-	3.29E+00
11/24/15	1.24E+01	+/-	2.99E+00	1.31E+01	+/-	3.03E+00	1.20E+01	+/-	2.94E+00	1.19E+01	+/-	2.94E+00	1.36E+01	+/-	3.04E+00	1.29E+01	+/-	3.01E+00	1.21E+01	+/-	2.97E+00
12/02/15	1.25E+01	+/-	2.29E+00	1.32E+01	+/-	2.32E+00	1.30E+01	+/-	2.32E+00	1.24E+01	+/ ,	2.28E+00	1.30E+01	+/-	2.31E+00	1.41E+01	+/-	2.37E+00	1.39E+01	+/-	2.36E+00
12/08/15	2.41E+01	+/-	3,48E+00	2.23E+01	+/-	3.39E+00	1.93E+01	+/-	3.24E+00	2.77E+01	+/-	3.66E+00	2.82E+01	+/-	3.68E+00	2.15E+01	+/-	3.35E+00	2.43E+01	+/-	3.49E+00
12/15/15	2.58E+01	+/-	3.21E+00	2.55E+01	+/-	3.19E+00	1.94E+01	+/-	2.90E+00	2.71E+01	+/-	3.27E+00	2.71E+01	+/-	3.27E+00	2.36E+01	+/-	3.11E+00	2.53E+01	+/-	3.18E+00
12/22/15	1.13E+01	+/-	2.57E+00	8.06E+00	+/-	2.33E+00	1.31E+01	+/-	2.61E+00	1.08E+01	+/-	2.51E+00	1.19E+01	+/-	2.56E+00	1.02E+01	+/-	2.43E+00	9.80E+00	+/-	2.43E+00
12/29/15	6.56E+00	+/-	2.03E+00		<	2.57E+00	6.63E+00	+/-	2.11E+00	4.48E+00	+/-	1.93E+00	6.54E+00	+/-	2.10E+00	*		*	5.02E+00	+/-	1.98E+00
MEAN	1.416E+01	+/-	3.19E+00	1.41E+01	+/-	2.68E+00	1.40E+01	+/-	2.67E+00	1.43E+01	+/-	2.68E+00	1.38E+01	+/-	2.66E+00	1.50E+01	+/-	2.74E+00	1.43E+01	+/-	2.69E+00

* Sample not obtained due to sampler not operating

.

39

h

Air Particulate Gross Beta Radioactivity [10⁻³ pCi/m³]

Period Station Station Station Station Station Station Ending 21 22 23 24** 01A 05A 1.03E+01 +/-2.15E+00 1.29E+01 +/- 2.30E+00 1.09E+01 +/-2.19E+00 1.36E+01 +/- 2.34E+00 1.81E+01 +/- 2.59E+00 1.42E+01 07/08/15 +/- 2.38E+00 07/14/15 9.89E+00 2.83E+00 1.22E+01 +/- 2.97E+00 1.32E+01 +/-3.01E+00 1.60E+01 +/- 3.18E+00 8.68E+00 +/-+/- 2.73E+00 1.07E+01 +/-2.88E+00 07/21/15 1.50E+01 +/-2.56E+00 1.30E+01 +/- 2.45E+00 1.19E+01 +/-2.39E+00 1.40E+01 +/- 2.51E+00 1.91E+01 +/- 2.80E+00 1.23E+01 +/-2.41E+00 07/28/15 1.25E+01 +/-2.48E+00 1.33E+01 +/-2.53E+00 1.45E+01 +/-2.61E+00 1.53E+01 +/-2.64E+00 1.59E+01 +/- 2.69E+00 1.26E+01 +/-2.50E+00 08/05/15 1.91E+01 +/-2.65E+00 1.60E+01 +/- 2.49E+00 1.68E+01 +/-2.53E+00 1.82E+01 +/- 2.60E+00 2.25E+01 +/- 2.81E+00 1.19E+01 +/-2.26E+00 2.89E+00 1.43E+01 08/11/15 8.95E+00 +/-2.62E+00 9.46E+00 +/-2.65E+00 1.33E+01 +/-+/- 2,95E+00 1.30E+01 +/- 2.87E+00 1.10E+01 +/-2.76E+00 08/18/15 1.50E+01 +/-2,71E+00 1.08E+01 +/- 2.47E+00 1.82E+01 +/-2.88E+00 1.76E+01 +/- 2.85E+00 1.58E+01 +/- 2.75E+00 1.62E+01 +/-2.77E+00 08/26/15 1.61E+01 +/-2.54E+00 1.59E+01 +/-2.53E+00 1.58E+01 +/-2.52E+00 1.35E+01 +/-2.40E+00 1.96E+01 +/-2.71E+00 1.15E+01 +/-2.29E+00 09/01/15 1.48E+01 1.83E+01 +/-3.11E+00 1.63E+01 +/- 3.00E+00 2.09E+01 +/-3.25E+00 2.22E+01 +/- 3.32E+00 2.04E+01 +/- 3.22E+00 +/-2.91E+00 09/08/15 2.87E+01 3.32E+00 2.42E+01 +/-+/-3.11E+00 2.38E+01 +/-3.07E+00 2.64E+01 +/-3,20E+00 3.17E+01 +/-3.42E+00 1.78E+01 +/-2.77E+00 09/16/15 1.50E+01 +/-2.40E+00 1.13E+01 +/- 2.18E+00 1.46E+01 +/-2.39E+00 1.53E+01 +/- 2.42E+00 1.76E+01 +/- 2.55E+00 9.86E+00 +/-2.11E+00 09/22/15 2.01E+01 +/-3.50E+00 1.77E+01 +/-3.37E+00 2,21E+01 +/-3.60E+00 1.91E+01 +/-3.45E+00 2.31E+01 +/-3.65E+00 1.83E+01 +/-3.40E+00 09/29/15 1.16E+01 +/-2.38E+00 1.25E+01 +/- 2.43E+00 8.58E+00 2.17E+00 1.40E+01 +/- 2.52E+00 1.48E+01 +/- 2.55E+00 1.02E+01 +/-2.29E+00 +/-10/06/15 3.33E+00 +/-1.91E+00 3.11E+00 +/-1.90E+00 < 2.71E+00 4.51E+00 +/-2,00E+00 4.47E+00 +/-2.07E+00 < 2.70E+00 10/14/15 1.72E+01 1.65E+01 +/-2.74E+00 1.40E+01 +/- 2.62E+00 +/-2.69E+00 2.03E+01 +/- 2.88E+00 2.23E+01 +/- 2.91E+00 2.02E+01 +/-2.88E+00 10/21/15 1.48E+01 +/-2.76E+00 1.83E+01 +/-2.96E+00 1.79E+01 +/-2.92E+00 1.73E+01 +/-2.89E+00 1.43E+01 +/-2.73E+00 1.22E+01 +/-2.61E+00 10/27/15 1.98E+01 +/-3.48E+00 1.94E+01 +/- 3.46E+00 1.79E+01 +/-3.40E+00 2.18E+01 +/- 3.59E+00 1.90E+01 +/- 3.46E+00 2.75E+01 +/-3.87E+00 11/04/15 1.80E+01 +/-2.56E+00 1.60E+01 +/-2.46E+00 1.74E+01 +/-2.53E+00 1.86E+01 +/-2.59E+00 1.97E+01 +/-2.64E+00 2.32E+01 +/-2.81E+00 11/12/15 1.15E+01 +/-2.27E+00 9.69E+00 +/~ 2.16E+00 9.90E+00 +/-2.17E+00 1.17E+01 +/- 2.28E+00 1.06E+01 +/-2.27E+00 1.01E+01 +/-2.19E+00 11/18/15 1.94E+01 +/-3.30E+00 1.55E+01 +/-3.09E+00 1.63E+01 +/-3.13E+00 1.90E+01 +/-3.28E+00 1.65E+01 +/-3.04E+00 2.00E+01 +/-3.32E+00 11/24/15 1.33E+01 +/-3.01E+00 8.94E+00 +/- 2.75E+00 1.23E+01 +/-2.98E+00 1.14E+01 +/- 2.90E+00 1.17E+01 +/- 3.03E+00 1.39E+01 +/-3.06E+00 12/02/15 9.76E+00 +/-2.13E+00 8.00E+00 +/-2.02E+00 1.45E+01 +/-2.40E+00 1.47E+01 +/-2.41E+00 1.52E+01 +/-2.44E+00 1.37E+01 +/-2.35E+00 12/08/15 1.80E+01 +/-3,17E+00 1,39E+01 +/- 2,94E+00 2.51E+01 +/-3.53E+00 2.13E+01 +/- 3.35E+00 2.83E+01 +/- 3.68E+00 2.64E+01 +/-3.60E+00 12/15/15 2.12E+01 +7-2.99E+00 2.06E+01 +/-2.96E+00 2.57E+01 +/-3.20E+00 2.83E+01 +/-3.33E+00 3.12E+01 +/-3.45E+00 3.35E+00 2.90E+01 +/-12/22/15 8.66E+00 +/-2.35E+00 9.10E+00 +/-2.38E+00 1.10E+01 +/-2.50E+00 8.58E+00 +/- 2.35E+00 1.28E+01 +/- 2.66E+00 1.08E+01 +/-2.49E+00 12/29/15 5.42E+00 +/-2.02E+00 5.95E+00 +/-2.06E+00 4.40E+00 +/-1,93E+00 5,26E+00 +/- 2.01E+00 7.03E+00 +/-2.08E+00 6.31E+00 +/-2.08E+00 MEAN 1.39E+01 +/-2,63E+00 1.49E+01 +/-2.72E+00 1.56E+01 2,76E+00 1.65E+01 +/-2.82E+00 1.39E+01 +/-2.67E+00 2.67E+00 1.33E+01 +/-+/-

Mean - All Indicator Locations 1.44E+01 +/- 2.73E+00

** Control Station

40

page 4 of 4

Table 3-4 Airborne Iodine I-131 [10⁻³ pCi/m³]

.

-

Period	Station	Station	Station	Station	Station	Station	Station
Ending	01	02	03	04	05	06	07
01/06/15	< 1.33E+01	< 2.97E+01	< 2.94E+01	< 2.95E+01	< 2.95E+01	< 1.26E+01	< 3.58E+01
01/13/15	< 2.04E+01	< 5.28E+01	< · 5.28E+01	< 5.28E+01	< 5.82E+01	< 5.10E+01	< 5.10E+01
01/20/15	< 1.23E+01	< 3.17E+01	< 3.18E+01	< 3.17E+01	< 3.17E+01	< 2.96E+01	< 1.24E+01
01/28/15	< 2.05E+01	< 4.62E+01	< 4.61E+01	< 4.62E+01	< 4.62E+01	< 1.25E+01	< 3.55E+01
02/03/15	< 2.36E+01	< 5.82E+01	< 5.85E+01	< 5.93E+01	< 5.82E+01	< 6.55E+01	< 6.55E+01
02/10/15	< 5.72E+01	< 5.95E+01	< 5.93E+01	< 5.86E+01	< 6.24E+01	< 6.24E+01	< 6.24E+01
02/18/15	< 1.93E+01	< 3.49E+01	< 3.57E+01	< 3.50E+01	< 3.50E+01	< 4.83E+01	< 4.81E+01
02/24/15	< 9.96E+00	< 2.56E+01	< 2.57E+01	< 2.56E+01	< 2.56E+01	< 4.44E+01	< 4.44E+01
03/04/15	< 1.59E+01	. < 3.83E+01	< 3.97E+01	< 3.83E+01	< 3.83E+01	< 4.24E+01	< 4.24E+01
03/10/15	< 1.58E+01	< 4.09E+01	< 4.10E+01	< 4.09E+01	< 4.09E+01	< 4.70E+01	< 4.70E+01
03/17/15	< 1.75E+01	< 4.52E+01	< 4.44E+01	< 4.51E+01	< 4.48E+01	< 4.07E+01	< 4.09E+01
03/24/15	< 1.64E+01	< 3.65E+01	< 3.72E+01	< 3.67E+01	< 3.69E+01	< 3.48E+01	< 3.47E+01
03/31/15	< 1.18E+01	< 3.06E+01	< 3.06E+01	< 3.07E+01	< 3.07E+01	< 2.21E+01	< 2.21E+01
04/08/15	< 2.28E+01	< 5.82E+01	< 5.93E+01	< 5.80E+01	< 5.80E+01	< 6.71E+01	< 6.72E+01
04/14/15	< 2.98E+01	< 2.98E+01	< 2.98E+01	< 2.98E+01	< 3.45E+01	< 3.45E+01	< 3.45E+01
04/21/15	< 2.47E+01	< 5,85E+01	< 5.87E+01	< 5.85E+01	< 5.85E+01	< 5.36E+01	< 5.36E+01
04/28/15	< 4.03E+01	< 4.03E+01	< 4.02E+01	< 4.03E+01	< 4.70E+01	< 4.70E+01	< 4.70E+01
05/06/15	< 4.89E+01	< 4.89E+01	< 4.88E+01	< 4.89E+01	< 4.07E+01	< 4.07E+01	< 4.07E+01
05/12/15	< 3.16E+01	< 3.20E+01	< 3.20E+01	< 3.33E+01	< 3.33E+01	< 3.33E+01	< 2.29E+01
05/19/15	< 4.52E+01	< 4.47E+01	< 4.48E+01	< 3,34E+01	< 3.34E+01	< 3.35E+01	< 3.43E+01
05/26/15	< 4.28E+01	< 4.15E+01	< 4.14E+01	< 4.20E+01	< 5.58E+01	< 5.58E+01	< 5.58E+01
06/02/15	< 4.57E+01	< 4.70E+01	< 2.60E+01	< 4.66E+01	< 4.70E+01	< 5.91E+01	< 5.91E+01
06/09/15	< 3.53E+01	< 3.54E+01	< 3.55E+01	< 3.55E+01	< 3.29E+01	< 3.69E+01	< 3.29E+01
06/16/15	< 5.64E+01	< 5.63E+01	< 5.62E+01	< 5.63E+01	< 4.32E+01	< 4.32E+01	< 4.32E+01
06/23/15	< 3.67E+01	< 3.66E+01	< 3.66E+01	< 3.66E+01	< 2.02E+01	< 4.12E+01	< 4.12E+01
06/30/15	< 2.88E+01	< 2.90E+01	< 2.90E+01	< 2.90E+01	< 2.67E+01	< 2.67E+01	< 3.09E+01

page 1 of 4

.

