Callaway Energy Center 2014 Annual Radioactive Effluent Release Report

Facility Operating License NPF-30

Docket Number 50-483

Callaway Energy Center 2014 Annual Radioactive Effluent Release Report

Facility Operating License NPF-30 Docket No. 50-483

1. Introduction

This Annual Radioactive Effluent Release Report (ARERR) is submitted by Union Electric Co., dba Ameren Missouri, in accordance with the requirements of 10 CFR 50.36a and Callaway Energy Center Technical Specification 5.6.3. This report is for the period January 1, 2014 to December 31, 2014.

The doses to the Member of the Public from all liquid and gaseous effluents discharged during the reporting period were small fractions of the NRC and EPA regulatory limits and the Radioactive Effluent Control limits in the Offsite Dose Calculation Manual.

To maximize consistency, aid in the review by Members of the Public, and to allow easier industry- wide comparison of the data, this report is presented in the format recommended by Regulatory Guide 1.21, revision 2, *insofar as is practicable*. Callaway is committed to revision

Abstract

The Annual Radioactive **Effluent Release Report** covers the operation of the Callaway Energy Center during the year 2014. The report includes a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit. The report also includes an annual summary of hourly meteorological data collected during the year and an assessment of radiation dose to the Member of the Public from liquid and gaseous effluents.

1 of Regulatory Guide 1.21, and some of the information is not readily available in the format recommended by revision 2.

2. Gaseous Effluents

The quantity of radioactive material released in gaseous effluents during the reporting period is summarized in Table A-1. The quarterly and annual sums of all radionuclides discharged in gaseous effluents are reported in Tables A-1A and A-1B. All gaseous effluent releases are considered to be ground level.

The quantity of ¹⁴C released in gaseous effluents was calculated as described in EPRI Technical Report 1021106¹.

3. Liquid Effluents

The quantity of radioactive material released in liquid effluents during the reporting period is summarized in Table A-2. The quarterly and annual sums of all radionuclides discharged in liquid effluents are reported in Table A-2A. All liquid effluents were discharged in batch mode; there were no continuous liquid discharges for the reporting period. Dilution by the Missouri River, in the form of the near- field dilution factor, is utilized in the ODCM dose calculation methodology.

4. Solid Waste Storage and Shipments

The volume and activity of solid waste shipped for disposal is provided in Table A-3. Table A-3 is presented in the format of rev. 1 to Regulatory Guide 1.21 because the data is not readily available in the format recommended by rev. 2 to Regulatory Guide 1.21.

5. Dose Assessments

The annual evaluation of dose to the Member of the Public is calculated in accordance with the methodology and parameters in the ODCM² and is reported in Tables A-4 and A-5. The dose to the Member of the Public was calculated using the re- evaluated long- term meteorological dispersion parameters^{3,4}.

¹ Estimation of Carbon- 14 in Nuclear Power Plant Gaseous Effluents, Technical Report 1011106, Electric Power Research Institute, December, 2010.

² APA-ZZ-01003, "Offsite Dose Calculation Manual", rev. 20. April 15, 2015.

³ HPCI 1502, "Atmospheric Dispersion Parameters for Activities Inside the Site Boundary"

⁴ HPCI 1503, "Calculation of Long- Term Meteorological Dispersion Parameters"

5.1 Table A-4, Dose Assessments, 10 CFR 50, Appendix I

The dose assessments reported in Table A-4 were calculated using the methodology and parameters in the ODCM and demonstrate compliance with 10 CFR 50, Appendix I. The gamma air dose and beta air dose were calculated at the nearest Site Boundary location with the highest value of X/Q, as described in the ODCM. The maximum organ dose from gaseous effluents was calculated for the ingestion, inhalation, and ground plane pathways at the location of the nearest resident with the highest value of D/Q, as described in the ODCM. The organ dose does not include the dose from ^{14}C , which is listed separately.

5.2 Table A-5, EPA 40 CFR 190 Individual in the Unrestricted Area

The dose assessments reported in Table A-5 are the doses to the Member of the Public from activities within the Site Boundary plus the doses at the location of the Nearest Residence. A large portion of the residual land of the Callaway Site is managed by the State of Missouri Conservation Department as the Reform Wildlife Management Area. Pursuant to the guidance provided in Regulatory Guide 1.21, rev.2, the dose reported in Table A-5 is the sum of the dose from gaseous effluents (at the Nearest Resident location and within the Site Boundary), plus the dose contribution due to activities within the Site Boundary and the organ dose from inhalation of ¹⁴C (at the Nearest Resident location and within the Site Boundary). The dose assessments in Table A-5 demonstrate compliance with 10 CFR 20.1301(e) and 40 CFR 190.

6. Supplemental Information

6.1 Abnormal Releases or Abnormal Discharges

The Limited Site Investigation for leakage of liquid radioactive effluent from manhole 86-2 is described in Appendix D. This issue is documented in CAR 201405071.

6.2 Non- routine Planned Discharges

There were no non-routine planned discharges during the reporting period.

6.3 Radioactive Waste Treatment System Changes

There were no major changes to the liquid or gaseous radwaste treatment systems during the reporting period.

6.4 Annual Land Use Census Changes

Changes in sample locations identified in the Land Use Census are described in the Annual Radioactive Environmental Operating Report.

6.5 Effluent Monitoring System Inoperability

There were no effluent radiation monitors out of service for periods in excess of the Limiting Condition for Operation and associated Action statements.

6.6 Offsite Dose Calculation Manual Changes

There were no changes to the Offsite Dose Calculation Manual during the reporting period.

6.7 Process Control Program Changes

There were no substantive changes to APA-ZZ-01011, "Process Control Program" during the reporting period.

6.8 Corrections to Previous Reports

Errors were discovered in the setup parameters for the VAXMET computer code used to calculate the dispersion parameters for the Annual Radioactive Effluent Release Reports for the period 1993- 2013. This apparently occurred during the 1993 computer system upgrade when the setup files were transferred to the new system. The transfer of the file with the Terrain Recirculation Correction Factors was offset by one row which affected the X/Q and D/Q calculations. During investigation of this issue it was discovered that the vent height parameter and the terrain height parameters were also in error. These issues are described in the Callaway Energy Center corrective action system. ^{5,6,7} The correct parameters were researched, reviewed, and formally documented in calculation HPCI 1503. The dispersion parameters for each year 1993- 2013 were recalculated with the NRC computer code XOQDOQ⁸ and the parameters in HPCI 1503. The doses from gaseous effluents were recalculated using the recalculated dispersion parameters. The revised gaseous effluent doses are provided in Appendix C. The dose tables are presented in the format in which they were originally submitted.

The quantities discharged were not affected. The dose from liquid effluents and the dose from ¹⁴C was not affected.

6.9 Other Information Related to Radioactive Effluents

Meteorological Joint Frequency Tables for the monitoring period are provided in Appendix B. The long- term meteorological data was re- evaluated using the data for the years 2009-2013. 9,10 Changes were identified in the locations for dose calculation due to changes in the calculated dispersion parameters and the ODCM was revised accordingly. 11

⁵ CAR 201309140, " Evaluate NRC Finding for ODCM Data Not Be Representative of Conditions"

⁶ CAR 201402370, " Recirculation Factors in VAXMET and in FSAR Table are Inconsistent"

⁷ CAR 201402623, " Small Errors in 1993-2013 ARERR Doses"

⁸ NUREG/CR-2919, "Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations". September, 1982.

⁹ HPCI 1502, "Atmospheric Dispersion Parameters for Activities Inside the Site Boundary"

¹⁰ HPCI 1503, "Calculation of Long-Term Meteorological Dispersion Parameters"

¹¹ APA-ZZ-01003, "Offsite Dose Calculation Manual", rev. 20. April 15, 2015.

Appendix A

Tables of Quantities Released in Liquid and Gaseous Radioactive Effluents and in Solid Radioactive Waste Shipments

Tables of Doses from the Discharge of Liquid and Gaseous Radioactive Effluents

Table A-1: Gaseous Effluents- Summation of All Releases							
Summation of All Releases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total	Estimated Uncertainty (%) ¹²
Fission & Activation Gases	Ci	1.69E-1	7.35E-2	3.84E-2	4.80E-1	7.61E-1	20
Average Release Rate	μCi/s	2.17E-2	9.34E-3	4.83E-3	6.04E-2	2.41E-2	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
¹³¹ lodine	Ci	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	23
Average Release Rate	μCi/s	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
Particulates	Ci	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	30
Average Release Rate	μCi/s	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
Gross Alpha	Ci	2.36E-7	1.96E-7	1.29E-7	1.35E-7	6.96E-7	
³ H	Ci	6.49E+0	8.49E+0	1.23E+1	1.33E+1	4.06E+1	14
Average Release Rate	μCi/s	8.35E-1	1.08E+0	1.54E+0	1.67E+0	1.28E+0	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
¹⁴ C ¹³	Ci	2.9	2.9	2.9	2.9	11.6	

¹² Safety Analysis calculation 87-063-00, January 6, 1988 ¹³ ¹⁴C activity is estimated based on EPRI report TR-1021106, *Estimation of* ¹⁴C *in Nuclear Power Plant* Effluents, December, 2010.

Table A-1A	Table A-1A: Gaseous Effluents- Ground Level Release- Batch Mode					
Fission & Activation Gases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
⁴¹ Ar	Ci	5.19E-2	7.35E-2	3.84E-2	4.15E-1	5.79E-1
¹³³ Xe	Ci	0.00E+0	0.00E+0	0.00E+0	2.90E-2	2.90E-2
¹³⁵ Xe	Ci	0.00E+0	0.00E+0	0.00E+0	4.81E-3	4.81E-3
⁸⁵ Kr	Ci	1.68E-1	7.35E-2	0.00E+0	0.00E+0	2.42E-1
Total	Ci	1.68E-1	7.35E-2	3.84E-2	4.49E-1	7.29E-1
Iodines & Halogens	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
		0	0	0	0	0
Particulates	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
		0	0	0	0	0
³ H	Ci	4.14E-2	2.05E-1	1.70E-1	1.28E+0	1.70E+0
Gross α	Ci	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
¹⁴ C	Ci	4.8E-1	4.8E-1	4.8E-1	4.8E-1	1.9E+0

Table A-1B: Gaseous Effluents- Ground Level Release- Continuous Mode						
Fission & Activation Gases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
¹³³ Xe	Ci	0.00E+0	0.00E+0	0.00E+0	3.10E-2	3.10E-2
Total	Ci	0.00E+0	0.00E+0	0.00E+0	3.10E-2	3.10E-2
Iodines & Halogens	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
		0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total	Ci	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Particulates	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
		0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total	Ci	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
³ H	Ci	6.45E+0	8.29E+0	1.21E+1	1.20E+1	3.88E+1
Gross α	Ci	2.36E-7	1.96E-7	1.29E-7	1.35E-7	6.96E-7
¹⁴ C	Ci	2.4E+0	2.4E+0	2.4E+0	2.4E+0	9.7E+0

Table A-2: Liquid Effluents- Summation of All Releases							
Summation of All Liquid Releases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total	Estimated Uncert. (%) ¹⁴
Fission and Activation Products ¹⁵	Ci	1.94E-3	7.84E-4	2.14E-3	5.32E-3	1.02E-2	20
Avg Diluted Conc	μCi/ ml	1.74E-8	7.80E-9	1.43E-8	2.65E-8	1.81E-8	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
³ H	Ci	3.27E+2	2.95E+2	4.56E+2	3.66E+2	1.44E+3	14
Avg Diluted Conc	μCi/ ml	2.93E-3	2.94E-3	3.04E-3	1.83E-3	2.57E-3	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
Dissolved & Entrained Gases	Ci	9.31E-5	0.00E+0	6.36E-4	1.43E-3	2.16E-3	27
Avg Diluted Conc	μCi/ ml	8.35E-10	0.00E+0	5.70E-9	1.28E-8	1.94E-8	
% of Limit	%	N/A	N/A	N/A	N/A	N/A	
Gross α	Ci	7.78E-4	0.00E+0	4.17E-4	4.53E-4	1.65E-3	29
Avg Diluted Conc	μCi/ ml	6.98E-9	0.00E+0	2.78E-9	2.26E-9	2.93E-9	

¹⁴ Safety Analysis calculation 87-063-00, January 6, 1988 ¹⁵ Excludes ³H, noble gases, and gross alpha.

Table A-2: Liquid Effluents- Summation of All Releases (contd.)							
Summation of All Liquid Releases	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total	
Vol Liquid Effluent ¹⁶	Liters	2.10E+06	2.09E+06	2.87E+06	5.91E+06	1.30E+07	
Dilution Volume ¹⁷	Liters	1.09E+08	9.84E+07	1.47E+08	1.95E+08	5.50E+08	
Avg river flow ¹⁸	m³/s	1.04E+03	2.36E+03	2.47E+03	2.38E+03	2.06E+03	

Table A-2A: Liqu	Table A-2A: Liquid Effluents- Batch Mode					
Fission & Activation Products	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for the year
⁵¹ Cr	Ci	0.00E+0	0.00E+0	0.00E+0	5.68E-4	5.68E-4
⁵⁸ Co	Ci	0.00E+0	0.00E+0	0.00E+0	3.21E-4	3.21E-4
⁶⁰ Co	Ci	6.67E-4	4.63E-4	1.48E-3	1.41E-3	4.02E-3
¹³⁷ Cs	Ci	8.74E-6	1.35E-5	7.83E-5	1.79E-5	1.18E-4
¹²⁴ Sb	Ci	0.00E+0	0.00E+0	0.00E+0	3.48E-4	3.48E-4
¹²⁵ Sb	Ci	1.01E-3	1.90E-4	3.62E-4	2.22E-3	3.78E-3
⁹⁵ Zr	Ci	0.00E+0	0.00E+0	0.00E+0	5.53E-6	5.53E-6
⁹⁵ Nb	Ci	0.00E+0	0.00E+0	0.00E+0	5.96E-5	5.96E-5
Total	Ci	1.69E-3	6.67E-4	1.92E-3	4.95E-3	9.22E-3
¹³³ Xe	Ci	9.31E-5	0.00E+0	6.36E-4	1.42E-3	2.15E-3
¹³⁵ Xe	Ci	0.00E+0	0.00E+0	0.00E+0	8.59E-6	8.59E-6
Total	Ci	9.31E-5	0.00E+0	6.36E-4	1.43E-3	2.16E-3
³H	Ci	3.27E+2	2.95E+2	4.56E+2	3.66E+2	1.44E+3
Gross α	Ci	7.78E-04	0.00E+00	4.17E-04	4.53E-04	1.65E-03

Primary system liquid effluent plus secondary liquid effluent, prior to dilution.

Does not include Missouri River dilution.

River gear at the Hermann, MO monitoring station as reported by the USGS.

