

NUREG-2187 Volume 2

Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models—Byron Unit 1

Appendices D to G

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Library at <u>www.nrc.gov/reading-rm.html</u>. Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the *Code of Federal Regulations* may also be purchased from one of these two sources.

1. The Superintendent of Documents

U.S. Government Publishing Office Mail Stop IDCC Washington, DC 20402-0001 Internet: <u>bookstore.gpo.gov</u> Telephone: (202) 512-1800 Fax: (202) 512-2104

2. The National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312-0002 www.ntis.gov 1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission

Office of Administration Publications Branch Washington, DC 20555-0001 E-mail: distribution.resource@nrc.gov Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted at NRC's Web site address <u>www.nrc.gov/reading-rm/</u> <u>doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852-2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute

11 West 42nd Street New York, NY 10036-8002 www.ansi.org (212) 642-4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractorprepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG– XXXX) or agency contractors (NUREG/CR–XXXX), (2) proceedings of conferences (NUREG/CP–XXXX), (3) reports resulting from international agreements (NUREG/IA–XXXX), (4) brochures (NUREG/BR–XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG–0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

Protecting People and the Environment

Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models—Byron Unit 1

Appendices D to G

Manuscript Completed: May 2015 Date Published: January 2016

Prepared by: J. Corson,¹ D. Helton,¹ M. Tobin,¹ A. Bone¹ M. Khatib-Rahbar,² A. Krall² L. Kozak³ R. Buell⁴

¹Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

²Energy Research Inc. P.O. Box 2034 Rockville, MD 20847-2034

³Region III U.S. Nuclear Regulatory Commission 2443 Warrenville Road, Suite 210 Lisle, IL 60532-4352

⁴Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415 NUREG-2187 Volume 2

ABSTRACT

This report extends the work documented in NUREG-1953, "Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models– Surry and Peach Bottom" to the Byron Station, Unit 1. Its purpose is to produce an additional set of best-estimate thermal-hydraulic calculations that can be used to confirm or enhance specific success criteria (SC) for system performance and operator timing found in the agency's probabilistic risk assessment (PRA) tools. Along with enhancing the technical basis for the Agency's independent standardized plant analysis risk (SPAR) models, these calculations are expected to be a useful reference to model end-users for specific regulatory applications (e.g., the Significance Determination Process). The U.S. Nuclear Regulatory Commission selected Unit 1 of the Byron Station for this study because it is generally representative of a group of four-loop Westinghouse plants with large, dry containment designs.

This report first describes major assumptions used in this study, including the basis for using a core damage (CD) surrogate of 2,200 degrees Fahrenheit (1,204 degrees Celsius) peak cladding temperature (PCT). The justification for this PCT is documented in NUREG/CR-7177, "Compendium Of Analyses To Investigate Select Level 1 Probabilistic Risk Assessment End-State Definition And Success Criteria Modeling Issues." The major plant characteristics for Byron Unit 1 are then described, in addition to the MELCOR model used to represent the plant. Finally, the report presents the results of MELCOR calculations for selected initiators and compares these results to SPAR SC, the licensee's PRA sequence timing and SC, or other generic studies.

The study results provide additional timing information for several PRA sequences, confirm many of the existing SPAR model modeling assumptions, and provide a technical basis for a few specific SPAR modeling changes. Potential SPAR model changes supported by this study include:

- Small-Break Loss-of-Coolant Accident (SLOCA) Sequence Timing for Alignment of Sump Recirculation—For sequences where operator cooldown is credited as an alternative to high-pressure recirculation (HPR), the SPAR success criteria related to containment cooling could be enhanced by requiring one containment fan cooler to prevent containment spray actuation. Avoiding spray actuation extends the time available prior to refueling water storage tank depletion and allows the operators to successfully depressurize the plant using the post-LOCA procedures for cases when HPR is not available.
- SLOCA Success Criteria for Steam Generator (SG) Depressurization and Condensate Feed—Action to depressurize the SGs early and align condensate feed is a candidate for inclusion in the SPAR model. This would provide an additional success path for a loss of auxiliary feedwater event. If this is done, hotwell refill or alignment of alternate feedwater later in the scenario would also need to be modeled. Early depressurization to achieve condensate feed was not found to require primary-side depressurization actions (e.g., opening a power-operated relief valve (PORV)).
- SLOCA Success Criteria for Primary Side Bleed and Feed (B&F)—These calculations have demonstrated a potential conservatism that can be removed from the applicable SPAR models. It is proposed that the SC for SLOCA B&F be changed from (one safety

