

May 29, 2015

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

Peach Bottom Atomic Power Station Unit Nos. 2 and 3 Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos. 50-277 and 50-278

SUBJECT: Annual Radiological Environmental Operating Report 72 January 1, 2014 through December 31, 2014

In accordance with the requirements of Section 5.6.2 of the Peach Bottom Atomic Power Station, Units 2 and 3 Technical Specifications, this letter submits the Annual Radiological Environmental Operating Report 72. This report provides the 2014 results for the Radiological Environmental Monitoring Program (REMP) as called for in the Offsite Dose Calculation Manual.

In assessing the data collected for the REMP, we have concluded that the operation of PBAPS, Units 2 and 3, had no adverse impact on the environment. There are no commitments contained in this letter.

If you have any questions or require additional information, please do not hesitate to contact Gerard Stenclik at (717) 456-4491.

Sincerely,

Phil Bleidych for P.D. Navin

Patrick D. Navin, Plant Manager Peach Bottom Atomic Power Station

Enclosure

ccn 15-53

cc: William Dean, Administrator, Region I, USNRC (william.dean@nrc.gov)
 S. Hansell, USNRC Senior Resident Inspector, PBAPS
 Chris Graves, Region I, USNRC, 2100 Renaissance Blvd, King of Prussia, PA 19406

E48 NKR

May 29, 2015 U.S. Nuclear Regulatory Commission Annual Radiological Environmental Operating Report 72 January 1, 2014 through December 31, 2014

bcc: P. Steinhauer, PSEG [patricia.steinhauer@pseg.com] Susan Grey, State of Maryland [SGray@dnr.state.md.us] R. R. Janati, Commonwealth of Pennsylvania [rjanati@state.pa.us] C. Mudrick, Kennett Square M. Massaro, PBAPS, SMB4-9 P. Navin, PBAPS, A4-1S D. Henry, PBAPS, SMB3-2A R. Reiner, PBAPS, SMB3-2A R. Reiner, PBAPS, PB-TC J. Armstrong, PBAPS, SMB4 J. Barstow, Licensing Director, Kennett Square D. P. Helker, Kennett Square B. Hedrick, PBAPS, SMB4-5 W. R. Nelle, PBAPS

Records Management 2C.112

Docket No: 50-277 50-278
PEACH BOTTOM ATOMIC POWER STATION UNITS 2 and 3
Annual Radiological Environmental Operating Report
Report No. 72 1 January Through 31 December 2014
Prepared By
Exelon Generation
Peach Bottom Atomic Power Station Delta, PA 17314
May 2015

TABLE OF CONTENTS

11, 1	Introduction
A. B.	Objectives Implementation
2,	
. ^	Program Description
	Sample Collection
C.	Data Interpretation
D.	Program Exceptions
E.	Program Changes
IV.	Results and Discussion
А.	Aquatic Environment
	1. Surface Water 2. Drinking Water
	3. Precipitation
	4. Fish
~	5. Sediment
В.	Atmospheric Environment
	a. Air Particulates
	b. Airborne lodine
	2. Terrestrial
	a. Milk
С	b. Food Products Ambient Gamma Radiation
D.	Independent Spent Fuel Storage Installation
E.	Land Use Census
F.	Errata Data
G.	Secondary Laboratory Analysis
н.	Summary of Results - Inter-laboratory Comparison Program

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
<u>Tables</u>	
Table A-1	Radiological Environmental Monitoring Program Annual Summary for the Peach Bottom Atomic Power Station, 2014
Appendix B	Sample Designation and Locations
Tables	
Table B-1	Radiological Environmental Monitoring Program – Sampling Locations, Distance and Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2014
Table B-2	Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2014
<u>Figures</u>	
Figure B-1	Environmental Sampling Locations within One Mile of the Peach Bottom Atomic Power Station, 2014
Figure B-2	Environmental Sampling Locations between One and Approximately Five Miles of the Peach Bottom Atomic Power Station, 2014
Figure B-3	Environmental Sampling Locations Greater than Five Miles from the Peach Bottom Atomic Power Station, 2014
Appendix C	Data Tables and Figures - Primary Laboratory
<u>Tables</u>	
Table C-I.1	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-I.2	Concentrations of I-131 in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-II.1	Concentrations of Gross Beta in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014

Table C-II.2	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-II.3	Concentrations of I-131 in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-II.4	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-III.1	Concentrations of Gamma Emitters in Predator & Bottom Feeder (Fish) Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-VIII.1	Concentrations of Gamma Emitters in Food Product Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table C-IX.1	Quarterly OSLD Results for Peach Bottom Atomic Power Station, 2014
Table C-IX.2	Mean Quarterly OSLD Results for the Site Boundary, Intermediate and Control Locations for Peach Bottom Atomic Power Station, 2014
Table C-IX.3	Summary of the Ambient Dosimetry Program for Peach Bottom Atomic Power Station, 2014
Figures	
Figure C-1	Monthly Total Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of PBAPS, 2014

Figure C-2	Mean Annual Cs-137 Concentrations in Fish Samples Collected in the Vicinity of PBAPS, 1971-2014
Figure C-3	Mean Semi-Annual Cs-137 Concentrations in Sediment Samples Collected in the Vicinity of PBAPS, 1971-2014
Figure C-4	Mean Weekly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 2014
Figure C-5	Mean Monthly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 1970-2014
Figure C-6	Mean Annual Cs-137 Concentrations in Milk Samples Collected in the Vicinity of PBAPS, 1971-2014
Figure C-7	Mean Quarterly Ambient Gamma Radiation Levels in the Vicinity of PBAPS, 1973-2014
Figure C-8	Quarterly Ambient Gamma Radiation Levels near the Independent Spent Fuel Storage Installation Located at PBAPS, 1998-2014
Appendix D	Data Tables and Figures - QC Laboratory
<u>Tables</u>	
Table D-I.1	Concentrations of Gross Beta Insoluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-I.2	Concentrations of Gross Beta Soluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-I.3	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-I.4	Concentrations of I-131 in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-I.5	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-II.1	Concentrations of Gross Beta Insoluble in Air Particulate and I-131 in Air Iodine Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-II.2	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Table D-III.1	Concentrations of I-131 by Chemical Separation and Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014

Table D-IV.1	Summary of Collection Dates for Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2014
Figures	
Figure D-1	Comparison of Monthly Total Gross Beta Concentrations in Drinking Water Samples Split Between the Primary and QC Laboratories, 2014
Figure D-2	Comparison of Weekly Gross Beta Concentrations from Collocated Air Particulate Locations Split Between the Primary and QC Laboratories, 2014
Appendix E	Quality Control - Inter-Laboratory Comparison Program
Tables	
Table E-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2014
Table E-2	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2014
Table E-3	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2014
Table E-4	ERA Statistical Summary Proficiency Testing Program Environmental, Inc., 2014
Table E-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2014
Appendix F	Errata Data
Appendix G	Annual Radiological Groundwater Protection Program Report (ARGPPR)

i İ İ Intentionally Left Blank

I. Executive Summary

In 2014, the dose from both liquid and gaseous effluents was conservatively calculated for the Maximum Exposed Member of the Public for Peach Bottom Atomic Power Station. The results of those calculations and their comparison to the allowable limits were as follows:

				Location		% of		
Effluent	Applicable Organ	Estimated Dose	Age Group	Distance (meters)	Direction (toward)	Applicable	Limit	Unit
Noble Gas	Gamma - Air Dose	2.53E-01	Ali	1.10E+03	SSE	1.27E+00	2.00E+01	mrad
Noble Gas	Beta - Air Dose	1.74E-01	All	1.10E+03	SSE	4.35E-01	4.00E+01	mrad
Noble Gas	Total Body (gamma)	2.45E-01	All	1.10E+03	SSE	2.45E+00	1.00E+01	mrem
Noble Gas	Skin (Beta)	3.20E-01	All	1.10E+03	SSE	1.07E-01	3.00E+01	mrem
Gaseous Iodine, Particulate, Carbon-14 & Tritium	Bone	5.49E-01	Child	1.10E+03	SSE	1.83E+00	3.00E+01	mrem
Gaseous Iodine, Particulate, & Tritium	Thyroid	1.68E-02	Infant	1.10E+03	SSE	8.60E-03	3.00E+01	mrem
Liquid	Total Body (gamma)	1.68E-02	Child	Site Boundary		2.80E-01	6.00E+00	mrem
Liquid	Liver	8.32E-03	Child			4.16E-02	2.00E+01	mrem
Direct Radiation	Total Body	0.00E+00	All	1.15E+03 SSE		0.00E+00	2.20E+01	mrem

40 CFR Part 190 Compliance										
Total Dose	Total Body	2.62E-01	All	1.15E+03	SSE	1.05E+00	2.50E+01	mrem		
Total Dose	Thyroid	2.58E-03	All	1.15E+03	SSE	3.45E-03	7.50E+01	mrem		
Total Dose	Bone	5.50E-01	All	1.15E+03	SSE	2.20E+00	2.50E+01	mrem		
Total Dose	Total Body	2.62E-01	All	1.15E+03	SSE	8.74E+00	3.00E+00	mrem		
Total Dose	Bone	5.49E-01	All	1.15E+03	SSE	1.83E+01	3.00E+00	mrem		
Total Dose	Thyroid	2.56E-01	All	1.15E+03	SSE	4.65E-01	5.50E+01	mrem		

Doses calculated were well below all ODCM limits.

This report on the Radiological Environmental Monitoring Program (REMP) conducted for the Peach Bottom Atomic Power Station (PBAPS) by Exelon Nuclear covers the period 1 January 2014 through 31 December 2014. During that time period 1,181 analyses were performed on 936 samples.

Surface water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No tritium, fission or activation products were found.

Drinking water samples were analyzed for concentrations of gross beta, iodine-131 (I-131), tritium (H-3) and gamma emitting nuclides. No fission or activation products were found. Gross beta activity detected was consistent with those observed in previous years. Tritium was not detected in drinking water.

Precipitation samples were analyzed under the Radiological Groundwater Protection Program (RGPP) in 2014.

The remaining sample media representing the aquatic environment included fish and sediment samples. These media were analyzed for concentrations of gamma emitting nuclides. Fish samples showed no detectable fission or activation products from the operation of PBAPS. Cesium-137 (Cs-137) activity was found at one of three sediment locations and was consistent with data from previous years.

The atmospheric environment was divided into two parts for examination: airborne and terrestrial. Sample media for determining airborne affects included air particulates and air iodine samples. Analyses performed on air particulate samples included gross beta and gamma spectrometry. No fission or activation products were found. The gross beta results were consistent with results from the previous years. Furthermore, no notable differences between control and indicator locations were observed. These findings indicate no measurable effects from the operation of PBAPS.

High sensitivity I-131analyses were performed on weekly air samples. All results were less than the minimum detectable activity for I-131.

Examination of the terrestrial environment was accomplished by analyzing milk and food product samples. Milk samples were analyzed for low level concentrations of I-131 and gamma emitting nuclides. Food product samples were analyzed for concentrations of gamma emitting nuclides. No PBAPS activation or fission products were detected.

Ambient gamma radiation levels were measured quarterly throughout the year. Most measurements were below 10 mR/standard month and the results were consistent with those measured in previous years.

The results of the Optically-Stimulated Luminescent Dosimetry (OSLD) monitoring program were used to confirm that the Independent Spent Fuel Storage Installation (ISFSI) had no measurable impact on the dose rate in the environs.

In assessing all the data gathered for this report and comparing these results with preoperational data, it was evident that the operation of PBAPS had no adverse radiological impact on the environment.

II. Introduction

PBAPS is located along the Susquehanna River between Holtwood and Conowingo Dams in Peach Bottom Township, York County, Pennsylvania. The initial loading of fuel into Unit 1, a 115 MWth High Temperature, Gas-cooled Reactor (HTGR) began on 5 February 1966 and initial criticality was achieved on 3 March 1966. Shutdown of Peach Bottom Unit 1 for decommissioning was on 31 October 1974. For the purposes of the monitoring program, the beginning of the operational period for Unit 1 was considered to be 5 February 1966. A summary of the Unit 1 preoperational monitoring program was presented in a previous report ⁽¹⁾. PBAPS Units 2 and 3 are boiling water reactors, each with a rated full-power output of approximately 3.514 MWth. The first fuel was loaded into Peach Bottom Unit 2 on 9 August 1973. Criticality was achieved on 16 September 1973 and full power was reached on 16 June 1974. The first fuel was loaded into Peach Bottom Unit 3 on 5 July 1974. Criticality was achieved on 7 August 1974 and full power was first reached on 21 December 1974. Preoperational summary reports $^{(2)(3)}$ for Units 2 and 3 have been previously issued and summarize the results of all analyses performed on samples collected from 5 February 1966 through 8 August 1973.

The REMP for PBAPS was initiated in 1966. This report covers those analyses performed by Teledyne Brown Engineering (TBE), Landauer and Environmental Inc. (Midwest Labs) on samples collected during the period 01 January 2014 through 31 December 2014.

A. Objectives

The objectives of the REMP are:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.

...

B. Implementation of the Objectives

Implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.

- 3. Continuously monitoring those media before and during plant operation to assess station radiological effects (if any) on man and the environment.
- III. Program Description
 - A. Sample Collection

Normandeau Associates Inc., (NAI), collected samples for the PBAPS REMP for Exelon Nuclear. This section describes the general collection methods used by NAI to obtain environmental samples for the PBAPS REMP in 2014. Sample locations and descriptions can be found in Table B-1 and Figures B-1 through B-3, Appendix B. The collection procedures used by NAI are listed in Table B-2, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, precipitation, fish and sediment. Surface water from two locations (1LL and 1MM) and drinking water from three locations (13B, 4L and 6I) were collected weekly by automatic sampling equipment. Weekly samples from each of the surface and drinking water locations were composited into a separate monthly sample for analysis. Approximately two quarts of water were removed from the weekly sample container and placed into a clean two-gallon polyethylene bottle to form a monthly composite. Control locations were 1LL and 6I. Fish samples comprising the flesh from two groups: Bottom Feeder (channel catfish, flathead catfish, carp, and shorthead redhorse) and Predator (smallmouth bass, largemouth bass, and bluegill) were collected semiannually from two locations (4 and 6; 6 is the control). Sediment samples composed of recently deposited substrate were collected semiannually at three locations (4J, 4T and 6F; 6F is the control).

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on air particulate and airborne iodine samples. Air particulate and air iodine samples were collected and analyzed weekly from five locations (1B, 1C, 1Z, 3A and 5H2; 5H2 is the control). Airborne iodine and particulate samples were obtained at each location using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately 1 cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

Terrestrial Environment

The terrestrial environment was evaluated by performing radiological analyses on milk and food product samples. Milk samples were collected biweekly at five locations (J, R, S, U and V; V is the control) from April through November and monthly from December through March. Six additional locations (C, D, E, L, P and W; C and E are the controls) were sampled quarterly. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite and shipped promptly to the laboratory.

Food product samples were collected annually at three locations (1Q, 2Q and 55; 55 is the control) in May through September. All samples were collected in new unused plastic bags and shipped promptly to the laboratory.

Ambient Gamma Radiation

The ambient gamma radiation in the areas surrounding PBAPS for the REMP is measured using dosimeters, which are exposed in the field during and exchanged quarterly. Optically-Stimulated Luminescent Dosimeters (OSLD) replaced the Thermo-Luminescent Dosimeter (TLD) type in the field starting in 2012. However, to observe how OSLD compares to TLD technology for environmental monitoring, PBAPS decided to continue using TLD in addition to OSLD. Therefore, both technologies are employed at PBAPS but the primary data reported is using the OSLD only. Additionally, only the "gross" exposure (i.e. no background or control subtraction) is reported in this report with OSLD; prior to 2012, TLD data are "net" exposures are used.

The OSLD locations were placed on and around the PBAPS site as follows:

A <u>site boundary ring</u>, consisting of 20 locations (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1NN, 1P, 1Q, 1R, 2, 2B and 40), near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off-site doses) from PBAPS releases.

An <u>intermediate distance ring</u>, consisting of 24 locations (1T, 14, 15, 17, 22, 23, 26, 27, 31A, 32, 3A, 42, 43, 44, 45, 46, 47, 48, 49, 4K, 5, 50, 51 and 6B), extending to approximately 5 miles from the site and designed to measure possible exposures to close-in population.

The balance of four locations (16, 18, 19 and 24) representing control and special interests areas such as population centers, schools, etc.

The specific dosimeter locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- 2. Site meteorological data taking into account distance and elevation for each of the 36 ten-degree sectors around the site, where estimated annual dose from PBAPS, if any, would be more significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);
- 4. And near the dwelling closest to the vents in the prevailing down wind direction.

Each dosimetry location in the environment has either 2 or 4 OSLD and TLD dosimeters which are enclosed in plastic as a moisture barrier. These dosimeters are protected from the environment in either a small formica box or a polyethylene jar approximately six feet above the ground level. These dosimeters are exchanged quarterly and sent to an off-site laboratory for analysis.

B. Sample Analysis

This section describes the general analytical methods used by Teledyne Brown Engineering and Environmental Inc. to analyze the environmental samples for radioactivity for the PBAPS REMP in 2014. The analytical procedures used by the laboratories are listed in Table B-2, Appendix B.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in drinking water and air particulates.
- 2. Concentrations of gamma emitting nuclides in surface and drinking water, air particulates, milk, fish, sediment and food products.
- 3. Concentrations of tritium in surface and drinking water.
- 4. Concentrations of I-131 in drinking water, surface water, air and milk.
- 5. Ambient gamma radiation levels at various site environs.

C. Data Interpretation

The radiological and direct radiation data collected prior to PBAPS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, PBAPS was considered operational at initial critically. In addition, data were compared to previous years' operational data for consistency and trending. Several factors are important in the interpretation of the data.

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is intended as a "before-the-fact" (*a priori*) estimate of a system (including instrumentation, procedure and sample type) and not as an "after-the-fact" (*a posteriori*) measurement for the presence of activity. All analyses are designed to achieve the required PBAPS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined similarly as above for LLD; however, the MDC is the "after-the-fact" (*a posteriori*) estimate vice a before-the-fact as in LLD.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample is calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations will result in sample activity being lower than the background activity affecting a negative number. MDC is reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface and drinking 11 nuclides, manganese-54 (Mn-54), cobalt-58 (Co-58), iron-59 (Fe-59), cobalt-60 (Co-60), zinc-65 (Zn-65), zirconium-95 (Zr-95), niobium-95 (Nb-95), cesium-134 (Cs-134), Cs-137, barium-140 (Ba-140) and lanthanum-140 (La-140) were reported.

For fish eight nuclides, potassium-40 (K-40), Mn-54, Co-58, Fe-59, Co-60, Zn-65, Cs-134 and Cs-137 were

reported.

For sediment six nuclides, K-40, Mn-54, Co-58, Co-60, Cs-134 and Cs-137 were reported.

For air particulate six nuclides, beryllium-7 (Be-7), Mn-54, Co-58, Co-60, Cs-134 and Cs-137 were reported.

For milk five nuclides, K-40, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For food product eight nuclides, Be-7, K-40, Mn-54, Co-58, Co-60, I-131, Cs-134 and Cs-137 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2014 the PBAPS REMP had a sample collection recovery rate of better than 99%. The exceptions to this program are listed below:

- 1. In 2Q2014 and 3Q2014, radiography was conducted in the vicinity of a REMP dosimeter (Williams LP Natural Gas Pumping Station which is near Station 50). Because this radiography is not a result of Peach Bottom operations, the radiation exposure to this dosimeter is not attributed to plant operations.
- 2. In May of 2014, four samples were unavailable for collection as required:

a.) Drinking water (Station 13B) was not collected due to Chester Water Authority in a maintenance period, and

b.) Vegetation at Stations 2B, 1Q and 55 were not collected due to the late planting season which, therefore, does not provide sufficient material for sample collection. No other samples indicated radioactivity above background.

3. In June of 2014, a power failure, due to a tree limb falling on power lines, caused the air sampling pump Station 3A in Delta, PA to fail to draw a sample volume sufficient to meet the minimum specification of 85 cubic meters for the weekly sample. (A lower sample size means that the required LLDs may not be met and therefore the sample would be considered invalid.) Samples taken before and after indicate no detectable radioactivity and no elevated release occurred during that time period.

- 4. In June of 2014, the semi-annual sediment sample results at Location 4J (Conowingo Pond, West Shore off Burkins Run) showed positive Cs-137 activity at a level of 2.41E02 pCi/kg. The (minimum detectable concentration) MDC was found to be 1.12E02 pCi/kg (required LLD is 1.80E2 pCi/ kg). The lack of other shorterlived power-production nuclides in these samples suggests that the contamination is old and therefore due to atmospheric nuclear weapons testing and not attributable to Peach Bottom Atomic Power Station. The detected activity in the sediment is thought to be due to increased storm water runoff which is releasing the Cs-137 from the surrounding soils into the river.
- In June of 2014, a power failure (blown fuses) caused the Station 1C (South Substation) to stop sampling on 25 JUN 2014. Contractor suspects that the blown fuses were due to thunderstorm activity that evening.
- 6. The Environmental sampling contractor reported to the REMP Task Manager at Peach Bottom that an incorrect flow rate conversion factor was used for 5 indicator air samplers and, as a result, the calculated volume of air for each sample was incorrect. When the orifices were calibrated in June, the new calibration value was not used in the subsequent calculations. A review of those data since June shows that volume of each sample was under-reported by approximately 10% for each weekly sample affected. Underreporting of the volume is conservative because it will not affect the LLD requirements from being met per ODCMS Table 4.8.E.2. Samples were collected and are valid per ODCMS 3.8.E.2.
- 7. In June of 2014, the member of the public which has historically provided vegetation samples has elected not to grow a garden this year at location 2B. Therefore, sampling at this location is suspended indefinitely. This sampling is judged to be unavailable due to farmer opting not to plant. Vegetation/Food Products

sampling is required ONLY if milk sampling is NOT performed. Station 1Q is still available for regular sampling but it is not located in the highest D/Q location. Dosimetry at this location (Station 2B) will continue and is not affected.

- 8. In June of 2014, Vegetation/Garden/Food Products Station 1Q was low in sample collection inventory (animal consumption) therefore ragweed was substituted to make up the sample mass (satisfactory sample mass specification is 300 g to 1000 g). Edible green leafy vegetation is the preferred sample material, if available.
- 9. In June of 2014, a hail storm caused the Station 42 (Muddy Run) container to be damaged and the dosimeters were intact and found on the ground. These dosimeters were re-installed in a new container and replaced. The data from these dosimeters is included and was not expected to deviate significantly from previous results.
- 10. In July of 2014, a power failure (PECO service area outage) caused the Station 5H2 (Manor Substation) to stop sampling on 07 JUL 2014. This sampler was not in service for the entire third quarter of 2014. Review of Three Mile Island's control and indicator locations showed consistency between before and after the loss of 5H2 station and, therefore, this is reasonable assurance that no measurable release to the environment occurred during this period.
- 11. In July of 2014, Vegetation/Garden/Food Products Station 1Q was low in sample collection inventory therefore tobacco was substituted to make up the sample mass (satisfactory sample mass specification is 300 g to 1000 g). Edible green leafy vegetation is the preferred method.
- 12. During the quarterly change-out of dosimeters, the REMP contractor noted that the Station 51 was found damaged. The sample bottle appeared to have been hit by flying snow from a snowplow from storms during the winter. There are two dosimeters of each type, OSLD and TLD, at this location. The contractor was able to locate one dosimeter of each type and therefore, these were used as valid samples in the program. No further action was

required and all measured radiation was consistent with previous background levels.

- 13. In September of 2014, the Station 1C (South Substation) air sample pump was running but not drawing air on 17 SEP 2014. Investigation showed that the ceramic vanes on the pump had shattered (normal wear leads to eventual degradation). Vanes were replaced and pump operation was verified satisfactory. However, sample volume was low out of specification and cannot be used for analysis, therefore sample data for the 1C location was available for the week of 14 SEP 2014 20 SEP 2014. Comparison with other sample data indicates that no measureable release to the environment occurred during this period.
- 14. In November of 2014, semi-annual sediment sample results at Locations 4J, 4T and 6F (4J = Conowingo Pond, West Shore off Burkins Run; 4T = Conowingo Pond -- Near Conowingo Dam 12,875 m (8 mi) SE of PBAPS; 6F = Lake Aldred -- Holtwood Dam-East Shore upstream (PBAPS Control Location) 9334 m (5.8 mi) NW of PBAPS) showed positive Cs-137 activity. Spectfic-Activity was measured for each location 4J at 1.07E02 pCi/ kg, 4T at 2.37E02 pCi/ kg and 6F at 1.41E02 pCi/ kg. The lack of other shorter-lived power-production nuclides in these samples suggests that the contamination is old and therefore due to atmospheric nuclear weapons testing and not attributable to Peach Bottom Atomic Power Station. The detected activity in the sediment is thought to be due to increased storm water runoff which is releasing the Cs-137 from the surrounding soils into the river.

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent a recurrence. Occasional equipment breakdowns and power outages were unavoidable.

- E. Program Changes
 - 1. Vegetation location 2Q was added to the REMP in July of 2014.
 - 2. Dosimeter location 1T was added to the REMP program in the fourth quarter of 2014.

- IV. Results and Discussion
 - A. Aquatic Environment
 - 1. Surface Water

Samples were taken from a continuous sampler at two locations (1LL and 1MM) on a monthly schedule. Of these locations, 1MM located downstream, could be affected by Peach Bottom's effluent releases. The following analyses were performed:

<u>Tritium</u>

Monthly samples from both locations were composited quarterly and analyzed for tritium activity (Table C-I.1, Appendix C). No tritium activity was detected.

<u>lodine</u>

Monthly samples from both locations were analyzed for I-131. All results were less than the MDC (Table C-I.2, Appendix C).

Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C-I.3, Appendix C). All nuclides were less than the MDC.

2. Drinking Water

Monthly samples were collected from continuous water samplers at three locations (13B, 4L and 6I). Two locations (13B and 4L) could be affected by Peach Bottom's effluent releases. The following analyses were performed:

Gross Beta

Samples from all locations were analyzed for concentrations of total gross beta activity (Tables C-II.1 and Figures C-1 Appendix C). Gross beta was detected in 25 of 36 samples. The values ranged from 2.0 to 5.6 pCi/l. Concentrations detected were generally below those detected in previous years.

<u>Tritium</u>

Monthly samples from three locations were composited quarterly and analyzed for tritium activity (Table C-II.2, Appendix C). Tritium activity was not detected in any samples.

.. .

lodine

Monthly samples from three locations were analyzed for I-131 (Table C-II.3, Appendix C). All results were less than the MDC.

Gamma Spectrometry

Samples from the three locations were analyzed for gamma emitting nuclides (Table C-II.4, Appendix C). All nuclides were less than the MDC.

3. <u>Precipitation</u>

Precipitation samples were analyzed under the RGPP in 2014.

4. <u>Fish</u>

Fish samples comprised of bottom feeder and predator were collected at two locations (4 and 6) semiannually. Location 4 could be affected by Peach Bottom's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C-III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,470 to 4,000 pCi/kg wet and was consistent with levels detected in previous years. No Peach Bottom fission or activation products were found in 2014. A gradual increase in the MDC has been observed over the last few years. This change in the baseline is likely the result of historical heat exchanger leaks or nuclear weapons testing legacy material. Historical levels of Cs-137 are shown in Figure C-2, Appendix C.

5. <u>Sediment</u>

Aquatic samples were collected at three locations (4J, 4T and 6F) semiannually. Of these locations two, 4J and 4T located

downstream, could be affected by Peach Bottom's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from all three locations were analyzed for gamma emitting nuclides (Table C-IV.1, Appendix C). Potassium-40 was found in all locations and ranged from 11,730 to 26,710 pCi/kg dry. The fission product Cs-137 was detected in four of six samples. The concentration ranged from 107 to 241 pCi/kg dry. The activity of Cs-137 detected was consistent with those detected in the preoperational years. Historical levels of Cs-137 are shown in Figure C-3, Appendix C. No other Peach Bottom fission or activation products were found.

- B. Atmospheric Environment
 - 1. <u>Airborne</u>
 - a. <u>Air Particulates</u>

Continuous air particulate samples were collected from five locations on a weekly basis. The five locations were separated into three groups: Group I represents locations within the PBAPS site boundary (1B, 1C and 1Z), Group II represents the location at an intermediate distance from the PBAPS site (3A) and Group III represents the control location at a remote distance from PBAPS (5H2). The following analyses were performed. Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Tables C-V.1 and C-V.2 and Figures C-4 and C-5, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any, resulting from the operation of PBAPS. The results from the On-Site locations (Group I) ranged from 8 to 38 E-3 pCi/m³, with a mean of 17 E-3 pCi/m³. The results from the Intermediate Distance location (Group II) ranged from 9 to 37 E-3 pCi/m³ with a mean of 16 E-3 pCi/m³. The results from the Distant location (Group III) ranged from 8 to 39 E-3 pCi/m³ with a mean of 16 E-3 pCi/m³. A comparison of the weekly mean values for 2014 indicate no notable differences among the three groups (Figure C-4, Appendix C). In addition, a comparison of the 2014 air particulate data with previous years data indicate no effects from the operation of PBAPS (Figure C-5, Appendix C).

