AMEREN MISSOURI CALLAWAY ENERGY CENTER EXPEDITED SEISMIC EVALUATION PROCESS (ESEP) REPORT

December 31, 2014

Prepared by: Ameren Missouri Westinghouse Electric Company LLC Stevenson & Associates

EXPEDITED SEISMIC EVALUATION PROCESS REPORT

Table of Contents

1.0 Purpose a	and Objective	4
2.0 Brief Sum	mary of the FLEX Seismic Implementation Strategies	5
3.0 Equipmer	nt Selection Process and ESEL	6
3.1	Equipment Selection Process and ESEL	6
3.1.1	ESEL Development	7
3.1.2	Power Operated Valves	7
3.1.3	Pull Boxes	8
3.1.4	Termination Cabinets	8
3.1.5	Critical Instrumentation Indicators	8
3.1.6	Phase 2 and Phase 3 Piping Connections	8
3.1.7	Relays	9
3.2	Justification for Use of Equipment That Is Not the Primary Implementation	
4.0 Ground N	Notion Response Spectrum (GMRS)	9
4.1	Plot of GMRS Submitted by the Licensee	9
4.2	Comparison to SSE	
5.0 Review Le	evel Ground Motion (RLGM)	13
5.1	Description of RLGM Selected	
5.2	Method to Estimate ISRS	14
6.0 Seismic N	Nargin Evaluation Approach	
6.1	Summary of Methodologies Used	15
6.2	HCLPF Screening Process	15
6.2.1	Overview	15
6.2.2	Generic Screening Results	16
6.3	Seismic Walkdown Approach	
6.3.1	Walkdown Approach	
6.3.2	Application of Previous Walkdown Information	
6.3.3	Significant Walkdown Findings	

Westinghouse Non-Proprietary Class 3

		Callaway Energy Center ESEP Final Report
6.4		HCLPF Calculation Process
6.5		Functional Evaluations of Relays23
6.6		Tabulated ESEL HCLPF Values (Including Key Failure Modes)
7.0	Inaccessible Items .	
7.1		Identification of ESEL items inaccessible for walkdowns
8.0	ESEP Conclusions ar	nd Results
8.1		Supporting Information
8.2		Indication of Planned Modifications
8.3		Modification Implementation Schedule
8.4		Summary of Regulatory Commitments
9.0	References	
	Attachment A	Callaway ESEL
	Attachment B	ESEP HCLPF Values and Failure Modes Tabulation50

1.0 Purpose and Objective

Following the accident at the Fukushima Dai-ichi nuclear power plant resulting from the March 11, 2011, Great Tohoku Earthquake and subsequent tsunami, the Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) to conduct a systematic review of NRC processes and regulations and to determine if the agency should make additional improvements to its regulatory system. The NTTF developed a set of recommendations intended to clarify and strengthen the regulatory framework for protection against natural phenomena. Subsequently, the NRC issued a 50.54(f) letter on March 12, 2012 [1], requesting information to assure that these recommendations are addressed by all U.S. nuclear power plants. The 50.54(f) letter requests that licensees and holders of construction permits under 10 CFR Part 50 reevaluate the seismic hazards at their sites against present-day NRC requirements and guidance. Depending on the comparison between the reevaluated seismic hazard and the current design basis, further risk assessment may be required. Assessment approaches acceptable to the staff include a seismic probabilistic risk assessment (SPRA), or a seismic margin assessment (SMA). Based upon the assessment results, the NRC staff will determine whether additional regulatory actions are necessary.

This report describes the Expedited Seismic Evaluation Process (ESEP) undertaken for the Callaway Energy Center (CEC). The intent of the ESEP is to perform an interim action in response to the NRC's 50.54(f) letter [1] and to demonstrate seismic margin through a review of a subset of the plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events.

The ESEP is implemented using the methodologies in the NRC endorsed guidance in EPRI 3002000704, *Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic* [2]. The guidance discusses the use of the ongoing FLEX process [3] as a starting point for consideration. This report examines the FLEX equipment and strategy [3] (Section 2.0) to develop the initial Expedited Seismic Equipment List (ESEL) and uses an iterative process to develop the final ESEL [4] (Section 3.0).

The ESEL is used to evaluate the listed equipment against the review level ground motion (RLGM) data (Section 5) with respect to the equipment's seismic capacity based on characterization of the high confidence of a low probability of failure (HCLPF). Equipment which has seismic capacity larger than the RLGM data can be screened from further evaluation. For equipment that has a seismic capacity below the RLGM, modifications need to be performed following the NRC endorsed guidance in EPRI 3002000704.

The objective of this report is to provide summary information describing the ESEP evaluations and results. The level of detail provided in this report is intended to enable the NRC to understand the inputs used, the evaluations performed, and the decisions made as a result of the interim evaluations.

2.0 Brief Summary of the FLEX Seismic Implementation Strategies

The Callaway FLEX strategies for Reactor Core Cooling and Heat Removal, Reactor Inventory Control/Long-term Subcriticality, and Containment Function are summarized below. This summary is derived from the Callaway Overall Integrated Plan (OIP) in Response to the March 12, 2012, Commission Order EA-12-049 [3].

Reactor core cooling and heat removal is achieved via steam release from the Steam Generators (SGs) with SG makeup from the Turbine Driven Auxiliary Feedwater Pump (TDAFP) during FLEX Phase 1 with suction from the Condensate Storage Tank (CST).

Ameren Missouri has elected to construct a new Hardened Condensate Storage Tank (HCST) [3]. The larger HCST volume would be capable of feeding the steam generators for at least 72 hours. This extended coping duration will not require HCST make-up from the UHS before the Phase 3 off-site equipment is deployed. The TDAFP flow control valves and Main Steam Atmospheric Relief Valves (ARVs) are also required to provide reactor core heat-removal capability. Phase 2 reactor core heat removal is achieved via the new FLEX mechanical connections. The only permanent plant equipment manipulated for the Phase 2 is manual valves.

Reactor Inventory Control/Long-term Subcriticality strategy consists of reactor coolant system borated make-up via the FLEX primary make-up connections.

Reactor coolant system (RCS) inventory reduction is a result of water volume reduction due to cooldown, reactor coolant pump seal leakage, and letdown via head-vents and/or pressurizer PORVs. The reactor coolant pump seal leak-off containment isolation valve is manually isolated to conserve inventory and keep leak-off flow within the Reactor Building. To avoid adverse effects on the RCS natural circulation flow, the accumulator isolation valves are electrically closed during the cooldown to prevent nitrogen injection into the reactor coolant system.

There are no Phase 1 or Phase 2 FLEX actions required to maintain containment integrity. In fact, containment function is not expected to be challenged during all three phases.

Necessary electrical components are outlined in the Callaway FLEX OIP submittal [3], and primarily entail the installation of a 480V generator (FLEX) to provide power to vital batteries, equipment installed to support FLEX electrical connections, and monitoring instrumentation required for core cooling, reactor coolant inventory, and containment integrity.

3.0 Equipment Selection Process and ESEL

The selection of equipment for the Expedited Seismic Equipment List (ESEL) followed the guidelines of EPRI 3002000704 [2]. The ESEL for Callaway is presented in Attachment A.

3.1 Equipment Selection Process and ESEL

The selection of equipment to be included on the ESEL was based on installed plant equipment credited in the FLEX strategies during Phases 1, 2 and 3 mitigation of a Beyond Design Basis External Event (BDBEE), as outlined in the Callaway Overall Integrated Plan (OIP) in Response to the March 12, 2012, Commission Order EA-12-049 [3]. The OIP provides the Callaway FLEX mitigation strategy and serves as the basis for equipment selected for the ESEP.

The scope of "installed plant equipment" includes equipment relied upon for the FLEX strategies to sustain the critical functions of core cooling and containment integrity consistent with the Callaway OIP [3]. FLEX recovery actions are excluded from the ESEP scope per EPRI 3002000704 [2]. The overall list of planned FLEX modifications and the scope for consideration herein is limited to those required to support core cooling, reactor coolant inventory and subcriticality, and containment integrity functions. Portable and pre-staged FLEX equipment (not permanently installed) are excluded from the ESEL per EPRI 3002000704 [2].

The ESEL component selection followed the EPRI guidance outlined in Section 3.2 of EPRI 3002000704.

- The scope of components is limited to that required to accomplish the core cooling and containment safety functions identified in Table 3-2 of EPRI 3002000704. The instrumentation monitoring requirements for core cooling/containment safety functions are limited to those outlined in the EPRI 3002000704 guidance, and are a subset of those outlined in the Callaway OIP [3].
- The scope of components is limited to installed plant equipment and the FLEX connections necessary to implement the Callaway OIP [3] as described in Section 2.
- The scope of components assumes the credited FLEX connection modifications are implemented, and are limited to those required to support a single FLEX success path (i.e., either "Primary" or "Backup/Alternate").
- 4. The "Primary" FLEX success path is to be specified. Selection of the "Back-up/Alternate" FLEX success path must be justified.
- 5. Phase 3 coping strategies are included in the ESEP scope, whereas recovery strategies are excluded.

- Structures, systems, and components excluded per the EPRI 3002000704
 [2] guidance are:
 - Structures (e.g., containment, reactor building, control building, auxiliary building, etc.)
 - Piping, cabling, conduit, HVAC, and their supports.
 - Manual valves and rupture disks.
 - Power-operated valves not required to change state as part of the FLEX mitigation strategies.
 - Nuclear steam supply system components (e.g., reactor pressure vessel and internals, reactor coolant pumps and seals, etc.)
- 7. For cases in which neither train was specified as a primary or back-up strategy, then only one train component (generally 'A' train) is included in the ESEL.

3.1.1 ESEL Development

The ESEL was developed by reviewing the Callaway OIP [3] to determine the major equipment involved in the FLEX strategies. Further reviews of plant drawings (e.g., Process and Instrumentation Diagrams (P&IDs) and Electrical One Line Diagrams) were performed to identify the boundaries of the flowpaths to be used in the FLEX strategies and to identify specific components in the flowpaths needed to support implementation of the FLEX strategies.

Boundaries were established at an electrical or mechanical isolation device (e.g., isolation amplifier, valve, etc.) in branch circuits / branch lines off the defined strategy electrical or fluid flowpath. P&IDs were the primary reference documents used to identify mechanical components and instrumentation. The flow paths used for FLEX strategies were selected and specific components were identified using detailed equipment and instrument drawings, piping isometrics, electrical schematics and one-line drawings, system descriptions, design basis documents, etc., as necessary. The P&IDs are also used to determine the normal position of system valves and the valve positioning required in order to align the system in support of the FLEX functions.

The electrical equipment required to support the mechanical components used in the FLEX strategies evaluated for the ESEL was also evaluated for its inclusion on the ESEL using electrical drawings and guidance [2].

3.1.2 Power Operated Valves

Page 3-3 of EPRI 3002000704 [2] notes that power operated valves not required to change state are excluded from the ESEL. Page 3-2 also notes that "functional failure modes of electrical and mechanical portions of the installed Phase 1 equipment should be considered (e.g., RCIC/AFW trips)." To address this

concern, the following guidance is applied in the Callaway ESEL for functional failure modes associated with power operated valves:

- Power operated valves that remain energized during the Extended Loss of all AC Power (ELAP) events (such as DC powered valves), were included on the ESEL.
- Power operated valves not required to change state as part of the FLEX mitigation strategies were not included on the ESEL. The seismic event also causes the ELAP event; therefore, the valves are incapable of spurious operation as they would be de-energized.
- Power operated valves not required to change state as part of the FLEX mitigation strategies during Phase 1, and are re-energized and operated during subsequent Phase 2 and 3 strategies, were not evaluated for spurious valve operation as the seismic event that caused the ELAP has passed before the valves are re-powered.

