Omaha Public Power District Fort Calhoun Station Unit No. 1

Radiological Environmental Operating Report For Technical Specification Section 5.9.4.b

January 1, 2014 to December 31, 2014

DOCKET NO. 50-285

OPERATING LICENSE DPR-40

OMAHA PUBLIC POWER DISTRICT

FORT CALHOUN STATION

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

TECHNICAL SPECIFICATION 5.9.4.b

.

January 01, 2014 – December 31, 2014

Annual Radiological Environmental Operating Report

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2014 through December 31, 2014.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

Approved by:

Supervisor-RadWaste/Environmental

ABout

For Manager-Chemistry

FCS Plant Manager

Site Vice President

Annual Radiological Environmental Operating Report

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2014. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter is delineated in Table 1.0.
- 3) A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all **indicator** locations, all **control** (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
 - a. The total number of analyses
 - b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period
 - c. The maximum, minimum, and average results
 - d. Locations with the highest annual mean are specified by code, name, and by distance and direction from the center of plant reactor containment building.
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) Table 4.0 is the 2014 Land Use Survey
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Location Maps

Radiological Environmental Monitoring Program (REMP) - 2014

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2014. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations, on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, surface water, ground water, milk, vegetation, fish, sediment, and food crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment. (However, control locations are usually outside of five miles.) This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "O"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations (those most likely to be effected by plant operations) are compared to those from control locations (those least or not likely to be effected). Results from an indicator location which were significantly higher than those from a control location, could indicate a plant-attributable effect, and could require additional investigation.

The results of the sample analyses, as required by the FCS Offsite Dose Calculation Manual (ODCM), are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM.

Results for 2014 were within expected ranges and compared closely with historical results. The result details and exceptions are listed in the following sections.

) Ambient Gamma Radiation

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These dosimeters contain calcium sulfate phosphors and are processed quarterly. Thirty-two new thermoluminescent dosimeters were added to the program during the fourth quarter of 2010.

One incident was documented in the Corrective Action Program in 2014 related to thermoluminescent dosimeters (TLDs). The TLD OTD-H-(I) was damaged in the hail storm that occurred on June 3, 2014. The testing vendor was notified of the damage and the TLD was sent to the vendor to be analyzed. The returned results were evaluated for their validity. The results appeared to be consistent with the results from previous quarters and to nearby TLDs, so the results were deemed to be valid and the damaged TLD was not included as a missed/lost sample.

All sample results are within the range of historical data and displayed less than 20% difference when compared to historical averages. All results were less than 3 sigma standard deviations from historical means. No discrepancy between released effluents and resultant radiation dose measured was observed. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

Location	Avg. Dose (mr/week)	2014 Avg. Dose (mr/week)
A	1.37	1.35
В	1.44	1.38
С	1.44	1.15
D	1.26	1.15
F	1.40	1.15
G	1.34	1.20
Н	1.45	1.25
I	1.51	1.35
J	1.58	1.38
К	1.49	1.35
N	1.42	1.40
0	1.42	1.45
Р	1.45	1.48
S	1.47	1.50
L (Control)	1.29	1.15

10-rear frend Comparison of ILD Locations	10-Year	Trend	Compariso	n of TLD	Locations
---	---------	-------	-----------	----------	-----------

Page 3 of 14

2) <u>Milk/Pasture</u>

Milk samples or pasture grasses, if milk is temporarily unavailable, are collected every two weeks during the pasture season from the beginning of May through September, and monthly the rest of the calendar year. Indicator samples are collected from a herd of milk goats at a family farm located approximately 3.4 miles from the plant in Sector J (South). The control samples are collected from a commercial dairy cow herd located approximately 9.9 miles from the plant in Sector J (South). This indicator station was added in March of 2013, the control location is unchanged from last year. No indicator milk sample was available in December due to the does drying up before birthing; pasture grass in lieu of milk was collected at the indicator location.

All sample results for Cesium-134, Cesium-137 and other gammas were at the LLD for both indicator and control locations. No plant-related effects were observed.

3) <u>Fish</u>

Fish are collected on an annual basis. Control samples are collected at a location approximately twenty miles upstream of the plant (river miles 665 - 667). Indicator samples are collected in the immediate vicinity of the power plant (river miles 644 - 646). Several species of fish, important to commercial and recreational interest, representing all levels of the aquatic food chain are collected at both locations.

All sample results are within the range of historical data. Results from both control and indicator locations were less than LLD for all gamma emitters, indicating no plant-related effects.

4) <u>Food Crop</u>

Based on the results of the biennial Land Use Survey, the nearest high deposition pathway for food crops is the Alvin Pechnik Farm in Sector H (0.94 miles, 163°). Accordingly, vegetable samples were collected at Alvin Pechnik Farm for the purposes of the 2014 REMP.

Samples were comparable with historical results and within the range of results reported from the control location garden at Mohr Dairy. Additional special interest samples were obtained from on-site farm fields per plant Technical Specifications.

All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

5) <u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location and a downstream indicator location. All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

6) <u>Air Monitoring</u>

Air sample results for 2014 were well within historical limits for all locations. Additionally, all indicator locations showed results very similar to the control locations.

Seven incidents were documented in the Corrective Action Program in 2014 related to air sampling. Each is discussed below.

The package of environmental samples for air monitoring dated 03/05/2014 was damaged in transit. Subsequently, the air particulate and iodine cartridge filters for OAP-I-(I) and OAP-K-(I) were lost. The transport vendor was contacted to report the damage and to try to recover the missing samples. The damage was reported, but the attempt to recover the samples was unsuccessful. The samples were considered lost and are addressed in accordance with section 5.1.1.A-7 of the Offsite Dose Calculation Manual.

During sample collection on 04/16/2014, for location OAP-I-(I), the sampler noticed that the particulate filter was missing. The sampler examined the area around the sample station, but did not recover the missing particulate filter. The iodine charcoal cartridge was sent to the vendor for radioactive iodine analysis. The iodine results on the iodine charcoal cartridge were at the LLD. The particulate filter sample was considered lost and is addressed in accordance with section 5.1.1.A-7 of the Offsite Dose Calculation Manual.

On 04/23/2014, the environmental air sampler as found flow value in the field at location OAP-D-(I) was found to be high and out of tolerance. The flow, as found in the field by the sampler, was 2.6 SCFM; the acceptance range is 1.8-2.2 SCFM. The unit was replaced and a bench test was performed to verify the as found flow. The bench flow rate was found to be 2.3 SCFM. The bench test confirmed that the flow was high out of the tolerance. The bench test flow rate was used to calculate the volume through the sampler because it was the conservative approach. The returned analytical results were reviewed for consistencies in gross beta and to verify the LLD I-131. The results were within the normal statistical limits and the LLD's were per the Offsite Dose Calculation Manual, so the sample was deemed to be acceptable.

There were four incidents of power failures at air sampling locations during 2014. The power outages occurred, at OAP-D-(I) for 4.90 hours on 11/19/2014, at OAP-K-(I) for 3 hours during the time frame of 9/24/2014 to 10/1/2014, at OAP-K-(I) for 30 hours during the time frame of 7/2/2014 to 7/9/2014, and at OAP-B-(I) and OAP-J-(I) for 4 hours during the time frame of 8/27/2014 to 9/3/2014. The returned analytical results were reviewed for consistencies in gross beta and to verify the LLD I-131. The results were within the normal statistical limits and the LLD's were per the Offsite Dose Calculation Manual, so the sample was deemed to be acceptable.

All sample results are within the range of historical data. All indicator locations displayed less than 19% difference when compared to historical average. All 2014 results when compared to historical averages are within the stated vendor error acceptance tolerance.

Results from both control and indicator locations were less than LLD for gamma emitters and iodine. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

Location	Avg. Beta (pCi/m ³)	2014 Avg. Beta (pCi/m ³)
Sector B	0.029	.026
Sector D	0.029	.025
Sector I	0.026	.021
Sector J	0.028	.023
Sector K*	0.028	.024
Sector F (Control)	0.030	.025

10-Year Trend Comparison of Air Sampling Locations

* At least a 5-Year comparison due to data availability

7) <u>Surface Water</u>

Water samples are collected upstream of the plant (control location) as well as half-mile downstream and at a municipal water treatment plant on the north edge of Omaha.

Results for Cs-134, Cs-137, and other gammas were all less than LLD. Tritium results were also less than LLD. No plant-related effects were detected.

8) Ground Water

Quarterly residential well water samples are collected at the following four locations: Station No. 15: Smith Farm, Station No. 20: Mohr Dairy, Station No. 74: D. Miller Farm and Station No. 75: Lomp Acreage. All sample results to date have been at the LLD except gross beta due to naturally occurring radionuclides. Gross beta results have ranged from a low of 2.0 pCi/liter to a high of 6.8 pCi/liter, with an average gross beta for the year of 4.0 pCi/liter for indicator locations. Strontium-90 analysis is being conducted on wells as part of the station's groundwater protection program. No plant-related effects were detected.

Sample Collection Program

Sample Class	Collection Frequency	Number of Sample Locations	Samples Collected this Period
Background Radiation (TLDs)	Quarterly	47	188
Air Particulates	Weekly	6	309
Airborne lodine	Weekly	6	310
Milk	Biweekly May thru Sept	2	40 ¹
Surface Water	Monthly	3	36
Ground Water	Quarterly	4	16
Fish	Annually	2	5 ²
Sediment	Semi-annually	2	4
Food Crops	Annually	3	9 ³
		TOTAL	917

- Note 1: Milk sample collection total includes vegetation performed for milk unavailability. Milk samples are collected every two weeks May-Sept. and monthly the rest of the year. Three milk samples were performed in May; two samples were performed in January and October to maintain ST frequency.
- Note 2: Includes one background sample.
- Note 3: Variety of samples collect during period

Table 2.0 Radiological Environmental Monitoring Program Summary

Na	me of Facility			Fort Ca	houn Nuclear Power	Station - Unit 1	Docket No.	50-285	
Lo	cation of Facil	ity		Washin	gton, Nebraska		_		
				((County, State)				
Sample	Type and				Indicator Locations	Location with I Annual Me	Highest ean	Control Locations	Number Non-
Type (Units)	Number of Analyses ^a			LLD°	Mean (F)° Range°	Location ^d	Mean (F) ^c Range ^c	Mean (F) ^c Range ^c	Routine Results ^e
		<u> </u>	.		· · · · · · · · · · · · · · · · · · ·				
Background Radiation (TLD) (mR/week)	Gamma		188	0.5	1.3 (184/184) (0.9-2.2)	OTD-2B-(I), 2.95 mi. @ 26°	1.6 (4/4) (1.3-2.2)	1.2 (4/4) (0.9-1.3)	0
Airborne Particulates	GB		309	0.005	0.024 (257/257) (0.009-0.059)	OAP-B-(I) 0.60 miles SW.	0.025 (52/52) (0.012-0.052)	0.025 (52/52) (0.014-0.054)	0
(pCi/m ⁻)	GS	Cs-134	24	0 001	< U D	-	_	!D</td <td>n</td>	n
		Cs-137		0.001	< LLD	-	-	< LLD	Ő
	Other	Gammas		0.001	< LLD	-	-	< LLD	0
Airborne		I-131	310	0.070	< LLD	-	-	< LLD	0
lodine (pCi/m3)									
Milk (pCi/L)		I-131	39	0.5	< LLD	-	-	< LLD	0
	GS	K-40	39	150	1691 (19/19) (391-1878)	OFM-G-(I), Stangl Dairy, 3.4 mi@369°	· 1691 (19/19) (1391-1878)	1296 (20/20) (1132-1396)	0
		Cs-134		15	< LLD	-	-	< LLD	0
	Othou	Cs-137		15		-	-	<pre><lld< pre=""></lld<></pre>	0
·····	Other	Gammas		15		-			
Ground Water	GB		16		4.0 (12/12)	OGW-F-(I), Lomp	5.1 (4/4)	4.8 (4/4)	0
(pCi/L)					(2.0-6.8)	163°	(2.7-6.8)	(3.8-6.3)	
	H-3		16 16	300	< LLD	-	-	< LLD	0
	51-90		10	0.00		-	-		
(pCi/L)	GS	Cs-134	16	15	< LLD	_	-	< LLD	0
]		Cs-137		18	< LLD	-] -	< LLD	0
	Othe	r Gammas		15	< LLD	-	-	< LLD	0
Surface Water	GS		36						
(pCi/L)		Cs-134		15	< LLD	-	-	< LLD	0
	Other	r Gammas		15	<lld <lld< td=""><td></td><td>-</td><td><lld< td=""><td>0</td></lld<></td></lld<></lld 		-	<lld< td=""><td>0</td></lld<>	0
									0
		H-3	12	300	< LLD	-	-	< LLD	
······································					······································	······································			