-1

Airborne Iodine I-131

١

[10⁻³ pCi/m³]

Period	Station	Station	Station	Station	Station	Station
Ending	21	22	23	24**	01A	05A
01/06/15	< 3.54E+01	< 3.54E+01	< 3.59E+01	< 3.50E+01	< 3.55E+01	< 3.51E+01
01/13/15	< 5.10E+01	< 5.10E+01	< 6.05E+01	< 6.07E+01	< 6.05E+01	< 6.07E+01
01/20/15	< 2.97E+01,	< 2.97E+01	< 2.97E+01	< 3.61E+01	< 3.61E+01	< 3.60E+01
01/28/15	< 3.55E+01	< 3.57E+01	< 3.55E+01	< 5.51E+01	* *	< 5.52E+01
02/03/15	< 6.59E+01	< 6.53E+01	< 5.65E+01	< 5.67E+01	< 5.88E+01	< 5.72E+01
02/10/15	< 6.22E+01	< 6.98E+01	< 6.98E+01	< 6.99E+01	< 6.75E+01	< 3.59E+01
02/18/15	< 4.79E+01	< 4.79E+01	< 3.77E+01	< 3.74E+01	< 3.77E+01	< 3.76E+01
02/24/15	< 4.45E+01	< 4.45E+01	< 4.41E+01	< 4.41E+01	< 4.41E+01	< 4.40E+01
03/04/15	< 1.77E+01	< 4.23E+01	< 4.24E+01	< 4.99E+01	< 5.00E+01	< 5.00E+01
03/10/15	< 4.71E+01	< 4.71E+01	< 5.03E+01	< 5.07E+01	< 5.03E+01	< 5.06E+01
03/17/15	< 3.97E+01	< 3.97E+01	< 4.33E+01	< 4.27E+01	< 4.28E+01	< 4.24E+01
03/24/15	< 4.02E+01	< 3.57E+01	< 2.84E+01	< 2.90E+01	< 2.87E+01	< 2.89E+01
03/31/15	< 2.22E+01	< 2.22E+01	< 2.32E+01	< 2.33E+01	< 2.31E+01	. < 2.33E+01
04/08/15	< 6.71E+01	< 6.71E+01	< 5.44E+01	< 5.44E+01	< 5.48E+01	< 5.43E+01
04/14/15	< 3.45E+01	< 1.63E+01	< 3.00E+01	< 3.00E+01	< 3.00E+01	< 3.00E+01
04/21/15	< 5.38E+01	< 5.38E+01	< 5.26E+01	< 5.28E+01	< 5.45E+01	< 5.26E+01
04/28/15	< 4.69E+01	< 3.48E+01	< 1.46E+01	< .3.48E+01	< 3.48E+01	< 3.48E+01
05/06/15	< 3.71E+01	< 3.71E+01	< 3.71E+01	< 2.69E+01	< 2.70E+01	< 2.70E+01
05/12/15	< 2.29E+01	< 2.29E+01	< 2.28E+01	< 6.49E+01	< 6.82E+01	< 6.49E+01
05/19/15	< 3.43E+01	< 3.43E+01	< 5.16E+01	< 5.16E+01	< 5.31E+01	< 5.14E+01
05/26/15	< 5.55E+01	< 5.84E+01	< 5.85E+01	< 5.82E+01	< 2.42E+01	< 5.87E+01
06/02/15	< 5.94E+01	< 5.94E+01	< 2.09E+01	< 6.74E+01	< 6.78E+01	< 6.69E+01
06/09/15	< 3.29E+01	< 3.74E+01	< 3.72E+01	< 3.73E+01	< 5.03E+01	< 5.06E+01
06/16/15	< 5.60E+01	< 5.60E+01	< 5.62E+01	< 6.16E+01	< 6.18E+01	< 6.17E+01
06/23/15	< 4.12E+01	< 4.12E+01	< 3.43E+01	< 3.42E+01	< 3.43E+01	< 3.42E+01
06/30/15	< 2.68E+01	< 3.02E+01	< 3.00E+01	< 3.01E+01	< 1.33E+01	< 3.01E+01

page 2 of 4

* Sample not obtained due to sampler not operating.

** Control Station

Table 3-4	
Airborne lodine	
I-131	
[10 ⁻³ pCi/m ³]	

.

,

page 3 of 4

.

Period	Statio	n	Static	n [']	Statio	n	Statio	n	Stati	on	Station	ı _	Statio	n
Ending	01		02		03		04		05		06		07	
07/08/15	<	6.66E+00	<	1.71E+01	<	1.70E+01	<	1.71E+01	<	1.71E+01	<	1.62E+01	<	1.63E+01
07/14/15	<	3.94E+01	<	3.97E+01	<	3.98E+01	<	3.98E+01	<	3.05E+01	<	3.04E+01	<	3.04E+01
07/21/15	<	2.81E+01	<	2.80E+01	<	2.80E+01	<	1.17E+01	<	2.79E+01	<	2.89E+01	< '	2.89E+01
07/28/15	<	2.67E+01	<	2.67E+01	. <	2.67E+01	<	2.67E+01	<	1.04E+01	<	2.68E+01	<	2.68E+01
08/05/15	· <	1.00E+01	<	2.58E+01	<	2.58E+01	<	2.58E+01	<	2.58E+01	<	2.18E+01	<	2.18E+01
08/11/15	<	4.61E+01	<	4.64E+01	<	4.62E+01	<	4.64E+01	<	1.80E+01	<	4.71E+01	<	4.71E+01
08/18/15	<	2.50E+01	<	2.50E+01	<	2.49E+01	<	2.52E+01	<	2.49E+01	<	3.32E+01	<	3.32E+01
08/26/15	<	2.65E+01	<	6.28E+01	<	6.28E+01	<	6.28E+01	<	6.28E+01	<	, 6.92E+01	<	6.92E+01
09/01/15	<	4.70E+01	<	4.70E+01	<	4.70E+01	<	4.70E+01	<	1.98E+01	<	5.67E+01	<	5.67E+01
09/08/15	<	1.56E+01	<	3.73E+01	<	3.74E+01	<	3.73E+01	<	3.73E+01	<	1.27E+01	<	3.26E+01
09/16/15	<	2.46E+01	<	2.46E+01	<	2.46E+01	<	2.46E+01	<	3.37E+01	<	3.37E+01	<	3.37E+01
09/22/15	<	8.67E+00	<	2.23E+01	<	2.23E+01	<	2.23E+01	<	2.23E+01	<	3.56E+01	<	3.56E+01
09/29/15	<	3.42E+01	<	3.44E+01	<	3.45E+01	<	3.46E+01	<	1.34E+01	<	4.45E+01	<	4.45E+01
10/06/15	<	5.39E+01	<	5.19E+01	<	5.17E+01	<	5.21E+01	<	6.29E+01	<	6.29E+01	<	6.30E+01
10/14/15	<	1.81E+01	<	1.86E+01	<	1.87E+01	<	1.85E+01	<	2.80E+01	<	2.80E+01	<	2.80E+01
10/21/15	<	3.23E+01	<	1.25E+01	<	3.23E+01	<	3.23E+01	<	3.22E+01	<	2.75E+01	<	2.75E+01
10/27/15	<	1.57E+01	<	4.02E+01	<	3.99E+01	<	4.00E+01	<	4.00E+01	<	1.29E+01	<	3.32E+01
11/04/15	<	2.47E+01	<	6.01E+01	<	6.15E+01	<	5.90E+01	<	5.90E+01	<	2.63E+01	<	2.63E+01
11/12/15	<	4.34E+01	<	1.72E+01	<	4.17E+01	<	4.26E+01	<	4.22E+01	<	3.61E+01	<	3.61E+01
11/18/15	<	2.74E+01	<	5.57E+01	<	5.62E+01	<	5.48E+01	<	5.54E+01	<	2.78E+01	<	5.13E+01
11/24/15	<	2.59E+01	<	2.59E+01	<	2.56E+01	<	2.57E+01	<	1.08E+01	<	2.59E+01	<	2.59E+01
12/02/15	<	4.96E+01	<	4.96E+01	<	4.97E+01	<	1.87E+01	<	4.82E+01	<	4.82E+01	<	4.82E+01
12/08/15	<	2.18E+01	<	2.19E+01	<	2.19E+01	<	2.19E+01	<	8.48E+00	<	3.61E+01	<	3.61E+01
12/15/15	<	1.45E+01	<	3.46E+01	<	3.47E+01	<	3.46E+01	<	3.46E+01	<	3.49E+01	· <	3.49E+01
12/22/15	<	1.99E+01	<	3.51E+01	<	3.50E+01	<	3.55E+01	<	3.51E+01	<	4.58E+01	<	4.58E+01
12/29/15	<	1.66E+01	<	4.44E+01	<	4.46E+01	<	4.42E+01	<	4.45E+01	*	*	<	3.45E+01
Mean	+/-	1.73E+01	+/-	4.44E+01	+/-	4.50E+01	+/-	4.44E+01	+/-	4.44E+01	+/-	4.46E+01	+/-	4.47E+01

* Sample not obtained due to sampler not operating.

.

Table 3-4Airborne lodine

I-131

[10⁻³ pCi/m³]

Period	Station	Statio	on _	Statio	n _	Static	on _	Statio	on .	Static	n -
Ending	21	22		23		24**	ł	01A	۱	05A	
07/08/15	< 1.62	E+01 <	1.62E+01	<	1.56E+01	<	1.55E+01	<	1.56E+01	<	1.55E+01
07/14/15	< 3.05	E+01 <	1.90E+01	<	3.42E+01	<	3.44E+01	<	3.41E+01	<	3.45E+01
07/21/15	< 2.89	E+01 <	2.89E+01	<	2.90E+01	<	4.90E+01	<	4.92E+01	<	4.90E+01
07/28/15	< 2.67	E+01 <	2.67E+01	<	3.38E+01	<	3.37E+01	<	3.38E+01	<	3.38E+01
08/05/15	< 2.18	E+01 <	2.18E+01	<	2.94E+01	<	2.94E+01	<	2.94E+01	<	2.94E+01
08/11/15	< 4.69	E+01 <	4.69E+01	· <	5.91E+01	<	5.92E+01	<	5.91E+01	. <	5.94E+01
08/18/15	< 3.33	E+01 <	3.77E+01	<	3.77E+01	<	1.58E+01	<	3.77E+01	<	3.76E+01
08/26/15	< 6.92	E+01 <	6.92E+01	<	6.43E+01	<	6.43E+01	<	6.43E+01	<	6.43E+01
09/01/15	< 2.52	E+01 <	5.67E+01	<	5.67E+01	<	4.21E+01	<	4.21E+01	<	4.21E+01
09/08/15	< 3.30	E+01 <	3.30E+01	<	3.26E+01	<	4.38E+01	<	4.36E+01	<	4.38E+01
09/16/15	< 3.33	E+01 <	3.46E+01	<	1.36E+01	<	3.49E+01	<	3.50E+01	<	3.50E+01
09/22/15	< 3.56	E+01 <	3.56E+01	<	2.72E+01	<	2.72E+01	<	2.72E+01	<	2.72E+01
09/29/15	< 4.47	E+01 <	1.87E+01	. <	4.44E+01	<	3.78E+01	<	3.76E+01	<	3.79E+01
10/06/15	< 6.27	E+01 <	4.78E+01	<	4.80E+01	<	2.00E+01	<	4.97E+01	<	4.79E+01
10/14/15	< 2.81	E+01 <	2.62E+01	<	2.55E+01	<	2.56E+01	<	2.49E+01	<	9.01E+00
10/21/15	< 2.76	E+01 <	2.77E+01	<	2.89E+01	<	2.89E+01	<	2.89E+01	<	2.89E+01
10/27/15	< 3.29	E+01 <	3.29E+01	<	3.33E+01	. <	5.15E+01	<	5.20E+01	<	5.15E+01
11/04/15	< 2.63	E+01 <	2.63E+01	<	3.24E+01	<	3.24E+01	<	3.24E+01	<	3.24E+01
11/12/15	< 3.60	E+01 <	3.60E+01	<	3.03E+01	<	3.04E+01	<	3.13E+01	<	3.05E+01
11/18/15	< 5.17	E+01 <	5.17E+01	<	5.17E+01	<	3.78E+01	<	3.61E+01	<	3.77E+01
11/24/15	< 2.56	E+01 <	2.56E+01	<	3.17E+01	<	3.13E+01	<	3.29E+01	<	3.15E+01
12/02/15	< 4.83	E+01 <	1.83E+01	<	4.34E+01	<	4.36E+01	<	4.34E+01	<	4.34E+01
12/08/15	< 3.61	E+01 <	3.61E+01	<	1.51E+01	<	4.00E+01	<	3.99E+01	<	4.00E+01
12/15/15	< 3.49	E+01 <	3.49E+01	<	3.59E+01	<	3.59E+01	<	3.59E+01	<	3.59E+01
12/22/15	< 4.55	E+01 <	4.55E+01	<	4.08E+01	<	4.05E+01	. <	4.19E+01	<	4.08E+01
12/29/15	< 3.47	'E+01 <	3.47E+01	<	3.62E+01	<	3.65E+01	<	3.52E+01	<	3.65E+01
MEAN	+/- 4.47	E+01 +/-	4.47E+01	+/-	3.88E+01	+/-	3.89E+01	+/-	3.60E+01	+/-	3.88E+01
							Indicator Lo	cations Mean		+/-	4.04E+01

page 4 of 4

ł

** Control Station

Table 3-5 Airborne Particulate Gamma Spectra [10⁻³pCi/m³]