injection (SI) or centrifugal charging pump (CCP) and two PORVs) to (one SI pump and two PORVs) or (one CCP and one PORV). In other words, for SLOCAs the requirement for availability of a second PORV can be removed when a CCP is available.

- Loss of DC Bus-111 Unavailable Diesel-Driven Auxiliary Feedwater, and Subsequent Primary Side B&F—These calculations are generally representative of non– loss-of-coolant accident (non-LOCA) B&F situations and have demonstrated a potential improvement that can be implemented in the Byron SPAR model. It is proposed that the SC for non-LOCA B&F be changed from (one SI or CCP and two PORVs) to (one CCP and one PORV). In other words, the same one CCP and one PORV enhancement as above is credited, but credit is eliminated for cases with no CCP available. This initiator was chosen because it was qualitatively felt to be more restrictive than those scenarios categorized as general transients in the PRA, and thus the conclusions are believed to be applicable to those initiators as well. Note that the applicability of the loss of DC bus SC may vary, (e.g., due to the unique reactor coolant pump trip situation that this initiator oreates) and should be evaluated on a case-by-case basis before implementation for other plant models.
- SGTR Spontaneous Steam Generator Tube Rupture with No Operator Action—For sequences with successful high-pressure injection (HPI) and auxiliary feedwater, but with steam generator isolation having failed, an additional success path or additional recovery credit may be justifiable pending additional consideration of closely-related accident sequence and human reliability modeling assumptions.
- Medium-Break Loss-of-Coolant Accident (MLOCA) Injection SC— For breaks in the lower half of the MLOCA range, it was found that an early operator-induced depressurization based on the Functional Restoration Procedure (FRP) for inadequate core cooling would be needed to avoid core damage if HPI fails. The time available to implement these actions following the FRP entry criterion being met could be short. The accident sequence modeling and human reliability analysis associated with secondaryside cooldown for these situations (MLOCA with HPI failed) should be reviewed.

FOREWORD

The U.S. Nuclear Regulatory Commission's (NRC's) standardized plant analysis risk (SPAR) models are used to support a number of risk-informed initiatives. The fidelity and realism of these models is ensured through a number of processes, including cross-comparison with industry models, review and use by a wide range of technical experts, and confirmatory analysis. The following report—prepared by staff in the Office of Nuclear Regulatory Research in consultation with staff from the Office of Nuclear Reactor Regulation, experts from Energy Research Incorporated and Idaho National Laboratory, and the agency's senior reactor analysts—represents a major confirmatory analysis activity.

Probabilistic risk assessment (PRA) models for nuclear power plants rely on underlying modeling assumptions known as success criteria (SC) and sequence timing assumptions. These criteria and assumptions determine what combination of system and component availabilities will lead to postulated core damage (CD), as well as the timeframes during which components must operate or operators must take particular actions. This report investigates certain thermal-hydraulic aspects of a particular SPAR model (which is generally representative of other models within the same class of plant design), with the goal of further strengthening the technical basis for decisionmaking that relies on the SPAR models. This report augments the existing collection of contemporary Level 1 PRA SC analyses, and as such, supports (1) maintaining and enhancing the SPAR models that the NRC develops, (2) supporting the NRC's risk analysts when addressing specific issues in the accident sequence precursor program and the significance determination process, and (3) informing other ongoing and planned initiatives. This analysis employs the MELCOR computer code and uses a plant model developed for this project.