Reporting Period January-December, 2014

	Name of Fa	cility			Fort Calhoun Nu	uclear Power Station - U	nit 1 Doc	ket No.	50-285
	Location of	Facility			Washington, Ne	braska			
		•			(Coun	iy, state)			
Comple	Tune and				Indicator	Location with I	lighest	Control	Number
Type	Number of			UD	Locations	Annual Me	an	Locations	Non-
(Units)	Analyses ^a			LLD	Mean (F) ^c	Location ^d	Mean (F) ^c	Mean (F) ^c	Routine
(01110)	7 marycoo				Range	Location	Range ^c	Range ^c	Results ^e
Fich	GS		5						
(nCi/a wet)	00	Mn-54	5	0.021	!D</td <td>_</td> <td>_</td> <td><110</td> <td>0</td>	_	_	<110	0
(polig web)		Co-58		0.023			-		
		Co-60		0.016	<11.0	_			ő
		Fe-59		0.071	<lld< td=""><td>_</td><td>-</td><td><11D</td><td>ő</td></lld<>	_	-	<11D	ő
		Zn-65		0.040	< LLD	-	-	< LLD	ŏ
		Ru-103		0.031	< LLD	-	-	< LLD	ō
		Cs-134		0.022	< LLD	-	-	< LLD	0
		Cs-137		0.019	< LLD	-	-	< LLD	0
	~~						2		
Sediment	GS	NA- 54	4	0.002					
pul/g ary		Nin-54		0.023		-	-		
		Co-60		0.025		-	-		
		Ee-59		0.066		-	-		o l
		Zn-65		0.051	< LLD	-	-	< LLD	o í
		Cs-134		0.015	< LLD	-	-	< LLD	ō
		Cs-137		0.020	< LLD	-	-	< LLD	0
Food Crops	GS		9						
(nCi/a wet)	00	Mn-54	Ū	0.021	<11D	-	_	<11D	0
()		Co-58		0.020	< LLD	-	-	<lld< td=""><td>o i</td></lld<>	o i
		Co-60		0.014	< LLD	-	_	< LLD	ŏ
		Fe-59		0.045	< LLD	-	_	< LLD	0
		Zn-65		0.043	< LLD	-	-	< LLD	0
		Zr-Nb-95		0.023	< LLD	-	-	< LLD	0
		Cs-134		0.017	< LLD	-	-	< LLD	0
		Cs-137		0.016	< LLD	-	-	< LLD	0
		Ba-La-140		0.015	< LLD	-	-	< LLD	0
Vegetation (MI)	GS		1						
(pCi/g wet)		Mn-54		0.033	< LLD	-	-	< LLD	0
		Co-58		0.029	< LLD		-	< LLD	0
		Co-60		0.026	< LLD	· •	-	< LLD	0
		Fe-59		0.050	< LLD	-	-	< LLD	0
		Zn-65		0.052	< LLD	-	-	< LLD	0
		ZI-ND-95		0.035		-	-	< LLD	
		1-131 Ce-134		0.040					
		Cs-137		0.020		-	_		
		Ba-La-140		0.027		-	-	<lld< td=""><td></td></lld<>	

GB = gross beta, GS = gamma scan. LLD = nominal lower limit of detection based on a 95% confidence level.

Mean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at specified locations is indicated in parentheses (F).

Locations are specified: (1) by code, (2) by name, and (3) by distance and direction relative to the Reactor Containment Building. Non-routine results are those which exceed ten times the control station value. If no control station value is available, the result is considered non-routine if it exceeds the typical pre-operational value for the medium or location.

 Table 3.0
 Listing of Missed Samples (samples scheduled but not collected)

Sample Type	Date	Location	Reason
AP/AI	03-05-14	OAP-I	Sample lost in transit by shipping vendor when the package was damaged and the samples fell out and were not recovered.
AP/AI	03-05-14	OAP-K	Sample lost in transit by shipping vendor when the package was damaged and the samples fell out and were not recovered.
AP	04-16-14	OAP-I	Paper filter was missing at filter change out

Table 4.0 FORT CALHOUN STATION CHEMISTRY FORM

2014 Environmental Land Use Survey Report FC-801 REV 1 Page 1 of 3

Sector	Dir		Ownor	INAILOS	Motoro	Dari	Current		no Gr	000	×00	DOO	Dowing the
Sector		Land Use	Owner	willes	weters	Deg	Survey	<u> </u>		비분		DOQ	Remarks
					-		rechinque	Adu	Tee	Infal			
A	N	RESIDENCE	WRIGHT	4.36	7016.74	351	INTERVIEW	IX		<u>त</u>	9.50E-08	4 10F-10	
		MILK ANIMAL						+					
		MEAT ANIMAL								-			
		VEGETATION	·										
		GROUNDWATER	WRIGHT	4.36	7016.74	351	INTERVIEW	X	5	<	9.50E-08	4.10E-10	
В	NNE	RESIDENCE	RAND,J	1.93	3106.03	12	MAIL SURVEY	X			5.40E-07	2.50E-09	
		MILK ANIMAL									1		
		MEAT ANIMAL			·······					1-		-	
		VEGETATION	SHEPARD	2.23	3588.84	16	INTERVIEW	X	5	< ─	3.60E-07	1.60E-09	
		GROUNDWATER	RÂND,J	1.93	3106.03	12	MAIL SURVEY	X		1-	5.40E-07	2.50E-09	
С	NE	RESIDENCE	HANSEN, M	1.52	2446.20	42	MAIL SURVEY	X		(7.60E-07	2.50E-09	
		MILK ANIMAL						\square		-			
		MEAT ANIMAL						\vdash				· · ·	
		VEGETATION	THIELE	1.59	2558.86	52	MAIL SURVEY	X			7.10E-07	2.30E-09	
		GROUNDWATER	HANSEN, M	1.52	2446.20	42	MAIL SURVEY	X			7.60E-07	2.50E-09	······································
D	ENE	RESIDENCE	MEADE,G	4.79	7708.76	63	INTERVIEW	X	í – (- ·	-{	8.40E-08	1.20E-10	
·		MILK ANIMAL								+			
		MEAT ANIMAL								+			
		VEGETATION	MEADE,G	4.79	7708.76	63	INTERVIEW	X		1-	8.40E-08	1.20E-10	
		GROUNDWATER	MEADE,G	4.79	7708.76	63	INTERVIEW	X			8.40E-08	1.20E-10	
E	E	RESIDENCE	LOVE	4.67	7515.64	89	MAIL SURVEY	X			9.80E-08	1.50E-10	
		MILK ANIMAL								1-			
		MEAT ANIMAL	BROTHERS,D	4.91	7901.88	90	INTERVIEW	X			9.10E-08	1.40E-10	
		VEGETATION											······································
		GROUNDWATER	LOVE	4.67	7515.64	89	MAIL SURVEY	X		1-	9.80E-08	1.50E-10	
F	ESE	RESIDENCE	WILSON ISLAND	4.22	6791.43	121	INTERVIEW	X	XX	:	1.40E-07	2.90E-10	
		MILK ANIMAL								1			
		MEAT ANIMAL								1			
		VEGETATION	WILSON ISLAND	4.22	6791.43	121	INTERVIEW	X	XX		1.40E-07	2.90E-10	
		GROUNDWATER	WILSON ISLAND	4.22	6791.43	121	INTERVIEW	X	XX		1.40E-07	2.90E-10	

FORT CALHOUN STATION CHEMISTRY FORM

FC-801 REV 1 Page 2 of 3

2014 Environmental Land Use Survey Report

Sector	Dir	Land Lise	Owner	Miles	Motors	Dea	Survey	A	ie Gr	oup	XOO	DOO	Remarks
Sector		Land Use	Owner	IVIIIes	INCLEIS.	Deg	Technique	Ę	u P	1 E		DOQ	(Childred)
								Ā	e g	Infe			
G	SE	RESIDENCE	CARTER,T	1.67	2687.60	145	MAIL SURVEY	X		T	8.00E-07	5.00E-09	
		MILK ANIMAL			·								······································
		MEAT ANIMAL									-		
ł		VEGETATION	KALIN,W	1.74	2800.26	145	INTERVIEW	X			7.50E-07	4.60E-09	
		GROUNDWATER	KALIN,W	1.74	2800.26	145	MAIL SURVEY	X			7.50E-07	4.60E-09	OGW-A-(I) SMITH FARM RETAINED TO
				J.,		/ I							MAINTAIN HISTORICAL DATA FROM
н	SSE	RESIDENCE	LOMP	.65	1046.07	163	MAIL SURVEY	X	T	Т	6.20E-06	6.60E-08	
'		MILK ANIMAL											
		MEAT ANIMAL	HINELINE,R	1.82	2929.01	148	INTERVIEW	X			5.80E-07	5.80E-09	
		VEGETATION	PECHNIK,A	.94	1512.78	163	INTERVIEW	X			2.70E-06	2.90E-08	
		GROUNDWATER	LOMP	.65	1046.07	163	MAIL SURVEY	X			6.20E-06	6.60E-08	
J	S	RESIDENCE	DOWLER	.73	1174.82	175	INTERVIEW	X			2.60E-06	2.10E-08	
		MILK ANIMAL	STANGL	3.44	5536.14	169	INTERVIEW	Х	XX	(6.20E-08	4.10E-10	
1		MEAT ANIMAL	PRATT	2.48	3991.17	170	INTERVIEW	Х			1.30E-07	9.10E-10	
		VEGETATION	DOWLER	.73	1174.82	175	INTERVIEW	Х			2.60E-06	2.10E-08	
		GROUNDWATER	DOWLER	.73	1174.82	175	INTERVIEW	Х			2.60E-06	2.10E-08	
К	SSW	RESIDENCE	D.MILLER	.65	1046.07	203	INTERVIEW	Х			3.10E-06	1.50E-08	
		MILK ANIMAL											
		MEAT ANIMAL	D.MILLER	.65	1046.07	203	INTERVIEW	Х			3.10E-06	1.50E-08	COWS ARE ONLY ON THE PROPERTY
													DURING GRAZING SEASON. PASTURE ON LEASE.
		VEGETATION	T. DEIN	2.00	3218.69	193	INTERVIEW	X		X	2.20E-07	9.50E-10	
		GROUNDWATER	D.MILLER	.65	1046.07	203	INTERVIEW	X			3.10E-06	1.50E-08	
L	SW	RESIDENCE	ROBERTSON,D	.73	1174.82	224	MAIL SURVEY	X			1.90E-06	8.20E-09	
		MILK ANIMAL											
		MEAT ANIMAL	RYDER	.76	1223.10	227	INTERVIEW	Х			1.70E-06	7.50E-09	
		VEGETATION	KAZAKERICIUS	1.36	2188.71	233	INTERVIEW	X			3.90E-07	1.60E-09	
		GROUNDWATER	ROBERTSON,D	.73	1174.82	224	MAIL SURVEY	Х			1.90E-06	8.20E-09	
М	WSW	RESIDENCE	BENSEN,M	1.06	1705.90	257	INTERVIEW	X			1.10E-06	3.40E-09	
		MILK ANIMAL											
		MEAT ANIMAL	WRICH,B	2.42	3894.61	250	INTERVIEW	X			1.40E-07	3.70E-10	
		VEGETATION	THOMAS	1.13	1818.56	259	MAIL SURVEY	X			8.90E-07	2.80E-09	
		GROUNDWATER	BENSEN,M	1.06	1705.90	257	INTERVIEW	X			1.10E-06	3.40E-09	

2014 Environmental Land Use Survey Report FC-801 REV 1

Page 3 of 3

Sector	Dir	Land Use	Owner	Miles	Meters	Dea	Survey	A	ge Gro	up	XOQ	DOQ	Remarks
						5	Technique	ij	en ijd	T	-	•	-
							•	PQ.	r P F	Inf			
N	Ŵ	RESIDENCE	NIELSEN,D	1.20	1931.21	263	MAIL SURVEY	X		Τ	8.70E-07	2.90E-09	
		MILK ANIMAL											
		MEAT ANIMAL	ANDERSON, J	3.25	5230.37	281	INTERVIEW	X			8.10E-08	2.20E-10	
		VEGETATION	ASMUSSEN,G	1.30	2092.15	270	MAIL SURVEY	X			6.90E-07	2.30E-09	
		GROUNDWATER	ASMUSSEN,G	1.30	2092.15	270	MAIL SURVEY	Х			6.90E-07	2.30E-09	
Р	WNW	RESIDENCE	STONE	2.60	4184.29	283	MAIL SURVEY	X			2.40E-07	7.80E-10	
		MILK ANIMAL						Γ		-			
		MEAT ANIMAL		· [· - · · ·				-					
		VEGETATION	TABOR	2.65	4264.76	285	INTERVIEW	X	X	1	2.30E-07	7.40E-10	
		GROUNDWATER	STONE	2.60	4184.29	283	MAIL SURVEY	Х			2.40E-07	7.80E-10	
Q	NW	RESIDENCE	HANSEN,R	2.40	3862.43	318	INTERVIEW	X			4.50E-07	1.90E-09	
	·	MILK ANIMAL											
		MEAT ANIMAL											
		VEGETATION	HANSEN,R	2.40	3862.43	318	INTERVIEW	X			4.50E-07	1.90E-09	
		GROUNDWATER	HANSEN,R	2.40	3862.43	318	INTERVIEW	X			4.50E-07	1.90E-09	
R	NNW	RESIDENCE	SHUBERT,B	2.08	3347.44	330	INTERVIEW	X	X		4.90E-07	2.90E-09	
		MILK ANIMAL											
		MEAT ANIMAL											
		VEGETATION	SONDERUP	3.73	6002.85	328	MAIL SURVEY	X			1.30E-07	6.60E-10	
		GROUNDWATER	SONDERUP	3.73	6002.85	328.	MAIL SURVEY	X			1.30E-07	6.60E-10	

Performed by_____ Reviewed by_____

Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor lab) to perform radioanalysis of environmental samples. Environmental Inc. participates in interlaboratory comparison (cross-check) programs as part of its quality control program. These programs are operated by such agencies as the Department of Energy, which supply blind-spike samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the analytical laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

Vendor in-house spike sampling was performed without a failure and in-house blank analyses were performed within acceptable ranges.