Table A-3: Solid Waste & Irradiated Fuel Shipments

A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not Irradiated Fuel)

1. TYPE OF WASTE	Units	Period	Period	Est.
		Jan – Jun	Jul - Dec	Total
				Error (%)
Spent resins, filter sludges,	m ³	1.81E+1	7.22E+0	
evaporator bottoms, etc.	Ci	5.33E+0	3.71E+1	<u>+</u> 25%
Dry compressible waste,	m ³	2.00E+2	9.44E+2	
contaminated equip., etc.	Ci	1.57E-2	1.80E-1	<u>+</u> 25%
Irradiated components,	m ³	0.00E+0	0.00E+0	
control rods, etc.	Ci	0.00E+0	0.00E+0	<u>+</u> 25%
Other (low level secondary	m ³	0.00E+0	0.00E+0	
resin, oily waste)	Ci	0.00E+0	0.00E+0	<u>+</u> 25%

Table A-3: Solid Waste & Irradiated Fuel Shipments (continued)

a. Spent resi	ns, filters, evaporate	or bottoms, etc.		
Nuclide	% Abundance	Jan – Jun Ci	% Abundance	Jul – Dec Ci
⁶⁰ Co	45.89	2.38E+0	8.74	3.24E+0
⁶³ Ni	33.55	1.74E+0	75.82	2.81E+1
⁵⁵ Fe	16.87	8.75E-1	N/A	N/A
¹³⁷ Cs	3.68	1.91E-1	10.43	3.87E+0
¹³⁴ Cs	N/A	N/A	1.40	5.20E-1
b. Dry comp	ressible waste, cont	aminated equipr	nent, etc.	
⁶⁰ Co	41.79	6.57E-3	58.50	1.04E-1
⁶³ Ni	18.55	2.92E-3	11.94	2.12E-2
¹³⁷ Cs	17.85	2.81E-3	3.67	6.53E-3
⁵⁵ Fe	13.57	2.13E-3	16.48	2.93E-2
¹³⁴ Cs	2.25	3.54E-4	0.11	1.98E-4
⁵⁸ Co	1.50	2.35E-4	N/A	N/A
⁵⁴ Mn	1.49	2.34E-4	1.58	2.82E-3
⁶⁵ Zn	N/A	N/A	1.07	1.91E-3
⁹⁵ Nb	N/A	N/A	3.16	5.63E-3
¹²⁵ Sb	N/A	N/A	2.33	4.15E-3
c. Irradiated	l components, contr	ol rods, etc.		
None	N/A	N/A	N/A	N/A

Table A-3: Solid Waste & Irradiated Fuel Shipments (continued)

d. Other				
Nuclide	% Abundance	Jan – Jun Ci	% Abundance	Jul – Dec Ci
None	N/A	N/A	N/A	N/A

3. SOLID WASTE	DISPOSITION			
Number of Shipments	Mode of Transport	Destination	Class of Solid Waste Shipped	Type of Container
*20	Hittman Transport	Energy Solutions Services, Inc. Bear Creek	А	IP-1
*1	Hittman Transport	Energy Solutions Services, Inc. Bear Creek	В	Liner in an 8- 120A Cask
*2	Hittman Transport	Energy Solutions Services, Inc. Bear Creek	А	Liners in a 14- 215 Cask
*1	Southern Pines Trucking	Energy Solutions Services, Inc. Bear Creek	А	IP-1
*1	Hittman Transport	Energy Solutions Services, Inc. Memphis	А	IP-1
1	Miller Transfer	Energy Solutions Clive Disposal Site	А	IP-1

^{*}Sent to waste processors for volume reduction before burial.

4. SOLIDIFICATION AGENT

None used.

B. IRRADIATED FUEL SHIPMENTS (Disposition)

There were no shipments of irradiated fuel during the reporting period.

Table A-4: Dose Assessments, 10 CFR 50, Appendix I							
	Quarter	Quarter	Quarter	Quarter	Yearly		
	1	2	3	4	total		
Liquid Effluent Dose Limit, Total Body (mrem)	1.5	1.5	1.5	1.5	3		
Total Body Dose (mrem)	5.78E-4	5.93E-4	1.18E-3	6.06E-4	2.87E-3		
% Limit (%)	0.04%	0.04%	0.08%	0.04%	0.10%		
Liquid Effluent Dose Limit, Maximum Organ (mrem)	5	5	5	5	10		
Maximum Organ Dose (mrem)	5.90E-4	6.13E-4	1.30E-3	1.22E-3	3.03E-3		
% Limit (%)	0.01%	0.01%	0.03%	0.02%	0.03%		
Gaseous Effluent Dose Limit, Gamma Air (mrem)	5	5	5	5	10		
Gamma Air Dose (mrad)	2.18E-5	3.08E-5	1.61E-5	1.75E-4	2.44E-4		
% Limit (%)	0.00%	0.00%	0.00%	0.00%	0.00%		
Gaseous Effluent Dose Limit, Beta Air (mrem)	10	10	10	10	20		
Beta Air Dose (mrad)	1.79E-5	1.09E-5	5.67E-6	6.46E-5	9.91E-5		
% Limit (%)	0.00%	0.00%	0.00%	0.00%	0.00%		
Gaseous Effluent Dose Limit, Maximum Organ (mrem)	7.5	7.5	7.5	7.5	15		
Maximum organ dose ¹⁹ (mrem)	1.69E-3	2.21E-3	3.21E-3	3.47E-3	1.06E-2		
% Limit (%)	0.02%	0.03%	0.04%	0.05%	0.07%		
¹⁴ C Maximum organ dose (mrem) ²⁰	3.55E-3	3.55E-3	3.55E-3	3.55E-3	1.42E-2		

¹⁹ Iodine, ³H, and particulates with greater than an 8 day half- life. ²⁰ Not included in above totals

Table A-5: EPA 40 CFR 190 Individual in the Unrestricted Area							
	Whole Body Thyroid Max Other Organ						
Dose Limit	25 mrem	75 mrem	25 mrem				
Dose	2.00E-02	1.97E-02	4.88E-02				
% Limit	0.08%	0.03%	0.20%				

Callaway Energy Center 2014 Annual Radioactive Effluent Release Report

Appendix B

Joint Frequency Tables; Totals of Hours at Each Wind Speed & Direction for the period January 1, 2014- December 31, 2014

Dispersion Parameters for the Reporting Period

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: 9.78E-07 sec/m³

X/Q Decayed and Undepleted: 9.57E-07 sec/m³

X/Q Decayed and Depleted: 8.12E-07 sec/m³

D/Q Deposition rate: 2.88E-09 m⁻²

Site Boundary

Direction: NNW

Distance: 2200 meters

X/Q, Undecayed and Undepleted: $1.44\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.42\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.23\text{E-}07 \text{ sec/m}^3$ D/Q Deposition rate: $4.65\text{E-}09 \text{ m}^{-2}$

Joint Fre	quency	Distrik	oution									
January- D	ecember,	, 2014										
All Stabiliti	es											
Elevations	: Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	m/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	5	14	37	65	104	93	98	72	17	4	0	509
NNE	5	24	41	60	103	74	45	19	11	0	0	382
NE	3	29	62	60	113	59	26	6	7	7	0	372
ENE	6	31	58	76	118	50	16	3	1	0	0	359
E	1	37	53	61	114	46	17	4	1	0	0	334
ESE	3	28	62	82	122	52	23	11	0	0	0	383
SE	2	55	146	162	232	113	42	11	3	0	0	766
SSE	3	47	67	129	347	213	107	52	35	6	0	1006
S	2	23	54	68	207	213	164	111	121	13	0	976
SSW	0	19	42	47	133	135	84	53	28	3	0	544
SW	3	21	41	56	114	119	74	42	13	4	1	488
WSW	1	22	37	33	61	53	49	18	16	0	2	292
W	1	28	40	59	110	94	55	47	32	1	0	467
WNW	2	26	82	75	140	105	87	66	25	0	0	608
NW	4	33	66	90	151	115	106	52	40	2	0	659
NNW	4	24	25	54	143	134	97	59	45	7	1	593
Tot	45	461	913	1177	2312	1668	1090	626	395	47	4	8738
Hours of C	alm		18									
Hours of V	ariable D	irection										
Hours of V				6								
Hours of M				0								

Joint Fre	quency	/ Distrik	oution									
January- D	ecember	, 2014										
Class A Ex	tremely	Unstable	based on la	apse rate								
Elevations:	: Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (n	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	0	0	0	1	0	0	0	0	0	1
NNE	0	0	0	0	2	0	0	0	0	0	0	2
NE	0	0	0	0	0	1	0	0	0	0	0	1
ENE	0	0	0	0	1	0	0	0	0	0	0	1
E	0	0	0	0	0	0	0	0	0	0	0	0
ESE	0	0	0	0	1	1	0	0	0	0	0	2
SE	0	0	0	0	2	5	4	1	0	0	0	12
SSE	0	0	0	0	7	2	2	6	3	2	0	22
S	0	0	0	0	5	1	2	0	5	0	0	13
SSW	0	0	0	0	3	2	5	3	3	0	0	16
SW	0	0	0	0	1	5	3	9	1	2	0	21
WSW	0	0	0	0	1	0	5	4	1	0	0	11
W	0	0	0	0	0	3	1	8	1	0	0	13
WNW	0	0	0	0	0	3	4	8	1	0	0	16
NW	0	0	0	0	1	3	7	5	9	0	0	25
NNW	0	0	0	0	0	1	1	0	3	0	0	5
Tot	0	0	0	0	24	28	34	44	27	4	0	161
Hours of C	alm		0									
Hours of V	ariable D	irection	0									
Hours of V												
Hours of M				.0								
TIOUIS III F	c110u		370									

Joint Fre	quency	Distrik	oution									
January- D	ecember,	, 2014										
Class B M	oderately	/ Unstabl	e based on	lapse rat	е							
Elevations	Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1- 4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	2	1	1	4	1	2	0	0	0	11
NNE	0	0	1	1	4	1	1	3	0	0	0	11
NE	0	0	1	2	4	1	0	0	0	0	0	8
ENE	0	0	0	2	4	1	0	0	0	0	0	7
E	0	0	0	1	0	0	1	0	0	0	0	2
ESE	0	0	1	0	1	3	1	1	0	0	0	7
SE	0	0	0	1	6	5	1	1	1	0	0	15
SSE	0	0	1	2	7	14	7	4	5	1	0	41
S	0	0	0	1	10	8	6	9	7	2	0	43
SSW	0	0	0	1	7	7	10	4	6	0	0	35
SW	0	0	0	0	2	12	10	6	2	1	0	33
WSW	0	0	0	0	3	5	2	1	1	0	0	12
W	0	0	0	0	1	5	6	1	1	0	0	14
WNW	0	0	0	1	2	16	5	7	1	0	0	32
NW	0	0	0	0	2	8	12	4	2	0	0	28
NNW	0	0	0	0	1	7	8	1	3	0	0	20
Tot	0	0	6	13	55	97	71	44	29	4	0	319
Hours of C	alm		0								-	
Hours of V	ariable D	irection	0	_	_		_		_	-		
Hours of V	alid Data		319									
Hours of M				0								

Joint Fre	quency	/ Distrik	ution									
January- D												
Class C Sli	ightly Un	stable bas	sed on laps	e rate								
Elevations:	: Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	m/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1-5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	0	2	10	9	9	1	0	0	0	31
NNE	0	0	1	0	5	9	2	3	0	0	0	20
NE	0	0	0	2	9	3	0	0	0	0	0	14
ENE	0	0	0	4	7	3	0	0	0	0	0	14
E	0	0	1	1	6	3	0	0	1	0	0	12
ESE	0	0	1	1	4	4	3	1	0	0	0	14
SE	0	0	1	3	12	14	6	3	0	0	0	39
SSE	0	0	3	3	18	14	7	1	4	2	0	52
S	0	0	4	1	15	11	5	9	10	1	0	56
SSW	0	0	0	3	9	8	12	12	4	0	0	48
SW	0	0	2	3	5	9	10	2	1	0	0	32
WSW	0	0	0	1	6	7	7	2	3	0	0	26
W	0	0	0	2	9	5	6	2	3	0	0	27
WNW	0	0	0	5	9	11	11	9	4	0	0	49
NW	0	0	1	2	5	14	9	7	7	0	0	45
NNW	0	0	0	1	10	10	14	9	2	0	0	46
Tot	0	0	14	34	139	134	101	61	39	3	0	525
Hours of C	alm		0	-				•		•	•	•
Hours of V	ariable D	irection	0									
Hours of V	alid Data		525									
Hours of N										-	-	
Hours in Pe	eriod		876	U								

Joint Fre	quency	/ Distrib	oution									
January- D	ecember,	, 2014										
Class D N	leutral ba	sed on la	pse rate									
Elevations:	: Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	2	7	23	66	72	85	69	17	4	0	345
NNE	0	0	10	20	57	57	42	13	11	0	0	210
NE	0	3	17	18	67	48	22	5	5	7	0	192
ENE	0	1	13	36	82	39	13	3	1	0	0	188
E	0	5	17	25	67	31	12	4	0	0	0	161
ESE	0	2	19	39	80	32	17	5	0	0	0	194
SE	0	7	31	59	93	55	20	4	0	0	0	269
SSE	0	0	10	38	69	63	44	22	14	1	0	261
S	0	5	18	21	56	48	68	51	79	10	0	356
SSW	0	4	9	9	46	43	30	26	10	3	0	180
SW	0	2	12	15	39	41	31	22	9	1	1	173
WSW	0	2	13	5	26	22	20	9	10	0	2	109
W	0	7	7	27	43	37	28	28	26	1	0	204
WNW	0	2	17	24	74	48	58	40	19	0	0	282
NW	0	1	12	21	75	73	73	33	22	1	0	311
NNW	0	0	7	22	76	95	62	44	37	7	1	351
Tot	0	43	219	402	1016	804	625	378	260	35	4	3786
Hours of C	alm		0		•	•	•		•			•
Hours of V	ariable D	irection .	0									
Hours of V	alid Data		378	6						-	-	
Hours of N				-								
Hours in Pe	eriod		876	iU .								

Joint Fre	quency	Distrib	ution									
January- D	ecember	, 2014										
Class E Sli	ghtly Stal	ble based	on lapse r	ate								
Elevations:	Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	1	4	14	23	22	7	3	0	0	0	0	74
NNE	1	6	12	23	31	7	0	0	0	0	0	80
NE	0	5	13	27	30	6	4	1	2	0	0	88
ENE	0	8	15	22	21	7	3	0	0	0	0	76
E	0	7	10	26	38	11	4	0	0	0	0	96
ESE	0	5	12	29	31	12	2	4	0	0	0	95
SE	1	8	48	68	93	34	9	1	2	0	0	264
SSE	0	8	13	26	130	92	46	19	9	0	0	343
S	0	4	10	16	76	111	76	41	20	0	0	354
SSW	0	6	6	14	43	57	24	8	5	0	0	163
SW	0	7	12	19	47	42	20	3	0	0	0	150
WSW	0	9	11	24	17	17	14	2	1	0	0	95
W	0	10	16	17	44	43	14	8	1	0	0	153
WNW	0	9	33	26	45	26	9	2	0	0	0	150
NW	0	11	15	43	58	17	5	3	0	1	0	153
NNW	0	6	14	19	42	21	12	5	0	0	0	119
Tot	3	113	254	422	768	510	245	97	40	1	0	2453
Hours of Ca												
Hours of V	ariable Di	irection										
Hours of V				7								
Hours of N Hours in Pe				0								
HOUIS III PE	u		6/0	0								

Joint Fre	quency	/ Distrik	oution									
January- D	ecember,	, 2014										
Class F M	oderately	Stable b	ased on lap	se rate								
Elevations:	Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	2	1	7	12	5	0	0	0	0	0	0	27
NNE	1	5	10	10	4	0	0	0	0	0	0	30
NE	0	12	17	8	2	0	0	0	0	0	0	39
ENE	4	13	22	9	3	0	0	0	0	0	0	51
E	1	15	18	7	3	1	0	0	0	0	0	45
ESE	1	13	25	12	5	0	0	0	0	0	0	56
SE	1	25	58	29	24	0	2	1	0	0	0	140
SSE	0	15	25	51	104	22	1	0	0	0	0	218
S	1	5	12	23	40	29	6	1	0	0	0	117
SSW	0	5	19	17	22	18	3	0	0	0	0	84
SW	1	7	12	17	20	10	0	0	0	0	0	67
WSW	0	6	10	3	8	2	1	0	0	0	0	30
W	0	6	11	10	13	1	0	0	0	0	0	41
WNW	1	11	21	15	10	1	0	0	0	0	0	59
NW	2	8	26	16	9	0	0	0	0	0	0	61
NNW	0	11	0	12	11	0	0	0	0	0	0	34
Tot	15	158	293	251	283	84	13	2	0	0	0	1099
Hours of												
Hours of \												
Hours of I				12								
Hours in F				60								

Joint Fre	quency	/ Distrik	oution									
January- D	ecember	, 2014										
Class G Ex	ktremely	Stable ba	sed on laps	e rate								
Elevations	: Winds 1	0m Sta	bility 60m									
					Wir	nd Speed	Range (n	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1- 4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	2	7	7	4	0	0	0	0	0	0	0	20
NNE	3	13	7	6	0	0	0	0	0	0	0	29
NE	3	9	14	3	1	0	0	0	0	0	0	30
ENE	2	9	8	3	0	0	0	0	0	0	0	22
E	0	10	7	1	0	0	0	0	0	0	0	18
ESE	2	8	4	1	0	0	0	0	0	0	0	15
SE	0	15	8	2	2	0	0	0	0	0	0	27
SSE	3	24	15	9	12	6	0	0	0	0	0	69
S	1	9	10	6	5	5	1	0	0	0	0	37
SSW	0	4	8	3	3	0	0	0	0	0	0	18
SW	2	5	3	2	0	0	0	0	0	0	0	12
WSW	1	5	3	0	0	0	0	0	0	0	0	9
W	1	5	6	3	0	0	0	0	0	0	0	15
WNW	1	4	11	4	0	0	0	0	0	0	0	20
NW	2	13	12	8	1	0	0	0	0	0	0	36
NNW	4	7	4	0	3	0	0	0	0	0	0	18
Tot	27	147	127	55	27	11	1	0	0	0	0	395
Hours of	Calm		11									
Hours of \	Variable [Direction	0									-
Hours of				i								
Hours of I				0								
HOUIS III F	e1100		6/0	U								