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C-V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in 19 of 20 samples. The values ranged from 46 to 93 E-3 pCi/m³. All other nuclides were less than the MDC and all required LLDs were met.

b. <u>Airborne lodine</u>

Continuous air samples were collected from five locations (1B, 1Z, 1C, 3A, and 5H2) and analyzed weekly for I-131 (Table C-VI.1, Appendix C). All results were less than the MDC for I-131.

2. <u>Terrestrial</u>

a. <u>Milk</u>

Samples were collected from five locations (J, R, S, U and V) biweekly April through November and monthly December through March. Samples from six additional locations (C, D, E, L, P and W) were taken quarterly. The following analyses were performed:

lodine-131

Milk samples from all locations were analyzed for concentrations of I-131 (Tables C-VII.1, Appendix C). All results were less than the MDC for I-131. All results were less than MDC for I-131 and all required LLDs were met.

Gamma Spectrometry

Each milk sample from locations J, R, S, U and V was analyzed for concentrations of gamma emitting nuclides (Table C-VII.2, Appendix C). Naturally occurring K-40 was found in all samples and ranged from 1,058 to 1,521 pCi/l. All other nuclides were less than the MDC and all required LLDs were met. Comparison of the 2014 Cs-137 milk data with previous years data indicate no effects from the operation of PBAPS (Figure C-6, Appendix C).

b. Food Products

Food product samples were collected at three locations (1Q, 2Q and 55) when available. Of these locations, 1Q and 55 could be affected by Peach Bottom's effluent releases. The following analysis was performed:

Gamma Spectrometry

Each food product sample from locations 1Q, 2Q and 55 was analyzed for concentrations of gamma emitting nuclides (Table C-VIII.1, Appendix C).

Naturally occurring Be-7 activity was found in 21 of 32 samples and ranged from 188 to 2,806 pCi/kg wet. Potassium-40 activity was found in all samples and ranged from 1,529 to 12,170 pCi/kg wet. All other nuclides were less than the MDC.

C. Ambient Gamma Radiation

Beginning in 2012, Exelon changed the type of dosimetry used for the REMP. OSLDs were deployed. TLD monitoring is continuing at PBAPS as a side-by-side technology comparison study but official reporting is from OSLD data. The relative comparison to control locations remains valid. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation). Results of OSLD measurements are listed in Tables C-IX.1 through C-IX.3 and Figure C-7, Appendix C.

Most gross OSLD measurements were below 10 mR per standard month, with a range of 6.6 to 16.0 mR per standard month. A comparison of the Site Boundary and Intermediate Distance data to the Control locations data indicate that the ambient gamma radiation levels from the Control locations 16, 18, 19 and 24 were essentially the same as the other locations. The historical ambient gamma radiation data from the Control locations was plotted along with similar data from the Site and the Intermediate Distance locations (Figure C-7, Appendix C).

In 2014, PBAPS replaced the Unit 3 reactor vessel's Steam Dryer in support of the Extended Power Uprate (EPU) project. The Old Steam Dryer (OSD) was removed and is being stored at the Low-Level Radioactive Waste Storage Facility (LLRWSF) at PBAPS until shipment can be conducted. Although this storage location is shielded to minimize exposure off-site and on-site, additional monitoring for environmental exposure due to this additional component in storage is considered prudent. Therefore, a new ambient gamma radiation monitoring location (1T) was added to the REMP to ensure continued compliance with 40 CFR 190 and provide more data for the validation of dose models and projections.

D. Independent Spent Fuel Storage Installation (ISFSI)

ISFSI was utilized beginning June 2000. During 2014, a total of 4 TN-68 casks, each loaded with 68 fuel bundles, were added to the ISFSI pad. Onsite location 1R, which is located on the hillside overlooking the ISFSI showed a general increase of 1 to 2 mR per standard month from pre-ISFSI loading (Figure C-8, Appendix C) for the period of 2000 to about 2007. Location 2B, which represents the location of the Nearest Real Resident, shows a slight increase in exposure from the ISFSI pad. Data from location 2B is used to demonstrate compliance to both 40CFR190 and 10CFR72.104 limits.

The large increase in multiple direct radiation locations after 2012 is a result of the transition in technology used for ambient gamma radiation measurement (from TLD to OSLD) and the use of "gross" data rather than "net".

All radiation levels are well-below regulatory limits.

E. Land Use Census

A Land Use Survey conducted during the fall of 2014 around the PBAPS was performed by Normandeau Associates, Inc., NAI Environmental Services Division for Exelon Nuclear to comply with Section 3.8.E.2 of PBAPS's Offsite Dose Calculation Manual Specifications (ODCMS) and Bases. The purpose of the survey was to document the nearest milk producing animal in each of the sixteen meteorological sectors out to five miles. In addition, the nearest residence and garden of >500 square feet were documented. The distance and direction of all locations were positioned using Global Positioning System (GPS) technology. The results

of this survey are summarized below. There were no changes in the nearest residence, garden or milk farms from the previous year.

Meteorological Sector and Distance from the Center of PBAPS Reactor Building Exhaust Vents								
Sector		Residence Feet	Garden Feet	Milk Farm Feet				
1	N	12,365	14,003	14,455				
2	NNE	11,112	11,041	10,843				
3	NE	10,080	10,004	10,492				
4	ENE	10,495	12,417	10,925				
5	E	10,066	14,540	14,471				
6	ESE	16,085	20,374	20,154				
7	SE	19,368	19,368	19,134				
8	SSE	3,912	3,912	-				
9	S	5,545	5,545	-				
10	SSW	6,072	8,167	11,602				
11	SW	4,755	4,865	4,860				
12	WSW	4,036	9,072	-				
13	W	5,327	5,327	5,136				
14	WNW	2,928	4,192	22,124				
15	NW	2,948	9,545	9,545				
16	NNW	5,124	-	-				

F. Errata Data

There is no errata data for 2014.

G. Secondary Laboratory Analysis

The Appendix D section of this report presents the results of data analysis performed by the QC laboratory, Environmental Inc. Duplicate samples were obtained from several locations and media and split between the primary laboratory, Teledyne Brown Engineering (TBE) and the QC laboratory. Comparisons of the results for all media were within expected ranges.

H. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, food products and water matrices (Appendix E). The PE samples, supplied by Eckert & Ziegler Analytics, Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria: 1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

The Environmental Resource Associates' evaluation report provides an acceptance range for control and warning limits with associated flag values. The Environmental Resource Associates' acceptance limits are established per the United States Environmental Protection Agency (USEPA), National Environmental Laboratory Accreditation Conference (NELAC), state specific performance testing program requirements or ERA's standard operating procedure for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

In reviewing our environmental inter-laboratory crosscheck programs, we identified 1) duplication of efforts on some matrices and isotopes and 2) that we are performing crosscheck samples on some matrices and isotopes that we do not perform for clients. Since the DOE MAPEP is designed to evaluate the ability of analytical facilities to correctly analyze for radiological constituents representative of those at DOE sites, the needed changes were made to the MAPEP program. Therefore, the following isotopes were removed from the MAPEP program:

Soil – gamma – will be provided by Analytics twice per year, starting in 2015. For 2014, one soil gamma is provided by MAPEP, the 2nd soil gamma is provided by Analytics.

AP – gamma – is currently provided by Analytics.

Water – gamma, H-3, Sr-90, uranium, gross alpha and gross beta currently provided by ERA.

MAPEP evaluates non-reported (NR) analyses as failed if they were reported in the previous series.

For the TBE laboratory, 163 out of 169 analyses performed met the specified acceptance criteria. Six analyses (Ni-63, K-40 and I-131 in water, and two Sr-90s and one Gross Alpha in AP samples) did not meet the specified acceptance criteria for the following reasons:

- Teledyne Brown Engineering's MAPEP March 2014 Ni-63 in water result of 32.7 ± 1.69 Bq/L was overlooked when reporting the data but would have passed the acceptance range of 23.9 – 44.2 Bq/L. NCR 14-04
- 2. Teledyne Brown Engineering's MAPEP March 2014 K-40 in water result of 1.63 ± 2.49 Bq/L was overlooked when reporting the data but would have passed the false positive test. NCR 14-04
- 3. Teledyne Brown Engineering's ERA November 2014 I-131 in water result of 15.8 pCi/L was lower than the known value of 20.3 pCi/L, failing below the lower acceptance limit of 16.8. The result was evaluated as failed with a found to known ratio of 0.778. No cause could be found for the slightly low result. All ERA I-131 evaluations since 2004 have been acceptable. NCR 14-08
- 4. Teledyne Brown Engineering's MAPEP March 2014 Sr-90 in AP result of 0.822 Bq/sample was lower than the known value of 1.18 Bq/sample, falling below the lower acceptance limit of 0.83 Bq/sample. The rerun result was still low, but fell within the lower acceptance range of 0.836. The rerun result was statistically the same number as the original result. No cause could be found for the slightly low results. NCR 14-04
- 5. Teledyne Brown Engineering's MAPEP September 2014 Sr-90 in AP result of 0.310 Bq/sample was lower than the known value of 0.703 Bq/sample. The gravimetric yield of 117% was very high (we normally see yields of 60% to 70%) and could account for the low activity. NCR 14-09
- 6. Teledyne Brown Engineering's MAPEP September 2014 Gr-Alpha in AP result of 0.153 Bq/sample was lower than the known value of 0.53 Bq/sample. The AP sample was counted on the wrong side.

The AP was flipped over and recounted with acceptable results. NCR 14-09

For the EIML laboratory, 85 of 90 analyses met the specified acceptance criteria. Five analyses (Water – Pu-238, Pu-239, Fe-55; AP – Co-57; Soil – Cs134) did not meet the specified acceptance criteria for the following reasons:

- 1. Environmental Inc., Midwest Laboratory's MAPEP February 2014 water Pu-238 result of 1.28 Bq/L was higher than the known value of 0.83 Bq/L, exceeding the upper control limit of 1.08 Bq/L. The high bias on the plutonium was traced to contamination from a newly purchased standard. The result of the reanalysis with the new tracer was 0.68 Bq/L, which fell within the acceptance criteria.
- 2. Environmental Inc., Midwest Laboratory's MAPEP February 2014 water Pu-239/240 result of 0.91 Bq/L was higher than the known value of 0.68 Bq/L, exceeding the upper control limit of 0.88 Bq/L. The high bias on the plutonium was traced to contamination from a newly purchased standard. The result of reanalysis with the new tracer was 0.66 Bq/L, which fell within the acceptance criteria.
- Environmental Inc., Midwest Laboratory's MAPEP February 2014 AP Co-57 result of 1.60 ± 0.05 Bq/total sample failed the false positive test. Interference from the Eu-152 resulted in the misidentification of Co-57.
- Environmental Inc., Midwest Laboratory's MAPEP February 2014 soil Cs-134 result of 6.10 ± 1.80 Bq/kg failed the false positive test. Long sample counting time lead to interference from naturally occurring Bi-214 in the sample matrix with a close spectral energy.

Environmental Inc., Midwest Laboratory's MAPEP August 2014 water Fe-55 result of 55.10 \pm 14.80 Bq/L was higher than the known value of 31.50 Bq/L, exceeding the upper control limit of 41.00 Bq/L. The result of the reanalysis of Fe-55 was 32.63 \pm 16.30 Bq/L, which fell within the acceptance criteria.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

V. References

- 1. Preoperational Environs Radioactivity Survey Summary Report, March 1960 through January 1966. (September 1967).
- 2. Interex Corporation, Peach Bottom Atomic Power Station Regional Environs Radiation Monitoring Program Preoperational Summary Report, Units 2 and 3, 5 February 1966 through 8 August 1973, June 1977, Natick, Massachusetts.
- 3. Radiation Management Corporation Publication, Peach Bottom Atomic Power Station Preoperational Radiological Monitoring Report for Unit 2 and 3, January 1974, Philadelphia, Pennsylvania.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

NAME OF FACIL LOCATION OF FACIL	ITY: PEACH BOTTO ITY: YORK COUNTY		WER STATION	DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50		
MEDIUM OR ÞATHWAY SAMPLED (UNIT OF MEASUREMENT)	T YPES OF ANAL YSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION N MEAN (M) (F) RANGE	WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	Н-3	8	200	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	I-131	24	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
A	GAMMA MN-54	24	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
_	CO-58		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		30	<lld< td=""><td><lld< td=""><td>- '</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>- '</td><td></td><td>0</td></lld<>	- '		0
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

_ ___ _

.

NAME OF FACIL LOCATION OF FACIL	ITY: PEACH BOTTO ITY: YORK COUNTY		WER STATION		IONS LOCATION	50-277 & 50-278 2014 LOCATION WITH HIGHEST ANNUAL MEAN (M)		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE		MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
>	LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
DRINKING WATER (PCI/LITER)	GR-B	36	4	3.1 (18/24) (2/5.6)	2.8 (7/12) (2.5/3.8)	3.3 (8/12) (2.5/5.6)	13B INDICATOR CHESTER WATER AUTHORITY SI 13306 FEET ESE	0 JSQUEHANNA PUMPIN(
	H-3	12	200	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	I-131	36	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA MN-54	36	15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACIL LOCATION OF FACIL	ITY: PEACH BOTTO ITY: YORK COUNTY		WER STATION	DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-277 & 50		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	(F) NAM	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
DRINKING WATER (PCI/LITER)	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
~	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
⊳ ω	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		60	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY PA				DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50-278 2014		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION N MEAN (M) (F) RANGE	WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
BOTTOM FEEDER (PCI/KG WET)	GAMMA К-40	4	NA	3362 (2/2) (3293/3430)	3499 (2/2) (2997/4000)	3499 (2/2) (2997/4000)	6 CONTROL HOLTWOOD POND 57347 FEET NW	0
	MN-54		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-134		130	<lld< td=""><td><lld< td=""><td>÷</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>÷</td><td></td><td>0</td></lld<>	÷		0
	CS-137		150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY PA				DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50-278 2014		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION V MEAN (M) (F) RANGE	WITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
PREDATOR (PCI/KG WET)	GAMMA K-40	4	NA	2989 (2/2) (2470/3508)	3490 (2/2) (3393/3587)	3490 (2/2) (3393/3587)	6 CONTROL HOLTWOOD POND 57347 FEET NW	0
	MN-54		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		130	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
1	FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	ZN-65		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-134		130	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CS-137		150	· <lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY PA			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-277 & 50-278 2014 LOCATION WITH HIGHEST ANNUAL MEAN (M)			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SEDIMENT (PCI/KG DRY)	GAMMA K-40	6	NA	20233 (4/4) (13460/26710)	14740 (2/2) (11730/17750)	24720 (2/2) (22730/26710)	4T INDICATOR CONOWINGO POND NEAR CONOWI 41818 FEET SE	0 NGO DAM
	MN-54		NA	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CO-58		NA	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
`	CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-134		150	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		180	195 (3/4) (107/241)	141 (1/2)	237 (1/2)	4T INDICATOR CONOWINGO POND NEAR CONOWI 41818 FEET SE	0 NGO DAM
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	246	10	17 (204/206) (8/38)	16 (39/40) (8/39)	17 (50/51) (10/38)	1C INDICATOR PEACH BOTTOM SOUTH SUB STATI 4513 FEET SSE	0 ON
	GAMMA BE-7	20	NA	65 (16/16) (46/93)	64 (3/4) (59/68)	67 (4/4) (54/75)	3A INDICATOR DELTA PA SUBSTATION 19114 FEET SW	0

TABLE A-1RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY PA		REPORTIN	DOCKET NUMBER: REPORTING PERIOD:		0-278 2014			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION (MEAN (M) (F) RANGE	WITH HIGHEST ANNUAL MEAN (M STATION # NAME DISTANCE AND DIRECTION) NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	MN-54		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
<	CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
A-7	CS-134		50	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
AIR IODINE (E-3 PCI/CU.METER)	GAMMA I-131	246	70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
MILK (PCI/LITER)	[-13]	129	1	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA K-40	129	NA	1270 (100/100) (1058/1521)	1260 (29/29) (1114/1390)	1377 (4/4) (1328/1399)	D INDICATOR 18533 FEET NE	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY PA			DOCKET NUMBER: REPORTING PERIOD:		50-277 & 50-278 2014		<u></u>	
				INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION V	VITH HIGHEST ANNUAL MEAN (M	ſ)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	CS-134		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		18	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
-	LA-140		15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
VEGETATION (PCI/KG WET)	GAMMA BE-7	32	NA	746 (15/20) (208/2806)	718 (6/12) (188/1509)	918 (7/11) (264/2806)	1Q INDICATOR 3274 FEET SE	0
	K-40		NA	4750 (20/20) (1529/12170)	5688 (12/12) (3317/8807)	5785 (11/11) (2161/12170)	1Q INDICATOR 3274 FEET SE	0
	MN-54		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-58		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORTHE PEACH BOTTOM ATOMIC POWER STATION, 2014

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY I	OR
THE PEACH BOTTOM ATOMIC POWER STATION, 2014	

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY PA			DOCKET NUMBER: REPORTING PERIOD:		50-277 & 5	50-277 & 50-278 2014		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (M) (F) RANGE	CONTROL LOCATION MEAN (M) (F) RANGE	LOCATION M MEAN (M) (F) RANGE	VITH HIGHEST ANNUAL MEAN (M) STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
VEGETATION (PC1/KG WET)	1-131		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-134		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		80	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
DIRECT RADIATION (MILLIREM/STD.MO.)	OSLD-QUARTERLY	189	NA	9.8 (173/173) (6.6/16.0)	9.5 (16/16) (7.6/10.9)	16.0 (1/1)	IT INDICATOR LAY ROAD 3065 FEET NW	0

THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

APPENDIX B

SAMPLE DESIGNATION AND LOCATIONS

Location		Location Description	Distance & Direction from Site		
<u>A.</u>	Surface Water				
	1LL	Peach Bottom Units 2 and 3 Intake - Composite (Control)	1,256 feet NE		
	1MM	Peach Bottom Canal Discharge -Composite	5,470 feet SE		
<u>B.</u>	Drinking (Potable	<u>e) Water</u>			
	4L 6I	Conowingo Dam EL 33' MSL - Composite Holtwood Dam Hydroelectric Station - Composite (Control)	45,721 feet SE 30,337 feet NW		
	13B	Chester Water Authority (CWA) Susquehanna Pumping Station- Composite	13,306 feet ESE		
<u>C.</u>	Precipitation				
	1A 1B 4M		1,396 feet SE 2,587 feet NW 45,989 feet SE		
<u>D,</u>	Fish				
	4 6	Conowingo Pond Holtwood Pond (Control)	7,162 feet SE 57,347 feet NW		
<u>E.</u>	Sediment				
	4J 4T 6F	Conowingo Pond near Berkin's Run Conowingo Pond near Conowingo Dam Holtwood Dam (Control)	7,346 feet SE 41,818 feet SE 31,469 feet NW		
<u>F.</u>	Air Particulate -	Air Iodine			
	1B 1Z 1A 1C 3A 5H2	Weather Station #2 Weather Station #1 Weather Station #1 Peach Bottom South Sub Station Delta, PA – Substation Manor Substation (Control)	2,587 feet NW 1,396 feet SE 1,396 feet SE 4,513 feet SSE 19,144 feet SW 162,565 feet NE		
<u>G.</u>	Milk – bi-weekly	/ monthly			
	J R S U V	(Control)	5,119 feet W 4,694 feet WSW 19,061 feet SE 14,468 feet SSW 32,736 feet W		
<u>H.</u>	Milk – quarterly				
	C D	(Control)	5,037 feet NW 18,533 feet NE		

TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and
Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2014

_ocation	Location Description	Distance & Direction from Site
- <u>H. Milk – qua</u> i	terly (cont'd)	
Ε	(Control)	46,147 feet N
L	(control)	11,194 feet NE
P		10,982 feet ENE
=		89.232 feet S
W		09,232 Teet 5
. Food Prod	<u>ucts – monthly when available</u>	
1Q		4,171 feet NW
2B		3,854 feet SSE
2Q		9,245 feet SW
55	(Control)	52,272 feet NE
J. Environme	ntal Dosimetry - OSLD	
Site Boundary		
1L	Peach Bottom Unit 3 Intake	1,256 feet NE
1P	Tower B & C Fence	2,112 feet ESE
1A	Weather Station #1	1,396 feet SE
1Q	Tower D & E Fence	3,274 feet SE
1D	140 ° Sector	3,538 feet SE
2	Peach Bottom 130° Sector Hill	4,661 feet SE
2B	Burk Property	3,768 feet SSE
1M	Discharge	5,438 feet SE
1R		2,798 feet SSE
11	Peach Bottom South Substation	2,851 feet SSE
1C	Peach Bottom South Substation	4,513 feet SSE
1J	Peach Bottom 180° Sector Hill	3,755 feet S
1K	Peach Bottom Site Area	4,604 feet SW
1F	Peach Bottom 200° Sector Hill	2,707 feet SSW
40	Peach Bottom Site Area	7,750 feet SW
1NN	Peach Bottom Site	2,547 feet WSW
1H	Peach Bottom 270° Sector Hill	3,104 feet W
1G	Peach Bottom North Substation	3,173 feet WNW
1B	Weather Station #2	2,587 feet NW
1E	Peach Bottom 350° Sector Hill	3,136 feet NNW
ntermediate Dis	stance	
5	Wakefield, PA	24,482 feet E
15	Silver Spring Rd	19,449 feet N
22	Eagle Road	13,230 feet NNE
44	Goshen Mill Rd	27,480 feet NE
32	Slate Hill Rd	15,213 feet ENE
45	PB-Keeney Line	18,524 feet ENE
14	Peters Creek	10,397 feet E
14	Riverview Rd	21,966 feet ESE
		•
31A	Eckman Rd	24,105 feet SE
4K	Conowingo Dam Power House Roof	45,721 feet SE
23	Peach Bottom 150° Sector Hill	5,276 feet SSE
27	N. Cooper Road	13,859 feet S
48	Macton Substation	25,772 feet SSW

TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and
Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2014

TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and
Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2014

Location	Location Description	Distance & Direction from Site
J. Environme	ental Dosimetry – OSLD (cont'd)	
Intermediate Di	stance (cont'd)	
3A	Delta, PA Substation	19,114 feet SW
49	PB-Conastone Line	20,673 feet WSW
50	TRANSCO Pumping Station	25,677 feet W
51	Fin Substation	20,511 feet WNW
26	Slab Road	22,093 feet NW
6B	Holtwood Dam Power House Roof	30,538 feet NW
42	Muddy Run Environ. Laboratory	21,954 feet NNW
43	Drumore Township School	26,931 feet NNE
46	Broad Creek	23,483 feet SSE
47	Broad Creek Scout Camp	22,153 feet S
1T	Lay Road/LLRWSF	3,065 feet NW
<u>Control</u>		
16	Nottingham, PA Substation (Control)	67,788 feet E
24	Harrisville, MD Substation (Control)	58,048 feet ESE
18	Fawn Grove, PA (Control)	51,413 feet W
19	Red Lion, PA (Control)	106,354 feet WNW

TABLE B-2 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2014 Power Station, 2014

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Surface Water	Tritium	Quarterly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	500 ml	TBE, TBE-2010 Tritium and carbon-14 analysis by liquid scintillation Env. Inc., T-02 Determination of tritium in water (direct method)
Surface Water	I-131	Monthly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2012 Radioiodine in various matrices Env. Inc., I-131-01 Determination of I-131 in water by an ion exchange
Drinking Water	Gross Beta	Monthly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2008 Gross alpha and/or gross beta activity in various matrices Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)
Drinking Water	1-131	Monthly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2031 Radioiodine in drinking water Env. Inc., I-131-01 Determination of I-131 in water by an ion exchange
Drinking Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Drinking Water	Tritium	Quarterly composite from a continuous water compositor.	NAI-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	500 ml	TBE, TBE-2010 Tritium and carbon-14 analysis by liquid scintillation Env. Inc., T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Semi-annual samples collected via electroshocking or other techniques	NAI-ER3 Collection of fish samples for radiological analysis (Peach Bottom Atomic Power Station)	1000 grams (wet)	TBE, TBE-2007 Gamma emitting radioisotope analysis
Sediment	Gamma Spectroscopy	Semi-annual grab samples	NAI-ER2 Collection of sediment samples for radiological analysis (Peach Bottom Atomic Power Station)	500 grams (dry)	TBE, TBE-2007 Gamma emitting radioisotope analysis

TABLE B-2 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Peach Bottom Atomic Power Station, 2014 Power Station, 2014

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter paper	NAI-ER16 Collection of air particulate and air iodine samples for radiological analysis (Peach Bottom Atomic Power Station)	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2008 Gross alpha and/or gross beta activity in various matrices Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2023 Compositing of samplesEnv. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters (approximately 3600 cubic meters)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Iodine	Gamma Spectroscopy	One-week composite of continuous air sampling through charcoal filter	NAI-ER8 Collection of air particulate and air iodine samples for radiological analysis (Peach Bottom Atomic Power Station)	1 filter (approximately 280 cubic meters weekly)	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
Milk	I-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	NAI-ER10 Collection of milk samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2012 Radioiodine in various matrices Env. Inc., I-131-01 Determination of I-131 in milk by an ion exchange
Milk	Gamma Spectroscopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	NAI-ER10 Collection of milk samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Food Products	Gamma Spectroscopy	Monthly when available	NAI-ER12 Collection of vegetation samples for radiological analysis (Peach Bottom Atomic Power Station)	1000 grams	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
OSLD	Optically Stimulated Luminescence Dosimetry	Quarterly OSLDs comprised of two Al ₂ O ₃ :C Landauer Incorporated elements.	NAI-ER9 Collection of OSLD samples for radiological analysis (Peach Bottom Atomic Power Station)	2 dosimeters	Landauer Incorporated

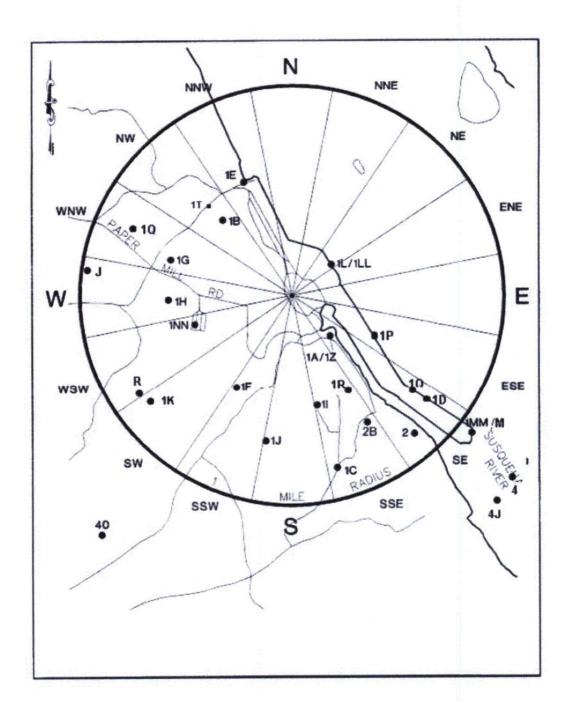


Figure B-1 Environmental Sampling Locations Within One Mile of the Peach Bottom Atomic Power Station, 2014

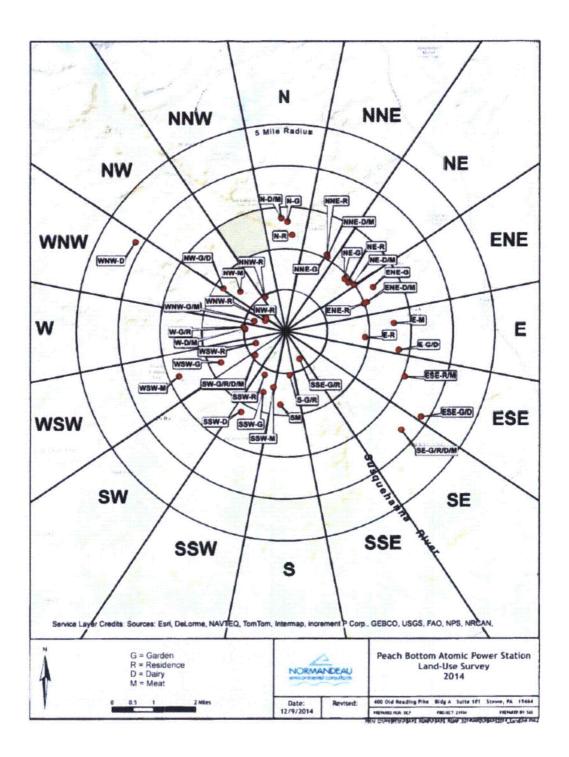


Figure B-2 Environmental Sampling Locations Between One and Approximately Five Miles of the Peach Bottom Atomic Power Station, 2014