3.1.3 Pull Boxes

Pull boxes were deemed unnecessary to add to the ESELs as these components provide completely passive locations for pulling or installing cables. No breaks or connections in the cabling are included in pull boxes. Pull boxes were considered part of conduit and cabling, which are excluded in accordance with EPRI 3002000704 [2].

3.1.4 Termination Cabinets

Termination cabinets, including cabinets necessary for FLEX Phase 2 and Phase 3 connections, provide consolidated locations for permanently connecting multiple cables. The termination cabinets and the internal connections provide a completely passive function; however, the cabinets are included in the ESEL to ensure industry knowledge on panel/anchorage failure vulnerabilities is addressed.

3.1.5 Critical Instrumentation Indicators

Critical indicators and recorders are typically physically located on panels/cabinets and are included as separate components; however, seismic evaluation of the instrument indication may be included in the panel/cabinet seismic evaluation (rule-of-the-box).

3.1.6 Phase 2 and Phase 3 Piping Connections

Item 2 in Section 3.1 above notes that the scope of equipment in the ESEL includes "... FLEX connections necessary to implement the Callaway OIP [3] as described in Section 2." Item 3 in Section 3.1 also notes that "The scope of components assumes the credited FLEX connection modifications are implemented, and are limited to those required to support a single FLEX success path (i.e., either "Primary" or "Back-up/Alternate")."

Item 6 in Section 3.1 above goes on to explain that "Piping, cabling, conduit, HVAC, and their supports" are excluded from the ESEL scope in accordance with EPRI 3002000704 [2].

Therefore, piping and pipe supports associated with FLEX Phase 2 and Phase 3 connections are excluded from the scope of the ESEP evaluation. However, any active valves in FLEX Phase 2 and Phase 3 connection flow path are included in the ESEL.

3.1.7 Relays

Relays essential to the FLEX strategy were explicitly addressed [5]. Relays were screened and where relay chatter was found to result in an undesirable alignment the relay, and its parent cabinet, were added to the analysis. Parent cabinets were walked down and, if needed, HCLPF estimates were performed.

3.2 Justification for Use of Equipment That Is Not the Primary Means for FLEX Implementation

No equipment outside of the primary FLEX strategy is credited in the Callaway ESEP [4].

The complete ESEL for Callaway [4] is presented in Attachment A.

4.0 Ground Motion Response Spectrum (GMRS)

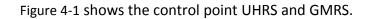
4.1 Plot of GMRS Submitted by the Licensee

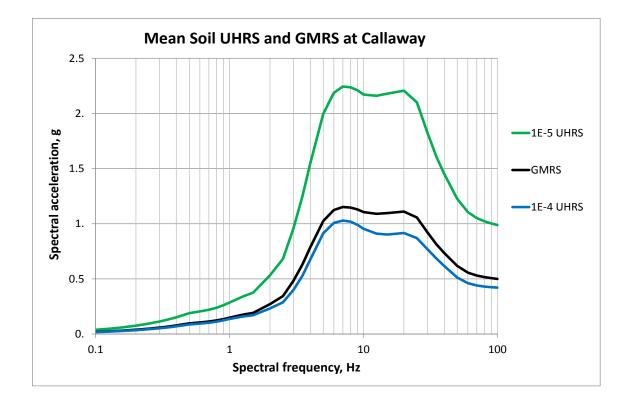
The CEC design response spectra are stated to be applied in the free field at finished grade [6].

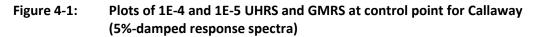
The 1E-4 and 1E-5 Uniform Hazard Response Spectra (UHRS), along with a design factor (DF), are used to compute the GMRS at the control point as shown in the seismic hazard and GMRS submittal to the NRC [7].

Table 4-1 shows the UHRS and GMRS spectral accelerations.

Table 4-1: UHRS for 10-4 and 10-5 and GMRS at the control point for Callaway

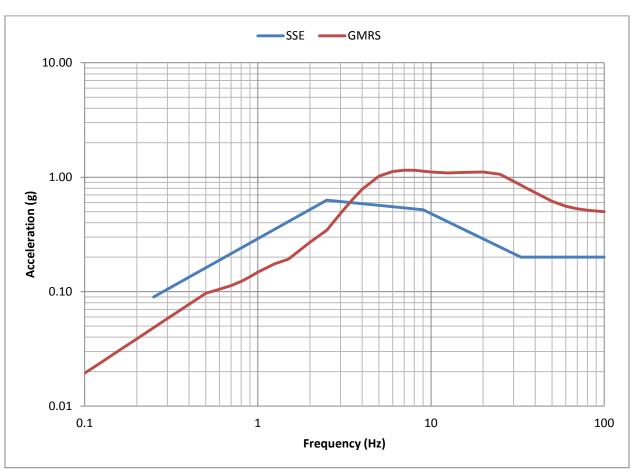

Freq. (Hz)	10 ⁻⁴ UHRS (g)	10 ⁻⁵ UHRS (g)	GMRS (g)
100	4.20E-01	9.88E-01	5.00E-01
90	4.24E-01	1.00E+00	5.06E-01
80	4.30E-01	1.02E+00	5.15E-01
70	4.40E-01	1.05E+00	5.30E-01
60	4.61E-01	1.11E+00	5.57E-01
50	5.12E-01	1.23E+00	6.17E-01
40	6.17E-01	1.45E+00	7.34E-01
35	6.83E-01	1.60E+00	8.12E-01
30	7.68E-01	1.82E+00	9.20E-01
25	8.70E-01	2.10E+00	1.06E+00
20	9.16E-01	2.21E+00	1.11E+00
15	9.02E-01	2.18E+00	1.10E+00
12.5	9.10E-01	2.16E+00	1.09E+00
10	9.54E-01	2.17E+00	1.11E+00
9	9.90E-01	2.21E+00	1.13E+00
8	1.02E+00	2.24E+00	1.15E+00
7	1.03E+00	2.24E+00	1.15E+00
6	1.01E+00	2.19E+00	1.12E+00
5	9.14E-01	2.00E+00	1.02E+00
4	6.74E-01	1.55E+00	7.85E-01
3.5	5.29E-01	1.25E+00	6.32E-01
3	4.00E-01	9.59E-01	4.83E-01
2.5	2.87E-01	6.81E-01	3.44E-01
2	2.31E-01	5.32E-01	2.70E-01
1.5	1.70E-01	3.75E-01	1.92E-01


Enclosure 2 to ULNRC-06161


Westinghouse Non-Proprietary Class 3

Callaway Energy Center ESEP Final Report

Freq. (Hz)	10 ⁻⁴ UHRS (g)	10 ⁻⁵ UHRS (g)	GMRS (g)
1.25	1.58E-01	3.39E-01	1.75E-01
1	1.36E-01	2.86E-01	1.48E-01
0.9	1.24E-01	2.61E-01	1.35E-01
0.8	1.12E-01	2.38E-01	1.23E-01
0.7	1.02E-01	2.19E-01	1.13E-01
0.6	9.47E-02	2.04E-01	1.05E-01
0.5	8.64E-02	1.89E-01	9.68E-02
0.4	6.91E-02	1.51E-01	7.75E-02
0.35	6.05E-02	1.32E-01	6.78E-02
0.3	5.18E-02	1.13E-01	5.81E-02
0.25	4.32E-02	9.44E-02	4.84E-02
0.2	3.45E-02	7.55E-02	3.87E-02
0.15	2.59E-02	5.66E-02	2.91E-02
0.125	2.16E-02	4.72E-02	2.42E-02
0.1	1.73E-02	3.77E-02	1.94E-02



4.2 Comparison to SSE

The definition of the SSE for Callaway is discussed in Section 2.5, 3.7 and 3.7(B) of the FSAR [6]. The SSE is anchored to a 0.20g Peak Ground Acceleration (PGA) and is presented in Table 4-2.

Freq (Hz)	SA (g)
0.25	0.09
2.50	0.63
9.00	0.52
33.00	0.20
100.00	0.20

As shown in Figure 4-2, the GMRS begins to exceed the SSE at around 3.5 Hz.

Figure 4-2: Callaway SSE – GMRS Comparison

5.0 Review Level Ground Motion (RLGM)

5.1 Description of RLGM Selected

The Review Level Ground Motion is derived by linearly scaling the current design basis SSE by the maximum ratio of the GMRS to the SSE between the 1 and 10 Hz range (not to exceed two times the SSE) [2]. The maximum GMRS/SSE ratio occurs at 10 Hz as seen in Figure 4-2. The In-Structure Response Spectra document provides logarithmic interpolation at 10 Hz to determine that the SSE spectral acceleration is 0.48 g [8]. Examination of Table 4-1 shows that the GMRS spectral acceleration is 1.11 g. The result is a maximum GMRS/SSE ratio between 1 – 10 Hz of 2.31 (witness 1.11 g / 0.48 g = 2.31). Since the GMRS/SSE ratio cannot exceed 2 the RGLM is scaled at 2 X SSE. The resulting RLGM is shown in Table 5-1 and Figure 5-1.

It is noted that for surface-mounted structures, systems, and components (SSC) (TAP01, TBN01, and the CST pipe house) directly applying the GMRS for HCLPF

determination is acceptable. Results based upon the GMRS as the seismic margins earthquake are noted where applicable herein.

Freq. (Hz)	100	33	9	2.5	0.25
RLGM (g)	0.4	0.4	1.04	1.26	0.18

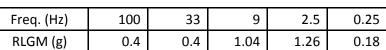


Table 5-1: RLGM for Callaway

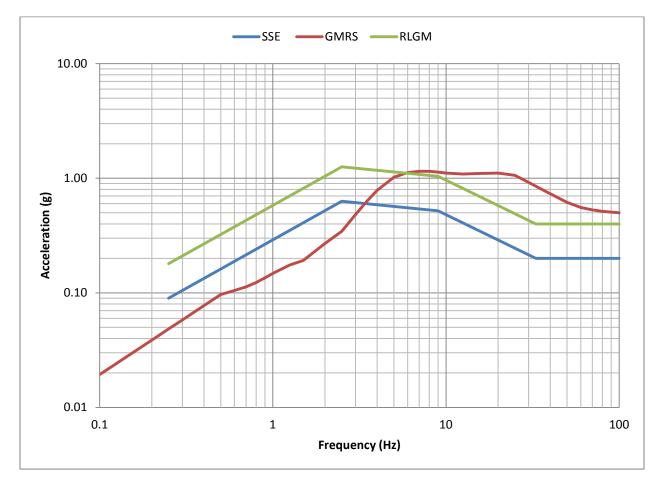


Figure 5-1: Callaway RLGM vs GMRS

5.2 Method to Estimate In-Structure Response Spectra (ISRS)

The ISRS for Callaway [10a] uses the scaled approach to estimate the ISRS. As mentioned in Section 5.1, the RLGM is scaled by a factor of 2 which is also applied to the existing ISRS curves.