The analyses summarized in this report provide the basis for confirming or changing SC in the SPAR model for the Byron Station Unit 1. Further evaluation of these results will be performed to extend the results to similar plants. In addition, future work is planned to perform similar analysis for other design classes, and past work has already considered other design classes (see NUREG-1953, "Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models – Surry and Peach Bottom"). In addition, work has been recently completed to scope other aspects of this topical area, including the degree of variation typical in common PRA sequences and the quantification of conservatisms associated with CD surrogates (see NUREG/CR-7177, "Compendium of Analyses to Investigate Select Level 1 Probabilistic Risk Assessment End-State Definition and Success Criteria Modeling Issues"). Where applicable, insights from that work are referenced in this report. The confirmation of SC and other aspects of PRA modeling using the agency's state-of-the-art tools (e.g., the MELCOR computer code) is expected to receive continued focus as the agency continues to develop and improve its risk tools.

ABSTRACT	iii
FOREWORD	v
CONTENTS	vii
LIST OF FIGURES	ix
	xi
ABBREVIATIONS AND ACRONYMS	xiii
	1
	I 3
2.1 Selection of a Core Damage Surrogate	5
3 RELATIONSHIP TO THE AMERICAN SOCIETY OF MECHANICAL	
ENGINEERS/AMERICAN NUCLEAR SOCIETY PROBABILISTIC RISK	
ASSESSMENT STANDARD	9
4 MAJOR PLANT AND MELCOR MODEL CHARACTERISTICS	13
4.1 Byron Station Unit 1	13
4.2 Byron MELCOR Model	14
4.3 MELCOR Validation	15
5. MELCOR RESULTS.	17
5.1 Small-Break Loss-of-Coolant Accident–Sequence Timing for Alignment of	
Sump Recirculation	18
5.2 Small-Break Loss-of-Coolant Accident–Success Criteria for Steam Generator	
Depressurization and Condensate Feed	29
5.3 Small-Break Loss-of-Coolant Accident–Success Criteria for Primary Side	
Bleed and Feed	35
5.4 Loss of DC Bus 111, Unavailable DD-AFW, and Subsequent Primary Side	
Bleed and Feed	42
5.5 Spontaneous Steam Generator Tube Rupture with No Operator Action	50
5.6 Medium-Break LOCA Injection Success Criteria	59
5.7 Medium-Break LOCA Cooldown Timing for Low-Pressure Recirculation	67
5.8 Loss of Shutdown Cooling	76
5.8.1 Changes to the MELCOR Input Deck for Loss of Shutdown Cooling	
Calculations	<u>//</u>
5.8.2 Mode 4 Calculations	
	82
6. APPLICATION OF MELCOR RESULTS TO THE SPAR MODELS	/ة
	93
0. REFERENCED	95

CONTENTS

APPENDIX A DETAILED INFORMATION ON BASE MELCOR MODEL

A.1	Byron MELCOR Input Model Description	A-1
A.2	Input Deck Revisions and MELCOR Code Versions	A-6
A.3	Additional Notes on MELCOR	A-7
A.4	References	A-7

APPE	NDIX B DETAILED SMALL-BREAK LOSS-OF-COOLANT ACCIDENT ANALYSIS RESULTS	
B.1	Small-Break Loss-of-Coolant Accident – Sequence Timing for Alignment of Sump Recirculation	B-1
B.2	Small-Break Loss-of-Coolant Accident – Success Criteria for Steam Generator Depressurization and Condensate Feed	B-85
B.3	Small-Break Loss-of-Coolant Accident – Success Criteria for Primary Side Bleed and Feed	B-133
APPE C.1	NDIX C DETAILED LOSS OF DC BUS 111 ANALYSIS RESULTS Loss of DC Bus 111 and Unavailable DD-AFW, Leading to Primary Side Bleed and Feed	C-1
APPE	NDIX D DETAILED STEAM GENERATOR TUBE RUPTURE ANALYSIS RESULTS	
D.1	Spontaneous SG Tube Rupture with No Operator Action	D-1
APPE	NDIX E DETAILED MEDIUM-BREAK LOSS-OF-COOLANT ACCIDENT ANALYSIS RESULTS	
E.1 E.2	Medium-Break Loss-of-Coolant Accident Injection Success Criteria Medium-Break Loss-of-Coolant Accident Cooldown Timing for Low-Pressure	E-1
	Recirculation	E-91
APPE F.1 F.2	NDIX F DETAILED LOSS OF SHUTDOWN COOLING RESULTS Mode 4 Calculations Mode 5 Calculations	F-1 F-47
APPE G.1	NDIX G EVENT TREE MODELS FOR STUDIED INITIATORS Byron SPAR Model Event Trees	G-1

