

Table 3.4-1: The Battery, NY CO-OP Station 8518750 Top 20 Extreme Water Levels (AREVA, 2013a)

Rank	Year	Month	Highest (feet NAVD88)	Category/Type
1	2012	10	11.27	TS
2	1960	9	7.24	H2
3	1992	12	6.93	ET
4	1953	11	6.74	ET
5	2011	8	6.73	TS
6	1950	11	6.34	ET
7	1962	3	6.14	ET
8	2010	3	6.03	ET
9	1991	10	5.95	ET
10	1984	3	5.75	ET
11	1987	1	5.6	ET
12	1993	3	5.58	ET
13	1968	11	5.56	ET
14	1960	2	5.54	ET
15	1961	4	5.54	ET
16	1996	3	5.51	ET
17	1996	10	5.5	ET
18	1985	9	5.46	H2
19	1938	9	5.44	H2
20	1944	9	5.44	H1

Notes:

- **TS indicates Tropical Storm** 1.
- 2.
- H1 indicates Category 1 Hurricane H2 indicates Category 2 Hurricane ET indicates Extra-tropical storm 3.
- 4.

Table 3.4-2: Sandy Hook, NJ CO-OP Station 8531680 Top 20 Extreme Water Levels (AREVA,
2013a)

Rank	Year	Month	Highest (feet)	Category/Type
1	1960	9	7.27	H2
2	1992	12	7.26	ET
3	2011	8	6.95	TS
4	1953	11	6.87	ET
5	1944	9	6.57	H1
6	1962	3	6.57	ET
7	2012	10	6.53	TS
8	2010	3	6.21	ET
9	1950	11	6.17	ET
10	1968	11	5.99	ET
11	1966	1	5.97	ET
12	1984	3	5.85	ET
13	1993	3	5.84	ET
14	1987	1	5.81	ET
15	1985	9	5.76	H2
16	1991	10	5.74	ET
17	1961	4	5.67	ET
18	1996	3	5.51	ET
19	1972	2	5.43	ET
20	2009	10	5.34	unknown

Notes:

- 1. TS indicates Tropical Storm
- 2. H1 indicates Category 1 Hurricane
- 3. H2 indicates Category 2 Hurricane
- 4. ET indicates Extra-tropical storm

Table 3.4-3: SLOSH MOMs at the Battery, NY and Sandy Hook, NJ (AREVA, 2013a)

NOAA CO-OP Station	SLOSH Grid Cell	CAT 1 (ft)	CAT 2 (ft)	CAT 3 (ft)	CAT 4 (ft)
The Battery, NY	49-89	9.7	16.3	22.5	28.1
Sandy Hook, NJ	67-53	8.5	14.1	20.1	25.4

۱

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Table 3.4-4: ADCIRC Simulated Probable Maximum Storm Surges (AREVA, 2013d)