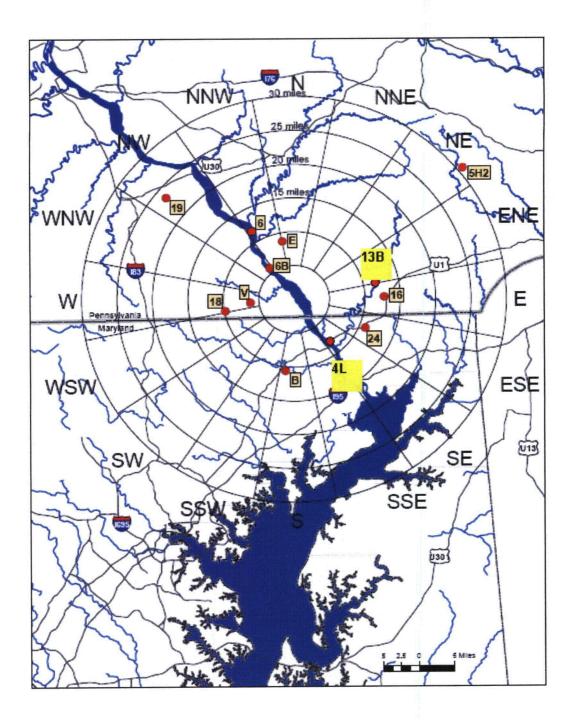


Figure B-3 Environmental Sampling Locations Greater Than Five Miles from the Peach Bottom Atomic Power Station, 2014

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED Table C-I.1 IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	1LL	1MM
01/01/14 - 03/26/14 03/26/14 - 06/25/14	< 185 < 190	< 183 < 195
06/25/14 - 10/01/14	< 190	< 195
10/01/14 - 12/31/14	< 183	< 183

-

-

MEAN

Table C-I.2 CONCENTRATIONS OF I-131 IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	1LL	1MM
01/01/14 - 01/29/14	< 0.8	< 0.7
01/29/14 - 02/26/14	< 0.7	< 0.5
02/26/14 - 03/26/14	< 0.6	< 0.6
03/26/14 - 04/30/14	< 0.7	< 0.7
04/30/14 - 05/28/14	< 0.8	< 0.8
05/28/14 - 06/25/14	< 0.5	< 0.6
06/25/14 - 07/30/14	< 0.5	< 0.5
07/30/14 - 08/27/14	< 0.7	< 0.6
08/27/14 - 10/01/14	< 0.9	< 0.8
10/01/14 - 10/29/14	< 0.6	< 0.7
10/29/14 - 11/26/14	< 0.6	< 0.5
11/26/14 - 12/31/14	< 0.6	< 0.4
MEAN	-	-

Table C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE		Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
1LL	01/01/14 - 01/29/14	< 4	< 4	< 11	< 4	< 8	< 7	< 10	< 4	< 5	< 32	< 10
	01/29/14 - 02/26/14	< 4	< 5	< 10	< 3	< 7	< 5	< 9	< 4	< 4	< 29	< 10
	02/26/14 - 03/26/14	< 4	< 4	< 8	< 3	< 7	< 4	< 7	< 3	< 3	< 25	< 7
	03/26/14 - 04/30/14	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 17	< 4
	04/30/14 - 05/28/14	< 3	< 3	< 9	< 4	< 7	< 5	< 7	< 3	< 3	< 23	< 7
	05/28/14 - 06/25/14	< 5	< 5	< 9	< 4	< 10	< 5	< 7	< 4	< 4	< 24	< 7
	06/25/14 - 07/30/14	< 5	< 3	< 8	< 3	< 8	< 4	< 7	< 3	< 4	< 28	< 7
	07/30/14 - 08/27/14	< 3	< 4	< 7	< 4	< 7	< 4	< 7	< 3	< 4	< 24	< 7
	08/27/14 - 10/01/14	< 4	< 4	< 10	< 4	< 9	< 5	< 8	< 4	< 5	< 33	< 9
	10/01/14 - 10/29/14	< 4	< 4	< 9	< 4	< 8	< 4	< 8	< 4	< 4	< 32	< 10
	10/29/14 - 11/26/14	< 5	< 5	< 10	< 4	< 13	< 6	< 10	< 6	< 5	< 29	< 11
	11/26/14 - 12/31/14	< 5	< 5	< 10	< 6	< 12	< 6	< 9	< 4	< 6	< 27	< 10
	MEAN	-	-	-	-	-	-	-	-	-	-	-
1MM	01/01/14 - 01/29/14	< 6	< 5	< 12	< 8	< 11	< 5	< 8	< 4	< 5	< 29	< 11
	01/29/14 - 02/26/14	< 4	< 5	< 12	< 5	< 10	< 5	< 9	< 3	< 5	< 37	< 11
	02/26/14 - 03/26/14	< 5	< 6	< 10	< 6	< 10	< 6	< 9	< 4	< 6	< 32	< 14
	03/26/14 - 04/30/14	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 2	< 2	< 12	< 3
	04/30/14 - 05/28/14	< 4	< 5	< 9	< 4	< 9	< 5	< 8	< 4	< 5	< 30	< 10
	05/28/14 - 06/25/14	< 5	< 4	< 8	< 5	< 8	< 4	< 9	< 4	< 4	< 26	< 8
	06/25/14 - 07/30/14	< 4	< 4	< 8	< 4	< 7	< 4	< 7	< 4	< 4	< 29	< 8
	07/30/14 - 08/27/14	< 4	< 5	< 10	< 4	< 9	< 5	< 9	< 5	< 4	< 28	< 10
	08/27/14 - 10/01/14	< 3	< 4	< 10	< 4	< 8	< 5	< 8	< 4	< 4	< 32	< 12
	10/01/14 - 10/29/14	< 4	< 4	< 10	< 4	< 9	< 4	< 8	< 4	< 4	< 29	< 11
	10/29/14 - 11/26/14	< 6	< 6	< 15	< 7	< 11	< 6	< 13	< 5	< 7	< 33	< 12
	11/26/14 - 12/31/14	< 8	< 8	< 18	< 9	< 17	< 8	< 14	< 7	< 8	< 36	< 11
	MEAN	-	-	-	-	-	-	-	-	-	-	

Table C-II.1 CONCENTRATIONS OF GROSS BETA IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

COLLECTION PERIOD	13B	4L	61
01/02/14 - 01/30/14 01/30/14 - 02/27/14	3.4 ± 1.3 < 2.7	2.8 ± 1.4 2.9 ± 1.9	2.6 ± 1.1
02/27/14 - 03/27/14	< 2.3	< 2.3	< 2.3
03/27/14 - 05/01/14	< 1.9	< 1.9	< 2.0
05/01/14 - 05/29/14	(1) 3.0 ± 1.4	2.0 ± 1.3	< 2.9
05/29/14 - 06/26/14	2.8 ± 1.4	2.2 ± 1.4	2.5 ± 1.4
06/26/14 - 07/31/14	2.9 ± 1.6	2.7 ± 1.6	< 2.2
07/31/14 - 08/28/14	2.5 ± 1.6	4.0 ± 1.7	2.8 ± 1.6
08/28/14 - 10/02/14	3.6 ± 1.5	4.0 ± 1.6	2.7 ± 1.5
10/02/14 - 10/30/14	< 2.3	3.6 ± 1.7	2.5 ± 1.6
10/30/14 - 11/26/14	5.6 ± 1.7	3.1 ± 1.5	3.8 ± 1.5
11/26/14 - 01/02/15	2.6 ± 1.4	2.2 ± 1.3	3.0 ± 1.4
MEAN	3.3 ± 2.0	2.9 ± 1.5	2.8 ± 0.9

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-II.2CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	13B	4L	61	
01/02/14 - 03/27/14	< 157	< 160	< 181	
03/27/14 - 06/26/14	< 194 (1)	< 192	< 197	
06/26/14 - 10/02/14	< 187	< 188	< 186	
10/02/14 - 01/02/15	< 158	< 182	< 185	

-

MEAN

Table C-II.3 CONCENTRATIONS OF I-131 IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

-

	13B	4L	61	
01/02/14 - 01/30/14	< 0.9	< 0.8	< 0.7	
01/30/14 - 02/27/14	< 0.7	< 0.5	< 0.9	
02/27/14 - 03/27/14	< 0.5	< 0.7	< 0.7	
03/27/14 - 05/01/14	< 0.7	< 0.6	< 0.9	
05/01/14 - 05/29/14	< 0.8 (1)	< 0.8	< 0.8	
05/29/14 - 06/26/14	< 0.5	< 0.5	< 0.5	
06/26/14 - 07/31/14	< 0.6	< 0.6	< 0.6	
07/31/14 - 08/28/14	< 0.8	< 0.5	< 0.6	
08/28/14 - 10/02/14	< 0.7	< 0.8	< 0.8	
10/02/14 - 10/30/14	< 0.6	< 0.5	< 0.6	
10/30/14 - 11/26/14	< 0.7	< 0.5	< 0.5	
11/26/14 - 01/02/15	< 0.5	< 0.5	< 0.5	
MEAN	-	-	-	

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-II.4CONCENTRATIONS OF GAMMA EMITTER IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE		Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
13B	12/30/13 - 01/27/14	< 3	< 3	< 7	< 3	< 5	< 3	< 6	< 3	< 3	< 23	< 7
	01/27/14 - 02/24/14	< 4	< 3	< 9	< 4	< 7	< 4	< 9	< 4	< 4	< 30	< 9
	02/24/14 - 03/24/14	< 4	< 4	< 10	< 3	< 9	< 5	< 6	< 3	< 3	< 33	< 8
	03/24/14 - 04/28/14	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 1	< 2	< 12	< 4
	04/28/14 - 05/19/14	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 1	< 2	< 18	< 5
	05/19/14 - 06/23/14 (1)	< 4	< 4	< 8	< 3	< 8	< 4	< 7	< 4	< 4	< 18	< 8
	06/23/14 - 07/28/14	< 3	< 4	< 8	< 3	< 7	< 4	< 6	< 3	< 3	< 29	< 8
	07/28/14 - 08/25/14	< 3	< 3	< 7	< 3	< 4	< 3	< 5	< 3	< 3	< 26	< 7
	08/25/14 - 09/30/14	< 4	< 4	< 8	< 4	< 8	< 4	< 7	< 3	< 3	< 28	< 9
	09/30/14 - 10/27/14	< 3	< 3	< 7	< 3	< 6	< 3	< 6	< 3	< 3	< 24	< 9
	10/27/14 - 11/24/14	< 4	< 5	< 8	< 4	< 8	< 5	< 9	< 5	< 5	< 28	< 8
	11/24/14 - 12/29/14	< 6	< 6	< 16	< 7	< 13	< 6	< 11	< 7	< 6	< 30	< 10
	MEAN	-	-	-	-	-	-	-	-	-	-	-
4L	01/02/14 - 01/30/14	< 4	< 4	< 9	< 4	< 8	< 4	< 7	< 4	< 4	< 29	< 10
	01/30/14 - 02/27/14	< 4	< 5	< 10	< 4	< 9	< 6	< 9	< 4	< 5	< 32	< 9
	02/27/14 - 03/27/14	< 5	< 5	< 10	< 4	< 9	< 6	< 9	< 5	< 6	< 34	< 9
	03/27/14 - 05/01/14	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 2	< 2	< 15	< 5
	05/01/14 - 05/29/14	< 4	< 5	< 10	< 5	< 10	< 4	< 7	< 5	< 5	< 30	< 13
	05/29/14 - 06/26/14	< 5	< 5	< 8	< 6	< 7	< 5	< 10	< 5	< 5	< 25	< 7
	06/26/14 - 07/31/14	< 4	< 5	< 9	< 4	< 9	< 5	< 8	< 4	< 4	< 29	< 8
	07/31/14 - 08/28/14	< 4	< 6	< 12	< 5	< 10	< 5	< 10	< 5	< 5	< 31	< 13
	08/28/14 - 10/02/14	< 5	< 5	< 10	< 6	< 11	< 6	< 9	< 4	< 5	< 29	< 10
	10/02/14 - 10/30/14	< 4	< 4	< 9	< 4	< 8	< 5	< 8	< 4	< 5	< 29	< 10
	10/30/14 - 11/26/14	< 6	< 5	< 11	< 6	< 10	< 5	< 9	< 5	< 6	< 30	< 6
	11/26/14 - 01/02/15	< 6	< 6	< 10	< 5	< 11	< 7	< 12	< 6	< 7	< 27	< 7
	MEAN	-	-	-		-	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-II.4CONCENTRATIONS OF GAMMA EMITTER IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
61	01/02/14 - 01/30/14	< 4	< 4	< 10	< 4	< 9	< 5	< 8	< 4	< 4	< 26	< 8
	01/30/14 - 02/27/14	< 4	< 4	< 8	< 7	< 10	< 5	< 10	< 5	< 6	< 37	< 11
	02/27/14 - 03/27/14	< 4	< 4	< 8	< 4	< 8	< 4	< 9	< 4	< 4	< 26	< 8
	03/27/14 - 05/01/14	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 2	< 2	< 13	< 4
	05/01/14 - 05/29/14	< 5	< 5	< 1 1	< 6	< 10	< 6	< 9	< 4	< 5	< 33	< 13
	05/29/14 - 06/26/14	< 6	< 5	< 12	< 6	< 14	< 6	< 11	< 7	< 6	< 31	< 10
	06/26/14 - 07/31/14	< 4	< 5	< 12	< 5	< 10	< 6	< 8	< 5	< 5	< 30	< 9
	07/31/14 - 08/28/14	< 5	< 5	< 15	< 6	< 12	< 7	< 10	< 5	< 6	< 33	< 11
	08/28/14 - 10/02/14	< 4	< 5	< 9	< 5	< 9	< 5	< 8	< 4	< 5	< 28	< 11
	10/02/14 - 10/30/14	< 4	< 5	< 9	< 4	< 7	< 5	< 8	< 3	< 5	< 35	< 11
	10/30/14 - 11/26/14	< 7	< 8	< 15	< 7	< 14	< 7	< 11	< 6	< 8	< 34	< 11
	11/26/14 - 01/02/15	< 5	< 6	< 12	< 5	< 14	< 7	< 10	< 5	< 7	< 25	< 8
	MEAN	-	-	-	-	-	-	-	-	-	-	-

Table C-III.1 CONCENTRATIONS OF GAMMA EMITTERS IN PREDATOR AND BOTTOM FEEDER (FISH) SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION PERIOD	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137
4	PREDATOR								
	06/20/14	3508 ± 891	< 41	< 45	< 108	< 51	< 71	< 35	< 40
	09/26/14	2470 ± 575	< 38	< 37	< 80	< 43	< 73	< 30	< 36
	MEAN	2989 ± 1468	-	-	-	-	~		-
4	BOTTOM FEEDER								
	06/16/14	3430 ± 764	< 54	< 51	< 101	< 48	< 118	< 47	< 49
	09/26/14	3293 ± 637	< 40	< 38	< 93	< 39	< 89	< 44	< 40
	MEAN	3362 ± 194	-	-	-	-		-	-
6	PREDATOR								
	06/12/14	3393 ± 947	< 61	< 48	< 107	< 57	< 119	< 65	< 59
	09/29/14	3587 ± 1077	< 58	< 61	< 137	< 56	< 132	< 67	< 68
	MEAN	3490 ± 274	-	-	-	-	-	-	-
6	BOTTOM FEEDER								
	06/12/14	4000 ± 1197	< 71	< 76	< 139	< 67	< 137	< 72	< 73
	09/29/14	2997 ± 913	< 37	< 34	< 85	< 31	< 96	< 37	< 43
	MEAN	3499 ± 1418	-	-	-	-	-	-	-

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

Table C-IV.1 CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION	K-40	Mn-54	Co-58	Co-60	Cs-134	Cs-137
4J	06/16/14	18030 ± 1926	< 66	< 80	< 86	< 79	241 ± 112 (1)
	11/25/14	13460 ± 1156	< 51	< 42	< 69	< 44	107 ± 52 (1)
	MEAN	15745 ± 6463	-	-	-	-	174 ± 190
4T	06/16/14	26710 ± 2678	< 138	< 116	< 150	< 118	< 152
•	11/25/14	22730 ± 3091	< 131	< 99	< 133	< 111	237 ± 113 (1)
	MEAN	24720 ± 5629	-	-	-	-	-
6F	06/16/14	11730 ± 1503	< 66	< 78	< 49	< 67	< 72
	11/25/14	17750 ± 1525	< 67	< 55	< 91	< 59	141 ± 68 (1)
	MEAN	14740 ± 8514	-	-	-	-	-

RESULTS IN UNITS OF PC/KG DRY ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

COLLECTION		GROUP I	1	GROUP II	GROUP III
PERIOD -	1B	1C	1Z	3A	5H2
12/30/13 - 01/06/14			·····		20 ± 5
01/01/14 - 01/09/14	17 ± 5	17 ± 5	19 ± 5	23 ± 5	
01/06/14 - 01/13/14					21 ± 5
01/09/14 - 01/15/14	24 ± 7	19 ± 6	17 ± 6	17 ± 6	
01/13/14 - 01/20/14					< 7
01/15/14 - 01/23/14	21 ± 5	24 ± 5	21 ± 5	22 ± 5	
01/22/14 - 01/27/14					20 ± 7
01/23/14 - 01/30/14	17 ± 5	18 ± 5	18 ± 5	18 ± 5	
01/27/14 - 02/04/14					15 ± 5
01/30/14 - 02/06/14	20 ± 5	19 ± 5	23 ± 6	23 ± 6	00 . 40
02/04/14 - 02/10/14	05 . 7	aa . .	07.7	07.7	39 ± 10
02/06/14 - 02/12/14	35 ± 7	38 ± 7	37 ± 7	37 ± 7	05 1 6
02/10/14 - 02/17/14	04 . 5	47 . 5	40 · F	04 . 5	25 ± 6
02/12/14 - 02/20/14	24 ± 5	17 ± 5	19 ± 5	21 ± 5	13 ± 5
02/17/14 - 02/24/14 02/20/14 - 02/27/14	15 ± 5	15 ± 5	17 ± 5	17 ± 5	13 I S
02/24/14 - 03/02/14	15 ± 5	15 1 5	17 1 5	17 1 5	29 ± 7
02/27/14 - 03/06/14	28 ± 6	33 ± 6	30 ± 6	33 ± 6	25 17
03/02/14 - 03/10/14	20 1 0	33 ± 0	30 ± 0	55 1 0	20 ± 5
03/06/14 - 03/13/14	27 ± 6	21 ± 5	23 ± 5	24 ± 5	20 1 0
03/10/14 - 03/16/14	27 1 0	2110	20 1 0	24 1 0	21 ± 6
03/13/14 - 03/20/14	13 ± 5	13 ± 5	13 ± 5	11 ± 5	21 2 0
03/16/14 - 03/24/14	10 1 0	10 1 0	10 1 0		12 ± 4
03/20/14 - 03/27/14	15 ± 5	18 ± 6	16 ± 5	20 ± 6	
03/24/14 - 03/31/14					16 ± 5
03/27/14 - 04/03/14	21 ± 5	17 ± 5	15 ± 5	16 ± 5	
03/31/14 - 04/07/14					15 ± 5
04/03/14 - 04/09/14	14 ± 6	10 ± 5	14 ± 6	15 ± 6	
04/07/14 - 04/14/14					9±5
04/09/14 - 04/17/14	15 ± 4	21 ± 5	16 ± 5	16 ± 4	
04/14/14 - 04/21/14					19 ± 5
04/17/14 - 04/24/14	17 ± 6	14 ± 5	17 ± 6	17 ± 5	
04/21/14 - 04/28/14					18 ± 5
04/24/14 - 05/01/14	15 ± 5	10 ± 5	15 ± 5	9±5	
04/28/14 - 05/05/14					9±5
05/01/14 - 05/08/14	8±5	15 ± 5	12 ± 5	13 ± 3	
05/05/14 - 05/12/14	47	40 . 5	40 . 5	45 . 5	14 ± 5
05/08/14 - 05/15/14	17 ± 5	16 ± 5	13 ± 5	15 ± 5	10.5
05/12/14 - 05/19/14	10 . 5	40 / 5	45 1 6	12 . 5	10 ± 5
05/15/14 - 05/22/14	12 ± 5	12 ± 5	15 ± 6	13 ± 5	19 ± 5
05/19/14 - 05/27/14 05/22/14 - 05/29/14	11 ± 5	15 ± 5	9±5	9±5	19 1 0
05/27/14 - 05/29/14	11 1 2 3	15 1 5	915	915	13 ± 5
05/29/14 - 06/05/14	11 ± 5	14 ± 5	13 ± 5	9±5	10 1 0
06/02/14 - 06/09/14	11 ± 5	14 1 5	15 1 5	515	14 ± 5
06/05/14 - 06/12/14	9±5	10 ± 5	< 7	9 ± 5	17 T V
06/09/14 - 06/16/14	5 1 5	10 1 0	- /	010	10 ± 5
06/12/14 - 06/19/14	16 ± 5	12 ± 5	16 ± 5	(1)	
06/16/14 - 06/23/14				\ ''	14 ± 5
06/19/14 - 06/26/14	13 ± 5	< 6 (1)	18 ± 5	15 ± 5	
06/23/14 - 06/30/14		- \'7			11 ± 5
06/26/14 - 07/02/14	20 ± 6	16 ± 5	16 ± 5	14 ± 5	

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

.

Table C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

COLLECTION GROUP I GROUP II GROUP III 1<u>B</u> 1Z PERIOD 1C 3A 5H2 06/30/14 - 07/07/14 23 ± 9 07/02/14 - 07/10/14 16 ± 4 17 ± 4 14 ± 4 15 ± 4 07/07/14 - 07/14/14 (1) 07/10/14 - 07/17/14 14 ± 5 13 ± 5 9 ± 4 13 ± 5 07/14/14 - 07/21/14 (1) 07/17/14 - 07/23/14 12 ± 5 17 ± 6 15 ± 5 11 ± 5 07/21/14 - 07/28/14 (1) 07/23/14 - 07/31/14 9 ± 3 16 ± 4 13 ± 4 14 ± 4 07/28/14 - 08/04/14 (1) 07/31/14 - 08/07/14 16 ± 4 17 ± 5 20 ± 5 13 ± 4 08/04/14 - 08/11/14 (1) 08/07/14 - 08/14/14 14 ± 5 12 ± 4 13 ± 4 13 ± 5 08/11/14 - 08/18/14 (1) 08/14/14 - 08/21/14 14 ± 4 14 ± 5 20 ± 5 14 ± 4 08/18/14 - 08/25/14 (1) 08/21/14 - 08/28/14 12 ± 4 12 ± 5 16 ± 5 11 ± 4 08/25/14 - 09/02/14 (1) 08/28/14 - 09/04/14 15 ± 4 17 ± 5 15 ± 5 17 ± 4 09/02/14 - 09/08/14 (1) 09/04/14 - 09/11/14 13 ± 4 16 ± 5 15 ± 4 13 ± 4 09/08/14 - 09/15/14 (1) 09/11/14 - 09/18/14 12 ± 4 (1) 15 ± 4 12 ± 4 09/15/14 - 09/22/14 (1) 09/18/14 - 09/25/14 17 ± 4 19 ± 5 17 ± 4 19 ± 4 09/22/14 - 09/30/14 (1) 09/25/14 - 10/02/14 25 ± 5 29 ± 6 18 ± 5 20 + 409/30/14 - 10/07/14 17 ± 5 10/02/14 - 10/09/14 17 ± 5 20 ± 4 19 ± 5 16 ± 5 10/07/14 - 10/13/14 17 ± 6 10/09/14 - 10/16/14 16 ± 4 18 ± 5 15 ± 4 17 ± 4 10/13/14 - 10/20/14 8 ± 4 10/16/14 - 10/23/14 10/20/14 - 10/27/14 10 ± 4 13 ± 4 10 ± 4 13 ± 4 11 ± 5 10/23/14 - 10/30/14 19 ± 5 23 ± 5 18 ± 5 16 ± 4 10/27/14 - 11/03/14 17 ± 5 10/30/14 - 11/06/14 16 ± 5 15 ± 5 12 ± 4 12 + 411/03/14 - 11/10/14 17 ± 5 11/06/14 - 11/13/14 18 ± 4 19 ± 5 23 ± 5 17 ± 4 11/10/14 - 11/18/14 13 ± 4 14 ± 5 12 ± 4 11/13/14 - 11/20/14 12 ± 4 18 ± 5 18 ± 6 11/18/14 - 11/24/14 11/20/14 - 11/26/14 26 ± 6 26 ± 5 22 ± 6 27 ± 6 11/24/14 - 12/01/14 15 ± 5 11/26/14 - 12/04/14 18 ± 4 20 ± 4 15 ± 4 15 ± 4 15 ± 5 12/01/14 - 12/08/14 12/04/14 - 12/11/14 19 ± 5 17 ± 5 16 ± 4 18 ± 4 12/08/14 - 12/15/14 9±5 12/11/14 - 12/18/14 24 ± 5 28 ± 5 20 ± 5 15 ± 5 12/15/14 - 12/22/14 17 ± 5 9±3 12/18/14 - 12/26/14 12 ± 4 8 ± 4 11 ± 4 12/22/14 - 12/29/14 12 ± 5 12/26/14 - 01/02/15 16 ± 4 18 ± 5 19 ± 5 17 ± 5 MEAN 16 ± 11 16 ± 12 16 ± 11 17 ± 11 17 ± 10

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-V.2MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR
PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

GROUP I - ON-	SITE LOC	ATIONS	GROUP II - INTERMEDIA	TE DISTANC	E LOCATIONS	GROUP III - CON	ITROL LOCA	TIONS
	MIN MA	X MEAN± 2SD	COLLECTION PERIOD	MIN MAX	MEAN ± 2SD	COLLECTION PERIOD	MIN MAX	MEAN ± 2SD
01/01/14 - 01/30/14	17 24	4 19±5	01/01/14 - 01/30/14	17 23	20 ± 6	12/30/13 - 01/27/14	20 21	20 ± 1
01/30/14 - 02/27/14	15 3	3 23 ± 17	01/30/14 - 02/27/14	17 37	24 ± 18	01/27/14 - 03/02/14	13 39	24 ± 21
02/27/14 - 04/03/14	13 3	3 20 ± 13	02/27/14 - 04/03/14	11 33	21 ± 16	03/02/14 - 03/31/14	12 21	17 ± 8
04/03/14 - 05/01/14	10 2	1 15±6	04/03/14 ~ 05/01/14	9 17	14 ± 7	03/31/14 - 04/28/14	9 19	15 ± 9
05/01/14 - 05/29/14	8 1	7 13±6	05/01/14 - 05/29/14	9 15	12 ± 5	04/28/14 - 05/27/14	9 19	13 ± 10
05/29/14 - 07/02/14	9 20) 14 ± 6	05/29/14 - 07/02/14	9 15	12 ± 6	05/27/14 - 06/30/14	10 14	12 ± 4
07/02/14 - 07/31/14	9 1	7 14±5	07/02/14 - 07/31/14	11 15	13 ± 4	06/30/14 - 07/07/14	23 23	-
07/31/14 - 09/04/14	12 20) 15±5	07/31/14 - 09/04/14	11 17	13 ± 4	08/04/14 - 09/02/14		-
09/04/14 - 10/02/14	12 2	9 18 ± 10	09/04/14 - 10/02/14	12 20	16 ± 8	09/02/14 - 09/30/14		-
10/02/14 - 10/30/14	10 2	3 16 ± 8	10/02/14 - 10/30/14	13 20	16 ± 6	09/30/14 - 11/03/14	8 17	14 ± 8
10/30/14 - 12/04/14	12 2	7 18±9	10/30/14 - 12/04/14	12 26	16 ± 11	11/03/14 - 12/01/14	13 18	16 ± 5
12/04/14 - 01/02/15	8 2	8 17 ± 11	12/04/14 - 01/02/15	9 20	16 ± 9	12/01/14 - 12/29/14	9 17	13 ± 6
01/01/14 - 01/02/15	8 3	8 17 ± 11	01/01/14 - 01/02/15	9 37	16 ± 11	12/30/13 - 12/29/14	8 39	16 ± 12

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

Table C-V.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE		Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
1B	01/01/14 - 04/03/14	69 ± 22	< 3	< 3	< 3	< 2	< 2
	04/03/14 - 07/02/14	83 ± 34	< 3	< 4	< 3	< 3	< 3
	07/02/14 - 10/02/14	64 ± 25	< 3	< 3	< 5	< 3	< 3
	10/02/14 - 01/02/15	46 ± 3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.2
	MEAN	66 ± 31	-	-	-	-	-
1C	01/01/14 - 04/03/14	93 ± 27	< 5	< 6	< 4	< 4	< 4
	04/03/14 - 07/02/14	54 ± 17	< 2	< 2	< 2	< 2	< 2
	07/02/14 - 10/02/14	58 ± 17	< 2	< 1	< 2	< 2	< 2
	10/02/14 - 01/02/15	54 ± 6	< 1	< 1	< 1	< 1	< 1
	MEAN	65 ± 38	-	-	-	-	-
1Z	01/01/14 - 04/03/14	58 ± 26	< 3	< 3	< 3	< 3	< 3
	04/03/14 - 07/02/14	66 ± 18		< 2	< 2	< 2	< 2
	07/02/14 - 10/02/14	63 ± 17	< 2	< 3	< 2	< 3	< 2
	10/02/14 - 01/02/15	57 ± 21	< 2	< 4	< 3	< 3	< 3
	MEAN	61 ± 9	-	-	-	-	
3A	01/01/14 - 04/03/14	75 ± 24	< 4	< 3	< 3	< 4	< 3
	04/03/14 - 07/02/14	70 ± 27	< 3	< 4	< 3	< 3	< 2
	07/02/14 - 10/02/14	54 ± 23	< 2	< 1	< 2	< 2	< 2
	10/02/14 - 01/02/15	69 ± 30	< 4	< 4	< 1	< 3	< 3
	MEAN	67 ± 18	-	-	-	-	-
5H2	12/30/13 - 03/31/14	68 ± 24	< 3	< 4	< 3	< 3	< 3
	03/31/14 - 06/30/14	65 ± 23	< 3	< 3	< 3	< 3	< 3
	06/30/14 - 07/07/14	< 203	< 8	< 17	< 7	< 7	< 7
	09/30/14 - 12/29/14	59 ± 25	< 3	< 3	< 3	< 2	< 2
	MEAN	64 ± 10	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