ERA soil sample ERSO-1050 and DOE soil sample MASO-1146 failed testing for plutonium isotopes during first quarter testing. These four failures (high bias) were traced back to a cross contaminated source set. MAAP-1151 air filter failed its PU-238 testing because of this faulty standard set. The results of re-analysis with a replacement tracer purchased from NIST produced satisfactory results. MASO-1146 also failed (low) for uranium isotopes. This issue is under current investigation. Since over 80% of the testing labs had unacceptable results, it appears that the DOE sample may be suspect. The FCS REMP program does not perform transuranic analyses of soil or air filters.

MASO-1146 also failed for Cs-134 in the gamma scan. The testing listed Cs-134 as present, when the sample had none. The sample was recounted, and two gamma spectral lines for Cs-134 were present. Six other gamma nuclides were identified correctly on each count. No further explanation was provided for the failures. FCS REMP program does perform gamma scans of soil/river sediment; no Cs-134 was detected in station samples tested.

MAAP-1151 air particulate filter, failed a gamma scan for Co-57. This was caused by EU-152 library issue. Re-analysis with the interfering line addressed produced acceptable result. No plant related nuclides were detected in FCS REMP gamma scans.

ERW-1055 failed low on Fe-55 testing. An efficiency calculation error was discovered. After recalculation the sample passed. A new test was reordered and performed with satisfactory results. The DOE water sample, MAW-4431, failed high.

The DOE sample in question was reanalyzed and produced satisfactory results. Both the DOE and ERA water sample failed initial testing. Since FCS Fe-55 is performed within the RETS program, the environmental vendor does not receive a Fe-55 analytics cross check. The RETS/Rad waste vendor did pass its testing, and no Fe-55 was identified in station effluent reporting.

No test results failed both the ERA and DOE methodologies for a given sample type. Reanalysis produced acceptable results. The ordering of additional tests and successful testing after corrections were applied, visibly demonstrates the vendor's commitment to reporting and resolving deficiencies.

These results indicate the vendor's ability to self-identify and correct any deviations from acceptable or expected results. The test results had no impact on Fort Calhoun samples and were documented as such by the vendor.

APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS

NOTE: Environmental Inc., Midwest Laboratory participates in intercomparison studies administered by Environmental Resources Associates, and serves as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Results are reported in Appendix A. TLD Intercomparison results, in-house spikes, blanks, duplicates and mixed analyte performance evaluation program results are also reported. Appendix A is updated four times a year; the complete Appendix is included in March, June, September and December monthly progress reports only.

January, 2014 through December, 2014

Appendix A

Interlaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via International Intercomparison of Environmental Dosimeters, when available, and internal laboratory testing.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists REMP specific analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the environmental sample crosscheck program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

			Conce	ntration (pCi/L)	· · · · · · · · · · · · · · · · · · ·	
Lab Code	Date	Analysis	Laboratory	ERA	Control	
	<u></u>		Result ^b	Result ^c	Limits	Acceptance
ED)44 4004	4/7/0044	C = 00	40.00 + 5.70	00.70	07.50 . 40.00	5
ERW-1384	4/7/2014	51-89	40.29 ± 5.76	36.70	27.50 ± 43.60	Pass
ERW-1384	4/7/2014	SI-90 Do 122	24.08 ± 2.35	26.50	19.20 ± 30.90	Pass
ERW-1385	4/7/2014	Ba-133	78.23 ± 3.93	87.90	74.00 ± 96.70	Pass
ERW-1385	4/7/2014	C0-60	62.75 ± 3.53	64.20	57.80 ± 73.10	Pass
ERW-1385	4/7/2014	CS-134	44.97 ± 3.99	44.30	35.50 ± 48.70	Pass
ERW-1385	4/7/2014	US-137	88.54 ± 4.93	89.10	80.20 ± 101.00	Pass
ERW-1385	4/7/2014	Zn-65	249.1 ± 10.4	235.0	212.0 - 275.0	Pass
ERW-1388	4///2014	Gr. Alpha	56.70 ± 2.47	61.00	31.90 ± 75.80	Pass
ERW-1388	4/7/2014	Gr. Beta	32.10 ± 1.20	33.00	21.40 ± 40.70	Pass
ERW-1391	4/7/2014	1-131	25.52 ± 1.12	25.70	21.30 ± 30.30	Pass
ERW-1394	4/7/2014	Ra-226	12.30 ± 0.61	12.40	9.26 ± 14.30	Pass
ERW-1394	4/7/2014	Ra-228	5.08 ± 1.16	4.26	2.46 ± 5.86	Pass
ERW-1394	4/7/2014	Uranium	10.76 ± 0.74	10.20	7.95 ± 11.80	Pass
ERW-1397	4/7/2014	H-3	8982 ± 279	8770	7610 - 9650	Pass
ERW-5382	10/6/2014	Sr-89	29.40 ± 5.32	31.40	22.80 ± 38.10	Pass
ERW-5382	10/6/2014	Sr-90	19.19 ± 1.85	21.80	15.60 ± 25.70	Pass
ERW-5385	10/6/2014	Ba-133	43.54 ± 4.54	49.10	40.30 ± 54.50	Pass
ERW-5385	10/6/2014	Cs-134	81. <u>9</u> 5 ± 7.49	89.80	73.70 ± 98.80	Pass
ERW-5385	10/6/2014	Cs-137	95.76 ± 5.50	98.80	88.90 ± 111.00	Pass
ERW-5385	10/6/2014	Co-60	90.25 ± 2.77	92.10	82.90 ± 104.00	Pass
ERW-5385	10/6/2014	Zn-65	327.4 ± 23.3	310.0	279.0 - 362.0	Pass
ERW-5388	10/6/2014	Gr. Alpha	30.88 ± 8.05	37.60	19.40 ± 46.10	Pass
ERW-5388	10/6/2014	G. Beta	20.47 ± 4.75	27.40	17.30 ± 35.30	Pass
ERW-5392	10/6/2014	I-131	19.58 ± 2.35	20.30	16.80 ± 24.40	Pass
ERW-5394	10/6/2014	Ra-226	15.10 ± 1.81	14.70	11.00 ± 16.90	Pass
ERW-5394	10/6/2014	Ra-228	4.42 ± 0.86	4.31	2.50 ± 5.92	Pass
ERW-5394	10/6/2014	Uranium	5.51 ± 0.37	5.80	4.34 ± 6.96	Pass
CD14/ 5207	10/6/2014	11.0	6976 + 292	c000	5040 7570	D

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

		····		mR		
Lab Code	Date		Known	Lab Result	Control	
		Description	Value	± 2 sigma	Limits	Acceptance
Environment	al, Inc.					
2014-1	5/15/2014	50 cm.	26.83	34.43 ± 3.76	18.78 - 34.88	Pass
2014-1	5/15/2014	60 cm.	18.63	22.20 ± 1.16	13.04 - 24.22	Pass
2014-1	5/15/2014	70 cm.	13.69	14.74 ± 0.80	9.58 - 17.80	Pass
2014-1	5/15/2014	75 cm.	11.93	12.68 ± 1.05	8.35 - 15.51	Pass
2014-1	5/15/2014	80 cm.	10.48	11.81 ± 0.91	7.34 - 13.62	Pass
2014-1	5/15/2014	90 cm.	8.28	7.72 ± 0.71	5.80 - 10.76	Pass
2014-1	5/15/2014	100 cm.	6.71	6.46 ± 0.71	4.70 - 8.72	Pass
2014-1	5/15/2014	110 cm.	5.54	5.25 ± 1.03	3.88 - 7.20	Pass
2014-1	5/15/2014	120 cm.	4.66	4.76 ± 0.48	3.26 - 6.06	Pass
2014-1	5/15/2014	135 cm.	3.68	2.87 ± 0.46	2.58 - 4.78	Pass
2014-1	5/15/2014	150 cm.	2.98	2.30 ± 0.15	2.09 - 3.87	Pass
2014-1	5/15/2014	165 cm.	2.46	2.09 ± 0.28	1.72 - 3.20	Pass
2014-1	5/15/2014	180 cm.	2.07	1.75 ± 0.21	1.45 - 2.69	Pass
Environment	al <u>, Inc.</u>					
2014-2	12/9/2014	30 cm.	77.04	84.03 ± 8.47	53.90 - 100.20	Pass
2014-2	12/9/2014	30 cm.	77.04	83.74 ± 12.02	53.90 - 100.20	Pass
2014-2	12/9/2014	60 cm.	19.26	20.39 ± 2.37	13.50 - 25.00	Pass
2014-2	12/9/2014	60 cm.	19.26	20.33 ± 1.19	13.50 - 25.00	Pass
2014-2	12/9/2014	120 cm.	4.82	5.15 ± 0.20	3.40 - 6.30	Pass
2014-2	12/9/2014	120 cm.	4.82	5.20 ± 0.45	3.40 - 6.30	Pass
2014-2	12/9/2014	150 cm.	3.08	3.84 ± 0.61	2.20 - 4.00	Pass
2014-2	12/9/2014	150 cm.	3.08	3.17 ± 0.38	2.20 - 4.00	Pass
2014-2	12/9/2014	150 cm.	3.08	3.31 ± 0.32	2.00 - 4.00	Pass
2014-2	12/9/2014	180 cm.	2.14	2.27 ± 0.51	1.50 - 2.80	Pass
2014-2	12/9/2014	180 cm.	2.14	2.23 ± 0.12	1.50 - 2.80	Pass
2014-2	12/9/2014	180 cm.	2.14	2.74 ± 0.48	1.50 - 2.80	Pass
2014-2	12/9/2014	180 cm.	2.14	1.97 ± 0.41	1.50 - 2.80	Pass

TABLE A-2. Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards).

TABLE A-3.	In-House	"Spiked"	Samples
------------	----------	----------	---------