Joint Fre	quency	/ Distrik	oution									
January- D	ecember,	, 2014										
All Stabiliti	es											
Elevations:	Winds 6	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1- 4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	4	5	17	52	72	91	104	106	8	4	463
NNE	0	4	12	23	62	85	91	61	50	4	2	394
NE	0	3	11	15	71	70	107	49	20	5	9	360
ENE	0	5	12	19	87	84	95	42	18	1	0	363
E	0	5	12	22	62	77	93	61	13	1	0	346
ESE	0	5	8	24	63	103	110	63	22	2	0	400
SE	0	3	35	61	169	171	171	107	45	2	1	765
SSE	0	12	16	30	115	138	175	134	166	29	7	822
S	0	4	11	23	75	92	142	152	324	133	23	979
SSW	0	2	10	10	65	82	107	119	218	47	6	666
SW	0	0	15	11	42	54	89	112	191	53	14	581
WSW	0	1	10	17	38	37	51	51	77	27	15	324
W	0	1	9	17	40	52	56	65	119	62	17	438
WNW	0	3	9	19	45	73	90	107	180	109	27	662
NW	0	6	3	13	42	63	115	163	156	77	24	662
NNW	0	4	3	23	45	83	96	108	111	41	16	530
Tot	0	62	181	344	1073	1336	1679	1498	1816	601	165	8755
Hours of	Calm		1	•	•	•	•	•	•	•	•	
Hours of \	/ariable [Direction	0									
Hours of	Valid Data	a	875	6								
Hours of I				0								
HOUIS III F	e1100	•••••	8/6	U								

Joint Free	quency	Distribu	ıtion									
January- De	ecember,	2014										
Class A Ex	tremely L	Jnstable b	ased on la	pse rate								
Elevations:	Winds 60	m Stabi	lity 60m									
					W	ind Speed	Range (r	m/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1- 3	3.1- 4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	0	0	0	0	1	0	0	1	0	2
NNE	0	0	0	0	1	1	0	0	0	0	0	2
NE	0	0	0	0	0	0	1	0	0	0	0	1
ENE	0	0	0	0	1	0	0	0	0	0	0	1
E	0	0	0	0	0	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	1	0	0	0	0	1
SE	0	0	0	0	0	7	3	2	0	0	0	12
SSE	0	0	0	0	2	6	3	2	4	4	1	22
S	0	0	0	0	3	2	1	2	2	3	0	13
SSW	0	0	0	0	0	4	1	4	2	4	0	15
SW	0	0	0	0	0	2	2	4	10	3	3	24
WSW	0	0	0	0	0	1	0	2	6	1	0	10
W	0	0	0	0	0	1	1	1	3	6	0	12
WNW	0	0	0	0	0	0	2	2	5	9	3	21
NW	0	0	0	0	0	1	1	1	6	10	2	21
NNW	0	0	0	0	0	0	1	1	2	0	0	4
Tot	0	0	0	0	7	25	18	21	40	41	9	161
Hours of Ca	ılm		0									
Hours of Va	riable Dir	ection	. 0									
Hours of Va	ilid Data		163	L								
Hours of M												
Hours in Pe	1100		. 876	υ								

Joint Fre	quency	Distrik	oution									
January- D	ecember,	, 2014										
Class B N	1oderatel	y Unstab	le based on	lapse rat	te							
Elevations:	Winds 6	0m Sta	bility 60m									
					Wir	nd Speed	Range (r	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1- 4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	0	2	1	1	4	1	2	0	0	11
NNE	0	0	0	1	2	2	1	0	3	0	0	9
NE	0	0	2	0	6	1	0	0	0	0	0	9
ENE	0	0	0	1	3	1	1	0	0	0	0	6
E	0	0	0	1	1	0	1	0	0	0	0	3
ESE	0	0	1	0	0	1	2	1	1	0	0	6
SE	0	0	0	1	3	6	3	2	0	0	0	15
SSE	0	0	0	1	6	10	8	5	5	5	1	41
S	0	0	0	1	2	8	7	4	12	5	1	40
SSW	0	0	0	0	3	5	5	8	6	5	1	33
SW	0	0	0	0	0	4	11	5	13	4	1	38
WSW	0	0	0	0	1	1	1	7	1	1	1	13
W	0	0	0	0	0	2	3	2	5	2	0	14
WNW	0	0	0	0	1	4	9	5	9	6	1	35
NW	0	0	0	0	0	0	7	10	7	6	1	31
NNW	0	0	0	0	0	1	3	6	2	3	0	15
Tot	0	0	3	8	29	47	66	56	66	37	7	319
Hours of C	alm		0			•		•			•	•
Hours of V	ariable D	irection	0									
Hours of V												
Hours of M				0								
Hours III Pe	u		6/0	U								

Joint Fre	quency	Distrib	oution									
January- D	ecember,	, 2014										
Class C SI	ightly Un	stable ba	sed on laps	e rate								
Elevations:	Winds 6	0m Sta	bility 60m									
					Wir	nd Speed	Range (n	n/s)				
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	1	1	4	6	12	5	0	0	0	29
NNE	0	0	1	0	4	7	5	2	3	0	0	22
NE	0	0	0	1	7	2	3	0	0	0	0	13
ENE	0	0	1	3	8	2	1	0	0	0	0	15
E	0	0	0	0	5	2	2	0	0	1	0	10
ESE	0	0	0	2	2	4	2	3	0	0	0	13
SE	0	0	1	1	11	7	12	2	3	0	0	37
SSE	0	0	2	1	9	9	13	6	2	2	2	46
S	0	0	2	3	9	12	11	3	13	7	1	61
SSW	0	0	1	0	13	2	8	6	18	3	1	52
SW	0	0	0	3	1	4	8	4	9	3	0	32
WSW	0	0	1	1	3	6	3	4	9	0	3	30
W	0	0	0	2	4	2	3	3	7	2	1	24
WNW	0	0	0	2	5	7	5	7	10	15	3	54
NW	0	0	0	1	4	7	3	12	12	11	3	53
NNW	0	0	0	0	0	5	9	9	9	2	0	34
Tot	0	0	10	21	89	84	100	66	95	46	14	525
Hours of Ca	alm		0		•	•		•	•	•	•	
Hours of V	ariable Di	irection	0									
Hours of V												
Hours of N												
Hours in Pe	eriod		876	U								

Joint Frequency Distribution												
January- December, 2014												
Class D Neutral based on lapse rate												
Elevations: Winds 60m Stability 60m												
	Wind Speed Range (m/s)											
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	0	2	6	37	49	51	67	94	7	4	317
NNE	0	2	5	14	37	45	45	38	40	4	2	232
NE	0	1	6	8	38	39	49	26	10	4	8	189
ENE	0	2	7	11	55	50	42	16	11	1	0	195
Е	0	1	7	16	35	42	23	15	7	0	0	146
ESE	0	3	5	17	48	53	26	17	13	2	0	184
SE	0	2	22	32	77	57	37	26	13	1	0	267
SSE	0	3	9	17	50	48	51	30	45	7	1	261
S	0	2	7	15	36	25	38	41	102	63	20	349
SSW	0	0	4	6	31	24	35	31	45	14	4	194
SW	0	0	8	7	21	23	20	31	47	15	10	182
WSW	0	0	7	8	12	11	17	16	28	11	10	120
W	0	0	6	11	28	20	21	26	40	32	16	200
WNW	0	1	3	10	23	34	36	38	73	73	19	310
NW	0	3	1	11	25	27	45	63	89	44	17	325
NNW	0	0	1	17	30	47	57	46	69	32	16	315
Tot	0	20	100	206	583	594	593	527	726	310	127	3786
Hours of Calm 0												
Hours of Variable Direction 0												
Hours of Valid Data												
Hours of M				0								

Joint Frequency Distribution												
January- December, 2014												
Class E Slightly Stable based on lapse rate												
Elevations: Winds 60m Stability 60m												
	Wind Speed Range (m/s)											
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1-4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	1	1	6	3	10	14	15	5	0	0	55
NNE	0	1	3	6	12	24	31	9	3	0	0	89
NE	0	1	1	2	14	20	37	13	7	1	1	97
ENE	0	3	1	2	13	14	30	11	3	0	0	77
E	0	0	0	1	13	21	32	18	5	0	0	90
ESE	0	2	0	2	6	24	53	24	7	0	0	118
SE	0	0	4	13	39	61	71	37	18	1	1	245
SSE	0	1	2	2	19	31	63	64	83	11	2	278
S	0	0	1	2	9	22	41	65	159	49	1	349
SSW	0	2	1	2	9	18	22	48	89	13	0	204
SW	0	0	1	0	11	13	28	36	77	18	0	184
WSW	0	0	0	4	14	10	14	15	27	12	1	97
W	0	0	1	1	6	18	19	25	55	19	0	144
WNW	0	0	4	3	12	18	25	34	60	6	1	163
NW	0	1	1	0	6	9	39	54	32	6	1	149
NNW	0	4	0	4	8	23	16	35	24	4	0	118
Tot	0	16	21	50	194	336	535	503	654	140	8	2457
Hours of Calm												
Hours of Variable Direction 0												
Hours of Valid Data 2457												
Hours of Missing Data												
Hours in Period 8760												

Sanuary - December, 2014 Class F Moderately Stable based on lapse rate											
Stability 60m Stability 60											
Wind Direction Sector <0.50 0.5-1 1.1-1.5 1.6-2 2.1-3 3.1-4 4.1-5 5.1-6 6.1-8 8.1-10 >10.00 Total N 0 2 0 1 4 4 5 13 4 0 0 33 NNE 0 0 2 0 3 6 8 10 0 0 0 29 NE 0 1 0 1 4 5 13 6 0 0 0 30 ENE 0 0 2 1 2 9 14 8 3 0 0 39 ENE 0 2 1 2 9 19 18 0 0 0 53											
Wind Direction Sector <0.50 0.5-1 1.1-1.5 1.6-2 2.1-3 3.1-4 4.1-5 5.1-6 6.1-8 8.1-10 >10.00 Total N 0 2 0 1 4 4 5 13 4 0 0 33 NNE 0 0 2 0 3 6 8 10 0 0 0 29 NE 0 1 0 1 4 5 13 6 0 0 0 30 ENE 0 0 2 1 2 9 14 8 3 0 0 39 E 0 2 1 2 9 19 18 0 0 0 53											
Direction Sector <0.50 0.5-1 1.1-1.5 1.6-2 2.1-3 3.1-4 4.1-5 5.1-6 6.1-8 8.1-10 >10.00 Total N 0 2 0 1 4 4 5 13 4 0 0 33 NNE 0 0 2 0 3 6 8 10 0 0 0 29 NE 0 1 0 1 4 5 13 6 0 0 0 30 ENE 0 0 2 1 2 9 14 8 3 0 0 39 E 0 2 1 2 9 19 18 0 0 0 53											
NNE 0 0 2 0 3 6 8 10 0 0 0 29 NE 0 1 0 1 4 5 13 6 0 0 0 30 ENE 0 0 2 1 2 9 14 8 3 0 0 39 E 0 2 1 2 9 19 18 0 0 0 53											
NNE											
ENE 0 0 2 1 2 9 14 8 3 0 0 39 E 0 2 1 2 9 19 18 0 0 53											
ENE 0 2 1 2 2 9 19 18 0 0 53											
ESE 0 0 1 2 5 14 18 15 0 0 55											
SE 0 0 3 10 29 25 36 36 10 0 0 149											
SSE 0 5 2 6 18 20 32 24 24 0 0 131											
S 0 0 0 2 8 16 38 34 31 5 0 134											
SSW 0 0 2 0 8 21 31 18 49 6 0 135											
SW 0 0 3 0 6 6 16 29 32 10 0 102											
WSW 0 0 0 0 4 6 10 6 6 2 0 34											
W 0 1 1 2 2 6 7 7 8 1 0 35											
WNW 0 1 0 2 1 7 10 17 21 0 0 59											
NW 0 0 0 1 3 8 14 21 9 0 0 56											
NNW 0 0 1 0 5 5 4 9 3 0 0 27											
Tot 0 12 18 30 104 167 275 271 200 24 0 1101											
Hours of Calm											
Hours of Variable Direction 0											
Hours of Valid Data 1102											
Hours of Missing Data											

Joint Fre	quency	Distribu	ition									
January- De	cember,	2014										
Class G Extremely Stable based on lapse rate												
Elevations: Winds 60m Stability 60m												
		Wind Speed Range (m/s)										
Wind Direction Sector	<0.50	0.5- 1	1.1- 1.5	1.6- 2	2.1-3	3.1- 4	4.1- 5	5.1- 6	6.1-8	8.1- 10	>10.00	Total
N	0	1	1	1	3	2	4	3	1	0	0	16
NNE	0	1	1	2	3	0	1	2	1	0	0	11
NE	0	0	2	3	2	3	4	4	3	0	0	21
ENE	0	0	1	1	5	8	7	7	1	0	0	30
E	0	2	4	2	6	3	16	10	1	0	0	44
ESE	0	0	1	1	2	7	8	3	1	0	0	23
SE	0	1	5	4	10	8	9	2	1	0	0	40
SSE	0	3	1	3	11	14	5	3	3	0	0	43
S	0	2	1	0	8	7	6	3	5	1	0	33
SSW	0	0	2	2	1	8	5	4	9	2	0	33
SW	0	0	3	1	3	2	4	3	3	0	0	19
WSW	0	1	2	4	4	2	6	1	0	0	0	20
W	0	0	1	1	0	3	2	1	1	0	0	9
WNW	0	1	2	2	3	3	3	4	2	0	0	20
NW	0	2	1	0	4	11	6	2	1	0	0	27
NNW	0	0	1	2	2	2	6	2	2	0	0	17
Tot	0	14	29	29	67	83	92	54	35	3	0	406
Hours of Ca	lm		0									
Hours of Va	riable Dir	ection	0		·	·			·			
Hours of Valid Data												
Hours of M												
Hours in Pe	riod		. 876	U								

Callaway Energy Center 2014 Annual Radioactive Effluent Release Report

Appendix C

Corrections to Prior Annual Radioactive Effluent Release Reports

Dispersion Parameters for 1993

Nearest Resident

Direction: N

Distance: 2945 meters

X/Q, Undecayed and Undepleted: $9.52E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $9.30E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $7.89E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.61E-09 \text{ m}^{-2}$

Site Boundary

Direction: SE

Distance: 1800 meters

X/Q, Undecayed and Undepleted: $1.66\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.64\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.44\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.69\text{E-}09 \text{ m}^{-2}$

1993

		SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.80	km SE	LOCATION: 2.94 km N	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)
GAMMA AIR DOSE *	mrad	2.03E-02	0.20	1.15E-02	N/A
BETA AIR DOSE *	mrad	4.83E-02	0.24	2.74E-02	N/A
WHOLE BODY ***	mrem	1.77E-02	N/A	1.00E-02	N/A
SKIN***	mrem	4.01E-02	N/A	2.27E-02	N/A
BONE**	mrem	4.83E-06	N/A	1.73E-04	0.00
LIVER**	mrem	4.67E-03	N/A	2.33E-02	0.16
TOTAL BODY**	mrem	4.67E-03	N/A	2.32E-02	0.15
THYROID **	mrem	5.20E-03	N/A	7.54E-02	0.50
KIDNEY**	mrem	4.67E-03	N/A	2.34E-02	0.16
LUNG**	mrem	4.67E-03	N/A	2.31E-02	0.15
GI-LLI **	mrem	4.67E-03	N/A	2.31E-02	0.15