6.0 Seismic Margin Evaluation Approach

It is necessary to demonstrate that the ESEL items have sufficient seismic capacity to meet or exceed the demand characterized by the RLGM. The seismic capacity is characterized as the peak ground acceleration (PGA) for which there is a high confidence of a low probability of failure (HCLPF). The PGA is associated with a specific spectral shape, in this case the 5%-damped RLGM spectral shape. The HCLPF capacity must be equal to or greater than the RLGM PGA. The criteria for seismic capacity determination are given in Section 5 of EPRI 3002000704 [2].

There are two basic approaches for developing HCLPF capacities:

- Deterministic approach using the conservative deterministic failure margin (CDFM) methodology of EPRI NP-6041, A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1) [8].
- 2. Probabilistic approach using the fragility analysis methodology of EPRI TR-103959, Methodology for Developing Seismic Fragilities [9].

Callaway has elected to use the deterministic approach by applying the EPRI NP-6041 screening process [8].

6.1 Summary of Methodologies Used

The seismic margins methodology of EPRI report NP-6041-SL [8] was applied for this effort. Use of this methodology conforms to Section 5 of EPRI 3002000704. The primary tasks performed were:

- Generic seismic screening per NP-6041, Table 2-4.
- Performance of seismic walkdowns.
- Item-specific screening via walkdown, review of design data, and performance of screening calculations.
- Performance of HCLPF calculations for screened-in equipment

6.2 HCLPF Screening Process

6.2.1 Overview

The seismic margins screening methodology of NP-6041-SL was applied. The primary steps for this screening process are:

- 1. Apply NP-6041-SL, Table 2-4 to determine which equipment items and failure modes may be screened-out on a generic basis.
- 2. For each equipment item, perform a seismic walkdown to verify generic screening may be applied and to verify the item does not have any specific seismic vulnerabilities.
- 3. Verify anchorage capacity.

The generic screening criteria of Table 2-4 are dependent on the applied screening level and are applicable to equipment located within 40 feet of plant grade. For the Callaway ESEP project:

- The peak 5% spectral acceleration of the RLGM is 1.26g and occurs at 2.5 Hz. At 3.5 Hz, the RLGM decreases to 1.2g¹. From FSAR SP Table 3.7(B)-4 and SA Tables 3.7-3 and 3.7-4, all Category I structures have fundamental frequencies exceeding 3.5 Hz and can reasonably be considered to respond in the frequency range corresponding to accelerations less than 1.2g. Accordingly, the 2nd screening column (0.8 1.2g) screening criteria of NP-6041-SL, Table 2-4, were applied with special consideration for components with low frequencies.
- A number of components in the Auxiliary/Control Building and the Reactor Building were located above 40' from grade; all other equipment was located within 40' of plant grade. Per Appendix A of NP-6041-SL, components that are above 40' from grade *and* have corresponding ISRS at the base of component in exceedance of 1.5 times the bounding spectrum (equivalent to a 1.8g peak spectral acceleration) may not be screened to the 2nd screening column and require HCLPF analysis.

Table 6-1 below summarizes the application of Table 2-4 screening for the ESEP.

Applied plant grade was Elevation 2000'. Per the FSAR this grade elevation is constant through-out the power block area.

After completion of the screening process, an item is either screened-out or screened-in. The presumptive seismic capacity of a screened-out item exceeds the applied screening level and no further evaluation is needed. An item that is screened-in requires a HCLPF analysis to address the failure mode cited by the seismic review team (SRT). The HCLPF capacity may or may not be above the screening level.

6.2.2 Generic Screening Results

Table 6-1 summarizes the generic screening results for the ESEL. Only the relevant equipment types are listed. Based on the generic screening:

- HCLPF analyses are required for atmospheric storage tanks
- Relay chatter requires evaluation

$$1.2g = 10^{\left(\log(XHz) - \log(2.5Hz) \cdot \frac{\log(1.04g) - \log(1.26g)}{\log(9Hz) - \log(2.5Hz)} + \log(1.26g)\right)} \Longrightarrow X = 3.46Hz$$

¹ The frequency where the RLGM spectra equals 1.2g is determined by logarithmic interpolation based on the control point accelerations and frequencies in Reference 8 as follows:

Other generic screening requirements were addressed by walkdown, design review and anchorage verification. These assessments are documented in the screening evaluation work sheets (SEWS) [10f].

Table 6-1: Summary of generic screening per NP-6041-SL Table 2-4, 1.2g Screening Level

Equipment Type	Generic Screening Criteria	Screening Result
Active valves	Note (f) applies.	There are no extremely large extended motor operators on 2-inch or smaller piping.
Passive valves	No evaluation required.	N/A
Atmospheric storage tanks	Evaluation required.	HCLPF analyses required for the atmospheric storage tanks.
Pressure vessels	Notes (h), (i) apply	For the pressurized tanks on the ESEL, anchorage and load path were verified by bounding calculations using qualification reports during screening. Potential failure modes of the vessel bodies were addressed by walkdown and design review.
Batteries and racks	Note (k) applies.	Batteries are braced racks and are designed for seismic loads. HCLPF analyses are required for the battery rack anchorage.
Horizontal pumps	No evaluation required.	Although no evaluation is required for the component per se, a HCLPF evaluation for the auxiliary feedwater turbine-driven pump is required.
Active electrical power distribution panels	Notes (s) and (t) apply.	 Note (s) was addressed by walkdown and design review. Where bounding analysis of anchorage configurations for the RLGM could not be provided, HCLPF analyses are required. Relays are evaluated separately per Reference 5.
Passive electrical power distribution panels	Note (s) applies.	Note (s) was addressed by walkdown and design review. Where bounding analysis of anchorage configurations for the RLGM could not be provided, HCLPF analyses are required.
Transformers	Notes (u) and (v) apply.	The ESEL includes dry-type transformers. A design review verified coil restraint. HCLPF analysis of anchorage is required.

Equipment Type	Generic Screening Criteria	Screening Result
Battery chargers & inverters	Note (w) applies.	Per walkdown and design review, the items on the ESEL are solid state units. Where bounding analysis of anchorage configurations for the RLGM could not be provided, HCLPF analyses are required.
Instrumentation and control panels and racks	Notes (s) and (t) apply.	Note (s) was addressed by walkdown and design review. Where bounding analysis of anchorage configurations for the RLGM could not be provided, HCLPF analyses are required.
		Relays are evaluated separately per Reference 5.
Temperature sensors; pressure and level sensors.	Note (x) applies.	Note (x) was addressed by walkdown and design review. Sensors in the scope were typically mounted in-line on piping.

Relevant notes from NP-6041-SL Table 2-4

- f. Evaluation recommended for MOVs in piping lines of 2 inches diameter or less.
- h. Margin evaluation only needs to consider anchorage and supports.
- i. For vessels designed by dynamic analysis or equivalent static analysis enveloping vessel inertial and piping loading, only the anchorage and supports require evaluation. For vessel not meeting these criteria, all potential failure modes require evaluation.
- k. Batteries mounted in braced racks designed for seismic loads or qualified by dynamic testing do not require evaluation. Rigid spacers between batteries and end restraints are required. Batteries should be tightly supported by side rails.
- s. Walkdown should be conducted to verify that the instruments are properly attached to the cabinets.
- t. Relays, contactors, switches, and breakers must be evaluated for chatter and trip if functionality during strong shaking is required.
- u. Anchorage evaluation required.
- v. Liquid-filled transformers require evaluation of overpressure safety switches. The transformer coils should be restrained within the cabinet for dry transformers.
- w. Solid state units require anchorage checks. Others require evaluation.
- x. Insufficient data are available for screening guidelines. Emphasis should be on attachments.

6.3 Seismic Walkdown Approach

6.3.1 Walkdown Approach

Walkdowns were performed by two-person seismic review teams (SRTs) consisting of engineers with seismic experience. Walkdowns followed the guidance of Section 5 of EPRI 3002000704 [2] and Section 2 of NP-6041-SL [8]. The SRT used NP-6041-SL, Appendix F, to evaluate item-specific equipment caveats. The SRT also recorded notes and took photographs of the items under review.

Two walkdown sessions have been performed as indicated below.

Walkdown Date	SRT	Plant Support
Week of July 14, 2014	Hunter Young (S&A)	Jim Cunningham (Callaway)
	Samer El-Bahey (S&A)	Steve Sampson (Callaway)
		George Belchik (Callaway)
Week of November 3, 2014	Hunter Young (S&A) Apostolos Karavoussianis (S&A)	David Hollabaugh (Callaway)

The walkdown findings for each item are documented in screening evaluation work sheets (SEWS). The SEWS notes also identify evaluations and reviews performed to support screening. The SEWS are included in Appendix C of Reference 10f. Also, Appendix A [10f] provides a concise summary of screening results in tabular format.

6.3.2 Application of Previous Walkdown Information

New seismic walkdowns were performed for ESEL equipment. The results of the previous seismic margin evaluation, performed for the Seismic IPEEE program [11], were reviewed and used for background purposes only.

6.3.3 Significant Walkdown Findings

The walkdown and screening results are summarized in Table 6-2.

Table 6-2: Items Selected for HCLPF Analysis

No.	ID	Description	Bldg	Elev	Basis for Selection
1.	NB001	4.16KV SWGR NB001 (Class 1E, Train A)	СВ	2000-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage.
2.	NG001	480 V LOAD CENTER NG01	CB/CC	2000-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar items NG002 and NG003.
3.	NK011	125 V BATTERY NK011	CB/CC	2016-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar items NK013 and NK014.
4.	NK021	125 V BATTERY CHARGER NK021	CB/CC	2016-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar items NK023 and NK024.
5.	NK025	125 V BATTERY CHARGER NK025 (Swing Battery Charger)	СВ	2000-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage.
6.	NN001	Class 1E AC DIST SWBD NN01 (SEP GRP 1)	CB/CC	2016-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar items NK043, NN003, NK051, NK041, NK001, NK003, NK004, and NN004.
7.	NN011	7.5KVA INVERTER (FED FROM BATT CHARGER NK021)	CB/CC	2016-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar item NN013.

Callaway Energy Center ESEP Final Report

No.	ID	Description	Bldg	Elev	Basis for Selection
8.	PA003	CUBICLE PT FOR RCP MOTOR DPBB01A	AUX	2026-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar item PA004.
9.	PAL02	TDAFW Pump	AUX	2000-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage.
10.	RL001	REACTOR COOLANT AND SUPT SYS CONSOLE	СВ	2047-06	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage. Apply results to similar items RL002, RL005, RL006, and RL017 thru RL026.
11.	SB102A	W CABINET FOR REACTOR TRIP SWG TRAIN-A	AUX	2026-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage.
12.	TAP01	Condensate Storage Tank	YARD	2000-00	Perform HCLPF analysis per Appendix H of NP-6041. In addition, evaluate block wall doghouse that is adjacent for interaction hazard.
13.	TBN01	RWST	YRD	2000-00	Perform HCLPF analysis per Appendix H of NP-6041.
14.	XNG01	4.16-KV/480 V LOAD CENTER TRANSFORMER XNG01 FOR LC NG001	CB/CC	2000-00	Anchorage could not be readily screened. Perform HCLPF analysis of anchorage.