Storm Simulation Number and Meteorological Parameters	Peak Sur Battery	ge at The , NY (ft)	Peak Surge at IPEC (ft)		
(Forward Speed, Rad. Max Winds, Landfall Location, Storm Azimuth Direction)	(NAVD88)	(NGVD29)	(NAVD88)	(NGVD29)	
965 - (45knots, 30nm Rmax, landfall Point 1, 335°), HT at IPEC	24.3	25.4	14.5	15.5	
961 - (45knots, 30nm Rmax, landfall Point 1, 325°), HT at IPEC	25.3	26.4	14.6	15.6	
941 - (40knots, 30nm Rmax, landfall Point 1, 335°), HT at IPEC	25.1	26.2	15.9	16.9	
962 - (45knots, 30nm Rmax, landfall Point 2, 325°), HT at IPEC	25.1	26.2	13.8	14.8	
937 - (40knots, 30nm Rmax, landfall Point 1, 325°), HT at IPEC	26.1	27.2	15.8	16.8	
938 - (40knots, 30nm Rmax, landfall Point 2, 325°), HT at IPEC	25.9	27	15.2	16.2	
969 - (45knots, 30nm Rmax, landfall Point 1, 345°), HT at IPEC	22.8	23.9	13.6	14.6	
966 - (45knots, 30nm Rmax, landfall Point 2, 335°), HT at IPEC	23.5	24.6	13.4	14.4	
945 - (40knots, 30nm Rmax, landfall Point 1, 345°), HT at IPEC	23.3	24.4	15.2	16.2	
605 - (45knots, 25nm Rmax, landfall Point 1, 335°), HT at IPEC	23.3	24.4	13.2	14.2	
	45.0	·	40.0	44.0	
978 - (45knots, 30nm Rmax, landfall Point 2, 365°), HT at IPEC	15.3	16.4	10.0	11.0	
959 - (40knots, 30nm Rmax, landfall Pt 3, 370°), HT at IPEC	15.7	16.8	10.1	11.1	
949 - (40knots, 30nm Rmax, landfall Pt 1, 355°), HT at IPEC	19.9	21	13.6	14.6	
973 - (45knots, 30nm Rmax, landfall Pt 1, 355°), HT at IPEC	19.6	20.7	12.4	13.4	
950 - (40knots, 30nm Rmax, landfall Pt 2, 355°), HT at IPEC	18.1	19.2	12.4	13.4	
925 - (30knots, 30nm Rmax, landfall Pt 1, 355°), HT at IPEC	19.5	20.6	16.2	17.2	
925n - (30knots, 25nm Rmax, landfall Pt 1, 355°), HT at IPEC	19.0	20.1	16.0	17.0	
974 - (45knots, 30nm Rmax, landfall Pt 2, 355°), HT at IPEC	18.0	19.1	11.3	12.3	
926 - (30knots, 30nm Rmax, landfall Pt 2, 355°), HT at IPEC	18.4	19.5	14.9	15.9	
985 - (30knots, 30nm Rmax, landfall Pt 5, 355°), HT at IPEC	20.4	21.5	18.0	19.0	
985* - (30knots, 30nm Rmax, landfall Pt 5, 355°), HT at IPEC	19.3	20.4	15.9	16.9	

Notes: Storm 985 is a steady state simulation; Storm 985* is a non-steady state simulation. A linear decaying of the maximum wind speed and a corresponding adjustment to the pressure deficit was applied after landfall for Storm 985*.

Table 3.4-5: Discretized Probabilities for Central Pressure Deficit (CPD) (AREVA, 2013e)

Bin Value (millibars)	Bin Probability	Cumulative Probability
40	0.08	0.858
50	0.038	0.896
60	0.045	0.941
70	0.032	0.973
80	0.023	0.996
90	0.004	1
100	0.000	1

Table 3.4-6: Discretized Probabilities for Forward Direction (θ) (AREVA, 2013e)

Bin Value (degrees)	Bin Probability	Cumulative Probability
-60	0.0076	0.0376
-50	0.0124	0.05
-40	0.0203	0.0703
-30	0.0382	0.1085
-20	0.0564	0.1649
-10	0.0825	0.2474
0	0.1114	0.3588
10	0.136	0.4948
20	0.147	0.6418

Note:

1. Bearing is storm heading measured clockwise from north. Negative indicates west of north.

Table 3.4-7: Discretized Probabilities for Forward Speed (Vf) (AREVA, 2013e)

Bin Value (knots)	Bin Probability	Cumulative Probability
15	0.172	0.322
20	0.258	0.58
25	0.1724	0.7524
30	0.1351	0.8875
35	0.0594	0.9469
40	0.0335	0.9804
45	0.0087	0.9891

Table 3.4-8: Discretized Probabilities for Radius of Maximum Winds (R_{max}) (AREVA, 2013e)

Bin Value (nautical miles)	Bin Probability	Cumulative Probability
16	0.0878	0.1078
20	0.238	0.3458
24	0.2207	0.5665
28	0.2312	0.7977
32	0.0991	0.8968
36	0.0634	0.9602

Table 3.4-9: Factor of Landfall Probability R_{max}/L for Track Offsets (AREVA, 2013e)

Offset ID	Adjustment Factor	Distances to Adjacent Tracks (right, left)
1	1.00	, R _{max}
2	0.75	R _{max} , ½ R _{max}
3	0.50	1/2 R _{max} , 1/2 R _{max}
4	0.50	1/2 R _{max} , 1/2 R _{max}
5	0.50	½ R _{max} , ½ R _{max}
6	0.75	R _{max} , ½ R _{max}
7	1.00	R _{max} ,

Notes:

1. Left/right defined relative to storm heading.

2. "--" denotes no track; zone of coverage extends beyond footprint of storm tracks.