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	6.35E-03	N/A	N/A	6.35E-03
BONE	mrem	8.49E-07	8.79E-03	1.06E-03	9.85E-03
LIVER	mrem	8.75E-04	8.79E-03	1.06E-03	1.07E-02
TOTAL BODY	mrem	3.68E-03	8.79E-03	1.06E-03	1.35E-02
THYROID	mrem	9.38E-04	8.79E-03	1.06E-03	1.08E-02
KIDNEY	mrem	8.75E-04	8.79E-03	1.06E-03	1.07E-02
LUNG	mrem	8.75E-04	8.79E-03	1.06E-03	1.07E-02
GI-LLI	mrem	8.75E-04	8.79E-03	1.06E-03	1.07E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	1.63E-02	6.35E-03	2.26E-02	0.09
BONE	mrem	3.11E-05	9.85E-03	9.88E-03	0.04
LIVER	mrem	9.94E-03	1.07E-02	2.07E-02	0.08
TOTAL BODY	mrem	1.71E-02	1.35E-02	3.06E-02	0.12
THYROID	mrem	2.27E-02	1.08E-02	3.35E-02	0.04
KIDNEY	mrem	9.96E-03	1.07E-02	2.07E-02	0.08
LUNG	mrem	9.90E-03	1.07E-02	2.06E-02	0.08
GI-LLI	mrem	9.91E-03	1.07E-02	2.06E-02	0.08

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $8.13E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $8.09E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $7.02E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.76E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.49\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.49\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.32\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.09\text{E-}09 \text{ m}^{-2}$

1994

		SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 km SSW		LOCATION: 1.93 km WSW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)
GAMMA AIR DOSE *	mrad	2.28E-03	0.02	1.24E-03	N/A
BETA AIR DOSE *	mrad	2.64E-03	0.01	1.43E-03	N/A
WHOLE BODY ***	mrem	2.13E-03	N/A	1.16E-03	N/A
SKIN***	mrem	4.09E-03	N/A	2.22E-03	N/A
BONE**	mrem	2.41E-06	N/A	5.70E-06	0.00
LIVER**	mrem	4.19E-03	N/A	2.02E-02	0.13
TOTAL BODY**	mrem	4.19E-03	N/A	2.02E-02	0.13
THYROID **	mrem	4.21E-03	N/A	2.16E-02	0.14
KIDNEY**	mrem	4.19E-03	N/A	2.02E-02	0.13
LUNG**	mrem	4.19E-03	N/A	2.02E-02	0.13
GI-LLI **	mrem	4.19E-03	N/A	2.02E-02	0.13

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	7.14E-04	N/A	N/A	7.14E-04
BONE	mrem	5.30E-07	8.79E-03	3.54E-04	9.14E-03
LIVER	mrem	8.58E-04	8.79E-03	3.54E-04	1.00E-02
TOTAL BODY	mrem	1.23E-03	8.79E-03	3.54E-04	1.04E-02
THYROID	mrem	8.60E-04	8.79E-03	3.54E-04	1.00E-02
KIDNEY	mrem	8.58E-04	8.79E-03	3.54E-04	1.00E-02
LUNG	mrem	8.58E-04	8.79E-03	3.54E-04	1.00E-02
GI-LLI	mrem	8.58E-04	8.79E-03	3.54E-04	1.00E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	1.21E-03	7.14E-04	1.92E-03	0.01
BONE	mrem	1.18E-06	9.14E-03	9.15E-03	0.04
LIVER	mrem	6.33E-03	1.00E-02	1.63E-02	0.07
TOTAL BODY	mrem	6.96E-03	1.04E-02	1.73E-02	0.07
THYROID	mrem	6.58E-03	1.00E-02	1.66E-02	0.02
KIDNEY	mrem	6.33E-03	1.00E-02	1.63E-02	0.07
LUNG	mrem	6.33E-03	1.00E-02	1.63E-02	0.07
GI-LLI	mrem	6.33E-03	1.00E-02	1.63E-02	0.07

^{*}Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $7.69E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $7.64E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $6.64E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.13E-09 \text{ m}^{-2}$

Site Boundary

Direction: SE

Distance: 1800 meters

X/Q, Undecayed and Undepleted: $1.14\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.13\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $9.84\text{E-}07 \text{ sec/m}^3$ D/Q Deposition rate: $5.49\text{E-}09 \text{ m}^{-2}$

<u> </u>		SITE BOUNDARY		NEAREST RESIDENT		
		LOCATION: 1.80	km SE	LOCATION: 1.93	LOCATION: 1.93 km WSW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	CHILD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.42E-03	0.01	9.58E-04	N/A	
BETA AIR DOSE *	mrad	2.38E-03	0.01	1.61E-03	N/A	
WHOLE BODY ***	mrem	3.00E-03	N/A	1.54E-03	N/A	
SKIN***	mrem	4.41E-03	N/A	2.48E-03	N/A	
BONE**	mrem	1.73E-03	N/A	2.79E-03	0.02	
LIVER**	mrem	5.21E-03	N/A	2.43E-02	0.16	
TOTAL BODY**	mrem	5.20E-03	N/A	2.24E-02	0.15	
THYROID **	mrem	5.25E-03	N/A	2.51E-02	0.17	
KIDNEY**	mrem	5.20E-03	N/A	2.27E-02	0.15	
LUNG**	mrem	5.31E-03	N/A	2.23E-02	0.15	
GI-LLI **	mrem	5.20E-03	N/A	2.21E-02	0.15	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	6.19E-04	N/A	N/A	6.19E-04
BONE	mrem	4.08E-04	9.00E-03	2.85E-04	9.69E-03
LIVER	mrem	1.36E-03	9.00E-03	2.85E-04	1.06E-02
TOTAL BODY	mrem	1.66E-03	9.00E-03	2.85E-04	1.09E-02
THYROID	mrem	1.37E-03	9.00E-03	2.85E-04	1.07E-02
KIDNEY	mrem	1.36E-03	9.00E-03	2.85E-04	1.06E-02
LUNG	mrem	1.39E-03	9.00E-03	2.85E-04	1.07E-02
GI-LLI	mrem	1.36E-03	9.00E-03	2.85E-04	1.06E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	1.09E-03	6.19E-04	1.70E-03	0.01
BONE	mrem	9.90E-04	9.69E-03	1.07E-02	0.04
LIVER	mrem	8.57E-03	1.06E-02	1.92E-02	0.08
TOTAL BODY	mrem	8.91E-03	1.09E-02	1.99E-02	0.08
THYROID	mrem	8.78E-03	1.07E-02	1.94E-02	0.03
KIDNEY	mrem	8.12E-03	1.06E-02	1.88E-02	0.08
LUNG	mrem	8.00E-03	1.07E-02	1.87E-02	0.07
GI-LLI	mrem	8.24E-03	1.06E-02	1.89E-02	0.08

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $6.60\text{E-}07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $6.56\text{E-}07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $5.70\text{E-}07 \text{ sec/m}^3$ D/Q Deposition rate: $2.26\text{E-}09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: 1.06E-06 sec/m³ X/Q Decayed and Undepleted: 1.06E-06 sec/m³ X/Q Decayed and Depleted: 9.36E-07 sec/m³ D/Q Deposition rate: 3.45E-09 m⁻²

		SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.4	0 km SSW	LOCATION: 1.93 km WSW	
		AGE GROUP	: CHILD	AGE GROUP	: CHILD
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)
GAMMA AIR DOSE *	mrad	2.95E-03	0.03	1.83E-03	N/A
BETA AIR DOSE *	mrad	5.40E-03	0.03	3.34E-03	N/A
WHOLE BODY ***	mrem	2.62E-03	N/A	1.62E-03	N/A
SKIN***	mrem	5.23E-03	N/A	3.23E-03	N/A
BONE**	mrem	1.38E-06	N/A	1.87E-05	0.00
LIVER**	mrem	2.91E-03	N/A	1.60E-02	0.11
TOTAL BODY**	mrem	2.91E-03	N/A	1.60E-02	0.11
THYROID **	mrem	2.96E-03	N/A	2.19E-02	0.15
KIDNEY**	mrem	2.91E-03	N/A	1.61E-02	0.11
LUNG**	mrem	2.91E-03	N/A	1.60E-02	0.11
GI-LLI **	mrem	2.91E-03	N/A	1.60E-02	0.11

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from ¹³¹I, ¹³³I, ³H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	1.28E-03	N/A	N/A	1.28E-03
BONE	mrem	4.27E-07	8.79E-03	2.10E-03	1.09E-02
LIVER	mrem	8.39E-04	8.79E-03	2.10E-03	1.17E-02
TOTAL BODY	mrem	1.48E-03	8.79E-03	2.10E-03	1.24E-02
THYROID	mrem	8.49E-04	8.79E-03	2.10E-03	1.17E-02
KIDNEY	mrem	8.39E-04	8.79E-03	2.10E-03	1.17E-02
LUNG	mrem	8.39E-04	8.79E-03	2.10E-03	1.17E-02
GI-LLI	mrem	8.39E-04	8.79E-03	2.10E-03	1.17E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	2.02E-03	1.28E-03	3.30E-03	0.01
BONE	mrem	3.88E-06	1.09E-02	1.09E-02	0.04
LIVER	mrem	5.77E-03	1.17E-02	1.75E-02	0.07
TOTAL BODY	mrem	6.78E-03	1.24E-02	1.92E-02	0.08
THYROID	mrem	7.31E-03	1.17E-02	1.91E-02	0.03
KIDNEY	mrem	5.77E-03	1.17E-02	1.75E-02	0.07
LUNG	mrem	5.77E-03	1.17E-02	1.75E-02	0.07
GI-LLI	mrem	5.77E-03	1.17E-02	1.75E-02	0.07

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $6.47\text{E-}07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $6.42\text{E-}07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $5.39\text{E-}07 \text{ sec/m}^3$ D/Q Deposition rate: $2.19\text{E-}09 \text{ m}^{-2}$

Site Boundary

Direction: SE

Distance: 1800 meters

X/Q, Undecayed and Undepleted: $1.18\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.17\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.02\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.42\text{E-}09 \text{ m}^{-2}$

1997

		SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.80 I	km SE	LOCATION: 2.93 km NNW	
		AGE GROUP: CHI	LD	AGE GROUP: CHII	LD
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)
GAMMA AIR DOSE *	mrad	6.21E-03	0.06	3.41E-03	N/A
BETA AIR DOSE *	mrad	1.67E-02	0.08	9.14E-03	N/A
WHOLE BODY ***	mrem	5.30E-03	N/A	2.91E-03	N/A
SKIN***	mrem	1.25E-02	N/A	6.86E-03	N/A
BONE**	mrem	1.24E-06	N/A	4.33E-06	0.00
LIVER**	mrem	2.91E-03	N/A	1.39E-02	0.09
TOTAL BODY**	mrem	2.91E-03	N/A	1.39E-02	0.09
THYROID **	mrem	2.92E-03	N/A	1.52E-02	0.10
KIDNEY**	mrem	2.91E-03	N/A	1.39E-02	0.09
LUNG**	mrem	2.91E-03	N/A	1.39E-02	0.09
GI-LLI **	mrem	2.91E-03	N/A	1.39E-02	0.09

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	2.78E-03	N/A	N/A	2.78E-03
BONE	mrem	2.95E-07	8.79E-03	9.59E-05	8.89E-03
LIVER	mrem	7.71E-04	8.79E-03	9.59E-05	9.66E-03
TOTAL BODY	mrem	1.95E-03	8.79E-03	9.59E-05	1.08E-02
THYROID	mrem	7.73E-04	8.79E-03	9.59E-05	9.66E-03
KIDNEY	mrem	7.71E-04	8.79E-03	9.59E-05	9.66E-03
LUNG	mrem	7.71E-04	8.79E-03	9.59E-05	9.66E-03
GI-LLI	mrem	7.71E-04	8.79E-03	9.59E-05	9.66E-03

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	4.99E-03	2.78E-03	7.76E-03	0.03
BONE	mrem	1.15E-06	8.89E-03	8.89E-03	0.04
LIVER	mrem	6.05E-03	9.66E-03	1.57E-02	0.06
TOTAL BODY	mrem	8.17E-03	1.08E-02	1.90E-02	0.08
THYROID	mrem	6.41E-03	9.66E-03	1.61E-02	0.02
KIDNEY	mrem	6.05E-03	9.66E-03	1.57E-02	0.06
LUNG	mrem	6.05E-03	9.66E-03	1.57E-02	0.06
GI-LLI	mrem	6.05E-03	9.66E-03	1.57E-02	0.06

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $6.38E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $6.32E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $5.32E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.38E-09 \text{ m}^{-2}$

Site Boundary

Direction: S

Distance: 1300 meters

X/Q, Undecayed and Undepleted: $1.24\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.23\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.10 \text{ E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.26\text{E-}09 \text{ m}^{-2}$

1998

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.30 I	km S	LOCATION: 2.93 km NNW		
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	5.59E-03	0.06	2.87E-03	N/A	
BETA AIR DOSE *	mrad	1.06E-02	0.05	5.45E-03	N/A	
WHOLE BODY ***	mrem	9.97E-03	N/A	4.81E-03	N/A	
SKIN***	mrem	1.51E-02	N/A	7.44E-03	N/A	
BONE**	mrem	5.03E-03	N/A	7.89E-03	0.05	
LIVER**	mrem	1.03E-02	N/A	3.19E-02	0.21	
TOTAL BODY**	mrem	1.03E-02	N/A	2.66E-02	0.18	
THYROID **	mrem	1.07E-02	N/A	9.09E-02	0.61	
KIDNEY**	mrem	1.03E-02	N/A	2.76E-02	0.18	
LUNG**	mrem	1.05E-02	N/A	2.60E-02	0.17	
GI-LLI **	mrem	1.03E-02	N/A	2.55E-02	0.17	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	2.13E-03	N/A	N/A	2.13E-03
BONE	mrem	1.24E-03	8.79E-03	8.22E-03	1.83E-02
LIVER	mrem	2.53E-03	8.79E-03	8.22E-03	1.95E-02
TOTAL BODY	mrem	3.57E-03	8.79E-03	8.22E-03	2.06E-02
THYROID	mrem	2.60E-03	8.79E-03	8.22E-03	1.96E-02
KIDNEY	mrem	2.52E-03	8.79E-03	8.22E-03	1.95E-02
LUNG	mrem	2.58E-03	8.79E-03	8.22E-03	1.96E-02
GI-LLI	mrem	2.53E-03	8.79E-03	8.22E-03	1.95E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	3.61E-03	2.13E-03	5.74E-03	0.02
BONE	mrem	2.07E-03	1.83E-02	2.03E-02	0.08
LIVER	mrem	1.22E-02	1.95E-02	3.18E-02	0.13
TOTAL BODY	mrem	1.37E-02	2.06E-02	3.43E-02	0.14
THYROID	mrem	2.39E-02	1.96E-02	4.35E-02	0.06
KIDNEY	mrem	1.14E-02	1.95E-02	3.09E-02	0.12
LUNG	mrem	1.11E-02	1.96E-02	3.07E-02	0.12
GI-LLI	mrem	1.12E-02	1.95E-02	3.07E-02	0.12

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $7.18E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $7.13E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $5.99E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.83E-09 \text{ m}^{-2}$

Site Boundary

Direction: NNW

Distance: 2200 meters

X/Q, Undecayed and Undepleted: 1.05E-06 sec/m³ X/Q Decayed and Undepleted: 1.05E-06 sec/m³ X/Q Decayed and Depleted: 8.98E-07 sec/m³ D/Q Deposition rate: 4.58E-09 m⁻²

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 2.20 km NNW		LOCATION: 2.93 km NNW		
		AGE GROUP: CHII	LD	AGE GROUP: CHILD		
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.56E-03	0.02	1.06E-03	N/A	
BETA AIR DOSE *	mrad	1.96E-03	0.01	1.33E-03	N/A	
WHOLE BODY ***	mrem	2.64E-03	N/A	1.72E-03	N/A	
SKIN***	mrem	3.86E-03	N/A	2.55E-03	N/A	
BONE**	mrem	1.21E-03	N/A	5.39E-03	0.04	
LIVER**	mrem	3.96E-03	N/A	2.23E-02	0.15	
TOTAL BODY**	mrem	3.95E-03	N/A	1.82E-02	0.12	
THYROID **	mrem	3.96E-03	N/A	1.89E-02	0.13	
KIDNEY**	mrem	3.95E-03	N/A	1.90E-02	0.13	
LUNG**	mrem	4.00E-03	N/A	1.80E-02	0.12	
GI-LLI **	mrem	3.95E-03	N/A	1.75E-02	0.12	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	6.60E-04	N/A	N/A	6.60E-04
BONE	mrem	3.41E-04	8.79E-03	1.30E-03	1.04E-02
LIVER	mrem	1.17E-03	8.79E-03	1.30E-03	1.13E-02
TOTAL BODY	mrem	1.53E-03	8.79E-03	1.30E-03	1.16E-02
THYROID	mrem	1.17E-03	8.79E-03	1.30E-03	1.13E-02
KIDNEY	mrem	1.17E-03	8.79E-03	1.30E-03	1.13E-02
LUNG	mrem	1.18E-03	8.79E-03	1.30E-03	1.13E-02
GI-LLI	mrem	1.17E-03	8.79E-03	1.30E-03	1.13E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	7.92E-04	6.60E-04	1.45E-03	0.01
BONE	mrem	8.24E-04	1.04E-02	1.13E-02	0.05
LIVER	mrem	5.45E-03	1.13E-02	1.67E-02	0.07
TOTAL BODY	mrem	5.65E-03	1.16E-02	1.73E-02	0.07
THYROID	mrem	4.92E-03	1.13E-02	1.62E-02	0.02
KIDNEY	mrem	4.94E-03	1.13E-02	1.62E-02	0.06
LUNG	mrem	4.78E-03	1.13E-02	1.60E-02	0.06
GI-LLI	mrem	4.75E-03	1.13E-02	1.60E-02	0.06