page

1 of 2

Quarter 1 Sampling Location Be-7 Cs-134* Cs-137* 01 1.47E+02 +/-3.03E+01 < 1.29E+00 < 7.50E-01 01A 1.54E+02 +/-5.37E+01 < 2.16E+00 < 2.23E+00 8.75E+01 < 1.26E+00 < 1.56E+00 02 +/-4.68E+01 8.47E+01 +/-< 1.41E+00 03 2.85E+01 < 1.61E+00 04 1.17E+02 +/-2.89E+01 < 1.45E+00 < 1.64E+00 05 9.27E+01 +/-3.50E+01 < 1.98E+00 < 1.28E+00 05A 8.49E+01 +/-3.54E+01 < 1.36E+00 < 1.37E+00 06 1.39E+02 +/-3.52E+01 < 1.44E+00 < 1.29E+00 07 9.53E+01 +/-3.24E+01 1.68E+00 < 1.65E+00 < 21 1.04E+02 +/-2.79E+01 < 1.36E+00 < 9.45E-01 22 1.03E+02 +/-3.16E+01 < 1.67E+00 < 1.78E+00 23 1.49E+02 +/-4.84E+01 < 2.23E+00 < 2.17E+00 9.60E+01 3.94E+01 1.45E+00 < 1.34E+00 24** +/-< Quarter 2 Sampling Cs-137* Location Cs-134* Sr-89 Sr-90 Be-7 01 1.19E+02 +/-2.30E+01 < 1.12E+00 < 9.38E-01 < 5.21E+00 < 2.24E+00 +/-< 01A 1.54E+02 2.91E+00 1.11E+00 < 9.76E-01 < 4.47E+00 < 2.06E+00 02 1.15E+02 +/-2.76E+01 < 1.23E+00 < 1.13E+00 < 5.35E+00 < 2.23E+00 2.63E+01 < < 1.07E+00 < 5.06E+00 03 1.22E+02 +/-1.51E+00 < 1.87E+00 04 1.22E+02 +/-4.08E+01 < 2.02E+00 < 1.84E+00 < 5.57E+00 < 2.24E+00 1.28E+02 < < 1.69E+00 05 +/-3.20E+01 1.28E+00 < 1:24E+00 < 5.80E+00 05A 1.12E+02 +/-2.49E+01 < 1.43E+00 < 1.29E+00 < 6.25E+00 < 2.14E+00 06 9.58E+01 3.83E+01 < 2.04E+00 < 1.61E+00 < 6.19E+00 < 2.44E+00 +/-07 9.89E+01 +/-3.08E+01 < 1.36E+00 < 1.13E+00 < 5.49E+00 < 1.87E+00 21 1.10E+02 +/-2.43E+01 < 1.24E+00 < 8.61E-01 < 5.43E+00 < 2.58E+00 1.17E+02 +/-2.14E+01 1.35E+00 < 1.43E+00 < 5.17E+00 < 2.27E+00 22 < 3.26E+01 < 1.31E+00 < 1.72E+00 23 1.48E+02 +/-< 1.32E+00 < 5,06E+00 1.57E+02 +/-24** 3.13E+01 1.36E+00 < 1.38E+00 < 5.30E+00 < 2.54E+00 <

* LLD identified in the ODCM

** Control Station

Table 3-5 Airborne Particulate Gamma Spectra [10⁻³ pCi/m³]

Sampling		[···· 1
Location	Be-7	Cs-134*	Cs-137*
01	1.42E+02 +/- 3.18E+01	< 5.92E-01	< 8,30E-01
01A	1.59E+02 +/- 3.26E+01	< 1.40E+00	< 1.01E+00
02	1.19E+02 +/- 2.95E+01	< 6.01E-01	< 6.15E-01
03	1.30E+02 +/- 2.69E+01	< 8.64E-01	< 7.77E-01
. 04	1.43E+02 +/- 4.86E+01	< 1.41E+00	< 7.19E-01
05	1.68E+02 +/- 3.60E+01	< 8.85E-01	< 7.16E-01
05A	1.34E+02 +/- 4.23E+01	< 1.73E+00	< 1.33E+00
06	1.36E+02 +/- 4.39E+01	< 1.06E+00	< 1.16E+00
07	1.36E+02 +/3.13E+01	< 5.42E-01	< 8.03E-01
21	1.33E+02 +/- 2.68E+01	< 1.35E+00	< 7.60E-01
22	1.51E+02 +/- 3.27E+01	< 1.14E+00	< 9.63E-01
23	1.67E+02 +/- 3.29E+01	< 7.01E-01	< 6.11E-01
24**	1.55E+02 +/- 3.74E+01	< 1.14E+00	< 1.32E+00
MEAN			

Sampling Location	l D	e-7	Cs-134*	Cs-137*	l	MEAN Be-7	
						-	
01	8.26E+01	+/- 2.71E+01	< 1.76E+00	< 1.69E+00	1.23E+02	+/-	2.81E+01
01A	1.01E+02 ·	+/- 1.85E+01	< 1.22E+00	< 9.92E-01	1.42E+02	+/-	2.69E+01
02	7.40E+01	+/- 1.83E+01	< 1.01E+00	< 9.52E-01	9.89E+01	+/-	3.06E+01
03	9.43E+01	+/- 2.51E+01	< 1.01E+00	< 9.61E-01	1.08E+02	+/-	2.67E+01
04	6.19E+01	+/- 3.71E+01	< 1.96E+00	< 2.04E+00	1.11E+02	+/-	3.89E+01
05	9.52E+01	+/- 2.33E+01	< 1.47E+00	< 1.17E+00	1.21E+02	+/-	3.16E+01
05A	1.03E+02	+/- 2.56E+01	< 1.10E+00	< 1.16E+00	1.08E+02	+/-	3.21E+01
06	1.15E+02 ·	+/- 3.35E+01	< 1.91E+00	< 2.01E+00	1.21E+02	+/-	3.77E+01
07	1.01E+02	+/- 3.26E+01	< 1.45E+00	< 1.16E+00	1.08E+02	+/-	3.18E+01
21	8.31E+01	+/- 2.71E+01	< 1.23E+00	< 1.15E+00	1.08E+02	+/-	2.65E+01
22	8.13E+01	+/- 2.93E+01	< 1.80E+00	< 1.52E+00	1.13E+02	+/-	2.88E+01
23	1.02E+02	+/- 2.31E+01	< 1.43E+00	< 1.01E+00	1.42E+02	+/-	3.43E+01
24**	1.02E+02 ·	+/- 2.80E+01	< 1.14E+00	< 1.24E+00	1.28E+02	+/-	3.40E+01
				Mean of All Indicator Location:	1.17E+02	+/-	3.11E+01

* LLD Identified in ODCM

** Control Station

Quarter 3

page

2 of 2

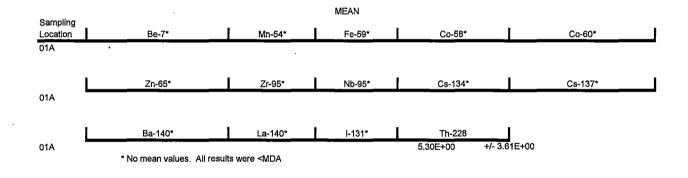
Quarter 4

page 1 of 1

Soil sampled on triennial basis. Not required in 2015.

Table 3-7	
Precipitation	
Gross Beta	
[pCi/L]	

page 1 of 2 .


Sampling Date	l	Gross Beta		Н-3		ł	I R	ainfall (inches)	1
	1.36E+01	+/-	1.89E+00	<	1.56E+03			2.22	
02/24/15	3.79E+00	+/-	1.31E+00		1.79E+03			1.59	
03/31/15	9.54E+00	+/-	2.03E+00	<	1.30E+03			3.70	
04/28/15		<	1.43E+00	<	1.57E+03			3.63	
05/26/15	5.64E+00	+/-	1.29E+00	<	8.97E+02			1.97	
07/01/15	2.29E+00	+/-	1.08E+00	<	9.48E+02			5.56	
07/28/15	1.40E+01	+/-	1.85E+00	<	1.79E+03			2.90	
08/26/15	7.76E+00	+/-	1.45E+00	<	1.80E+02			2.10	
09/29/15	7.04E+00	+/-	1.42E+00	<	7.63E+02			2.48	
10/27/15		<	1.49E+00	<	9.72E+02			4.93	
11/24/15	2.73E+00	+/-	1.17E+00	<	1.44E+03			2.87	
12/29/15	1.69E+00	+/-	9.93E-01	<	9.19E+02			4.94	
Mean	6.81E+00	+/-	1.38E+00	<	1.18E+03	Total		38.89	

48

. ...

Table 3-7PrecipitationGamma Spectra[pCi/L]

Sampling Location	Be-7		1	Mn-54		Fe-59	Co	-58		Co-60	
01A											
07/01/15	< `	3.10E+01	<	7.65E-01	<	9.96E+00	<	2.46E+00		<	7.60E-01
12/29/15	<	2.24E+01	<	7.51E-01	<	6.80E+00	<	1.50E+00		<	5.84E-01
I	Zn-65			Zr-95		Nb-95	Cs-	134		Cs-137	
01A								-			
07/01/15	<	1.78E+00	<	4.64E+00	<	2.62E+00	<	7.18E-01		<	7.63E-01
12/29/15	<	1.43E+00	<	3.66E+00	<	1.83E+00	<	5.95E-01		<	5.80E-01
	Ba-140		L	.a-140		1-131	Th-	228			
01A											
07/01/15	· <	4.04E+03	<	1.22E+03	<	9.56E+04		5.30E+00	+/-	3.61E+00	
12/29/15	<	1.11E+03	<	3.73E+02	<	1.60E+04	<	1.67E+00			

49

page 2 of 2

-			~	~
la	b	le	3	-X

Milk

Gamma Spectra & Strontium

[pCi/L]

page 1 of 1

								-										
Sampling	-		_		_			_				_		_		_	S	tation 12A
Date		K-40			Sr-89		Sr-90	I-1:	31'	k		Cs-134*		Cs-137*		Ba-140*		La-140*
01/20/15	1.22E+03	+/-	1.12E+02	[a]		[a]			<	9.08E-01	<	4.50E+00	<	5.10E+00	<	2.43E+01	<	7.13E+00
02/24/15	1.38E+03	+/-	1.56E+02	[a]		[a]		•	<	3.41E-01	<	6.16E+00	<	8.40E+00	<	3.42E+01	<	8.51E+00
03/17/15	1.16E+03	+/-	1.64E+02	<	3.96E+00	<	9.66E-01		<	7.72E-01	<	7.53E+00	<	9.63E+00	<	3.41E+01	<	1.04E+01
04/21/15	1.14E+03	+/-	1.77E+02	[a]	•	[a]			<	9.19E-01	<	8.26E+00	<	9.58E+00	<	3.72E+01	<	1.12E+01
05/19/15	1.28E+03	+/-	1.26E+02	[a]		[a]			<	8.99E-01	<	4.46E+00	<	4.97E+00	<	2.55E+01	<	8.15E+00
06/16/15	1.39E+03	+/-	1.82E+02	<	4.10E+00	<	1.21E+00		<	8.17E-01	<	7.32E+00	<	7.83E+00	<	4.12E+01	<	1.13E+01
07/21/15	1.32E+03	+/-	2.02E+02	[a]		[a]			<	4.00E-01	' <	7.01E+00	<	6.13E+00	<	3.73E+01	<	1.31E+01
08/18/15	1.27E+03	+/-	2.07E+02	[a]		[a]			<	7.04E-01	<	8.18E+00	<	9.66E+00	<	4.23E+01	<	1.49E+01
09/16/15	1.23E+03	+/-	1.79E+02	<	2.25E+00	<	2.68E-01		<	6.97E-01	<	6.70E+00	<	7.28E+00	<	3.59E+01	<	1.33E+01
10/21/15	1.25E+03	+/-	1.81E+02	[a]		[a]		•	<	3.74E-01	<	8.56E+00	<	7.59E+00	<	3.84E+01	<	1.55E+00
11/18/15	1.18E+03	+/-	1.91E+02	[a]		[a]		•	<	6.57E-01	<	7.41E+00	<	9.17E+00	<	3.28E+01	<	7.84E+00
12/15/15	1.33E+03	+/-	1.86E+02	<	2.33E+00	<	1.22E+00	•	<	8.00E-01	<	6.43E+00	<	8.69E+00	<	3.85E+01	<	1.00E+01
Sta. Mean	1.26E+03	+/-	1.72E+02															

* LLD identified in ODCM

[a] Sr-89/90 analyses performed on the last monthly sample of each quarter.

Conselier	Samelina		Food and Gamma	le 3-9 Vegetation a Spectra ^{ci/kg}]		
Sampling Location	Sampling Date	Be-7	K-40	I-131*	Cs-134*	Cs-137*
14B	05/12/15 06/09/15	3.01E+02 +/- 1.20E+02 1.49E+03 +/- 2.95E+02	6.34E+03 +/- 3.37E+02 4.85E+03 +/- 5.19E+02	< 1.85E+01 < 2.41E+01	< 1.33E+01 < 2.83E+01	< 1.50E+01 < 2.81E+01
	07/14/15	1.53E+03 +/- 4.41E+02	7.43E+03 +/- 7.27E+02	< 1.63E+01	< 3.15E+01	< 3.33E+01
	08/11/15	1.67E+03 +/- 5.61E+02	7.68E+03 +/- 9.65E+02	< 3.10E+01	< 5.46E+01	< 6.44E+01
	09/08/15	1.47E+03 +/- 5.51E+02	5.51E+03 +/- 9.11E+02	< 4.78E+01	< 5.54E+01	< 6.12E+01
	10/14/15	1.84E+03 +/- 6.12E+02	8.57E+03 +/- 1.22E+03	< 1.61E+01	< 4.92E+01	< 6.15E+01
Sampling	Mean Sampling	1.38E+03 +/- 4.30E+02	6.73E+03 +/- 7.80E+02	+ / -	+/-	+/-
Location	Date	Be-7	K-40	I-131*	Cs-134*	Cs-137*
					• • • • • • • • • • • • • • • • • • •	
15	05/12/15	7.31E+02 +/- 1.57E+02	5.54E+03 +/- 3.68E+02	< 1.71E+01	< 1.79E+01	< 2.00E+01
	06/09/15	7.89E+02 +/- 2.59E+02	7.61E+03 +/- 6.36E+02	< 2.69E+01	< 2.68E+01	< 2.94E+01
	07/14/15 08/11/15	1.46E+03 +/- 2.47E+02 2.19E+03 +/- 5.21E+02	5.21E+03 +/- 4.84E+02 3.50E+03 +/- 8.32E+02	< 2.14E+01 < 3.95E+01	< 2.38E+01 < 5.58E+01	< 2.63E+01 < 6.54E+01
	09/08/15	2.19E+03 +7- 5.21E+02 < 5.73E+02	6.72E+03 +/- 1.03E+03	< 2.97E+01	< 5.24E+01	< 5.12E+01
	10/14/15	3.16E+03 +/- 5.32E+02	7.79E+03 +/- 1.11E+03	< 1.06E+01	< 4.59E+01	< 5.28E+01
			·			
	Mean	1.67E+03 +/- 3.82E+02	6.06E+03 +/- 7.43E+02	+/-	+/-	+/-
Sampling	Sampling	Do 7	K 40	I-131*、	Cs-134*	Cs-137*
Location 16**	Date 05/12/15	Be-7 4.75E+02 +/- 1.20E+02	K-40 6.40E+03 +/- 2.91E+02	< 1.25E+01	< 1.43E+01	< 1.38E+01
10	06/09/15	8.92E+02 +/- 2.25E+02	5.54E+03 +/- 5.68E+02	< 2.24E+01	< 2.81E+01	< 3.17E+01
	07/14/15	9.69E+02 +/- 3.32E+02	5.47E+03 +/- 6.87E+02	< 2.01E+01	< 3.06E+01	< 3.48E+01
	08/11/15	1.06E+03 +/- 3.91E+02	8.91E+03 +/- 1.09E+03	< 3.43E+01	< 3.66E+01	< 4.35E+01
	09/08/15	1.46E+03 +/- 6.32E+02	3.13E+03 +/- 1.06E+03	< 2.72E+01	< 5.84E+01	< 6.46E+01
	10/14/15	1.55E+03 +/- 6.40E+02	7.36E+03 +/- 1.07E+03	< 1.60E+01	< 5.83E+01	< 6.23E+01
* LLD identi	Mean	1.07E+03 +/- 3.90E+02	6.14E+03 +/- 7.94E+02	+/-	+/-	+/-

.