LIST OF FIGURES

Main Report

Figure 1	Example of variation in core damage timing from (NRC, 2014b)	6
Figure 2	Schematic of the Byron MELCOR RCS model	15
Figure 3	Time of RWST depletion as a function of RWST volume	27
Figure 4	Peak containment pressure as a function of containment volume and	
-	the number of available fan coolers for Case 11	28

<u>Appendix G</u>

Figure G-1	Small-break loss-of-coolant accident (SLOCA) event tree	G-2
Figure G-2	Loss of 125V vital DC bus 111 event tree	G-3
Figure G-3	Steam generator tube rupture (SGTR) event tree	G-4
Figure G-4	Medium-break loss-of-coolant accident (MLOCA) event tree	G-5

LIST OF TABLES

Main Report

Table 1	Summary of Accident Scenarios Examined	2
Table 2	Major Assumptions	4
Table 3	Comparison of this Project to the ASME/ANS PRA Standard	10
Table 4	Major Plant Characteristics for Byron Unit 1	13
Table 5	SLOCA–Sump Recirculation Boundary Conditions	19
Table 6	SLOCA–Sump Recirculation Results	20
Table 7	SLOCA–Sump Recirculation Key Event Timings	21
Table 8	SLOCA–Sump Recirculation Margins	22
Table 9	SLOCA–Sump Recirculation Cooldown Rates	22
Table 10	SLOCA–Sump Recirculation Sensitivity Studies	23
Table 11	SLOCA–Condensate Feed Boundary Conditions	30
Table 12	SLOCA–Condensate Feed Results	30
Table 13	SLOCA–Condensate Feed Key Event Timings	31
Table 14	SLOCA–Condensate Feed Margins	31
Table 15	SLOCA–Condensate Feed Cooldown Rates	32
Table 16	SLOCA–Condensate Feed Sensitivity Studies	33
Table 17	SLOCA–Bleed and Feed Boundary Conditions	36
Table 18	SLOCA–Bleed and Feed Results	37
Table 19	SLOCA–Bleed and Feed Key Event Timings	37
Table 20	SLOCA–Bleed and Feed Margins	38
Table 21	SLOCA–Bleed and Feed Sensitivity Studies	39
Table 22	Loss of DC Bus 111 Boundary Conditions	43
Table 23	Loss of DC Bus 111 Results	43
Table 24	Loss of DC Bus 111 Key Event Timings	44
Table 25	Loss of DC Bus 111 Margins	44
Table 26	Loss of DC Bus 111 Sensitivity Studies	46
Table 27	SGTR Boundary Conditions	52
Table 28	SGTR Results	53
Table 29	SGTR Key Event Timings	54
Table 30	SGTR Margins	55
Table 31	SGTR Sensitivity Studies	56
Table 32	MLOCA Injection Success Criteria Boundary Conditions	60
Table 33	MLOCA Injection Success Criteria Results	60
Table 34	MLOCA Injection Success Criteria Key Event Timings	61
Table 35	MLOCA Injection Success Criteria Margins	62
Table 36	MLOCA Injection Success Criteria Sensitivity Studies	64
Table 37	MLOCA Cooldown Timing Boundary Conditions	68
Table 38	MLOCA Cooldown Timing Results	68
Table 39	MLOCA Cooldown Timing Key Event Timings	70
Table 40	MLOCA Cooldown Timing Margins	71
Table 41	MLOCA Cooldown Timing Cooldown Rates	71
Table 42	MLOCA Cooldown Timing Sensitivity Studies	72
Table 43	Loss of Shutdown Cooling (Mode 4) Boundary Conditions	78
Table 44	Loss of Shutdown Cooling (Mode 4) Results	78
Table 45	Loss of Shutdown Cooling (Mode 4) Key Event Timings	79