Table C-VI.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE
VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

COLLECTION		GROUP		GROUP II	GROUP III
PERIOD	1B	10	1Z	3A	5H2
12/30/13 - 01/06/14			-		< 26
01/01/14 - 01/09/14	< 62	< 62	< 61	< 61	
01/06/14 - 01/13/14					< 18
01/09/14 - 01/15/14	< 36	< 36	< 35	< 19	
01/13/14 - 01/20/14					< 28
01/15/14 - 01/23/14	< 50	< 50	< 50	< 54	
01/22/14 - 01/27/14					< 47
01/23/14 - 01/30/14	< 52	< 52	< 51	< 52	
01/27/14 - 02/04/14					< 10
01/30/14 - 02/06/14	< 37	< 37	< 36	< 43	
02/04/14 - 02/10/14					< 33
02/06/14 - 02/12/14	< 23	< 54	< 54	< 56	
02/10/14 - 02/17/14					< 28
02/12/14 - 02/20/14	< 47	< 47	< 46	< 48	
02/17/14 - 02/24/14					< 18
02/20/14 - 02/27/14	< 38	< 21	< 39	< 38	
02/24/14 - 03/02/14					< 22
02/27/14 - 03/06/14	< 69	< 70	< 69	< 70	
03/02/14 - 03/10/14				- 00	< 22
03/06/14 - 03/13/14	< 08	< 67	< 67	< 26	< 24
03/10/14 - 03/16/14	< C0	< 70	< 60	< 60	< 24
03/13/14 - 03/20/14 03/16/14 - 03/24/14	< 00	< 70	< 69	< 69	< 22
03/20/14 - 03/27/14	< 53	< 53	< 22	< 53	~ 22
03/24/14 - 03/31/14	- 00	- 00	~ 22	- 00	< 29
03/27/14 - 04/03/14	< 60	< 60	< 60	< 60	
03/31/14 - 04/07/14			•-		< 28
04/03/14 - 04/09/14	< 29	< 68	< 68	< 68	
04/07/14 - 04/14/14					< 24
04/09/14 - 04/17/14	< 64	< 64	< 64	< 64	
04/14/14 - 04/21/14					< 19
04/17/14 - 04/24/14	< 68	< 28	< 67	< 67	
04/21/14 - 04/28/14			_		< 24
04/24/14 - 05/01/14	< 67	< 67	< 67	< 67	
04/28/14 - 05/05/14				. 10	< 33
05/01/14 - 05/08/14	< 30	< 30	< 29	< 12	4.95
05/05/14 - 05/12/14	- 46	- 16	- 46	< 46	< 35
05/08/14 - 05/15/14	< 40	< 46	< 46	< 40	< 35
05/12/14 - 05/19/14 05/15/14 - 05/22/14	< 60	< 61	< 24	< 62	< 30
05/19/14 - 05/27/14	< 02	< 01	< 24	< 02	< 22
05/22/14 - 05/29/14	< 54	< 54	< 53	< 55	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
05/27/14 - 06/02/14	× 04	• • •	• 00	4 00	< 38
05/29/14 - 06/05/14	< 32	< 59	< 59	< 59	
06/02/14 - 06/09/14					< 18
06/05/14 - 06/12/14	< 50	< 49	< 49	< 49	
06/09/14 - 06/16/14					< 16
06/12/14 - 06/19/14	< 63	< 26	< 62	(1)	
06/16/14 - 06/23/14					< 33
06/19/14 - 06/26/14	< 35	< 34 (1)	< 34	< 41	
06/23/14 - 06/30/14					< 40
06/26/14 - 07/02/14	< 33	< 33	< 33	< 33	

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

COLLECTION		GROUP	í	GROUP II	GROUP III
PERIOD	18	10	1Z	3A	5H2
06/30/14 - 07/07/14					< 65
	< 53	< 53	< 52	< 52	
07/07/14 - 07/14/14					(1)
07/10/14 - 07/17/14	< 48	< 48	< 20	< 48	
07/14/14 - 07/21/14					(1)
07/17/14 - 07/23/14	< 63	< 62	< 24	< 62	
07/21/14 - 07/28/14					(1)
07/23/14 - 07/31/14	< 13	< 28	< 28	< 25	
07/28/14 - 08/04/14					(1)
07/31/14 - 08/07/14	< 31	< 36	< 36	< 31	
08/04/14 - 08/11/14					(1)
08/07/14 - 08/14/14	< 50	< 57	< 56	< 49	
08/11/14 - 08/18/14					(1)
08/14/14 - 08/21/14	< 39	< 23	< 44	< 39	
08/18/14 - 08/25/14					(1)
08/21/14 - 08/28/14	< 47	< 54	< 53	< 18	
08/25/14 - 09/02/14					(1)
08/28/14 - 09/04/14	< 44	< 50	< 50	< 42	~~~
09/02/14 - 09/08/14	•				(1)
09/04/14 - 09/11/14	< 24	< 27	< 10	< 23	(4)
09/08/14 - 09/15/14					(1)
09/11/14 - 09/18/14	< 23	(1)	< 24	< 22	(4)
09/15/14 - 09/22/14		. =0		. 00	(1)
09/18/14 - 09/25/14	< 15	< 53	< 41	< 38	(4)
09/22/14 - 09/30/14		4.60	< FG	< 50	(1)
09/25/14 - 10/02/14 09/30/14 - 10/07/14	< 55	< 62	< 56	< 53	< 24
	< 50	< 24	< 54	< 50	~ 24
10/02/14 - 10/09/14 10/07/14 - 10/13/14	< 52	< 24	< 54	< 50	< 55
10/09/14 - 10/16/14	< 57	< 62	< 58	< 53	× 55
10/13/14 - 10/20/14	× 57	< 02	× 50	× 00	< 27
10/16/14 - 10/23/14	< 40	< 44	< 41	< 38	- 21
10/20/14 - 10/23/14					< 42
10/23/14 - 10/30/14	< 30	< 32	< 30	< 28	12
10/27/14 - 11/03/14				_0	< 14
10/30/14 - 11/06/14	< 47	< 51	< 47	< 18	
11/03/14 - 11/10/14		•			< 8
11/06/14 - 11/13/14	< 45	< 47	< 45	< 41	
11/10/14 - 11/18/14					< 11
11/13/14 - 11/20/14	< 49	< 50	< 19	< 44	
11/18/14 - 11/24/14					< 28
11/20/14 - 11/26/14	< 69	< 56	< 68	< 60	
11/24/14 - 12/01/14					< 42
11/26/14 - 12/04/14	< 46	< 49	< 45	< 41	
12/01/14 - 12/08/14					< 22
12/04/14 - 12/11/14	< 38	< 70	< 65	< 65	
12/08/14 - 12/15/14					< 8
12/11/14 - 12/18/14	< 58	< 59	< 69	< 62	
12/15/14 - 12/22/14					< 15
12/18/14 - 12/26/14	< 62	< 63	< 61	< 54	
12/22/14 - 12/29/14					< 33
12/26/14 - 01/02/15	< 32	< 13	< 31	< 28	
MEAN	-	-	-	-	-

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-VII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

		CONTROL	FARM				INDIC	ATOR FAR	M		
COLLECTION PERIOD	С	E	V	D	J	L	Р	R	S	U	W
01/06/14			< 0.6		< 0.6			< 0.7	< 0.6	< 0.6	
02/04/14	< 0.7	< 0.7	< 0.6	< 0.8	< 0.9	< 0.7	< 0.7	< 0.8	< 0.7	< 0.8	< 0.7
03/03/14			< 0.9		< 0.8			< 0.9	< 0.9	< 0.8	
04/07/14			< 0.8		< 0.7			< 0.7	< 0.9	< 0.7	
04/21/14			< 0.6		< 0.6			< 0.6	< 0.7	< 0.7	
05/06/14	< 0.9	< 0.9	< 0.4	< 0.8	< 0.8	< 0.8	< 1.0	< 0.9	< 0.9	< 1.0	< 0.8
05/19/14			< 0.8		< 0.8			< 0.9	< 0.7	< 0.9	
05/30/14			< 0.5								
06/02/14					< 0.8			< 0.8	< 0.8	< 0.9	
06/16/14			< 0.5		< 0.6			< 0.6	< 0.6	< 0.7	
06/30/14			< 0.7		< 0.6			< 0.5	< 0.7	< 0.6	
07/11/14			< 0.5								
07/14/14					< 0.5			< 0.5	< 0.5	< 0.4	
07/28/14			< 0.6		< 0.6			< 0.6	< 0.7	< 0.6	
08/12/14	< 0.6	< 0.6	< 0.6	< 0.5	< 0.4	< 0.5	< 0.6	< 0.5	< 0.5	< 0.4	< 0.6
08/25/14			< 0.7		< 0.9			< 0.4	< 1.0	< 0.8	
09/08/14			< 0.6		< 0.7			< 0.8	< 0.8	< 0.6	
09/18/14			< 0.6								
09/22/14					< 0.6			< 0.6	< 0.6	< 0.7	
10/06/14			< 0.7		< 0.6			< 0.6	< 0.7	< 0.8	
10/20/14			< 0.7		< 0.4			< 0.6	< 0.8	< 0.5	
11/04/14	< 0.5	< 0.5	< 0.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.5	< 0.4	< 0.5
11/17/14			< 0.9		< 0.3			< 0.6	< 0.6	< 0.4	
12/08/14			< 0.8		< 0.8			< 0.6	< 0.8	< 0.8	
MEAN	-	-	-	-	_	-	-	-	-	-	-

Table C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SIT	E COLLECTION PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
С	02/03/14	1294 ± 183	< 9	< 9	< 45	< 11
	05/05/14	1330 ± 148	< 5	< 6	< 31	< 7
	08/11/14	1211 ± 102	< 4	< 5	< 29	< 9
	11/03/14	1257 ± 115	< 4	< 5	< 23	< 5
	MEAN	1273 ± 102	-	-	-	-
Е	02/03/14	1214 ± 178	< 7	< 7	< 44	< 15
	05/05/14	1260 ± 166	< 6	< 6	< 37	< 9
	08/11/14	1310 ± 156	< 6	< 6	< 41	< 9
	11/03/14	1281 ± 151	< 5	< 6	< 29	< 10
	MEAN	1266 ± 81	•	-	-	
v	01/04/14	1209 ± 135	< 6	< 5	< 39	< 12
	02/01/14	1156 ± 118	< 5	< 6	< 32	< 11
	03/01/14	1185 ± 120	< 4	< 4	< 30	< 8
	04/05/14	1291 ± 120	< 5	< 6	< 33	< 7
	04/19/14	1265 ± 120	< 7	< 8	< 43	< 12
	05/03/14	1165 ± 161	< 4	< 7	< 38	< 7
	05/17/14	1277 ± 137	< 5	< 6	< 35	< 4
	05/30/14	1374 ± 112	< 4	< 5	< 31	< 10
	06/14/14	1390 ± 153	< 8	< 9	< 51	< 12
	06/30/14	1160 ± 139	< 5	< 7	< 24	< 5
	07/11/14	1261 ± 190	< 7	< 7	< 41	< 14
	07/26/14	1114 ± 131	< 6	< 6	< 36	< 10
	08/09/14	1270 ± 111	< 4	< 5	< 25	< 7
	08/23/14	1372 ± 90	< 3	< 4	< 26	< 7
	09/08/14	1389 ± 158	< 7	< 7	< 35	< 10
	09/18/14	1239 ± 138	< 4	< 6	< 36	< 12
	10/06/14	1296 ± 167	< 7	< 6	< 41	< 11
	10/18/14	1207 ± 49	< 2	< 2	< 21	< 6
	10/31/14	1207 ± 43 1298 ± 179	< 7	< 8	< 43	< 12
	11/15/14	1273 ± 105	< 4	< 5	< 56	< 11
	12/08/14	1273 ± 103 1180 ± 140	< 5	< 5	< 19	< 6
	MEAN	1256 ± 162	-	-	-	-
D	02/03/14	1393 ± 184	< 7	< 8	< 45	< 11
-	05/06/14	1328 ± 205	< 5	< 6	< 33	< 9
	08/12/14	1399 ± 197	< 7	< 9	< 44	< 14
	11/04/14	1386 ± 137	< 5	< 6	< 23	< 8
	MEAN	1377 ± 66	-	-	-	-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

ļ

C-15

Table C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE
VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SIT	E COLLECTION PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
J	01/06/14	1093 ± 143	< 5	< 6	< 39	< 12
	02/03/14	1433 ± 193	< 8	< 7	< 39	< 8
	03/03/14	1352 ± 149	< 7	< 7	< 44	< 9
	04/07/14	1156 ± 167	< 7	< 7	< 36	< 12
	04/21/14	1335 ± 142	< 6	< 6	< 33	< 9
	05/05/14	1212 ± 182	< 7	< 8	< 47	< 12
	05/19/14	1287 ± 129	< 7	< 7	< 46	< 11
	06/02/14	1167 ± 130	< 6	< 7	< 39	< 8
	06/16/14	1223 ± 160	< 6	< 7	< 33	< 8
	06/30/14	1145 ± 157	< 6	< 7	< 22	< 8
	07/14/14	1172 ± 165	< 7	< 8	< 36	< 8
	07/28/14	1273 ± 122	< 5	< 5	< 32	< 6
	08/11/14	1138 ± 135	< 5	< 7	< 35	< 11
	08/25/14	1265 ± 115	< 4	< 4	< 34	< 10
	09/08/14	1201 ± 164	< 7	< 8	< 41	< 14
	09/22/14	1121 ± 172	< 7	< 9	< 38	< 13
	10/06/14	1116 ± 184	< 8	< 8	< 40	< 13
	10/20/14	1239 ± 59	< 2	< 2	< 27	< 7
	11/03/14	1292 ± 162	< 8	< 10	< 47	< 11
	11/17/14	1354 ± 121	< 4	< 5	< 34	< 13
	12/08/14	1274 ± 148	< 5	< 7	< 24	< 9
	MEAN	1231 ± 183	-	-	-	-
L	02/03/14	1305 ± 165	< 6	< 7	< 39	< 12
	05/05/14	1341 ± 152	< 9	< 9	< 43	< 10
	08/11/14	1374 ± 157	< 7	< 7	< 39	< 12
	11/03/14	1343 ± 162	< 6	< 6	< 33	< 10
	MEAN	1341 ± 56	-	-	-	-
Р	02/03/14	1178 ± 146	< 5	< 6	< 35	< 9
	05/05/14	1058 ± 147	< 6	< 8	< 40	< 10
	08/11/14	1248 ± 179	< 5	< 6	< 38	< 11
	11/03/14	1365 ± 139	< 6	< 7	< 29	< 12
	MEAN	1212 ± 257	-	-	-	-

Table C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE		K-40	Cs-134	Cs-137	Ba-140	La-140
R	01/06/14	1172 ± 135	< 7	< 6	< 36	< 8
	02/03/14	1506 ± 167	< 8	< 9	< 46	< 13
	03/03/14	1419 ± 132	< 5	< 6	< 33	< 8
	04/07/14	1161 ± 145	< 6	< 7	< 38	< 10
	04/21/14	1298 ± 122	< 5	< 5	< 27	< 8
	05/05/14	1325 ± 141	< 6	< 7	< 33	< 11
	05/19/14	1311 ± 113	< 5	< 5	< 26	< 7
	06/02/14	1521 ± 145	< 5	< 7	< 32	< 11
	06/16/14	1335 ± 189	< 9	< 10	< 42	< 10
	06/30/14	1250 ± 149	< 6	< 7	< 20	< 7
	07/14/14	1134 ± 169	< 7	< 8	< 35	< 10
	07/28/14	1303 ± 181	< 5	< 7	< 30	< 6
	08/11/14	1395 ± 116	< 4	< 5	< 28	< 9
	08/25/14	1378 ± 114	< 5	< 5	< 33	< 10
	09/08/14	1326 ± 131	< 5	< 6	< 30	< 8
	09/22/14	1326 ± 153	< 6	< 6	< 33	< 10
	10/06/14	1176 ± 181	< 8	< 11	< 52	< 15
	10/20/14	1248 ± 51	< 2	< 2	< 20	< 7
	11/03/14	1342 ± 170	< 6	< 8	< 36	< 7
	11/17/14	1200 ± 109	< 4	< 5	< 39	< 12
	12/08/14	1416 ± 116	< 4	< 5	< 19	< 6
	MEAN	1312 ± 215	-	-	-	-
s	01/06/14	1336 ± 122	< 5	< 5	< 26	< 8
	02/03/14	1205 ± 146	< 6	< 5	< 31	< 7
	03/03/14	1278 ± 149	< 6	< 5	< 40	< 13
	04/07/14	1297 ± 135	< 6	< 6	< 30	< 9
	04/21/14	1286 ± 133	< 6	< 6	< 38	< 10
	05/05/14	1438 ± 152	< 8	< 8	< 42	< 11
	05/19/14	1475 ± 169	< 6	< 7	< 44	< 15
	06/02/14	1314 ± 152	< 5	< 6	< 37	< 11
	06/16/14	1281 ± 158	< 7	< 9	< 35	< 12
	06/30/14	1283 ± 132	< 5	< 5	< 22	< 7
	07/14/14	1260 ± 159	< 5	< 6	< 33	< 8
	07/28/14	1245 ± 136	< 5	< 6	< 28	< 7
	08/11/14	1110 ± 132	< 4	< 6	< 29	< 9
	08/25/14	1249 ± 117	< 4	< 5	< 36	< 12
	09/08/14	1352 ± 152	< 7	< 6	< 44	< 8
	09/22/14	1098 ± 118	< 5	< 5	< 29	< 8
	10/06/14	1433 ± 185	< 7	< 8	< 40	< 8
	10/20/14	1315 ± 46	< 1	< 2	< 18	< 5
	11/03/14	1059 ± 172	< 8	< 9	< 47	< 13
	11/17/14	1305 ± 130	< 4	< 6	< 47	< 14
	12/08/14	1245 ± 144	< 6	< 6	< 26	< 7
	MEAN	1279 ± 209	-	-	-	

.

Table C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE
VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

.

SIT	E COLLECTION PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
U	01/06/14	1309 ± 161	< 7	< 7	< 38	< 9
	02/03/14	1145 ± 167	< 6	< 8	< 35	< 10
	03/03/14	1271 ± 164	< 6	< 7	< 35	< 11
	04/07/14	1222 ± 116	< 4	< 4	< 19	< 6
	04/21/14	1239 ± 154	< 6	< 7	< 32	< 5
	05/05/14	1233 ± 176	< 7	< 8	< 43	< 11
	05/19/14	1076 ± 105	< 4	< 4	< 22	< 7
	06/02/14	1263 ± 102	< 4	< 4	< 23	< 5
	06/16/14	1366 ± 178	< 6	< 8	< 38	< 10
	06/30/14	1209 ± 146	< 8	< 8	< 32	< 8
	07/14/14	1291 ± 163	< 6	< 8	< 35	< 9
	07/28/14	1192 ± 154	< 7	< 7	< 38	< 10
	08/11/14	1277 ± 97	< 4	< 4	< 26	< 7
	08/25/14	1356 ± 84	< 3	< 4	< 22	< 7
	09/08/14	1224 ± 176	< 6	< 7	< 37	< 13
	09/22/14	1238 ± 149	< 6	< 8	< 37	< 13
	10/06/14	1232 ± 149	< 6	< 7	< 40	< 6
	10/20/14	1212 ± 34	< 1	< 1	< 13	< 4
	11/03/14	1338 ± 216	< 8	< 8	< 53	< 5
	11/17/14	1193 ± 136	< 3	< 4	< 29	< 13
	12/08/14	1139 ± 100	< 4	< 4	< 13	< 5
	MEAN	1239 ± 143	-	-	-	-
w	02/04/14	1189 ± 169	< 7	< 6	< 39	< 5
	05/05/14	1269 ± 185	< 7	< 9	< 36	< 14
	08/11/14	1385 ± 174	< 6	< 7	< 36	< 10
	11/03/14	1170 ± 174	< 5	< 7	< 32	< 9
	MEAN	1253 ± 195	-	-	-	-

Table C-VIII.1

CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

SITE COLLECTION	Be-7	K-40	Mn-54	Co-58	Co-60	I-131	Cs-134	Cs-137
PERIOD			_			_		
1Q May 2014 Vegetation Unavailable (1)		-	-	-	-	-	-	-
May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
06/25/14 Green Cabbage	< 181	2755 ± 395	< 22	< 18	< 21	< 35	< 20	< 19
06/25/14 Ragweed Leaves (1)	369 ± 78.4	4069 ± 251	< 9	< 7	< 9	< 17	< 9	< 9
06/25/14 Tobaco Leaves (1)	734 ± 276	7859 ± 645	< 27	< 26	< 23	< 38	< 23	< 28
07/24/14 Head Cabbage	< 120	2161 ± 276	< 12	< 13	< 13	< 23	< 11	< 14
07/24/14 Lettuce Leaves	708 ± 190	3863 ± 438	< 16	< 17	< 17	< 32	< 18	< 19
07/24/14 Tobacco Leaves (1)	522 ± 251	6131 ± 604	< 20	< 19	< 20	< 38	< 17	< 27
08/26/14 Pepper Leaves	2806 ± 180	12170 ± 382	< 11	< 13	< 12	< 50	< 10	< 12
08/26/14 Ragweed Leaves (1)	1022 ± 80	7747 ± 193	< 8	< 9	< 8	< 36	< 7	< 8
08/26/14 Tobacco Leaves (1)	264 ± 73	6817 ± 209	< 7	< 8	< 8	< 36	< 7	< 8
09/24/14 Cabbage Leaves	< 195	3588 ± 444	< 20	< 17	< 19	< 32	< 16	< 19
09/24/14 Tobacco Leaves (1)	< 266	6474 ± 624	< 24	< 31	< 31	< 46	< 26	< 28
MEAN	918 ± 1740	5785 ± 5809	-	-	-	-	-	•
2Q May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
07/24/14 Broccoli Leaves (2)	727 ± 282	2706 ± 458	< 23	< 27	< 27	< 47	< 30	< 29
07/24/14 Kale Leaves	< 236	6816 ± 658	< 24	< 25	< 29	< 39	< 20	< 25
07/24/14 Sweet Corn Leaves	1945 ± 316	4553 ± 556	< 26	< 22	< 19	< 39	< 21	< 23
08/26/14 Broccoli Leaves	351 ± 137	1594 ± 218	< 12	< 14	< 12	< 59	< 12	< 15
08/26/14 Cabbage Leaves	261 ± 169	2290 ± 344	< 12	< 12	< 13	< 56	< 11	< 14
08/26/14 Kale Leaves	208 ± 75	4985 ± 227	< 9	< 9	< 10	< 47	< 8	< 10
09/24/14 Broccoli Leaves	498 ± 239	1529 ± 369	< 21	< 19	< 22	< 44	< 22	< 32
09/24/14 Cabbage Leaves	341 ± 125	2400 ± 292	< 14	< 15	< 16	< 30	< 17	< 18
09/24/14 Zuccini Leaves	431 ± 135	4494 ± 412	< 17	< 16	< 17	< 31	< 16	< 19
MEAN	595 ± 1137	3485 ± 3614	-	-	-	-	· _	-
55 May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
May 2014 Vegetation Unavailable (1)	-	-	-	-	-	-	-	-
May 2014 Vegetation Unavailable (1)	-	•	•	-	-	-	-	-
06/25/14 Kale Leaves	< 174	7185 ± 574	< 18	< 16	< 23	< 34	< 15	< 21
06/25/14 Kolrabi Leaves	286 ± 249	7245 ± 586	< 23	< 21	< 22	< 40	< 20	< 23
06/25/14 Sweet Corn Leaves	791 ± 92	3317 ± 189	< 7	< 8	< 7	< 28	< 7	< 8
07/24/14 Kale Leaves	< 189	6073 ± 540	< 23	< 21	< 28	< 35	< 22	< 25
07/24/14 Sweet Corn Leaves	1509 ± 298	3764 ± 513	< 29	< 29	< 34	< 43	< 28	< 28
07/24/14 UnwasheD Cabbage Leaves	390 ± 193	4576 ± 464	< 26	< 27	< 25	< 41	< 26	< 24
08/26/14 Red Beet Leaves	188 ± 66	8807 ± 221	< 8	< 8	< 8	< 36	< 8	< 7
08/26/14 Sweet Corn Leaves	1141 ± 101	4840 ± 216	< 9	< 11	< 9	< 44	< 8	< 9
08/26/14 UnwasheD Cabbage Leaves	< 69	6329 ± 188	< 7	< 8	< 7	< 35	< 7	< 7
09/24/14 Broccoli Leaves	< 181	5132 ± 550	< 23	< 21	< 19	< 35	< 19	< 23
09/24/14 Cabbage Leaves	< 176	5453 ± 534	< 23	< 19	< 22	< 31	< 16	< 24
09/24/14 Sweet Corn Leaves	< 222	5531 ± 600	< 20	< 25	< 21	< 44	< 23	< 23
MEAN	718 ± 1052	5688 ± 3111	-	-	-	-	-	-

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

(2) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

Table C-IX.1 QUARTERLY OSLD RESULTS FOR PEACH BOTTOM ATOMIC POWER STATION, 2014

STATION CODE	MEAN ± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
16	10.3 ± 1.1	9.6	10.9	10.5	10.3
18	9.9 ± 1.1	9.9	9.2	10.5	9.8
19	9.6 ± 0.6	9.3	9.4	9.7	10.0
24	8.3 ± 1.3	8.0	7.6	8.8	8.9
5	9.4 ± 1.4	8.5	9.0	10.0	9.9
14	10.0 ± 0.8	9.6	10.0	10.5	9.7
15	9.9 ± 0.6	9.6	9.7	10.1	10.2
17	11.0 ± 1.5	10.2	10.5	11.8	11.4
1T	16.0 ± 0.0	-	-	-	16.0 (1)
22	10.2 ± 0.9	9.6	10.0	10.6	10.5
23	10.3 ± 1.3	9.5	10.1	10.8	10.9
26	11.0 ± 1.9	9.6	11.4	11.6	11.4
27	10.5 ± 0.8	10.1	10.3	11.0	10.5
32	10.4 ± 2.0	9.0	10.6	11.2	10.9
3A	7.7 ± 0.9	7.3	7.3	8.1	8.1
42	9.0 ± 0.5	8.8	8.7 (2)	9.2	9.2
43	11.0 ± 1.6	10.0	11.0	11.9	11.0
44	9.6 ± 1.6	8.6	9.4	10.5	9.7
45	9.9 ± 0.6	9.7	9.6	10.0	10.3
46	9.4 ± 1.2	8.8	8.9	10.1	9.6
47	10.7 ± 1.3	10.0	10.4	11.5	11.0
48	10.0 ± 1.8	8.8	9.7	10.8	10.6
49	10.0 ± 0.9	9.4	9.8	10.4	10.2
4K	7.1 ± 0.4	6.8	7.0	7.2	7.3
50	12.1 ± 2.7	10.5	13.7 (2)	12.5 (2)	11.8
51	10.0 ± 0.8	10.2	9.4	10.3	10.2 (2)
6B	8.9 ± 0.7	8.8	8.4	9.1	9.1
31A	8.7 ± 1.2	7.9	8.9	9.3	8.6
2	9.9 ± 1.1	9.3	9.6	10.6	10.0
1A	9.7 ± 0.8	9.5	9.4	10.3	9.5
1B	8.9 ± 0.9	8.4	8.6	9.4	9.1
1C	10.2 ± 1.2	9.5	9.9	10.8	10.6
1D	10.1 ± 1.1	9.5	9.7	10.7	10.4
1E	9.7 ± 0.8	9.3	9.3	10.1	9.9
1F	11.0 ± 1.0	10.3	11.0	11.5	11.0
1G	8.1 ± 0.6	7.9	7.7	8.2	8.4
1H	10.0 ± 1.0	9.6	9.5	10.6	10.2
11	9.4 ± 0.7	9.3	8.9	9.6	9.7
1J	11.0 ± 0.9	10.3	11.0	11.3	11.3
1K	10.6 ± 0.9	10.2	10.4	11.2	10.5
1L	8.5 ± 1.3	8.3	8.1	9.5	8.2
1M	6.9 ± 0.5	6.9	6.6	7.2	7.0
1P	7.4 ± 0.3	7.4	7.2	7.5	7.4
1Q	8.2 ± 0.4	8.1	8.0	8.4	8.4
1R	12.6 ± 1.7	11.6	12.3	13.5	13.1
2B	9.5 ± 1.4	8.6	9.2	10.2	9.8
40	11.4 ± 2.3	10.0	11.1	12.8	11.5
1NN	10.9 ± 1.3	10.3	10.6	10.9	11.8

.