		Concentration (pCi/L) ^a							
Lab Code [♭]	Date	Analysis	Laboratory results	Known	Control				
			2s, n=1 °	Activity	Limits ^d	Acceptance			
SPW-1011	1/13/2014	Ra-228	35.47 ± 2.55	30.85	21.60 - 40.11	Pass			
SPAP-103	1/13/2014	Gr. Beta	43.91 ± 0.34	44.82	26.89 - 62.75	Pass			
SPAP-105	1/13/2014	Cs-134	2.46 ± 0.67	2.82	1.69 - 3.95	Pass			
SPAP-105	1/13/2014	Cs-137	102.4 ± 2.7	99.9	89.9 - 109.9	Pass			
SPW-107	1/13/2014	H-3	62,380 ± 707	62,246	49,797 - 74,695	Pass			
SPW-129	1/15/2014	Cs-134	69.90 ± 3.71	78.00	68.00 - 88.00	Pass			
SPW-129	1/15/2014	Cs-137	84.36 ± 7.06	75.77	65.77 - 85.77	Pass			
SPW-129	1/15/2014	Sr-90	39.48 ± 1.52	39.20	31.36 - 47.04	Pass			
SPW-130	1/15/2014	Ni-63	255.8 ± 3.8	204.0	142.8 - 265.2	Pass			
SPW-133	1/15/2014	C-14	3153 ± 15	4737	2842 - 6632	Pass			
SPMI-135	1/15/2014	Cs-134	76.80 ± 4.04	78.00	68.00 - 88.00	Pass			
SPMI-135	1/15/2014	Cs-137	80.44 ± 6.63	75.80	65.80 - 85.80	Pass			
W-12014	1/20/2014	Gr. Alpha	19.69 ± 0.41	20.00	10.00 - 30.00	Pass			
W-12014	1/20/2014	Gr. Beta	30.35 ± 0.33	30.90	20.90 - 40.90	Pass			
SPW-297	1/29/2014	Tc-99	104.2 ± 1.7	107.8	75.5 - 140.2	Pass			
SPW-657	2/25/2014	Ra-226	15.84 ± 0.45	16.70	11.69 - 21.71	Pass			
SPW-1127	3/26/2014	U-238	43.28 ± 2.56	41.72	29.20 - 54.24	Pass			
SPW-1917	3/28/2014	Pu-238	27.37 ± 2.13	23.80	14,28 - 33.32	Pass			
SPW-1786	4/25/2014	Ťc-99	531.1 ± 8.7	539.15	377.41 - 700.90	Pass			
SPW-2168	5/21/2014	Cs-134	70.90 ± 5.81	69.50	59.50 - 79.50	Pass			
SPW-2168	5/21/2014	Cs-137	79.72 ± 6.49	75.17	65.17 - 85.17	Pass			
SPW-2168	5/21/2014	Sr-89	83.35 ± 5.05	72.85	58.28 - 87.42	Pass			
SPW-2168	5/21/2014	Sr-90	33.37 ± 1.52	38.87	31.10 - 46.64	Pass			
SPMI-2170	5/21/2014	Cs-134	64.15 ± 4.93	69.50	59.50 - 79.50	Pass			
SPMI-2170	5/21/2014	Cs-137	76.21 ± 6.91	75.17	65.17 - 85.17	Pass			
SPMI-2170	5/21/2014	Sr-89	65.82 ± 4.89	72.85	58.28 - 87.42	Pass			
SPMI-2170	5/21/2014	Sr-90	40.90 ± 1.59	38.87	31,10 - 46.64	Pass			
SPW-2792	6/18/2014	U-238	44.80 ± 1.54	41.70	29.19 - 54.21	Pass			
SPW-2796	6/18/2014	C-14	3495 ± 9	4,737	2,842 - 6632	Pass			
WW-2836	6/30/2014	Co-60	131.8 ± 6.9	140.90	126.81 - 154.99	Pass			
WW-2836	6/30/2014	Cs-137	143.8 ± 9.1	145.60	131.04 - 160.16	Pass			
WW-2836	6/30/2014	H-3	6220 ± 238	6.361	5,089 - 7633	Pass			

Lab Code [♭]	Date	Analysis	Laboratory results 2s, n=1 ^c	Known Activity	Control Limits ^d	Acceptance
SPW-3486	7/17/2014	Fe-55	2211 ± 72	2319	1855 - 2783	Pass
SPW-080714	8/7/2014	Gr. Alpha	18.42 ± 0.40	20.10	10.05 - 30.15	Pass
SPW-080714	8/7/2014	Gr. Beta	31.70 ± 0.40	32.40	22.40 - 42.40	Pass
SPW-081214	8/12/2014	Pu-238	22.59 ± 2.15	22.70	18.16 - 27.24	Pass
SPW-4093	8/13/2014	l-131(G)	59.95 ± 6.17	59.62	49.62 - 69.62	Pass
SPW-4093	8/13/2014	Sr-90	39.46 ± 1.55	38.65	28.65 - 48.65	Pass
SPW-4093	8/13/2014	Sr-89	105.5 ± 4.9	115.0	92.0 - 149.5	Pass
SPMI-4095	8/13/2014	i-131(G)	59.92 ± 6.17	59.62	49.62 - 69.62	Pass
SPMI-4095	8/13/2014	I-131	60.05 ± 0.72	59.62	47.70 - 71.54	Pass
SPW-4104	8/13/2014	Ni-63	200.1 ± 3.4	203.2	142.2 - 264.1	Pass
SPW-4106	8/13/2014	H-3	59,597 ± 695	60,261	48209 - 72313	Pass
SPW-4108	8/13/2014	Cs-134	2.45 ± 0.81	2.32	0.00 - 12.32	Pass
SPW-4108	8/13/2014	Cs-137	90.20 ± 3.74	98.56	88.56 - 108.56	Pass
SPAP-4110	8/13/2014	Gr. Beta	43.65 ± 0.11	44.19	34.19 - 54.19	Pass
SPF-4112	8/13/2014	I-131	2.64 ± 0.38	2.86	0.00 - 12.86	Pass
SPF-4112	8/13/2014	Cs-134	0.91 ± 0.03	1.03	0.00 - 11.03	Pass
SPF-4112	8/13/2014	Cs-137	2.61 ± 0.06	2.39	0.00 - 12.39	Pass
SPW-081414	8/14/2014	H-3	14,663 ± 788	17,700	14160 - 21240	Pass
W081614	8/16/2014	Ra-226	14.30 ± 0.37	16.70	11.69 - 21.71	Pass
W082614	8/26/2014	Ra-228	27.18 ± 2.13	30.49	20.49 - 40.49	Pass
SPW-090414	9/4/2014	Gr. Alpha	17.85 ± 0.39	20.10	10.05 - 30.15	Pass
SPW-090414	9/4/2014	Gr. Beta	30.03 ± 0.33	30.90	20.90 - 40.90	Pass
SPW-5124	9/29/2014	Ra-228	32.93 ± 2.38	31.94	21.94 - 41.94	Pass
W100714	10/7/2014	Gr. Alpha	18.56 ± 0.40	20.10	10.05 - 30.15	Pass
W100714	10/7/2014	Gr. Beta	27.71 ± 0.32	30.90	20.90 - 40.90	Pass
W111014	11/10/2014	Gr. Alpha	17.84 ± 0.38	20.10	10.05 - 30.15	Pass
W111014	11/10/2014	Gr. Beta	30.12 ± 0.33	30.90	20.90 - 40.90	Pass
W112514	11/25/2014	Ra-226	16.63 ± 0.41	16.70	11.69 - 21.71	Pass
W120814	12/8/2014	Gr. Alpha	19.29 ± 0.41	20.10	10.05 - 30.15	Pass
W120814	12/8/2014	Gr. Beta	27.93 ± 0.32	30.90	20.90 - 40.90	Pass
SPW-7149	12/26/2014	Ni-63	217.53 ± 3.25	203.10	142.17 - 264.03	Pass

TABLE A-3. In-House "Spiked" Samples

.

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

^b Laboratory codes : W (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine).

^c Results are based on single determinations.

^d Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2s.

NOTE: For fish, Jello is used for the spike matrix. For vegetation, cabbage is used for the spike matrix.

TABLE A-4. In-House "Blank" Samples

-

				Concentration (pCi/L) ^a			
Lab Code	Sample	Date	Analysis ^b	Laborato	ry results (4.66σ)	Acceptance	
	Туре			LLD	Activity ^c	 Criteria (4.66 σ)	
	· · · · · · · · · · · · · · · · · · ·		·····				
SPW-1001	Water	1/13/2014	Ra-228	0.74	0.39 ± 0.39	2	
SPAP-102	Air Particulate	1/13/2014	Gr. Beta	0.003	0.015 ± 0.003	0.01	
SPAP-104	Air Particulate	1/13/2014	Cs-134	0.006	0.005 ± 0.005	0.05	
SPAP-104	Air Particulate	1/13/2014	Cs-137	0.004	-0.002 ± 0.005	0.05	
SPW-106	Water	1/13/2014	H-3	151.0	115.0 ± 97.0	200	
SPW-128	Water	1/15/2014	Cs-134	2.85	0.59 ± 1.46	10	
SPW-128	Water	1/15/2014	Cs-137	2.52	0.68 ± 1.64	10	
SPW-128	Water	1/15/2014	Sr-90	0.61	0.74 ± 0.36	1	
SPW-130	Water	1/15/2014	Ni-63	10.85	1.57 ± 6.60	20	
SPW-133	Water	1/15/2014	C-14	13.51	3.10 ± 8.27	200	
SPMI-134	Milk	1/15/2014	Cs-134	4.43	0.14 ± 2.46	10	
SPMI-134	Milk	1/15/2014	Cs-137	1.92	-2.07 ± 2.48	10	
W-12014	Water	1/20/2014	Gr. Alpha	0.48	-0.31 ± 0.31	2	
W-12014	Water	1/20/2014	Gr. Beta	0.78	-0.24 ± 0.54	4	
SPW-297	Water	1/29/2014	Tc-99	5.63	-4.42 ± 3.34	10	
SPW-656	Water	2/25/2014	Ra-226	0.03	0.01 ± 0.02	1	
SPW-1126	Water	3/26/2014	U-238	0.13	0.08 ± 0.12	1	
SPW-1127	Water	3/26/2014	U-233/234	0.13	0.11 ± 0.13	1	
SPW-1127	Water	3/26/2014	U-238	0.00	0.08 ± 0.12	1	
SPW-1917	Water	3/28/2014	Pu-238	0.02	0.01 ± 0.01	1	
SPW-1785	Water	4/25/2014	Tc-99	5.61	-4.33 ± 3.33	10	
SPW-1831	Water	4/30/2014	I-131	0.21	0.07 ± 0.12	0.5	
SPW-2167	Water	5/21/2014	Cs-134	2.29	-0.79 ± 1.35	10	
SPW-2167	Water	5/21/2014	Cs-137	2.46	0.36 ± 1.48	10	
SPW-2167	Water	5/21/2014	l-131(G)	2.77	0.25 ± 1.53	20	
SPW-2167	Water	5/21/2014	Sr-89	0.81	0.01 ± 0.62	5	
SPW-2167	Water	5/21/2014	Sr-90	0.52	0.03 ± 0.24	1	
SPMI-2169	Milk	5/21/2014	Cs-134	4.45	-0.55 ± 2.39	10	
SPMI-2169	Milk	5/21/2014	Cs-137	3.91	-0.52 ± 2.60	10	
SPMI-2169	Milk	5/21/2014	I-131(G)	4.31	2.57 ± 2.21	20	
SPMI-2169	Milk	5/21/2014	Sr-89	0.98	-0.02 ± 0.83	5	
SPMI-2169	Milk	5/21/2014	Sr-90	0.61	0.35 ± 0.32	1	
SPW-2793	Water	6/18/2014	U-238	0.08	0.02 ± 0.06	1	

A4-1

			· · ·	· · · · · · · · · · · · · · · · · · ·	Concentration (pCi/	_) ^a
Lab Code	Sample	Date	Analysis⁵	Laboratory	/ results (4.66σ)	Acceptance
	Туре			LLD	Activity ^c	Criteria (4.66 σ)
SPW-3485	Water	7/17/2014	Fe-55	597.6	10.3 ± 363.3	1000
SPW-4092	Water	8/13/2014	I-131(G)	3.59	0.91 ± 1.95	20
SPW-4092	Water	8/13/2014	Cs-134	3.71	-0.31 ± 1.77	10
SPW-4092	Water	8/13/2014	Cs-137	2.71	-2.20 ± 1.98	10
SPW-4092	Water	8/13/2014	Sr-89	0.89	0.11 ± 0.63	5
SPW-4092	Water	8/13/2014	Sr-90	0.52	-0.05 ± 0.23	1
SPMI-4094	Milk	8/13/2014	I-131	0.35	0.03 ± 0.20	0.5
SPMI-4094	Milk	8/13/2014	I-131(G)	4.50	-0.41 ± 2.44	20
SPMI-4094	Milk	8/13/2014	Cs-134	4.30	-0.84 ± 2.02	10
SPMI-4094	Milk	8/13/2014	Cs-137	3.45	0.96 ± 2.51	10
SPMI-4094	Milk	8/13/2014	Sr-89	0.80	-0.19 ± 0.79	5
SPMI-4094	Milk	8/13/2014	Sr-90	0.47	0.71 ± 0.30	1
SPW-4103	Water	8/13/2014	Ni-63	0.12	0.02 ± 0.07	20
SPW-4105	Water	8/13/2014	H-3	138.1	104.1 ± 78.1	200
SPW-4107	Water	8/13/2014	I-131(G)	3.21	-3.68 ± 1.33	20
SPW-4107	Water	8/13/2014	Cs-134	2.72	-0.62 ± 1.49	10
SPW-4107	Water	8/13/2014	Cs-137	2.56	0.75 ± 1.62	10
SPAP-4109	Air Particulate	8/13/2014	Gr. Beta	0.004	-0.003 ± 0.00	0.01
SPF-4111	Fish	8/13/2014	Cs-134	0.01	0.00 ± 0.01	100
SPF-4111	Fish	8/13/2014	Cs-137	0.01	-0.01 ± 0.01	100
SPF-4111	Fish	8/13/2014	Co-60	0.01	0.00 ± 0.01	100
W-081614	Water	8/16/2014	Ra-226	0.04	0.05 ± 0.03	1
W-082614	Water	8/16/2014	Ra-228	0.62	0.29 ± 0.40	2
W-092314	Water	9/23/2014	Ra-226	0.02	0.04 ± 0.02	1
W-5123	Water	9/29/2014	Ra-228	0.70	0.43 ± 0.38	2
W-100714	Water	10/7/2014	Gr. Alpha	0.39	0.04 ± 0.28	2
W-100714	Water	10/7/2014	Gr. Beta	0.76	-0.06 ± 0.53	4
W-111014	Water	11/10/2014	Gr. Alpha	0.39	0.01 ± 0.28	2
W-111014	Water	11/10/2014	Gr. Beta	0.75	-0.25 ± 0.52	4
W-112514	Water	11/25/2014	Ra-226	0.05	0.02 ± 0.03	2
W-120814	Water	12/8/2014	Gr. Alpha	0.42	0.04 ± 0.30	2
W-120814	Water	12/8/2014	Gr. Beta	0.74	-0.42 ± 0.51	4
SPW-7148	Water	12/26/2014	Ni-63	10.80	-1.80 ± 6.50	20

TABLE A-4. In-House "Blank" Samples

^a Liquid sample results are reported in pCi/Liter, air filters(pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).
 ^b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

^c Activity reported is a net activity result.