Table 46	Loss of Shutdown Cooling (Mode 5) Boundary Conditions	. 82
Table 47	Loss of Shutdown Cooling (Mode 5) Results	. 83
Table 48	Loss of Shutdown Cooling (Mode 5) Key Event Timings	. 84
Table 49	Mapping of MELCOR Analyses to the Byron SPAR (8.27) Model	. 88
Table 50	Potential Success Criteria Updates Based on Byron Unit 1 Results	. 89

Appendix A

Reactor Trip Signals	A-1
Charging Pump Performance	A-2
SI Pump Performance	A-2
RHR Pump Performance	A-3
Reactor Coolant Pump Motive and Control Power Configuration	A-5
Opening and Closing Pressures for Pressurizer PORVs and SRVs	A-5
Input Models Used for Documented Calculations	A-6
	Reactor Trip Signals Charging Pump Performance SI Pump Performance RHR Pump Performance Reactor Coolant Pump Motive and Control Power Configuration Opening and Closing Pressures for Pressurizer PORVs and SRVs Input Models Used for Documented Calculations

ABBREVIATIONS AND ACRONYMS

°C	degree(s) Celsius
°C/hr	degree(s) Celsius per hour
°F	degree(s) Fahrenheit
°F/hr	degree(s) Fahrenheit per hour
ΔΤ	temperature difference
ACC	accumulator
ADAMS	Agencywide Documents Access and Management System
AFW	auxiliary feedwater
ANS	American Nuclear Society
ASME	American Society of Mechanical Engineers
ASP	accident sequence precursor
B&F	bleed and feed
BAF	bottom of active fuel
BEP	Byron Emergency Procedure
BWR	boiling-water reactor
CCP	centrifugal charging pump
CCW	component cooling water
CD	core damage
CDF	core damage frequency
CET	core exit temperature
CFR	Code of Federal Regulations
cm	centimeter(s)
CNMT	containment
COR	MELCOR core package
CS	containment spray
CST	condensate storage tank
CVH	control volume hydrodynamics (MELCOR package)
CVTR	Carolinas Virginia Tube Reactor
DC	direct current
DD-AFW	diesel-driven auxiliary feedwater
ECA	emergency contingency action
ECCS	emergency core cooling system
EOP	emergency operating procedure
EPRI	Electric Power Research Institute
ESF	Engineered Safety Features
FCL	fan cooler
FRP	functaionl restoration procedure
FSAR	Final Safety Analysis Report
ft	foot/feet
ft ³	cubic foot/feet
FW	feedwater
gal	gallon(s)
gpm	gallon(s) per minute
HEM	homogeneous equilibrium model
HEP	human error probability
HFM	homogeneous frozen model
HPI	high-pressure [ECCS] injection

HPR	high-pressure [ECCS] recirculation
hr	hour(s)
HS	heat structure
in.	inch(es)
iPWR	integral pressurized-water reactor
К	Kelvin
kg	kilogram(s)
kg/s	kilogram(s) per second
kPa	kilopascal(s)
lb/s	pound(s) per second
LBLOCA	large-break loss-of-coolant accident
lbm/hr	pound(s) mass per hour
LOCA	loss-of-coolant accident
LoDCB-111	loss of DC bus 111
LOFT	loss-of-fluid test
I PI	low pressure [ECCS] injection
I PR	low pressure [ECCS] recirculation
I TOP	low temperature overpressure protection
m	meter(s)
m ³	cubic meter(s)
m ³ /min	cubic meter(s) per minute
m ³ /s	cubic meter(s) per second
ΜΔΔΡ4	Modular Accident Analysis Program version 4
MD-AFW	motor-driven auxiliary feedwater
MELCOR	Not an acronym
MEW/	main feedwater
min	minute(s)
	medium-break loss-of-coolant accident
MPa	medanascal(s)
MPa ahs	megapascal(s) absolute
MSIV	main steam isolation valve
MUR	measurement uncertainty recenture
	menawatt(s)
	megawatt(s) thermal
NDSH	net positive suction head
ND	narrow range [water level]
NRC	IIS Nuclear Regulatory Commission
PCT	neak cladding temperature
	power (or pilot) operated relief value
	probabilistic risk assessment
	prossurizer relief tank
	Drobabilistic Safety Assessment
nei	pound(s) per square inch
psia	pound(s) per square inch absolute
psid	pound(s) per square inch differential
psiu	pound(s) per square inch unerential
psig	pound(s) per square inch gage
	pressurizer
	reaster containment fon cooler
	reactor coolant nume
	reactor coolant pump
ruð	reactor coolant system