RESULTS IN UNITS OF MILLIREM/STD. MONTH ± STANDARD DEVIATIONS

(1) SEE PROGRAM CHANGES SECTION FOR EXPLANATION

(2) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

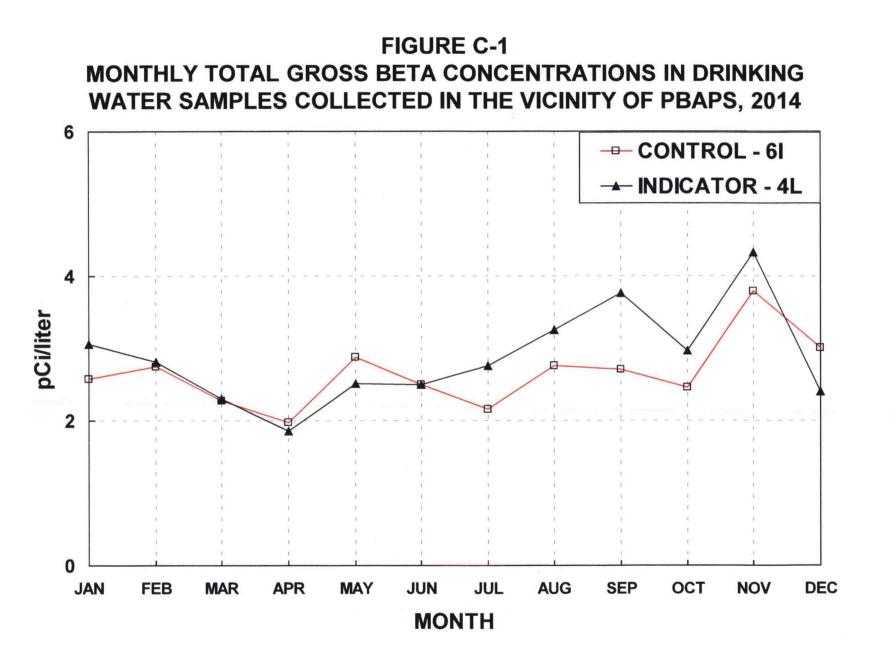
.

TABLE C-IX.2MEAN QUARTERLY OSLD RESULTS FOR THE SITE BOUNDARY,
INTERMEDIATE AND CONTROL LOCATIONS FOR PEACH BOTTOM
ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF MILLIREM/MONTH ± STANDARD DEVIATIONS OF THE STATION DATA

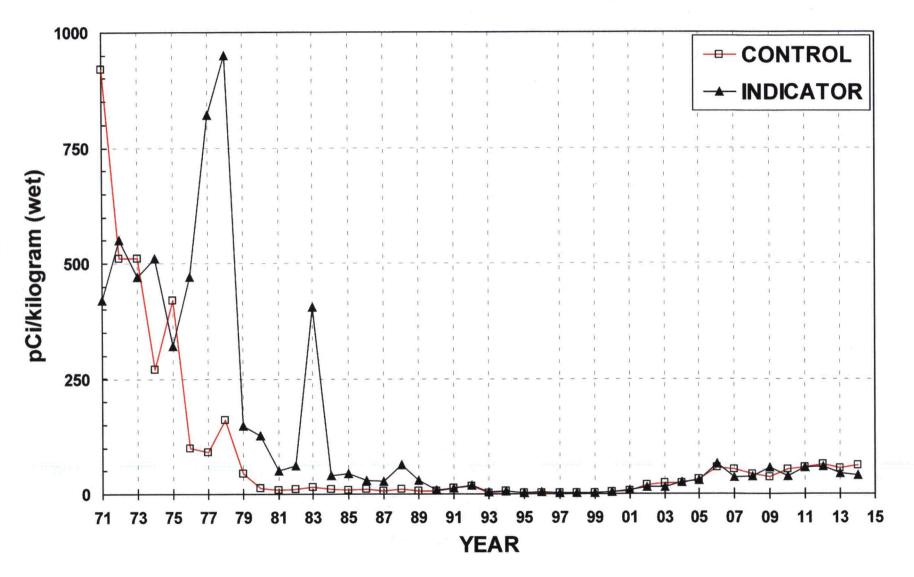
COLLECTION PERIOD	SITE BOUNDARY ± 2 S.D.		CONTROL
JAN-MAR	9.2 ± 2.3	9.2 ± 1.9	9.2 ± 1.7
APR-JUN	9.4 ± 2.9	9.7 ± 2.7	9.3 ± 2.7
JUL-SEP	10.2 ± 3.2	10.4 ± 2.4	9.9 ± 1.6
OCT-DEC	9.9 ± 3.0	10.3 ± 3.2	9.8 ± 1.2

TABLE C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR PEACH BOTTOM
ATOMIC POWER STATION, 2014

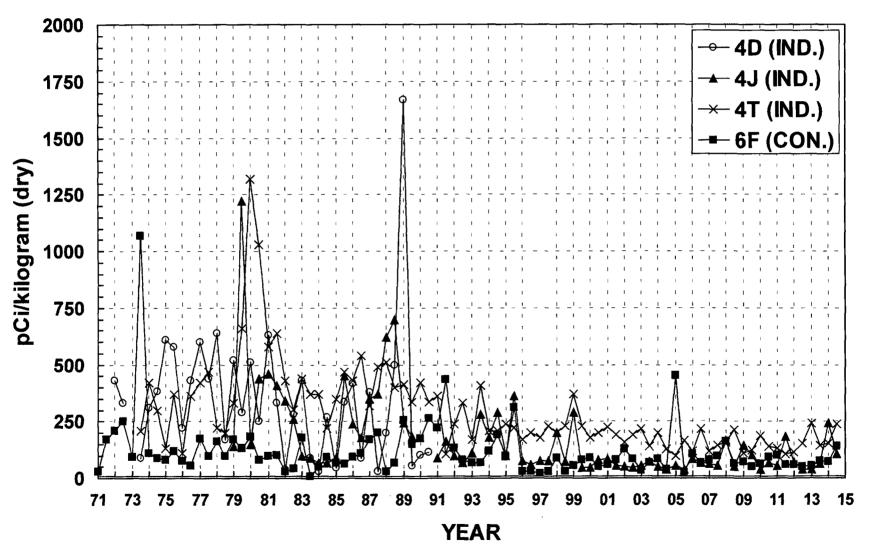

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH

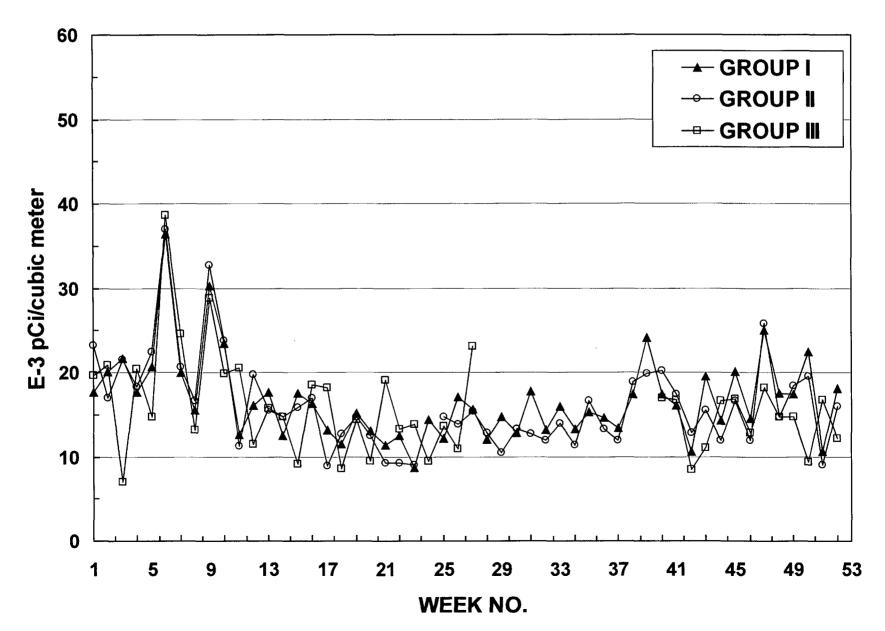
LOCATION	SAMPLES ANALYZED	PERIOD MINIMUM	PERIOD MAXIMUM	PERIOD MEAN ± 2 S.D.
SITE BOUNDARY	80	6.6	14	9.7 ± 2.9
INTERMEDIATE	93	6.8	16	9.9 ± 2.8
CONTROL	16	7.6	11	9.5 ± 1.8

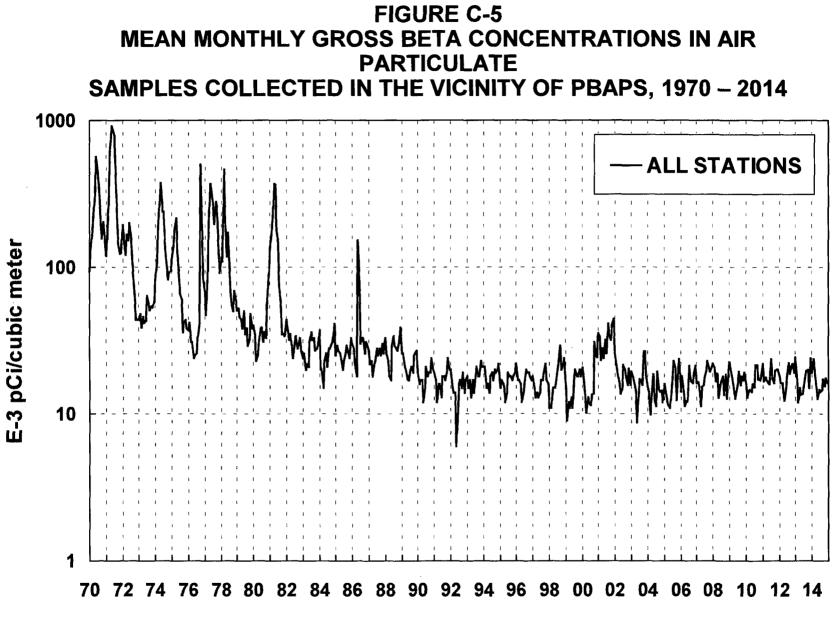
SITE BOUNDARY STATIONS - 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1NN, 1P, 1Q, 1R, 2, 2B, 40


INTERMEDIATE STATIONS - 14, 15, 17, 1T, 22, 23, 26, 27, 31A, 32, 3A, 42, 43, 44, 45, 46, 47, 48, 49, 4K, 5, 50, 51, 6B

CONTROL STATIONS - 16, 18, 19, 24

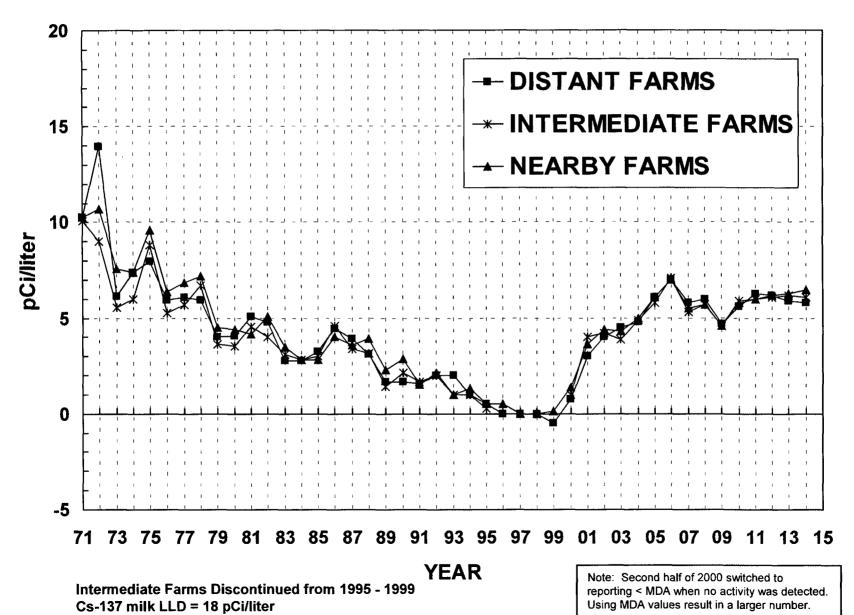

PBAPS changed to total gross beta at the beginning of 2005. Previous data included summation of less than values.

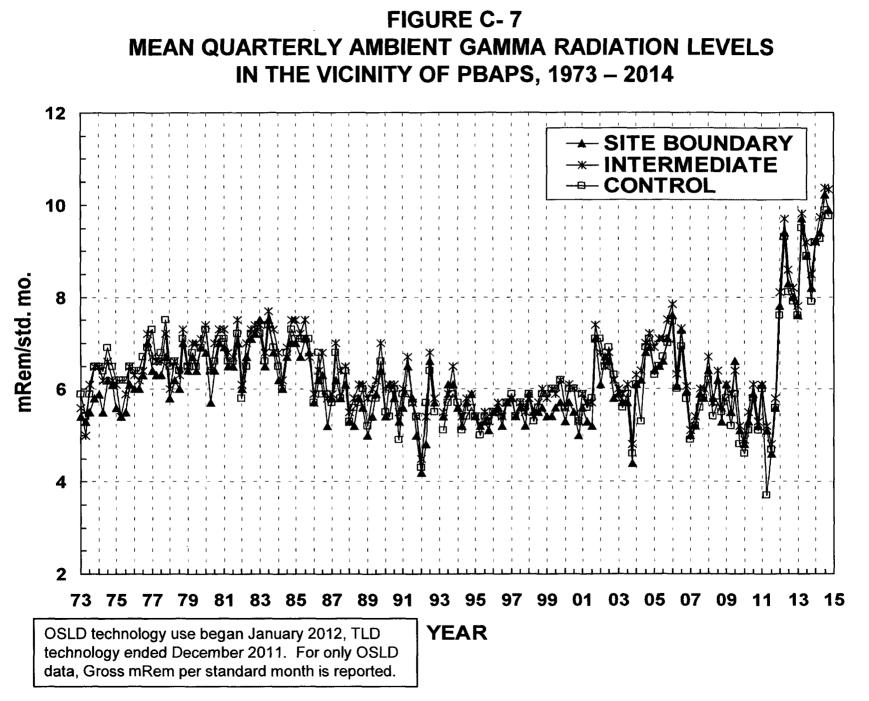

FIGURE C-3

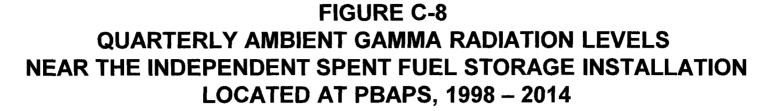

MEAN SEMI-ANNUAL CS-137 CONCENTRATIONS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 1971 – 2014

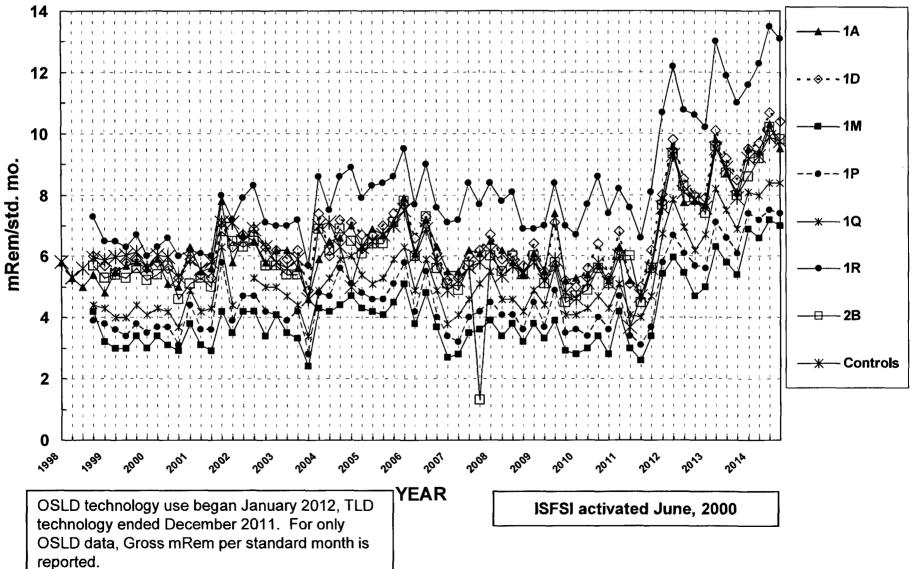
No sample collected from Station 4J in 1990 and Station 4D discontinued beginning 1991

FIGURE C-4 MEAN WEEKLY GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 2014






2


YEAR

APPENDIX D

DATA TABLES AND FIGURES QC LABORATORY

TABLE D-I.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER
SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC
POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	4L	
JAN	< 1.2	
FEB	< 1.8	
MAR	< 1.9	
APR	< 1.8	
MAY	< 1.8	
JUN	< 1.9	
JUL	< 1.7	
AUG	< 1.9	
SEP	< 1.9	
OCT	< 1.1	
NOV	< 1.9	
DEC	< 1.3	
MEAN	-	

TABLE D-1.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN DRINKING WATER
SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC
POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	4L
JAN	1.7 ± 0.7
FEB	2.0 ± 0.7
MAR	2.3 ± 0.8
APR	1.0 ± 0.5
MAY	1.8 ± 1.0
JUN	0.8 ± 0.5
JUL	1.9 ± 0.9
AUG	1.8 ± 1.0
SEP	< 1.8
OCT	3.4 ± 1.1
NOV	2.3 ± 0.7
DEC	1.7 ± 0.8
MEAN	1.9 ± 1.4

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE D-I.3CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC
POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	4L	
JAN-MAR	< 143	
APR-JUN	< 142	
JUL-SEP	< 156	
OCT-DEC	< 169	
MEAN	-	

TABLE D-I.4 CONCENTRATIONS OF I-131 IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	4L	
JAN	< 0.4	
FEB	< 0.3	
MAR	< 0.5	
APR	< 0.3	
MAY	< 0.4	
JUN	< 0.5	
JUL	< 0.3	
AUG	< 0.2	
SEP	< 0.5	
OCT	< 0.3	
NOV	< 0.3	
DEC	< 0.3	
MEAN	-	

ITE	COLLECTION PERIOD	Mn-54	FE-59	Co-58	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
L	JAN	< 2	< 3	< 3	< 2	< 2	< 4	< 3	< 2	< 3	< 11	< 2
	FEB	< 2	< 3	< 2	< 2	< 3	< 4	< 2	< 3	< 2	< 11	< 2
	MAR	< 1	< 4	< 2	< 2	< 1	< 4	< 2	< 3	< 2	< 14	< 3
	APR	< 2	< 3	< 2	< 2	< 3	< 5	< 3	< 3	< 2	< 14	< 4
	MAY	< 2	< 4	< 2	< 3	< 4	< 5	< 3	< 2	< 3	< 11	< 3
	JUN	< 2	< 3	< 2	< 2	< 3	< 5	< 2	< 2	< 3	< 13	< 3
	JUL	< 3	< 10	< 5	< 3	< 7	< 4	< 6	< 5	< 4	< 26	< 8
	AUG	< 2	< 4	< 2	< 2	< 5	< 3	< 3	< 2	< 2	< 19	< 3
	SEP	< 3	< 3	< 3	< 1	< 1	< 4	< 4	< 2	< 3	< 18	< 3
	OCT	< 2	< 2	< 2	< 3	< 4	< 8	< 3	< 2	< 3	< 18	< 4
	NOV	< 2	< 4	< 3	< 2	< 3	< 3	< 3	< 2	< 3	< 24	< 4
	DEC	< 2	< 3	< 4	< 1	< 2	< 6	< 3	< 3	< 2	< 14	< 2
	MEAN	-	-	-	-	-	-	-	-	-	-	-

TABLE D-I.5CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

D-3

TABLE D-II.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN AIR PARTICULATE AND I-131IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM
ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION PERIOD	1A GROSS BETA	1A I-131
	28 ± 4	< 11
2	30 ± 5	< 23
3	32 ± 4	< 13
4	24 ± 4	< 21
5	26 ± 5	< 13
6	50 ± 6	< 16
7	33 ± 4	< 20
8	19 ± 4	< 18
9	43 ± 5	< 11
10	28 ± 5	< 21
11	19 ± 4	< 18
12	27 ± 4	< 24
13	18 ± 4	< 21
14	23 ± 5	< 26
15	27 ± 4	< 12
16	30 ± 5	< 16
17	15 ± 4	< 17
18	23 ± 4	< 17
19	23 ± 4 22 ± 5	< 24 < 15
20 21	19 ± 4	< 15
22	13 ± 4 17 ± 4	< 20
22	17 ± 4 15 ± 4	< 10
24	10 ± 4 20 ± 4	< 12
24 25	20 ± 4 16 ± 4	< 21
26	10 ± 4	< 28
20	21 ± 3	< 12
28	19 ± 3	< 14
29	20 ± 4	< 2
30	17 ± 3	< 19
31	20 ± 4	< 2
32	18 ± 4	< 14
33	23 ± 4	< 20
34	20 ± 4	< 11
35	21 ± 4	< 20
36	21 ± 4	< 25
37	21 ± 4	< 14
38	22 ± 4	< 25
39	32 ± 4	< 21
40	23 ± 4	< 15
41	22 ± 4	< 17
42	17 ± 4	< 1
43	30 ± 4	< 14
44	25 ± 4	< 23
45	24 ± 4	< 23
46	24 ± 4	< 23
47	26 ± 4	< 15
48	22 ± 3	< 15
49	20 ± 4	< 10
50	31 ± 4	< 16
51	14 ± 3	< 14
52	29 ± 4	< 13
MEAN	23 ± 14	_
WEAN	23 I 14	-

TABLE D-II.2CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE
SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC
POWER STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

SITE	COLLECTION PERIOD	Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
1A	-	83 ± 15 91 ± 21	< 1.0 < 0.8	< 0.6 < 0.4	< 0.6 < 0.4	< 1.0 < 0.4	< 0.5 < 0.5
	-	103 ± 23 56 ± 13	< 1.1 < 0.5	< 0.7 < 0.6	< 0.4 < 0.7	< 1.1 < 0.8	< 0.6 < 0.4
	MEAN*	83 ± 40	-	-	-	-	-

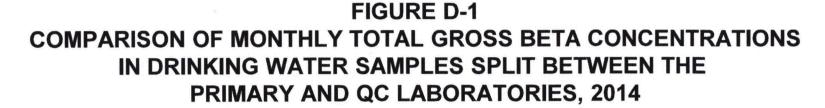
TABLE D-III.1CONCENTRATIONS OF I-131 BY CHEMICAL SEPARATION AND GAMMA
EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM
ATOMIC POWER STATION, 2014

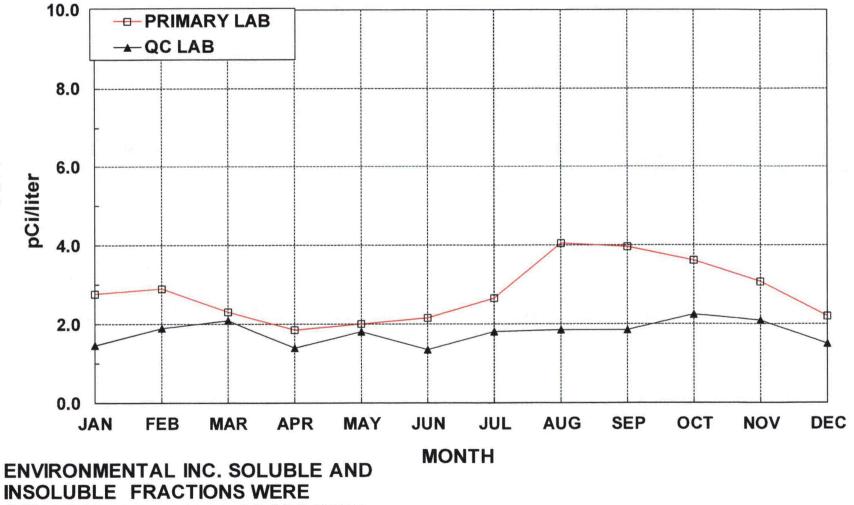
RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE	COLLECTION PERIOD	I-131	K-40	Cs-134	Cs-137	Ba-140	La-140
J	02/03/14	< 0.3	1329 ± 120	< 4	< 4	< 9	< 3
	05/05/14	< 0.2	1413 ± 83	< 2	< 3	< 24	< 3
	08/11/14	< 0.5	1342 ± 100	< 2	< 3	< 23	< 6
	11/03/14	< 0.3	1259 ± 146	< 5	< 6	< 17	< 2
	MEAN	-	1336 ± 127	-	-	-	-
S	02/03/14	< 0.4	1469 ± 119	< 4	< 3	< 13	< 2
•	05/05/14	< 0.2	1351 ± 77	< 3	< 3	< 27	< 8
	08/11/14	< 0.4	1460 ± 102	< 2	< 3	< 28	< 7
	11/03/14	< 0.3	806 ± 145	< 2	< 7	< 24	< 3
	MEAN	-	1272 ± 630	-	-	-	-
v	02/03/14	< 0.5	1277 ± 108	< 2	< 3	< 14	< 3
v							
	05/05/14	< 0.2	1248 ± 98	< 3	< 4	< 32	< 8
	08/11/14	< 0.5	1408 ± 101	< 4	< 4	< 25	< 4
	11/03/14	< 0.5	1213 ± 118	< 4	< 4	< 27	< 2
	MEAN	-	1286 ± 171	-	-	-	-

TABLE D-IV.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2014

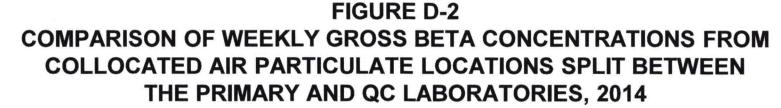
DRINKING WATER (GROSS BETA & GAMMA SPECTROSCOPY)

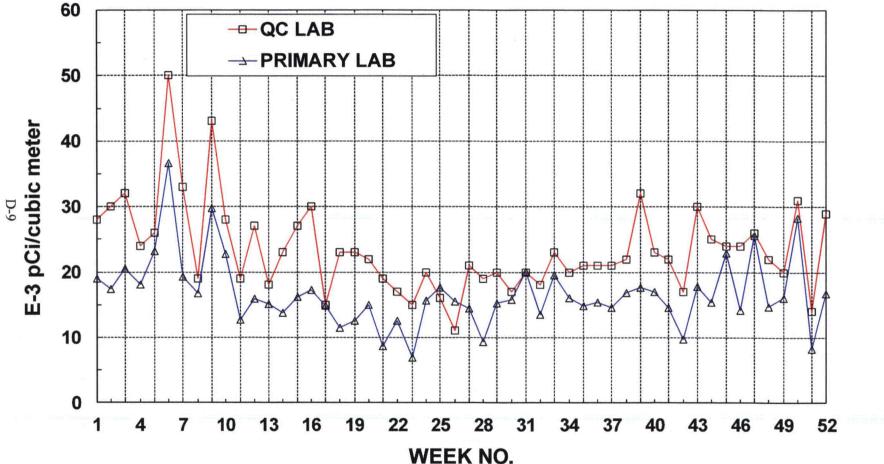

	4L
JAN	01/02/14 - 01/30/14
FEB	01/30/14 - 02/27/14
MAR	02/27/14 - 03/27/14
APR	03/27/14 - 05/01/14
MAY	05/01/14 - 05/29/14
JUN	05/29/14 - 06/26/14
JUL	06/26/14 - 07/31/14
AUG	07/31/14 - 08/28/14
SEP	08/28/14 - 10/02/14
OCT	10/02/14 - 10/30/14
NOV	10/30/14 - 11/26/14
DEC	11/26/14 - 01/02/15


AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	1A
JAN-MAR	01/01/14 - 04/03/14
APR-JUN	04/03/14 - 07/02/14
JUL-SEP	07/02/14 - 10/02/14
OCT-DEC	10/02/14 - 01/02/15

AIR PARTICULATE (GROSS BETA) AND AIR IODINE (I-131)