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $6.38E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $6.35E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $5.32E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.74E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $9.93\text{E-}07~\text{sec/m}^3$ X/Q Decayed and Undepleted: $9.89\text{E-}07~\text{sec/m}^3$ X/Q Decayed and Depleted: $8.76\text{E-}07~\text{sec/m}^3$ D/Q Deposition rate: $4.09\text{E-}09~\text{m}^{-2}$

		SITE BOUNDARY		NEAREST RESIDENT		
		LOCATION: 1.40	LOCATION: 1.40 km SSW		LOCATION: 2.93 km NNW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.87E-03	0.02	1.20E-03	N/A	
BETA AIR DOSE *	mrad	4.72E-03	0.02	3.03E-03	N/A	
WHOLE BODY ***	mrem	2.25E-03	N/A	1.47E-03	N/A	
SKIN***	mrem	4.30E-03	N/A	2.78E-03	N/A	
BONE**	mrem	6.55E-04	N/A	4.02E-03	0.03	
LIVER**	mrem	3.09E-03	N/A	1.73E-02	0.12	
TOTAL BODY**	mrem	3.09E-03	N/A	1.44E-02	0.10	
THYROID **	mrem	3.30E-03	N/A	5.03E-02	0.34	
KIDNEY**	mrem	3.09E-03	N/A	1.51E-02	0.10	
LUNG**	mrem	3.11E-03	N/A	1.42E-02	0.09	
GI-LLI **	mrem	3.09E-03	N/A	1.39E-02	0.09	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	9.60E-04	N/A	N/A	9.60E-04
BONE	mrem	2.07E-04	8.79E-03	1.30E-03	1.03E-02
LIVER	mrem	9.59E-04	8.79E-03	1.30E-03	1.10E-02
TOTAL BODY	mrem	1.38E-03	8.79E-03	1.30E-03	1.15E-02
THYROID	mrem	9.99E-04	8.79E-03	1.30E-03	1.11E-02
KIDNEY	mrem	9.58E-04	8.79E-03	1.30E-03	1.10E-02
LUNG	mrem	9.62E-04	8.79E-03	1.30E-03	1.11E-02
GI-LLI	mrem	9.57E-04	8.79E-03	1.30E-03	1.10E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	1.25E-03	9.60E-04	2.21E-03	0.01
BONE	mrem	6.09E-04	1.03E-02	1.09E-02	0.04
LIVER	mrem	5.05E-03	1.10E-02	1.61E-02	0.06
TOTAL BODY	mrem	5.41E-03	1.15E-02	1.69E-02	0.07
THYROID	mrem	1.04E-02	1.11E-02	2.15E-02	0.03
KIDNEY	mrem	4.70E-03	1.10E-02	1.57E-02	0.06
LUNG	mrem	4.55E-03	1.11E-02	1.56E-02	0.06
GI-LLI	mrem	4.52E-03	1.10E-02	1.56E-02	0.06

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $6.36E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $6.29E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $5.30E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.39E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.16\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.14\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.02\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $3.51\text{E-}09 \text{ m}^{-2}$

2001

		SITE BOUNDARY		NEAREST RESIDENT		
		LOCATION: 1.40 km SSW		LOCATION: 2.93 km NNW		
		AGE GROUP: CHILD		AGE GROUP: CHILD		
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	5.92E-03	0.06	3.27E-03	N/A	
BETA AIR DOSE *	mrad	1.09E-02	0.05	6.02E-03	N/A	
WHOLE BODY ***	mrem	5.81E-03	N/A	3.27E-03	N/A	
SKIN***	mrem	1.13E-02	N/A	6.31E-03	N/A	
BONE**	mrem	5.16E-04	N/A	2.70E-03	0.02	
LIVER**	mrem	2.81E-03	N/A	1.37E-02	0.09	
TOTAL BODY**	mrem	2.80E-03	N/A	1.16E-02	0.08	
THYROID **	mrem	2.90E-03	N/A	2.34E-02	0.16	
KIDNEY**	mrem	2.80E-03	N/A	1.20E-02	0.08	
LUNG**	mrem	2.84E-03	N/A	1.14E-02	0.08	
GI-LLI **	mrem	2.80E-03	N/A	1.12E-02	0.07	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	2.47E-03	N/A	N/A	2.47E-03
BONE	mrem	1.89E-04	8.79E-03	1.09E-02	1.99E-02
LIVER	mrem	7.96E-04	8.79E-03	1.09E-02	2.05E-02
TOTAL BODY	mrem	2.00E-03	8.79E-03	1.09E-02	2.17E-02
THYROID	mrem	8.11E-04	8.79E-03	1.09E-02	2.05E-02
KIDNEY	mrem	7.95E-04	8.79E-03	1.09E-02	2.05E-02
LUNG	mrem	8.02E-04	8.79E-03	1.09E-02	2.05E-02
GI-LLI	mrem	7.95E-04	8.79E-03	1.09E-02	2.05E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	2.94E-03	2.47E-03	5.41E-03	0.02
BONE	mrem	4.85E-04	1.99E-02	2.04E-02	0.08
LIVER	mrem	3.84E-03	2.05E-02	2.43E-02	0.10
TOTAL BODY	mrem	5.14E-03	2.17E-02	2.68E-02	0.11
THYROID	mrem	5.61E-03	2.05E-02	2.61E-02	0.03
KIDNEY	mrem	3.53E-03	2.05E-02	2.40E-02	0.10
LUNG	mrem	3.42E-03	2.05E-02	2.39E-02	0.10
GI-LLI	mrem	3.40E-03	2.05E-02	2.39E-02	0.10

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: 8.35E-07 sec/m³ X/Q Decayed and Undepleted: 8.28E-07 sec/m³ X/Q Decayed and Depleted: 6.96E-07 sec/m³ D/Q Deposition rate: 2.90E-09 m⁻²

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.42\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.41\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.25\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $4.43\text{E-}06 \text{ m}^{-2}$

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 km SSW		LOCATION: 2.93 km NNW		
		AGE GROUP: CHII	LD	AGE GROUP: CHII	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	3.49E-04	0.00	2.05E-04	N/A	
BETA AIR DOSE *	mrad	4.05E-04	0.00	2.38E-04	N/A	
WHOLE BODY ***	mrem	8.59E-04	N/A	5.40E-04	N/A	
SKIN***	mrem	1.14E-03	N/A	7.07E-04	N/A	
BONE**	mrem	5.40E-04	N/A	1.72E-03	0.01	
LIVER**	mrem	3.36E-03	N/A	1.61E-02	0.11	
TOTAL BODY**	mrem	3.36E-03	N/A	1.48E-02	0.10	
THYROID **	mrem	3.36E-03	N/A	1.49E-02	0.10	
KIDNEY**	mrem	3.36E-03	N/A	1.50E-02	0.10	
LUNG**	mrem	3.40E-03	N/A	1.48E-02	0.10	
GI-LLI **	mrem	3.35E-03	N/A	1.46E-02	0.10	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2002

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	1.12E-04	N/A	N/A	1.12E-04
BONE	mrem	1.57E-04	8.79E-03	9.88E-03	1.88E-02
LIVER	mrem	7.66E-04	8.79E-03	9.88E-03	1.94E-02
TOTAL BODY	mrem	8.26E-04	8.79E-03	9.88E-03	1.95E-02
THYROID	mrem	7.66E-04	8.79E-03	9.88E-03	1.94E-02
KIDNEY	mrem	7.66E-04	8.79E-03	9.88E-03	1.94E-02
LUNG	mrem	7.73E-04	8.79E-03	9.88E-03	1.94E-02
GI-LLI	mrem	7.66E-04	8.79E-03	9.88E-03	1.94E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	3.58E-04	1.12E-04	4.70E-04	0.00
BONE	mrem	6.83E-04	1.88E-02	1.95E-02	0.08
LIVER	mrem	9.53E-03	1.94E-02	2.90E-02	0.12
TOTAL BODY	mrem	9.57E-03	1.95E-02	2.91E-02	0.12
THYROID	mrem	9.12E-03	1.94E-02	2.86E-02	0.04
KIDNEY	mrem	9.18E-03	1.94E-02	2.86E-02	0.11
LUNG	mrem	9.08E-03	1.94E-02	2.85E-02	0.11
GI-LLI	mrem	9.10E-03	1.94E-02	2.85E-02	0.11

^{*}Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $1.07E-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.04E-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $9.14E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.31E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.96\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.92\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.72\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.78\text{E-}09 \text{ m}^{-2}$

		SITE BOUNDARY		NEAREST RESIDENT		
		LOCATION: 1.40	km SSW	LOCATION: 1.93	LOCATION: 1.93 km WSW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	ILD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.51E-03	0.02	8.17E-04	N/A	
BETA AIR DOSE *	mrad	3.39E-03	0.02	1.84E-03	N/A	
WHOLE BODY ***	mrem	1.76E-03	N/A	8.88E-04	N/A	
SKIN***	mrem	3.37E-03	N/A	1.76E-03	N/A	
BONE**	mrem	4.57E-04	N/A	2.86E-04	0.00	
LIVER**	mrem	3.54E-03	N/A	1.51E-02	0.10	
TOTAL BODY**	mrem	3.54E-03	N/A	1.51E-02	0.10	
THYROID **	mrem	3.68E-03	N/A	2.66E-02	0.18	
KIDNEY**	mrem	3.54E-03	N/A	1.51E-02	0.10	
LUNG**	mrem	3.59E-03	N/A	1.51E-02	0.10	
GI-LLI **	mrem	3.54E-03	N/A	1.51E-02	0.10	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2003

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	3.95E-04	N/A	N/A	3.95E-04
BONE	mrem	1.02E-04	8.79E-03	9.21E-04	9.81E-03
LIVER	mrem	5.87E-04	8.79E-03	9.21E-04	1.03E-02
TOTAL BODY	mrem	7.64E-04	8.79E-03	9.21E-04	1.05E-02
THYROID	mrem	6.01E-04	8.79E-03	9.21E-04	1.03E-02
KIDNEY	mrem	5.87E-04	8.79E-03	9.21E-04	1.03E-02
LUNG	mrem	5.93E-04	8.79E-03	9.21E-04	1.03E-02
GI-LLI	mrem	5.87E-04	8.79E-03	9.21E-04	1.03E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	1.35E-03	3.95E-04	1.75E-03	0.01
BONE	mrem	2.38E-04	9.81E-03	1.01E-02	0.04
LIVER	mrem	7.74E-03	1.03E-02	1.80E-02	0.07
TOTAL BODY	mrem	8.33E-03	1.05E-02	1.88E-02	0.08
THYROID	mrem	1.23E-02	1.03E-02	2.26E-02	0.03
KIDNEY	mrem	7.73E-03	1.03E-02	1.80E-02	0.07
LUNG	mrem	7.71E-03	1.03E-02	1.80E-02	0.07
GI-LLI	mrem	7.81E-03	1.03E-02	1.81E-02	0.07

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: 1.01E-06 sec/m³ X/Q Decayed and Undepleted: 9.86E-07 sec/m³ X/Q Decayed and Depleted: 8.39E-07 sec/m³ D/Q Deposition rate: 2.89E-09 m⁻²

Site Boundary

Direction: NNW

Distance: 2200 meters

X/Q, Undecayed and Undepleted: $1.49\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.46\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.27\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $4.68\text{E-}09 \text{ m}^{-2}$

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 2.20	LOCATION: 2.20 km NNW		LOCATION: 2.93 km NNW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.71E-02	0.17	1.16E-02	N/A	
BETA AIR DOSE *	mrad	4.02E-02	0.20	2.71E-02	N/A	
WHOLE BODY ***	mrem	2.14E-02	N/A	1.41E-02	N/A	
SKIN***	mrem	3.91E-02	N/A	2.60E-02	N/A	
BONE**	mrem	6.71E-03	N/A	6.45E-02	0.43	
LIVER**	mrem	8.48E-03	N/A	9.29E-02	0.62	
TOTAL BODY**	mrem	8.32E-03	N/A	3.03E-02	0.20	
THYROID **	mrem	1.47E-02	N/A	8.58E-01	5.72	
KIDNEY**	mrem	8.37E-03	N/A	4.26E-02	0.28	
LUNG**	mrem	8.34E-03	N/A	2.30E-02	0.15	
GI-LLI **	mrem	8.28E-03	N/A	1.51E-02	0.10	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2004

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	5.80E-03	N/A	N/A	5.80E-03
BONE	mrem	1.83E-03	8.79E-03	3.18E-03	1.38E-02
LIVER	mrem	2.22E-03	8.79E-03	3.18E-03	1.42E-02
TOTAL BODY	mrem	4.86E-03	8.79E-03	3.18E-03	1.68E-02
THYROID	mrem	3.06E-03	8.79E-03	3.18E-03	1.50E-02
KIDNEY	mrem	2.20E-03	8.79E-03	3.18E-03	1.42E-02
LUNG	mrem	2.20E-03	8.79E-03	3.18E-03	1.42E-02
GI-LLI	mrem	2.19E-03	8.79E-03	3.18E-03	1.42E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	2.20E-02	5.80E-03	2.78E-02	0.11
BONE	mrem	1.91E-02	1.38E-02	3.29E-02	0.13
LIVER	mrem	3.89E-02	1.42E-02	5.31E-02	0.21
TOTAL BODY	mrem	4.20E-02	1.68E-02	5.88E-02	0.24
THYROID	mrem	3.04E-01	1.50E-02	3.19E-01	0.42
KIDNEY	mrem	2.10E-02	1.42E-02	3.52E-02	0.14
LUNG	mrem	1.34E-02	1.42E-02	2.76E-02	0.11
GI-LLI	mrem	1.12E-02	1.42E-02	2.53E-02	0.10

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: 1.08E-06 sec/m³ X/Q Decayed and Undepleted: 1.06E-06 sec/m³ X/Q Decayed and Depleted: 8.98E-07 sec/m³ D/Q Deposition rate: 3.12E-09 m⁻²

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.65\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.63\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.45\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.09\text{E-}09 \text{ m}^{-2}$

		SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 km SSW		LOCATION: 2.93 km NNW	
		AGE GROUP: CHI	LD	AGE GROUP: CHII	LD
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)
GAMMA AIR DOSE *	mrad	1.69E-03	0.02	1.10E-03	N/A
BETA AIR DOSE *	mrad	3.58E-03	0.02	2.33E-03	N/A
WHOLE BODY ***	mrem	3.56E-03	N/A	2.24E-03	N/A
SKIN***	mrem	6.30E-03	N/A	4.02E-03	N/A
BONE**	mrem	2.01E-03	N/A	1.74E-02	0.12
LIVER**	mrem	4.12E-03	N/A	3.32E-02	0.22
TOTAL BODY**	mrem	4.07E-03	N/A	1.67E-02	0.11
THYROID **	mrem	4.07E-03	N/A	1.30E-02	0.09
KIDNEY**	mrem	4.08E-03	N/A	1.94E-02	0.13
LUNG**	mrem	4.12E-03	N/A	1.53E-02	0.10
GI-LLI **	mrem	4.07E-03	N/A	1.31E-02	0.09