Table 3.4-10: Top 10 JPM SLOSH-Calculated Storm Surge Events (Determined by Simulated Surge Magnitude at IPEC) (AREVA, 2013e)

				V _f R _{max} (kts) (nm)	Offset	Event Joint Probability	Max Stillwater Elevation				
Storm #	CPD	Θ	Vf				(feet, N	IAVD88)	(feet, NGVD29)		
	(mb)	(deg.)	(kts)		ID		IPEC [95 149]	Battery [49 89]	IPEC [95 149]	Battery [49 89]	
15385	90	10	25	20	6	2.33E-07	18.0	19.3	19.0	20.4	
14832	90	-10	30	16	6	3.27E-08	17.6	24.7	18.6	25.8	
14460	90	-20	20	20	5	1.45E-07	17.5	19.4	18.5	20.5	
14881	90	-10	35	20	6	4.87E-08	17.4	26.4	18.4	27.5	
11451	80	-40	45	28	6	1.37E-08	17.3	28.6	18.3	29.7	
14586	90	-20	35	20	5	3.33E-08	17.3	27.0	18.3	28.1	
9070	70	-30	40	36	5	4.88E-08	17.3	23.2	18.3	24.3	
11611	80	-30	30	24	5	3.28E-07	17.3	23	18.3	24.1	
11324	80	-40	30	28	5	2.13E-07	17.3	22.7	18.3	23.8	
11745	80	-30	45	28	6	2.58E-08	17.2	27.9	18.2	29.0	

1) Notes:

1. CPD, θ, V_f, R_{max} reported in millibars, degrees relative to north, knots, and nautical miles, respectively.

2. IPEC [95 149] and Battery [49 89] refer to SLOSH model grid cell locations.

3. Cumulative joint probability reflects joint probability based on storm intensity parameters, bearing and rate of occurrence.

4. Datum conversions between NAVD88 and NGVD29 for IPEC and The Battery are included as Appendix C (NGS, 2013).

5. Figure 14 provides an example depicting offset ID assignment.

Table 3.4-11: Top 10 JPM SLOSH-Calculated Storm Surge Events (Determined by Simulated Surge Magnitude at The Battery) (AREVA, 2013e)

						Cumulative Joint Probability	Max Stillwater Elevation				
Storm #	CPD	Θ	V _f	R _{max}	Offset		(feet, NAVD88)		(feet, NGVD29)		
	(mb)	(deg.)	(kts)	(nm)	ID #		IPEC [95 149]	Battery [49 89]	IPEC [95 149]	Battery [49 89]	
13789	90	-50	45	20	6	1.07E-09	16.6	29.7	17.6	30.8	
14083	90	-40	45	20	6	1.76E-09	16.9	29.6	17.9	30.7	
13495	90	-60	45	20	6	6.57E-10	16.6	29.5	17.6	30.6	
14377	90	-30	45	20	6	3.30E-09	17.0	29.2	18.0	30.3	
11157	80	-50	45	28	6	8.38E-09	17.1	29.0	18.1	30.1	
14041	90	-40	40	20	6	6.76E-09	16.9	29.0	17.9	30.1	
10863	80	-60	45	28	6	5.14E-09	16.8	29.0 17.8		30.1	
13747	90	-50	40	20	6	4.13E-09	15.9	15.9 28.9 16.9		30.0	
14335	90	-30	40	20	6	1.27E-08	17.0	28.8	18.0	29.9	
14082	90	-40	45	20	5	1.76E-09	16.7	28.7	17.7	29.8	

2) Notes:

1. CPD, θ, V_f, R_{max} reported in millibars, degrees relative to north, knots, and nautical miles, respectively.

2. IPEC [95 149] and Battery [49 89] refer to SLOSH model grid cell locations.

- 3. Cumulative joint probability reflects joint probability based on storm intensity parameters, bearing and rate of occurrence.
- 4. Datum conversions between NAVD88 and NGVD29 for IPEC and The Battery are included as Appendix C (NGS, 2013).