Enclosure 2 to ULNRC-06161

Westinghouse Non-Proprietary Class 3

Callaway Energy Center ESEP Final Report

No.	ID	Description	Bldg	Elev	Basis for Selection
15.	Generic	Equipment 40' above grade	AB/CB	2047-06	Equipment on the Aux/Ctrl 2047.5' elevation are 40' above grade and have ISRS spectral accelerations in both horizontal directions exceeding 1.8g (with clipping) and therefore do not screen to the 2nd screening lane. HCLPF analysis for component functionality and structure (including anchorage) are required for the associated components. Affected components include NF039A, NF039B, NF039C, NG003C, NG004C, RP053AC, RP053BC, RP053DB, RP068, RP081A, RP081B, RP289, SA036A, SA036C, SA066A, SA066B, SA075A, SB029A, SB029D, SB030A, SB032A, SB032D, SB033A, SB037, SB038, SB041, SB078, SB079, SE054A, SE054C, and SE054D.
16.	Generic	BLOCK WALLS	AB/ CB	Var.	 Per NP-6041-SL Table 2-4 seismic capacity cannot be screened and HCLPF analysis is required for block wall seismic capacity. Affected components include NB001, NK025, NG003, TAP01, NK043, NN003, NN013, NK041, NN001, NK021, NN011, NK051, NK001, NK023, NK071, NK073, NK011, NK013, AB007, NK003, RP209, NG002, NK024, NK074, NK004, NK014, NN014, NN004, RP140, and RP334.

6.4 HCLPF Calculation Process

All HCLPF values were calculated using the conservative, deterministic failure margin (CDFM) criteria of NP-6041-SL [8]. CDFM analysis criteria are summarized in NP-6041-SL, Table 2-5.

For structural failure modes, the HCLPF capacity is equal to the earthquake magnitude at which the strength limit is reached. For equipment functionality, experience data or available test response spectra (TRS) are typically used to define the HCLPF capacity. The methods of NP-6041-SL, Appendix Q were applied for functionality evaluations.

6.5 Functional Evaluations of Relays

Verification of the functional capacity for equipment mounted within 40' of grade was addressed by application NP-6041-SL, Table 2-4 generic screening criteria as described above. For equipment mounted higher than 40' above grade and for in-scope relays, the methods of NP-6041-SL, Appendix Q were applied for functionality evaluations. In those cases the seismic capacity was based upon one of the following:

- Test response spectra (TRS) from plant-specific seismic qualification reports.
- Generic equipment ruggedness spectra (GERS) from EPRI report NP-5223-SL [12].
- Experience based seismic capacity per the guidelines of EPRI TR-1019200 [13].

Screening of relays within the scope of the ESEP (in accordance with EPRI 3002000704) is conducted within 14C4258-RPT-003 [5]. Cabinets requiring HCLPF evaluation for relay functionality are noted in Table 7-2 [5] under Item 17.

6.6 Tabulated ESEL HCLPF Values (Including Key Failure Modes)

Table 6-3 lists HCLPF analysis results. The failure modes analyzed are identified. Supporting calculation documents [10.d &e] containing the detailed HCLPF calculations are also identified.

For the following discussion, an "ESEP outlier" is defined as an item whose HCLPF capacity is less than the RLGM. There are currently four ESEP outliers:

- NG003C (Relay Capacity)
- NG004C (Relay Capacity)
- TAP01 (Anchorage Capacity)
- TBN01 (Anchorage Capacity)

Note that for the CST (TAP01) and RWST (TBN01), the applied ground motion and HCLPF are based on the GMRS of Reference 7. The GMRS is acceptable as an alternative RLGM per EPRI 3002000704, Section 4, Option 2. The CST and RWST are founded on a slab-on-grade in the yard. The GMRS has a horizontal PGA of 0.50g.

Relay Chatter Failure Modes

NG003C and NG004C are ESEP-outliers with respect to relay chatter. Refer to 14C4258-RPT-003 [5] for specific relays. Credit for operator action may resolve the relay chatter failure modes.

Tabulated HCLPF Values

In general, the HCLPF values for screened-out items equals or exceeds the RLGM.

HCLPF \geq 0.40g The HCLPF for screened-out items and failure modes

Unless justified by calculations, the above HCLPF is applicable for all screened-out items and covers the relevant failure modes.

The HCLPF values for all ESEL items are tabulated in Appendix B.

No.	ID	Description	Bldg	Elev	HCLPF2 (g, PGA)	Failure Mode Analyzed	Basis	Related Components
1.	NB001	4.16KV SWGR NB001 (Class 1E, Train A)	СВ	2000-00	0.41	Equipment capacity and anchorage	14C4258- CAL-005	n/a
2.	NG001	480 V LOAD CENTER NG01	CB/CC	2000-00	0.41	Equipment capacity and anchorage	14C4258- CAL-005	NG002, NG003
3.	NK011	125 V BATTERY NK011	CB/CC	2016-00	2.36	Anchorage	14C4258- CAL-004	NK013, NK014
4.	NK021	125 V BATTERY CHARGER NK021	CB/CC	2016-00	1.33	Anchorage	14C4258- CAL-004	NK023, NK024
5.	NK025	125 V BATTERY CHARGER NK025 (Swing Battery Charger)	СВ	2000-00	0.85	Anchorage	14C4258- CAL-004	n/a
6.	NN001	Class 1E AC DIST SWBD NN01 (SEP GRP 1)	CB/CC	2016-00	0.71	Anchorage	14C4258- CAL-004	NK043, NN003, NK051, NK041, NK001, NK003, NK004, NN004
7.	NN011	7.5KVA INVERTER (FED FROM BATT CHARGER NK021)	CB/CC	2016-00	0.75	Anchorage	14C4258- CAL-004	NN013
8.	PA003	CUBICLE PT FOR RCP MOTOR DPBB01A	AUX	2026-00	0.62	Anchorage	14C4258- CAL-004	PA004

Table 6-3: HCLPF Analysis Results

² HCLPFs based upon RLGM (PGA=0.40g) as the seismic margins earthquake with the exception of TAP01, TBN01, and the CST pipe house block walls, which are based upon the GMRS (PGA=0.50g).

Enclosure 2 to ULNRC-06161

Westinghouse Non-Proprietary Class 3

Callaway Energy Center ESEP Final Report

No.	ID	Description	Bldg	Elev	HCLPF2 (g, PGA)	Failure Mode Analyzed	Basis	Related Components
9.	PAL02	TDAFW Pump	AUX	2000-00	1.75	Anchorage	14C4258- CAL-004	n/a
10.	RL001	REACTOR AUX CNTRL PANEL	СВ	2047-06	0.71	Anchorage		RLOO2, RLOO5, RLOO6, RLO17 thru RLO26
11.	SB102A	W CABINET FOR REACTOR TRIP SWG TRAIN-A	AUX	2026-00	0.58	Anchorage	14C4258- CAL-004	n/a
12.	TAP01	Condensate Storage Tank	YARD	2000-00	0.30	Equipment capacity and anchorage	14C4258- CAL-002	n/a
13.	TBN01	RWST	YRD	2000-00	0.33	Equipment capacity and anchorage	14C4258- CAL-002	n/a
14.	XNG01	4.16-KV/480 V LOAD CENTER TRANSFORMER XNG01 FOR LC NG001	CB/CC	2000-00	0.45	Anchorage	14C4258- CAL-004	
15.	Generic	Equipment >40'						
	SE054A	NIS Cabinet	СВ	2047-06	0.41	Equipment capacity and anchorage	14C4258- CAL-005	SE054C, SE054D
	SB037	7300 Series Three Bay Cabinets	СВ	2047-06	0.41	Equipment capacity and anchorage	14C4258- CAL-005	SB038, SB041, SB078, SB079
	SA066A	STATUS INDICATING SYS	СВ	2047-06	0.41	Equipment capacity and anchorage	14C4258- CAL-005	SA066B
	RP068	BOP Instrumentation Panel	СВ	2047-06	0.41		14C4258- CAL-005	n/a
	RP053AC	BOP Instrumentation Rack	СВ	2047-06	0.41	Equipment capacity and anchorage	14C4258- CAL-005	RP053BC, RP053DB
	RP081A	T/C SUBCOOLING MONITOR CABINET	СВ	2047-06	0.41	Equipment capacity and anchorage	14C4258- CAL-005	RP081B
16.	Generic	Block Wall Seismic Interaction						
	CTRL 2000'	All block walls on CTRL 2000' elev	СВ	2000-00	1.17	Seismic interaction		NB001, NK025, NG003, RP140, and RP334.

Westinghouse Non-Proprietary Class 3

No.	ID	Description	Bldg	Elev	HCLPF2 (g, PGA)	Failure Mode Analyzed	Basis	Related Components
	CTRL 2016'	All block walls on CTRL 2016' elev	СВ	2016-00	0.87			NKO43, NN003, NN004, NN013, NN014, NK041, NN001, NK021, NN011, NK051, NK001, NK023, NK071, NK073, NK074 NK011, NK013, NK014, AB007, NK003, NK004, NK024
	AUX 2000'	2000' elev wall on column line AF north of Stair A-2	AUX	2000-00	0.67	Seismic interaction	14C4258- CAL-003	RP209
	CST House	CST Pipe house masonry walls	YARD	2000-00	0.40	Seismic interaction	14C4258- CAL-003	TAP01
17.	Generic	Cabinets containing essential relays						
	NG003C	MCC NG03C BUS	СВ	2047-06	0.32		14C4258- CAL-005	NG004C
	NG002B	MCC NG02B BUS	СВ	2026-00	0.40		14C4258- CAL-005	NG001A
	FC0219	LOCAL CONTROL PANEL FOR TD AFW PUMP	АВ	2000-00	0.41		14C4258- CAL-005	n/a

7.0 Inaccessible Items

7.1 Identification of ESEL items inaccessible for walkdowns

Sufficient access was provided for all ESEL items and no additional walkdowns are planned.

8.0 ESEP Conclusions and Results

8.1 Supporting Information

Callaway has performed the ESEP as an interim action in response to the NRC's 50.54(f) letter [1]. It was performed using the methodologies in the NRC endorsed guidance in EPRI 3002000704 [2].

The ESEP provides an important demonstration of seismic margin and expedites plant safety enhancements through evaluations and potential near-term

modifications of plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events.

The ESEP is part of the overall Callaway response to the NRC's 50.54(f) letter [1]. On March 12, 2014, NEI submitted to the NRC results of a study [14] of seismic core damage risk estimates based on updated seismic hazard information as it applies to operating nuclear reactors in the Central and Eastern United States (CEUS). The study concluded that "site-specific seismic hazards show that there [...] has not been an overall increase in seismic risk for the fleet of U.S. plants" based on the re-evaluated seismic hazards. As such, the "current seismic design of operating reactors continues to provide a safety margin to withstand potential earthquakes exceeding the seismic design basis."

The NRC's May 9, 2014 NTTF 2.1 Screening and Prioritization letter [15] concluded that the "fleetwide seismic risk estimates are consistent with the approach and results used in the Gl-199 safety/risk assessment." The letter also stated that, "As a result, the staff has confirmed that the conclusions reached in Gl-199 safety/risk assessment remain valid and that the plants can continue to operate while additional evaluations are conducted."

An assessment of the change in seismic risk for Callaway was included in the fleet risk evaluation submitted in the March 12, 2014 NEI letter [14] therefore, the conclusions in the NRC's May 9 letter [15] also apply to Callaway.

In addition, the March 12, 2014 NEI letter [14] provided an attached "Perspectives on the Seismic Capacity of Operating Plants," which: (1) assessed a number of qualitative reasons why the design of SSCs inherently contain margin beyond their design level, (2) discussed industrial seismic experience databases of performance of industry facility components similar to nuclear SSCs, and (3) discussed earthquake experience at operating plants.