** Control Station

.

page

٠

1 of 2

Table 3-9 Food and Vegetation Gamma Spectra [pCi/kg]

Sampling	Sampling							1					
Location	Date		Be-7			K-40		I-131*		Cs-134		_Cs-137	*
23	05/12/15	5.25E+02	+/-	2.20E+02	6.27E+03	+/-	5.11E+02	. < 1	1.55E+01	<	2.21E+01	<	2.39E+01
	06/09/15	1.16E+03	+/-	2.32E+02	4.88E+03	. +/-	5.43E+02	< 3	3.18E+01	<	2.82E+01	<	2.61E+01
	07/14/15	7.16E+02	+/-	3.09E+02	5.40E+03	+/-	6.31E+02	< 2	2.11E+01	<	3.15E+01	<	3.14E+01
	08/11/15	5.04E+03	+/-	6.13E+02	4.11E+03	+/-	8.79E+02	.< 3	3.61E+01	<	5.52E+01	<	6.04E+01
	09/08/15		<	4.92E+02	7.52E+03	+/-	1.04E+03	< 3	3.42E+01	<	5.85E+01	<	5.77E+01
	10/14/15	2.30E+03	·+/-	4.86E+02	6.55E+03	+/-	1.03E+03	< 1	1.17E+01	<	5.59E+01	<	5.77E+01
o "	Mean	1.95E+03	+/-	3.92E+02	5.79E+03	+/-	7.72E+02	+/-	· ,	+/-		+/-	
Sampling	Sampling												
• -	• -	l i	n. 7			14 40		1 4044	۱ I	0 10/	. 1	0 107	
Location	Date		Be-7			K-40		I-131*	`	Cs-134	·	Cs-137	*
Location	Date	2 10E+02		1 29E+02	8 27E+03				1 31E+01				
• -	Date 05/12/15	2.10E+02 1.35E+03	+/-	1.29E+02 3.04E+02	8.27E+03 7 20E+03	+/-	3.44E+02	< 1	1.31E+01	<	1.16E+01	. <	1.33E+01
Location	Date 05/12/15 06/09/15	1.35E+03	+/- +/-	3.04E+02	7.20E+03	+/- +/-	3.44E+02 7.33E+02	< 1 < 2	2.59E+01	<	1.16E+01 2.65E+01	<	1.33E+01 2.81E+01
Location	Date 05/12/15 06/09/15 07/14/15	1.35E+03 1.71E+03	+/- +/- +/-	3.04E+02 3.91E+02	7.20E+03 5.06E+03	+/- +/- +/-	3.44E+02 7.33E+02 6.27E+02	< 1 < 2 < 2 < 3 < 4 < 4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	2.59E+01 2.16E+01	<	1.16E+01 2.65E+01 2.79E+01	. <	1.33E+01 2.81E+01 3.01E+01
Location	Date 05/12/15 06/09/15 07/14/15 08/11/15	1.35E+03 1.71E+03 2.12E+03	+/- +/-	3.04E+02 3.91E+02 5.29E+02	7.20E+03 5.06E+03 6.49E+03	+/- +/-	3.44E+02 7.33E+02 6.27E+02 9.14E+02	<pre>< 1 < 2 < 2 < 4 </pre>	2.59E+01 2.16E+01 1.67E+01	< < < < <	1.16E+01 2.65E+01 2.79E+01 5.42E+01		1.33E+01 2.81E+01 3.01E+01 5.53E+01
Location	Date 05/12/15 06/09/15 07/14/15	1.35E+03 1.71E+03	+/- +/- +/- +/-	3.04E+02 3.91E+02	7.20E+03 5.06E+03	+/- +/- +/- +/-	3.44E+02 7.33E+02 6.27E+02	<pre>< 1 < 2 < 4 < 4</pre>	2.59E+01 2.16E+01	< < < <	1.16E+01 2.65E+01 2.79E+01	~ ~ ~	1.33E+01 2.81E+01 3.01E+01
Location	Date 05/12/15 06/09/15 07/14/15 08/11/15 09/08/15	1.35E+03 1.71E+03 2.12E+03 1.11E+03	+/- +/- +/- +/- +/-	3.04E+02 3.91E+02 5.29E+02 5.56E+02	7.20E+03 5.06E+03 6.49E+03 6.54E+03	+/- +/- +/- +/-	3.44E+02 7.33E+02 6.27E+02 9.14E+02 9.27E+02	<pre>< 1 < 2 < 4 < 4</pre>	2.59E+01 2.16E+01 1.67E+01 3.14E+01	< < < <	1.16E+01 2.65E+01 2.79E+01 5.42E+01 5.25E+01		1.33E+01 2.81E+01 3.01E+01 5.53E+01 5.34E+01

* LLD identified in ODCM

page 2 of 2 .

.

	Well Water Gamma Spectra, Strontium, and Tritium														page 1 of 1	
	[pCi/L]															
Sampling																tion 01A
Date		H-3	Sr-89		S	r-90	N	In-54	F	e-59	(Co-58		Co-60		Zņ-65
03/31/15	<	1.29E+03	[a]		[a]		<	2.66E+00	<	5.59E+00	<	2.90E+00	<	3.43E+00	<	7.19E+00
07/01/15	<	9.57E+02	<	4.09E+00	<	7.75E-01	<	3.07E+00	<	8.44E+00	<	3.58E+00	. <	3.02E+00	<	6.42E+00
09/29/15	<	7.60E+02	[a]		[a]		<	4.90E+00	<	1.02E+01	<	5.73E+00	<	3.69E+00	<	1.01E+01
12/29/15	<	9.17E+02	[a]		[a]		<	5.03E+00	<	1.45E+01	<	4.84E+00	<	6.14E+00	<	1.18E+01
Mean																
Sampling																
Date	Z	Zr-95	Nb-95		-	131	С	s-134	Cs	s-137	Ē	3a-140	L	a-140		
03/31/15	<	5.98E+00	<	2.84E+00	<	6.33E-01	<	2.60E+00	<	3.68E+00	<	1.88E+01	<	6.19E+00		
07/01/15	<	5.85E+00	<	3.68E+00	<	7.58E-01	<	2.98E+00	<	3.42E+00	<		<	6.02E+00		
09/29/15	<	7.90E+00	<	6.63E+00	<	9.02E-01	<	5.23E+00	<	5.39E+00	<		<	8.51E+00		
12/29/15	<	1.05E+01	<	7.91E+00	<	4.52E-01	[′] <	5.59E+00	<	5.74E+00	<		<	7.79E+00		

Mean

[a] Sr-89/90 analyses performed on the second quarter sample.

River Water Gamma Spectra, Strontium, and Tritium [pCi/L]

	[bene]											
Sampling								Station 11				
Date	H-3	Sr-89	Sr-90	Mn-54*	Fe-59*	Co-58*	Co-60*	Zn-65*				
01/13/15	[a]	[b]	[b]	< 4.57E+00	< 8.17E+00	< 5.59E+00	< 4.81E+00	< 9.82E+00				
02/16/15	[a]	[b]	[b]	< 3.59E+00	< 7.75E+00	< 4.71E+00	< 3.44E+00	< 8,58E+00				
03/16/15	4.84E+03 +/- 8.09E+02	[b]	[b]	< 4.76E+00	< 8.88E+00	< 4.15E+00	< 3.40E+00	< 8.97E+00				
04/14/15	[a]	[b]	[b]	< 3.32E+00	< 7.23E+00	< 3.63E+00	< 3.05E+00	< 6.80E+00				
05/11/15	[a]	[b]	[b]	< 2.26E+00	< 4.87E+00	< 2.45E+00	< 2.11E+00	< 4.29E+00				
06/16/15	3.92E+03 +/- 1.49E+03	< 3.54E+00	< 7.39E-01	< 4.45E+00	< 8.91E+00	< 4.40E+00	< 4.14E+00	< 7.27E+00				
07/14/15	[a]	[b]	[b]	< 4.23E+00	< 8.92E+00	< 4.90E+00	< 4.77E+00	< 9.90E+00				
08/10/15	[a]	[b]	[b]	< 4.37E+00	< 1.01E+01	< 4.21E+00	< 4.76E+00	< 9.67E+00				
09/15/15	2.15E+03 +/- 7.29E+02	[b]	[b]	< 5.28E+00	< 8.98E+00	< 5.13E+00	< 3.82E+00	< 9.20E+00				
10/19/15	[a]	[b]	[b]	< 4.21E+00	< 8.76E+00	< 4.30E+00	< 4.07E+00	< 9.60E+00				
11/10/15	[a]	[b]	[b]	< 5.78E+00	< 8.96E+00	< 4.82E+00	< 4.61E+00	< 1.32E+01				
12/15/15	2.49E+03 +/- 7.09E+02	[b]	[b]	< 1.98E+00	< 5.76E+00	< 2.33E+00	< 2.34E+00	< 4.22E+00				
MEAN	3.35E+03 +/- 9.34E+02	+/-	+/-	+/-	+/-	+/-	+/-	+/-				
Sampling		•										
Date	Nb-95*	Zr-95*	I-131*	Cs-134*	Cs-137*	Ba-1 <u>40*</u>	La-140*					
01/13/15	< 9.35E+00	< 4.32E+00	< 4.15E-01	< 4.38E+00	< 5.35E+00	< 2.67E+01	< 1.09E+01					
02/16/15	< 6.55E+00	< 4.29E+00	< 2.13E-01	< 3.72E+00	< 4.21E+00	< 2.13E+01	< 5.20E+00					
03/16/15	< 8.90E+00	< 4.23E+00	< 3.52E-01	< 4.50E+00	< 4.41E+00	< 2.04E+01	< 6.41E+00					
04/14/15	6.52E+00, <	< 3.68E+00	< 4.33E-01	< 3.02E+00	< 3.81E+00	< 1.99E+01	< 7.08E+00					
05/11/15	, < 4.15E+00	< 2.43E+00	< 6.36E-01	< 2.18E+00	< 2.34E+00	< 1.58E+01	< 4.88E+00					
06/16/15	< 7.73E+00	< 4.79E+00	< 4.58E-01	< 3.92E+00	< 4.42E+00	< 2.42E+01	< 9.18E+00					
07/14/15	< 6.71E+00	< 4.84E+00	< 9.73E-01	< 3.96E+00	< 4.63E+00	< 2.19E+01	< 7.93E+00					
08/10/15	< 7.38E+00	< 5.32E+00	< 5.23E-01	< 4.13E+00	< 4.56E+00	< 2.48E+01	< 7.06E+00					
09/15/15	< 9.51E+00	< 6.55E+00	< 5.48E-01	< 4.10E+00	< 6.68E+00	< 2.55E+01	< 5.03E+00					
10/19/15	< 7.32E+00	< 4.21E+00	< 5.03E-01	< 4.59E+00	< 4.72E+00	< 2.32E+01	< 6.96E+00					
	< 8.66E+00	< 5.02E+00	< 5.17E-01	< 4.99E+00	< 5.43E+00	< 2.43E+01	< 8.46E+00					
11/10/15	< 0.00E+00	\$ 5.02E700										
11/10/15 12/15/15	< 4.48E+00	< 2.39E+00	< 9.80E-01	< 2.10E+00	< 2.37E+00	< 1.67E+01	< 5.71E+00					

* LLD identified in ODCM

[a] Tritium analyses on quarterly composite.

[b] Sr-89/90 performed annually on 2nd quarter composite sample.

. .

page

1 of 1

.