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2005

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	6.91E-04	N/A	N/A	6.91E-04
BONE	mrem	5.06E-04	8.79E-03	6.00E-03	1.53E-02
LIVER	mrem	9.00E-4	8.79E-03	6.00E-03	1.57E-02
TOTAL BODY	mrem	1.15E-03	8.79E-03	6.00E-03	1.59E-02
THYROID	mrem	8.93E-04	8.79E-03	6.00E-03	1.57E-02
KIDNEY	mrem	8.95E-04	8.79E-03	6.00E-03	1.57E-02
LUNG	mrem	9.00E-04	8.79E-03	6.00E-03	1.57E-02
GI-LLI	mrem	8.93E-04	8.79E-03	6.00E-03	1.57E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	2.82E-03	6.91E-04	3.51E-03	0.01
BONE	mrem	5.23E-03	1.53E-02	2.05E-02	0.08
LIVER	mrem	1.57E-02	1.57E-02	3.13E-02	0.13
TOTAL BODY	mrem	1.49E-02	1.59E-02	3.08E-02	0.12
THYROID	mrem	8.37E-03	1.57E-02	2.41E-02	0.03
KIDNEY	mrem	1.08E-02	1.57E-02	2.65E-02	0.11
LUNG	mrem	9.18E-03	1.57E-02	2.49E-02	0.10
GI-LLI	mrem	8.58E-03	1.57E-02	2.43E-02	0.10

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $9.46E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $9.25E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $7.85E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.85E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.43\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.40\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.25\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $3.82\text{E-}09 \text{ m}^{-2}$

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 I	LOCATION: 1.40 km SSW		LOCATION: 2.93 km NNW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.05E-04	0.00	6.92E-05	N/A	
BETA AIR DOSE *	mrad	3.08E-04	0.00	2.03E-04	N/A	
WHOLE BODY ***	mrem	2.39E-04	N/A	1.13E-04	N/A	
SKIN***	mrem	4.68E-04	N/A	2.65E-04	N/A	
BONE**	mrem	1.40E-04	N/A	4.81E-05	0.00	
LIVER**	mrem	1.77E-03	N/A	9.29E-03	0.06	
TOTAL BODY**	mrem	1.77E-03	N/A	9.30E-03	0.06	
THYROID **	mrem	1.77E-03	N/A	9.29E-03	0.06	
KIDNEY**	mrem	1.77E-03	N/A	9.29E-03	0.06	
LUNG**	mrem	1.77E-03	N/A	9.30E-03	0.06	
GI-LLI **	mrem	1.77E-03	N/A	9.30E-03	0.06	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2006

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	6.10E-05	N/A	N/A	6.10E-05
BONE	mrem	2.19E-05	8.79E-03	6.50E-03	1.53E-02
LIVER	mrem	3.73E-04	8.79E-03	6.50E-03	1.57E-02
TOTAL BODY	mrem	3.92E-04	8.79E-03	6.50E-03	1.57E-02
THYROID	mrem	3.73E-04	8.79E-03	6.50E-03	1.57E-02
KIDNEY	mrem	3.73E-04	8.79E-03	6.50E-03	1.57E-02
LUNG	mrem	3.74E-04	8.79E-03	6.50E-03	1.57E-02
GI-LLI	mrem	3.73E-04	8.79E-03	6.50E-03	1.57E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	2.17E-04	6.10E-05	2.78E-04	0.00
BONE	mrem	4.81E-05	1.53E-02	1.54E-02	0.06
LIVER	mrem	5.68E-03	1.57E-02	2.13E-02	0.09
TOTAL BODY	mrem	5.74E-03	1.57E-02	2.14E-02	0.09
THYROID	mrem	5.68E-03	1.57E-02	2.13E-02	0.03
KIDNEY	mrem	5.68E-03	1.57E-02	2.13E-02	0.09
LUNG	mrem	5.68E-03	1.57E-02	2.13E-02	0.09
GI-LLI	mrem	5.69E-03	1.57E-02	2.13E-02	0.09

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $8.56E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $8.45E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $7.12E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.59E-09 \text{ m}^{-2}$

Site Boundary

Direction: NNW

Distance: 2200 meters

X/Q, Undecayed and Undepleted: $1.26\text{E-}06~\text{sec/m}^3$ X/Q Decayed and Undepleted: $1.25\text{E-}06~\text{sec/m}^3$ X/Q Decayed and Depleted: $1.08\text{E-}06~\text{sec/m}^3$ D/Q Deposition rate: $4.18\text{E-}09~\text{m}^{-2}$

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 2.20	LOCATION: 2.20 km NNW		LOCATION: 2.93 km NNW	
		AGE GROUP: CHI	LD	AGE GROUP: CHILD		
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	4.40E-04	0.00	2.98E-04	N/A	
BETA AIR DOSE *	mrad	9.60E-04	0.00	6.49E-04	N/A	
WHOLE BODY ***	mrem	4.29E-04	N/A	2.88E-04	N/A	
SKIN***	mrem	9.15E-04	N/A	6.17E-04	N/A	
BONE**	mrem	3.92E-05	N/A	2.63E-05	0.00	
LIVER**	mrem	1.62E-03	N/A	9.46E-03	0.06	
TOTAL BODY**	mrem	1.62E-03	N/A	9.46E-03	0.06	
THYROID **	mrem	1.62E-03	N/A	9.82E-03	0.07	
KIDNEY**	mrem	1.62E-03	N/A	9.46E-03	0.06	
LUNG**	mrem	1.62E-03	N/A	9.46E-03	0.06	
GI-LLI **	mrem	1.62E-03	N/A	9.46E-03	0.06	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2007

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	1.82E-04	N/A	N/A	1.82E-04
BONE	mrem	1.22E-05	1.48E-02	2.32E-03	1.71E-02
LIVER	mrem	4.08E-04	1.48E-02	2.32E-03	1.75E-02
TOTAL BODY	mrem	4.89E-04	1.48E-02	2.32E-03	1.76E-02
THYROID	mrem	4.08E-04	1.48E-02	2.32E-03	1.75E-02
KIDNEY	mrem	4.08E-04	1.48E-02	2.32E-03	1.75E-02
LUNG	mrem	4.08E-04	1.48E-02	2.32E-03	1.75E-02
GI-LLI	mrem	4.08E-04	1.48E-02	2.32E-03	1.75E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	5.92E-04	1.82E-04	7.74E-04	0.00
BONE	mrem	2.48E-05	1.71E-02	1.72E-02	0.07
LIVER	mrem	5.77E-03	1.75E-02	2.33E-02	0.09
TOTAL BODY	mrem	6.03E-03	1.76E-02	2.36E-02	0.09
THYROID	mrem	5.89E-03	1.75E-02	2.34E-02	0.03
KIDNEY	mrem	5.77E-03	1.75E-02	2.33E-02	0.09
LUNG	mrem	5.77E-03	1.75E-02	2.33E-02	0.09
GI-LLI	mrem	5.77E-03	1.75E-02	2.33E-02	0.09

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: 8.25E-07 sec/m³ X/Q Decayed and Undepleted: 8.19E-07 sec/m³ X/Q Decayed and Depleted: 6.88E-07 sec/m³ D/Q Deposition rate: 3.12E-09 m⁻²

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.33\text{E-}06~\text{sec/m}^3$ X/Q Decayed and Undepleted: $1.32\text{E-}06~\text{sec/m}^3$ X/Q Decayed and Depleted: $1.17\text{E-}06~\text{sec/m}^3$ D/Q Deposition rate: $4.23\text{E-}09~\text{m}^{-2}$

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 I	km SSW	LOCATION: 2.93 km NNW		
		AGE GROUP: CHI	LD	AGE GROUP: CHII	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	1.98E-03	0.02	1.23E-03	N/A	
BETA AIR DOSE *	mrad	5.12E-03	0.03	3.18E-03	N/A	
WHOLE BODY ***	mrem	1.82E-03	N/A	1.14E-03	N/A	
SKIN***	mrem	4.03E-03	N/A	2.51E-03	N/A	
BONE**	mrem	1.27E-04	N/A	1.25E-04	0.00	
LIVER**	mrem	2.18E-03	N/A	1.10E-02	0.07	
TOTAL BODY**	mrem	2.18E-03	N/A	1.10E-02	0.07	
THYROID **	mrem	2.20E-03	N/A	1.48E-02	0.10	
KIDNEY**	mrem	2.18E-03	N/A	1.10E-02	0.07	
LUNG**	mrem	2.19E-03 N/A		1.10E-02	0.07	
GI-LLI **	mrem	2.18E-03	N/A	1.10E-02	0.07	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2008

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	7.68E-04	N/A	N/A	7.68E-04
BONE	mrem	3.91E-05	9.00E-03	1.43E-03	1.05E-02
LIVER	mrem	5.13E-04	9.00E-03	1.43E-03	1.09E-02
TOTAL BODY	mrem	8.47E-04	9.00E-03	1.43E-03	1.13E-02
THYROID	mrem	5.17E-04	9.00E-03	1.43E-03	1.09E-02
KIDNEY	mrem	5.13E-04	9.00E-03	1.43E-03	1.09E-02
LUNG	mrem	5.15E-04	9.00E-03	1.43E-03	1.09E-02
GI-LLI	mrem	5.13E-04	9.00E-03	1.43E-03	1.09E-02

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	2.42E-03	7.68E-04	3.19E-03	0.01
BONE	mrem	1.03E-04	1.05E-02	1.06E-02	0.04
LIVER	mrem	6.75E-03	1.09E-02	1.77E-02	0.07
TOTAL BODY	mrem	7.80E-03	1.13E-02	1.91E-02	0.08
THYROID	mrem	8.05E-03	1.09E-02	1.90E-02	0.03
KIDNEY	mrem	6.75E-03	1.09E-02	1.77E-02	0.07
LUNG	mrem	6.75E-03	1.09E-02	1.77E-02	0.07
GI-LLI	mrem	6.77E-03	1.09E-02	1.77E-02	0.07

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $8.97E-07 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $8.69E-07 \text{ sec/m}^3$ X/Q Decayed and Depleted: $7.68E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.65E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $2.32E-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $2.25E-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $2.03E-06 \text{ sec/m}^3$ D/Q Deposition rate: $5.28E-06 \text{ m}^{-2}$

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40	km SSW	LOCATION: 1.93	km WSW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	: CHILD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	6.74E-03	0.07	2.60E-03	N/A	
BETA AIR DOSE *	mrad	1.67E-02	0.08	6.46E-03	N/A	
WHOLE BODY ***	mrem	5.80E-03	N/A	2.24E-03	N/A	
SKIN***	mrem	1.31E-02	N/A	5.07E-03	N/A	
BONE**	mrem	2.24E-07	N/A	3.49E-05	0.00	
LIVER**	mrem	2.52E-03	N/A	8.62E-03	0.06	
TOTAL BODY**	mrem	2.52E-03	N/A	8.62E-03	0.06	
THYROID **	mrem	2.52E-03	N/A	8.79E-03	0.06	
KIDNEY**	mrem	2.52E-03	N/A	8.62E-03	0.06	
LUNG**	mrem	2.52E-03	N/A	8.62E-03	0.06	
GI-LLI **	mrem	2.52E-03	N/A	8.62E-03	0.06	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2009

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	1.52E-03	N/A	N/A	1.52E-03
BONE	mrem	1.52E-08	8.79E-03	1.35E-04	8.93E-03
LIVER	mrem	3.35E-04	8.79E-03	1.35E-04	9.26E-03
TOTAL BODY	mrem	1.01E-03	8.79E-03	1.35E-04	9.93E-03
THYROID	mrem	3.35E-04	8.79E-03	1.35E-04	9.26E-03
KIDNEY	mrem	3.35E-04	8.79E-03	1.35E-04	9.26E-03
LUNG	mrem	3.35E-04	8.79E-03	1.35E-04	9.26E-03
GI-LLI	mrem	3.35E-04	8.79E-03	1.35E-04	9.26E-03

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	4.99E-03	1.52E-03	6.51E-03	0.03
BONE	mrem	1.22E-05	8.93E-03	8.94E-03	0.04
LIVER	mrem	5.02E-03	9.26E-03	1.43E-02	0.06
TOTAL BODY	mrem	7.23E-03	9.93E-03	1.72E-02	0.07
THYROID	mrem	5.08E-03	9.26E-03	1.43E-02	0.02
KIDNEY	mrem	5.02E-03	9.26E-03	1.43E-02	0.06
LUNG	mrem	5.02E-03	9.26E-03	1.43E-02	0.06
GI-LLI	mrem	5.02E-03	9.26E-03	1.43E-02	0.06

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: $1.17E-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.14E-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $9.71E-07 \text{ sec/m}^3$ D/Q Deposition rate: $3.20E-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.75E-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.72E-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.54E-06 \text{ sec/m}^3$ D/Q Deposition rate: $5.26E-09 \text{ m}^{-2}$

		SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 km SSW		LOCATION: 2.93 km NNW	
		AGE GROUP: CHILD		AGE GROUP: CHILD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)
GAMMA AIR DOSE *	mrad	3.92E-03	0.04	2.59E-03	N/A
BETA AIR DOSE *	mrad	1.00E-02	0.05	6.63E-03	N/A
WHOLE BODY ***	mrem	3.42E-03	N/A	2.26E-03	N/A
SKIN***	mrem	7.71E-03	N/A	5.10E-03	N/A
BONE**	mrem	6.91E-05	N/A	1.07E-04	0.00
LIVER**	mrem	1.90E-03	N/A	1.05E-02	0.07
TOTAL BODY**	mrem	1.90E-03	N/A	1.05E-02	0.07
THYROID **	mrem	1.96E-03	N/A	1.78E-02	0.12
KIDNEY**	mrem	1.90E-03	N/A	1.05E-02	0.07
LUNG**	mrem	1.91E-03	N/A	1.05E-02	0.07
GI-LLI **	mrem	1.90E-03	N/A	1.05E-02	0.07

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2010

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	1.15E-03	N/A	N/A	1.15E-03
BONE	mrem	1.70E-05	8.79E-03	5.13E-04	9.32E-03
LIVER	mrem	3.38E-04	8.79E-03	5.13E-04	9.64E-03
TOTAL BODY	mrem	8.45E-04	8.79E-03	5.13E-04	1.01E-02
THYROID	mrem	3.44E-04	8.79E-03	5.13E-04	9.65E-03
KIDNEY	mrem	3.38E-04	8.79E-03	5.13E-04	9.64E-03
LUNG	mrem	3.39E-04	8.79E-03	5.13E-04	9.64E-03
GI-LLI	mrem	3.38E-04	8.79E-03	5.13E-04	9.64E-03

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	5.06E-03	1.15E-03	6.22E-03	0.02
BONE	mrem	6.31E-05	9.32E-03	9.38E-03	0.04
LIVER	mrem	6.41E-03	9.64E-03	1.60E-02	0.06
TOTAL BODY	mrem	8.63E-03	1.01E-02	1.88E-02	0.08
THYROID	mrem	8.93E-03	9.65E-03	1.86E-02	0.02
KIDNEY	mrem	6.41E-03	9.64E-03	1.61E-02	0.06
LUNG	mrem	6.40E-03	9.64E-03	1.60E-02	0.06
GI-LLI	mrem	6.41E-03	9.64E-03	1.61E-02	0.06

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $1.06\text{E}-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.02\text{E}-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $9.09\text{E}-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.49\text{E}-09 \text{ m}^{-2}$

Site Boundary

Direction: SSW

Distance: 1400 meters

X/Q, Undecayed and Undepleted: $1.74\text{E-}06~\text{sec/m}^3$ X/Q Decayed and Undepleted: $1.69\text{E-}06~\text{sec/m}^3$ X/Q Decayed and Depleted: $1.53\text{E-}06~\text{sec/m}^3$ D/Q Deposition rate: $4.25\text{E-}09~\text{m}^{-2}$

DOSE AT THE SITE BOUNDARY AND TO THE NEAREST RESIDENT FROM GASEOUS EFFLUENTS

2011

		SITE BOUNDARY	SITE BOUNDARY		NEAREST RESIDENT	
		LOCATION: 1.40 I	LOCATION: 1.40 km SSW		LOCATION: 1.93 km WSW	
		AGE GROUP: CHI	LD	AGE GROUP: CHI	LD	
Organ	Unit	Dose	% Limit ^(a)	Dose	% Limit ^(b)	
GAMMA AIR DOSE *	mrad	8.77E-04	0.01	5.29E-04	N/A	
BETA AIR DOSE *	mrad	1.60E-03	0.01	9.63E-04	N/A	
WHOLE BODY ***	mrem	8.06E-04	N/A	4.87E-04	N/A	
SKIN***	mrem	1.84E-03	N/A	1.11E-03	N/A	
BONE**	mrem	1.90E-06	N/A	1.10E-05	0.00	
LIVER**	mrem	2.31E-03	N/A	1.24E-02	0.08	
TOTAL BODY**	mrem	2.31E-03	N/A	1.24E-02	0.08	
THYROID **	mrem	2.32E-03	N/A	1.32E-02	0.09	
KIDNEY**	mrem	2.31E-03	N/A	1.24E-02	0.08	
LUNG**	mrem	2.31E-03	N/A	1.24E-02	0.08	
GI-LLI **	mrem	2.31E-03	N/A	1.24E-02	0.08	

^{*} Dose from Noble Gases only

^{**}Dose from Tritium, Radioiodines, and Particulates only

^{***}Dose from Noble Gases plus Ground Plane dose

⁽a) Annual dose limits of Offsite Dose Calculation Manual of 10 mrad gamma air dose and 20 mrad beta air dose.