The fleet of currently operating nuclear power plants was designed using conservative practices, such that the plants have significant margin to withstand large ground motions safely. This has been borne out for those plants that have actually experienced significant earthquakes. The seismic design process has inherent (and intentional) conservatisms which result in significant seismic margins within SSCs. These conservatisms are reflected in several key aspects of the seismic design process, including:

- Safety factors applied in design calculations
- Damping values used in dynamic analysis of SSCs
- Bounding synthetic time histories for in-structure response spectra calculations
- Broadening criteria for in-structure response spectra
- Response spectra enveloping criteria typically used in SSC analysis and testing applications

- Response spectra based frequency domain analysis rather than explicit time history based time domain analysis
- Bounding requirements in codes and standards
- Use of minimum strength requirements of structural components (concrete and steel)
- Bounding testing requirements, and
- Ductile behavior of the primary materials (that is, not crediting the additional capacity of materials such as steel and reinforced concrete beyond the essentially elastic range, etc.).

These design practices combine to result in margins such that the SSCs will continue to fulfill their functions at ground motions well above the SSE.

The intent of the ESEP is to perform an interim action in response to the NRC's 50.54(f) letter [1] to demonstrate seismic margin through a review of a subset of the plant equipment that can be relied upon to protect the reactor core following beyond design basis seismic events. In order to complete the ESEP in an expedited amount of time, the RLGM used for the ESEP evaluation is a scaled version of the plant's SSE rather than the actual GMRS. To more fully characterize the risk impacts of the seismic ground motion represented by the GMRS on a plant specific basis, a more detailed seismic risk assessment (SPRA or risk-based SMA) is to be performed in accordance with EPRI 1025287 [16]. As identified in the Callaway Seismic Hazard and GMRS submittal [7], Callaway screens in for a risk evaluation. The complete risk evaluation will more completely characterize the probabilistic seismic ground motion input into the plant, the plant response to that probabilistic seismic ground motion input, and the resulting plant risk characterization. Callaway will complete that evaluation in accordance with the schedule identified in NEI's letter dated April 9, 2013 [17] and endorsed by the NRC in their May 7, 2013 letter [2].

8.2 Indication of Planned Modifications

This report presents the seismic evaluation results for the ESEP as applied to Callaway Energy Center. A primary goal of the ESEP is to demonstrate that HCLPF seismic capacities of ESEL items exceed the RLGM seismic demand. For Callaway, the RLGM is equal to the SSE scaled-up by a 2.0 factor. The RLGM has a PGA of 0.40g at grade. Exceptions to this include the CST (TAP01) and RWST (TBN01), which apply the GMRS (PGA of 0.50g) for HCLPF evaluation [10b].

Insights from the ESEP identified the following items (Table 8-1) where the HCLPF is below the RLGM and plant modifications will be made in accordance with EPRI 3002000704 [2] to enhance the seismic capacity of the plant.

ID	Description	HCLPF Capacity ³ (g, PGA)	Failure Mode
NG003C	MCC NG03C BUS	0.32	Relay functionality
NG004C	MCC NG04C BUS	0.32	Relay functionality
TAP01	Condensate Storage Tank	0.30	Anchorage
TBN01	RWST	0.33	Anchorage

Table 8-1: Equipment with HCLPF Capacities below the RLGM Requiring Modification

8.3 Modification Implementation Schedule

Plant modifications will be performed in accordance with the schedule identified in NEI letter dated April 9, 2013 [15], which states that plant modifications not requiring a planned refueling outage will be completed by December 2016 and modifications requiring a refueling outage will be completed within two planned refueling outages after December 31, 2014.

Section 8.4 contains the regulatory commitment dates to complete planned plant modifications as a result of ESEP. Referencing Section 8.4, Actions 1 and 2 do not require a refueling outage and will be completed by December 31, 2016. Action 3 requires a refueling outage and will be completed by the end of RF21, Spring 2016, as required to support FLEX implementation. Action 4 requires a refueling outage and will be completed no later than the end of the second refueling outage after 12/31/14, currently RF22 scheduled for Fall 2017.

8.4 Summary of Regulatory Commitments

Action #	Equipment ID	Equipment Description	Action Description	Completion Date
1			Modify FLEX Support Guidelines to include operator actions to reset relays with HCLPF values	December 31, 2016
	NG003C	MCC NG03C BUS	less than the RLGM.	
2	NGOOAG		Modify FLEX Support Guidelines to include operator actions to reset relays with HCLPF values	December 31, 2016
	NG004C	MCC NG04C BUS	less than the RLGM.	
3	TAP01	Condensate Storage Tank	Install a new "hardened" Condensate Storage Tank.	End of RF21, Spring 2016

The following actions will be performed as a result of the ESEP.

³ All HCLPFs based upon RLGM (PGA=0.40g) as the seismic margins earthquake with the exception of TAP01, TBN01, and the CST pipe house block walls, which are based upon the GMRS (PGA=0.50g).

Enclosure 2 to ULNRC-06161

Westinghouse Non-Proprietary Class 3

Action #	Equipment ID	Equipment Description	Action Description	Completion Date
4	TBN01	RWST	Three step response in order of priority: 1) Re-evaluate FLEX response strategies to eliminate the need for the tank. 2) Re- analyze the tank with the more realistic median-centered structural response based on the new GMRS which will be generated once the Seismic PRA starts, 3) Upgrade/replace the tank.	No later than the end of the second refueling outage after 12/31/14, currently RF22 scheduled for Fall 2017

9.0 References

- Letter from E. J. Leeds and M. R. Johnson, USNRC, to M. W. Sunseri, WCNOC, "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendations 2.1, 2.3, and 9.3 of the Near-Term Task Force Review of Insights from the Fukushima Dai-Ichi Accident," March 12, 2012. ADAMS Accession No. ML12053A340.
- Letter from E. J. Leeds, USNRC, to J. E. Pollock, NEI, "Electric Power Research Institute Final Draft Report XXXXXX, "Seismic Evaluation Guidance: Augmented Approach for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic," as an Acceptable Alternative to the March 12, 2012, Information Request for Seismic Reevaluations," May 7, 2013. 3002000704; ADAMS Accession No. ML13106A331.
- 3. Callaway Overall Integrated Plan (OIP) in Response to the March 12, 2012, Commission Order EA-12-049.
 - Callaway Letter ULNRC-05962, "Docket No. 50-483: Callaway Plant Unit 1 Union Electric Co. Facility Operating License NPF-30 Overall Integrated Plan in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)," February 18, 2013, (ADAMS Accession Number ML13063A459).
 - b. Callaway Letter ULNRC-06024, "Docket No. 50-483: Callaway Plant Unit 1 Union Electric Co. Facility Operating License NPF-30 First Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)," August 29, 2013, (ADAMS Accession Number ML 13242A239).
 - c. Callaway Letter ULNRC-06087, "Docket No. 50-483: Callaway Plant Unit 1 Union Electric Co. Facility Operating License NPF-30 Second Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)," February 26, 2014, (ADAMS Accession Number ML 14057A770).
 - Callaway Letter ULNRC-06135, "Docket No. 50-483: Callaway Plant Unit 1 Union Electric Co. Facility Operating License NPF-30 Third Six-Month Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-

Design-Basis External Events (Order Number EA-12-049)," August 28, 2014, (ADAMS Accession Number ML13063A459).

- 4. SCP-14-82, "Transmittal of Updated Callaway ESEL for ESEP Report", December 2014.
- 5. S&A report 14C4258-RPT-003 Rev. 0, "Callaway ESEL Relay Assessment," December 2014.
- 6. CEC FSAR, Rev. OL-20, "Callaway Energy Center Final Safety Analysis Report (FSAR)." December 2013.
- 7. Callaway Seismic Hazard and GMRS submittal, dated March 31, 2014.
- Electric Power Research Institute Report, NP-6041-SLR1, Revision 1, "A Methodology for Assessment of Nuclear Power Plant Seismic Margin," 1991.
- 9. Electric Power Research Institute Report, TR-103959, "Methodology for Developing Seismic Fragilities," 1994.
- 10. S&A Calculations:
 - a) 14C4258-CAL-001 Rev. 0, "Generation of Scaled In-Structure Response Spectra for Callaway," December 2014.
 - b) 14C4258-CAL-002 Rev. 0, "Seismic Capacity of CST (TAP01) and RWST (TBN01)," December 2014.
 - c) 14C4258-CAL-003 Rev. 0, "HCLPF Analyses for Block Walls," December 2014.
 - d) 14C4258-CAL-004 Rev. 0, "HCLPF Seismic Capacity Evaluations for Selected Equipment," December 2014.
 - e) 14C4258-CAL-005 Rev. 0, "HCLPF Analysis of Components Based on Seismic Test Data," December 2014.
 - f) 14C4258-RPT-002, Revision 1, "Seismic Evaluation of Equipment at CEC for the Expedited Seismic Evaluation Process," December 2014.
- 11. ULNRC-3232, "Callaway Plant Individual Plant Examination of External Events (IPEEE)," June 1995.
- 12. Electric Power Research Institute Report, NP-5223-SL, Revision 1, "Generic Seismic Ruggedness of Power Plant Equipment," 1991.
- 13. Electric Power Research Institute Technical Report, TR-1019200, "Seismic Fragility Applications Guide Update," 2009.
- Letter from A. R. Pietrangelo, NEI, to D. L Skeen, USNRC, "Seismic Risk Estimates for Plants in the Central and Eastern United States," March 12, 2014. ADAMS Accession No. ML14083A584.
- NRC (E Leeds) Letter to All Power Reactor Licensees et al., "Screening and Prioritization Results Regarding Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(F) Regarding Seismic Hazard Re-Evaluations for

Recommendation 2.1 of the Near-Term Task Force Review of Insights From the Fukushima Dai-Ichi Accident," May 9, 2014.

- Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic. EPRI, Palo Alto, CA: February 2013. 1025287.
- Letter from A. R. Pietrangelo, NEI, to D. L. Skeen, USNRC, "Proposed Path Forward for NTTF Recommendation 2.1: Seismic Reevaluations," April 9, 2013. ADAMS Accession No. ML13107B386.