Surface Water Gamma Spectra, Strontium, Tritium

oCi	

Sampling				[[]				Station 08
Date	H-3*	Sr-89	Sr-90	Mn-54*	Fe-59*	Co-58*	Co-60*	Zn-65*
01/13/15	[a]	[b]	[b]	< 5.66E+00	< 1.25E+01	< 5.33E+00	< 5.48E+00	< 1.10E+01
02/16/15	[a]	[b]	[b]	< 4.91E+00	< 1.08E+01	< 4.46E+00	< 4.84E+00	< 8.72E+00
03/16/15	6.73E+03 +/- 9.03E+02	[b]	[b]	< 3.67E+00	< 9.34E+00	< 3.85E+00	< 4.06E+00	< 7.44E+00
04/14/15	[a]	[b]	[b]	< 3.34E+00	< 8.00E+00	< 3.88E+00	< 3.25E+00	< 7.86E+00
05/11/15	[a]	{b]	[b]	< 1.56E+00	< 3.78E+00	< 1.62E+00	< 1.46E+00	< 3.10E+00
06/16/15	2.19E+03 +/- 1.33E+03	< 3.79E+00	< 7.41E-01	< 5.46E+00	< 1.14E+01	< 5.30E+00	< 4.60E+00	< 8.45E+00
07/14/15	[a]	[b]	[b]	< 4.57E+00	< 1.01E+01	< 4.71E+00	< 5.86E+00	< 1.03E+01
08/10/15	[a]	[b]	[b]	< 4.56E+00	< 1.04E+01	< 4.75E+00	< 5.22E+00	< 9.68E+00
09/15/15	2.78E+03 +/- 7.66E+02	[b]	[b]	< 6.07E+00	< 8.34E+00	< 5.98E+00	< 5.27E+00	< 1.09E+01
10/19/15	[a]	[b]	[b]	< 5.00E+00	< 1.08E+01	< 4.82E+00	< 5.21E+00	< 1.02E+01
11/10/15	[a]	[b]	[b]	< 5.31E+00	< 1.00E+01	< 5.18E+00	< 5.12E+00	< 8.13E+00
12/15/15	2.11E+03 +/- 6.85E+02	[b]	[b]	< 1.51E+00	< 3.47E+00	< 1.69E+00	< 1.52E+00	< 2.95E+00
Mean	3.45E+03 +/- 9.21E+02	+/-	+/-	· +/-	+/-	+/-	+/-	+/-
Sampling								
Date	Zr-95*	Nb-95*	I-13 <u>1</u> *	Cs-134*	Cs-137*	Ba-140*	La-140*	
01/13/15	< 8.58E+00	< 6.16E+00	< 2.54E-01	< 5.24E+00	< 5.29E+00	< 2.76E+01	< 7.24E+00	
02/16/15	< 8.74E+00	< 4.40E+00	< 9.83E+00	< 5.08E+00	< 5.06E+00	< 3.20E+01	< 1.18E+01	
03/16/15	< 7.18E+00	< 4.25E+00	< 3.53E-01	< 4.03E+00	< 4.40E+00	< 1.99E+01	< 5.67E+00	
04/14/15	< 7.01E+00	< 3.65E+00	< 5.28E-01	< 3.35E+00	< 4.26E+00	< 2.01E+01	< 6.73E+00	
05/11/15	< 2.88E+00	< 1.82E+00	< 5.57E-01	< 1.49E+00	< 1.55E+00	< 1.20E+01	< 3.78E+00	,
06/16/15	< 8.24E+00	< 4.42E+00	< 4.34E-01	< 4.74E+00	< 5.05E+00	< 2.67E+01	< 8.94E+00	
07/14/15	< 8.46E+00	< 5.76E+00	< 8.17E-01	< 4.78E+00	< 5,36E+00	< 2.91E+01	< 9.43E+00	
08/10/15	< 8.44E+00	< 4.69E+00	< 5.23E-01	< 4.55E+00	< 4.83E+00	< 2.55E+01	< 7.84E+00	
09/15/15	< 8.56E+00	< 5.49E+00	< 5.05E-01	< 5.60E+00	< 4.40E+00	< 2.22E+01	< 6.95E+00	
10/19/15	< 9.32E+00	< 5.38E+00	< 4.57E-01	< 4.90E+00	< 5.05E+00	< 2.60E+01	< 7.95E+00	
11/10/15	< 9.07E+00	< 5.29E+00	< 5.42E-01	< 4.76E+00	< 5.62E+00	< 2.23E+01	< 9.41E+00	
				1 555 . 00	1 005.00	< 1.32E+01	< 3.79E+00	
12/15/15	< 3.11E+00	< 1.69E+00	< 7.25E-01	< 1.55E+00	< 1.63E+00			
12/15/15 Mean * LLD identified	+/-	 < 1.69E+00 +/- halyses on quarterly composite 	+/-	+/-	+/-	+/- arter composite sample,	+/-	

page 1 of 2

Surface Water Gamma Spectra, Strontium, Tritium [pCi/L]

page 2 of 2

Sampling			[2012]					Station 09A
Date	H-3*	Sr-89	Sr-90	Mn-54*	Fe-59*	Co-58*	Co-60*	Zn-65*
01/13/15	 [a]	[b]	[b]	< 4.36E+00	< 9.00E+00	< 4.58E+00	< 3.69E+00	< 6.79E+00
02/16/15	[a]	[b]	[b]	< 4.12E+00	< 8.70E+00	< 4.60E+00	< 4.40E+00	< 1.04E+01
03/16/15	< 8.09E+02	[b]	[b]	< 5.09E+00	< 9.00E+00	< 4.54E+00	< 5.86E+00	< 1.03E+01
04/14/15	[a]	[b]	[b]	< 2.81E+00	< 5.52E+00	< 3.11E+00	< 2.94E+00	< 5.32E+00
05/11/15	[a]	[b]	[b]	< 2.32E+00	< 5.04E+00	< 2.29E+00	< 2.05E+00	< 4.65E+00
06/16/15	< 1.81E+03	< 3.88E+00	< 7.78E-01	< 4.35E+00	< 9.58E+00	< 4.18E+00	< 4.31E+00	< 7.26E+00
07/14/15	[a]	[b]	[b]	< 4.23E+00	< 9.10E+00	< 4.56E+00	< 3.64E+00	< 9.60E+00
08/10/15	[a]	[b]	[b]	< 4.58E+00	< 1.12E+01	< 4.61E+00	< 4.93E+00	< 1.17E+01
09/15/15	< 9.73E+02	[b]	[b]	< 5.92E+00	< 9.23E+00	< 5.50E+00	.< 8.35E+00	< 1.15E+01
10/19/15	[a]	[b]	[b]	< 4.51E+00	< 8.41E+00	< 4.69E+00	< 4.49E+00	< 9.24E+00
11/10/15	[a] .	[b]	[b]	< 4.31E+00	< 1.34E+01	< 5.81E+00	< 6.62E+00	< 8.06E+00
12/15/15	< 8.86E+02	[b]	[b]	< 2.15E+00	< 5.49E+00	< 2.41E+00	< 2.23E+00	< 4.35E+00
MEAN	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-
Sampling						_	_	-
Date	Zr-95*	Nb-95*	I-131*	Cs-134*	Cs-137*	Ba-140*	La-140*	
01/13/15	< 8,26E+00	< 5.42E+00	< 2.85E-01	< 4.44E+00	< 5.02E+00	< 2.50E+01	< 6.35E+00	-
02/16/15	< 7.80E+00	< 5.38E+00	< 2.48E-01	< 4.58E+00	< 4.75E+00	< 2.57E+01	< 6.84E+00	
03/16/15	< 9.04E+00	< 5.05E+00	< 3.12E-02	< 5.02E+00	< 5.13E+00	< 2.70E+01	< 1.05E+01	
04/14/15	< 5.41E+00	< 3.15E+00	< 5.29E-01	< 2.74E+00	< 3.11E+00	< 1.75E+01	< 5.42E+00	
05/11/15	< 4.19E+00	< 2.58E+00	< 5.84E-01	< 1.82E+00	< 2.12E+00	< 1.53E+01	< 5.00E+00	
06/16/15	< 7.26E+00	< 4.43E+00	< 4.89E-01	< 4.02E+00	< 4.94E+00	< 2.40E+01	< 8.47E+00	
07/14/15	< 7.16E+00	< 4.60E+00	< 9.70E-01	< 4.19E+00	< 5.08E+00	< 2.02E+01	< 6.77E+00	
08/10/15	< 8.62E+00	< 5.83E+00	< 6.52E-01	< 4.64E+00	< 5.22E+00	< 2.25E+01	< 6.82E+00	
09/15/15	< 1.21E+01	< 7.30E+00	< 4.59E-01	< 6.12E+00	< 6.41E+00	< 3.27E+01	< 8.91E+00	
10/19/15	< 8.19E+00	< 4.95E+00	< 5.05E-01	< 4.13E+00	< 4.87E+00	< 2.38E+01	< 6.42E+00	
11/10/15	< 7.85E+00	< 6.75E+00	< 4.35E-01	< 5.11E+00	< 5.23E+00	< 2.39E+01	< 1.20E+01	
12/15/15	< 4.34E+00	< 2.48E+00	< 7.87E-01	< 2.08E+00	< 2.36E+00	< 1.79E+01	< 5.71E+00	
MEAN	+/-	+/-	+/-	+/-	+/	+/-	+/-	
* LLD identified	in ODCM	[a] Tritium analyse	es on quarterly composite		[b] Sr-89/90 perf	ormed annually on 2	2 nd quarter composi	te sample.

Sediment Silt Gamma Spectra, and Strontium

[pCi/Kg]

			[bourte]		
Sample					page 1 of 1
Date	Sr-89	Sr-90	K-40	Cs-134*	Cs-137*
4/29/2015			-		· ·
Station 08	[a]	[a]	1.21E+03 +/- 3.91E+02	2 < 3.56E+01	< 2.93E+01
Station 09A**	[a]	[a]	2.76E+04 +/- 1.31E+03	3 < 4.23E+01	< 4.57E+01
Station 11	[a]	[a]	1.64E+04 +/- 1.13E+03	3 < 3.50E+01	< 4.64E+01
_			Ra-226	Th-228	Th-232
4/29/2015				,	
Station 08		·	< 7.97E+02	2 9.11E+01 +/- 4.59E+01	< 1.62E+02
Station 09A**			1.75E+03 +/- 7.98E+02	2 5.29E+02 +/- 6.59E+01	4.79E+02 +/- 1.36E+02
Station 11			< 6.46E+02	2 5.93E+02 +/- 5.63E+01	5.28E+02 +/- 1.17E+02
Sample					
Date	Sr-89	Sr-90	K-40	Cs-134*	Cs-137*
10/19/2015					
Station 08	< 2.52E+02	< 3.59E+01			< 3.57E+0
Station 09A**	< 2.19E+02	< 3.03E+01			< 7.10E+0
Station 11	< 2.65E+02	< 4.35E+01			< 6.30E+0
· · · · · · · · · · · · · · · · ·			Ra-226	Th-228	Th-232
10/19/2015					
Station 08				2 1.82E+02 +/- 4.35E+01	< 1.83E+02
Station 09A**				3 6.02E+02 +/- 8.19E+01	
Station 11			2.002+03 +/- 1.122+0	3 8.22E+02 +/- 1.02E+02	7.36E+02 +/- 1.66E+02
					•
			MEAN		
	Sr-89	Sr-90	K-40	Cs-134*	Cs-137*
Indicator	+/-	+/-	1.12E+04 +/- 9.00E+02	2 +/-	+/-
Control	+/-	+/-	2.72E+04 +/- 1.59E+03	3 +/-	+/-
			Ra-226	Th-228	Th-232
Indicator			1.49E+03 +/- 8.14E+0	2 4.22E+02 +/- 6.19E+01	6.32E+02 +/- 1.57E+02

1.49E+03 +/- 8.14E+02 4.22E+02 +/- 6.19E+01 6.32E+02 +/- 1.57E+02 2.09E+03 +/- 7.98E+02 5.66E+02 +/- 7.39E+01 5.61E+02 +/- 1.50E+02

* LLD identified in ODCM

Control

** Control Station

[a] Sr-89/90 analyses performed annually.

			Table 3-14 Shoreline Soil Spectra, and Strontiu [pCi/Kg]	ım	
		,			page 1 of 1
Sample Date	Sr-89	Sr-90	K-40	Cs-134*	Cs-137*
4/29/2015 Station 08	[a]	[a]	5.07E+02 +/- 3.46E+0	2 < 2.60E+01	< 3.01E+01
			Ra-226	Th-228	Th-232
			< 6.40E+0	2 5.18E+01 +/- 3.70E+01	< 1.21E+02
Sample Date	Sr-89	Sr-90	K-40	Cs-134*	Cs-137*
10/19/2015 Station 08	< 2.87E+02	< 2.98E+01	5.39E+02 +/- 4.37E+0	2 < 3.46E+01	< 3.73E+01
Station 06	2.071102	2.30L101	Ra-226	Th-228	Th-232
			< 7.80E+0	2 < 8.62E+01	< 1.89E+02
			MEAN		
	Sr-89	Sr-90	K-40	Cs-134*	Cs-137*
	+/-	+/-	5.23E+02 +/- 3.92E+0	2 +/-	+/-
			Ra-226	Th-228	Th-232
			· +/-	5.18E+01 +/- 6.16E+01	+/- 1.55E+02

.

,

* LLD identified in ODCM

.

[a] Sr-89/90 analyses performed annually.

.

58

.

							Fish ma Spec	ctra					,		•	page of 1
Sampling							[pCi/Kg]								Fish [a	-
Date	I I	K-40	1	ſ	/In-54*	Fe-59*	Co	-58*	Co-6	50*	Zı	n-65*	Cs-1	34*	Cs-137	
04/21/15	1.51E+03	+/-	7.33E+02	<	4.95E+01	< 1.14E+	·02 < 4	1.97E+01	< 6.	43E+01	<	1.23E+02	< 5.	75E+01	< 5.63	E+01
10/20/15	1.20E+03	+/-	7.39E+02	. <	5.05E+01	< 1.29E+	•02 < 6	6.62E+01	< 6.	63E+01	<	1.15E+02	< 7.	39E+01	< 4.22	E+01
Sampling															Station 2	25**
Date		K-40		P	/In-54*	Fe-59*	Co	o-58*	Co-6	60*	Zı	n-65*	Cs-1	34*	Cs-137	7*
04/21/15	1.98E+03	+/-	9.00E+02	<	6.41E+01	< 1.56E+	·02 < 5	5.05E+01	< 6.	79E+01	<	1.13E+02	< 6.	51E+01	< 7.02	E+01
10/20/15	2.07E+03	+/-	1.02E+03	<	9.59E+01	< 1.48E+	·02 < 6	6.96E+01	< 6.	53E+01	<	1.56E+02	< 8.	23E+01	< 8.22	E+01
					•										catfish [[b]
Sampling							_	_		_				_	Station	08
Date		K-40		ſ	/In-54*	Fe-59*	Co	o-58*	Co-6	60*	Zi	n-65*	Cs-1	34*	Cs-137	7*
04/21/15	1.44E+03	+/-	7.81E+02	<	7.41E+01	< 1.42E+	·02 < 7	7.16E+01	< 6.	43E+01	<	1.53E+02	< 6.	08E+01	< 7.94	E+01
10/20/15	1.66E+03	+/-	9.26E+02	<	7.73E+01	< 1.89E+	•02 < 9	9.16E+01	< 8.	87E+01	<	1.34E+02	< 4.	84E+01	< 6.35	E+01
Sampling	_		_		۰.		_	-		-		_		_	Station 2	25**
Date		K-40		F	/In-54*	Fe-59*	Co	-58*	Co-6	50*	Z	n-65*	Cs-1	34*	Cs-137	7*
04/21/15	2.29E+03	+/-	6.23E+02	<	4.41E+01	< 1.22E+	·02 < 5	5.50E+01	< 5.	59E+01	<	1.08E+02	< 4.	08E+01	< 4.32	E+01
10/20/15	2.05E+03	+/-	7.89E+02	<	5.74E+01	< 1.83E+	·02 < 4	1.91E+01	< 4.	96E+01	<	1.39E+02	< 5.	74E+01	< 5.84	E+01
Mean	1.45E+03	+/-	8.14E+02													
Indicator	1.45E+03	+/-	7.95E+02					-								
Control	2.10E+03	+/-	8.33E+02													
* LLD identifi ** Control Sta																
[a] Non-botto		specie	s of gamefis	h.												
[b] Bottom dv	-	•	•						•							

.