⁽b) Annual dose limits of Offsite Dose Calculation Manual of 15 mrem to any organ from 131 I, 133 I, 3 H and particulate radionuclides with half-lives greater than 8 days.

DOSE TO THE MEMBER OF THE PUBLIC FROM ACTIVITIES WITHIN THE SITE BOUNDARY 2011

Organ	Unit	Effluent Dose within the Site Boundary	Direct Radiation from the Unit	Direct Radiation from Outdoor Storage Tanks	Total Dose for the Year
SKIN	mrem	2.82E-04	N/A	N/A	2.82E-04
BONE	mrem	5.63E-07	8.79E-03	1.00E-07	8.79E-03
LIVER	mrem	4.07E-04	8.79E-03	1.00E-07	9.20E-03
TOTAL BODY	mrem	5.31E-04	8.79E-03	1.00E-07	9.32E-03
THYROID	mrem	4.08E-04	8.79E-03	1.00E-07	9.20E-03
KIDNEY	mrem	4.07E-04	8.79E-03	1.00E-07	9.20E-03
LUNG	mrem	4.07E-04	8.79E-03	1.00E-07	9.20E-03
GI-LLI	mrem	4.07E-04	8.79E-03	1.00E-07	9.20E-03

TOTAL DOSE DUE TO THE URANIUM FUEL CYCLE (MEMBER OF THE PUBLIC) 2011

Organ	Unit	Dose at the Residence Location	Dose from Activities within the Site Boundary	Total Dose to the Member of the Public	% Limit*
SKIN	mrem	8.71E-04	2.82E-04	1.15E-03	0.00
BONE	mrem	4.74E-06	8.79E-03	8.80E-03	0.04
LIVER	mrem	5.67E-03	9.20E-03	1.49E-02	0.06
TOTAL BODY	mrem	6.05E-03	9.32E-03	1.54E-02	0.06
THYROID	mrem	5.98E-03	9.20E-03	1.52E-02	0.02
KIDNEY	mrem	5.67E-03	9.20E-03	1.49E-02	0.06
LUNG	mrem	5.67E-03	9.20E-03	1.49E-02	0.06
GI-LLI	mrem	5.67E-03	9.20E-03	1.49E-02	0.06

 $^{^*}$ Annual dose limits from 40CFR190.10(a) of 25 mrem whole body, 75 mrem to the thyroid, and 25 mrem to any other organ.

Dispersion Parameters for 2012

Nearest Resident

Direction: WSW

Distance: 1931 meters

X/Q, Undecayed and Undepleted: $1.17E-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.11E-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $9.97E-07 \text{ sec/m}^3$ D/Q Deposition rate: $2.07E-09 \text{ m}^{-2}$

Site Boundary

Direction: S

Distance: 1300 meters

X/Q, Undecayed and Undepleted: $1.92\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.87\text{E-}06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.69\text{E-}06 \text{ sec/m}^3$ D/Q Deposition rate: $5.20\text{E-}09 \text{ m}^{-2}$

2012 Dose Assessments,	10 CFR 5	0, Appen	dix I		
	Quarter	Quarter	Quarter	Quarter	Yearly
	1	2	3	4	total
Liquid Effluent Dose Limit, Total Body (mrem)	*	*	*	*	*
Total Body Dose (mrem)	*	*	*	*	*
% Limit (%)	*	*	*	*	*
Liquid Effluent Dose Limit, Maximum Organ (mrem)	*	*	*	*	*
Maximum Organ Dose (mrem)	*	*	*	*	*
% Limit (%)	*	*	*	*	*
Gaseous Effluent Dose Limit, Gamma Air (mrem)	5	5	5	5	10
Gamma Air Dose (mrad)	4.15E-05	8.05E-05	2.42E-05	2.84E-05	1.75E-04
% Limit (%)	0.00%	0.00%	0.00%	0.00%	0.00%
Gaseous Effluent Dose Limit, Beta Air (mrem)	10	10	10	10	20
Beta Air Dose (mrad)	3.29E-04	8.55E-05	3.05E-05	2.71E-05	4.72E-04
% Limit (%)	0.00%	0.00%	0.00%	0.00%	0.00%
Gaseous Effluent Dose Limit, Maximum Organ (mrem)	7.5	7.5	7.5	7.5	15
Maximum organ dose ²¹ (mrem)	1.43E-03	2.58E-03	2.96E-03	2.02E-03	8.99E-03
% Limit (%)	0.02%	0.03%	0.04%	0.035	0.06%
¹⁴ C Maximum organ dose (mrem) ²²	*	*	*	*	*

^{*} Liquid dose and ¹⁴C dose did not change.

lodine, ³H, and particulates with greater than an 8 day half- life. ²² Not included in above totals

2012 EPA 40 CFR 190 Individual in the Unrestricted Area						
	Whole Body Thyroid Max Other Organ					
Dose Limit	25 mrem	75 mrem	25 mrem			
Dose (mrem)	1.12E-02	1.12E-02	1.96E-02			
% Limit	0.04%	0.01%	008%			

Dispersion Parameters for 2013

Nearest Resident

Direction: NNW

Distance: 2929 meters

X/Q, Undecayed and Undepleted: 1.08E-06 sec/m³ X/Q Decayed and Undepleted: 1.04E-06 sec/m³ X/Q Decayed and Depleted: 8.89E-07 sec/m³ D/Q Deposition rate: 3.23E-09 m⁻²

Site Boundary

Direction: NNW

Distance: 2200 meters

X/Q, Undecayed and Undepleted: $1.52E-06 \text{ sec/m}^3$ X/Q Decayed and Undepleted: $1.48E-06 \text{ sec/m}^3$ X/Q Decayed and Depleted: $1.29E-06 \text{ sec/m}^3$ D/Q Deposition rate: $4.88E-09 \text{ m}^{-2}$

	10 CFR 5 Quarter	Quarter	Quarter	Quarter	Yearly
	1	2	3	4	total
Liquid Effluent Dose Limit,	*	*	*	*	*
Total Body (mrem)					
Total Body (mrem)	*	*	*	*	*
Total Body Dose (Illiem)					
% Limit (%)	*	*	*	*	*
Liquid Effluent Dose Limit,	*	*	*	*	*
Maximum Organ (mrem)					
Maximum Organ Dose (mrem)	*	*	*	*	*
% Limit (%)	*	*	*	*	*
Gaseous Effluent Dose Limit,	5	5	5	5	10
Gamma Air (mrem)					
Gamma Air Dose (mrad)	5.40E-05	1.69E-04	1.15E-05	2.20E-05	2.56E-04
% Limit (%)	0.00%	0.00%	0.00%	0.00%	0.00%
Gaseous Effluent Dose Limit,	10	10	10	10	20
Beta Air (mrem)					
Beta Air Dose (mrad)	7.56E-05	1.03E-04	1.43E-05	7.77E-06	2.01E-04
% Limit (%)	0.00%	0.00%	0.00%	0.00%	0.00%
Gaseous Effluent Dose Limit,	7.5	7.5	7.5	7.5	15
Maximum Organ (mrem)					
Maximum organ dose ²³ (mrem)	1.08E-03	4.49E-03	3.05E-03	2.23E-03	1.08E-02
% Limit (%)	0.01%	0.06%	0.04%	0.03%	0.07%
¹⁴ C Maximum organ dose (mrem) ²⁴	*	*	*	*	*

^{*} Liquid dose and ¹⁴C dose did not change

²³ lodine, ³H, and particulates with greater than an 8 day half- life. ²⁴ Not included in above totals

2013 EPA 40 CFR 190 Individual in the Unrestricted Area						
	Whole Body Thyroid Max Other Organ					
Dose Limit	25 mrem	75 mrem	25 mrem			
Dose (mrem)	1.30E-02	1.30E-02	2.07E-02			
% Limit	0.05%	0.02%	0.08%			

Appendix D

Leakage from Manhole 86-2 Limited Site Investigation

Event Description²⁵

The original Techite ²⁶ plant discharge line was replaced in 2007 with a new high density polyethylene (HDPE) line constructed approximately parallel to the old line. This pipeline carries cooling tower blowdown and liquid radioactive effluent to the Missouri River. The discharge point is ~400 feet downstream of the plant intake structure. The Techite piping that connected the cooling tower blowdown to the new HDPE plant discharge pipeline was not replaced at that time.

The Techite piping that connected the cooling tower blowdown to the plant discharge pipeline was replaced in 2010 with 18" HDPE and connected to the HDPE plant discharge line. The connection was made via new manhole 86-2 (MH86-2). MH86-2 also provides a connection with the 6" stainless steel (SS) liquid radwaste discharge pipe. The liquid radwaste discharges into MH86-2 where it mixes with the cooling tower blowdown prior to being transported to the river by the ~6 mile long plant discharge line. The HDPE piping penetrations were installed with an anchor/ water stop, essentially a collar or ring, cast in place with the concrete manhole to prevent leakage from the penetration. MH86-2 is coated with a waterproofing elastomeric polyurethane bonded geotextile system. The coating system has a waterproofing function to protect the concrete and it provides a secondary barrier to prevent leakage through the concrete structure. The coating was applied to the interior and exterior surfaces of the manhole. The coating was not intended to provide primary waterproofing of the piping penetrations.

Issues with shredding of the waterproof coating inside MH86-2 were first identified on November 1, 2012 while troubleshooting reduced plant discharge pipeline flow rate. An October, 2013 self-assessment of Callaway's groundwater protection program by a team of EPRI experts, an industry peer and Callaway personnel identified the degraded coating in MH86-2 as a gap with respect to NEI 07-07, "Industry Groundwater Protection Initiative- Final Guidance" and recommended installation of a sentinel well to monitor for possible leaks.

On July 22, 2014, monitoring well U1MW-031 was installed as a sentinel well to monitor for possible leakage from MH86-2. Well development was completed on July 25, 2014 and the first sample was taken the same day. On July 31, 2014, the vendor lab notified Callaway that the 3 H concentration in the sample was 1.6E6 pCi/L and 60 Co was present at 12 pCi/L. Subsequent samples showed only 3 H.

²⁶ Techite is a registered trademark of Amoco Reinforced Plastics Company, a former subsidiary of Amoco Chemicals.

 $^{^{\}rm 25}$ CAR 201405071, $^{\rm "}^{\rm 3}{\rm H}$ and $^{\rm 60}{\rm Co}$ in Monitoring Well U1MW-031"

All liquid radwaste discharges were suspended. A four hour voluntary notification was made to the NRC Operations Center pursuant to NEI 07-07. Notifications were also made to the Missouri Department of Natural Resources, NRC Resident Inspector, NRC Region IV Office, Callaway County Presiding Commissioner, Nuclear Energy Institute, and American Nuclear Insurers.

The manhole was visually inspected on August 1, 2014. The inspection revealed a failure of the seals around the HDPE plant discharge piping penetration and the 6" SS radwaste discharge line penetration. Hydrophobic polyurethane foam (Blome Sealant 78²⁷) was injected into injection ports drilled around the HDPE plant discharge piping penetration and also behind the link seals on the 6" SS radwaste discharge line penetration.

Four different fluorescent dye tests were performed to demonstrate that the seal repairs were effective. Liquid radwaste discharges recommenced on August 15, 2015 and two additional dye tests were performed. On August 28, 2014, the 6" SS radwaste discharge piping was extended through the manhole and about 65" down the HDPE plant discharge line, thus bypassing MH86-2.

Cause Analysis

A formal root cause evaluation was performed for this event. The gaps between the HDPE plant discharge pipeline and the concrete wall of the manhole are the result of inadequate bearing capacity of the bedding material. The HDPE plant discharge pipeline was inserted into the manhole before the bedding material was fully in place resulting in the challenge of placing and compacting the bedding material under the pipe. The bedding material is more critical than in typical applications due to close proximity to the rigid manhole wall penetration seals that are intolerant to movement and the ~25' bury depth results in significant overburden loading. The inadequate bedding compaction and significant overburden loading allowed for settlement and rotation of the pipe which sheared the water stops, deformed the pipe, and caused gaps to develop. The 6" SS radwaste discharge pipe experienced similar issues due to inadequate bedding and significant overburden loading resulting in compression of the rubber portion of the Link- Seals²⁸.

Activity Concentration

It is assumed the leakage began at the time of construction and lasted until discovery so that the duration of the leakage is assumed to be approximately 4 years. The volume of leakage is unknown therefore the total activity leaked is unknown. The average ³H concentration in the leakage can be obtained from the Annual Radioactive Effluent Release Report for the subject years as shown in TABLE 1.

²⁷ Registered trademark of Blome International

²⁸ Registered trademark of GPT/ EnPro Industries, Inc.

TABLE 1: AVERAGE ³H CONCENTRATION IN LIQUID EFFLUENTS

Year	Average ³ Η Concentration (μCi/ml)
2010	6.61E-4
2011	1.60E-3
2012	7.72E-4
2013	1.45E-3
2014	2.57E-3

Hydrogeology^{29,30}

The Callaway Energy Center is located on a topographic plateau approximately 350' above the Missouri River underlain by low permeability silty- clay soils of glacial and post- glacial origin. The soils are underlain by weathered sedimentary rocks with horizontal to sub- horizontal fracture orientations.

Across the plateau, the Graydon Chert Formation is considered to be the shallow aquifer. There are localized areas where the overlying material may be included in this aquifer, but in general the saturated groundwater is confined within the chert. The chert is a moderate water-bearing unit, with the glacial till acting as the confining unit above the chert and the Burlington Limestone acting as the confining unit and top of the aquitard beneath the chert. The Graydon Chert lies unconformably atop the Burlington Limestone and unconformably below the glacial till, therefore, its elevation and thickness vary. Across the plateau, the depth of the Graydon Chert ranges from 15' to 39' below ground surface (bgs) and averages approximately 27' bgs. Its thickness ranges from 16' to 61' and averages approximately 38'.

Groundwater within the Graydon Chert conglomerate flows radially outwards in the vicinity of the plant towards the nearby drainage basins that surround the plateau. The impact of the discharge lines bedding material on the overall groundwater flow directions within this hydrogeologic unit cannot be quantified but is likely to be limited. Localized variations in groundwater flow directions are anticipated within the conglomerate when it is in direct contact with the bedding material. In the vicinity of the plant discharge pipeline and the abandoned

²⁹ "Final Groundwater Model Report Callaway Nuclear Power Plant", rev. 1, October 31, 2008. Paul C. Rizzo Associates, Inc.

³⁰ "Tritium Investigation Report Callaway Energy Center Fulton, Missouri", March 9, 2015. GZA GeoEnvironmental, Inc.

Techite pipeline, hereinafter collectively called "pipelines", groundwater elevations in the conglomerate are generally greater than the groundwater levels in the bedding material for the Techite pipeline down line. Therefore, convergent flow from the conglomerate into the bedding material for the Techite pipeline is anticipated.

Beneath the shallow aquifer there is a leaky, confining aquitard. The top of the aquitard begins with the top of the Burlington Limestone and extends through the Bushberg Sandstone, Snyder Creek Formation (shale), Callaway Limestone, and upper portion of the Cotter-Jefferson City (CJC) Dolomitic Limestone. The depth to the top of the aquitard averages 68' bgs across the plateau, and its thickness is approximately 290' in the central portion of the plateau.