COLLECTION		COLLECTION	
PERIOD	1A	PERIOD	<u>1A</u>
1	01/01/14 - 01/09/14	27	07/02/14 - 07/10/14
2	01/09/14 - 01/15/14	28	07/10/14 - 07/17/14
3	01/15/14 - 01/23/14	29	07/17/14 - 07/23/14
4	01/23/14 - 01/30/14	30	07/23/14 - 07/31/14
5	01/30/14 - 02/06/14	31	07/31/14 - 08/07/14
6	02/06/14 - 02/12/14	32	08/07/14 - 08/14/14
7	02/12/14 - 02/20/14	33	08/14/14 - 08/21/14
8	02/20/14 - 02/27/14	34	08/21/14 - 08/28/14
9	02/27/14 - 03/06/14	35	08/28/14 - 09/04/14
10	03/06/14 - 03/13/14	36	09/04/14 - 09/11/14
11	03/13/14 - 03/20/14	37	09/11/14 - 09/18/14
12	03/20/14 - 03/27/14	38	09/18/14 - 09/25/14
13	03/27/14 - 04/03/14	39	09/25/14 - 10/02/14
14	04/03/14 - 04/09/14	40	10/02/14 - 10/09/14
15	04/09/14 - 04/17/14	41	10/09/14 - 10/16/14
16	04/17/14 - 04/24/14	42	10/16/14 - 10/23/14
17	04/24/14 - 05/01/14	43	10/23/14 - 10/30/14
18	05/01/14 - 05/08/14	44	10/30/14 - 11/06/14
19	05/08/14 - 05/15/14	45	11/06/14 - 11/13/14
20	05/15/14 - 05/22/14	46	11/13/14 - 11/20/14
21	05/22/14 - 05/29/14	47	11/20/14 - 11/26/14
22	05/29/14 - 06/05/14	48	11/26/14 - 12/04/14
23	06/05/14 - 06/12/14	49	12/04/14 - 12/11/14
24	06/12/14 - 06/19/14	50	12/11/14 - 12/18/14
25	06/19/14 - 06/26/14	51	12/18/14 - 12/26/14
26	06/26/14 - 07/02/14	52	12/26/14 - 01/02/15



COMBINED FOR TOTAL GROSS BETA

D-8

0-9

APPENDIX E

QUALITY CONTROL INTER-LABORATORY COMPARISON PROGRAM

	Identification		.		Reported	Known	Ratio (c)	Fusion
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
March 2014	E10854	Milk	Sr-89	pCi/L	95.1	91.7	1.04	А
			Sr-90	pCi/L	10.9	15.1	0.72	W
	E10855	Milk	I-131	pCi/L	96.6	98.5	0.98	А
			Ce-141	pCi/L	112	119	0.94	А
			Cr-51	pCi/L	449	491	0.91	А
			Cs-134	pCi/L	186	210	0.89	А
			Cs-137	pCi/L	250	253	0.99	А
			Co-58	pCi/L	248	268	0.93	А
			Mn-54	pCi/L	292	297	0.98	А
			Fe-59	pCi/L	230	219	1.05	А
			Zn-65	pCi/L	312	323	0.97	A
			Co-60	pCi/L	321	337	0.95	A
	E10857	AP	Ce-141	pCi	53.0	53.9	0.98	А
	210007	7	Cr-51	pCi	232	223	1.04	A
			Cs-134	pCi	100	95.3	1.05	Â
			Cs-137	pCi	122	115	1.06	Â
			Co-58	pCi	122	121	1.00	Â
			Mn-54	pCi	135	135	1.00	Â
			Fe-59	pCi	111	99.3	1.12	Â
			Zn-65	pCi	140	99.3 147	0.95	Â
			Co-60	pCi	187	153	1.22	ŵ
	E10856	Charcoal	I-131	pCi	74.1	76.4	0.97	А
	E10858	Water	Fe-55	pCi/L	2090	1760	1.19	А
June 2014	E10913	Milk	Sr-89	pCi/L	85.9	91.3	0.94	А
	210010	Wally	Sr-90	pCi/L	13.8	14.5	0.95	A
	E10914	Milk	I-131	pCi/L	86.5	90.9	0.95	А
			Ce-141	pCi/L	111	124	0.90	А
			Cr-51	pCi/L	255	253	1.01	А
			Cs-134	pCi/L	147	162	0.91	А
			Cs-137	pCi/L	123	120	1.03	А
			Co-58	pCi/L	105	112	0.94	А
			Mn-54	pCi/L	155	156	0.99	А
			Fe-59	pCi/L	106	102	1.04	А
			Zn-65	, pCi/L	251	252	1.00	А
			Co-60	pCi/L	218	224	0.97	А
	E10916	AP	Ce-141	pCi	95.1	92.6	1.03	А
			Cr-51	pCi	215	190	1.13	Α
			Cs-134	pCi	122	122	1.00	А
			Cs-137	pCi	95.1	89.8	1.06	А
			Co-58	pCi	88.7	84.1	1.05	A
			Mn-54	pCi	115	116	0.99	A
			Fe-59	pCi	72.6	76.7	0.95	A
			Zn-65	pCi	193	189	1.02	A
			Co-60	pCi	179	168	1.07	Â
	E10915	Charcoal	I-131	pCi	85.6	85.2	1.00	А
	E10917	Water	Fe-55	pCi/L	1680	1810	0.93	А

TABLE E-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014 (PAGE 1 OF 3)

e de la construcción de la construcción de la construcción de la construcción de la construcción de la constru

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014 (PAGE 2 OF 3)

Identification Ratio (c) Known Reported Value (a) Value (b) Evaluation (d) Units **TBE/Analytics** Month/Year Number Matrix Nuclide pCi/L 96.9 September 2014 E10946 Milk Sr-89 90.7 0.94 А Sr-90 pCi/L 14.0 16.4 0.85 А E10947 Milk I-131 pCi/L 92.0 97.6 0.94 Α 126 pCi/L 0.93 А Ce-141 117 Cr-51 pCi/L 281 288 0.98 A pCi/L 158 0.89 Cs-134 141 А pCi/L 186 193 0.96 А Cs-137 pCi/L Co-58 137 143 0.96 А Mn-54 pCi/L 138 142 0.97 А pCi/L 158 А Fe-59 162 1.03 А Zn-65 pCi/L 75.2 73.0 1.03 pCi/L А 286 297 0.96 Co-60 pCi E10949 AP 97.8 82.1 Α Ce-141 1.19 pCi 212 188 1.13 А Cr-51 Cs-134 pCi 106 103 1.03 А Cs-137 pCi 131 126 1.04 А pCi 93.0 0.92 Α Co-58 85.7 Mn-54 pCi 92.8 92.3 1.01 А Fe-59 pCi 103 Α 113 1.10 Zn-65 47.5 Α pCi 53.2 1.12 pCi 202 193 1.05 А Co-60 E10948 Charcoal I-131 рСі 83.9 89.8 0.93 Α E10950 Water Fe-55 pCi/L 2010 1720 1.17 Α E10951 Soil Ce-141 pCi/g 0.208 0.186 1.12 А 0.398 0.425 0.94 Α Cr-51 pCi/g Cs-134 pCi/g 0.216 0.233 0.93 A Cs-137 pCi/g 0.398 0.365 1.09 Α Co-58 pCi/g 0.197 0.93 Α 0.211 Mn-54 pCi/g 0.242 0.209 1.16 А Fe-59 pCi/g 0.238 0.233 1.02 Α Zn-65 pCi/g 0.117 0.108 1.08 А Co-60 pCi/g 0.447 0.438 1.02 А December 2014 E11078 Milk pCi/L 85.7 95.7 0.90 Sr-89 А Sr-90 pCi/L 12.9 15.6 0.83 А E11079 Milk pCi/L 85.9 95.1 0.90 I-131 А Ce-141 pCi/L 205 219 0.94 А Cr-51 pCi/L 402 406 0.99 Α 156 164 А Cs-134 pCi/L 0.95 198 Α Cs-137 pCi/L 194 0.98 Co-58 pCi/L 122 130 0.94 Α Α Mn-54 pCi/L 220 225 0.98 pCi/L 1.05 Α Fe-59 183 175 Zn-65 pCi/L 287 297 0.97 А Co-60 pCi/L 224 235 0.95 А

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
December 2014	E11081	AP	Ce-141	pCi	96.4	102	0.95	A
December 2014	LIIUOI		Cr-51	pCi	171	190	0.90	Â
			Cs-134	pCi	73.1	76.9	0.95	Â
			Cs-137	pCi	99.0	92.6	1.07	Â
			Co-58	pCi	57.5	60.8	0.95	Â
			Mn-54	pCi	107	105	1.02	A
			Fe-59	pCi	74.2	81.6	0.91	А
			Zn-65	pCi	144	139	1.04	А
			Co-60	pCi	114	110	1.04	А
	E11080	Charcoal	I-131	pCi	93.5	98.2	0.95	Α
	E11082	Water	Fe-55	pCi/L	1760	1970	0.89	А

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014 (PAGE 3 OF 3)

(a) Teledyne Brown Engineering reported result.

TABLE E-1

(c) Ratio of Teledyne Brown Engineering to Analytics results.

⁽b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20. W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014

(PAGE 1 OF 1)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c)
May 2014	RAD-97	Water	Sr-89	pCi/L	38.25	36.7	27.5 - 43.6	А
,			Sr-90	pCi/L	24.65	26.5	19.2 - 30.9	Α
			Ba-133	pCi/L	89.1	87.9	74.0 - 96.7	А
			Cs-134	pCi/L	45.55	44.3	35.5 - 48.7	А
			Cs-137	pCi/L	91.15	89.1	80.2 - 101	А
			Co-60	pCi/L	65.10	64.2	57.8 - 73.1	Α
			Zn-65	pCi/L	244	235	212 - 275	Α
			Gr-A	pCi/L	45.65	61.0	31.9 - 75.8	А
			Gr-B	pCi/L	27.95	33.0	21.4 - 40.7	Α
			l-131	pCi/L	23.75	25.7	21.3 - 30.3	Α
			U-Nat	pCi/L	9.61	10.2	7.95 - 11.8	А
			H-3	pCi/L	8435	8770	7610 - 9650	Α
	MRAD-20	Filter	Gr-A	pCi/filter	28.0	46.0	15.4 - 71.4	А
November 2014	RAD-99	Water	Sr-89	pCi/L	30.4	31.4	22.8 - 38.1	А
			Sr-90	pCi/L	18.6	21.8	15.6 - 25.7	Α
			Ba-133	pCi/L	46.8	49.1	40.3 - 54.5	Α
			Cs-134	pCi/L	88.0	89.8	73.7 - 98.8	А
			Cs-137	pCi/L	99.0	98.8	88.9 - 111	Α
			Co-60	pCi/L	92.5	92.1	82.9 - 104	Α
			Zn-65	pCi/L	325	310	279 - 362	Α
			Gr-A	pCi/L	29.9	37.6	19.4 - 48.1	А
			Gr-B	pCi/L	27.5	27.4	17.3 - 35.3	А
			I-131	pCi/L	15.8	20.3	16.8 - 24.4	N (1)
			U-Nat	pCi/L	5.74	5.80	4.34 - 6.96	A
			H-3	pCi/L	6255	6880	5940 - 7570	Α
	MRAD-21	Filter	Gr-A	pCi/filter	27.3	36.9	12.4 - 57.3	А

(1) The lodine-131 was evaluated as failed with a ratio of 0.778. No cause could be found for the slightly low activity. TBE would evaluate this as acceptable with warning. A rerun was not possible due to I-131 decay. All ERA lodine-131 evaluations since 2004 have been acceptable. NCR 14-08

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2014

(PAGE 1 OF 2)

Month/Year	Identification Number	Media	Nuclide*	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c
March 2014	14-MaW30	Water	Am-241	Bq/L	0.764	0.720	0.504 - 0.936	 A
		VV aloi	Cs-134	Bq/L	20.7	23.1	16.2 - 30 0	Â
			Cs-137	Bq/L	28.0	28.9	20.2 - 37.6	A
			Co-57	Bq/L	26.5	27.5	19.3 - 35.8	Â
			Co-60	Bq/L	15.6	16.0	11.2 - 20.8	A
			H-3**	Bq/L	NR	321	225 - 417	N (3)
			Mn-54	Bq/L	13.5	13.9	9.7 - 18.1	A
			Ni-63	Bg/L	NR	34.0	23.8 - 44.2	N (3)
			Pu-238	Bq/L	0.911	0.828	0.580 - 1.076	(0)
			Pu-239/240	Bq/L	0.751	0.676	0.473 - 0.879	
			K-40	Bq/L	NR	0.070	(1)	N (3)
			Sr-90**	Bq/L	NR	8.51	5.96 - 11.06	N (3)
			U-234/233**		NR	0.225	0.158 - 0.293	N (3)
			U-238**	Bq/L	NR	1.45	1.02 - 1.89	N (3)
			Zn-65	Bq/L	-0.201	1.45	(1)	A
			211-05	Dyr	-0.201		(1)	~
	14-MaS30	Soil	Cs-134	Bq/kg	2.02		(1)	А
			Cs-137	Bq/kg	1300	1238	867 - 1609	А
			Co-57	Bq/kg	1069	966	676 - 1256	А
			Co-60	Bq/kg	1.32	1.22	(2)	А
			Mn-54	Bq/kg	1510	1430	1001 - 1859	Α
			K-40	Bq/kg	669	622	435 - 809	А
			Sr-90	Bq/kg	4.14		(1)	Α
			Zn-65	Bq/kg	763	695	487 - 904	Α
	14-RdF30	AP	Cs-134**	Bq/sample	NR	1.91	1.34 - 2.48	N (3)
		7.4	Cs-137**	Bq/sample	NR	1.76	1.23 - 2.29	N (3)
			Co-57**	Bq/sample	NR		(1)	N (3)
			Co-60**	Bq/sample	NR	1.39	0.97 - 1.81	N (3)
			Mn-54**	Bq/sample	NR		(1)	N (3)
			Sr-90	Bq/sample	0.8220	1.18	0.83 - 1.53	N (3)
			Zn-65**	Bq/sample	NR		(1)	N (3)
	14-GrF30	AP	Gr-A	Bq/sample	0.606	1.77	0.53 - 3.01	А
	14-01-30	AF	Gr-B	Bq/sample	0.7507	0.77	0.39 - 1.16	Â
			GI-D	Dysample	0.7507	0.77	0.59 - 1.10	~
	14-RdV30	Vegetation	Cs-134	Bq/sample	5.96	6.04	4.23 - 7.85	А
		-	Cs-137	Bq/sample	5.06	4.74	3.32 - 6.16	А
			Co-57	Bq/sample	11.8	10.1	7.1 - 13.1	А
			Co-60	Bq/sample	7.34	6.93	4.85 - 9.01	А
			Mn-54	Bq/sample	8.95	8.62	6.03 - 11.21	А
			Sr-90	Bq/sample	1.23	1.46	1.02 - 1.90	А
			Zn-65	Bq/sample	8.91	7.86	5.50 - 10.22	Α

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2014

(PAGE 2 OF 2)

Month/Year	Identification Number	Media	Nuclide*	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
		modia		01110			- Range	
September 2014	14-MaW31	Water	Am-241	Bq/L	0.705	0.88	0.62 - 1.14	А
			Cs-134***	Bq/L	NR		(1)	N (4)
			Cs-137***	Bq/L	NR	18.4	12.9 - 23.9	N (4)
			Co-57***	Bq/L	NR	24.7	17.3 - 32.1	N (4)
			Co-60***	Bq/L	NR	12.4	8.7 - 16.1	N (4)
			Mn-54***	Bq/L	NR	14.0	9.8 - 18.2	N (4)
			Ni-63	Bq/L	24.07	24.6	17.2 - 32.0	A
			Pu-238	Bq/L	0.591	0.618	0.433 - 0.803	А
			Pu-239/240	Bg/L	0.0153	0.0048	(2)	А
			K-40***	Bq/L	NR	161	113 - 209	N (4)
			Zn-65***	Bq/L	NR	10.9	7.6 - 14.2	N (4)
	14-MaS31	Soil	Cs-134***	Bg/kg	NR	622	435 - 809	N (4)
			Cs-137***	Bq/kg	NR		(1)	N (4)
			Co-57***	Bq/kg	NR	1116	781 - 1451	N (4)
			Co-60***	Bq/kg	NR	779	545 - 1013	N (4)
			Mn-54***	Bq/kg	NR	1009	706 - 1312	N (4)
			K-40***	Bq/kg	NR	824	577 - 1071	N (4)
			Sr-90	Bq/kg	694	858	601 - 1115	A
			Zn-65***	Bq/kg	NR	541	379 - 703	N (4)
	14-RdF31	AP	Sr-90	Bq/sample	0.310	0.703	0.492 - 0.914	N (4)
	14-GrF31	AP	Gr-A	Bg/sample	0.153	0.53	0.16 - 0.90	N (4)
			Gr-B	Bq/sample	0.977	1.06	0.53 - 1.59	A
September 2014	14-RdV31	Vegetation	Cs-134	Bq/sample	7.31	7.38	5.17 - 9.59	А
•		0	Cs-137	Bq/sample	8.93	8.14	5.70 - 10.58	А
			Co-57	Bq/sample	10.8	9.2	6.4 - 12.0	А
			Co-60	Bq/sample	6.31	6.11	4.28 - 7.94	А
			Mn-54	Bg/sample	7.76	7.10	4.97 - 9.23	А
			Sr-90	Bq/sample	0.738	0.85	0.60 - 1.11	A
			Zn-65	Ba/sample	7.16	6,42	4.49 - 8.35	А

* The MAPEP cross check isotope list has been reduced due to duplication of effort or analysis not being performed for clients.

** These nuclides are no longer part of the TBE cross check program due to duplication of effort or analysis not being performed

for clients. MAPEP evaluates non-reported analyses as failed if they were reported in the previous series.

*** All future gamma cross check samples for these isotopes will be provided by Analytics.

(1) False positive test.

(2) Sensitivity evaluation.

(3) Water, Ni-63 overlooked when reporting, but the result of 32.7 +- 1.69 would have passed the acceptance criteria. NCR 14-04 Water, the non-detected K-40 was overlooked when reporting, but would have passed the false positive test. NCR 14-04 AP, Sr-90 rerun was within the low range of the acceptance criteria. The original and rerun results were statistically the same. No cause could be identified for the slightly low Sr-90 activity. NCR 14-04

For non reported (NR) analyses, MAPEP evaluates as failed if they were reported in the previous series. NCR 14-04
(4) AP, Sr-90 gravimetric yield was very high at 117%. Could indicate larger than normal amounts of calcium in the AP. A second fuming HNO₃ separation would be required to remove the excess calcium. NCR 14-09
AP, Gr-Alpha was counted on the wrong side. When flipped over and recounted the results were acceptable. NCR 14-09
For non reported (NR) analyses, MAPEP evaluates as failed if they were reported in the previous series. NCR 14-09

(a) Teledyne Brown Engineering reported result.

(b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

ERA STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM^a ENVIRONMENTAL, INC., 2014

(Page 1 of 1)

			Concen	tration (pCi/L)		
Lab Code	Date	Analysis	Laboratory	ERA	Control	
	<u>_</u>		Result b	Result c	Limits	Acceptance
ERW-1384	4/7/2014	Sr-89	40.29 ± 5.76	36.70	27.50 - 43.60	Pass
ERW-1384	4/7/2014	Sr-90	40.20 ± 0.70 24.08 ± 2.35	26.50	19.20 - 30.90	Pass
ERW-1385	4/7/2014	Ba-133	78.23 ± 3.93	87.90	74.00 - 96.70	Pass
ERW-1385	4/7/2014	Co-60	62.75 ± 3.53	64.20	57.80 - 73.10	Pass
ERW-1385	4/7/2014	Cs-134	44.97 ± 3.99	44.30	35.50 - 48.70	Pass
ERW-1385	4/7/2014	Cs-134 Cs-137	44.97 ± 3.99 88.54 ± 4.93	89.10	80.20 - 101.00	Pass
ERW-1385	4/7/2014	Zn-65	249.1 ± 10.44	235.0	212.0 - 275.0	Pass
ERW-1388	4/7/2014	Gr. Alpha	56.70 ± 2.47	61.00	31.90 - 75.80	Pass
ERW-1388	4/7/2014	Gr. Beta	32.10 ± 1.20	33.00	21.40 - 40.70	Pass
ERW-1300	4/7/2014		25.52 ± 1.12	25.70	21.40 - 40.70	Pass
		I-131				
ERW-1394	4/7/2014	Uranium	10.76 ± 0.74	10.20	7.95 - 11.80	Pass
ERW-1397	4/7/2014	H-3	8982 ± 279	8770	7610 - 9650	Pass
ERW-5382	10/6/2014	Sr-89	29.40 ± 5.32	31.40	22.80 - 38.10	Pass
ERW-5382	10/6/2014	Sr-90	19.19 ± 1.85	21.80	15.60 - 25.70	Pass
ERW-5385	10/6/2014	Ba-133	43.54 ± 4.54	49.10	40.30 - 54.50	Pass
ERW-5385	10/6/2014	Cs-134	81.95 ± 7.49	89.80	73.70 - 98.80	Pass
ERW-5385	10/6/2014	Cs-137	95.76 ± 5.50	98.80	88.90 - 111.00	Pass
ERW-5385	10/6/2014	Co-60	90.25 ± 2.77	92.10	82.90 - 104.00	Pass
ERW-5385	10/6/2014	Zn-65	327.4 ± 23.3	310.00	279.0 - 362.0	Pass
ERW-5388	10/6/2014	Gr. Alpha	30.88 ± 8.05	37.60	19.40 - 46.10	Pass
ERW-5388	10/6/2014	G. Beta	20.47 ± 4.75	27.40	17.30 - 35.30	Pass
ERW-5392	10/6/2014	I-131	19.58 ± 2.35	20.30	16.80 - 24.40	Pass
ERW-5394	10/6/2014	Uranium	5.51 ± 0.37	5.80	4.34 - 6.96	Pass
ERW-5397	10/6/2014	H-3	6876 ± 383	6880	5940 - 7570	Pass

a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) ENVIRONMENTAL, INC., 2014

(Page 1 of 2)

				Concentratio	n a	
				Known	Control	
Lab Code b	Date	Analysis	Laboratory result	Activity	Limits c	Acceptance
MAW-1140	2/1/2014	Gr. Alpha	0.77 ± 0.06	0.85	0.26 - 1.44	Pass
MAW-1140	2/1/2014	Gr. Beta	4.31 ± 0.08	4.19	2.10 - 6.29	Pass
MAW-1184	2/1/2014	Fe-55	0.40 ± 3.20	0.00	-0.01 - 2.00	Pass
MAW-1184	2/1/2014	H-3	345.10 ± 10.60	321.00	225.00 - 417.00	Pass
MAW-1184	2/1/2014	Ni-63	32.40 ± 3.20	34.00	23.80 - 44.20	Pass
MAW-1184	2/1/2014	Pu-238	1.28 ± 0.12	0.83	0.58 - 1.08	Fail (1)
MAW-1184	2/1/2014	Pu-239/240	0.91 ± 0.10	0.68	0.47 - 0.88	Fail (1)
MAW-1184	2/1/2014	Sr-90	7.00 ± 0.70	8.51	5.96 - 11.06	Pass
MAW-1184	2/1/2014	U-233/234	0.20 ± 0.07	0.23	0.16 - 0.29	Pass
MAW-1184	2/1/2014	U-238	1.25 ± 0.18	1.45	1.02 - 1.89	Pass
MAW-1184	2/1/2014	Co-57	27.86 ± 0.38	27.50	19.30 - 35.80	Pass
MAW-1184	2/1/2014	Co-60	15.99 ± 0.27	16.00	11.20 - 20.80	Pass
MAW-1184	2/1/2014	Cs-134	21.85 ± 0.54	23.10	16.20 - 30.00	Pass
MAW-1184	2/1/2014	Cs-137	28.74 ± 0.49	28.90	20.20 - 37.60	Pass
MAW-1184	2/1/2014	K-40	1.80 ± 2.00	0.00	0.00 - 10.00	Pass
MAW-1184	2/1/2014	Mn-54	14.06 ± 0.40	13.90	9.70 - 18.10	Pass
MAW-1184	2/1/2014	Zn-65	0.00 ± 0.19	0.00	-0.01 - 0.00	Pass
MAVE-1148	2/1/2014	Co-57	11.63 ± 0.19	10.10	7.10 - 13.10	Pass
MAVE-1148	2/1/2014	Co-60	7.28 ± 0.18	6.93	4.85 - 9.01	Pass
MAVE-1148	2/1/2014	Cs-134	6.29 ± 0.29	6.04	4.23 - 7.85	Pass
MAVE-1148	2/1/2014	Cs-137	5.18 ± 0.20	4.74	3.32 - 6.16	Pass
MAVE-1148	2/1/2014	Mn-54	9.22 ± 0.26	8.62	6.03 - 11.21	Pass
MAVE-1148	2/1/2014	Zn-65	8.59 ± 0.40	7.86	5.50 - 10.22	Pass
MAAP-1151	2/1/2014	Co-57	1.60 ± 0.05	0.00	NA	Fail (2)
MAAP-1151	2/1/2014	Co-60	1.38 ± 0.08	1.39	0.97 - 1.81	Pass
MAAP-1151	2/1/2014	Cs-134	1.75 ± 0.11	1.91	1.34 - 2.48	Pass
MAAP-1151	2/1/2014	Cs-137	1.81 ± 0.10	1.76	1.23 - 2.29	Pass
MAAP-1151	2/1/2014	Mn-54	0.01 ± 0.03	0.00	NA	Pass
MAAP-1151	2/1/2014	Zn-65	-0.24 ± 0.09	0.00	-0.50 - 1.00	Pass
MAAP-1151	2/1/2014	Sr-90	1.11 ± 0.14	1.18	0.83 - 1.53	Pass
MAAP-1154	2/1/2014	Gr. Alpha	0.56 ± 0.06	1.77	0.53 - 3.01	Pass
MAAP-1154	2/1/2014	Gr. Beta	0.98 ± 0.06	0.77	0.39 - 1.16	Pass
MASO-1146	2/1/2014	Ni-63	4.80 ± 15.30	0.00	NA	Pass
MASO-1146	2/1/2014	Co-57	1064.50 ± 3.60	966.00	676.00 - 1256.00	Pass
MASO-1146	2/1/2014	Co-60	1.70 ± 0.50	1.22	(3)	Pass
MASO-1146	2/1/2014	Cs-134	6.10 ± 1.80	0.00	NA	Fail (4)
MASO-1146	2/1/2014	Cs-137	1364.30 ± 5.30	1238.00	867.00 - 1609.00	Pass
MASO-1146	2/1/2014	K-40	728.90 ± 15.90	622.00	435.00 - 809.00	Pass
MASO-1146	2/1/2014	Mn-54	1588.00 ± 6.00	1430.00	1001.00 - 1859.00	Pass
MASO-1146	2/1/2014	Zn-65	763.50 ± 6.80	695.00	487.00 - 904.00	Pass
MASO-1146	2/1/2014	Sr-90	1.23 ± 1.37	0.00	NA	Pass

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) ENVIRONMENTAL, INC., 2014 (Page 2 of 2)

Concentration a Known Control Analysis Lab Code b Date Activity Limits c Laboratory result Acceptance 686.00 - 1274.00 MASO-4439 8/1/2014 Ni-63 771.62 ± 23.29 980.00 Pass MASO-4439 8/1/2014 Sr-90 778.34 ± 17.82 858.00 601.00 - 1115.00 Pass MASO-4439 8/1/2014 Cs-134 520.60 ± 7.09 622.00 435.00 - 809.00 Pass MASO-4439 8/1/2014 Co-57 1135.00 ± 7.40 1116.00 781.00 - 1451.00 Pass MASO-4439 8/1/2014 Co-60 768.20 ± 7.70 779.00 545.00 - 1013.00 Pass MASO-4439 8/1/2014 Mn-54 1050.70 ± 12.60 1009.00 706.00 - 1312.00 Pass MASO-4439 8/1/2014 Zn-65 407.89 ± 15.03 541.00 379.00 - 703.00 Pass MAW-4431 8/1/2014 Am-241 0.79 ± 0.08 0.88 0.62 - 1.14 Pass MAW-4431 8/1/2014 Cs-137 18.62 ± 0.54 18.40 12.90 - 23.90 Pass MAW-4431 8/1/2014 Co-57 24.85 ± 0.42 24.70 17.30 - 32.10 Pass MAW-4431 12.27 ± 0.38 12.40 8.70 - 16.10 8/1/2014 Co-60 Pass MAW-4431 8/1/2014 207.20 ± 10.60 208.00 146.00 - 270.00 Pass H-3 22.10 - 41.00 MAW-4431 8/1/2014 Fe-55 55.10 ± 14.80 31.50 Fail (5) MAW-4431 8/1/2014 Mn-54 14.36 ± 0.53 14.00 9.80 - 18.20 Pass MAW-4431 8/1/2014 Zn-65 11.46 ± 0.78 10.90 7.60 - 14.20 Pass MAW-4493 8/1/2014 0.93 ± 0.07 1.40 0.42 - 2.38 Pass Gr. Alpha MAW-4493 3.25 - 9.75 8/1/2014 Gr. Beta 6.31 ± 1.35 6.50 Pass 0.70 0.49 - 0.91 Pass MAAP-4433 8/1/2014 Sr-90 0.74 ± 0.10 MAAP-4444 8/1/2014 Sr-89 7.82 ± 0.52 9.40 6.60 - 12.20 Pass 0.53 - 0.99 MAAP-4444 8/1/2014 Sr-90 0.76 ± 0.10 0.76 Pass MAVE-4436 8/1/2014 7.49 ± 0.18 7.38 5.17 - 9.59 Pass Cs-134 MAVE-4436 8/1/2014 Co-57 11.20 ± 0.19 9.20 6.40 - 12.00 Pass MAVE-4436 8/1/2014 Co-60 6.84 ± 0.17 6.11 4.28 - 7.94 Pass **MAVE-4436** 8/1/2014 Mn-54 8.11 ± 0.26 7.11 4.97 - 9.23 Pass MAVE-4436 8/1/2014 7.76 ± 0.43 6.42 4.49 - 8.35 Pass Zn-65

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

(1) The high bias on the plutonium crosscheck samples was traced to contamination from a newly purchased standard. The results of reanalysis with replacement tracer purchased from NIST:

MAW-1184 Pu-238	0.68 ± 0.10	Bq / L
MAW-1184 Pu-239/240	0.66 ± 0.10	Bq / L

(2) Interference from Eu-152 resulted in misidentification of Co-57.