recirc	recirculation
RHR	residual heat removal
RHR HX	residual heat removal heat exchanger
RPS	reactor protection system
RPV	reactor pressure vessel
RWST	refueling water storage tank
S	second(s)
SC	success criterion/criteria
SDP	significance determination process
scfm	standard cubic foot/feet per minute
SG	steam generator
SG-x	steam generator in loop x
SGTR	steam generator tube rupture
SI	safety injection
SLOCA	small-break loss-of-coolant accident
SOARCA	State-of-the-Art Reactor Consequence Analyses
SPAR	standardized plant analysis risk
SRV	safety relief valve
TAF	top of active fuel
T _{avg}	loop average temperature
TBV	turbine bypass valve
TCL	cladding temperature
TRACE	TRAC/RELAP5 Advanced Computational Engine
VCT	volume control tank
WR	wide range [water level]

APPENDIX D

DETAILED STEAM GENERATOR TUBE RUPTURE ANALYSIS RESULTS

D.1 Spontaneous SG Tube Rupture with No Operator Action

D.1.1 Case 1: 0.5 Tube, Min ECCS, No Steam Dumps

D-26

time [hr]

0 +

time [hr]

-10

D.1.8 Case 8: 0.5 Tube, Max ECCS, Automatic Scram, No Steam Dumps

time [hr]

APPENDIX E

DETAILED MEDIUM-BREAK LOSS-OF-COOLANT ACCIDENT ANALYSIS RESULTS

E.1 Medium-Break Loss-of-Coolant Accident Injection Success Criteria

E.1.1 Case 1: 2-in. Break with 1/2 SI, 1/2 RHR, 2/2 CS Pumps

E-13

E-27

E-41

E-68

1400 1200 Maximum Core Temperature [°C] 009 000 000 000 -TCL -Core Exit **– –** 2200 F 200 0 1.5 0.0 0.5 1.0 2.0 2.5 3.0 time [hr] 50 0

E.1.8.1 Case 8a: 6-in. Break with 2 Accumulators (1 in Broken Loop), 1 RHR, 2/2 CS Pumps

E.2 <u>Medium-Break Loss-of-Coolant Accident Cooldown Timing for</u> Low-Pressure Recirculation

E.2.1 Case 1: 2-in. Break, 100 °F/hr Cooldown at 20 min, 2/2 CS Pumps, 0/4 RCFC

E-95

E-100

E.2.2.1 Case 2a: 6-in. Break, 100 °F/hr Cooldown at 20 min, 2/2 CS Pumps, 0/4 RCFC, CS Recirc

E-116

E-118

E-125

E.2.8.1 Case 8a: 6-in. Break, 100 °F/hr Cooldown at 40 min, 2/2 CS Pumps, 0/4 RCFC, CS Recirc

E-154

E-160

E.2.8.2 Case 8b: 6-in. Break, 100 °F/hr Cooldown at 40 min, 2/2 CS Pumps, 0/4 RCFC, No RHRHX

E-161

E-174

E.2.10 Case 10: 6-in. Break, 100 °F/hr Cooldown at 40 min, 0/2 CS Pumps, 0/4 RCFC

E-181

APPENDIX F

DETAILED LOSS OF SHUTDOWN COOLING RESULTS

F.1 <u>Mode 4 Calculations</u>

Notes

The following list identifies the major changes that were made to the MELCOR input deck in order to perform Mode 4 shutdown calculations.