Beneath the aquitard is the CJC aquifer. The depth to the CJC aquifer is approximately 350' bgs in the central portion of the plateau. The thickness of the CJC aquifer beneath the plateau is approximately 300'. Regionally, the CJC aquifer is considered to be a minor aquifer and represents the top of the Cambrian-Ordovician aquifer system, which consists of intervals of minor aquifers and major aquifers with intermittent aquitards to depths up to 2,000' bgs.

Groundwater within the CJC aquifer flows radially outwards from the plateau to the nearby drainage basins that surround the plateau. The hydraulic head within the CJC aquifer are approximately 250' lower than the shallower overburden and Graydon Chert conglomerate hydrogeologic units. As such, the groundwater elevation data, as well as the sub- horizontal fracture orientations, indicate that the communication between the shallower groundwater and the CJC aquifer is limited. The pipelines bedding material is not likely to influence the groundwater flow directions with the CJC aquifer.

The well yield for the chert aquifer is less than 1 gallon per minute (gpm) and for the CJC aquifer is approximately 5 to 10 gpm. Two pumping tests were performed successfully in the CJC aquifer, and the relatively low estimates of storativity are consistent with mildly fractured bedrock aquifers where the small size of fractures and low degree of interconnectedness limits the amount of water in storage and the amount of water to potentially yield to a well. A step-drawdown test at a pumping well in the chert aquifer resulted in a dry well after a short period of time, which made the pumping test unviable.

Groundwater primarily flows within bedrock along fractures and bedding/ joint planes. Therefore, the magnitude of vertical flow within bedrock is directly related to the interconnection of multiple fractures, as well as fracture orientations. The fractures orientations near Callaway are sub- horizontal and the Rock Quality Designation (RQD) Index of the deeper core runs were typically greater than 70%. This information, coupled with the groundwater elevation data collected during the recent Limited Site Investigation (LSI) as well as historical data, suggest that a good hydraulic communication does not exist between the shallow sedimentary bedrock and the deeper CJC aquifer. The numerous springs which are located near

the base of the plateau and along the slope of the plateau indicate that groundwater preferentially flows along the sub- horizontal fractures in shallow bedrock and discharges at these spring locations, prior to reaching the CJC aquifer. Therefore the amount of vertical flow between the shallow and deeper rock is limited.

Within the Missouri River flood plain, the upper 10'- 15' of the overburden sediments consists of mottled brown and red silty clay alluvial deposits. These fine grained soils were underlain by fine to coarse sand and gravel. Groundwater within the alluvial floodplain deposits flows to the south- southeast, towards the Missouri River. The groundwater elevation data indicate that the shallow groundwater in the northeastern portion of the flood plain discharges into Logan Creek, a small tributary of the Missouri River. Because the hydraulic conductivity of the native alluvial sediments is similar to the bedding material, the influence of the pipelines trenches on overall groundwater flow directions is minimal. As such, dissimilar to conditions on the plateau, groundwater within the bedding material may potentially exfiltrate into the native sand and gravel sediments.

Limited Site Investigation³¹

A Limited Site Investigation (LSI) was performed to determine the migration pathway and fate of the ³H contamination. The LSI concluded that, on the plateau, the ³H impacted water has not migrated beyond the confines of the HDPE plant discharge pipeline trench and the abandoned Techite pipeline trenches. Other than the pipeline bedding, ³H was not detected in any of the monitoring wells screened in the overburden or bedrock on the plateau. Water exfiltrating from the abandoned Techite pipeline in the Missouri River alluvial floodplain follows natural groundwater flow paths through both the sand and bedding before discharging to the river.

Twenty eight (28) wells were installed during the LSI. The LSI concluded that the ³H leaked from the damaged seals in MH86-2 flows down the bedding of the HDPE discharge pipeline for approximately 1000'. At that point, the ³H impacted water followed the bedding material of an abandoned 12" pipe which is hydraulically connected to the bedding material of the abandoned Techite plant discharge line.

The Techite discharge pipeline was abandoned in 2007 when the new HDPE plant discharge pipeline was installed, however the abandoned Techite pipeline was not filled in or plugged. Some of the ³H impacted water enters the Techite pipeline at abandoned manhole 86-4A through unsealed penetrations for the abandoned 12" pipe; the rest migrates down pipe through the bedding material of the abandoned Techite pipeline. Continued infiltration of ³H impacted water through the leaky bell and spigot joints into the Techite pipeline likely occurs

³¹ "Tritium Investigation Report Callaway Energy Center Fulton, Missouri", March 9, 2015. GZA GeoEnvironmental, Inc.

over approximately the next mile and then migrates within the Techite pipeline to the edge of the plateau.

An inward hydraulic gradient into the pipeline bedding material effectively confines the ³H impacted water to the bedding material and interior of the abandoned Techite pipeline and likely prevents it from leaking out through the leaky joints. As a result, clean overburden water continues to flow into the bedding material from the surrounding soil.

Near the plant, the HDPE and Techite pipelines were constructed in separate trenches excavated through the low permeability soil. The sides and bottom of the trenches are therefore in this portion of the alignment. In portions of the alignment near the edge of the plateau, the pipelines were installed in trenches over or excavated within shallow bedrock.

On the plateau, water inside the abandoned Techite pipeline remains in the pipe because the water level in the pipe is lower than the surrounding groundwater elevation. Thus, the hydraulic gradient is from the surrounding overburden towards the abandoned Techite discharge line and the surrounding bedding material. The ³H impacted water has not migrated significantly beyond the confines of the discharge pipeline trenches on the plateau. Other than the discharge pipeline bedding, ³H was not detected in any of the monitoring wells screened in the overburden or bedrock on the plateau.

Within the Missouri River valley deposits, the gate valve on the abandoned Techite pipeline is permanently closed and the downstream pipe is cut and capped. As such, the ³H impacted water exfiltrates through the leaky bell and spigot joints of the abandoned Techite pipeline within the Missouri River floodplain when the water level in the abandoned Techite pipeline is higher than the groundwater elevation of the surrounding bedding material. Once the water exfiltrates from the pipe, it flows through the overburden to the river along the natural groundwater flow paths. In the pipeline corridor, those natural groundwater flow paths would likely be influenced by the bedding of the pipeline (i.e., localized convergent flow towards the bedding may exist) when the water level is above the bottom of the pipeline trench. However, the water level may be below the bottom of the bedding in portions of the floodplain. As such, the natural groundwater flow paths are likely through both the sand and bedding before discharging at the river. The abandoned Techite pipeline valve vault is ~340' from the Missouri River shoreline and is ~500' from the normal liquid effluent discharge point.

Monitoring Results

The monitoring results are summarized in Table 2.The ³H analytical results for each sample are presented in Table 3. The gamma spectroscopy results and drawings showing the well locations are provided in the 2014 Annual Radiological Environmental Operating Report.

TABLE 2: SUMMARY OF ³H ACTIVITY IN MONITORING WELLS³²

	Sample Designation/ ³ H Activity Concentration (pCi/L)			
Location	HDPE Pipeline Abandoned Techite Bedding Pipeline Bedding		Manhole/ Other	
Adjacent to MH86-2	U1MW-031 1,500- 1,650,000	N/A	Inside MH86-2 during liquid radwaste release (diluted effluent) 2,000,000-,3,000,000	
400' downpipe of	U1MW-034	U1MW-035	21/2	
MH86-2	MH86-2 8,000- 12,000 <mda< td=""><td>N/A</td></mda<>		N/A	
1,000' downpipe of	U1MW-036	N/A	MH86-4A seepage	
MH86-2	14,000- 18,500	IN/A	3,500	
¼ to ½ miles	U1MW-038		MH86-5 (inside Techite pipeline)	
downpipe of MH86-2	<mda< td=""><td>N/A</td><td>6,200</td></mda<>	N/A	6,200	
Start of shallow	U1MW-040	U1MW-059	N/A	
bedrock area	<mda< td=""><td><mda< td=""><td>IV/A</td></mda<></td></mda<>	<mda< td=""><td>IV/A</td></mda<>	IV/A	
Southern edge of plateau/ hill between	U1MW-045	U1MW-060	Inside Techite pipeline on hillside	
floodplain	<mda< td=""><td><mda< td=""><td>1,800</td></mda<></td></mda<>	<mda< td=""><td>1,800</td></mda<>	1,800	

Land Use

The land traversed by the pipelines is wholly owned by Ameren Corporation. Farming is allowed in the pipelines corridor in the Missouri River alluvial floodplain however the groundwater is not used for irrigation.

 $^{^{32}}$ "Tritium Investigation Report Callaway Energy Center Fulton, Missouri", March 9, 2015. GZA GeoEnvironmental, Inc.

Dose to the Member of the Public

The dose to the Member of the Public was calculated for each discharge and was reported in the Annual Radioactive Effluents Release Report for the respective year. As described above, the portion of each release that leaked from MH86-2 into the pipelines trenches was conveyed by the abandoned Techite pipeline to the Missouri River alluvial floodplain to a location ~340 feet from the Missouri River shoreline where it followed natural groundwater flow patterns to the Missouri River. The highest measured ³H concentration in the Missouri River floodplain (U1MW-047) was 8,512 pCi/L, which, if it were the sole source of drinking water for a year, would deliver a dose of approximately 1.7 mrem. However, the groundwater in the Missouri River floodplain is not a drinking water source. The original dose calculations bound the dose to the Member of the Public from this discharge.

Ameren owns ~7,200 acres surrounding the plant site and extending to the northern bank of the Missouri River. The site groundwater including the groundwater in the pipelines corridor is not used for irrigation and there are no drinking water wells in the Missouri River alluvial floodplain for at least a mile downstream. There are no new dose pathways created by this discharge.

The CJC aquifer and the deeper Derby- Doe Run aquifer are important sources of area drinking water. Callaway has been monitoring these aquifers and drinking water from the town of Portland, MO for over 30 years. Callaway installed an additional well at the base of the plateau in 2006 to provide additional monitoring for the CJC aquifer. ³H has never been detected in any of these samples, including during the monitoring events conducted since the release occurred.

Callaway has been monitoring drinking water wells from adjoining properties since 2006 and the monitoring frequency of these wells was increased for the period of the study after the tritium was detected in the groundwater samples from well U1 MW-031. ³H has never been detected in any of the samples collected from these drinking water wells.

Sentinel wells were installed between the pipelines corridor and adjoining properties in 2006. ³H has never been detected in any of these samples.

A network of monitoring wells was installed along the pipelines corridor in 2006- 2010 to monitor for leakage from the pipelines. ³H has never been detected in any of these samples, other than those wells used in the monitoring of the natural attenuation of a ³H contaminated area discovered in 2006. ³³ Callaway is currently monitoring the natural attenuation of that area. That contamination is due to normal operation of the air release valves from when the abandoned Techite discharge line was in operation.

Based on the hydrogeologic conditions within the travel pathway of the release, it is highly unlikely that the impacted water migrated downwards and impacted the much deeper CJC aquifer or other water supply sources near the plant. This conclusion is further supported by the

³³ CAR 200602748, "Vulnerabilities to Unplanned, Unmonitored Releases Offsite"

recent and historical groundwater quality monitoring data for the on- site monitoring wells and off- site water supply wells.

Remedial Actions

Following discovery of the leak, all liquid radioactive effluent discharges were suspended until the manhole leaks were repaired. The gaps between the concrete wall of the manhole and the pipe were injected with expanding hydrophobic polyurethane which sealed the leaks. The repairs were tested with fluorescent dye prior to restarting the liquid radioactive effluent discharges.

Actions to Prevent Recurrence

The leaks were repaired and tested as described above. In addition, the 6" SS liquid radioactive effluent pipe was extended 65" down the HDPE discharge pipe thus completely bypassing the manhole. Additional testing was performed to ensure these actions are sufficient to prevent leaks.

TABLE 3: ³H RESULTS FOR SAMPLES DURING THE LSI

U1N	IW-031	U1MW-031		U1N	IW-031
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
25-Jul-14	1,644,880 1,569,566	25-Aug-14	165,440	28-Oct-14	5,703
01-Aug-14	296,323	26-Aug-14	163,544	10-Oct-14	9,476
08-Aug-14	110,120	27-Aug-14	159,459	04-Nov-14	9,024
11-Aug-14	111,262	28-Aug-14	171,980	11-Nov-14	9,233
13-Aug-14	102,716	02-Sep-14	189,259	18-Nov-14	2,435
15-Aug-14	100,448	09-Sep-14	213,378	24-Nov-14	1,477
16-Aug-14	105,979	16-Sep-14	121,001	3-Dec-14	3,782
20-Aug-14	142,203	23-Sep-14	88,573	8-Dec-14	6,507
21-Aug-14	155,603	30-Sep-14	43,326	22-Dec-14	7,615
22-Aug-14	157,542	07-Oct-14	29,693	12-Jan-15	6,269
23-Aug-14	154,238	14-Oct-14	9,125	13-Feb-15	4,553
24-Aug-14	157,665	21-Oct-14	7,927		

U1M	W -047	U1MW -058 U1N		U1M	W -032
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
04-Nov-14	5,152	25-Nov-14	5,721	14-Nov-15	<179
11-Nov-14	4,374	22-Dec-14	8,512		
18-Nov-14	4,415	12-Jan-15	7,121		
24-Nov-14	4,846				
3-Dec-14	5,491				
8-Dec-14	5,050				

U1MW -034		U1MW -036		
Sample Date	³H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	
28-Oct-14	10,451	28-Oct-14	18,674	
30-Oct-14	10,304	30-Oct-14	18,195	
04-Nov-14	11,086	07-Nov-14	18,577	
11-Nov-14	11,727	11-Nov-14	18,698	
18-Nov-14	9,968	18-Nov-14	17,697	
24-Nov-14	9,902	24-Nov-14	17,222	
3-Dec-14	8,318	3-Dec-14	16,094	
8-Dec-14	8,226	8-Dec-14	15,143	
22-Dec-14	8,950	22-Dec-14	13,849	
12-Jan-15	7,748	12-Jan-15	13,295	
13-Feb-15	6,701	13-Feb-15	12,732	

U1MW -033		U1MW -035		U1MW -037	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
14-Nov-15	<179	28-Oct-14	<174	28-Oct-14	<174
		30-Oct-14	229	30-Oct-14	<136
		04-Nov-14	<175		

U1MW -038		U1MW -039		U1MW -040	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
04-Nov-14	<181	31-Oct-14	<167	31-Oct-14	<167

U1MW -041		U1MW -045		U1MW -046	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
04-Nov-14	<181	04-Nov-14	<181	04-Nov-14	<181

U1MW -048		U1MW -049		U1MW -050	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
04-Nov-14	<181	04-Nov-14	<181	04-Nov-14	240

U1MW -051		U1MW -053		U1MW -054	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
04-Nov-14	<181	11-Nov-14	<171	12-Nov-14	<184

U1MW -052		U1MW -052(12-15)*		U1MW -052(30-32)*	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
14-Nov-14	<185	07-Nov-14	18,369	07-Nov-14	17,917

^{*}Grab samples taken prior to completion of drilling activities and well development

U1MW -053		U1MW -054		U1MW -055S	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
11-Nov-14	<171	12-Nov-14	<184	24-Nov-14	<177

U1MW -055D		U1MW -056S		U1MW -056D	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
20-Nov-14	<177	24-Nov-14	<179	24-Nov-14	<179

U1MW -057		U1MW -059		U1MW -060	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
21-Nov-14	<177	10-Dec-14	<190	10-Dec-14	<190

Bran	dt Seep	Lawrence School		
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	
07-Nov-14	<176	07-Nov-14	<176	

Inside	MH86-2*	Inside Abandoned MH86-4A		
Sample Date ³ H Conc. (pCi/L)		Sample Date	³ H Conc. (pCi/L)	
17-Oct-14	<150	13-Nov-14	3,577	
13-Nov-14	<176			
23-Nov-14	<179			
10-Dec-14	<190			

^{*}Following installation of bypass piping. Demonstrates there is no backflow into the manhole.

Inside Abandoned MH86-5		Inside Abandoned MH86-6*		Inside Abandoned MH11*	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
25-Nov-14	6,247	25-Nov-14	<173	25-Nov-14	<173

^{*} Standing groundwater inside manhole

Inside Techite Pipeline Upper Exposed Section		Gate Valve Vault HDPE Discharge Pipeline*		Gate Valve Vault Techite Discharge Pipeline*	
Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)	Sample Date	³ H Conc. (pCi/L)
09-Dec-14	1,761	19-Sep-14	4,128	26-Nov-14	355
		20-Oct-14	540		
		18-Nov-14	349		

^{*} Standing groundwater inside manhole