(3) Provided in the series for "sensitivity evaluation". MAPEP does not provide control limits.

(4) False positive test. Long sample counting time lead to interference from naturally occuring Bi-214 in sample matrix with a close spectral energy.

(5) Result of reanalysis Fe-55 32.63 ± 16.30 Bq/L

APPENDIX F

ERRATA DATA

There is no errata data for 2014.

,

APPENDIX G

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

.

Docket No: 50-277 50-278
PEACH BOTTOM ATOMIC POWER STATION UNITS 2 and 3
Annual Radiological Groundwater Protection Program Report
1 January 2014 Through 31 December 2014
Prepared By
Teledyne Brown Engineering Environmental Services
Exelon Generation
Peach Bottom Atomic Power Station Delta, PA 17314
May 2015

Table of Contents

Ι.	Summary and Conclusions	. 1
11.	Introduction A. Objectives of the RGPP B. Implementation of the Objectives C. Program Description D. Characteristics of Tritium (H-3)	3 4 4
III.	Program Description A. Sample Analysis B. Data Interpretation C. Background Analysis 1. Background Concentrations of Tritium	6 6 7
IV.	Results and Discussion	10 11 12 12 12 12 12 12
V.	References	15

Appendices

Appendix A	Sampling Locations, Distance and Direction
<u>Tables</u>	
Table A-1	Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Peach Bottom Atomic Power Station, 2014
<u>Figures</u>	
Figure A-1	Well Water Locations, Peach Bottom Atomic Power Station, 2014
Figure A-2	RGPP Monitoring Locations, Peach Bottom Atomic Power Station, 2014
Appendix B	Data Tables
<u>Tables</u>	
Table B-I.1	Concentrations of Tritium, Strontium, Gross Alpha and Gross Beta in Groundwater and Seep Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2014.
Table B-I.2	Concentrations of Gamma Emitters in Groundwater and Seep Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2014.
Table B-I.3	Concentrations of Hard-to-Detects in Groundwater Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2014.
Table B-II.1	Concentrations of Tritium in Surface Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2014.
Table B-II.2	Concentrations of Gamma Emitters in Surface Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2014.
Table B-III.1	Concentrations of Tritium in Precipitation Water Samples Collected as Part of the Radiological Groundwater Protection Program, Peach Bottom Atomic Power Station, 2014.

•

I. Summary and Conclusions

This report on the Radiological Groundwater Protection Program (RGPP) conducted for the Peach Bottom Atomic Power Station (PBAPS) by Exelon Nuclear covers the period 01 January 2014 through 31 December 2014. This evaluation involved numerous station personnel and contractor support personnel. At PBAPS, there are 31 permanent groundwater monitoring wells. Installation of the wells began in 2006. Of these monitoring locations, none were assigned to the station's REMP. This is the seventh in a series of annual reports on the status of the RGPP conducted at PBAPS. This report covers groundwater, surface water, seep water and precipitation water samples collected from the environment on station property in 2014. During that time period, 720 analyses were performed on more than 231 samples from 41 locations. These 41 locations include 27 groundwater monitoring wells, 3 surface water sample points, 3 groundwater seeps and 2 yard drain sumps (groundwater) and 6 precipitation water sampling points. Phase 1 of the monitoring was part of a comprehensive study initiated by Exelon to determine whether groundwater or surface water in the vicinity of PBAPS had been adversely impacted by any releases of radionuclides. Phase 1 was conducted by Conestoga Rovers and Associates (CRA) and the conclusions were made available to state and federal regulators as well as the public. Phase 2 of the RGPP was conducted by Exelon corporate and station personnel to initiate follow up of Phase 1 and begin long-term monitoring at groundwater and surface water locations selected during Phase 1. All analytical results from Phase 2 monitoring are reported herein.

In assessing all the data gathered for this report, it was concluded that the operation of PBAPS had no adverse radiological impact on the environment and there are no known active releases into the groundwater at PBAPS.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater or surface water samples. In the case of tritium, Exelon specified that its laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation.

Strontium-89 (Sr-89) and strontium-90 (Sr-90) were not detected in any of the samples. (Table B-I.1, Appendix B).

Tritium was not detected in any groundwater locations at concentrations greater than the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission [NRC] Reporting Limit) of 20,000 pCi/L. Low levels of tritium were detected at concentrations greater than the minimum detectable concentration (MDC) in 11 of 27 groundwater monitoring wells. The tritium concentrations ranged from 147 ± 71 pCi/L to $8,560 \pm 899$ pCi/L (Table B–I.1, Appendix B). Tritium was not detected at concentrations greater than the MDC in any surface water, seep water or precipitation water sample locations. Based on the sample data tritium is not migrating off the station property at detectable concentrations. No tritium was detected in any surface water samples (Table B–II.1, Appendix B). No tritium was detected in any precipitation water samples (Table B–III.1, Appendix B).

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater samples during 2014. Gross Alpha (dissolved) was detected in 6 of 25 groundwater locations analyzed. The concentrations ranged from 1.3 to 13.3 pCi/L. Gross Alpha (suspended) was detected in 5 of 25 groundwater locations analyzed. The concentrations ranged from 1.0 to 4.8 pCi/L. Gross Beta (dissolved) was detected in 23 of 25 groundwater locations analyzed. The concentrations ranged from 1.0 to 4.8 pCi/L. Gross Beta (dissolved) was detected in 23 of 25 groundwater locations analyzed. The concentrations ranged from 1.2 to 16.6 pCi/L. Gross Beta (suspended) was detected in 8 of 25 groundwater locations analyzed. The concentrations ranged from 1.4 to 18.9 pCi/L. The activity detected is consistent with historical levels.

Hard-To-Detect analyses were performed on a select group of groundwater and surface water locations to establish baseline levels (Table B–I.3, Appendix B). The analyses for groundwater included iron-55 (Fe-55), nickel-63 (Ni-63), americium-241 (Am-241), curium-242 (Cm-242), Cm-243/244, plutonium-238 (Pu-238), Pu-239/240, uranium-234 (U-234), U-235 and U-238. U-234 was detected in 8 of 24 groundwater monitoring locations analyzed. The concentrations ranged from 0.45 to 7.65 pCi/L. U-235 was detected at one groundwater monitoring location at a concentration of 0.70 pCi/L. U-238 was detected in 8 of 24 groundwater monitoring locations analyzed. The concentrations ranged from 0.18 to 6.27 pCi/L. No plant produced radionuclides were detected.

II. Introduction

PBAPS is located along the Susquehanna River between Holtwood and Conowingo Dams in Peach Bottom Township, York County, Pennsylvania. The initial loading of fuel into Unit 1, a 40 MWe (net) high temperature gas-cooled reactor, began on 5 February 1966, and initial criticality was achieved on 3 March 1966. Shutdown of Peach Bottom Unit 1 for decommissioning was on 31 October 1974. For the purposes of the monitoring program, the beginning of the operational period for Unit 1 was considered to be 5 February 1966. A summary of the Unit 1 preoperational monitoring program was presented in a previous report ⁽¹⁾. PBAPS Units 2 and 3 are boiling water reactors, each with a power output of approximately 1170 MWe. The first fuel was loaded into Peach Bottom Unit 2 on 9 August 1973. Criticality was achieved on 16 September 1973 and full power was reached on 16 June 1974. The first fuel was loaded into Peach Bottom Unit 3 on 5 July 1974. Criticality was achieved on 7 August 1974 and full power was first reached on 21 December 1974. Preoperational summary reports (2)(3) for Units 2 and 3 have been previously issued and summarize the results of all analyses performed on samples collected from 5 February 1966 through 8 August 1973.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2014.

A. Objective of the RGPP

The objectives of the RGPP are as follows:

- 1. Ensure that the site characterization of geology and hydrology provides an understanding of predominant groundwater gradients based upon current site conditions.
- 2. Identify site risk based on plant design and work practices.
- 3. Establish an on-site groundwater monitoring program to ensure timely detection of inadvertent radiological releases to ground water.
- 4. Establish a remediation protocol to prevent migration of licensed material off-site and to minimize decommissioning impacts.
- 5. Ensure that records of leaks, spills, remediation efforts are retained and retrievable to meet the requirements of 10 CFR 50.75(g).
- 6. Conduct initial and periodic briefings of their site specific Groundwater Protection Initiative (GPI) program with the designated State/Local officials.

- 7. Make informal communication as soon as practicable to appropriate State/Local officials, with follow-up notifications to the NRC, as appropriate, regarding significant on-site leaks/spills into groundwater and on-site or off-site water sample results exceeding the criteria in the REMP as described in the OCDM.
- 8. Submit a written 30-day report to the NRC for any water sample result for on-site groundwater that is or may be used as a source of drinking water that exceeds any of the criteria in the licensee's existing REMP/ODCM for 30-day reporting of off-site water sample results.
- Document all on-site groundwater sample results and a description of any significant on-site leaks/spills into groundwater for each calendar year in the Annual Radiological Environmental Operating Report (AREOR) for REMP or the Annual Radioactive Effluent Release Report (ARERR).
- 10. Perform a self-assessment of the GPI program.
- 11. Conduct a review of the GPI program, including at a minimum the licensee's self assessments, under the auspices of the Nuclear Energy Institute (NEI).
- B. Implementation of the Objectives

The objectives identified have been implemented at PBAPS via Corporate and Site specific procedures. These procedures include:

- 1. EN-AA-407, Response to Inadvertent Releases of Licensed Materials to Groundwater, Surface Water or Soil.
- 2. EN-AA-408, Radiological Groundwater Protection Program
- 3. EN-AA-408-4000, Radiological Groundwater Protection Program Implementation.
- 4. EN-PB-408-4160, Peach Bottom RGPP Reference Material
- C. Program Description
 - 1. Sample Collection

Sample locations can be found in Table A–1 and Figures A–1 and A–2, Appendix A.

Groundwater, Surface Water and Precipitation Water

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures. Groundwater, surface water, and precipitation water are collected. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, industry crosscheck programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables as data are received.

Analytical data results are reviewed by both station personnel and an independent hydro geologist for adverse trends or changes to hydrogeologic conditions.

D. Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food or absorption through skin. Once tritium enters the body it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity and in special production reactors, where the isotopes lithium-7 (Li-7) and/or boron-10 (B-10) are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface and therefore tritiated water will travel at the same velocity as the average groundwater velocity. Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (He-3). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium emits a low energy beta particle and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

- III. Program Description
 - A. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc. Midwest Laboratories (EIML) to analyze the environmental samples for radioactivity for the PBAPS RGPP in 2014.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater and surface water.
- 2. Concentrations of strontium in groundwater.
- 3. Concentrations of tritium in groundwater, surface water and precipitation water.
- Concentrations of 'hard-to-detect' isotopes (Am-241, Cm-242, Cm-243/244, Pu-238, Pu-239/240, U-233/234, U-235, U-238, Fe-55 and Ni-63) in groundwater. These analyses are required based on tritium results.
- B. Data Interpretation

The radiological data collected prior to PBAPS becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, PBAPS was considered operational at initial criticality. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection

The lower limit of detection (LLD) is a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus \pm the estimated sample standard deviation as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the AREOR.

Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater and surface water 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 are measured.

C. Background Analysis

A pre-operational REMP was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life and foodstuffs. The results of the monitoring were detailed in the report entitled PBAPS, Environs Radiation Monitoring Program, Preoperational Summary Report Units 2 and 3, September 1970- August 1973, January 1974 and PBAPS, Environs Radiation Monitoring Program, Preoperational Summary Report Units 2 and 3, June 1977. The pre-operational REMP contained analytical results from samples collected from the surface water, discharge, well and rain water. 1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others. Additional detail may be found by consulting references (CRA 2006)⁽¹⁾.

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

b. Precipitation Data

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected worldwide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at stations throughout the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations have typically been below 100 pCi/L since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above. Water from previous years and decades is naturally captured in groundwater, so some well water sources today are affected by the surface water from the 1960s that was elevated in tritium.

c. Surface Water Data

Surface water level measurements were collected at the surface water monitoring locations during the groundwater level measurement event. The purpose of the surface water monitoring was to provide surface water elevation data to evaluate the groundwater/surface water interaction at the Station.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 - 240 pCi/L or 140 ± 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

9

IV. Results and Discussion

A. Groundwater Results

Groundwater

Samples were collected from on-site wells throughout the year in accordance with the station radiological groundwater protection program. Analytical results and anomalies are discussed below.

Tritium

Samples from 27 locations were analyzed for tritium activity (Table B-I.1, Appendix B). Tritium values ranged from the detection limit to 8,560 pCi/l. The existing wells at or near the owner-controlled boundary showed no tritium. The location most representative of potential offsite user of drinking water is less than the MDC (Table B-I.1, Appendix B).

<u>Strontium</u>

Sr-89 and Sr-90 were not detected in any of the samples (Table B-I.1, Appendix B).

Gross Alpha and Gross Beta (dissolved and suspended)

Gross Alpha and Gross Beta analyses in the dissolved and suspended fractions were performed on groundwater samples during 2014. Gross Alpha (dissolved) was detected in 6 of 25 groundwater locations analyzed. The concentrations ranged from 1.3 to 13.3 pCi/L. Gross Alpha (suspended) was detected in 5 of 25 groundwater locations analyzed. The concentrations ranged from 1.0 to 4.8 pCi/L. Gross Beta (dissolved) was detected in 23 of 25 groundwater locations analyzed. The concentrations ranged from 1.2 to 16.6 pCi/L. Gross Beta (suspended) was detected in 8 of 25 groundwater locations analyzed. The concentrations ranged from 1.2 to 16.6 pCi/L. Gross Beta (suspended) was detected in 8 of 25 groundwater locations analyzed. The concentrations ranged from 1.4 to 18.9 pCi/L. The activity detected is consistent with historical levels. The activity detected is naturally occurring and the levels are considered to be background (Table B-I.1, Appendix B).

Hard-To-Detect

Hard-To-Detect analyses were performed on a select group of groundwater and surface water locations to establish baseline levels. The analyses for groundwater included iron-55 (Fe-55),

nickel-63 (Ni-63), americium-241 (Am-241), curium-242 (Cm-242), Cm-243/244, plutonium-238 (Pu-238), Pu-239/240, uranium-234 (U-234), U-235 and U-238. U-234 was detected in 8 of 24 groundwater monitoring locations analyzed. The concentrations ranged from 0.45 to 7.65 pCi/L. U-235 was detected at one groundwater monitoring location at a concentration of 0.70 pCi/L. U-238 was detected in 8 of 24 groundwater monitoring locations analyzed. The concentrations ranged from 0.18 to 6.27 pCi/L. No plant produced radionuclides were detected. The activity detected is naturally occurring and the levels are considered to be background (Table B–I.3, Appendix B).

Gamma Emitters

No power-production gamma emitters were detected in any of the samples (Table B–I.2, Appendix B).

B. Surface Water Results

Surface Water

Samples were collected from surface water locations throughout the year in accordance with the station radiological groundwater protection program. Analytical results are discussed below.

<u>Tritium</u>

Samples from three locations were analyzed for tritium activity. Tritium was not detected in any samples (Table B–II.1, Appendix B).

Gamma Emitters

No power-production gamma emitters were detected in any of the samples. No other gamma emitting nuclides were detected (Table B–II.2, Appendix B).

C. Precipitation Water Results

Precipitation Water

Samples were collected at six locations (1A, 1B, 1S, 1SSE, 1Z, and 4M). The following analysis was performed:

<u>Tritium</u>

Samples from six locations were analyzed for tritium activity. Tritium activity was not detected in any samples (Table B-III.1, Appendix B).

D. Drinking Water Well Survey

A drinking water well survey was conducted during the summer 2006 by CRA (CRA 2006)⁽¹⁾ around the PBAPS. The water well inventory was updated in 2012⁽⁴⁾. The updated water well database search indicated a new water well off Station property within a one mile radius of the Station. The well is described as a "test" well and its use is listed as "unused". In summary, there were no significant changes in off Station groundwater use from 2006-2012.

E. Summary of Results – Inter-Laboratory Comparison Program

Inter-Laboratory Comparison Program results for TBE and Environmental Inc. (Midwest Labs) are presented in the AREOR.

F. Leaks, Spills and Releases

There were no leaks, spills or releases of water containing licensed material to environment in 2014.

G. Trends

A tritium plume has been identified northeast of the Unit 3 Turbine Building. The plume extends eastward toward well MW-PB-4. The plume is bounded on the north by wells MW-PB-12 and MW-PB-22. The plume is bounded on the south by wells MW-PB-20 and MW-PB-21.

Wells MW-PB-4, 24, 25, 26 and 27 were each sampled and analyzed 5 times during 2014. On all occasions, MW-PB-25 samples had the highest tritium activity.

All wells exhibited decreasing or steady trends during 2014.

H. Investigations

MW-PB-4

In 2006, monitoring wells MW-PB-1 through MW-PB-14 were installed. Tritium activity was detected in MW-PB-4, located north of the Unit 3 Circulating Water Pump Structure and MW-PB-12, north of the

Administration Building. Groundwater flow on site is from west to east. Monitoring wells were installed to the west, southwest and northwest of monitoring wells MW-PB-4 and MW-PB-12. The wells with the highest tritium activity are the wells installed directly east of and adjacent to the Unit 3 Turbine Building, wells MW-PB-24, 25, 26 and 27.

Investigation of potential sources identified that the likely source of groundwater contamination was due to degraded floor seams in the Unit 3 Turbine Building Moisture Separator area 116' elevation. Leaks internal to the building entered the groundwater through the degraded floor seams. The floor seams were repaired in August 2010. The floor in the Unit 3 Turbine Building Moisture Separator area 116' elevation was sealed and recoated in October 2011. Monitoring well activity has been decreasing since floor seam repairs were completed.

MW-PB-29, 30 and 31

An extent-of-condition inspection of the Unit 2 Turbine Building Moisture Separator area 116' elevation floor was performed in October 2010. Minor degradation of the floor seams was identified and repaired. In May 2011, monitoring wells MW-PB-29 and 30 were installed directly east of and adjacent to the Unit 2 Turbine Building; MW-PB-31 was installed southeast of and adjacent to the Unit 2 Turbine Building. These wells were installed to determine if a condition existed east of the Unit 2 Turbine Building that is similar to the condition east of the Unit 3 Turbine Building.

Wells MW-PB-29, 30 and 31 were sampled quarterly in 2014. Tritium activity in the wells ranged from less than the MDC to $492 \pm 141 \text{ pCi/L}$. Samples from these wells were also analyzed for gamma emitting isotopes and hard to detect radionuclides. All results were less than the MDC for each isotope.

The Unit 2 Turbine Building Moisture Separator area 116' elevation floor was sealed and recoated in October 2012. Groundwater intrusion into a ventilation pit on the east side of the area was identified. The groundwater was removed and degraded seams in the ventilation pit were successfully repaired. There is currently no standing water in the pit.

MW-PB-4, 24, 25, 26 and 27

Wells MW-PB-4, 24, 25, 26 and 27 are considered the wells of primary interest. These wells were sampled on a quarterly frequency. Below are 2 tables. The first lists the highest tritium activity of the wells of primary

interest and the date of the sampling. The second table lists the tritium activity of the wells from the last sampling of 2014. The tritium activity is in pCi/L.

Well #	Tritium Activity	Date
MW-PB-4	17,200	5/24/2010
MW-PB-24	33,500	3/15/2010
MW-PB-25	161,000	3/8/2010
MW-PB-26	196,000	3/8/2010
MW-PB-27	71,800	2/22/2010

Well #	Tritium Activity	Date
MW-PB-4	271	12/03/2014
MW-PB-24	<193	12/03/2014
MW-PB-25	8,560	12/03/2014
MW-PB-26	<193	12/03/2014
MW-PB-27	605	12/03/2014

Potential sources of tritium in the groundwater were investigated via procedural processes and documented in the corrective action program. The most likely pathway for tritium to enter the groundwater was determined to be leaks internal to the Unit 3 Turbine Building Moisture Separator 116', migrating through degraded floor seams. The floor seams were repaired and the entire floor was sealed and a coating applied during the refuel outage in the fall of 2011. The wells have been on a decreasing trend since these repairs were completed.

- I. Actions Taken
 - 1. Compensatory Actions

There were no compensatory actions in 2014.

2. Installation of Monitoring Wells

No groundwater monitoring wells were installed in 2014.

3. Actions to Recover/Reverse Plumes

There were no actions to recover the plume.

J. Deviations

The data tables show that duplicate samples were obtained at several

wells during 2014. These duplicate samples were obtained and analyzed for quality control purposes.

There are no additional deviations to report.

V. References

- 1. Conestoga Rovers and Associates, Fleetwide Assessment, Peach Bottom Atomic Power Station, Delta, PA, Fleetwide Assessment, Rev. 1, September 1, 2006.
- 2. Peach Bottom Atomic Power Station, Environs Radiation Monitoring Program, Preoperational Summary Report units 2 and 3, June 1977.
- 3. Peach Bottom Atomic Power Station, Environs Radiation Monitoring Program, Preoperational Summary Report units 2 and 3, September 1970-August 1973, January 1974.
- 4. Conestoga Rovers and Associates, Hydrogeologic Investigation Report, Peach Bottom Atomic Power Station, November 2012.
- 5. AMO Environmental Decisions, RGPP Summary Monitoring Report, March 2014, June 2014, October 2014.

APPENDIX A

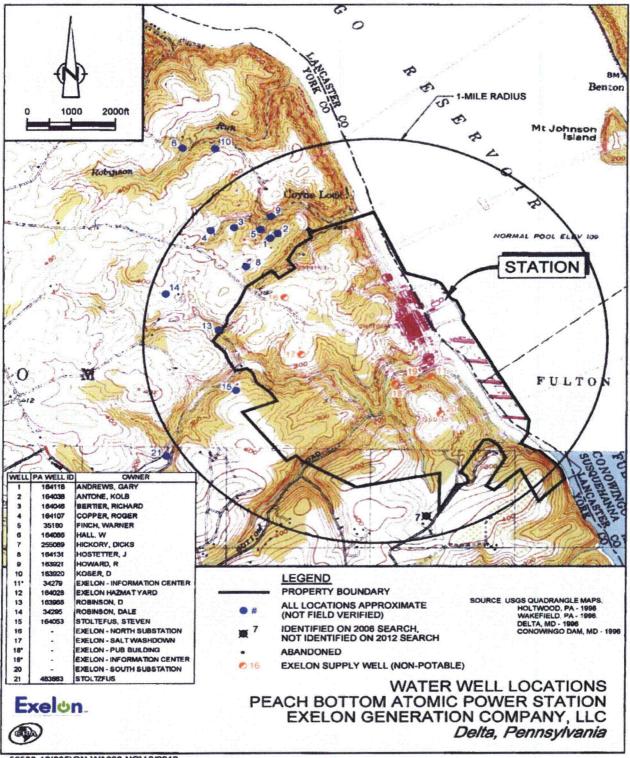
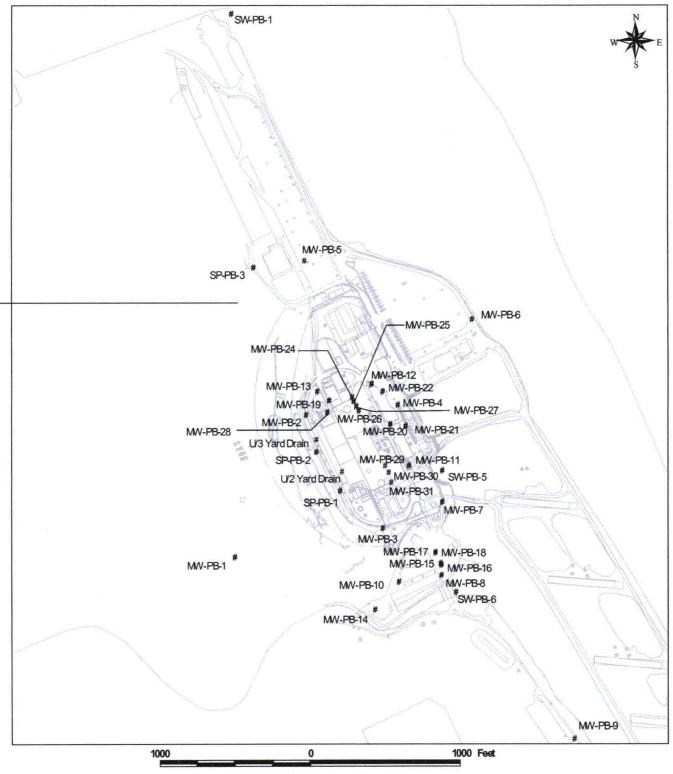

SAMPLING LOCATIONS, DISTANCE AND DIRECTION

TABLE A-1:

Radiological Groundwater Protection Program - Sampling Locations, Distance and Direction, Peach Bottom Atomic Power Station, 2014


Site	Site Type	Sector	Distance (ft.)
MW-PB-1	Groundwater Well	SW	1,166.6
MW-PB-2	Groundwater Well	WNW	309.0
MW-PB-3	Groundwater Well	SSE	709.7
MW-PB-4	Groundwater Well	ENE	350.2
MW-PB-5	Groundwater Well	NNW	1,146.1
MW-PB-6	Groundwater Well	NE	1.072.4
MW-PB-7	Groundwater Well	SE	813.9
MW-PB-8	Groundwater Well	SE	1,167.0
MW-PB-9	Groundwater Well	SE	2,816.9
MW-PB-10	Groundwater Well	SSE	1,125.1
MW-PB-11	Groundwater Well	SE	438.4
MW-PB-12	Groundwater Well	NNE	317.2
MW-PB-13	Groundwater Well	NW	329.4
MW-PB-14	Groundwater Well	S	1,231.2
MW-PB-15	Groundwater Well	SE	1,087.9
MW-PB-16	Groundwater Well	SE	1,101.6
MW-PB-17	Groundwater Well	SE	1,005.4
MW-PB-18	Groundwater Well	SE	1,010.0
MW-PB-19	Groundwater Well	NW	226.8
MW-PB-20	Groundwater Well	E	260.5
MW-PB-21	Groundwater Well	E	363.3
MW-PB-22	Groundwater Well	NE	315.4
MW-PB-24	Groundwater Well	N	185.9
MW-PB-25	Groundwater Well	N	159.7
MW-PB-26	Groundwater Well	NNE	121.1
MW-PB-27	Groundwater Well	NNE	139.1
MW-PB-28	Groundwater Well	NW	249.6
MW-PB-29	Groundwater Well	SE	325.0
MW-PB-30	Groundwater Well	SE	379.2
MW-PB-31	Groundwater Well	SE	450.1
SW-PB-1	Surface Water	NNW	2,850.5
SW-PB-5	Surface Water	SE	675.1
SW-PB-6	Surface Water	SE	1,305.9
SP-PB-1	Groundwater Seep	S	514.2
SP-PB-2	Groundwater Seep	WNW	311.6
SP-PB-3	Groundwater Seep	NNW	1,281.1
U/2 YARD DRAIN SUMP	Groundwater	SSE	498.7
U/3 YARD DRAIN SUMP	Groundwater	WSW	175.8
1A	Precipitation Water	ESE	1,271
1B	Precipitation Water	NW	2,587
15	Precipitation Water	S	1,315
1SSE	Precipitation Water	SSE	1,312
1Z	Precipitation Water	SE	1,763
4M	Precipitation Water	SE	45,989