TABLE A-5.	In-House	"Duplicate"	Sample	es
------------	----------	-------------	--------	----

		-	Concentration (pCi/L) ^a				
				· · · · · · · · · · · · · · · · · · ·	Averaged		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
AP-7829, 7830	1/2/2014	Be-7	0.08 ± 0.02	0.06 ± 0.01	0.07 ± 0.01	Pass	
AP-7913, 7914	1/2/2014	Be-7	0.07 ± 0.01	0.06 ± 0.01	0.06 ± 0.01	Pass	
AP-7871, 7872	1/3/2014	Be-7	0.05 ± 0.02	0.06 ± 0.01	0.06 ± 0.01	Pass	
S-43, 44	1/9/2014	K-40	19.28 ± 0.57	19.24 ± 0.57	19.26 ± 0.40	Pass	
SG-64, 65	1/9/2014	Gr. Alpha	686.08 ± 69.97	642.46 ± 65.59	664.27 ± 47.95	Pass	
SG-64, 65	1/9/2014	Ra-226	97.30 ± 9.78	92.20 ± 9.27	94.75 ± 6.74	Pass	
SG-64, 65	1/9/2014	Ra-228	91.90 ± 9.30	97.10 ± 9.87	94.50 ± 6.78	Pass	
S-136, 137	1/13/2014	Be-7	14.90 ± 0.39	14.88 ± 0.38	14.89 ± 0.27	Pass	
S-136, 137	1/13/2014	K-40	3.29 ± 0.36	3.93 ± 0.36	3.61 ± 0.25	Pass	
WW-220, 221	1/13/2014	H-3	231.85 ± 80.45	273.46 ± 82.47	252.66 ± 57.60	Pass	
WW-262, 263	1/21/2014	H-3	294.80 ± 89.80	265.00 ± 88.47	279.90 ± 63.03	Pass	
WW-346, 347	1/24/2014	H-3	934.97 ± 118.47	965.59 ± 119.52	950.28 ± 84.14	Pass	
SWU-367, 368	1/29/2014	Gr. Beta	0.74 ± 0.38	1.31 ± 0.42	1.02 ± 0.28	Pass	
F-409, 410	2/2/2014	Cs-137	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.01	Pass	
F-409, 410	2/2/2014	Gr. Beta	3.60 ± 0.07	3.72 ± 0.07	3.66 ± 0.05	Pass	
AP-7829, 7830	1/2/2014	Be-7	0.08 ± 0.02	0.06 ± 0.01	0.07 ± 0.01	Pass	
AP-7913, 7914	1/2/2014	Be-7	0.07 ± 0.01	0.06 ± 0.01	0.06 ± 0.01	Pass	
AP-7871, 7872	1/3/2014	Be-7	0.05 ± 0.02	0.06 ± 0.01	0.06 ± 0.01	Pass	
S-43, 44	1/9/2014	K-40	19.28 ± 0.57	19.24 ± 0.57	19.26 ± 0.40	Pass	
SG-64, 65	1/9/2014	Gr. Alpha	686.08 ± 69.97	642.46 ± 65.59	664.27 ± 47.95	Pass	
SG-64, 65	1/9/2014	Ra-226	97.30 ± 9.78	92.20 ± 9.27	94.75 ± 6.74	Pass	
SG-64, 65	1/9/2014	Ra-228	91.90 ± 9.30	97.10 ± 9.87	94.50 ± 6.78	Pass	
S-136, 137	1/13/2014	Be-7	14.90 ± 0.39	14.88 ± 0.38	14.89 ± 0.27	Pass	
S-136, 137	1/13/2014	K-40	3.29 ± 0.36	3.93 ± 0.36	3.61 ± 0.25	Pass	
WW-220, 221	1/13/2014	H-3	231.85 ± 80.45	273.46 ± 82.47	252:66 ± 57.60	Pass	
WW-262, 263	1/21/2014	Н-3	294.80 ± 89.80	265.00 ± 88.47	279.90 ± 63.03	Pass	
WW-346, 347	1/24/2014	Н-3	934.97 ± 118.47	965.59 ± 119.52	950.28 ± 84.14	Pass	
SWU-367, 368	1/29/2014	Gr. Beta	0.74 ± 0.38	1.31 ± 0.42	1.02 ± 0.28	Pass	
F-409, 410	2/2/2014	Cs-137	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.01	Pass	
F-409, 410	2/2/2014	Gr. Beta	3.60 ± 0.07	3.72 ± 0.07	3.66 ± 0.05	Pass	
WW-491, 492	2/6/2014	H-3	474.00 ± 101.10	583.10 ± 105.30	528.55 ± 72.99	Pass	
WW-575, 576	2/13/2014	H-3	196.69 ± 82.94	154.68 ± 80.89	175.69 ± 57.93	Pass	
W-617, 618	2/14/2014	H-3	526.29 ± 97.65	579.51 ± 99.77	552.90 ± 69.80	Pass	
SWU-743, 744	2/25/2014	Gr. Beta	1.61 ± 0.65	1.73 ± 0.71	1.67 ± 0.48	Pass	
S-700, 701	2/26/2014	K-40	21.32 ± 0.64	21.15 ± 0.59	21.24 ± 0.44	Pass	
S-806, 807	3/4/2014	K-40	24.79 ± 0.57	24.17 ± 0.59	24.48 ± 0.41	Pass	
SG-928, 929	3/11/2014	Ac-228	6.78 ± 0.34	6.94 ± 0.35	6.86 ± 0.24	Pass	
SG-928, 929	3/11/2014	Bi-214	5.32 ± 0.20	5.34 ± 0.22	5.33 ± 0.15	Pass	
SG-928, 929	3/11/2014	K-40	4.79 ± 0.80	6.24 ± 1.01	5.52 ± 0.64	Pass	
SG-928, 929	3/11/2014	Pb-212	2.70 ± 0.09	2.75 ± 0.09	2.73 ± 0.06	Pass	
SG-928, 929	3/11/2014	Pb-214	5.39 ± 0.17	5.53 ± 0.17	5.46 ± 0.12	Pass	
SG-928, 929	3/11/2014	Th-228	6.10 ± 2.07	4.76 ± 1.93	5.43 ± 1.42	Pass	
SG-928, 929	3/11/2014	TI-208	0.92 ± 0.06	0.91 ± 0.06	0.92 ± 0.04	Pass	

TABLE A-5. In-House "Duplicate" Samples

			c	Concentration (pCi/L) ^a		
				Y	Averaged	······
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance
	0/10/004 4	4 - 000	0.70 . 0.00	0.70 . 0.04		n
S-2119, 2120	3/12/2014	AC-228	0.76 ± 0.20	0.73 ± 0.21	0.75 ± 0.15	Pass
S-2119, 2120	3/12/2014	US-137	0.13 ± 0.05	0.11 ± 0.05	0.12 ± 0.04	Pass
S-2119, 2120	3/12/2014	K-40	17.48 ± 1.48	18.39 ± 1.53	17.94 ± 1.06	Pass
S-2119, 2120	3/12/2014	Pb-214	0.73 ± 0.18	0.63 ± 0.12	0.68 ± 0.11	Pass
F-1594, 1595	3/16/2014	Cs-137	0.02 ± 0.01	0.03 ± 0.02	0.03 ± 0.01	Pass
SO-1115, 1116	3/18/2014	Cs-137	0.06 ± 0.01	0.06 ± 0.00	0.06 ± 0.00	Pass
SO-1115, 1116	3/18/2014	Gr. Beta	23.30 ± 2.10	24.40 ± 2.20	23.85 ± 1.52	Pass
SO-1115, 1116	3/18/2014	K-40	12.63 ± 0.18	12.84 ± 0.15	12.74 ± 0.12	Pass
SO-1115, 1116	3/18/2014	U-233/4	0.11 ± 0.02	0.12 ± 0.02	0.12 ± 0.01	Pass
SO-1115, 1116	3/18/2014	U-238	0.13 ± 0.02	0.14 ± 0.02	0.14 ± 0.01	Pass
S-1033, 1034	3/19/2014	Ac-228	0.99 ± 0.20	1.13 ± 0.26	1.06 ± 0.16	Pass
S-1033, 1034	3/19/2014	Bi-214	1.02 ± 0.18	0.98 ± 0.16	1,00 ± 0.12	Pass
S-1033, 1034	3/19/2014	Cs-137	0.15 ± 0.04	0.14 ± 0.04	0.15 ± 0.03	Pass
S-1033, 1034	3/19/2014	K-40	15.39 ± 1.19	15.13 ± 1.19	15.26 ± 0.84	Pass
S-1033, 1034	3/19/2014	Pb-214	1.09 ± 0.13	0.88 ± 0.17	0.99 ± 0.11	Pass
S-1033, 1034	3/19/2014	TI-208	0.36 ± 0.05	0.31 ± 0.05	0.34 ± 0.04	Pass
W-1094, 1095	3/23/2014	Ra-226	0.30 ± 0.20	0.70 ± 0.20	0.50 ± 0.14	Pass
W-1094, 1095	3/23/2014	Ra-228	1.10 ± 0.79	1.13 ± 0.86	1,12 ± 0.58	Pass
AP-1197, 1198	3/27/2014	Be-7	0.17 ± 0.08	0.14 ± 0.08	0.15 ± 0.05	Pass
AP-1698, 1699	3/31/2014	Be-7	0.06 ± 0.02	0.07 ± 0.02	0.07 ± 0.01	Pass
E-1218, 1219	4/1/2014	Gr. Beta	1.57 ± 0.04	1.57 ± 0.04	1.57 ± 0.03	Pass
E-1218, 1219	4/1/2014	K-40	1.26 ± 0.14	1.31 ± 0.18	1.29 ± 0.11	Pass
SWU-1260, 1261	4/1/2014	Gr. Beta	2.81 ± 0.51	2.94 ± 0.50	2.88 ± 0.36	Pass
AP-1615, 1616	4/1/2014	Be-7	0.07 ± 0:01	0.07 ± 0.02	0.07 ± 0.01	Pass
AP-1657, 1658	4/2/2014	Be-7	0.07 ± 0.01	0.08 ± 0.01	0.07 ± 0.01	Pass
AP-1804, 1805	4/3/2014	Be-7	0.05 ± 0.02	0.06 ± 0.01	0.06 ± 0.01	Pass
P-1489, 1490	4/7/2014	H-3	582.31 ± 101.85	505.07 ± 98.72	543.69 ± 70.92	Pass
BS-1531, 1532	4/16/2014	K-40	0.51 ± 0.19	0.58 ± 0.23	0.54 ± 0.15	Pass
S-1909, 1910	4/22/2014	K-40	14.71 ± 0.54	14.78 ± 0.53	14.75 ± 0.38	Pass
SWU-1867, 1868	4/29/2014	Gr. Beta	2.28 ± 0.40	1.67 ± 0.35	1.98 ± 0.27	Pass
AP-1930, 1931	5/1/2014	Be-7	0.16 ± 0.09	0.19 ± 0.11	0.17 ± 0.07	Pass
SL-1888, 1889	5/1/2014	Be-7	0.80 ± 0.04	0.76 ± 0.08	0.78 ± 0.05	Pass
SI -1888, 1889	5/1/2014	Cs-137	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	Pass
SL-1888 1889	5/1/2014	Gr. Beta	11.57 ± 0.72	12.67 ± 0.78	12.12 ± 0.53	Pass
SL-1888 1889	5/1/2014	K-40	1.04 ± 0.05	1.00 ± 0.09	1.02 ± 0.05	Pass
SO-1972 1973	5/1/2014	Cs-137	0.12 ± 0.03	0.10 ± 0.02	0.11 ± 0.02	Pass
SO-1972 1973	5/1/2014	Gr. Alpha	7.51 + 3.24	9.09 + 3.63	8.30 + 2.43	Pass
SO-1972 1973	5/1/2014	Gr. Beta	29.89 + 3.25	31.42 + 3.04	30.66 + 2.23	Pass
SO-1972, 1973	5/1/2014	K-40	20.45 + 0.85	20.88 + 0.76	20.66 + 0.57	Pass
W 617 618	5/8/2014	H_3	175 13 + 83 82	177 17 + 83 02	176 15 + 59 31	Pass
AD 2077 2079	5/8/2014	Re-7	0.23 + 0.11	0.18 ± 0.11	0.20 ± 0.08	Pass
A-2011, 2010	5/5/2014	06-1	0.20 10.11	0.10 ± 0.11	0.20 1 0.00	1 435