. •

٠

DISCUSSION OF RESULTS

Data from the radiological analyses of environmental media collected during 2015 and tabulated in Section 3, are discussed below. Except for TLDs, Teledyne Brown Engineering analyzed all samples throughout the year. The procedures and specifications followed for these analyses are as required in the TBE quality assurance manuals and laboratory procedures. In addition to internal quality control measurements performed by each laboratory, they also participate in an Interlaboratory Comparison Program. Participation in this program ensures that independent checks on the precision and accuracy of the measurements of radioactive material in environmental samples are performed. The results of the Interlaboratory Comparison Programs are provided in Appendix B.

The predominant radioactivity detected throughout 2015 was that from external sources, such as fallout from nuclear weapons tests and naturally occurring radionuclides. Naturally occurring nuclides such as Be-7, K-40, Th-228 and Th-232 were detected in numerous samples. Th-228 & Th-232 results were variable and are generally at levels higher than plant related radionuclides.

The following is a discussion and summary of the results of the environmental measurements taken during the 2015 reporting period.

4.1 Gamma Exposure Rate

A thermoluminescent dosimeter (TLD) is an inorganic crystal used to detect ambient radiation. TLDs are placed in two concentric rings around the station. The inner ring is located at the site boundary, and the outer ring is located at approximately five miles from the station. TLDs are also placed in special interest areas, such as population areas and nearby residences. Additional TLDs serve as controls. Ambient radiation comes from naturally occurring radioisotopes in the air and soil, radiation from cosmic origin, fallout from nuclear weapons testing, station effluents and direct radiation from the station.

The results of the analyses are presented in Table 3-2. Figure 4-1 shows the historical trend of TLD exposure rate measurements. Control and indicator averages indicate a steady relationship. Two dosimeters made of CaF and LiF sensitive elements are deployed at each sampling location. These TLDs replaced the previously used CaSO4:Dy in Teflon TLDs in January 2001. The dose with the replacement TLDs is lower than that of the previously used TLDs. This will continue to be monitored.

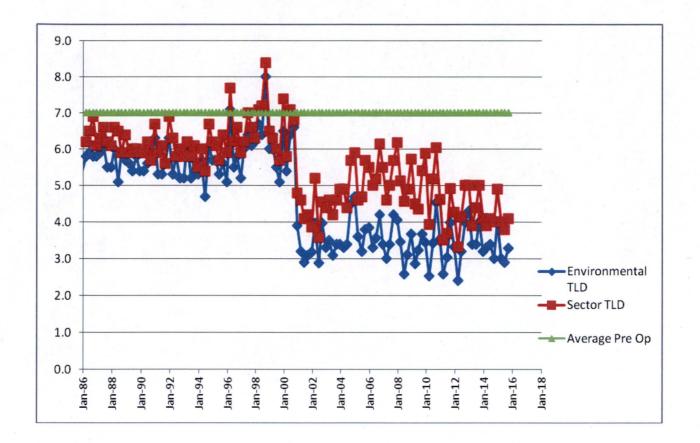


Figure 4-1 TLD (mrem/Standard Month)

Sector TLDs are deployed quarterly at thirty-two locations in the environs of the North Anna site. Two badges are placed at each location. The average level TLD locations (two badges at each location) was 4.2 of these 32 sector mR/standard month with a range of 1.0 to 9.8 mR/standard month. The highest quarterly average reading for any single location was obtained at location NW-29/61. This value was 7.2 mR/standard month. This location is on site on the north gate of the construction side laydown area. Quarterly and annual TLDs are also located at twelve environmental air sampling stations. For the eleven indicator locations within 10 miles of the station the average quarterly reading was 3.3 mR/standard month with a range of 0.9 to 6.2 mR/standard month. The average annual reading for these locations was 2.8 mR/standard month with a range from 1.3 to 4.2 mR/standard month. The control location showed a quarterly average of 3.0 mR/standard month with a range of 2.5 to 3.1 mR/standard month. Its annual reading was 3.0 mR/standard month. 10 emergency sector TLDs, which are all located onsite had a quarterly average of 5.0 mR/standard month with EPSP-9/10 having the

highest quarterly average of 7.1 mR/standard month. Eight other TLDs, designated C-1 thru C-8, which were pre-operational controls, were collected quarterly from four locations. Stations C-3/4 and C-7/8 are designated controls. These had a quarterly average of 3.0 mR/ standard month, while Station C-1/2 and C-5/6 had a quarterly average of 2.6 mR/standard month with a range of 1.3 to 3.7 mR/standard month. During the pre-operational period (starting in 1977) the doses were measured between 4.3 and 8.8 mR/standard month.

4.2 Airborne Gross Beta

Results of the weekly gross beta analyses are presented in Table 3-3. A review of the historical plot in Figure 4-2, indicates gross beta activity levels have remained relatively unchanged. The drop indicated in 2009 may be a function of a return to the vendor used from 1988 until 2001. This will be monitored in the future to see if this is in fact the case. Inner and outer ring monitoring locations continue to show no significant variation in measured activities (see Figure 4-3). This indicates that any station contribution is not measurable.

Gross beta activity found during the pre-operational and early operating period of North Anna Power Station was higher because of nuclear weapons testing. During that time, nearly 740 nuclear weapons were tested worldwide. In 1985 weapons testing ceased, and with the exception of the Chernobyl accident in 1986, airborne gross beta results have remained steady. During the preoperational period of July 1, 1974 through March 31, 1978 gross beta activities ranged from a low of 0.005 pCi/m³ to a high of 0.75 pCi/m³.

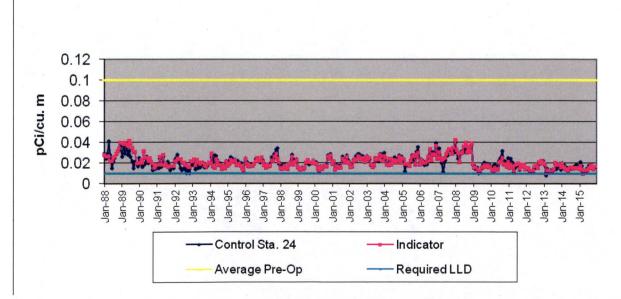


Figure 4-2 Historical Gross Beta in Air Particulates

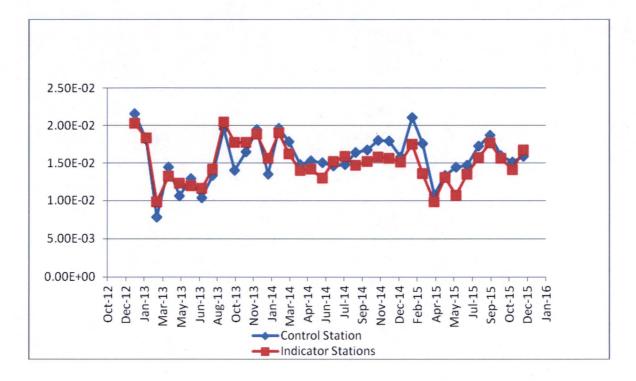


Figure 4-3 2014 Gross Beta in Air Particulates (pCi/m³)

4.3 Airborne Radioiodine

Charcoal cartridges are used to collect airborne radioiodine. Once a week the samples are collected and analyzed. The results of the analyses are presented in Table 3-4. These results are similar to pre-operational data and the results of samples taken prior to and after the 1986 accident in the Soviet Union at Chernobyl and the effect of the Fukushima Daiichi event.

4.4 Air Particulate Gamma

The air particulate filters that are utilized for the weekly gross beta analyses are composited by location and analyzed quarterly by gamma spectroscopy. The results are listed in Table 3-5. The results indicate the presence of naturally occurring Be-7, which is produced by cosmic processes. Examination of pre-operational data indicates comparable measurements of Be-7, as would be expected. The results of these analyses indicate the lack of station effects on the environment.

4.5 Air Particulate Strontium

Strontium-89 and 90 analyses are performed on the second quarter composites of air particulate filters from all monitoring stations. There has been no detection of these fission products at any of the indicator or control stations in recent years.

4.6 Soil

Soil samples, which are collected every three years from twelve stations, were not collected in 2015.

4.7 Precipitation

A sample of rain water was collected monthly at on-site station 01A and analyzed for gross beta activity and H-3. The results are presented in Table 3-7. Twelve precipitation samples were obtained in 2015. Semi-annual composites are prepared and analyzed for gamma emitting isotopes in accordance with program requirements. No plant related isotopes were reported in any precipitation water sample at the indicator location. Naturally occurring gamma emitting radioisotopes were detected. No positive H-3 result was reported. During the pre-operational period gross beta activity in rain water was expressed in nCi per square meter of the collector surface, thus a direct comparison cannot be made to the 2015 period. During the pre-operational period, tritium was measured in over half of the few quarterly composites made. This tritium activity ranged from 100 to 330 pCi/liter.

4.8 Cow Milk

Analysis of milk samples is generally the most sensitive indicator of fission product existence in the terrestrial environment. This pathway also shows measurable amounts of nuclear weapons testing fallout. Therefore, this media needs to be evaluated very carefully when trying to determine if there is any plant effect.

Analysis results for cow milk are contained in Table 3-8. No sample indicated positive results. Gamma spectroscopy did not detect the presence of any isotopes related to the operation of North Anna. In years past, Cs-137 has been detected sporadically. These occurrences were attributed to residual global fallout from past atmospheric weapons testing. Naturally occurring K-40 was detected in all samples.

Once each quarter a sample from the collection station is analyzed for strontium-89 and strontium-90. Neither Sr-89 nor Sr-90 was detected. Sr-90 has been observed in the past. Pre-operational levels of 2.2 to 5.4 pCi/liter were measured for Sr-90. There has been a long-term activity trend for Sr-90 showing a continuous decline. It should be noted that strontium-90 is not a part of station effluents. Its detection is the product of nuclear weapons testing fallout. This conclusion can be made based upon the fact that Sr-89 and Sr-90 have not been detected in gaseous effluents released from the station in many years and the trend of consistent declining levels since the preoperational period.

4.9 Food Products and Vegetation

Food/vegetation samples were collected from five locations and analyzed by gamma spectroscopy. The results of the analyses are presented in Table 3-9. Low levels of Cs-137, attributable to fallout, have been seen periodically in vegetation samples. As expected, naturally occurring potassium-40 and cosmogenic beryllium-7 were detected in most samples, and thorium-228 and other natural products, including Bi-214, were detected in some samples. No plant related isotopes were identified in any Vegetation sample during 2015.

4.10 Well Water

Water was sampled quarterly from the onsite well at the metrology laboratory. These samples were analyzed for gamma radiation and for tritium. The second quarter sample was analyzed by vendor for Sr-89, Sr-90, H-3, I-131, and gamma emitters. The results of these analyses are presented in Table 3-10. No plant related isotopes were detected. No gamma emitting isotopes were detected during the pre-operational period.

4.11 River Water

Samples of water from the North Anna River were collected monthly. The analyses are presented in Table 3-11. All monthly samples are analyzed by gamma spectroscopy. The monthly samples are composited quarterly and analyzed for tritium. Additionally, the second quarter samples are analyzed for strontium-89 and strontium-90 in accordance with program requirements. There has been no detection of these fission products at any of the indicator or control stations in recent years.

No gamma emitting radioisotopes were positively identified in any of the samples. There was no measured activity of strontium-89 or strontium-90. Tritium was measured in all four samples with an average annual concentration of 3350 pCi/liter and a range of 2150 to 4840 pCi/liter. These levels are comparable to those observed in previous years, see Figure 4-4. No river water samples were collected during the pre-operational period.

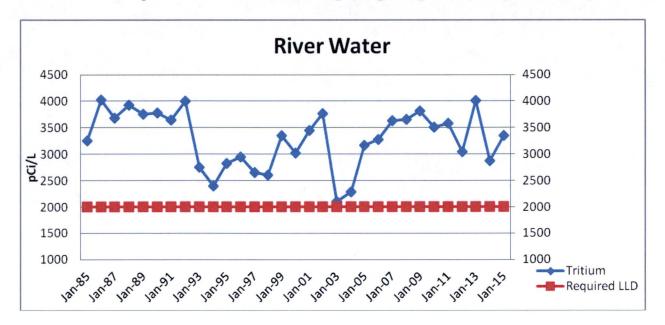
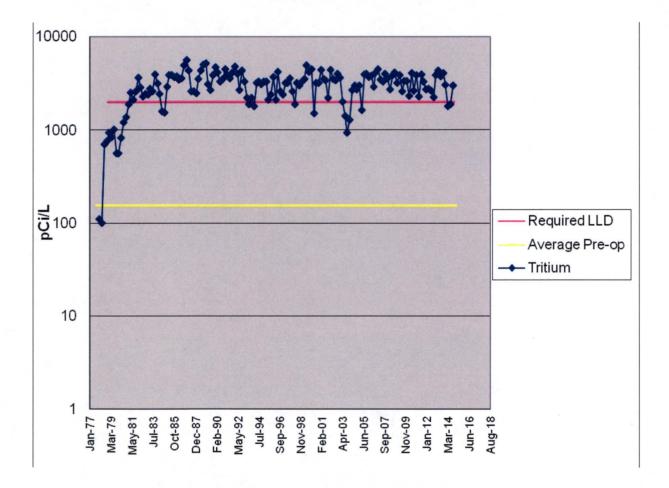


Figure 4-4 Tritium in River water


4.12 Surface Water

Samples of surface water were collected monthly from two stations, an indicator station located at the discharge lagoon and a control station located 12.9 miles WNW. The samples were analyzed by gamma spectroscopy and for iodine-131 by radiochemical separation. A quarterly composite from each station was prepared and analyzed for tritium. Additionally, the second quarter samples are analyzed for strontium-89 and strontium-90. There has been no positive indication of these fission products at any of the indicator or control stations in recent years. The results are presented in Table 3-12.