A-1

53539-12(005)GN-WA008 NOV 6/2012

Figure A-1 Well Water Locations, Peach Bottom Atomic Power Station, 2014

RGPP Surface Water and Groundwater Sample Locations

Figure A-2 RGPP Monitoring Locations, Peach Bottom Atomic Power Station, 2014

APPENDIX B

DATA TABLES

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2014

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-1	05/01/14	< 174						ويتنبأ ومعرزون محمد وربي
MW-PB-10	01/28/14 TBE	< 181						
MW-PB-10	01/28/14 TBE	< 175						
MW-PB-10	01/28/14 EIML	< 152						
MW-PB-10	04/30/14	< 173	< 5.6	< 0.5	< 3.1	2.9 ± 1.0	7.8 ± 1.5	3.4 ± 1.2
MW-PB-10	07/31/14	< 171						
MW-PB-10	10/06/14 TBE	< 188						
MW-PB-10	10/06/14 TBE	< 188						
MW-PB-10	10/06/14 EIML	< 157						
MW-PB-11	01/27/14	< 185		< 0.6	< 0.0	40,00	17.07	- 17
MW-PB-11	04/29/14	< 173 < 169	< 4.8	< 0.6	< 0.9	1.8 ± 0.9	1.7 ± 0.7	< 1.7
MW-PB-11 MW-PB-11	07/30/14 10/07/14	< 183						
MW-PB-12	01/30/14	< 185						
MW-PB-12	04/29/14	181 ± 117	< 5.8	< 0.7	< 0.8	< 0.8	1.2 ± 0.6	< 1.6
MW-PB-12	07/28/14	< 172	0.0	0.1	0.0	0.0		
MW-PB-12	10/07/14	< 186						
MW-PB-13	01/27/14	< 177						
MW-PB-13	04/28/14	< 175	< 6.0	< 0.6	13.3 ± 8.5	< 1.5	15.6 ± 4.0	< 3.0
MW-PB-13	07/30/14 TBE	< 190						
MW-PB-13	07/30/14 TBE	< 172						
MW-PB-13	07/30/14 EIML	147 ± 71						
MW-PB-13	10/07/14	< 185						
MW-PB-14	04/30/14	< 184						
MW-PB-15	01/28/14	< 173						
MW-PB-15	04/30/14	< 180	< 6.6	< 0.5	< 1.4	< 0.8	9.3 ± 1.2	< 1.6
MW-PB-15	07/31/14	< 188						
MW-PB-15	10/06/14	< 186						
MW-PB-16	01/28/14	< 175						
MW-PB-16	04/30/14	< 187	< 4.3	< 0.6	6.3 ± 1.2	3.9 ± 1.2	7.6 ± 0.9	3.0 ± 1.2
MW-PB-16	07/31/14	< 186						
MW-PB-16	10/06/14	< 175						
MW-PB-19 MW-PB-19	01/30/14 04/28/14	< 190 < 184	< 5.6	< 0.7	< 0.8	< 0.8	2.6 ± 0.7	< 1.6
MW-PB-19	07/28/14	< 192	< 5.0	< 0.7	< 0.0	× 0.0	2.0 1 0.7	S 1.0
MW-PB-19	10/07/14 TBE	< 163						
MW-PB-19	10/07/14 TBE	< 183						
MW-PB-19	10/07/14 EIML	< 157						
MW-PB-2	01/27/14	< 170						
MW-PB-2	04/28/14	< 174	< 5.5	< 0.6	4.3 ± 1.1	< 0.8	8.9 ± 1.0	< 1.6
MW-PB-2	07/30/14	< 169						
MW-PB-2	10/07/14	< 185						
MW-PB-20	01/27/14	< 163						
MW-PB-20	04/29/14	< 187	< 5.5	< 0.7	< 4.8	< 0.4	9.5 ± 1.7	< 1.3
MW-PB-20	07/28/14	< 190						
MW-PB-20	10/07/14	< 184						
MW-PB-21	01/31/14	< 187	. –					
MW-PB-21	04/29/14	< 185	< 1.7	< 0.7	< 1.5	< 0.4	7.7 ± 1.2	< 1.3
MW-PB-21	07/28/14	227 ± 127						
MW-PB-21	10/08/14	< 188						
MW-PB-22	01/30/14	487 ± 144	< 5.0	< 0.7	< 1.1	< 0.5	2.8 ± 0.8	2.7 ± 1.1
MW-PB-22	04/29/14	669 ± 152	< 5.0	< 0.7	\$ 1.1	< 0.5	2.0 ± 0.8	Z.I ± 1.1
MW-PB-22	07/28/14	854 ± 165						
MW-PB-22	10/08/14 01/30/14	833 ± 160 < 171						
MW-PB-24 MW-PB-24	01/30/14 04/29/14 Original		< 4.3	< 0.7	< 1.2	< 0.4	2.4 ± 0.8	< 13
MW-PB-24	04/29/14 Onginal 04/29/14 Recount		·		- 1.6		2., 10.0	- 1. v
MW-PB-24	04/29/14 Reanal							
MW-PB-24	07/29/14	844 ± 158						
MW-PB-24	10/08/14	302 ± 116						
			B _1					

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2014

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-24	12/03/14	< 193						
MW-PB-25	01/30/14 TBE	7380 ± 775						
MW-PB-25	01/30/14 TBE	6840 ± 721						
MW-PB-25	01/30/14 EIML	8203 ± 271						
MW-PB-25	04/29/14	6440 ± 692	< 3.4	< 0.4	< 1.0	< 0.4	7.4 ± 0.9	1.4 ± 0.9
MW-PB-25	07/29/14	6220 ± 663						
MW-PB-25	10/08/14	5830 ± 624						
MW-PB-25	12/03/14 Original	8250 ± 868						
MW-PB-25	12/03/14 Recount	8560 ± 899						
MW-PB-25	12/03/14 Reanalysi	s 8540 ± 895						
MW-PB-26	01/30/14	295 ± 127						
MW-PB-26	04/29/14	332 ± 136	< 3.3	< 0.4	2.6 ± 0.9	< 0.4	3.9 ± 0.8	2.1 ± 1.0
MW-PB-26	07/29/14	258 ± 127						
MW-PB-26	10/08/14	224 ± 110						
MW-PB-26	12/03/14	< 193						
MW-PB-27	01/30/14 Original	1180 ± 171						
MW-PB-27	01/30/14 Recount	1140 ± 171						
MW-PB-27	04/29/14 TBE	724 ± 159	< 4.6	< 0.5	2.2 ± 0.9	1.4 ± 0.7	3.3 ± 0.8	3.3 ± 1.1
MW-PB-27	04/29/14 TBE	804 ± 164	< 4.5	< 0.6	2.6 ± 0.9	1.0 ± 0.6	4.4 ± 0.9	2.0 ± 1.0
MW-PB-27	04/29/14 EIML	848 ± 109	< 0.9	< 0.5				
MW-PB-27	07/29/14	960 ± 167						
MW-PB-27	10/08/14	670 ± 132						
MW-PB-27	12/03/14	605 ± 157						
MW-PB-28	01/30/14	< 185		- 0 7		40 4 7	00 07	100 . 00
MW-PB-28	04/28/14	< 185	< 5.2	< 0.7	< 0.7	4.8 ± 1.7	2.0 ± 0.7	18.9 ± 2.3
MW-PB-28	07/28/14	< 190						
MW-PB-28	10/07/14 TBE	< 159						
MW-PB-28	10/07/14 TBE	< 189 < 157						
MW-PB-28	10/07/14 EIML	< 186						
MW-PB-29	01/27/14 04/28/14	< 187	< 5.1	< 0.6	< 0.6	< 0.4	2.5 ± 0.7	< 13
MW-PB-29 MW-PB-29	07/29/14 TBE	224 ± 127	× 0.1	< 0.0	× 0.0	• 0.4	2.0 1 0.1	1.0
MW-PB-29	07/29/14 TBE	238 ± 129						
MW-PB-29	07/29/14 EIML	277 ± 77						
MW-PB-29	10/07/14	284 ± 130						
MW-PB-3	01/27/14	< 172						
MW-PB-3	04/28/14	< 177	< 5.9	< 0.6	1.3 ± 0.8	< 0.8	< 1.1	< 1.6
MW-PB-3	07/30/14	< 169						
MW-PB-3	10/07/14	< 185						
MW-PB-30	01/27/14	459 ± 140						
MW-PB-30	04/28/14 Original	705 ± 154	< 5.0	< 0.7	< 0.9	< 0.4	3.6 ± 0.8	1.6 ± 0.9
MW-PB-30	04/28/14 Recount	492 ± 141						
MW-PB-30	07/29/14	< 179						
MW-PB-30	10/07/14	264 ± 114						
MW-PB-31	01/27/14	< 157						
MW-PB-31	04/28/14	< 183	< 5.6	< 0.7	< 0.9	< 0.4	1.6 ± 0.8	< 1.3
MW-PB-31	07/28/14	< 179						
MW-PB-31	10/07/14	233 ± 111						
MW-PB-4	01/31/14 TBE	457 ± 137						
MW-PB-4	01/31/14 TBE	425 ± 135						
MW-PB-4	01/31/14 EIML	436 ± 100				• •		
MW-PB-4	04/29/14	276 ± 136	< 4.3	< 0.6	< 5.3	< 0.8	12.3 ± 1.9	< 1.6
MW-PB-4	07/28/14	338 ± 132						
MW-PB-4	10/08/14	305 ± 115						
MW-PB-4	12/03/14	271 ± 138						
MW-PB-5	04/30/14	< 178						
MW-PB-6	04/30/14	< 177						
MW-PB-7	01/28/14	< 175					00.45	~ 1 0
MW-PB-7	05/01/14 TBE	< 186	< 4.9	< 0.6	< 1.8	< 0.4	6.8 ± 1.5	
MW-PB-7	05/01/14 TBE	< 174	< 5.0	< 0.7	< 2.5	< 0.8	6.0 ± 1.4	× 1.0
			B-2					

TABLE B-I.1

CONCENTRATIONS OF TRITIUM, STRONTIUM, GROSS ALPHA AND GROSS BETA IN GROUNDWATER AND SEEP SAMPLES COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2014

	COLLECTION							
SITE	DATE	H-3	Sr-89	Sr-90	Gr-A (Dis)	Gr-A (Sus)	Gr-B (Dis)	Gr-B (Sus)
MW-PB-7	05/01/14 EIML	< 146	< 1.1	< 0.6				
MW-PB-7	07/31/14	< 167						
MW-PB-7	10/06/14 TBE	< 183						
MW-PB-7	10/06/14 TBE	< 186						
MW-PB-7	10/06/14 EIML	< 157						
MW-PB-8	01/28/14	< 174						
MW-PB-8	04/30/14	< 176	< 4.5	< 0.6	< 2.0	< 0.8	16.6 ± 1.7	< 1.6
MW-PB-8	07/31/14	< 165						
MW-PB-8	10/06/14	< 185						
SP-PB-1	03/20/14	< 169						
SP-PB-1	04/29/14	< 169						
SP-PB-1	07/30/14	< 185						
SP-PB-1	12/03/14	< 195						
SP-PB-2	01/30/14	< 186						
SP-PB-2	04/29/14	< 183						
SP-PB-2	07/30/14	< 190						
SP-PB-2	10/07/14	< 185						
SP-PB-3	01/27/14	< 184						
SP-PB-3	05/01/14	< 188						
SP-PB-3	07/29/14	< 187						
SP-PB-3	12/03/14	< 198						
U/2 YARD DRAIN	01/29/14	< 174						
U/2 YARD DRAIN	05/07/14	< 185	< 5.3	< 0.5	< 0.9	< 1.4	2.2 ± 1.2	< 2.5
U/2 YARD DRAIN	09/05/14	< 157						
U/2 YARD DRAIN	12/18/14	< 152						
U/3 YARD DRAIN	01/30/14	< 183						
U/3 YARD DRAIN	05/07/14	< 186	< 7.6	< 0.6	< 0.8	< 1.4	< 1.7	< 2.5
U/3 YARD DRAIN	09/05/14	< 158						
U/3 YARD DRAIN	12/04/14	< 186						

TABLE B-1.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER AND SEEP WATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION DATE	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
MW-PB-1	05/01/14	< 5	< 5	< 8	< 4	< 7	< 6	< 8	< 10	< 5	< 5	< 22	< 7
MW-PB-10	04/30/14	< 8	< 6	< 15	< 8	< 15	< 9	< 13	< 14	< 6	< 7	< 32	< 12
MW-PB-11	04/29/14	< 6	< 7	< 12	< 4	< 13	< 7	< 10	< 13	< 7	< 7	< 30	< 10
MW-PB-12	04/29/14	< 5	< 5	< 11	< 5	< 10	< 5	< 8	< 11	< 5	< 5	< 23	< 9
MW-PB-13	04/28/14	< 5	< 6	< 12	< 5	< 11	< 7	< 9	< 13	< 5	< 6	< 29	< 8
MW-PB-14	04/30/14	< 6	< 6	< 11	< 6	< 11	< 7	< 12	< 11	< 5	< 5	< 29	< 10
MW-PB-15	01/28/14	< 3	< 3	< 7	< 4	< 6	< 3	< 6	< 10	< 3	< 3	< 22	< 7
MW-PB-15	04/30/14	< 6	< 7	< 12	< 7	< 13	< 8	< 11	< 14	< 7	< 7	< 40	< 12
MW-PB-15	07/31/14	< 4	< 4	< 9	< 5	< 10	< 5	< 9	< 12	< 5	< 5	< 26	< 10
MW-PB-15	10/06/14	< 3	< 3	< 8	< 3	< 7	< 4	< 6	< 13	< 3	< 3	< 22	< 7
MW-PB-16	01/28/14	< 2	< 2	< 6	< 2	< 5	< 3	< 5	< 8	< 2	< 3	< 18	< 6
MW-PB-16	04/30/14	< 7	< 7	< 15	< 7	< 15	< 8	< 12	< 15	< 7	< 8	< 32	< 12
MW-PB-16	07/31/14	< 6	< 6	< 15	< 6	< 11	< 6	< 9	< 15	< 5	< 6	< 34	< 11
MW-PB-16	10/06/14	< 4	< 4	< 9	< 3	< 8	< 4	< 7	< 14	< 3	< 4	< 29	< 9
MW-PB-19	04/28/14	< 6	< 7	< 14	< 6	< 16	< 8	< 13	< 15	< 7	< 7	< 37	< 12
MW-PB-2	04/28/14	< 5	< 6	< 11	< 5	< 10	< 6	< 9	< 12	< 5	< 6	< 29	< 10
MW-PB-20	04/29/14	< 4	< 6	< 13	< 4	< 10	< 5	< 9	< 12	< 6	< 5	< 27	< 11
MW-PB-21	04/29/14	< 4	< 5	< 9	< 6	< 12	< 7	< 11	< 14	< 6	< 6	< 32	< 14
MW-PB-22	04/29/14	< 7	< 7	< 12	< 7	< 15	< 7	< 10	< 14	< 6	< 7	< 39	< 10
MW-PB-24	04/29/14	< 4	< 5	< 9	< 4	< 9	< 5	< 6	< 9	< 4	< 4	< 24	< 6
MW-PB-24	10/08/14	< 4	< 5	< 11	< 5	< 9	< 5	< 8	< 13	< 4	< 5	< 32	< 9
MW-PB-25	04/29/14	< 5	< 4	< 10	< 4	< 8	< 5	< 8	< 11	< 5	< 5	< 29	< 8
MW-PB-25	10/08/14	< 5	< 5	< 10	< 4	< 8	< 5	< 9	< 14	< 5	< 5	< 33	< 11
MW-PB-26	04/29/14	< 4	< 4	< 9	< 7	< 9	< 6	< 9	< 10	< 5	< 4	< 25	< 8
MW-PB-26	10/08/14	< 4	< 4	< 9	< 4	< 8	< 4	< 7	< 13	< 4	< 4	< 28	< 8
MW-PB-27	04/29/14 TBE	< 5	< 4	< 9	< 4	< 9	< 6	< 8	< 12	< 5	< 4	< 28	< 8
MW-PB-27	04/29/14 TBE	< 6	< 7	< 15	< 8	< 14	< 7	< 12	< 15	< 6	< 7	< 35	< 8
MW-PB-27	04/29/14 EIML	< 3	< 3	< 6	< 3	< 8	< 6	< 6	< 8	< 4	< 4	< 32	< 3
MW-PB-27	10/08/14	< 3	< 3	< 7	< 4	< 7	< 4	< 6	< 10	< 3	< 3	< 21	< 7
MW-PB-28	04/28/14	< 5	< 6	< 14	< 6	< 11	< 7	< 10	< 12	< 6	< 6	< 34	< 11
MW-PB-29	04/28/14	< 6	< 6	< 12	< 6	< 11	< 5	< 11	< 10	< 4	< 5	< 27	< 8
MW-PB-3	04/28/14	< 4	< 5	< 9	< 6	< 9	< 6	< 9	< 11	< 4	< 6	< 28	< 11
MW-PB-30	04/28/14	< 6	< 7	< 14	< 6	< 14	< 7	< 12	< 14	< 8	< 6	< 38	< 11
MW-PB-31	04/28/14	< 5	< 7	< 13	< 7	< 12	< 7	< 11	< 14	< 5	< 5	< 38	< 13
MW-PB-4	04/29/14	< 6	< 6	< 12	< 6	< 13	< 5	< 10	< 13	< 6	< õ	< 26	< 10
MW-PB-4	10/08/14	< 4	< 5	< 10	< 4	< 9	< 5	< 8	< 14	< 4	< 4	< 32	< 10
MW-PB-5	04/30/14	< 5	< 5	< 9	< 4	< 9	< 5	< 8	< 9	< 4	< 4	< 22	< 6
MW-PB-6	04/30/14	< 5	< 4	< 10	< 3	< 8	< 6	< 8	< 10	< 5	< 5	< 23	< 8
MW-PB-7	05/01/14 TBE		< 7	< 14	< 6	< 11	< 7	< 13	< 14	< 7	< 7	< 39	< 9
MW-PB-7		< 5	< 4	< 10	< 6	< 10	< 5	< 10	< 9	< 4	< 6	< 23	< 7
MW-PB-7	05/01/14 EIML	-	< 2	< 3	< 2	< 4	< 3	< 4	< 5	< 3	< 2	< 14	< 3

TABLE B-I.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER AND SEEP WATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION DATE	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
MW-PB-8	01728/14	< 3	< 4	< 7	< 3	< 6	< 3	< 6	< 10	< 3	< 3	< 21	< 7
MW-PB-8	04/30/14	< 6	< 6	< 13	< 7	< 12	< 7	< 10	< 14	< 6	< 6	< 38	< 11
MW-PB-8	07/31/14	< 6	< 6	< 11	< 7	< 9	< 6	< 9	< 14	< 6	< 6	< 29	< 13
MW-PB-8	10/06/14	< 3	< 4	< 8	< 3	< 7	< 4	< 7	< 14	< 3	< 4	< 30	< 7
SP-PB-1	04/29/14	< 4	< 5	< 12	< 8	< 8	< 6	< 9	< 13	< 5	< 5	< 29	< 9
SP-PB-2	04/29/14	< 5	< 4	< 10	< 6	< 10	< 5	< 9	< 13	< 4	< 6	< 27	< 7
SP-PB-3	05/01/14	< 5	< 5	< 10	< 6	< 11	< 6	< 11	< 11	< 5	< 6	< 26	< 7
U/2 YARD DRAIN	05/07/14	< 1	< 1	< 3	< 1	< 2	< 2	< 2	< 10	< 1	< 1	< 16	< 5
U/3 YARD DRAIN	05/07/14	< 1	< 1	< 3	< 1	< 2	< 2	< 2	< 12	< 1	< 1	< 18	< 5

TABLE B-1.3CONCENTRATIONS OF HARD TO DETECTS IN GROUNDWATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER
PROTECTION PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION DATE	Am-241	Cm-242	Cm-243/244	Pu-238	Pu-239/240	U-234	U-235	U-238	Fe-55	Ni-63
MW-PB-10	04/30/14	< 0.06	< 0.05	< 0.05	< 0.02	< 0.12	< 0.02	< 0.10	< 0.13	-	-
MW-PB-11	04/29/14	< 0.15	< 0.14	< 0.05	< 0.09	< 0.11	< 0.04	< 0.02	< 0.04	-	-
MW-PB-12	04/29/14	< 0.04	< 0.10	< 0.06	< 0.14	< 0.08	< 0.02	< 0.02	< 0.05	-	-
MW-PB-13	04/28/14	< 0.15	< 0.09	< 0.07	< 0.15	< 0.10	7.65 ± 1.45	0.70 ± 0.27	6.27 ± 1.22	-	-
MW-PB-15	04/30/14	< 0.04	< 0.04	< 0.02	< 0.14	< 0.07	< 0.04	< 0.05	< 0.05	-	-
MW-PB-16	04/30/14	< 0.15	< 0.04	< 0.02	< 0.17	< 0.13	< 0.06	< 0.04	< 0.09	-	-
WW-PB-19	04/28/14	< 0.11	< 0.05	< 0.19	< 0.09	< 0.11	< 0.04	< 0.05	< 0.02	-	-
MW-PB-2	04/28/14	< 0.02	< 0.06	< 0.02	< 0.02	< 0.09	4.36 ± 0.57	< 0.02	2.41 ± 0.40	-	-
WW-PB-20	04/29/14	< 0.09	< 0.04	< 0.02	< 0.13	< 0.11	< 0.13	< 0.05	< 0.07	-	-
MW-PB-21	04/29/14	< 0.10	< 0.12	< 0.04	< 0.10	< 0.08	< 0.02	< 0.05	< 0.08	-	-
MW-PB-22	04/29/14	< 0.11	< 0.03	< 0.07	< 0.02	< 0.06	< 0.10	< 0.11	< 0.10	-	-
AW-PB-24	04/29/14	< 0.14	< 0.02	< 0.04	< 0.08	< 0.09	< 0.02	< 0.03	< 0.04	< 82	< 3.8
/W-PB-25	04/29/14	< 0.05	< 0.03	< 0.05	< 0.03	< 0.06	3.51 ± 0.82	< 0.08	1.39 ± 0.43	< 115	< 3.8
MW-PB-26	04/29/14	< 0.18	< 0.08	< 0.08	< 0.07	< 0.11	5.77 ± 1.24	< 0.11	2.18 ± 0.59	< 79	< 3.8
W-PB-27	04/29/14 TBE	< 0.03	< 0.09	< 0.06	< 0.12	< 0.06	6.41 ± 1.45	< 0.15	2.57 ± 0.73	< 159	< 3.8
W-PB-27	04/29/14 TBE	< 0.09	< 0.02	< 0.09	< 0.02	< 0.07	4.92 ± 0.65	< 0.07	1.98 ± 0.38	< 131	< 3.8
W-PB-27	04/29/14 EIML	. < 0.10	-	< 0.37	< 0.25	< 0.10	5.93 ± 0.53	-	2.15 ± 0.32	< 754	< 125
MW-PB-28	04/28/14	< 0.14	< 0.04	< 0.08	< 0.07	< 0.09	0.45 ± 0.16	< 0.05	0.18 ± 0.11	-	-
W-PB-29	04/28/14	< 0.09	< 0.03	< 0.07	< 0.04	< 0.06	< 0.11	< 0.03	< 0.10	-	-
/W-PB-3	04/28/14	< 0.07	< 0.05	< 0.02	< 0.11	< 0.08	1.24 ± 0.29	< 0.07	0.80 ± 0.23	-	-
/W-PB-30	04/28/14	< 0.13	< 0.04	< 0.09	< 0.06	< 0.11	< 0.11	< 0.06	< 0.12	-	-
WW-PB-4	04/29/14	< 0.06	< 0.06	< 0.06	< 0.09	< 0.07	< 0.05	< 0.12	< 0.08	< 147	< 4.2
WW-PB-7	05/01/14 TBE		< 0.02	< 0.05	< 0.14	< 0.16	< 0.14	< 0.18	< 0.14	-	-
WW-PB-7	05/01/14 TBE		< 0.07	< 0.04	< 0.14	< 0.11	< 0.02	< 0.07	< 0.06	-	-
WW-PB-7	05/01/14 EIML		-	< 0.29	< 0.13	< 0.22	0.45 ± 0.14	-	0.24 ± 0.10	< 758	< 122
MW-PB-8	04/30/14	< 0.08	< 0.08	< 0.05	< 0.11	< 0.09	< 0.04	< 0.03	< 0.07	-	-
J/2 YARD DRAIN	05/07/14	< 0.10	< 0.08	< 0.06	< 0.09	< 0.05	< 0.02	< 0.05	< 0.04	-	-
U/3 YARD DRAIN	05/07/14	< 0.10	< 0.02	< 0.05	< 0.02	< 0.08	< 0.07	< 0.07	< 0.08	-	-

TABLE B-II.1CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED AS
PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2014

	COLLECT	ION	
SITE	DATE		H-3
SW-PB-1	01/31/14		< 188
SW-PB-1	04/28/14	TBE	< 190
SW-PB-1	04/28/14	TBE	< 185
SW-PB-1	04/28/14	EIML	< 146
SW-PB-1	07/30/14		< 190
SW-PB-1	10/06/14		< 183
SW-PB-5	01/30/14		< 188
SW-PB-5	04/28/14		< 189
SW-PB-5	07/31/14	TBE	< 193
SW-PB-5	07/31/14	TBE	< 189
SW-PB-5	07/31/14	EIML	< 131
SW-PB-5	10/06/1 4		< 159
SW-PB-6	01/31/14		< 189
SW-PB-6	04/28/14	TBE	< 187
SW-PB-6	04/28/14	TBE	< 189
SW-PB-6	04/28/14	EIML	< 146
SW-PB-6	07/31/14		< 189
SW-PB-6	10/06/14		< 163

TABLE B-II.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED AS
PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM,
PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTION Mn-54 DATE	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
SW-PB-1	04/28/14 TBE < 5	< 5	< 12	< 5	< 12	< 4	< 10	< 10	< 5	< 5	< 26	< 15
SW-PB-1	04/28/14 TBE < 4	< 4	< 10	< 4	< 9	< 5	< 7	< 11	< 4	< 4	< 24	< 7
SW-PB-1	04/28/14 EIML < 2	< 2	< 5	< 2	< 4	< 3	< 5	< 5	< 2	< 3	< 18	< 3
SW-PB-5	04/28/14 < 5	< 6	< 10	< 4	< 8	< 5	< 9	< 15	< 4	< 5	< 27	< 9
SW-PB-6	04/28/14 TBE < 4	< 4	< 11	< 4	< 10	< 5	< 9	< 12	< 5	< 5	< 29	< 9
SW-PB-6	04/28/14 TBE < 6	< 5	< 14	< 5	< 11	< 5	< 10	< 13	< 6	< 6	< 37	< 9
SW-PB-6	04/28/14 EIML < 3	< 2	< 3	< 1	< 3	< 2	< 5	< 5	< 3	< 2	< 10	< 4

TABLE B-III.1CONCENTRATIONS OF TRITIUM IN PRECIPITATION WATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION
PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2014

SITE	COLLECTI DATE	H-3
1A	01/01/14	< 191
1A	01/30/14	< 176
1A	02/27/14	< 156
1A	03/27/14	< 194 < 176
1A 1A	05/01/14 05/29/14	< 176 < 169
1A	06/26/14	< 156
1A	07/31/14	< 194
1A	08/28/14	< 182
1A 1A	10/02/14 10/30/14	< 171 < 154
1A 1A	11/25/14	< 154 < 183
1B	01/01/14	< 192
1B	01/30/14	< 165
1B	02/27/14	< 157
1B 1B	03/27/14 05/01/14	< 184 < 177
1B	05/29/14	< 166
1B	06/26/14	< 155
1B	07/31/14	< 192
1B	08/28/14	< 185
1B 1B	10/02/14 10/30/14	< 161 < 191
1B	11/25/14	< 184
1S	01/01/14	< 189
1S	03/27/14	< 188
1S	05/01/14	< 175
1S 1S	05/29/14 06/26/14	< 197 < 177
13 1S	07/31/14	< 197
1S	08/28/14	< 185
1S	10/02/14	< 161
1S	10/30/14	< 152
1S 1SSE	11/25/14 01/01/14	< 178 < 189
1SSE	01/30/14	< 164
1SSE	02/27/14	< 193
1SSE	03/27/14	< 181
1SSE	05/01/14	< 177
1SSE 1SSE	05/29/14 06/26/14	< 194 < 178
1SSE	07/31/14	< 192
1SSE	08/28/14	< 183
1SSE	10/02/14	< 163
1SSE 1SSE	10/30/14 11/25/14	< 154
133E 1Z	01/01/14	< 183 < 186
1Z	01/30/14	< 166
1Z	02/27/14	< 158
1Z	03/27/14	< 186
1Z	05/01/14	< 178
1Z 1Z	05/29/14 06/26/14	< 195 < 180
1Z	07/31/14	< 197
1Z	08/28/14	< 185
1Z	10/02/14	< 160
1Z 1Z	10/30/14 11/25/14	< 154 < 182
1Z 4M	01/01/14	< 197

TABLE B-III.1CONCENTRATIONS OF TRITIUM IN PRECIPITATION WATER SAMPLES
COLLECTED AS PART OF THE RADIOLOGICAL GROUNDWATER PROTECTION
PROGRAM, PEACH BOTTOM ATOMIC POWER STATION, 2014

RESULTS IN UNITS OF PCI/LITER + 2 SIGMA

	COLLECTION	
SITE	DATE	H-3
4M	01/30/14	< 168
4M	02/27/14	< 154
4M	03/27/14	< 186
4M	05/01/14	< 176
4M	05/29/14	< 166
4M	06/26/14	< 176
4M	07/31/14	< 195
4M	08/28/14	< 184
4M	10/02/14	< 162
4M	10/30/14	< 149
4M	11/25/14	< 182

-- .

.