- Logic has been added to model the shutdown cooling function of the residual heat removal (RHR) system. This logic is set up such that RHR flow rate is adjusted in order to maintain a constant coolant temperature, up to the maximum flow rate of the system. The logic also includes provisions to achieve a target cooldown rate; however, this feature is not used in any of the shutdown calculations performed for this report.
- Pressurizer level control logic has been modified to control water level at the no-load setpoint (25 percent level) during the steady-state portion of the calculation.
- Similarly, pressurizer heater logic has been modified to achieve the desired pressure during the steady-state portion of the Mode 4 calculations.
- Logic that makes it possible to turn off emergency core cooling system (ECCS) flow to prevent overfilling the pressurizer has been modified in order to simulate recovery actions in which operators inject using a charging pump when reactor pressure vessel (RPV) level is low. This feature is exercised in Mode 4 Cases 2 and 5.
- The decay heat curves have been shifted in order to simulate the desired times after trip. For example, the decay heat curve is shifted by 12 hours for Mode 4 Cases 1–5. Note that during the steady-state portion of the calculation, the decay heat is assumed to be constant and to equal the decay power at 12 hours. The same is true for all other times since subcriticality that are analyzed in Section 5.8.2 of the report.
- Initial temperature and pressure of reactor coolant system (RCS) control volumes have been set to 275 degrees Fahrenheit (F) (408.15 Kelvin (K)) and 350 pounds per square inch absolute (psia) (2.413 megapascals (MPa)).
- Secondary-side temperatures (including feedwater temperature) have been set to 275 degrees F (408.15 K).
- Logic for the steam dump valves has been modified to maintain secondary-side pressure at 45 psia (0.313 MPa), which is the saturation pressure at 275 degrees F (408.15 K).
- Steam generator water level logic has been modified so that steady-state water level is controlled at 18 percent narrow range (NR) or 27 percent wide range (WR) level, depending on the case being analyzed.
 - Cold volumes have been used in place of hot volumes for RCS control volumes. This decreases the RCS volume by approximately 1 percent.

F.1.1 Case 1: SG at 18% NR Level, 12 hr after Shutdown, No Recovery Actions

F-4

time [hr]

F.1.2 Case 2: SG at 18% NR Level, 12 hr after Shutdown, Start CCP on Low RPV Level

F-7

F.1.3 Case 3: SG at 18% NR Level, 12 hr after Shutdown, Recover RHR at 2 hr

F-14

F.1.4 Case 4: SG at 18% NR Level, 12 hr after Shutdown, Initiate AFW at 3 hr

F.1.5 Case 5: SG at 18% NR Level, 12 hr after Shutdown, Initiate Bleed & Feed at 5 hr

0 +

time [hr]

F.1.6 Case 6: SG at 27% WR Level, 12 hr after Shutdown, Recover RHR at 2 hr

F-26

time [hr]

F-32

F.1.8 Case 8: SG at 18% NR Level, 6 hr after Shutdown, No Recovery Actions

time [hr]

-50

time [hr]

F.1.10 Case 10: SG at 18% NR Level, 6 hr after Shutdown, Initiate AFW at 3 hr

time [hr]

F.2 Mode 5 Calculations

Notes

The following list identifies some of the changes that were made to the MELCOR input deck in order to perform Mode 5 shutdown calculations.