No non-naturally occurring gamma emitting radioisotopes, including iodine

were detected in any of the samples. No tritium was detected at the control location. The average level of tritium activity at the indicator station was 3450 pCi/liter with a range of 2110 to 6730 pCi/liter. Levels of tritium have increased since 1978 when the average level was below 300 pCi/liter. Levels measured at the indicator location (Station 8) are comparable to those measured since 1986, see Figure 4-5. During the pre-operational period tritium was measured in several samples with concentrations between 90 and 250 pCi/liter.

Figure 4.5Tritium in Surface Water

4.13 Bottom Sediment

Bottom sediment or silt is sampled to evaluate any buildup of radionuclides in the environment due to the operation of the station. Buildup of radionuclides in bottom sediment could indirectly lead to increasing radioactivity levels in fish. Sediment samples were collected during March and October from each of three locations and were analyzed by gamma spectroscopy. The October samples were analyzed for strontium-89 and strontium-90. The results are presented in Table 3-13.

No plant related isotopes were detected in 2015. The detection of Cs-137 in bottom sediment is historically common with positive indications usually apparent in both indicator and control samples. The detection of Cs-137 is the result of accumulation and runoff into the lake of residual weapons testing fallout; its global presence has been well documented. During the preoperational period sediment samples were also analyzed by gamma spectroscopy. Figure 4-6 shows the historical trend of Cs-137 in sediments.

Neither Strontium-89 nor Strontium-90 was detected in any samples of aquatic sediment/silt in 2015. Strontium-90 has been detected occasionally in the past at both the indicator and control locations and is attributable to fallout from past bomb tests. A number of naturally occurring radioisotopes were detected in these samples at background levels.

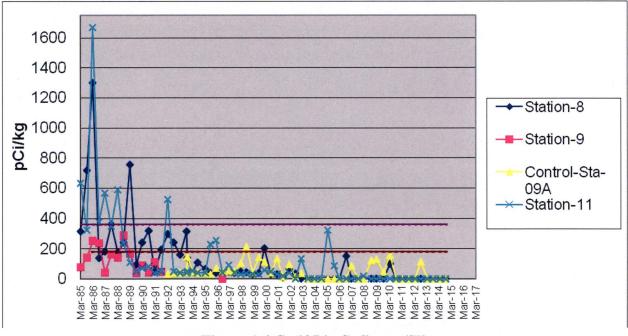


Figure 4-6 Cs-137 in Sediment/Silt

4.14 Shoreline Soil

Shoreline soil/sediment, unlike bottom sediment, may provide a direct dose to humans. Buildup of radioisotopes along the shoreline may provide a source of direct exposure for those using the area for commercial and recreational uses. Samples of shoreline soil were collected in April and October from indicator station 08. The samples were analyzed by gamma spectroscopy. The October sample was analyzed for strontium-89 and strontium-90. The results are presented in Table 3-14.

Naturally occurring radioisotopes were detected at concentrations equivalent to normal background activities. No plant related isotopes were detected in any indicator samples analyzed. Strontium-90 is often detected in this media, however as discussed previously, the presence of Sr-90 and Cs-137 is attributed to accumulation of residual global fallout from past atmospheric weapons testing.

4.15 Fish

Four sample sets of fish, two from Lake Anna and two from the control station, Lake Orange, were collected during 2015 and analyzed by gamma spectroscopy. Each sample set consisted of a sample of game species and a sample of bottom-dwelling species, which were analyzed separately. The results are presented in Table 3-15. Naturally occurring K-40 was detected in all samples. No plant related isotopes were detected. Cs-137 was measured in pre-operational environmental fish samples.

5. PROGRAM EXCEPTIONS

ĩ

.

REMP Exceptions for Scheduled Sampling and Analysis during 2015 - North Anna

Location	Description	Date of Sampling	Reason(s) for Loss/Exception
14B,15,16,23, 26	Vegetation	01/13/15	Seasonal unavailability
STA 01A	*AP/Char	01/28/15	Sampler not running/ replaced. Minimum volume not met.
14B,15,16,23, 26	Vegetation	02/12/15	Seasonal unavailability
14B,15,16,23, 26	Vegetation	03/10/15	Seasonal unavailability
14B,15,16,23, 26	Vegetation	04/14/15	Seasonal unavailability
09A	Surface Water	06/22/15**	LA-140 LLD of 15 pCi/L not met. LLD. Achieved was 18 pCi/L
E 10/42	Sector TLD's	09/29/15	TLD's missing. 500 kV tower replaced
14B,15,16,23, 26	Vegetation	11/12/15	Seasonal unavailability
14B,15,16,23, 26	Vegetation	12/08/15	Seasonal unavailability
STA 06	*AP/Char	12/29/15	Air sampler was running but not flowing. Minimum volume not met.

**Listing is a correction due to omission from 2012 Environmental Report *AP/Char denotes an air particulate and charcoal sampling station.

REFERENCES

References

Dominion, North Anna Power Station Technical Specifications, Units 1 and 2.

Dominion, North Anna Power Station Independent Spent Fuel Storage Installation Technical Specifications.

Dominion, Station Administrative Procedure, VPAP-2103N, "Offsite Dose Calculation Manual".

Virginia Electric and Power Company, North Anna Technical Procedure, HP-3051.010, "Radiological Environmental Monitoring Program".

Title 10 Code of Federal Regulation, Part 50 (10CFR50), "Domestic Licensing of Production and Utilization Facilities".

United States Nuclear Regulatory Commission Regulatory Guide 1.109, Rev. 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR50, Appendix I", October, 1977.

United States Nuclear Regulatory Commission, Regulatory Guide 4.8 "Environmental Technical Specifications for Nuclear Power Plants", December 1975.

USNRC Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Rev. 1, November 1979.

NUREG 0472, "Radiological Effluent Technical Specifications for PWRs", Rev. 3, March 1982.

HASL-300, Environmental Measurements Laboratory, "EML Procedures Manual," 27th Edition, Volume 1, February 1992.

NUREG/CR-4007, "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," September 1984.

APPENDICES

APPENDIX A: LAND USE CENSUS

,

į

Year 2015

•7

LAND USE CENSUS North Anna Power Station Louisa County, Virginia

January 1 to December 31, 2015

Direction	Distance (mil	Distance (miles)										
	Nearest Site	Nearest Resident	Nearest Garden (>	Nearest Meat	Nearest Milch	Nearest Milch						
	Boundary	ncononi	50m ²)	Animal	Cow	Goat						
N	0.9	1.3	1.76	2.9	NONE	NONE						
NNE	0.9	0.9	1.22	3.1	NONE	NONE						
NE .	0.8	0.9	1.6	1.6	NONE	NONE						
ENE	0.8	2.37	2.4	2.65	NONE	NONE						
E	0.8	1.3	2.04	3.5	NONE	NONE						
ESE	0.9	1.7	1.7	NONE	NONE	NONE						
SE	0.9	1.4	1.54	1.4	NONE	NONE						
SSE	0.9	1.0	1.0	1.6	NONE	NONE						
S	0.9	1.03	1.14	2.0	NONE	NONE						
SSW	1	127	1.33	2.0	NONE	NONE						
SW	1.1	1.65	1.65	NONE	NONE	NONE						
WSW	1.1	1.62	NONE	1.62	NONE	NONE						
W	1.1	1.5	1.93	4.4	NONE	NONE						
WNW	1	1.1	2.67	4.98	NONE	NONE						
NW .	1	1.0	1.96	NONE	NONE	NONE						
NNW	0.9	1.0	1.22	2.3	NONE	NONE						

2014 to 2015 Land Use Census Changes									
		2014	2015						
Nearest	Direction	Distance	Distance						
Resident	NONE								
Site Boundary	NONE								
Garden	Ν	1.78	1.76						
	SSE	1.0	1.0*						
	S	1.02	1.14						
	WNW_	2.67	2.67*						
·									
Meat Animal	WSW	2.22	NONE						
Milch Cow	NONE								
Milch Goat	NONE								

*Change in physical address only. Distance remains the same as previous.

APPENDIX B: SUMMARY OF INTERLABORATORY COMPARISONS

YEAR 2015

INTRODUCTION

This appendix covers the Intercomparison Program of the Teledyne Brown Engineering – Environmental Services as required by technical specifications for the Radiological Environmental Monitoring Program (REMP). TBE uses QA/QC samples provided by Eckert & Zeigler Analytics, Inc, DOE's Mixed Analyte Performance Evaluation Program (MAPEP) and Environmental Resource Associates, (ERA) to monitor the quality of analytical processing associated with the REMP. The suite of samples is designed to be comparable with the pre-1996 US EPA Interlaboratory Cross-Check Program in terms of sample number, matrices, and nuclides. This includes:

E & Z Analytics:

Milk for gamma emitters, Iodine-131, Fe-55, Sr-89 and Sr-90 analyses once per quarter.

Air particulate for gamma emitters once per quarter Charcoal for I-131 once per quarter

ERA

Water for tritium, gamma, Iodine-131, Sr-89, Sr-90, gross alpha and beta during the 2nd and 4th quarters.

Water for natural uranium during the 2nd quarter

DOE -

Water and soil for gamma, Iodine-131, U-233/234, U-238, transuranics, tritium, Fe-55, Ni-63, Sr-90 and Tc-99 analyses during the 1st quarter. Water for gross alpha and beta during the 1st and 3rd quarters. Air particulates and vegetation for gamma, Iodine-131, U-233/234, U-238, transuranics, Sr-90 analyses during the 1st and 3rd quarters. Air filter for gross alpha and beta analyses during the 1st and 3rd quarters.

RESULTS

Interlaboratory comparison program results are evaluated using TBE's criterion. Any sample analysis result that does not pass the criteria is investigated by TBE. Nonconformance Reports were generated and corrective actions taken as a result of this program.

For the TBE laboratory, 131 out of 139 analyses performed met the specified acceptance criteria. Eight analyses (AP - Cr-51, U-234/233, Gr A, Sr-90; Soil Sr-90; Water - Ni-63 and U natural; Vegetation Sr-90 samples) did not meet the specified acceptance criteria for the following reasons:

 Teledyne Brown Engineering's Analytics' June 2015 air particulate Cr-51 result of 323 ± 45.5 pCi was higher than the known value of 233 pCi with a ratio of 1.39. The upper ratio of 1.20 was exceeded. The air particulate sample is counted on a shelf (above the detector), which is the ideal geometry for this sample. But due to the fact that Cr-51 has the shortest half-life and the weakest gamma energy of the mixed nuclide sample, this geometry produces a larger error for the Cr-51. Taking into consideration the uncertainty, the activity of Cr-51 overlaps with the known value at a ratio of 1.19, which would be considered acceptable. NCR 15-18

- Teledyne Brown Engineering's MAPEP March 2015 soil Sr-90 result of 286 Total Bq.kg was lower than the known value of 653 Bq/kg, exceeding the lower acceptance range of 487 Bq/kg. The failure was due to incomplete digestion of the sample. NCR 15-13
- 3. Teledyne Brown Engineering's MAPEP March 2015 air particulate U-234/233 result of 0.0211 Bq/sample was higher than the known value of 0.0155 Bq/sample, exceeding the upper acceptance range of 0.0202 Bq/sample. Due to the extremely low activity, it was difficult to quantify the U-234/233. Taking into consideration the uncertainty, the activity of U-234/233 overlaps with the known value, which is statistically considered the same value. NCR 15-13
- 4. Teledyne Brown Engineering's MAPEP March 2015 air particulate gross alpha result of 0.448 Bq/sample was lower

than the known value of 1.77 Bq/sample, exceeding the lower acceptance range of 0.53 Bq/sample. The efficiency used for gross alpha is made from a non-attenuated alpha standard. The MAPEP filter has the alphas embedded in the filter, requiring an attenuated efficiency. In order to correct the low bias, TBE will create an attenuated efficiency for MAPEP air particulate filters. NCR 15-13

Teledyne Brown Engineering's MAPEP September water Ni-63 result of 11.8 ± 10.8 Bq/L was higher than the known value of 8.55 Bq/L, exceeding the upper acceptance range of 11.12 Bq/L. The original sample was run with a 10 mL aliquot which was not sufficient for the low level of Ni-63 in the sample. The rerun aliquot of 30 mL produced an acceptable result of 8.81 Bq/L. NCR 15-21

Teledyne Brown Engineering's MAPEP September air particulate Sr-90 result of 1.48 Bq/sample was lower than the known value of 2.18 Bq/sample, exceeding the lower acceptance range of 1.53 Bq/sample. In the past, MAPEP has added substances (unusual compounds found in DOE complexes) to various matrices that have resulted in incomplete removal of the isotope of interest for the laboratories analyzing the cross checks. We feel that this is possibly the case with this sample. NCR 15-21

Teledyne Brown Engineering's MAPEP September vegetation Sr-90 result of 0.386 Bq/sample was lower than the known value of 1.30 Bq/sample, exceeding the lower acceptance range of 0.91 Bq/sample. In the past, MAPEP has added substances (unusual compounds found in DOE complexes) to various matrices that have resulted in incomplete removal of the isotope of interest for the laboratories analyzing the cross checks. We feel that this is possibly the case with this sample. NCR 15-21

8.

5.

6.

7.