A5-2

TABLE A-5. In-Hous	e "Duplicate" Sam	ples
--------------------	-------------------	------

			Concentration (pCi/L) ^a				
					Averaged		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
			•				
S-2205, 2206	5/15/2014	Be-7	0.50 ± 0.19	0.70 ± 0.18	0.60 ± 0.13	Pass	
S-2205, 2206	5/15/2014	K-40	33.60 ± 0.79	33.52 ± 0.70	33.56 ± 0.53	Pass	
VE-2184, 2185	5/19/2014	Be-7	0.62 ± 0.18	0.53 ± 0.17	0.58 ± 0.12	Pass	
VE-2184, 2185	5/19/2014	K-40	5.30 ± 0.44	5.14 ± 0.44	5.22 ± 0.31	Pass	
DW-50102, 50103	5/20/2014	Ra-226	7.07 ± 0.76	8.31 ± 0.90	7.69 ± 0.59	Pass	
DW-50102, 50103	5/20/2014	Ra-228	5.44 ± 0.85	6.02 ± 0.67	5.73 ± 0.54	Pass	
SW-2226, 2227	5/21/2014	H-3	14318.00 ± 347.00	14350.00 ± 347.00	14334.00 ± 245.37	Pass	
DW-50087, 50088	5/21/2014	Gr. Alpha	1.76 ± 1.09	2.67 ± 1.01	2.22 ± 0.74	Pass	
DW-50090, 50091	5/21/2014	Ra-226	0.61 ± 0.09	0.47 ± 0.09	0.54 ± 0.06	Pass	
DW-50090, 50091	5/21/2014	Ra-228	0.97 ± 0.41	1.26 ± 0.52	1.12 ± 0.33	Pass	
DW-50098, 50099	5/21/2014	Gr. Alpha	13.04 ± 1.36	10.76 ± 1.26	11.90 ± 0.93	Pass	
AP-2289, 2290	5/22/2014	Be-7	0.14 ± 0.08	0.24 ± 0.10	0.19 ± 0.06	Pass	
PM-3174, 3175	5/28/2014	K-40	30.68 ± 1.30	32.64 ± 1.24	31.66 ± 0.90	Pass	
G-2415, 2416	6/2/2014	Be-7	0.73 ± 0.16	0.62 ± 0.28	0.68 ± 0.16	Pass	
G-2415, 2416	6/2/2014	Gr. Beta	5.89 ± 0.09	5.90 ± 0.09	5.89 ± 0.06	Pass	
G-2415, 2416	6/2/2014	K-40	5.30 ± 0.49	5.19 ± 0.65	5.25 ± 0.41	Pass	
WW-2541, 2542	6/4/2014	H-3	5107.00 ± 223.00	5029.00 ± 222.00	5068.00 ± 157.33	Pass	
SW-2817, 2818	6/16/2014	H-3	13303.00 ± 336.00	13130.00 ± 334.00	13216.50 ± 236.88	Pass	
SS-2943, 2944	6/24/2014	K-40	11.49 ± 0.79	11.81 ± 0.70	11.65 ± 0.53	Pass	
S-3048, 3049	6/27/2014	K-40	42.51 ± 1.31	40.04 ± 1.39	41.28 ± 0.95	Pass	
SWT-3216, 3217	7/1/2014	Gr. Beta	2.27 ± 0.94	2.53 ± 1.05	2.40 ± 0.70	Pass	
AP-3699,3700	7/3/2014	Be-7	0.06 ± 0.01	0.07 ± 0.02	0.07 ± 0.01	Pass	
S-3300, 3301	7/8/2014	K-40	4.85 ± 0.97	5.91 ± 1.17	5.38 ± 0.76	Pass	
S-3300, 3301	7/8/2014	Ac-228	10.23 ± 0.43	10.18 ± 0.32	10.21 ± 0.27	Pass	
S-3300, 3301	7/8/2014	Ra-226	70.14 ± 2.37	72.01 ± 2.38	71.08 ± 1.68	Pass	
VE-3237,3238	7/8/2014	K-40	2.54 ± 0.27	2.63 ± 0.24	2:59 ± 0.18	Pass	
CF-3384.3385	7/14/2014	K-40	11.10 ± 0.58	10.69 ± 0.60	10.90 ± 0.42	Pass	
S-3447.3448	7/16/2014	K-40	19.63 ± 0.64	21.03 ± 0.96	20.33 ± 0.58	Pass	
WW-3573.3574	7/18/2014	H-3	381.58 ± 85.76	401.30 ± 86.67	391.44 ± 60.96	Pass	
VE-3594.3595	7/22/2014	K-40	3.04 ± 0.19	3.21 ± 0.15	3.13 ± 0.12	Pass	
WW-3762.3763	7/25/2014	H-3	315.47 ± 87.02	327.30 ± 87.56	321.39 ± 61.72	Pass	
SWT-3867, 3868	7/29/2014	Gr. Beta	1.10 ± 0.53	1.51 ± 0.58	1.31 ± 0.39	Pass	
S-3804, 3805	7/30/2014	Ac-228	0.67 ± 0.11	0.61 ± 0.10	0.64 ± 0.07	Pass	
S-3804, 3805	7/30/2014	Pb-214	0.56 ± 0.05	0.51 ± 0.04	0.54 ± 0.03	Pass	
LW-3931, 3932	7/31/2014	Gr. Beta	1.04 ± 0.40	0.95 ± 0.41	1.00 ± 0.29	Pass	

TABLE A-5. In-House "Duplicate" Samples

			Concentration (pCi/L) ^a				
				·			
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
G-3952.3953	8/4/2014	K-40	5.42 ± 0.42	5 35 + 0 34	5.38 ± 0.27	Pass	
G-3952,3953	8/4/2014	Be-7	1.29 ± 0.19	1.24 ± 0.16	1.27 ± 0.13	Pass	
G-3952,3953	8/4/2014	Gr. Beta	8.53 ± 0.20	8.63 ± 0.20	8.58 ± 0.14	Pass	
G-3952,3953	8/4/2014	H-3	140.16 ± 93.50	127,25 ± 92,99	133.70 ± 65.94	Pass	
WW-4036, 4037	8/5/2014	Н-3	190.60 ± 82.60	164.70 ± 81.30	177.65 ± 57.95	Pass	
VE-4204,4205	8/11/2014	K-40	6.28 ± 0.38	6.60 ± 0.37	6.44 ± 0.27	Pass	
WW-4394,4395	8/13/2014	H-3	1540.26 ± 136.52	1499.15 ± 135.43	1519.71 ± 96.15	Pass	
VE-4183,4184	8/14/2014	K-40	5.70 ± 0.41	5.73 ± 0.34	5.72 ± 0.27	Pass	
AV-4455, 4456	8/22/2014	Be-7	286.67 ± 102.30	251.99 ± 98.94	269.33 ± 71,16	Pass	
AV-4455, 4456	8/22/2014	K-40	2547.90 ± 255.70	2201.40 ± 203.90	2374.65 ± 163.52	Pass	
WW-4500, 4501	8/26/2014	H-3	347.00 ± 100.00	321.00 ± 98.00	334.00 ± 70.01	Pass	
AP-090214A/B	9/2/2014	Gr. Beta	0.03 ± 0.04	0.03 ± 0.04	0.03 ± 0.00	Pass	
SG-5089, 5090	9/19/2014	Ac-228	8.26 ± 0.63	9.48 ± 0.68	8.87 ± 0.46	Pass	
SG-5089, 5090	9/19/2014	Bi-214	4.71 ± 0.29	4.41 ± 0.31	4.56 ± 0.21	Pass	
SG-5194,5	10/1/2014	Gr. Alpha	276.20 ± 9.51	258.60 ± 9.26	267.40 ± 6.64	Pass	
SG-5194,5	10/1/2014	Pb-214	43.56 ± 0.73	43.94 ± 0.78	43.75 ± 0.53	Pass	
SG-5194,5	10/1/2014	Ac-228	59.90 ± 1.37	62.80 ± 1.73	61.35 ± 1.10	Pass	
S-5632,3	10/8/2014	K-40	19.28 ± 0.88	17.94 ± 0.89	18.61 ± 0.63	Pass	
S-5632,3	10/8/2014	Cs-137	0.15 ± 0.03	0.13 ± 0.03	0.14 ± 0.02	Pass	
S-5632,3	10/8/2014	TI-208	0.32 ± 0.03	0.34 ± 0.03	0.33 ± 0.02	Pass	
S-5632,3	10/8/2014	Pb-212	0.92 ± 0.05	0.92 ± 0.05	0.92 ± 0.03	Pass	
S-5632,3	10/8/2014	Pb-214	1.25 ± 0.08	1.09 ± 0.09	1.17 ± 0.06	Pass	
S-5632,3	10/8/2014	Bi-212	1.25 ± 0.29	1.34 ± 0.47	1.29 ± 0.27	Pass	
S-5632,3	10/8/2014	Ac-228	1.08 ± 0.14	1.10 ± 0.14	1.09 ± 0.10	Pass	
DW-50243,4	10/13/2014	Gr. Alpha	2.99 ± 0.94	4.98 ± 1.17	3.99 ± 0.75	Pass	
AP-101414A/B	10/14/2014	Gr. Beta	0.02 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	Pass	
SG-5590,1	10/15/2014	Pb-214	80.30 ± 8.08	73.40 ± 7.51	76.85 ± 5.52	Pass	
SG-5590,1	10/15/2014	Ac-228	64.50 ± 1.87	62.80 ± 1.15	63.65 ± 1.10	Pass	
DW-50251,2	10/16/2014	Ra-226	0.55 ± 0.13	0.32 ± 0.10	0.44 ± 0.08	Pass	
U-5842,3	10/20/2014	H-3	7376 ± 949	7342 <u>±</u> 947	7359 ± 670	Pass	
CF-6074,5	10/21/2014	H-3	7509 ± 283	7969 ± 291	7739 ± 203	Pass	
CF-6074,5	10/21/2014	K-40	3.09 ± 0.31	3.30 ± 0.38	3.20 ± 0.25	Pass	

TABLE A-5. In-House "Duplicate" Samples

.

			Concentration (pCi/L) ^a				
					Averaged		
Lab Code	Date	Analysis	First Result	Second Result	Result	Acceptance	
				·····			
VE-6269,70	11/3/2014	K-40	6.25 ± 0.54	6.56 ± 0.49	6.41 ± 0.36	Pass	
VE-6269,70	11/3/2014	Be-7	0.81 ± 0.28	0.74 ± 0.18	0.77 ± 0.17	Pass	
SO-6500,1	11/5/2014	Sr-90	0.07 ± 0.03	0.07 ± 0.02	0.07 ± 0.02	Pass	
SO-6500,1	11/5/2014	Gr. Alpha	11.77 ± 1.73	12.18 ± 1.62	11.98 ± 1.19	Pass	
SO-6500,1	11/5/2014	Gr. Beta	26.69 ± 1.62	24.19 ± 1.13	25.44 ± 0.99	Pass	
SO-6500,1	11/5/2014	U-233/4	0.14 ± 0.04	0.14 ± 0.05	0.14 ± 0.03	Pass	
SO-6500,1	11/5/2014	U-238	0.18 ± 0.05	0.13 ± 0.04	0.15 ± 0.03	Pass	
SO-6500,1	11/5/2014	Th-228	0.47 ± 0.11	0.34 ± 0.06	0.41 ± 0.06	Pass	
SO-6500,1	11/5/2014	Th-230	0.38 ± 0.07	0.29 ± 0.05	0.34 ± 0.04	Pass	
SO-6500,1	11/5/2014	Th-232	0.41 ± 0.08	0.41 ± 0.06	0.41 ± 0.05	Pass	
SO-6500,1	11/5/2014	Bi-214	0.75 ± 0.02	0.78 ± 0.02	0.77 ± 0.01	Pass	
SO-6500,1	11/5/2014	Pb-214	0.78 ± 0.08	0.86 ± 0.09	0.82 ± 0.06	Pass	
SO-6500,1	11/5/2014	Ac-228	1.02 ± 0.11	1.13 ± 0.13	1.08 ± 0.09	Pass	
SO-6500,1	11/5/2014	Cs-137	0.40 ± 0.01	0.39 ± 0.01	0.39 ± 0.01	Pass	
DW-50262,3	11/10/2014	Gr. Alpha	8.95 ± 1.26	7.84 ± 1.24	8.40 ± 0.88	Pass	
DW-50264,5	11/10/2014	Ra-226	3.89 ± 0.24	3.71 ± 0.20	3.80 ± 0.16	Pass	
DW-50264,5	11/10/2014	Ra-228	2.96 ± 0.63	2.33 ± 0.59	2.65 ± 0.43	Pass	
AP-120214A/B	12/2/2014	Gr. Beta	0.03 ± 0.00	0.03 ± 0.00	0.03 ± 0.00	Pass	
AP-120814A/B	12/8/2014	Gr. Beta	0.03 ± 0.01	0.03 ± 0.01	0.03 ± 0.00	Pass	
SG-7068,9	12/19/2014	Pb-214	4.27 ± 0.23	4.38 ± 0.33	4.33 ± 0.20	Pass	
SG-7068,9	12/19/2014	Ac-228	2.72 ± 0.36	3.27 ± 0.49	3.00 ± 0.30	Pass	
S-7152,3	12/25/2014	K-40	20.83 ± 0.88	20.16 ± 0.62	20.49 ± 0.54	Pass	