5. Figure 14 provides an example depicting offset ID assignment.

Table 3.4-12: ADCIRC Simulated Storm Surge Stillwater Elevations (AREVA, 2013e)

		Peak Surge			
		The Battery	IPEC	The Battery	IPEC
Rank	Storm ID (<i>Vmax, Vf, Rmax, CPD, θ</i>), Tide at IPEC	de at IPEC (feet, NAVD8			VD29)
1	14460 - (131kts Vmax, 20kts Vf, 20nm Rmax, 90mb, -20°), HT at IPEC	17.49	18.08	18.59	19.08
2	13915 - (134kts Vmax, 25kts Vf, 20nm Rmax, 90mb, -40°), HT at IPEC	23.26	17.22	24.36	18.22
3	11661 - (132kts Vmax, 35kts Vf, 28nm Rmax, 80mb, -30°), HT at IPEC	24.47	17.20	25.57	18.20
4	15385 - (134kts Vmax, 25kts Vf, 20nm Rmax, 90mb, 10°), HT at IPEC	15.32	17.16	16.42	18.16
5	14251 -(137kts Vmax, 30kts Vf, 20nm Rmax, 90mb, -30°), HT at IPEC	23.97	17.11	25.07	18.11
6	11367 - (124kts Vmax, 35kts Vf, 28nm Rmax, 80mb, -40°), HT at IPEC	24.46	16.84	25.56	17.84
7	11324 - (121kts Vmax, 30kts Vf, 28nm Rmax, 80mb, -40°), HT at IPEC	22.41	16.50	23.51	17.50
8	11611 - (125kts Vmax, 30kts Vf, 24nm Rmax, 80mb, -30°), HT at IPEC	21.39	16.44	22.49	17.44
9	11703 - (127kts Vmax, 40kts Vf, 28nm Rmax, 80mb, -30°), HT at IPEC	23.65	16.37	24.75	17.37
10	14790 - (138kts Vmax, 25kts Vf, 16nm Rmax, 90mb, -10°), HT at IPEC	17.91	16.28	19.01	17.28
11	11409 - (126kts Vmax, 40kts Vf, 28nm Rmax, 80mb, -40°), HT at IPEC	24.58	16.24	25.68	17.24
12	14881 - (140kts Vmax, 35kts Vf, 20nm Rmax, 90mb, -10°), HT at IPEC	20.96	16.11	22.06	17.11
13	11696 - (131kts Vmax, 40kts Vf, 24nm Rmax, 80mb, -30°), HT at IPEC	23.95	15.99	25.05	16.99
14	11996 - (126kts Vmax, 40kts Vf, 28nm Rmax, 80mb, -20°), HT at IPEC	22.47	15.88	23.57	16.88
15	14538 - (141kts Vmax, 30kts Vf, 16nm Rmax, 90mb, -20°), HT at IPEC	21.10	15.88	22.20	16.88
16	11451 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -40°), HT at IPEC	24.61	15.85	25.71	16.85
17	14292 - (140kts Vmax, 35kts Vf, 20nm Rmax, 90mb, -30°), HT at IPEC	24.84	15.80	25.94	16.80
18	11745 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -30°), HT at IPEC	23.62	15.78	24.72	16.78
19	14335 - (142kts Vmax, 40kts Vf, 20nm Rmax, 90mb, -30°), HT at IPEC	25.33	15.77	26.43	16.77
20	14586 - (140kts Vmax, 35kts Vf, 20nm Rmax, 90mb, -20°), HT at IPEC	23.56	15.74	24.66	16.74
21	11990 - (131kts Vmax, 40kts Vf, 24nm Rmax, 80mb, -20°), HT at IPEC	22.20	15.58	23.30	16.58
22	14832 - (141kts Vmax, 30kts Vf, 16nm Rmax, 90mb, -10°), HT at IPEC	19.68	15.52	20.78	16.52
23	11157 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -50°), HT at IPEC	25.23	15.52	26.33	16.52
24	14041 - (143kts Vmax, 40kts Vf, 20nm Rmax, 90mb, -40°), HT at IPEC	25.76	15.52	26.86	16.52
25	14377 - (145kts Vmax, 45kts Vf, 20nm Rmax, 90mb, -30°), HT at IPEC	25.49	15.45	26.59	16.45

Table 3.4-12: ADCIRC Simulated Storm Surge Stillwater Elevations (con't)