Attachment A Callaway ESEL

Westinghouse Non-Proprietary Class 3

Callaway Energy Center ESEP Final Report

ESEL		Equipment	Operati	ng State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
		Mech	anical ESEL It	ems	
1	TAP01	Condensate Storage Tank	Operable	Operable	CST provides AFW suction for the first 17 hours
2	PAL02	TDAFW Pump	Not Operating	Operating	TDAFW provides pump power to move AFW to SG
3	ALHV0034	MOV	Open	Closed	MOV required to isolate flow path
4	ALHV0035	MOV	Open	Closed	MOV required to isolate flow path
5	ALPI0029	Suction Pressure Indicator			
6	ALFE0049	TDAFWP Miniflow Flow Element			
7	ALFI0049	TDAFWP Miniflow Flow Indicator			
8	APLV0002	Level Control Valve	Open	Closed	Fail closed valve
9	ALPI0020	TDAFW Pump Discharge Pressure Indicator			
10	ALHV0012	Air Operated Valve	Open	Open	Valve may be operated to throttle AFW flow to SG
11	ALFE0004	Flow Element			AFW flow related hardware
12	ALFT0004	Flow Transmitter			AFW flow related hardware
13	ALFT0011	Flow Transmitter			AFW flow related hardware
14	AEFV0041	Feedwater Isolation Valve	Open	Closed	Fail closed valve
15	ALHV0010	Air Operated Valve	Open	Open	Valve may be operated to throttle AFW flow to SG
16	ALFE0003	Flow Element			
17	ALFT0003	Flow Transmitter			AFW flow related hardware
18	ALFT0009	Flow Transmitter			AFW flow related hardware
19	AEFV0040	Feedwater Isolation Valve	Open	Closed	Fail closed valve
20	ALHV0008	Air Operated Valve	Open	Open	Valve may be operated to throttle AFW flow to SG
21	ALFE0002	Flow Element	· ·		AFW flow related hardware
22	ALFT0002	Flow Transmitter			AFW flow related hardware
23	ALFT0007	Flow Transmitter			AFW flow related hardware

ESEL		Equipment	Operati	ng State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
24	AEFV0039	Feedwater Isolation Valve	Open	Closed	Fail closed valve
25	ALHV0006	Air Operated Valve	Open	Open	Valve may be operated to throttle AFW flow to SG
26	ALFE0001	Flow Element			AFW flow related hardware
27	ALFT0001	Flow Transmitter			AFW flow related hardware
28	AEFV0042	Feedwater Isolation Valve	Open	Closed	Fail closed valve
29	ABHV0005	Air Operated Valve	Closed	Fail Open	TDAFW controls and steam flow controls. Fails open.
30	ABHV0048	Air Operated Valve	Open	Fail Closed	TDAFW controls and steam flow controls. Fails closed.
31	ABHV0006	Air Operated Valve	Closed	Fail Open	TDAFW controls and steam flow controls. Fails open.
32	ABHV0049	Air Operated Valve	Open	Fail Closed	TDAFW controls and steam flow controls. Fails closed.
33	FCPI0311	Pressure Indicator			
34	FCLT0010	Level Indicator			Needed to prevent water intrusion in TDAFWP
35	FCFV0310	Level Control Valve	Open	Fail Closed	Needed to prevent water intrusion in TDAFWP. Valve fails closed.
36	FCHV0312	Trip and Throttle Valve	Closed	Operating	TDAFW controls and steam flow controls. Operation of this manual valve should be accounted for in operating procedures.
37	Speed Governor	Speed Governor	Standby	Operating	TDAFW controls and steam flow controls.
38	FCFV0313	Speed Governor Valve	Open	Operating	TDAFW controls and steam flow controls.
39	KFC02	AFW Pump Turbine	Not Operating	Operating	TDAFW controls and steam flow controls.
40	BBPV8702A	RHR TO RCS	Closed	Open	
41	EMHV8803B	MOTOR-OPERATED VALVE EMHV8803B	Closed	Open	Primary flow path, can be operated manually
42	EMHV8801B	MOTOR-OPERATED VALVE EMHV8801B	Closed	Open	Primary flow path, can be operated manually

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
43	EMFE0924	ECCS FLOW TO RCS COLD-LEG 1			
44	EMFE0925	ECCS FLOW TO RCS COLD-LEG 2			
45	EMFE0926	ECCS FLOW TO RCS COLD-LEG 3			
46	EMFE0927	ECCS FLOW TO RCS COLD-LEG 4			
47	TBN01	RWST			Secondary source for core makeup after BAT exhausted
48	BNLT0930	RWST Level Transmitter			Monitor RWST level
49	EJHCV0606	RHR Heat Exchanger A Outlet Isolation Valve	Fail Open	Closed	Can be operated manually
50	TBG03A	Boric Acid Tank			
51	BGLT0102	BORIC ACID TANK A LEV			Monitor BAT level
52	BGLI0102	BORIC ACID TANK A LEV			Local level indicator
53	EJFCV0610	RHR Pump A miniflow Valve	Open	Closed	
54	EJFCV0610	RHR Pump A miniflow Valve	Open	Closed	
55	EJFCV0610	RHR Pump A miniflow Valve	Open	Closed	
		Elect	rical ESEL Ite	ms	
56	NB001	4.16KV SWGR NB001 (Class 1E, Train A)	N/A	N/A	This component is powered by the FLEX DG in Phase 3 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
57	NB00101	4.16 kV FDR BKR FOR RHRP-A DPEJ01A (Residual Heat Removal Pump A)	N/A	N/A	This component is powered by the FLEX DG in Phase 3 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
58	NB00107	4.16 kV FDR BKR FOR CCWP-A DPEG01A (Component Cooling Water Pump A)	N/A	N/A	This component is powered by the FLEX DG in Phase 3 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
59	NB00109	4.16 kV FLEX GEN (Phase 3) TIE-IN POINT (BKR) FOR TRAIN A	N/A	N/A	This breaker position is the tie- in point for the Phase 3 FLEX diesel generator
60	NB00113	4.16 kV FDR BKR FOR XFMR XNG01 (4160 V to 480 V for LC NG001)	N/A	N/A	This component is powered by the FLEX DG in Phase 3 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
61	XNG01	4.16-KV/480 V LOAD CENTER TRANSFORMER XNG01 FOR LC NG001	N/A	N/A	This component is powered by the FLEX DG in Phase 3 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
62	NG001	480 V LOAD CENTER NG01	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
63	NG00101	MAIN BKR FOR LC NG01	N/A	N/A	This component is powered by the FLEX DG in Phase 3 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
64	NG00103	FDR BKR FOR 125 V VITAL BATTERY CHARGER NK021	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
65	NG00112	FLEX 500 kW TIE IN BRK (Phase 2 connection point)	N/A	N/A	This component is powered by the FLEX DG in Phase 2 as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
66	NG00116	TIE BKR (CONNECTS NG01 AND NG03)	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
67	NG003	480 V LOAD CENTER NG03	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
68	NG00303	FDR BKR FOR 125 V VITAL BATTERY CHARGER NK023	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
69	NK021	125 V BATTERY CHARGER NK021	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
70	NK071	TRANSFER SWITCH BUS NK01 BATTERY CHARGER NK21/NK25	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
71	NK001	125 VDC BUS SWITCHBOARD NK001	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
72	NK00102	FDR BKR FROM BATT CHGR NK021 TO NK001	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
73	NK00104	MAIN BREAKER FOR CNTRL AND DIST PNL NK041 (PART OF SWBD NK001)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
74	NK00105	MAIN BREAKER FOR CNTRL AND DIST PNL NK051 (PART OF SWBD NK001)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
75	NK011	125 V BATTERY NK011	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ng State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
76	NK00101	ISOLATION BKR FOR BATTERY NK011	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
77	NK00111	FDR BKR FOR INVERTER NN011 (PART OF SWBD NK001)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
78	NN011	7.5KVA INVERTER (FED FROM BATT CHARGER NK021)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
79	NN001	Class 1E AC DIST SWBD NN01 (SEP GRP 1)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
80	SA066A	STATUS INDICATING SYS	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
81	SENY0060A	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 60A	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
82	SENY0060B	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 60B	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
83	SB038	W PROCESS ANALOG PROTECTION SET CAB- 01	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
84	SE054A	W NUC INSTM NIS 1	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
85	RP053AC	BOP INSTRUMENTATION RACK (TERMINATION AREA)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
86	SB078	RPV LEVEL INSTR SYS (RVLIS) PROC PROT SYS CABINET	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
87	RP081A	T/C SUBCOOLING MONITOR CABINET	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
88	NK041	CNTRL & INSTR DIST SWBD NK041 (CLASS 1E 125 VDC)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
89	NE107	DIESEL GEN PNL NE107 & FIELD FLASHING	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
90	RL005	TURBINE GENERATOR AND FW CONSOLE	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
91	RL006	TURBINE GENERATOR AND FW CONSOLE	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
92	RP315	DC DIST PNL RP315	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
93	RL023	TURBINE GENERATOR AND FW MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
94	RL024	TURBINE GENERATOR AND FW MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
95	RL017	ESF MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
96	RL018	ESF MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
97	RL019	ESF MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
98	RL020	ESF MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
99	RL001	REACTOR COOLANT AND SUPT SYS CONSOLE	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL	I	Equipment	Operati	ng State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
100	RL002	REACTOR COOLANT AND SUPT SYS CONSOLE	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
101	RL025	TURBINE GENERATOR AND FW MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
102	RL026	TURBINE GENERATOR AND FW MCB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
103	RP317	FUSED 125 VDC DIST PNL RP317	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
104	NK051	CNTRL & INSTR DIST SWBD NK051 (CLASS 1E 125 VDC)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
105	BBPCV0455A	BBPCV0455A PORV SOLENOID FAILS TO OPEN ON DEMAND	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
106	RL021	REACTOR AUX CNTRL PANEL	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
107	RL022	REACTOR AUX CNTRL PANEL	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
108	KJ0121	DIESEL GAUGE AND CONTROL PANEL	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
109	RP209	B AUXILIARY RELAY RACK	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
110	RP289	DC DIST PNL RP289	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
111	RP068	MISC BOP INSTRUMENT RACK	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
112	RP330	AUX RELAY RACK RP330	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
113	RP332	B AUXILIARY RELAY RACK	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
114	NK051A	EM'CY LIGHTING DIST SWBD NK051A (SUBPNL OF NK051)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
115	NK023	125 V BATTERY CHARGER NK023	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
116	NK073	TRANSFER SWITCH BUS NK03 BATTERY CHARGER NK23/NK25	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
117	NK003	125 VDC BUS SWITCHBOARD NK003	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
118	NK00302	FDR BKR FROM BATT CHGR NK023 TO NK003	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
119	NK00304	MAIN BREAKER FOR CNTRL AND DIST PNL NK043 (PART OF SWBD NK003)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
120	NK013	125 V BATTERY NK013	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
121	NK00301	ISOLATION BKR FOR BATTERY NK013	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
122	NK00311	FDR BKR FOR INVERTER NN013 (PART OF SWBD NK003)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
123	NN013	7.5KVA INVERTER (FED FROM BATT CHARGER NK023)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
124	NN003	Class 1E AC DIST SWBD NN03 (SEP GRP 3)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
125	RP053DB	BOP INSTR RACK RP053DB	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
126	SB037	W PROCESS ANALOG PROTECTION SET CAB- 03	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
127	SE054C	W NUC INSTM NIS 3			This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX
128	NK043	CNTRL & INSTR DIST SWBD NK043 (CLASS 1E 125 VDC)	N/A	N/A	Integrated Plan This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
129	AB007	Aux Relay Rack	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Plant FLEX Integrated Plan
130	NG00109	FDR BKR FOR 125 V SWING BATTERY CHARGER NK025	N/A	N/A	This component provides power to NK025 and, in turn, Separation Group 1.
131	NK025	125 V BATTERY CHARGER NK025 (Swing Battery Charger)	N/A	N/A	The A-Train swing charger will be used to power Separation Group 1.
132	NG002	480 V LOAD CENTER NG02	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Integrated FLEX Plan

ESEL		Equipment	Operati	ng State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
133	NG00212	FLEX 500 kW TIE IN BKR from FD201 (Phase 2 connection point)	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Integrated FLEX Plan
134	NG00203	FDR BKR FOR 125 V VITAL BATTERY CHARGER NK024	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Integrated FLEX Plan
135	NK024	125 V BATTERY CHARGER NK024	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Integrated FLEX Plan
136	NK074	TRANSFER SWITCH BUS NK04 BATTERY CHARGER NK24/NK26	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Integrated FLEX Plan
137	NK004	125 VDC BUS SWITCHBOARD NK004	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
138	NK00402	FDR BKR FROM BATT CHGR NK024 TO NK004	N/A	N/A	This component is powered by the FLEX DG, first Phase 2, then in Phase 3, as stated in Sec. 8 of the Callaway Integrated FLEX Plan
139	NK014	125 V BATTERY NK014	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
140	NK00401	ISOLATION BKR FOR BATTERY NK014	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
141	NK00411	FDR BKR FOR INVERTER NN011 (PART OF SWBD NK004)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
142	NN014	7.5KVA INVERTER (FED FROM BATT CHARGER NK024)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
143	NN004	Class 1E AC DIST SWBD NN04 (SEP GRP 4)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
144	RP147B	BOP Instrumentation Rack RP147B	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
145	SENY0061A	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 61A	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
146	SENY0061B	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 61B	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
147	SE054D	W NUC INSTM NIS 4	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
148	SB041	W PROCESS ANALOG PROTECTION SET CAB- 04	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan

ESEL		Equipment	Operati	ing State	
ltem Num	ID	Description	Normal State	Desired State	Notes/Comments[1]
149	RP053BC	BOP Instrumentation Rack RP053BC			This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX
150	SB079	RVLIS Process Cabinet SB079	N/A	N/A N/A	Plan This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
151	RP081B	Subcooling Monitor Cabinet	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
152	SB148B	W PROCESS PROTECTION (Fire Isolation)	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
153	SA066B	STATUS INDICATING SYS	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan
154	RP140	PANEL RP140	N/A	N/A	This component is powered during ALL phases of the FLEX strategy as stated in Sec. 8 of the Callaway Integrated FLEX Plan

Attachment B ESEP HCLPF Values and Failure Modes Tabulation

HCLPF values are listed in Table B-1. These notes are applicable:

- 1. The listed HCLPF value is for comparison to the horizontal PGA at the bedrock surface.
- Items covered by the NP-6041-SL "rule of the box" (ROB) are identified in Table A-2 [9]. In each case, the HCLPF value for the parent item applies.
- 3. For the CST and RWST only (TAP01 and TBN01, respectively), the applied ground motion was based on the GMRS (PGA = 0.50g).
- 4. Where an anchorage HCLPF is performed but the component per se is screened, the equipment capacity is assigned based upon the 1.2g peak spectral acceleration coinciding with the 2nd screening lane of NP-6041-SL. Since the Callaway RLGM has a peak spectral acceleration of 1.2g in the building frequency range of interest (see Section 6.2.1) and PGA of 0.40g [Ref. 7], the equipment capacity is assigned as 0.40g PGA.
- 5. As a result of the relay chatter evaluation, additional items were added to the ESEL list for evaluation.

Table B-1: ESEL HCLPF Values

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
1	TAP01	Condensate Storage Tank	YARD	2000-00	0.3	Anchorage	Tank capacity evaluated in 14C4258-CAL-002. Block wall evaluated per 14C4258-CAL-003.
2	PAL02	TDAFW Pump	AUX	2000-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
3	ALHV0034	MOV	AUX	1988-00	>RLGM	Screened	SRT disposition
4	ALHV0035	MOV	AUX	1988-00	>RLGM	Screened	SRT disposition
5	ALP10029	Suction Pressure Indicator	AUX	2000-00	>RLGM	Screened	SRT disposition
6	ALFE0049	TDAFWP Miniflow Flow Element	AUX	2000-00	>RLGM	Screened	SRT disposition
7	ALFI0049	TDAFWP Miniflow Flow Indicator	AUX	2000-00	>RLGM	Screened	SRT disposition
8	APLV0002	Level Control Valve	YARD	2000-00	>RLGM	Screened	SRT disposition
9	ALPI0020	TDAFW Pump Discharge Pressure Indicator	AUX	2000-00	>RLGM	Screened	SRT disposition
10	ALHV0012	Air Operated Valve	AUX	2004-07	>RLGM	Screened	SRT disposition
11	ALFE0004	Flow Element	AUX	2000-00	>RLGM	Screened	SRT disposition
12	ALFT0004	Flow Transmitter	AUX	2016-01	>RLGM	Screened	SRT disposition
13	ALFT0011	Flow Transmitter	AUX	2000-00	>RLGM	Screened	SRT disposition
14	AEFV0041	Feedwater Isolation Valve	AUX	2028-00	>RLGM	Screened	SRT disposition
15	ALHV0010	Air Operated Valve	AUX	2002-09	>RLGM	Screened	SRT disposition
16	ALFE0003	Flow Element	AUX	2000-00	>RLGM	Screened	SRT disposition
17	ALFT0003	Flow Transmitter	AUX	2016-00	>RLGM	Screened	SRT disposition
18	ALFT0009	Flow Transmitter	AUX	2000-00	>RLGM	Screened	SRT disposition
19	AEFV0040	Feedwater Isolation Valve	AUX	2027-10	>RLGM	Screened	SRT disposition
20	ALHV0008	Air Operated Valve	AUX	2004-00	>RLGM	Screened	SRT disposition

Westinghouse Non-Proprietary Class 3

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
21	ALFE0002	Flow Element	AUX	2000-00	>RLGM	Screened	SRT disposition
22	ALFT0002	Flow Transmitter	AUX	2016-00	>RLGM	Screened	SRT disposition
23	ALFT0007	Flow Transmitter	AUX	2000-00	>RLGM	Screened	SRT disposition
24	AEFV0039	Feedwater Isolation Valve	AUX	2028-00	>RLGM	Screened	SRT disposition
25	ALHV0006	Air Operated Valve	AUX	2001-06	>RLGM	Screened	SRT disposition
26	ALFE0001	Flow Element	AUX	2000-00	>RLGM	Screened	SRT disposition
27	ALFT0001	Flow Transmitter	AUX	2015-00	>RLGM	Screened	SRT disposition
28	AEFV0042	Feedwater Isolation Valve	AUX	2027-10	>RLGM	Screened	SRT disposition
29	ABHV0005	Air Operated Valve	AUX	2027-10	>RLGM	Screened	SRT disposition
30	ABHV0048	Air Operated Valve	AUX	2027-10	>RLGM	Screened	SRT disposition
31	ABHV0006	Air Operated Valve	AUX	2027-10	>RLGM	Screened	SRT disposition
32	ABHV0049	Air Operated Valve	AUX	2027-10	>RLGM	Screened	SRT disposition
33	FCPI0311	Pressure Indicator	AUX	2000-00	>RLGM	Screened	SRT disposition
34	FCLT0010	Level Indicator	AUX	2000-00	>RLGM	Screened	SRT disposition
35	FCFV0310	Level Control Valve	AUX	1988-00	>RLGM	Screened	SRT disposition
36	FCHV0312	Trip and Throttle Valve	AUX	2000-00	>RLGM	Screened	SRT disposition
37	Speed Governor	Speed Governor	AUX	2000-00	0.4	Equipment Capacity	Item is ROB to PAL02. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
38	FCFV0313	Speed Governor Valve	AUX	2000-00	0.4	Equipment Capacity	Item is ROB to PAL02. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
39	KFC02	AFW Pump Turbine	AUX	2000-00	0.4	Equipment Capacity	Item is ROB to PAL02. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
40	BBPV8702A	RHR TO RCS	RB	2007-09	>RLGM	Screened	SRT disposition
41	EMHV8803B	MOTOR-OPERATED VALVE EMHV8803B	AUX	1975-08	>RLGM	Screened	SRT disposition
42	EMHV8801B	MOTOR-OPERATED VALVE EMHV8801B	AUX	2002-00	>RLGM	Screened	SRT disposition

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
43	EMFE0924	ECCS FLOW TO RCS COLD-LEG 1	RB	1998-06	>RLGM	Screened	SRT disposition
44	EMFE0925	ECCS FLOW TO RCS COLD-LEG 2	RB	1998-06	>RLGM	Screened	SRT disposition
45	EMFE0926	ECCS FLOW TO RCS COLD-LEG 3	RB	1998-06	>RLGM	Screened	SRT disposition
46	EMFE0927	ECCS FLOW TO RCS COLD-LEG 4	RB	1998-06	>RLGM	Screened	SRT disposition
47	TBN01	RWST	YRD	2000-00	0.33	Anchorage	Tank capacity evaluated in 14C4258-CAL-002.
48	BNLT0930	RWST Level Transmitter	YRD	1993-00	>RLGM	Screened	SRT disposition
49	EJHCV0606	RHR Heat Exchanger A Outlet Isolation Valve	AUX	2001-06	>RLGM	Screened	SRT disposition
50	TBG03A	Boric Acid Tank	AUX	1974-00	>RLGM	Screened	SRT disposition
51	BGLT0102	BORIC ACID TANK A LEV	AUX	1968-01	>RLGM	Screened	SRT disposition
52	BGLI0102	BORIC ACID TANK A LEV	СВ	2047-06	0.4	Equipment Capacity	Item is ROB to RL001. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
53	EJFCV0610	RHR Pump A miniflow Valve	AUX	1968-01	>RLGM	Screened	SRT disposition
56	NB001	4.16KV SWGR NB001 (Class 1E, Train A)	СВ	2000-00	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005 Block wall evaluated per 14C4258-CAL-003.
57	NB00101	4.16 kV FDR BKR FOR RHRP-A DPEJ01A (Residual Heat Removal Pump A)	СВ	2000-00	0.41	Anchorage	Item is ROB to NB001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL- 005. Block wall evaluated per 14C4258-CAL-003.
58	NB00107	4.16 kV FDR BKR FOR CCWP-A DPEG01A (Component Cooling Water Pump A)	СВ	2000-00	0.41	Anchorage	Item is ROB to NB001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL- 004. Block wall evaluated per 14C4258-CAL-003.
59	NB00109	4.16 kV FLEX GEN (Phase 3) TIE-IN POINT (BKR) FOR TRAIN A	СВ	2000-00	0.41	Anchorage	Item is ROB to NB001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
60	NB00113	4.16 kV FDR BKR FOR XFMR XNG01 (4160 V to 480 V for LC NG001)	СВ	2000-00	0.41	Anchorage	Item is ROB to NB001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
61	XNG01	4.16-KV/480 V LOAD CENTER TRANSFORMER XNG01 FOR LC NG001	CB/CC	2000-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
62	NG001	480 V LOAD CENTER NG01	CB/CC	2000-00	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
63	NG00101	MAIN BKR FOR LC NG01	СВ	2000-00	0.41	Anchorage	Item is ROB to NG001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004.
64	NG00103	FDR BKR FOR 125 V VITAL BATTERY CHARGER NK021	СВ	2000-00	0.41	Anchorage	Item is ROB to NG001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004.
65	NG00112	FLEX 350 kW TIE IN BRK (Alternate Phase 2 connection point)	СВ	2000-00	0.41	Anchorage	Item is ROB to NG001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004.
66	NG00116	TIE BKR (CONNECTS NG01 AND NG03)	СВ	2000-00	0.41	Anchorage	Item is ROB to NG001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
67	NG003	480 V LOAD CENTER NG03	CB/CC	2000-00	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005. Block wall evaluated per 14C4258-CAL-003.
68	NG00303	FDR BKR FOR 125 V VITAL BATTERY CHARGER NK023	СВ	2000-00	0.41	Anchorage	Item is ROB to NG003. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL- 005. Block wall evaluated per 14C4258-CAL-003.
69	NK021	125 V BATTERY CHARGER NK021	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
70	NK071	TRANSFER SWITCH BUS NK01 BATTERY CHARGER NK21/NK25	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
71	NK001	125 VDC BUS SWITCHBOARD NK001	CB/CC	2016-00	0.71	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
72	NK00102	FDR BKR FROM BATT CHGR NK021 TO NK001	СВ	2016-00	0.71	Anchorage	Item is ROB to NK001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL- 004. Block wall evaluated per 14C4258-CAL-003.
73	NK00104	MAIN BREAKER FOR CNTRL AND DIST PNL NK041 (PART OF SWBD NK001)	СВ	2016-00	0.71	Anchorage	Item is ROB to NK001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL- 004. Block wall evaluated per 14C4258-CAL-003.