A5-5

		<u> </u>		Concentration	а	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptanco
		741019515	caboratory result	Activity	Linuts	Acceptance
MAW-1140	2/1/2014	Gr. Alpha	0.77 ± 0.06	0.85	0.26 - 1.44	Pass
MAW-1140	2/1/2014	Gr. Beta	4.31 ± 0.08	4.19	2.10 - 6.29	Pass
MAW-1142	2/1/2014	I-129	-0.01 ± 8.00	0.00	NA	Pass
MAW-1184	2/1/2014	Fe-55	0.40 ± 3.20	0.00	-0.01 - 2.00	Pass
MAW-1184	2/1/2014	H-3	345.10 ± 10.60	321.00	225.00 - 417.00	Pass
MAW-1184	2/1/2014	Ni-63	32.40 ± 3.20	34.00	23.80 - 44.20	Pass
MAW-1184 °	2/1/2014	Pu-238	1.28 ± 0.12	0.83	0.58 - 1.08	Fail
MAW-1184 °	2/1/2014	Pu-239/240	0.91 ± 0.10	0.68	0.47 - 0.88	Fail
MAW-1184	2/1/2014	Sr-90	7.00 ± 0.70	8.51	5.96 - 11.06	Pass
MAW-1184	2/1/2014	Tc-99	8.10 ± 0.60	10.30	7.20 - 13.40	Pass
MAW-1184	2/1/2014	U-233/234	0.20 ± 0.07	0.23	0.16 - 0.29	Pass
MAW-1184	2/1/2014	U-238	1.25 ± 0.18	1.45	1.02 - 1.89	Pass
MAW-1184	2/1/2014	Co-57	27.86 ± 0.38	27.50	19.30 - 35.80	Pass
MAW-1184	2/1/2014	Co-60	15.99 ± 0.27	16.00	11.20 - 20.80	Pass
MAW-1184	2/1/2014	Cs-134	21.85 ± 0.54	23.10	16.20 - 30.00	Pass
MAW-1184	2/1/2014	Cs-137	28.74 ± 0.49	28.90	20.20 - 37.60	Pass
MAW-1184	2/1/2014	K-40	1.80 ± 2.00	0.00	0.00 - 10.00	Pass
MAW-1184	2/1/2014	Mn-54	14.06 ± 0.40	13.90	9.70 - 18.10	Pass
MAW-1184	2/1/2014	Zn-65	0.00 ± 0.19	0.00	-0.01 - 0.00	Pass
MAVE-1148	2/1/2014	Co-57	11.63 ± 0.19	10.10	7.10 - 13.10	Pass
MAVE-1148	2/1/2014	Co-60	7.28 ± 0.18	6.93	4.85 - 9.01	Pass
MAVE-1148	2/1/2014	Cs-134	6.29 ± 0.29	6.04	4.23 - 7.85	Pass
MAVE-1148	2/1/2014	Cs-137	5.18 ± 0.20	4,74	3.32 - 6,16	Pass
MAVE-1148	2/1/2014	Mn-54	9.22 ± 0.26	8.62	6.03 - 11.21	Pass
MAVE-1148	2/1/2014	Zn-65	8.59 ± 0.40	7.86	5.50 - 10.22	Pass
MAAP-1151	2/1/2014	Am-241	0.09 ± 0.02	0.09	0.06 - 0.12	Pass
MAAP-1151 d	2/1/2014	Co-57	1.60 ± 0.05	0.00	NA	Fail
MAAP-1151	2/1/2014	Co-60	1.38 ± 0.08	1.39	0.97 - 1.81	Pass
MAAP-1151	2/1/2014	Cs-134	1.75 ± 0.11	1.91	1.34 - 2.48	Pass
MAAP-1151	2/1/2014	Cs-137	1.81 ± 0.10	1.76	1.23 - 2.29	Pass
MAAP-1151	2/1/2014	Mn-54	0.01 ± 0.03	0.00	NA	Pass
MAAP-1151 °	2/1/2014	Pu-238	0.08 ± 0.02	0.00	NA	Fail
MAAP-1151	2/1/2014	Pu-239/240	0.10 ± 0.02	0.08	0.05 - 0.10	Pass
MAAP-1151	2/1/2014	Zn-65	-0.24 ± 0.09	0.00	-0.50 - 1.00	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

					a	
<u></u>				Concentration		
h				Known	Control	
Lab Code	Date	Analysis	Laboratory result	Activity	Limits	Acceptance
MAAP-1151	2/1/2014	U-233/234	0.03 ± 0.01	0.02	0.01 - 0.03	Pass
MAAP-1151	2/1/2014	U-238	0.13 ± 0.02	0.13	0.09 - 0.17	Pass
MAAP-1151	2/1/2014	Sr-90	1.11 ± 0.14	1.18	0.83 - 1.53	Pass
MAAP-1154	2/1/2014 ·	Gr. Alpha	0.56 ± 0.06	1.77	0.53 - 3.01	Pass
MAAP-1154	2/1/2014	Gr. Beta	0.98 ± 0.06	0.77	0.39 - 1.16	Pass
MASO-1146	2/1/2014	Co-57	1064.50 ± 3.60	966.00	676.00 - 1256.00	Pass
MASO-1146	2/1/2014	Co-60	1.70 ± 0.50	1.22	NA ^d	Pass
MASO-1146 '	2/1/2014	Cs-134	6.10 ± 1.80	0.00	NA	Fail
MASO-1146	2/1/2014	Cs-137	1364.30 ± 5.30	1238.00	867.00 - 1609.00	Pass
MASO-1146	2/1/2014	K-40	728.90 ± 15.90	622.00	435.00 - 809.00	Pass
MASO-1146	2/1/2014	Mn-54	1588.00 ± 6,00	1430.00	1001.00 - 1859.00	Pass
MASO-1146	2/1/2014	Zn-65	763.50 ± 6.80	695.00	487.00 - 904.00	Pass
MASO-1146	2/1/2014	Am-241	68.20 ± 9.00	68.00	47.60 - 88.40	Pass
MASO-1146	2/1/2014	Ni-63	4.80 ± 15.30	0.00	NA	Pass
MASO-1146 °	2/1/2014	Pu-238	140.60 ± 15.50	96.00	67.00 - 125.00	Fail
MASO-1146 °	2/1/2014	Pu-239/240	102.00 ± 13.10	76.80	53.80 - 99.80	Fail
MASO-1146	2/1/2014	Sr-90	1.23 ± 1.37	0.00	NA	Pass
MASO-1146	2/1/2014	Tc-99	-0.30 ± 12.00	0.00	NA	Pass
MASO-1146 ⁹	2/1/2014	U-233/234	22.90 ± 3.00	81.00	57.00 - 105.00	Fail
MASO-11469	2/1/2014	U-238	32.00 ± 3.60	83.00	58.00 - 108.00	Fail
MASO-4439	8/1/2014	Am-241	65.90 ± 6.70	85.50	59.90 - 111.20	Pass
MASO-4439	8/1/2014	Ni-63	771.62 ± 23.29	980.00	686.00 - 1274.00	Pass
MASO-4439	8/1/2014	Pu-239/240	55.63 ± 5.81	58.60	41.00 - 76.20	Pass
MASO-4439	8/1/2014	Sr-90	778.34 ± 17.82	858.00	601.00 - 1115.00	Pass
MASO-4439	8/1/2014	Tc-99	458.20 ± 9.20	589.00	412.00 - 766.00	Pass
MASO-4439	8/1/2014	Cs-134	520.60 ± 7.09	622.00	435.00 - 809.00	Pass
MASO-4439	8/1/2014	Co-57	1135.00 ± 7.40	1116.00	781.00 - 1451.00	Pass
MASO-4439	8/1/2014	Co-60	768.20 ± 7.70	779.00	545.00 - 1013.00	Pass
MASO-4439	8/1/2014	Mn-54	1050.70 ± 12.60	1009.00	706.00 - 1312.00	Pass
MASO-4439	8/1/2014	Zn-65	407.89 ± 15.03	541.00	379.00 - 703.00	Pass
MAW-4431	8/1/2014	Am-241	0.79 ± 0.08	0.88	0.62 - 1.14	Pass
MAW-4431	8/1/2014	Cs-137	18.62 ± 0.54	18.40	12.90 - 23.90	Pass
MAW-4431	8/1/2014	Co-57	24.85 ± 0.42	24.70	17.30 - 32.10	Pass
MAW-4431	8/1/2014	Co-60	12.27 ± 0.38	12.40	8.70 - 16.10	Pass
MAW-4431	8/1/2014	Н-3	207.20 ± 10.60	208.00	146.00 - 270.00	Pass
MAW-4431 ^h	8/1/2014	Fe-55	55.10 ± 14.80	31.50	22.10 - 41.00	Fail
MAW-4431	8/1/2014	Mn-54	14.36 ± 0.53	14.00	9.80 - 18.20	Pass

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

•

TABLE A-6. I	Department of	f Energy's Mixed	I Analyte Performance	Evaluation Prog	ram (MAPEP).	
	<u></u>			Concentration	3	
				Known	Control	
Lab Code ^b	Date	Analysis	Laboratory result	Activity	Limits ^c	Acceptance
MAW-4431	8/1/2014	Tc-99	6.10 ± 0.50	6.99	4.89 - 9.09	Pass
MAW-4431	8/1/2014	Pu-238	0.59 ± 0.07	0.62	0.43 - 0.80	Pass
MAW-4431	8/1/2014	U-233/234	0.22 ± 0.04	0.21	0.14 - 0.27	Pass
MAW-4431	8/1/2014	U-238	1.25 ± 0.10	1.42	0.99 - 1.85	Pass
MAW-4493	8/1/2014	Gr. Alpha	0.93 ± 0.07	1.40	0.42 - 2.38	Pass
MAW-4493	8/1/2014	Gr. Beta	6.31 ± 1.35	6.50	3.25 - 9.75	Pass
MAAP-4433	8/1/2014	Am-241	0.06 ± 0.02	0.07	0.05 - 0.09	Pass
MAAP-4433	8/1/2014	Pu-238	0.10 ± 0.02	0.11	0.08 - 0.14	Pass
MAAP-4433	8/1/2014	Pu-239/240	0.04 ± 0.02	0.05	0.03 - 0.06	Pass

0.74 ± 0.10

 0.03 ± 0.01

0.21 ± 0.03

7.82 ± 0.52

0.76 ± 0.10

7.49 ± 0.18

11.20 ± 0.19

6.84 ± 0.17

8.11 ± 0.26

7.76 ± 0.43

0.70

0.04

0.25

9.40

0.76

7.38

9.20

6.11

7.11

6.42

0.49 - 0.91

0.03 - 0.05

0.18 - 0.33

6.60 - 12.20

0.53 - 0.99

5.17 - 9.59

6.40 - 12.00

4.28 - 7.94

4.97 - 9.23

4.49 - 8.35

Pass

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

^d Interference from Eu-152 resulted in misidentification of Co-57.

MAAP-4433

MAAP-4433

MAAP-4433

MAAP-4444

MAAP-4444

MAVE-4436

MAVE-4436

MAVE-4436

MAVE-4436

MAVE-4436

8/1/2014

8/1/2014

8/1/2014

8/1/2014

8/1/2014

8/1/2014

8/1/2014

8/1/2014

8/1/2014

8/1/2014

Sr-90

U-238

Sr-89

Sr-90

Cs-134

Co-57

Co-60

Mn-54

Zn-65

U-233/234

* The high bias on the plutonium crosscheck samples was traced to contamination from a newly purchased standard.

The results of	reanalysis with replacen	nent tracer purchas	sed from NIST:
MAW-1184	Pu-238	0.68 ± 0.10	Bq/L
MAW-1184	Pu-239/240	0.66 ± 0.10	Bq/L
MASO-1146	Pu-238	95.15 ± 8.98	Bq / kg
MASO-1146	Pu-239/240	67.21 ± 7.54	Bq / kg

Insufficient sample remained to reanalyze the Air filter sample(MAAP-1151). High bias results due to same contaminated tracer ¹ Cs-134 was positively identified in both library peaks, calculation on the second peak; 2.78 ± 0.93 Bq/kg.