		Peak Surge			
		The Battery	IPEC	The Battery	IPEC
Rank	Storm ID (Vmax, Vf, Rmax, CPD, θ), Tide at IPEC	(feet, NAVD88)		(feet, NGVD29)	
26	14629 - (143kts Vmax, 40kts Vf, 20nm Rmax, 90mb, -20°), HT at IPEC	23.65	15.34	24.75	16.34
27	11408 - (126kts Vmax, 40kts Vf, 28nm Rmax, 80mb, _40°), HT at IPEC	23.85	15.32	24.95	16.32
28	12039 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -20°), HT at IPEC	21.64	15.32	22.74	16.32
29	10863 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -60°), HT at IPEC	25.10	15.29	26.20	16.29
30	14083 - (145kts Vmax, 45kts Vf, 20nm Rmax, 90mb, -40°), HT at IPEC	25.87	15.29	26.97	16.29
31	12032 - (134kts Vmax, 45kts Vf, 24nm Rmax, 80mb, -20°), HT at IPEC	22.69	15.26	23.79	16.26
32	11941 - (132kts Vmax, 35kts Vf, 20nm Rmax, 80mb, -20°), HT at IPEC	21.23	15.22	22.33	16.22
33	14923 - (143kts Vmax, 40kts Vf, 20nm Rmax, 90mb, -10°), HT at IPEC	21.65	15.19	22.75	16.19
34	14922 - (143kts Vmax, 40kts Vf, 20nm Rmax, 90mb, -10°), HT at IPEC	22.60	15.18	23.70	16.18
35	11744 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -30°), HT at IPEC	23.47	15.12	24.57	16.12
36	9057 - (119kts Vmax, 40kts Vf, 28nm Rmax, 70mb, -30°), HT at IPEC	20.93	15.06	22.03	16.06
37	14671 - (146kts Vmax, 45kts Vf, 20nm Rmax, 90mb, -20°), HT at IPEC	23.79	15.02	24.89	16.02
38	11450 - (129kts Vmax, 45kts Vf, 28nm Rmax, 80mb, -40°), HT at IPEC	23.90	14.91	25.00	15.91
39	11737 - (134kts Vmax, 45kts Vf, 24nm Rmax, 80mb, -30°), HT at IPEC	23.86	14.72	24.96	15.72
40	13789 - (145kts Vmax, 45kts Vf, 20nm Rmax, 90mb, -50°), HT at IPEC	26.03	14.63	27.13	15.63
41	8182 - (115kts Vmax, 40kts Vf, 32nm Rmax, 70mb, -60°), HT at IPEC	22.01	14.47	23.11	15.47
42	14040 - (143kts Vmax, 40kts Vf, 20nm Rmax, 90mb, -40°), HT at IPEC	25.00	14.43	26.10	15.43
43	9070 - (111kts Vmax, 40kts Vf, 36nm Rmax, 70mb, -30°), HT at IPEC	19.44	14.41	20.54	15.41
44	9358 - (115kts Vmax, 40kts Vf, 32nm Rmax, 70mb, -20°), HT at IPEC	17.89	14.40	18.99	15.40
45	14670 - (145kts Vmax, 45kts Vf, 20nm Rmax, 90mb, -20°), HT at IPEC	24.02	14.38	25.12	15.38
46	8217 - (122kts Vmax, 45kts Vf, 28nm Rmax, 70mb, -60°), HT at IPEC	22.60	14.34	23.70	15.34
47	8776 - (111kts Vmax, 40kts Vf, 36nm Rmax, 70mb, -40°), HT at IPEC	19.72	14.21	20.82	15.21
48	9393 - (122kts Vmax, 45kts Vf, 28nm Rmax, 70mb, -20°), HT at IPEC	19.46	14.21	20.56	15.21
49	14082 - (145kts Vmax, 45kts Vf, 20nm Rmax, 90mb, -40°), HT at IPEC	25.01	14.14	26.11	15.14
50	8517 - (118kts Vmax, 45kts Vf, 32nm Rmax, 70mb, -50°), HT at IPEC	21.13	13.55	22.23	14.55

Note: Rank shown in Table 3.4-12 based on the ADCIRC calculated maximum water levels at IPEC.

Figure 3.4-1: Location of NOAA Co-Op Stations in the Vicinity of IPEC (AREVA, 2013a)

Figure 3.4-2: Hurricane Strikes to New York and New Jersey (AREVA, 2013a)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-3: Hurricane Tracks of Recorded Extreme Water Levels at Sandy Hook, NJ and the Battery, NY (AREVA, 2013a)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-4: New York, Version 3 (ny3) SLOSH 3.97 Model Grid (ADCIRC Mesh Model Elevation (m, NAVD88)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-5: New York, Version 3 (ny3) Basin Digital Elevation Model (DEM) Defining Base of Model Domain (AREVA, 2013d)

Figure 3.4-6: New York, Version 3 (ny3) Basin Digital Elevation Model (DEM) Defining Base of Model Domain in IPEC Vicinity (Upper Bay, New York and Hudson River) (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-8: Landfall Points for SLOSH 3.97 Storm Tracks (AREVA, 2013d)