Teledyne Brown Engineering's ERA November water Uranium natural result of 146.9 pCi/L was higher than the known value of 56.2 pCi/L, exceeding the upper acceptance limit of 62.4 pCi/L. The technician failed to dilute the original sample, but used the entire 12 mL sample. When recalculated using the 12 mL aliquot, the result of 57.16 agreed with the assigned value of 56.2. NCR 15-19 A summary of TBE's results is provided in the tables on the following pages for the required sample matrix types and isotopic distribution. Delineated in the table for each of the media/analysis combinations, are: the specific radionuclide; its result; analytical date; the known values supplied by the providers; pass or fail criteria.

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

	Identification				Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
March 2015	E11181	Milk	Sr-89	pCi/L	88.9	97.2	0.91	^
	LIIIOI	IVIIIN	Sr-99	pCi/L	12.2	97.2 17.4	0.70	A W
			01-90	point	12.2	17.4	0.70	vv
•	E11182	Milk	Í-131	pCi/L	61.3	65.1	0.94	А
			Ce-141	pĊi/L	104	113	0.92	А
		.4	Cr-51	pCi/L	265	276	0.96	Α
•		•	Cs-134	pCi/L	138	154	0.90	А
			Cs-137	pCi/L	205	207	0.99	· A
			Co-58	pCi/L	178	183	0.97	A
			Mn-54	pCi/L	187	188	0.99	Α
•			Fe-59	pCi/L	182	177	1.03	A
	. *	·	Zn-65	pCi/L	345	351	0.98	A
			Co-60	pCi/L	379	405	0.94	A
			00-00	, powe	015	-00		
	E11184	AP	Ce-141	pCi	107	85.0	1.26	W
•			Cr-51	pCi	261	224	1.17	Α
•			Cs-134	pCi	74.6	77.0	0.97	A
		• .	Cs-137	, pCi	99.6	102	0.98	А
			Co-58	pCi	99.8	110	0.91	A
	•		Mn-54	pCi	99.2	96.9	1.02	A
			Fe-59	pCi	109	119	0.92	A
	a.	,	Zn-65	pCi [°]	188	183	1.03	A
•			Co-60	pCi	200	201	1.00	A ·
		· .		p = .				
	E11183	Charcoal	l-131	pCi	82.9	85.4	0.97	Α
	E11185	Water	Fe-55	pCi/L	1950	1900	1.03	А
June 2015	E11234	Milk	Sr-89	pCi/L	94.9	92.6	1.02	А
			Sr-90	pCi/L	14.3	12.7	1.13	A
		•		po#2			1.10	
	E11238	Milk	I-131	pCi/L	93.2	95.9	0.97	A
			Ce-141	pCi/L	Not provide	ed for this stud	V	
•	•		Cr-51	pCi/L	349	276	1.26	W
			Cs-134	pCi/L	165	163	1.01	А
•			Cs-137	pCi/L	143.0	125	1.14	A
		•	Co-58	pCi/L∖	82.0	68.4	1.20	A
			Mn-54	pCi/L	113	101	1.12	Â
			Fe-59	pCi/L	184	151	1.22	W
	. •		Zn-65	pCi/L	269	248	1.08	A
			Co-60	pCi/L	208	193	1.08	A
	E11237	AP	Ce-141	pCi	Not provide	ed for this stud	v .	
			Cr-51	pCi	323	233	1.39	N (1)
			Cs-134	pCi	139	138	1.01	A
		· ·	Cs-137	pCi	111	106	1.05	A

			Mn-54 Fe-59 Zn-65 Co-60	pCi pCi pCi pCi	96.8 162 198 178	84.9 128 210 163	1.14 1.27 0.94 1.09	A W A A
. '	E11236	Charcoal	I-131	pCi	93.9	80	1.17	A

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

.

Month/Year	Identificatio	n Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
June 2015	E11238	Water	Fe-55	pCi/L	1890	1790	1.06	Å
Pontombor							· ·	
September 2015							۰.	
2010	E11289	Milk	Sr-89	pCi/L	. 95.7	99.1	0.97	Α
			Sr-90	pCi/L			0.94	A
· .	E11290	Milk	I-131	pCi/L	. 94.9	99.9	0.95	^
•	E11290	IVIIIK	Ce-141	pCi/L		99.9 213	1.07	A
			Ce-141 Cr-51	pCi/L pCi/L		538	0.93	A
		•	Cs-134	pCi/L		212	0.93	A .
			Cs-134 Cs-137	pCi/L		255	1.06	A
			Co-58	pCi/L		255 263	1.05	A
			Mn-54	pCi/L pCi/L		203	1.05	A
			Fe-59	pCi/L pCi/L		290	1.13	Â
			Zn-65	• •			•	A
				pCi/L		353	1.11	A se
		· · ·	Co-60	pCi/L	. 350	330	1.06	Α
	E11292	AP	Ce-141	pCi	104	85.1	1.22	W
			Cr-51	pCi	262	215	1.22	W
	·		Cs-134	pÇi	86.1	84.6	1.02	Α
			Cs-137	pCi	93.0	102	0.91	Α
			Co-58	pCi	106	105	1.01	А
			Mn-54	, pCi	117	116	1.01	Α
			Fe-59	pCi	94.8	90.2	1.05	A
			Zn-65	pCi	160	141	1.13	Α
		· .	Co-60	pCi	146	132	1.11	A
	E11291	Charcoal	l-131	pCi	85.9	81.7	1.05	A
	E11293	Water	Fe-55	pCi/L	. 2090	1800	1.16	А
a	E11294	Soil	Ce-141	pCi/k	g 209	222	0.94	А
		,	Cr-51	pCi/k		560	0.83	A
			Cs-134	pCi/k		221	1.05	Â
			Cs-137	pCi/k	-	344	0.90	A
· .			Co-58	pCi/k		274	0.89	A
•		•	Mn-54	pCi/k		302	0.98	A
			Fe-59	pCi/k	-	235	1.06	A

			Zn-65 Co-60	pCi/kg pCi/kg	347 328	368 344	0.94 0.95	A A
December 2015	E11354	Milk	Sr-89	pCi/L	96.2	86.8	1.11	Α
			Sr-90	pCi/L	14.8	12.5	1.18	А
	E11355	Milk	I-131	pCi/L	95.1	91.2	1.04	А
			Ce-141	pCi/L	117 [.]	129	0.91	Α
			Cr-51	pCi/L	265	281	0,94	A
		•	Cs-134	pCi/L	153	160	0.96	Α
		· .	Cs-137	pCi/L	119	115	1.03	А
			Co-58	pCi/L	107	110	0.97	Α
			Mn-54	pCi/L	153	145	1.06	, Α .
			Fe-59	pCi/L	117	108	1.08	· A
			Zn-65	pCi/L	261	248	1.05	Α.
. · ·	· ·		Co-60	pCi/L	212	213	1.00	A ¹
· ·	E11357	AP .	Ce-141	pCi	89.9	84.0	1.07	А
4			Cr-51	pCi	215	184	1.17	Α.
			Cs-134	pCi	103	105	0.98	. A
	1 .		Cs-137	pCi .	76.6	74.8	1.02	Α
. *			Co-58	pCi	76.2	71.9	1.06	Α
			Mn-54	pCi	91.4	94.4	0.97	΄Α ·
			Fe-59	pCi	78.6	70.3	1.12	Α.
			Zn-65	pCi	173	162	1.07	A
		,	Co-60	pCi	138	139	0.99	Α
	E11422	AP .	Sr-89	pCi	98.0	96.9	1.01	А
·		· .	Sr-90	pCi	10.0	14.0	0.71	W
	E11356	Charcoal	I-131	pCi	74.9	75.2	1.00	Á
	E11358	Water	Fe-55	pCi/L	2160	1710	1.26	. W
	E11353	Soil	Ce-141	.pCi/kg	252	222	1.14	А
			Cr-51	pCi/kg	485	485	1.00	. A 👻
. •		• •	Cs-134	pCi/kg	319	277	1.15	А
			°Cs-137	pCi/kg	292	276	1.06	A
			Co-58	pCi/kg	193	190	1.02	Α
	• •		Mn-54	pCi/kg	258	250	1.03	Α
			Fe-59	pCi/kg	218	186	1.17	· A
			Zn-65	pCi/kg	457	429	1.07	А
			Co-60	pCi/kg	381	368	1.04	· A

(1) AP Cr-51 - Cr-51 has the shortest half-life and the weakest gamma energy of the mixed nuclide sample, which produces a large error. Taking into account the error, the lowest value would be 119% of the reference value, which would be considered acceptable. NCR 15-18

(a) Teledyne Brown Engineering reported result.

(b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) Ratio of Teledyne Brown Engineering to Analytics results.

(d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20.

W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

	Identification				Reported		Acceptance	ri,
Month/Year	Number	Media	Nuclide*	Units	Value (a)	Value (b)	Range	Evaluation
March 2015	15-MaW32	Water	Am-241	Bq/L	0.632	0.654	0.458 - 0.850	A
	10 1111102	· · · · · ·	Ni-63	Bq/L	2.5	0.001	(1)	A
			Pu-238	Bq/L	0.0204	0.0089		A
			Pu-	- 4			()	
			239/240	Bq/L	0.9	0.8	0.582 - 1.082	А
	15-MaS32	Soil	Ni-63	Bq/kg	392	448.0	314 - 582	· A
			Sr-90	Bq/kg	286	653	487 - 849	N (3)
	15-RdF32	AP	Sr-90	Bq/sample	-0.0991		(1) 0.0109 -	А
			U-234/233	Bq/sample	0.0211	0.0155		· N (3)
			U-238	Bq/sample	0.095	0.099	0.069 - 0.129	A
	15-GrF32	AP	Gr-A	Bq/sample	0.448	1.77	0.53 - 3.01	N (3)
			Gr-B	Bq/sample	0.7580	0.75	0.38 - 1.13	Â
,	15-RdV32	Vegetation	Cs-134	Bq/sample	8.08	7.32	5.12 - 9.52	А
		•	Cs-137	Bq/sample	11.6	9.18	6.43 - 11.93	W
			Co-57	Bq/sample	-0.0096		(1)	А
			Co-60	Bq/sample	6.53	5.55	3.89 - 7.22	А
			Mn-54	Bq/sample	0.0058		(1)	А
			Sr-90	Bq/sample	0,999	1.08	0.76 - 1.40	А
			Zn-65	Bq/sample	-0.108		(1) ·	А
September								
2015	15-MaW33	Water	·Am-241	Bq/L	1.012	1.055	0.739 - 1.372	А
•		~	Ni-63	Bq/L	11.8	8.55	5.99 - 11.12	N (4)
			Pu-238	Bq/L	• 0.727	0.681	0.477 - 0.885	А
			Pu-					
			239/240	Bq/L	0.830	0.900	0.630 - 1.170	A
	15-MaS33	Soil	Ni-63	Bq/kg	635	682	477 - 887	А
			Sr-90	Bq/kg	429	425	298 - 553	А
	15-RdF33	AP	Sr-90	Bq/sample	1.48	2.18	1.53 - 2.83	N (4)
		4	U-234/233	Bq/sample	0.143	0.143	0.100 - 0.186	А
			U-238	Bq/sample	0.149	0.148	0.104 - 0.192	Α
	15-GrF33	AP	Gr-A	Bq/sample	0.497	0.90	0.27 - 1.53	А
			Gr-B	Bq/sample	1.34	1.56	0.78 - 2.34	Α
	15-RdV33	Vegetation	Cs-134	Bq/sample	6.10	5.80	4.06 - 7.54	А
			Cs-137	Bq/sample	0.0002		(1)	А

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

/
(4)

(1) False positive test.

(2) Sensitivity evaluation.

(3) Soil Sr-90 - incomplete digestion of the sample resulted in low results; AP U-234/233 - extremely low activity was difficult to quantify AP Gr-A - the MAPEP filter has the activity embedded in the filter. To corrected the low bias, TBE will create an attenuated efficiency for MAPEP samples. NCR 15-13

(4) Water Ni-63 extremely low activity was difficult to quantify; AP & Vegetation Sr-90 was lost during separation, possible from substance added by MAPEP NCR 15-21.

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c)
May 2015	RAD-101	Water	Sr-89	pCi/L	45.2 [.]	63.2	51.1 - 71.2	N (1)
•	-		Sr-90	pCi/L	28.0	41.9	30.8 - 48.1	N (1)
			Ba-133	pCi/L	80.6	82.5	63.9 - 90.8	А
			Cs-134	pCi/L	71.7	75.7	61.8 - 83.3	А
			Cs-137	pCi/L	187	189	170 - 210	Α
			Co-60	pCi/L	85.7	84.5	76.0 - 95.3	А
			Zn-65	pCi/L	197	203	183 - 238	Α
· · ·			Gr-A	pCi/L	26.1	42.6	22.1 - 54.0	А
			Gr-B	pCi/L	28.8	32.9	21.3 - 40.6	А
			I-131	pCi/L	23.5	23.8	19.7 - 28.3	А
			U-Nat	pCi/L	6.19	6.59	4.99 - 7.83	А
			H-3	pCi/L	3145	3280	2770 - 3620	А
	MRAD-22	Filter	Gr-A	pCi/filter	28.3	62.2	20.8 - 96.6	А
011/01/2015	RAD-103	Water	Sr-89	pCi/L	40.9	35.7	26.7 - 42.5	А
			Sr-90	pCi/L	29.3	31.1	22.7 - 36.1	, A
			Ba-133	pCi/L	31.5	32.5	25:9 - 36.7	А
			Cs-134	pCi/L	59.65	62.3	50.6 - 68.5	А
			Cs-137	pCi/L	156	157	141 - 175	А
			Co-60	pCi/L	70.6	71.1	64.0 - 80.7	А
			Zn-65	pCi/L	145	126	113 - 149	А
			Gr-A	pCi/L	38.2	51.6	26.9 - 64.7	А
			Gr-B	pCi/L	42.0	36.6	24.1 - 44.2	А
			I-131	pCi/L	24.8	26.3	21.9 - 31.0	А
			U-Nat	pCi/L	146.90	56.2	45.7 - 62.4	N (2)
			H-3	pCi/L	21100	21300	18700 - 23400	А

MRAD-23

Filter Gr-A

pCi/filter Lost during processing

(1) Yield on the high side of our acceptance range indicates possibility of calcium interference. NCR 15-09

(2) Technician failed to dilute original sample. If diluted, the result would have been 57.1, which fell within the acceptance limits. NCR 15-19

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(č) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. N=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.