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
74	NK00105	MAIN BREAKER FOR CNTRL AND DIST PNL NK051 (PART OF SWBD NK001)	СВ	2016-00	0.71	Anchorage	Item is ROB to NK001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
75	NK011	125 V BATTERY NK011	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
76	NK00101	ISOLATION BKR FOR BATTERY NK011	СВ	2016-00	0.71	Anchorage	Item is ROB to NK001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
77	NK00111	FDR BKR FOR INVERTER NN011 (PART OF SWBD NK001)	СВ	2016-00	0.71	Anchorage	Item is ROB to NK001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
78	NN011	7.5KVA INVERTER (FED FROM BATT CHARGER NK021)	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
79	NN001	Class 1E AC DIST SWBD NN01 (SEP GRP 1)	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
80	SA066A	STATUS INDICATING SYS	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
81	SENY0060A	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 60A	AUX	2026-00	>RLGM	Screened	SRT disposition
82	SENY0060B	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 60B	AUX	2026-00	>RLGM	Screened	SRT disposition
83	SB038	W PROCESS ANALOG PROTECTION SET CAB- 01	CB/CC	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
84	SE054A	W NUC INSTM NIS 1	CB/CC	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
85	RP053AC	BOP INSTRUMENTATION RACK (TERMINATION AREA)	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
86	SB078	RPV LEVEL INSTR SYS (RVLIS) PROC PROT SYS CABINET	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.

Westinghouse Non-Proprietary Class 3

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
87	RP081A	T/C SUBCOOLING MONITOR CABINET	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
88	NK041	CNTRL & INSTR DIST SWBD NK041 (CLASS 1E 125 VDC)	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
89	NE107	DIESEL GEN PNL NE107 & FIELD FLASHING	DGB	2000-00	>RLGM	Screened	SRT disposition
90	RL005	TURBINE GENERATOR AND FW CONSOLE	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
91	RL006	TURBINE GENERATOR AND FW CONSOLE	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
92	RP315	DC DIST PNL RP315	ESW Pumphouse	2000-00	>RLGM	Screened	SRT disposition
93	RL023	TURBINE GENERATOR AND FW MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
94	RL024	TURBINE GENERATOR AND FW MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
95	RL017	ESF MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
96	RL018	ESF MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
97	RL019	ESF MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
98	RL020	ESF MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
99	RL001	REACTOR COOLANT AND SUPT SYS CONSOLE	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
100	RL002	REACTOR COOLANT AND SUPT SYS CONSOLE	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
101	RL025	TURBINE GENERATOR AND FW MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
102	RL026	TURBINE GENERATOR AND FW MCB	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
103	RP317	FUSED 125 VDC DIST PNL RP317	UHS	2000-00	>RLGM	Screened	SRT disposition

Westinghouse Non-Proprietary Class 3

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
104	NK051	CNTRL & INSTR DIST SWBD NK051 (CLASS 1E 125 VDC)	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
105	BBPCV0455A	BBPCV0455A PORV SOLENOID FAILS TO OPEN ON DEMAND	RB	2070-00	>RLGM	Screened	SRT disposition
106	RL021	REACTOR AUX CNTRL PANEL	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
107	RL022	REACTOR AUX CNTRL PANEL	СВ	2047-06	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
108	KJ0121	DIESEL GAUGE AND CONTROL PANEL	DGB	2000-00	>RLGM	Screened	SRT disposition
109	RP209	B AUXILIARY RELAY RACK	AUX	2000-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
110	RP289	DC DIST PNL RP289	AUX	2047-06	>RLGM	Screened	SRT disposition
111	RP068	MISC BOP INSTRUMENT RACK	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
112	RP330	AUX RELAY RACK RP330	AUX	2000-00	>RLGM	Screened	SRT disposition
113	RP332	B AUXILIARY RELAY RACK	AUX	2000-00	>RLGM	Screened	SRT disposition
114	NK051A	EM'CY LIGHTING DIST SWBD NK051A (SUBPNL OF NK051)	СВ	2016-00	0.4	Equipment Capacity	Item is ROB to NK051. Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
115	NK023	125 V BATTERY CHARGER NK023	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
116	NK073	TRANSFER SWITCH BUS NK03 BATTERY CHARGER NK23/NK25	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
117	NK003	125 VDC BUS SWITCHBOARD NK003	CB/CC	2016-00	0.71	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
118	NK00302	FDR BKR FROM BATT CHGR NK023 TO NK003	СВ	2016-00	0.71	Anchorage	Item is ROB to NK003. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
119	NK00304	MAIN BREAKER FOR CNTRL AND DIST PNL NK043 (PART OF SWBD NK003)	СВ	2016-00	0.71	Anchorage	Item is ROB to NK003. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
120	NK013	125 V BATTERY NK013	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
121	NK00301	ISOLATION BKR FOR BATTERY NK013	СВ	2016-00	0.71	Anchorage	Item is ROB to NK003. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
122	NK00311	FDR BKR FOR INVERTER NN013 (PART OF SWBD NK003)	СВ	2016-00	0.71	Anchorage	Item is ROB to NK003. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
123	NN013	7.5KVA INVERTER (FED FROM BATT CHARGER NK023)	CB/CC	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
124	NN003	Class 1E AC DIST SWBD NN03 (SEP GRP 3)	CB/CC	2016-00	0.71	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
125	RP053DB	BOP INSTR RACK RP053DB	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
126	SB037	W PROCESS ANALOG PROTECTION SET CAB- 03	CB/CC	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
127	SE054C	W NUC INSTM NIS 3	CB/CC	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
128	NK043	CNTRL & INSTR DIST SWBD NK043 (CLASS 1E 125 VDC)	CB/CC	2016-00	0.71	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
129	AB007	Aux Relay Rack	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
130	NG00109	FDR BKR FOR 125 V SWING BATTERY CHARGER NK025	СВ	2000-00	0.41	Anchorage	Item is ROB to NG001. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004.
131	NK025	125 V BATTERY CHARGER NK025 (Swing Battery Charger)	СВ	2000-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
132	NG002	480 V LOAD CENTER NG02	СВ	2000-00	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005 Block wall evaluated per 14C4258-CAL-003.
133	NG00212	FLEX 500 kW TIE IN BKR from FD201 (Phase 2 connection point)	СВ	2000-00	0.41	Anchorage	Item is ROB to NG002. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
134	NG00203	FDR BKR FOR 125 V VITAL BATTERY CHARGER NK024	СВ	2000-00	0.41	Anchorage	Item is ROB to NG002. Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
135	NK024	125 V BATTERY CHARGER NK024	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
136	NK074	TRANSFER SWITCH BUS NK04 BATTERY CHARGER NK24/NK26	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
137	NK004	125 VDC BUS SWITCHBOARD NK004	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
138	NK00402	FDR BKR FROM BATT CHGR NK024 TO NK004	СВ	2016-00	0.4	Equipment Capacity	Item is ROB to NK004. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
139	NK014	125 V BATTERY NK014	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
140	NK00401	ISOLATION BKR FOR BATTERY NK014	СВ	2016-00	0.4	Equipment Capacity	Item is ROB to NK004. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
141	NK00411	FDR BKR FOR INVERTER NN011 (PART OF SWBD NK004)	СВ	2016-00	0.4	Equipment Capacity	Item is ROB to NK004. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
142	NN014	7.5KVA INVERTER (FED FROM BATT CHARGER NK024)	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
143	NN004	Class 1E AC DIST SWBD NN04 (SEP GRP 4)	СВ	2016-00	0.4	Equipment Capacity	Component per se screened. Anchorage evaluated per 14C4258-CAL-004. Block wall evaluated per 14C4258-CAL-003.
144	RP147B	BOP Instrumentation Rack RP147B	СВ	2000-00	>RLGM	Screened	SRT disposition
145	SENY0061A	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 61A	AUX	2047-00	>RLGM	Screened	SRT disposition

ESEL							
ltem Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
146	SENY0061B	NEUTRON FLUX MONITORING SYSTEM DETECTOR AMPLIFIER SENY 61B	AUX	2047-00	>RLGM	Screened	SRT disposition
147	SE054D	W NUC INSTM NIS 4	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
148	SB041	W PROCESS ANALOG PROTECTION SET CAB- 04	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
149	RP053BC	BOP Instrumentation Rack RP053BC	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
150	SB079	RVLIS Process Cabinet SB079	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
151	RP081B	Subcooling Monitor Cabinet	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
152	SB148B	W PROCESS PROTECTION (Fire Isolation)	СВ	2000-00	>RLGM	Screened	SRT disposition
153	SA066B	STATUS INDICATING SYS	СВ	2047-06	0.41	Anchorage	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005.
154	RP140	PANEL RP140	СВ	2000-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.
Note 5	BGLI0104	BORIC ACID TANK A LEV	СВ	2047-06	0.4	Equipment Capacity	Item is ROB to RL002. Component per se screened. Anchorage evaluated per 14C4258-CAL-004.
Note 5	BGLT0104	BORIC ACID TANK A LEV	AUX	1974-00	>RLGM	Screened	SRT disposition
Note 5	BNHV0003	RWST SUPPLY TO CTMT SPRAY PUMP B	AUX	1974-00	>RLGM	Screened	SRT disposition
Note 5	BNHV0004	RWST SUPPLY TO CTMT SPRAY PUMP A	AUX	1974-00	>RLGM	Screened	SRT disposition
Note 5	BNHV8806A	RWST TO SAFETY INJ PUMP A SUCTION	AUX	1976-10	>RLGM	Screened	SRT disposition
Note 5	BNHV8806B	RWST TO SAFETY INJ PUMP B SUCTION	AUX	1976-10	>RLGM	Screened	SRT disposition
Note 5	BNHV8812B	RWST TO RHR PUMP B SUCTION	AUX	1968-01	>RLGM	Screened	SRT disposition
Note 5	BNLT0933	RWST Level Transmitter	YRD	1993-00	>RLGM	Screened	SRT disposition

12/2/14

ESEL Item Number	ID	Description	Bldg	Elev	HCLPF	Failure Mode	Basis
Note 5	FC0219	LOCAL CONTROL PANEL FOR TD AFW PUMP	AUX	2002-00	0.41	Equipment Capacity	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005. Relay functionality evaluated per 14C4258-CAL-005.
Note 5	NG002B	MCC NG02B BUS	AUX	2026-00	0.4	Relay functionality	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-004. Relay functionality evaluated per 14C4258-CAL-005.
Note 5	NG003C	MCC NG03C BUS	AUX	2047-00	0.32	Relay functionality	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005. Relay functionality evaluated per 14C4258-CAL-005.
Note 5	NG004C	MCC NG04C BUS	AUX	2047-00	0.32	Relay functionality	Equipment capacity evaluated in 14C4258-CAL-005. Anchorage evaluated per 14C4258-CAL-005. Relay functionality evaluated per 14C4258-CAL-005.
Note 5	RP334	LOCKOUT RELAY RACK	СВ	2000-00	0.4	Equipment Capacity	Component per se screened. Block wall evaluated per 14C4258-CAL-003.