- Logic has been added to model the shutdown cooling function of the RHR system. This logic is set up such that RHR flow rate is adjusted in order to maintain a constant coolant temperature, up to the maximum flow rate of the system. The logic also includes provisions to achieve a target cooldown rate; however, this feature is not used in any of the shutdown calculations performed for this report.
- Pressurizer level control logic has been modified to control water level during the steady-state portion of the calculation. For the Mode 5 calculations, level control is based on RPV level because the level is assumed to be at the vessel flange, which is below the bottom of the pressurizer.
- Pressurizer heaters have been disabled because the pressurizer is empty.
- Logic that makes it possible to turn off ECCS flow to prevent overfilling the pressurizer has been modified in order to simulate recovery actions in which operators inject using a charging pump when RPV level is low. This feature is exercised in Mode 5 Cases 2, 5, and 8.
- The decay heat curves have been shifted in order to simulate the desired times after trip. For example, the decay heat curve is shifted by 40 hours for Mode 5 Cases 1–3. Note that during the steady-state portion of the calculation, the decay heat is assumed to be constant and to equal the decay power at 40 hours. The same is true for all other times since subcriticality that are analyzed in Section 5.8.3 of the report.
- Initial temperature and pressure of RCS control volumes have been set to 170 degrees F (349.8 K) and atmospheric pressure.
- Flow paths have been added to model the antisiphon hole in the line leading from the pressurizer power-operated relief valves to the pressurizer relief tank (PRT). It is necessary to include this flow path because, otherwise, the RCS will draw a vacuum when RHR is operating.
- The flow path representing the PRT rupture disk is held open throughout the Mode 5 calculations. It is expected that the PRT would be vented to containment during this operating stage; however, the characteristics of this vent path are unknown. In the absence of better information, the PRT rupture disk flow path is used as the vent path for this model.

- Flow paths from CV 310 and 311 to 320 and 321 have been deleted, or the valves in the flow paths have been closed, to simulate loop stop valve closure. The same is true for flow paths between CV 346 and 348 in the cold leg and between analogous control volumes in the other loops.
- Cold volumes have been used in place of hot volumes for RCS control volumes. This decreases the RCS volume by approximately 1 percent.

F-50

F-53

APPENDIX G

EVENT TREE MODELS FOR STUDIED INITIATORS

G.1 Byron SPAR Model Event Trees

This section provides the relevant event trees from the Byron (v8.27) Standardized Plant Analysis Risk model dated April 2014. These event trees show the sequences described in the main report.

NRC FORM 335 (12-2010) NRCMD 3.7 BIBLIOGRAPHIC DATA SHEET , (See instructions on the reverse)	IISSION 1. REPOR (Assigned and Adde N	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.) NUREG-2187, Vol. 2		
2. TITLE AND SUBTITLE				
Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models—Byron Unit 1	3. D/		VEAR	
	Janu	ary	2016	
		4. FIN OR GRANT NUMBER		
5 AUTHOR(S)				
J. Corson, D. Helton, M. Tobin, A. Bone (US NRC HQ) M. Khatib-Rahbar, A. Krall (Energy Research Inc.)		Technical		
L. Kozak (US NRC Region 3) .	7. PERIOD	7. PERIOD COVERED (Inclusive Dates)		
R. Buell (Idaho National Laboratory)		2010-2015		
 8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U. S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.) Division of Risk Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 				
 SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above", if contractor, provide NRC Division, Office or Region, U. S. Nuclear Regulatory Commission, and mailing address.) Same as above 				
10. SUPPLEMENTARY NOTES				
11. ABSTRACT (200 words or less) This report extends the work documented in NUREG 1953, "Confirmatory Thermal Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models–Surry and Peach Bottom" to the Byron Station, Unit 1. Its purpose is to produce an additional set of best estimate thermal hydraulic calculations that can be used to confirm or enhance specific success criteria (SC) found in the agency's probabilistic risk assessment (PRA) tools. Along with promoting realism in the standardized plant analysis risk (SPAR) models, these calculations are expected to be a useful reference to model end users for specific regulatory applications (e.g., the Significance Determination Process). The U.S. Nuclear Regulatory Commission selected Unit 1 of the Byron Station for this study because it is generally representative of a group of four loop Westinghouse plants with large, dry containment designs.				
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) SPAR, success criteria, Byron, MELCOR		3. AVAILABILI 4. SECURITY (This Page)	TY STATEMENT nlimited CLASSIFICATION	
		(This Report)		
		unclassified 15. NUMBER OF PAGES		
	1	6. PRICE		
NRC FORM 335 (12-2010)				

.

NUREG-2187, Vol. 2 Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models—Byron Unit 1

January 2016