⁹ 80% of participating laboratories were outside the acceptable range.

Parallel reanalysis was run on ERA spiked sample with acceptable results.

^h Result of reanalysis Fe-55 32.63 ± 16.30 Bq / L

			Concentration (p0	Ci/L)		
Lab Code ^b	Date	Analysis	Laboratory	ERA	Control	
			Result ^c	Result ^d	Limits	Acceptance
						_
ERVE-1051	3/17/2014	Am-241	1532.0 ± 149.5	1490.0	911.0 - 1980.0	Pass
ERVE-1051	3/17/2014	Cm-244	519.8 ± 94.6	516.0	253.0 - 804.0	Pass
ERVE-1051	3/17/2014	Co-60	981.2 ± 41.8	926.0	639.0 - 1290.0	Pass
ERVE-1051	3/17/2014	Cs-134	701.4 ± 58.6	646.0	415.0 - 839.0	Pass
ERVE-1051	3/17/2014	Cs-137	961.9 ± 46.3	880.0	638.0 - 1220.0	Pass
ERVE-1051	3/17/2014	K-40	32789.7 ± 758.2	31900.0	23000.0 - 44800.0	Pass
ERVE-1051	3/17/2014	Mn-54	< 25.9	0.0	NA	Pass
ERVE-1051	3/17/2014	Pu-238	2724.1 ± 259.4	2110.0	1260.0 - 2890.0	Pass
ERVE-1051	3/17/2014	Pu-239/240	4361.4 ± 323.4	3740.0	2300.0 - 5150.0	Pass
ERVE-1051	3/17/2014	Sr-90	2405.7 ± 263.2	2580.0	1470.0 - 3420.0	Pass
ERVE-1051	3/17/2014	U-233/234	1612.2 ± 162.0	1760.0	1160.0 - 2260.0	Pass
ERVE-1051	3/17/2014	U-238	1574.3 ± 159.6	1750.0	1170.0 - 2220.0	Pass
ERVE-1051	3/17/2014	Uranium	3255.4 ± 356.7	3580.0	2430.0 - 4460.0	Pass
ERVE-1051	3/17/2014	Zn-65	1124.1 ± 101.2	919.0	663.0 - 1290.0	Pass
ERW-1054	3/17/2014	Am-241	104.6 ± 3.4	114.0	76.8 - 153.0	Pass
ERW-1054	3/17/2014	Co-60	1195.2 ± 18.9	1270.0	1100.0 - 1490.0	Pass
ERW-1054	3/17/2014	Cs-134	1474.9 ± 47.5	1660.0	1220.0 - 1910.0	Pass
ERW-1054	3/17/2014	Cs-137	2591.0 ± 23.4	2690.0	2280.0 - 3220.0	Pass
ERW-1054	3/17/2014	Mn-54	< 4.3	0.0	NA	Pass
ERW-1054	3/17/2014	Pu-238	54.1 ± 3.6	44.1	32.6 - 54.9	Pass
ERW-1054	3/17/2014	Pu-239/240	185.9 ± 17.6	160.0	124.0 - 202.0	Pass
ERW-1054	3/17/2014	U-233/234	74.8 ± 6.3	82.4	61.9 - 106.0	Pass
ERW-1054	3/17/2014	U-238	76.4 ± 7.8	81.8	62.4 - 100.0	Pass
ERW-1054	3/17/2014	Uranium	154.3 ± 14.6	168.0	123.0 - 217.0	Pass
ERW-1054	3/17/2014	Zn-65	1818.5 ± 56.4	1800.0	1500.0 - 2270.0	Pass
ERW-1055 ^f	3/17/2014	Fe-55	636.3 ± 176.0	1200.0	716.0 - 1630.0	Fail
ERW-1055	3/17/2014	Gr. Alpha	120.9 ± 3.5	133.0	47.2 - 206.0	Pass
ERW-1055	3/17/2014	Gr. Beta	141.6 ± 2.3	174.0	99.6 - 258.0	Pass
ERW-1055	3/17/2014	Sr-90	873.9 ± 56.9	890.0	580.0 - 1180.0	Pass
ERW-1060	3/17/2014	H-3	5818.0 ± 230.0	5580.0	3740.0 - 7960.0	Pass

TABLE A-7. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a.

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation). Results are reported in units of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". Control limits are not provided.

• The high bias on the plutonium crosscheck samples was traced to contamination from a newly purchased standard.

The results of	reanalysis with re	placement tracer purcha	sed from NIST:
ERSO-1050	Pu-238	634.7 ± 98.50	Bq / kg
ERSO-1050	Pu-239/240	451.8 ± 82.80	Bq / kg

^f An error in the efficiency calculation was found. The result of recalculation was 932 pCi/L.

The sample was repeated, result of reanalysis, 1066 pCi/L.

APPENDIX B

,

DATA REPORTING CONVENTIONS

1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period.

2.0. Single Measurements

Each single measurement is reported as follows: $x \pm s$

where: x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L,

where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

3.0. Duplicate analyses

3.1 Individual results: For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$

<u>Reported result:</u> $x \pm s$; where $x = (1/2)(x_1 + x_2)$ and $s = (1/2)\sqrt{s_1^2 + s_2^2}$

3.2. Individual results: $<L_1$, $<L_2$ Reported result: <L, where L = lower of L₁ and L₂

3.3. <u>Individual results:</u> $x \pm s$, <L <u>Reported result:</u> $x \pm s$ if $x \ge L$; <L otherwise.

4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average \bar{x} and standard deviation s of a set of n numbers $x_1, x_2 \dots x_n$ are defined as follows:

$$\overline{x} = \frac{1}{n} \sum x$$
 $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
 - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
 - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.
- 4.6 Composite samples which overlap the next month or year are reported for the month or year in which most of the sample is collected.

APPENDIX C

.

.

TECHNICAL SPECIFICATION 2.1.3

REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

During the 2014 reporting period, radioactivity of primary coolant did not exceed the limits of Technical Specification 2.1.3.

· ·

APPENDIX D

SAMPLE LOCATION MAPS

- 1

.

Radiological Environmental Sampling Locations and Media

		Approximate	Approximate		Air Mon	itoring							
Sample Station No.	Approximate Collection Sites	from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sedi-ment	Fish	Vegetables and Food Products	Ground-water
1	Onsite Station, 110-meter weather tower	0.53	293°/WNW	Р			x						
2 ^{C,E}	Onsite Station, adjacent to old plant access road	0.59	207°/SSW	к	x	x	x						
3	Offsite Station, Intersection of Hwy. 75 and farm access road	0.94	145°/SE	G			x						
4	Blair OPPD office	2.86	305°/NW	Q	х	x	x						
5 ^A													
6	Fort Calhoun, NE City Hall	5.18	150°/SSE	н			x						
7	Fence around intake gate, Desoto Wildlife Refuge	2.07	102°/ESE	, F			x						
8	Onsite Station, entrance to Plant Site from Hwy. 75	0.55	191°/S	J			x						
9	Onsite Station, NW of Plant	0.68	305°/NW	Q			x						
10	Onsite Station, WSW of Plant	0.61	242°/WSW	м			x						

		Approximate	Approximate		Air Mon	itoring							
Sample Station No.	Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne lodine	TLD	Water	Milk	Sedi-ment	Fish	Vegetables and Food Products	Ground-water
11	Offsite Station, SE of Plant	1.07	39°/SE	G			x						
12	Metropolitan Utilities Dist., Florence Treatment Plant North Omaha, NE	14.3	154°/SSE	Н				x					
13	West bank Missouri River, downstream from Plant discharge	0.45	108°/ESE	F				x		х			
14 ^D	Upstream from Intake Bldg, west bank of river	0.09	4°/N	A				х		x			
15	Smith Farm	1.99	134°/SE	G									Х
16 ^A													
17 [^]													
18 ^A				· ·									
19 ^A													
20 ⁰	Mohr Dairy	9.86	186°/S	J					В			Х	Х
21 ^A													
22	Fish Sampling Area, Missouri River	0.08 (R.M. 645.0)	6°/N	A							x		
23 ^D	Fish Sampling Area, Missouri River	17.9 (R.M. 666.0)	358°/N	A							x		

Radiological Environmental Sampling Locations and Media

		Approximate	Annroximate		Air Mon	itoring					_		
Sample Station No.	Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sedi-ment	Fish	Vegetables and Food Products	Ground-water
24 ^A													
25 ^A													
26 ^A													,
27 ^A												:	
28	Alvin Pechnik Farm	0.94	163°/SSE	н								Х	
29 ^A													
30 ^A	· · · · · · · · · · · · · · · · · · ·												······································
31 ^A	· · · · · · · · · · · · · · · · · · ·												
32 ^D	Valley Substation #902	19.6	221°/SW	L	х	х	х						
33 [^]													
34 ^A										j	1		
35	Onsite Farm Field	0.52	118°/ESE	F								х	
36	Offsite Station Intersection Hwy 75/Co. Rd. P37	0.75	227°/SW	L			x						
37	Offsite Station Desoto Township	1.57	144°/SE	G	X	x	x	•					
38 ^A													
39 ^A													
40 ^A													
41 ^c	Dowler Acreage	0.73	175°/S	J	Х	Х	Х		B,C				

		Approximate	Approximate		Air Mon	itoring							
Sample Station No.	Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sedi-ment	Fish	Vegetables and Food Products	Ground-water
42	Sector A-1	1.94	0°/NORTH	A			X						
43	Sector B-1	1.97	16°/NNE	В			X						_
44	Sector C-1	1.56	41°/NE	С			Х						
45	Sector D-1	1.34	71°/ENE	D			X						
46	Sector E-1	1.54	90°/EAST	E			Х						
47	Sector F-1	0.45	108°/ESE	F			X						
48	Sector G-1	1.99	134°/SE	G			X						
49	Sector H-1	1.04	159°/SSE	н			X						
50	Sector J-1	0.71	179°/SOUTH	J			Х						
51	Sector K-1	0.61	205°/SSW	к			X						
52	Sector L-1	0.74	229°/SW	L			X						
53	Sector M-1	0.93	248°/WSW	М			Х						
54	Sector N-1	1.31	266°/WEST	N			X						
55	Sector P-1	0.60	291°/WNW	Р			X						
56	Sector Q-1	0.67	307°/NW	Q			X						
57	Sector R-1	2.32	328°/NNW	R			X						
58	Sector A-2	4.54	350°/NORTH	A			X						
59	Sector B-2	2.95	26°/NNE	В			Х						
60	Sector C-2	3.32	50°/NE	С			X						
61	Sector D-2	3.11	75°/ENE	D			Х						
62	Sector E-2	2.51	90°/EAST	E			Х						
63	Sector F-2	2.91	110°/ESE	F			Х						
64	Sector G-2	3.00	140°/SE	G			Х						
65	Sector H-2	2.58	154°/SSE	н			X						

Radiological Environmental Sampling Locations and Media

		Approximate	Approximate		Air Mon	itoring						Vegetables and Food Products Ground-water	
Sample Station No.	Approximate Collection Sites	Distance from Center of Containment (miles)	Direction (degrees from true north)	Sector	Airborne Particulate	Airborne Iodine	TLD	Water	Milk	Sedi-ment	Fish	Vegetables and Food Products	Ground-water
66	Sector J-2	3.53	181°/SOUTH	J			X						
67	Sector K-2	2.52	205°/SSW	ĸ			X						
68	Sector L-2	2.77	214°/SW	L			X						
69	Sector M-2	2.86	243°/WSW	M		<u> </u>	X						
70	Sector N-2	2.54	263°/WEST	N			X						
71	Sector P-2	2.99	299°/WNW	Р			X						
72	Sector Q-2	3.37	311°/NW	Q			X					· · · · · · · · · · · · · · · · · · ·	
73	Sector R-2	3.81	328°/NNW	R			Х						
74	D. Miller Farm	0.65	203°/SSW	ĸ									Х
75 [°]	Lomp Acreage	0.65	163°/SSE	Н	Х	X	X		B, C				Х
76	Stangl Farm	3.40	169°/S	J					X				

NOTES:

A. Location is either not in use or currently discontinued and is documented in the table for reference only.

B. If milk samples are temporarily not available at a sampling site due to mitigating circumstances, then vegetation (broadleaf, pasture grass, etc.) shall be collected as an alternate sample at the site. If there are no milk producers within the entire 5-mile radius of the plant, then vegetation shall be collected monthly, when available, at two offsite locations having the highest calculated annual average ground level D/Q and a background locale. (Reference Off-Site Dose Calculation Manual, Part II, Table 4 "Highest Potential Exposure Pathways for Estimating Dose")

C. Locations represent highest potential exposure pathways as determined by the biennial Land Use Survey

D. Background location (control). All other locations are indicators.

E. Location for monitoring Sector K High Exposure Pathway Resident Receptor for inhalation.

F. When broad leaf (pasture grasses) are being collected in lieu of milk, background broad leaf samples will be collected at a background locale.