Figure 3.4-9: SLOSH 3.97 Bearing Range for Northerly Storm Tracks (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-10: SLOSH 3.97 Bearing Range for Westerly Storm Tracks (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-11: ADCIRC FEMA Region II Finite Element Mesh – Northern Atlantic (AREVA, 2013d)

Figure 3.4-12: ADCIRC FEMA Region II Finite Element Mesh – New Jersey/New York (AREVA, 2013d)

Figure 3.4-13: ADCIRC FEMA Region II Finite Element Mesh – IPEC Vicinity (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-14: ADCIRC Module Mesh Elevation (m, NAVD88) – Northern Atlantic (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-15: ADCIRC Mesh Model Elevation (m, NAVD88) - New Jersey / New York (AREVA, 2013e)

World Imagery base map Mesh Module elevationn FC Degrees 0.01 0.02 0.03

Figure 3.4-16: ADCIRC Mesh Model Elevation (m, NAVD88) – IPEC Vicinity (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-17: Track Directions and Landfall Locations for ADCIRC Simulations (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-18: ADCIRC Envelope of Maximum Winds (m/s) of Storm No. 941 (AREVA, 2013d)

Maimum Wind Speed (m/s) World Imagery base map

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-19: ADCIRC Envelope of Maximum Winds (m/s) of Storm No. 985* (AREVA, 2013d)

Figure 3.4-20: ADCIRC Maximum Storm Tide Stillwater Elevations (m, NAVD88) of Storm No. 941 (AREVA, 2013d)

Figure 3.4-21: ADCIRC Maximum Storm Tide Stillwater Elevations (m, NAVD88) of Storm No. 941 – IPEC Vicinity (AREVA, 2013d)

Figure 3.4-22: ADCIRC Maximum Storm Tide Stillwater Elevations (m, NAVD88) of Storm No. 985*(AREVA, 2013d)

Figure 3.4-23: Maximum Storm Tide Stillwater Elevations (m, NAVD88) of Storm No. 985* - IPEC Vicinity (AREVA, 2013d)

Figure 3.4-24: Comparison of Wind Field of ADCIRC and SLOSH Models – Storm No. 941 (AREVA, 2013d)

Figure 3.4-25: Comparison of Wind Field of ADCIRC and SLOSH Models – Storm No. 985* (AREVA, 2013d)

Figure 3.4-26: Comparison of Wind Profiles of ADCIRC and SLOSH Models - Storm No. 941

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-28: Comparison of Water Levels on Hudson River of ADCIRC and SLOSH Models – Storm 941 (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-29: Comparison of Water Levels on Hudson River of ADCIRC and SLOSH Models – Storm 985* (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-30: Time Series of Wind and Storm Tide Stillwater Elevation – Storm No. 941 Note: Hurricane (wind) decay after landfall not applied for Storm No. 941. (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-31: Time Series of Wind and Storm Tide Stillwater Elevation – Storm No. 985* Note: Hurricane (wind) decay after landfall applied for Storm No. 985*. (AREVA, 2013d)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-32: Example Storm Tracks (*θ*=-40 degree bearing) with Offset Calculation (Offset IDs Indicated) from Base Track (AREVA, 2013e)

Figure 3.4-33: Landfall Points for the JPM Synthetic Storms Shown by Associated Storm Track Bearing (θ) in Degrees (AREVA, 2013e)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-34: Storm Tracks (R_{max} = 16 nautical miles) for the JPM Synthetic Storms (AREVA, 2013e)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-35: Storm Tracks (R_{max} = 20 nautical miles) for the JPM Synthetic Storms (AREVA, 2013e)

1

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-36: Storm Tracks (R_{max} = 24 nautical miles) for the JPM Synthetic Storms (AREVA, 2013e)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-37: Storm Tracks (*R_{max}* = 28 nautical miles) for the JPM Synthetic Storms (AREVA, 2013e)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-38: Storm Tracks (R_{max} = 32 nautical miles) for the JPM Synthetic Storms (AREVA, 2013e)

Entergy Fleet Fukushima Program Flood Hazard Reevaluation Report for Indian Point Energy Center (IPEC) Units 2 and 3

Figure 3.4-39: Storm Tracks (R_{max} = 36 nautical miles) for the JPM Synthetic Storms (AREVA, 2013e)